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Preface

The 24th International Conference on Financial Cryptography and Data Security
(FC 2020), was held February 10–14, 2020, at the Shangri-La Tanjung Aru Resort in
Kota Kinabalu, Sabah, Malaysia.

We received 162 paper submissions. Of these, 34 full papers and 2 short papers
were accepted, a 22.2% acceptance rate. Revised papers appear in these proceedings.

We are grateful for the contributions of the 76 members of the Program Committee.
The review process took place over approximately seven weeks in October and
November 2019. An extensive online discussion phase was utilized to guide decisions.
The review process was double-blind and carried out entirely online via the HotCRP
review platform. All accepted submissions received at least three reviews. A total of
554 reviews were completed, an average of 3.6 per submitted paper. The Program
Committee members provided thoughtful and constructive feedback on all papers,
which considerably strengthened the quality of the final program. We are especially
thankful to Program Committee members who served as shepherds for 11 of the 36
accepted papers which were accepted conditionally on specific improvements being
completed. We also appreciate the reviews contributed by 27 external reviewers.

The community’s interest in blockchain-based cryptocurrencies continued to grow
and for the first year represented the majority of the program. As was done for the 2019
program, papers were submitted into one of two self-selected “tracks”: traditional
financial cryptography and blockchains. The Program Committee was composed of
approximately equal proportions of reviewers for the two tracks. The final program
contained 31 papers submitted as blockchain papers and only 5 submitted primarily as
papers on traditional topics. Analysis completed after the peer review process found
that this was partially a result of more papers being submitted on blockchain topics
(over 75% of submissions) and these papers also receiving more positive reviews.
However, the resulting program led to some controversy within the community. Dis-
cussion at the conference during the general meeting affirmed that nearly all members
of the community would like to continue to see a balance of areas represented in the
program. Several ideas were proposed for continuing to attract a scientifically diverse
program on all areas of financial cryptography.

The program ran over four days. In addition to 20-minute presentations of all
accepted papers, the program began with a keynote address from Allison Nixon, Chief
Research Officer at Unit221B entitled “Fraudsters Taught Us that Identity is Broken.”
The keynote featured many interesting examples from industry on challenges with
fraud in online payments and other systems. The program concluded with a panel
discussion “Crypto engineering for the real world” organized by Ross Anderson and
featuring Jean Camp, Peter Landrock, Allison Nixon, and Alex van Someren as pan-
elists. A rump session was held on Tuesday evening featuring humorous talks and
recent results.



The program was noticeably affected by the emerging Covid-19 pandemic (known
simply as the novel coronavirus at the time of the conference). While there were no
known cases in Bornean Malaysia at the time of the event, travel restrictions on China
and Hong Kong went into effect before the conference began, which prevented a
number of members of the community from attending in person. Attendance was
estimated to be reduced by 10–20% as a result and seven presentations were conducted
remotely via pre-recorded video with authors available by video conference to answer
questions. The general consensus at the conference was that remote presentations went
smoothly and there was enthusiasm for increasing opportunities for virtual attendance
and presentation in future years. Fortunately, we are unaware of any attendees con-
tracting the virus as a result of attending the conference.

Overall, feedback at the conference was overwhelmingly positive despite the pan-
demic and the location being far from the traditional Carribean region. We would like
to thank Rafael Hirschfeld and Patrick McCorry for their service as conference general
chairs, without whom the event would not have been possible especially in a logisti-
cally challenging year. We also thank the IFCA directors and Steering Committee for
their service.

Finally, we would like to thank the sponsors of the conference for their generous
support: our Platinum sponsors the Ethereum Foundation, Protocol Labs, and Tezos;
our Gold sponsor Chainalysis; our Silver sponsors Calibra and IOHK; our sponsors in
kind Blockstream, Indiana University, and Worldpay; as well as generous help and
support from the Ministry of Tourism, Arts and Culture Malaysia and the Malaysia
Convention and Exhibition Bureau.

May 2019 Joseph Bonneau
Nadia Heninger
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Leveraging Bitcoin Testnet
for Bidirectional Botnet

Command and Control Systems

Federico Franzoni(B) , Ivan Abellan , and Vanesa Daza

Universitat Pompeu Fabra, Barcelona, Spain
{federico.franzoni,vanesa.daza}@upf.edu, iabellan@pm.me

Abstract. Over the past twenty years, the number of devices connected
to the Internet grew exponentially. Botnets benefited from this rise to
increase their size and the magnitude of their attacks. However, they still
have a weak point in their Command & Control (C&C) system, which
is often based on centralized services or require a complex infrastructure
to keep operating without being taken down by authorities. The recent
spread of blockchain technologies may give botnets a powerful tool to
make them very hard to disrupt. Recent research showed how it is possi-
ble to embed C&C messages in Bitcoin transactions, making them nearly
impossible to block. Nevertheless, transactions have a cost and allow very
limited amounts of data to be transmitted. Because of that, only mes-
sages from the botmaster to the bots are sent via Bitcoin, while bots are
assumed to communicate through external channels. Furthermore, for
the same reason, Bitcoin-based messages are sent in clear. In this paper
we show how, using Bitcoin Testnet, it is possible to overcome these lim-
itations and implement a cost-free, bidirectional, and encrypted C&C
channel between the botmaster and the bots. We propose a communica-
tion protocol and analyze its viability in real life. Our results show that
this approach would enable a botmaster to build a robust and hard-to-
disrupt C&C system at virtually no cost, thus representing a realistic
threat for which countermeasures should be devised.

Keywords: Blockchain · Bitcoin · Security · Botnets · C&C

1 Introduction

A botnets is a network of infected devices, called bots, collectively controlled
by a single actor, called the botmaster. Botnets have been a major threat on
the Internet for a long time, being used for a variety of malicious activities,

F. Franzoni—The work of this author is partly supported by the Spanish Ministry
of Economy and Competitiveness under the Maria de Maeztu Units of Excellence
Programme (MDM-2015-0502).
V. Daza—This author was supported by Project RTI2018-102112-B-I00 (AEI/FEDER,
UE).
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like spamming, credentials stealing, and Distributed Denial of Service (DDoS)
attacks [17]. A lot of research has been done to help detect and disrupt such
activities on the web [12]. However, the frequency and magnitude of botnet
attacks drastically increased in the past few years, due to the massive adoption
of computing devices and the advent of the Internet of Things (IoT), which
is connecting millions of insecure devices to the web [7]. Recent attacks from
the infamous Mirai botnet [4], showed the potential of this threat, with DDoS
attacks of up to 1.1 Tbps [15].

Meanwhile, blockchain is also becoming increasingly adopted as a tool for
building distributed systems where different parties are able to exchange assets
and data in a trustworthy manner [24]. Recent research showed how blockchains
can be leveraged to implement the command and control (C&C) system of a
botnet [2,13]. In fact, using public blockchains, like Bitcoin, as the commu-
nication channel has several advantages for a botnet. First of all, they come
with the strengths of all distributed networks, such as robustness and efficiency.
Secondly, they are not regulated by any authority, making them censorship-
resistant, meaning that no specific content or user can be banned. Furthermore,
they privilege privacy, by making use of pseudonyms and hindering the associa-
tion between a transaction and the device that generated it. As such, although
possible [9,16], it is not trivial to identify nodes participating in a botnet, and
even more importantly, to identify the botmaster. All such properties are ideal
for a botnet [27], as they allow to operate, protected, over a long period of time,
with virtually no risk of having communications disrupted.

Most state-of-the-art research proposes Bitcoin transactions as the main C&C
vector, following different strategies to embed commands from the botmaster.
However, these proposals have important limitations. First of all, they only cover
communications from the botmaster, delegating replies form the bots to exter-
nal channels, typically employing a web server. Furthermore, messages are very
limited in size and are sent in clear, as cryptography is only implemented on the
external channel. Finally, messages have a cost, since they are sent via transac-
tions. All these limitations make this approach seem impractical or inconvenient
for a real-world botnet implementation.

In this paper, we show it is possible to overcome such limitations by leveraging
the Testnet network, instead of Mainnet. We propose a bidirectional communi-
cation protocol that implements encryption and allows bigger amounts of data
to be exchanged. To the best of our knowledge, this is the first paper to study
bidirectional C&C communications on top of Bitcoin. Our approach makes a
fully-blockchain-based botnet implementation both practical and economical.

Organization of the Paper. The rest of the paper is organized as follows. Section 2
describes the necessary background topics, that is Botnet C&C and Bitcoin.
Section 3 covers previous research work and discuss its limitations. In Sect. 4, we
show the advantages of using Testnet as the C&C channel. In Sect. 5, we describe
our communication protocol design and in Sect. 6 we show our experimental
results. Section 7 analyzes the viability and robustness of our proposal. Section 8
concludes the paper and discuss future work.
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2 Background

2.1 Botnet C&C Communication

In order for a botnet to operate, a communication channel is needed between
botmaster and bots. The infrastructure used for that purpose is known as the
Command & Control (C&C) system. This is a crucial component for a botnet,
as it is the only means to keep control over the bots. As such, it is has to be
designed carefully, in order to avoid being disrupted. In other words, the C&C
system should allow controlling the botnet as long as possible, providing stealthy
and efficient communication between botmaster and bots.

Strategies to implement C&C changed over the years, following the evolu-
tion of available technologies and the ability of authorities to counter exist-
ing approaches [20]. First-generation botnets leverage hardcoded Internet Relay
Chat (IRC) channels, where bots connect to receive instructions from the bot-
master. This system is simple and cheap but is also easy to detect and take down
[1,8]. Second-generation botnets make use of HTTP, with hardcoded web domains,
periodically contacted by the bots to download instructions. This approach
allows to effectively blend messages into legitimate Internet traffic. Nonethe-
less, effective techniques exist to detect botnet communications [14,18], allowing
to quickly shutdown malicious domains [29].

Early botnets relied on a client-server model, thus having a central point
of failure, which can always be detected and shut down by the authorities. Last
generation botnets overcome this issue by adopting a P2P model. Bots and C&C
server connect as peers to the same network, making it difficult to distinguish
the source of the commands [28]. This architecture makes the botnet much more
robust and hard to shut down. Nonetheless, it is still possible to detect P2P-
botnet traffic using advanced techniques [22,25]. Moreover, to join the network,
bots need hardcoded addresses, which can be easily blocked by authorities if
detected. Modern botnets tend to use a mix of techniques, such as P2P network
with HTTP C&C server, or leverage cloud-based services and social media as
rendezvous points [20]. Although these services are easy to setup and access,
providers can promptly block any detected malicious account.

2.2 Bitcoin

Bitcoin is a digital payment system released in 2009. Participating actors are
identified by alphanumeric strings called addresses. Each address represents the
public part of an (asymmetric) cryptographic key pair, whose private part is
used by the owner to sign transactions. When a coin is sent to a specific address,
only the owner of the corresponding private key can spend it. Transactions are
validated by nodes of a P2P network that cooperate to maintain a distributed
ledger, structured as a chain of blocks (or blockchain). Each block contains a
set of valid transactions and is linked to the previous one by including its hash.
Blocks are concurrently created by special nodes called miners, which compute
the solution of a cryptographic puzzle over the transactions of the new block.
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This solution is known as Proof of Work (PoW) and is included in the block
itself. Transactions and blocks are validated and distributed by all the peers of
the network. To decide on conflicting versions of the ledger, peers always choose
the longest chain they know, that is the one with the biggest PoW. By following
this scheme, the ledger is considered to be immutable and able to avoid double
spending the same coin [23].

OP RETURN. Since 2014, it is possible to embed a small amount of data inside a
transaction, using the OP RETURN opcode [30]. This possibility was introduced
to discourage other wasteful methods of embedding data, such as using non-
existing transaction output addresses. The new opcode allows adding a non-
spendable output, which carries up to 80 bytes of arbitrary data. OP RETURN
is often used to implement asset exchange protocols on top of Bitcoin or to add
valuable data in the blockchain [6].

Testnet. As other public blockchains, Bitcoin provides a separate network for
developers to test their applications, known as Testnet [31]. While running the
same protocol as the main network (Mainnet), Testnet has some important dif-
ferences. First of all, Testnet coins (tBTC) have no real value, and can be easily
obtained via online services called faucets. Secondly, the mining difficulty is also
set to a lower value than Mainnet, making the blockchain grow faster. Finally,
some restrictions are ignored to allow developers to test edge cases. In partic-
ular, non-standard transactions are allowed, thus being relayed and mined by
the network. We will see how these and other characteristics significantly help
implementing a botnet C&C.

Bitcoin Nodes. There are two main options to access the Bitcoin blockchain: full
nodes and Simple Payment Verification (SPV) nodes. Full nodes are the building
blocks of the P2P network. They validate all transactions and blocks, and relay-
ing them to their peers. This is the most secure way to use Bitcoin, but requires
to download the whole blockchain, which can be very resource-consuming. SPV
nodes, like full nodes, receive and relay all transactions, but do not download
the whole blockchain. Instead, they only download block headers and rely on
other peers to retrieve the blocks they need to validate transactions of interest.
This make the node suitable for resource-constrained devices at the expense of
a certain level of trust into other peers. Thanks to their better performances,
SPV nodes are today the most popular choice on Bitcoin [26].

3 Related Work

ZombieCoin [2] was the first paper to propose Bitcoin as a means for C&C
communications. Bots embed the botmaster public key and decode transactions
coming from the corresponding address. To embed commands, the OP RETURN
opcode is used, which allows to carry up to 80 bytes of data. In [3] the
same authors propose enhancements such as transaction-chaining to embed
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longer messages and external upstream communication by means of periodi-
cal rendezvous-point announcements. The main limitations of this proposal are
the server-based upstream communication and the cost of messages sent on the
blockchain. The authors claim that it would be impractical and economically
prohibitive to implement upstream communication on top of the blockchain. We
show that this is not true when leveraging Testnet.

ChainChannels [13] proposes a more generic approach, which can be used
on different blockchains as it does not leverage Bitcoin-specific features. The
authors describe a method to insert hidden data into transaction signature,
which can be later decoded with the private key used for the signature. For
this purpose, the authors propose a key-leakage scheme that allows bots to deci-
pher messages at a later time. This is a very portable approach, since virtually
all blockchains employ digitally-signed transactions with a compatible signa-
ture scheme. Nonetheless, this approach suffers from the same limitations as
ZombieCoin: messages are costly and limited in size; communication is unidi-
rectional and unencrypted. Furthermore, bots can only decrypt messages in a
second moment, assuming they execute commands altogether after these have
been issued, something that might not be realistic.

In [5], the authors propose an approach based on Whisper, a communica-
tion protocol that runs on top of the Ethereum network. This approach does
not use transactions and thus has no cost. It also provides a good level of pri-
vacy and allows for two-way communication. Moreover, as messages are not in
transactions, they are not added to the blockchain, making their backward anal-
ysis harder. However, Whisper, which is still in a PoC stage, it is not enabled by
default on the standard Ethereum client (geth) and there are no known statistics
about how many nodes currently run the protocol. Consequently, its reliability
is unknown, making it unlikely to be actually used by a botnet as of today.

4 Leveraging the Testnet Network

As explained in Sect. 2, Bitcoin Testnet follows the same protocol as the Mainnet
but has some important differences. In particular:

– Testnet coins have no value in real life. For this reason, they can be easily
obtained for free through online services called faucets [31].

– Mining is much easier, since the PoW difficulty is set to a lower value. As a
consequence, unlike Mainnet, it is feasible to run a solo miner [19] to earn
coins.

– The Testnet network and blockchain are about ten times smaller than Main-
net [11]. This makes clients synchronize faster and consume less resources.

– Non-standard transactions are validated and relayed by the network. This
feature enables the following characteristics:
• OP RETURN can be bigger than 80 bytes. In fact, there is no explicit

limit to the amount of data that can be actually embedded;
• Transactions can have multiple outputs with the same address as well as

multiple OP RETURNs;
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• Transaction outputs can be below the dust limit1;
• Transaction size can be greater than the maximum (which is around

100 kB).

All these properties give numerous benefits for the implementation of a bot-
net. First of all, the botmaster can easily obtain the necessary amount of coins to
run its botnet, either by using faucets or running a miner. Secondly, the reduced
size of Testnet blockchain and network make bots less resource-demanding, allow-
ing them to hinder detection and even to run on low-resource devices. Finally,
non-standard transactions give the ability to send bigger and more complex
messages.

These features allow overcoming all the main drawbacks of previous Bitcoin-
based proposals: botnet communications have no cost thanks to the fact that
Testnet coins have no real value; bidirectional communication can be imple-
mented thanks to the great number of coins that can be obtained for free;
encryption can be implemented thanks to the larger amount of data that can be
embedded in each transaction.

5 Botnet Design

In this section, we propose a viable communication protocol for Testnet, based
on non-standard transactions, that provides a bidirectional and encrypted C&C
channel at zero cost.

As in previous works, we assume there exist an infection mechanism that
takes control of devices and downloads the bot client. The botnet is composed
by a C&C server node, directly controlled by the botmaster, and a number of
bot nodes. We assume the C&C server is not resource-constrained and runs a
full node. On the other side, bots run an SPV node to consume less resources
and hinder detection.

In the rest of this section, we explain how the communication works (trans-
actions, fees and encryption) and describe the different phases of the protocol
(registration, commands and responses).

5.1 Communication

All communications between the botmaster and the bots happen through trans-
actions.

Data Embedding and Fees. We use OP RETURN outputs to embed messages
inside transactions. As previously mentioned, this operator has no explicit limits
of size on Testnet. As such, the amount of data that can be embedded is only
limited by the maximum size of a transaction, which, again, is not explicitly

1 On Bitcoin, it is considered dust any output smaller than the amount needed to
spend that output. Hence its value actually depends on the transaction size, but its
minimum is usually considered to be 546 satoshis.
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limited on Testnet. This makes the theoretical size limit bound by the size of a
block (around 1 MB). However, a practical limit to this amount is given by the
minimum fee needed to have the transaction relayed by other peers. This value is
known as the minimum relay fee (MRF). MRF does not differ between Mainnet
and Testnet and is proportional to the size of the transaction itself. This means
that, although sending very large messages is possible, this can be excessively
expensive in terms of fees. We will see more details about MRF later in Sects. 6
and 7.

In our protocol, all transactions spend a fee equivalent to the corresponding
MRF. To this respect, it is important to notice that using low fees might make
the transaction mined later. However, from the botnet perspective, it is not
important if and when messages are added to the blockchain, but only if they
travel across the network and reach the C&C server.

Encryption and Authentication. In order to protect communications, we use
encryption in both directions. To obtain the best compromise between security
and efficiency, we make use of an hybrid approach.

We assume the botmaster creates an asymmetric key pair, called botmaster
keys before the creation of the botnet and hardcode bots with the public key.
This key pair is completely unrelated to the address used to send commands,
which in fact, can change at every message. Additionally, a symmetric key is
also embedded in the bots, called botnet key.

For the sake of clarity, we distinguish between downlink encryption, used
from the botmaster to the bots, and uplink encryption, used by the bots to
communicate with the botmaster.

Downlink encryption works this way: when the botmaster wants to send a
command, it encrypts it with the botnet key and signs it with its private key;
when bots receive a transaction with an OP RETURN, they check the signature
using the botmaster public key. If the signature is valid, they decrypt the message
with the botnet key and execute the command. This scheme allows the bots to
recognize transactions from the botmaster even without knowing its address.
Moreover, thanks to the signature, bots are assured about the authenticity of
the source.

For uplink encryption, each bot creates a private symmetric key, called the bot
key, which is sent to the botmaster at the time of registration, encrypted with the
botmaster public key. When sending messages, bots encrypt data with their bot
key. Furthermore, bots use a new address for each message, which corresponds
to the change address of the previous transaction. In order to recognize and
decrypt bots messages, the botmaster keeps track of the current address of each
bot and the corresponding encryption key.

Transactions. We have the following types of transactions: quotas, registrations,
fundings, and messages. Quotas have one input and several outputs (the quotas),
which are used as input for the registration transactions. Registration transac-
tions have one input (a quota) and one OP RETURN output. The quota equals
the MRF for the registration message, so no change output is required. Funding
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transactions have one input and one output, which equals the input value minus
the MRF. Messages (commands and responses) always have two outputs, one
with the OP RETURN carrying the message and the other sending the change
(minus the MRF) to another address belonging to the sender (i.e. the change
address).

5.2 Bot Registration

When a new bot joins the network, the first thing it needs is to get some funds
to send transactions. As the bot cannot obtain funds autonomously (like the
botmaster does), it needs to ask the botmaster to provide some. However, at the
same time, the botmaster needs to know the address of the bot in order to send
such funds.

We solve this problem by having all bots sharing a common private key,
that gives access to all transactions of an address called the shared account. The
botmaster periodically puts funds on the account, while new bots use such funds
to register to the botnet. They do so by sending a registration message which
contains their own address and encryption key. Since SPV clients do not store
the UTXO set (the set of unspent transactions), they ask their peers about any
available fund on the account. The botmaster monitors transactions sent from
the shared account and when it detects one, it stores the information about the
new bot and sends it some funds. After the registration, bots will only receive
funds directly from the botmaster.

If more bots try to register at the same time, there might be a conflict
between their transactions (i.e. a double spend). In order to minimize this risk,
the botmaster puts on the account several transactions, called quotas, containing
just the right amount of coins needed to send the registration message. Further-
more, to reduce concurrency, it always sends multiple quotas at the same time.
When a new bot wants to register, it picks a random quota and tries to send the
message. It then sets a timeout for receiving the funding from the botmaster. If
the timeout expires, the bot picks another quota and repeats the process. The
same happens if its transaction gets rejected by peers or if another transaction
spending the same quota is detected. At any time, the botmaster makes sure
there are enough quotas on the shared account, according to the rate at which
new bots are joining.

Since the registration transaction comes from a shared account and only has
an OP RETURN output, neither the botmaster address nor the bot one are
revealed.

It is worth noting that creating quotas would not be possible on Mainnet, as
they would be considered as dust outputs and rejected by the network.

5.3 Commands and Responses

We distinguish between commands, that are messages sent by the botmaster,
and responses, that bots send after executing a command. Bots can execute
three types of commands: hardcoded, shell and script.
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Hardcoded commands are functions that are already implemented by the bot
code. They can be executed once or repeated over a period of time. Examples of
hardcoded commands include a DoS function to attack a target or a keylogger
to steal credentials. The botmaster can send parameters such as interval and
number of iterations, or make the function run indefinitely until it sends a stop
command.

Shell commands are command-line instructions that the bot directly execute
on the infected machine. When the bot receives such command, it runs it and
converts the output into a hexadecimal string to be sent as a response.

Script commands work similarly, but they use code stored on the blockchain.
In particular, the code to execute is embedded by the botmaster in a previous
transaction, called script transaction, and encrypted with a symmetric key, which
is unknown to the bots. The command includes the transaction ID of the script
transaction and the key to decrypt. When bots receive these commands, they
retrieve the data, decrypt the payload and execute the code. They then convert
the output into a hexadecimal string and send it the botmaster. In order to
ensure all bots can send their response, the botmaster checks current funds of
each bot before sending the command. If any bot does not have sufficient funds,
the botmaster sends them more coins.

This approach takes advantage of the larger storage capacity of transactions
on Testnet, which allow storing kilobytes of code on the blockchain. Additionally,
this technique enables the botmaster to reuse the same code several times, saving
coins and reducing its traffic. By using shell and script commands, bots are not
limited to the functions their code implements, but are able to perform a variety
of attacks, making it harder to estimate their real capacity.

6 Experimental Results

We created a PoC botnet that implements our protocol, and then, we simulated
its basic activities. In particular, we verified the ability to send, receive, execute
and reply to commands. We then calculated the necessary amounts of coins
needed for each type of transaction we use. Our results show that the proposed
protocol is both viable and sustainable.

6.1 Non-standard Transactions and Fees

As a preliminary step, we verified the ability to send non-standard transactions
on the network. We also tested the limits we could reach while still having
transactions relayed.

As stated in Sect. 4, non-standard transactions allow us to do the following:

– send OP RETURN outputs that are larger than 80 bytes,
– send repeated outputs, both OP RETURN and addresses,
– send dust outputs,
– send transactions larger than 100 kB.
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We used Bitcoin Core v0.18.0 to perform our tests. We had to patch its code
to allow creating transactions with repeated outputs (OP RETURN or address).
All other tests were possible without any modification.

For what concerns OP RETURN size, we successfully sent transactions car-
rying as much as 50 kB of data. All transactions got immediately relayed and,
after some time, mined. Although theoretically possible to send more, we were
not able to send transactions carrying more data due to a limitation on the size
of the argument that can be passed through the Linux command line2. As such
we were not able to verify the ability to send transactions bigger than 100 kB.
However, we are confident this is actually possible, as this limit is not enforced
for non-standard transactions.

Transactions with repeated outputs, both addresses and OP RETURN, were
also accepted and relayed by all peers.

For what concerns dust outputs, we successfully sent transactions with as
little as 0 satoshis, having them relayed and mined.

6.2 PoC

We implemented the C&C server with our patched version of Bitcoin Core, while
bots run an SPV node using bitcoinj, which did not need any modification to
use our protocol. Both bots and the C&C server run on a Linux operating system.

Encryption. For asymmetric encryption and digital signature, we use RSA with
a 2048-bit key and OAEP padding, which generates outputs of 256 bytes. This
allows bots to send up to 214 bytes of encrypted data to the botmaster.

For symmetric encryption we use AES with 256-bit keys, using CRC block
mode and PKCS5 padding. This encryption mode requires a random 128-bit IV
(Initialization Vector), which is also needed for decryption. As the IV does not
need to be secret, we send it in clear along with the cyphertext.

Fees. The default MRF value on Bitcoin Core clients is set to a value of 1000
satoshis (sats) per kB. However, with the introduction of the so-called Segre-
gated Witness (BIP141), transaction fees became dependent on what is known
as virtual size, which is a function of the actual transaction size3. More specif-
ically, the current MRF is calculated as 1 sat/vB, where vB stands for virtual
Byte.

In our implementation, we make use of the embedded functions of the clients
to calculate this value for each transaction.

2 This is a known limitation of the Linux kernel; the actual argument size limit depends
on the stack size of the system [21].

3 The virtual size v is computed as v=(w+3*s)/4, where w is the size of the transaction
and s is the size of the corresponding base transaction (without the witness). In case
of non-SegWit transaction, the virtual size is the actual size.
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Transactions. As stated in Sect. 5, we have the following types of transaction:
quotas, registration, fundings, commands and responses. All transactions in our
protocol have only one input.

Quotas transactions have 11 outputs, corresponding to batches of 10 quotas
plus the change address. Each quota corresponds to the MRF of a registration
message.

Registration messages have a quota as the input and 1 OP RETURN output
containing the payload. The payload contains a 36-byte-long Testnet address and
a 32-byte-long AES key, encrypted with the public RSA key of the botmaster,
which generates an output of 256 bytes.

Fundings contain two outputs: the bot address, receiving the funds, and the
change address of the botmaster.

Commands and responses have 1 OP RETURN output, plus the change
address of the sender. Hardcoded commands have 3 bytes for the command
plus the arguments (e.g. a target). The payload is encrypted with AES, so their
output size corresponds to the size of the payload, padded to fit the block size
(16 bytes), plus the IV (16 bytes). So, for example, an instruction like dos
www.domain.com, which is 19-byte long, will have a data output of 32 bytes.
Adding the IV we have 48 bytes. The script command has the following format:
scr TXID KEY, where TXID is a 32-byte-long transaction ID and the key is a
32-byte AES key. The corresponding IV is stored alongside the script itself.

Commands. We implemented the following commands: dos and stop as hard-
coded commands, lshw as shell command, and one script command called screen-
shot. After executing shell and script commands, bots convert the output to a hex
string and send it as a response message. To convert outputs into hex they use
the following command: $(CMD) | tr -d ’\n’ | xxd -r -p, where CMD stands
for the command they are executing. The dos command makes the bot attack a
specific target, which is sent as a parameter. The DoS attack is performed using
hping3 and can be interrupted by a stop command. This command has no
output. The lshw shell instruction makes the bot gather information about the
hardware of the infected machine. On our bot machine, this command generates
approximately 12 kB of data. The screenshot script is shown in Listing 1.1.

This script takes a screenshot in PNG format, which is around 500 kB, then
compress it to JPEG format, reducing its quality to fit into 50 kB of data. The
cat command dumps the content of the file to produce the output to send as a
response.

import −window root s c r e en sho t . png
convert −qua l i t y 5 s c r e en sho t . png s c r e en sho t . jpg
cat s c r e en sho t . jpg

Listing 1.1. The screenshot script
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7 Discussion

In this section, we analyze the sustainability of our protocol in terms of the
amount of coins needed to run a botnet, as well as the robustness of its archi-
tecture and the security of its design.

7.1 Cost Analysis

Funding the Botnet. At the time of writing, we were able to find six active faucets
on the web. The amount of coins obtained per request varies from 0.0001 to 0.089
tBTC, with an average of 0.05 tBTC per request. By making a single request
per faucet, we obtained approximately 0.12 tBTC. Requests are usually limited
by faucets to one per day, for each given IP address. However, it is not hard to
bypass the limit by using VPNs or proxy services. Furthermore, as previously
discussed, a botmaster could run a miner to obtain a much greater amount of
coins, without any restriction.

As such, we consider the estimate of 0.1 tBTC per day as a conservative
lower bound of the funds that a botmaster can obtain to operate its botnet. In
a real-life context, it is likely feasible to obtain ten to hundred times more than
such an amount.

Protocol Messages Cost. As discussed in Sect. 5, all messages sent by the botnet
spend the minimum relay fee (MRF), which is directly proportional to the size
of the message and calculated as 1 satoshi per virtual byte.

In our protocol, transactions can have a fixed size, like quotas, registrations,
and fundings, or variable size, like commands, responses, and scripts. Table 1
shows the MRFs for all transactions used in our protocol. For a quota batch
transaction, which has 11 outputs, a MRF of 454 sats is needed. Registration
transactions have a payload of 256-byte long, corresponding to a MRF of 373
sats. Fundings, which have 2 outputs, can be sent with 166 sats. Commands
payload size is the smallest multiple of the AES block size (16 bytes), plus the
IV (16 bytes). To simplify things, we assume hardcoded commands are short
enough to fit into 2 blocks (32 bytes), which adds up to 48 bytes, with the
addition of the IV. To send such a transaction, a fee of 161 sats is needed. We
also assume shell commands are smaller than 100 bytes, with bigger instruction
sent as scripts. Since the minimum size is 17 bytes (1-byte command plus the IV),
the MRF varies from 133 to 230 sats. Script commands have a 3-byte command
plus a 32-byte transaction ID, a 32-byte script encryption key and the IV. This
sums up to 83 bytes, requiring a MRF of 197 sat. We assume the maximum
size of script transactions and responses is 50 kB. For what concerns our non-
hardcoded commands, we have the following values. The encrypted screenshot
script, along with the IV, is 128-byte long, corresponding to a MRF of 242 sats.
To send the response (50 kB), 51349 sats were needed. To send the output of
lswh (12 kB), 12860 sats were needed.
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Table 1. Minimum relay fees for our protocol transactions

Message OP RETURN (Bytes) Fee (Satoshis)

Quotas Batch N/A 454

Registration (quota) 256 373

Funding N/A 166

Hardcoded Command 48 161

Shell Command 17–116 133–230

Script Command 83 197

Script (Transaction) 117–51200 231–51349

Response 17–51200 133–51349

Running the Botnet. To have 1000 bots registered, 100 quota batches are needed,
corresponding to 373000 sats. Considering the fees for the batch transactions
(45400 sats), this sums up to 418400 sats (0.004184 tBTC), which is then the
amount required to register 1000 bots. To fund the same number of bots, assum-
ing an initial funding of 0.0001 tBTC each, and considering fees for the funding
transactions (166000 sats), we have a total of 0.10166 tBTC. This means that
0.1 tBTC (our estimated lower bound) are enough to register and fund 1000
bots per day.

For what concerns daily operations, assuming a specific behaviour is hard,
as C&C communications for real botnets can be very diverse. As such we will
focus on the number of bytes that can be sent per day by a 1000-bot botnet,
assuming it is funded with 0.1 tBTC per day. To simplify things, we assume
1 sat is needed to send 1 byte of data. This way, 0.1 tBTC is enough to send
around 10MB per day, which translates to 10 kB per bot in our example, which
is likely to be insufficient for a modern botnet, according to available statistics
[10].

However, by analyzing the Testnet blockchain, it is easy to see that a solo
miner could obtain an average budget of as much as 4 tBTC per day, which
would allow the botmaster to run, for instance, a spamming botnet, or to use
this channel as a component of a larger hybrid botnet.

7.2 Architecture Analysis

Testnet. Despite being a testing network, Testnet is a very solid blockchain, as it
constitutes a fundamental component of the Bitcoin ecosystem. In fact, it allows
developers to test changes to the protocol and new applications without wasting
money or messing the real chain. Specifically, being released in 2012, the current
version of the network (Testnet3) is one of the longest-running blockchains in
the wild. Although a new version might be introduced, this would affect a lot
of ongoing projects and protocol improvements development, making it unlikely
to happen soon. As such, Testnet is a very stable backbone for a botnet C&C
system.
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A possible drawback of leveraging Testnet for a botnet might be its reduced
network size, as fewer nodes might ease detection. However, the botmaster could
mitigate this by deploying more nodes.

Faucets. Faucets are a vital service for Testnet, as they allow developers to easily
obtain the coins they need tu run their tests. In their absence, developers would
need to run a miner, making their job both harder and more expensive. As such,
it is unlikely that such services will cease to work.

Bandwidth. Despite the use of non-standard transactions in our protocol allows
transmitting bigger amounts of data, message size is still limited compared to the
traditional client-server model. However, this system gains in terms of robust-
ness, as communications are very hard to disrupt.

Given the above, it is possible that a real botnet would adopt a hybrid
approach, with commands and responses happening on the blockchain, and larger
data transmission being sent to a server, whose address changes periodically and
gets updated via transactions.

7.3 Security

Stealthiness. As communications happen via transactions, botnet messages will
be permanently stored on the blockchain, creating an accessible evidence of past
botnet activities and facilitating their analysis. Furthermore, the use of non-
standard transactions makes it easier to recognize botnet messages. To mitigate
this risk, the botmaster can limit their usage to only a part of the communica-
tions, trying to make other messages more similar to regular transactions.

Encryption. All communications in our protocol are encrypted. However, if a
bot is compromised, the adversary can learn both the botmaster public key and
the botnet key, enabling the monitoring of all the messages coming from the
botmaster. While this can help fighting the botnet activities, it does not prevent
other bots from receiving and executing commands, thus being irrelevant to their
operation.

To prevent this risk, the botmaster could encrypt and send messages indi-
vidually for each bot. This would make the protocol more expensive and less
scalable but it might still be feasible if the botmaster were able to obtain coins
at a fast rate.

Shared Account. In case a bot is compromised an adversary can also learn the
private key of the shared account and try to drain all the funds, preventing new
bots from registering.

A possible solution for the botmaster would be to employ a backup registra-
tion system, such as an external channel where new bots can post their encrypted
registration message. To avoid disruption, the botmaster can regularly change it
and communicate the updated info via transaction4.
4 Note that bots are able to receive messages from the botmaster regardless of their

registration status.
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Another way the adversary can steal funds is to register fake bots to get the
corresponding coins sent by the botmaster. This would increase the cost of the
botnet and possibly make it infeasible to sustain. The botmaster, however, can
monitor and test bots to detect and ban misbehaving ones. As an additional
precaution, the botmaster could initially send a smaller amount of coins, and
only send more if the bot behaves as expected.

Another issue, related to the shared account, is that it allows to compute the
size of the botnet in terms of spent quotas. To mitigate this risk, the botmaster
could periodically spend quotas at a random rate. Although this would make
the system slightly more expensive, it would effectively conceal the real number
of bot registrations.

Countermeasures. As mentioned above, the non-standard nature of the transac-
tions used in our protocol allows to detect many of the botnet messages. Addi-
tionally, if a bot is compromised, it is possible to monitor and decrypt all mes-
sages from the botmaster. Furthermore, new bots can be prevented (or at least
hindered) from registering.

Nonetheless, blocking botnet communications is hard as they are embed-
ded into valid transactions. If a botnet is detected, messages coming from the
botmaster could be prevented from spreading. However, this would be in sheer
contrast with the anti-censorship principle at the base of the Bitcoin blockchain.

The most effective way to limit botnet communications would be to disal-
low non-standard transactions. However, it is unclear how this would affect the
regular operations of Bitcoin developers.

8 Conclusion and Future Work

In this paper, we showed how it is possible to implement a bidirectional encrypted
C&C communication system on top of Bitcoin Testnet, which is both practical
and economically affordable. We described a viable protocol that allows to reg-
ister, fund, and control bots. Communications between bots and botmaster are
encrypted and allow exchanging large amounts of data, enabling advanced func-
tionalities, such as outsourcing bots code to the blockchain. According to our
estimates and experimental results, this system could be used in real life to run a
small spamming botnet or as a component for larger hybrid botnet architectures.

This should call for an effort in either limiting the possibility of misusing
Bitcoin Testnet for malicious purposes or devising appropriate countermeasures.

Future work includes a characterization of the communication patterns
should be done to help designing effective detection mechanisms, as well as an
analysis of strengths and weaknesses of this kind of botnet protocols, along with
a study of valid alternatives. Finally, an estimation of the impact that such mali-
cious activities might have on the network could help to evaluate undesired side
effects.
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Abstract. NEO is ranked as one of the top blockchains by market capi-
talization. We provide a security analysis on its backbone consensus pro-
tocol, called delegated Byzantine Fault Tolerance (dBFT). The dBFT
protocol has been employed by NEO and other blockchains like ONT.
dBFT claims to guarantee safety when no more than f = �n

3
� nodes

are Byzantine, where n is the total number of consensus participants.
However, we identify attacks to break the safety with no more than f
Byzantine nodes. This paper provides the following contributions. First,
we evaluate NEO’s source code and present the procedures of dBFT.
Then, we present two attacks to break the safety of dBFT protocol
with no more than f nodes. Therefore, the system cannot guarantee
the claimed safety. We also provide recommendations on how to fix the
system against the identified attacks.

Keywords: Blockchain · NEO · dBFT · Safety

1 Introduction

NEO has been one of the top-ranked blockchain platforms by its market cap-
italization. Rebranding from the Antshares in June 2017, NEO becomes the
earliest and the longest-running public chain in China. From about 0.1 USD
at the beginning of 2017, NEO reached a value of 160 USD at the end of
2017. At the time of writing, it’s market capitalization is about 0.67 billion
USD1. The thousandfold return on the investment placed NEO in the ranks of
top blockchains within China and abroad. NEO has successfully established a
matured ecosystem with decentralized applications (DApps), including games,
1 https://coinmarketcap.com/currencies/neo/. Data fetched on 21st Sept. 2019.
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lotteries, wallets, and exchanges. Furthermore, NEO has developed a complete
architecture covering the consensus mechanism and components including NeoX,
NeoFS, NeoQS [20,29]. As the core protocol, dBFT was later adopted by the
Ontology platform as one of the pluggable consensus mechanisms [23].

Consensus protocols make distributed participants collectively reach an
agreement, which enables the immutability and prevents the forks within
blockchain systems. Byzantine fault tolerance (BFT) consensus and its variants
(together denoted as BFT-style consensus) tolerate a certain number of Byzan-
tine participants who can misbehave. BFT-style mechanisms are permissioned,
and provide a deterministic consensus guarantee [25,26]. Various projects [18]
employ the BFT-style consensus for their special needs. In particular, Practi-
cal Byzantine Fault Tolerance (PBFT) [9] is used as the foundation of many
variants, as it enables the system to efficiently (with polynomial complexity)
tolerate participants with arbitrary faults. For example, a variant of PBFT has
been implemented for Hyperledger Fabric v0.5 and v0.6 [3] and Hyperledger
Sawtooth v1.0 [4,7].

dBFT is also a variant of PBFT, with the modifications on network model
(from Client/Server to P2P), rule of permission (from fixed to dynamic) and pro-
cedure of commit (from 3-phase to 2-phase). dBFT focuses on the performance
and scalability, however, the security has not been seriously analyzed. A com-
prehensive security analysis is absent from the official documents, including its
whitepaper [20], documentation [29], and GitHub documents [19]. In fact, after
examining the source code, we find that the implemented protocol is slightly
different from what has been presented in the whitepaper. For example, in the
official presentation of the protocol, not all messages transferred are signed,
while in the actual implementation they are all signed and should provide a
better security guarantee.

To evaluate the security of NEO, we first analyze the source code and provide
a formal and accurate presentation of dBFT with the security goals. Then, we
proposed two attacks against dBFT. Both attacks are on the safety of dBFT,
making conflict decisions possible. This violates the agreement property where all
honest replicas should agree on the same decision. Both identified attacks need
to require a view change to happen. The first attack assumes a malicious primary
to trigger the view change and the second attack requires a timeout (when the
network asynchrony makes a quorum unavailable) to trigger the view change.
Both attacks only require no more than f = �n

3 � malicious replica, where n is the
total number of consensus participants and f is the number of Byzantine nodes
that the system is supposed to tolerate. We also provide recommendations on
fixing the identified vulnerabilities. Our contributions are summarized as follows:

– We provide the first clear presentation of the widely adopted dBFT consensus
mechanism, based on its source code [5]
git commit 5df6c2f05220e57f4e3180dd23e58bb2f675457d.

– We identify two attacks on dBFT. Both attacks are feasible with no more
than �n

3 � nodes, where the first attack requires the primary to be Byzantine,
and the second attack requires a timeout of the current view.

– We provide recommendations to fix the identified problems.
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The rest of our paper is structured as follows: Sect. 2 provides an overview
of PBFT. Section 3 defines the network assumption and the security properties,
and Sect. 4 provides the detailed dBFT protocol, with a comparison with PBFT
protocol. Our identified attacks are presented in Sect. 5. We provide the recom-
mended fix in Sect. 6, and the related work in Sect. 7. Finally, Sect. 8 concludes
the paper.

Communication with NEO. We have fully disclosed our results, including
both identified vulnerabilities and the recommended fixes, to the NEO team.
They acknowledge that our attacks are valid on their system, and have applied
the fixes [1,2].

2 Overview of PBFT

Practical Byzantine Fault Tolerance (PBFT), proposed by Castrol [9], is the
most prevailing BFT consensus mechanism employed by current permissoned
blockchain systems. It enables a system to efficiently (with polynomial complex-
ity) tolerate f = �n

3 � malicious nodes out of the total n nodes. PBFT is designed
in the partially synchronized network model, and proceeds in rounds denoted as
view. There are three entities contained in PBFT: Client, Primary and Replica
and three phases involved in the protocol: Pre-Prepare, Prepare and Commit.
We follow the descriptions of [9] and [22], and the communication pattern of
PBFT protocol is shown in Fig. 1.

In the Pre-prepare phase, upon receiving a REQUEST message from a client,
the primary node creates and broadcasts the PRE-PREPARE message to all the
replicas. In the Prepare phase, each replica checks the validation of the received
PRE-PREPARE message. If the message is valid, the replica creates and sends a
PREPARE message to all nodes. In the Commit phase, upon receiving validated
PREPARE messages from a quorum (i.e., 2f + 1 replicas), this node creates and
broadcasts a COMMIT message to all nodes. The last step is to reply to the client
about the result. If a node receives a quorum COMMIT messages from 2f + 1
different nodes, then it executes the client request, creates and sends the reply
to the client. A client accepts the reply if it receives a reply from at least f + 1
nodes. The Pre-prepare phase is a one-to-all communication, while the Prepare
and Commit phases are all-to-all communications.

Fig. 1. PBFT protocol
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The primary is changed through a View-change protocol, if only if the pri-
mary is faulty or if network asynchrony breaks the availability of a quorum.
In this case, the current round (view) is terminated and nodes initiate a view-
change to update the primary. View-change makes a new primary node select
from other nodes, and requires it to propose and send NEW-VIEW message con-
taining the changed request under the same sequence number. After that, it
enters the new view and continues the protocol.

3 Security Property

Safety and liveness are the main properties of a BFT protocol. The safety prop-
erty requires that a “bad” event in the system will never happen, and the liveness
property states that a “good” event will eventually happen. For example, PBFT
guarantees safety when no more than f = �n

3 � are malicious, where n is the total
number of nodes running PBFT. PBFT guarantees liveness when no more than
f nods are malicious and the network is partial synchrony.

Network Assumption. Similar to PBFT, dBFT assumes a partially synchronous
network [11], where a message sent from an honest node will eventually arrive
within a fixed time-bound, but the bounded is unknown.

Security and Liveness. While safety guarantees that the system behaves like
a centralized implementation to maintain a total order sequence of decisions,
liveness guarantees that clients eventually receive replies to their requests [9].
As a variant of PBFT, dBFT aims at providing the same guarantee under the
same assumption – the safety is guaranteed when no more than f nodes are
malicious, and the liveness is guaranteed with an additional assumption of a
partially synchronous network.

4 dBFT Protocol

This section presents how dBFT works and its comparison with PBFT. Our pre-
sentation is based on the NEO official source code [19] and its technical reports
[20,29]. We summarize the detailed procedures and provide the call function
workflow in the Appendix. Note that, to make it easier to understand, we adapt
the terms used in PBFT to present dBFT.

4.1 Overview of dBFT

Entities in dBFT. dBFT has three types of nodes, called “speaker”, “delegates”
and “common nodes”, and these types of nodes can be considered as the Primary,
Replica andClient in the PBFT protocol, respectively. In dBFT, the primary node
is randomly selected from the replicas to generate and send messages (proposal-
s/blocks). The replicas are required to vote for the received messages and main-
tain the globally ordered sequence of decisions (ledgers/blocks). They are selected
from clients according to their reputation as defined by NEO. The client helps to
disseminate messages through the underlying peer-to-peer network. They provide
various end-user services including payment, exchange, and smart contracts.



24 Q. Wang et al.

State Transition in dBFT. There are three phases in the dBFT protocol, namely
“Prepare”, “Response” and “Publish”. The former two phases serve for the con-
sensus decision where the “publish” is used to broadcast the replies to a request. In
particular, the “Prepare” and “Response” phases are similar to the “Pre-prepare”
and “Prepare” phases in PBFT, respectively. The “Publish” is similar to the
“Reply” step of the PBFT. For simplicity, we will use the terms defined in the
PBFT to present the dBFT protocol, as they have been well accepted for decades.

Fig. 2. dBFT protocol

As shown in Fig. 2, upon receiving the requests from a client, the primary
starts the Pre-prepare phase by sending the PRE-PREPARE message to all repli-
cas. Each replica verifies the validity of the received message. If valid, then it
broadcasts a PREPARE message as its response. If a node receives PREPARE mes-
sages from a quorum (2f +1 nodes), then it executes the request and broadcasts
its reply as its final decision. If the primary fails, dBFT runs its View-change
protocol to reset the parameters and rotate the primary node.

4.2 Detailed Procedures of dBFT

Each execution of the dBFT protocol is initiated by its committee selection
algorithm and leader election algorithm to form a consensus group and to select
a primary from the group. When a primary and a consensus group is defined,
the actual consensus execution protocol contains two main phases, namely Pre-
prepare and Prepare. It also contains a View-change protocol when the primary
is faulty or when the network asynchrony breaks the availability of a quorum.

Let h be the current block height (i.e., the length of the blockchain). Each
replica is labeled by an index number i where i ∈ [0, n− 1] and n is the size of the
consensus group. At the beginning of each round, the primary p is selected from
the consensus group following the rules of p = (h− v) mod n. To reach an agree-
ment on a block proposed by the primary node, each replica collects 2f signatures
on the proposed block from other replicas, where f = �n−1

3 � is the assumed max-
imum number of Byzantine nodes. Once the agreement is reached, a new round
of consensus begins, and the view is reset to v = 0. The block signed by replica
i is defined as blockσi

. Here we give the detailed procedures of each step, and the
corresponding call function chart of each step can be found in the Appendix.



Security Analysis on dBFT Protocol of NEO 25

– Committee selection: The replicas (i.e., consensus committee members) are
selected from the clients by the NEO foundation according to their reputation.
Therefore, we omit the exact process here and put our focus only on the
consensus algorithm.

– Leader election: The primary is determined by (h − v) mod n, based on the
current block height h, current view v and the size n of the consensus group.
The leader rotates in the committee due to increased h.

– Pre-prepare: The primary creates a block containing valid transactions
collected from the network, and sends a signed pre-prepare message
<PRE-PREPARE, h, v, p, block,<block>σp

> to all replicas.
– Prepare: After receiving the pre-prepare message, replica i checks the cor-

rectness of the message, including the validity of signatures, the correctness
of h, v, p, block and the contained transactions. If the received proposal is
valid, then it broadcasts a signed prepare message <PREPARE, h, v, p, i, block,
<block>σi

> to all replicas.
– Reply: After collecting signed and validated PREPARE messages from a quo-

rum, the replica i is convinced that consensus is reached, and executes the
request and broadcasts its reply <REPLY, h, v,m, i,<block>σi

>.
– View-change: When detecting a faulty primary or when a quorum is not

available, the replica i sends a VIEWCHANGE message <VIEWCHANGE, h, v +
1, p, i, block,<block>σi

> to other nodes. View-change is triggered when valid
messages are received from a quorum.

4.3 Comparison with PBFT

dBFT is a variant of PBFT protocol with several modifications, as follows. In
terms of protocol phases, dBFT removes several sub-protocols of PBFT. In par-
ticular, it removes the core Commit phase from the PBFT, and also removes
the auxiliary protocols including GarbegeCollection and Checkpoint. In terms
of the communication model, dBFT employs a peer-to-peer network topology
to disseminate messages, rather than the previous client-server communication
model. In terms of the message authentication, dBFT uses digital signatures to
authenticate messages rather than using MAC as in PBFT. In terms of con-
sensus committee, there are several changes. First, dBFT does not have a fixed
consensus group as in PBFT. Rather, it implements a mechanism to enable
dynamic joining/leaving of nodes to offer flexibility. Second, for leader election,
dBFT enforces the change of primary for each round of consensus. In particular,
at the beginning of each consensus round, the new primary p is determined by
p = (h− v) mod n. So, whenever a new block is accepted in the blockchain, the
primary will be changed.

5 Identified Attacks

This section presents two identified attacks on the safety of dBFT. Both attacks
need to enforce a view change. The first attack requires a malicious primary
to trigger the view change and the second attack requires a timeout (when the



26 Q. Wang et al.

network asynchrony makes a quorum unavailable) to trigger the view change.
Both attacks only require no more than f malicious replica, which is the case
the dBFT is supposed to tolerate. We make use of a simple scenario with four
nodes to demonstrate our attacks. Let n = 4, so f = 1. Let Ai be the identity
of the i-th replica, where i ∈ [0, n − 1].

5.1 Attack Case 1

Let A0 be the Byzantine node, and it is selected as primary. The detailed attack
process is shown as follows.

– step 1: The Byzantine primary A0 creates two blocks, block1 and block2,
such that they contain conflict transactions for e.g. spending a coin multiple
times. A0 then sends <Pre-prepare> on block1 to A1 and A2, and sends
<Pre-prepare> on block2 to A3.

– step 2: As both blocks are valid, A1 and A2 will create and broadcast a
<Prepare> message on the block1, and A3 will broadcast a <Prepare> message
on block2.

– step 3: Since no replica receives enough valid <Prepare> message (2f + 1)
from a quorum, the current round will timeout, and it triggers the view change
protocol.

– step 4: Run view change protocol honestly. Since in the previous view (v = 0),
(h − 0) mod 4 = 1, so in this view v = 1, A3 will be elected as the primary,
i.e. (h − 1) mod 4 = 3.

– step 5: Run the consensus on block2 with v = 1. When a decision is reached,
A0 can create a conflict decision by releasing 2f + 1 = 3 valid <Prepare>
messages on block1 of view v = 0. This breaks the consensus safety.

5.2 Attack Case 2

Attack case 2 considers the scenario where the Byzantine replica is not primary
for the current view, and it relies on the view change triggered by network
asynchrony. (Note that unlike liveness, the safety should hold under network
asynchrony.)

– step 1: Select the leader according to p = (h − v) mod n.
– step 2: The honest leader sends a valid proposal <Pre-prepare> on block1.
– step 3: the Byzantine replica performs the following strategy. If it receives 2f+

1 = 3 signed <Prepare> messages from others, it runs the protocol honestly. If
it only receives two signed messages, then it does not react. This can happen
due to network asynchrony. In the second case, there is a possibility that
replicas timeout the current view, and request a new view.

– step 4: If a view change is triggered, then the Byzantine replica runs it hon-
estly.

– step 5: If the Byzantine replica is selected as primary, then it proposes a valid
proposal <Pre-prepare> on block2, which contains transactions conflict with
the ones contained in block1.
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– step 6: all nodes run the consensus protocol, and reach a decision on block2
with the current view number. When the decision is reached, the Byzantine
replica releases the two signed <Prepare> messages on block1 collected in the
previous view, together with its signed <Prepare> message also on block1.
This creates a conflict decision and breaks the consensus safety.

6 Recommended Fix

As shown in the previous section, the safety of dBFT cannot be guaranteed
even when no more than f replicas are malicious, as conflict agreements can be
reached. Our identified attacks are in fact not new. It is known that it is possible
to have a secure two-phase protocol for crash fault tolerance (CFT) protocols,
but a two-phase PBFT is vulnerable against Byzantine replicas. Thus, the Com-
mit phase becomes necessary [9,13]. The fix then becomes straight forward –
the Commit phase is necessary to guarantee the safety, and dBFT needs to add
this phase back to make the protocol secure against the two identified attacks.

The Commit phase plays a role to check if at least 2f + 1 replicas have
responded to the request. If a node has collected 2f + 1 signed responses in the
Prepare phase, then it commits the block by signing it together with state infor-
mation, and sends it to all replicas. If at least 2f +1 valid commits messages are
collected, then the replica updates the local state of the blockchain by including
the block into it, and broadcasts the result to the network. As this is a standard
construction in the classic BFT protocol, and is proved to be secure [21], we
omit the formal proofs in this paper.

7 Related Work

The consensus problem can be traced back in early 1975, when the Two Gen-
erals Problem with its insolubility proof was proposed [6]. The problem was
formally proved to be unsolvable, providing a base of realistic expectations for
any distributed consistency protocols. The FLP impossibility result [13] placed
an upper bound on what it is possible to achieve with distributed processes in
an asynchronous environment. The CAP [14] theorem states that distributed
systems cannot satisfy all three conditions, namely consistency, availability, and
partition tolerance. BFT protocols can tolerate at most f ≤ � 3

n� Byzantine
nodes, unless a trusted component is used [24].

Bitcoin. Bitcoin [17] is a cryptocurrency introduced in 2008. It aims at tolerat-
ing <50% malicious power in the system. Unlike traditional consensus protocols,
it does not require a pre-fixed consensus group. Instead, it allows any node to
join and leave the system. It makes use of a public ledger (a.k.a. a blockchain)
to record all transactions in the system. The public ledger is a chain of blocks,
where each block contains a sequence of transactions that have not been recorded
in previous blocks. Everyone can read the ledger from the Bitcoin network, and
can write on it by finding a block such that the hash value of the block is small
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enough. The process of finding a valid block is called “proof of work”. This con-
cept defeats Sybil attacks, where an attacker can create many fake nodes at a low
cost. Different participants may create conflicting blocks. To provide consensus
on the conflicting blocks, participants only accept the longest chain. However,
this way of agreeing about blocks only provides a probabilistic guarantee, as it is
possible for malicious participants to work on a short chain to race with a longer
one, until the shorter one beats the longer chain. This leads to attacks such as
double spending attacks [30] and selfish mining attacks [12]. In addition, the
block size is currently limited to 1 MB. This limits its transaction throughput to
7 transactions per second, whereas other existing payment systems handle way
more. For example, Visa confirms a transaction within seconds, and processes
2k TPS on average, with a maximum rate of 56k TPS. For more detail, we refer
readers to a detailed comparison [25] between Bitcoin and BFT protocols.

Adapting BFT Protocols in Blockchain. Classic BFT protocols provide a
better throughout and security guarantee. PBFT [9] proposes the first practical
Byzantine fault-tolerant algorithm with acceptable performance. Zyzzyva [16]
is a speculation-based BFT protocol that reduces cryptographic over-heads and
increases peak throughput for demanding workloads compared to traditional
state machine replication. However, an attack [15] on the safety of Zyzzyva has
been identified. MinBFT/MinZyzzyva [24] proposes to use a trusted component
to improve the performance and security of PBFT and Zyzzyva.

However, these systems cannot be adapted directly in the blockchain, as
they require a pre-fixed consensus group. Many systems (e.g. [22,27,28]) have
been proposed to adapt BFT protocols to address the shortcomings of Bitcoin
blockchain. PeerCensus [10] was the first blockchain to propose using proof-
of-work for selecting consensus committees, and use a BFT-style protocol for
reaching consensus. dBFT takes a different approach, where the consensus com-
mittee is defined by NEO based on the social reputation of nodes. We refer
readers to existing comprehensive surveys [8,18,26] on the membership selection
algorithms, blockchain consensus, and identified attacks.

8 Conclusion

NEO, as the pioneer of public blockchain projects around the world, confronts
severe security threats. Our security analysis is focusing on the core component
of NEO, i.e., its dBFT consensus. As a variant derivative of PBFT, the dBFT
consensus removes the important Commit processes compared to the original
ones, resulting in deterministic forks under the specific conditions. In fact, it is
known that removing the commit phase would lead to insecurity. This paper pro-
vides a study to revisit this issue, as a lesson learned from the already deployed
and widely adapted consensus algorithm.

A dBFT Flow Chart
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is your power. IEEE Trans. Comput. 68(8), 1225–1237 (2019)

29. Zhang, E.: Neo consensus (2018). http://docs.neo.org/en-us/basic/consensus/
consensus.html

30. Zhang, R., Preneel, B.: Lay down the common metrics: evaluating proof-of-work
consensus protocols’ security. In: 2019 IEEE Symposium on Security and Privacy
(SP). IEEE (2019)

http://arxiv.org/abs/1906.05552
https://github.com/ontio/ontology/tree/master/consensus/dbft
https://github.com/ontio/ontology/tree/master/consensus/dbft
https://doi.org/10.1007/978-3-319-39028-4_9
http://docs.neo.org/en-us/basic/consensus/consensus.html
http://docs.neo.org/en-us/basic/consensus/consensus.html


Breaking the Encryption Scheme of the
Moscow Internet Voting System

Pierrick Gaudry1(B) and Alexander Golovnev2
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Abstract. In September 2019, voters for the election at the Parliament
of the city of Moscow were allowed to use an Internet voting system. The
source code of it had been made available for public testing. In this paper
we show two successful attacks on the encryption scheme implemented
in the voting system. Both attacks were sent to the developers of the
system, and both issues had been fixed after that.

The encryption used in this system is a variant of ElGamal over finite
fields. In the first attack we show that the used key sizes are too small.
We explain how to retrieve the private keys from the public keys in a
matter of minutes with easily available resources.

When this issue had been fixed and the new system had become
available for testing, we discovered that the new implementation was
not semantically secure. We demonstrate how this newly found security
vulnerability can be used for counting the number of votes cast for a
candidate.

1 Introduction

Electronic voting is more and more widely used for low-stakes elections, with
systems of various qualities. The situation for important politically binding elec-
tions is more contrasted. Some countries have completely banned the use of
e-voting in that case (for instance, Germany in 2009, the Netherlands in 2008,
or Norway [11] in 2013), while other countries use it on a regular basis or orga-
nize experiments with higher and higher stakes elections (Switzerland [9,15,26],
Estonia [16], Canada [12]).

The term electronic voting can cover different situations, and in this work, we
are interested in Internet voting, not machine-assisted voting that takes place in
polling stations. This increases the difficulty to guarantee properties like authen-
tication or coercion-resistance that are easier to obtain at a polling station, where
an officer can check classical identity cards and where the voters can go to a
polling booth to isolate themselves and choose freely.

But even more basic properties like vote secrecy and verifiability are not easy
to obtain if one wants to keep things simple and without advanced cryptographic
tools like zero-knowledge proofs, proof of equivalence of plaintexts, oblivious
transfer, etc.
c© International Financial Cryptography Association 2020
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For high-stakes elections, a bad practice that tends to become less accepted
by the population is to have some designated experts that study the security of
the product, but how it really works remains secret to voters. Therefore, in more
and more cases, the organization will ask for a product that can be audited by
independent experts, and as an incentive to have more feedback, public testing
with an associated bug bounty program can be organized. For instance, this has
been recently the case in Switzerland, which is a country with a long history of
experiments with Internet voting. A security problem was actually discovered at
this occasion [14,22].

In Russia, September 8, 2019 was a day of local elections, where governors
and representatives for local parliaments must be elected. In Moscow, at the
occasion of this election for the City Parliament (Moscow Duma), it was decided
to test the use of Internet voting. Voters from 3 electoral districts (among a total
of 45 districts) were allowed to register for using Internet voting instead of using
classical paper voting at polling stations.

A voting system was designed specifically for this election. For lack of a
proper name, we will call it the Moscow Internet voting system. Its deployment
is the responsibility of a service of the City called the Department of Information
Technology. In July, the system was opened for public testing.

Description of the Public Challenge
On July 17, 2019, some of the system’s code was posted online [10], and the orga-
nizers asked the public to test several attack scenarios [24]. A bounty program of
up to 2 millions rubles (approx. $30,000) was associated to it. We believed that
the fact that most of the information is in Russian and that almost no descrip-
tion of the system (in any language) is available apart from the source code was
a reason for having a low advertisement of this challenge at the international
level, even among the e-voting community.

The system is poorly documented, but from the source code and brief descrip-
tions of the system [20], we know that it uses the Ethereum blockchain [3] and
ElGamal encryption. No advanced cryptographic tools are present in the source
code (no verifiable mixnets [13], for instance, while they are quite frequent in
modern systems).

In one of the attack scenarios, the organizers publish a challenge consisting
of the public key and some encrypted messages. The attack was considered suc-
cessful if the messages got decrypted within 12 h (the duration of the future,
real election), before the organizers reveal the private key and the original mes-
sages. All of these cryptographic challenges (keys and encrypted data) were put
in the public repository of the source code, in a special sub-directory called
encryption-keys.

Contributions
In this paper, we describe two attacks that we mounted on the system, following
this attack scenario. The first attack uses the fact that the key sizes are so small
that, with specialized software, it is possible to compute discrete logarithms and
deduce the private keys in far less than the 12 h allowed for this task. After this,
the source code was modified. Our second attack is against this new version
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and relies on a subgroup attack that reveals one bit of information related to
the original message. In an e-voting context, this can be enough to get a lot
of information about the voter’s choice, and indeed, in the Moscow system, the
leakage was really strong. During August, several public tests were done, with
volunteers, after the system was patched against our attacks. In this work, after
describing our attacks, we will discuss the general protocol, which is some kind of
moving target, since there is no proper specification, no clear security claims and
on top of that, deep changes were made until very late before the real election.

For this work, we used the following different sources of information about
the Moscow Internet voting system:

– The public source code, of course. This includes Javascript code to be run on
the client side, PHP code for the server side, and Solidity code to be run as
smart contracts in an Ethereum blockchain.

– The articles published in the press, sometimes quoting the designers of the
system. This includes various sources, with different opinions about the use
of Internet voting in this context. We considered some of these sources as
non-reliable.

– Private discussions with the designers and with journalists investigating the
current situation.

In the following, we will refer to different versions of the source code. In order
to make our terminology precise, we give the exact revision numbers of these
versions, corresponding to git commits in the public repository [10]:

– The “original” version, i.e. the one that was published and used for the first
public test: revision d70986b2c4da.

– The “modified” version, that took into account our first attack: revision
1d4f348681e9.

– The “final” version that was used for the election: revision 51aa4300aceb.

2 Attacks on the Encryption Scheme

2.1 Attack on the Original Implementation

In the original version of the source code (rev d70986b2c4da), the encryption
scheme can be found in the files elGamal.js and multiLevelEncryptor.js
of the smart-contracts/packages/crypto-lib/src/ subdirectory. The first
file contains a textbook version of the ElGamal encryption algorithm, while the
second one builds on top of it a “multilevel” variant that we are going to describe
here since this is a non-standard construction.

Let us first fix the notations for the textbook ElGamal encryption. Let G
be a cyclic group generated by g of order q. An ElGamal keypair is obtained
by choosing a (secret) decryption key sk as a random integer in Zq, and the
corresponding (public) encryption key pk is given by pk = gsk. Let us denote
by Encg,pk(m) = (a, b) the ElGamal encryption of the message m ∈ G with a
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public key pk and a generator g. This is a randomized encryption: an integer r
is picked uniformly at random in Zq, and then the encryption is obtained as

Encg,pk(m) = (a, b) = (gr,pkr · m) .

The corresponding decryption function Decg,sk(a, b), that uses the secret key sk
corresponding to pk is then given by

Decg,sk(a, b) = b · a−sk = m.

The multilevel variant is obtained by successively applying the ElGamal
encryption, with three different parameter sets, first on the message m, and
then on the a-part of the successive ElGamal ciphertexts. In the Moscow sys-
tem, there are 3 levels. Each level uses a group Gi which is the multiplicative
group of a finite field Fpi

, where pi is a safe prime. An important remark, here,
is that the pi’s being different, there is no algebraic map from one group to the
other. It is necessary to lift an element of F∗

p1
to an integer in [1, p1 − 1] before

mapping it to F
∗
p2

. This mapping will be without loss of information only if p2
is larger than p1; and similarly we need p3 bigger than p2. These conditions are
indeed enforced in the source code.

Let us denote by g1, g2, g3 the generators of the 3 groups G1, G2, G3. There
are 3 ElGamal key pairs (sk1,pk1), (sk2,pk2), (sk3,pk3) used for the encryption
and decryption of the ballots. In order to encrypt a message m ∈ G1, we compute
the following successive ElGamal encryptions:

(a1, b1) := Encg1,pk1
(m); map a1 to G2;

(a2, b2) := Encg2,pk2
(a1); map a2 to G3;

(a3, b3) := Encg3,pk3
(a2),

and then the ciphertext is the quadruple in G1 × G2 × G2
3 given by

MultiEnc(m) = (b1, b2, a3, b3).

The values a1 and a2 are forgotten, but someone knowing the private keys
sk1, sk2, sk3 corresponding to pk1, pk2, pk3, will be able to recover m from the
ciphertext with the following decryption procedure:

a2 := Decg3,sk3(a3, b3); map a2 to G2;
a1 := Decg2,sk2(a2, b2); map a1 to G1;
m := Decg1,sk1(a1, b1).

The purpose of this multilevel encryption is not known to us. We will spec-
ulate on this in Sect. 3. An obvious observation, however, is that if the discrete
logarithm problem is not hard in G1, G2 and G3, then it is possible to deduce
the secret keys ski’s from the public keys pki’s and an attacker can then decrypt
encrypted messages as quickly as the legitimate possessor of the secret keys.

In the published source code, the primes pi’s have less than 256 bits. Discrete
logarithms in finite fields defined by such small primes have been computed for
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the first time in the middle of the 90’s: Weber, Denny and Zayer did a series
of computation in 1995–1996, starting from 215 to 281 bits [33]. At that time,
the computing resources required for the computations were rather high, and
solving the 3 discrete logarithm problems to get the private keys would not have
been easily feasible in less than 12 h as required by the challenge.

More than 2 decades later, computers are much faster and have much more
memory. Furthermore, the Number Field Sieve algorithm [21], which is the
fastest known method asymptotically was still a very new algorithm in the
mid-90’s, and many theoretical and practical optimizations have been developed
since then [7,18,25,30]. The current record is a computation modulo a 768-bit
prime [19].

We have tried the following software products that contain a full implemen-
tation of discrete logarithm computations in prime fields:

Software SageMath [29] Magma [4] CADO-NFS [27]

Version 8.8 2.24-2 rev. 6b3746a2e

Note that Magma is proprietary software, while the others are free software.
The experiments were first made on a typical personal computer equipped

with a 4-core Intel i5-4590 processor at 3.3 GHz and 16 GB of RAM. It is run-
ning a standard Debian distribution. SageMath uses GP/Pari [28] internally for
computing discrete logarithms. On this machine, the computation took more
than 12 h, and actually we had to stop it after 4 days while it was still running.
According to GP/Pari documentation, the algorithm used is a linear sieve index
calculus method. As for Magma, the handbook tells us that depending on arith-
metic properties of the prime, the algorithm used can be the Gaussian integer
sieve or a fallback linear sieve. The prime we tested was compatible with the
Gaussian integer sieve. But during the linear algebra step, the memory require-
ment was much larger than the available 16 GB. We started the computation
again, on a 64-core server node with 192 GB of RAM. On this machine, Magma
computed the discrete logarithm in a bit less than 24 h with 130 GB of peak
memory usage. It should be noted that both Magma and SageMath use only one
of the available computing cores, so that there does not seem to be an easy way
to go below the 12 h limit with them, even with an access to a powerful machine.

CADO-NFS is an implementation of the Number Field Sieve for integer fac-
torization and discrete logarithms in prime fields (and some experimental sup-
port for small degree extensions of prime fields). The last stable release 2.3.0 is
two years old, so we used the development version, available on the public git
repository. With CADO-NFS, on the standard personal machine, the running
times to retrieve the private keys of August 18 were as follows:

Key number Time
1 7 min 5 s
2 8 min 27 s
3 5 min 14 s



Breaking the Encryption Scheme of the Moscow Internet Voting System 37

Note that the variation in the running time from one key to the other is not
unusual for computations with moderately small primes. Also, we should men-
tion that when doing this work, we realized that the development version was
not robust for numbers of this size: it sometimes failed in the final step called
“individual logarithm” or “descent”. The revision number we gave above cor-
responds to a version where we have fixed these problems, so that CADO-NFS
can reliably compute discrete logarithms in finite fields of about 256 bits.

Due to mathematical obstructions, the Number Field Sieve is an algorithm
that can compute discrete logarithms only in a sub-group of prime (or prime-
power) order. In the present situation where the order of the generator is twice a
prime, a small Pohlig-Hellman step must be added. This part is not included in
CADO-NFS and must be done by hand. Similarly, peculiarities of the Number
Field Sieve imply that the base for the discrete logarithm computed by CADO-
NFS is arbitrary. Therefore, in order to compute one of the ski, the program must
be run twice, once for the generator and once for the public key. Fortunately,
in the Number Field Sieve algorithm, many parts of the computation can be
shared between the two executions modulo the same prime (this is the basis of
the LogJam attack [2]), and CADO-NFS indeed shares them automatically. The
running times given above include those 2 runs for each key. For completeness
and reproducibility, we provide in AppendixA a script to obtain the keys; this
includes the few additional modular operations to be done apart from the calls
to CADO-NFS.

Of course, for a real attack, the three private keys can be computed simulta-
neously on 3 machines in parallel. Indeed, the chaining involved in the multilevel
ElGamal is not relevant for the keys, it occurs only during the encryption/de-
cryption of messages.

Additionally to this immediate 3-fold parallelism for the attack, CADO-NFS
also has some parallelism capabilities so that machines with more cores can
reduce the time for a single key. However, there is some limit to it with the
current implementation. For instance, the private key number 1 still required
160 s of wall clock time on the same 64-core machine that we used for testing
Magma.

2.2 Attack on the Modified Version

After the first attack was sent to the developers of the system and made public
a few days later, the public source code has been modified. The key size has
been increased to 1024 bits, and the multilevel ElGamal has been removed and
replaced by a single ElGamal encryption.

In the original version, the generators in all the involved groups were gener-
ators for the full multiplicative group of the finite fields, thus their orders were
twice a prime numbers. This exposed the danger of leakage of one bit of infor-
mation on the message, with a subgroup attack. This is an old technique [23],
but there are still frequent attacks, in particular when an implementation forgets
the key validation step [31]. Although we did not push in this direction in the
first attack, it was explicitly mentioned as a weakness. Therefore in the modified
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version, the generator was chosen to be a quadratic residue, thus having prime
order.

We discovered however that the other parts of the implementation were not
changed accordingly, so that an attack was still possible.

Let p = 2q + 1 be the 1024-bit safe prime used to define the group, where
q is also a prime. Let Qp be the group of quadratic residues modulo p; it has
order |Qp| = (p−1)/2 = q. The chosen generator g belongs to Qp, and therefore,
so is the public key pk, since it is computed as before as pk = gsk, where sk is
randomly chosen in Zq.

The problem with the modified implementation is that the message m is
allowed to be any integer from [1, q−1] which is naturally mapped to an element
of F∗

p. For semantic security (under the Decisional Diffie-Hellman assumption),
the message m should instead be encoded as one of the q elements of the group
Qp generated by g. In the case where m is not necessarily picked from the group
of quadratic residues, the Decisional Diffie-Hellman assumption does not hold
and indeed it is possible to build an efficient distinguisher, thus showing that
the encryption scheme in the modified version is not semantically secure.

Let us make this explicit. If the message m becomes a quadratic residue
after being mapped to F

∗
p, then for every choice of randomness of the encryption

algorithm, in the resulting ciphertext Encg,pk(m) = (a, b), the second component
b is also a quadratic residue. Indeed, if g and m belong to Qp, then there exist
x and y in F

∗
p such that g = x2 and m = y2 Then

b = pkr · m = gr·sk · y2 = (xr·sky)2 ∈ Qp.

Similarly, if m is not a quadratic residue, then b = pkr · m is not a quadratic
residue either.

Testing the quadratic residuosity of b can be done by computing the Legendre
symbol of b and p. Thanks to the law of quadratic reciprocity, a very efficient
algorithm similar to the Euclidean algorithm is available [32]. Therefore from
just the knowledge of a ciphertext, it is possible to immediately deduce if the
corresponding cleartext m belongs or not to Qp. Roughly half of the messages
are mapped to Qp. Hence, one bit of information is leaked.

In order to test the validity of this attack, we checked whether the b-parts
of the published encrypted messages belonged or not to Qp. It turned out that
exactly five out of the ten were quadratic residues modulo p. This shows that
indeed, some of the cleartexts were in Qp and some were not. Details for repro-
ducing these computations are given in AppendixB.

2.3 On the Role of Encryption in the Protocol – What Did We
Break?

As in many e-voting protocols, the encryption scheme is used to encrypt the
choice of the voter to form an encrypted ballot. From the Javascript source code
(under a sub-directory called voting-form) that is supposed to be run on the
voting device of the voter, we deduce that the encrypted data consists solely of
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this choice (with no additional nonce or meta-data). It takes the form of a 32-bit
unsigned integer called “deputy id” that looks random.

The link between the deputy ids and the real names of the candidates is
public, since the Javascript source code that must present the choices to the
voters has to include it.

In the original version of the encryption scheme, as soon as the election starts,
the 3 public keys of the multilevel ElGamal must become public, and from them,
in a matter of minutes the decryption keys can be deduced. Then, this is as if
the choices of the voters were in cleartext all along the process. Even if there is
a strong trust assumption on the server that receives these votes, and even if it
is honest and forgets the link between the voters and the ballots, there is still
the issue of putting them in the blockchain for verifiability. Since the ballots are
(essentially) in cleartext, the partial results become public all along the day of
the election, which can have a strong influence on the result. Actually, it is illegal
in Russia to announce any preliminary result while the election is still running.

Our second attack will not give full information about a ballot. Just one bit of
information is leaked from an encrypted ballot, namely whether or not the chosen
candidate has a deputy id which is a quadratic residue. As the deputy ids seem
to be chosen at random with no specific arithmetic property, there is a one-half
probability that they belong to Qp, as for any element of F∗

p. There could be some
bias if the deputy ids had only a few bits, but with 32-bit integers, according
to standard number theoretic heuristics this will not be the case. A plausible
scenario for the attack is then a district where two candidates concentrate most
of the votes, one of them having a deputy id in Qp and the other not. Then,
from an encrypted ballot, by computing a Legendre symbol, one can deduce the
voter’s choice unless she voted for a less popular candidate.

Therefore, as for the first attack, this second attack means that vote secrecy
relies on a very strong trust assumption in the voting server, and that the partial
results are leaked all along the process.

At first, it seems that the designers were skeptical about the feasibility of
this second attack, and they denied that it was a threat. However on August 28,
2019, they organized a last public testing, with only two deputy ids. It would
have been fully vulnerable to the described attack, since one of the ids was in Qp

and the other not. Even though the public source code was not yet modified, the
(minified) Javascript served to the volunteers during the test included a patch
against our second attack.

3 Discussion

3.1 The Role of the Blockchain in the Protocol

Blockchain as a Distributed Ledger. In the protocol, the encrypted ballots
are sent to an Ethereum blockchain and stored as transactions, one transaction
per ballot. The argument for doing so is a typical one used in e-voting, namely
offering the possibility for the voters to check that their vote is indeed taken
into account. At the end of the election, again via the blockchain, the voters



40 P. Gaudry and A. Golovnev

are also given a way to relate each encrypted ballot to the corresponding vote
in cleartext. The goal is to provide the cast-as-intended property: if the voting
client were to silently modify the choice of the voter, this would be detected.

In the above quick description, we implicitly assumed that once the voter
has done the check that her ballot is present in the blockchain it will stay there
and be counted in the tally. This also assumes that the voters are given enough
information and tools to record the link between their vote and the corresponding
entry in the blockchain, so that the check can be done in the few days (and maybe
weeks or months) after the election.

In the Moscow election, a specific, permissioned Ethereum blockchain was
used. The impossibility for the nodes running this blockchain to rewrite the
history of the ledger in order to remove a ballot after the voter has checked it,
relies therefore on the assumption that enough nodes are honest. Furthermore,
the access to this specific blockchain was not guaranteed to stay for long, and
actually was cut by the organizers quickly after the election.

Without access to the specifications of the protocol it is difficult to draw
strong conclusions, but we consider that the verifiability properties were not as
strong as what could be hoped for from a blockchain-based ledger.

More generally, using a public bulletin board is a well-known strategy in e-
voting, and a distributed blockchain is not the only and probably not the best
way of trying to achieve it. This is still a topic of active research [6,17].

To Use or Not to Use a Smart Contract for Decryption. In the original
implementation, at the end of the election, the 3 private keys of the multilevel
ElGamal were used to publicly decrypt all the ballots. This decryption was
implemented in the Solidity programming language, to be run as part of a smart-
contract by the nodes of the blockchain. The security properties that were sought
by doing so are unclear. There are many ways to guarantee that a decryption
has been correctly done, the most obvious in an ElGamal encryption setting is
to include a simple zero-knowledge proof (as done for instance in Helios [1]).

In the version that was modified after our first attack, the protocol was
changed, so that the decryption was done outside the smart-contract. The
decryption results, namely the votes in clear, were uploaded to the blockchain as
simple transactions with no computation. This operation occurs of course at the
end of the election, in order to compute the tally. And additionally, the private
key was also stored in the blockchain. This indeed allows the voters to verify
that the decryption is correct.

Doing such a big change in the protocol just a couple of weeks before a real use
in a real and high-stakes election is definitely not a good practice. However, again,
without a proper specification, it is hard to deduce all the consequences. Did the
trust assumptions change in the process? This also leaves open speculations
about the possibility that programming the decryption in a smart contract was
nothing but a peculiarity of the original design.
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Is It the Origin of the Small Key Sizes? The original code included many
checks ensuring that the primes used to defined groups for the multilevel ElGa-
mal encryption had a size small enough so that they would fit in 256 bits.
This was taking the form of comparisons to a constant called SOLIDITY MAX INT
defined as 2256 − 1. It indeed corresponds to the largest (unsigned) integer type
natively supported by the Solidity programming language of the Ethereum smart
contracts. A private communication with the designers confirmed that the reason
for removing the ballot decryption of the smart-contract code and changing the
protocol accordingly was due to the lack of time to implement a multi-precision
library in Solidity, that became necessary after increasing the key size to 1024
bits.

Although the coincidence of the originally chosen bit size for the primes and
the largest integer size natively supported in Solidity is striking, it is hard to
be sure that this is the reason for the mistake. We can however speculate and
consider that the purpose of the multilevel variant of ElGamal was to compensate
for this admittedly small key size. Maybe the designers hoped for a much better
security by using the three successive encryptions, just like Triple-DES is much
stronger than DES. Unfortunately, things are quite different for asymmetric
cryptography.

Another cause of using 256-bit keys could be the confusion between the secu-
rity brought by elliptic curve cryptography and the one offered by using finite
fields.

3.2 What Occurred on D-Day

The public source code repository was updated on September 6 (two days before
the election) in order to take into account our second attack. In the final ver-
sion the message m to be encrypted is now squared before being passed to the
ElGamal encryption, so that, indeed, the data that is encrypted is a quadratic
residue.

The prime chosen to define the group is congruent to 3 modulo 4. This has
the following consequence: (−1) is a quadratic non-residue in F

∗
p, and the Tonelli-

Shanks modular square root algorithm [32] takes its simplest form, namely rais-
ing to the power (p + 1)/4.

In order to recover the original message after the decryption, this square
root by modular exponentiation is performed, and the sign choice is based on
the relative size of p−m and m as integers between 1 and p− 1. Indeed, all the
deputy identities that are encrypted as integers that are much smaller than p.

This is close to a fix we proposed when publishing our second attack, but
instead of doing an additional exponentiation during encryption and having a
cheap decryption, here the encryption is cheap and the decryption includes the
additional exponentiation. This makes sense, since the decryption can be done
on high-end servers, while the encryption is done on the voter’s device which
might be a smartphone.

Therefore, on September 8, the election took place with an encryption pro-
cedure which was not easy to break. Even though 1024 bits are not enough for
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even a medium-term security, it is certainly hard (not to say infeasible) to solve a
discrete logarithm problem of that size in less than 12 h of wall clock time. With
the current public algorithmic knowledge (and extrapolations based on existing
record computations [2,19]), billions of computing cores would have to be mobi-
lized and made to cooperate, which sounds unlikely, even with the resources of
a major company or governmental agency.

According to the organizers, more than 10 thousands of Muscovites used the
Internet voting system, in the 3 districts. In one of the districts, the difference
between the first and the second candidates was less than 100 votes in total.
This proves in retrospect the really high stakes of this experiment, since a risk
of fraud in the system directly implies a risk of getting a wrong final result.

During the election, it was possible to access the blockchain data with a web
interface, and the encrypted ballots were present in it. At the end of the day,
the private key was also sent to the blockchain for verifiability purposes. But a
few hours later, the access to the blockchain was cut. Fortunately, analysts of
the Meduza online newspaper recorded everything and made the data available1.
They also used the private key to decrypt the 9810 encrypted ballots they found
in the blockchain and published them. The statistics they observed from this
data raises questions about the fairness of the election, but it is impossible to
draw conclusions from just the published data.

This cutting of the access to the blockchain just after revealing the decryption
key looks like an attempt to mitigate the risk of leaking the votes, while still
having some kind of verifiability. This seems not to have been convincing: Soon
after the election, the head of the Central Election Commission of the Russian
Federation, Ella Pamfilova, made a public declaration2 clearly expressing concern
about the results of this experiment and that in the coming years this should
not be extended to the whole territory.

3.3 On the Absence of Specification

In our opinion, the main problems with the Moscow Internet voting system are:

– the absence of a public specification;
– the modifications made in a rush, just before the election.

In a clear specification, we expect to find much more details about the task
of each entity playing a role in the system. From just the source code it is not
always clear who is supposed to run some part of the code. What is also needed
is clear statements about the security claims and the trust assumptions.

While the designers obviously had some verifiability properties in mind, hence
used a blockchain, they certainly also wanted to maintain vote secrecy, as it is
always a requirement in such a political context. It seems however, that vote
secrecy with respect to the web server that received the (encrypted) ballots was

1 https://meduza.io/slides/meriya-sluchayno...chto-strannoe.
2 https://www.kommersant.ru/doc/4095101.

https://meduza.io/slides/meriya-sluchayno-pozvolila-rasshifrovat-golosa-na-vyborah-v-mosgordumu-my-eto-sdelali-i-nashli-koe-chto-strannoe
https://www.kommersant.ru/doc/4095101
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not a goal. Furthermore, as far as we can see, coercion-resistance was not at all
a concern, at least initially.

We do not claim that having coercion-resistance and privacy with respect to
the voting server is necessary for any voting system. But this should be clearly
stated, so that the officials who validate the use of the system can take the
decision, while knowing the risks.

This ideal process of having a clear specification, with well-stated trust
assumptions and security claims is deeply incompatible with the way this elec-
tion was organized. Indeed, while making a slight modification to a protocol to
fix a problem is certainly feasible without having to do again the security anal-
ysis from scratch, the changes made by the designers just a few weeks or even a
few days before the election were so important that they would have required to
revise pages and pages of documentation if this documentation was public. And
in fact, it seems that the decision to cut the access to the blockchain shortly
after the end of the election was made as a quick response to some bad press
about the risks on privacy and coercion. Somehow, they decided to reduce the
verifiability to try to save other properties.

4 Lessons Learned and Conclusion

The first lesson learned from this story is, not surprisingly, that designers should
be very careful when using cryptography. The authors of the Moscow system
made many mistakes with the encryption scheme they decided to use. And in
fact, even now, technically the encryption is still weak for two reasons. First, the
1024-bit key is too small for medium term security, and if the protocol changes
so that vote privacy relies on it, this will not be enough. Furthermore, as far
as we could see, the way the prime was chosen is not public, so that it could
include a trapdoor making discrete logarithms easy to compute for the design-
ers [8]. Second, textbook ElGamal, which is what is implemented now, is not
IND-CCA2. Depending on the protocol, this might lead to minor or devastating
attacks. As an example of the latter, in a protocol that would include a decryp-
tion oracle that allows to decrypt any ciphertext that is not in the ballot box (for
instance, for audit purpose), it would be easy to use the homomorphic properties
of ElGamal to get all the ballots decrypted.

The second lesson is that using a blockchain is not enough to guarantee full
transparency. There are various notions of verifiability in the e-voting litera-
ture [5], and the designers must clearly say which property they have, under
precise trust assumptions. These trust assumptions must be made even more
carefully when using a permissioned blockchain, where the nodes running the
blockchain are probably specifically chosen for the election, and where the access
to the blockchain can be cut at any time.

Even more specific to e-voting, the Moscow system is a good example of the
difficulty for an Internet voting system to make the vote secrecy rely uniquely on
cutting the link between the voters and their encrypted ballots when they arrive
on a server that should also authenticate the voters. What is really required is
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to cut the link with the vote in clear, and, for this, classical methods exist like
homomorphic decryption or verifiable mixnets. In such a high-stakes election,
many seemingly incompatible security properties must be satisfied (secrecy vs
transparency), and advanced cryptographic tools are almost impossible to avoid.

Finally, as a conclusion, although our attacks led to the system using a better
encryption scheme, it is clear that the system as a whole is still far from being
perfect. We consider it likely that if the specification were becoming public in
the future, other attacks would be revealed. Therefore, we believe that the main
impact of our work was to draw the attention to the system as something that
was maybe not as secure as what was claimed. The bad publicity in the press
hopefully influenced some potential voters who decided not to take the risk of
using this still really problematic system and went for paper ballots instead.

Acknowledgements. Thanks to Iuliia Krivonosova and Robert Krimmer, for sharing
some information about the Moscow Internet voting. In particular Iuliia’s blog post [20]
was quite useful. We also thank Noah Stephens-Davidowitz for his comments on an
earlier version of this note. We thank Mikhail Zelenskiy and Denis Dmitriev for sharing
some data and information about the voting scheme.

A A Shell Script for the First Attack

## These are commands to be run on a Linux machine (Debian or Ubuntu).

## The main tool for the discrete logarithm computations is CADO-NFS,

## and we use GP-Pari as a ’pocket calculator’ for modular arithmetic.

# install some packages

sudo apt install pari-gp jq

sudo apt install libgmp3-dev gcc g++ cmake libhwloc-dev

alias gpnoc="gp -q --default colors=\"no\""

# download and compile cado-nfs

cd /tmp

git clone https://scm.gforge.inria.fr/anonscm/git/cado-nfs/cado-nfs.git

cd cado-nfs

git checkout 6b3746a2ec27 # version of 16/08

make cmake

make -j 4

# download blockchain-voting and extract public keys

cd /tmp

git clone https://github.com/moscow-technologies/blockchain-voting.git

cd blockchain-voting

git checkout d70986b2c4da # most recent version at the time of writing

cd /tmp

# loop on the 3 public keys; could be done in parallel on 3 machines.

for i in {0,1,2}; do

start=‘date +%s‘

# extract the public key information

keyfile="/tmp/blockchain-voting/encryption-keys/keys/public-key.json"
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p=‘jq .modulos[$i] $keyfile | tr -d \"‘

g=‘jq .generators[$i] $keyfile | tr -d \"‘

h=‘jq .publicKeys[$i] $keyfile | tr -d \"‘

ell=‘echo "($p-1)/2" | gpnoc‘

# run cado-nfs to get log of h (takes a few minutes)

wdir=‘mktemp -d /tmp/cadorunXXXXXX‘

log_h=‘/tmp/cado-nfs/cado-nfs.py -dlp -ell $ell \

workdir=$wdir target=$h $p‘

# run again to get log of generator

# (faster, since it reuses precomputed data)

log_g=‘/tmp/cado-nfs/cado-nfs.py $wdir/p75.parameters_snapshot.0 \

target=$g‘

# deduce private key

x=‘gpnoc <<EOF

xell=lift(Mod($log_h,$ell)/Mod($log_g,$ell)); half=lift(1/Mod(2,$ell));

x0=lift(Mod(2*half*xell, 2*$ell)); h0=lift(Mod($g,$p)^x0);

if (h0 != $h, x0=lift(Mod(2*half*xell+$ell, 2*$ell)));

x0

EOF‘

stop=‘date +%s‘

echo "Private key number $((i+1)) is $x, computed in \

$((stop-start)) seconds."

done

B Encrypted Messages Are Not Quadratic Residues

In this Appendix we use the provided public key and encrypted messages in
the modified version of the public repository [10] (revision 1d4f348681e9) to
show that not all messages are quadratic residues in F

∗
p. Here b is the set of the

second components of the encrypted messages (that is, each element of the set is
pkr · m where m is some plain message, pk is the public key, and r is a random
number). The following Python code shows that only five out of ten elements are
quadratic residues. For simplicity, we compute the Legendre symbol by modular
exponentiation: the quadratic residues give 1 when raised to the power (p−1)/2.

p =

10062759081450625618037903678618826196600591242500860802791085970455088

29615914188038720723057459046019130152450978128758867982127126946624453

23678201384359740027439588690880234391145675099291004487668846511981135

30933109486902142540395785614572268133031351548262091859360232929939444

1379077427748866822254003

q = (p-1)//2

b = [

86911001506497462251782638567319361833688978813664946437333829354738909

40443974481927929263283486987233406326466505025027434679060583881689706

23263052860581382950559847777412555501704989450676046755496358356631412

74356550963994173797345489306417174072514309856175754908122436241421564



46 P. Gaudry and A. Golovnev

859178326320313204945649,

32994578715846315625334282465389128113015193084444994471583135772127926

44951892161427453570566766298979864185170520616403124797427010730707520

16109483404053598174999416617877699551805519137361275465665467691230764

44375224889357541488942667685714188203805416972085863674686599803137288

027861639262227344813980,

25605451399106620676652873102021964641362454624148409311459772958496440

67016843578315908545184077772794593830979151616819810966255709567920814

13077819709806694723689969137957383923170349530451483441188337477065322

87151838997509598299206147956479381022563215978764100195629663712388182

647511089787862332483202,

30936197551567269685847042352240834287171756541862382295858852516666762

11755805979729879023007285286880732674891989007741022633330800550368742

56346941237089009381794632389798562078456796442958644789501357076108208

77962547470703268773776147336174270678101221755152924933175072952910690

305403946708512011344065,

90189227659365697355063500941760536836478537551461759945631823319091683

13130539947043416222984580270526152593756457555485599018740243229324226

84960561239260442729637671756134870576696053584273031857981168518983390

53864084929055706240055307151918736952456608210700937953363208336695605

308414504363789714782355,

91764714915834445310265717136195446845915020510854708634828807741642908

65088805234016509342009913809428795919722926613847539079055997816788187

99170526245002211336442034207826902363786376681934271623388852857592304

13278401533846260888398253877915981254520562872698617685705979612448346

470413913994244174120780,

53180133541691920877303393106622876213880557470163604793597655634027675

13360685116768376758300338878651961955633191844125587620057500524945640

23932277996165942274611488630312874402187304375485303772307277867299568

05232142613661312171461386140429576621530845469410809123204273518058446

975266361694186911940244,

96389110287648758509344773386657594488132549702589565012028823522666392

60323174326871289534690190117827254235251942037419181816826781045590593

29371155623633657479236340811419693309298082823008055773940379928788914

61243697630183068655120651685499248763092459000930306871431366198968873

609555301941599393034947,

68868518968718401961947565883286957678496859516081208645391394051517430

60154089569868014396600078685718742310976349636761884312463762214119090

17014367814111630789237262689248078371187306393398854088463937893954685

30979657018007065848405280697276892839194542147616119874097494557367533

44803639667081357573332,

59049331935932409191703521981449178033897833739363938803374780496048381

08167852649116009537459386386032599267182731855221804003545963016545542

41231467392800236514010370577555635998585837533974218865577533874244033

45003133365685878245562130520111649077186632157205095851334912141011894

784614717824328145876601

]

for i in range(len(b)):

print(pow(b[i], q, p))
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C Parameters from the Public Testing Held on August
28

In this Appendix we show the encryption parameters used for the last public
testing held on August 28, 2019. These were not included in the GitHub public
repository but were extracted from the Javascript code sent to the voters. There
were two candidates, one option corresponded to a quadratic residue, while the
other one corresponded to a quadratic non-residue. Therefore, the second attack
described in Sect. 2.2 would have decoded all votes.

p =

12270848251665690851841155105748670756648053237913900516699359405362771

39717263095726449865110213728719981659033550058365258369834144969686617

29191112587333253191262755602784412922675331893614019119979108938727080

35007007749458130783976450013979645236359373116042676595576310035726012

4300619948890487736216143

q = (p-1) // 2

m1 = 3247602110

m2 = 667396531

print(pow(m1, q, p))

print(pow(m2, q, p))
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Abstract. We demonstrate that XOR Arbiter PUFs with an even num-
ber of arbiter chains have inherently biased responses, even if all arbiter
chains are perfectly unbiased. This rebukes the believe that XOR Arbiter
PUFs are, like Arbiter PUFs, unbiased when ideally implemented and
proves that independently manufactured Arbiter PUFs are not statisti-
cally independent.

As an immediate result of this work, we suggest to use XOR Arbiter
PUFs with odd numbers of arbiter chains whenever possible. Further-
more, our analysis technique can be applied to future types of PUF
designs and can hence be used to identify design weaknesses, in partic-
ular when using Arbiter PUFs as building blocks and when developing
designs with challenge pre-processing. We support our theoretical find-
ings through simulations of prominent PUF designs. Finally, we discuss
consequences for the parameter recommendations of the Interpose PUF.

Investigating the reason of the systematic bias of XOR Arbiter PUF, we
exhibit that Arbiter PUFs suffer from a systematic uniqueness weakness.

Keywords: Physically Unclonable Function · Bias · Arbiter PUF ·
Interpose PUF

1 Introduction and Related Work

Physically Unclonable Functions (PUFs) are “biometrics” for integrated circuits.
Like fingerprints for humans, PUFs should expose (somewhat) unique charac-
teristics of a circuit instance that can be used to identify or even authenticate
a particular circuit. The specific characteristics of a circuit are usually formal-
ized as input-output (“challenge-response”) behavior. Strong PUFs have the
additional requirement that each circuit has such a large number of features
(input-output pairs) that it is infeasible for an attacker to copy and imitate all
features.

Research in strong PUFs has spent much attention on Arbiter PUFs, which
were introduced by Gassend et al. [3], and its countless variations. While the
Arbiter PUF does have an exponentially large challenge-space, Gassend et al.
noted that its behavior can be characterized by a hyperplane and is thus an easy
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target for prediction algorithms trained with machine learning on observed exam-
ples. This raises legitimate concern, as in many usage scenarios, such training data
could be easily obtained by a man-in-the-middle attacker. Sölter and Rührmair
et al. [8,13] demonstrated that prediction is even possible when multiple Arbiter
PUFs are used and only the XOR of the responses is returned. Their attack on the
XOR Arbiter PUF demonstrated that training of a model is feasible, even though
the PUF behavior cannot be characterized by a single hyperplane anymore. This
also holds true for the Lightweight Secure PUF by Majzoobi et al. [6] that modi-
fies a given challenge before passing it to an underlying XOR Arbiter PUF. Most
recently, Nguyen et al. [7] proposed the Interpose PUF, essentially consisting of
two XOR Arbiter PUFs. However, using deep neural networks, successful attacks
on XOR Arbiter PUF and Interpose PUF have been claimed [11].

Side-channel-based attacks on XOR Arbiter PUFs have also been successfully
mounted. In 2013, Delvaux and Verbauwhede [2] modeled a single Arbiter PUF
based on the response reliability. In 2014, Tajik et al. [14] were able to extract
physical features of the Arbiter PUF circuit using photonic emission analysis,
allowing them to deduce a mathematical model and prediction algorithm for
the PUF. In 2015, Becker [1] demonstrated an attack against the “4-way” XOR
Arbiter PUF, where four variations of the same challenge are fed in the same
Arbiter PUF and the parity of the four responses is output to the user. The attack
trains a model using an evolution-strategy algorithm based on the reliability of
responses rather than their bit-value.

Hardware implementations of Arbiter PUFs have been extensively studied.
Katzenbeisser et al. [4] conducted an analysis of Arbiter PUFs implemented
in ASIC, evaluating the reliability of responses and sensitivity to temperature
change. In a similar study, Maes et al. [5] studied the uniqueness and reliability
of Arbiter PUFs in ASIC under the influence of ageing. Sahoo et al. [10] studied
the bias inherent to the implementation of a PUF design, considering FPGA
implementations of the Arbiter PUF.

This paper is organized as follows. Sect. 2 introduces the additive delay model
and contains the theoretical analysis of XOR Arbiter PUF bias. In Sect. 3, we
present simulation results to support our analysis and discuss the results and
consequences. We conclude the paper in Sect. 4.

2 Bias Analysis

2.1 Background: Additive Delay Model

An Arbiter PUF consists of two symmetric signal paths going through n stages
before reaching the arbiter. At each stage, the signals may be interchanged,
depending on the challenge bit that is assigned to this particular stage. The
arbiter will output whether there is a signal first on the top or bottom line of its
input. An XOR Arbiter PUF consists of k parallel Arbiter PUFs, but only the
parity (XOR) of their responses is output to the user. A schematic representation
of a 2-XOR Arbiter PUF can be found in Fig. 1.
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Fig. 1. Schematic representation of an XOR Arbiter PUF with k = 2 parallel arbiter
chains.

To model the behavior of XOR Arbiter PUFs, the additive delay model
is widely and successfully used [3,6,8,13]; Delvaux and Verbauwhede [2] give
a physical motivation. Modeling results above 99% accuracy, as obtained by
the modeling attacks mentioned above, show that the additive delay model can
model physical Arbiter PUFs with very high accuracy.

Written using −1 and 1 to represent bit values, the additive delay model
states that any instance of the Arbiter PUF with n stages can be modeled as an
affine hyperplane,1

r(c) = sgn [〈w,x〉 + w0] = sgn

[(
n∑

i=1

wixi

)
+ w0

]
, (1)

where w ∈ R
n and w0 ∈ R model the physical properties of the partic-

ular instance and x is a function of the given challenge bits c defined by
xi = ci · ci+1 · · · cn. Note that while the threshold w0 relates to the bias Ec [r(c)]
of the Arbiter PUF, the relation of these two values is not linear, as small pertur-
bation of the threshold does not change the bias. We approximate the relation
of threshold and bias below.

Building on the Arbiter PUF model, a k-XOR Arbiter PUF can be modeled
by the product2 of k Arbiter PUF models,

r(c) = sgn
k∏

l=1

n∑
i=1

wl,ixi + wl,0. (2)

In the additive delay model, the k ·n parameters wl,i and the wl,0 are assumed to
be normally distributed3. XOR Arbiter PUF variants that transform the input
1 The sgn function returns the sign of the argument. In our setting, sgn 0 will only

occur with probability zero; for completeness we define sgn 0 = 1.
2 Notice that when using −1 and 1 to represent bit values, the standard product of

bit values corresponds to the logical XOR operation.
3 In fact, some parameters have different variances [2], but this is immaterial to the

discussion in this paper.
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challenge before processing it with the arbiter chains, e.g. the Lightweight Secure
PUF [6], can be modeled by appropriately augmenting the definition of x.

2.2 Analysis

XOR Arbiter PUF bias can be analyzed by expanding the product of the additive
delay model (see (2)) to observe the resulting threshold term. In order to focus
on the systematic bias of XOR Arbiter PUF designs, we assume each Arbiter
PUF to be independently chosen and unbiased.

The term
∏k

l=1

∑n
i=1 wl,ixi in (2) is a polynomial of degree k over variables

xi that take values in {−1, 1}. Hence, r(c) is a polynomial threshold function of
degree at most k, including some monomials of the form xk

i · ∏k
l=1 wl,i. If (and

only if) k is even, these monomials contribute to the threshold term. When k
is odd, no product will degenerate into a constant term, i.e. perfectly unbiased
Arbiter PUFs will yield a perfectly unbiased XOR Arbiter PUF. As an example,
a 2-XOR Arbiter PUF can then be modeled as

r(c) = r1(c) · r2(c) = sgn

⎡
⎢⎢⎣∑

i,j
i�=j

w1,iw2,jxixj +
∑
i,j
i=j

w1,iw2,j

⎤
⎥⎥⎦ . (3)

It can be seen that even assuming unbiased building blocks, we obtain a non-
zero threshold term of

∑n
i=1 w1,iw2,i. While the expectation of this value in the

manufacturing process is zero, a high variance causes the 2-XOR Arbiter PUF to
likely have significant bias. In other words, any 2-XOR Arbiter PUF consisting
of two unbiased arbiter chains is biased with probability 1.

Theorem 1. The responses of independently chosen unbiased Arbiter PUFs
queried on the same challenge are not statistically independent.

Proof. Let r1, r2 be models of unbiased Arbiter PUFs with parameters w
(1)
i

and w
(2)
i for 1 ≤ i ≤ n chosen independently at random and w

(1)
0 = w

(2)
0 =

0 as defined in (1). As demonstrated in (3), the threshold of r1(c) · r2(c) is
non-zero and hence4 Pr [r1(c) · r2(c) = 1] �= 1/2. However, assuming statistical
independence we have Pr [r1(c) · r2(c) = 1] = Pr [r1(c) = r2(c)] = 1/2. ��

4 An approximation of the bias Ec [r(c)] in dependence of the threshold value can
be obtained using the Berry-Esseen-Theorem to approximate

∑
i,j w1,iw2,jx1x2 for

i �= j as a Gaussian random variable with variance σ2 over uniformly chosen random

challenges, resulting in Ec [r(c)] ≈ erf
(∑n

i=1 w1,iw2,i

σ
√
2

)
;the value

∑n
i=1 w1,iw2,i in

turn follows (in the manufacturing random process) a distribution composed of the
sum of product-normal distributions, which has increasing variance for increasing
n. Extending the setting, for higher (but even) k the distribution narrows as the
variance of the product-normal distribution narrows. The later effect can be observed
in our simulations, cf. Fig. 2.
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These results are relevant for novel designs based on several XOR Arbiter
PUFs, like the Interpose PUF, as well as for designs based on a single XOR
Arbiter PUF, but with novel transformation of the challenge. As an example,
Theorem 1 can easily be extended to cover all input transformations that result
in the same challenge for each arbiter chain.

Finally, we emphasize again that the analytical results hold regardless of any
implementation weakness and thus are a systematic weakness of the Arbiter
PUF design.

3 Discussion

3.1 Simulation Results

We confirmed the systematic XOR Arbiter PUF bias in simulations5 for different
XOR Arbiter PUF sizes and input transformations, including the Interpose PUF.
All simulations are based on the additive delay model with standard Gaussian
weights and were conducted using unbiased arbiter chains. The distribution of
the systematic bias is based on sampling 100 instances each; the bias of each
instance is estimated using 1,000,000 responses to uniformly random challenges.

Fig. 2. Analysis results for simulated 64-bit k-XOR Arbiter PUFs, k-Lightweight
Secure PUFs and k-Permutation XOR Arbiter PUFs build from unbiased Arbiter
PUFs. For each type and size, 5000 instances were sampled and queried with one
million uniformly random challenges each.

In Fig. 2 we show the estimated bias distribution for XOR Arbiter PUFs and
Lightweight Secure PUFs, which confirm our theoretical findings. As expected,
the systematic bias is only present for PUFs with an even number of arbiter
chains, while PUFs with an odd number of arbiter chains remain (systemati-
cally) unbiased. The bias variance becomes smaller as k increases. The statistical
5 The software used for simulation and analysis publicly available as free software at

https://github.com/nils-wisiol/pypuf/tree/2020-systematic-bias.

https://github.com/nils-wisiol/pypuf/tree/2020-systematic-bias


Short Paper: XOR Arbiter PUFs Have Systematic Response Bias 55

significance of these findings can be confirmed by applying a bias test like the
one specified in NIST’s SP-800-22 test suite [9]: while our simulation passes the
tests on 99% of XOR Arbiter PUF instances whenever k is odd; it fails for almost
all instances when k = 2, and fails for the majority of instances when k = 4 (see
Fig. 2). This is also in line with our theoretical findings and simulation results,
as we expect the effect to become smaller as k increases.

We hence recommend using an odd number of arbiter chains to avoid poten-
tial additional attack surface and especially discourage the use of two or four par-
allel chains. These recommendations also apply whenever (XOR) Arbiter PUFs
are used as building blocks for larger PUFs, such as is the case in the Interpose
PUF, as bias in intermediate values can result in increased predictability.

The bias distribution also suggests that the input transformation as done by
the Lightweight Secure PUF [6] compensates the systematic bias to some extend,
which may be a contributing factor to the increased machine learning resistance
[8,15] of the Lightweight Secure PUF. On the other hand, the Lightweight Secure
PUF and Permutation XOR Arbiter PUF [15] seems to introduce bias for the
case k = 3. Such effects should be considered when designing novel input trans-
formations.

Our findings also extend to the recently proposed Interpose PUF [7], which is
a combination of two XOR Arbiter PUFs and was designed to be resilient against
all state-of-the-art modeling attacks, while being CMOS-compatible. Consisting
of two interposed XOR Arbiter PUFs, our simulation shows that the “down”
XOR Arbiter PUF plays an important role for the systematic bias, while the
“up” XOR Arbiter PUF only has minor influence on it (see Fig. 3).

Fig. 3. Analysis results for simulated 64 bit (kup, kdown)-iPUF instances build from
unbiased Arbiter PUFs. For each size, 5000 instances were sampled and queried with
one million uniformly random challenges each.

Given these findings, we provide additional evidence for the original author’s
advice to use the Interpose PUFs with an odd number of arbiter chains in the
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lower layer. Furthermore, as our findings are applicable any XOR Arbiter PUF,
we extend the parameter recommendation to include the upper layer as well.

3.2 XOR Arbiter PUF Bias and Arbiter PUF Uniqueness

Our results above, stated in terms of the bias of XOR Arbiter PUFs, are closely
related to the uniqueness of Arbiter PUFs. The theoretical and simulation results
show that any 64 bit 2-XOR Arbiter PUF has significant bias with high probabil-
ity, even when implemented ideally (i.e., composed of unbiased Arbiter PUFs).
In terms of uniqueness this means that any independently chosen pair of (ideal)
Arbiter PUFs has, with high probability, low uniqueness, as perfectly unique
Arbiter PUFs are statistically independent and hence their XOR Arbiter PUF
would not have any bias. It must be noted though, that, as per the properties
of the parity, the uniqueness will only play out in a systematic bias whenever k
is even, hence our recommendation to use XOR Arbiter PUFs with odd k.

The inherent low uniqueness of Arbiter PUFs, independent of their imple-
mentation, may relate to findings by Schaub et al. [12] that claim an upper
bound to the entropy of Arbiter PUFs at O(n2).

4 Conclusion

In this paper, we exhibited that XOR Arbiter PUFs with an even number of
arbiter chains have systematic bias, independently of implementation issues. As
bias is an inherent weakness to any PUF, parameter recommendations for XOR
Arbiter PUFs, Lightweight Secure PUFs, and Interpose PUFs should no longer
include an even number of arbiter chains to remove any additional attack surface.

For future designs, our findings mandate additional testing: it is not sufficient
to choose building blocks independently of each other; also their uniqueness must
be studied implementation-independent. For designs based on the Arbiter PUF
design, our methodology based on the additive delay model may be applicable
and facilitate theoretical study of threshold and bias values. For other designs,
a different model or empirical testing based on simulation may be necessary.

In future work, we will investigate if other strong PUFs also suffer from
implementation-independent uniqueness weaknesses. It should also be investi-
gated if the bias of an XOR Arbiter PUF can assist a modeling attack.
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Abstract. Six years after the introduction of selfish mining, its coun-
terintuitive findings continue to create confusion. In this paper, we com-
prehensively address one particular source of misunderstandings, related
to difficulty adjustments. We first present a novel, modified selfish min-
ing strategy, called intermittent selfish mining, that, perplexingly, is more
profitable than honest mining even when the attacker performs no selfish
mining after a difficulty adjustment. Simulations show that even in the
most conservative scenario (γ = 0), an intermittent selfish miner above
37% hash power earns more coins per time unit than their fair share. We
then broadly examine the profitability of selfish mining under several
difficulty adjustment algorithms (DAAs) used in popular cryptocurren-
cies. We present a taxonomy of popular difficulty adjustment algorithms,
quantify the effects of algorithmic choices on hash fluctuations, and show
how resistant different DAA families are to selfish mining.

1 Introduction

Twelve years ago, the Bitcoin (BTC) white paper [26] introduced a novel consen-
sus protocol that kicked off an era of permissionless blockchains. In describing
this protocol, Nakamoto asserted that the system was secure as long as a major-
ity of miners were honest [25]. To encourage honest participation, Bitcoin offers
financial incentives in the form of newly minted bitcoins as well as transaction
fees. These incentives, Nakamoto argued, would be more profitable than defying
the protocol. Tantamount to an incentive compatibility claim for the protocol,
these assertions were adopted widely and became folk theorems, and even gar-
nered justification from formal modeling [18].

Nonetheless, these assertions were proven false. In a counterintuitive result,
Eyal and Sirer showed that there existed an alternative strategy, known as selfish
mining, whose financial incentive surpassed that of mining honestly [11]. Selfish
mining involves withholding mined blocks and releasing them only after honest
miners have wasted resources mining alternative blocks. Until a difficulty adjust-
ment, wasting competitors’ blocks confers no benefit to the selfish miner (SM).
Following a difficulty adjustment, however, the selfish miner can collect much
more than its fair share of block rewards, depending on its percentage of total
network hash power (α) and what proportion of honest miners mine on a SM’s
block during a fork in the network (γ). Counterintuitively, the selfish mining
c© International Financial Cryptography Association 2020
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strategy returns excess profits for any miner or pool with more than 1/3rd of the
global hash power (α > 33%), even with the assumption that no honest miner
mines on a selfish block in a fork (γ = 0). As α → 50%, a selfish miner collects
close to 100% of rewards in the network, a doubling of its honest income.

Ever since its introduction, the selfish mining paper has attracted a cult of
denialism [8,16,35]. Leaving aside claims that stem from an inaccurate model of
how the Bitcoin protocol and pooling work [12], the resulting arguments revolve
around the issues of difficulty adjustments.

First, critics have asserted that selfish mining is unprofitable because time
spent forking blocks only serves to reduce the speed at which the main chain
grows. Hence, the argument goes, an increase in relative revenue is meaning-
less because profit per time-unit decreases. Second, critics have claimed that
selfish mining must necessarily involve long-duration attacks that persist past a
difficulty adjustment in order to be profitable.

In this paper, we show both of these claims to be false. We illustrate a surpris-
ing selfish mining variant where the attacker ceases to act selfishly immediately
after a difficulty adjustment, yet, paradoxically, still earns more than an honest
miner. We call this strategy intermittent selfish mining. We then investigate the
profitability of selfish mining under different difficulty adjustment algorithms.
In particular, we quantify the benefits of selfish mining on Bitcoin Cash, Bitcoin
SV, Ethereum, and Monero, and show the conditions under which profit per
time-unit exceeds honest mining.

Overall, this paper introduces intermittent selfish mining (Sect. 3) and quan-
tifies its benefits when applied to the Bitcoin protocol (Sect. 3.2). This protocol
is, even more counterintuitively than the original selfish mining strategy, prof-
itable even without performing any attack past the difficulty adjustment. Sec-
ond, this work provides a taxonomy of difficulty adjustment algorithms (DAAs)
(Sect. 4.1). Finally, it examines selfish mining profitability under the DAAs of
Bitcoin Cash, Bitcoin SV, Ethereum, and Monero (Sect. 4.3). Overall, the paper
provides a more complete picture of selfish mining’s implications, and can inform
the design of future proof-of-work (PoW) systems.

2 Background

This work describes an adversary employing selfish mining in proof-of-work cryp-
tocurrencies. In this section, we first describe the PoW mining process and then
outline the selfish mining algorithm.

2.1 Mining in PoW Cryptocurrencies

At their core, cryptocurrencies allow clients to publish transactions which are
collated and placed into blocks by miners. In PoW cryptocurrencies, these blocks
are mined by hashing the block data with a nonce until the resulting hash value
is below a target value. The target value is determined by a coin’s difficulty
adjustment algorithm (DAA). Difficulty describes how difficult it is to generate
a hash below this target value. Once a miner obtains a valid hash, it broadcasts
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the block to receive newly minted coins and collect transaction fees. Once a block
resides on the longest chain, it is considered accepted. Orphans are blocks that
do not reside on the longest chain. Accepted blocks must then be buried under
a sufficiently long suffix of the blockchain for their transactions to be considered
finalized.

2.2 Selfish Mining Strategy

In selfish mining, the selfish miner with a hash rate of α withholds newly-mined
blocks instead of immediately publishing them. As a result, honest miners are
unaware of these blocks and, unknowingly, are coerced into wasting hash power
mining blocks that are likely to be replaced in the chain. In this way, a selfish
miner probabilistically earns more block rewards than honest miners.

There are three scenarios in which a selfish miner publishes a block.
First, if the SM has a private chain of length two and the next block is found

by an honest miner, the new chain height difference is one. At this point, the
SM publishes its entire private chain to ensure a fork win.

Second, if the SM has a private chain of length greater than two and the next
block is found by an honest miner, the SM publishes only one block, the oldest
block in its private chain, while keeping the rest of its private chain hidden.

Third, if the SM has found a single block and the next block is found by
the honest miner, the SM will publish its block immediately. At this point, the
network is in a forked state. The SM will try to mine on its own block, while
the honest miners choose whether to mine on the honest or selfish block. The
proportion of honest miners that mine on the selfish block is referred to as γ.
Zero represents the most pessimistic γ value; it cannot be negative.

3 Intermittent Selfish Mining

Fig. 1. Intermittent selfish mining timeline. Black
indicates ISM-mined blocks. An ISM engages in self-
ish mining pre-difficulty adjustment, sometimes los-
ing blocks (e.g. block B), but causes difficulty to drop
by excluding blocks (e.g. I and J). The ISM mines
honestly post-difficulty adjustment and collects more
rewards per unit time than it would normally.

We now introduce the inter-
mittent selfish mining strat-
egy. Intermittent selfish min-
ing is a modification of self-
ish mining in which a miner
alternates between selfish
and honest mining at every
difficulty adjustment in Bit-
coin. The Bitcoin DAA tar-
gets a block time of ten min-
utes and adjusts after every
2016 blocks on the main
chain. We assume the worst-
case scenario for the attacker
and omit transaction fees
and mining costs from our analysis.
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Intermittent selfish mining is comprised of two phases. In phase one, an
intermittent selfish miner (ISM) employs selfish mining. The goal of phase one
is to knock out the honest miners’ blocks and set up the attacker to profit in the
epoch directly following the attack. As pointed out by critics of selfish mining,
although this results in an increase in the number of blocks won relative to the
honest miner, this by itself does not lead to increased profit for the selfish miner,
not taking into account transaction fees. Phase one merely extends the time it
takes to reach 2016 blocks on the main chain; it does not increase the number
of blocks per minute produced by the selfish miner. In fact, the profit of the
attacker slightly decreases in this phase because at every fork of equal height,
the selfish miner risks losing its forked block if the honest miners are able to
mine on the honest block before the selfish miner can extend its chain, when
γ < 1. Nonetheless, it will force the network to lower the mining difficulty to
make up for slower block times and what it perceives as a lower hash rate.

In phase two, following the difficulty adjustment, the ISM switches to honest
mining. With the new lower difficulty, honest mining results in a faster mining
rate than normal for all miners. Though this increased rate of minting profits all
miners equally in phase two, over the two phases, the ISM profits more relative to
the honest miner and per time unit. Surprisingly, this is sufficient for the attacker
to gain an advantage over honest miners. This lays to rest the claim that a selfish
mining attack must be launched and remain active past a difficulty adjustment.
Even though no selfish mining activity takes place after a difficulty adjustment,
the attacker still gains an economic advantage. Further, this change in strategy
also lowers the likelihood that the honest community will detect selfish mining.
An ISM could repeat this strategy over multiple periods and profit more than
honest mining in each iteration.

Figure 1 shows an example of intermittent selfish mining over the length of
a single iteration. The example involves an ISM with about 30% hash power.
In the diagram, blocks are mined in alphabetical order. White blocks represent
non-ISM, honest blocks and black blocks are ISM-mined blocks. Selfish mining
is employed only in phase one. The ISM mines block B, withholds it, and then
is forced to publish it to compete with honest block C. The honest miners mine
block D faster than any block is mined on B and therefore B is orphaned. Later,
the ISM succeeds in knocking out blocks I and J by withholding its private chain
of blocks F, G, and H until the latest possible moment to guarantee a win. Once
the difficulty adjustment is reached, selfish mining results in a lower difficulty
to compensate for the slower build of the public chain. After this adjustment,
in phase two, the ISM mines honestly. Although it wins blocks at its expected
rate, the lower difficulty results in more blocks per time unit.

Intermittent selfish mining dispels a misconception about the profitability
of selfish mining. Selfish mining is often argued to be impractical because the
attack, it is erroneously claimed, must be maintained for several difficulty periods
in order for the attacker to earn a profit. The crux of the argument is that because
the selfish miner earns less revenue per unit time during the first difficulty period
due to its elevated orphan rate, it must maintain the attack for several additional
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difficulty periods to compensate. Grunspan & Perez-Marco [16] formalized such
a time-based revenue model for selfish mining and calculated that an attacker
with 10% of the network hash rate and with a γ parameter of 0.9 must maintain
the attack for ∼10 weeks. Their calculation is incorrect because they fail to
account for the profit earned by the attacker in the difficulty period following
the attack. Their revenue calculation stops one difficulty period too early, when
selfish mining ends. Initiating the attack results in less revenue per unit time
during the first difficulty period, but this should be considered a loan rather
than a loss: the attacker gets paid back at the conclusion of the attack.

It is easy to show that the selfish miner in the previous example (α = 10%,
γ = 0.9) will earn a profit even if conducting the attack for only a single, 2016-
block difficulty period and then switching to honest mining, exactly as would
an intermittent selfish miner, using the state probabilities and state transitions
from [11]. The presence of an ISM in phase one drives up the orphan rate for
the honest miners to 8.61% and its own to 6.74%. We can use the equation

2016 = (n ∗ (1 − i) ∗ α) + (n ∗ (1 − h) ∗ (1 − α))

to calculate expected, non-orphaned block wins, where i and h are the ISM and
honest orphan rate, respectively, and n is the number of blocks that need to be
found to complete a difficulty period. In expectation, the ISM will have won 205
blocks, which is 3 blocks more than if employing honest mining, and the honest
miners will have won 1811 blocks. The expected time until the difficulty adjust-
ment stretches from 14 days to 15.29 days. Although the ISM earns more than
its fair share of block rewards, its revenue per day falls from 14.40 blocks/day
to 13.43 blocks/day during phase one. The following difficulty period makes up
for this temporary dip.

To compensate for the fact that the last set of 2016 blocks took 15.29 days
to find rather than 14 days, the Bitcoin network adjusts the difficulty parameter
downwards, making the next 2016 blocks come faster. At this point, the intermit-
tent selfish miner returns to mining honestly in phase two, thereby reducing the
network orphan rate back to normal. Because of the lower difficulty, the next
2016 blocks take 12.82 days in expectation. Although the intermittent selfish
miner, now mining honestly, earns only 202 blocks in expectation, its expected
revenue per day increases to 15.72 blocks/day during phase two.

During these two phases, the equivalent of two difficulty periods, the inter-
mittent selfish miner wins in expectation 205+202 = 407 blocks over the course
of 15.29+12.82 = 28.11 days, for an average revenue rate of 14.47 blocks per day.
Since its expected revenue per unit time is greater than if it were mining hon-
estly (14.40 blocks per day), intermittent selfish mining is profitable for attack
durations significantly shorter than the 70 days computed in [16].

3.1 Intermittent Selfish Mining Evaluation

We examine the intermittent selfish mining strategy using a Monte Carlo simula-
tion to generate a chain of 8064 blocks excluding orphaned blocks, the equivalent
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Fig. 2. An ISM causes the difficulty to
lower after selfish phases and rise after
honest phases (γ = 0).

Fig. 3. ISM block-win rate.

of two intermittent selfish iterations. At each simulated second, each miner has
a random chance of finding a block, set to the miner’s hash rate divided by the
difficulty of its most recent block.

We design our experiments to answer the following questions. (1) How does
intermittent selfish mining affect difficulty? (2) What is the ISM’s block-win rate
(blocks/minute) and how does it fluctuate in each phase of intermittent selfish
mining? (3) Does the overall chain-growth rate (i.e. number of blocks added to
the longest chain per minute) change in the presence of an ISM?

To answer these questions, we analyze difficulty, block-win rate, and chain-
growth rate as each block is generated in a given run under various α and γ
levels. We simulate each combination of parameters 100 times and then calculate
averages and standard deviations for the data points.

3.2 Results

First, Fig. 2 shows how an ISM with γ = 0 affects difficulty throughout two
periods. We only show data for α = 10%, 33%, and 49%, which in the original
selfish mining paper were minority rates that incurred losses, broke-even, and
profited, respectively. As α increases, the number of blocks necessary to reach the
end of the two iterations increases. Additionally, the effects of an ISM are more
apparent when α = 49%. Selfish mining in phase one requires almost double the
normal 2016 blocks to reach a difficulty adjustment. Once the difficulty lowers,
honest mining in phase-two occurs for about 2016 blocks, then the period ends.

Next, Fig. 3 shows the intermittent selfish miner’s block-win rate for three γ
levels: 0, 0.5, and 1. In comparison with the original selfish mining strategy, the
potential rewards of intermittent selfish mining are more modest. Nonetheless,
expected profits for an ISM surpass the profits of honest mining above certain
hash rates depending on the γ value. Even in the most conservative estimation,
when γ = 0, the ISM profits if its hash rate is above 37%. The block-win rates
at each γ level converge at around 0.06 as α reaches 50%, which surpasses its
expected 0.05 block-win rate.

The corresponding cumulative block-win rate (blocks/minute) by the ISM
is shown in Fig. 4. Due to the way the ISM alternates strategies, the win rate
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fluctuates between phases. In phase one, which includes timesteps 0 to about
4000 for α = 49%, selfish mining has a win rate of about 0.047, which is lower
than the expected 0.049 win rate. In phase two, the win rate increases to about
0.057 at its peak, before the next phase shift. Of course, the difficulty adjustment
rising back to a higher level combined with resuming selfish mining brings the
cumulative block-win rate to 0.053. The win rate will continue to fluctuate, but
it will converge to about 0.0568. Figure 4 shows that a miner only has to engage
in intermittent selfish mining for a little over one difficulty period to immediately
win more blocks per minute than it would under honest mining.

Fig. 4. ISM block-win rate after some
number of timesteps (γ = 0).

Fig. 5. Chain-growth rate in the pres-
ence of an ISM. The three γ curves
are superimposed since γ values do not
affect growth rate.

Finally, Fig. 5 shows the chain-growth rate in the presence of an ISM. In BTC,
the expected chain-growth rate is 0.1 blocks/minute. Initially, one might predict
that intermittent selfish mining causes deflation by using difficulty to increase the
chain-growth rate and, therefore, the supply of bitcoins. Yet, this figure shows
that increasing an ISM’s α rate lowers the chain-growth rate. Intermittent selfish
mining, surprisingly, slows the coin mint rate. Each slow phase-one outweighs
the rapid phase-two, which, as an unintended side-effect, leads to a lower chain-
growth rate overall, despite increasing profits for the ISM.

4 Difficulty Adjustment Algorithms

We now focus our analysis on difficulty adjustment algorithms (DAAs). Given
that there now exist various PoW coins with diverse protocols, an analysis of
several current DAAs and their impact on selfish mining was necessary.

The main goal of a difficulty adjustment algorithm is to set a difficulty that
causes blocks to be mined at regular target time intervals. A responsive DAA
allows a cryptocurrency to quickly adjust difficulty to prevent blocks from being
mined at levels too high or low compared to the target rate. On the other hand,
being too responsive would allow difficulty levels to be easily manipulated by
large miners entering and exiting whenever it benefits them.

In this section we classify various DAAs and evaluate their responsiveness to
increases in hash power, both from an honest miner and a selfish miner.
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4.1 DAA Taxonomy

Existing approaches to DAA can be classified into three categories:

Period-Based. Period-based DAAs are algorithms in which difficulty is
adjusted only at the end of a typically fixed period. A period is defined as
the amount of time it takes to generate w blocks on the main chain. The period
width, w, can be chosen to be large enough to minimize extreme difficulty fluc-
tuations, but must be small enough to adjust to major hash rate changes.

Figure 6a shows a period-based DAA with w = 3. After block F is mined,
the period ends and the difficulty is recalculated based on the block times of
blocks D - F. The difficulty is then set for the next period of blocks G - I.

Our evaluation of DAAs uses Bitcoin as the period-based cryptocurrency.
The Bitcoin DAA targets an average mining time of ten minutes per block [6].
After 2016 blocks are mined on the main chain, which takes roughly two weeks,
the difficulty is adjusted to get closer to the target block time.

Fig. 6. DAA Taxonomy. Blue blocks are
used in the difficulty calculation. Red blocks
are mined using the new difficulty. (Color
figure online)

Incrementally-Extrapolated. The
incrementally-extrapolated DAA is
one in which difficulty is incre-
mented/decremented depending on
how far outside of the block tim-
ing bounds a new block is. In con-
trast to Bitcoin, where a proportion
can be used to calculate a new diffi-
culty, incrementally-extrapolated dif-
ficulties increase/decrease the current
difficulty by a fractional amount. This
DAA limits the responsiveness of the
cryptocurrency to hash rate changes.

Figure 6b shows an example of an
incrementally-extrapolated DAA. To
mine block G, the DAA only looks
at the elapsed time since the parent
block F was generated and then adds
or subtracts from the parent difficulty
depending on how close the elapsed
time was to the target block time.

Ethereum (ETH), as of Byzantium, uses an incrementally-extrapolated DAA
that adjusts at every new block [9]. Each new block difficulty is calculated by
measuring the time difference between the current timestamp and that of its
parent, then incrementing or decrementing the parent difficulty depending on
whether the time difference is outside of the desired bounds of 9–17 s. As will be
shown in the results, a sudden doubling of the hash rate in the network will cause
a slow difficulty change compared to a DAA which uses proportion calculations
and can adjust difficulty completely within one block.
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Sliding-Window. The sliding-window DAA is similar to period-based except
its difficulty recalculation occurs at every new block. To calculate the current
difficulty, a block-window of width w consisting of ancestor blocks is used. A
new difficulty is calculated based on the amount of time it took to generate the
blocks in the block-window compared to the expected time.

Figure 6c shows a sliding-window DAA with w = 5. To mine block G, the
DAA slides its window over blocks B - F and recalculates the difficulty based
on how long it took to generate the blocks within the window compared to a
target value. Once G is mined, it will be included in the next window.

Cryptocurrencies that use sliding-window DAAs are Bitcoin Cash (BCH),
Bitcoin SV (BSV), and Monero (XMR). Given that BSV branched off BCH [1],
both share the same DAA and for this paper we refer to them collectively as
BCH/BSV. BCH/BSV targets ten minutes per block [3], while Monero tar-
gets two minutes per block [23]. The sliding window widths are ∼144 and 600
blocks for BCH/BSV and XMR, respectively. To avoid timestamp-based attacks,
BCH/BSV chooses the median of the three most recent blocks and the median
of the blocks 144–146 behind the current block based on timestamp to use as
the beginning and end of the window, respectively [4]. XMR, on the other hand,
orders the last 745 blocks, excludes the most recent 15, then omits the outer 120
blocks (i.e. 60 recent and 60 oldest) leaving 600 blocks in its window [24].

Fig. 7. Difficulty once a new honest miner enters the system (γ = 0).
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4.2 DAA Evaluation

To evaluate these difficulty adjustment algorithms, we examine attacks launched
by renting extraneous hash power and ask the following questions. (1) How
effective are DAAs at adjusting difficulty if a substantial amount of hash power
is introduced to the network? (2) How much can a new miner profit in terms of
block-win rate upon entering a new cryptocurrency?

First, we analyze how the various DAAs of Bitcoin, ETH, BCH/BSV, and
Monero alter difficulty once a new honest miner enters the system. We also
evaluate the block-win rate of the new miner while it takes advantage of the old
difficulty. Second, we compare the profitability of a new selfish miner under the
different DAA schemes. As before, each experiment simulates the generation of
8064 blocks on each blockchain, not including orphans.

Thus, our simulations start with a network of a given hash power, and then
add additional mining power belonging to the adversary. For instance, to intro-
duce a miner with a 30% hash rate, we give the miner enough hash power, S,
such that S/(S + H) = 0.3, where H is the initial hash power in the network.

We disregard timestamp manipulation attacks by miners because they are an
orthogonal concern and their full treatment is beyond the scope of this paper. So,
when choosing median BCH/BSV outer blocks, the middle block is always the
outer block since the three blocks are guaranteed to be in timestamp order.
Recent data from these systems indicate that the timestamp in new blocks
matches global time to within seconds.

Our simulations also take into account the difficulty clamps of Bitcoin and
BCH/BSV. If the blocks used in a difficulty adjustment were mined too slowly or
too quickly, the difficulty adjusts only to the limits set by the difficulty clamps.
Bitcoin has a difficulty clamp of 4× or 0.25× the target time, while BCH/BSV
has a clamp of 2× and 0.5×. As Sect. 4.3 will show, selfish miners under 50%
hash power will be unaffected by these clamps.

4.3 Results

We first examine how difficulty adjusts if a new honest miner enters the network,
shown in Fig. 7. With the exception of ETH, period/window width is the most
significant determining factor in the adjustment period. This width is the amount
of blocks necessary to completely adjust difficulty and reach equilibrium when
hash power is added to the network. For this reason, BSV and BCH, with their
144 block-window, are the fastest to adjust. Monero takes longer at 675 blocks,
which come from the 600 block-window width and the 75 newest blocks that are
omitted from the sliding-window. Finally, Bitcoin takes longest of the three with
a period width of 2016. ETH differs in that there is no concept of width in its
DAA. Since it is incremental, difficulty takes about 10,000 blocks to stabilize.

We omit showing difficulty graphs when a new SM enters the network because
difficulty does not adjust much, if at all, for any of the schemes analyzed. A new
selfish miner spends time trying to create forks in the network instead of using
its hash power to help grow the longest chain. As such, DAAs will not adjust in
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Fig. 8. Cumulative block-win rate of an new honest miner after some number of
timesteps (γ = 0).

Fig. 9. Cumulative block-win rate of a new selfish miner after some number of timesteps
(γ = 0).
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this scenario since the chain will grow at roughly the same rate as before despite
having extra hash power in the network.

Next, we analyze the cumulative block-win rate for a new honest miner in
Fig. 8. The key takeaway is that upon entering a cryptocurrency, powerful new
miners can take advantage of an initial low difficulty to mine blocks faster than
normal. Noticeably, a new miner can leverage this initial period in Bitcoin for
about two weeks. The 49% miner wins 0.1 blocks per minute for the duration
of the period immediately upon entering. Once the difficulty adjusts, the win
rate gradually declines. ETH, BCH/BSV, and Monero, on the other hand, begin
adjusting difficulty and lowering the miner block-win rate almost instantly. These
graphs imply that there is a benefit to a miner alternating between cryptocur-
rencies and profiting from low difficulties in each, only abandoning a coin to
allow its difficulty to revert back to profitable levels.

We now evaluate the same measure if the new miner in the system is a selfish
miner. Figure 9 shows corresponding block-win rates for a new selfish miner.
In the four coins, the new SM with α = 49% earns about double the amount
of blocks per minute than what it should with honest mining. These graphs
corroborate the fact that a new SM orphans enough blocks that the chain-
growth rate and, therefore, difficulty barely changes. Hence, with the DAAs
under analysis, DAA choice is irrelevant when it comes to selfish mining.

Fig. 10. Block-win rate earned by a new selfish miner.
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The next graphs in Fig. 10 show the block-win rate at the end of the simula-
tion. As expected, higher γ leads to higher win rate. It also lowers the threshold
of hash power needed to break even. γ = 1 allows a new selfish miner with any
amount of hash power to enter any coin and at the very least make what it was
expected to make if it had employed honest mining. A more reasonable low γ
rate would require about 33% of the global hash rate to break even.

Fig. 11. After a lengthy chain-race, the hon-
est miner chooses whether to build on Hn−1

or Sn−1. In this scenario, the honest chain
will have a lower difficulty than the selfish
chain, since it took longer to produce. Blocks
Sn and Sn+1 are unpublished.

As shown in Fig. 11, suppose the
SM takes an initial hidden lead of 3
blocks (S1, S2, and S3). The honest
miner (HM) then spends time min-
ing on the original parent and cre-
ates its own chain with block H1.
The SM publishes block S1 to com-
pete with H1. In γ = 0, the HM
will try to mine on its own H1 block
while it thinks it is a winnable chain.
Assume the SM mines a fourth
block, S4, in its private chain and
then the HM mines on its own block H2, and both alternate some number of
blocks. When mining block Hn, the HM has a choice: in γ = 0, it chooses to
mine on its own block, Hn−1; in γ = 1, it chooses to mine on the selfish block,
Sn−1. This choice has a significant effect on difficulty. Since Sn−1 was mined
long before Hn−1 was mined, mining on Sn−1 should have a higher difficulty
than mining on Hn−1. Therefore, choosing to mine on the selfish block is the
same as choosing to mine on a more difficult chain.

If n is on the order of hundreds, as can happen when α is close to 50%, the
honest chain could have a significantly lower difficulty than the selfish chain.
Since the HM will inevitably lose, the decision of which chain to mine on deter-
mines how fast an HM can force the SM to release all private blocks. In γ = 0,
honest miners can catch up to the SM much faster by taking advantage of a lower
difficulty. When γ = 1, however, honest miners choose to mine on the harder
chain and will more slowly catch up to the selfish miner. In the long run, honest
miners choosing the more difficult chain means more honest blocks are orphaned
and the SM is able to extend its winning chain for longer than if γ = 0. Thus,
the selfish block-win rate and the proportion it earns in γ = 0 is significantly
less than in γ = 1 for high hash rates.

The gap seen in Fig. 10c between γ = 0 and 1 will be more or less pronounced
depending on the length n the two chains reach before merging and the DAA
block width, w. In our experiments, we observed n to be on the order of hun-
dreds. If n < w, the difference in difficulties between the two chains will be less
significant as with Bitcoin, whose block width is 2016. For this reason, the orig-
inal selfish mining analysis did not exhibit a gap at higher α values. BCH/BSV,
on the other hand, has a block width of 144. When the value of n is on the
order of hundreds it significantly impacts the difficulty in BCH/BSV. Finally,
Monero exhibits a gap that is greater than Bitcoin but smaller than BCH/BSV
since its block width of about 675 falls in the middle of the other two widths.
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Fig. 12. The proportion of profit earned by a new SM. Uncle rewards in ETH practi-
cally nullifies any penalties an SM would pay from creating forks.

Although ETH should have the widest gap, since it only looks at the difficulty
of the parent, it does not exhibit this gap due to its incremental nature that
causes difficulty to adjust gradually as seen in Fig. 7b.

Finally, the graphs in Fig. 12 show the proportion earned by the selfish miner
relative to the honest miner. For BTC, BCH/BSV, and XMR, the results are
similar to the results from the original selfish mining results, with the exception
of the BSV γ gap, mentioned above. ETH, on the other hand, shows that a new
selfish miner with any hash rate and any γ value can at least break-even. This
finding is entirely due to the uncle block reward system that exists in ETH,
which is described in more detail in AppendixA.

5 Related Work

This work covers two areas of research: difficulty adjustment algorithms and
deviant mining behavior. We discuss related work below.

Difficulty Adjustment Algorithms. Prior work in DAAs focuses on the rela-
tionship between hash power and difficulty. Kraft [17] analyzed the Bitcoin DAA
in the presence of exponentially-increasing hash rate and found that it resulted
in lower average block times than desired. Noda et al. [28] compared several
DAAs and concluded that Bitcoin’s DAA could not stabilize block times in the
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face of fluctuating hash power. Neither work considers how difficulty adjusts in
the presence of deviant mining behavior.

A few recent studies have looked into leveraging DAAs to increase profits.
Fiat et al. [13] examined equilibria when miners are allowed to throttle their hash
power to bring down the difficulty level. Smart mining [15] is similar to inter-
mittent selfish mining in that it also employs alternating strategies. It alternates
between honest mining and remaining idle at every difficulty adjustment. Our
work differs from both studies in that our adversary exerts its full hash power
and it actively attempts to harm the profits of other miners by employing self-
ish mining. We leave quantitative comparisons between intermittent selfish and
smart mining as future work.

Deviant Mining Behavior. Since its introduction, selfish mining researchers
have looked at various contexts and strategy modifications to see how its prof-
itability is affected [14,27,31,32]. Sapirshtein et al. [31] and Nayak et al. [27]
showed that small modifications to selfish mining lead to higher profits depend-
ing on the α and γ rates. Göbel et al. [14] analyzed selfish mining using a
propagation-delay model. These studies all assume a constant difficulty level.

The selfish mining strategy is one of several attacks that creates forks in
the blockchain. Liao and Katz [21] present a strategy where so-called whale
transactions with large fees are used to convince miners to fork the network.
Kwon et al. [19] introduce the fork-after-withholding attack where a mining
pool participant only tries to fork blocks from miners in competing pools.

Most previous work falls under the larger umbrella of mining attacks and
deviant strategies. For example, research has looked at unintended mining behav-
ior once Bitcoin no longer confers block rewards [7,34], strategies employed by
mining pool participants [10,20,22,30], and coin-hopping strategies [2,5,33].

6 Conclusion

This paper examined the controversy around selfish mining and evaluated its
application to a range of popular cryptocurrencies. Specifically, it introduced
intermittent selfish mining and examined several difficulty adjustment algo-
rithms with selfish mining in action. With intermittent selfish mining, this paper
showed that selfish mining under the Bitcoin DAA can be profitable without
extending the attack past a difficulty adjustment. Separately, this work quanti-
fied the envelope within which selfish mining is a feasible strategy against the
various DAAs present in BTC, ETH, BCH, BSV, and XMR.

Selfish mining is an instance of game-theoretic attacks that take advantage
of information asymmetry in distributed systems. Such attacks tend to be sub-
tle, unexpected, and at times, counterintuitive. We caution laypeople against
accepting folk theorems at face value.
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A Uncle Blocks and Selfish Mining

An uncle block is an orphaned block whose parent resides on the main chain.
Uncle blocks in ETH can be referenced by later blocks on the main chain and are
rewarded according to the equation (8−h)∗b/8, where b is the block reward and
h is the height difference, up to 6, between the uncle block and the referencing
block. Additionally, the creator of the referencing block is rewarded with an
extra b/32 per uncle that is included, up to two uncles. Note that if a losing
fork is longer than one block long, only the first block in the losing chain will be
rewarded as an uncle. This system incentivizes miners to reference uncle blocks
to gain extra rewards, while disincentivizing small miners from joining mining
pools by rewarding, albeit minimally, these losing blocks.

Fig. 13. In ETH, γ = 0 results in only
one honest uncle block, H1, whereas
γ = 1 results in n possible uncles.

This reward structure has the unin-
tended consequence of nullifying the risks
and penalties of selfish mining. As has been
noted before [29], uncle block rewards allow
selfish miners to fork without suffering a
massive loss if the fork loses. As shown in
Fig. 12b, uncle block rewards in ETH allow
selfish miners to at minimum break even,
no matter what amount of hash power they
possess.

Interestingly, the graph shows unex-
pected behavior when α is around 45%.
Around this hash rate, a selfish miner earns
less relative to the honest miner under γ =
1 than if γ = 0. Normally, γ = 1 allows an
SM to win all forks and earn more than if
γ = 0 and the SM has to compete to win a fork. Yet, here we find the reverse
to be true. This counter-intuitive finding stems directly from the uncle reward
structure.

Figure 13 shows an example that provides the intuition behind this finding.
Suppose an SM has mined a private chain of length 3 (S1, S2, S3) on block o,
the origin block. By not publishing any block, the SM allows the honest miner
to waste resources mining on block o. If the honest miner is able to mine a block,
H1, then the SM releases S1 to create an artificial fork. Assume the SM then
mines a block, S4, to maintain a chain length difference of 3. Then the honest
and selfish miner begin alternating mining blocks. In γ = 0, the honest miner
chooses to mine on its own blocks. No matter how long the two chains become,
the honest miner will lose all its blocks, but H1 will be eligible to be rewarded
as an uncle block since its parent o is on the winning chain. However, when
γ = 1, once the artificial fork of S1 and H1 is created, the honest miner will
abandon H1 and mine on S1. As the two miners alternate finding blocks, the
honest miner will always abandon its own block and mine on the selfish block.
The key is that now all honest blocks from H1 to Hn can be included as uncle
blocks. Since the selfish miner was ahead throughout the entire chain buildup,
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most of the uncle blocks will be included by the selfish miner if following a
greedy inclusion strategy. Although both uncle creator and including miner are
mutually rewarded for the uncle block, the inclusion of each additional uncle
block gives a relatively higher reward to the creator than the including miner.
Thus, in the best case scenario for the selfish miner, where b is the block reward,
the honest miner would receive 2/8 * b and the selfish miner that has included
the uncle block receives 1/32 * b, if the height difference is 6. Normally, the
honest miner would be rewarded even more since the uncle block would likely be
included within a few block generations. In the example above, if H1 is included
in the block S4, which is the earliest that the selfish miner could know about H1,
the height difference between the uncle and the new block would be three and
the honest miner would then receive 5/8 * b. Ritz and Zugenmaier [29] discuss
other uncle inclusion strategies for the selfish miner.
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Abstract. Bitcoin is a decentralised digital currency that serves as an
alternative to existing transaction systems based on an external central
authority for security. Although Bitcoin has many desirable properties,
one of its fundamental shortcomings is its inability to process transac-
tions at high rates. To address this challenge, many subsequent proto-
cols either modify the rules of block acceptance (longest chain rule) and
reward, or alter the graphical structure of the public ledger from a tree
to a directed acyclic graph (DAG).

Motivated by these approaches, we introduce a new general framework
that captures ledger growth for a large class of DAG-based implemen-
tations. With this in hand, and by assuming honest miner behaviour,
we (experimentally) explore how different DAG-based protocols perform
in terms of fairness, as well as efficiency. To do so, we isolate different
parameters of the network (such as k, the number of pointers to previous
blocks) and study their effect on those performance metrics.

Our results demonstrate how the DAG-based ledger protocols
described by our framework cope with a high transaction load. More
specifically, we show that even in a scenario where every miner on the
system is honest in terms of when they publish blocks, what they point
to, and what transactions each block contains, fairness and efficiency
of this kind of ledgers can break down at specific hash rates if miners
have differing levels of connectivity to the P2P network sustaining the
protocol. (The full version of this paper can be found in [2]).

1 Introduction

Bitcoin and many other decentralised digital currencies maintain a public ledger
via distributed consensus algorithms implemented using blockchain data struc-
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tures. End users of the currency post transactions to the P2P network sustaining
the protocol and said transactions are bundled into blocks by miners: agents
tasked with the upkeep of the ledger. With respect to Bitcoin, the prescribed
longest chain rule dictates that miners must bundle pending transactions into
a block that also includes a single hash pointer to the end of the longest chain
seen by the miner in their local view of the ledger. Furthermore, in order for
a block to be valid, its hash must lie below a dynamically adjusted threshold.
Hence, miners must expend computational resources to find valid blocks. Due
to this Proof-of-Work structure, if all miners follow the protocol, the number of
blocks they contribute to the blockchain is proportional to the computational
resources they dedicate to the protocol, i.e. their hash power. In addition, min-
ers are incentivised to follow the protocol via judicious incentive engineering
through block rewards. This latter point also implies that miners earn block
reward proportional to their hash power, thus making Bitcoin a fair protocol.

As mentioned before, Bitcoin dynamically adjusts its target hash for valid
blocks so that the totality of all miners active in the protocol find a block every
ten minutes on average. This feature of the protocol makes consensus more
robust, as this time-scale is much larger than the time it takes for a block to
propagate on the P2P network supporting Bitcoin. However, since the size of
blocks is limited, Bitcoin inherently suffers from a scalability problem. Thus in
spite of Bitcoin being strategy-proof and fair, it suffers in its efficiency: which
we define as the expected ratio of the number of valid transactions in the ledger
to the number of all transactions posted in the P2P network. On the other
hand, simply decreasing confirmation times and demanding higher transaction
throughput by either increasing the overall block creation rate or block size can
also affect these very properties of the protocol. For instance, delays in the P2P
network may cause miners to have different views of the ledger, which can in turn
directly make achieving a consensus more difficult, or lead miners to be strategic
when they would have otherwise acted honestly. Ultimately, it seems that Bitcoin
fundamentally strikes a delicate balance between being strategy-proof and fair
at the cost of efficiency.

There have been many attempts to cope with Bitcoin’s inherent throughput
limitations, with [16,21–23] being some notable examples. All of these papers
focus on how security can be maintained when the throughput is increased and
follow the common direction of either modifying Bitcoin’s longest chain rule or
implementing a different graphical structure underlying the ledger.

In GHOST [22] an alternative consensus rule is proposed to the longest chain
of Bitcoin, focusing on creating a new protocol that maintains security guaran-
tees even when faced with high transaction loads. In this setting, GHOST takes
into account the fact that forks are more likely to be produced when the under-
lying ledger still takes the form of a tree, as with Bitcoin. More specifically, when
deciding what a newly mined block should point to, GHOST no longer myopi-
cally points to the head of the longest chain, but rather starts from the genesis
block and at each fork, chooses the branch of the fork that leads to the heav-
iest subtree in the ledger until reaching a leaf to point to. In this way, blocks
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that are off the main chain can still contribute to the final consensus, which
arguably maintains a degree of robustness to strategic mining while coping with
high throughput better than Bitcoin.

In [21,23] protocols SPECTRE and PHANTOM are proposed, with ledger
structures in the form of directed acyclic graphs (DAG). The protocols in both
of these implementations suggest that every newly created block has to point to
every available (visible) leaf in the ledger. In that way every created block will
eventually become part of the consensus, and the security of the system remains
unaffected by forks that will be produced due to high throughput, since they
will in turn be part of the ledger. A possible advantage is that the system can
become more resilient to attacks that focus on increasing the block rewards of a
miner. On the other hand, ordering the transactions and preventing other types
of strategic behaviour becomes more complicated.

Motivated by these ideas, we design a new theoretical framework that cap-
tures a large family of DAG-based ledger implementations (including those men-
tioned in previous paragraphs). We achieve this by introducing a parametric
model which lets us adjust the number of blocks each newly created block can
point to, the block attributes a miner takes into account when choosing what
blocks to point to, and the number of transactions a block can store. Finally,
we describe a theoretical framework for ledger growth in these DAG-based mod-
els, along with a novel simplification for extrapolating valid transactions from a
ledger under the assumption that all miners are honest. With this in hand, we
are able to answer how our family of DAG-based ledgers copes with the high
transaction loads they are intended to tackle. Indeed, our results are structural
in nature, for we show how fairness and efficiency suffer from high transaction
rates in spite of all agents behaving honestly in a given DAG-based ledger.

We want to mention at this point that we are mostly interested on parameter
k, the number of pointers to previous blocks. In contrast to the existing liter-
ature regarding DAG-based protocols which assumes that k is conditioned to
other parameters of the system (i.e. informational parameters q in our model),
something crucial for the security of this kind of protocols, we choose to study
this parameter unconditioned for reasons that we will explain shortly.

1.1 Our Results

We provide a parametric model that tries to capture a large family of DAG-based
ledgers and we make an attempt to quantify what is the effect of adjusting the
different parameters of our model on fairness and efficiency. As we already
mentioned, an important parameter for our model is k, for which we assume
that is specified by the protocol, fixed and independent of the other parameters
(i.e informational parameters) that we will eventually introduce in our model.
Although this comes in contrast with most of the existing literature where k
depends on the informational parameters of the system, the reason behind this
choice is twofold: We want to study the contribution of parameter k to the
protocol in terms of fairness and efficiency, while in addition we desire to explore
what would happen in a situation where the optimal value of k, the value that
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does not produce orphaned blocks and thus makes the protocol inherently fair,
cannot be selected (i.e. when it is huge). Although this approach may lead to
loss of security for the protocol (since the chosen k may not be the optimal one),
we want to explore how this parameter affects fairness and efficiency under the
assumption of honest mining.

In this line of thought, our simulations allow us to show how specific trans-
action load regimes affect the efficiency of different protocols in our class of
DAG-based ledgers. Furthermore, we show that in almost all transaction load
regimes fairness is affected and exhibits a complicated relationship with respect
to agent connectivity in the underlying P2P network. Our results are exploratory
in nature, fixing most aspects of the network (assuming a simple, or worse case,
setting if possible) and modulating specific parameters to study their effect on
fairness and efficiency.

We are interested in exploring the behaviour of the protocol under several
value choices of k and q. Some highlights of our results, that we consider both
interesting and surprising, are the following: 1) Although we assume honest
behaviour from the miners, it is interesting to explore the performance for choices
of k and q that increase the security of the system (i.e. choices of values where
both the number of the pointers as well as the information that the miners have
for the network is high). In our simulations the safest such zone is for k ≥ 2
and q = 0.2. In particular, for smaller values of k we observe that fairness is
compromised leading to interesting mining behaviour: the gains of small miners
are generally increasing in their qi, whereas for larger miners they decrease:
this is because small miners care more about making sure their few blocks are
retained, while large miners appear to act ‘selfishly’ by mining in parallel to
the others’ blocks, not by malice but by ignorance. 2) Leaving the security of
the system aside, another region that we find interesting is the one where q can
vary from 0.0001 up to 1 and for which we observe that there is a huge increase
in the efficiency of the system as k increases from 1 to 2. On the other hand,
something that seems surprising is that by increasing the value of parameter k
to 3 or even to ∞ seems that does not provide a significant added benefit to
the efficiency of the system. This quite interestingly implies that we can achieve
efficiency guarantees even if we do not choose the optimal value for k (since this
behaviour is the same for a variety of values of q).

1.2 Related Work

Bitcoin was introduced in Nakamoto’s landmark white paper [18] as a decen-
tralised digital currency. Since its inception many researchers have studied sev-
eral aspects of the protocol, i.e. its security and susceptibility to different types
of attacks [1,7,9,10,17,19], how it behaves under a game-theoretic perspective
[4,13,15] and how its scalability and inherent transaction throughput issues can
be improved. Since the latter is the most related to our work, we give a more
detailed exposition in the paragraphs that follow. Before we proceed, we also
want to refer the reader to [3,24] for some extensive surveys which provide a
good view of the research and challenges that exist in the area.
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Sompolinksy and Zohar [22], study the scalability of Bitcoin, analysing at the
same time the security of the protocol when the delays in the network are not
negligible. More specifically, they build on the results of Decker and Wattenhofer
[5] and explore the limits of the amount of transactions that can be processed
under the protocol, while also studying how transaction waiting times can be
optimised when there is also a security constraint. In the same work, the Greedy
Heaviest-Observed Sub-Tree chain (GHOST) is also presented as a modified
version of the Bitcoin protocol selection rule, and as a way of obtaining a more
scalable system with higher security guarantees. It is interesting to mention that
many existing cryptocurrencies currently use variations of the GHOST rule, with
Ethereum [6] and Bitcoin-NG [8] being some notable examples. The authors
argue that under this rule, the possible delays of the network cannot affect the
security of the protocol even if the designer allows high creation rates of large-
sized blocks and thus a high transaction throughput.

Subsequently, Kiayias and Panagiotakos [14] further study the GHOST pro-
tocol and provide a general framework for security analysis that focuses on pro-
tocols with a tree structure. They expand upon the analysis of [22] and follow
a direction similar to the one presented in the work of Garay et al. [10], which
only studies chain structures and cannot be directly implemented in the setting
of GHOST. We would like to point out that in [10] Garay et al. also provide an
extended analysis of their framework for the partially synchronous model under
the existence of bounded delays in the underlying P2P network of the protocol.

Lewenberg et al. [16] propose the structure of a DAG, instead of a tree,
as a way of dealing with high block creation rates and blocks of large size.
Building on this idea, the same authors in [21] present SPECTRE, a new PoW-
based protocol that follows the DAG-structure, and is both, scalable and secure.
More specifically, they argue that SPECTRE can cope with high throughput of
transactions while also maintaining fast confirmation times. They also analyse
its security by studying several types of attacks. Part of the contribution of the
paper is also introducing a way to (partially) order created blocks via a voting
rule among existing blocks, which also contributes to the security of the protocol.
SPECTRE has drawn the attention of many researchers after its introduction
and we refer the reader to [11,12,20,23] for some indicative related works.

2 DAG-Based Ledgers

In this section we will describe a family of decentralised consensus algorithms
for public ledgers that generalise Bitcoin and SPECTRE. In what follows, we
assume that there are n strategic miners m1, ...,mn with hash powers h1, ..., hn

respectively. When a given block is found globally by the protocol, hi represents
the probability that this block belongs to mi. We will be studying DAG-based
ledger implementations. Formally, these ledgers are such that blocks and their
pointers induce a directed acyclic graph with blocks as nodes and pointers as
edges. The maximum out-degree of a block, k is specified by the protocol and
is in the range 1 ≤ k ≤ ∞. Thus it is straightforward to see that Bitcoin for
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example, is a DAG-based ledger where the DAG is in fact a tree (with k = 1).
Finally, since blocks have bounded size, we define 1 ≤ η < ∞ to be the maximum
number of transactions a block can store.

As mentioned in the introduction, we are primarily interested in studying
issues of fairness and ledger efficiency in DAG-based protocols catered to a high
throughput regime. We recall that a protocol is fair if a miner can expect to see
a block reward proportional to their hash power, and that a protocol efficiency
is the ratio of all valid transactions to all transactions broadcast over the P2P
network. In this setting, and under the assumption of a discrete time horizon,
transactions and blocks that are propagated by users in the P2P network may
take multiple turns (the time it takes for the entire system to find a block) before
they are seen by certain agents within the system. For this reason, miners only
see a portion of the entire block DAG produced by a decentralised protocol as
well as a portion of all transactions propagated by all end users of the ledger.

In actuality, transactions that are posted to the P2P network of digital cur-
rencies directly depend on other transactions. For this reason, we also model the
set of transactions that end users generate as a DAG. Furthermore, the structure
of the transaction DAG itself has important implications for how transactions
are packed in blocks for any DAG-based ledger. For example, if the transaction
DAG is a path, and we are considering SPECTRE as our DAG-based protocol,
it is easy to see that transactions will only be packed proportional to the deep-
est node of the block DAG, which in the high throughput regime can grow at
a much slower rate than that at which transactions are generated. At the other
extreme, if the transaction DAG only consists of isolated nodes, then any block
can contain any transaction, and the efficiency of SPECTRE is thus constrained
by what transactions miners see rather than the structure of the block DAG.

Ultimately, in addition to having computational power, a miner also has
informational power, which encapsulates how connected they are to the P2P
network and consequently, how much of each of the aforementioned DAGs they
see at a given time. We model the informational parameter of an arbitrary miner
mi as a parameter qi ∈ [0, 1]. As qi approaches 1, mi is likely to see the entirety
of both DAGs, whereas as qi approaches 0, mi is likely to only see the blocks he
mines and transactions he creates.

2.1 Ledger Growth Preliminaries

We begin by setting some preliminary notation about graphs that it will be used
in several parts as we define the model. Let G be the set of all finite directed
graphs. For G ∈ G, V (G) and E(G) ⊆ V (G)2 are the set of vertices and directed
edges of G respectively. Furthermore, for a tuple x = (xi)n

i=1, we let πi(x) = xi

be the projection onto the i-th coordinate. Finally, we define the closure of a
subset X ⊆ V (G) of vertices, which will be needed in order to describe how a
miner perceives the current state of the network.

Definition 1 (Closure). Suppose that G ∈ G, and let X ⊆ V (G) be a subset
of vertices. We denote the closure of X in G by Γ (X | G) and define it as the
subgraph induced by all vertices reachable from X via directed paths.



Fairness and Efficiency in DAG-Based Cryptocurrencies 85

We now proceed by formally describing and exploring the stochastic growth of
a DAG-based ledger given m1, ...,mn strategic miners in a step-by-step fashion.
As we already mentioned, we assume that the ledger grows over a finite discrete
time horizon: t = 1, ..., T . Each turn will consist of four phases: a block revelation
phase, in which nature picks a miner to initialise a block, an information update
phase, where miners update their views of the block and transaction graphs, an
action phase, in which miners employ their strategies depending on their local
information, and a natural transaction generation phase, in which non-miners
stochastically publish transactions to the P2P network.

At the end of the action phase of each turn t, we maintain a global block-DAG
and transaction directed graph, denoted by Gglob

t and T glob
t respectively. We say

that the vertices of Gglob
t are blocks and we have that Gglob

t contains every block
(public or private) that has been created up to turn t. Similarly, for T glob

t we
have that it consists of every transaction present in the network up to point t.
We denote V (Gglob

t ) = {B1, ..., Bt}, where the i-th block was created at the i-th
turn and V (T glob

t ) = T ∗
t ∪ T̄t, where T ∗

t = {tx∗
1, ..., tx

∗
t } (enumerated) represents

the set of the respective block rewards and T̄t the set of the transactions.
Each block Bt, has out-degree of at most k and carries at most η + 1 trans-

actions denoted by Tx(Bt) ⊆ V (T glob
t−1 ) such that tx∗

t ∈ Tx(Bt). On the other
hand, the out degree of every transaction in T ∗

t is 0 and the out degree of every
vertex in T̄t is at least 1. The reason for the aforementioned constraints on the
vertices of Gglob and T glob

t is that when a block is found, block reward is created
“out of thin air”, and can hence be a designated as a transaction with no depen-
dencies on which future transactions can depend. In addition, if A ⊆ Gglob

t , we
let Tx(A) = ∪Bj∈V (A)Tx(Bj) be the set of all induced transactions from the
subgraph A. Finally, these time-evolving graphs will have the property that if
t1 < t2, then Gglob

t1 ⊆ Gglob
t2 and T glob

t1 ⊆ T glob
t2 .

Let us now explore both the block and the transaction directed graphs from
the perspective of a miner. We suppose that each miner mi has the following
information at the end of turn t:

– Gpub
i,t : The DAG consisting of all blocks mi has inferred from Gglob

t via the
P2P network.

– PBi,t ⊆ V (Gglob
t ): A set of private blocks mi has not yet shared to the P2P

network.
– T pub

i,t : The directed graph consisting of all transactions mi has inferred from
T glob

t via the P2P network.
– PTi,t ⊆ V (T glob

t ): A set of private transactions mi has not yet shared to the
P2P network.

Finally, we let Gpub
t and T pub

t be the set of all blocks and transactions that have
been shared to the P2P network respectively.

Definition 2 (Local Information). For a given miner mi, we let Li,t =
(Gpub

i,t , PBi,t, T
pub
i,t , PTi,t) and say this is the local information available to miner

at the end of round t. We also say that Lt = (Li,t)t
i=1 is the local information

of all miners at the end of round t.
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We conclude by defining what we mean by a single-step P2P information
update for a miner, as well as what the strategy space available to a miner is.

Definition 3 (Information Update). Suppose that H ⊆ G are graphs. Fur-
thermore, suppose that the vertex set A ∈ V (G) \ V (H). We define the distribu-
tion U((H,G), A, q) as a single P2P information update via a specific sampling
procedure. To sample G′ ∼ U((H,G), A, q) we do the following:

– Let X = ∅
– Independently, for each v ∈ A, with probability q, add v to X.
– Let G′ = Γ (V (H) ∪ X | G).

Definition 4 (Memoryless Miner Strategies). A miner strategy for mj

is denoted by Sj = (SI
j , SP

j , ST
j ) and consists of an initialisation strategy SI

j , a
publishing strategy SP

j , and a transaction creation strategy ST
j . Each of these

functions takes as input Lj,t = (Gpub
j,t , PBj,t, T

pub
j,t , PTj,t) at any given round t.

– Initialisation strategy: SI
j (Lj,t) = (XI , Y I) where XI ⊆ V (T pub

j,t−1) ∪ PTj,t−1

and Y I ⊆ V (Gpub
j,t−1) ∪ PBj,t−1. Furthermore, |XI | ≤ η and 1 ≤ |Y I | ≤ k.

– Publishing strategy: SP
j (Lj,t) = (XP , Y P ) where XP ⊆ PBj,t and Y P ⊆

PTj,t. with the property that if Bi ∈ XP ⇒ tx∗
i ∈ Y P .

– Transaction creation strategy: ST
j (Lj,t) = ({x1, ..., xk}, {Γ 1(x1), ..., Γ 1(xk)},

W ), where each xi /∈ V (T priv
t−1 ), each set Γ 1(xi) ⊆ V (T priv

t−1 ) is non-empty,
and W ⊆ {x1, ..., xk}.
To make sense of Definition 4, it suffices to note that SI

j is invoked when
mj is chosen to mine a block. Set XI represents the set of the transactions that
the block will contain. The number of these transactions can be at most η and
each block forcibly contains tx∗

t . On the other hand, set Y I describes the set
of the blocks that the newly created block will point to. The number of these
blocks can be at least 1 and at most k. Moving to SP

j , this is invoked when
mj wishes to publish hidden blocks/transactions to the P2P network. Finally,
ST

j is invoked when mj wishes to create an arbitrary (finite) amount of new
transactions x1, .., xk that depend on transactions in T priv

j,t−1 (each xi has a non-
empty set Γ 1(xi) of dependencies). Notice that since Γ 1(xi) �= ∅, that forcibly
each xi can not be of the form tx∗

r for some r. Finally, W ⊆ {x1, ..., xk} represents
which of the newly created transactions will be broadcast to the P2P network.

3 Pf,k Ledger Models and Honest Behaviour

The main purpose of this section is twofold: first we introduce a family of honest
strategies that generalise honest mining in Bitcoin and SPECTRE called Pf,k

mining, and second we introduce constraints on D that represent honest transac-
tion generation by end-use agents in a DAG-based ledger (this includes Bitcoin
and SPECTRE as well).
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Definition 5 (Depth and Weight of a Block). Suppose that G ∈ G is a
block-DAG. In other words, G is connected and has a genesis block B0. For a
given Bt ∈ G, we let w(Bt) = |Γ ({Bt} | G))| − 1 be the weight of Bt. This is the
number of predecessors Bt has in G. We also define D(Bt) = dG(Bt, B0) as the
depth of Bt. This is the graphical distance between Bt and B0, i.e. the length of
the (unique) shortest path between Bt and B0 in G.

In Bitcoin, miners resolve ambiguity in ledger consensus by initialising found
blocks to point to the longest chain in the DAG. One reason for this is that agents
have provably used significant computational power to grow said chain, and re-
writing this history is thus computationally infeasible. In DAG-based ledgers,
agents may point to multiple blocks. Thus, following this same thought process,
they should point to blocks with a provably significant amount of computation
in their histories. The issue, however, is that measuring how much computation
exists in the past of a leaf is ambiguous in DAGs: a block could have either
large weight or large depth (unlike in Bitcoin where these quantities are always
the same), and it is unclear to decide which to give precedence to. In order to
completely rank the importance of leaves in a block DAG, we simply use a family
of score functions that expresses convex combinations of depth and weight.

Definition 6 (Score Function). Suppose that α ∈ [0, 1] and β = 1 − α. We
say that f is an (α, β) block-DAG score function if for a given block-DAG, G ∈ G,
f(Bt) = αD(Bt) + βw(Bt).

In a nutshell, honest block-DAG growth in Pf,k protocols with parameter α
and β prescribes that miners prepare blocks with at most k pointers that point
the locally visible blocks in the block-DAG that with highest score under f .

3.1 Valid Blocks and Transactions

In ledgers employing decentralised consensus protocols, there is an explicit con-
sensus mechanism whereby agents are able to look at their local view of the
ledger and extrapolate valid blocks and subsequently valid transactions within
the local view of the ledger. In Bitcoin for example, valid blocks consist of the
longest chain in the ledger, and valid transactions consist of transactions within
said longest chain. SPECTRE, on the other hand, has any seen block as valid,
but the valid transaction extraction process is a complicated voting procedure
that extracts a subset of transactions within the local view of the DAG as valid.
We proceed by providing a definition of valid block and transaction extractors
in Pf,k models that generalises both of these examples.

Definition 7 (Valid Block Extractors and Valid Transaction Extrac-
tors). Suppose that G is a block-DAG and that �1, .., �k are the k leaves in G that
have the highest score under f . Then we say that V B(G) = Γ ({�1, ..., �k} | G)
is the DAG of valid blocks in G under Pf,k. In addition, we let V T (G) ⊆
Tx(V B(G)) be the set of valid transactions for a specified transaction extrac-
tor function V T . We say that V T is in addition monotonic if it holds that if
V B(H) ⊆ V B(G), then V T (H) ⊆ V T (G).
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In what follows we define a special type of monotonic valid transaction selec-
tion rule called present transaction selection. The reason we outline this simple
selection rule is that in Sect. 3.4 we will show that if all miners employ monotonic
valid transaction selection and the honest strategies presented in Sect. 3.2, then
we can assume without loss of generality that they employ present transaction
selection as a valid transaction selection rule.

Definition 8 (Present Transaction Selection). Suppose that G is a block-
DAG and that �1, .., �k are the leaves in G that have the highest score under f .
Then we say that V B(G) = Γ ({�1, ..., �k} | G) is the DAG of valid blocks in G
under Pf,k. In addition we say that PV T (G) = Tx(V B(G)) is the set of present
valid transactions in G under Pf,k.

3.2 Defining SI , SP , and ST for Honest Mining in Pf,k

We define Hj = (HI
j ,HP

j ,HT
j ) as the honest strategy employed by mj in Pf,k,

and describe each component below.

– HI
j : Compute A = V B(Gpub

j,t ) and B = V T (Gpub
j,t ). Let HI

j (Lj,t) = (X,Y ).
X is the set of at most η oldest non-block-reward (i.e. not of the form tx∗

r)
transactions in T pub

j,t \ B (ties are broken arbitrarily) with a graphical closure
in B. Y = {�1, ...�k} is the set of k highest-score leaves in Gpub

j,t under f .
– HP : Publish all private blocks and transactions immediately
– HT : Create no new transactions (the assumption is that transactions created

by pools are negligible with respect to the total transaction load of the ledger)

Before continuing, we note that in the Pf,k model, HT ensures that honest
miners do not create and broadcast any transactions themselves. This, of course,
is not the case in practice, but it is an accurate approximation to a regime in
which the fraction of transactions created by miners is a negligible fraction of
all transactions created by end-users of the ledger.

Also notice that HI
j dictates that the oldest transactions will be included to

agents’ j block. We make this choice for simplicity reasons, however we want to
point out that a more sophisticated selection strategy may be more beneficial
for the protocol, especially in terms of efficiency (as we will see in Sect. 4).

3.3 Implementation of Bitcoin and SPECTRE as Pf,k Protocols

With the previous machinery in place, we can see that block-DAG and
transaction-DAG growth in Bitcoin and SPECTRE are special cases of Pf,k

ledgers. For Bitcoin, we let k = 1, and any parameter setting, (α, β) for f results
in Bitcoin growth. As for SPECTRE, we let k = ∞ and once more any parameter
setting (α, β) for f suffices to implement honest SPECTRE ledger growth.



Fairness and Efficiency in DAG-Based Cryptocurrencies 89

3.4 Honest Transaction Consistency and Generation

As mentioned in Sect. 3.1, we can show that amongst monotonic transaction
extractors, present transaction extractors are all we need for honest ledger
growth in the Pf,k model.

Theorem 1. If the valid transaction extractor, V T , is monotonic and all miners
employ H = (HI ,HP ,HT ), then V T is a present transaction extractor.

Proof. Suppose that Li,t = (Gpub
i,t , PBi,t, T

pub
i,t , PTi,t) is the local information

available to mi at turn t. Since mi is honest, one can easily see that Gpub
i,t =

Gpriv
i,t = Gi,t and T pub

i,t = T priv
i,t = Ti,t. Clearly V T (Gi,t) ⊆ PV T (Gi,t). Now

suppose that x ∈ PV T (Gi,t). This means that x ∈ Tx(Br) for some block Br

found by say mj . This means that in turn r, mj invoked HI to create Br, which
means that since x ∈ Tx(Br), all dependencies of x are in V T (Γ (Br | Gi,t)),
the valid transactions from the DAG consisting of the closure of Br in the block
DAG. However V T (Γ (Br | Gi,t)) ⊆ V T (Gi,t) since V T is monotonic. Therefore
x has its dependencies met in V T (Gi,t) so that x ∈ V T (Gi,t). This implies
V T (Gi,t) = PV T (Gi,t) as desired. �

In light of this theorem, we focus on monotonic valid transaction extractors
given their generality. Hence, from now on we assume that when we invoke V T ,
we in fact mean that V T is a present transaction extractor.

Regarding the honest transaction generation, HT dictates that each mi does
not produce or propagate transactions created by themselves. Hence, it is crucial
that we properly define D in the Pf,k model. At first one may be tempted to
simply treat the random growth of T glob

t as independent of Gglob
t , but this is a

grave mistake. To see why, imagine that Gglob
t contains some block Br that is

orphaned by each mi (note that this can only happen if k < ∞). If the growth of
T glob

t is independent of that of Gglob
t , then it could be the case that many (if not

infinitely many) future transactions depend on t∗r . However, if Br is orphaned
by all miners, tx∗

r is not valid, hence none of these future transactions will be
added to the ledger via close inspection of how HI is defined.

A compelling fact is that if all miners have orphaned Br, then chances are
that whatever local view of Gpub

t an end-user has, they too will have orphaned
Br, and thus will not have tx∗

r as a valid transaction. In more direct terms, any
money created via the block reward of Br is not actually in the system for an
end-user, so if this end-user is honest, there is no reason why they would produce
transactions that would depend on this illegitimate source of currency.

Definition 9 (Honest Transaction Distributions). Let Gglob
t be a global

block DAG at turn t with k highest leaves are �1, ..., �k. In an honest setting,
V B(Gglob

t ) = Γ ({�1, ..., �l} | Gglob
t ) and V T (Gglob

t ) = Tx(V B(Gglob
t )). We say

that D(Gglob
t , T glob

t ) is an honest transaction distribution if x ∼ D(Gglob
t , T glob

t )
is such that x /∈ T glob

t and its dependencies lie strictly in V T (Gglob
t ).
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3.5 Assumptions: Non-atomic Miners, Payoffs and Transaction
Generation Rate

Non-atomic Miners. For our simulations we assume that a set of honest min-
ers, each of whom has small enough hash power, can be modelled as one larger
miner who re-samples their view of both DAGs each time they are chosen for a
block initialisation. This is reasonable if, for example, each miner in said collec-
tion finds at most one block in time horizon t = 1, ..., T with high probability.
We call these miners non-atomic.

Block Rewards and Transaction Fees. We suppose that at time-step T ,
miners get a normalised block reward of 1 per block that they have in V B(Gglob

T ).
As for transaction fees, the full generality of Pf,k protocols only specifies how to
extrapolate valid transactions conditional upon everyone being honest, and not
who receives transaction fees (this is subsumed in the details of V T in the general
setting). For this reason we further assume that transaction fees are negligible
in comparison to block rewards over the time horizon t = 1, ..., T .

Transaction Generation Rate. Although in full generality there is no restric-
tion on how many transactions nature may create in a given turn, we impose a
fixed constraint on this quantity: λ. As such, each turn introduces {xt,1, ..., xt,λ}
transactions sampled from a specified honest transaction distribution D. Fur-
thermore, in our simulations we let λ = η, so that the ledger infrastructure can,
in theory, cope with the transaction load if all miners have full information,
and thus we can see specifically it falls short of this objective in the partial
information setting.

4 Results

4.1 Fairness

We recall that one of the key properties of Bitcoin is that it is fair: miners
earn block reward proportional to the computational resources they expend on
extending the ledger. One of the most significant observations from our simu-
lations is that Pf,k ledgers are not necessarily fair as soon as the agents begin
having informational parameters, q < 1, as is the case in a high throughput set-
ting. To illustrate this phenomenon, we study a two-miner scenario with agents
m0 and m1 of hash power (1 − h1, h1) and informational parameters (q0, q1).
m0 is modelled as a non-atomic miner and we empirically compute the surplus
average block reward of m1 relative to the baseline h1 they would receive in a fair
protocol. Our results are visualised in Fig. 1. Each row of the figure represents
k = 1, 2, 3 respectively and each column represents q0 = 0.005, 0.05, 0.2. Each
individual heatmap fixes k and q0 and plots average block reward surplus for m1

as q1 ∈ [0, 1] and h1 ∈ (0, 0.5] are allowed to vary. Finally, each pixel contains the
average block reward surplus for T = 50 and averaged over 50 trials. We notice
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that an added strength to our fairness result is that they hold, irrespective of
the underlying honest transaction distribution D used in practice.

The most jarring observation is that, depending on the parameters, m1 earns
a vastly different average block reward than their fair share h1. In fact, for fixed
k and q0, there seem to be three regions of the hash space h1 ∈ (0, 0.5] with
qualitatively distinct properties:

– If h1 is large enough, m1 strictly benefits from having lower q1 values. This
is due to the fact that an honest miner with small q0 necessarily sees his own
blocks and is inadvertently acting somewhat “selfishly”. Hence if their hash
rate is high enough, their persistent mining upon their own blocks may end
up orphaning other blocks and give them a higher share of valid blocks in the
final DAG.

– If h1 is small enough, m1 strictly benefits from having higher q1 values. Con-
trary to the previous point, at small hash values, m1 only finds a few blocks,
and hence they risk losing their entire share of blocks if these blocks aren’t
well positioned in the block DAG, since they are in no position to inadver-
tently overtake the entire DAG via pseudo-selfish behaviour resulting from
low q1 values.

– Finally, for intermediate h1 values, m1 no longer has a monotonic surplus
with respect to q1 but rather a concave dependency. This can be seen as an
interpolation of the previous two points.

We notice that where these qualitative regions of h1 values lie within (0, 0.5]
depends entirely on k and q0. In general, for fixed k (i.e specific rows within
Fig. 1), as q0 increases, the transitions between these regions shift rightwards,
and for fixed q0 (i.e. specific columns in Fig. 1) as k increases, also shifts right-
wards, as increasing k can be seen to informally have the same effect as uniformly
increasing q0 and q1 as agents are more likely to see blocks due to multiple point-
ers. Of course, for k = ∞ the protocol becomes fair, as every block eventually
joins the DAG. As a final observation, roughly speaking, “small” miners benefit
from increasing their connectivity to the P2P network, rather than investing in
extra hash power, while for large miners it is the opposite.

Remark 1. In practice, the parameter k would depend on the qi’s as well as
many other aspects of the network. We present a variety of results, with the
throughput ranging from relatively tame to pushed beyond what the network
can handle, where rampant strategic mining becomes an issue more important
than fairness. This is by design: assuming honest behaviour and fixing k for
different qi’s allows us to measure the worst-case improvement in fairness, even
for cases that would rarely appear in reality. Moreover, our results only cover
block reward fairness. When transaction fee rewards are included the resulting
setting is far more complicated, as a limited view of the network means that
even though no blocks are orphaned (for large enough k) there is no guarantee
transaction rewards are fairly distributed.
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Fig. 1. Surpluses for k = 1, 2, 3 at q0 ∈ {0.005, 0.05, 0.2}

4.2 Efficiency

DAG-based ledgers have been created with the aim of tackling a higher trans-
action load in cryptocurrencies. Given that we have a way of modelling honest
transaction growth, there are three different metrics we use to precisely quan-
tify how well DAG-based ledgers deal with a higher throughput of transactions.
The first and most important is the Proof of Work Efficiency. More specifically,
for a given DAG-based Ledger, we say that the PoW efficiency is the fraction
of globally valid transactions that are present within the valid sub DAG of the
block DAG, over all published transactions.

This is the most important metric, since the goal of a ledger is to maximise the
rate at which new transactions are processed. We also compare ledgers in terms
of the average fraction of orphaned blocks they create and their transaction lag,
which is defined as the time difference between the issue and successful inclusion
of the DAG’s most recent transaction and the final turn of the time horizon.

For our experiments, we compared Pf,k performance for k ∈ {1, 2, 3,∞} and
n = 4 atomic miners each with hi = 1/4 and varying qi’s (Fig. 2). For all graphs,
we have η = 6, T = 100 and the results have been averaged over 50 trials.

First of all, we notice that for all parameter settings of Pf,k, there exist
information regimes where if each qi is low enough, the ledger suffers in its
efficiency–even in the case where k = ∞. We also observe that increasing k
improves all metrics except lag, but not dramatically. For reasonable values of
qi, before fairness becomes an issue, there is a significant performance increase
between k = 1 and k ≥ 2. However, k > 2 is only really necessary for extremely
small qi.
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Fig. 2. Performance Metrics for n = 4 miners and k ∈ {1, 2, 3,∞}

Fig. 3. Performance Metrics for n ∈ {1, 2, . . . , 20} and k ∈ {1, 2, 3,∞}

Remark 2. This result depends on the assumption that miners add the old-
est transactions they can, every time they mine a block. A more sophisticated
strategy, such as greedily adding the more valuable transactions or a mix from
different branches (as in [16]) could improve efficiency for higher k.
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We also compared the performance for n ∈ {1, 2, . . . , 20} with q = h = 1/n,
leading to similar results (Fig. 3). Notably, as the number of miners grows the
number of orphaned blocks decreases and the PoW efficiency improves with k.

4.3 Dynamically Adjusting k and f

A key feature of Bitcoin is its dynamically adjusted difficulty. Our results suggest
that a DAG-based ledger may also be able to dynamically adjust its internal
parameters k and f to cope with changing transaction loads from end users.
Even though larger values of k do not always provide a significant advantage, a
dynamically adjusted protocol could sacrifice block size to make room for more
pointers if efficiency is suffering in a period of high transaction loads to the
ledger.

5 Discussion

Given our results, it would be interesting to modify Pf,k ledgers and quantify the
improvements to efficiency and fairness. For example, if we employ more sophis-
ticated strategies for transaction inclusion, what is the behaviour of the ledger
in terms of efficiency? In addition, what happens if we augment the ledger space
with a different and more complicated class of score functions? By conditioning
k to the informational parameters qi, capturing the essence of existing DAG
protocols more concretely, how fairness is affected in case we no longer assume
negligible transaction fees? It would also be interesting to drop the honest mining
assumption and explore this model in full generality.
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Abstract. In the proof-of-stake (PoS) paradigm for maintaining decen-
tralized, permissionless cryptocurrencies, Sybil attacks are prevented by
basing the distribution of roles in the protocol execution on the stake
distribution recorded in the ledger itself. However, for various reasons
this distribution cannot be completely up-to-date, introducing a gap
between the present stake distribution, which determines the parties’
current incentives, and the one used by the protocol.

In this paper, we investigate this issue, and empirically quantify its
effects. We survey existing provably secure PoS proposals to observe that
the above time gap between the two stake distributions, which we call
stake distribution lag, amounts to several days for each of these protocols.
Based on this, we investigate the ledgers of four major cryptocurrencies
(Bitcoin, Bitcoin Cash, Litecoin and Zcash) and compute the average
stake shift (the statistical distance of the two distributions) for each
value of stake distribution lag between 1 and 14 days, as well as related
statistics. We also empirically quantify the sublinear growth of stake shift
with the length of the considered lag interval.

Finally, we turn our attention to unusual stake-shift spikes in these
currencies: we observe that hard forks trigger major stake shifts and that
single real-world actors, mostly exchanges, account for major stake shifts
in established cryptocurrency ecosystems.

Keywords: Cryptocurrencies · Blockchain · Stake shift · Proof of
stake

1 Introduction

The introduction of Bitcoin [1] represented the first practically viable design of
a cryptocurrency capable of operating in the so-called permissionless setting,
without succumbing to the inherently threatening Sybil attacks. In the decade
following Bitcoin’s appearance, cryptocurrencies have arguably become the main
use case of the underlying blockchain technology. Most deployed cryptocurrencies
such as Bitcoin are relying on proofs of work (PoW) to prevent Sybil attacks
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and provide a robust transaction ledger. However, the PoW approach, also has
its downsides, most importantly the associated energy waste (see e.g. [2]).

A promising alternative approach to maintaining a ledger in a permissionless
environment is based on so-called proof of stake (PoS), where Sybil attacks are
prevented by, roughly speaking, attributing to each participant in the consensus
protocol a weight that is proportional to his stake as recorded in the ledger itself.
Several PoS protocols embracing this idea have been shown to achieve provable
security guarantees in various models [3–8].

More concretely, in all these PoS schemes, whenever a protocol participant
needs to be selected for a certain role in the protocol, he is chosen with a prob-
ability that is proportional to his stake share in some stake distribution SD, by
which we mean a record of ownership of all the assets maintained on the ledger
at a given time, allowing to determine what proportion of this stake is in control
by any given party. In other words, the stake distribution is a snapshot of the
ownership of the ledger-based asset at a given time (for simplicity of exposition,
we assume only a single-asset ledger in this discussion).

Ideally, the selection of a party for any security-relevant role in the protocol
at time t should be based on a stake distribution SD that is as up-to-date as
possible. However, for various security-related reasons that we detail in Sect. 2.1,
the protocols cannot use the “current” distribution of assets SDt and are forced
to use SDt−Λ that is recorded in the ledger up to the point in time t−Λ for some
time interval Λ that we call the stake distribution lag of the protocol. However,
roughly speaking, the security of the protocol is determined by—and relies on
a honest-majority assumption about—the present stake distribution SDt. To
account for this difference, existing protocols assume that not too much money
has changed hands during the past time interval of length Λ, and hence the
distributions SDt−Λ and SDt are close. Their distance, called stake shift in [4],
is the focus of our present investigation.

Our Contributions. Up until now, the notion of stake shift has only been dis-
cussed on a theoretical level and not yet quantified based on real-world data; we
set up to fill this gap. We conjecture that the stake shift statistics of a cryptocur-
rency are mostly influenced by its proliferation, market cap and daily trading
volumes, rather than its underlying consensus algorithm. Therefore, in an effort
to understand the stake shift characteristics of a mature cryptocurrency, we focus
our analysis on PoW ledgers with a strong market dominance such as Bitcoin.1

We perform a systematic, empirical study of the stake shift phenomenon. More
concretely, our contributions can be summarized as follows:

1. We adjust the formal definition of stake shift given in [4] to be applicable
to studying the execution of the protocol in retrospect, based only on the
stabilized ledger produced, without access to the states held by the parties
during its execution.

1 As of September 13, 2019, about 68% of the total market capitalization of cryp-
tocurrencies is stored in Bitcoin (cf. https://coinmarketcap.com).

https://coinmarketcap.com
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2. We provide a scalable algorithmic method for computing stabilized stake
shift over the entire history of PoW ledgers following the UTXO model. We
computed it in ledgers of four major cryptocurrencies (Bitcoin, Bitcoin Cash,
Litecoin, and Zcash) from their inception until July 31st, 2019.

3. We study the evolution of stabilized stake shift in all ledgers and found that
hard forks may trigger major stake shifts. We also fitted a simple quadratic
polynomial model that mimics the real-world sublinear growth of stake shift
with respect to the considered stake distribution lag.

4. We pick top spikes occurring within the last two years, and determine the
likely real-world identities behind them. We can observe that exchanges are
behind those spikes, at least in established cryptocurrencies such as Bitcoin
or Bitcoin Cash.

Our results show that the stake-shift phenomenon has a noticeable impact on
the provable-security guarantees provided by PoS protocols from the literature.
We argue in Sect. 2.1 that the stake shift over the stake distribution lag period
of a PoS protocol counts directly against the threshold of adversarial stake it
can tolerate (typically 1/2 or 1/3), and the values of stake shift that we observe
are clearly significant on this scale, as we detail in Sect. 6.

While our initial intention was to inform the design of PoS protocols, we
believe that our results can be interesting to a wider community and shed some
light on the real-life use of the studied cryptocurrencies as tools for value transfer.
Therefore, we make our research reproducible by releasing the implementation
of our stake shift computation method. It can be used for computing stabilized
stake shifts with configurable lag for any other cryptocurrency that follows Bit-
coin’s UTXO model.

Finally, note that all measurements were performed on UTXO-based curren-
cies and some of the mentioned PoS protocols envision an account-based ledger.
This aspect, however, is completely irrelevant to our investigation. Also, while
our motivation comes from PoS protocols, we believe that most robust and useful
data can be obtained from mature blockchains and hence we focus our measure-
ments on PoW ledgers. To reemphasize, it seems reasonable to believe that the
maturity (age, market cap, trading volume, etc.) of a blockchain are more deter-
mining for its stake shift behavior than the underlying consensus mechanism,
hence justifying our choice.

We start by providing more details on the relevance of stake shift for PoS
security, and survey the stake distribution lags in existing proof-of-stake pro-
tocols in Sect. 2. Then we provide a formal definition of stabilized stake shift
in Sect. 3 and describe our datasets and computation methods in Sect. 4. We
present our findings in Sect. 5 and discuss them in Sect. 6.

2 Background

In this section we provide a more detailed discussion of the relevance of stake
shift for PoS protocols, and survey stake distribution lags of several known PoS
proposals.
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2.1 Importance of Stake Shift for Security of PoS-Based Blockchains

As mentioned in Sect. 1, the selection of a party for any security-relevant role
in a PoS protocol should ideally be based on a stake distribution SD that is as
up-to-date as possible. However, this is often difficult, as we detail next.

First, in the eventual-consensus PoS protocols such as [4–8], there is no con-
sensus about the inclusion of the most recently created blocks into the stable
ledger, such a consensus is only achieved gradually by adding more and more
blocks on top of them. Consequently, during the protocol execution, the view of
the current stake distribution SDt at time t by different honest parties might
actually differ and hence SDt cannot be used for electing protocol actors.

On the other hand, in PoS protocols based on Byzantine Agreement such
as [3], where the consensus about a block is achieved before proceeding to fur-
ther blocks, the most recent stake distribution still cannot be used for sampling
protocol participants. The reason is that the security of the protocol requires
the stake distribution to be old enough so that it was fully determined before
the adversary could have any information about the bits of randomness used to
sample from this distribution (which are also produced by the protocol).

Therefore, in all these protocols, participants that are allowed to act at some
time t are sampled according to a distribution SDt−Λ recorded in the ledger
up to the point in time t−Λ for some stake distribution lag Λ. This is done with
the intention that SDt−Λ is both

– stable (in the case of eventual-consensus protocols), and
– recent enough so that it can be assumed that it does not differ too much from

the current distribution SDt.

However, the incentives of the participants are, of course, shaped by the
current distribution of the stake: For example, a party P that used to own a
significant portion of the stake, but has just transferred (e.g., sold) all of it in
time t1, has no longer any stake in the system and hence no direct motivation to
contribute to its maintenance. Nonetheless, at any time t during the time interval
(t1, t1 + Λ), the stake distribution SDt−Λ will still attribute some stake to P
and hence P will be allowed (and expected) to act accordingly in the protocol.
This discrepancy is present in all PoS protocols listed above, and in fact in all
provably-secure PoS protocols in the literature.

The security of these PoS protocols is typically argued based on the assump-
tion that at any point during the execution, less than a fraction T of the total
stake in the system is controlled by adversarial parties (for T = 1/2 in [4–8] and
T = 1/3 in [3]). To formally account for the above mismatch, one has to choose
between the following two approaches:

(i) Directly assume that, at every point t during the execution, less than a T -
fraction of stake in the old distribution SDt−Λ is controlled by parties that
are adversarial at time t.

(ii) Make an additional assumption that, at any point t during the execution,
some (normalized) “difference” between SDt−Λ and the current factual dis-
tribution of stake SDt in the system is bounded by a constant σ ∈ (0, 1);
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i.e., that not too much money has changed hands between t − Λ and t. This
assumption allows to conclude security as long as the current adversarial
stake ratio α ∈ [0, 1] in SDt satisfies

α ≤ (1 − ε) · T − σ (1)

for some ε ≥ 0 (see e.g. [4, Theorem 6], respectively Theorem 5.3 in the full
version of [4]).

All of the provably secure PoS protocols adopt one of these two approaches.
While the assumption in approach (i) is formally sufficient, it is arguably cumber-
some and counter-intuitive, making the reasoning (ii) preferable. As evidenced by
Eq. (1), in the approach (ii) the quantity σ, called stake shift, plays a significant
role for the protocols’ security.

Let us clarify that our primary motivation for investigating stake shift per-
tains to the distributions SDt and SDt−Λ as described above and defined by
individual PoS protocols, and does not aim at addressing the dangers of long-
range attacks (see e.g. [9] for an overview of those). In a typical long-range attack
setting, the considered time interval would be much longer and one could hardly
expect a limited stake shift over it.

Finally, following the above motivation, below we focus on provably secure
PoS proposals. All these protocols use all existing coins for staking, not dis-
tinguishing between “staked” and “unstaked” coins, and so we don’t consider
this distinction below. It is worth mentioning that practical implementations of
these protocols, as well as other PoS blockchains such as EOS2 and Tezos3, often
deviate from this approach and allow for coins that do not participate in staking.

2.2 Stake Distribution Lag in Existing PoS Protocols

Here we survey the value of stake distribution lag in several provably secure PoS
protocol proposals.

Ouroboros. The Ouroboros PoS protocol [4] divides its execution into so-called
epochs, where each epoch is a sequence of 10k slots for a parameter k (this struc-
ture is dictated by the inner workings of the protocol). The stake distribution
used for sampling slot leaders in epoch epj is the one reflected in the current
chain up to slot 4k of the preceding epoch epj−1. Therefore, the stake distribu-
tion lag amounts to at most 14k slots.

In the deployment of the Ouroboros protocol in the Cardano project4, each
slot takes 20 s and k is chosen to be 2160. Therefore, the above upper bound on
the stake distribution lag corresponds to exactly 7 days.

Ouroboros Praos and Ouroboros Genesis. These protocols, which are
defined in [6,7], also divide their execution into epochs. However, the stake dis-
tribution used for sampling slot leaders in epoch epj is the one reflected in the
2 https://eos.io.
3 https://tezos.com.
4 https://www.cardano.org.

https://eos.io
https://tezos.com
https://www.cardano.org


102 R. Stütz et al.

current chain up to the last slot of the epoch epj−2. Hence the stake distribution
lag amounts to at most 2 epochs. Assuming the same epoch length as above,
this would result in a stake distribution lag of exactly 10 days.

Algorand and Vault. For the protocols Algorand [3,10,11] and Vault [12] we
consider the parametrization given in [12], where the authors suggest to consider
a stake distribution lag of 1 day for Algorand and hence 2 days for Vault.

Snow White. The Snow White protocol employs a “look-back” of 2ω blocks for
a parameter ω that is sufficient to invoke the common-prefix and chain-quality
properties (see [5]). The authors do not propose a concrete value of ω, however,
given that the requirements put on ω are similar to other protocols (common
prefix, chain quality), it is safe to assume that an implementation of Snow White
would also lead to a stake distribution lag between 1 and 10 days.

3 Stabilized Stake Shift Definition

We are interested in executions of blockchain ledger protocols, and will be assum-
ing a model in the spirit of [13] to formalize such executions. In particular, we
assume there is an environment orchestrating the execution, a set of parties P
executing the protocol, and an adversary A allowed to corrupt the parties upon
approval from the environment; parties yet uncorrupted are called honest. We
assume that the protocol execution is divided into a sequence of disjoint, consec-
utive time intervals called slots, indexed by natural numbers (starting with 1).
The set of honest parties at each slot sl is denoted by H[sl]. Finally, we denote
by CP[sl] the chain held by an honest party P at the beginning of slot sl.

Finally, let SDP[sl] denote the stake distribution recorded in the chain CP[sl]
up to slot sl, seen as a probability distribution (i.e., normalized to sum to 1). As a
notational convenience, let SDP[0] denote the initial stake distribution recorded
in the genesis block.

To define stake shift, we use the standard notion of statistical distance of two
discrete probability distributions.

Definition 1 (Statistical distance). For two discrete probability distribu-
tions X and Y with support SX and SY respectively, the statistical distance
(sometimes also called the total variation distance) of X and Y is defined as

δ(X ,Y) � 1
2

∑

s∈SX ∪SY

∣∣∣∣Pr
X

[s] − Pr
Y

[s]
∣∣∣∣ .

Seeing stake distributions as probability distributions allows for the following
definition inspired by [4, Definition 5.1].

Definition 2 (Stake shift). Consider an execution E of a blockchain protocol
Π for L slots, and let sl ∈ {Λ, . . . , L}. The Λ-stake shift in slot sl is the maxi-
mum, over all parties P1 honest in slot sl − Λ and all parties P2 honest in slot
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sl, of the statistical distance between the stake distributions in slots sl − Λ and
sl as perceived by P1 and P2, respectively. Formally,

SSΛ(E , sl) � max
P1∈H[sl−Λ]
P2∈H[sl]

δ
(
SDP1 [sl − Λ],SDP2 [sl]

)
.

Naturally, we extend this notion over the whole execution and define the Λ-stake
shift of E to be

SSΛ(E) � max
Λ≤sl≤L

SSΛ(E , sl).

Finally, note that the quantity SSΛ(E , sl), and consequently also SSΛ(E),
cannot be determined based solely on the final stabilized ledger L that was
created by the protocol, as it does not contain the views of the participants during
the protocol execution. For this reason, any long-term empirical study that is
only based on the preserved stabilized ledger L (e.g. the Bitcoin blockchain) has
to aim for an analogous quantity capturing stake shift in L, as defined next.

For a stable ledger L, we denote by SDL[sl] the stake distribution as recorded
in L up to slot sl.

Definition 3 (Stabilized stake shift). Consider an execution E of a block-
chain protocol Π for L slots, let L denote the resulting stable ledger produced by
Π during E, and let sl ∈ {Λ, . . . , L}. The stabilized Λ-stake shift in slot sl is
defined as

ŜSΛ(E , sl) � δ
(
SDL[sl − Λ],SDL[sl]

)
,

and similarly, the stabilized Λ-stake shift of E is

ŜSΛ(E) � max
Λ≤sl≤L

ŜSΛ(E , sl).

For the reasons noted above, we will focus on stabilized stake shift in our
empirical analysis; whenever we use the term stake shift below, we refer to its
stabilized variant as per Definition 3.

4 Data and Methods

Before we can empirically investigate stake shifts in deployed cryptocurrencies,
we first need to translate the definition of stake shift into a scalable algorithmic
procedure that can compute stake shift with configurable lags over a currency’s
entire history, which in the case of Bitcoin spans more than 440M transactions
and 0.5B addresses. In this section, we describe how we prepare the required
datasets from the underlying blockchains and the technical details of our stabi-
lized stake shift computation method.
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4.1 Dataset Preparation and Structure

We consider datasets from four different cryptocurrency ledgers: first, we take
Bitcoin (BTC), which is still the cryptocurrency with the strongest market dom-
inance. Additionally, we take three alternatives derived from the Bitcoin Core
code base: Bitcoin Cash (BCH), which is a hard fork from the Bitcoin blockchain
to increase the block size limit, which took effect in August 2017; Litecoin (LTC),
which was an early altcoin, starting in October 2011, and is very similar to Bit-
coin. The key differences to Bitcoin are its choice of the proof-of-work algorithm
(scrypt) and the network’s average block creation time, which is roughly 2.5 min.
Finally, we also consider Zcash (ZEC), which is a cryptocurrency with enhanced
privacy features, initially released in October 2016. Zcash coins are either in a
transparent or a shielded pool. The transparent (unshielded) pool contains ZEC
in transparent addresses (so-called t-addresses). Due to the anonymity features
in Zcash, our analysis is limited to the transparent transactions in the unshielded
pool. However, as observed in [14], a large proportion of the activity on Zcash
does not use the shielded pools. A summary of the used datasets is provided in
Table 1.

Table 1. Summary of considered cryptocurrency datasets.

Currency # Blocks Last timestamp # Txs # Addresses # Clusters # Entities

BTC 588,007 2019-07-31 23:55:05Z 440,487,974 540,942,127 50,162,316 260,182,367
BCH 593,795 2019-07-31 23:54:09Z 275,765,798 302,098,643 31,173,961 142,884,996
LTC 1,677,479 2019-07-31 23:57:21Z 36,009,400 44,256,812 3,052,978 23,304,076
ZEC 577,390 2019-07-31 23:59:54Z 5,052,970 3,488,294 206,506 1,680,481

For each cryptocurrency ledger, we partition these addresses into maximal
subsets (clusters) that are likely to be controlled by the same entity using the
well-known and efficient multiple-input clustering heuristics [15]. The underlying
intuition is that if two addresses (e.g., A1 and A2) are used as inputs in the same
transaction while one of these addresses along with another address (e.g., A2 and
A3) are used as inputs in another transaction, then the three addresses (A1, A2

and A3) must somehow be controlled by the same entity, who conducted both
transactions and therefore possesses the private keys corresponding to all three
addresses. Being aware that this heuristic fails when CoinJoin transactions [16]
are involved, we filtered those transactions before applying the multiple-input
heuristics.

Before describing our stake shift computation method in more detail, we
introduce the following notation for key entities in our dataset: we consider
a blockchain Btend = (A,T) with its associated set of addresses A and set of
transactions T at time tend.

The multiple-input heuristics algorithm is applied to the complete transac-
tion dataset at time tend to obtain a set of clusters C = {C1, . . . , Cnc

}. Each
cluster Ci is represented by a set of addresses, where |Ci| ≥ 2,∀i ∈ {1, . . . , nc}.
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The set of entities E is represented by the union of C with the remaining single
address clusters, i.e., E = C ∪ {{a} | a ∈ A ∧ ∀C ∈ C : a /∈ C}. The (cumulative)
balance for entity e ∈ E at time t is denoted by bt

e, and the total balance over
all entities at time t is given by bt

total =
∑

e∈E bt
e.

The last three columns in Table 1 show the number of addresses in each
ledger, the number of computed clusters, as well as the number of entities holding
the corresponding private keys of one or more addresses.

For further inspecting the real-world identities behind entities causing major
stake shifts, we rely on Chainalysis5, which is a proprietary online tool that
facilitates the tracking of Bitcoin transactions by annotating Bitcoin addresses
with potential owners.

4.2 Stake Shift Computation

Given the dimensionality of our dataset, the challenge lies in finding a method
that follows Definition 3 and can compute the distances δ in a scalable, dis-
tributed and memory-efficient manner.

In a näıve approach one would calculate the cumulative balance for each
entity at every time period (e.g., days). The stake distribution is represented by
the relative frequencies, which are the result of dividing the cumulative balances
at time tp by the total balance b

tp

total. This approach would result in huge tem-
porary datasets that must be persisted in memory for subsequent computation
steps. For instance, for the computation of the stabilized stake shift in Bitcoin,
a grid of 3,862 × 260,182,367 (number of days × number of entities) data points
needs to be cached, which is computationally inefficient and hardly feasible in
practice given today’s hardware limitations.

Therefore, we propose an iterator-based approach coupled with a custom
aggregation method, which can be executed on a distributed, horizontally scal-
able data processing architecture: First, we join the transaction data with the
relevant entity information, and use the entity IDs for partitioning. Then, for
calculating the cumulative balances, we sort every partition by time period. The
iterator represents basically a loop over the grid of predefined time periods for
a given entity. Internally, we build up a data structure that holds the following
information in each iteration step: (i) entity ID e, (ii) time period tp, (iii) the
cumulative balance b

tp
e , (iv) the contribution of the current entity to the stake

distribution R
tp
e = b

tp
e /b

tp

total at time tp; and (v) the absolute difference of the
stake distribution contributions at time tp and tp−�: δ

tp
e = |Rtp

e − R
tp−�
e |.

To compute the stake shift for arbitrary lag values 	, a FIFO (first in, first
out) structure is needed to hold at most 	 instances of the above data struc-
ture for the last 	 periods. That data structure can efficiently be partitioned
across computation nodes and requires zero communication costs. An aggrega-
tion method then collects all partial results to obtain the stake shift value ŜS

tp

�

at time period tp.

5 https://www.chainalysis.com/.

https://www.chainalysis.com/
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We implemented our stake shift computation method as single Apache Spark6

job operating directly on a pre-computed dataset provisioned by the GraphSense
Cryptocurrency Analytics Platform7. For further technical details, we refer to
the source code, which will be released with this paper.

5 Analysis and Results

In the following, we first report results on the longitudinal evolution of stake
shifts in all considered cryptocurrencies (BTC, BCH, LTC, ZEC). Then we hand-
pick past stake shift spikes and analyze them in more detail, in order to gain a
better understanding on the factors causing those shifts. We also elaborate on
cross-ledger similarities and differences.

5.1 Evolution of Stabilized Stake Shifts

Figure 1 depicts the evolution of Bitcoin stake shifts over the observation period
for three different lag settings Λ: 1 day, 7 days, and 14 days. We can observe huge
spikes (0.933 for Λ = 1) right after the generation of the genesis block and
another major spike occurring on June 19th, 2011. That spike is most likely
related to a security breach on Mt. Gox, at this time one of the dominating
Bitcoin exchanges. After an attacker illegally transferred a large amount of Bit-
coins, 424,242 BTC were moved from a cold storage to a Mt. Gox address on
June 23rd 20118. We can also observe that hard forks trigger major stake shifts:
Bitcoin Cash, for instance, hard forked on August 1, 2017.
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Fig. 1. Stake shift for BTC (stake distribution lag Λ: 1, 7, and 14 days). (Color figure
online)

Due to the lack of space, we will in the following refrain from depicting stake
evolutions for the other investigated currencies and focus on reporting key obser-
vations and findings instead. For further visual inspection, we refer the interested

6 https://spark.apache.org/.
7 https://graphsense.info.
8 https://en.wikipedia.org/wiki/Mt. Gox.

https://spark.apache.org/
https://graphsense.info
https://en.wikipedia.org/wiki/Mt._Gox
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reader to the Appendix of this paper. We also restrict subsequent discussions to
Λ = 1 because we can observe that stake shifts evolve synchronously and differ
only in lag amplitudes.

Bitcoin Cash shows similar behavior to Bitcoin: since it is a hard fork of
Bitcoin, stake shifts run synchronous to Bitcoin until the hard fork date. Stake
shift values in Bitcoin Cash also show a higher variability after November 15,
2018. On this date a hard fork was activated by Bitcoin ABC 9 (at the time the
largest software client for Bitcoin Cash) and Bitcoin SV 10 (Satoshi’s Vision).

In general, the variability of stake shifts in Litecoin ($4.7B market capital-
ization) appears to be higher than the one in Bitcoin. The biggest spikes appear
on the following dates: 2014-02-05, 2015-03-08, and 2018-11-30. The first two
spikes are represented by a couple of dominating entities. We observed either
a direct currency flow between them, or a indirect flow via some intermediary
cluster or address. One exception is the spike on November 30th, 2018: on that
day, approximately 35.4M LTC were transferred within a 24 h period, with a
total value of $1.1B at that time. This is extraordinary, because the Litecoin
network has recorded approximately $100M of trading volume per day, on aver-
age. After investigating involved transactions, we noted that a significant portion
of the transaction volume appears to originate from a single entity, which was
not captured by the multiple-input clustering heuristic. At least 40 new wallets
have entered the list of the richest Litecoin addresses, each with a balance of
300,000 LTC (∼$10M). In total, the addresses account for 12.9M LTC (approx-
imately $372M). The reason for the movement is still unclear, but, as we will
discuss later in Sect. 5.3, we can observe that the entities involved in those stake
shifts were controlled by Coinbase, which is a major cryptocurrency exchange.
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Fig. 2. Ranked contributions (top 60) to stabilized stake shift for Λ = 1 (LTC on
November 30th, 2018).

Figure 2 provides a more detailed view on that single Litecoin spike. It shows
the top 60 contributions to the stake shift for Litecoin on November 30th, 2018.
A block of consecutive addresses sharing a certain transaction behavior becomes
visible between rank 16 to 46. They share the following common characteristics:

9 https://www.bitcoinabc.org/.
10 https://bitcoinsv.io/.

https://www.bitcoinabc.org/
https://bitcoinsv.io/
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(i) the number of incoming transaction is either 40 or 41; (ii) transactions are
executed in chunks of 7,500 LTC; and (iii) the total balance is 300,000 LTC.

The remaining 11 addresses of this entity appear in the tail of the distribution.
The reason is that the transactions already started on the day before (2018-11-29
21:18:59Z). Therefore, these 11 addresses do not (fully) account to the stabilized
stake shift of November 30th, 2018.

When regarding the stake shift evolution of Zcash ($366M market capi-
talization), we can, as in Litecoin, observe higher variability than in Bitcoin or
Bitcoin Cash. This could be explained by the differences in market capitalization
($5.5B BCH vs. $177B BTC) in these two currencies11.

Table 2. Summary statistics of stabilized stake shift for different lag values.

BTC BCH LTC ZEC

Lag
(in days)

Mean Median Std Dev Mean Median Std Dev Mean Median Std Dev Mean Median Std Dev

1 0.013 0.010 0.0098 0.013 0.011 0.0102 0.014 0.011 0.0123 0.014 0.012 0.0102
2 0.020 0.017 0.0129 0.020 0.017 0.0134 0.022 0.017 0.0177 0.023 0.020 0.0146
3 0.026 0.022 0.0155 0.026 0.023 0.0161 0.030 0.023 0.0219 0.031 0.027 0.0181
4 0.031 0.027 0.0177 0.032 0.027 0.0183 0.036 0.029 0.0255 0.038 0.034 0.0211
5 0.036 0.031 0.0196 0.037 0.032 0.0203 0.042 0.034 0.0289 0.045 0.040 0.0238
6 0.040 0.035 0.0213 0.041 0.036 0.0221 0.048 0.039 0.0319 0.051 0.047 0.0262
7 0.045 0.039 0.0229 0.045 0.039 0.0238 0.053 0.044 0.0347 0.058 0.053 0.0286
8 0.049 0.042 0.0244 0.050 0.043 0.0253 0.058 0.048 0.0374 0.063 0.059 0.0308
9 0.053 0.045 0.0257 0.053 0.046 0.0267 0.063 0.052 0.0399 0.069 0.065 0.0328

10 0.056 0.049 0.0270 0.057 0.050 0.0281 0.068 0.057 0.0423 0.074 0.070 0.0346
11 0.060 0.052 0.0282 0.061 0.053 0.0293 0.073 0.060 0.0446 0.079 0.075 0.0364
12 0.063 0.055 0.0294 0.064 0.056 0.0305 0.077 0.064 0.0469 0.084 0.081 0.0380
13 0.067 0.058 0.0305 0.068 0.059 0.0317 0.082 0.068 0.0490 0.089 0.085 0.0395
14 0.070 0.061 0.0316 0.071 0.062 0.0329 0.086 0.072 0.0510 0.094 0.090 0.0410

More detailed statistics for stake distribution lag Λ ranging from 1 to 14 days
are summarized in Table 2, which shows the mean, median, and standard devia-
tion of resulting stake shift values. Since the estimators for the arithmetic mean
and standard deviation are not robust against outliers, we did not consider the
initial parts of the time line and disregarded the first 6% of the total number
of days in our estimation (marked with red dash-dotted vertical line in Fig. 1
and Fig. 5, respectively). The gradually increasing mean and median stake shift
values confirm our previous observation of growing amplitudes.

5.2 Modeling Stake Shift

Having observed that stake shifts for different lags evolve synchronously and
vary in amplitudes, we next fitted regression models to the computed mean,
median, and standard deviations (Fig. 3). We can observe that estimated values
show a clear, strictly monotonic increasing trend with growing lag. More specifi-
cally, we found that quadratic polynomials capture well the relation between the
location/scale estimators and lag Λ (coefficient of determination R2 ≥ 0.99).
11 https://coinmarketcap.com/all/views/all/, retrieved on 2019-09-19.

https://coinmarketcap.com/all/views/all/
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Fig. 3. Fitted trends for mean, median, and standard deviation of stake shift.

5.3 Attributing Selected Stake Shift Spikes

In order to shed some more light on the real-world actors behind observable
stake shift spikes, we selected the top five Λ = 1 spikes in each currency and
attributed them to real-world identities using the Chainalysis API. Due to the
limited availability of attribution tags, we focus only on the period between
August 1, 2017 and July 31, 2019. Before continuing, we note that a fully fledged
systematic analysis of real-world entities and their motivation for transferring
large amounts is out of scope in this paper.

Figure 4 shows the distribution of stake shift contributions at the spike that
occurred during the Bitcoin Cash hard fork (cf. Sect. 5.1). We can clearly see
that known exchanges such as Bitfinex, Kraken, Coinbase, and Korbit were the
major entities behind those stake shifts. The largest stake shift was caused by
a transfer from a Bitfinex operated address to some multisig wallet, which is
not a public deposit address but known to be operated by Bitfinex as well. This
suggest that this spike represents a major hot-to-cold wallet transfer. However,
it remains unclear why this co-occurs with the Bitcoin Cash hard-fork date.
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Fig. 4. Attributed BTC stake shift spike triggered by Bitcoin Cash fork (2017-08-01)

We also attributed the top five Bitcoin Cash and Litecoin spikes and see
that exchanges play a major role in stake shifts, however to a lesser extent
than in Bitcoin. In the selected Litecoin spike the identity of involved entities
is unknown. However, we note that only limited attribution tags are available
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for that currency. For further details on intra-spike stake shift distributions, we
refer to the plots in the Appendix of the arXiv version of this paper12.

The underlying cause and motivation for being involved in a major stake
shift is not always apparent. Possible reasons are migration of funds between
hot and/or cold wallets, or institutional investors taking a serious long position.
Summarizing the results, we can conclude that, at least in established cryptocur-
rencies such as Bitcoin, a small number of real-world entities – usually exchanges
– may account for major stake shifts in cryptocurrency ecosystems.

6 Discussion

Key Findings. Our analysis of stabilized stake shift presented in Sects. 5.1
and 5.2 leads us to the following conclusions:

– The two main observable reasons for extreme stake-shift spikes are hacks and
migration of funds to different wallets. Large stake shifts resulting from hacks
are clearly problematic for a proof-of-stake based cryptocurrency, as the entity
getting control of these funds can be reasonably considered adversarial, with
unpredictable future actions.

– When considering the levels of adversarial stake ratio that a proof-of-stake
protocol can provably tolerate, one needs to be aware that this threshold is
affected by the assumed maximal stake shift σ as per Eq. (1). Our measure-
ments, summarized in Table 2, show that depending on the protocol’s stake
distribution lag, this effect may decrease the guaranteed resilience bound by
several percent even for lag intervals where the stake shift achieves average
values (as the most extreme example, consider the average stabilized stake
shift for a (hypothetical) two-week lag interval in ZEC, which amounts to
9.4%). Note that, as captured in Fig. 1 and the standard deviation values in
Fig. 2, the stake shift value can deviate considerably from this average. This is
particularly noteworthy for protocols that only aim for the threshold T = 1/3
in Eq. (1) such as [3].

– Unsurprisingly, our data confirms that with increasing stake distribution lag
also the corresponding stake shift increases, the precise (empirical) sublin-
ear dependence is captured in Fig. 3. This advocates for the need to make
the stake distribution lag as small as possible in any future PoS protocol
design. More importantly, knowing the exact slope of this function (and hence
the price being paid for longer stake distribution lag in terms of increased
expected stake shift) allows the designers of existing and future proof-of-stake
protocols to weigh these costs against the benefits of longer lag intervals, lead-
ing to more informed design decisions.

– Our results empirically support the natural assumption that high stake shift
mostly appears at the beginning of the lifetime of a cryptocurrency, and
hence older, more established cryptocurrencies experience lower average and

12 https://arxiv.org/abs/2001.04187.

https://arxiv.org/abs/2001.04187
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median stake shift for a given lag interval, as well as less occurrences of
extreme stake shift spikes. This observation allows for some optimism on the
side of PoS-protocol designers, as the role of stake-shift-related weakening
of the proven security guarantees should diminish during the lifetime of the
system. On the other hand, the initial vulnerability of a new, bootstrapping
PoS cryptocurrency could be prevented for example by the “merged staking”
mechanism discussed in [17].

Additionally, our investigation of the extremal stake-shift spikes conducted
in Sect. 5.3 results in the following observations:

– The spikes motivated by migration of funds can be assumed to be often trig-
gered by a single entity, we conjecture that the main reason of these transfers
was moving the considerable funds to a more secure, multisig-protected wal-
let. In such cases, it is natural to assume that the funds are controlled by the
same party after the transfer, making these spikes benign from the perspective
of our considered PoS scenario.

Limitations. The main limitation of our results with respect to the question
motivating our investigation lies in the imperfections of clustering techniques and
incompleteness of attribution tags linking entities to real-world identities (despite
using the best currently known). Having a better understanding of which keys
are controlled by the same real-world entity would give us a more precise picture
of the experienced stake shift. However, it appears likely that more realistic
clustering would lead to more keys being clustered, and hence lower stake-shift
estimates. One can thus see our results as reasonable upper bounds of these
quantities.

Future Work. One clear area of future work is to devise new and better
address-clustering and attribution data sharing techniques. On top of that, it
might be interesting to expand our investigation in time and considered cryp-
toassets. After more data is available, future studies should also include assets
or currencies built on top of PoS protocols. Such studies should also investi-
gate the role of exchanges, which typically hold major stakes and might become
important players in a PoS-based consensus. This is particularly interesting for
PoS protocols where coins must be explicitly “staked” to participate in the con-
sensus, and hence the total participating stake is typically much smaller than
the overall stake. Finally, it would be interesting to perform a more careful and
detailed investigation of the activity behind the five considered major stake shift
spikes, as well as other unusually large spikes uncovered by our work.

Acknowledgments. We thank Patrick McCorry for reviewing and commenting on
the final draft, and our AIT colleagues Hannes Koller and Melitta Dragaschnig for
insightful discussions regarding the Apache Spark implementation. Work on this topic
is supported inter alia by the European Union’s Horizon 2020 research and innovation
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KIRAS programme under project VIRTCRIME (No. 860672).
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A Additional Figures

In this section, we provide additional plots for visual inspection of our findings
reported in Sect. 5. Figure 5 depicts the evolution of stake shifts for Bitcoin
(BTC), Bitcoin (BCH), Litecoin (LTC), and Zcash (ZEC).
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14 days). (Color figure online)
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Abstract. In this paper, we propose coded Merkle tree (CMT), a novel
hash accumulator that offers a constant-cost protection against data
availability attacks in blockchains, even if the majority of the network
nodes are malicious. A CMT is constructed using a family of sparse
erasure codes on each layer, and is recovered by iteratively applying a
peeling-decoding technique that enables a compact proof for data avail-
ability attack on any layer. Our algorithm enables any node to verify
the full availability of any data block generated by the system by just
downloading a Θ(1) byte block hash commitment and randomly sam-
pling Θ(log b) bytes, where b is the size of the data block. With the help
of only one connected honest node in the system, our method also allows
any node to verify any tampering of the coded Merkle tree by just down-
loading Θ(log b) bytes. We provide a modular library for CMT in Rust
and Python and demonstrate its efficacy inside the Parity Bitcoin client.

1 Introduction

Blockchains (e.g., Bitcoin [26] and Ethereum [35]) maintain a ledger of ordered
transactions, organized into a chain of blocks. Starting from the genesis block,
network nodes extend the ledger by creating and appending more blocks, follow-
ing specific block generation rules (e.g., the longest-chain rule is used in Bitcoin
[26]). The transactions in the received blocks are validated by full nodes which
download the entire block tree. However, for better scalability, it is imperative
for a blockchain to allow light nodes, which may only be interested in verifying
some specific transactions.

In Bitcoin [1,26], light nodes are implemented using the Simple Payment
Verification (SPV) technique: a Merkle tree is constructed for each block using
the transactions as the leaf nodes, and the Merkle root is stored in the block
header. Utilizing the Merkle root, a light node can verify the inclusion of any
c© International Financial Cryptography Association 2020
J. Bonneau and N. Heninger (Eds.): FC 2020, LNCS 12059, pp. 114–134, 2020.
https://doi.org/10.1007/978-3-030-51280-4_8
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transaction in a block through a Merkle proof. Light nodes and SPV have been
leveraged extensively to scale computation and storage of blockchain systems
over resource-limited nodes (e.g., smartphones) [3–5,7,16,18,19,25,36].

Besides inclusion, what is more important for a light node is to validate the
transaction based on the ledger state. Due to limited resources, a light node
cannot download the entire ledger. Instead, it could use the depth of the block
that contains this transaction as a proxy. That is, the deeper this block is buried
into the chain, the more confident the light node is about the validity of the
transaction. However, for it to work, a majority (in terms of hashing power,
stakes, etc.) of full nodes must be honest and must follow protocol. Further,
there is a significant tradeoff between confirmation latency (due to the depth)
and the security about transaction validity.

Therefore, efforts to study 1) the scenario of a light node being connected
to dishonest majority of full nodes, and 2) how to achieve faster confirmation at
light nodes are becoming a major research direction [9,10,17,26]. The overall idea
is to design new block structures that allow full nodes to generate and broadcast
succinct fraud proofs of individual transactions. This way, a light node will be
able to timely verify fraud transactions and blocks as long as it is connect to
at least one honest full node. One efficient construction that utilizes the roots
of the intermediate state Merkle trees after executing a subset of transactions
is proposed in [9]. However, it is vulnerable to the so-called “data availability
attack” described in [9], for which [9] proposed an erasure code based solution.
Stating the data availability attack formally and solving it comprehensively is
the main goal of this paper.

Data Availability Attack. A malicious block producer 1) publishes a block
header, so that light nodes can check transaction inclusion; but 2) withholds a
portion of the block (e.g., invalid transactions), so that it is impossible for honest
full nodes to validate the block and generate the fraud proof.

Although the honest full nodes are aware of the data unavailability, there is
no good way to prove it. The best they can do is to raise an alarm without a
proof. However, this is problematic because the malicious block producer can
release the hidden parts after hearing the alarm. Due to network latency, other
nodes may receive the missing part before receiving the alarm and, thus, cannot
distinguish who is prevaricating. Due to this, there is no reward and punishment
mechanism that can properly reward honest full nodes while also deterring false
alarms and denial-of-service attacks.

Therefore, for fraud proofs to work, light nodes must determine data avail-
ability by themselves. This leads to the following key question: when a light node
receives the header of some block, how can it verify that the content of that block
is available to the network by downloading the least possible portion of the block?

Need to Encode the Block. Since a transaction is much smaller than a block,
a malicious block producer only needs to hide a very small portion of a block.
Such hiding can hardly be detected by light nodes unless the entire block is down-
loaded. However, by adding redundancy to the data through appropriate erasure
codes [22], any small hiding on the origin block will be equivalent to making a
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significant portion of the coded block unavailable, which can be detected by light
nodes through randomly sampling the coded block with exponentially increasing
probability. As a counter measure, a malicious block producer could instead con-
duct coding incorrectly to prevent correct decoding. Light nodes rely on honest
full nodes to detect such attacks and prove it through an incorrect-coding proof.

For example, an (n, k) Reed-Solomon (1D-RS) code [32] encodes k data sym-
bols into n coded symbols, and any k out of these n coded symbols can be used
to decode the k data symbols. Thus, to prevent decoding, a malicious block pro-
ducer will have to make at least n−k+1 coded symbols unavailable, which yields
a detection probability of 1− (1−k/n)s after sampling s distinct coded symbols
uniformly at random. But an incorrect-coding proof will consist of k coded sym-
bols, which is of the same size as the original block and thus is too large. This
cost is alleviated to

√
k in [9] by using two-dimensional RS codes (2D-RS), at

the costs of reduced sampling efficiency, and increased block hash commitments
of 2

√
n Merkle roots to verify the coding correctness within each dimension. In

addition, 1D-RS and 2D-RS codes have a high decoding complexity of O(k2)
and O(k1.5), respectively.

In summary, with erasure coding, a light node pays 3 download costs for data
availability, including block hash commitments, symbol sampling, and incorrect-
coding proofs. Among them, the incorrect-coding proof cost must be minimized
to defend fake proofs, for which both 1D-RS and 2D-RS are sub-optimal.

Our Contributions. In this paper, we propose SPAR (SParse frAud pRotec-
tion), the first data availability solution that promises order-optimal performance
on all the metrics, including 1) a constant block hash commitment size; 2) a con-
stant sampling cost for a given confidence level on data availability; 3) a constant
incorrectly-coding proof size; and 4) linear decoding complexity (Table 1).

Table 1. Light node download costs and full node decoding complexity (b: block size
in bytes).

Hash commitment
size (bytes)

# of samples to gain
certain confidence

about data availability

Incorrect-coding
proof size (bytes)

Decoding
complexity

Uncoded O(1) O(b) - -

1D-RS O(1) O(1) O(b log b) O(b2)

2D-RS [9] O(
√

b) O(1) O(
√

b log k) O(b1.5)

SPAR O(1) O(1) O(log b) O(b)

At the core of SPAR is a novel cryptographic hash accumulator called coded
Merkle tree (CMT). Starting from the bottom, CMT iteratively encodes layers
of the tree and uses the hashes of the coded layer as the data for the next layer. A
light node can detect the availability of the entire tree through the Merkle proofs
of bottom layer leaves. With the entire tree available, SPAR uses a novel hash-
aware peeling decoder and a special ensemble of random LDPC (low-density
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Fig. 1. The connections between full nodes and light nodes. Every honest (green) node
is connected to at least one honest full (square) node. A light (circle) node may connect
to more malicious (red) full nodes than honest full nodes. (Color figure online)

parity-check) codes to maximize sampling efficiency, minimize incorrect-coding
proof to one parity equation, and achieves linear decoding complexity.

SPAR and CMT Implementation. We have developed a complete and mod-
ular CMT library in Rust and Python [2]. We have also implemented SPAR in
the Bitcoin Parity client [28], which outperforms state of the art [9] by more
than 10-fold in hash commitments, incorrect coding proof, and decoding speed.

Related Works. This work was inspired by pioneering research in [9], which
proposes succinct fraud proofs and 2D-RS based data availability solution.
Besides this work, coding also improves scalability of blockchains in other areas:
[29] studies the coding efficiency of distributed storage systems [8,14,15,31]. In a
related vein, [30] uses a combination of Shamir’s secret sharing [33] (for storing
the headers and the encryption keys) and private distributed storage (for the
blocks) to reduce the storage overhead while guaranteeing data integrity and
confidentiality. [21] uses Lagrange coding to simultaneously scale storage, com-
putation, and security in a sharded blockchain [20,24], via cross-shard coding.

2 Security Model

The core functionality of a blockchain is to produce, verify, and accept/store valid
data blocks in a consistent but decentralized manner. A data block, denoted by
B, is a byte string of length b that carries a batch of transactions. B is valid
for acceptance if and only if every single transaction in it is valid (e.g., enough
balance, no double spending). Thus incomplete data blocks are tantamount to
being unacceptable. Data incompleteness is not a threat to a node that fully
downloads the block. However, state-of-the-art blockchain systems also run light
nodes which do not download the blocks in entirety. We next describe these two
types of nodes formally (see Fig. 1).

Full nodes are able to produce blocks (e.g., by batching submitted transac-
tions), and to download and verify blocks produced by other full nodes. Upon
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acceptance, they store the entire block locally. Upon rejection, they broadcast a
fraud proof to alert the other nodes. We note, however, that malicious full nodes
do not necessarily follow such requirements, and can act arbitrarily.

Light nodes can only afford to download a small amount of data from each
block and perform simple computations such as hash checks and fraud proof
verification, but not to operate on whole data blocks. By accepting a block B,
they only store its hash commitment D = g(B). Here g() is a hash accumulator
such as Merkle tree generator, which will allow it to use D to verify the inclusion
of any transaction in B through a Merkle proof. Without loss of generality, we
assume light nodes are honest, as they are not able to deceive full nodes.

We assume the following network model:

1. Reliable communication: Two directly connected nodes can reliably commu-
nicate via both unicast and broadcast without message loss or corruption.

2. Connectivity: Every honest (full and light) node is directly connected to at
least one honest full node. In other words, we assume a connected sub-graph
of honest full nodes, and all the light nodes are connected to it.

3. The network is synchronous. These three assumptions together means that
a valid message sent by an honest node can be received by all appropriate
honest nodes (e.g. blocks for honest full nodes, block headers and fraud proofs
for light node) within a fixed delay if every honest node re-broadcasts it.

4. The network allows nodes to send messages anonymously.

Importantly, our network model allows dishonest majority , i.e., each light
node can be directly connected to more malicious full nodes than honest ones.
Due to this, a light node cannot determine the completeness of a block through
its connected full nodes, via a majority vote for instance.

A malicious block producer is thus motivated to conduct a data availability
attack, where it 1) does not fully disclose B, so that honest full nodes are not
able to verify B; and 2) broadcasts D, so that itself and its colluding full nodes
can forward D to their connected light nodes and deceive them that the B that
satisfies g(B) = D is valid for accepting. Thus, the key for a light node to protect
itself from accepting a fraudulent block is to make sure that B is fully available.
This gives rise to the main problem we try to address in this paper:

Data availability problem: Upon receiving a hash commitment D, how
can a light node efficiently verify that a data block B that satisfies g(B) =
D is fully available to the system?

A simple strategy for a light node is to randomly sample portions of B, and
determine that it is unavailable if it does not receive all requested portions. Since
the size of a transaction is usually much smaller than the block, a malicious block
producer only needs to hide a very small portion (say, e.g., a few hundred bytes)
of a fraudulent block, which can hardly be detected through random sampling.

A malicious block producer could also conduct selective disclosure: when
requested by light nodes, the malicious block producer may select a subset of
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the light nodes and fully disclose their requested portions, as long as the total
disclosed portions do not reveal B. These light nodes will be deceived about the
availability of B and will accept it, as no fraud proof of B can be produced.

Thus, as similarly done in [9], we characterize the security of the above
described system using the following measures:

Soundness: If a light node has determined that a data block is fully available,
then at least one honest full node will be able to fully recover this data block
within a constant delay.
Agreement : If a light node has determined that a data block is fully avail-
able, then all the other light nodes in the system will determine that the data
block is fully available within a constant delay.

Recently, an erasure coding-assisted approach was proposed in [9] to improve
sampling efficiency and suppress the data availability attack. In the next section,
we will motivate this approach and overview the challenges it faces.

3 Overview of Erasure Coding Assisted Approach

An (n, k) erasure code evenly partitions a block B of b bytes into k data symbols
of b

k bytes each as B = [m1, · · · ,mk], and linearly combines them to generate
a coded block with n > k coded symbols, C = [c1, · · · , cn]. The ratio r = k/n
is called the coding rate. The n hashes of these coded symbols are accumulated
to obtain the hash commitment D of C, which is published with C. With a
good erasure code, a block producer’s hiding of one data symbol is equivalent to
making the value of many coded symbols unavailable to the system. In general,
a pair of good erasure code and decoding algorithm yields a large undecodable
ratio α, which is the minimum fraction of coded symbols a malicious block
producer needs to make unavailable to prevent full decoding. Such hiding can be
caught by a light node with an exponentially increasing probability of 1−(1−α)s

through randomly sample s coded symbols when n is large, indicating that O(1)
samples are sufficient. Below is an example.

Example 1. Uncoded v.s. coded sampling efficiency. Given a block of 4 data
symbols [m0, · · · ,m3], a block producer generates 8 coded symbols as follows:{

c0 = m0, c1 = m1, c2 = m2, c3 = m3,

c4 = c0 + c1, c5 = c1 + c2, c6 = c2 + c3, c7 = c3 + c0.
(1)

To prevent decoding through hiding, a malicious block producer must either pub-
lish no more than 3 data symbols or no more than 5 coded symbols. Both will
make at least 3 coded symbols unavailable to the system (α = 3

8). Such unavail-
ability can be caught with a probability of 1 − 5

8 · 4
7 = 64.3% after randomly

sampling 2 distinct coded symbols. In contrast, without coding, the hiding of one
data symbol can be caught with a probability of only 1 − 3

4 · 2
3 = 50%.
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To counter erasure coding assisted random sampling, a malicious block pro-
ducer could conduct an incorrect-coding attack : It generates coded sym-
bols that fail the parity equations (the equations describing the linear relations
between coded symbols in Example 1) specified by the erasure code, and gen-
erates D using these invalid coded symbols. This way, it can pass light node
random sampling through hiding only one data symbol and publishing most of
the coded symbols, which will not allow honest full nodes to correctly decode B.

Fortunately, this attack can be detected by honest full nodes by comparing
the decoded block with the commitment D. Upon detection, an honest full node
can generate an incorrect-coding proof , which consists of the coded symbols of
failed parity equation(s) and appropriate hash commitments, so that light nodes
can verify them and reject the block. Using Example 1, an incorrect coding proof
about c4 = c0 + c1 could be c0 and c1 with matching Merkle proofs, plus the
Merkle proof of c4, which, however, does not match the value of c0 + c1.

To keep incorrect coding proofs small, [9] applies 2D-RS (2-dimensional
Reed-Solomon) code. The k data symbols are placed as a

√
k × √

k square,
then a (

√
n,

√
k) RS code is applied to every row/column. The resulted 2

√
n

rows/columns yield 2
√

n Merkle roots, which are downloaded by light nodes as
block header. Each root allows a light node to verify the associated row/column
by decoding it using any

√
k coded symbols of it (from incorrect-coding proof)

and reproducing the root. Thus, 2D-RS offers light nodes 1) a header cost of
O(

√
b), 2) a sampling cost of O(log b), and 3) an incorrect-coding proof size of

O(
√

b log b). Here log b is due to logarithmic growth of Merkle proof size with b.
In this paper, we propose SPAR (SParse frAud pRotection), the first solution

to the data-availability problem that is order-optimal in all the above three
metrics: a header cost of O(1), a sampling cost of O(log b), and an incorrect-
coding proof size of O(log b). To this end, SPAR leverages four core components:

1. a novel hash accumulator named coded Merkle tree (CMT), which encodes
every layer of the tree to protect the availability of the entire tree. This way,
the Merkle proof of every coded symbol will be available, which will enable
every parity equation to be committed and verified alone;

2. a dedicated sampling mechanism that enables a light node to check the avail-
ability of the entire CMT by sampling O(log b) bytes plus one Merkle root;

3. a hash-aware decoding algorithm that is able to detect and prove any single
failed parity equation, provided the Merkle proofs of all the coded symbols;

4. a special ensemble of random LDPC (low-density parity check) codes with
a constant parity equation size and a constant undecodable ratio under the
above hash-aware decoding algorithm, which protects all CMT layers equally.

4 Detailed Description of SPAR

In this section, we describe the four core components of SPAR: the construction
of the coded Merkle tree by the (honest) block producer, the sampling mecha-
nism of the light nodes, the decoding and alerting operations of the honest full
nodes, and the erasure codes used by SPAR. At the end of this section, we will
summarize the action space of each node in the network.
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Fig. 2. Coded Merkle tree for k = 16 data symbols using rate r = 1
2

erasure codes.
Each data symbol of a higher layer is constructed by batching the hashes of qr = 2
data symbols and q(1 − r) = 2 parity symbols of its child layer.

4.1 Construction of Coded Merkle Tree

In SPAR, an honest full node detects and proves incorrect-coding using the
membership proofs of all the d coded symbols in one parity equation and the
values of at least d − 1 of these coded symbols. Since any parity equation can
be compromised, a light node needs to make sure the membership proofs of all
the n coded symbols are available at honest full nodes. In other words, it needs
to make sure the entire Merkle tree is available.

To this end, we propose CMT. At a high level, CMT applies erasure coding
to every layer of the tree, where the data symbols of a layer are generated using
the hashes of the coded symbols of its child layer. This way, a light node can
check the availability of every layer through random samplings, whilst an honest
full node can detect and prove the incorrect coding at any layer, with the help
of the hashes of this layer provided at its parent layer.

More specifically, given a block of k data symbols, a rate-r (r ≤ 1) systematic
erasure code with an undecodable ratio of α is applied to generate n = k/r coded
symbols, where the first k are the original data symbols and the remaining n−k
are called parity symbols (hence the name systematic). Then the hashes of every
q coded symbols are batched as one data symbol for the next (parent) layer.
This yields a total of n/q data symbols for the next layer, which will be encoded
using a smaller (in terms of k) rate-r systematic code with the same undecodable
ratio. This iterative encoding and batching process stops once there are only t
(t � 1) hashes in a layer. These t hashes are the root of the CMT, and will be
included in the block header and published with the original data block.

CMT layer size reduces at a rate of qr. Thus, qr > 1 for CMT to converge.
In addition, to enable efficient sampling of both data and parity symbols (will
discuss next), batching is interleaved, namely, the q coded symbols whose hashes
are batched together consist of qr data symbols and q(1− r) parity symbols. An
example of CMT with k = 16, r = 1

2 , q = 4, and t = 4 is illustrated in Fig. 2.
Indeed, a classic Merkle tree is a special CMT with r = 1 and q = 2.
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Fig. 3. Merkle proof in CMT, and probabilistic sampling of parity symbols in inter-
mediate layers. The solidly circled symbols constitute a base layer coded symbol and
its Merkle proof. For the 2 dash-circled yellow parity symbols, with a probability of
1− r = 0.5, one of them (with equal chance) will be included in the proof for sampling
purpose. So will the 2 dash-circled blue parity symbols. (Color figure online)

4.2 Sampling Mechanism of Light Nodes

In SPAR, a light node randomly samples the base layer coded symbols with their
Merkle proofs to decide the availability of the base layer. The special structure
of CMT allows them to further utilize these proofs to efficiently sample higher
layer symbols to decide the availability of higher layers.

Similar to a classic Merkle tree, the Merkle proof of a base layer symbol
in CMT consists of all the sibling hashes between this symbol and the root.
The only difference is that the number of sibling hashes per layer is now q − 1
instead of 1, which effectively provides the light node one data symbol from every
intermediate layer. Thus, when a light node randomly samples s distinct base
layer coded symbols, the associated Merkle proofs will automatically sample, at
no extra cost, s distinct data symbols from every intermediate layer w.h.p.

To properly check the availability of an intermediate layer, a light node should
also randomly sample about (1 − r)s parity symbols from this layer. To avoid
downloading extra Merkle proofs for these parity symbols and to minimize the
correlation between the samplings1, SPAR samples parity symbols of intermedi-
ate layers probabilistically: For every pair of parent and child intermediate layer,
if a parent layer data symbol is sampled, then with probability 1 − r, one of its
q(1 − r) child parity symbols (thanks to interleaved batching) will be sampled
uniformly at random. Thus, the response size of one sampling request will be:

b

k
+ [y(q − 1) + yq(1 − r)] logqr

k

rt
, (2)

where b
k is the base layer symbol size, y is the hash size (e.g., 32 bytes), y(q−1) is

the size of the partial data symbol from an intermediate layer for Merkle proof,
1 Otherwise, the malicious block producer can hide the highly correlated symbols of

the same layer together to reduce light nodes’ detection probability.
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yq(1 − r) is the average size of probabilistically sampled parity symbol from an
intermediate layer, and logqr

k
rt is the number of layers. See Fig. 3 for sampling

response of a coded symbol on the based layer of the CMT in Fig. 2.
Finally, to counter selective disclosure conducted by the malicious block pro-

ducer, a light node will make the s requests separately, anonymously, with
replacement, and with some delay between every two requests. This will pre-
vent the malicious block producer from selectively deceiving any particular light
node, or deceiving the set of light nodes that make requests at the beginning.
Therefore, every light node will have the same chance to catch data availability
attack.

4.3 Hash-Aware Peeling Decoder and Incorrect-Coding Proof

A hash-aware peeling decoder is similar to conventional LDPC peeling decoder.
Given the hashes of all the n coded symbols and (1 − α)n coded symbols of
a layer, it iteratively solves degree-1 parity equations and check each decoded
symbol against its hash and associated parity equations (Algorithm 1). This way,
the detection and proof of incorrect-coding is minimized to one parity equation.

The key condition for the peeling decoder to work is that the hashes of all the
coded symbols are available. This is assured by CMT: By first downloading the
root, the decoder will have all the hashes needed to decode the previous layer.
Once this layer is successfully decoded, the decoded data symbols will provide all
the hashes needed to decode its child layer. This top-down decoding continues
until the data block is decoded, or incorrect-coding is detected at one of the
layers. To prove a failed parity equation that consists of d coded symbols, the
decoder only needs to provide the Merkle proofs of these coded symbols, and the
value of d − 1 coded symbols. Note that the higher the failed layer, the shorter
the Merkle proof of each symbol in the incorrect-coding proof.

In addition, the peeling decoder only works if 1) there are (1 − α)n coded
symbols available, and 2) that these coded symbols allow the recovery of all
the k data symbols. While the first condition is checked by light nodes through
random sampling, the second condition requires us to find, for every layer, a
erasure code whose undecodable ratio is α under peeling decoding. The best
performance is achieved if the codes are extremely sparse (with a small d) and
have a large α. We now present such an ensemble of LDPC codes.

4.4 Construction of Erasure Code

An (n, k) erasure code can be described by an n × (n − k) parity check matrix
H, where each column of H describes a parity equation, such that CH =

−→
0

for any valid codeword C. In addition, every stopping set of H corresponds to a
set of coded symbols whose hiding will prevent the full recovery of data symbols
using peeling decoder. For an n × (n − k) parity check matrix H, a set of rows
τ ⊂ [n] is called a stopping set if no column in Hτ has one non-zero element.
Here Hτ is the submatrix of H that only consists of the rows in τ .
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Algorithm 1: Hash-aware peeling decoding algorithm
1 Inputs: the hashes of all n coded symbols and (1 − α)n coded symbols;
2 Initial check: checks all the degree-0 parity equations (i.e., those whose coded

symbols are all known). If any parity equation is failed, report an
incorrect-coding proof and exit;

3 while not all the k data symbols are recovered do
4 Find a degree-1 parity equation, which only has one unknown coded symbol;
5 Recover this coded symbol and verify it with its hash. If failed, report an

incorrect-coding proof and exit;
6 Check all the associated degree-0 parity equations. If any parity equation is

failed, report an incorrect-coding proof and exit.
7 end

Correspondingly, there is no parity equation that includes exactly one coded
symbol among those indexed by τ . Thus, if this set of coded symbols are hidden,
there is no degree-1 parity equation to recover them. Since the peeling decoder is
essential for us to construct small incorrect-coding proof, the undecodable ratio
α of a block is equivalent to the stopping ratio of H, which is the size of the
smallest stopping set divided by n.

While CMT admits any erasure codes, SPAR uses the method introduced in
[12,23] and analyzed in [27] for its proved ability to create, with high probability,
parity matrices with a large stopping ratio. Given two integers c and d that
satisfies nc = (n − k)d, we first generate an nc × (n − k)d permutation matrix
J (a random row permutation of an nc × (n − k)d identity matrix). We then
partition J into n × (n − k) slices, where each slice is a c × d sub-matrix. Then
Hi,j = 1 if and only if slice-(i, j) contains an odd number of 1s, for i ∈ [1 : n]
and j ∈ [1 : n − k]. Such a random H has the following three critical properties:

1. It has a maximum row weight of c, and a maximum column weight of d;
2. It has a non-zero probability to have a stopping ratio of at least α∗, where α∗

is a critical stopping ratio inherent to this method and is independent of k;
3. It is NP-hard to find the minimum stopping set and determine the stopping

ratio of H.

Property 1 implies that the corresponding LDPC code has a maximum parity
equation size of d. Property 2 implies that we could provide the same undecod-
able ratio (thus same sampling requirements) for all layers. Both are desirable.

Nevertheless, Property 2 and 3 together imply that we, as the developers, are
not able to determine whether the LDPC codes we generate are good (α � α∗)
or not, for any reasonably large k (e.g., k = 1024).

Fortunately, this problem can be easily solved through a bad-code proof.
If an honest full node cannot fully decode the k data symbols after receiving
(1 − α∗)n coded symbols, then this code is bad, and its small undecodable set
has been found and hidden by a (very strong) malicious block producer. In this
case, the honest full node can prove this code bad by broadcasting the indices
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of the α∗n coded symbols it is missing. Upon receiving and verify this bad-code
proof, all the nodes in the system reject the associated block, and regenerate a
code for the failed layer using an agreed random seed. This seed can be drawn
from a pre-defined number sequence or the block header of a previous block, so
that no consensus protocol is needed. Alternatively, distributed random number
generation algorithms such as [34] and [11] can also be used for strictly unbiased
randomness and consensus.

In other words, we solve the NP-hard problem of finding good codes by
exploiting the computational resources of malicious party. Once it finds a small
undecodable set and hides it, the system can easily detect this, reject the block,
and update the code. This way, the system will settle at a good code for every
layer eventually. As we will show in the next section, the probability of generating
good codes is extremely high, so that SPAR can settle at good codes very quickly
without having light nodes accept any fraud blocks. In addition, since bad code
is a rare event, a heavy incentive/punishment scheme can be applied to deter
false bad-code proof. Thus, the download and verification cost of bad-code proof
is amortized to negligible throughout the course of the system.

4.5 Summary of the Actions of Different Node Types

– Block producer (full node): (a) It generates CMT and broadcasts the
CMT root to all nodes, as well as broadcasts the entire original block (not
CMT, as it can be retrieved using the original) to the full nodes only. (b) On
receiving sample requests from the light nodes, respond to them.

– Light node: (a) On receiving a new CMT root (or a CMT root of a pending
block from a new full node), it makes separate, anonymous, and intermittent
sampling requests with replacement to full nodes who claim that the block is
available, as described in Sect. 4.2. (b) On receiving a sample, it broadcasts
it to all connected full nodes. (c) If a node receives all requested samples, it
assumes the block is available. (d) If a node does not receive all requested
samples within a fixed time, it “pends” the block (i.e., keeps it in pending
status). (e) If a node receives an incorrect-coding proof or bad-code proof, it
rejects the block. In case of bad-code proof, it will also update the erasure
code of the failed layer.

– Other full node. (a) On receiving valid samples, it tries to recover the
data block through both downloading the original data block from the other
full nodes and collecting coded symbols forwarded by the light nodes. It will
decode the tree from top to bottom using a hash-aware peeling decoder. (b)
It rebroadcasts the received valid samples. (c) If an incorrect coding or a bad
code has been detected, it will send the corresponding proof and reject this
block. (d) If it has received/fully decoded a data block and verified it, it will
declare the availability of this block to all other nodes and respond to sample
requests from light nodes.
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5 Performance Analysis

5.1 Security

Theorem 1. In SPAR, a block producer cannot cause the soundness and agree-
ment to fail with a probability lower than

Pf ≤ max
{

(1 − αmin)s, 2
max

i

[
H(αi)ni−ms log 1

1−αi

]}
.

Here ni and αi are the number of symbols and undecodable ratio of layer-i of
CMT, αmin � mini αi, and s is the number of base layer coded symbols a light
node samples.

Theorem 1, proved in Appendix A, implies that the security of SPAR
increases exponentially with the number of samples each light node takes (s),
when the number of light nodes (m) is linear with the block size.

5.2 Costs and Complexity

A light node has three download costs: 1) the header, which is the CMT root of
size t; 2) the random sampling, and 3) the incorrect-coding proof. In CMT, the
header is the CMT root of size t. The sampling cost can be computed using the
average parity-symbol-sampled Merkle proof size given in (2) to be:

s

(
b

k
+ y (2q − 1 − qr) logqr

k

rt

)
= O(log k) = O(log b), (3)

where b is the size of a block, and the equations hold due to that 1) s is a
constant; and 2) b/k is the base layer symbol size, which is a constant. The
incorrect-coding proof size can be similarly computed as

(d − 1)b
k

+ dy(q − 1) logqr

k

rt
= O(log b), (4)

where the first term is the size of d−1 coded symbols, and the second term is the
size of d Merkle proofs. Finally, since the hash-aware peeling decoder decodes
one coded symbol using d−1 coded symbols in one parity equation, the decoding
complexity is O(1) per symbol and, thus, is O(b) in total.

5.3 Choice of Parameters

Our first key parameter is the coding rate r. A smaller r means more parity
symbols and thus a potentially larger undecodable ratio and less sampling. But
it will also increase the height of CMT, the Merkle proof size, and the decoding
complexity. For a reasonable tradeoff, we choose r = 0.25.

Given r, the next two parameters we should decide are a pair (c, d) that
satisfies c/d = 1 − r = 0.75 for the random LDPC code generator, where d is
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Table 2. The critical undecodable ratio α∗ as a function of d

d 4 8 12 16 20

α∗ 0.0795 0.124 0.111 0.0981 0.0877

the maximum parity equation size. This gives us c = 0.75d and requires us to
find the critical undecodable ratio of the ensemble as a function of d, which is
provided in Table 2 based on the analysis in [27].

Evidently, d = 8 maximizes the critical undecodable ratio. In addition, it also
admits a small incorrect coding proof that only requires only 7 coded symbols
and 8 Merkle proofs. As a result, we choose (c, d) = (6, 8).

5.4 How Quickly Does SPAR Settle at a Good Erasure Code?

Due to random code generation, each layer of SPAR eventually settles at a good
code (with an undecodable ratio of at least α∗) after a few bad codes have been
deployed by the system and potentially utilized by malicious block producer to
hide the data. We study the number of such attacks (note that they will never
succeed) and updates before SPAR can settle: intuitively, this number can be
computed as (1 − P (α < α∗))−1 − 1, where P (α < α∗) is the probability that
a randomly generated code has an undecodable ratio smaller than α∗ = 0.124.
Using an upper bound on P (α < α∗) characterized in [27] we can derive the
settlement speed of SPAR as below. We note that most of the layers of CMT
will immediately settle at a good code upon launching. The only exception is
the layer with n = 256, which will settle after 7.7 bad codes, but without any
fraudulent blocks been accepted. The proof is in Appendix B.

Theorem 2. Using the random (6, 8)-LDPC code in Sect. 4.4, the expected num-
ber of bad erasure codes (α < α∗ = 0.124) a CMT layer with n coded symbols
will use before it settles at a good code (α ≥ 0.124) is approximated in Table 3.

Table 3. Number of bad code before settlement.

n 256 512 1024 2048 4096 > 4096

P (α < α∗) 0.886 5.3e-2 2.0e-3 1.3e-3 3.2e-4 <3.2e-4

# bad codes 7.7 0.06 0.002 0.001 0.0003 < 0.0003

6 Implementation for Bitcoin and Experiments

We developed in Rust a Coded Merkle Tree library [2] for Parity Bitcoin [28]
clients (see Appendix C for more details). Our library integrates seamlessly into
the current mainnet implementation, and requires minimal change on the block
data structure (only need to add CMT root to the block header). Note, how-
ever, that this change is incompatible with existing Bitcoin clients. Developing
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a SPAR-protected Bitcoin testnet and a Bitcoin Improvements proposal (for
Bitcoin Core) are ongoing research activities outside the scope of this paper.

We combine the CMT library with the performance analysis in Sect. 5, and
numerically evaluate SPAR’s light node download costs (header, sampling, and
incorrect-coding proof) and full node decoding speed, for a wide range of block
sizes (Table 4), and compare them with the 2D-RS based solution proposed in [9]
using its C++/Python implementation [6,13].

Table 4. Experiment Parameter Configuration

Parameter Value Notes

Symbol size (B) 256

Base layer k 212 to 222 Block size is thus 1 to 1024 MB

Coding rate r 0.25 Thus n = 4k

Hash size (B) 32 SHA256 is used

Target confidence 99% Each light node keeps sampling until it is 99% confident

SPAR specific parameters

LDPC sparsity (6, 8) Each parity equation has at most 8 coded symbols

Stopping ratio β 0.124 0.124n symbols must be hidden to prevent decoding

Batching factor q 8 CMT layer size reduction rate is qr = 2 as ordinary trees

CMT root size t 256 hashes The same as 2D-RS header size for 1MB blocks

Header (Fig. 4(a)): A SPAR light node only downloads fixed t = 256 hashes
in header, whilst 2D-RS requires 1 + 2

√
n. Thus, the header download cost of

SPAR becomes much smaller than 2D-RS with growing block size. For a 64MB
block, the cost is only 0.01% of the block size in SPAR, but is 0.1% in 2D-RS.

Incorrect-Coding Proof (Fig. 4(b)): A SPAR incorrect-coding proof only
involves d−1 = 7 coded symbols and their Merkle proofs, whilst 2D-RS requires√

k. Thus, the incorrect-coding proof download cost of SPAR becomes much
smaller than 2D-RS with growing block size. For a 64MB block, the cost is only
0.051% of the block size in SPAR, but is 0.48% in 2D-RS.

Sampling Cost (Fig. 4(c)): 2D-RS has a higher undecodable ratio of 25% com-
pared to SPAR’s 12.4%. Thus, for 99% confidence, s = 17 distinctive samples
are enough in 2D-RS, whilst SPAR requires s = 35 if the adversary is strong
enough to find, with NP-hardness, the size-0.124n stopping set. But under a
realistically weak adversary that randomly selects CMT symbols to hide, SPAR
only requires s = 8 because our LDPC ensemble can tolerate an average of 47%
missing symbols. On the other hand, the over-sampling of each layer increases
SPAR’s sampling cost. Thus, although both techniques offer O(log k) sampling
costs that quickly reduces with growing block size, the cost of SPAR is about
10∼16 (resp. 2.5∼4) times of 2D-RS under strong (resp. weak) adversaries. How-
ever, in practice, one can further reduce SPAR sampling cost by increasing the
header size t, thus reducing the size of the Merkle proof of each symbol.
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(a) Header cost (b) Incorrect-coding proof size

(c) Sampling cost (d) Decoding speed

Fig. 4. Communication costs and decoding speed of SPAR and 2D-RS.

Decoding Speed (Fig. 4(d)): SPAR’s sparse and binary encoding, at its current
implementation level is already over 10 times faster than 2D-RS for all the tested
block sizes.

7 Conclusion and Discussions

By iteratively applying a special ensemble of LDPC codes to every layer of a
Merkle tree and batching the hashes of each coded layer into the data symbols
of the next layer, we invented a novel hash accumulator called coded Merkle
tree (CMT). Built upon CMT, we proposed a novel data availability verification
system called SPAR, which allows the availability and integrity of the entire tree
to be checked at constant costs.

SPAR can play a key role in scaling blockchain systems that incorporate
light nodes because it empowers these nodes with real-time verification of data
availability and integrity at small and constant costs. SPAR can also be used to
scale the communication of sharded blockchain systems (e.g., [20,21,24]), where
full nodes of one shard operate as light nodes of other shards, as SPAR allows
them to efficiently check the availability and integrity of blocks in other shards.

Integrating SPAR into existing blockchain systems requires minimum changes
and no extra bandwidth consumption. An honest block producer only needs to
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broadcast the original data block as usual and attach the CMT root in the block
header. This is sufficient for other full nodes to reproduce the CMT and offer
sampling services for light nodes. Our library for CMT in Rust for Parity Bitcoin
clients maintains the same API as the standard Merkle tree module. Noting
that classic Merkle trees are indeed special CMTs with coding rate r = 1 and
batching factor q = 2, our library readily replaces the standard module and is
backward compatible.

A Proof of Theorem 1

Proof. Soundness: Soundness fails if a light node thinks that a block is available,
and no full node is able to reconstruct the entire coded Merkle tree. We note that
the reconstruction fails if any layer of the CMT cannot be recovered correctly.
Let us focus on a single layer i with ni coded symbols and an undecodable ratio
of αi, and assume that the malicious block producer hides α fraction of the coded
symbols (and does not respond to requests for those symbols).

Case-1: Consider the case of α ≥ αi. The probability of soundness failure
for a node is given by the probability that a node receives all s symbols that it
samples, this probability is (1 − α)s ≤ (1 − αi)s ≤ (1 − αmin)s.

Case-2: Consider the case of α < αi. The soundness failure occurs if a full
node cannot decode the entire block or is unable to furnish a incorrect-coding
proof. The full node will fail to accomplish these tasks only when it is able to
receive fewer than 1−αi fraction of symbols. Define Zi to be the total number of
distinct symbols collected by the honest full node (Zi ∈ {0, 1, .., ni}). Let m be
the total number of light nodes, then m · s is the total number of i.i.d. samples.
Now we have

P (Zi ≤ (1 − αi)ni) ≤
(

ni

αini

)
(ni − αini)ms

nms
, (5)

≤ 2H(αi)ni(1 − αi)ms, (6)

= 2H(αi)ni−ms log 1
1−αi ≤ 2

max
i

[
H(αi)ni−ms log 1

1−αi

]
. (7)

Here (5) is by counting the number of sampling instances that provide less then
(1−αi)ni distinct symbols. H(p) = p log 1

p +(1−p) log 1
1−p is the binary entropy

function. It is apparent that we would need m large to make the above bound
vanish exponentially with s.

The probability of soundness failure is smaller than the maximum probability
of the two cases.

Agreement: We will argue here that soundness implies agreement for our protocol.
As defined, soundness ensures that a honest full node is able to decode the block.
Once a honest full node decodes the block, it will let all light nodes know that it
has that block. The light nodes have either already accepted the block or have
“pend”-ed the block (the light nodes could not have rejected the block since it is
a valid block). The light nodes that pended the block will query with the honest



Coded Merkle Tree: Solving Data Availability Attacks in Blockchains 131

full node and eventually accept the block. Thus soundness implies agreement
(since now every light node agrees on the availability of the block). �

�

B Proof of Theorem 2

Based on the proof of Theorem 8 of [27], we know that for an (n, k) LDPC
code that is randomly chosen from a (c, d) ensemble, described in Sect. 4.4, the
probability that the stopping distance of the code is smaller than α∗n is upper-
bounded by

P (αn < α∗n) ≤ min

{
inf

0<δ<α∗

(
n(α∗ − δ)e

n max
θ∈[δ,α∗]

γ(θ)
+

δn−1∑
i=1

Ii

)
, 1

}
(8)

where for c = d(1 − r), h(θ) = −θ log θ − (1 − θ) log(1 − θ), and x0 as the only
positive solution to x(1+x)d−1−x

(1+x)d−dx
= θ,

γ(θ) � c

d
log

(
(1 + x0)d − dx0

xθd
0

)
− (c − 1)h(θ),

Ii �
(

n

i

)(n( c
d+ δc

2 − δc
d )

� ic
2 �

)
(2d − 3)ic(

nc
ic

) .

For α∗ = 0.124, the above upper bound for small n (e.g., n = 256) becomes
degenerated (i.e., reduces to the trivial bound of 1). In order to obtain a good
approximation for all the values of n, we approximate the upper bounds on
P (α < 0.124) using a slightly smaller undecodable ratio of 0.116. Then, we
evaluate the upper bounds on P (αn < 0.116n) in (8), for all the considered
values of n in Theorem 2 to obtain the probabilities in the second row of Table 3.

We note that since 0.116 is very close to 0.124, SPAR’s inherent oversampling
of intermediate layers will provide sufficient protection for data availability on
these layers, so that the light node sampling cost will not increase.

C Coded Merkle Tree Library

We developed in Rust a Coded Merkle Tree library [2] for Parity Bitcoin [28]
clients. We modify the data structure of the block header to add a new field
coded merkle roots hashes, which are the hashes of the coded symbols on the
last level of the coded Merkle tree constructed from this block.

To use the Coded Merkle Tree library on a block, we require the following
input parameters from the users:

– BASE SYMBOL SIZE: size of a symbol on the base level, and hence the num-
ber of systematic symbols on the base level.
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– AGGREGATE: number of hashes to aggregate into a symbol on the next level.
– HEADER SIZE: number of hashes stored in the block header. This also decides

the total number of levels in the coded Merkle tree.
– Codes for all levels of coded Merkle tree, in forms of sparse representations

of their parity-check matrices.

Given the above parameters, Coded Merkle Tree implements the following key
functionalities:

– coded merkle roots: construction of the coded Merkle tree from the block
content.

– merkle proof: generating the Merkle proof for any symbol on any level of coded
Merkle tree. By design, this returns a set of symbols on the higher level.

– sampling to decode: sampling symbols on the base level, together with their
Merkle proofs.

– run tree decoder: decode the entire coded Merkle tree level by level from the
roots. Each level is decoded by running a hash-aware peeling decoder, using
the decoded symbols on the previous level as the hash commitments.

– generate incorrect coding proof: 1) when a coding error is detected, this func-
tion returns d − 1 symbols in a parity equation, and Merkle proofs for all d
symbols in that equation; 2) when the peeling process gets stuck before all
symbols are decoded, this function returns the indices of the missing symbols
as a stopping set.
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Abstract. This paper proposes a decentralized netting protocol that
guarantees the privacy of the participants. Namely, it leverages the
blockchain and its security properties to relax the trust assumptions and
get rid of trusted central parties. We prove the protocol to be optimal
and we analyze its performance using a proof-of-concept implemented on
top of Hyperledger Fabric.

Keywords: Decentralized netting · Payment systems · Blockchain ·
Zero-knowledge proofs

1 Introduction

Currently, banks settle their liabilities to each other through inter-bank payment
systems generally managed by their country’s central bank. The central bank
opens an account for the local banks in its jurisdiction and enforces that each
account maintains a certain level of liquidity to accommodate future settlements.
Upon receiving a payment instruction, say bank A transfers x home-currency
to bank B, the central bank deducts x from A’s account while adding x to B’s
account.

Historically, inter-bank payments were settled via (end of day) netting sys-
tems, but as the volume and the value of transactions increased central banks
became wary of the risks involved in deferred net settlement systems. Now, cen-
tral banks favor real-time gross settlement (RTGS) systems. In RTGS, payment
instructions are settled individually and immediately at their full amount. How-
ever, the benefit of immediate finality incurs high liquidity costs on the banks.
The liquidity demands in RTGS systems are enormous; in fact, the daily transfer
volume in typical inter-bank payment systems could be as large as a substantial
fraction of the annual GDP [1]. Figure 1 on the left illustrates a simple scenario
c© International Financial Cryptography Association 2020
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Fig. 1. Illustration of a gridlock scenario and netting procedure

in which participating banks are not able to settle their payments individually
due to insufficient liquidity, bringing the system to a halt known as gridlock. To
resolve gridlocks, banks combine RTGS with liquidity saving mechanisms (LSM),
of which netting is the most effective one. Figure 1 on the right illustrates how
triple-lateral netting helps resolve system gridlock.

Traditionally, central banks are in charge of resolving gridlocks and guaran-
teeing that the system runs smoothly without interruptions. Essentially, they
operate a centralized payment queue to which every participating bank submits
its payment instructions, and perform multilateral netting. That is, the process
of offsetting the value of multiple payments due to be exchanged between the
banks. After netting, the central banks settle the net liability of the participants
without overdraft. In addition to performing netting correctly, central banks
are trusted to preserve the confidentiality of payment instructions coming from
each bank. While placing such trust in central banks may be justified, it comes
with great liability risk for them. Furthermore, in the case of cross-border multi-
currency transfer, it is challenging to find a trusted mediator to settle payments.
This is why central banks are actively looking for alternatives to centralized
netting and settlement.

Thanks to the emergence of Bitcoin [2] and the ensuing interest in blockchain
technology, financial institutions have been investigating avenues to make decen-
tralized inter-bank payment systems a reality, e.g., Project Jasper [3], Project
Ubin [4]. However, while these two projects succeed in removing the single point
of failure and achieving immediate and final settlement without the need for
transaction reconciliation, their prototype systems are missing the crucial func-
tionality of decentralized multilateral netting, making them less practical.

We recall here that a multilateral netting process is viable, if it is correct and
fair. Correctness ensures that (i) when the sender’s account is debited x dollars,
the receiver’s account is credited x dollars; and (ii) participants will not pay
more than their current balance plus their allowed credit. These two properties
guarantee that the total liquidity in the system remains the same before and after
settlement. Fairness on the other hand, captures the requirement that netting
should not favor any participant in terms of payment settlement priority, rather
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it should reach an overall optimal netting strategy, i.e. either the maximum
number of instructions settled, or the maximum amount of payments settled.

In the case of centralized netting [5–7], correctness and fairness are easy to
satisfy as the central party sees all payment instructions and can perform the
netting and update the banks’ accounts accordingly. In contrast, meeting these
requirements in a decentralized payment system is a real challenge. Without a
trusted central party, participants might be reluctant to advertise their payment
instructions for everyone to see. This means that in a decentralized netting pro-
tocol, participants should see only their own payment instructions and based
on those decide which payments to settle first. An ill-designed protocol however
could allow a malicious participant to choose to settle only the payments that
increase her current liquidity balance to the detriment of others’. Therefore, the
best approach to design decentralized netting solutions is to enable each partic-
ipant to solve their own net settlement locally, and have in place a mechanism
to verify that the local settlements are both fair and correct.

In this paper, we propose a solution that leverages the blockchain to imple-
ment decentralized netting without sacrificing the privacy of the participants. It
should be noted that we are not the first to propose leveraging the blockchain for
netting. Recently, Wang et al. [8] introduced a blockchain-based netting solution
for gridlock, but it differs from ours in two aspects: (i) it relies on a central party
to check the netting result and make sure that the total liquidity is preserved;
and (ii) while it hides the individual payment amount of the involved banks, it
reveals the net amounts that should be paid.

Contributions. The contributions of this paper are two-fold:

– A first-of-its-kind decentralized netting protocol that does not require any
central party but still guarantees correctness and fairness. The proposed pro-
tocol collects the local settlements of the participants and feeds them to a
smart contract running on the blockchain to reach a globally optimal, correct
and fair settlement.

– An enhanced privacy-preserving extension that further protects the confi-
dentiality of the payment amounts. In this extension, payment amounts are
encoded as homomorphic Pedersen commitments and zero-knowledge proofs
are provided to the smart contract to verify the correctness of the local set-
tlement in a privacy-preserving manner.

The remainder of the paper is organized as follows. In Sect. 2, we formulate
our problem followed by the proposed decentralized netting protocol without
privacy. In Sect. 3, we give a detailed description of how to enhance our protocol
with privacy. In Sect. 4, we construct a blockchain-based payment system and
analyze its security properties. In Sect. 5, we present an implementation of the
protocol on Hyperledger Fabric and discuss our evaluation results. We conclude
our paper in Sect. 6 with possible future work.
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2 Decentralized Netting Protocol

The general netting problem is NP complete and can be solved only approxi-
mately using the algorithms in [6,7]. These algorithms often yield multiple pos-
sible solutions instead of the optimal one, hence sacrificing fairness. In practice,
central banks sort payments according to an order determined either by settle-
ment deadlines or by priorities defined by the participants themselves. Payments
with high priority are settled before payments with low priority. These allow cen-
tral banks to find the optimal solution and achieve fairness.

In the remainder of the paper, we restrict ourselves to the problem formula-
tion in [5] that focuses on netting for payments with priority constraints.

Notation. For n ∈ N, let [n] = {1, . . . , n}. For x = [x1, ..., xn],y = [y1, ..., yn],
let x ≥ y denote xk ≥ yk, ∀k ∈ [n]. Let I(·) denote the indicator function, i.e.,
I(b) = 1 if b is true, otherwise I(b) = 0.

2.1 The Netting Problem

Let n be the number of participants in the payment ecosystem and Pi refer to the
ith participant. Let di denote the credit limit of (or the amount of cover money
deposited by) Pi. Let PayOutQi denote the queue containing the outgoing
payment instructions of Pi (i.e., outstanding payments where Pi is the sender):

PayOutQi = [PayOuti,1, ...,PayOuti,mi
] (1)

PayOuti,k = (Reci,k,Amti,k) (2)

Reci,k ∈ {Pj}nj=1,j �=i (3)

Amti,k > 0 (4)

where mi is the number of payment instructions in PayOutQi, Reci,k and
Amti,k are the receiver and amount in payment instruction PayOuti,k, respec-
tively. Let xi,k ∈ {0, 1} be the indicator of whether PayOuti,k will be settled
after netting:

xi,k =
{1 if PayOuti,k will be settled

0 o/w (5)

Let xi
def= [xi,1, ...xi,mi

] and x def= [x1, ...xn]. Given x, we define:

Ti(x) =
mi∑

k=1

xi,k (6)

Si(x) =
mi∑

k=1

xi,kAmti,k (7)

Ri(x) =
n∑

j=1

mj∑

k=1

xj,kAmtj,kI(Recj,k = Pi) (8)
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Ti(x) denotes the number of outgoing payment instructions from Pi that will be
settled after netting, Si(x) denotes the total outgoing amount from Pi and Ri(x)
denotes the total incoming amount to Pi. Let B̂i and B̃i be the ex-ante (before
netting) and ex-post (after netting) balances of Pi, respectively. The relationship
between B̂i and B̃i is given by:

B̃i = B̂i − Si(x) + Ri(x) (9)

The netting problem corresponds to finding the optimal solution that sat-
isfies the following equations:

max
x

n∑

i=1

fi(x) (10)

s.t. B̃i ≥ −di,∀i ∈ [n] (11)

where the liquidity constraint (11) stipulates that if the payments are simul-
taneously settled according to x then the ex-post balances plus credit limit of
each bank has to be non-negative. Here fi(x) can be either Ti(x) for the number
of payments, or Si(x) for the total monetary value settled. We impose the con-
straint that the payment instructions in the outgoing queue can only be settled
in the given priority order:

xi,k+1 ≤ xi,k,∀i ∈ [n],∀k ∈ [mi − 1] (12)

For example, for any j > k, PayOuti,j can not be settled if PayOuti,k is not
settled, implying that xi,j must be 0 if xi,k = 0 . Under these constraints, either
choice of fi(x) leads to the same optimal solution, as proved in [5].

Let h(xi) denote the index of the lowest priority instruction in PayOutQi

that can be settled:

h(xi) =
{0 if xi,k = 0,∀k ∈ [mi]

maxk kI(xi,k = 1) o/w (13)

2.2 Blockchain-Based Decentralized Netting

In the following, we describe our solution for blockchain-based decentralized
netting without privacy.

Each participant is endowed with a system-wide public key and an account
associated with that public key. Each payment instruction submitted to the
blockchain comes with a signature of its sender and a priority order. The pay-
ment smart contract verifies the signature and settles the payment instruction
immediately if there is enough balance in the sender’s account and no other
higher priority payment instruction in the outgoing queue. Otherwise, the pay-
ment instruction is added to the sender’s outgoing queue to be settled later.

Netting of payment instructions is triggered either periodically or the moment
the total queue size reaches a certain threshold defined by the system adminis-
trator. The netting process iterates through multiple rounds until convergence.
Each round consists of two operations:
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Algorithm 1. Blockchain-based Decentralized Netting
1: Inputs: B̂i, di,PayOutQi,∀i ∈ [n] // B̂i is ex-ante balance
2: Outputs: x // Indicator of payments that can be settled

3: Initialization: t ← 1, x0
i,k ← 1,∀i ∈ [n], k ∈ [mi], l

0 =
∑n

i=1 mi

4: repeat
5: At each Pi: calculate the local proposal xt for round t:
6: Set xt ← xt−1, zi ← h(xt

i) // Include all payments from last round

7: While zi ≥ 0 // Iterate until liquidity constraint is satisfied

8: B̃∗
i = B̂i − Si(x

t) +Ri(x
t) // Calculate ex-post balance

9: If B̃∗
i ≥ −di // Liquidity constraint is satisfied

10: break
11: Else
12: xt

i,zi
← 0, zi ← zi − 1 // Remove lowest priority payment

13: If zi = mi

14: Submit the proposal {xt
i, B̃

∗
i , ∅} to the ledger

15: Else
16: B̃′

i ← B̃∗
i − Amti,zi+1 // Calculate hypothetical balance

17: Submit the proposal {xt
i, B̃

∗
i , B̃

′
i} to the ledger

18: Smart Contract: Upon receiving proposals from N participants for round t

19: for i=1,...,n
20: Verify Priority Constraint: xt

i,k+1 ≤ xt
i,k,∀k ∈ [mi − 1]

21: Verify Convergence Constraint: xt
i,k ≤ xt−1

i,k , ∀k ∈ [mi]

22: Verify Liquidity Constraint: B̃∗
i ≡ B̂i − Si(x

t) +Ri(x
t) and B̃∗

i ≥ −di
23: If zi < mi

24: Verify Optimality: B̃′
i ≡ B̃∗

i − Amti,zi+1 where zi = h(xt
i) and B̃′

i < −di
25: end
26: Calculate lt =

∑n
i=1

∑mi
k=1 x

t
i,k // total number of payments to be settled

27: If lt ≡ lt−1,
28: Exit x ← xt

29: Else
30: t ← t+ 1, continue to next round.

31: until converged

32: return x

1) Participant Proposal: Each participant Pi calculates her nettable set,
which corresponds to the maximum number of payments that can be set-
tled from Pi’s outgoing queue without violating the liquidity and the pri-
ority constraints, see Algorithm 1 lines 5 to 12. The calculation also takes
into consideration the incoming payments from the aggregate nettable set of
the previous round. Note that in the first round, all incoming payments are
included. Pi then submits her nettable set and to-be-post-balance (i.e. new
balance once the payments in the nettable set are finalized). Furthermore,
Pi proves the optimality of her nettable set by including the highest priority
payment that cannot be resolved in the current proposal and showing that
the corresponding hypothetical to-be-post-balance is less than −di, cf. line 16.
2) Smart Contract Verification and Net Payment Aggregation: Upon
receiving proposals from all participants, the smart contract verifies whether
each proposal (i) satisfies the priority and liquidity constraints and (ii)
is optimal, check lines 20 to 24. If the verification succeeds, then the individual
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nettable sets of all participants are aggregated to obtain the aggregate nettable
set for this round.

The smart contract next checks whether the new aggregate nettable set is the
same as the one in the previous round. If so, then netting process has converged
and the smart contract concludes its execution by returning the aggregate net-
table set, cf. lines 27 and 28. If the aggregate nettable set is empty, we call it
a DEADLOCK as no payments can be settled on a net basis. In the case of a
DEADLOCK, the participants are unable to settle any of the queued payments
unless new liquidity is injected into the system.

If all participants are honest, then this decentralized netting protocol achieves
the global optimal solution for the netting problem.

Theorem 1. Algorithm1 always finds a unique and optimal solution for prob-
lem defined by Eqs. (10) to (12). In addition, the solution is independent of the
choice of the objective function as either maximum total value settled or maxi-
mum number of payments settled.

The proof of Theorem 1 is deferred to AppendixA.

3 Decentralized Privacy-Preserving Netting

Although Algorithm 1 is optimal, it does not protect the privacy of system par-
ticipants. All payment instructions are posted to the ledger in the clear. To
preserve the privacy of the participants, we enhance our decentralized netting
protocol with Pedersen commitments [11] and zero-knowledge range proofs [12].

3.1 Pedersen Commitments for Privacy-Preserving Ledger

Instead of posting account balances and payment amounts to the ledger in the
clear, we obfuscate them using Pedersen commitments. These commitments are
hiding and binding : meaning that they do not reveal any information about the
committed values and that they cannot be opened to different values later.

Let G be a cyclic group of large prime order p and let g and h be two
random generators of G. A Pedersen commitment to a value v ∈ Fp is computed
as com(v, r) = gvhr, where r ∈ Fp is a randomly-chosen blinding factor. By
construction, Pedersen commitments are additively homomorphic:

com(v1, r1)com(v2, r2) = com(v1 + v2, r1 + r2)

On the ledger, the account balance B̂i of Pi is stored as com(B̂i, r̂i) while
the amount Amti,k of the k-th payment message in Pi’s outgoing queue is stored
as com(Amti,k, ri,k), where r̂i and ri,k,∀i ∈ [n], k ∈ [mi] are randomly-sampled
in Fp. We assume that the sender transmits the payment amount (Amti,k) and
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Algorithm 2. Decentralized Privacy-Preserving Netting
1: Public Inputs: com(B̂i, r̂i), di,PayOutQi, ∀i ∈ [n]
2: Outputs: x // Indicator of payments that can be settled
3: Initialization: t ← 1, x0

i,k ← 1, ∀i ∈ [n], k ∈ [mi], l0 =
∑n

i=1 mi

4: repeat
5: At each Pi: calculate the local proposal xt for round t:
6: xt ← xt−1, zi ← h(xt

i) // Include all payments from last round
7: While zi ≥ 0 // Iterate until liquidity constraint is satisfied
8: B̃∗

i = B̂i − Si(x
t) + Ri(x

t) // Calculate ex-post balance
9: If B̃∗

i ≥ −di // Liquidity constraint is satisfied
10: break
11: Else
12: xt

i,zi ← 0, zi ← zi − 1 // Remove lowest priority payment

13: Calculate com(B̃∗
i , r̃∗

i ) ← com(B̂i, r̂i)com(Si(x
t), r′

i)
−1com(Ri(x

t), r′′
i )

14: Construct zkrpII proof π(B̃∗
i ) // zero-knowledge range proof

15: If zi = mi

16: Submit proposal
{
xt
i, com(B̃∗

i , r̃∗
i ), π(B̃∗

i ), ∅, ∅}
to ledger

17: Else
18: com(B̃′

i, r̃
′
i) ← com(B̃∗

i , r̃∗
i )com(Amti,zi+1, ri,zi+1)

−1

19: Construct zkrpIII proof π(B̃′
i) // zero-knowledge range proof

20: Submit proposal
{
xt
i, com(B̃∗

i , r̃∗
i ), π(B̃∗

i ), com(B̃′
i, r̃

′
i), π(B̃′

i)
}

to ledger
21: Smart Contract: Upon receiving proposals from N participants for round t
22: for i=1,...,n
23: Verify Priority Constraint: xt

i,k+1 ≤ xt
i,k, ∀k ∈ [mi − 1]

24: Verify Convergence Constraint: xt
i,k ≤ xt−1

i,k , ∀k ∈ [mi]
25: Verify Liquidity Constraint:
26: com(B̃∗

i , r̃∗
i ) ≡ com(B̂i, r̂i)com(Si(x

t), r′
i)

−1com(Ri(x
t), r′′

i )
27: and VerifyII(π(B̃∗

i ), com(B̃∗
i , r̃∗

i )) ≡ 1
28: If zi < mi

29: Verify Optimality:
30: com(B̃′

i, r̃
′
i) ≡ com(B̃∗

i , r̃∗
i )com(Amti,zi+1, ri,zi+1)

−1 where zi = h(xt
i)

31: and VerifyIII(π(B̃′
i), com(B̃′

i, r̃
′
i)) ≡ 1

32: Calculate lt =
∑n

i=1

∑mi
k=1 xt

i,k // Total number of payments to be settled
33: If lt ≡ lt−1,
34: Exit x ← xt

35: Else
36: t = t + 1, continue to next round.
37: until converged
38: return x

randomness (ri,k) to the receiver privately. Thanks to the homomorphic prop-
erty of Pedersen commitments, we are able to translate the plain-text balance
calculation in Eq. (7) to (9) into an obfuscated calculation as follows:

com(Si(x), r′
i)

def=
mi∏

k=1

com(Amti,k, ri,k)xi,k (14)
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com(Ri(x), r′′
i ) def=

n∏

j=1

mj∏

k=1

com(Amtj,k, rj,k)xj,kI(Recj,k=Pi) (15)

com(B̃i, r̃i)
def= com(B̂i, r̂i)com(Si(x), r′

i)
−1com(Ri(x), r′′

i ) (16)

Note that Pedersen commitments support positive integers only. However,
account balances in our solution may become negative in the case of an overdraft.
If we assume that the total liquidity in the system is less than some integer U
and that 2U < p, then Pedersen commitments can be used to handle all integers
in (−U,U) by simply mapping negative numbers w ∈ (−U, 0) to w + p > p/2.
With this mapping, we ensure that for all v ∈ (0, U), com(v, r1)com(−v, r2) =
com(v, r1)com(p − v, r2) = com(0, r1 + r2). For ease of notation, we just write
negative integers as they are, i.e., w ∈ (−U, 0) instead of w + p.

3.2 Zero Knowledge Range Proofs

Since both balances and payment amounts are hidden, smart contracts cannot
rely only on the information in the ledger to verify the correctness and optimality
of the participant proposals. We therefore require that each payment instruction
comes with a zero knowledge proof that the payment amount is less than U
and the participant proposals carry zero knowledge proofs that shows that the
liquidity and optimality constraints are not violated. More precisely, participants
are asked to produce three types of zero-knowledge range proofs (zkrp for short).

Definition 1. A type I zero knowledge range proof zkrpI is defined as π(Amti,k),
with verification function VerifyI

(
π(Amti,k), com(Amti,k, ri,k)

)
= 1 if 0 ≤

Amti,k < U ; VerifyI
(
π(Amti,k), com(Amti,k, ri,k)

)
= 0 otherwise.

This proof ensures that the amount in each payment instruction is non-
negative and less than the total liquidity U . This circumvents attacks in which
a participant submits a payment instruction with a negative amount in the aim
of stealing liquidity from the prospective receiver. Any payment with negative
amount should be rejected and considered an attack.

Definition 2. Let B̃∗
i denotes Pi’s to-be-post-balance in her proposal, at the

tth iteration, defined in Eq. (9). A type II zero knowledge range proof zkrpII is
defined as π(B̃∗

i ), with verification function VerifyII
(
π(B̃∗

i ), com(B̃∗
i , r̃∗

i )
)

= 1 if
−di ≤ B̃∗

i < U ; VerifyII
(
π(B̃∗

i ), com(B̃∗
i , r̃∗

i )
)

= 0 otherwise.

This proof allows anyone to check that the Pi’s proposal does not violate the
liquidity constraint.

Definition 3. Let B̃′
i denotes Pi’s hypothetical to-be-post-balance in her pro-

posal, at tth iteration, defined in line 16 of Algorithm1. A type III zero knowledge
range proof zkrpIII is defined as π(B̃′

i), with verification function VerifyIII
(
π(B̃′

i),
com(B̃′

i, r̃
′
i)

)
= 1 if −U < B̃′

i < −di; VerifyIII
(
π(B̃′

i), com(B̃′
i, r̃

′
i)

)
= 0 otherwise.
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This proof essentially checks whether Pi’s proposal in round t is optimal; i.e. Pi

is not holding back payments that can be settled.
We note that all of these zero-knowledge range proofs can be implemented

using the schemes in either [12] or [13]. For space limitations, details are omitted.

3.3 Solution Description

Algorithm 2 describes our privacy-preserving decentralized netting.
A payment transaction in Algorithm2 includes the priority of the payment

and the identity of the receiver in the clear, the amount however is obfuscated
using a Pedersen commitment. The transaction also contains a zero-knowledge
range proof that shows that the amount in Pedersen commitment does not exceed
the total liquidity U . The sender of a payment signs her transaction revealing
thus, her identity and submits it to the ledger. Moreover, the sender transmits
the opening of the Pedersen commitment to the intended recipient through a
secure channel.

Before the netting session starts, each participant Pi constructs her out-
going payment message queue PayOutQi = [PayOuti,1, ...,PayOuti,mi

] with
PayOuti,k = (Reci,k, com(Amti,k, ri,k)),∀k ∈ [mi]. We assume that Pi is associ-
ated with an ex-ante balance stored in the ledger as com(B̂i, r̂i).

In each round t, Pi submits a nettable set xt
i to the network. She also pro-

vides a zero-knowledge range proof that her to-be-post-balance B̃∗
i encoded in

commitment com(B̃∗
i , r̃∗

i ) is in the range [−di, U). Additionally, Pi provides a
zero-knowledge range proof that the hypothetical to-be-post-balance B̃′

i hidden
in commitment com(B̃′

i, r̃
′
i) is less than −di. The hypothetical to-be-post-balance

is calculated by including the payment message with the highest priority that
cannot be settled (i.e. message with index h(xt

i) + 1 in PayOutQi).
It is easy to see that this protocol hides the payment amounts and account

balances and guarantees the correctness of nettable set selection. Furthermore,
according to Theorem 1, the proposed protocol also achieves fairness.

3.4 Hiding Senders and Receivers

In the current design, only the account balances and payment amounts are hid-
den using commitments, while the identities of senders and receivers are dis-
closed. One way to hide these is to express a payment instruction as an n-sized
commitment vector, which commits to the payment amount (positive number)
for the receiver, and the negative of payment amount for the sender and zero for
other participants. This is the approach adopted by [9]. Although this approach
successfully hides the identities of sender and receiver, it is not scalable: the
transaction size, zero-knowledge proof generation and verification times are all
proportional to the size of the commitment vector (i.e. the number of partici-
pants). Alternatively, participants can inject zero-valued payment instructions to
random receivers in the network. These fake payment instructions help disguise
the actual instructions. The frequency of these fake payments can be decided
based on a trade-off between performance and the desired privacy level.
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Fig. 2. The detailed decentralized netting protocol illustration

4 Payment System Construction and Security Analysis

4.1 Blockchain-Based Payment System

System Participants. We assume that all n participants P1, ..., Pn have peers
running on the blockchain network. We conflate the participants with their peers.
We also assume that there is a system administrator that initializes the partici-
pants’ accounts at setup time.

Participant Accounts. Each participant has an account stored in the ledger.
The account is addressed with the participant’s public key and its balance is
encoded in a Pedersen commitment. When the system is first bootstrapped, the
administrator initializes each account by computing a Pedersen commitment
reflecting the current balance. The administrator communicates the opening of
each Pedersen commitment to the corresponding participant, so that the latter
can submit payment instructions. To counter front-running attacks1, the account
of each participant is locked the moment she joins the netting session and then
unlocked once the netting session ends.

Payment Instructions and Gross Settlement. Each payment instruction
identifies the sender and the receiver and includes a Pedersen commitment to the
payment amount and a zero-knowledge proof that the amount is non-negative.
If the sender has enough liquidity to settle the payment, then she finalizes her
transaction (via gross settlement) immediately by submitting to the network a
zero-knowledge range proof that her updated account balance, by deducting the
payment amount from the current account balance, is non-negative. The network

1 These attacks send a payment instruction to change account balances while netting
is taking place to invalidate the range proofs computed prior to the update.
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verifies the zero-knowledge proof, updates the sender and receiver’s account bal-
ance using the homomorphic property of Pedersen commitments and marks the
payment instruction as settled. Otherwise, the payment instruction is stored in
the sender’s outgoing queue based on priority (and time). We recall that the
sender is required to send to the receiver the opening of the Pedersen commit-
ment. Our protocol assumes that the participants leverage secure channels to
communicate with each other.

Gridlock Resolution and Net Settlement. Gridlock [5] is a situation where
no participant can proceed to settle her outgoing queue using gross settlement,
however, all participants collaboratively may settle their payments simultane-
ously using net settlement. To that end, all participants engage in the decentral-
ized netting protocol depicted in Algorithm2. To facilitate netting, our algorithm
uses a coordinator that acts as a timing service, which initiates netting sessions
and keeps track of timeouts in each round, see Fig. 2.

At first, the coordinator submits a request to the network to start a netting
session. Interested participants respond by sending a request to join the netting
session. A timeout transaction triggered by the coordinator starts the first round
of the netting protocol. In each round, the participants submit proposals as
defined in Algorithm 2 line 16 or 20. At the end of each round (triggered by
the coordinator’s timeout), the blockchain verifies the proposals and aggregates
them to calculate the nettable set for the current round. If the nettable set does
not change from the previous round, then the algorithm has converged. In the
absence of a DEADLOCK, net settlement takes place automatically. Namely,
the blockchain updates all the involved accounts by adding payment amounts
to the receivers’ accounts and subtracting the same payment amounts from the
senders’ accounts. After settlement, the network marks the payment instructions
as settled by removing them from the outgoing queue. If the algorithm has not
converged yet, a new round starts automatically.

4.2 Trust Model

Participants. We assume malicious participants. They may attempt to steal
liquidity from other participants, hide liquidity, manipulate liquidity balances,
provide false proofs and break the privacy of other participants. However, we
assume that if a participant sends a valid payment instruction, then she would
provide the corresponding recipient with the correct Pedersen decommitment.

Shared Ledger. We assume the ledger to be live: valid payment transactions
will eventually be stored in the ledger. It is also assumed to be immutable: once
a transaction is stored in the ledger it cannot be removed or modified. These two
properties ensure that the ledger will always reflect an up-to-date version of the
account balances of the participants. The ledger is available at all times to all
participants in the system to submit their transactions and can be constructed
on a platform using either a crash-tolerant consensus protocol like Hyperledger
Fabric [14], or Nakamoto-like consensus protocol [2] like Ethereum.
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Robustness. The network waits for all participants to submit a proposal in
each round. If the proposal of some participant suffers delays, then our solution
simply times out and excludes all incoming and outgoing payment instructions
of that party. This guarantees that the efforts of honest parties are not wasted.

Security. The security of the underlying blockchain consensus algorithm guar-
antees that the smart contract verifying the payment instructions and the pro-
posals be executed correctly. We recall that the smart contract logic consists of
checking a set of zero-knowledge range proofs that ensure that the system pre-
defined rules and invariant are not violated. Thanks to the soundness property
of zero-knowledge proofs, no participant can make the smart contract accept an
invalid payment transaction or proposal.

5 Implementation

5.1 Proof of Concept Implementation

For evaluation purposes, we implemented an experimental decentralized
blockchain payment system on Hyperledger Fabric 1.2. Our zero-knowledge range
proofs are based on Boneh-Boyen signature [12]. We use the Go’s official BN256
curve [15], a bilinear group with 128-bit security level, to compute Pedersen com-
mitments and range proofs. Our implementation consists of a number of Fabric
chaincode (smart contract) interfaces that combined deliver the functionalities
of payment, netting and settlement. AppendixB lists the main functions we have
implemented and the code could be found at [16]. We set the credit limit to 0 for
all participants and we enforce the priority constraint as defined in Eq. (12). We
ran our experiments on an Ubuntu 16.04 with Linux kernel version of 4.4.0-133
virtual machine, with 32 VCPUs of 2.0 GHZ and 48 GB memory.

5.2 Protocol Evaluation

In our evaluation, a payment message is settled immediately if the sender has
sufficient funds and no other higher priority payment messages are in her out-
going queue. Otherwise, the payment message is added to the outgoing queue
according to its priority. Once a participant receives an incoming payment, she
tries to locally settle as many outgoing payments as possible while respecting
their priorities. At some predefined time, all participants engage in the decen-
tralized netting protocol and conduct a multi-lateral net settlement based on the
netting result. We note that periodical netting improves the settlement ratio of
the payment system, which is defined as the ratio of the settled payment mes-
sages to the total number of messages. In our experiment, we randomly pick a
sender and a receiver for each payment message and we draw the value of the
payment from a Pareto distribution. We call a window the time between the
start of two consecutive netting sessions.



150 S. Cao et al.

Fig. 3. The settlement ratio before and after netting versus number of payment mes-
sages in a window for different initial account balances = 80, 60, 100. Pareto parameter:
Xm = 20, α = 2

Our experiment involves 10 participants and injects different number of pay-
ment messages per window into the system. Figure 3 plots the settlement ratio
before and after running the netting protocol against the number of payment
messages, for different initial account balances. The more payment messages we
inject, the more netting improves the settlement ratio. It is intuitive that as the
account balance increases, the probability of a gridlock decreases and the settle-
ment ratio before netting improves. In a practical setting, e.g. we want to keep
the settlement ratio always above 60% (horizontal line), netting must take place
for every 200, 500 and 1200 messages for initial account balance of 60, 80 and 100
respectively. As the initial account balance decreases, netting must take place
more frequently to keep the settlement ratio high. Figure 4 shows the average
number of rounds to reach convergence versus the number of payment mes-
sages for different initial account balances. As the number of payment messages
increases in a window, it takes more rounds to reach convergence (the longer is
the window); as the account balance decreases, it takes slightly longer to reach
convergence. However, the total number of rounds increases only logarithmically.

Besides the Boneh-Boyen signature (BBS) based range proof, we also imple-
mented another variety: Borromean ring signature (BRS) based proof [10] and
compared their performances. We used the elliptic curve secp256k1 [18] for BRS-
based range proof. Table 1 compares the time to generate and verify the zero-
knowledge range proofs for different ranges using different proof methods. Table 1
also compares the size of various proofs, which is proportional to log(L), with
L being the size of the range. Our implementation shows that BRS-based range
proofs have better performances and slightly smaller proof size than BBS-based
range proofs.
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Fig. 4. The total number of rounds to reach convergence versus number of payment
messages per window for different initial account balances = 80, 60, 100. Pareto param-
eter: Xm = 20, α = 2

Table 1. Creation and verification time and proof size of various components

Component Prove Verify Size

BBS [0, 104] 249 ms 363ms 2624B

BBS [0, 108] 485 ms 724ms 4928B

BBS [0, 1016] 963 ms 1420ms 9536B

BRS [0, 104] 17 ms 22 ms 1664B

BRS [0, 108] 30 ms 40 ms 3360B

BRS [0, 1016] 58 ms 83 ms 6688B

6 Conclusion

This paper presents a possible approach to design a truly-decentralized netting
algorithm without compromising any security or privacy requirement. The pro-
posed solution is optimal while still being relatively efficient as the evaluation
results show. As a future work, we plan to 1) evaluate our protocol using more
efficient zero-knowledge range proofs e.g. Bulletproofs [13] and 2) explore decen-
tralized solutions for more general netting problems.
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A Proof of Optimality

We first prove for fi = Ti(x), then we show the result is invariant to the choice
of fi. Without loss of generality, we also assume di = 0,∀i to simplify proof
notation. Let m = [m1,m2, . . . ,mn]� and T = [T1, T2, . . . , Tn]� ∈ R

n. The
problem defined by Eqs. (7) to (12) can be rewritten as

max
0≤T≤m

n∑

i=1

Ti (17)

s.t. B̃i
def= B̂i − Si(Ti) + Ri(T) ≥ 0, ∀i ∈ [n] (18)

Si(Ti)
def=

Ti∑

k=1

Amti,k (19)

Ri(T) def=
n∑

j=1

Ti∑

k=1

Amtj,kI(Recj,k = i) (20)

where 0 ≤ T ≤ m stands for 0 ≤ Ti ≤ mi,∀1 ≤ i ≤ n. Note that the definitions
of Si(Ti) and Ri(T) above implicitly model the constraints defined in (12) for
each participant i. In other words, if there are Ti payments settled for participant
i, Si(Ti) imply that they must be the first Ti payments in Qi. Let Tt denote the
value of T at the tth iteration of Algorithm 1. In addition, T0 is set to m for
initialization. Then Algorithm1 essentially becomes

– Initialization: T0 def= m
– Repeat following steps

• Calculate Ri(Tt),∀i ∈ [n]
• ∀i ∈ [n] find

T t+1
i = argmaxT

{
T ∈ [mi]

}
(21)

such that

B̂i − Si(T t+1
i ) + Ri(Tt) ≥ 0 (22)

xi,k+1 ≤ xi,k,∀k ∈ [mi − 1] (23)

• If Tt+1 = Tt, stop. Otherwise, continue the loop.

The decentralized netting protocol is guaranteed to find the optimal solution. To
prove this, we first prove that line 6–12 in Algorithm1 is equivalent to Eqs. 21–23
above.

By the exit condition, we have B̃t+1
i ≥ 0. Therefore we could construct the

following case, where

B̃t+1
i = 0 =⇒ B̂i − Si(T t+1

i ) + Ri(Tt) = 0 (24)
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Suppose there exists another optimal solution Ti > T t+1
i and

B̃T
i = B̂i − Si(Ti) + Ri(Tt) (25)

Since

Si(Ti) =
Ti∑

k=1

Amti,k > Si(T t+1
i ) =

T t+1
i∑

k=1

Amti,k (26)

it implies that
B̃T

i < B̃t+1
i = 0 (27)

Equation 27 clearly violates the non-overdraft condition. Therefore such T does
not exist and T t+1

i is the maximum value that can be achieved at t+1th iteration.
Furthermore, we have

h(xt+1
i ) = max

k
(I(xt+1

i,k ) = 1) (28)

h(xt
i) = max

k
(I(xt

i,k) = 1) (29)

In view of line 12 in Algorithm1, the above two equations imply that

h(xt+1
i ) < h(xt

i) =⇒ xt+1
i,k < xt

i,k (30)

=⇒ T t+1
i < T t

i (31)

We note that the decentralized netting protocol starts with all the payment
in queue and removes current invalid payments for each deficient participant.
The optimality of Ti at each iteration plus the monotonicity of Ti over iterations
guarantee that the first feasible solution will also be the optimal solution and it
is unique.

Next, we show its invariance. If there is only one feasible solution, then it
also achieves the maximum total value and number of payments. If there are
two or more feasible solutions, the monotone decreasing of Ti imply that any
other feasible solution after the first one contains same or fewer payments for
each participant and thus less value. This completes the proof.

B Functions of the Smart Contract

In Table 2, we describe the detailed functions of our implemented smart contract.
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Table 2. Functions and logic of smart contract

Functions Logics

mintAccount Smart contract initializes each participant’s account
with commitments (cmb = gbhr) to their balances (b)
and verifying zkrp (U > b ≥ 0)

addMessage Smart contract adds a payment message to the system
with commitment (cma = gahr) to payment amount (a)
and verifying zkrp (U > a ≥ 0)

grossSettlement Smart contract settle the first payment in the outgoing
queue, update account balance (cm′

b = cmb − cma) and
verify zkrp (U > b′ = b − a ≥ 0)

proposeNettableSet Smart contract update a participant’s gridlock proposal,
verifying two zkrps (refer to the protocol)

tallyGridlockProposal Smart contract calculate and check the new global
nettable set. If it is the same as previous round, the
gridlock resolution protocol converges

netSettlement Smart contract settle all payment messages in the
nettable set and update all parties’ account balances for
a successful gridlock resolution
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6. Güntzer, M., Jungnickel, D., Leclerc, M.: Efficient algorithms for the clearing of
interbank payments. Eur. J. Oper. Res. 106(1), 212–219 (1998)

7. Shafransky, Y., Doudkin, A.: An optimization algorithm for the clearing of inter-
bank payments. Eur. J. Oper. Res. 171(3), 743–749 (2006)

8. Wang, X., Xu, X., Feagan, L., Huang, S., Jiao, L., Zhao, W.: Inter-bank pay-
ment system on enterprise blockchain platform. In: IEEE CLOUD 2018 Cloud and
Blockchain Workshop (2018)

9. Narula, N., Vasquez, W., Virza, M.: zkLedger: privacy-preserving auditing for dis-
tributed ledgers. In: 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2018). USENIX Association (2018)

10. Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confidential
assets. In: Financial Cryptography Bitcoin Workshop. https://blockstream.com/
bitcoin17-final41.pdf

https://bitcoin.org/bitcoin.pdf
https://www.bankofcanada.ca/wp-content/uploads/2017/05/fsr-june-2017-chapman.pdf
https://www.bankofcanada.ca/wp-content/uploads/2017/05/fsr-june-2017-chapman.pdf
https://www.mas.gov.sg/schemes-and-initiatives/Project-Ubin
https://www.mas.gov.sg/schemes-and-initiatives/Project-Ubin
https://blockstream.com/bitcoin17-final41.pdf
https://blockstream.com/bitcoin17-final41.pdf


Decentralized Privacy-Preserving Netting Protocol 155

11. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

12. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 15

13. Bunz, B., Bootle, J., Boneh, D., Peolstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP). IEEE (2018)

14. Hyperledger Fabric 1.2. https://hyperledger-fabric.readthedocs.io/en/release-1.2/
whatis.html

15. bn256. https://golang.org/x/crypto/bn256
16. Blockchain based payment system and netting protocol implementation. http://

github.com/blockchain-research/gridlock
17. Borromean Ring signature based zero-knowledge range proof implementation.

http://github.com/blockchain-research/crypto
18. Package btcec implements support for the elliptic curves needed for Bitcoin, July

2017. https://godoc.org/github.com/btcsuite/btcd/btcec

https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://hyperledger-fabric.readthedocs.io/en/release-1.2/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-1.2/whatis.html
https://golang.org/x/crypto/bn256
http://github.com/blockchain-research/gridlock
http://github.com/blockchain-research/gridlock
http://github.com/blockchain-research/crypto
https://godoc.org/github.com/btcsuite/btcd/btcec


The Arwen Trading Protocols

Ethan Heilman(B), Sebastien Lipmann, and Sharon Goldberg

Arwen, Boston, USA
ethan@arwen.io

http://arwen.io/

Abstract. The Arwen Trading Protocols are layer-two blockchain pro-
tocols for traders to securely trade cryptocurrencies at a centralized
exchange, without ceding custody of their coins to the exchange. Before
trading begins, traders deposit their coins in an on-blockchain escrow
where the agent of escrow is the blockchain itself. Each trade is backed
by the coins locked in escrow. Each trade is fast, because it happens
off-blockchain, and secure, because atomic swaps prevent even a hacked
exchange from taking custody of a trader’s coins. Arwen is designed
to work even with the “lowest common denominator” of blockchains—
namely Bitcoin-derived coins without SegWit support. As a result,
Arwen supports essentially all “Bitcoin-derived” coins e.g., BTC, LTC,
BCH, ZEC, as well as Ethereum. Our protocols support Limit and RFQ
order types, we implemented our RFQ protocol and it is available for use
at arwen.io.

1 Introduction

The promise of blockchain-backed cryptocurrencies is the ability to transact
without relying on a single trusted party. Blockchains therefore present a break-
through that circumvents a long-standing result in cryptography: namely, that
atomic swaps are impossible without the help of a trusted third party [31].
In an atomic swap, two parties that do not trust each other swap items, such
that either (1) the swap occurs, OR (2) each party reclaims their item. Atomic
swaps of digital assets are possible when the blockchain acts as the trusted third
party [8].

The Arwen Trading Protocols seek to deliver on this promise by bringing
atomic swaps to the mainstream use case of cryptocurrency trading. With Arwen,
traders benefit from the liquidity at centralized cryptocurrency exchanges with-
out trusting the exchange with custody of their coins. Arwen traders main-
tain custody of their cryptographic keys and their coins. Each coin’s native
blockchain acts as the agent of escrow. Arwen trades are fast because they hap-
pen off blockchain, and secure, because they are atomic swaps. We have imple-
mented and deployed the Arwen trading RFQ protocol. It is currently enabling

Major contributions to the design of these protocols were made by James Dalessandro,
Ezequiel Gomes Perez, Haydn Kennedy, Yuval Marcus, Chet Powers, Omar Sagga,
Aleksander Skjolsvik and Scott Sigel.
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atomic swaps between Bitcoin (BTC), Bitcoin-cash (BCH), Litecoin (LTC) and
Ethereum (ETH) on one of the largest global cryptocurrency exchanges, Kucoin
[2].

Our protocols are specifically designed for the trading use case and supports
trading instruments from traditional finance such as RFQs (Request For Quote)
and limit orders. RFQs are a valuable trading instrument for atomic trades as
they allow traders to swap coins immediately at current market prices. We use
RFQs instead of market orders because in an RFQ, the trader learns the price
the order will execute at before agreeing to execute the order, whereas in a
market order the trader has no recourse if the exchange sets an absurdly low
price. Limit orders are a basic and critical tool since they let a trader set their
own price on an exchange’s order book.

In Sect. 2 we discuss issues hampering mainstream atomic swap adoption and
how Arwen overcomes them. Section 3 provides an overview of Arwen followed
by our protocol for RFQs (Sect. 4) and limit orders (Sect. 5). Finally we compare
Arwen to related work (Sect. 6).

2 Whither Atomic Swaps?

Cross-blockchain atomic swaps seek to supplant today’s dominant form of cryp-
tocurrency trading: custodial trading at centralized exchanges. With custodial
trading, when users wish to trade they must first deposit their coins at the
exchange; this is done using an on-blockchain transfer of coins from the user to
the exchange. Trading occurs within the databases of the centralized exchange,
and is not recorded on the blockchain. Finally, users can take custody of their
coins by withdrawing from the exchange; that is, the exchange uses an on-
blockchain transaction to send coins from the exchange back to the user. Cus-
todial trading at a centralized exchange exposes users to serious counterparty
risk—the exchange may be unable to transfer coin back to the user’s wallet. This
risk has been realized, starting with the hack of MtGox [42] and continuing to
the present [7,9,10,12,18–20,27,36,37,44].

Fig. 1. Arwen Trading Protocol for two RFQ trades between the user and exchange.
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The Bitcoin TierNolan Protocol. The TierNolan protocol [40] is the original
Bitcoin-compatible atomic swap; it can also be used for cross-blockchain atomic
swaps for “Bitcoin-like” blockchains (e.g., BCH, LTC, ZEC, etc.). TierNolan
uses Hashed Time-Locked Contract (HTLC) smart contracts as follows.

Bob chooses a random solution x and computes a puzzle y, where y = H(x)
and H is a cryptographic hash function. Bob reveals the puzzle y to Alice and
keeps x secret. Next, Bob locks up 100 LTC in an HTLC smart contract on
the Litecoin blockchain which stipulates: “before time twB, 100 LTC can be
claimed by a transaction signed by Alice containing the solution to puzzle y”.
Alice similarly locks up 1 BTC on the Bitcoin blockchain in an HTLC, which
stipulates: “before time twA, the 1 BTC can be claimed by a transaction signed
by Bob containing the solution to the puzzle y”. The atomic swap executes
when Bob claims 1 BTC by posting a transaction to the Bitcoin blockchain
containing x. Thus, Alice learns x and can post her solve transaction to the
Litecoin blockchain and claim 100 LTC. Security follows from the fact that Bob
must reveal x in order to claim his coins.

There are number of subtle issues that prevent current non-custodial trading
solutions from seeing widespread adoption for cryptocurrency trading. Below we
highlight several of these issues, and explain how Arwen overcomes them.

The challenge of providing liquidity. Most decentralized exchange (DEX)
protocols, including EtherDelta [1], 0x [41], and SparkSwap [5], are peer-to-peer
trading systems; Each trade involves a transfer of funds directly from trader
Alice’s wallet to trader Bob’s wallet. The peer-to-peer approach limits liquidity,
because Alice can only trade with traders that use that same peer-to-peer trading
system. If a system has too few users, it will not be able to provide good liquidity.

Arwen eschews the peer-to-peer approach because, today, the best liquidity
for cryptocurrency trading is found at centralized exchanges. With Arwen, Alice
can benefit from the liquidity at a centralized exchange even if she is the only
Arwen user at the exchange.

The pitfalls of on-blockchain protocols. On-blockchain protocols such as
TierNolan, EtherDelta [1] and 0x [41] suffer from slow trade execution because
they are bound by the speed at which blockchains confirms blocks. Many confir-
mations are often required to ensure a transaction can not be reversed [14] e.g.,
the cryptocurrency exchange Kraken waits 6 confirmations (60 min) for BTC
and 30 confirmations for ETH (6 min) [22]. When trading, even a few seconds
of latency is problematic, especially given the famously volatile cryptocurrency
prices. Even worse, if every single trade must be confirmed on-blockchain, and a
healthy trading ecosystem leads to many trades, then the blockchains involved
will be clogged with transactions resulting from each trade.

Ethereum DEX protocols e.g., EtherDelta and 0x, use the Ethereum
blockchain to trade one ERC-20 token for another ERC-20 token. In EtherDelta
and 0x Alice first broadcasts an order to the network without identifying a coun-
terparty. A counterparty Bob then sees Alice’s broadcast, decides to trade with
Alice, and adds his information to the order. Bob then posts the order to the
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blockchain. Anyone can learn the details of Alice’s trade with Bob, and attempt
to profit from it by front-running Bob’s trade [13,41].

Arwen avoids these speed, scalability and frontrunning pitfalls, because
trades execute off-blockchain.

Dealing with lockup griefing. Lockup griefing affects any protocol that
requires users to lock coins in a smart contract. In TierNolan, Alice and Bob’s
coins are locked in smart contracts until the trade executes or the timelock on
the smart contracts expires. To ensure the security of the swap, timelocks are
generally a few hours long. These long expiry times creates a “lock-up griefing”
problem where one party (Alice or Bob) tricks the other into pointlessly locking
coins in the smart contract.

In Arwen the exchange has no incentive to launch a lockup griefing attack;
such an attack harms the exchange’s reputation, and prevents Alice from trading,
which is the exchange’s main source of revenue. The exchange, however, must
protect itself from Alice who might ask the exchange to lock up coins without the
intention to trade. Arwen introduces a novel escrow fee mechanism (see Sect. 3.2)
that compensates the exchange for locking up coins while rewarding Alice for
unlocking the exchange’s coins in a timely manner.

Atomic swaps as trading instruments. To use atomic swaps to provide
traditional trading instruments Arwen must avoid a misalignment of incentives.
We’ve already discussed how Arwen aligns incentives of opening escrows; we now
focus on trading incentives. Let’s revisit the TierNolan protocol.

The TierNolan Protocol is asymmetric as only Bob knows the secret solution
x. This means that Bob has the unilateral ability to decide whether to execute
the atomic swap by revealing x (or not). Because the timelocks twA, twB on
the smart contracts must at least be as long as the time it takes to confirm
transactions on the blockchain, Bob has minutes or hours to decide whether
market conditions justify the execution of the swap (or not). This means that
the TierNolan Protocol is actually an American call option: namely, Bob has
the right, but not the obligation, to buy 1 BTC from Alice at a strike price of
100 LTC, any time before the expiry time twA. Typically, the asymmetry in an
option is handled by requiring Bob to pay a premium to Alice before the option
is set up. However, in TierNolan Bob gets the option for free, resulting in a
misalignment of incentives.

Arwen is explicitly designed to support additional trading instruments
beyond the American call option. For example in Arwen’s RFQ trade, the
exchange commits to a price, called the quote, before Alice decides whether or
not to place an order for the trade. (Quote: “You can buy 40 BCH, quote open for
1 second”). Importantly, RFQs are inherently asymmetric, because Alice gets to
decide whether the trade executes. Therefore, to align incentives, the exchange’s
quote includes a spread around the current price compensating the exchange for
price movements after the quote is given. If the exchange is unable to execute a
trade against a quote it provided, the exchange can abort the trade. While no
coins are lost, this is sufficiently harmful to the exchange’s reputation that we
would expect an exchange to avoid aborting if possible.
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3 Arwen Overview

The Arwen Trading Protocol is a blockchain-backed two-party cryptographic
protocol between a user Alice and a centralized exchange. Alice first locks her
coins in an on-blockchain user escrow. Next, Alice asks the exchange to lock
its coins in an on-blockchain exchange escrow. To compensate the exchange
for locking up its coins, Alice pays an escrow fee to the exchange from Alice’s
user escrow. Each trade is an off-blockchain atomic swap. From these we build
non-custodial unidirectional trading instruments for RFQs (Sect. 4) and limit
orders (Sect. 5). Our full version [17] extends our protocols from unidirectional
to bidirectional payment channels.

3.1 On-Blockchain Escrows

Escrows are opened and closed by confirming a transaction on the coin’s native
blockchain. Opening and closing escrows takes the same amount of time it would
take to deposit or withdraw coins from a custodial centralized exchange.

Lets look at an example. Alice wishes to trade bitcoins for litecoins as shown
in Fig. 1. Alice funds the on-blockchain user escrow. The user escrow locks e.g., 5
BTC from the user’s wallet on the Bitcoin blockchain until the pre-agreed-upon
expiry time twA. The initial balance in this escrow is 5 BTC owned by the user,
and 0 BTC owned by the exchange. The exchange funds the exchange escrow. To
open the exchange escrow, Alice pays the exchange an escrow fee, as described
in Sect. 3.2. The exchange escrow locks 500 LTC from the exchange’s wallet on
Litecoin’s blockchain until some pre-agreed-upon expiry time twB. The initial
balance in this escrow is 0 LTC owned by the user, and 500 LTC owned by the
exchange.

Escrow smart contracts. The Arwen escrow is a timelocked two-of-two mul-
tisig smart contract that stipulates the following:

“spending requires joint signatures of the user and the exchange, OR
after time tw only the signature of the party that funded this escrow.”

Escrows come with an expiry time that protect each party against a malicious
counterparty. Escrow expiry times can vary, but must be longer than the time
needed to reliably confirm a transaction on blockchain.

If the exchange and user are cooperative then escrows can be closed at any
time, even before they expire. Each escrow is closed via a jointly signed cashout
transaction, posted to the blockchain, that reflects the balance of the escrow.
If either counterparty is malicious the other party can unilaterally recover their
funds. These unilateral recovery procedures are specific to each of Arwen’s trad-
ing instruments.

Arwen smart contracts are written in Bitcoin-script allowing support for
BTC, BCH, LTC, ZEC, etc.. The Ethereum implementation of Arwen leverages
the functionality of Ethereum smart contracts to replicate the Bitcoin-script
smart contracts. For more details see our full version [17] or our git repos1.
1 github.com/cwcrypto/arwen-eth-contracts github.com/cwcrypto/arwen-btc-scripts.

https://github.com/cwcrypto/arwen-eth-contracts
https://github.com/cwcrypto/arwen-btc-scripts
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3.2 Arwen’s Escrow Fee Mechanism

When an exchange funds an exchange escrow for the user the exchange locks
coins in an escrow. To compensate the exchange for locking up its funds the
user first pays an escrow fee. Arwen’s escrow fees are an in-band mechanism
that avoids the introduction of out-of-band payments or superfluous fee tokens.
Instead the user pays the escrow fee via a fast off-blockchain transfer out of the
coins locked in one of her user escrows. The escrow fee is proportional to the
amount of coin locked in the exchange escrow, and to the expiry time of the
exchange escrow. If the user cooperatively closes the exchange escrow early she
receives a rebate of a portion of the escrow fee. This rebate is paid from the
exchange escrow when it closes. See [17] for more details.

3.3 Security Model

Arwen assumes the exchange is almost always online, while the user is usually
not online. Atomic swap security for users of Arwen assumes (1). The traded
coins’ native blockchain is secure i.e., when selling or buying bitcoins we assume
Bitcoin’s blockchain is secure. (2). The user comes online in order to recover
coins from frozen escrows during their coin-recovery time period, and to close
escrows in a “timely manner”. Each Arwen protocol has a specific definition of
what it means to close escrows in “timely manner”.

4 Unidirectional RFQs

The following protocol is unidirectional [38] because it only allows Alice to sell
coins from her user escrow, and buy coins to her exchange escrow. See our full
version [17] for details on how we port this protocol to ETH or a description of
our more complex bidirectional RFQ protocol.

Each off-blockchain RFQ trade is backed by a user escrow (with expiry time
twA) and an exchange escrow (with expiry time twB). The protocol for opening
these escrows is in Sect. 3.1. Each trade generates a pair of puzzle transactions for
puzzle y = H(x) and solution chosen by the exchange x. One puzzle transaction
spends the user escrow and has timelock τA, and the other spends the exchange
escrow and has timelock τB. Each pair of puzzle transactions reflects the new
balance of coins in the escrows after the trade, and “overwrites” the transac-
tions from previous trades. This protocol enables each party to unilaterally close
escrows with the correct balance even if the other party is malicious.

4.1 Security Assumptions

Timelocks. Security of this protocol follows from setting the timelocks to be

τA = twA τB = max(twB, τA + 2�) (1)
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where � is the time required for a transaction be reliably confirmed on the
blockchain. There is no relationship between the escrow expiry times (twA, twB).
We can pair any user escrow and exchange escrow regardless of expiry time.

Closing escrows in a timely manner. To withstand attacks by a malicious
exchange the user must close her exchange escrow before it expires at time twB.
If the user forgets to do this, an honest exchange will close the escrow on the
user’s behalf, but a malicious exchange may be able to steal coins from the
escrow. This requirement is for exchange escrows only; there is no requirement
that the user close her user escrows in a timely manner. Similarly, to withstand
attacks by a compromised or malicious user the exchange must close its user
escrow before it expires at time twA. Finally, the time period in which the user
can unilaterally recover coins from frozen escrows is (twA, τB).

4.2 Off-Blockchain RFQ Trades

As shown in Fig. 1 we suppose that Alice wants to do a trade, selling 2 bitcoins
for 200 litecoins. We also assume that, in all previous successfully-completed
trades, Alice has sold at total 1 BTC from the user escrow and 100 LTC from
the exchange escrow that are backing the current trade. Each RFQ is an off-
blockchain four-message protocol comprising the following four messages.

Request. Alice requests a quote to sell 2 BTC in order to buy LTC.

Quote. The exchange responds with the quote—“2 BTC can be sold for 200
LTC, open for time δ”. The exchange has now committed to executing the trade
should Alice choose to place an order before the quote expires at time δ.

To commit to the quote, the exchange chooses a secret x and computes a
puzzle y = H(x). The exchange sends Alice a Litecoin puzzle transaction signed
by the exchange’s key, spending the output of the exchange escrow, and reflecting
the current balance in the LTC exchange escrow, except that 200 LTC is locked
in an HTLC smart contract stipulating

“spending requires the user’s signature and the solution to puzzle y, OR
after time τB only exchange’s signature”

Order. If the user decides not to place the order, then the escrows remain open
and can be used for other trades.

To place an order, Alice signs and sends the exchange a new Bitcoin puzzle
transaction using the same puzzle y chosen by the exchange. The puzzle transac-
tion spends the output of the user escrow and reflects the current balance in the
user escrow, except that 2 BTC is locked in an HTLC smart contract stipulating

“spending requires exchange’s signature and the solution to puzzle y OR
after time τA only user’s signature”

At this point the exchange can now unilaterally decide whether or not the trade
executes. (This follows because the exchange can use this puzzle transaction,
and the solution x, to unilaterally close the user escrow).
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Execute. If the user placed the order before time δ, then the exchange is
expected to execute the trade by releasing x. After which both Alice and the
exchange hold transactions that allow them to unilaterally close their escrows,
reflecting the new balance after the trade. (the user can unilaterally close the
exchange escrow; the exchange can unilaterally close the user escrow.) In most
situations the user will prefer to keep trading against her open escrows. In this
case, no transactions are posted to the blockchain and both escrows remain open.

If the exchange does not properly execute the trade by releasing x Alice will
freeze the user escrow and exchange escrow that backed the aborted trade and
launch a procedure for recovering her coins, as described in Sect. 4.5.

4.3 The Magic of Unidirectionality

The security of our protocol follows, in part, from an observation made by
Spilman [38]. This is a unidirectional protocol, which means that the user can
only use the exchange escrow to buy coins from the exchange. Thus, each sub-
sequent trade changes the balance of coins in the exchange escrow such that the
user holds more litecoins and the exchange holds less litecoins. For this reason,
the user will always prefer to post the transactions resulting from the most recent
trade to the Litecoin blockchain. This is why the Litecoin transactions result-
ing from a new trade will “overwrite” the Litecoin transactions of the previous
trade. Both parties are incentivized to close the escrow they funded before it
expires using transactions from the most recent trade. If a party goes rogue and
closes the escrow they funded using transactions from a prior trade they only
hurt themselves (they get fewer coins, their counter party gets more coins)!

Paying escrow fees. Unidirectionality makes it easy for the Alice to pay escrow
fees out of her user escrow. Suppose that, after the second trade in Fig. 1, Alice
wishes to pay an 0.02 BTC escrow fee to open a new exchange escrow. To do
this, Alice signs and sends the exchange a cashout transaction that reflects the
current balance of the user escrow, with an additional 0.02 BTC allocated to
the exchange. The same unidirectional argument means that the exchange is
incentivized to have this cashout transaction “overwrite” the puzzle transaction
received from the previous trade.

4.4 Cooperative Close

If neither the user or the exchange are unresponsive or malicious, escrows can be
closed prior to their expiry using the cooperative close. Both parties jointly sign
and post cashout transactions spending and reflecting the final balance of each
escrow. Cooperatively closing is in the interest of both parties. It reduces mining
fees by closing an escrow with a single transaction rather than two (i.e., the
puzzle and solve transactions) and a cooperative close of the exchange escrow
rebates the user some escrow fees.
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(a) User Escrow (b) Exchange Escrow

Fig. 2. Unidirectional RFQ protocol transaction diagram. Balances are per Fig. 1.
Green and blue transactions unilaterally close the escrow if a counterparty is unco-
operative. Purple transactions refund the escrow after it expires at time twA or twB.
Magenta transactions refund the puzzle transactions after the expiry time τA or τB.
The ⊕ symbol is an XOR: only one of the transactions from the ⊕ can be posted to
the blockchain. The lock symbol represents a signature. (Color figure online)

4.5 Unilaterally Closing an Open Escrow

What happens if the user and exchange fail to cooperatively close an escrow?
First we consider the case where all trades against the escrow have properly

completed. If the exchange refuses to close an exchange escrow before time twB
Alice signs and posts the latest puzzle and solve transactions releasing the final
balance to both parties. If Alice does not close the exchange escrow before time
twB the exchange can unilaterally close the exchange escrow after it expires at
time twB using a refund transaction (Fig. 2(b)). If the user Alice forgets to close
the user escrow before time twA, then the exchange signs and posts the latest
puzzle and solve transactions unilaterally closing the user escrow. If the exchange
refuses to close the user escrow, the user waits until the user escrow expires at
twA, and unilaterally closes the user escrow via a refund transaction.

Next we consider the case where Alice places an order against a quote pro-
vided by the exchange, but the exchange does not release the preimage x. Alice
asks the exchange to cooperatively close the user escrow backing this trade. If
the exchange refuses Alice unilaterally closes the exchange escrow by posting
the puzzle transaction from the aborted trade. The coins from the aborted trade
are now locked in the puzzle transaction’s smart contract until time τB. We call
these coins the outstanding coins. If the exchange executes the aborted trade
the outstanding coins belong to Alice; otherwise, the outstanding coins belong
to the exchange. To claim the outstanding coins whenever they are rightfully
hers, Alice comes online during time window (twA, τB) and performs the correct
action for each case:

User escrow closed using a successful trade. The exchange closed the user
escrow on the Bitcoin blockchain via a puzzle transaction for any trade prior to
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the aborted trade. No further action is needed from Alice. The outstanding coins
rightfully belong to the exchange. The exchange uses a puzzle-refund transaction
to unilaterally claim the coins once the timelock τB expires.

User escrow closed using the aborted trade. The exchange closed the
user escrow on the Bitcoin blockchain via a puzzle transaction for the aborted
trade, as well as its corresponding solve transaction. Alice learns the solution x
from the Bitcoin solve transaction and uses x to claim her coins on the Litecoin
blockchain via a solve transaction. She must complete this action before τB as
the outstanding coins can be unilaterally claimed by the exchange after τB.

User escrow partially closed. The exchange posted the puzzle transaction
for the aborted trade, but the coins locked in this puzzle transaction on the
Bitcoin blockchain are unspent. Alice recovers the coins locked in the puzzle
output from the user escrow by unilaterally posting a puzzle-refund transaction
to the Bitcoin blockchain after the timelock expires at time τA.

User escrow not closed. The exchange did not execute the aborted trade.
To recover her coins in the user escrow Alice posts the refund transaction. This
must be done after the user escrow expires at twA and before τB.

4.6 Deployment Status

We implemented the unidirectional RFQ protocol described in this section. A
release of our trading software is currently available for download enabling users
to atomically trade on the orderbook of the centralized exchange kucoin. We
support BTC, BCH, LTC and ETH on their respect mainnets. Our client is
composed of a daemon written in C# which acts as the user’s agent in the
protocol and a graphical interface written in typescript. The other protocols
described in this paper e.g., limit orders, have not yet been implemented.

5 Limit Orders

In this section we introduce off-blockchain atomic trading protocols for All-or-
None (AoN) limit orders and partial-fill limit orders. Our limit order protocols
allow the user Alice to place a order for a specified amount and limit price against
a (user escrow, exchange escrow) pair. For example, Alice might say “I will sell
3.1 BTC at the price of 1 BTC for 100 LTC”. In our All-or-None limit order,
this order would remain open until the limit price is met for the entire amount,
then the exchange would execute the entire order (e.g., Alice sells 3.1 BTC and
buys 310 LTC). In our partial-fill limit order the exchange can execute or fill
the order in increments e.g., the exchange could execute the trade 0.3 BTC for
30 LTC. Then later when the price is met again, the exchange could fill (aka,
execute) an additional trade of 0.8 BTC for 80 LTC. Unlike RFQs, limit orders
can remain open for long periods of time. The user can cancel her limit order at
any time. When the user cancels a partial-fill limit order, she only cancels the
unfilled part of the order (e.g., if Alice’s order has already filled for 110 LTC,
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(a) Limit order user escrow (b) Partial-fill limit order example

Fig. 3. (a). User Escrow modified for limit orders by adding a cancel condition on the
puzzle output (b). Unilaterally closed partial-fill limit order with N = 5 puzzle outputs

the remaining 200 LTC of the order is canceled, with result being that Alice sold
1.1 BTC to buy 110 LTC).

Technically speaking, our limit orders protocols and transactions are very
similar to our RFQ protocol (Sect. 4) with one exception. We add the ability for
the exchange to “cancel” a limit order after the user places it. To ensure the
exchange can not steal the user’s funds by posting canceled orders, our cancel
functionality must be cryptographically enforceable by the user. This change
is necessary because limit orders, unlike RFQs, are not designed to execute
immediately and can stay open indefinitely. Users often cancel and reissue limit
orders depending on market conditions.

Canceling user escrow puzzles
We modify the user escrow puzzle transaction so the puzzle output stimulates:

“spending requires the user’s signature and the cancel value c
OR after time τC the exchanges signature and the solution to puzzle y
OR after time τA the user’s signature.”

Figure 3(a) shows our modified user escrow. For each user escrow puzzle transac-
tion the exchange randomly chooses a secret cancel value c, hashes it to generate
j = H(c), and uses j as the cancel condition in the puzzle transaction puzzle out-
put. When the exchange wishes to cancel the puzzle output, it sends c to the
user. We say the output is “canceled” because, if the exchange misbehaves by
posting the transaction that contains that output, the then user can retaliate
and claim all coins in the canceled output at anytime before time τC .
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5.1 Security Assumptions

Timelocks. Security of this protocol follows from setting the timelocks to be

twA + 2� < τC τC + 2� < τA τB = max(twB, τA + 2�) (2)

where � is the time required for a transaction be reliably confirmed on the
blockchain. There is no enforced relationship between the escrow expiry times
(twA, twB). Escrows can be paired regardless of expiry time.

Closing escrows in a timely manner. As in Sect. 4.1 the user must close her
exchange escrow before it expires at time twB. Similarly, to withstand attacks
by a malicious user, the exchange must close its user escrow before it expires
at time twA. However in limit orders, the user must now come online between
twA and τC to either post her user escrow refund or if a malicious exchange has
posted a canceled puzzle output the user must then use the cancel value c to
claim the coins from that output. Finally, the time period in which the user can
unilaterally recover coins from frozen escrows is (twA, τB).

Prior to opening a limit order on an escrow pair, the user and the exchange
must cancel any currently open limit orders on that escrow pair using the Cancel
Limit Order procedure.

5.2 All-or-None (AoN) Limit Orders

This protocol allows the user to place a limit order for a specified amount and
price against a (user escrow, exchange escrow) pair. The order remains open
until the limit price is met for the entire amount. Once the limit price is met,
the exchange executes the order.

Limit Order. To place the limit order, the user specifies the amount and the
limit price e.g., “I will sell 3.1 BTC at the price of 1 BTC per 100 LTC”. To
place the limit order, the user and exchange perform the “Request”, “Quote”
and “Order” steps of the RFQ protocol in Sect. 4.2 for the price that the user
requested. The exchange now has the ability to execute or fill the limit order by
posting the user escrow solve and puzzle transactions thereby releasing x.

Execute Limit Order. To execute the order, the exchange performs the “Exe-
cute” step of the unidirectional RFQ protocol in Sect. 4.2. This fills the order at
the limit price for the specified amount.

Cancel Limit Order. The user can cancel her order at any time after placing
it and prior to it being filled. She can’t force the exchange to participate in
the cancel protocol, but if the exchange does complete the protocol, even a
malicious exchange can’t execute the order. To do this the user requests the
order be canceled. In reply the exchange releases the cancel value c for the user
escrow puzzle transaction used to place the limit order. This cancels the limit
order since if the exchange misbehaves and posts the canceled puzzle transaction
the user can reclaim the coins the exchange would be buying in the trade.
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5.3 Partial-Fill Limit Orders

We now show how to use our All-or-None Limit Order Protocol from Sect. 5.2
to construct a partial-fill limit order i.e., an order that can be incrementally
filled/executed at the limit price. Partial fill limit orders are important for trad-
ing as they are the default order type supported by all centralized exchanges.
In fact, partial-fill limit orders are so basic that the term limit orders typically
refers to partial-fill limit orders. Our partial-fill limit order is composed of N
All-or-None limit orders (Sect. 5.2), which we call sub-orders. By selectively exe-
cuting some of these sub-orders and not-executing others, the exchange is able
to control how much of the limit order fills.

Our partial fill limit order will use puzzle transactions with N puzzle outputs
rather than a single puzzle output as done in our other protocols. These N puzzle
outputs Out1, . . . OutN place N different All-or-None limit sub-orders. We denote
the amount of coin the i-th sub-order locks in outi as ai. The amounts a1, . . . aN

locked in the N outputs are chosen such that each amount decreases by one half
from the previous amount, ai = 1

2 ×ai+1 and that they sum to the total amount
A =

∑N
i=1 ai which the user is selling in partial-fill limit order. Thus, for any N

and A we determine the amount ai to lock in a puzzle output outi as

ai =
A(2N−i)
(2N − 1)

(3)

Using this sub-orders the exchange can execute as limit order trade for any
amount between 0 to A in increments of aN = A/(2N − 1).

Lets look at the example in Fig. 3(b), Alice placed a limit order selling A = 3.1
BTC for A = 310 LTC. Thus if we set N = 5 Alice’s user escrow puzzle output
amounts would be a1 = 1.6, a2 = 0.8, a3 = 0.4, a4 = 0.2, a5 = 0.1 (BTC)
and using the price she set her exchange escrow puzzle output amounts are
a1 = 160, a2 = 80, a3 = 40, a4 = 20, a5 = 10 (LTC). By selectively executing
only the All-or-None sub-orders in Out2,Out4,Out5 the exchange fills the order
so that Alice sells 0.8 + 0.2 + 0.1 = 1.1 BTC and buys 80 + 20 + 10 = 110 LTC.

Once a user opens a partial-fill limit order it stays open until (a). the user
cancels it, (b). it fills completely, or (c). one of the parties unilaterally closes the
user or exchange escrows. To determine how much of her limit order has filled
the user runs the Update Limit Order protocol with the exchange.

Limit Order. To place the limit order, the user specifies the amount A and the
limit price e.g., “I will sell 3.1 BTC at price of 1 BTC per 100 LTC”. The user and
exchange then perform the Limit Order step of our all-or-nothing protocol N -
times. Creating one puzzle transaction per escrow, with each puzzle transaction
having N puzzle outputs. Since the exchange knows the solutions x0 . . . xN the
exchange can release a subset of these puzzles to fill the order by amount it fills
on the exchange’s order book.

Update Limit Order. If the user is online, she can query the exchange to learn
how much of the limit order she placed has been filled. To do this, the exchange
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signs and sends the user a new exchange escrow puzzle transaction reflecting the
balance of the coins which have been bought and sold as part of the fill. This new
exchange escrow puzzle transaction contains a new set of puzzle outputs holding
the smaller yet to be filled remainder of the order. In reply, the user signs and
sends the exchange a new user escrow puzzle transaction with puzzle outputs
mirroring those in the new exchange escrow puzzle transaction. The exchange
then releases all the cancel values c1, . . . cN for the previous user escrow puzzle
transaction. If the order filled completely, then the order is moved to closed, and
cashout transactions are used in place of puzzle transactions.

Cancel Limit Order. The user can ask the exchange to cancel her order at
any time after she places the order. This is exactly like our Update Limit Order
but both parties exchange cashouts rather than puzzle transactions.

5.4 Closing Limit Orders

We will describe the process for closing escrows whose last trade was a partial-
fill limit order. All-or-None limit orders can be treated as a specific case of the
partial-fill protocol where N = 1. The limit order cooperative close is the same
as used by our RFQs protocol in Sect. 4.4.

Our unilateral close is very similar to the unilateral close and aborts given in
unidirectional RFQ protocol given in Sect. 4.5. However the addition of a cancel
on the user escrow puzzle transaction places new requirements on the user and
the exchange. The magic of unidirectionality (Sect. 4.3) protects both the user
and the exchange from the other party posting old cashout transactions.

To unilaterally close an exchange escrow the user Alice posts the latest
exchange escrow cashout or puzzle transaction. She must come online after twA
and before τC to check if the exchange has unilaterally closed the associated user
escrow. If the user escrow has not been spent she signs and posts the refund
transaction and is done. If on the other hand it has been spent there are three
cases. The user escrow was spent with: (1) the most recent cashout transaction
in which case the user is done, (2) a canceled puzzle transaction in which case
she claims the coins in the puzzle outputs, or (3) the latest puzzle transaction
in which case she then waits until τA after which she claims the unspent puzzle
outputs with a refund transaction and uses the solutions in the spent puzzle
outputs to claim her coins from the exchange escrow.

The exchange must come online before twA to post the latest user escrow
cashout or puzzle transaction. If the exchange posted a puzzle transaction it
must wait until τC to spend the puzzle outputs by posting a solve transaction
containing some of the x1, . . . xN solutions reflecting the how much of the limit
order filled. After τB the exchange must come online and may post an escrow
refund transaction or a puzzle refund transaction refunding the unsolved and
unspent puzzle outputs closing the exchange escrow.
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6 Related Work

Atomic swap protocols. The first description of an atomic swap is commonly
attributed to TierNolan’s 2013 forum post [40]. Many works have since explored
atomic swaps [4,23,32,34], including cross-chain auctions [35], improved fungi-
bility [16,24], trading across blockchains [5,6] and forks [26] or between tokens
on Ethereum’s blockchain [33]. An alternative approach to cross-chain atomic
swaps is the trustless issuance of pegged tokens [30,43].

Layer-two or Off-blockchain protocols. A layer-two blockchain protocol [29]
binds off-blockchain transfers of funds to an on-blockchain smart contract. Typ-
ically they do not require the addition of a trusted third party, trusted oracle, or
trusted gateway. There has been a variety of work on layer-two protocols for Bit-
coin [11,16,23,32,34,38], where transfers of funds are accomplished via atomic
swaps. In 2013, Spilman’s unidirectional payment channel was the first to use
the “magic of unidirectionality” that Arwen uses in Sect. 4.3. Meanwhile, bidi-
rectional payment channels for Bitcoin payments were first proposed by [11,34],
and significant progress has been made on the Lightning Network [3]. Today’s
Lightning Network requires SegWit, and thus only supports Bitcoin and Litecoin,
while Arwen does not require SegWit and thus supports more Bitcoin-derived
coins, including BCH, ZEC. [23,32] build layer-two protocols “scriptlessly”, with-
out smart contracts, by cleverly leveraging digital signatures. BOLT [15] is a layer
two payments protocol with very strong privacy guarantees designed for Zcash.
Sparkswap [5] is a peer-to-peer trading platform for BTC and LTC built on top
of Lightning. Bitcoin covenants [28] proposes a change to Bitcoin allowing coins
to carry scripts even after they are spent.

Smart contracts on Ethereum are Turing-complete, and thus support a dra-
matically richer set of operations than smart contacts written in Bitcoin Script.
Thus, it is no surprise that Ethereum supports layer two protocols including
“state channels” [4,25]. Plasma [33] is a proposal for a layer-two decentralized
exchange protocol on Ethereum. Similar to Plasma is NOCUST [21] which uses
zkSNARKs to ensure correctness of state updates and employs collateral-based
protocols for faster transaction finality. Truebit is a fascinating approach, where
computations (rather than payments) are moved off the Ethereum blockchain via
a layer-two protocol [39]. Generally speaking [4,21,25,33,39] are for Ethereum
and ERC-20s only, and so they leverage the richness of Ethereum smart con-
tracts.

Fees. Payment focused protocols typically structure incentives around transac-
tion fees, i.e., fees earned when payments are made. This does not solve the
problem of lockup griefing because no fees are earned if no payments are made.
Arwen addresses this via escrow fees and reputation. Komodo [6] also aims to
solve the lockup griefing problem for on-blockchain atomic swaps using fees.
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7 Conclusion

Arwen is a layer-two blockchain trading protocol allowing traders to benefit
from liquidity at centralized exchanges without trusting exchanges with cus-
tody of their coins. Instead, Arwen trades are backed by on-blockchain escrows,
and executed via fast off-blockchain atomic swaps. Arwen’s RFQ protocol has
been implemented and is currently deployed offering secure RFQ trades. Arwen
solves many of the incentive issues that emerge when payment protocols are
repurposed for cryptocurrency trading. Arwen supports a wide range of coins
including Bitcoin, “Bitcoin fork” coins (BCH, LTC etc.), and Ethereum.
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Abstract. Stablecoins promise to bridge fiat currencies with the world
of cryptocurrencies. They provide a way for users to take advantage
of the benefits of digital currencies, such as ability to transfer assets
over the internet, credibly commit to minting schedules, and enable new
asset classes, while also partially mitigating their volatility risks. In this
paper, we systematically discuss general design, decompose existing sta-
blecoins into various component design elements, explore their strengths
and drawbacks, and identify future directions.
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1 Introduction

Cryptoasset prices are famous for their volatility. Though many cryptoassets
aspire to become world currencies, most are frequently dismissed as no more
than speculative assets due to their wild price swings.

Money is supposed to have three functions: a store of value, a unit of account,
and a medium of exchange. Stability is key to all these functions. Store of value is
the most salient; if people store their wealth in an asset that constantly fluctuates
in value, their wealth will fluctuate accordingly. A volatile asset is also a poor
unit of account, because it is inconvenient to denominate prices in something
which constantly changes in value. Every time the value of the unit of account
changes, all prices must be adjusted accordingly. Finally, and most crucially, a
currency needs to be stable to function as a medium of exchange; this allows
people to be fairly and predictably compensated for goods and services without
changes in value during the payment process.

Stablecoins are a class of cryptoassets created to provide the stability money
needs to function. As the name implies, they are designed to be price stable
with respect to some reference point, such as USD. There has recently been an
explosion in the number of stablecoin projects announced, especially following
the crash in Bitcoin prices in early 2018. There are over a hundred stablecoins
in existence or in progress, with the top three projects now representing a mar-
ket capitalization of $4.6B [22]. Although the sheer number of projects seems
overwhelming, they can all be decomposed into a few key features.
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Roadmap. We briefly review related works in Sect. 2. In Sect. 3, we break down
the taxonomy of stablecoins based on the first three constituent axes: the peg
type, the collateral type, and the collateral amount. In Sect. 4, we expand on
additional axes by discussing the stabilization mechanism chosen by various
stablecoin families. In Sect. 5 we discuss methods to measure prices. In Sect. 6,
we discuss some design features relevant to digital currencies in general, but
especially important for stablecoins. Finally, we discuss future directions for
stablecoins in Sect. 7.

2 Related Work

One of the first stablecoin taxonomies classified stablecoin projects by collat-
eral type and discussed pros and cons of each category [55]. Several papers
and reports have followed a similar taxonomy, adding more detail on individual
projects [47,56,57]. A paper by Pernice et al. takes a different approach, catego-
rizing stablecoins by monetary and exchange rate regimes [53]. Our contribution
is extending the existing taxonomies with a discussion of other important stable-
coin design aspects, namely price stabilizing mechanisms and price measurement
methods. We also categorize many of the existing stablecoin projects according
to our extended taxonomy (Fig. 1).
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Index
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Voting
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Fig. 1. Stablecoin taxonomy, decomposed into four main axes: peg, collateral, mecha-
nism, and price information.

3 Peg and Collateral

3.1 Peg

The most salient choice for stablecoin design is the peg, or what the stablecoin
is meant to stay stable relative to. This choice is so significant that it is often
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included in the name of the stablecoin.1 USD is a popular choice, likely due
to USD being typically considered a stable store of value around the world. In
fact, it is not uncommon for foreign citizens, especially those in emerging and
developing economies, to store their wealth in USD rather than their national
currency. The other benefit of using USD is that price comparison is easy. A
singular fiat currency peg allows one to check whether the peg holds by simply
comparing the dollar price of an object to the pegged coin price of the same
object. However, this feature can also be a drawback, since it becomes very
obvious if the price stabilization mechanism is not working. Other stable fiat
currencies, such as the Euro, the Japanese Yen, and the Swiss Franc, are also
popular choices for similar reasons. The largest drawback to pegging a stablecoin
to a fiat currency is that it is often more convenient to simply hold the fiat
currency itself. Cash can be used for transactions that are arguably more instant
and anonymous, and electronic transfers of fiat are usually easy, fast, and cheap.

Besides fiat, there are also stablecoins pegged to commodities, most com-
monly gold. Some examples include Digix [27] and HelloGold [31]. It is inter-
esting to note that, in general, there are fewer commodity-pegged coins than
fiat-pegged coins. A possible explanation is that commodity prices fluctuate in
value more than fiat currencies, although typically less severely than most dig-
ital currencies. This makes commodity pegged stablecoins a less viable form of
money than a fiat pegged one. On the other hand, stablecoins pegged to com-
modities are less likely to be dependent on the actions of any one government or
central bank. After all, there is no government on earth that can devalue gold
by printing more of it.

Other stablecoins may choose to peg to a bundle of currencies and/or com-
modities. This has the benefit of insulating the stablecoin against shocks to any
one country, currency, or commodity. However, pegging to a bundle can also
have the opposite effect and introduce noise if some of the assets included in the
bundle are very volatile. Saga [59], for example, is initially pegged to the IMF’s
special drawing rights (SDR), a basket of world currencies curated by the IMF.
Currencies are selected into the SDR if the issuing country is one of the world’s
top exporters, the currency is widely used in international transactions, and the
currency is widely traded in foreign exchange markets. However, the SDR is sel-
dom used in any context other than the IMF’s store of value and unit of account,
making it a less practical choice than the dollar. Facebook’s upcoming Libra also
plans to peg its currency to an as of yet undetermined basket of currencies and
assets.

Saga plans to later peg their currency to the consumer price index (CPI)
if they outgrow the SDR, i.e. if they become a dominant world currency. The
CPI is a unitless index which tracks the inflation of the price of a basket of
consumer goods. No stablecoin is currently pegged to the CPI, so it is unclear
how this would be executed. It is possible, for example, that the stablecoin supply
would be adjusted so the nominal price level remains constant. Pegging to a

1 Examples include TrueUSD [68], USDC [20], USDX [54], USDVault [70], A-Eurs [60],
and many others.
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fiat currency or commodity with finite supply can eventually lead to problems
of scale, and pegging to an index can circumvent this problem.2 However, the
choice of CPI as a peg is not ideal for a variety of reasons. It is typically measured
monthly or even less frequently, due to logistical challenges in determining what
should be in the basket and how much each component should be weighted. There
are also regional differences in consumption, so it is unclear how to construct a
basket that reflects global spending patterns.

3.2 Collateral

Emergent currencies often make use of collateral to ensure that the circulating
currency has redemption value. This provides a lower bound on the price, thereby
mitigating some of the risk of holding, using, and denominating debts in the
currency. Since the goal of collateralizing is to bound the redemption value, it is
easiest and most effective, but not necessary,3 to use whatever the stablecoin is
pegged to. Assuming that the stablecoin initially trades at the pegged price and
users can redeem one unit of the stablecoin for one dollar, arbitrageurs should
ensure that there are no persistent long term deviations from the target price.

Unfortunately, collateralizing a coin creates the problem of securely storing
large quantities of the collateral. Traditionally, the best place to store large quan-
tities of cash is in a bank because it is secure, relatively easy to audit, and often
comes with deposit insurance. However, this is also centralized, thus making it
prone to deceptive practices. For example, Tether [65] recently admitted it was
only 74% collateralized [64], despite initially claiming full collateralization [65].
Moreover, there are often limits to how much deposit insurance covers, poten-
tially leaving the majority of the reserve uninsured.4 Some stablecoins avoid this
problem by storing their collateral in a network of banks instead of a single one
(USDC) or as physical cash in a vault instead of a bank (Rockz). For example,
Rockz [58] stores 90% of its collateral in the form of physical fiat currency in an
underground vault in the Swiss Alps.

Commodity backed stablecoins also suffer from the problem of where to
store their collateral, since there are fewer institutions which accept and insure
deposits in the form of commodities than ones that accept cash. This, in turn,
leads to a high degree of centralization. One possible alternative, currently not in
use, would be to collateralize using assets that track the price of these commodi-
ties rather than the commodities themselves. For example, it would be logistically
simpler to collateralize using gold futures rather than gold bars. However, this
design choice could lead to different types of legal issues.

One way to avoid having to store large amounts of fiat is to collateralize
with another cryptocurrency. This has the advantage of potentially decentralized
operation, and allows for easier diversification across backing assets. The problem

2 This is one of the reasons the US went off of the gold standard.
3 USDVault for example is pegged to USD but collateralized with gold.
4 There has thus far been no regulatory precedent establishing how much protection

end users of stablecoins receive from deposit insurance.
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with this approach is that digital collateral can itself be very volatile, making it
hard to use as a guarantee of value. Any stablecoin backed by cryptocurrencies
must have some mechanism built in to safely handle large swings in the value of
the underlying collateral. We discuss these mechanisms in Sect. 4.
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Fig. 2. NuBits price collapse

Other stablecoins do away with the problem of volatile collateral by simply
not collateralizing the currency at all. This has many advantages. First, not
having any collateral to store or transfer simplifies many logistical challenges.
Second, it is also cheap to operate, since it does not require the issuer to keep
real or cryptoassets on hand. Third, stablecoins that are not collateralized can
not limited in scale by the circulating amount of the underlying collateral. Unfor-
tunately, this ease of operation comes with drawbacks. Algorithms are usually
gameable. The value of the currency in this case stems purely from the reliabil-
ity of the issuing mechanism and/or people’s beliefs. Once users’ expectations
of the coin’s stability change, whether due to a flaw in design or idiosyncratic
changes in sentiment, there may be little to keep the price afloat because there
is no inherent redemption value. Consequently, when these stablecoins fail, they
tend to do so swiftly and catastrophically. One example is NuBits [44], which
dropped from its pegged price of $1 to less than $0.30 over the course of 2 weeks
in early 2018. It never recovered its peg, and has been trading below $0.10 for
the past six months5 (Fig. 2).
5 Note that USD is not collateralized, and yet it remains stable. However, when the

dollar was a fledgling currency it was backed by gold. It was only after extensive
global adoption that the backing was gradually eased-off. Additionally, the US gov-
ernment has the infrastructure to support this type of regime. US federal law makes
it so that businesses are required to accept US issued currency as legal tender. There
are also regulatory and executive agencies that enforce compliance.
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3.3 Collateral Amount

Hand in hand with the decision of collateral type comes the decision of collateral
amount. Since collateral serves to support the price by creating a reliable redemp-
tion value, the best choice seems to be a fully collateralized stablecoin. However,
one to one collateralization is sometimes excessive, and sometimes insufficient.

Having a full reserve, where the value of the collateral is exactly the value of
the circulating currency, makes it hard for a currency to scale. As the stablecoin
becomes more widely used, the issuers have to keep buying more collateral in
order to keep up with demand. Nevertheless, this stablecoin design has been
successfully utilized by Hong Kong’s currency board; the Hong Kong Dollar is
fully collateralized by USD and has maintained a roughly 7.8 to 1 peg to the US
dollar since the early 1980s. It is currently the 13th most traded currency in the
world [35].

Instead of staying fully collateralized, some currencies, like Saga, try to mimic
the historical trajectory taken by the US Dollar. Such currencies initially fully
collateralize their stablecoin, then slowly reduce their collateral ratio and ease off
the peg once the money supply has exceeded some threshold. Although Tether
eventually admitted they were not fully collateralized as they initially claimed,
there was no ostensible detriment to the price. Full collateral is not necessary as
long as people do not believe that more than the entire reserve amount will ever
be cashed out at once. However this could potentially be an issue if something,
for example a bad news event, triggered a run on Tether reserves.

It is also worth noting that almost any supposedly fully collateralized fiat
backed stablecoin whose collateral is being held in a bank, such as USDC, is
functionally a partial reserve currency. All commercial banks keep only some
of their deposits on hand and use the rest for investments or to issue loans.
However, in order for this to be an issue for USDC, the bank itself and possibly
federal deposit insurers would have to catastrophically fail.

Other coins, especially algorithmic ones such as Basis [2], do not keep any
collateral at all. Instead, value is preserved purely by expanding supply when
the price is too high and contracting it when the price is too low. On the other
end of the spectrum, many currencies collateralized by crypto-currencies keep
more than the value of the circulating currency in reserve to guard against price
swings in the collateral. This way, even if the collateral asset depreciates, there
is still enough for each unit of the stablecoin to be redeemed for an equivalent
amount or more of the underlying asset.

4 Mechanics

All stablecoins require some mechanism to adjust the price when it deviates from
the peg. Usually, this is done by expanding supply when the price is too high
and contracting it when the price is too low. This means that there often needs
to be some way of measuring the price (covered further in the next section)
and knowing how much to expand or contract the supply. Most stablecoins are
designed such that rational, self interested users will act to restore the peg when
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the price deviates. For example, this could be achieved by allowing users to
redeem stablecoins for collateral when the price of the stablecoin is too low.
Other stablecoins issue a secondary token designed to absorb the volatility of
the first, resulting in a stablecoin/volatilecoin pair. Still others depend on an
algorithmic market making mechanism or central-bank contract to manage the
supply. Each have different merits but also suffer from different challenges to
scale.

Reserve of Pegged Asset. Many stablecoins utilize a mechanism where users
will be incentivized to expand or contract the supply until the price returns to the
peg. The simplest and most common way to achieve this is in a fully collateralized
system backed by the pegged asset, and allow users to expand supply when the
price is too high and redeem when the price is too low. Arbitrageurs earn money
while helping maintain the peg. For example, if a stablecoin initially pegged
to USD trades at less than $1, stablecoin holders should redeem the coin for
the underlying collateral, thereby buying a dollar for less than a dollar. This
will contract the supply until the price returns to the peg and the arbitrage
opportunity disappears, or until the reserve runs out.

On the other hand, if the market price of the stablecoin is above $1, many
systems will allow users to expand the supply by wiring funds to the account
where the rest of the collateral is being held. This allows the user to buy some-
thing worth more than $1 by paying only $1 for it. The simplicity and autonomy
of this system makes it extremely appealing, which is why a majority of sta-
blecoins in circulation today use this method, or a very similar one. However,
it is not foolproof. On October 15, 2018, the price of Tether briefly dropped
below $0.93 due to a large selloff. The price recovered to above $0.98 within the
day and appears to have suffered no lasting effects [22]. Because each Tether
is hypothetically redeemable for a dollar, people quickly bid the price back to
the vicinity of the pegged price.6 Other notable examples of this design include
USDC, TrueUSD, Carbon [18], Paxos [19], Gemini Dollars [23], and many others.

As stated previously, the main problem with allowing users to always redeem
for collateral is storing large amounts of collateral at some physical location. The
other problem with this type of system is the ability to scale. The maximum
value of such a currency is tied to the value of whatever is used as collateral.
This makes it difficult, though not impossible, to become a global currency. This
inconvenience is one of the reasons USD outgrew the gold standard.

A common variation on this design requires a central authority to mint the
coins, but allows people to redeem the stablecoin for the underlying collateral.
This creates a lower bound on the price of the stablecoin but not an upper
bound, since users can redeem when the stablecoin price is too low but cannot
mint when the price is too high. This is common in cases where the collateral is
not necessarily dollars, such as Digix. Since it would be inconvenient to accept

6 Note that the user does not necessarily have to redeem the Tether themselves for
this reasoning to hold-it is enough to believe that they can sell it to someone else
for more than what they paid for it.
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and verify gold deposits from individual users, users are not allowed to mint
Digix by contributing capital to the collateral pool. They can, however, still
redeem their Digix for physical gold, thereby creating a lower bound on the
value of Digix.

Another variation being employed by Facebook’s Libra [45] is to allow only
the set of validators to mint or redeem coins, instead of all users. This reduces
overhead since larger amounts are transacted each time, and at a lower frequency.
This may come at the cost of a lower speed of adjustment, since the set of
potential arbitrageurs who can correct the price is restricted.

Dual Coin. Another way to maintain stability is to pair the pegged coin with
a secondary coin designed to absorb the volatility of the first. The best known
example of this is the seigniorage shares model employed by the original formula-
tion of Carbon. When the price of the stablecoin falls below the peg, a secondary
coin is auctioned in exchange for the stablecoin. The proceeds from the auction
are then burned to contract the supply. When the price of the stablecoin is above
the peg, additional coins are minted to holders of the secondary token. Holders
of the secondary token prop up the price when the stablecoin inflates and are
rewarded during deflationary periods.

Although this design benefits from the advantage of not having to store col-
lateral, there are three big drawbacks. One is that the secondary coin often meets
the SEC’s definition of a security. Regulatory complications stemming from this
designation were enough to keep Basis from launching [1]. Carbon also changed
from a dual coin system to holding a reserve of USD for undisclosed reasons,
possibly due to regulatory hurdles. The second concern is that if holders of the
primary token do not believe that the stablecoin will appreciate in the future,
there is no incentive to buy or hold the secondary token. In other words, one
needs a strong contingent of users who, even during a downturn, believe that
the stablecoin will eventually appreciate in value. Additionally, since cryptocur-
rency markets are often subject to long downturns, people may be reluctant to
wait for extended, indeterminate amounts of time for their investment to pay
off. When there is no collateral backing this system, if people are not willing
to buy the secondary coin, there will be no force propping up the value of the
stablecoin. Third, it is difficult to scale such a system. As the circulation of the
stablecoin grows, larger amounts have to be burned to correct for the deflation
in the currency. It would be unwieldy to coordinate such an auction on the scale
required for a national currency, and difficult to find enough people to take on
the risk of investing in the volatility absorbing token.

Variations on this design use concepts from dual coin systems and redemption
based systems to keep their stablecoins pegged. USDX is a stablecoin collater-
alized with Lighthouse (LHT), a unpegged digital currency designed to absorb
volatility in USDX. Users can always trade one USDX for $1 worth of LHT held
in a reserve, incentivizing a contraction of USDX when USDX trades for less
than $1. Celo, a stablecoin collateralized with CeloGold, BTC, and ETH uses
a design similar to USDX, but with an additional algorithmic market maker
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which buys and sells Celo and CeloGold to stabilize the price. Using a redemp-
tion based system instead of an auction one eases the scaling issue mentioned
previously. However, the scale of the stablecoin is still limited by the desirability
of the secondary token. Allowing users to exchange for a secondary token is an
effective way to maintain the peg only if people want the secondary token.

Therefore, a necessary condition for the original seigniorage shares and above
mechanisms to work is that the secondary coin has to have value. A few potential
solutions to this issue have been proposed. StatiCoin/RiskCoin [61] is a stable-
coin/volatilecoin pair where the secondary coin has more explicit value. Users
send ETH to the contract as collateral and mint either StatiCoin or RiskCoin.
StatiCoin is always redeemable for $1, while each RiskCoin can be redeemed for
(total value of ETH in the contract) − (total value of StatiCoin outstanding)

total number of RiskCoin outstanding . StatiCoin is
unique because it is crypto-collateralized but does not require overcollateraliza-
tion, an inefficient mechanism for absorbing volatility. However, if the value of
the collateral falls below the number of StatiCoin minted, the price of RiskCoin
will drop to 0. Moreover, StatiCoin may become unpegged because not all hold-
ers of StatiCoin will be able to redeem for the underlying collateral. StatiCoin
will become an unreliable store of value precisely when Ethereum is losing value
and a stable valued asset is most needed.

Another solution comes in the form of Luna, which absorbs volatility from
stablecoin Terra [39]. Luna is bought and sold to adjust the price of Terra, but
also serves as the staking token of the system. As long as people are using the
Terra/Luna blockchain, Terra should retain some value. Fees and rewards, also
paid in Luna, are additionally adjusted to entice users to buy and hold Luna
even during downturns.

In the previous examples, one coin absorbs all of the volatility in the system.
However, “dual coin” systems are not necessarily limited to only two coins. The
volatility absorbing coin can be tranched, as exemplified in the three coin design
of Basis. Basis bonds are sold to contract the supply when the price of Basis
falls below $1 and are redeemable for Basis when the price is above $1. If all
of the Basis Bonds have been redeemed and the price of Basis is still above $1,
additional Basis is minted to holders of Basis Shares. There are infinite ways to
split the volatility absorbing coin; in theory there could be systems with four
or more coins distributing the stablecoin volatility across several parties. This
allows for the volatility of the stablecoin to be absorbed by people with different
expectations and risk preferences.

Algorithmic Supply Adjustments. Other currencies use a fully algorithmic
approach to adjust the supply of the stablecoin in response to price fluctuations.
This can be used in systems with no, full, or partial collateral. These types of
systems are tricky to implement because it is difficult to know how much to adjust
the supply to effect the desired price change in the stablecoin. As the supply is
adjusted, the market cap of the stablecoin might also change in unpredictable
ways. This is why most central banks do not depend on algorithmic supply
adjustments and instead will gradually adjust reserve ratios and open market
operations until the desired price level is attained.
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One example of a coin that uses fully algorithmic supply adjustments is
Ampleforth, previously named Fragments [41]. Whenever the value of Ample-
forth changes, token holders have their balances adjusted proportionally to pre-
serve the value of a single token. For example, if Ampleforth is originally worth
$1, then, after an increase of 10% to $1.10, all balances will automatically be
inflated by 10%. This makes Ampleforth a stable unit of account, since by design,
the ratio of Ampleforth’s market cap to the number of Ampleforth tokens is
periodically adjusted to be $1. Unfortunately, this is not a good store of value.
Holding Ampleforth is no different than holding a non-pegged coin: if the mar-
ket cap of Ampleforth declines, users’ balances and outstanding payments will
decline proportionally. Moreover, the market cap of the currency may adjust
as the supply of the currency is adjusted; an algorithm as straightforward as
Ampleforth’s may never converge on a stable equilibrium price.

A different algorithmic approach is employed by Saga. Although Saga does
not peg the long run value of its coin, it uses an algorithmic path-independent
market maker inspired by Bancor [34] to provide liquidity and dampen sudden
price fluctuations. The market maker sets the price and bid ask spread for Saga
based on how much collateral it has in its reserve. For example, since Saga
recently launched and its reserve is small, the price is set at 1 SDR, and the
market maker will sell a Saga at a price of 1.0015 SDR worth of fiat and buy
for 0.9985 SDR worth of fiat.7 This makes it so that users should not sell Saga
on secondary markets for a value of less than 0.9985 SDR or buy for more than
1.0015 SDR, which limits how suddenly the price can change. As the reserve
grows and shrinks, the price and spread are gradually adjusted in response.
Like Ampleforth, Saga does not guarantee that the value of Saga holdings will
be stable over time. However, the market maker does guard against sudden
price movements, and thus provides short-term stability. Although Saga does not
necessarily fulfil all the functions of money, it does have the potential to scale.
When people’s confidence in Saga grows and the market cap of Saga increases,
Saga decreases the fraction of collateral held in reserve until Saga can act as a
standalone currency.

Leveraged Loans. Leveraged loans are loans issued to borrower with low or
unknown credit rating which demand a high cost of capital to compensate for
risk. Leveraged loans are used in a system of overcollateralized stablecoins which
utilize components from all the previously discussed stabilization mechanisms.
Dai [46] is the most successful example of such a system, and most leveraged
loans type stablecoins use the same format with different nomenclature. Col-
lateralized debt positions (CDPs) are contracts where users lock up collateral,
such as Ethereum and other cryptoassets. They can then borrow against this
collateral to mint Dai, a stablecoin pegged to $1, up to 2/3 the value of the
collateral in the CDP. Users can then unlock their collateral by paying back
the borrowed Dai, plus a stability fee that accrues over time. Dai is destroyed
once it is paid back. In addition to Dai’s use case as a stablecoin, the leveraged
7 Saga prices are quoted in terms of SDR, but users can buy using fiat such as USD.



184 A. Moin et al.

loans mechanism also allows users to hold a leveraged position in ETH or other
cryptoassets. This can be achieved by using the minted Dai to purchase more
ETH.

If the value of the collateral in a CDP drops below 1.5× the Dai borrowed,
the debt position is automatically liquidated, and the collateral is used to pur-
chase the amount of Dai borrowed against it. Any remaining collateral, minus
a liquidation fee, is returned to the original CDP owner. If the value of the
collateral depreciates quickly and drops below the value of the Dai borrowed,
a secondary coin is minted to cover the difference. The secondary coin, MKR,
also serves as the governance token for the Dai system. Since MKR holders are
diluted when CDPs are underwater, there is an incentive for the holders of the
governance token to set parameters such that users are not defaulting on their
loans. However, we note that the probability of the value of the collateral declin-
ing to less than the Dai borrowed is low since the price of the collateral would
have to suddenly drop by over 33%.

Users are incentivized to buy Dai and unlock their collateral when the price
of Dai decreases, because a decrease in the price of Dai makes it cheaper for
them to unlock their collateral. This contracts the supply and restores the peg.
If Dai continues to trade at a price lower than its intended peg, MKR holders
can vote to raise the stability fee charged to CDP holders. This serves as further
incentive for CDP holders to liquidate their positions and contract supply.

Dai received a lot of attention in March 2019 for consistently trading around
$0.98 instead of $1 as it was supposed to. Since then, it underwent a series
of stability fee increases, some of which quixotically lowered the price of Dai
instead of raising it as intended. Despite this puzzling market reaction and a
∼90% decrease in the price of ETH since Dai launched, Dai has managed to
remain within ∼2% of its pegged value (Fig. 3).

However, this stabilization mechanism still has several drawbacks. One is that
Dai and similar stablecoins can never have a market cap larger than whatever
cryptoassets are used as collateral. In fact, since locking up collateral in a CDP
functionally takes it out of circulation, Dai can be detrimentally disruptive to
the cryptoassets used as collateral. The overcollateralization necessitated by this
design is also an inefficient and risky use of capital. If someone is not vigilant
about their CDP balance and the value of their collateral falls to 1.49x the Dai
they withdrew, they are penalized with a steep 13% liquidation fee. As of Dec
2019, over 40M of Dai had been liquidated, which means over 5.2M of stability
fees charged. To put this value into perspective, the current amount of Dai out-
standing is approximately 41M [48]. Finally, it is not clear why Dai has traded at
such a consistent price. Due to the overcollateralization, when Dai is paid back, it
unlocks an amount of collateral far in excess of the amount of Dai paid.

Miscellaneous. There are a few other designs that do not neatly fit into any of
the above categories. For example, Steem [62] props up the price of its stablecoin,
Steem Dollars, by paying interest on Steem Dollars. However, since they don’t
set negative interest rates, this mechanism may not work if the price of Steem
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Fig. 3. DAI remains relatively price stable despite decline in ETH price.

is too high and the interest rate is already low. Steem Dollars traded for more
than its $1 peg for months despite an interest rate of 0%, demonstrating the
ineffectiveness of this stabilization method.

Another design is employed by NuBits (now defunct), a stablecoin which is
minted when holders of a secondary coin (NuShares) vote to create more. Users
are also paid interest if they temporarily remove their NuBits from circulation.
Voting on supply changes is a slow process, thus forcing adjustments in price
to lag by several days or more. Additionally, if holders of NuShares also hold
NuBits, they may be reluctant to dilute the value of NuBits by printing more.

Kowala [4] keeps the price stable by adjusting its mining rewards. When the
price of the stablecoin is too high, rewards increase to dilute the supply; when
the price of the stablecoin is too low, transaction fees are burned to contract the
supply. Unfortunately, a decline in the price of the stablecoin might be correlated
with fewer transactions occurring, since a break from the peg would diminish
users’ confidence in the stablecoin. Since price adjustments are effected through
mining and transactions, recovering from a decrease in price would take a long
time. Furthermore, since mining rewards decrease during contractionary periods,
miners have less incentive to provide security which may further diminish the
value of Kowala. This could lead to a feedback loop where Kowala never recovers
from a price decrease.

Finally, Phi [30] offers people the opportunity to issue loans denominated in
Phi, a stablecoin. The loan issuer has to put up collateral, which is used to pay
the loan if the borrower defaults. Although the issuer does collect interest on
the loan, the issuer has no way to recover their capital if the borrower defaults.
Moreover, because there is no connection to real world identities, there is no
ostensible consequence to defaulting, so borrowers will likely abscond with the
loan. If the borrower does pay back the loan, they are supposed to pay it with
interest denominated in Phi. Since, for every loan originated in Phi, the amount
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paid exceeds the amount created, there will only be enough coins in existence to
pay back all existing loans with interest if the supply of Phi grows faster than
the interest rate. This is unlikely to be a sustainable rate of growth. Finally,
although Phi is needed to pay back loans, there is no stabilization mechanism
keeping the price at or around $1.

5 Price Information

A crucial step in making supply adjustments at the appropriate times is accu-
rately measuring the price. Most stablecoins make use of an external oracle,
an independent price feed deemed trustworthy by the issuers of the stablecoin.
This leaves a crucial component of the system completely out of the hands of
the stablecoin issuer. The entities publishing the price feed might deviate from
their standard practice in how they calculate prices and trigger disastrous down-
turns or upturns for the stablecoin. This is not unheard of, since, for example,
CoinMarketCap suddenly and abruptly decided to stop including prices from
exchanges in South Korea, resulting in a sudden drop in reported prices [21].
If a stablecoin was formerly using this price feed and desired no change in how
prices are calculated, the system would be left with few options other than to
accept the new price feed, find a different oracle, or adjust oracle prices to cor-
rect for the new calculation method. Short term pricing errors can arise from
using an oracle too, as was the case with Synthetix. In June 2019, a commercial
API used by Synthetix suffered a glitch and began to report incorrect exchange
rates, resulting in a bot making over $1B during this period [9]. Although the
bot owner chose to reverse the trades during this episode, there is no guarantee
that the next profiteer will be as generous. Note that these are examples which
arose even with no malicious adversaries in the system.

Opting for an internal oracle can mitigate these surprises, but introduces
the problem of an additional layer of centralization, and can lead to a conflict
of interest. For example, if the issuing body loses money from price changes in
the stablecoin, there is incentive to update prices slowly or smooth the prices
reported.

If there is a malicious actor intent on sabotaging the stability, a price oracle
can serve as a potential target. Increasing the number of price feeds might be a
potential solution to this issue. However using the median makes price updating
slow, since the system must wait for sufficient majority of price feed reports.
As a result, even some of the most active and popular stablecoins, including
MakerDao, use only a few price oracles, making them a potential source of
attack vectors [48]. There are only 14 price oracles for MakerDao, so hijacking of
any 8 would corrupt the median-price rule. Moreover, these oracles may not be
fully independent, as they might have overlap in where they obtain their price
information or in their deployment platform.

Nonetheless, the use of external oracles persists because the alternatives are
generally worse. Prices for most assets are generated based on the prices at which
the assets are transacted on exchanges. However, many crypto exchanges, both
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centralized and decentralized, suffer from poor liquidity. This leads to stale prices
and/or inflation of trade volumes [7]. If trades are being inflated by the exchange
or other parties, it is possible that exchanges might just be taking prices from some
external feed and adding noise. Unless the initial exchanges are chosen wisely and
with near perfect foresight, a non-noisy price feed is just as good or better.

Alternately, Schelling point mechanisms [16], a.k.a. crowd oracles, can also
be used to set the price. The justification for this method is that it is hard for
voters to coordinate on a deceptive answer. However, with a pegged coin, there
exists a natural alternate coordination point: the pegged price. If this is a more
advantageous equilibrium for voters, then information obtained in this manner
is not going to be trustworthy. Many of these schemes use rewards for being close
to the median and slashing for voters far from the median to incentivize truth
telling. However, this may incentivize people to answer how they think others
will answer, commonly known in economics as the beauty pageant problem.
Take for example Basis, a variant of the dual coin example discussed earlier,
whose original design mentioned the possibility of using a crowd oracle. If users
correctly express that the stablecoin has appreciated and is trading above its peg,
more of the stablecoin will be minted, and users who only hold the stablecoin
and not the secondary coin will be diluted. This makes it such that the payoff
for holders of the stablecoin is higher if they lie and claim that the stablecoin
is trading at its intended price rather than its true price. Even if a user wants
to tell the truth, when enough people are incentivized to divert, the rest of the
honest users will have to lie, abstain from voting, or be penalized.

Terra tries to address the problem of dishonest voting by sampling only a
subset of voters to make collusion difficult. However, if there is a non truthful
equilibrium that is beneficial for a majority of voters, then the subsampling may
not help. Celo also uses a crowd oracle and acknowledges that there is potential
for price manipulation. The designers of Celo trust that holders of the voting
token will prioritize long term growth over short term profit, which may be an
incorrect assumption.

Some stablecoins are designed so that no external oracle is needed for the
stablecoin to remain stable. In systems where users can always trade in for the
underlying collateral, such as USDC or TrueUSD, there is no need for a price
feed. Instead, prices are measured using users’ trades. Individual users decide how
to value the token and then cash in or out accordingly. However, as previously
discussed, the convenience of not having to measure the price usually comes at
the cost of having to store collateral. Others require an oracle but not for the
stablecoin or any other cryptoassets. Saga uses information on the prices of SDR
and the component currencies to set the bid and ask for Saga. Though this still
requires a price feed, this information is easier to get than crypto prices because
SDR currencies have liquid markets and easily available price information.

6 Other Considerations

Fees. Fees can be built into a variety of the designs discussed previously. They
can be used to incentivize good behavior, such as how Dai’s liquidation fee penal-
izes low levels of collateral. The presence of this fee rewards MKR holders who
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are supposed to police the CDPs and penalizes CDP owners who are negligent
with their balances. Fees can also be used to adjust the supply of a currency in
order to return it to its pegged price, as is the case with Terra.

However, fees such as those employed by TrueUSD can also introduce a fric-
tion which prevents arbitrageurs from taking advantage of and correcting price
discrepancies. Suppose that a coin which is supposed to trade for $1 is instead
trading for $0.99. If there is a cashing out fee of $70 (as with TrueUSD), some-
one would have to buy $6930 worth of TrueUSD and cash it in at $7000 just
to break even. To make a profit, they would have to invest even more money
into this strategy. This is can be capital intensive for the arbitrageur. Moreover,
the cashing out process is not instantaneous since wire transfers take time to
process. This introduces an opportunity cost as this strategy can tie up capital
for a day or more each time it is used.

Governance. Flexible governance is the ability to change system parameters
and operation dynamically in response to changes in the environment, allowing
a coin to scale or overcome unforeseen obstacles. This is an emerging choice
for digital currencies, first popularized by Tezos. It has since been adopted by
others, including several stablecoins. The extent to which governance matters
varies widely by stablecoin design. Stablecoins that depend on a reserve of the
pegged asset have few governable parameters aside from fees. Others, such as Dai
have numerous parameters that might need to be adjusted, and several possible
design features that can be added.

Although the idea of crowd-sourcing system parameters caters to a demo-
cratic ideal consistent with crypto’s ethos of decentralization, in actuality, par-
ticipation may be low. This may leave important decisions in the hands of a moti-
vated minority. For example, the March 7, 2019 stability fee increase in Dai was
approved with less than 1% of MKR holders voting and a single address contribut-
ing more than 50% of the stake [49]. Besides low turnout, voting may suffer from
high latency. If specific governance changes require human participation, then the
process becomes highly contentious and complicated. On the other hand, if there
is no way to amend the governance, the founding team must foresee every prob-
lem or potentially hard fork every time a change has to be made. This can lead to
systems which are inflexible and react poorly to changing global environments.

Regulatory Compliance. Another aspect some coins are grappling with is the
degree of regulatory compliance. Although Know Your Customer (KYC) and
Anti Money Laundering (AML) compliance avoids the possibility of regulatory
problems down the road, it also alienates some potential users. Some people may
demand absolute privacy, be concerned about secure consumer data storage,
or be unbanked because they lack the paperwork necessary to go through the
KYC process. These people may opt to use cash instead of stablecoins. Other
regulatory costs, such as the time, effort, and lawyers required to file with the
relevant regulatory agencies, make it prohibitively expensive to launch a coin,
as was the case with Basis [1]. And finally, being KYC/AML compliant in one
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country does not protect the issuer from liability if the coin is being used in
another country, as KYC and AML laws often differ widely across countries.

It is especially crucial for coins that are fiat backed with collateral stored in
banks to not break any laws because banks can freeze accounts if they suspect
suspicious or illegal activity. For example, if the stablecoin is being abused for
money laundering or other similar purposes, depository banks can stop money
from being withdrawn or deposited in the account. This would prevent users from
creating or redeeming tokens and hinder quantity adjustments necessary to keep
the price stable. This is not a purely hypothetical problem. In April 2017, Tether
found themselves unable to accept international wire transfers into their Singa-
pore bank accounts and were denied outgoing wire transfers by Wells Fargo [71].

Other types of coins suffer from regulatory risk as well. Crypto regulation is
currently a work in progress, and because most cryptoassets are so new there is
very little helpful judicial precedent. This makes it difficult to know which new
designs might run into legal problems later on, or which current laws they might
be violating.

7 Future Directions

7.1 Stable Pay

One alternative to stabilizing an entire currency supply is to only stabilize the
portion of the currency that has been used for payments. This type of currency
is not a good unit of account or store of value, but it can be a reliable medium of
exchange. The only currency currently incorporating this strategy is Xank [40].
Payments on the Xank network have the option of being stabilized by the algo-
rithmic central bank. If person A sends a stabilized Xank transaction to person
B, the bank subtracts Xank tokens from person B’s balance when the price of
Xank increases and adds Xank when it declines. This keeps the dollar value of
what A sent to B constant. The central bank continues to make these adjust-
ments until the tokens are used in another transaction or the user exits their
Xank position. Crypto markets tend to have fairly long run ups and declines, so
there is a high degree of serial correlation in returns. If users expect prices to
increase, they should unpeg their transactions. If users expect prices to decrease,
they will keep their payments stabilized. In a prolonged downturn, this can lead
to the central bank running out of money and being unable to continue to sta-
bilize payments. The largest problem with this design is that the central bank is
essentially providing a free put option, and providing a valuable service for free
is a difficult business model to sustain long term.

7.2 Peg to Other Assets

Another area for stablecoin expansion is assets pegged to financial assets other
than currencies, such as real estate or stock or bond indices. This would make
it easier for people to diversify their holdings across digital currencies and real
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assets without the inconvenience of cashing out of crypto in order to do so. The
traditional finance sector is slowly becoming more interested in crypto markets.
Bitcoin futures have been listed on the Chicago Mercantile exchange since the
end of 2017; NASDAQ lists several blockchain companies and is exploring uses for
blockchain technology. This may indicate an openness to an integration between
the traditional financial sector and crypto. Although there are several regulatory
hurdles in the way, it is possible that a broader range of financial assets might
eventually be available on crypto markets.

8 Conclusion

Stablecoins, that is, low-volatility, programmable, and auditable currencies,
promise to bridge the chasm between fiat currencies and digital currencies. Their
importance in on-ramping the trillions of assets into digital form is evident in the
sheer number of stablecoins issued over the last few years. In this paper, we pro-
vided a systematic overview of all the different types of stablecoins developed,
and divided the various proposals into constituent design elements, based on
peg, collateral type and amount, stabilizing mechanism, and price information.
Although there are over a hundred projects in existence, most are variations of
the same few components. There is still much potential for growth in this area.
Although there are many promising designs, none are without their flaws. Fur-
ther innovation will be necessary before cryptocurrencies adequately fulfill the
functions of money well enough to be adopted by mainstream users.

9 Appendix A: Illustration of Stablecoin Mechanisms

(See Figs. 4, 5, 6 and 7).
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User Balance: $100, 0 USDC

100 USDCUser Reserve

User Balance: $0, 100 USDC

Fig. 4. Reserve of Pegged Asset (ex. USDC)
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Appendix B: Classification of Existing Stablecoins

Name Peg Collateral Collateral

Amount

Price & Supply

Adjustments

Price

Information

Carbon USD USD Full Reserve of pegged asset Trades

Tether [65] USD USD/Euro Partial Reserve of pegged asset Trades

TrueUSD [68] USD USD Full Reserve of pegged asset Trades

Basis USD None None Two coin Oracle

BitUSD [12] USD BTS Full or

over

leveraged loans Elected

delegates input

exchange prices

Saga [59] initially

SDR, later

CPI or none

Basket of Fiat

(SDR)

Full to

partial

Algorithmic market

maker

Based on

amount of

reserve

Bancor [34] ETH ETH Over Algorithmic market

maker

Based on token

balances

Dai [46] USD ETH Over Leveraged loans Median oracle

Gemini

Dollar [23]

USD USD Full Reserve of pegged asset Trades

USDC [20] USD USD Full Reserve of pegged asset Trades

AAA

Reserve [29]

Avg

inflation for

G-10

countries

Fiat, fixed

income, and

loan

investments

Full Determined by by Arc

Fiduciary Ltd

Trades and

oracle

DGX [27] Gold Gold Full Reserve of pegged asset Trades

EURS [60] Euro Euro Full Reserve of pegged asset Trades

StableUSD/

Stably/

USDS [36]

USD USD Full Reserve of pegged asset Trades

PAX [19] USD USD Full Reserve of pegged asset Trades

White

standard [24]

USD USD Full Reserve of pegged asset Trades

SDUSD [3] USD NEO Over Leveraged loans External oracle

elected by SDS

holders

JPM

Coin [37]

USD USD Full Reserve of pegged asset Trades

USDX [54] USD Lighthouse

(LHT)

200%+ Dual coin variant Median of

exchange prices,

validated by

users

Stronghold

USD [63]

USD USD Full Reserve of pegged asset Trades

sUSD [14] USD Synthetix

(SNX)

5x Leveraged loans External oracle

eUSD

(Havven) [15]

USD ETH Over Leveraged loans External oracle

eUSD by

Epay [28]

USD USD Full Reserve of pegged asset Trades

NuBits [44] USD None None Nushareholders vote

whether to list more

NuBits on an exchange,

or offer interest to take

NuBits out of

circulation

Voting

Token [67] USD USD Full Reserve of pegged asset Trades
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Monerium [69] One for

each major

currency

Same as peg Full Reserve of pegged asset Trades

Reserve [13] initially

USD

initially USD,

later other

assets

Initially

full

Reserve of pegged asset Trades

Terra [39] SDR None None Dual coin Randomly

sample users

who vote on

price

Ampleforth [41]USD None None Supply is expanded or

contracted proportional

to market cap

Whitelist of

trusted oracles

Augmint [6] Euro ETH 2x Leveraged loans Exchanges

Bridgecoin [25] USD ETH 2x Leveraged loans

+algorithmic market

maker

Oracle

HelloGold [31] Gold Gold Full Reserve of pegged asset Trades

Kowala [4] USD None None Block rewards increase

when price is high and

are burned when price

is low

Large holders of

mUSD(staking

token) act as

oracles

x8c [72] None Gold, USD,

Euro, GBP,

JPY, AUD,

CAD, NZD,

CHF

Full AI shifts funds across

currencies to keep value

constant

External oracle

NOS [50] USD USD Full Reserve of pegged asset Trades

Phi [30] USD TBD Over Phi is minted when

validators issue a loan

and burned when the

loan is paid back

TBD

Celo [38] USD Celo Gold,

BTC, ETH

Variable Dual coin + algorithmic

central bank

Crowd oracle

Aurora

Boreal [42]

USD ETH and other

reserves

Partial Supply expands when

Decentralized Capital

issues loans

denominated in Boreal

and contracts when

loans are repaid, users

will also receive grants

to act as market makers

Unknown

Stableunit [43] USD Cryptoassets Initially

over

Algorithmic market

maker

Median oracle

Rockz [58] CHF CHF Full Reserve of pegged asset Trades

Steem

Dollars [62]

USD None None Interest accrues to

Steem Dollar holders

Steem Power

holders elect

oracles

USDVault [70] USD Gold Full Reserve of pegged asset,

“sophisticated gold

hedging process” to

maintain peg

Trades

Globcoin.io [33]Gold and

currency

basket

Gold and 15

largest

currencies

Full Reserve of pegged

assets, can cash out to

any one currency in

basket

Oracle

JCash [8] USD, KRW

and other

assets

USD, KRW and

other assets

Full Reserve of Pegged asset Trades
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Staticoin [61] USD Eth Full Dual coin variant 24h exchange

price

Unum [66] USD Cryptoassets Under to

over

depend-

ing on

prices

Algorithmic market

maker: users sell crypto

or Unum to smart

contract

External oracle

Poly [32] None Tokenized

commodities

Full Reserve of pegged asset Trades

BitBay [10] None None None Freeze and unfreeze

tokens based on

transaction and staking

history. Users receive

interest on frozen coins

Dynamic Peg

oracle

BitCNY [12] Chinese

Yuan

BTS Full or

over

leveraged loans Elected

delegates input

exchange prices

EOSDT [26] USD EOS Over Leveraged loans Oracle

Neutral [51] USD Other

stablecoins

(PAX, TUSD,

DAI, and

USDC)

Full Reserve of pegged asset Trades

Candy [11] Mongolian

Tugrik

Mongolian

Tugrik

Full Reserve of pegged asset Trades

Onegram [52] Gold Gold Full Reserve of pegged asset Trades

Carats.io [17] Diamonds Diamonds Full Reserve of pegged asset Trades

Libra [45] Collateral

basket

Bank deposits

and short-term

government

securities

Full Reserve of pegged asset Trades and

oracle

Anchor [5] Monetary

measure-

ment

unit

None None Dual coin Oracle
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1 Introductions

Blockchains offer a mechanism through which mutually mistrusting entities can
cooperate in the absence of a trusted third party. However, the permissionless
nature of their consensus algorithms (i.e. where no third party is entrusted with
the safekeeping of funds) limits their scalability to about ten transactions-per-
second (tps) [1,2], far fewer than custodian payment systems offering thousands
of tps [3]. These scaling issues have led to a rich literature corpus exploring
different blockchain scaling solutions: (i) alternative blockchain consensus archi-
tectures [4–13], (ii) sharding [14–18] and (iii) side-chains [19], some of which
were systematized in related work [20]. However, modifying a consensus mech-
anism implies changing one of the key elements of a blockchain system while
already in-use, which creates crucial issues such as a lack of backward compati-
bility, clearly hindering their implementation in practice. Additionally, consensus
changes might even lead to different, forked systems [21].

Layer-two protocols are an orthogonal scaling solution. Contrary to the afore-
mentioned solutions, layer-two protocols scale blockchains without changing
the layer-one trust assumptions and they do not extend or replace the con-
sensus mechanism. Layer-two protocols enable users to perform so-called off-
chain transactions through private and authenticated communication, rather
than broadcasting every single transaction on the (parent) blockchain. This opti-
mization reduces the transaction load on the underlying blockchain and is fully
backward compatible. The theoretical transaction throughput is only bounded
by the communication bandwidth and latency of the involved parties. Off-chain
transaction security can be guaranteed via allocated collateral, e.g. in payment
channel designs [22–25] or by offering delayed transaction finality in commit-
chain proposals [26].

A rich body of literature has emerged on off-chain protocols, proposing
payment [22–25,27], state [28] and virtual [29] channels, payment channel net-
works (PCNs) [25,27] and related routing protocols [30–35], channel rebalanc-
ing [36] and channel factories [37] constructions, commit-chains [26,38], channel
hubs [39,40], privacy-enhancing channels [39,41–43] and protocols for refereed
delegation [44,45]. However, the sources of information about layer-two protocols
are highly disparate. Moreover, in part due to the rapid pace of advancement
in the blockchain field, we observe, mostly outside academia, a frequent under-
specification of constructions and their adversarial assumptions. This makes it
exceedingly difficult to discern thought-through concepts from marketing activi-
ties. We aim to clear the fog surrounding layer-two protocols, equipping newcom-
ers to this inaccessible field with a concise reference, and inform the directions
of future work. This Systematization of Knowledge (SoK) provides a systematic
overview of layer-two systems since the inception of cryptocurrencies in 2009
and identifies the complete set of proposed layer-two protocol types.

This SoK is structured as follows. Section 2 outlines the necessary background
followed by different layer-two design classes, channels in Sect. 3, commit-chains
in Sect. 4 and protocols for refereed delegation in Sect. 5. For completeness, Sect. 6
presents two sets of complementary approaches to layer-two protocols. Section 7
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considers the anonymity and privacy aspects of layer-two protocols, Sect. 8 covers
security properties and we conclude the paper in Sect. 9.

2 Blockchains and Off-Chain Transactions

This section establishes the necessary background and isolates the blockchain
components relevant to layer-two. The background presented here is necessarily
not a complete overview of blockchain-related concepts, which have been sur-
veyed in other SoKs [20,46]. We distinguish between four different layers within a
blockchain system: the hardware, layer-zero, layer-one and layer-two (cf. Fig. 1).

Fig. 1. Suggested blockchain layers. Layer-two chan-
nels and commit-chains operate without additional con-
sensus mechanism and transact payments, state, and
spawn networks.

Hardware Layer. Trusted
Execution Environments
(TEE) substitute the need
for a blockchain clock
with a trusted hardware
assumption, thus enabling
efficient protocols at other
layers such as off-chain
payments [47,48], the rem-
oval of dispute processes
and backward compatibil-
ity [49]. TEE (e.g. Intel
SGX) execute sensitive
or security-critical applica-
tion code within enclaves
[50,51], tamper-proof from
the operating system or
other higher-privileged soft-
ware.

The Network Layer. The network layer, or layer-zero, is typically a peer-to-peer
layer on which blockchain nodes exchange information asynchronously [52]. The
network layer is of utmost importance to the scalability [53,54], security [1] and
privacy [55] of a blockchain. An efficient layer-zero enables higher transaction
throughput and stronger resilience against malicious actors [1]. Blockchain min-
ers, who write transactions to the blockchain, are connected through dedicated
miner P2P networks (e.g. Fibre [56]), in addition to the public blockchain P2P
network. Note that the network layer encompasses the complete network stack
of the traditional network architecture rather than only the classical network
layer, which focuses Internet routing. More concretely, the network layer should
provide reliable communication between two participants in a blockchain.

The Blockchain Layer. Layer-one hosts an immutable append-only chain of
blocks that accumulates transactions from parties in a network for public verifi-
ability [46]. Each transaction encodes an update of the state of the blockchain.
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A transaction can exchange digital assets between parties or invoke an applica-
tion (i.e. smart contract). The integrity of the blockchain is ensured by means
of a consensus algorithm executed across participants. Consensus algorithms
rely on e.g. the computationally expensive Proof-of-Work (PoW) [13,57–60] or
a large number of alternatives [8,9,61–65]. Blockchains can be permissionless or
permissioned depending on whether participation is open or restricted. We focus
on permissionless blockchains as permissioned blockchains lack the non-custodial
property, but layer-two concepts apply equally to permissioned blockchains. Cru-
cial for the design of layer-two protocols is the scripting language of the under-
lying blockchain. Bitcoin-like blockchains are based on a restricted Script lan-
guage [57] and operate via a set of Unspent Transaction Outputs (UTXO), while
other blockchains support Turing-complete languages enabling highly expres-
sive smart contracts [66]. Layer-two protocols typically assume two properties
from the blockchain layer: integrity (i.e. only valid transactions are added to
the ledger) and eventual synchronicity with an upper time-bound (i.e. a valid
transaction is eventually added to the ledger, before a critical timeout).

We informally define off-chain or layer-two protocols as follows.

Definition 1. (Layer-two protocols). A layer-two protocol allows transactions
between users through the exchange of authenticated messages via a medium
which is outside of, but tethered to, a layer-one blockchain. Authenticated asser-
tions are submitted to the parent-chain only in cases of a dispute, with the parent-
chain deciding the outcome of the dispute. Security and non-custodial properties
of a layer-two protocol rely on the consensus algorithm of the parent-chain.

Off-chain protocols can be categorized into three flavors: (i) channels, which
are formed between n coequal parties (Sect. 3, e.g., [25,27]); (ii) commit-
chains, which rely on one central intermediary, trusted regarding availability but
untrusted regarding funds. (Section 4, e.g. [26,67]); and (iii) protocols for refer-
eed delegation (Sect. 5, e.g. [44,45]). While side-chains [19] let parties transact
on a distinct blockchain, they are not layer-two as they have their own consensus
algorithm.

3 Channels

In this section we first provide an account of the evolution of channel construc-
tions (Sects. 3.1 to 3.4), including the requirement for new watching services
(Sect. 3.3), before considering how multiple single channels can be synchronized
(Sect. 3.5); the routing challenges that synchronized channels present (Sect. 3.6);
and finally the construction of payment channel hubs (Sect. 3.7).

3.1 Channel Overview

A channel establishes a private peer-to-peer medium, governed by pre-set rules,
e.g. a smart contract, allowing the involved parties to consent to state updates
unanimously by exchanging authenticated state transitions off-chain.
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Payment channels emerged [22] to support rapid one-way payments, then
transitioned towards bi-directional channel designs [25], where both parties can
issue and receive payments. State channels [28] generalize the concept to support
the execution of arbitrary state transitions. A state channel allows n parties
to agree, via unanimous consent, to a new state of a previously agreed smart
contract. A channel’s lifetime consists of three phases: (i) channel establishment,
(ii) transition and (iii) channel closure or disputes1.

Fig. 2. Payment channel funding
(UTXO model) and off-chain trans-
action.

Channel Establishment. All parties cooper-
atively open a channel by locking collateral
on the blockchain (cf. Fig. 2). The funds can
only be released by unanimous agreement or
through a pre-defined refund condition.

Channel Transitions. Once the channel is
open, all parties can update the channel’s
state in a two-step process. First, one party
proposes a new state transition by sending
a signed command and the new statei to all
other parties. Each party computes the state
transition as statei ← Tα(statei−1, cmdα),

where Tα denotes the transition function for application α and cmdα denotes a
given command relevant to application α. Second, all other parties re-compute
the state transition to verify the proposed state before signing it and sending
their signature to all other parties.

Channel Disputes/Closure. If an honest party does not receive n signatures
before a local timeout, it assumes that there has been a disagreement about the
proposed state. The honest party may trigger a layer-one dispute and enforce a
new state transition without the cooperation of the other parties.

We generalize [28,29] the properties and security guarantees for responsive
parties offered by channels:

Unanimous Establishment: A channel is only considered open if all n parties
agree to its establishment.

Unanimous Transition: A transition on layer-two, i.e. without an on-chain
dispute, requires all n parties to agree.

Balance Security: An honest party can always withdraw the agreed balance
from the channel with an on-chain dispute.

State Progression: A party can always enforce an off-chain state transition
on-chain, the state machine thus always reaches a terminal state.

1 While the earliest channel protocols differ slightly from the above three-part state
replacement technique, they nonetheless fit within the framework of unanimous con-
sent coupled with the local verification of state transitions.
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3.2 State Replacement Overview

Channel constructions are inherently based on state replacement techniques (cf.
Fig. 3). These techniques assume that participants in a channel are rational and
follow the strategy with the highest payoff (e.g. a user publishes an older state
if it represents a payment of higher value for this user). To be applicable for the
wide range of protocols used to realize channels, the following section discusses
generic state transitions. We distinguish four state replacement techniques:

– Replace by Incentive (RbI). A sender shares newly authorized states with a
receiver. A rational receiver only signs and publishes the state that pays the
highest amount.

– Replace by Time Lock (RbT ). Every state is associated with a time lock2,
which decrements every time the state changes. The state with the lowest time
lock is considered the latest state, as it can be accepted into the blockchain
before all previously authorized states. Once a channel closes, the state that
is included in the blockchain deprecates all other states.

– Replace by Revocation (RbR). All parties collectively authorize a new state
before revoking the previous state. Upon dispute, the blockchain provides a
time period for parties to prove that the published state is a revoked state.

– Replace by Version (RbV ). States have a monotonic increasing counter repre-
senting the state version. Upon dispute, the authorized state with the highest
state version is considered the latest state. A new state replaces a previous
state if it has a larger version number.

Fig. 3. Payment channel update
(UTXO model), invalidate outdated
state.

For RbI and RbT , the latest state can
only be written to the blockchain once.
RbR and RbV introduce a dispute pro-
cess where the counter-party can provide
evidence that a state submitted to the
blockchain is invalid. After the dispute,
the off-chain contract can either be re-
deployed to the blockchain (i.e. closure
dispute) or a set of commands can be exe-
cuted via the blockchain (i.e. command
dispute). The introduction of a dispute
process introduces a new assumption crit-
ical to the channel’s security; the always
online assumption [68] (cf. Sect. 8). Watching services mitigate the assumption
by allowing users to delegate their responsibility of raising disputes to a third
party.

2 Time locks define either absolute time expressed as a blockchain block height, or
relative time expressed as the number of blocks that must elapse after a transaction
is included in the blockchain.
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3.3 Watching Services

To alleviate the online assumption for channel users, related work proposes to
outsource the responsibility of issuing challenges to third-party watching ser-
vices [68–70]. Users outsource their latest state to the watching service before
parting offline. Watching services then act on behalf of the users to secure their
funds. Users can still verify the correct behavior of watching services and pun-
ish them (e.g. by keeping pre-allocated collateral) in case of non-compliance.
Monitor [69] provides watching services within the Lightning Network. Watch-
Tower [70] is designed for Eltoo and requires O(1) storage but is currently not
compatible with Bitcoin’s consensus rules. PISA [68] provides watching services
for state channels and requires O(1) storage. PISA instances provide receipts to
offline users; the users can burn an instance’s security deposit if it misbehaves.

DCWC [71] enables users to engage with multiple watching services, increas-
ing the probability of at least one honest watcher protecting the offline user’s
interests. On the other hand, Brick [72] proposes an additional proactive role for
a watching service. Watchtower committees are formed to manage dispute reso-
lution on behalf of channel participants (i.e. as opposed to executing the dispute
process on the blockchain). This approach ensures channel participants are pro-
tected against blockchain latency and high transaction fees as the committee will
decide the final agreed state for the channel and post it to the blockchain at a
later time, but like PISA, its security relies on financial incentives and collateral
lockup by members of the watchtower committee.

Outpost [73] achieves O(1) storage for a watchtower in Bitcoin without the
need to change any consensus rules. Instead of sending an encrypted justice trans-
action to the watchtower for every update in the channel, the encrypted justice
transaction is stored in the corresponding channel state (as an OP RETURN).
When there is a dispute in the channel, the encrypted justice transaction is
recorded in the blockchain. Thus an observer with the decryption key can sim-
ply decrypt the justice transaction and relay it to the network. Cerberus [74]
considers how to build financially accountable watchtowers in Bitcoin (as PISA
accomplished in Ethereum). It requires the watchtower to lock up collateral for
each channel it is watching and to participate in every channel update. If the
watchtower fails to protect the channel participants, then the participants can
force the watchtower to forfeit its deposit.

3.4 Channel Hierarchy

Aiming to reduce the number of required on-chain transactions, there have been
proposals to increase the flexibility of channels with regard to applications and
participants.

Multiple Applications. Dziembowski et al. [75] and Counterfactual [76] explore
the possibility of installing and uninstalling applications off-chain (i.e. without
on-chain fee). This allows parties to execute multiple concurrent applications
(e.g. tic-tac-toe, poker and bi-directional payments). Such modular channels
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maintain a set of application instances and each instance operates on an indi-
vidually allocated collateral. Application instances are isolated from each other
(even in case of disputes) and based on RbV. Collateral is unanimously assigned
to one application and cannot be used simultaneously for other applications due
to security reasons.

Channel Factories. Burchert et al. [37] propose the concept of a channel factory
for Bitcoin, whereby n parties lock coins into a n-party deposit that is then
re-allocated to a set of pair-wise payment channels. Each party may maintain
one or more pair-wise channels to facilitate transactions. Whenever two parties
want to establish a direct channel, all parties cooperatively agree to create a
new re-allocation of pair-wise payment channels by jointly updating the n-party
deposit. This re-allocation of pair-wise channels can be built using DMC [37],
while Ranchal-Pedrosa et al. [77] replace DMC with Lightning channels.

3.5 Channel Synchronization

The channel designs discussed in the previous section are limited to the direct
interaction among connected parties. This brings forth a new question of whether
it is possible for two (or more parties) to avoid setting up a new direct channel
on the parent blockchain (and thus avoid prohibitive fees) by finding a path of
separate existing channels that indirectly connects them on the network. For
instance, if Alice has a channel with Bob, and Bob has a channel with Caroline,
then Alice could transact with Caroline via Bob. Such a network of channels
is known as a Payment Channel Network (PCN). To facilitate synchronizing a
payment (or executing a smart contract) across a path of channels, we present
conditional transfers. Those allow the sender to lock coins into a transfer such
that the receiver can only claim the funds if a condition is satisfied before an
expiry time [78–81]. Channel synchronization requires every hop along the path
to set up conditional transfers with their counterparty. Two security properties
are crucial for channel synchronization. First, no counterparty risk is required
to ensure that no party defaults on its obligation to execute a transaction in the
prescribed manner. Second, atomicity ensures that a transaction either succeeds
or fails in its entirety. Atomicity is particularly important if one transaction is
split over multiple payments or paths.

Virtual Channels. In all constructions discussed previously, intermediate users
are required to remain online and explicitly confirm all mediated transactions to
successfully synchronize their channels. Dziembowski et al. [29,75] address these
shortcomings with the introduction of virtual channels that support payment
and state transitions. All intermediaries along the route can lock coins for a
fixed period of time and both parties can treat the path as a new virtual channel
connecting them directly. In this manner, A and B can transact without inter-
acting with intermediaries along the path, thus reducing the transaction latency.
Virtual channels are limited by the need to recursively set up a new virtual chan-
nel for every intermediary along the path. It is the intermediary’s responsibility
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to ensure the channels close appropriately. Dziembowski et al. [82] extended vir-
tual channels to support more than two parties such that any number of parties
can set up a virtual channel without blockchain interaction.

3.6 Routing

If A wants to pay B using a set of intermediate channels, it is necessary to
first find one or several paths of open channels from A to B. If the payment only
utilizes a single path, all channels need to have sufficient collateral to conduct the
payment. If the payment is split over multiple paths, it is necessary to divide the
payment in such a manner that channels on each path can handle the partial
payment. In this section, we introduce routing algorithms, i.e. algorithms for
finding paths in a network of payment or state channels. For simplicity, we
use the example of payment channels throughout the section. The protocols,
however, do apply to state channels.

Existing network routing algorithms for data transmission experience unique
challenges when applied to PCNs. The goal of data routing algorithms is the
transfer of data from one node to another, i.e. routing changes the state of
nodes by transferring information. Node links and bandwidth capacities in data
networks moreover are not considered private information. Retransmission of
data is an inherent feature of e.g. TCP, and typically doesn’t induce significant
economic losses to either sender or receiver.

In contrast, the goal of a payment channel routing algorithm is to change the
state of the traversed channels to secure the asset delivery from sender to receiver.
Depending on the transaction amount, certain channels may not be suitable to
route a payment, and channel balances are thus an obstacle that routing algo-
rithms have to account for. An executed channel transaction permanently alters
the state of all channels along the path. Further parameters, such as bandwidth
and network latencies moreover influence channel path delay characteristics. To
protect user privacy, only the total capacity of a channel is disclosed, not the
distribution of funds among the two channel participants. Channel transactions
might therefore fail and the routing algorithms attempt different execution paths
until one succeeds. PCN routing algorithms, therefore, have to account for the
unique characteristic of channels to provide satisfactory path recommendations3.
We summarize five crucial properties routing algorithms for payment channels
should satisfy [30–32].

Effectiveness: Given a PCN snapshot and the channel balances, the algorithm
should find paths which maximize the success probability of a payment. The
algorithm should remain effective when channel balances change.

Efficiency: The overhead of path discovery should be low in latency, commu-
nication and computation. Changes of the PCN topology should entail a low
update overhead cost.

3 Note that Tor-like routing is inappropriate, as Tor assumes a random relay selection,
which wouldn’t account for channel capacities.
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Scalability: The routing algorithm should remain effective and efficient for
large-scale PCNs and high transaction rates.

Cost-Effectiveness: The algorithm should find paths with low transaction fees.
The fees of a layer-two transaction should be lower than a layer-one transac-
tion.

Privacy: Routing paths between two parties should be found without disclosing
transaction values (i.e. value privacy) and the involved parties (i.e. sender and
receiver privacy).

We distinguish between two classes of routing algorithms: global routing and
local routing. In global, or source routing, each node maintains a local snapshot
of the complete PCN topology. In local routing, the algorithm operates on local
information, i.e. is only aware of the node neighbors with which it established
channels with.

3.7 Payment Channel Hubs

Related work [83] observes that layer-two systems benefit from centralized (but
non-custodial) star-topologies to reduce (i) collateral lockup costs and to (ii)
simplify routing complexities. A payment channel hub (PCH) is essentially a
node in a PCN that maintains many channels with different peers. Having a
network with multiple interconnected PCHs should result in a lower average path
length. A reduced path length implies a reduction in collateral cost and route
discovery complexity. Still PCHs face significant locked capital requirements for
each channel. For example, a PCN node with 1M channels, each channel sending
on average $1000 of transaction volume, requires the hub to lock up a total of
$1B. Rebalancing operations are only possible via costly and slow parent-chain
transactions. Moreover, user-onboarding is a costly process, a PCN node with
1M users would require 1M parent-chain setup transactions (costing more than
$100k on Ethereum).

3.8 Summary

In this section we have presented the evolution of channel constructions from
Replace by Incentive through to Replace by Version. Given a network of channels,
we have considered the role of conditional transfers to let parties synchronize
payments (or construct new virtual channels) across a path of channels. With
respect to routing and finding a path that connects two parties in a channel-
based network, we discussed the limitations of deployed routing algorithms due
to their reliance on source routing. Alternative algorithms that rely only on local
knowledge offer some promise, but require further work to achieve effectiveness
comparable to that of source routing. Finally a significant consequence of channel
networks is the requirement for users to remain online and synchronized with
the network to watch for malice disputes. To alleviate the online assumption,
there are several proposals for third party watching services who can respond
to a dispute on the user’s behalf. All proposals tend to focus on building highly
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available watching networks and using on-chain collateral to ensure the watching
services can be held financially accountable.

The aforementioned results suggest that blockchains can scale further by
leveraging layer-two technologies and thus without changes to the underlying
layer one. However, PCNs experience limitations and their scalability properties
have not yet been quantified appropriately. While layer-one transaction costs are
quantified by their size (on UTXO blockchains), or computational complexity
(on smart contract blockchains), the transaction costs on layer-two are primar-
ily correlated to the transaction value (in $). The higher a layer-two transaction
value, the more on-chain collateral needs to be reserved, locking up potentially
considerable amounts of funds in advance. Analysis of the economic consequences
of channel constructions, (e.g. as conducted in [84]), is an open and important
area for future work, particularly in relation to the economic incentives for chan-
nel watching services [85] and the fee structures for channel payments [86].

4 Commit-Chains

4.1 Commit-Chain Overview

In contrast to channels, commit-chains are maintained by one single party that
acts as an untrusted intermediary for managing transactions between users.
Hence, commit-chains serve a similar purpose as payment channel hubs but
with protocols specifically optimized for this scenario. The operator is respon-
sible for collecting commit-chain transactions from the users and periodically
submits a commitment to all collected transactions to the parent-blockchain.
Unlike channels, commit-chains do not rely on a three-state model (opening,
transitions, dispute/closure phase), but rather on an always ongoing state once
launched. After an operator has launched a commit-chain, users can join by
contacting the operator. They can then conduct transactions that are recorded
on the commit-chain. Users can anytime withdraw or move their assets to the
parent chain.

Periodic Checkpoint Commitments. Commit-chain users may need to period-
ically return online to observe the on-chain checkpoint commitment, which can
be instantiated as a Merkle tree root or a Zero Knowledge Proof (ZKP) [26,87].
Merkle root commitments do not self-enforce valid state transitions and there-
fore require users to participate in challenge-response protocols if a commitment
is invalid. In contrast, ZKPs enforce consistent state transitions on-chain, thus
reducing potential operator misbehavior. A challenge response mechanism is still
required to ensure the completeness of the checkpoint (i.e., that it summarizes
the latest state of all user accounts). Currently, there exists no efficient method
to instantiate commit-chains on blockchains without highly expressive scripting
languages.

Data Availability. As commit-chain data is not broadcast for efficiency rea-
sons, users must retrieve/maintain data required to (partially) exit a commit-
chain, commonly referred to as the data availability requirement. Data availabil-
ity challenges may challenge a commit-chain operator to provide the necessary
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data or halt the operator upon misbehavior [26], allowing users to exit with their
last confirmed balance.

Centralized but Untrusted Intermediary. The centralized operator may
become a point of availability failure, but it does not hold custody of funds. The
operator may thus censor commit-chain transactions, encouraging mistreated
users to exit anytime and move towards another commit-chain.

Eventual Transaction Finality. Unlike previously discussed layer-two proto-
cols, the intermediary commit-chain operator does not require on-chain collateral
to securely route a payment between two commit-chain users. In this setting,
commit-chain transactions do not offer instant transaction finality (as in chan-
nels), but eventual finality after commit-chain transactions are recorded securely
in an on-chain checkpoint.

Reduced Routing Requirements. Because a commit-chain can potentially host
millions of users, few statically connected commit-chains are envisioned to spawn
stable networks with low routing complexity. However, we are not aware of any
proposals for atomic cross commit-chain transactions.

We generalize the security properties for users as follows:

Free Establishment: Users join a commit-chain without an on-chain transac-
tion by requesting an operator signature [26].

Agreed Transition: A commit-chain transaction is agreed upon by at least the
sender and the commit-chain operator.

Balance Security: Honest users can always withdraw agreed balances from the
commit-chain with an on-chain dispute.

State Progression: User can enforce an off-chain state transition on-chain.
Commitment Integrity: Users can verify the integrity of commitments and

force the commit-chain operator to seize operation (and rollback to the latest
commitment)4.

Unlike with channels, state progression is not a default security property for
commit-chains, because they only offer eventual finality, unless off-chain trans-
actions are secured by additional collateral [26]. In the worst case, transactions
remain unconfirmed if the next commitment is invalid or not provided.

4.2 Summary

Unlike channels, commit-chains allow transaction recipients to remain offline
at the time of payment, approaching similar usability properties to layer-one
transactions. Conditional on using smart contract enabled blockchains, commit-
chains also allow for a reduction in the required layer-two collateral.

Commit-chains have been shown to scale PoW blockchains by several orders
of magnitude [26], trading-off decentralization for a more centralized (but non-
custodial) architecture. Due to periodic checkpoints in commit-chains, delayed
4 To mitigate the possibility of a false accusation attack by a user against the operator,

the operator may require the user to subsidize the cost of a response to such a
challenge. Note that this in turn may introduce a user grieving vector. To date, no
appropriate parameterization or more elegant solution has been proposed.
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transaction finality is secure without collateral of the intermediate operator [26].
Operator collateral is “re-usable” [26] after each checkpoint, potentially reducing
the locked capital and on-chain costs of PCHs.

Table 1 provides an overview and comparison of channel, channel-hub and
commit-chain constructions.

5 Protocols for Refereed Delegation

In this section, we overview the protocols that focus on solving disputes among
participants differently to how they are handled in channels and commit-chains5.

So far we have assumed that all state transitions in an off-chain protocol
can be executed on a layer-one blockchain. Such transitions range from the exe-
cution of conditional transfers to the execution of an application for a state
channel. Yet while the layer-two approaches we have considered so far allow us
to significantly increase the number of state updates performed among two or
more parties, they are restricted to those whose dispute resolution mechanism
builds upon a mechanism that can be fully executed on-chain. We now present
two approaches which seek to reduce the on-chain requirements for the dispute
resolution, thereby enlarging the set of feasible layer-two applications.

Table 1. Comparison of layer-two transaction designsa.

Channel Channel Hub Commit-Chain

Topology Mesh Star Star
Lifecycle 3-phase 3-phase Periodic commit
Compatibility Any chain Any chain Smart Contract chain
Privacy value privacy, payment anonymity, ✕

relationship anonymity unlinkability
Offline TX Reception ✕ ✕ �
Mass-Exit Security ✕ ✕ �(payments)
TX Finality Instant Instant Delayed or Instant
Instant TX Collateral Full Full Reusable [26]
Delayed TX Collateral NA NA 0
Collateral Allocation O(n) on-chain O(n) on-chain O(1) on-chain [26]
User On-Boarding On-chain TX On-chain TX Off-chain [26]
a Protocols for refereed delegation, distinct in nature with less focus on payments, are
presented in Section 5.

5.1 Bi-section Protocols

Instead of forcing conflicting users to post their (partial) state on-chain, a bi-
section protocol works in two stages: (i) users look for the minimal verification

5 In contrast to channels, commit-chains have not yet been specified to support arbi-
trary state transitions.
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step required to convince a third party (e.g., miner) of the validity of their state-
ment; (ii) miners verify the (simplified) state from conflicting users to determine
who is right. Truebit [45] and Arbitrum [44] are two approaches in this paradigm.

Truebit [45], inspired by verifiable computation, proposed the use of bi-
section protocols to extend the computational capacity of a layer-one blockchain
by taking the computation off-chain. At a high level, for a given computational
task, a solver will post the solution alongside a commitment to a list of sub-tasks
that led to the solution. The blockchain enforces a challenge period to let chal-
lengers verify the solution’s correctness off-chain and issue a challenge if they
disagree. If there is a disagreement, the blockchain enforces a verification game
that performs a binary-search for the list of sub-tasks. When it finds the task
that led to the disagreement, it will simply execute it on-chain and verify the
claim. While the above approach permits scalable off-chain computation, every
verification game requires a logarithmic number of transactions depending on
the size of the computation.

Arbitrum [44] takes this approach further by introducing a new virtual
machine and a state channel. This lets a distributed set of parties execute a pro-
gram in a custom virtual machine and unanimously agree to a commitment (i.e.
state assertion) of the program’s new state. If co-operation in the state channel
breaks down, then any party in the channel can compute a state transition and
post a commitment to the new state to the blockchain (i.e. a disputable asser-
tion). This triggers a similar dispute process to that used in Truebit, where any
other party can challenge the assertion and participate in a bi-section protocol.

6 Complementary Approaches for Layer-Two Protocols

In this section we present two sets of approaches which are complementary to
layer-two protocols: (i) trusted execution environments and (ii) side-chains. In
contrast to layer-two protocols, these approaches invoke additional and differ-
entiated trust assumptions. Trusted execution environments require a shifted
trust assumption towards the CPU manufacturer. Side-chains require trust in
the independent consensus algorithm of the side-chain.

6.1 Trusted Execution Environments

The trusted execution environment (TEE), e.g. Intel SGX [88], approach con-
stitutes an orthogonal approach to that of existing layer-two protocols and can
provide a high level of efficiency while requiring a benign hardware manufacturer.

Trusting a TEE to provide integrity naturally overcomes many obstacles of
non-TEE protocols:

No collateral lockup: TEEs absorb the trust requirements, otherwise guaran-
teed via on-chain collateral.

Interoperability: The computation at the TEE can encode the logic and trans-
action format required for any blockchain.
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Parallelized Disputes: TEEs can emulate the logic of global preimage manager
to enable parallel disputes.

Ensured fees: TEEs follow the protocol definitions and pay honest users for
their synchronization service.

Note that besides the shifted trust assumptions towards the CPU manufac-
turer, TEEs suffer from their own security concerns such as rollback [51] and
side-channel attacks [89].

Teechain [47] and Teechan [48] synchronize payments across channels using
TEEs. TEE enable expressive and off-chain smart contracts on restricted Bitcoin-
based blockchain [49]. Tesseract [90] proposes to construct a scalable TEE based
real-time cross-chain cryptocurrency exchange. In relation to light clients in Bit-
coin, BITE [91] leverages TEEs to enable full nodes to serve privacy-preserving
requests from light clients, when used in combination with other private informa-
tion retrieval and side-channel protection techniques. ZLiTE [92] also leverages
TEEs to provide privacy-preserving light clients for Zcash, whereby light clients
operate in conjunction with a TEE-enabled server (e.g., running Intel SGX [88]).

6.2 Side-Chains

A second complementary approach is that of side-chains [19]. A side-chain is a
distinct blockchain with a separate consensus algorithm attached to a parent-
chain. Side-chains validate transactions and hence take over some of the parent-
chain’s load. Side-chains enable digital assets to be moved between a parent-chain
and a side-chain, such that alternative blockchains can be developed without
necessitating the creation of an alternative digital asset or coin: the parent-chain
asset can be used directly on the side-chain.

The central innovation for side-chains is that of a two-way peg. A two-way peg
is the mechanism permitting the transfer of digital assets at a certain exchange
rate between a parent-chain and a side-chain. A two-way peg allows digital assets
to be transferred from a parent-chain to a side-chain by sending parent-chain
coins an output on the parent-chain that is locked by a Simplified Payment
Verification (SPV) proof [19], which can then be unlocked by an SPV proof on
the side-chain. For the period in which digital assets are locked on the parent-
chain, the assets can be moved freely around on the side-chain. To transfer assets
back to the parent-chain, funds are sent to an SPV locked output on the side-
chain and an SPV proof on the parent-chain unlocks previously locked funds on
the parent-chain. The varieties of a two-way peg are as follows.

Symmetric: SPV security is required to transfer funds between the side-chain
and the parent-chain, independently of the direction.

Asymmetric: where users of the side-chain are fully aware of the state of the
parent-chain, such that an SPV proofs are not required to transfer funds from
a parent-chain to a side-chain, but are required to transfer funds back.

Side-chain constructions treat assets from different parent-chains as different
asset types, which are not interchangeable but which can be explicitly traded.



216 L. Gudgeon et al.

Potential limitations to the use of side-chains [19] include, for instance, an
increase in complexity at both the network and asset level, the creation of new
attack vectors, and an increase in the risks associated with centralized mining.

7 Anonymity and Privacy

In this section we set out the relevant privacy concepts for layer-two (Sect. 7.1).
Layer-one transaction anonymity and privacy is extensively studied [93–96],

uncovering that blockchain pseudonymity does not entail strong privacy guar-
antees. A public blockchain allows an adversary to link a sender and receiver
of payments as well as trace back the origin of coins, breaking the unlinkability
and untraceability properties. Privacy-focused blockchains [97–100] build upon
cryptographic techniques [101–103] to obfuscate on-chain information. Unfor-
tunately, side-channel information (e.g. usage patterns) enable linkability and
traceability attacks [97,104–107]. As off-chain transactions only have a minimal
blockchain footprint, one might believe they provide privacy-by-design.

However, achieving privacy and unlinkability of layer-two transactions is not
trivial [41,78,108]. The creation of a channel associates a permanent pseudonym
(e.g. public keys), while synchronization among channels (cf. Sect. 3.6) may
reveal the pseudonym of the cooperating parties. In Lightning, the a node ID
is linked with an IP address and this information is broadcast across the net-
work. Furthermore, naive route discovery among two channels with a disjoint
set of participants might require the knowledge of the (partial) topology for the
channel network. In HTLC payments (cf. Sect. 3.5), the intermediate channels
on the path use the same cryptographic condition y = H(R). An adversary on
the path can observe the channel updates (i.e. share the same condition y) and
can deduce who is paying to whom.

7.1 Layer-Two Privacy Notions

We differentiate between (i) an off-path adversary, which only has access to the
blockchain; and (ii) an on-path adversary, which additionally participates in the
layer-two protocol.

Payment Hub Privacy. A PCH (cf. Sect. 3.7) or commit-chain (cf. Sect. 4)
operator may have access to mediated transaction amounts and sender or receiver
pseudonyms. In this setting, we consider the following privacy notions.

Payment Anonymity [41]: In the absence of side channels, the receiver of a
payment, possibly in collusion with a set of malicious senders, learns nothing
about an honest sender’s spending pattern.

Unlinkability [39]: The operator cannot link the sender and the receiver of a
given payment among the set of all feasible sender-receiver pairs.



SoK: Layer-Two Blockchain Protocols 217

Multi-hop Privacy. We consider the following privacy properties for routed
payments (cf. Sect. 3.6).

(Off-path) Value Privacy [78]: An adversary not involved in a payment does
not learn the transacted value. If the adversary is part of the payment path
it trivially learns the transacted value while forwarding it.

(On-path) Relationship Anonymity [78]: Given two payments between two
pairs of honest sender and receiver, the adversary (who might control some
of the intermediate channels) cannot tell which sender paid to which receiver
with a probability higher than 50%. Off-path adversaries are not considered
here since transaction data is shared only among involved participants.

Unlike other payment networks such as credit networks [30,109–111], existing
privacy notions in PCNs do not consider link privacy (e.g. whether an adver-
sary can determine the existence of a payment channel between two users) or
whether it is possible to infer the (partial) topology of a PCN. Channels may be
unannounced (e.g. private Lightning channels), such that an adversary may be
unaware of the link between users.

7.2 Summary

We have seen that while the default transaction privacy on layer-two is likely
better than on layer-one, layer-two transactions cannot by default be considered
private. TumbleBit and A2L achieve unlinkability but not payment anonymity.
BOLT does not support Bitcoin but offers stronger privacy guarantees. Even in
the simplified PCH setting, it seems that tradeoffs between privacy and com-
patibility are required. Multi-hop payment protocols do not enforce single hop
privacy guarantees (e.g a user learns predecessor and successor in a payment
path) at the gain of global privacy guarantees such as value privacy and rela-
tionship anonymity. As demonstrated in AMHL, it is possible to achieve privacy
guarantees and backwards compatibility with most existing blockchains. State
channels and commit-chains demonstrate interesting functionalities based on the
expressiveness of rich scripting languages. These protocols, however, to date do
not aim at providing anonymity and privacy guarantees from the commit-chain
operator. Instead, privacy is considered an orthogonal research problem. Recent
work [44,45] demonstrates that including additional verification functionality to
the consensus layer opens the door for hiding contract activity in state channels.

8 Security

This section provides an overview of layer-two security concepts.
The consensus [1,112] and network [113] security of blockchains has been

extensively investigated. Security is fundamental to distributed ledgers, as the
shift of trust assumptions from a single custodian to a decentralized non-
custodial network only prevents the loss of funds if the system’s security prop-
erties are sound. Layer-two research benefits from this body of literature, but
necessitates the introduction of new requirements, trust assumptions and adver-
sarial models.
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8.1 Layer-Two Security Notions

While experimental studies so far focus on the connectivity of PCNs [114], for-
mal security studies focus on the notion of balance security, both in the payment
hub [39,41] and multi-hop payment [78] settings, as well as provably secure off-
chain protocols for multi-party computation [115]. Balance security intuitively
defines that layer-two protocols must achieve two properties: (i) the adversary
cannot extract more funds than previously allocated in the channel’s funding;
(ii) honest users do not lose funds even when other parties collude. As with pri-
vacy, this security concept has been formalized in both paradigms: cryptographic
games and the UC framework. BOLT, A2L and TumbleBit are the payment hub
systems with formal security guarantees, while Rayo & Fulgor, AMHL and Perun
provide formal security guarantees in the multi-hop setting. While previous work
assumes a somewhat ideal model for the underlying blockchain to highlight the
security and privacy properties at layer-two, recent work [116] shows a security
analysis of the Lighting Network, tracing how its security properties build upon
a blockchain model that faithfully represents Bitcoin at present. However, the
work [116] does not model aspects such as fees, privacy, or cooperative channel
closure. NOCUST provides a thorough study of balance security for commit-
chains.

Consistency Proofs. Many layer-two protocols rely on challenge-response pro-
tocols to detect and prove misbehavior using the blockchain as a recourse for
disputes. An alternative strategy to enforce consistency of an off-chain protocol
is to let the blockchain verify a succinct proof attesting to consistency of the sec-
ond layer’s state. While ZKPs [117] suffer from expensive on-chain verification
costs (approximately 650k gas on Ethereum) per proof [118], they can attest
to potentially large state transitions which otherwise would require significant
on-chain resources. For commit-chains, zkSNARKS were shown to enforce con-
sistent checkpoints [26], leaving data availability of the external ledger as the
remaining challenge vector.

8.2 Layer-Two Security Threats

There are security threats idiosyncratic to layer-two, as follows.

Hot Wallets: Channels’ requirement of unanimous agreement for state updates,
and therefore that all involved parties need to be online with access to their
signing keys, makes it critical to keep keys online in a hot wallet. These wallets
make parties prime targets for adversaries.

Online Assumption: Parties are required to remain online and fully synchro-
nized with the PCN and blockchain. Therefore if a party goes offline, they
become vulnerable to an adversary.

Blockchain Reliability and Mass Exits: Layer-two designs assume that the
underlying blockchain accepts transactions eventually; however, under con-
gestion, parties may fail to meet deadlines to settle disputes.
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Security of Synchronizing Protocols: such as the wormhole attack [79],
where transaction fees can be stolen, and the American Call Option
Attack [119], where an adversary sets up a multi-hop payment but does not
release the trigger to finalize the payment.

8.3 Summary

The security guarantees of layer-two transactions rely not only on the parent
chain’s consensus guarantees and on-chain security collateral data availability
concerns and blockchain congestion threats introduce a new dimension of game-
theoretic challenges that are not considered by current formal definitions. For
instance, current UC definitions consider the blockchain as ideal components,
which disregards the mass-exit concern.

9 Conclusion

This SoK systematizes the rich literature that has emerged on layer-two transac-
tions since the inception of cryptocurrencies in 2009, categorizing the work into
three main approaches: payment and state channels, commit-chains and proto-
cols for refereed delegation. In addition to presenting the central aspect of the
protocols in these three categories, we review in detail their anonymity, privacy
and security aspects. Our over-arching aim in this paper is to lower the barrier
to entry to the study of layer-two protocols.

We observe, overall, that layer-two protocols enable blockchains to scale with-
out modification on the base layer but that the performance improvement results
in different security guarantees for off-chain payments than on-chain transac-
tions. We also observe a likely inherent trade-off between collateral and transac-
tion finality at layer-two. In the context of channel constructions, instant finality
requires full collateralization. For commit-chains, the requirements for full on-
chain collateralization is reduced but in exchange for eventual finality. Notably,
commit-chains enable secure off-chain transactions without collateralizing the
full off-chain transaction volume.

Both payment channels and commit-chains face privacy challenges. Our dis-
cussion highlights clearly that not publishing transactions on a public blockchain
is not sufficient for solving the privacy issues experienced in blockchain systems.
Privacy in off-chain transactions requires common definitions and new protocols.

We explicitly lay out the shift in transaction costs from transaction size
(in bytes) to transaction value. It stands to reason that such a shift entails
economic consequences. In particular, the relation between on-chain and off-
chain fees raises interesting game-theoretical questions for a rational actor aiming
to minimize the fees they pay or maximize the fees they gain.
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A.R.: Software grand exposure:SGX cache attacks are practical. In: 11th USENIX
Workshop on Offensive Technologies (WOOT 2017) (2017)

90. Bentov, I., et al.: Tesseract: Real-time cryptocurrency exchange using trusted
hardware. IACR Cryptology ePrint Archive 2017/1153 (2017)
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Abstract. Micropayments have a large number of potential applica-
tions. However, processing these small payments individually can be
expensive, with transaction fees often exceeding the payment value
itself. By aggregating the small transactions into a few larger ones,
and using cryptocurrencies, today’s decentralized probabilistic micro-
payment schemes can reduce these fees. Unfortunately, existing solu-
tions force micropayments to be issued sequentially, thus to support fast
issuance rates a customer needs a large number of escrows, which bloats
the blockchain. Moreover, these schemes incur a large computation and
bandwidth overhead, limiting their applicability in large-scale systems.

In this paper, we propose MicroCash, the first decentralized proba-
bilistic framework that supports concurrent micropayments. MicroCash
introduces a novel escrow setup that enables a customer to concurrently
issue payment tickets at a fast rate using a single escrow. MicroCash is
also cost effective because it allows for ticket exchange using only one
round of communication, and it aggregates the micropayments using a
non-interactive lottery protocol that requires only secure hashing and
supports fixed winning rates. Our experiments show that MicroCash can
process thousands of tickets per second, which is around 1.7–4.2× times
the rate of a state-of-the-art sequential micropayment system. Moreover,
MicroCash supports any ticket issue rate over any period using only one
escrow, while the sequential scheme would need more than 1000 escrows
per second to permit high rates. This enables our system to further
reduce transaction fees and data on the blockchain by ∼50%.

1 Introduction

Micropayments, or payments in pennies or factions of pennies, have a large a
number of potential applications as diverse as ad-free web surfing, online gaming,
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and peer-assisted service networks [19]. This paradigm allows participants to
exchange monetary incentives at a small scale, e.g., pay per minute in online
games. Such a fine-grained payment process has several advantages, including
a great deal of flexibility for customers who may stop a service at any time. In
addition, it reduces the financial risks between mutually-distrusted participants,
where there is no guarantee that a client will pay after being served, or that a
server will deliver service when paid in advance.

However, processing these small payments individually can incur high trans-
action fees that exceed the payment value itself. For example, the average base
cost of a debit or credit card transaction in the US is around 21 to 24 cents,
and 23 to 42 cents [5,6], respectively. In cryptocurrencies such a fee could be
even higher, e.g., above $1 in Bitcoin [3]. Beside this financial drawback, han-
dling micropayments individually can impose a huge workload on the system,
and may make the logs needed for accountability purposes unwieldy. Thus, there
is a need for a payment aggregation mechanism that records fewer transactions
while still compensating properly for the small payments received to date.

Probabilistic micropayment schemes have emerged as a solution that fits the
criteria outlined above [18,21–23]. In these models, the total payment value is
locked in an escrow and micropayments are issued as lottery tickets. Each ticket
has a probability p of winning a lottery, and when it wins, produces a transac-
tion of β currency units. This means that, on average, only one transaction is
processed out of a batch of 1/p tickets. Unfortunately, these early proposals rely
on a trusted party to audit the lottery and manage payments. Such a centralized
approach may increase the deployment cost and limit the use of the payment
service to systems with fully authenticated participants [14].

As cryptocurrencies evolved, a number of initiatives attempted to convert
these schemes to distributed ones [14,19]. This was done by replacing the trusted
party with the miners, and utilizing the blockchain to provide public verifiabil-
ity of system operation. Yet, these approaches have several drawbacks that may
hinder their usage in large-scale systems. First, they force a customer to issue
micropayments sequentially using the same escrow. This is because in these
schemes an escrow is only funded to pay only one winning lottery ticket. Hence,
a new ticket cannot be issued until the merchant reports the lottery outcome and
confirms that the previous one did not win. To issue tickets at a fast rate under
this restriction, the customer needs to create a large number of escrows, which
increases the amount of data on the blockchain and transaction fees. Second,
these schemes rely on computationally-heavy cryptographic primitives [14,19],
and several rounds of communication to exchange payments [14]. Such perfor-
mance issues reduce the potential benefits of micropayments.

To address these issues, this paper introduces MicroCash, the first decentral-
ized probabilistic framework that supports concurrent micropayments. Micro-
Cash features a novel escrow setup that allows a customer to issue micropay-
ments in parallel and at a fast rate using a single escrow that can pay many
winning tickets. This is achieved by having the customer specify the total num-
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ber of tickets it may issue, and provide an escrow balance that covers all winning
tickets under its payment setup.

MicroCash is also cost effective because it introduces a lightweight non-
interactive lottery protocol. This protocol requires only secure hashing and allows
a payment exchange using only one round of communication without demanding
the merchant to report anything to the customer. Furthermore, this protocol is
the first to eliminate the possibility that all lottery tickets may win or lose the
lottery. Although the probability of these events is very small, the fear of paying
much more than expected may discourage customers from using the system [18].
Moreover, accounting for the worst case when almost all tickets win requires a
large escrow balance, which increases the collateral cost. Our protocol alleviates
this concern by selecting an exact number of winning tickets each round (where
a round is the time needed to mine a block on the blockchain). In particular,
all tickets issued in the same round are tied to a lottery draw value in a future
block on the blockchain. This value is used to determine the fixed-size set of
winning tickets through an iterative hashing process. Lastly, the security of the
system is enforced using both cryptographic and financial techniques. The latter
requires a customer to create a penalty escrow that is revoked upon cheating,
with a lower bound derived using a game theoretic modeling of the system.

To evaluate the efficiency of MicroCash, we test its performance against
MICROPAY [19], a state-of-the-art sequential micropayment scheme. Our results
show that a modest merchant machine in MicroCash is able to process 2,240–
10,500 ticket/sec, which is around 1.7–4.2× times the rate in MICROPAY, with
60% reduction in the aggregated payment size. Furthermore, a modest customer
machine in MicroCash is able to concurrently issue more than 33,000 ticket/sec
using one escrow over any period, while MICROPAY requires the creation of
more than 1000 escrows per second to support a comparable issue rate. This
allows MicroCash to reduce transaction fees and amount of data on the blockchain
in a video delivery and online gaming applications by ∼50%.

2 Related Work

To orient readers to the current state-of-the-art in probabilistic micropayments,
in this section we review prior work done in this area. In addition, we review an
alternative payment aggregation mechanism, called payment networks [15,20],
focusing on its limitations when used to handle micropayments.

Probabilistic Micropayments. The idea of probabilistic micropayments dates
back to the seminal works of Wheeler [23] and Rivest [21,22]. In these schemes,
a customer and a merchant run the lottery (on each ticket independently) by
using a simple coin tossing protocol, with a chance of more, or less, winning
tickets than expected. All of these schemes rely on a centralized bank to track
and authorize payments. This imposes additional overhead on the users who
have to establish business relationships with this bank. It also limits the use of
the service to only fully authenticated users. Although they allow for concurrent
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micropayments [22], this centralization issue is viewed as one of the main reasons
for the limited adoption of such solutions [14].

Cryptocurrency-based probabilistic micropayments can potentially overcome
both the cost and efficiency problems inherent in earlier schemes. To the best
of our knowledge, only two such schemes have been proposed to date in the
literature, MICROPAY [19] and DAM [14].

MICROPAY translates what Rivest [21] proposed into an implementation on
top of a cryptocurrency system. Instead of using an authorized bank account, any
customer creates an escrow on the blockchain to issue lottery tickets. MICRO-
PAY implements a similar interactive coin tossing protocol for the lottery, and
adds an alternative non-interactive version that reduces the communication
complexity (a merchant still has to report the lottery result back to the cus-
tomer). However, the latter is computationally-heavy since it requires public
key cryptography-based operations and a non-interactive zero knowledge (NIZK)
proof system. Moreover, MICROPAY only supports sequential micropayments
as mentioned earlier. DAM shares similar constraints, but unlike the public
MICROPAY it preserves user privacy by implementing anonymous micropay-
ments.

We believe that the added blockchain transactions due to sequential pay-
ments, coupled with the high computation cost, point to the need for optimized
approaches that support concurrent micropayments at a lower overhead. This
need is the motivation behind building MicroCash.

Payment Channels and Networks. Payment channels were originally devel-
oped to handle micropayments in Bitcoin [2], where they rely on a similar con-
cept of processing small payments locally. Later on, this paradigm was utilized
to improve the scalability of cryptocurrencies [15,17,20], where off-chain pro-
cessing is utilized to reduce on-chain traffic, and hence, increase the transaction
throughput of the system.

In general, payment channels and networks require an escrow to be created
between each pair of parties along the payment path. This may result in a higher
collateral cost than probabilistic micropayments, since in the latter the same
escrow can be used to pay several parties directly. These costs may indirectly
push the network towards centralization [7] since only wealthy parties can afford
multiple escrows to create payment paths. Thus, most users will rely on these
parties, or hubs, to relay the off-chain transactions. In addition, each hub on
the path charges a fee to relay payments. With micropayments, such a setup
would be infeasible because these fees could be much larger than the payments
themselves. Probabilistic approaches, on the other hand, eliminate any fees when
exchanging lottery tickets. As a result, distributed probabilistic micropayments
provide a better solution for handling small payments in cryptocurrency systems.

3 Threat Model

Processing off-chain transactions in distributed probabilistic micropayments cre-
ates the potential for various types of attacks. In this section, we outline a threat
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model capturing these attacks, which guided the design of MicroCash. In devel-
oping this model, we make the following assumptions:

– No trust is placed in any (insider or outsider) party.
– Participants are rational, meaning that they choose to follow the protocol, or

deviate from it, based on what will maximize their utility gain.
– The underlying cryptocurrency scheme is secure in the sense that the majority

of the mining power is honest. This means that the confirmed state of the
blockchain contains only valid transactions, and that an attacker who tries
to mutate or fork the blockchain will fail with overwhelming probability.

– Hash functions are modeled as random oracles, and the hash values of the
blocks on the blockchain are modeled as a uniform distribution.

– Efficient adversaries cannot break the basic cryptographic building blocks
(SHA256, digital signatures, etc.) with non-negligible probability.

– Communication between customers and merchants takes place over a channel
that provides integrity, confidentiality, and authenticity, such as TLS/SSL.

We used the ABC framework [10] to build a comprehensive threat model
for distributed probabilistic micropayment schemes1. During this process, we
identified the assets to be protected in such systems, which include the escrows,
the lottery tickets, and the lottery protocol. Then, by analyzing the security
requirements of these assets, and examining more than 120 threat cases, we
produced the following list of broad threat categories endemic to distributed
probabilistic micropayments:

– Escrow overdraft: A customer creates a payment escrow insufficient for
honoring the winning lottery tickets, or creates a penalty deposit that does
not cover the cheating punishment imposed by the miners. Such a threat could
stem from creating small balance escrows, or from front running attacks in
which a customer withdraws the escrows before paying.

– Unused-escrow withholding: An attacker prevents or delays a customer
from withdrawing its unused escrows. For example, merchants may delay
claiming their winning lottery tickets to keep the payment escrow on hold.

– Lottery manipulation: An attacker attempts to influence the outcome of
the lottery draw, and hence, bias the payment process.

– Denial of service (DoS): This is a large threat category that threatens
any distributed system. This work focuses on attacks related to the payment
process, like preventing a customer from creating escrows.

– Duplicate ticket issuance: A customer uses the same sequence number to
issue several lottery tickets to different merchants. As this means creating
more tickets than the escrow can cover, the customer obtains more service
than it can pay for.

– Invalid payments: A malicious customer issues lottery tickets that do not
comply with its payment setup or with the system specifications. Because
these tickets will be rejected by the miners if they win the lottery, the customer
can avoid paying merchants.

1 A detailed documentation of this process is available online [8] and is based on the
generic description of probabilistic micropayments as described in the introduction.
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Note that dealing with malicious merchants who collect lottery tickets and
do not deliver a service is outside the scope of MicroCash. The same is true for
dealing with malicious customers who may obtain the service without paying. In
this work, we are concerned with the payment scheme design, rather than how
to exchange service for a payment, which is part of the application design.

In addition, MicroCash does not address payment anonymity (as in [14]).
Addressing this issue securely, while preserving the low overhead of MicroCash,
is a direction for our future work.

4 MicroCash Design

Having outlined the security threats to probabilistic micropayments, and the
limitations of existing solutions, this section presents the design of MicroCash, a
concurrent micropayment system that addresses these issues. We start with an
overview of the system, followed by a more detailed technical description.

Fig. 1. Flow of operations in MicroCash.

A high level illustration of MicroCash, that also captures the remainder of this
section’s organization, is found in Fig. 1. As shown, during the payment setup
(Step 1, Sect. 4.1), each customer issues a transaction creating two escrows:
payment and penalty. The customer uses the former to pay merchants in the
form of lottery tickets, while the miners use the latter to financially punish this
customer if it cheats. Merchants can check the escrow setup before transacting
with the customer when the escrow transaction is confirmed on the blockchain
(Step 2). In exchange for the delivered service, the customer issues lottery tickets
according to a schedule that limits the number of tickets over a set period (Step
3, Sect. 4.2). To claim payments, a merchant holds a ticket until its lottery draw
time, and determines if this ticket won based on a value derived from the block
mined at that time (Step 4, Sect. 4.3). If it is a winning ticket, the merchant
can claim currency from the customer’s escrow during the ticket redemption
period (Step 5, Sect. 4.4). This interaction continues until the end of the escrow
lifetime. At that time, and after all issued tickets expire, the customer can spend
any remaining funds.
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4.1 Escrow Setup

MicroCash introduces a novel escrow setup that allows multiple winning tickets
to be redeemed. This enables both concurrent ticket issuance and reduces the
amount of escrow-related data. This setup also provides techniques to deter-
mine the escrow balance needed to cover all concurrent tickets, and to track the
issuance of these tickets in a distributed way.

Escrow Creation. As an off-chain payment scheme, MicroCash must ensure
that customers can and will pay. This includes honoring winning tickets, and,
if caught cheating, complying with a stipulated financial punishment. To satisfy
these requirements, each customer must create payment and penalty escrows
with sufficient funds to cover both eventualities.

Given that each payment escrow must be tied to a penalty escrow, a customer
sets up both using one creation transaction. This transaction provides funds to
be locked under each escrow balance, which we refer to as Bescrow (payment)
and Bpenalty (penalty). It also configures a set of parameters that influence how
these balances are computed, and how they are to be spent. These parameters,
whose values are specified by the customer possibly after negotiating with the
merchants, include the following:

– The lottery winning probability p.
– The currency value of a winning lottery ticket β.
– The ticket issue rate tktrate, which is the maximum number of tickets a cus-

tomer is allowed to hand out per round. This is used to calculate which ticket
sequence numbers are valid within each ticket issuing round.

– A lottery draw round length, denoted as drawlen, such that drawlen ∈
{1, . . . , c} for some small system parameter c. The customer has to configure
drawlen, p, and tktrate in a way that makes p tktratedrawlen of an integer value
(this is the number of winning tickets in a lottery draw).

– The set of beneficiary merchants that can be paid using the escrow, where
the size of this set is denoted as m.

Computing Bescrow and Bpenalty based on the above parameters proceeds as
follows. To permit concurrent micropayments, Bescrow must be large enough to
pay all winning tickets tied to an escrow. Given that each winning ticket has
a value of β currency units, and that there are p tktratedrawlen winning tickets
per drawlen rounds, Bescrow can be simply computed as follows (where lesc is the
escrow lifetime in rounds, and there are lesc/drawlen lottery draws)2:

Bescrow = β p tktratelesc (1)

For Bpenalty, we compute a lower bound for this deposit by using an economic
analysis that quantifies the additional utility gain, or profit, a customer obtains
2 Compared to previous schemes [14,19], this is the same expected payment amount

needed to cover the same number of winning tickets. However, since these works are
sequential, they distribute this amount among multiple escrows instead of one.
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by cheating. The profit is the monetary value of the service exchanged for invalid
or duplicated tickets to merchants before cheating is detected, i.e., before any of
these tickets wins the lottery and is claimed through the miners (assuming that
merchants do not exchange any information about the received tickets). Thus,
to make cheating unprofitable, and hence, unappealing to rational customers,
Bpenalty is set to be at least equal to this additional utility as given by the
following equation3:

Bpenalty > (m − 1)p β tktratedrawlen

(
1 − p

1 − ρ−1
+ drawlen

(
(1 − p)(ddraw − 1) + dredeem

))

(2)

where ddraw is the lottery draw period in rounds, dredeem is the ticket redemption
period in rounds (more about these parameters in Sect. 4.3), and ρ =

(
a
b

)
such

that a = tktratedrawlen and b = (1 − p)a. The full details of deriving this bound
are found in Sect. 5 in the full version of the paper [11].

Upon receiving the escrow creation transaction, the miners verify the cor-
rectness of a payment setup as follows. First, they check that the customer owns
the input funds. Then, the miners use Bescrow to compute the escrow lifetime as
lesc = Bescrow

β p tktrate
. After that, they check that both lesc and p tktratedrawlen are of

integer values, drawlen is within the allowed range, and that lesc is multiples of
drawlen. Lastly, the miners verify that Bpenalty satisfies the bound given above.
If all these checks pass, the miners add the escrow transaction to the blockchain.
Otherwise, they reject the escrow by dropping its transaction.

Escrow Management. In MicroCash, the escrow funds can be spent only for a
restricted set of transactions. These include claiming winning tickets, presenting
proofs-of-cheating, and enabling a customer to spend its unused escrow funds.

To track the locked funds, miners maintain a state for each escrow in the
system. This state includes the following:

– The ID of the escrow, which is a random value generated by the miner who
adds the escrow creation transaction to the blockchain.

– The balances of both the payment and penalty escrows.
– The public key of the owner customer, which is used to verify all signed tickets

that are issued using this escrow.
– The values of p, β, lesc, tktrate, drawlen, and the set of beneficiary merchants

(both the public key of each merchant and a corresponding index).
– An escrow refund time, denoted as trefund, at which the customer can spend

any remaining funds. Miners set this time to be equal to the expiry time of
the tickets issued in the last round of an escrow lifetime.

3 Compared to DAM [14], MicroCash’s penalty escrow will be larger. This is because
the cheating detection period in MicroCash is longer (several rounds until the lottery
is run and a winning ticket is claimed). In DAM, the lottery is run over a ticket
immediately when it is received, and a claim, if any, can be issued at the same
time. Thus, assuming identical payment setup, Bpenalty in MicroCash is approximately
TMicroCash/TDAM times the one in DAM, where T is the cheating detection period.
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Fig. 2. An example of a ticket issuing schedule.

Ticket issuance using an escrow must follow a schedule based upon the tickets’
sequence numbers. That is, if an escrow supports a rate of tktrate tickets per
round, then in the first round tickets with sequence numbers 0 to tktrate-1 may
be issued. In the second round tickets with sequence numbers tktrate to 2tktrate-1
can be issued, and so on until the last round of an escrow lifetime. Merchants
will accept tickets in the current round with sequence numbers that follow this
assignment schedule. As customers and merchants may have inconsistent views
of the blockchain, and hence, may not agree on what is the current round, i.e.,
height of the blockchain, merchants will also accept tickets from the prior and
next round, as long as these tickets use the correct sequence number range.

An example of a ticket issuing schedule is found in Fig. 2. As shown, the
escrow creation transaction is published at round 10 and confirmed at round 16.
This escrow has lesc = 3 rounds, and allows a ticket issue rate of 1000 tickets
per round. Thus, the customer has 3 ticket issuing rounds, starting at round 17,
with the sequence number ranges shown in the figure.

The miners update the escrow state based on the escrow related transac-
tions (mentioned earlier) they process. For example, redeeming a winning ticket
reduces Bescrow by β coins, and receiving a valid proof-of-cheating against the
customer causes the miners to revoke the funds in Bpenalty. All these transactions
are logged on the blockchain, which permits anyone to validate the state.

The miners discard an escrow state once all tickets tied to this escrow expire.
This happens at time trefund, or when an escrow is broken after receiving a valid
proof-of-cheating (discussed in Sect. 4.5). At that time, the customer may spend
any remaining funds in its escrows.

4.2 Paying with Lottery Tickets

After the escrow is confirmed on the blockchain, a customer can start paying for
service by giving merchants lottery tickets. A lottery ticket tktL is a structure
containing several fields as follows:

tktL = indexM ||idesc||seqno||σC (3)

where indexM is the recipient merchant index as listed in the escrow state, idesc
is the escrow ID, seqno is the ticket sequence number, and σC is the customer’s
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signature covering all the previous fields. The seqno field, along with idesc, iden-
tifies a ticket, which also provides means for ticket tracking in the system. Note
there is no need to include the escrow configuration or the parties’ public keys
in the ticket itself, these can be looked up on the blockchain using idesc.

When issuing a ticket, the customer fills in the above fields and signs the
ticket using its secret key tied to the public key used when creating the escrow.
The ticket seqno can be any sequence number within the range assigned to the
current ticket issue round. The customer can continue issuing lottery tickets,
without waiting for the lottery results of previously issued ones, until it finishes
all sequence numbers in this range. After that, it must wait the next round to
generate more tickets.

Upon receiving a ticket, a merchant verifies it as follows:

– Check that the escrow is not broken.
– Check that its index indexM , that appears in the ticket, is identical to the

one listed in the escrow state.
– Check the freshness of seqno (i.e., that no earlier ticket, associated to the

same escrow, carries the same seqno).
– Verify that seqno is within the valid range based on the ticket issuing schedule.

(As mentioned before, to handle inconsistencies in the blockchain view, tickets
from the previous or next issuance round can be accepted.)

– Verify σC over the ticket using the customer’s public key.

If any of the above checks, except the fourth one, fails, the merchant drops
the ticket. On the other hand, if the ticket has an out-of-range sequence number
(i.e., larger than the maximum sequence number allowed by the escrow), the
recipient merchant can issue a proof-of-cheating that will cost the customer its
penalty deposit. Otherwise, if all the above checks pass, the merchant accepts
the ticket and keeps it until its lottery draw time.

4.3 The Lottery Protocol

MicroCash introduces a lightweight lottery protocol that relies solely on secure
hashing. This protocol does not require any interaction between the customer
and the merchant. Instead, it utilizes only the state of the blockchain, where the
lottery draw outcome is determined by a value derived from the block mined at
the lottery draw time.

To specify the lottery draw time, MicroCash defines two system parameters,
ddraw and drawlen. ddraw represents the least number of rounds a ticket has to
wait after its issue round (which we call tissue) until it enters the lottery. drawlen

determines the number of consecutive ticket issuing rounds that all their lottery
tickets enter the same lottery draw. Hence, if drawlen = 1, then the draw time
tdraw of a ticket is computed as tdraw = tissue + ddraw. On the other hand, if
drawlen > 1, then tdraw of a ticket is tdraw of the last ticket issuing round in the
contiguous set of rounds4.
4 Since drawlen affects tdraw of a ticket, MicroCash specifies a small interval for its

possible values to prevent a customer from excessively delaying paying merchants.
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A clarifying example of determining the lottery draw time is found in Fig. 3.
As shown, starting with round 28, which the first ticket issuing round, each set
of contiguous drawlen rounds enter the lottery together. For example, all tickets
issued in rounds 28, 29, and 30 enter the lottery at round 40, which is 10 rounds
after the last ticket issue round in this set.

Whether a ticket wins or loses depends on a lottery draw value tied to the
block mined at time tdraw. This value is computed using a simple verifiable delay
function (VDF) [13] that is evaluated over this block. This evaluation takes a
period of time, hence the name delay function, where this period is a system
parameter. Consequently, when a miner mines the block at index tdraw, it cannot
tell immediately which ticket will win or lose. This miner has to compute the
VDF over this block to know the lottery draw outcome.

We instantiate this VDF using iterative hashing, where the number of itera-
tions is set to a value that delays producing the output by the period specified
in the system. In addition, we let the miners compute this function as part of
the mining process. That is, when a miner mines a new block, it evaluates the
VDF over the previous block. Therefore, the VDF value of the block at index
tdraw appears on the blockchain when the block at index tdraw + 1 is mined.

Accordingly, in our protocol a merchant holds a ticket tktL until its lottery
draw time tdraw. Then, after observing the VDF value of the block mined at
that time, the miners, and any party, can compute the set of winning sequence
numbers for that round as follows. First, the hash of the VDF value along with
the escrow ID is computed, which we call h1, and then h1 is mapped to a sequence
number within the assigned range of the ticket issuing rounds tied to tdraw. To
obtain the second winning sequence number, the hash of h1 is computed to
obtain h2, and then h2 is mapped to a sequence number in the given range. If a
collision occurs, i.e., a previously seen number is produced, it is discarded and
the process proceeds with hashing h2 to obtain h3, and so on. This continues
until a set of distinct p tktratedrawlen winning sequence numbers is drawn5.

The previous process is clarified by the example depicted in Fig. 3. As shown,
tktL was issued in round 28, the first ticket issuing round, and hence, it entered
the lottery at round 40. The VDF value of the block with index 40 appears
inside block 41. By using this value, a set of winning sequence numbers has
been chosen, based on which the ticket in the figure is a winning one because its
sequence number is within this set.

Note that the lottery draw involves only values that are part of the escrow
state. In other words, it relies on parameters that the issuing customer cannot
manipulate, which do not include the merchant recipient address. This means
that a ticket’s chance of winning the lottery is not affected by who owns it. As
such, if a customer issues tickets with duplicated sequence numbers to multiple
merchants, all these tickets will win or lose together. If the tickets win, detecting

5 We design a version of this lottery protocol with independent ticket winning events
in Appendix A in the full version [11]. This can be used in case it is infeasible in
some applications to configure p tktratedrawlen to be an integer.
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Fig. 3. Lottery draw example (drawlen = 3, p = 1
300

, tktrate = 103, and ddraw = 10).

cheating is trivial because merchants will publish their winning tickets to the
blockchain to redeem the tickets.

4.4 Claiming Winning Tickets

After the lottery draw, a merchant can collect currency from the customer’s
escrow by redeeming its winning tickets (if any). This is done by issuing a redeem
transaction that has the winning ticket as input, and has β coins directed to the
merchant’s address as output.

To allow the miners to resolve tickets and release escrow funds back to the
customer in a reasonable timeframe, MicroCash specifies a redeem period for each
ticket. This is done by defining a system parameter called dredeem that determines
the number of rounds during which a ticket can be redeemed. A ticket expires at
time texpire = tdraw + dredeem. Thus, dredeem must be set to a value that allows
merchants to redeem their winning tickets.

After receiving a redeem transaction, the miners process it as follows:

– Check that the transaction complies with the system specifications.
– Verify the redeemed ticket as outlined in Sect. 4.2.
– Verify that the ticket is a winning one by checking that its sequence number

is among the winning set drawn at time tdraw of this ticket.
– Check that the ticket has not expired.
– Verify the merchant’s signature over the redeem transaction using the public

key corresponding to indexM found in the escrow state.
– Check that no other ticket with the same sequence number and tied to the

same escrow has already been redeemed. If it is, this is a proof of duplicate
ticket issuance and is used as a proof-of-cheating against the customer.

If all these checks pass, miners approve the redeem transaction and update
the escrow state accordingly. Otherwise, they drop an invalid transaction and,
if a proof-of-cheating is produced, revoke the customer’s penalty deposit.

4.5 Processing Proof-of-Cheating

A proof-of-cheating is a transaction any party who witnesses a cheating incident
can present to the miners. In MicroCash, such an incident could be issuing tickets
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with out-of-range sequence numbers or issuing duplicated tickets. A signed ticket
with an out-of-range sequence number or signed tickets with duplicated sequence
numbers are publicly verifiable proofs against the issuing customer.

If cheating is verified, miners revoke the customer’s penalty escrow tied to its
payment escrow referenced in the ticket as follows. In case of ticket duplication,
the miners first pay all duplicated winning tickets from the payment escrow, and
then from the penalty deposit. Next, they publish an escrow break transaction
containing the proof-of-cheating on the blockchain. This transaction burns the
revoked penalty deposit rather than providing them to another party to eliminate
the chance that this party may collude with the customer to receive those funds.
Respecting the lower bound of Bpenalty, as specified before, ensures that all the
above cheating behaviors are less profitable than acting in an honest way. Hence,
it makes such behaviors unappealing to rational customers.

5 Security and Game Theory Analysis

In this section, we analyze the resilience of MicroCash to the threats outlined
in Sect. 3. To defend against these threats, our scheme utilizes cryptographic
and financial approaches. Due to space constraints, this section presents a brief
version of this analysis, but a more complete and detailed one can be found in
Sect. 6 in the full version of the paper [11].

MicroCash addresses the escrow overdraft threat by using its escrow setup.
The miners will reject any escrow with payment or penalty balances that do
not satisfy the bounds defined earlier. Furthermore, no customer can perform
a front running attack by withdrawing escrows before paying. This is because
escrow fund release is triggered only by the receipt of a valid winning lottery
ticket (for a payment escrow) or a valid proof-of-cheating (for a penalty escrow).
In addition, a customer who tries to perform an indirect withdrawal by issuing
winning tickets to itself after observing the lottery draw outcome will also fail.
As the ticket issue schedule specifies both issue and lottery draw time for each
round, it will be too late to select only winning sequence numbers after tdraw.
By that time, merchants have already received their tickets, and any unissued
winning ticket that a customer may try to claim is covered by the escrow balance.

The unused-escrow withholding threat is also handled by MicroCash’s escrow
setup. When all tickets tied to an escrow expire, i.e., at time trefund, the miners
will allow the customer to spend the residual balance. This prevents locking
unused escrow funds indefinitely on the blockchain.

The lottery manipulation threat is addressed by MicroCash’s lottery draw
mechanism. The draw outcome depends only on values that a customer cannot
manipulate. These include a ticket sequence number, which must be within a
predetermined range, the escrow ID that appears in the escrow state, and the
VDF value of the block mined at time tdraw. The probability of predicting the
latter is negligible (in the random oracle model and under the assumption that
block hashes on the blockchain are modeled as a uniform distribution). Hence,
a customer cannot know which ticket will win or lose in advance. Also, given
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that the VDF takes time to be computed, a miner who may perform selective
mining (possibly in collusion with the customer) by evaluating the VDF first,
and then announcing a favorable block, will have a low chance of publishing this
block on the blockchain. This is because other miners will announce their newly
mined blocks immediately, which will have higher probability of being adopted.
As such, any lottery ticket has a fair chances of winning the lottery.

For DoS, which is a large threat category to any system, we limit our focus
to cases related to the design of MicroCash. These include preventing customers
from creating escrows, preventing merchants from claiming their winning tickets,
or selectively relaying blocks based on their content. The case of miners disre-
garding specific transactions/blocks may take place when an attacker controls
a substantial portion of the mining power, or when the attacker controls the
network links and tries to isolate participants. Under the assumption that the
majority of the mining power is honest, and by having each participant connect
to a large number of miners, the impact of this threat can be reduced. To protect
against selective relaying, techniques that allow propagating messages without
disclosing their content can be employed, e.g., BloXroute [4]. Such mechanisms
are independent of the design of MicroCash, and so it is up to the parties them-
selves to adopt suitable solutions.

MicroCash uses a detect-and-punish approach to financially mitigate the
duplicate and invalid ticket issuance threats. Any party that detects any of these
events can produce a proof-of-cheating against the issuing customer containing
the duplicated or invalid tickets as a proof. Once such an incident is verified,
miners burn the customer’s penalty escrow as a punishment.

We compute the value of Bpenalty by using a game theoretic analysis in which
we model the setup of MicroCash as a repeated game over the escrow lifetime6.
Then we quantify the the monetary value of the additional service a customer
can obtain in exchange for the duplicated, or invalid, tickets during the cheating
detection period. That is, cheating is detected when any of the duplicated tickets
wins the lottery and is claimed through the miners, which happens in ddraw +
dexpire rounds after the ticket issue time. Thus, we set Bpenalty to be at least
equal to service monetary value obtained during this period. Here, we only state
our result while the full modeling and proof can be found in Sect. 5 in the full
version [11].

Theorem 1. For the game setup defined in Sect. 5 in the full version [11], issu-
ing invalid or duplicated lottery tickets is less profitable in expectation than acting
in an honest way if (where ρ =

(
tktrate

(1−p)tktrate

)
):

Bpenalty > (m−1)p β tktratedrawlen

(
1 − p

1 − 1/ρ
+drawlen

(
(1−p)(ddraw −1)+dredeem

))

6 Although Chiesa et al. [14] present an economic analysis for the DAM penalty escrow,
the derived bound cannot be used with MicroCash. This is due to the differences in
the system setup and the lottery timing, which affects the cheating detection period
and the duplication decisions a customer can make.
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6 Performance Evaluation

To understand the performance benefit of concurrent probabilistic micropay-
ments, in this section we evaluate the computation, bandwidth, and payment
setup costs of MicroCash. We implemented benchmarks for the functions used
for generating tickets, verifying these tickets, and performing a lottery draw7.
We used SHA256 for hashing, and for digital signatures, we tested the most
widely used schemes: ECDSA over secp256k1, ECDSA over P-256, and EdDSA
over Ed25519 [12]. To put our results in context, we compare our scheme with
MICROPAY [19], particularly its fully decentralized version MICROPAY1 with
its non-interactive lottery protocol. In implementing this protocol, we used
the verifiable random function (VRF) construction introduced by Goldberg et
al. [16].

For each of the tested schemes, we computed the rate at which customers,
merchants, and miners can process lottery tickets. Also, we calculated the band-
width overhead by reporting on the size of tickets when exchanged between the
various parties. To evaluate the effect of micropayment concurrency, we com-
puted the number of escrows a customer would need to support the ticket issue
rate in each of the tested schemes. Lastly, we studied two real life applications,
online content delivery and online gaming, to derive workload numbers and used
them to quantify the overhead of processing micropayments in such applications.

Our experiments were implemented in C on an Intel Core i7-4600U CPU @
2.1 GHz, with 4 MB cache and 8 GB RAM. Each of the payment processing func-
tions was called 106 times. Due to space constraints, this section provides only
a brief discussion, while a complete report can be found in the full version [11].

Lottery Ticket Processing Rate. Table 1 shows the ticket processing rates.
Customers in both schemes generate tickets at comparable rates because the
operations performed are almost identical in MicroCash and MICROPAY. Given
that the heaviest operation in this process is signing a ticket, the generation
rates improve by using an efficient digital signature scheme, where performance
is boosted by around 17x and 14x when ECDSA (secp256k1) is replaced with
ECDSA (P-256) and EdDSA (Ed25519), respectively.

The trend is different for merchants and miners. These parties in MicroCash
are 1.7×, 4.2×, and 3.2× faster than in MICROPAY for the three digital signa-
ture schemes. This is because of the operations that miners and merchants need
to perform when running and verifying the lottery draw outcome in each system.
In MicroCash, this process involves only lightweight hash operations, while the
lottery in MICROPAY requires evaluating a computationally-heavy VRF.

Furthermore, the table shows that merchants and miners in MicroCash benefit
more from the efficiency of the digital signature scheme. This is because the

7 It should be noted that due to requiring a VDF evaluation and the new transaction
types, MicroCash is not compatible with Bitcoin-like systems. For smart contract-
based systems, if a periodic unbiased source of randomness exists to replace the
VDF, then MicroCash can be implemented as a smart contract that uses this source
for the lottery.
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Table 1. Ticket processing rate (ticket/sec).

MICROPAY MicroCash

ECDSA
(secp256k1)

ECDSA
(P-256)

EdDSA
(Ed25519)

ECDSA
(secp256k1)

ECDSA
(P-256)

EdDSA
(Ed25519)

Customer 1,859 32,471 26,238 1,868 33,006 26,749

Merchant 1,328 2,399 2,561 2,249 10,505 8,473

Miner 1,340 2,448 2,617 2,241 10,345 8,368

heaviest operation these parties perform in MicroCash is verifying a customer’s
signature. However, in MICROPAY the bottleneck is evaluating a VRF and
producing a correctness proof of the output the merchant side, and verifying this
proof on the miner side. As shown in the table, MICROPAY obtains only around
1.9x improvement when replacing ECDSA (secp256k1) with any of the other
two schemes. In contrast, MicroCash achieves around 4.7x and 3.8x improvement
when replacing ECDSA (secp256k1) with ECDSA (P-256) or EdDSA (Ed25519),
respectively.

Lottery Ticket Bandwidth Overhead. In terms of bandwidth, MicroCash
incurs less overhead than MICROPAY because its lottery tickets are smaller. A
ticket sent from a customer to a merchant is 110 bytes in MicroCash, while it
is 274 bytes in MICROPAY. A winning ticket sent from merchants to miners
is also 110 bytes in MicroCash, while it is 355 bytes for MICROPAY because
this ticket must be accompanied with a NIZK proof. This means that MicroCash
incurs only 40% of the bandwidth overhead of MICROPAY between customers
and merchants, and only 31% of the overhead between merchants and miners.

To put these numbers in context, we report on the transaction sizes in Bitcoin.
The average size is around 500 bytes, where a transaction with one or two inputs
is about 250 bytes [9]. Adding a winning ticket as one of these inputs produces
a claim transaction with a size of 360 bytes in MicroCash, which is less than the
average Bitcoin transaction size. On the other hand, in MICROPAY the size of
a claim transaction will be 605 bytes, exceeding the average size.

Size of Escrows on the Blockchain. One major difference between concurrent
and sequential micropayment schemes is that a customer in the latter needs a
new escrow after each winning ticket, and to issue tickets in parallel at a fast
rate, this customer has to create a large number of escrows. This dramatically
increases the overhead since each of these escrows requires an individual creation
transaction, paying a transaction fee, and logging on the blockchain.

For example, to support the ticket issue rates reported in Table 1, a MICRO-
PAY customer would need a number of escrows that depends on the network
latency and a merchant’s ticket processing rate. Using the average US RTT of
31 ms [1], in the best case an escrow in MICROPAY can be used to issue 32 tick-
ets per second (if none of these ticket win or only the last one wins). Therefore,
a customer in MICROPAY would need 60, 1019, or 653 escrows per second to
support the generation rates for signature schemes ECDSA (secp256k1), ECDSA
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(P-256), or EdDSA (Ed25519), respectively, as found in Table 1. On the other
hand, a customer in MicroCash would need only one escrow with the proper
balance to pay at any given ticket rate. As such, MicroCash dramatically reduces
the amount of data logged on the blockchain.

Micropayments in Real World Applications. To ground our results in real
world numbers, we examined two applications; online gaming and peer-assisted
content delivery networks (CDNs). We computed the overhead of processing
micropayments with parameter values derived from the service price and the
application workload. This is done for three cases: Bitcoin with no micropayment
scheme, Bitcoin with MICROPAY, and Bitcoin with MicroCash.

Our results confirm that MicroCash is cost efficient enough to be used in
online gaming and content distribution. Since it is a concurrent scheme that
allows issuing payments in parallel using a single escrow, MicroCash decreases the
total data added to the blockchain by around 50% as compared to MICROPAY.
The full details of this evaluation can be found in Sect. 7.3 in the full version [11].

7 Conclusions

In this paper, we introduce MicroCash, the first decentralized probabilistic frame-
work that supports concurrent micropayments. The design of MicroCash fea-
tures an escrow setup and ticket tracking mechanism that permit a customer
to rapidly issue tickets in parallel using only one escrow. Moreover, MicroCash
is cost effective, as it implements a non-interactive lottery protocol for micro-
payment aggregation that requires only secure hashing. When compared to the
sequential scheme MICROPAY, MicroCash has substantially higher payment pro-
cessing rates and much lower bandwidth and on-chain traffic. This demonstrates
the viability of employing our scheme in large-scale micropayment applications.
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Abstract. The Lightning Network (LN) is a payment network running
as a second layer on top of Bitcoin and other Blockchains. This paper
presents the possibility of performing a balance lockdown in the LN due
to misbehaving nodes associated to a given channel. We formalize and
introduce a practical attack, minimizing the economic cost of the attack.
We present results that validate our claims, and provide experimental
results and potential countermeasures to handle the problem.
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1 Introduction

The Lightning Network (LN) is a peer-to-peer (P2P) payment network running
as a second layer on top of Bitcoin and other Blockchains. Two nodes in the net-
work can create a payment channel with a fixed capacity and use it to exchange
payments between them with low fees. Nodes can route payments through other
nodes when no direct channel exists between a payer and a payee. To preserve
some degree of privacy, the LN uses an onion-routing protocol for multihop pay-
ments. Nodes only publish the minimum information needed to establish the
payment routes. Besides the capacity of a channel, its balance determines how
this capacity is balanced between two nodes (i.e., the bandwidth of the channel
in each direction). A node with 0 balance is not able to perform a payment in
the channel, since all the capacity is held by the other node.

In this paper, we uncover the possibility of balance lockdown due to misbe-
having nodes associated with a given channel. The attack affects the payment
channels of the LN nodes. More specifically, in a balance lockdown attack an
adversary can block LN middle nodes in multipath payments. If successful, the
attack gives the adversary a dominant position in the LN, which can be later
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exploited either for data gathering information or for increasing the benefits
of particular LN gateway nodes. We formalize and elaborate some practical
evidence of our attack while minimizing the economic cost of the adversary.
We present experimental results that validate our claims and discuss potential
countermeasures.

Section 2 introduces the necessary background to understand the proposed
attack. Section 3 describes the threat model and the attack. Section 4 provides
the experimental results. Section 5 discusses countermeasures. Finally, Sect. 6
surveys related work and Sect. 7 concludes the paper.

2 Lightning Network Background

The LN is a separated P2P network, connected to the main Bitcoin P2P network
with nodes that run a LN software client [3,4,15]. Each client maintains a P2P
connection with other nodes of the LN and also a connection with a node in the
Bitcoin main P2P network. When nodes establish connections with other peers
in the Lightning P2P Network, they can open a payment channel in which they
exchange Bitcoin transactions without the need for such transactions to be set
down in the blockchain. Such payment channels are the core elements of the LN.
Details of the LN specification can be found in [14]. High level introductions
about the LN exist in the literature [2,9,10]. The background key point for our
proposal is the multihop approach. Payments in the LN between nodes that do
not share a payment channel have to be routed through a multihop path through
a payment route. In all current LN implementations, such route is constructed by
the source node that performs the payment. To allow such construction, nodes
in de LN maintain a topology structure of the LN network that is used for route
discovery. LN implementations, given a target node, return the more suitable
route based on the number of hops and the fees each hop charges for routing the
payment. However, being a P2P environment, there is no deterrent for a source
node to compute the payment route at his choice with the information he has
available.

In the multihop approach, payments at each individual payment channel
cannot be performed exactly in the same way that with a single hop. An inter-
mediate user has to enforce he would receive the payment from the preceding
node once he has performed the payment to the next one, otherwise he would
lose the amount of the payment. The enforcement of this type of atomic exchange
between all the nodes of the path (i.e., all simple one-hop payments have to be
completed or none can be processed) is performed using Hashed Timelock Con-
tracts (HTLCs) [1]. In an HTLC between the sender A and the receiver B, A can
deposit Bitcoins that can be redeemed by B if B can perform a digital signature
and provide a preimage of a hash value. Furthermore, the deposit performed
by A has an expiration date after which A can retrieve the deposit providing
a digital signature. For a two-hop payment, A ↔ B ↔ C, the idea is that C
generates a random value x and sends h(x) to A. A performs the single hop
payment to B with an HTLC based on h(x) and B also performs the single hop
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payment to C with an HTLC based on the same value h(x). In that way, since
C knows x, he can redeem the transaction from B, but redeeming the transac-
tion implies revealing the value of x. This implies that B may also redeem the
payment from A.

When node B1 performs a payment to node Bm in the LN using the route
B1 → B2 → · · · → Bm, the atomicity needed in such operation implies that
all route payments cannot be executed until the last node of the route, Bm,
provides the corresponding preimage x of the h(x) included in the HTLC. In a
normal scenario, Bm reveals this preimage as soon as he receives the payment
in his channel since he wants to collect the payment. However, in case that the
payment gets stuck for any reason in node Bi, all payments from node B1 to
node Bi will be locked. To bound the locking time, B1 sets a total timelock.
Such time frame for the payment, determined as an absolute blockheight value,
and known as its expiration blockheight, θ, limits the time that money will
be locked in case the payment does not succeed. Then, when the payment is
being routed every node of the route also decreases such value θ. Each node
of the LN advertises for each of its channels, the value δ that will be used for
decreasing θ at each hop. With such public information, the payer creates the
route with an initial θ ensuring that after subtracting each δ of each intermediate
node, the last node will obtain a not expired time, that is (θ − ∑m

i=2 δi) > 0.
Notice that this mechanism allows the payer to bound the time a payment will
be locked but, without any other mechanism, a malicious payer could lock the
funds of intermediate nodes by setting a large initial value θ. To avoid such
situation, each node sets his own Tmax value that bounds the locking time of a
payment. Then, when a node receives a payment as an intermediate node route,
if θ > Tmax the node will refuse to route the payment and the payer will have
to choose another route.

3 LockDown Attack

The proposed attack is focused on a target victim A, a node of the LN. The
goal of the adversary is to block the victim A as a middle node in multipath
payments. By achieving such goal, an adversary may obtain a dominant position
in the LN since blocking some selected nodes may let the adversary be the main
gateway to route payments allowing him to have a dominant position that can be
exploited either for data gathering information or just for increasing the benefits
as a LN gateway node.

To simplify the description of the attack, we omit some of the maximum
values that LN implementations introduce. However, we discus how such values
impact the cost of real attacks in Sect. 4. Regarding the notation, and for the
rest of the paper, we assume that the victim node is A, the adversary is M and A
has open channels with a list of n different nodes, denoted by Bi for i = 1, · · · , n.
Furthermore, we denote by CABi

the capacity of the channel that A and Bi have
open and by balanceABi

(resp. balanceBiA) the balance that A (resp. Bi) has in
this channel. We denote Cattack the capacity that M has to hold in channels in
the LN to perform the attack.
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3.1 Attack Design

The atomicity needed in a multihop payment enforces that the intermediate pay-
ments in a multihop route should be held until the complete route is constructed
and all payments can be performed together. During the time the route is being
constructed, nodes in the route lock the balance of the payment until such pay-
ment takes place. With such underlying mechanism, a malicious user can lock
a total amount of p balance in a channel ABi, during the time a payment is
being constructed, by sending a payment of value p through that channel ABi.
However, such action, that we label as a naive attack, has two main drawbacks
from an adversarial point of view. The first one is related to the cost of the
attack and the second one is related to the time the balance is locked.

Regarding the cost, in a naive attack, to block p balance in channel ABi, the
adversary needs to perform a payment of value p so the adversary needs to hold
the same capacity that the attack is locking. In that sense, we can define the
Attack Effort Ratio.

Definition 1. The Attack Effort Ratio (AER) is the ratio between the capac-
ity needed to perform the attack and the capacity that the attack blocks, i.e.,

AER =
Cattack

Cblocked

The naive attack achieves AER = 1 and such attack can be considered
a brute force attack since it always can be performed by design of multihop
payments. Notice that AER measures the profitability of the attack, and in case
an adversary can reduce the AER then, more efficient is the attack, in economic
terms, and higher can be the incentive for the adversary to perform such attack.

Regarding the time during which the balance is locked, in a naive attack the
adversary only locks the balance during the time the whole payment is being
constructed and, in regular conditions, such period is often very short since the
final receiver of the payment in a multihop route “executes” the payment as soon
as the payment arrives. For more powerful attacks we can define the Δ function.

Definition 2. The Δ(b) function is a time based decreasing function that mea-
sures the total capacity blocked w.r.t. the time during which the attack has been
conducted. The block generation time, b, is used as the time unit for this function.

For instance, Δ(0) = Cblocked since it provides the total capacity blocked
at the initial time of the attack. Eventually, Δ(b) = 0 for a large b since the
blocking effectiveness of the attack decreases over the time. In a naive attack,
Δ(1) = 0 since the capacity is unblocked almost instantly after the payment,
long before the appearance of the first block (b = 1) after the attack execution.

As we will detail later, an attack is performed through multiple payments. For
that reason, the Δ(b) function is computed taking into account the expiration
values of each payment that forms the attack. If we define Δi(b) as the capacity
blocked by payment i during b blocks, then Δ(b) =

∑
i Δi(b),∀i ∈ attack.

For comparison purposes, we define two single value metrics that compress
the Δ(b) function: the Total Blocked Time and the Normalized Total Blocked
Time.
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The Total Blocked Time, TBT , of the attack is the sum of the Δ(b) values:

TBT =
∞∑

b=0

Δ(b)

The normalized TBT , ˜TBT , is defined as:

˜TBT =
TBT

Cblocked · max{Tmax} ,

where max{Tmax} is the maximum default value of Tmax seen in any implemen-
tation. Therefore, 0 < ˜TBT ≤ 1, and the ideal attack with ˜TBT = 1 would be
blocking Cblocked capacity during 5000 blocks, that is, more than 34 days.

Once we have described how to perform a naive attack to a single channel, we
now describe how to improve the efficiency of the attack, both minimizing the
AER and maximizing TBT . We focus the attack goal to block the victim A as a
middle node in multipath payments. In that case, the value Cblocked is the total
capacity of node A in the LN, that is Cblocked = CA =

∑n
i=1 CABi

. Notice that
regarding the attack goal, for blocking a middle node in a payment route it is
sufficient to block all incoming balances to A or all outgoing balances from A. In
any of both situations, A cannot route any payment. Then, the naive attack over
a single node A achieves Cattack = min{∑n

i=1 balanceABi
,
∑n

i=1 balanceBiA}.
Clearly, Cattack ≤ CA. The AER for such an attack is reduced with respect to
the naive attack of a single channel. Notice that, with this approach, the AER
reduction cannot be determined by the adversary, i.e., the adversary cannot
directly control the balances. However, the AER can be also reduced when the
same payment is used more than once to block different channels. In fact, in a
multihop payment, a single payment p blocks up to m · p capacity being m the
number of hops of the payment route. Another strategy to reduce AER is to
construct the largest possible route. However, if the attack is focused on a victim
A, not only the length of the route has to be computed but also the route should
be kept close to A to ensure all blocking capacity obtained for that route is able
to block incoming or outgoing channels of A. As we will see, the best strategy
to keep the payment route close to the victim is to perform routes through A
with loops as short as possible that return to A. Such possibility will depend on
the topology of the payment network in which A is connected.

The improvement of the attack can also be measured regarding the time
during which the attack takes place. The objective is to maximize the TBT
value. To that end, the adversary can be placed at the end of the route, to
hold the payment as much time as possible before the funds of the route are
unlocked. As we will see in detail in the next section, this strategy increases the
value Cattack needed for the adversary.

3.2 Adversarial Knowledge

To implement the ideas described in the previous section, the adversary needs
precise knowledge of the network. To construct payments routes which pass
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through victim A, the adversary needs to know the topology of the network to
construct such paths. This information is available using any LN implementation,
since it is needed to perform standard payments. Additionally to the topology
of the network, the detailed information about balances of every channel are
needed to perform the attack. This information can be derived from existing
attacks in the literature [5].

Furthermore, to minimize AER, the number of hops of a payment route has
to be maximized. Although payment routes in the LN are bounded to 20 hops
[16], the exact number of hops that a route may contain is also limited by values
Tmax and δ of each node of that route. Notice that a node does not accept a
payment that locks its funds more than Tmax time and such time is fixed by the
adversary but decreased in each hop by the δ of each node. Then depending on
the values Tmax and δ of each node of the route, the total number of hops in a
route could be lower than 20. For that reason, the adversary also needs to know
the values Tmax and δ of each node of the network.

3.3 Attack Description

To describe our attack we use a simple scenario where the victim A is a hub
between two users, B1 and B2, as depicted in Fig. 1. Capacity values are CAB1 =
p1 + p4 and CAB2 = p2 + p3 being pi the balances in each direction for each
channel. The objective of the adversary Mallory, M , is to disrupt the availability
of A, by either blocking the availability of incoming links or outgoing links, that
is rendering p1 = 0 and p3 = 0 or either p2 = 0 and p4 = 0.

AB1 B2

p1

p4

p2

p3

Fig. 1. Simple scenario

To perform the attack, M opens a channel with A as depicted in Fig. 2(a).
The attack complexity depends on the balances between A and Bi and we can
distinguish the two following cases:

Shorter Loop – The first case is when p1 ≤ p4 and p3 ≤ p2. Notice that with
this conditions, p1 + p3 ≤ p2 + p4 so M would prefer to block incoming paths to
A since Cattack is lower than blocking outgoing connections. Then, M can block
all incoming path by performing two single payments with a short loop. The
first payment will follow the route M → A → B1 → A → M with value p1 and
the second payment will follow the route M → A → B2 → A → M with value
p3. With these payments balanceB1A = balanceB2A = 0. Notice that with this
scenario the channel that M has to open with A to perform the attack needs a
capacity1 Cattack = CMA = 2(p1 + p3).
1 The capacity that M has to open with A is the double of the payment value since

the payment is performed by M but also has to return to M to extend the time that
the payment is blocked.
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AB1 B2

M

p1

p4

p2

p3
p5 p6

(a)

AB1 B2

M

D

p1

p4

p2

p3
p5 p6

p7p8

(b)

Fig. 2. (a) Simple scenario with adversary. (b) Simple scenario with external node

Longer Loop – In case either p1 > p4 or p3 > p2, then the adversary needs to
proceed in a different way.2 Without lost of generality, assume that p1 > p4 and
p3 ≤ p2 and also that p1 + p3 ≤ p2 + p4 so M would prefer to block incoming
paths to A. With this balance distribution, M can perform a short loop as
before to block the incoming path from B2 by performing the payment of value
p3 following the route M → A → B2 → A → M . However, since p1 > p4, M
cannot perform a payment route M → A → B1 → A → M with value p1 since
the channel AB1 has balanceAB1 = p4 < p1. At most, M can perform a payment
with value p4 through the path M → A → B1 → A → M . Such payment locks
p4 but some balance is still available in the channel, precisely p4 − p1. For M to
lock that capacity of the channel, since the path A → B1 is already exhausted,
M needs another path from A to B1 with capacity p4 − p1 with such exact
direction. Figure 2(b) shows a simple example in which there exists a node D
with opened channels with A and B1 and such that balanceAD = p7 ≥ p4 − p1
and balanceDB1 = p8 ≥ p4 − p1. In that case, M can perform a second payment
with value p4 − p1 with route M → A → D → B1 → A → M . This payment
will lock the remaining funds of B1 → A.

The hard assumption of the existence of node D can be relaxed with the
existence of multiple possible paths that all together can route the total p4 − p1
value. Notice, however, that the payment graph topology hardly determines the
existence of such paths.

3.4 AER Minimization

The attack described in the previous section can be improved in terms of AER.
For instance, regarding the shorter loop case example, the AER value depends
on the difference between p1 + p3 and p2 + p4. In the extreme case in which,
p1 + p3 = p2 + p4, such attack has the worst possible AER since CA = (p1 +
p3) + (p2 + p4) = 2(p1 + p3) and Cattack = CMA = 2 · (p1 + p3), so AER = 1.
2 Notice that if both inequations hold, then p1 + p3 > p2 + p4 and M would prefer to

block outgoing paths as in the “Shorter loop” case.
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However, the adversary can reduce such value by relooping the nearer part of
each route next to A. Then, if each payment route can be m hops, each original
path can be transformed into M → A → B1 → A → B1 → A → · · · → M
and M → A → B2 → A → B2 → A → · · · → M . With those loops, the
total amount that has to be routed is reduced to 2p1

m−2 and 2p3
m−2 respectively, so

Cattack = 4(p1+p3)
m−2 and AER = 2

m−2 . Notice that such relooping strategy can
also be implemented in the longer loop scenario.

3.5 TBT Maximization

We recall that, to make the attack more effective, the TBT value should be
maximized. To that end, the adversary takes the advantage of being at the
beginning and end of each payment.

As a first node, the adversary can determine the maximum Δi for a particular
payment i since such value depends on values δ and Tmax of each node and the
node position in the route. The first one, Tmax, is the maximum amount that a
node allows an outgoing payment in a channel to be locked. And the second one
indicates the difference, in blocks, that each hop in the route requires. When a
node receives a payment, he sets an expiration time3, θ, for the payment, and
subtracts his δ. In case that the resulting value is lower than his Tmax, then
he will keep forwarding the payment, in other case, the node will refuse the
payment, the route will be discarded and the payer will need to find another
route. Then, the best strategy for an adversary to maximize Δi is to simulate
the route assuming that each node, instead of discarding the payment, will set
the new θ as his Tmax (see Appendix A for a detailed example).

As a last node of the payment, the adversary can hold the payment during
the received θ = Δi value, being sure that the previous node does not cancel
the payment before that time—since it fits the proper waiting values of the
implementation.

4 Experimental Results

To analyze the feasibility of the proposed attack and provide a proof-of-concept,
we need to ensure that nodes in the LN behave in a particular way. Firstly, to
minimize AER we need to test if the type of routes with cycles used in our
attack can be routed through the nodes of the LN. Secondly, to maximize TBT ,
we need to verify if the payee of a multihop route is able to retain a payment
during a certain period of time before the payment is finally processed locking
channels involved in the payment route. Furthermore, we are also interested to
implement a mechanism for which the payee can cancel the payment without
paying any fee to the routing nodes.

We perform a test in a simnet controlled environment to validate that our
claims are correct and that the routes generated in our attack containing loops

3 For simplicity, we assume θ as a relative block height value.
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can effectively been deployed in the three most relevant available implementa-
tions of the Bitcoin LN, namely LND (lnd), C-lightning (c-lightning) and Eclair
(eclair). Results can be found in AppendixA.

Once the feasibility of the attack has been proved from an implementation
point of view, we have performed some attack simulations for the LN of the
Bitcoin mainnet in order to measure the AER of the attack, the function Δ(b),
and its economic cost. Notice that there is no technical reason that stops us
from effectively executing the simulated attacks in the Bitcoin mainnet. How-
ever, for ethical reasons, we have not performed the attack on the Mainnet and,
instead, we have performed a responsible disclosure to the developers of the LN
implementations.

Our simulations will assess the effectiveness of the attack given the actual
topology of the network. We base our simulations on the attack algorithm
described in Sect. 3, but in order to provide accurate results, we have taken into
account different restrictions that actual LN implementations take over their
parameters.

Firstly, we bound to 20 the maximum hops that a payment route may have
in the LN as described in [14]. Regarding the length of routes, we assume that
the expiration time for a route θ at each hop cannot be lower than zero.

Secondly, all existing LN implementations fix the maximum value of a channel
at 16777215 satoshis4. Such value may impact the channel that M has to open
with the victim A. Since such payment channel needs to have a total capacity
of Cattack, in case Cattack > 16777215 then M needs to open more than one
channel with A.

Once such values have been taken into account, to perform our simulations,
we take a snapshot of the topology of the LN5 of the bitcoin mainet on January,
20th, 2020 at 20:00.

4.1 Simulation Assumptions

To execute the attack algorithm described in Sect. 3, the adversary needs to
complement the information of the network graph with further data. The infor-
mation needed is: the balance of each channel and the values Tmax for each node
of the network.

Regarding the balances, they can be obtained executing the attack described
in [5]. However, instead of performing such attack, we have assigned the balances
of each channel using different statistical distributions, trying to reproduce the
different scenarios that could be found in the network. In order to assign balances
to channels, we proceed in the following way: for each channel, first the balance of

4 This bound is just an implementation parameter. There are already channels in the
LN with larger values. The availability of larger channels reduces the number of
channels for the attack, as well as total fees to pay for every open channel and the
total cost of the attack.

5 Such information can be obtained, for instance, with the instruction describegraph

of the lnd implementation.
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one of the nodes is randomly selected using one of the selected distributions, and
taking the capacity of the channel as the maximum possible value to generate.
Then, the balance of the other node in the channel is set as the remaining balance
(that is, the capacity minus the balance). Five different distributions are used
to assign balances to channels: deterministic, uniform, normal, exponential, and
beta. The deterministic distribution always assigns half of the capacity of the
channel to each of the nodes; the normal distribution is used with μ = 0.5
and σ = 0.2; the exponential distribution uses λ = 1; and the beta distribution
α = β = 0.25.

The value Tmax is a network node parameter that is not publicly available
since it is not advertised by the nodes. However, such value is implementation
dependent6 Hence, by inferring the LN implementation of each node, we can
obtain the values of Tmax for that node. To infer the LN client implementation
run by each node, we take into account the fee rate, the fee base rate, and
the δ values announced in the nodes’ channels policies. As shown in Table 1,
default values for the fee rate and δ parameters allow to uniquely identify the LN
implementation. We use those values to infer node implementation. Moreover,
the default value for the fee base rate is always 1000. We use this third value to
further validate that the node is using default values in its policies.

Table 1. Values that help infer the implementation a node is running.

lnd (old) lnd (new) c-lightning eclair

Fee rate 1 1 10 100
Fee base rate 1000 1000 1000 1000
δ 144 40 14 144

However, users may indeed change channel policies, or even use different
policies for different channels. On the one hand, if a node is not announcing any
policy with the fee rate, fee base rate, and delta values corresponding to any of
the described implementations, we assume the implementation of that node is
unknown. On the other hand, whenever a node announces different policies in
its channels but only one of them corresponds to a default behavior, the node
is tagged with this implementation. Finally, if multiple policies are announced
and multiple default policies are identified, then again the node is tagged as
unknown.

Taking this approach, using the selected snapshot of the network, we end
up with a small percentage of unknown nodes (12.03%), for which we are not
able to properly infer the implementation. In that case, we randomly tag those
nodes with one of the three main implementations, with the same percentage
distribution than those nodes already tagged. Using such approach, network
nodes for the analyzed graph have been classified as shown in Table 2.
6 One may assume users changing some LN implementation parameters. However, the

Tmax value is not expected to be one of those easily modifiable parameters.
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Table 2. Number of nodes, with at least one channel, classified in one of the main
implementations for the snapshot graph used in our analysis.

nodes (number) (percentage)

lnd 2294 92.65 %
c-lightning 154 6.22%
eclair 28 1.13%
Total 2476 100%

4.2 Attack Simulation Results

To perform the simulation, we focus the attack on one of the most relevant nodes
in the network. Such node has 516 opened active channels with a total capacity
slightly above 40 BTC. Then, we test the effectiveness of the attack in case such
node runs one of the three main implementations, lnd, c-lightning or eclair. For
each implementation we also test each of the balance distributions. In order to
present more representative results, being the balance distribution a probability
distribution, we execute the experiments 10 times and take the mean values.

For each implementation and for each balance distribution, we have per-
formed the attack and measured the AER value of the attack, the percentage of
the capacity of the victim that has been blocked, the total channels needed to
perform the attack, and the normalized Total Blocked Time, ˜TBT (cf. Table 3).
Furthermore, we also have analyzed the Δ function of the attack (see Fig. 3).

Table 3. Attack results for the different balance distributions.

Blocked Channels

Distibution Implementation EAR capacity needed ˜TBT

lnd 0.232 86.47 % 60.5 0.32
beta c-lightning 0.179 83.80 % 48.3 0.07

eclair 0.524 86.10 % 128.6 0.05

lnd 0.176 100.00 % 43.0 0.47
Deterministic c-lightning 0.109 86.80 % 27.0 0.14

eclair 0.500 100.00 % 121.0 0.09

lnd 0.192 92.74 % 52.9 0.38
Exponential c-lightning 0.143 86.41 % 39.7 0.10

eclair 0.498 92.43 % 125.0 0.07

lnd 0.216 96.16 % 49.8 0.42
Normal c-lightning 0.187 87.60 % 38.1 0.11

eclair 0.526 96.13 % 125.6 0.08

lnd 0.234 93.04 % 55.8 0.38
Uniform c-lightning 0.180 87.02 % 43.9 0.10

eclair 0.548 92.80 % 128.7 0.07

Table 3 shows that the attack is effective in all scenarios (implementations
and balance distribution) since the AER is lower than 2 which was the value
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for a naive attack. Notice that in the worst attack, for a Uniform distribution in
which the node runs an eclair implementation, the AER is 0.548, which is half
of the capacity of the victim to block its 92.80% capacity. In fact, the percentage
of the victim capacity blocked is high for all the scenarios, never below the 83%.
Moreover, the ˜TBT also shows that lnd implementations are the ones allowing
the adversary to block more capacity over time (as can also be observed in
Fig. 3).

Figure 3 plots the Δ function which shows which is the amount of time locking
the funds. As expected, graphics show that the value of Tmax of each implemen-
tation determines the length of the time. When the victim runs an lnd imple-
mentation, 80% of the capacity of the victim can be locked during 287 blocks
(almost two days) in any balance distribution tested. But if we look at the 50%,
such value is increased to 2407 blocks (more than 16 days). Even for the eclair
implementation which has the lowest Tmax value of all three implementations
(Tmax = 1008), 50% of the capacity can be blocked during 287 blocks (almost
two days) for all tested balance distributions.

Besides the effectiveness of the attack showed so far, we also measure the
economic cost of the attack. For such measure, we take the same methodology
than in [5] in which the total cost of the attack can be divided between the
entrance barrier cost and the economic cost. On the one hand, the entrance
barrier cost takes into account the economic resources that the adversary has
to control to be able to perform the attack. Such resources will be completely
recovered after the attack has been finished. On the other hand, the economic
cost of the attack is the amount of money that the adversary will lose due to
the execution of the attack.

Regarding the entrance barrier cost, the proposed attack needs to fund
one or multiple LN channels with the capacity Cattack. Such amount is repre-
sented by the channels needed value of Table 3. For instance, the attack for the
uniform distribution over c-lightning has an entrance barrier cost of 44 channels
(or 7.38197460 BTC) to block 87.02% of the capacity of the node.

With regard to the economic cost of the attack, two values have to
be taken into account: (i) the fee corresponding to the funding transaction of
the channel; (ii) the fee corresponding to the transaction that closes the channel.
Regarding the fees of the funding transactions, such cost depends on the number
of channels needed to perform the attacks. The cost in fees for each channel
depends on the size in bytes of the funding transaction. However, such size
mostly depends on its inputs that will vary for each particular transaction, but
a funding transaction with a single input can cost as low as 0.00000154 BTC7.
Secondly, and regarding the closing transaction, it is also difficult to estimate
the exact fee for a generic closing transaction, since again multiple parameters

7 See, for instance, transaction:
f42012119a50afda6717a29957fba043d8afba9b0ff9a0f11 32670232eb61feb It is the
funding transaction corresponding to the Channel Id 67509 5741575593984 opened
on January 22, 2020, by node
031a02081118bcbd899756f8cd d9feaf5dbf3f1014a1d811e33e8f5a4d8079e2fe.

https://blockstream.info/tx/f42012119a50afda6717a29957fba043d8afba9b0ff9a0f1132670232eb61feb
https://blockstream.info/tx/f42012119a50afda6717a29957fba043d8afba9b0ff9a0f1132670232eb61feb
https://1ml.com/channel/675095741575593984
https://1ml.com/channel/675095741575593984
https://1ml.com/node/031a02081118bcbd899756f8cdd9feaf5dbf3f1014a1d811e33e8f5a4d8079e2fe
https://1ml.com/node/031a02081118bcbd899756f8cdd9feaf5dbf3f1014a1d811e33e8f5a4d8079e2fe
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(a) (b)

(c) (d)

(e)

Fig. 3. Δ(p) function results for every tested distribution: (a) Beta, (b) Deterministic,
(c) Exponential, (d) Normal, (e) Uniform.

may affect such a value. A cost rounding 0.00000460 BTC can be achieved, as
can be seen in different existing closing transactions8.
8 For instance, Channel Id 671792808627666945 with total capacity 0.0005 BTC has

been closed with the following close transaction d2f676a3085f46d6636f1197ab3fec
2855bc7c8fffb3cb48b83396220ad1dc0a.

https://1ml.com/channel/671792808627666945
https://blockstream.info/tx/d2f676a3085f46d6636f1197ab3fec2855bc7c8fffb3cb48b83396220ad1dc0a
https://blockstream.info/tx/d2f676a3085f46d6636f1197ab3fec2855bc7c8fffb3cb48b83396220ad1dc0a
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Notice that we have not included the Lightning fees as a cost because they
are never applied (since the payments never succeed). For that reason, the total
number of payments needed to perform the attack does not affect the economic
cost of the attack.

With such values, we can estimate the economic cost of an attack. For
instance, an attack based on a normal distribution assuming an lnd node blocks
the 96.16% of the capacity of the node with 50 channels, that means 0.00030700
BTC in fees for opening and closing the channels, around 2 Eur.

5 Countermeasures to Handle the Attack

The main countermeasures are focused on increasing the AER in order to make
the attack less profitable. As discussed in Sect. 3, AER is reduced thanks to
the possibility that a single payment performs a route with multiple hops. Fur-
thermore, if the adversary may maintain the route near the victim, the AER is
even more reduced. So to not allow the adversary perform such strategy different
measures can be adopted.

First of all, loops in a payment route should be minimized or forbidden. In
particular, cycles of length two (the ones of the form A → B → A) should be
completely forbidden since are the ones that most reduce AER and keep the
route close to a possible victim. We argue that imposing such restriction does
not damage any possible functionality of the LN. Notice that lightning payments,
even those in a multihop route, are designed to be performed atomically in the
sense that they are executed completely or not executed at all. A payment with
a subpath of the form A → B → A, once executed it lefts the state between A
and B exactly as it was previous to the payment. The implementation of such
measure is straightforward even assuming that routing in the LN is performed
through onion routing. Notice that in the onion routing approach, every node is
aware of the previous and next node in the route so he can reject a route in case
both nodes are the same.

Regarding cycles of length larger than two, it is clear that its restriction also
increases AER and hinders the attack. Again, although the LN currently routes
using onion packets and nodes are only aware of the previous and next hop in
the route, additional information transferred between routes and shared by all
nodes, such as the hash used in the HTLC can be used to detect that a cycle
is passing through a node and reject such possibility. However, in contrast with
cycles of length two, longer cycles do not keep the same state of the channel
and it can be used for legitimate purposes, like spontaneous payments9, whose
restrictions could impact future LN features.

Besides cycles, increasing the length of a payment route also reduces AER
so a possible countermeasure for the proposed attack is the reduction of the
maximum length of a route. Such value is set to 20 in the LN specification
and it could be reduced to increase the AER of an attack. However, such value
9 SPSP, Simple Protocol for Spontaneous Payments, https://lists.linuxfoundation.

org/pipermail/lightning-dev/2018-June/001327.html.

https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-June/001327.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-June/001327.html
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directly impacts in the performance of the network since its reduction could
potentially discard possible routes for legitimate payments. More testing should
be performed before implementing this type of countermeasure.

Another straightforward countermeasure that can be performed to reduce
the effectiveness of the attack is the fine tuning of some lightning parameters
that, until that moment, are not properly addressed. Such parameters are Tmax

and δ, which have two different implications for our attack. On one hand, despite
the maximum hop value (set to 20) Tmax and δ can effectively determine a lower
bound for the number of hops in a route.10 Since reducing the maximum number
of loops increases AER, setting the proper values could potentially prevent the
attack. On the other hand, the time value during which a channel or victim
can be blocked without the adversary needing to perform any action is also
dependent on those two parameters. So reducing the actual values of Tmax and
δ is a countermeasure for our attack since it reduces the time during which the
adversary may lock the funds. However, assessing the correct values for Tmax

and δ deserves a detailed and exhaustive analysis and test.

6 Related Work

Recent literature on the security of LN and payment channels mentions channel
exhaustion and payments griefing attacks [6,11]. Rohrer et al. [12] suggest an
adversarial combination of both techniques, to build an attack that resembles
the naive attack reported in Sect. 3.1. Rohrer et al. refer to the combination of
channel exhaustion and payments griefing as an attack which ‘requires E to first
open a channel with a capacity that is equal or greater than the total balance of
A’s outbound channels’. This is equivalent to the naive scenario reported in our
work (cf. Section 3.1, naive attack). While Rohrer et al.’s attack has always an
AER higher than one (i.e., AER = 2 if we consider that their attack requires
an outbound channel), our work builds upon optimization techniques to obtain
attacks with lower AER (cf. Sect. 4, reduction from AER = 2 to AER = 0.1).
Recall that attacks with an AER higher than one must be considered as brute
forcing, with marginal adversarial incentives, in economic terms.

Other differences with Rohrer et al.’s work include the experimental setup
reported in [12]. Instead of five independent lnd instances, we report in Sect. 4
experimental work using three different implementations, including lnd, c-
lightning or eclair. Some other improvements included in our work is the use
of extended network measurements. Previous work (cf. [12], Section II.B and
citations thereof) only uses the properties of the topology edges, without taking
into account the balance of every node associated to the edges. This is impor-
tant, since without processing this information, an adversary can estimate the
use of routes that may not be used, in the end (i.e., the estimated diameter is
wrong).

10 For instance, a payment route in which all nodes run an eclair implementation can
be at most 7 hops.
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Privacy issues are also reported in recent literature of payment channels.
Tang et al. address in [17] the impact of using payment channels w.r.t. privacy
preservation. Since users need to route their transactions using other nodes, they
must find paths through the payment network, and with enough pre-allocated
funds to route their transactions. This poses the problem of hiding the balance
of each payment channel node. Joancomarti et al. show in [5] the difficulty of
hiding such balances. Their work uncovers a balance discovery attack that can be
used to deanonymize the precise balance of each network payment node, hence
leading to the de-anonymization of the network transactions, in the end. Tang
et al. and Malavolta et al. assume in [8,17] that the adversary is passive, i.e., the
adversary observes only the public information released in the network, whereas
prior work by Malavolta et al. and Ross et al. [7,13] considers active adversaries
acting as corrupt relay nodes, trying to learn the destination of other nodes
transactions.

7 Conclusion

We have addressed the possibility of availability attacks affecting the bandwidth
of payment channels of the Lightning Network (LN). We show that an adversary
can take advantage of misbehaving nodes associated with a given victim in order
to block its ability to act as an intermediate node in multihop payments. The
attack can achieve a lockdown during a reasonable time with a low economic cost.
We have formalized the attack and provided a practical implementation show-
ing its performance in the LN from the Bitcoin mainnet. The results validate
our claims showing the relatively low cost required to lock down an important
percentage of the total capacity of a victim. We have discussed potential coun-
termeasures to handle the problem by making the attack less profitable, or less
cost-effective attractive for adversaries.

The presented attack is focused towards locking the balance of the channels of
a given node, the victim. That is, the goal is to lock down the ability of a specific
node to act as intermediary node in payment routes. A similar approach can be
used to affect not a single node but the whole network or a subset of nodes.
Further research can be carried on whether such attacks are economically and
technically feasible and provide interesting metrics such as the locking percentage
of overall network capacity (in similar terms as the proposed AER and TBT
metrics).

Acknowledgments. Work partially supported by the BART (Blockchain Advanced
Research & Technologies) initiative (cf. https://www.bart-blockchain.fr/en/), the
European Commission under grant agreement 830892 (H2020 SPARTA project), and
the Spanish Government under Grant RTI2018-095094-B-C22 “CONSENT”.

https://www.bart-blockchain.fr/en/
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A Simnet Network

To perform our experiments, we create a Lightning simnet network with eleven
nodes, M,A,B1, · · · , B9. Node M will be the adversary and A the victim. Nodes
B1, · · · , B9 will represent victim’s neighbors. To test all implementations in our
simnet, we run different implementations for different nodes. More precisely,
the following configuration has been taken. Nodes M,A,B1, B2, B3 run the
LND implementation with version 0.5.2-99-beta, nodes B4, B5, B6 the c-lightning
with version v0.7.0 and nodes B7, B8, B9 run eclair with version version=0.2-
SNAPSHOT. Over this configuration, we have created 10 payment channels, as
shown in Fig. 4(a).

With this settlement, M performs a payment to himself, following the route
M → A → B1 → A → B2 → A → B3 → A → B4 → A → B5 → A → B6 →
A → B7 → A → B7 → A → B9 → A → M .

The correct execution of such experiment proves that the payment has been
processed by all nodes and that routes can effectively contain loops. Notice that
the loops tested in this experiment are the shortest possible which validates the
shorter loop case of our attack (see Sect. 3). Notice that the implementation
selected for each node ensures that such behavior is equivalent in all implemen-
tations.

Figure 4(b) shows a new scenario where we have added a payment channel
between nodes B6 and B9. With this scenario, M performs a payment to himself,
following the route M − A − B6 − B9 − A − B6 − B9 − A − M .

Again, the test shows that the payment is correctly processed by all nodes
and it proves that all implementations can also accept the longer loop case, since
we have chosen A, B6 and B9 all with different implementations.

AM

B1

B2

B3

B4

B5

B6

B7

B8

B9

(a) First scenario

AM

B1

B2

B3

B4

B5

B6

B7

B8

B9

(b) Second scenario

Fig. 4. Simnet scenarios

Once we have ensured that routes with cycles are possible to execute in any
implementation, we would like to study how to maximize Δp, the time that a
payee can lock a payment p. Such value can be estimated using information of
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the nodes that are included in a route. More precisely, values δ and Tmax of
each node and the node position in the route determines the maximum time a
payment can be blocked.

In our scenario, the adversary controls both the first and the last node of the
route. We first describe how, as a first node, the adversary can determine the
maximum Δp for a particular route. Then, we will detail how the adversary, as
the last node of the route, may block the payment during Δp and how, after that
time, he can cancel the payment without paying any fee to the routing nodes
and, furthermore, leaving all the channels in the same setting than the initial
phase of the attack being able to reexecute the attack without any cost.

As pointed out in Sect. 2, the parameters that determine the actions of each
node of the route are Tmax and δ. The first one, Tmax, is the maximum amount
that a node allows an outgoing payment in a channel to be locked. And the second
one indicates the difference, in blocks, that each hop in the route requires. Such
parameters are different for every lightning implementation as Table 4 shows.
When a node receives a payment, he sets an expiration time11, θ, for the payment,
and subtracts his δ. In case that the resulting value is lower than his Tmax, then
he will keep forward the payment, in other case, the node will refuse the payment,
the route will be discarded and the payer will need to find another route. Then,
the best strategy for an adversary to maximize Δp is to simulate the route
assuming that each node, instead of discarding the payment, will set the new θ
as his Tmax. For instance, suppose the following route M − Bi − Bj − Bk − M
and assume that Bi is a lnd implementation, Bj is an eclair implementation and
Bk is a c-lightning implementation. Assuming the default values of Table 4, the
simulation performed by M will start with θ = ∞. When processing the first
hop, Bi has a lnd implementation which means Tmax = 5000 and δ = 144 so for
that hop, we can compute θ = 5000 − 144 = 4856. In the next hop, Bj runs an
eclair implementation, hence Tmax = 1008 and δ = 144. In that case, since the
received θ = 4856 is greater than 1008 we will set θ = 1008 − 144 = 864. Then
Bk runs a c-lightning with Tmax = 2016 and δ = 14 and the received θ = 864
is lower than 2016, we can calculate θ = 864 − 14 = 850. Since this is the last
hop, θ = 850 is the time during which the channel can be blocked. With this
procedure, M can compute the optimal θ value that he will include in the first
hop to maximize Δp. In that case θ = 850 + 14 + 144 + 144 = 1152 will provide
a maximum Δp, in that case 850

Table 4. Default parameters for different implementations.

lnd c-lightning eclair

δ 144 14 144
Tmax 5000 2016 1008

11 Although the θ is an absolute block height value, here we will refer as a relative
value to simplify the explanation.
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3. Donet Donet, J.A., Pérez-Solà, C., Herrera-Joancomart́ı, J.: The bitcoin P2P net-
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C., Garcia-Alfaro, J.: On the difficulty of hiding the balance of lightning network
channels. In: Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, CCS 2019, Asia, pp. 602–612. ACM, New York (2019)

6. Khosla, A., Schwartz, E., Hope-Bailie, A.: Interledger RFCs, 0018 DRAFT 3, Con-
nector Risk Mitigations. Github (2019). http://j.mp/2m2OvfP

7. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: Enforcing security and
privacy in decentralized credit networks. In: NDSS, Silentwhispers (2017)

8. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 455–471.
ACM (2017)
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Abstract. Payment channels were introduced to solve various eminent
cryptocurrency scalability issues. Multiple payment channels build a net-
work on top of a blockchain, the so-called layer 2. In this work, we analyze
payment networks through the lens of network creation games. We iden-
tify betweenness and closeness centrality as central concepts regarding
payment networks. We study the topologies that emerge when players
act selfishly and determine the parameter space in which they constitute
a Nash equilibrium. Moreover, we determine the social optima depending
on the correlation of betweenness and closeness centrality. When possi-
ble, we bound the price of anarchy. We also briefly discuss the price of
stability.

Keywords: Blockchain · Payment channels · Layer 2 · Creation
game · Network design · Nash equilibrium · Price of anarchy · Price
of stability

1 Introduction

1.1 Motivation

Bitcoin [31] and other cryptocurrencies [25,34,35] are electrifying the world.
Thanks to a distributed data structure known as the blockchain, cryptocur-
rencies can execute financial transactions without a trusted central authority.
However, every computer participating in a blockchain must exchange, store
and verify each and every transaction, and as such the transaction throughput
of blockchains is embarrassingly low. The Bitcoin blockchain for instance does
not process more than seven transactions per second.

With seven transactions per second, Bitcoin cannot rival established payment
systems such as Visa, WeChatPay, or PayPal. Consequently, various research
groups have proposed a blockchain paradigm shift – payment channels [17,32,
33]. All payment channels follow the same basic principle: Instead of sending
every transaction to the blockchain, transactions are only exchanged between
the involved parties. If Alice and Bob expect to exchange multiple payments,
they can establish a payment channel. The channel is set up with a blockchain
funding transaction. Once the channel is available, Alice and Bob exchange all
c© International Financial Cryptography Association 2020
J. Bonneau and N. Heninger (Eds.): FC 2020, LNCS 12059, pp. 264–283, 2020.
https://doi.org/10.1007/978-3-030-51280-4_15
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payments directly, by sending each other digitally signed payment messages. If
Bob tries to cheat Alice, Alice can show the signed payment messages as a proof
to the blockchain, using the original funding transaction as security.

Instead of establishing a payment channel to every other person and com-
pany in the world, thanks to a technique called Hash Time Locked Contracts
(HTLCs) [1,17,32], payments can also be sent atomically through a path of
payment channels. More precisely, each payment channel is now an edge in a
payment network, and payments will be routed along a path of payment chan-
nels in the payment network. Such a payment network is called the layer 2 of
the blockchain, the blockchain itself being the layer 1.

The payment channels/networks have many significant advantages over
vanilla blockchains: With payment channels, the transaction throughput
becomes unlimited, as each transaction is only seen by the nodes on the path
between sender and receiver of a payment. This is like sending a packet in the
internet instead of sending every packet to a central server. Solving the through-
put problem will also drastically decrease transaction fees. In addition, payments
will be instantaneous, as one does not have to wait multiple minutes before the
blockchain verifies a transaction. Payment networks also allow for more privacy
as transactions are only seen by the parties involved. On the negative side, to set
up a channel, the channel owner(s) must lock some capital. However, whenever
a payment channel routes a transaction on behalf of other parties, the channel
owner(s) can collect a transaction fee.

Payment networks are currently a hot topic in blockchain research. In prac-
tice, the first payment networks have been deployed, and are being actively
used. Prominent examples are Bitcoin’s Lightning network [16,32] with more
than 30,000 active channels, or Ethereum’s Raiden network [3].

As Bitcoin’s Lightning network is growing quickly, we need to understand
these newly forming payment networks. Which channels will be created, and
what will the network topology eventually look like? Network creation games [21]
are a perfect tool to understand these questions, since they capture the degra-
dation of the network’s efficiency when participants act selfishly.

In a network creation game, the incentive of a player is to minimize her cost
by choosing to whom she connects. In our model, players weigh the benefits
they receive from using payment channels against the channels’ creation cost,
and selfishly initiate connections to minimize their cost. There are two types of
benefits for each player: (i) the forwarding fees she receives for the transactions
she routed through her channels, (ii) the reduced cost for routing her transactions
through the payment network in comparison to publishing the transactions on
the blockchain (blockchain fee). On the other hand, establishing a channel costs
the blockchain fee. Thus, a player has to balance all these factors to decide which
channels to establish to minimize her cost. Our goal is to gain a meaningful
insight on the network structures that will emerge and evaluate their efficiency,
in comparison to centralized structures designed by a central authority that
previous work has shown to be almost optimal.
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1.2 Our Contributions

In this work, we provide a game-theoretic approach to analyze the creation of
blockchain payment networks. Specifically, we adopt betweenness centrality, a
natural measure for fees a player is expected to receive by forwarding others’
transactions on a path of payment channels. On the other hand, we employ
closeness centrality as an intuitive proxy for the transaction fees encountered
when executing transactions through other players in the network. We reflect
the cost of payment channel creation by associating a price with link creation.
Therefore, we also generalize previous work on network creation games as our
model combines both betweenness and closeness centralities.

Under this model, we study the topologies that emerge when players act
selfishly. A specific network structure is considered a Nash equilibrium when
no player can decrease her cost by unilaterally changing her connections. We
examine various such structures and determine the parameter space in which
they constitute a Nash equilibrium. Moreover, we determine the social optima
depending on the correlation of betweenness and closeness centrality. When pos-
sible, we bound the price of anarchy, the ratio of the social costs of the worst
Nash equilibrium and the social optimum [26], to obtain insight into the effects
of lack of coordination in payment networks when players act selfishly. Further-
more, we briefly discuss the price of stability, the ratio of the social costs of the
best Nash equilibrium and the social optimum [6], specifically concerning the
parameter values that most accurately represent blockchain payment networks.

The omitted proofs can be found in the full version [11].

1.3 Related Work

Various payment channel protocols have been proposed in literature [8,9,17,24,
27,28,32,33], all presenting different solutions on how to create payment chan-
nels. However, our work is independent of the channel construction specifications
and thus applies to all such solutions.

Payment networks have been studied from an algorithmic (not game theo-
retic) viewpoint by Avarikioti et al. [7,10]. In [7], they examined the optimal
graph structure and fee assignment to maximize the profit of a central author-
ity that creates the payment network and bears the relevant costs and benefits.
Furthermore, in [10], they investigated the online and offline computation of a
capital-efficient payment network for a central authority. In contrast, our work
studies the decentralized payment network design, where the network is created
by multiple participants and not a single authority. This model reflects more
accurately the currently operating payment networks, which are indeed created
by thousands of users rather than a single company, following the decentralized
philosophy of cryptocurrencies like Bitcoin.

Network creation games were originally introduced by Fabrikant et al. [21].
In their game, referred to as sum network creation game, a player unilaterally
creates links to minimize the sum of distances to other players in the network
(closeness centrality). Later, Albers et al. [4] improved the upper bound for the
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price of anarchy and also examined a weighted network creation game. While
these works solely focus on a player’s closeness centrality, our model is more
complex and additionally includes another metric, the players’ betweenness cen-
trality that represents the importance of a player in the network.

In parallel, network creation games were expanded to various settings. The
idea of bilateral link creation was introduced by Corbo and Parkes [15]. Demaine
et al. [18] devise the max game, where players try to minimize their maximum
distance to any other player in the game. Intrinsic properties of peer-to-peer
networks are taken into account in the network creation variation conceived
by Moscibroda et al. [29,30]. Nodes strive to minimize their stretch, the ratio
between the distance of two nodes in a graph, and their direct distance. The idea
of bounded budget network creation games was proposed by Ehsani et al. [19]. In
bounded budget network creation games, players have a fixed budget to establish
links. Moreover, Àlvarez et al. [5] introduced the celebrity game, where players
try to keep influential nodes within a fixed distance. However, the objectives in
all these games give little insight to the control a player has over a network. This
control is desired by players in blockchain payment networks to maximize the
fees received for routing transactions, in essence their betweenness centrality.

A bounded budget betweenness centrality game was introduced by Bei
et al. [12]. Given a budget to create links, players attempt to maximize their
betweenness centrality. Due to their complexity, betweenness network creation
games yield limited theoretical results, in comparison to those of the sum net-
work creation game, for instance. In contrast to our work, a players closeness
centrality is not taken into account in [12]. Thus, this model is insufficient for
our purpose since it does not consider how strategically connected is a player
that wants to route many transactions through the payment network.

Buechel and Buskens [14] compare betweenness and closeness centralities;
however, not in a network creation game setting, as their notion of stability does
not lead to Nash equilibria. We, on the other hand, study the combination of
betweenness and closeness incentives in a network creation game setting.

2 Preliminaries and Model

In this section, we first introduce the essential background and assumptions
for our payment network creation game, and then we introduce the necessary
notation and the game-theoretic model.

2.1 Payment Networks

Payment channels operate on top of the blockchain (Layer 2) and allow instant
off-chain transactions. Generally, a channel is set up by two parties that deposit
capital in a joint account on the blockchain. The channel can then be used to
make arbitrarily many transactions without committing each transaction to the
blockchain. When opening a channel, the parties pay a blockchain fee and place



268 Z. Avarikioti et al.

capital in the channel. The blockchain fee is the transaction fee to the miner,
paid to have the transaction included in a block and thereby published on the
blockchain. The deposited capital funds future channel transactions and is not
available for other transactions on the blockchain during the channel’s lifetime.

In our model, we assume a player single-handedly initiates a channel to a sub-
set of other players. Incoming channels are always accepted and once installed,
the channels can be used to send money in both directions (from sender to
receiver, and vice versa). While any player can typically choose the amount to
lock in a channel, we assume that the locked capital placed in all channels is
high enough to be modeled as unlimited. In particular, we assume that all play-
ers are major (large companies, financial institutions etc.) that have thus access
to large amounts of temporary capital. It is natural to assume only major play-
ers to participate in the network creation game. Typically, a market is created
when there is demand for a service. Thus eventually, the payment network will
be dominated by service providers that will individually connect with clients and
act as intermediaries for all transactions. In this work, we only consider the flow
of transactions through these service providers. Therefore, the cost of opening a
channel in our model solely reflects the permanent cost, i.e. the blockchain fee,
and is set to 1 (wlog). Furthermore, since we assume major players only, the
transactions between the players can be considered uniform.

In addition to enabling parties connected by a channel to exchange funds
off-chain, payment channels can also be used to route off-chain transactions
between a sender and receiver pair not directly connected by a channel. Trans-
actions between the sender and receiver can be routed securely through a path
of channels. Since we assume that all channels are funded with unlimited capi-
tal, the channel funds cannot deplete, and so any path in the payment network
between sender and receiver is viable.

Together, the payment channels form a payment network. In the network,
players receive a payment when transactions are routed through their channels.
This payment is a transaction fee, which is typically proportional to the value
of the routed transaction, to compensate the intermediate node for the loss of
her channel’s capital capacity. However, we consider a fixed fee for all nodes,
independent of the routed value, since we assume unlimited channel capital.

2.2 Formal Model

A payment network can be formally expressed by an unweighted undirected
graph consisting of V nodes, representing the set of players, and E edges, rep-
resenting the set of payment channel between the players.

A payment network game consists of n players V = {0, 1, . . . , n−1}, denoted
by [n]. The strategy of player u expresses the channels she chooses to open and
is denoted by su, and the set Su = 2[n]−{u} defines u’s strategy space. We denote
by G[s] the underlying undirected graph of G0[s] =

(
[n],

⋃
u∈[n]{u} × su

)
, where

s = (s0, . . . , sn−1) ∈ S0 × · · · × Sn−1 is a strategy combination. Note that while
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a channel can possibly be created by both endpoints, this will never be the case
in a Nash equilibrium.

Betweenness Centrality. The fees received by a player for providing gateway
services to other players’ transactions are modeled by her betweenness centrality.
Betweenness centrality was first introduced as a measure of a player’s importance
in a social network by Freeman et al. [22]. According to [22], the betweenness

centrality of a player u in a graph G(V,E) is
∑

s,r∈V
s �=r �=u,m(s,r)>0

mu(s, r)
m(s, r)

, where

mu(s, r) is the number of shortest paths between sender s and receiver r that
route through player u and m(s, r) is the total number of shortest paths between
s and r. Additionally, s �= r �= u indicates that s �= r, s �= u and r �= u.
Intuitively, the betweenness centrality of player u is a measure of the expected
number of sender and receiver pairs that would choose to route their transactions
through her in a payment network. Providing an insight into the transaction fees
a player is expected to receive, the betweenness centrality lends itself to reflect
the motivation of a player in a payment network to maximize the payments
secured through providing transaction gateway services.

However, in our model, the betweenness of player u is measured as follows:

betweennessu(s) = (n − 1)(n − 2) −
∑

s,r∈[n]:
s �=r �=u,m(s,r)>0

mu(s, r)
m(s, r)

.

We subtract u’s betweenness centrality, as defined by Freeman et al. [22], from
her maximum possible betweenness centrality to ensure that the social cost is
always positive - avoiding cases where price of anarchy is undefined.

Closeness Centrality. Furthermore, we model the fees encountered by a player
when having her transactions routed through the network with her closeness
centrality. Closeness centrality measures the sum of distances of player u to all
other players and is given by

closenessu(s) =
∑

r∈[n]−u

(
dG[s](u, r) − 1

)
,

for a player u, where dG[s](u, r) is the distance between u and r in the graph
G[s]. With the transaction fees fixed per edge in our model, the distance to a
player r estimates the costs encountered by player u when sending a transaction
to player r. Therefore, the sum of distances to all other players is a natural proxy
for the fees u faces for making transactions when assuming uniform transactions.

Thus, the combination of betweenness and closeness centralities accurately
encapsulates the incentives inherent to players in a blockchain payment network.
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Cost. The cost of player u under the strategy combination s is costu(s) =
|su| + b · betweennessu(s) + c · closenessu(s), where b ≥ 0 is the betweenness
weight and c > 0 the closeness weight. Letting c > 0 ensures that the graph is
always connected, as a player’s cost is infinite in a disconnected graph. Addi-
tionally, the model assumes the same price for all nodes and embeds this into
coefficients b and c. While this does not exactly encapsulate reality, it is a rea-
sonable assumption. Different paths offer similar services to payers. In such a
setting, Bertrand competition [13] suggests that competition will drive the prices
from different players to be within a close region of each other.

Social Optimum. The objective of player u is to minimize her cost,
minsu costu(s). The social cost is the sum off all players’ costs, cost(s) =∑

u∈[n] costu(s). Thus, the social optimum is mins cost(s).

3 Payment Network Creation Game

To gain an insight into the efficiency of emerging topologies when players act
selfishly, we will first analyze the social optimum for our model. After studying
if and when prominent graphs are Nash equilibria, we conclude by bounding the
price of anarchy and the price of stability.

3.1 Social Optimum

By the definition of the cost function, the social cost is

cost(s) =
∑
u∈[n]

costu(s) = |E(G)|+ b
∑
u∈[n]

betweennessu(s)+ c
∑
u∈[n]

closenessu(s),

for any graph where no channel is paid by both endpoints. This condition is
met for all Nash equilibria. To lower bound the social cost, we will first simplify
the social cost expression. Lemma 1 is proven in [23] and relates the average
betweenness and distance in a connected graph.

Lemma 1 (Theorem 1 [23]). The average betweenness B(G) in a connected
graph G can be expressed as: B(G) = (n−1)(l(G)−1), where l(G) is the average
distance in G.

We take advantage of Lemma 1 to simplify the social cost expression. With this
we show in Lemma 2 how the social cost can be expressed directly in terms
of the number of edges and the sum of the players’ closeness centrality costs,
facilitating further analysis.

Lemma 2. The social cost in G is given by cost(s) = |E(G)|+ b ·n · (n− 1)(n−
2) + (c − b) · ∑

u∈[n]

closenessu(s).
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Proof. According to Lemma 1 the social cost can be expressed as follows for all
b ≥ 0 and c > 0.

cost(s) = |E(G)| + b
∑
u∈[n]

betweenness(u) + c
∑
u∈[n]

closeness(u)

= |E(G)| + b
∑
u∈[n]

⎛
⎜⎜⎜⎜⎜⎝

(n − 1)(n − 2) −
∑

s,r∈[n]:
s �=r �=u,
m(s,r)>0

mu(s, r)
m(s, r)

⎞
⎟⎟⎟⎟⎟⎠

+ c
∑
u∈[n]

∑
r∈[n]−u

(
dG[s](u, r) − 1

)

= |E(G)| + b · n · (n − 1)(n − 2) − b · n · B(G) + c · n · (n − 1)(l(G) − 1)

= |E(G)| + b · n · (n − 1)(n − 2) + (c − b) · n · (n − 1)(l(G) − 1)

= |E(G)| + b · n · (n − 1)(n − 2) + (c − b) ·
∑
u∈[n]

∑
r∈[n]−u

(
dG[s](u, r) − 1

) ��

The distance of a vertex v of a connected graph G is d(v) :=∑
u∈[n]−v dG(v, u). The distance of a connected graph G is d(G) :=∑
v∈[n] d(v)/2. If G is not connected, then d(v) = ∞ for any v, and d(G) = ∞.

Lemma 3 (Theorem 2.3 [20]). If G is a connected graph with n vertices and
k edges then n · (n − 1) ≤ d(G) + k ≤ 1

6 · (
n3 − 5 · n − 6

)
.

Lemma 3 provides bounds for the distance of a graph G,

d(G) =
1
2

∑
u∈[n]

∑
r∈[n]−u

dG(u, r)

which is useful for finding the social optimum for our game.

Fig. 1. Parameter map for social optimum.

In [20] Lemma 3 is proven and
stated that the path graph achieves
the upper bound; maximizes the dis-
tance term. This can be used to find
the social optimum. Dependent on
the weights b and c, the social opti-
mum for our payment network cre-
ation game is given in Theorem 1, and
illustrated in Fig. 1.

Theorem 1. The social optimum is a complete graph for c > 1
2 +b, a star graph

for b ≤ c ≤ 1
2 + b and a path graph for c < b.
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Proof. Using Lemma 2 we can lower bound the social cost for c ≥ b as follows:

cost(s) = |E(G)| + b · n · (n − 1)(n − 2) + (c − b)︸ ︷︷ ︸
≥0

∑
u∈[n]

∑
r∈[n]−u

(
dG[s](u, r) − 1

)

≥ |E(G)| + b · n · (n − 1)(n − 2) + (c − b)(n · (n − 1) − 2|E(G)|)
= (1 − 2 · (c − b)) · |E(G)| + b · n · (n − 1)(n − 2) + (c − b)(n · (n − 1))

since every pair of nodes that is not connected by an edge is at least distance
2 apart [21]. This lower bound is achieved by any graph with diameter at most 2.
It follows that for c > 1

2 + b the social optimum is a complete graph, maximizing
|E|, and for b ≤ c ≤ 1

2 + b the social optimum is a star, minimizing |E|.
To find the social optimum for c < b, we rewrite the social cost as

cost(s) = |E(G)| + b · n · (n − 1)(n − 2) − (b − c) ·
∑
u∈[n]

∑
r∈[n]−u

(
dG[s](u, r) − 1

)

= |E(G)| − 2 · (b − c) · d(G) + b · n · (n − 1)(n − 2) + (b − c) · n · (n − 1)

For a connected graph the social cost is then minimized for a tree, as |E(H)| −
a · d(H) > |E(G)| − a · d(G) if G is a subgraph of H and a > 0. For any tree, the
number of edges is n − 1. Using Lemma 3, we get that

cost(s) = |E(G)| + b · n · (n − 1)(n − 2) − (b − c)
∑
u∈[n]

∑
r∈[n]−u

(
dG[s](u, r) − 1

)

≥
(

1 +
(

2
3
b +

1
3
c

)
n · (n − 2)

)
(n − 1)

is a lower bound for the social cost which is achieved by a path graph. ��
In areas most accurately describing payment networks, we expect the weights

b and c to be smaller than the cost of channel creation and close to each other.
For these cases, we observe the star graph is the social optimum.

3.2 Nash Equilibria

To find a Nash equilibrium, one could follow a naive approach: start with a fixed
graph structure and then continuously compute a player’s best response in the
game. However, Theorem 2 shows that it is NP-hard to calculate a player’s best
response.

Theorem 2. Given a strategy s ∈ S0 × · · · × Sn−1 and u ∈ [n], it is NP-hard to
computed the best response of u.

Therefore, with this in mind, we analyze prominent graph topologies theo-
retically, to see if and when they are Nash equilibria in our game. The results
are illustrated in Fig. 2. However, complementary to the theoretical analysis we
also run a simulation to get insights into emerging graph topologies for a small
number of players.
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(a) complete graph (b) star graph (n ≥ 4) (c) biclique

Fig. 2. Parameter map for prominent graphs. In Fig. 2c, r and s are the subset sizes

(3 ≤ r ≤ s). With α = s·(s−1)
r·(s−2)

and β = 1
s−r+1

(
s·(s−1)

r
− (r−2)(r−1)

s+1

)
, (γ, δ) is the

intersection between 1 = s
r
b + s+r−3

s−1
c and 1 = min {α, β} · b + c.

Complete Graph. For large values of c the complete graph is the only Nash
equilibrium as stated in Theorem3. Additionally, the complete graph is also a
Nash equilibrium for c = 1, but it is not necessarily the only one. However, for
small values of c, which are the values we expect to encounter in a payment
network creation game, the complete graph is not a Nash equilibrium, as stated
in Theorem 4.

Theorem 3. For c > 1, the only Nash equilibrium is the complete graph.

Proof. The addition of an edge by a player never increases her betweenness
cost. Thus, by the definition of the cost function any Nash equilibrium cannot
be missing any edges whose addition would reduce a players closeness by more
than 1, the cost of building an edge. As c > 1, no edge can be missing in the
graph and the only Nash equilibrium is the complete graph. ��
Theorem 4. For c < 1 and n ≥ 3, the complete graph is never a Nash equilib-
rium.

Proof. In a complete graph the removal of an edge by a player does not change
her betweenness cost and her closeness cost is increased by c. Thus, the cost of a
player would decrease when removing one edge. Therefore, the complete graph
is not a Nash equilibrium for c < 1. ��

Figure 2a visualizes the combination of these results, i.e., when the complete
graph is a Nash equilibrium in our game. We observe that for some weight combi-
nations the complete graph is both the social optimum and a Nash equilibrium.
However, most payment networks are not expected to fall into this area of the
parameter space.
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Path Graph. While the path graph is the social optimum for a significant area
of the parameter space, we show it can only be a Nash equilibrium for small sets
of players. For n = 3, the path graph is a Nash equilibrium for all c ≤ 1, as it is
the only possible connected graph that is not the complete graph.

Proposition 1. For n = 4, the path graph is a Nash equilibrium if and only if
1 ≤ b + 2 · c.

Proposition 2. For n = 5, the path graph is a Nash equilibrium if and only if
1 ≤ 2 · b + 4 · c.

Propositions 1 and 2 identify when the path graph is a Nash equilibrium
for networks with four and five players respectively. These bounds partly over-
lap with areas in which the path graph is the social optimum. While this par-
tial correspondence between the Nash equilibrium and social optimum appears
promising for the coordination of our game, Theorem5 suggests to the contrary.

Theorem 5. For n ≥ 6, the path graph is never a Nash equilibrium.

Proof. To show that the path graph is never a Nash equilibrium for n ≥ 6, we
will show that at least one player in a path graph consisting of more than six
players can always reduce her cost by changing strategy.

In a path graph with at least six players, at least one player u has an outgoing
edge to a player v at least two steps from the end of the path on the opposite
side of player u. This is illustrated in Fig. 3a and we consider this to be strategy
s. In this case it is always more beneficial for player u to connect to player w
instead of player v. Let’s refer to this strategy as strategy s̃ (Fig. 3b).

· · · u v w · · ·

(a) strategy s

· · · u v w · · ·

(b) strategy s̃

Fig. 3. Strategy deviation of player 1.

The change in cost for this strategy is given as

Δcostu(s to s̃) = −c · (m − 2),

where m is the number of edges player v is away from the endpoint on the
opposite side u. Thus, the change in cost is negative and the path graph cannot
be a Nash equilibrium for n ≥ 6. ��

Hence, the path graph is not expected to be a Nash equilibrium for payment
networks that typically consist of many nodes.
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Circle Graph. The results we find for the circle graph are similar to those for
the path graph. For small values of n, the circle graph can be a Nash equilibrium
depending on the weights b and c. The circle graph and the complete graph are
the same for n = 3. Thus, for n = 3 the circle graph is a Nash equilibrium if and
only if c ≥ 1.

Proposition 3. For n = 4, the circle graph is a Nash equilibrium if and only if
c ≤ 1 ≤ b + 2 · c.

Proposition 4. For n = 5, the circle graph is a Nash equilibrium if and only if
b + c ≤ 1 ≤ 2 · b + 4 · c.

Propositions 3 and 4 show that for small n, the circle graph can be a Nash
equilibrium depending on the weights b and c. However, for large n the circle
graph is never a Nash equilibrium, as stated in Theorem6.

Theorem 6. There exists a N > 0, such that for all n ≥ N the circle graph is
never a Nash equilibrium.

We note that simulations suggest that for n ≥ 6 the circle graph is never a
Nash equilibrium. Parameter sweeps indicating that N = 6 can be found in the
full version [11].

Star Graph. The star graph is the social optimum for a significant part of our
parameter space. In a star graph the player in the center has minimal closeness
and betweenness costs; all other players have maximal betweenness cost. While
this does not directly appear to be a stable network, Theorem 7 suggests that
the star graph is a Nash equilibrium for smaller values of b and c. These results
are depicted in Fig. 2b.

Theorem 7. For n ≥ 4, the star graph is always a Nash equilibrium if and only
if 0 ≤ 1 − n−3

2 b − c.

Proof. To show that the star is always a Nash equilibrium for n ≥ 4 and 0 ≤ 1−
n−3
2 b− c, we will consider a star graph consisting of n players V = {0, 1, . . . , n−

1}. Without loss of generality we assume that player 0 is the center of the star.
No player in the star graph has an incentive to remove an edge, as this would

lead to infinite cost. Thus, player 0 has no incentive to change strategy, as she
is connected to everyone.

Next we consider star graphs where all links are initiated by player 0 and
star graphs where at least one link is initiated by another player separately.

If all links are initiated by player 0, players 1, 2, . . . , n − 1 are all in an
equivalent position and it is therefore sufficient to solely consider player 1. Player
1 would only add links, if this leads to a decrease in her cost. Initiating an edge
to player 0 would only increase her cost. Additionally, for the remaining n − 2
players, it only matters to how many player 1 connects. The change in cost when
adding m, where 1 ≤ m ≤ n − 2, edges is given by Δcost1(add m links) = m −
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m · (m − 1)
2

b−m·c. Thus, player 1 will change strategy if Δcost1(add m links) <

0. The change in cost is minimized for m = n − 2.
In star graphs where at least one player other than 0 initiates a link, players

that have no outgoing links are in the same position as those analyzed previously.
Thus, it suffices to consider player i, where i �= 0, that has one outgoing link.
In addition to only initiating new links, player i can remove the link to player 0
and initiates l, where 1 ≤ l ≤ n − 2, new links. The change in cost is then given

as Δcosti(add l links) = (l − 1) − l · (l − 1)
2

b − (l − 1) · c. However, this leads to
more restrictive bounds and there is no need for players other than player 0 to
have outgoing links.

Thus, the star is a Nash equilibrium if and only if 0 ≤ 1 − n−3
2 b − c. ��

We note that the areas where the star is both a Nash equilibrium and the
social optimum overlap partially.

Complete Bipartite Graph. The star graph is a complete bipartite graph
where one group has size one. In this section, we analyze more general complete
bipartite graphs or bicliques Kr,s, where r is the size of the smaller subset and
s is the size of the larger subset. In a complete bipartite graph, every node from
one subset is connected to all nodes from the other subset.

Theorem 8. The complete bipartite graph Kr,s with 3 ≤ r ≤ s is stable if and

only if s−2
r+1b + c ≤ 1 ≤ min

{
s
r b + s+r−3

s−1 c,min {α, β} · b + c
}
, where α = s·(s−1)

r·(s−2)

and β = 1
s−r+1

(
s·(s−1)

r − (r−2)(r−1)
s+1

)
.

Proof. Additional links can only be created within a subset in a complete bipar-
tite graph. Similarly to adding links in a star graph, the change in cost when

adding m links is given by Δcostu(add m links) = m − m · (m − 1)
l + 1

b − m · c,

where l ∈ {r, s} is the size of the subset not including the player.
A player changes strategy when Δcostu(add m links) < 0. The change in cost

is minimized when m is maximized and l = r. m can therefore be s − 1 at most.
Thus, the upper bound for Kr,s being a Nash equilibrium is 1 ≥ s − 2

r + 1
b + c.

Players in the subset of size r, benefit more from a link to the other subset,
as their betweenness cost is smaller. Thus, players from the larger subset with
outgoing links would change strategy sooner. In the case where the subsets are
of equal size, the link direction does not matter. Hence, to find a lower bound
for b and c we only consider complete bipartite graphs, in which all links are
established from the smaller subset, as seen in Fig. 4a. Without loss of generality
we will only consider player u in the following analysis. It is not reasonable for
player u to remove all her links without adding any new links, as her cost would
become infinite. Depending on the other parameters, it might be more optimal
to remove all her previous links and only connect to one player in her subset
(Fig. 4b), connect to one player in her subset and one player from the other
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subset (Fig. 4c), or to remove all her previous links and instead connect to all
other players in her subset (Fig. 4d). When player u changes to strategy s̃1, seen
in Fig. 4b the change in cost is as follows:

u

(a) strategy s

u

(b) strategy s̃1

u

(c) strategy s̃2

u

(d) strategy s̃3

Fig. 4. Strategy deviations of player u.

Δcostu(s to s̃1) = − (s − 1) +
s · (s − 1)

r
b + (s + r − 3) · c

as player u initiates s−1 less links than before - losing all her previous between-
ness. Additionally, she is one edge further away from all other players except for
the one she connects to directly. Thus, the above strategy is less preferable than
the complete bipartite graph for player u, if

1 ≤ s

r
b +

s + r − 3
s − 1

c.

Player u’s change to strategy s̃2 (Fig. 4c) leads to s − 2 less links initiated by
her. The player is further away from s − 1 players from the other subset and
closer to one in her own. All transaction-routing potential is lost. Therefore, the
change in cost is given by

Δcostu(s to s̃2) =2 − s +
(

s · (s − 1)
r

)
b + (s − 2) · c.

Hence, for this strategy to be less preferable than the complete bipartite graph,

1 ≤
(

s · (s − 1)
r · (s − 2)

)
b + c = α · b + c.

When severing all previous links and connecting to all players in her subset
instead, strategy s̃3 (Fig. 4d), player u builds s − r + 1 less links than before.
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Furthermore, she is closer to players previously in her own subset and further
away from the rest. While player u can now transmit transactions of players
previously in her own subset, she is no longer a preferable intermediary for
players previously in the other subset. Therefore, the change in cost is given by

Δcostu(s to s̃3) =r − s + 1 +
(

s · (s − 1)
r

− (r − 1)(r − 2)
s + 1

)
b + (s − r + 1) · c.

Hence, for this strategy to be less preferable than the complete bipartite graph
for player u,

1 ≤ 1
(s − r + 1)

(
s · (s − 1)

r
− (r − 1)(r − 2)

s + 1

)
b + c = β · b + c.

To summarize, the complete bipartite graph Kr,s is a Nash equilibrium for

s − 2
r + 1

b + c ≤ 1 ≤ min
{

s

r
b +

s + r − 3
s − 1

c,min {α, β} · b + c

}
.

��
The parameter map for the complete bipartite graph is drawn in Fig. 2c.

There (γ, δ) is the intersection between 1 = s
r b+ s+r−3

s−1 c and 1 = min {α, β}·b+c.

Simulation. To better understand the behaviour of a player in our payment
network creation game, we implement a simulation of the game [2]. Our simula-
tion enumerates all Nash equilibria for a given number of players n, as well as the
weights for the betweenness and closeness costs. However, this is only feasible
for small n. Parameter sweeps for the weights b and c can also be performed to
see when a given topology is a Nash equilibrium. Some parameter sweeps for
topologies previously analyzed can be found in [11]. Finally, starting from an
initial graph the progression of the game can be simulated.

3.3 Price of Anarchy

The ratio between the social optimum and the worst Nash equilibrium is the
price of anarchy (PoA), formally,

PoA =
maxs∈N cost(s)
mins∈S cost(s)

,

here S is the set of all strategies and N is the set of strategies that are Nash
equilibria.

The price of anarchy provides an insight to the effects of lack of coordina-
tion, i.e. measures the performance degradation of the system when players act
selfishly in comparison to central coordination. When the price of anarchy is
low, selfish actors do not heavily degrade network efficiency. In contrast, a high
price of anarchy indicates that network formation by a central authority would
significantly increase efficiency.

For c > 1, we can determine the price of anarchy exactly, as we established
both the social optimum and the (unique) Nash equilibria for c > 1.
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Corollary 1. For c > 1 and c > 1
2 + b, the price of anarchy is PoA = 1.

Corollary 2. For c > 1 and b ≤ c ≤ 1
2 + b, the price of anarchy is

PoA =

(
1
2 + (n − 2) · b

) · n

1 + (c + b · (n − 1))(n − 2)
.

Corollary 3. For 1 < c < b, the price of anarchy is

PoA =

(
1
2 + (n − 2) · b

) · n

1 +
(
2
3b + 1

3c
) · n · (n − 2)

.

Combining the results of Corollary 1, 2 and 3 allows us to upper bound the
price of anarchy to a constant for c > 1, as stated in in Corollary 4. This upper
bound is asymptotically tight, as the price of anarchy is always greater or equal
to one (hence at least constant) by definition.

Corollary 4. For c > 1, the price of anarchy is PoA = O(1).

Proof. For c > 1 and c > 1
2 + b, the price of anarchy is one and therefore it is

also O(1).
We have that for c > 1 and b ≤ c ≤ 1

2 + b,

PoA =

(
1
2 + (n − 2) · b

) · n

1 + (c + b · (n − 1))(n − 2)
= O

(
b · n2

b · n2

)
= O(1),

and for 1 < c < b,

PoA =

(
1
2 + (n − 2) · b

) · n

1 +
(
2
3b + 1

3c
) · n · (n − 2)

= O
(

b · n2

b · n2

)
= O(1).

Thus, for c > 1 we have PoA = O(1). ��
For small b and c we can also upper bound the price of anarchy as follows:

Theorem 9. For c + b < 1
n2 , the price of anarchy is PoA = O(1).

Proof. For c + b < 1
n2 , all Nash equilibria are trees. Unless the distance to a

player is infinite, no player in the network will have an incentive to build an
edge.

As both the maximum possible change in betweennessu(s) and closenessu(s)
for a node u in a connected graph is less than n2 and all Nash equilibria are
connected, Δcostu(s) > −n2 · c − n2 · b + 1. We require Δcostu(s) ≥ 0 such that
u does not benefit from initiating an additional channel. Thus, for c+ b ≤ 1

n2 all
Nash equilibria are spanning trees.

For c + b ≤ 1
n2 the social optimum is also a spanning tree, as it is either the

star or path graph. It easily follows that for c + b ≤ 1
n2 and all spanning trees

cost(s) = Θ(n) and therefore the price of anarchy is O(1).
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Finally, for c+b ≥ 1
n2 and c < 1, we show an O(n) upper bound for the price

of anarchy.

Theorem 10. For c + b ≥ 1
n2 and c < 1, the price of anarchy is PoA = O(n).

Proof. The price of anarchy is

PoA = O
( |E(G)| + n3 · b + (c − b) · ∑

u∈[n]

∑
r∈[n]−u (dG(u, r) − 1)

n3 · b + n

)
.

We can say that dG(u, r) < Θ
(

2√
c+b

)
, as player u would connect to player r

otherwise. Player u would become closer to half the nodes on the path otherwise
and reduce her betweenness cost through the routing potential gained by the
link addition. Therefore we have,

PoA = O
( |E(G)| + n3 · b + n2 c−b√

b+c

b · n3 + n

)
.

It follows that

O
(

n3 · b

n3 · b + n

)
=O(1), and O

(
n2 c−b√

b+c

n3 · b + n

)
=O

(
c − b

n2 · b + 1

)
= O (1) ,

as c + b ≥ 1
n2 and c < 1. Thus, it only remains to consider O

(
|E(G)|
b·n3+n

)
.

As |E(G)| = O(n2) for any Nash equilibrium, we have PoA = O(n). ��

3.4 Price of Stability

The price of stability (PoS), a close notion to price of anarchy, is defined as the
ratio between the social optimum and the best Nash equilibrium,

PoS =
mins∈N cost(s)
mins∈S cost(s)

,

where S is the set of all strategies and N is the set of strategies that are Nash
equilibria. The price of stability expresses the loss in network performance in
stable systems in comparison to those designed by a central performance. Corol-
lary 5 gives insight into the price of stability in regions of the parameter space
previously discussed in the context of the price of anarchy.

Corollary 5. For c > 1 and b + c < 1
n2 , the price of stability PoS = O(1).

Proof. As the price of stability is smaller than or equal to the price of anarchy,
we can follow from Corollary 4, that the price of stability is O(1) for c > 1.
Additionally, Theorem9 indicates that PoS = O(1) for b + c < 1

n2 . ��
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However, we expect blockchain payment networks to fall into the remaining
area, where c + b ≥ 1

n2 and c < 1. In particular, considering the underlying
uniform transaction scenario and the fixed blockchain fee equal to one (wlog), a
competitive transaction fee would be 1

n . Thus, an appropriate allocation for the
weights is b = 1

2n and c = 1
n , as the betweenness term counts each sender and

receiver pair twice. For these weights the star is the social optimum (Theorem 1),
as well as a Nash equilibrium (Theorem 7). Hence, the price of stability for
payment networks is one; indicating that an optimal payment network is stable in
a game with selfish players. Thus, payment networks can be stable and efficient.

4 Conclusion

We introduced a game-theoretic model to encapsulate the creation of payment
networks. To this end, we generalized previous work, as our model is more com-
plex and demands a combination of betweenness and closeness centralities that
have thus far only been studied independently in network creation games.

First, we identified the social optimum for the entire parameter space of
our game. Depending on the weights placed on the betweenness and closeness
centralities either the complete graph, the star graph or the path graph is the
social optimum. In the area of the parameter space that most accurately reflects
payment networks, we found the star graph to be the social optimum.

Next, we examined the space of possible Nash equilibria. After establishing
that finding the best response of a player is NP-hard, we analyzed prominent
graphs and determined if and when they constitute a Nash equilibrium. We
showed that the complete graph is the only Nash equilibrium if players place a
large weight on their closeness centrality; reflecting payment channels in which
players execute many transactions or value privacy highly. On the other hand,
both the path and circle graph are Nash equilibria only for small number of
players and thus are not expected to emerge as stable structures in payment
networks. On the contrary, the star graph emerges as a Nash equilibrium for the
areas of our parameter space most accurately representing payment networks.
In addition, we observed that depending on the size of the subsets, the complete
bipartite graph is also a Nash equilibrium in similar regions of the parameter
space as the star graph.

Last, combining our results, we bounded the price of anarchy for a large part
of the parameter space. In particular, we proved that when the closeness cen-
trality weight is high, meaning that the players execute transactions frequently
or demand privacy, the price of anarchy is constant; indicating little loss in net-
work performance for selfish players. On the other hand, for small weight on the
closeness centrality, we showed an O(n) upper bound on the price of anarchy.
Nevertheless, the price of stability in payment networks is equal to one, since the
star is both the social optimum and a Nash equilibrium for suitable parameters;
demonstrating that blockchain payment networks can indeed be both stable and
efficient, when forming more centralized network structures.
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Abstract. Payment channel networks like Bitcoin’s Lightning network
are an auspicious approach for realizing high transaction throughput
and almost-instant confirmations in blockchain networks. However, the
ability to successfully conduct payments in such networks relies on the
willingness of participants to lock collateral in the network. In Light-
ning, the key financial incentive to lock collateral are low fees for routing
payments of other participants. While users can choose these fees, real-
world data indicates that they mainly stick to default fees. By providing
insights on beneficial choices for fees, we aim to incentivize users to lock
more collateral and improve the effectiveness of the network.

In this paper, we consider a node A that given the network topology
and the channel details establishes channels and chooses fees to maximize
its financial gain. Our contributions are i) formalization of the optimiza-
tion problem, ii) proving that the problem is NP-hard, and iii) designing
and evaluating a greedy algorithm to approximate the optimal solution.
In each step, our greedy algorithm establishes a channel that maximizes
the increase to A’s total reward, which corresponds to maximizing the
number of shortest paths passing through A. Our simulation study lever-
aged real-world data sets to quantify the impact of our gain optimization
and indicates that our strategy is at least a factor two better than other
strategies.

1 Introduction

Payment channel networks [14] overcome the need to globally agree on every
transaction in a blockchain. Instead, nodes can open and close channels that
they can use to transfer coins directly. In the absence of disputes, transactions
only require local communication between the parties involved in a transaction.
Nodes without a direct payment channel can route payments via intermediaries
to avoid the transaction fees and delays of channel opening. Thus, by mov-
ing transactions off-chain, payment channels have the potential to drastically
increase the transaction throughput while reducing the confirmation times from
tens of minutes to sub-seconds. The most notable examples of payment channel
networks are Bitcoin’s Lightning [19] and Ethereum’s Raiden [2].

When opening a payment channel, nodes need to lock coins that they cannot
use outside of the channel during the lifetime of the channel. This opportu-
nity cost makes it unattractive to maintain payment channels. However, routing

c© International Financial Cryptography Association 2020
J. Bonneau and N. Heninger (Eds.): FC 2020, LNCS 12059, pp. 284–303, 2020.
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payments in a network requires that the network has well-funded channels [14].
The key incentives for locking collateral in a channel are i) frequent transaction
with the other party [7] and ii) financial gain through routing fees [11], i.e., fees
that nodes charge for routing payments as intermediaries. Our analysis of the
Lightning network shows that the fees charged for routing are currently low and
mainly equal to the default value [21]. We conjecture that the current payment
channel networks primarily rely on the first incentive. However, research on the
Lightning network suggests that this incentive entails networks of a low resilience
with a few central hubs [22]. Analyzing the second incentives and show-casing
that payment channels can entail financial profit is the most promising avenue of
research to incentivize the participation in payment channel networks and fully
leverage the potential of this promising blockchain scalability approach.

In this paper, we adapt a payment channel network (PCN) model based on
Lightning. We assume a known topology and fees. Nodes select the cheapest path
to conduct a payment. A node A aims to maximize its profit through routing
fees by choosing both its payment channels and fees. The problem is challenging
as higher fees indicate a higher profit if the node routes the payment but also
a lower probability to be chosen for routing due to the transactions taking the
cheapest path.

Despite the importance of fees in payment channel networks, the issue
has been mainly ignored in past research. The majority of papers deal with
cryptographic protocols for channel establishment and multi-hop payments
(e.g., [6,7,10,15,17]) as well as algorithms for routing payments (e.g., [16,20,23]).
There is some work on comparing routing fees to the on-chain fees of blockchains
and presenting an economical analysis of the relation between the two fee types
[5,11]. It is interesting to note that routing fees are related to the payment value
whereas on-chain blockchain fees usually relate to the size of the transactions.
In contrast, Di Stasi et al. [24] evaluated the impact of routing fees on keep-
ing channels balanced, i.e., ensuring that a channel is not used exclusively in
one direction. The authors suggest a novel linear fee policy for each channel to
improve channel balances. Most similar to our work, Avarikioti et al. [3] stud-
ied the optimal fee assignment of channels from the point of view of a payment
service provider (PSP). The authors analyzed optimal channel fees of the whole
network that maximizes the total reward of the PSP instead of focusing on a
node, which defines our problem. However, the authors can only solve for tree-
structured networks, which does not make the approach useful in practice.

We are hence the first to cover the aspect of maximizing fees in payment
channel networks. More precisely, we formalize the problem of maximizing fees
in a Lightning-inspired system model. We present an algorithm for solving the
defined optimization problem heuristically. Our greedy algorithm iteratively i)
adds channels and ii) selects fees such that each added channel increases the
profit maximally for the previously selected channels. For this purpose, we lever-
age the concept of (edge) betweenness centrality, i.e., the fraction of cheapest
paths a vertex or edge is contained in. We evaluate our algorithm for real-world
data sets of the Lightning network. Our evaluation strongly indicates that our
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approach does not only greatly improve the profit in comparison to default fees
but also that leveraging betweenness centrality for selecting channels offers con-
siderably better results than other network centrality measures. More preciously,
our algorithm increases the profit by a factor 4 in comparison to default fee
values and is at least a factor 2 better than other strategies. Our evaluation
further demonstrates that nodes with already established channels can increase
their profit by utilizing only our fee selection algorithm without establishing new
channels.

2 Background

This section summarizes key concepts from the field of payment channels. Fur-
thermore, as our algorithm relies on graph centrality metrics, this section defines
these metrics and gives some intuition on their role.

2.1 Payment Channel Networks

Payment channel networks are one key approaches to scaling blockchains by mov-
ing transactions off-chain [14]. Two parties open a payment channel through an
initial funding transaction on the blockchain that locks coins such that they can
only be used for transactions between the two parties. After this initial funding
transaction, the two parties can conduct payments without directly interacting
with the blockchain. They commit to the latest balance of the channel, i.e., the
distribution of the total number of locked coins over the two parties. For instance,
let nodes u and v open a payment channel such that u locks x coins and v locks
y coins. The initial balance of the channel is (x, y) and its total capacity is x+y.
If u sends one coin to v, the balance changes to (x − 1, y + 1).

In case of a dispute about the channel balance, the signed commitments
documenting the state changes are published on the blockchain. The blockchain
consensus then assigns the coins according to the latest valid channel state.
Once the two parties decide to close their channel, they have to conduct a clos-
ing transaction on the blockchain. Afterward, they receive the coins locked in
the channel with the number of coins per party corresponding to the channel
balance at the time of the closure. In the absence of disputes, the intermediary
transactions are almost instant and the number of transaction is merely bound
locally by the bandwidth and latency of nodes.

Establishing a payment channel does not make sense if parties do not trade
with each other regularly due to i) the on-chain fees for establishing the channel
and ii) the opportunity cost caused by locking coins to the channel. Thus, most
nodes will only establish a few channels with frequent trading partners. Routing
payments via a path consisting of multiple channels nevertheless allows nodes
to trade without having a direct channel. For instance, a node s can make a
payment to a node r via two intermediary nodes u and v, meaning that the
payment is routed via three payment channels: s to u, u to v, and v to r. The
balances along all these channels change according to the transaction value.
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The intermediary nodes charge fees for the use of their channels. For a channel
Chi from u to v, these fees consist of a basic fee BFChi

for using the channel
and fee rate FRChi

per transferred unit. The overall fee of a transaction tx for
the channel is hence

f(Chi, tx) = BFChi
+ FRChi

· |tx|, (1)

where |tx| denotes the transaction amount. The fees are determined by and paid
to u. The sender s has to pay the fees. Note that the fee calculation formula
given in Eq. 1 is specific to the Lightning network [1]. Still, the other payment
or state channel networks have a similar structure.

2.2 Graph Centrality Metrics

In this work, we model a PCN network as a directed graph. In this manner,
each node in the payment channel represents a vertex in the graph and each
channel is represented by two directional edges between the nodes (one for each
direction). The channel fees correspond to the weights of the edges.

As a consequence, we can make use of graph metrics that characterize the
importance of certain nodes in a weighted directed graph. Our key metrics are
(vertex) betweenness centrality and edge betweenness centrality.

Definition 1 (Betweenness Centrality). The betweenness centrality of a
vertex [12] v is proportional to the total number of shortest paths that pass
through that vertex, i.e.,

bc(v) =
∑

s �=t�=v
σst �=0

σstv

σst
,

where σst denotes the number of shortest paths between s and t and σstv is the
number of such shortest paths containing the vertex v.

Similarly, the edge betweenness centrality [13] of an edge relates to the total
number of shortest paths that pass through that edge, i.e.,

e([v1v2]) =
∑

s �=t
σst �=0

σst[v1v2]

σst
,

where σst[v1v2] is the number of shortest paths passing through the edge [v1v2].

The analysis of this paper makes use of the following result about vertex
betweenness centrality to assess the suitability of our greedy heuristic for select-
ing channel fees.

Theorem 1 ([4]). For each vertex v, betweenness centrality function bc(v) is a
monotone function for the set of edges incident to v.

An important problem concerning the betweenness centrality is the maximum
betweenness improvement (MBI) problem.
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Definition 2 (MBI problem [4]). Maximum Betweenness Improvement prob-
lem: Given a directed graph G and a vertex v, find k edges incident to node v
such that bc(v) is maximal.

With the help of the following theorem concerning the MBI problem, we prove
that our problem of maximizing the reward (MRI) is NP-hard.

Theorem 2 ([4]). MBI problem cannot be approximated in polynomial time
within a factor greater than 1 − 1

2ε ,unless P = NP .

3 Our PCN Model

There are a number of PCNs with Lightning [19], Raiden [2], Perun [9] and
Celer [8] being key examples. All of them use slightly different assumptions and
properties. We base our system model on Bitcoin’s Lightning network.

In the following, we first describe our PCN model LN. In this model, we
then define the problem of an individual participant aiming to maximize their
gain. We summarize the notation used in the paper in Table 1.

Table 1. Notation and Abbreviation Table

Symbol Explanation

CSF The channel selection function

CFF The channel fee function

LN The payment channel network

c(X) The total amount of coins of X

f(Ch, tx)1 The charging fee of the channel Ch for a transaction of value tx

bc(n,N) (See footnote 1) The betweenness centrality of the node n in a network N

e(Ch,N) (See footnote 1) The edge betweenness centrality of the channel Ch in a network N

s(Chi), r(Chi) The source and destination nodes of the channel Chi

ChCost The channel opening and closing on-chain cost

3.1 Network Topology, Fees, and Routing

Nodes open and close payment channels through blockchain transactions. For
simplicity, we assume that the cost ChCost of opening and closing remains
constant over time.

In Lightning, the complete topology of the network is known to every node.
Nodes publicly announce on the blockchain that they establish or close a channel.
Furthermore, nodes willing to route payments announce their channels and fees

1 For brevity in the notation, tx and N can be omitted unless they alter with time.
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to the complete network. Thus, we assume in our model that both the topology
and the fees of all nodes are publicly known. For simplicity, we assume that the
topology and routing fees of the nodes that do not strategically change them
remain fixed over time. Otherwise, our fee selection strategy would require a
model to anticipate the expected changes. Current research on payment channel
networks does not provide such a model. Our analysis of the Lightning network
data from 1ml.com indicates that fees are indeed usually the default value. As
topology changes require on-chain transactions, which are costly in both time
and on-chain fees, the topology also should not change considerably. Moreover,
we assume that nodes apply source routing to find one cheapest path from source
to destination, as is the case in the current implementation of Lightning.

3.2 Problem Definition

We represent a network LN as a graph G = (V,E) of vertices V and edges E. A
node A aims to maximize its revenue in running a node in a payment channel
network. For this purpose, A opens channels with other nodes in the network,
each channel having a total cost of ChCost for opening and closing. We assume
that A can strategically select the nodes it establishes channels with from all
nodes in the network. After all, these nodes do not need to invest anything into
the channel as A completely funds them and they will likely receive additional
monetary gains through routing fees. Furthermore, A has a budget of c(A) coins
to use as collateral for the channels in total.

Formally, let C be the set of channels established by A. For each chan-
nel Chi ∈ C, we have the coins allocated to the channel c(Chi) and the
channel fee f(Chi, tx) for a transaction value tx. Wlog, transaction values are
integers between 1 and Tmax following a distribution T . Let Xi(tx, S,R) be
the event that a transaction of value tx going from a node S to a node R
passes through the channel Chi. Then the expected fee from that transaction
is f(Chi, tx)Pr[Xi(tx, S,R)]. Last, we require the distribution M that returns a
sender-receiver pair. A’s objective is to find C, f , and c() such that the overall
expected gain of one transaction

∑

∀S,R∈V
S �=R �=A

Pr(M = (S,R))
Tmax∑

j=1

Pr(T = j)
∑

Chi∈C

f(Chi, j) · Pr[Xi(j, S,R)] (2)

is maximized while adhering to the constraint that
∑

Chi∈C c(Chi) ≤ c(A).
Equation 2 computes the expected gain over the involved variables T and M .
If the capacity of the channel c(Chi) is less than the transaction amount tx,
Pr[Xi(tx, S,R)] = 0. Similarly, if there does not exist a shortest path from S to
R that passes through Chi, Pr[Xi(tx, S,R)] = 0. Otherwise, Pr[Xi(tx, S,R)] is
equal to the number of shortest paths from S to R passing through Chi divided
by the total number of shortest paths from S to R.
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Note that Eq. 2 ignores the cost of opening C channels, |C| · ChCost. The
impact of this cost depends on the number of transactions K that occur during
the lifetime of a channel. Let max be the maximal value for Eq. 2. The overall
gain of the node is then the difference: K · max − |C| · ChCost. By increasing
the lifetime of the channel arbitrarily, the impact of |C| · ChCost diminishes,
which is why we disregard it for Eq. 2. Our model furthermore disregards the
opportunity cost caused by locking coins due to the absence of suitable models
for such a cost.

4 Our Fee Strategy

We start by showing that maximizing the objective function given in Eq. 2 is NP-
hard. Afterwards, we present our greedy algorithm for approximating a solution.
As our algorithm contains an equation for choosing channel fees without a closed-
form solution, the last part of the section demonstrates a method for solving the
equation numerically.

Our proof and algorithm act on a version of Eq. 2 for specific distributions T
and M . In the absence of real-world data for these distributions, we utilize two
straight-forward distributions. Concretely, our work considers a fixed transaction
value, i.e., the random variable T only takes one value tx. For the distribution
M , which characterizes the likelihood of two nodes to trade, assuming that all
nodes are equally likely to trade with each other is the most natural choice in
the absence of a concrete alternative model. Thus, M is a uniform distribution
over all pairs of nodes in the following.

For the design of our algorithm, we furthermore bound the maximal channel
fee by fmax. Assuming a maximal channel fee does not reduce the generality of
our approach. As nodes send payments along the path with the lowest fee, any
channel fee that entails the channel is not contained in any such path can be
disregarded.

4.1 NP-Hardness of the Problem

Before presenting the actual proof, we rephrase Eq. 2 to relate it to the concept
of (edge) betweenness centrality.

Choosing M to be a uniform distribution implies that Pr(M = (S,R)) =
1

(|V |−1)(|V |−2)
2 is a constant, which can disregarded for the optimization. Fur-

thermore, choosing a constant transaction value tx removes the second sum in
Eq. 2. Hence our modified objective function is

∑

Chi∈C

f(Chi, tx) · Pr[Xi(tx, S,R)]. (3)

The next step relates Pr[Xi(tx, S,R)] in Eq. 3 to the betweenness centrality.
There are two important quantities to consider: the number of shortest paths
2 (|V | − 1)(|V | − 2) is the number of pairs of nodes when not including A.
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including the channel and total fee reward gained from these paths. Maximizing
the number of shortest paths passing through a channel or node corresponds to
the edge or vertex betweenness centrality (BC), respectively, as defined in Sect. 2.
However, maximizing the BC does not necessarily imply maximal revenue. As
fees represent edge weights, the shortest path here is a path whose edges have
the minimal sum of weights. Choosing low fees hence increases the probability
to be contained in the shortest path but low fees also indicate a low gain from
each transaction.

Rather, the expected reward of a channel Chi is equal to the probability
of the transaction passing through that channel times the fee. Note that each
channel needs to have a capacity of at least tx for the payment to choose this
path. Thus, an optimal solution for Eq. 3 will only create channels of sufficient
capacity and we can exclude the capacity aspect from Pr[Xi(tx, S,R)]. With
e(Chi) denoting the edge betweenness centrality of a channel Chi with fees
f(Chi)3, the formal expression for the expected reward of Chi is

ER(Chi) = f(Chi) · e(Chi). (4)

As a consequence, the total expected reward of A from Eq. 3 is

ER(A) =
∑

Chi∈C

ER(Chi). (5)

Now, we can formally define the problem from Eq. 2 as the maximum reward
improvement (MRI) problem.

Definition 3 (MRI Problem). Maximum Reward Improvement problem: For
a payment channel network LN and a node n, find k channels incident to node
n such that ER(n) is maximized.

The following theorem states that it is not possible to design an algorithm
CSF that finds the optimum solution within polynomial time, unless P = NP .

Theorem 3 (MRI Approximation Theorem). MRI problem cannot be
approximated in polynomial time within a factor greater than 1 − 1

2ε , unless
P = NP .

Proof. To prove this theorem, we reduce our MRI problem to the MBI problem
presented in Definition 2. Using Eq. 5, we can formulate the MRI problem as
follows:

MRI(LN, n, k) → CHM = argmax
|CH|≤k

s(Chi)=n
f(Chi)∈[1,fmax]

(
ER(n) =

∑

Chi∈CH
ER(Chi)

)
.

3 For the rest of section, we drop the transaction amount tx from the channel fee
formula f(Chi) as it is fixed.
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We introduce a subproblem, namely MRI FF, where the upper limit of the
fee fmax is equal to 1, which means that all the channel fee are equal to 1. Using
the Eq. 4, MRI FF can be formulated as:

MRI FF(LN, n,Nc) → CHM = argmax
|CH|≤k

s(Chi)=n

(
∑

Chi∈CH
e(Chi)

)
(6)

(∗)
= argmax

|CH|≤k
s(Chi)||r(Chi)=n

(bcn)
(∗∗)
= MBI(LN, n, k),

which reduces to the MBI problem. Here, the first equality (∗) holds because
the summation of the all shortest paths passing from out-going edges is equal to
the total number of shortest paths passing through that node. In other words,
the summation of edge betweenness centrality of all out-going edges of a node
is equal to betweenness centrality of that node. The second equality (∗) follows
from the definition of the MBI problem given in Definition 2.

Now, we can prove our theorem by contradiction. Let assume there exists
an approximation to MRI problem within a factor greater than 1 − 1

2ε . Then,
the same approximation would hold for the subproblem of MRI, MRI FF with a
certain maximal fee, namely 1. However, in Eq. 6, we showed that MRI FF prob-
lem is equivalent to the MBI problem. This contradicts Theorem2. Therefore,
MRI problem cannot be polynomially approximated within a factor greater than
1 − 1

2ε , unless P = NP . ��

4.2 Channel Selection Function

We present a greedy algorithm CSF to approximate the MRI problem. CSF takes
the PCN and the requested number of channels as input and outputs the set of
nodes to whom channels are created. It internally calls CFF, the algorithm for
deciding the fee of a channel. Formally, we have

CFF(CH ∪ Ch) → RCh :
RCh = TotalER(CH ∪ Ch, f) where f = argmax

fi∈[1,fmax]

(TotalER(CH ∪ Ch, fi)) ,

TotalER(CH ∪ Ch, fi) = ER(Ch)f(Ch)=fi
+

∑

Chj∈CH
ER(Chj). (7)

As detailed in Algorithm1, our greedy algorithm for CSF consists of the fol-
lowing five key steps:

1. Start with an initial PCN of nodes and channels.
2. At each step, try all possible channels between our node and other nodes.
3. Compute the maximum reward of the channel by using CFF.
4. Connect to the node who gives the maximum reward and update the PCN.
5. Go to step (2) until the desired number of channels is established.
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Algorithm 1. Channel Selection Function
Input: LN and Nc

Output: CH
1: function CSF(LN, Nc)
2: CH ← ∅
3: while |CH| < Nc do
4: maxRew ← 0, selectednode = None
5: for Each node ni ∈ LN do
6: Create a channel between (n, ni): LNi ← AddEdges(LN, [n, ni])
7: Calculate the reward Rni ← CFF(LNi, CH ∪ [n, ni])
8: if maxRew ≤ Rni then
9: maxRew = Rni

10: selectednode = ni

11: end if
12: end for
13: CH ← CH ⋃{selectednode}
14: LN ← AddEdges(LN, [n, selectednode])
15: end while
16: return CH
17: end function

Next, we ascertain that channel additions cannot reduce the expected rev-
enue, indicating that nodes should add all channels they can fund. Here, it is
important to note that we do not take into account the channel opening cost
ChCost. Thus, if the marginal reward improvement of a new channel is zero,
there is no point in add the channel.

Theorem 4 (Monotonicity). The objective function of Algorithm1 is a
monotone non-decreasing function.

Proof A function F : Ω → R is a monotone function if it satisfies the following
condition:

∀S ⊆ T ⊆ Ω, F(S) ≤ F(T ). (8)

In our case, we have to show that CFF(CH ∪ [n, ni]) ≥ CFF(CH) for any solution
CH and node ni such that [n, ni] /∈ CH where CH is the current channel list of
node n.

Note that CFF checks for all possible fee values to maximize the total reward.
In that sense, it would be enough to show that for the maximum fee value
fmax, which can be formulated by using Eq. 7 (with LN0 = LN ∪ CH and
LNi = LN ∪ CH ∪ [n, ni]):
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CFF(LN, CH ∪ [n, ni]) ≥ TotalER(LN, CH ∪ [n, ni], f = fmax)
?≥ CFF(LN, CH)

⇐⇒ ER(Ch,LNi)f=fmax
+

∑

∀Chj∈CH
ER(Chj ,LNi)

?≥
∑

∀Chj∈CH
ER(Chj ,LN0)

⇐⇒ ER(Ch,LNi)f=fmax

?≥
∑

∀Chj∈CH
ER(Chj ,LN0) − ER(Chj ,LNi)

⇐⇒ e([n, ni],LNi) · fmax

?≥
∑

∀Chj∈CH
(e(Chj ,LN0) − e(Chj ,LNi)) · f(Chj)

(∗)⇐= e([n, ni],LNi)
?≥

∑

∀Chj∈CH
(e(Chj ,LN0) − e(Chj ,LNi))

⇐⇒ e([n, ni],LNi) +
∑

∀Chj∈CH
e(Chj ,LNi)

?≥
∑

∀Chj∈CH
e(Chj ,LN0)

(∗∗)⇐⇒ bc(n,LNi)
?≥ bc(n,LN0).

Here, (∗) condition is true since for all channels f(Chi) ≤ fmax by the defini-
tion. Also, each term e(Chj ,LN0)−e(Chj ,LNi) is non-negative as new channels
of node n cannot increase the number of shortest paths passing through existing
channels of the same node. Thus, the multiplication with a positive number pre-
serves the inequality. (∗∗) is satisfied since the summation of edge betweenness
centrality of all out-going edges of a node is equal to betweenness centrality of
that node. At the end, bc(n,LNi) ≥ bc(n,LN0) holds because betweenness
centrality is a monotone function, see Theorem 1. ��

4.3 Efficient Search Algorithm for the Channel Fee Function

No closed-form formula finds the best fee amount maximizing the expected
reward due to the term e(Ch) for a channel Ch. Here, we analyze Eq. 4 to
minimize the computational cost by discarding some parts of the search space.
First of all, since e(LN) is not affected by changes to the fees of channels, the
denominator is irrelevant for optimizing the ER(Ch). Therefore, CFF can be seen
as a function of the edge betweenness centrality of the channel e(Ch) and its fee
f(Ch). Secondly, e(Ch) is negatively affected by f(Ch) because increasing the
fee means an increase in the weight of the edge that results in a lower chance of
being in the shortest paths (see Fig. 3 in AppendixA for an illustrative example).

Two observations give rise to an efficient search algorithm for finding the
most suitable fee. The first observation utilizes the fact that edge betweenness
centrality is a monotone decreasing function concerning the channel fee. Let
the expected reward of a channel for chosen fees f3 > f1 be r1 = e1 · f1 and
r3 = e3 · f3, respectively. If r3 > r1, let

f2 = f1 · r3
r1

= f3 · e3
e1

. (9)
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It can be seen that the expected reward rα for any fee fα where f1 < fα ≤ f2 is
at most r3:

rα = eα · fα ≤ e1 · fα ≤ e1 · f2 = e3 · f3 = r3. (10)

In other words, there is no need to compute the expected reward values for the
fees in between f1 and f2 as they cannot be optimal values.

The second observation is that increasing the fee of an out-going channel Ch
cannot decrease the edge betweenness of another out-going channel Ch′ of the
same node. Such an increase can only reduce the edge betweenness of channels
that are on a path containing Ch by removing the path from the set of shortest
paths. However, as shortest paths cannot have loops, two out-going channels of
the same node cannot be on the same shortest path. Now, let CH be the set of
previously selected channels. Let r′

1 and r′
3 be the sum of the expected fees of all

channels Ch′ ∈ CH for fees f1 and f3 with f3 > f1. By the above observation,
we have r′

3 ≥ r′
1.

Our recursive algorithm divides the space of all possible fee values from 1
to fmax into d intervals. For each interval i, let ri = ER(Ch, f(Ch) = fi) be
the expected reward of Ch and r′

i ← ∑
Ch′∈CH ER(Ch′, f(Ch′)) be the total

reward of the other channels. By the first observation, the maximal increase
in ri is fi+1

fi
and by the second observation r′

i+1 ≥ r′
i as fi+1 > fi. Thus, the

maximum possible reward value for interval i is R̃i = ri · fi+1
fi

+ r′
i+1. If R̃i

is greater than the current maximum reward value, the algorithm recursively
searches for a maximum in the interval, otherwise discards the interval. We
present the pseudocode of the algorithm in AppendixB.

This completes the description of our algorithm, which we evaluate in the
following in comparison to other approaches based on common centrality metrics.

5 Evaluation

In this section, we evaluate our proposed fee strategy for a real-world topology.
Our evaluation quantifies the total reward gained by A when using our greedy
algorithm.

To emphasize the high effectiveness of our solution, we compared it with
other channel and fee selection algorithm. For the channel selection, we consid-
ered random nodes as well as connecting to nodes with a high centrality for three
centrality metrics: i) degree, i.e., connecting to the nodes with the most connec-
tions, ii) betweenness centrality, and iii) pagerank [18]. For the fee strategy, we
compute the results for both cases where the channel fees are the default values
and they are determined by CFF.

5.1 Model

In Lightning network, the upcoming transactions and current balances of chan-
nels are not known. Thus, we need to model the network and transactions.



296 O. Ersoy et al.

Transactions. Like Sect. 4, our evaluation assumes that all source-destination
pairs are equally likely. Furthermore, we categorize the transactions into three
groups based on the amounts:

– Micro payments are the transactions involving a very small amount of coins.
To represent this category, we use the transaction amount of 100 Satoshi,
which is about one cent4. An example of a use case would be the streaming
services where you pay small amounts per service.

– Medium payments: are the transactions spent for daily living expenses like
buying a coffee, which is represented with 10000 Satoshi.

– Macro payments: are transactions of high amounts, which is represented with
1000000 Satoshi. The amount of these transactions are in the order of 100
Euros.

From these categories, it is most likely that micro payments are usually
restricted to nodes that have a direct channel. Otherwise, the base fee for the
payment greatly exceeds the actual payment value. Therefore, our target trans-
actions are medium and macro payments, which are analyzed separately.

Network. Following our system model in Sect. 3, networks are represented as
weighted directed graphs. The weights of the edges in the graph model are cal-
culated according to the fee rate and base fees of the channels. Since the fee rate
depends on the transaction amount, the weights of the same edges for medium
and macro payments will be different. The graph generated for the medium
(macro) payments is called medium (macro) graph.

5.2 Setup

We obtained a snapshot of the Lightning Network (LN) data from 1ml.com on
July 10 2019, which contains 4618 nodes and 68729 edges in total. When we
delete the edges with insufficient capacity, the medium graph has 68697 edges
and the macro graph has 32193 edges.

As a node requires at least two connections to be contained in any shortest
paths, we first connected A to the two nodes with the highest degree (, which
happen to have the highest pagerank as well). For these two connections, we use
the default fee rate and base fee values in both directions of the edges. Based on
this initial scenario, we now connect A to additional nodes.

The experiments use ChCost = 8192 Satoshi, which reflects the fluctuat-
ing Bitcoin transaction fee estimates5. When establishing a new channel, our
simulation added edges in both directions. The base fee and the fee rate of the
in-coming edge corresponded to the default value to model that i) most users
currently stick to the default values and ii) A has no control over the in-coming
channel fees as they are determined by the other party. For the outgoing edges,
we utilize either CFF to determine the best fee value or use default values. When
4 https://awebanalysis.com/en/convert-satoshi-to-euro-eur/.
5 https://bitcoinfees.info/.

https://awebanalysis.com/en/convert-satoshi-to-euro-eur/.
https://bitcoinfees.info/
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using CFF, we set fmax = ChCost. Otherwise, the total fee cost of the transac-
tion in the payment network is higher than the cost in the Bitcoin network and
the sender is hence unlikely to proceed with the payment.

5.3 Experimental Results

Figures 1 and 2 show the performance of our greedy algorithm in comparison to
the other approaches in terms of the total reward improvement per new channel
connections. The x-axis shows the number of connections added and the y-axis
represents the total reward of node A. Since, for each case, we started with the
same two connections, the total reward values have the same offset.

Figure 1 displays the result for the medium graph. When using default values,
the reward was consistently lower than for our fee selection algorithm. More
precisely, for centrality-based selection of channels, fee optimization increased the
reward by a factor of roughly 2. Selecting channels strategically doubled the gain
further in comparison to using Pagerank centrality, which was the most beneficial
one of the centrality-based selection methods. Figure 2 shows the results of macro
graph. The results were similar to the case of medium payments, though the
overall gain was slightly higher.

In terms of fee computation efficiency, our experimental results show that
the recursive algorithm described in Sect. 4.3 reduced the search space of fees in
the magnitude of 10–100.

5.4 Discussion

From the experimental results, it can be seen that our greedy algorithm out-
performed other centrality metrics. Furthermore, the beneficial effect of the fee
selection function was evident when comparing the results with and without it.

Note that adding new connections to the nodes with the highest centrality
metrics did not increase the total reward in comparison to random selection
much, in particular for betweenness centrality. The reason here is that connecting
to nodes with many shortest path passing them does not imply that the newly
added channels offer shorter paths. Instead, directly focusing on the betweenness
centrality of A results in larger improvements.

Figures 1 and 2 furthermore show few but notable differences between
medium and macro payments. First, the overall gain was higher for macro pay-
ments as expected due to the higher transaction value and hence increased rev-
enue for a similar fee rate. However, the base rate, which is 1000 Satoshi by
default6 in comparison to a default rate of 0.001, dominates the fee value, so
that the 100-fold increase in the transaction value does not translate to a similar
increase in gain. Secondly, the differences between various centrality measures
are more distinct for macro payments, see Fig. 2.

6 The default fee values may change regarding the imported implementation. Our
analysis on dataset shows that 33177 out of 68733 edges use the defaults we adopted.
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Fig. 1. Total fee reward of our node in medium graph. The bottom figure excludes the
greedy results to present a clear comparison of the rest.

Fig. 2. Total fee reward of our node in macro graph. The bottom figure excludes the
greedy results to present a clear comparison of the rest.
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Overall, our greedy algorithm promises higher fees for individual nodes. Even
if nodes cannot or do not desire to select their channels, they can still gain an
advantage by using our more sophisticated fee selection algorithm for already
established channels.

One key limitation of our design is that it does not consider channel capacities
as such. When all transactions have the same known value, A will only establish
channels with sufficient collateral. However, in practice, A does not have such
information and routing may fail due to a lack of capacity. Thus, integrating
capacity information into both our model and our evaluation is clearly necessary
in the future.

6 Conclusion

In this paper, we formalized an optimization problem for maximizing fees in pay-
ment channel networks, presented a heuristic algorithm for solving the problem,
and evaluated our algorithm on real-world data sets. Our work demonstrates
that routing fees can be a strong incentive for locking coins in payment chan-
nels. Fees as incentive hence have the potential to motivate rational users to
fund payment channel and hence increase the ability of these networks to route
payments.

In this work, we focused on one individual node aiming to optimize its profit.
Future work should design a game-theoretical framework for networks contain-
ing only rational nodes aiming to maximize their profit. For the continued usage
of payment channel networks, incentives should ensure that strategies for opti-
mizing profit locally also optimize the overall network health in terms of the
availability of cost-effective paths. It remains an open question if the current fee
model is a suitable incentive to further collaboration and network health.

Acknowledgments. This work was partially supported by Ripple’s University
Blockchain Research Initiative.
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A Illustrative Example of the EBC vs. Fee Relationship
of a Channel

fee

EBC

e1

e2

f1 f2

e3

f3

Fig. 3. Illustrative example of the EBC vs. fee relationship of a channel.

B Pseudocode Channel Fee Function

Algorithm 2 is a recursive algorithm for determining the best fee in one step of
the greedy algorithm.
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Algorithm 2. Channel Fee Function
Input: LN, CH and Ch
Output: Rmax and fmax

1: function CFF(LN, CH ∪ Ch, fl, fh)
2: % Initialization: fl ← 1, fh ← ChCost,Rmax ← 0, fmax ← 1
3: % d is the division parameter
4: if fh − fl ≤ d then % Anchor step:
5: for f ∈ {fl, . . . , fh} do
6: [r, r′] ← TotalER(CH ∪ Ch, f)
7: Calculate the reward R ← r + r′

8: if R ≥ Rmax then
9: Rmax ← R

10: fmax ← f
11: end if
12: end for
13: return
14: else % Recursion step:
15: for i ∈ {1, . . . , d} do
16: fi ← i · fh−fl

d
+ fl

17: end for
18: for i ∈ {1, . . . , d} do
19: [ri, r

′
i] ← TotalER(CH ∪ Ch, fi)

20: Calculate the reward Ri = ri + r′
i

21: if Ri ≥ Rmax then
22: Rmax ← Ri

23: fmax ← fi
24: end if
25: end for
26: for i ∈ {1, . . . , d} do

27: Calculate the possible maximum reward R̃i = ri · fi+1
fi

+ r′
i+1

28: if R̃i > Rmax then
29: fl ← fi, fh ← fi+1

30: return CFF(LN, CH ∪ Ch, fl, fh)
31: else
32: % Do nothing - Discard this interval
33: end if
34: end for
35: end if
36: end function
37:
38: function TotalER(CH ∪ Ch, f)
39: r ← ER(Ch, f(Ch) = f)
40: r′ ← ∑

∀Chj∈CH ER(Chj , f(Chj))

41: return [r, r′]
42: end function
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Abstract. In multi-path routing schemes for payment-channel net-
works, Alice transfers funds to Bob by splitting them into partial pay-
ments and routing them along multiple paths. Undisclosed channel bal-
ances and mismatched transaction fees cause delays and failures on some
payment paths. For atomic transfer schemes, these straggling paths stall
the whole transfer. We show that the latency of transfers reduces when
redundant payment paths are added. This frees up liquidity in payment
channels and hence increases the throughput of the network. We devise
Boomerang, a generic technique to be used on top of multi-path routing
schemes to construct redundant payment paths free of counterparty risk.
In our experiments, applying Boomerang to a baseline routing scheme
leads to 40% latency reduction and 2× throughput increase. We build
on ideas from publicly verifiable secret sharing, such that Alice learns a
secret of Bob iff Bob overdraws funds from the redundant paths. Funds
are forwarded using Boomerang contracts, which allow Alice to revert the
transfer iff she has learned Bob’s secret. We implement the Boomerang
contract in Bitcoin Script.

Keywords: Payment-channel networks · Redundancy · Atomic
multi-path · Routing · Throughput · Latency · Adaptor signatures

1 Introduction

1.1 Payment Channels and Networks

Blockchains provide a method for maintaining a distributed ledger in a decentral-
ized and trustless fashion [23]. However, these so called layer-1 (L1) consensus
mechanisms suffer from low throughput and high confirmation latency. From
a scaling perspective it would be desirable if transactions could be processed
‘locally’ by only the involved participants.

Payment channels (PCs) [6,7,28] provide this. Once two participants have
established a PC on-chain, they can transact through the channel off-chain with-
out involving L1 every time. Briefly, the mechanism underlying the different PC
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implementations is as follows. The participants escrow a pool of funds on-chain
which they can spend only jointly. They can perform a transfer through the
PC by agreeing on an updated split of the shared funds which reflects the new
balances after the transfer and can be enforced on-chain anytime. Special care
is taken that participants can only ever execute the most recent agreement on-
chain. PCs improve the throughput, latency and privacy of a blockchain system.

Payment networks (PNs) [9,10,16,21,28] can be constructed on top of PCs.
PCs can be linked to establish a path between a source and a destination via some
intermediaries. Hash- and time-locked contracts (HTLC) are used to perform
transfers via intermediaries without counterparty risk, giving rise to so called
layer-2 (L2) PNs. To this end, the destination draws a secret (preimage) and
reveals a one-way function of the secret (preimage challenge) to the source. The
source then initiates a chain of payments to the destination, all conditional on
the revelation of a valid preimage. The destination reveals the secret to claim
the funds, setting the chain of payments in motion. Net, the destination is paid,
the source pays, and the intermediaries are in balance, up to a small service fee
earned for forwarding. For recent surveys on PCs and PNs, see [13,15].

1.2 Routing in Payment Networks

Routing algorithms for PNs find paths and forward funds while optimizing objec-
tives such as throughput, latency, or transaction fees. Recently, the routing prob-
lem has been studied extensively and various routing algorithms have been pro-
posed [8,14,19,28–30,33,34]. Early on, it has been discovered, also through the
Lightning Torch experiment, that single-path routing restricts the maximum
transfer size.1 Multi-path routing [26] allows for a more flexible use of PC liq-
uidity and hence can accommodate larger transfers by splitting transfers into
partial payments that are routed along multiple paths. However, while single-
path payments are naturally atomic, i.e., they either succeed or fail entirely, sim-
ply sending multiple partial payments can lead to half-way incomplete transfers.
Atomicity is important to keep payment networks manageable from a systems-
design perspective, and is achieved by atomic multi-path payments (AMP, [24]),
which most state-of-the-art routing algorithms rely on and Lightning developers
are actively working towards.2 Yet, because of its ‘everyone-waits-for-the-last’
philosophy, atomicity comes at a cost for latency and throughput.

1.3 Main Contributions

Due to the stochastic nature of PNs, i.e., random delays and failures of payment
paths, AMP routing often idles while waiting for a few straggling paths. This
leads to a long time-to-completion (TTC) of transfers. Furthermore, already
successful partial payments are kept pending, seizing liquidity from the PN that

1 https://diar.co/volume-2-issue-25/#1 (Jun 2018), https://www.coindesk.com/its-
getting-harder-to-send-bitcoins-lightning-torch-heres-why (Mar 2019).

2 https://bitcoin.stackexchange.com/q/89475 (Jul 2019).

https://diar.co/volume-2-issue-25/#1
https://www.coindesk.com/its-getting-harder-to-send-bitcoins-lightning-torch-heres-why
https://www.coindesk.com/its-getting-harder-to-send-bitcoins-lightning-torch-heres-why
https://bitcoin.stackexchange.com/q/89475
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Fig. 1. The blue (resp. red) points mark the tradeoff between latency and throughput of
the baseline (resp. Boomerang) AMP routing scheme, obtained by varying an internal
parameter. The Pareto fronts (lines) and the achievable regions (shaded) of the tradeoff
are shown. Boomerang yields a 2× increase in throughput and a 40% decrease in
latency over the baseline scheme. (Color figure online)

could have served other transfers. As a result, the throughput of the PN reduces.
For example, consider a transfer from Alice to Bob of $4 via 4 paths, of which
3 succeed after 1 s and 1 succeeds after 4 s. The transfer has a TTC of 4 s and
consumes liquidity $4 · 4 s = $16 · s.

Now suppose instead Alice could send 8 partial payments of $1 each (4 ‘extra’
redundant paths), such that AMP completes once a quorum of 4 out of 8 paths
succeeds and Bob cannot steal any extra funds. If 6 paths succeed after 1 s and
2 succeed after 4 s, then the transfer has a TTC of 1 s and consumes liquidity
4 · $1 · 1 s + 2 · $1 · 1 s + 2 · $1 · 4 s = $14 · s. Thus, the use of redundant payments
reduces the TTC of AMP transfers. As a result, less liquidity is consumed and the
PN achieves higher throughput. Similar observations about straggler mitigation
using redundancy have been made in large-scale distributed computing [1,5,17].

We devise Boomerang, a technique to be used on top of multi-path rout-
ing schemes to construct redundant payment paths free of counterparty risk.
Building on ideas from publicly verifiable secret sharing, we use a homomorphic
one-way function to intertwine the preimage challenges used for HTLC-type pay-
ment forwarding, such that Alice learns a secret of Bob iff Bob overdraws funds
from the redundant paths. Funds are forwarded using Boomerang contracts,
which allow Alice to revert the transfer iff she has learned Bob’s secret. We
prove the Boomerang construction to be secure, and present an implementation
in Bitcoin Script which applies either adaptor signatures based on Schnorr or
ECDSA signatures, or elliptic curve scalar multiplication as a one-way function.

We empirically verify the benefits of Boomerang for throughput and latency
of AMP routing. For this purpose, we choose a baseline routing scheme which
resembles the scheme currently used in Lightning. We enhance this scheme with
Boomerang. As can be seen in Fig. 1, redundancy increases the throughput by
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2x and reduces the TTC (latency) by 40 %. Our results suggest that redundancy
is a generic tool to boost the performance of AMP routing algorithms.

1.4 Paper Outline

In Sect. 2, we recall cryptographic preliminaries, introduce the system model,
and summarize causes for delay and failure of transfers in payment networks.
We devise the Boomerang construction for redundant transactions in Sect. 3,
and prove it to be secure. An implementation of Boomerang in Bitcoin Script
is presented in Sect. 4. In Sect. 5, we demonstrate the utility of redundancy for
improving routing protocols in experiments.

2 Preliminaries

2.1 System Model and Terminology

The topology of a payment network (PN) is given by an undirected graph whose
nodes are agents, and whose edges are payment channels (PCs). Each PC end-
point owns a share of the funds in the PC, which we refer to as its liquidity
or balance. For privacy reasons it is undesirable to reveal balances to third
party nodes. Following Lightning [28, BOLT #7], we assume that nodes have
no information about PC balances when taking routing decisions, but know
the PN topology. Finally, we assume that PN nodes communicate in a peer-to-
peer (P2P) gossiping fashion only along PCs, i.e., PN topology is P2P network
topology.

For multi-path routing, we highlight a strict separation between two layers in
our terminology (cf. Fig. 2). The ‘logical’ layer is concerned with transfers (TFs)
of an amount v of funds from a source (Alice, A) to a destination (Bob, B).
The ‘network’ layer implements a TF through multiple transactions (TXs) from
the sender to the receiver along different paths through multiple intermediaries
(Ingrid, Ii). A preimage pi is used for HTLC-type forwarding of the i-th TX.
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The amounts of the TXs add up to the amount of the TF. Routing algorithms
schedule a sequence of TXs in an attempt to implement a given TF. Figures
of merit are throughput, i.e., the average amount of funds transported success-
fully per time, and time-to-completion (TTC), i.e., the average delay between
commencement and completion of a TF.

2.2 Delay and Failure of Transactions in Payment Networks

There are various causes for delay and failure of TXs in PNs: a) The liquidity of
a PC along the desired path is insufficient. b) Insufficient fees do not incentivize
intermediaries to forward. c) Queuing, propagation and processing delay of P2P
messages. d) PN topology changes, nodes come and go, e.g., due to connectivity
or maintenance. e) Governments or businesses attempt to censor certain TFs.

2.3 Cryptographic Preliminaries

In this section, we briefly recapitulate the cryptographic tools used throughout
the paper. Let G be a cyclic multiplicative group of prime order q with a gen-
erator g ∈ G. We assume that the discrete logarithm problem (DLP, formally
introduced in Sect. A) is hard for g in G, which is commonly assumed to be the
case, e.g., in certain elliptic curves (ECs) used in Bitcoin.

Let H : Zq → G with H(x) � gx, where Zq is the finite field of integers
modulo q. We require H to be a one-way function, which follows from the DLP
hardness assumption. Given a preimage challenge h � H(x), it is difficult to
obtain the preimage x, but easy to check whether a purported preimage x̂ sat-
isfies the challenge (i.e., H(x̂) = h).

H has the following homomorphic property which we make extensive use of:

∀n ≥ 1: ∀c1, . . . , cn : H

(
n∑

i=1

cixi

)
=

n∏
i=1

H(xi)ci (1)

3 The Boomerang Construction

In this section, we show how to add redundant TXs without counterparty risk.
To this end, we build up the Boomerang construction in three steps. First, B
draws a secret α0. We use the homomorphic property of H and ideas from
publicly verifiable secret sharing [3,12,25,31,32] to construct the preimages pi

and the preimage challenges H(pi) such that A learns α0 iff B overdraws funds
from the redundant paths. Second, the so called Boomerang contract serves as a
building block for contingent transfer of funds, i.e., HTLC-type forwarding with
the additional provision that A can revert the TF iff she learns α0. Finally, the
end-to-end procedure of a Boomerang TF is devised from the previously men-
tioned ingredients. Subsequently, we prove that Boomerang satisfies the relevant
notions of security.
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3.1 Setup of Preimage Challenges

We assume that A and B have agreed out-of-band to partition their TF into v
TXs of a unit of funds ($1) each, without loss of generality (w.l.o.g.). In addition,
they use u redundant TXs to improve their TF, so that the total number of TXs
is w � v+u (cf. Fig. 3). First, B chooses a polynomial P (x) of degree deg(P ) = v

with coefficients α0
R←− Zq, . . . , αv

R←− Zq drawn uniformly at random,

P (x) =
v∑

j=0

αjx
j . (2)

Then, B commits to P (x) by providing A with H(α0), . . . , H(αv). Due to the
homomorphic property of H, Eq. (1), A can compute

∀i ∈ {1, . . . , v, . . . , w} : H(P (i)) = H

⎛
⎝ v∑

j=0

αji
j

⎞
⎠ =

v∏
j=0

H(αj)(ij). (3)

For the i-th TX, pi � P (i) is used as a preimage for HTLC-type forwarding.
Hence, A uses H(pi) = H(P (i)) from Eq. (3) as preimage challenge, and informs
B out-of-band of which i was used.

To redeem the i-th TX, B reveals pi = P (i). Should B overdraw by revealing
more than v evaluations pi of P (x), then α0, . . . , αv can be recovered using
polynomial interpolation due to deg(P ) = v. Recall that α0 serves as a secret
which A can use to revert the TF in this case. As long as B reveals no more
than v evaluations of P (x), each αi remains marginally uniformly distributed.
In this case, the TF is final.

Note that A and B do not have to agree on u ahead of time. Instead, A
can create virtually infinitely many H(pi) (as long as w < q), and hence send
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Party 1 (P1) Party 2 (P2)

$1 + δ : p̂i s.t. H(p̂i) = H(pi)

$1 : p̂i s.t. H(p̂i) = H(pi)

α̂0 s.t. H(α̂0) = H(α0)

Fig. 4. Boomerang contract used to forward $1 plus δ TX fees from P1 to P2

a continuous flow of TXs until B redeems v TXs. This property is similar to
rateless codes used to implement ‘digital fountains’ [4], and enables B to choose
u adaptively during execution of the TF. Furthermore, since there is no risk
in ‘losing control’ over a redundant TX, source routing can be abandoned in
favor of the PN taking distributed routing decisions. Conceptually, the use of
redundant TXs in PNs is analogous to the use of erasure-correcting codes [11]
in communication networks consisting of packet erasure channels [18] and for
straggler mitigation in large-scale distributed computing and storage [5,17].

3.2 Boomerang Contract

We devise the Boomerang contract, which implements reversible HTLC-type
forwarding as required for Boomerang on top of a PC. Still, w.l.o.g. $1 funds
and δ TX fee are to be forwarded from party P1 to party P2.

Conceptually, the desired behavior could be accomplished by two conditional
forwardings (cf. Fig. 4), the first of which (‘forward’, top arrow in Fig. 4) transfers
$1 + δ from P1 to P2 upon revelation of a preimage p̂i such that H(p̂i) = H(pi),
and the second of which (‘reverse’, bottom arrow in Fig. 4) transfers $1 back from
P2 to P1 upon revelation of two preimages p̂i and α̂0 such that H(p̂i) = H(pi)
and H(α̂0) = H(α0). Note that the two conditions are nested such that if P1

redeems the second forwarding, then P2 can redeem the first forwarding. As a
result, the Boomerang contract has three possible outcomes. Either, a) neither
forwarding is redeemed and P1 retains all funds (e.g., in the case of a timeout or
an unused redundant TX), or b) only the ‘forward’ forwarding is redeemed (i.e.,
B draws funds by revealing P (i) but does not leak α0), or c) both forwardings
are redeemed (i.e., B overdraws and reveals both P (i) and α0). Anyway, P2

cannot loose funds and thus agrees to deploy the contract on the PC.
Note that Fig. 4 has been simplified for ease of exposition. Indeed, two essen-

tial aspects are not captured in Fig. 4 and necessitate the refined final specifica-
tion of the Boomerang contract in Fig. 5. First, timeouts Δfwd and Δrev (relative
to current time T0) need to be chosen such that the source of the TF has time
to detect overdraw and reclaim the funds (Δfwd < Δrev). Second, having two
separate forwardings would requisition twice the liquidity ($2+ δ) while the for-
wardings are pending. Instead, the Boomerang contract as specified by the flow
charts in Fig. 5 allows for consistent timeouts with Δfwd < Δrev and requisitions
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$1

P2 reveals p̂i s.t.
H(p̂i) = H(pi)

within t ∈ [T0, T0+Δfwd]

P1 reveals α̂0 s.t.
H(α̂0) = H(α0)

within t ∈ [T0, T0+Δrev]

P1

P2

P1

yes

no

no

yes

(a)

δ

P2 reveals p̂i s.t.
H(p̂i) = H(pi)

within t ∈ [T0, T0+Δfwd]
P1

P2

no

yes

(b)

Fig. 5. Flow charts for payout of a Boomerang contract (cf. Fig. 4) concerning (a) $1
funds and (b) δ TX fees between P1 and P2

the TX amount in PC liquidity only once ($1 + δ). We present an implementa-
tion of Fig. 5 in Bitcoin Script on top of Eltoo PCs [6] in Sect. 4. Throughout the
paper, we use two circular arrows as in Fig. 4 to visualize a Boomerang contract.

3.3 End-to-End Procedure for Boomerang Transfers

Given the intertwined preimage challenges of Sect. 3.1 and the Boomerang con-
tract of Sect. 3.2, we devise the end-to-end procedure for Boomerang TFs.

To forward a TX along a path from A to B via I1, . . . , In, the timeouts Δfwd

and Δrev of the Boomerang contracts between A and I1, Ii and Ii+1, and In and
B need to be chosen in the following way: The forward components’ timeouts

A I1 I2 B

T0 + 3 · ΔT T0 + 2 · ΔT T0 + 1 · ΔT

T0 + 6 · ΔTT0 + 5 · ΔTT0 + 4 · ΔT

Propagation of preimage p̂i

Propagation of funds or of preimage α̂0

Fig. 6. Staggering of timeouts of Boomerang contracts: The Δfwd are chosen such that
propagation of the preimage p̂i from B via I2 and I1 to A is guaranteed once B reveals
p̂i. The Δrev are chosen such that propagation of the preimage α̂0 from A via I1 and
I2 to B is guaranteed once A reveals α̂0. (Color figure online)
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Fig. 7. Stages of a Boomerang TF (here using w = v + u = 2 + 3 TXs, each through

two Ii): 1 A attempts 5 TXs; TXs 1, 2 and 5 reach B, 3 and 4 do not. 2 B claims

TXs 1 and 2 by revealing P (1) and P (2). 3 The unsuccessful and outstanding TXs

3, 4 and 5 are cancelled upon request from B. 4 A relinquishes the option to retract
TXs 1 and 2 as no further funds can be drawn by B.

decrease along the path from A to B. The reverse components’ timeouts increase
along the path from A to B. Additionally, the earliest reverse component expires
later than the latest forward component, to allow A to react to overdraw and
activate the reverse components. An example is illustrated in Fig. 6.

A Boomerang TF of v units using w = v + u redundant TXs proceeds, after
the setup of preimage challenges out-of-band, in four steps (cf. Fig. 7):

1 Promise: A attempts w = v + u TXs.
2 Deliver: B claims funds from up to v TXs by revealing the preimages

pi = P (i) to the corresponding preimage challenges H(pi), activating the
forward components of the Boomerang contracts along the respective paths.

3 Cancel: Upon a request by B which is passed on to the tip of the path of
an unsuccessful or surplus TX, outstanding TXs are cancelled. Note that
cancellation is counterparty risk-free if it proceeds along the path from B
towards A, and honest as well as rational participants have a self-interest
in freeing up liquidity that will foreseeably not earn TX fees.

4 Finish: A renounces the reverse components of the remaining Boomerang
contracts to free up liquidity, as there is no more risk of B overdrawing.

3.4 Security Guarantees

We give the following guarantees to the source A and the destination B of a TF,
respectively, which formalize security for the outlined Boomerang construction:

Theorem 1 (A-Guarantee). If more than v of the redundant TXs are drawn
from A, then A can recover α0 and revert all TXs.
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Theorem 2 (B-Guarantee). As long as B follows the protocol and draws
no more than v of the redundant TXs, all TXs are final, except with negligible
probability, provided the DLP is hard for (G, g).

Corollary 1 (Proofs). If A knows α0, this proves that B cheated. If A knows
pi, this proves that B was paid accordingly. A can forge the proofs only with
negligible probability, provided the DLP is hard for (G, g).

Note that ‘drawing’ a TX means ‘revealing the preimage pi = P (i) for the
challenge H(pi) of TX i’. Hence, the above guarantees are statements about ‘how
much preimage information flows’ ‘into A’ and ‘out of B’, implicitely assuming
the worst-case that all intermediary Ii collude with the respective opposing party.

Proof (of Theorem 1: A-Guarantee). Due to the homomorphic property of H,
and the fact that A computes the challenges H(pi) from the commitments
H(α0), . . . , H(αv), there exists a unique polynomial of degree v that passes
through all P (i). This polynomial can be determined by interpolation, if more
than v preimages pi = P (i) are revealed. Hence, in the case of overdrawing, A
can be certain to obtain an α0, such that A can activate the reverse components
of the Boomerang contracts and revert all TXs. ��
Proof (of Theorem 2: B-Guarantee). It suffices to show that one cannot recover
α0 from H(α0), ..., H(αv), P (i1), ..., P (iv), with i1, . . . , iv distinct, except with
negligible probability, provided that the DLP is hard for (G, g).

W.l.o.g., assume that all preimages revealed by B have been forwarded
to A. Call the task A faces Alice’s problem (AP), i.e., given an AP instance
(gα0 , . . . , gαv , P (i1), . . . , P (iv)) for known distinct i1, . . . , iv, find α0. We show
that AP is computationally infeasible by reducing the DLP to AP.

The reduction proceeds as follows. Assume B is a blackbox that solves AP
instances efficiently. Using B, we construct a DLP solver A. Present A with
a DLP instance (g, ga). A samples P (ij)

R←− Zq for j = 1, . . . , v uniformly
at random, such that there exists a unique degree v polynomial interpolating
P (0), P (i1), . . . , P (iv), with coefficients α0, . . . , αv chosen uniformly at random.
Recall that P (0) = α0 = a is unknown. By Eq. (2),⎡

⎢⎢⎢⎣
P (0)
P (i1)

...
P (iv)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
� p

=

⎡
⎢⎢⎢⎣

00 01 . . . 0v

i01 i11 . . . iv1
...

...
...

i0v i1v . . . ivv

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
� M

⎡
⎢⎢⎢⎣

α0

α1

...
αv

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
� α

, (4)

where the entries of M are fixed.
As M is a Vandermonde matrix and thus invertible,

p = Mα ⇐⇒ α = M−1p. (5)
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Let m̃ij �
{
M−1

}
ij

and pj � {p}j , where {X}y is the y-th entry of X. Then,

αi =
v∑

j=0

m̃ijpj . (6)

Hence, using the homomorphic property of H from Eq. (1), obtain

∀i ∈ {0, . . . , v} : H(αi) = H

⎛
⎝ v∑

j=0

m̃ijpj

⎞
⎠ =

v∏
j=0

H(pj)m̃ij . (7)

Now, A has a tuple (H(α0), . . . , H(αv), P (i1), . . . , P (iv)) drawn from the
distribution of AP instances implied by the Boomerang protocol. A invokes the
AP oracle B and obtains α0 = a, which solves the DLP instance.

Thus, an efficient solution to AP implies an efficient solution to DLP. But
since DLP is assumed to be hard, AP has to be hard, proving the claim. ��
Proof (of Corollary 1: Proofs). Theorems 1 and 2 imply that A knows α0 iff B
cheated (except with negligible probability, provided the DLP is hard for (G, g)).

For pi to serve as proof of payment, it requires that for any n ≤ v and known
distinct i1, . . . , in+1, A cannot obtain P (in+1) from H(α0), ..., H(αv), P (i1), ...,
P (in) (except with negligible probability, provided the DLP is hard for (G, g)).
For n = v, this follows from Theorem 2 by contradiction, as α0 can be computed
from P (i1), . . . , P (iv+1). For n < v, the problem is harder than for n = v. ��

4 Implementation in Bitcoin Script

We present an implementation of Boomerang in Bitcoin Script and its deploy-
ment on an Eltoo PC. For simplicity, we first present an implementation which
hinges on a new opcode for H(x). Subsequently, we refine the implementation
to apply adaptor signatures based on Schnorr or ECDSA signatures instead.

4.1 Implementation Using an Opcode for H(x)

Assume the addition of a new command ECEXP〈g〉 to Bitcoin Script for computing
H(x) = gx ∈ G. The command would pop x off the stack and push gx back onto
the stack. The necessary cryptographic primitives to do this in ECs are already
part of Bitcoin and only need to be exposed to the scripting engine. Then,
ECEXP〈g〉 can be used as a one-way function in similar situations as the SHA* or
HASH* commands, but provides the homomorphic property that can be necessary
or useful for applications beyond Boomerang.

We show how the mechanics of the Boomerang contract specified in Fig. 5
can be implemented using Bitcoin Script. To this end, we refer to the settlement
transaction of the PC on top of which the Boomerang contract is deployed
as TXsettle, and to transactions that Pi would use to pay a certain output to
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Bitcoin Script implementation of output on TXsettle:

Redemption for P1 (‘no’ branch):

sigP1
(TXpayout,P1 )

Redemption for P2 (‘yes’ branch):

sigP1,tmp
(TXretaliate)

sigP2,tmp
(TXretaliate)

p̂i

Bitcoin Script implementation of output on TXretaliate:

Redemption for P1 (‘yes’ branch):

sigP1
(TXpayout,P1 )

α̂0

Redemption for P2 (‘no’ branch):

sigP2
(TXpayout,P2 )

Fig. 8. Implementation of the $1 outputs (cf. Fig. 5(a)), and witness stacks for redemp-
tion, for the two staggered TXsettle and TXretaliate (cf. Fig. 9). For TXsettle: l. 2 enforces
revelation of p̂i s.t. H(p̂i) = H(pi),l. 3 requires signatures of the temporary iden-
tities Pi,tmp (created separately for each instance of the contract, and used to sign
TXretaliate as part of the commitment to a forwarding), l. 5 enforces the timelock of
T0 + Δfwd, l. 6 requires a signature of P1. For TXretaliate: l. 2 enforces revelation of
α̂0 s.t. H(α̂0) = H(α0), l. 3 requires a signature of P1, l. 5 enforces the timelock of
T0 + Δrev, l. 6 requires a signature of P2.

themselves as TXpayout,Pi
. For the signature scheme employed by Bitcoin, an

identity P has a public key pkP and a private (secret) key skP . Using skP , a
signature σ � sigP (x) for string x can be created.

The implementation of Fig. 5(a) is provided in Fig. 8. The first condition
of the flow chart in Fig. 5(a), which captures the forward component of the
Boomerang contract, is implemented as an output of TXsettle. If this condition
is met, the distribution of the funds is decided by an additional transaction
TXretaliate which implements the reverse component of the Boomerang contract.
TXretaliate is agreed-upon and signed by both parties using temporary one-time
identities Pi,tmp as part of the deployment of a Boomerang contract. The imple-
mentation of Fig. 5(b) is provided in Fig. 11 of Sect. B.



316 V. Bagaria et al.

...

TXel2
update

P el2
1,u

P el2
2,u

TXel2
settle

P el2
1,u , P el2

2,u

P el2
1,s , P el2

2,s

P el2
1,s

P el2
2,s

P1

P2

δ H(pi) P2

T0+Δfwd P1

TXboom
retaliate

$1

H(pi) P boom
1,tmp, P boom

2,tmp

P (i)
P boom
1,tmp

P boom
2,tmp

T0+Δfwd P1

H(α0) P1

T0+Δrev P2

Fig. 9. A Boomerang contract is deployed as outputs and a thereon depending TX on
top of the settlement mechanism of an Eltoo PC. (Legend: Boxes are Bitcoin transac-
tions, an arrow leaving/entering a box indicates an output/input, respectively, labels
along arrows indicate spending conditions, forks of arrows indicate alternative spending
conditions, labels near TX inputs indicate redemption witnesses, ‘requires signature
of’, ‘signed by’, ‘preimage challenge’, ‘preimage solution’, ‘absolute time-
lock’, ‘relative time-lock’.)

4.2 Implementation Using Adaptor Signatures

The dependency on a new opcode ECEXP〈g〉 can be lifted by replacing the hash-
lock with adaptor signatures [27] based on Schnorr signatures [20] or ECDSA
signatures [22]. A primer on adaptor signatures is given in Sect. C. Rather than
one party revealing a preimage x for a challenge h � H(x) when publishing a TX
to claim funds or advance a contract, P1 and P2 exchange an adaptor signature
σ′ for TX which either party can turn into a proper signature σ once they obtain
x. Once TX gets published together with σ, the other party can derive x from σ
and σ′.

4.3 Deployment of Boomerang on an Eltoo Payment Channel

Figure 9 shows a Boomerang contract for the i-th TX with preimage challenge
H(pi) deployed on top of an Eltoo PC. Transactions and cryptographic identities
belonging to Eltoo are marked with (.)el2, those belonging to Boomerang are
marked with (.)boom. Figure 9 also illustrates Figs. 11 and 8.
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5 Experimental Evaluation

We evaluate Boomerang in a low-fidelity prototype implementation3 of the rout-
ing components inspired by the testbed of Flash [34]. First, we outline our exper-
imental setup, then we specify the three contending schemes, and finally we
present and discuss the observed performance.

5.1 Experimental Setup

The PN topology is drawn from the Watts–Strogatz ensemble where initially
N = 100 nodes in a regular ring lattice are connected to their 8 nearest neigh-
bors, and subsequently each initial edge is rewired randomly with probabil-
ity 0.8. For each PC endpoint, its initial liquidity is drawn log-uniformly in
[log(100), log(1000)]. The topology is static and known to all nodes; each PC’s
balance is only known to the PC’s endpoints. 50000 TFs are generated as follows.
Source and destination are sampled uniformly from the N nodes. The amounts
are drawn from the Ripple dataset used in SpeedyMurmurs [30]. As in previous
works, each node has a backlog of TFs it attempts to route one by one. We
report sample mean and sample standard deviation of 10 PNs and TF traces.

Our implementation is a low-fidelity prototype of the routing and communi-
cations tasks. An abstract PN protocol accommodates different routing schemes
(cf. Flash [34]). A TX takes place in two phases: First, in the Reserve phase,
Boomerang contracts are set up along a path from A to B if PC liquidity
permits. A is notified whether Reserve was successful. Second, in the Roll-
back/Execute phase, the chain of Boomerang contracts is either dismantled
(Rollback) or the funds are delivered (Execute). An Abort message can stop
an ongoing Reserve attempt. Purely informational messages (e.g., outcome of
Reserve) are relayed without delay. Operations on the PC (e.g., deploying a
Boomerang contract) are simulated by a uniform delay from 50 ms to 150 ms.
Note that PC balances are only discovered implicitely through failed/successful
TX attempts, similar to the current state of affairs in Lightning.

The software is written in Golang 1.12.7. Every node is an independent pro-
cess on a machine with 4× AMD Opteron 6378 processors (total 64 cores). The
scenario is chosen such that the CPUs are never fully utilized to avoid distortion
from computational limitations. The nodes communicate via ‘localhost’.

5.2 Three Simple Routing Protocols

We compare three multi-path routing protocols (pseudo code given in Sect.D).
‘Retry’ (cf. Algorithm 2) initially attempts v TXs and reattempts up to u
of them. ‘Redundancy’ (cf. Algorithm 3) attempts v + u TXs from the start.
‘Redundant-Retry(10)’ (cf. Algorithm 4) is a combination of the two, which starts
out with v+min(u, 10) TXs and reattempts up to u−min(u, 10) of them. The aim
is to trade off the lower TTC of ‘Redundancy’ with the adaptivity of ‘Retry’. TXs

3 The source code is available on: https://github.com/tse-group/boomerang.

https://github.com/tse-group/boomerang


318 V. Bagaria et al.

Retry Redundancy Redundant-Retry(10)

0 10 20 75 150

0

20

40

60

80

100

u

(a) Throughput [ funds
s · node ]

0 10 20 75 150

0

0.2

0.4

0.6

u

(b) TTC [s]

0 10 20 75 150

0

20

40

60

u

(c) Volume [funds]

Fig. 10. (a) Average success throughput per node, (b) Average time-to-completion for
successful TFs, (c) Average volume for successful TFs.

are routed on paths chosen randomly from a set of precomputed edge-disjoint
shortest paths. All three schemes use atomic multi-path (AMP, [24]), i.e., they
only Execute once enough successful TX attempts have been made to satisfy
the full TF (cf. Algorithm1). If the TF cannot be fully satisfied, all TXs are
Rollbacked.

The baseline protocol ‘Retry’ is rather simplistic compared to recent develop-
ments [8,14,19,28–30,33,34]. We choose it because it resembles what currently
can and is being done on Lightning. We conjecture that redundancy as a generic
technique can boost AMP routing algorithms across the board.

5.3 Simulation Results

Our results are shown in Fig. 10. Supplemental plots can be found in [2, Section
E, Fig. 12]. Previous works have gauged the performance of PN routing algo-
rithms in terms of success volume or success count, i.e., for a given trace of TFs,
what total amount or number of TFs gets satisfied. However, these metrics are
problematic. If TFs are spread out in time then more liquidity is available in the
PN. This renders it easier to satisfy a TF and inflates these metrics.

Instead, we consider success throughput, i.e., total amount of successfully
transferred funds per runtime. The results for v = 25 are shown in Fig. 10(a) (cf.
[2, Fig. 12(a)]). ‘Redundancy’ and ‘Redundant-Retry(10)’ show a 2× increase in
throughput compared to ‘Retry’.

Another relevant figure of merit is the average time-to-completion (TTC)
of a successful TF, i.e., how long is the delay between when the execution of
a TF starts and when AMP is finalized. This determines the latency experi-
enced by the user and for how long liquidity is tied up in pending AMP TFs.
The results for v = 25 in Fig. 10(b) (cf. [2, Fig. 12(b)]) show a 40 % reduc-
tion in TTC for ‘Redundancy’ over ‘Retry’. The larger u, the longer ‘Retry’
takes but the quicker ‘Redundancy’ completes. This plot also demonstrates how
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‘Redundant-Retry(10)’ trades off between ‘Retry’ and ‘Redundancy’. For u ≤ 10,
‘Redundant-Retry(10)’ is identical with ‘Redundancy’ and hence follows the per-
formance improvement of ‘Redundancy’. For u > 10, the retry aspect weighs
in more and more and ‘Redundant-Retry(10)’ follows a similar trajectory as
‘Retry’.

Finally, Fig. 10(c) (cf. [2, Fig. 12(c)]) shows the average size of a successful TF,
where ‘Redundant-Retry(10)’ outperforms ‘Redundancy’ by 30 % which in turn
outperforms ‘Retry’ by 40 %. Note that the throughput of ‘Redundant-Retry(10)’
and ‘Redundancy’ are comparable. Thus, weighting between adaptively retrying
and upfront redundancy trades off TTC and average successful TF volume, at a
constant throughput.
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A Cryptographic Preliminaries

Let G be a cyclic multiplicative group of prime order q ≥ 22λ with a generator
g ∈ G, where λ is a security parameter. Let H : Zq → G with H(x) � gx, where
Zq is the finite field of size q (i.e., integers modulo q). We require that H be
difficult to invert, which is formalized in the following two definitions:

Definition 1 (Negligible Function). A function ε : N → R
+ is negligible if

∀c > 0: ∃k0 : ∀k > k0 : ε(k) <
1
kc

. (8)

In other words, negligible is what decays faster than every polynomial.

Definition 2 (Discrete Logarithm (DL) Assumption). Given a generator
g of a group G, and an x

R←− Zq chosen uniformly at random in Zq, for every
probabilistic polynomial time (with respect to λ) algorithm ADL,

Pr[ADL(g, gx) = x] = ε(λ). (9)

The discrete logarithm problem (DLP) is said to be hard for generator g in group
G, if the DL assumption holds for g and G, i.e., no computationally bounded
adversary can compute logg(gx) with non-negligible probability. It is commonly
assumed that the DLP is hard in certain elliptic curves (ECs), which are hence
widely used in cryptographic applications, e.g., in Bitcoin. The DL assumption
makes H a one-way function.

https://github.com/twitter/twemoji
https://github.com/twitter/twemoji
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B Implementation of Boomerang Contract in Bitcoin
Script via Elliptic Curve Scalar Multiplication

See Figs. 8 and 11 for Bitcoin Script implementations of Fig. 5.

Bitcoin Script implementation of output on TXsettle:

1

2 〈g〉 〈H(pi)〉
3 〈pkP2

〉
4

5 〈T0 + Δfwd〉
6 〈pkP1

〉
7

Redemption for P1 (‘no’ branch):

1 sigP1
(TXpayout,P1 )

2

Redemption for P2 (‘yes’ branch):

1 sigP2
(TXpayout,P2 )

2 p̂i

3

Fig. 11. Bitcoin Script implementation of the output concerning δ TX fee (cf.
Fig. 5(b)), and witness stacks for redemption in favor of P1 and P2, respectively: l.
2 enforces revelation of p̂i such that H(p̂i) = H(pi), l. 3 requires a signature of P2, l. 5
enforces the timelock until T0 + Δfwd, l. 6 requires a signature of P1.

C Background on Adaptor Signatures

We briefly summarize Schnorr signatures [20]. Let H̃ be a cryptographic hash
function (modeled as a random oracle), and x‖y denote the concatenation of
x and y. We continue to assume that G is a multiplicative group with group
operation ‘·’. For Schnorr signatures, every identity is composed of a secret key
x and a public key P � gx. To sign a message m, draw r

R←− Zq, then compute
R � gr and s = r + H̃(P‖R‖m)x. The signature is σ � (s,R). To verify a
signature σ � (s,R) for m by P , check

gs ?= R · P H̃(P‖R‖m). (10)

An adaptor signature σ′ has the property that given σ′, knowledge of a proper
signature σ is equivalent to knowledge of a precommitted value t [27]. Consider
parties P1 and P2 with secret keys xi and public keys Pi � gxi . Both know a
commitment T � gt to a (potentially unknown) value t. To create an adaptor
signature σ′ for m, both draw ri

R←− Zq, compute Ri � gri , and exchange (Pi, Ri).
Then, they compute and exchange

s′
i = ri + H̃(P1 · P2‖R1 · R2 · T‖m)xi. (11)
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The adaptor signature is σ′ = (R1 · R2 · T, s′
1 + s′

2). If either Pi gets to know t,
they can produce a valid total signature σ = (R1 ·R2 ·T, s′

1 + s′
2 + t). Vice versa,

if either Pi learns a valid total signature σ = (R1 · R2 · T, s), they can compute
t = s − s′

1 − s′
2. For instance, suppose m is a transaction that benefits P2 and

requires a signature from P1 · P2 with nonce R1 · R2 · T . Furthermore, suppose
P2 obtains t. Then it can use the adaptor signature σ′ to produce a valid total
signature σ and claim its funds. In this case, P1 can recover t from σ and σ′.

D Pseudo Code of Evaluated Routing Schemes

See Algorithms 1, 2, 3 and 4.

Algorithm 1. Finalize AMP TF
1: procedure FinalizeAMP(O, P, v) � Aborts outstanding TX attempts O,

Executes/Rollbacks successful TXs P depending on number of required TXs v
2: SendAbort(O)
3: if |P| = v then
4: SendExecute(P)
5: else
6: SendRollback(P)
7: end if
8: ReceiveReserveResponsesAndSendRollback(O)
9: end procedure

Algorithm 2. ‘Retry’ routing scheme
1: procedure Retry(T , v, u) � Split each TF t ∈ T into v TXs and retry u TXs
2: for t ∈ T do � Source t.s, destination t.d, amount t.v
3: O, P, N ← ∅, ∅, ∅ � TX attempts: outstanding O, successful P, failed N
4: u′ ← u � Unused TX retries
5: for i = 1, . . . , v do � Attempt v TXs
6: O ← O ∪ SendReserve(RandomPath(t.s, t.d), t.v/v)
7: end for
8: while |P| < v ∧ |O| > 0 ∧ |P| + |O| + u′ ≥ v do � TF is contingent
9: ReceiveAndClassifyReserveResponses(O, P, N )
10: for new elements r ∈ N do
11: SendRollback(r)
12: if u′ > 0 then
13: O ← O ∪ SendReserve(RandomPath(t.s, t.d), t.v/v)
14: u′ ← u′ − 1
15: end if
16: end for
17: end while
18: FinalizeAMP(O, P, v)
19: end for
20: end procedure
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Algorithm 3. ‘Redundancy’ routing scheme
1: procedure Redundancy(T , v, u) � Split TFs t ∈ T into v plus u redundant TXs
2: for t ∈ T do � Source t.s, destination t.d, amount t.v
3: O, P, N ← ∅, ∅, ∅ � TX attempts: outstanding O, successful P, failed N
4: for i = 1, . . . , v + u do � Attempt v TXs
5: O ← O ∪ SendReserve(RandomPath(t.s, t.d), t.v/v)
6: end for
7: while |P| < v ∧ |O| > 0 ∧ |P| + |O| ≥ v do � TF is contingent
8: ReceiveAndClassifyReserveResponses(O, P, N )
9: for new elements r ∈ N do
10: SendRollback(r)
11: end for
12: end while
13: FinalizeAMP(O, P, v)
14: end for
15: end procedure

Algorithm 4. ‘Redundant-Retry(10)’ routing scheme
1: procedure RedundantRetry(T , v, u, 10)
2: for t ∈ T do � Source t.s, destination t.d, amount t.v
3: O, P, N ← ∅, ∅, ∅ � TX attempts: outstanding O, successful P, failed N
4: u′ ← u − min(u, 10) � Unused TX retries
5: for i = 1, . . . , v + min(u, 10) do � Attempt v + min(u, 10) TXs
6: O ← O ∪ SendReserve(RandomPath(t.s, t.d), t.v/v)
7: end for
8: while |P| < v ∧ |O| > 0 ∧ |P| + |O| + u′ ≥ v do � TF is contingent
9: ReceiveAndClassifyReserveResponses(O, P, N )
10: for new elements r ∈ N do
11: SendRollback(r)
12: if u′ > 0 then
13: O ← O ∪ SendReserve(RandomPath(t.s, t.d), t.v/v)
14: u′ ← u′ − 1
15: end if
16: end for
17: end while
18: FinalizeAMP(O, P, v)
19: end for
20: end procedure
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Abstract. Monero has emerged as one of the leading cryptocurrencies
with privacy by design. However, this comes at the price of reduced
expressiveness and interoperability as well as severe scalability issues.
First, Monero is restricted to coin exchanges among individual addresses
and no further functionality is supported. Second, transactions are autho-
rized by linkable ring signatures, a digital signature scheme used in Mon-
ero, hindering thereby the interoperability with virtually all the rest of
cryptocurrencies that support different digital signature schemes. Third,
Monero transactions require an on-chain footprint larger than other cryp-
tocurrencies, leading to a rapid ledger growth and thus scalability issues.

This work extends Monero expressiveness and interoperability while
mitigating its scalability issues. We present Dual Linkable Spontaneous
Anonymous Group Signature for Ad Hoc Groups (DLSAG), a linkable
ring signature scheme that enables for the first time non-interactive
refund transactions natively in Monero: DLSAG can seamlessly be imple-
mented along with other cryptographic tools already available in Monero
such as commitments and range proofs. We formally prove that DLSAG
provides the same security and privacy notions introduced in the origi-
nal linkable ring signature [29] namely, unforgeability, signer ambiguity,
and linkability. We have evaluated DLSAG and showed that it imposes
even slightly lower computation and similar communication overhead
than the current digital signature scheme in Monero, demonstrating its
practicality. We further show how to leverage DLSAG to enable off-chain
scalability solutions in Monero such as payment channels and payment-
channel networks as well as atomic swaps and interoperable payments
with virtually all cryptocurrencies available today. DLSAG is currently
being discussed within the Monero community as an option for adop-
tion as a key building block for expressiveness, interoperability, and
scalability.
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1 Introduction

Bitcoin fails to provide meaningful privacy guarantees as largely demonstrated in
the literature [11,12,26,33,42,46]. In this state of affairs, Monero appeared in the
cryptocurrency landscape with the distinguishing factor of adopting privacy by
a design principle, combining for the first time stealth address [44], linkable ring
signatures [29], cryptographic commitments [38] and range proofs [16]. As of the
time of writing, Monero has been regularly among the top 15 cryptocurrencies
in market capitalization, has catered more than 6 million transactions since
its creation [8], and is the most popular CryptoNote-style cryptocurrency [1].
Currently, the Monero blockchain processes around 4000 daily transactions and
Monero coins are part of a daily trade volume of more than 76M USD [2].
Monero has, however, significant room for improvement. First, Monero suffers
from reduced expressiveness: While cryptocurrencies like Bitcoin or Ethereum
enable somewhat complex policies to spend coins (e.g., a coin can be governed
by script-based rules), Monero only supports coins governed with (mostly a
single) private key, reducing the functionality to simple transfer of coins with no
policy associated with it.

Cryptocurrencies such as Bitcoin and Ethereum overcome this lack of expres-
siveness by adding a script language at the cost of fungibility [9] (i.e., transaction
inputs/outputs can be easily distinguished by their script) and interoperability
as those script languages are not compatible with each other. Thus, it is inter-
esting to include new policies to spend Monero coins cryptographically, instead
of including a scripting language that hampers fungibility and interoperability.

Second, Monero suffers from similar scalability issues as Bitcoin [18]: The per-
missionless nature of the Monero consensus algorithm limits the block rate to one
block every two minutes on average. In fact, the scalability problem in Monero
is more pressing. The crucial privacy goal in Monero relies on well-established
cryptographic constructions to homogenize transactions: linkable ring signatures
are used to obfuscate what public key corresponds to the signer of a transaction
while commitment schemes and range proofs are leveraged to hide the exchanged
amounts, ensure transaction validity and the expected coin supply. These key
design choices make Monero transactions require higher on-chain footprint than
transactions in other cryptocurrencies. Although used only for less than five
years, the Monero blockchain has currently a size of 59.37 GB and grows at
around 635 MB per month [4].

Given this trend, it would be interesting to enable payment channels and
payment channel networks [6,30,41] in Monero, a scalability solution already
adopted in Bitcoin and Ethereum where the transaction rate is no longer limited
by the global consensus but rather by the latency among the two users involved
in a given payment. However, this is far from trivial as current payment-channel
networks are built upon script languages (e.g., hash-time lock contract) or digital
signatures schemes such as ECDSA or Schnorr that are not available in Monero.
Leveraging these techniques in Monero would hamper its fungibility.

In summary, the current state of affairs in Monero with respect to the reduced
expressiveness, lack of interoperability, and severe scalability issues calls for
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a solution. Adopting solutions provided in other cryptocurrencies like Bitcoin
and Ethereum is not seamlessly possible as they are not backwards compatible
with Monero. Moreover, as aforementioned, the inclusion of a scripting language
would hamper the fungibility and interoperability of Monero.
Our Contributions. In this work, we present Dual Linkable Spontaneous
Anonymous Group Signature for Ad Hoc Groups (DLSAG), the linkable ring
signature scheme for Monero that improves upon the lack expressiveness, inter-
operability, and scalability guarantees in Monero. In particular:

– Expressiveness. We formalize DLSAG (Sect. 3), a new linkable ring signa-
ture scheme that relies only on cryptographic tools already available in Mon-
ero and improves its expressiveness. In a bit more detail, DLSAG enables for
the first time that Monero coins can be spent with one of two signing keys,
depending on the relation between a time flag and the height of the current
block in the Monero blockchain.

– Scalability. We describe how to leverage the DLSAG signatures to encode
for the first time non-interactive refund transactions in Monero, where Alice
can pay to Bob a certain amount of coins redeemable by Bob before a certain
time in the future. After such time expires, the coins can be refunded to Alice.
Refund transactions are the building block that opens the door for the first
time to scalability solutions based on payment channels for Monero (Sect. 6).
In particular, we describe how to build uni-directional payment channels,
payment-channel networks, off-chain conditional payments and atomic swaps.

– Interoperability. We further show that it is possible to combine the afore-
mentioned payment channels protocols with the corresponding ones in other
cryptocurrencies, making thereby Monero interoperable (Sect. 6).

– Formal analysis. We formally prove that DLSAG achieves the security and
privacy goals of interest for linkable ring signatures, namely, unforgeability,
signer ambiguity, and linkability as introduced in [29] (Sect. 3).

– Implementation and adoption. We have implemented DLSAG and eval-
uated its performance (Sect. 4) showing that it imposes a single bit more
of communication overhead and smaller computation overhead as the cur-
rent digital signature scheme in Monero, demonstrating thus its practicality.
In fact, DLSAG is a new result that paves the way in practice towards an
expressiveness and scalability solution urgently needed in Monero to improve
its integration in the cryptocurrency landscape. DLSAG is actively being dis-
cussed within the Monero community as an option for adoption [7,36] and
it is compatible with other CryptoNote-style cryptocurrencies [1].

Comparison with Related Work. Poelstra introduced the notion of Script-
less Scripts [40] as a means of encoding somewhat limited smart contracts that
no longer require the Bitcoin scripting language. Malavolta et al. [31] formalized
this notion and extended it to support Schnorr and ECDSA digital signatures.
In this work, we instantiate the notion of Scriptless Scripts to realize conditional
payments compatible with DLSAG and the current Monero protocol. Bitcoin
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payment channels [5,19,41] have been presented in the literature as a scala-
bility solution for the Bitcoin blockchain. Bitcoin payment channels have been
then leveraged to build payment-channel networks in academia [24,25,30] and
in industry [6,39,41]. However, none of these solutions are compatible with the
current Monero. They rely on either Bitcoin script [6,30,41], ZCash script [24],
Ethereum contracts [25] or Schnorr signature scheme [39], none of which are
available in Monero. Similarly, Bitcoin scripts have been leveraged to construct
an atomic swap protocol [15]. We, instead, present a payment-channel network
and atomic swap protocols that no longer require scripting language, and it is
compatible with Monero. Goodell and Noether have proposed threshold signa-
tures [23] for Monero whereas Libert et al. [28] proposed a logarithmic-size ring
signature from the DDH assumption; although interesting, they do not address
the expressiveness, interoperability and scalability issues considered in this work.

2 Background

Notation. We denote by 1n the security parameter. We denote by poly(λ) a
polynomial function in λ and negl(λ) a negligible function in λ. We denote by
G a cyclic group of prime order q and by g we denote a fixed generator of such
group. We denote by (pk, sk) a pair of public and secret keys. We denote by pk
an array of public keys. We use letters A to Z to identify users in a protocol. We
denote by XMR the Monero coins. Finally, we consider two hash functions: (i) Hs

takes as input a bitstring and outputs a scalar (i.e., Hs : {0, 1}∗ → Zq); (ii) Hp

takes as input a bitstring and outputs an element of G (i.e., Hp : {0, 1}∗ → G).
Transactions. A Monero transaction [44] is divided in inputs and outputs. They
are defined in terms of tuples of the form (pk,Com(γ),Π-amt) where pk denotes
a fresh public key, Com(γ) denotes a cryptographic commitment [38] to the
amount γ and Π-amt denotes a range proof [16] that certifies that the committed
amount is within a range [0, 2k] where k is a system parameter. In particular,
each input consists of a set of such tuples while each output consists of a single
tuple. The set of public keys included in an input is called a ring. Finally, the
transaction includes a digital signature σ for each input.

Inputs:
[0] {(pk1,Com(v1), Π-amt1), . . . , (pkn−1,Com(vn−1), Π-amtn−1),

(pkA,Com(5), Π-amtA)}
Outputs:
[0] pkB, Com(4), Π-amtB; [1] pk′

A, Com(1), Π-amt′A
Authorizations:
[0] σ

Fig. 1. Illustrative example of a (simplified) Monero transaction. Alice (pkA) con-
tributes 5 XMR to pay 4 XMR to Bob (pkB) and get 1 XMR back (pk′

A). Finally, the
transaction is authorized with a ring signature σ from the input ring.
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In the illustrative example shown in Fig. 1, we assume that Alice has previ-
ously received 5 XMR in the public key pkA. We also assume that she wants to pay
Bob 4 XMR. For that, Alice first should get Bob’s public key (pkB) and a fresh
public key for herself (pk′

A) to keep the change amount. Second, Alice should
choose a set of n − 1 output tuples {(pki,Com(vi),Π-amti)} already available
in the Monero blockchain to complete the input. Finally, Alice should create a
valid signature of the transaction content using the ring (pk1, . . . , pkn−1, pkA)
and her private key skA. For that, she uses a linkable ring signature scheme.
Linkable Ring Signatures. The signature scheme used in Monero is an instan-
tiation of the Linkable Spontaneous Anonymous Group Signature for Ad Hoc
Groups (LSAG)1 signature scheme [29]. We recall the definition of LSAG in Def-
inition 1. Here, we explicitly add a generic definition of the linking algorithm
which was briefly mentioned in [29].

Definition 1 (LSAG [29]). An LSAG signature scheme is a tuple of algo-
rithms (KeyGen, Sign, Vrfy, Link) defined as follows:

– (sk, pk) ← KeyGen(1n): The KeyGen algorithm takes as input the security
parameter 1nand outputs a pair of private key sk and public key pk.

– σ ← Sign(sk,pk,m): The Sign algorithm takes as input a private key sk, a
list pk of n public keys which includes the one corresponding to sk, a message
m and outputs a signature σ.

– b ← Vrfy(pk,m, σ): The Vrfy algorithm takes as a public key list pk, a
message m and a signature σ, and returns 1 if ∃sk, pk ← KeyGen(1n) s.t.
pk ∈ pk and σ := Sign(sk,pk,m). Otherwise, it returns 0.

– b ← Link((pk1,m1, σ1), (pk2,m2, σ2)): The Link algorithm takes as input
two triples (pk1,m1, σ1) and (pk2,m2, σ2). The algorithm outputs 1 if
∃(sk, pk) ← KeyGen(1n) s.t. pk ∈ pk1, pk ∈ pk2, σ1 := Sign(sk,pk1,m1)
and σ2 := Sign(sk,pk2,m2). Otherwise, the algorithm outputs 0.

Apart from the straightforward correctness definition, Liu et al. [29] define three
security and privacy goals for a LSAG signature scheme. We present them here
informally and defer their formal description to Sect. 3.2.

– Unforgeability: The adversary without access to the secret key should not
be able to compute a valid signature σ on a message m.

– Signer ambiguity: Given a valid signature σ on a message m, the adversary
should not be able to determine better than guessing what public key within
the ring corresponds to the secret key used to create the signature.

– Linkability: Given two rings pk1, pk2, two valid signatures σ1, σ2 in two
messages m1, m2, there should exist an efficient algorithm that faithfully
determines if the same secret key has been used to create both signatures.

1 Monero in fact uses a matrix version of LSAG (MLSAG) [37] to prove balance
without revealing spent ring members. We describe here the simplest LSAG version
but our constructions can be trivially extended to support matrix version.
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Due to the lack of space, we defer to the full version [34] the detailed construc-
tion of LSAG used in Monero, and to [37] for its security and privacy analysis.

The current LSAG in Monero only supports transfer of coins authorized
by a signature, reducing the expressiveness to payments. Adding a script lan-
guage (as done in Bitcoin or Ethereum) would harm fungibility (i.e., transaction
inputs/outputs can be easily distinguished by their script) and interoperability
as those languages are not compatible with each other. Instead, in this work
we aim to propose a signature scheme for Monero that cryptographically sup-
ports more expressive transaction authorization policies, without hampering the
security and privacy guarantees of the current digital signature scheme.

3 Dual-Key LSAG (DLSAG)

3.1 Key Ideas and Construction of DLSAG

Our approach builds upon a tuple format defined as ((pkA,0, pkB,1),Com(γ),
Π-amt, t) and that enables to spend it to two different public keys (and poten-
tially two different users) depending on a flag t. A dual-key tuple deviates from
the current Monero tuple in two main points (highlighted in blue): (i) it contains
two public keys instead of one to identify the two users that can possibly spend
the output; and (ii) it includes an additional element t that denotes a switch
(e.g., pkA,0 is used if t is smaller than the current block height in the Monero
blockchain) between the public keys.

Dual-key tuple format enables the encoding of the logic for a refund trans-
action. In the sample tuple shown above, assume that t signals that pkA,0 must
be used. Then Alice must choose a ring of the form (pk0,pk1), containing
(pkA,0, pkB,1) at some position, and sign with the secret key skA, that is, the
secret key corresponding to the public key pkA,0. Conversely, if t signals that
pkB,1 must be used, Bob can then sign with skB instead. Note that if a single
user knows both skA and skB, such an user can always use a dual-key tuple
independently of the value t.

The remaining step is to design a linkable ring signature scheme that supports
this new tuple format. This, however, requires to address the following challenges.
Key-Image Mechanism. The ring signature scheme currently used in Mon-
ero achieves linkability by publishing the key-image constructed from the single
public key. For instance, Alice produces a signature with skA; the signature will
contain the key-image I = Hp(pkA)skA . If Alice signs again with skA, the same
key-image would be computed and this can be detected. To mimic this behav-
ior while handling the dual-key tuple format, the challenge is to define a single
key-image that uniquely identifies a pair of public keys (pk0, pk1) and yet can
be computed knowing only one of the signing keys skb. Similar to the Diffie-
Hellman key exchange mechanism [20], our approach redefines the key-image as
J = gsk0·sk1 , fulfilling thereby the expected requirements: (i) knowing skb suffices
to compute J := pkskb1−b; (ii) it uniquely identifies (pk0, pk1) since pkskb1−b = pk

sk1−b

b .
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Hardening Key-Image Linkability. The aforementioned key-image definition
allows to link the pair of public keys (pk0, pk1). However, it is crucial to make the
key-image unique not only to the pair of public keys but also to the output that
contains them itself. Otherwise, one of the users could create another dual-key
tuple with the same pair of public keys, create a signature with it (and thus
a key-image), and effectively make the funds in the original tuple unspendable
since in Monero every key-image is only allowed to appear once. That can be
mitigated by introducing a random unique identifier, m, to each output, and this
identifier can be included in the computation of the key-image without violating
the security and privacy guarantees of the signature scheme. In Monero, such an
unique identifier can be constructed by hashing the transaction that included the
output and the output’s position in the transaction. Thus, we may view the rings
used in DLSAGs as consisting of unique triples, (pk0, pk1,m)[1,n], and we define
the dual key-image to be J := gmj ·skj,0·skj,1 , for some j ∈ [1, n] corresponding to
the position of the true signer in the ring.

The rest is to follow the idea of the Monero LSAG modified to support the
new linkability tag. Figure 2 introduces the details of the DLSAG construction.

– (sk, pk) ← KeyGen(1n): Choose sk0, sk1 uniformly at random from Zq, m as
a bitstring chosen uniformly at random from {0, 1}n. Set both pkb := gskb for
b ∈ {0, 1}. Output sk = (sk0, sk1), pk = (pk0, pk1, m).

– σ ← Sign(skb, pk, tx): Parse: ((pk1,0, pk1,1, m1), . . . , (pkn,0, pkn,1, mn)) ← pk.
Sample s′

0, s1, . . . , sn−1 from Zq. Compute:

J := pkmn·skb
n,1−b ; L0 := gs′

0 ; R0 := pk
s′
0·mn

n,1−b ; h0 := Hs(tx||L0||R0);

Then, for i ∈ {1, . . . , n − 1}, compute the following sequences:
Li := gsi · pkhi−1

i,b ; Ri := pksi·mi
i,1−b · J hi−1 ; hi := Hs(tx||Li||Ri)

Now, solve for s0 such that Hs(tx||gs0 · pkhn−1
n,b ||pks0·mn

n,1−b · J hn−1) = h0. For
that, we get s0 = s′

0 − hn−1 · skb. Return: σ = (s0, s1, . . . , sn−1, h0, J , b).
– b′←Vrfy(pk, tx, σ): Parse

(s0, s1, . . . , sn−1, h0, J , b) ← σ; ((pk1,0, pk1,1, m1), . . . , (pkn,0, pkn,1, mn)) ← pk

For i ∈ {1, . . . , n}, compute the sequences:
Li := gsi · pkhi−1

i,b ; Ri := pksi·mi
i,1−b · J hi−1 ; hi := Hs(tx||Li||Ri)

Return 1 if h0 = hn. Otherwise, return 0.
– b ← Link((pk1, tx1, σ1), (pk2, tx2, σ2)): If (Vrfy(pk1, tx1, σ1) ∧

Vrfy(pk2, tx2, σ2)) = 0: return 0. Else, parse: (s0, s1, . . . , sn−1, h0, J1, b1) ←
σ1 and (s′

0, s
′
1, . . . , s

′
n−1, h

′
0, J2, b2) ← σ2. Return 1 if J1 = J2, and 0

otherwise.

Fig. 2. Construction of DLSAG. For ease of exposition, we assume that the secret key
skb corresponds with the public key pkn,b. As noted before, the position of the true
signer’s public key is chosen uniformly random.
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3.2 Security Analysis

We use the existential unforgeability of ring signatures with respect to insider
corruption introduced in [14]. Signer ambiguity and linkability properties are
similar to those in LSAG [29], adapted to DLSAG syntax for readability.
Definition 2 (Existential unforgeability of ring signature with respect
to insider corruption). Let λ be a security parameter, let N , qH , qS, qC be
natural numbers such that qC ≤ N ≤ poly(λ), 1 ≤ qH ≤ poly(λ), 1 ≤ qS ≤
poly(λ). Let (G, q, g) be some group parameters from a Dual LSAG signature
scheme (KeyGen,Sign,Verify,Link). Let OC be a corruption oracle that can
be queried up to qC times which acts as a discrete logarithm oracle. Let OS be a
signature oracle that can be queried up to qS times. Presume OS takes as input
some ring of public keys pk, message m, signing index �, and parity bit b, and
produces as output a valid signature. Let OH be a random oracle that can be
queried up to qH times.

The Dual LSAG signature scheme is said to be existentially unforgeable with
respect to insider corruption if any PPT algorithm A has at most a negligible
probability of success in the following game.

1. The challenger selects a set of N public keys from the Dual LSAG signa-
ture scheme key space PK ← {

(pk1,0, pk1,1,m0), · · · , (pkN,0, pkN,1,mN )
}

and sends this set to the player A.
2. The player is granted access to oracles OC , OS, and OH .
3. The player outputs a message m, a ring of public keys pk ={(Y1,0, Y1,1,m

′
1),

(Y2,0, Y2,1,m
′
2), · · · , (YR,0, YR,1,m

′
R)} ⊆ PK where R ≥ 1 and a purported

forgery (σ, b).

The player A wins if Verify(pk,m, σ) = 1 and the following additional
success constraints are satisfied:

– The keys in pk are distinct and every key (Yi,0, Yi,1,m
′
i) ∈ pk satisfies

(Yi,0, Yi,1,m
′
i) = (pkj(i),0, pkj(i),1,mj(i)) ∈ PK for some j(i);

– OC has not been queried with any Yi,b for any i;
– The purported forgery is not a complete copy of a query to OS with its cor-

responding response.

Definition 3 (Existential unforgeability with respect to insider corrup-
tion [14]). For a fixed N , qH , qS, and qC , if A is an algorithm that operates in
the game defined Definition 2 in time at most t and succeeds at the above game
with probability at least ε, we say A is a (t, ε,N, qH , qS , qC)-forger where ε is
measured over the joint distribution of the random coins of A and the challenge
set PK.

Definition 4 (DLSAG signer ambiguity [29]). A DLSAG signature scheme
with security parameter λ is signer ambiguous if for any PPT algorithm A, on
inputs any message m, any list pk of n public key pairs, any valid signature σ on
pk and m generated by user π, such that skπ /∈ Dt and any set of t private keys
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Dt := {sk1, . . . , skt} where {gsk1 , . . . , gskt} ⊂ pkb , n − t ≥ 2 and b is extracted
from σ. There exists a negligible function negl(·) such that:

∣
∣
∣
∣Pr[A(m,pk,Dt, σ) = π] − 1

n − t

∣
∣
∣
∣ ≤ negl(λ)

Definition 5 (DLSAG linkability). A DLSAG signature scheme is linkable
if there exists a PPT algorithm Link that takes as input two rings pk1,pk2, two
messages tx1, tx2, their corresponding DLSAG signatures σ1, σ2 (with respective
true signing indices π1 and π2 not provided to Link), and outputs either 0 or 1,
such that there exists a negligible function negl(·) with the property that:

Pr[Link((pk1, tx1, σ1), (pk2, tx2, σ2)) = 1|(pkπ1
,mπ1) 
= (pkπ2

,mπ2)]+
Pr[Link(pk1, tx1, σ1), (pk2, tx2, σ2)) = 0|(pkπ1

,mπ1) = (pkπ2
,mπ2)] ≤ negl(λ)

In this part, we state the theorems for the security of DLSAG. Due to the
lack of space, we defer the security proofs to [34].

Theorem 1 (DLSAG unforgeability). DLSAG signature scheme is exis-
tentially unforgeable against adaptive chosen-plaintext attack according to Def-
inition 3 provided that the One-More Discrete Logarithm (OMDL) problem2 is
hard, under the random oracle model.

Theorem 2 (DLSAG signer ambiguity). DLSAG achieves signer ambigu-
ity according to Definition 4 provided that the Decisional Diffie-Hellman assump-
tion (DDH) is hard, under the random oracle model.

Theorem 3 (DLSAG linkability). DLSAG achieves linkability as defined
in Definition 5 provided that the OMDL problem is hard, under the random oracle
model.

Further Security and Privacy Analysis. We have analyzed the security and
privacy of the digital signature scheme. Recent privacy studies on Monero [27,35]
show that composition of several transactions (and thus signatures) can lead
to new threats and leakages. In particular, we observe that DLSAG allows an
observer to track when the receiver spends his coin if the sender use the stealth
address mechanism used in Monero to generate the one time address for the
receiver. Such linkability issue can be mitigated if the receiver spends his coins
as soon as he receives it. We defer to the full version [34] the discussion on this
and others venues for future work in security and privacy.

4 Implementation and Performance Analysis

Implementation. We developed a prototypical C++ implementation [10] of
DLSAG to demonstrate the feasibility of our DLSAG construction in comparison
with the Monero LSAG. We have implemented DLSAG and LSAG using the
2 The One-More Discrete Logarithm hardness assumption is defined in [13].
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same cryptographic library, libsodium [3], and cryptographic parameters (i.e.
the ed25519 curve) as currently used in Monero.
Testbed. We conducted our experiments on a commodity desktop machine,
which is equipped with Intel(R) Core(TM) i5-7400 CPU @ 3.00 GHz CPU, 12GB
RAM. In these experiments, we focus on evaluating the overhead of DLSAG over
LSAG in terms of computation time and signature size.
Computation Time. The results depicted in Table 1 show that the running
time of DLSAG is practically the same as the running time of LSAG in both
signing and verifying algorithms. Thus, DLSAG could be included in Monero
without incurring computation overhead. We estimate that the computation
time for DLSAG is systematically a 7% smaller than that of LSAG. One of the
main reasons is that in DLSAG, we eliminate the use of hash-to-point evaluations
(e.g., as required in the old key-image mechanism). More specifically, for ring of
size n, both DLSAG signing and verifying algorithms incur approximately ≈ 4n
group operations and n hash-to-scalar evaluations while in LSAG, signing and
verifying algorithms require additional n hash-to-point evaluations, which we see
as the main factor for the differences in running time. Therefore, our evaluation
shows that DLSAG does not impose any computation overhead in comparison
to current LSAG. In fact, if adopted, DLSAG might even slightly improve the
signature creation and verification times.
Signature Size. Here, we studied the overhead in terms of signature size, and
thus indirectly the communication overhead imposed by DLSAG. We observed
that in comparison to the LSAG signature, the signature of DLSAG has just
one extra parity bit to indicate the position of the public key needed for verifi-
cation (i.e., either pk0 or pk1). This short signature size can be achieved at the
cost of higher tuple footprint. However, DLSAG enables off-chain payments and
thus reducing the number of on-chain tuples required overall. In summary, this
evaluation shows that DLSAG can be deployed in practice with almost no com-
munication overhead and yet improves the scalability of Monero since it enables
off-chain operations as we discuss later in this paper.

5 DLSAG in Monero

Bootstrapping DLSAG in Monero. DLSAG can be seamlessly added into
Monero. First, Monero regularly performs network upgrades for consensus rules

Table 1. Running time (in milliseconds) of DLSAG and LSAG for different ring sizes

LSAG DLSAG

Ring Size Sign Vrfy Sign Vrfy

5 1.929 1.835 1.771 1.699

10 3.863 3.789 3.665 3.428

15 5.873 5.577 5.625 5.512

20 8.045 7.952 7.516 7.428
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Inputs:
[0] ((pk1,0, pk1,1),Com(v1), Π-amt1,Com(t1), Π-time1), . . . ,
(pkn−1,0, pkn−1,1),Com(vn−1), Π-amtn−1,Com(tn−1), Π-timen−1),
((pkA, pk′

A),Com(10), Π-amtA,Com(tA), Π-timeA)
Outputs:
[0] (pkB, pk

′′
A), Com(10), Π-amt′A, Com(tB), Π-timeB

Authorizations:
[0] σ0

Fig. 3. A simplified Monero transaction using dual-key tuples and hidden timelocks.

and protocol improvements that allows for the integration of new functionality
such as DLSAG. Second, it is possible to have transactions that mix LSAG with
DLSAG. A mixed transaction will contain a LSAG signature for each single-key
input and a DLSAG signature for each input in the dual-key format. In fact, both
formats only differ in the number of public keys and the inclusion of an extra
field (i.e. flag t). Thus, Monero operations and verifications on the commitment
and range proofs remain compatible.
Fungibility. Different tuple formats coexisting on the blockchain may be detri-
mental to fungibility. For instance, miners might decide to stop mining certain
transactions depending on the tuple format chosen. In order to mitigate that,
we note that direct transfers using single-key tuples can easily be simulated by
setting the two public keys of the dual-key tuples to belong to a single user.
Thus, the fungibility of Monero may not be hampered with dual-key tuples only.
Backwards Compatible Timelock Processing. Dual-key tuples contain a
flag t in the clear. We envision that this flag is implemented in Monero as a block
height, so that given a pair (pk0, pk1), pk0 can be used before block t is mined and
pk1 is used afterwards. Although it is unclear and an interesting future research
work, it could be possible that the different t values leak enough information
for an adversary to break privacy, in the spirit of Monero attacks shown in
the recent literature [27,35]. Given that, in this work we proactively propose
an alternative timelock processing scheme that allows to have indistinguishable
timeouts. This scheme, added as an extension to the dual-key tuple format and
DLSAG signature scheme helps to maintain the fungibility of Monero. We note
that this timelock processing could be of individual interest as timelocks are part
of virtually all cryptocurrencies.

The core idea of the timelock processing scheme is as follows. Instead of
including t in the clear, each output contains a Pedersen commitment to that
value Com(t, r1), where r1 is the mask value which is included along with a proof
(Π-time) that t is in the range [0, 2k]. Now, one can prove that t has expired as
follows: pick t′ such that t < t′. If T is a block height such that t′ < T , that
would tell the miner that indeed t < T , and such a transaction will be mined
only if the appropriate key is being used. In order to convince the miner that the
relation t < t′ holds, the signer picks a random mask r2 and forms the Pedersen
commitment Com(t′ − t, r2), and includes this commitment along with the value
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t′, a range proof Π-time to prove that t′ − t is in range [0, 2k] and other ring
member information.

5.1 Putting All Together

In this section, we use the illustrative example in Fig. 3 to revisit the processes
of spending and verifying a transaction assuming that Monero includes dual-key
tuples, supports DLSAG signature scheme and the timelock processing scheme.

Assume that Alice has previously received 10 XMR in the public key (pkA, pk′
A)

(i.e., input [0]). Assume that she wants to pay Bob for a service worth 10 XMR
with a certain timeout tB. Thus, either Bob claims the 10 XMR before tB or Alice
gets them refunded at the address pk′′

A. For this, Alice can create the transaction
shown in Fig. 3. After this transaction is added to the Monero blockchain, Bob
can get his coins by spending the output [0]. In the following, we describe the
generation of this transaction and how it can be verified by the interested party
(e.g., miners).
Transaction Generation. Assume that Alice wants to spend coins held
in (pkA, pk′

A). First, Alice invokes the Sign algorithm for DLSAG on input
(skA, ((pk1,0, pk1,1), . . . , (pkn−1,0, pkn−1,1), (pkA, pk′

A), tx), obtaining thereby a
signature σ. Second, she has to use the timelock processing mechanism to prove
that tA has not expired. For that, she creates the tuple (Com(tA), t′A,Com(t′A −
tA),Π-timeA) as mentioned above. Similar to the problem of publishing commit-
ment of amounts, publishing Com(tA) would reveal what public key within the
ring is being used, hindering thus signer ambiguity. Fortunately, we can adapt
the approach in Monero to handle value commitments for Com(tA) [34].
Transaction Validation. Every miner can validate the inclusion of Alice’s
transaction in a block at height T by checking whether t′A < T . If so, he proceeds
to verify the range proofs for the commitment values. Next, he verifies that the
DLSAG signature is correct using the corresponding Vrfy algorithm. Finally,
the miner checks that the dual ring signature is also correct using the Vrfy
algorithm as defined in DLSAG. We remind that using the extension of DLSAG
as defined in the full version [34], the miner would have to verify only one dual
signature, using the DLSAG verification algorithm.

6 Applications in Monero Enabled by DLSAG

6.1 Building Blocks

Commitment Scheme. A commitment scheme Com = (PCom,VCom) con-
sists of a commitment algorithm PCom(m) → (com, decom) and a verification
algorithm VCom(com, decom,m)→ b ∈ {0, 1}. The commiment scheme allows a
prover to commit to a message m without revealing it, and the verficiation algo-
rithm allows a verifiers to be able to verify that message m was committed using
the revealed decommitment information decom.
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2of2RSSign(pkAB,b, [skAB,b]A, [skAB,b]B, tx)

Alice([skAB,b]A, Q = pkAB,1−b) Bob([skAB,b]B, Q = pkAB,1−b)

s := (s1, . . . , sn−1)
$←− Z

n−1
q ,

[
s

′
0

]
A

$←− Zq [s′
0]B

$←− Zq ;

JA := Q
[skAB,b]Am; ĴA := Q

[s′
0]Am; JB := Q

[skAB,b]Bm
, ĴB := Q

[s′
0]Bm;

RA := g
[s′

0]A RB := g
[s′

0]B ;

πA = ΠA({[s′
0]A}, (RA, g) ∧ (ĴA, Q

m)) πB ← ΠB({[s′
0]B}, (RB, g) ∧ (ĴB, Q

m))

paramA := (s, JA, ĴA, RA, πA) paramB := (JB, ĴB, RB, πB)

(comA, decomA) ← PCom(paramA) (comB, decomB) ← PCom(paramB)

comA

comB

paramA

If VCom(comA, decomA, paramA) = ⊥
then abort;

If ZKVerify(πA, (g, Q
m)) = ⊥

then abort;

paramB

If VCom(comB, decomB, paramB) = ⊥
then abort;

If ZKVerify(πB, (g, Q
m)) = ⊥

then abort;

Parse: paramA := (s, JA, ĴA, RA, πA) Parse: paramB := (JB, ĴB, RB, πB)

h0 := Hs(tx||g[s′
0]A+[s′

0]B · Y ||ĴA · ĴB · Y
∗) Compute {hi} as done by Alice;

Set J = JA · JB. Compute: [s0]B := [s′
0]B − hn−1[skAB]B;

For i ∈ {1, . . . , n − 1} :

Li := g
si · pkhi−1

i , Ri := pk
simi
i,1−b · J hi−1

hi = Hs(tx||Li||Ri)

[s0]A := [s′
0]A − hn−1[skAB, b]A

Output: Output:

[σ]A := ([s0]A, s1, . . . sn−1, h0, JA, b) [σ]B := ([s0]B, s1, . . . sn−1, h0, JB, b)

Fig. 4. Description of the protocol 2of2RSSign(pkAB,b, [skAB,b]A, [skAB,b]B, tx), where
pkAB denotes a one-time address shared between Alice and Bob, [skAB,b]A, [skAB,b]B
denote the Alice and Bob shares of the private key for pkAB,b, and tx denotes the
transaction to be signed. The ring used was: ((pk1,0, pk1,1, m1), . . . , (pkn−1,0, pkn−1,1,
mn−1), (pkAB,0, pkAB,1, m)) and omitted for readability. The pseudocode in light blue
denotes the changes required to implement the 2of2RSSignCond(pkAB, [skAB]A,
[skAB]B, tx, Y, Y ∗) protocol, that additionally takes as input two group elements of the
form Y := gy and Y ∗ := pkymAB,1−b. (Color figure online)
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Zero-Knowledge Proofs (ZKP). A ZKP system allows a prover to prove to a
verifier the validity of a statement without revealing more information than the
pure validity of the statement itself. In particular, a ZKP is composed by two
algorithms (ZKProve, ZKVerify) defined as follows. First, the prove algo-
rithm Π ← ZKProve(st, w) takes as input a statement st and a witness w and
returns a proof Π. The verification algorithm �,⊥ ← ZKVerify(st,Π) takes
as input a statement st and returns � if Π is a valid proof for st. Otherwise,
it returns ⊥. We require a ZKP that fulfills the zero-knowledge, soundness and
completeness properties [22].

In our constructions, we instantiate it with the sigma protocol [45], using the
Fiat-Shamir heuristic to make it non-interactive [21]. For simplicity of notation,
we denote by Π({x}, (X, g)) a proof of the fact that X = gx where X and g
are public and x is maintained private from the verifier. Moreover, we denote by
Π({x}, (X, g) ∧ (X ′, g′)) a proof of the fact that X = gx and X ′ = g′x, where x
is maintained private from the verifier and the rest of values are public.
2-of-2 DLSAG Signatures. Assume that Alice and Bob want to jointly pay
a receiver R for a service. We require that Alice and Bob jointly create a ring
signature that spends γ XMR from a dual-key (pkAB,0, pkAB,1), distributing them
as γ′ to (pkR,0, pkR,1) and the remaining γ − γ′ back to themselves. For that,
Alice and Bob execute 2of2RSSign(pkAB,b, [skAB,b]A, [skAB,b]B, tx) protocol, as
shown in Fig. 4. The 2of2RSSign protocol largely resembles the Sign algorithm
from the DLSAG scheme. The main difference comes in the computation of
h0 = Hs(tx||gr||pkrm

AB,1−b) where the targets gr and pkrm
AB,1−b, as well as their

shared key-image JAB , have to be jointly constructed by Alice and Bob.
This protocol results in Alice and Bob obtaining their share of the signature

[σ]A and [σ]B that they must combine to complete the final ring signature σ :=
([s0]A+[s0]B, s1, . . . sn−1, h0, (JA ·JB), b). Interestingly, Alice (and similarly Bob)
can verify that [σ]B is indeed a share of a valid signature σ by computing

g([s0]A+[s0]B) ?=
(RA · RB)

pk
hn−1
AB,b

, where RA = g[s
′
0]A and RB = g[s

′
0]B

6.2 Payment Channels in Monero

Background. A payment channel enables several payments between two users
without committing every single one of them to the blockchain. For this reason,
payment channels are being widely developed as a scalability solution in cryp-
tocurrencies such as Bitcoin [41]. However, the conceptual differences between
Monero and Bitcoin hinder a seamless adoption of Bitcoin payment channels in
Monero. We instead leverage the refund transactions described in this work.

The lifecycle of a payment channel between Alice and Bob consists of three
steps. First, Alice and Bob must open a payment channel by including an on-
chain transaction that transfers XMR from Alice into a public key pkAB whose
private key skAB is shared by Alice and Bob, that is, Alice holds [skAB]A and Bob
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holds [skAB]B such that [skAB]A + [skAB]B = skAB. Second, they perform off-chain
payments by locally adjusting how many XMR each of them gets from the shared
address. Finally, they must close the payment channel by submitting a second
on-chain transaction that distributes the XMR from the shared address to Alice
and Bob as defined by the last balance agreed off-chain. Thus, payment channels
require only two on-chain transactions (open and close) but allow for many off-
chain payments to take place during its life time. In the following, we show our
design of payments channel using the building blocks explained in Sect. 6.1.
Open a Payment Channel. Assume that Alice holds γ XMR in a dual key
(pkA,0, pkA,1) and she wants to create a payment channel with Bob. First, she
transfers γ XMR to a dual key of the form (pkAB, pk′

A) and sets the timeout to a
desired block height t. This way, if Bob never manages to coordinate with Alice
to spend from pkAB, she will automatically regain control of her funds after that
height, eliminating the need for a separate refund transaction. On the other
hand, if Bob has received any off-chain transfers from pkAB, he needs to be sure
to put the final balance in a transaction on chain before the block with height t
is published.
Off-chain Payments. Assume that Alice wants to pay γ′ < γ XMR to Bob
using the aforementioned payment channel. For that, Alice transfers γ′ XMR from
(pkAB, pkA) to a Bob’s dual address (pkB,0, pkB,1) and the change γ −γ′ XMR back
to an Alice’s dual address (pkA.0, pkA,1). As the XMR are being spent from the
shared address pkAB, the transaction must be signed by both users to be valid.
The cornerstone of payment channels, however, is that only Alice signs otx and
gives her share of the signature [σ]A to Bob, who can in turn verify it. At this
point, Bob publish the transaction and get the γ′ XMR before the timelock expires.
Instead, Bob locally stores otx and the corresponding signature [σ]A until either
Bob receives another off-chain payment for a value higher than γ′ XMR or the
channel is about to expire.
Close Channel. The channel between Alice and Bob can be closed for two
reasons. First, Bob does not wish to receive more off-chain payments from Alice.
Then, assume that Bob got a pair (tx, [σ]A), where tx is the last agreed balance.
He can simply complete σ′ with his own share [σ′]B and publish the transaction.
Second, if the timelock included in the deposit transaction expires, and Alice
regains control of the original γ XMR deposited.

6.3 Conditional Payments in Monero

A conditional payment only becomes valid if the receiver can give the solution to
a cryptographic problem such as finding the preimage of a hash value or solving
an instance of the discrete logarithm problem. Conditional payments open many
new applications such as payment-channel networks as well as atomic swaps and
therefore we consider them of independent interest.

We aim to simulate the following Discrete-log Timelock Contract (DTLC)
contract defined on a group element Y = gy, an amount γ of XMR and a timeout
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t. DTLC (Alice, Bob, Y , γ, t): (i) If Bob produces a value y such that gy = Y
before t days, Alice pays Bob γ XMR; (ii) If t elapses, Alice gets the γ XMR back.

Here, we describe our implementation of the DTLC contract by means of
an example. Assume that Alice and Bob got γ XMR in a dual address (pkAB, pkA)
created, for instance, in the opening of a payment channel between Alice and
Bob. Further assume that Alice wants to perform a conditional payment (ctx)
for γ′ < γ XMR to Bob conditioned on him knowing the discrete logarithm of Y .

Alice and Bob sign ctx using the 2of2RSSignCond protocol (Fig. 4, light
blue pseudocode) on the condition Y . The cornerstone of this protocol is to
imagine that there are three users instead of two that jointly execute the protocol:
Alice, who contributes ([s′

0]A, [skAB]A), Bob, who contributes ([s′
0]B , [skAB]B), and

a “third user” who contributes (y, y). After running the protocol, Alice and Bob
obtain [σ]A and [σ]B, but they also require y to complete the signature.

Therefore, after running the 2of2RSSignCond protocol, Bob gives his sig-
nature share [σ]B to Alice who in turn can verify its validity and reply with
her signature share [σ]A. This exchange, in this order, ensures that ctx is only
published if value y is revealed and if the height lock � has not been reached.

Now we note that whenever Bob claims his XMR at the ctx, he should provide
the signature σ that contains [s′

0]A + [s′
0]B + y, and Bob can do this only if he

knows the value y. But as soon as that signature is published, Alice trivially
learns y from σ as she already knows [σ]A and [σ]B. Additionally, we note that
the values y and Y remain invisible, and therefore outside observers cannot
use them to link this transaction with any other transactions using the same
condition values (e.g. the counterpart transaction in an atomic swap). In fact,
this transaction is indistinguishable from those Monero transactions that can
be spent unconditionally, contributing thereby to the fungibility (and thus the
overall privacy) of the Monero cryptocurrency.

6.4 Payment-Channel Network in Monero

Assume that Alice wants to perform an off-chain payment to Dave using a path
of opened payment channels of the form Alice, Bob, Carol, Dave. Such a payment
is performed in three phases. First, Dave creates a condition (Y := gy, Y ∗ :=
pkym

CD,1) and communicates the conditions (Y, Y ∗) to Alice. Second, Alice creates
a conditional payment to Bob under condition (Y, Y ∗), who in turn creates a
conditional payment to Carol under the same condition, and finally Carol creates
the last conditional payment to Dave under condition (Y, Y ∗). Finally, in the
third phase, Dave reveals y to Carol to pull the coins from her, who in turn,
reveals y to Bob and finally Bob to Alice.

We have to overcome a subtle but crucial challenge to make such construction
fully compatible with Monero. The problem consists on that the same condition
(Y, Y ∗) cannot be used by every pair of users in the path: While g is the same
for every user, each Y ∗

i requires the value y (only known by Dave before the
payment is settled) and the dual address (pkPiPi+1

, pkPi
) that defines each of

the payment channels (and therefore only known by the two users sharing the
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channel). To overcome that, we add an extra round of communication where
each pair of users forward to the receiver of the payment their shared address’
refund address multiplied by their output identifier (i.e., pkmAB

A where pkA is
the refund address of the pair (pkAB, pkA)). Upon reception of these values, the
receiver computes the pair (Y, Y ∗

i ) for each user along with a zero-knowledge
proof of the fact that both condition values are constructed as expected. Finally,
the receiver sends these conditions and proofs back to each user in the payment
path from the receiver to the sender.

Now, before setting the conditional payment, each user must validate the
zero-knowledge proof produced by the receiver to ensure that the condition for
the incoming payment is built upon the same value y as the condition for the
outgoing payment. It is important to note that soundness of the zero-knowledge
scheme does not allow Dave to cheat on the proof and still be correctly validated
by other users. Otherwise, it could be the situation that an intermediate user
loses coins because his outgoing payment goes through but cannot use the same
value y for unlocking the incoming payment.

6.5 Atomic Swaps

Monero does not support Hash Timelock Contract HTLC [43], the building
block for atomic swaps in other cryptocurrencies. Instead, we leverage DTLC-
based conditional payments (Sect. 6.3) to enable atomic swaps between Monero
and other cryptocurrencies. We describe our approach with an example.

Assume that Alice has 1 bitcoin and wants to exchange it by 1 XMR from Bob.
For that, Alice first creates a value y and sets h := H(y), Y := gy, Y ∗ := pkym

AB,1

She then creates a zero-knowledge proof Π of the fact that the discrete logarithm
of Y w.r.t. g and Y ∗ w.r.t. pkm

AB,1 are the same as the pre-image of h. Second,
Alice creates a Bitcoin transaction that transfers her 1 bitcoin to Bob using the
HTLC(Alice, Bob, h, 1, 1 day). Finally, Alice gives h, Y , Y ∗ and Π to Bob.

The idea now is that Bob creates a Monero conditional payment conditioned
on (Y, Y ∗), as described in Sect. 6.3, that transfers his 1 XMR to Alice. However,
Bob must first check that indeed the discrete-log of Y and Y ∗ is also the pre-
image of h so that the swap is indeed atomic. Otherwise, Alice could simply
claim the 1 XMR from Bob but Bob could not claim the bitcoin from Alice. Bob
ensures the atomicity of the swap by checking the validity of the proof Π.

We note that the above protocol requires a zero-knowledge proof protocol
such as ZK-Boo [17] or Bulletproofs [16] to prove knowledge of the pre-image of
a hash value. We also note that if Schnorr signatures are available in both cryp-
tocurrencies or HTLC is substituted by discrete-log based constructions [31],
zero-knowledge proofs may not be needed.

7 Concluding Remarks and Outlook

We present DLSAG, a linkable ring signature scheme that serves as a building
block to improve expressiveness, interoperability, and scalability in Monero. We
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have formally proven that DLSAG provides unforgeability, sender ambiguity, and
linkability. We also evaluate the performance of DLSAG showing that DLSAG
provides a single bit of communication overhead while slightly reducing the com-
putation overhead when compared to current LSAG. Moreover, we contribute
additional cryptographic schemes (e.g., timelock processing) to help to maintain
the fungibility of Monero. DLSAG enables payment channels, payment channel
networks, and atomic swaps for the first time in Monero. DLSAG is currently
under consideration by Monero researchers as an option for adoption and it is
also compatible with other CryptoNote-style cryptocurrencies [1].
Outlook. In the future, we identify the following future research directions:

– Bi-directional payment channels: In this work, we present a construc-
tion for uni-directional payment channels. An extension is thus the design
and implementation of bi-directional payment channels. In particular, we find
interesting to investigate if techniques in other scalability solutions, such as
the Lightning Network, are compatible with our payment channels or what
are the challenges otherwise.

– Further expressiveness: We envision that expressiveness of DLSAG could
be expanded with threshold signatures similar to those of Thring [23] and
key aggregation similar to that of [32]. A thorough investigation of these
approaches constitutes a venue for future research.

– Extend security and privacy models: So far, security and privacy def-
initions for Monero focus on individual signatures. However, recent stud-
ies [27,35] show that an adversary that considers several transactions (and
thus several signatures) at a time, can create profiling information about the
users. Thus, new security and privacy models are required to further char-
acterized the security and privacy notions provided by the complete Monero
cryptocurrency. Moreover, we plan to study the privacy guarantees provided
by suggested extensions such as the timelock processing scheme.

– Timelock offset analysis and mitigations: To prove to the network that
a certain timelock t has or has not expired, the signer publishes the timelock
offset value t′, which leaks information about the position of the real timelock
t, which in turn leaks information about whether a certain ring is likely to
represent the spend of an output that was controlled by two different parties,
or just one. Coming up with heuristics to separate those two cases, on one
hand; on the other hand, figuring out the correct timelock distributions to
draw t from for transactions where it is not meaningfully being used should
become interesting areas of research.

– New privacy implications: With the use of DLSAG and the new key
image mechanism, we introduce a new privacy implication in the Monero
blockchain. In particular, given two rings and their corresponding signatures,
the sender can determine whether the two truly spent public keys belong to
the same user (i.e., the two public keys where derived from the same stealth
address with randomness provided by the sender herself). We refer to the
full version [34] for the detailed description of the traceability method and
practical countermeasures.
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Abstract. Bitcoin and similar blockchain systems have a limited trans-
action throughput because each transaction must be processed by all
parties, on-chain. Payment channels relieve the blockchain by allowing
parties to execute transactions off-chain while maintaining the on-chain
security guarantees, i.e., no party can be cheated out of their funds. How-
ever, to maintain these guarantees all parties must follow blockchain
updates ardently. To alleviate this issue, a channel party can hire a
“watchtower” to periodically check the blockchain for fraud on its behalf.

However, watchtowers will only do their job properly if there are
financial incentives, fees, and punishments. There are known solutions,
but these need complex smart contracts, and as such are not applicable
to Bitcoin’s simple script language. This raises the natural question of
whether incentivized watchtowers are at all possible in a system like Bit-
coin.

In this work, we answer this question affirmatively, by introducing
Cerberus channels, an extension of Lightning channels. Cerberus
channels reward watchtowers while remaining secure against bribing and
collusion; thus participants can safely go offline for an extended period
of time. We show that Cerberus channels are correct, and provide a
proof-of-concept implementation in the Bitcoin script language.

Keywords: Bitcoin · Security · Payment channels · Payment
network · Lightning network · Watchtowers · Collateral · Incentives

1 Introduction

1.1 Motivation

Since its inception, Bitcoin [18] is the leading cryptocurrency in terms of market
capitalization. Unfortunately, Bitcoin suffers from limited transaction through-
put due to its underlying consensus mechanism. Specifically, Bitcoin handles at
most 7 transactions/s [7], while other payment systems, such as Visa, handle
tens of thousands. This is a major obstacle on the wide adoption of Bitcoin.
c© International Financial Cryptography Association 2020
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Payment channels are the foremost solution for scaling decentralized block-
chain systems such as Bitcoin. They allow transactions between two parties to
happen off-chain, while maintaining the security guarantees of the blockchain.
Specifically, two parties can open a channel with a single on-chain transaction
and then execute multiple transactions privately and off-chain on this channel.
The blockchain is only used to close the channel or in case of dispute.

Although payment channels offer a simple and efficient solution to the limited
transaction throughput of blockchain systems, they have a major drawback. The
correct operation of a payment channel depends on all parties of the channel
being active and in sync with the blockchain. Otherwise, a party of the channel
can close the channel in a wrong state, i.e., a party can publish an outdated
version of the channel’s funds distribution. This old state will be considered final,
unless the counterparty disputes it within a specific time period. This dispute
time is chosen when the channel is initiated on-chain; after t blocks, a fraudulent
transaction cannot be disputed anymore. Hence, to maintain the security of the
payment channel, both parties must be online at least once every t blocks.

A natural solution to relieve the parties from this necessity is outsourcing the
dispute process to third-parties, known as watchtowers [3,10]. Watchtowers on
Bitcoin Lightning network [19] mainly focus on maintaining privacy; however,
the current design does not provide incentives for watchtower participation. In
particular, the party that hires the watchtower pays it only if fraud happens.
However, the watchtower knows that rational parties never commit fraud, thus
there is little incentive to become a watchtower in the first place. Additionally,
a rational watchtower can benefit from unintentional broadcasting of revoked
updates and thus may lobby for buggy or misleading channel software. A naive
alternative would be for the hiring party to pay the watchtower a small fee
regularly, e.g., each time a channel transaction is executed. In this case, however,
a rational watchtower would avoid the cost of storing the hiring party’s data and
monitoring the blockchain and would thus fail to act upon fraud.

In this paper, we introduce Cerberus channels, where watchtowers are (i)
incentivized to participate in the system, and (ii) penalized in case they do not
act upon fraud. In particular, each party has the option to employ a watchtower
as a service provider. The watchtower is paid for every transaction executed on
the channel and locks collateral on-chain as guarantee for its honest behavior.
In case the watchtower misbehaves and does not dispute an outdated state, the
cheated party can claim the watchtower’s collateral. Hence, rational watchtowers
are incentivized both to participate and act upon fraud. In our construction, the
parties can go offline for an extended period of time and need only be online
to penalize the watchtower. This way we weaken the availability requirement
for the parties of a payment channel. More importantly, Cerberus channels
build upon and extend Lightning channels and only require timelocks and addi-
tional transactions. We also provide a proof-of-concept implementation (https://
github.com/OrfeasLitos/cerberus-script).

https://github.com/OrfeasLitos/cerberus-script
https://github.com/OrfeasLitos/cerberus-script
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1.2 Related Work

Payment channels were first introduced by Spilman [20] as unidirectional chan-
nels and were later established as bidirectional channels [9,19]. Currently, there
exist a variety of bidirectional payment channels constructions, some applica-
ble only on platforms that allow for arbitrary smart contracts such as Ethereum
[5,11,13,17], and some applicable also on blockchain systems with limited script-
ing languages like Bitcoin [6,8,9,19]. This work falls in the second category.

The most famous and active payment network is Lightning [19] currently
operating more than 35, 900 channels by over 9, 900 nodes with a sum of more
than 830B [4]. However, Lighting as well as most of the other payment networks
require channel parties that are frequently online, watching the blockchain. To
address this issue, Dryja introduced Monitors [10], also known as Watchtow-
ers [3], a third-party solution that acts as a proxy for a channel’s party effec-
tively allowing the party to go offline for a long period of time while maintaining
the security of the channel (the other party cannot cheat). Watchtowers mainly
focus on privacy preserving techniques to ensure the hired third-party does not
learn any information about the off-chain transactions. Thereafter, DCWC [6]
was proposed, a distributed protocol for watchtower services, in an attempt to
involve all full nodes in the system and consequently enhance security. However,
both these works, Watchtowers and DCWC, fail to provide the necessary incen-
tives for participation in the system. In particular, the watchtowers are paid
upon fraud. Thus, since no rational party will commit fraud, watchtowers will
never be paid. Therefore, assuming rational participants, the existence of watch-
towers is not a Nash equilibrium. On the contrary, Cerberus channels provide
the necessary incentives mechanisms for watchtowers (rewards and punishment).

In the same vein, McCorry et al. presented Pisa [16], a protocol that out-
sources the dispute handling of (state1) channels to third-parties. However, Pisa
has two shortcomings: First, the main protocol implementation is not secure
against bribing since the watchtower’s collateral is not linked to the party or
the channel on-chain, hence the watchtower can double-spend it. Second, Pisa is
not compatible with Bitcoin, because it requires a smart contract not express-
ible in script. On the contrary, Cerberus channels are applicable to Bitcoin
and furthermore they do not suffer from the security problems of Pisa since the
watchtower’s collateral is linked to the hiring party with an on-chain transaction.

More recently, Avarikioti et al. introduced Brick [5], an asynchronous off-
chain construction that employs a committee of watchtowers. Although Brick
manages to remove the synchrony requirements on the network layer and the
perfect blockchain assumption while maintaining the security of channels, it is
not compatible with Bitcoin-like platforms, as opposed to Cerberus channels.

In a different line of work, Khabbazian et al. [15] proposed a lightweight
watchtower design in which watchtowers do not need to store the signed justice
(revocation) transactions, but instead can extract them directly from the com-
mitment transactions that appear on the blockchain. This work is independent

1 State channels generalize payment channels to support smart contracts [17].
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and complementary to ours, and can be applied also to Cerberus channels to
improve the storage requirements for the watchtower service.

1.3 Our Contribution

To summarize, the contribution of this paper is the following:

– We introduce Cerberus payment channels that enable participants on Bit-
coin to employ watchtowers and thus go securely offline for an extended period
of time.

– We define the desired properties for payment channel solutions and prove
Cerberus channels are secure under our security model. Specifically, we
show watchtowers are incentivized to both participate and act upon fraud.
Thus, Cerberus channels are secure against collusion and bribing.

– We provide a proof-of-concept implementation of Cerberus channels on Bit-
coin (Sect. 6).

2 Background and Notation

2.1 Payment Channels

For the rest of the paper, when we refer to payment channels we imply Lightning
channels, currently operating on the Bitcoin network. We now provide a brief
overview of Lightning channels, on which Cerberus channels build upon.

To open a payment channel, the parties publish a funding transaction where
they lock their funds into a common account, i.e., both parties must sign to
spend the output of the funding transaction. Every time the parties execute a
transaction, they update the current state of the channel accordingly, meaning
they distribute the funding transaction’s output as agreed and sign the resulting
“commitment” transaction. In addition, each party reveals to the counterparty
a secret that allows the counterparty to sign a “revocation” transaction that
spends the previous commitment transaction; the revocation transaction awards
the cheating party’s funds to the cheated party, effectively punishing the party
that tried to cheat. The output of the party that published the commitment
transaction is locked for a time period, known as the revocation period. The
cheated party must publish the revocation transaction during the revocation
period, otherwise the cheating party will be able to spend the balance of the
revoked state. Thus the security of the channel construction crucially depends
on all parties of the channel watching the blockchain and being online at least
once during the revocation period.

2.2 Contracts

A contract is an agreement that can be enforced on the blockchain. Enforcing
such a contract depends on the operations the programming language allows with
respect to transaction outputs. Most recent cryptocurrencies, such as Ethereum,
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support a Turing-complete language and thus can enforce arbitrary rules with a
smart contract. However, Bitcoin (as well as other cryptocurrencies) has strict
limitations on the scripting language and allows only specific operations. As a
result Bitcoin’s contracts are simpler and with limited functionality. Next, we
discuss the operations allowed in script with respect to transaction outputs, on
which Cerberus channels build upon.

Signatures. A signature is the most basic form of contract and is essentially a
proof of ownership of a transaction output. We denote by σA the signature that
corresponds to the public key A. (We omit the signed message, as it always is
the transaction which contains the signature, with a placeholder in the location
of the signature). Further, an m-of-n multisignature is a contract that demands
at least m signatures which correspond to any m of the n predefined public keys.
If m valid signatures are provided then the output is immediately spendable. In
this work, we will only use 2-of-2 multisignatures, so we introduce the following
notation: σA,B expresses that the output of the transaction can only be spent
with both the signatures of A and B.

Timelocks. Timelocks are another type of contract. When a transaction or a
transaction output is timelocked it cannot be included in the blockchain until
the specified time has elapsed. There are two types of timelocks, absolute [1]
and relative [2]. Transactions or transaction outputs with an absolute timelock
become valid when the specified timestamp or block height is reached. On the
other hand, a relative timelock allows a transaction output to be locked for a
time relative to the block that included that output. Relative timelocks are used
in the Lightning protocol as well as in our protocols. We denote by Δt a relative
timelock that expires t blocks (confirmations) after the transaction is included
in the blockchain. After this time the output of the transaction is spendable.

2.3 UTXO Notation

In this section we introduce the necessary notation for our protocol.
We assume the blockchain is UTXO-based (UTXO: Unspent Transaction

Output), meaning that transactions consist of inputs and outputs. A transaction
connects its inputs to UTXOs (removing the latter from the UTXO set) and
creates new UTXOs, its outputs. Each UTXO can only be spent as a whole. A
UTXO consists of a monetary value and the conditions under which it can be
spent, e.g., a signature corresponding to a public key, a timelock etc.

We denote by o = (x | C) the UTXO that holds a monetary value of x coins
that can be spent when conditions C are met. For example, o = (10 | σA) means
that the signature that matches the public key A can spend the output o which
is equivalent to 10 coins.

A transaction in this model is a mapping from a set of UTXOs, called inputs,
to a (new) set of UTXOs, called outputs. We define a transaction as follows:

TXi = [oj , ok, . . . ] �→ [o1i , o
2
i , . . . ]
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where oj , ok, etc. are the inputs of the transaction and o1i , o
2
i , . . . are the first,

second, etc. outputs, respectively. If transaction TXi has a single output we
simply write oi. Moreover, if the specific UTXO that is input to a transaction is
irrelevant to the protocol design, we refer to it as #. If we demand the input to
belong to a specific public key A and hold a specific value of x coins, but which
of the UTXOs owned by A is spent by the input is irrelevant to the protocol
design, we refer to it as (x | #σA

). For instance,

TXi =
[
(0.8 | #σA

), o2k
] �→ [

(1 | h(s)), (0.5 | σB)
]

denotes the transaction TXi that spends a UTXO from the party A with value
0.8 coins and the second output of transaction TXk and creates two new UTXOs.
The first output holds the value of 1 coin and can be spent with the secret s,
while the second holds 0.5 coins and can be spent with B’s signature.

3 Protocol Overview

3.1 System Model

Cryptographic Assumptions. We make the typical cryptographic assumptions,
i.e., there are secure communication channels between participants, and cryp-
tographically secure hash functions, signatures, and encryption schemes. Addi-
tionally, all parties of the protocol (watchtowers, channel parties, external adver-
saries) are computationally bounded.

Blockchain Assumptions. We assume a perfect blockchain, in the sense that
both persistence and liveness hold [12]. In particular, we assume that if a valid
transaction is propagated in the blockchain network it cannot be censored and
will be included in the “permanent” part of the blockchain immediately2.

Network Model. We assume that any participant of a channel can go offline
(intentionally or due to a Denial-of-Service (DoS) attack) for a (long) period of
time up to T . Furthermore, we consider watchtowers that are resilient against
DoS attacks. We argue this assumption is realistic since watchtowers are also
required to lock high collateral to participate in the system and thus operators
will invest in anti-DoS protection.

Threat Model. We assume that the watchtowers as well as the channel partici-
pants are rational players. Thus, they will only deviate from the honest protocol
execution if they can gain more profit. Moreover, channel participants can col-
lude with the watchtower(s).

2 Note that Cerberus channels can be made secure for any confirmation time k, but
we choose k = 1 to simplify the protocol and security analysis.
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3.2 Cerberus Overview

Cerberus channels aim to alleviate the need for the channel parties to be fre-
quently online watching the blockchain. We propose simple modifications on the
Lightning protocol that allow the parties to employ watchtowers while incentives
for active participation and thus security of the channels are guaranteed.

In particular, in Cerberus, the watchtower is rewarded for every update
on the channel but also locks collateral as guarantee for the case he does not
act upon fraud. The party employing the watchtower can claim the collateral
within the penalty period, if the latter misbehaves. The penalty period is however
much larger than the revocation period, hence the hiring party can go offline for
an extended period of time. On the other hand, on a normal operation of the
channel the watchtower can reclaim the collateral when its service is terminated.
The watchtower has the option to terminate its service to the party at any point
during the protocol execution subject to the penalty period. In such a case, the
party can either update the channel and employ a new watchtower, close the
channel, or be online more frequently to avoid fraud.

3.3 Payment Channel Properties

We define the desired properties of a payment channel construction below, sum-
marizing the work of [5,14,16,17].

1. Security: Any party of the channel can enforce the last agreed state (balance)
on-chain at any time.

2. Privacy: No third-party, external to the payment channel, can gain informa-
tion about the state (distribution of funds) of the channel.

3. Scale-out: The number of transactions on-chain is constant.

The first two, namely Safety and Privacy, are security properties, while the
third is the performance property that is required in a channel to achieve its
main purpose – higher transaction throughput.

We note that these properties are also met by Lightning, but under a different
network model. Specifically, Lighting requires participants to be frequently online
watching the blockchain to guarantee security. In this work, we aim to alleviate
this requirement, thus providing security as specified in Sect. 3.1.

4 Cerberus Design

In this section, we describe in detail the architecture of Cerberus payment
channels. We base our design on Lightning channels, and introduce the neces-
sary modifications and extensions to guarantee the desired properties under the
predefined model for our design and the applicability to Bitcoin.

First, we divide the channel lifetime in four phases: Open, Update, Abort and
Close. Then, we describe the necessary transactions and present the protocol
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design for each phase. To simplify the description, we assume, wlog, that party
B has hired watchtower W and the potentially cheating party is A.

We note that Cerberus can accommodate the usecase where only one party
wishes to hire a watchtower, as well as that in which both parties choose to do
so. Different watchtowers can be used by the two parties. In the case neither
party employs a watchtower, the protocol reverts to Lightning.

4.1 Phase: Open

Similarly to the Lightning protocol, phase Open includes a funding transac-
tion and a commitment transaction. The funding transaction creates a common
account between the parties and is eventually published on-chain to notarize the
committed funds, hence the opening of the channel. The funding transaction of
a Cerberus channel spends the funds of the channel parties and creates a new
2-of-2 multisig output spendable only if the parties collaborate.

The commitment transaction (first of many to follow) distributes the funds
between the parties and is signed and held in private by both parties. The
commitment transaction, if published, does not allow the publishing party to
spend its funds immediately, to ensure there is enough time for punishment in
case of fraud (i.e., the commitment transaction is not the last agreed state by
the channel parties). This is known as the revocation period, denoted by t. The
first commitment transaction should be signed by both parties before signing
and publishing the funding transaction to avoid a hostage situation.

Furthermore, we introduce two new transactions in phase Open, the collat-
eral transaction and reclaim transaction, that involve the watchtower service.
The collateral transaction is funded by the watchtower, while its output is a
joint account between the watchtower and the hiring party. The value of the
collateral is slightly higher than the channel funds. The reclaim transaction,
on the other hand, allows the watchtower to reclaim the collateral, effectively
terminating its service. The output of the reclaim transaction can be spent as
follows: either a long “penalty” period T has elapsed since the watchtower signed
and published on-chain the reclaim transaction, or both the signatures of the
watchtower and the party are present. Intuitively, the penalty period T allows
the cheated party to penalize an inactive/malicious watchtower, during phase
Close. Further, timelock T allows the party employing the watchtower to be
notified either in case of fraud or in case the watchtower simply wants to with-
draw its service. In the latter case, the party can either be online more frequently
(revocation period), close the channel, or collaboratively update the channel to
cancel out the previous commitment transactions and employ a new watchtower.
Note that the reclaim transaction is signed by both the watchtower and the hir-
ing party before the collateral transaction is put on-chain to avoid a hostage
situation.

Further, T >> t, and security holds as long as any participant in a Cerberus
channel employing a watchtower is offline for at most T time.

Next, we present in detail the transactions involved in the first phase, Open.

– Funding transaction: Opens a channel between two parties, A and B. The
inputs are the parties’ funds and the output is a 2-of-2 multisig of A and B.
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– Commitment transaction: Updates the state of the channel, i.e., the dis-
tribution of the funds between the parties. The input of the commitment
transaction spends the output of the funding transaction. The commitment
transaction has two outputs, one for each channel party, and distributes the
funds of the channel to the two parties as agreed. Each party has its own ver-
sion of the commitment transaction, signed by the counterparty. Each version
has two outputs, one awarded to the party holding the commitment trans-
action, wlog party A, and one awarded to the counterparty B. Both outputs
are timelocked for the revocation period t. Further, each output can be spent
before t time elapses in collaboration with the watchtower W , i.e., if both the
watchtower and the corresponding party sign a transaction.

– Collateral transaction: Commits the watchtower’s collateral on-chain.
Note that the value of the collateral should be slightly higher than the total
funds of the channel. The input of the collateral transaction is funded by the
watchtower, while the output is a 2-of-2 multisig of B and W .

– Reclaim transaction: Allows the watchtower to reclaim the collateral. The
input of the reclaim transaction spends the output of the collateral transac-
tion. The output, on the other hand, requires the signature of the watchtower
relatively timelocked by T or both the signatures of W and B.

Protocol: Open
Preconditions: A, B and W own on-chain a, b and c coins respectively. It holds
that c > a + b and W is employed by B.
A and B prepare the necessary transactions.

1. A and B create the funding transaction:
TXf =

[
(a | #σA), (b | #σB )

] �→ (a + b | σA,B)
2. A and B create the first commitment transaction (version held by A):

TXC1A = of �→ [
(a | (σA ∧ Δt) ∨ σA,W ), (b | (σB ∧ Δt) ∨ σB,W )

]

A and B open the channel.

3. B sends the signature of TXC1A to A. Symmetrically, A sends the signature
of TXC1A to B.

4. Both A and B sign TXf and publish it on-chain, as in Lightning.

W locks its collateral for the channel on-chain.

5. W creates the collateral and reclaim transactions and sends both to B:
TXColl = (c|#σW ) �→ (c | σW,B)
TXRC = oColl �→ (c | (σW ∧ ΔT ) ∨ (σB,W ))

6. B verifies, signs and sends to W the signature for the input of TXRC .
7. W signs and publishes on-chain the collateral transaction TXColl.

Postconditions: Opening of the channel between A and B with total value a + b
coins, and employment of W from B with c coins as collateral.
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4.2 Phase: Update

The second phase, Update, materializes the main functionality of a channel. In
this phase, the parties update the current state of the channel (distribution of
funds) and consequently transactions are executed off-chain. The Update phase
in the Lightning protocol consists of a (new) commitment transaction and a
revocation transaction. The commitment transaction represents the last, agreed
by both parties, state of the channel. On the other hand, the revocation transac-
tion allows a party to claim all the funds of the channel in case the other party
publishes the previous commitment transaction (attempts to cheat).

The Update phase in Cerberus produces the following transactions: a com-
mitment transaction, a revocation transaction, and two penalty transactions.
The revocation transaction spends both outputs of the previous valid commit-
ment transaction and awards them to the cheated party B. The revocation trans-
action is signed by the potentially cheating party A and is sent to B. Then, both
party B and watchtower W sign, exchange and store the revocation transaction.
Note that B will not sign the new commitment transaction unless both A and
W sign the revocation transaction. Further, A acts as in Lightning.

The penalty transactions allow B to penalize watchtower W during the
penalty period in case fraud occurred and W did not publish the revocation
transaction in time. Specifically, the penalty transactions both depend on the
previous commitment transaction and on the collateral and reclaim transac-
tions, respectively. Hence, the penalty transaction is valid only if fraud occurs
and is not revoked. Thus, the revocation transaction has a double functionality;
it awards the money of cheater A to the cheated party B and additionally acts
as insurance for W , since it invalidates the penalty transactions by spending
the outputs of the commitment transaction. Note that B will only sign the new
commitment transaction after receiving the signed penalty transactions from W .

Further, we assume that a watchtower is paid regularly on every channel
update by the hiring party via a one-way payment channel3.

To sum up, during the Update phase the following transactions are created:

– Revocation transaction: In case of fraud, i.e., if party A publishes a
revoked commitment transaction, the revocation transaction returns all chan-
nel funds to the cheated party B. The inputs of the revocation transaction
spend the outputs of the commitment transaction. The output of the revoca-
tion transaction is awarded to the cheated party B.

– Penalty transaction 1: Allows a party to claim the watchtower’s collateral
during the penalty period T , in case fraud occurred and the watchtower did
not act during the revocation period t. The inputs of penalty transaction 1
are (a) the output that reflects B’s channel balance on the corresponding
commitment transaction, and (b) the output of the collateral transaction.
The output of penalty transaction 1 awards all funds to B.

– Penalty transaction 2: Allows a party to claim the watchtower’s collateral
during the penalty period T , in case fraud occurred and the watchtower did

3 Ideally, this payment should be integrated with Cerberus for efficiency.
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not revoke it during time t, but tried to reclaim the collateral. The inputs of
penalty transaction 2 are (a) the output that reflects B’s channel balance on
the corresponding commitment transaction, and (b) the output of the reclaim
transaction. The output awards all funds to B.

All described transactions and their dependencies are illustrated in Fig. 1.

Protocol: Update
Preconditions: A and B own a coins and b coins respectively in a channel. W has
a locked collateral of c coins. Note that a′ + b′ = a + b.

1. B creates the next commitment transaction:
TXC,i+1,A = of �→ [

(a′ | (σA ∧ Δt) ∨ σA,W ), (b′ | (σB ∧ Δt) ∨ σB,W )
]
.

2. B creates and sends to A the revocation transaction for the previous
commitment transaction:
TXRiA =

[
o1CiA, o2CiA

] �→ (a + b | σB).
3. A sends to B its signature for the revocation transaction TXRiA.
4. B sends to W both parties’ signatures for the revocation transaction TXRiA,

along with the commitment transaction TXCiA.
5. W sends to B its signature for the revocation transaction TXRiA.
6. W creates penalty transactions 1 and 2:

TXP1iA =
[
oColl , o

2
CiA

] �→ (b + c | σB), TXP2iA =
[
oRC , o2CiA

] �→ (b + c | σB)
7. W sends to B its signatures for oColl and oRC .
8. B sends to A its signature for TXC,i+1,A.

Postconditions: A, B own a′, b′ coins, resp. W has c coins locked as collateral.

4.3 Phase: Close

The last phase, Close, handles the closing of a Cerberus channel. Similarly
to the Lightning protocol, in this phase either the parties close the channel in
collaboration or a commitment transaction is published on-chain unilaterally by
one of the channel parties. As soon as the commitment transaction is included on-
chain the revocation period t begins, allowing the counterparty or the watchtower
to supervene to a potential dispute resolution.

Collaborative Closure. The normal closure of the channel (no cheating occurs)
is described in Protocol Close (a). Note that in this case, both parties sign
the agreed distribution of the channel’s funds and the funds are immediately
awarded to the parties as soon as the transaction is included in the blockchain,
i.e., no timelocks are required.

Non-collaborative Non-cheating Closure. This happens if one party wants to
close the channel and the other is unresponsive. Then, the responsive party pub-
lishes on-chain the last commitment transaction (already signed by both parties
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on last update). After time t, the funds of the channel are distributed to the
parties according to the published state. As soon as the last commitment is pub-
lished on-chain, the watchtower can safely put on-chain the reclaim transaction,
since no penalty transaction corresponding to the last commitment transaction
exists. Consequently, the watchtower can spend the collateral after time T , or
immediately if the hiring party agrees to collaborate and sign a transaction that
spends the collateral and awards the funds to the watchtower.

Protocol: Close (a) (Non-cheating channel closure)
Preconditions: A owns a coins, B owns b coins, W has a locked collateral of c
coins.

1. A and B sign and broadcast of �→ [
(a | σA), (b | σB)

]
.

2. W publishes on-chain the reclaim transaction TXRC (can spend it after T ).

Postconditions: The channel is closed, A owns a′ coins, B owns b′ coins and the
collateral is returned to the watchtower W .

Cheating Closure & Responsive Watchtower. In case A cheats and publishes an
old commitment transaction, the watchtower publishes the corresponding revoca-
tion transaction during the dispute period, awarding all the funds of the channel
to the cheated party B. Then, the watchtower can publish the reclaim transac-
tion and spend its output safely since the corresponding penalty transaction has
been invalidated. As described in Protocol Close (b), publishing the revocation
and reclaim transaction can be done simultaneously, since the timelock t on the
hiring party’s output of the published commitment transaction guarantees that
the hiring party cannot claim the watchtower’s collateral during the revocation
period. On the other hand, in case B cheats, A acts exactly as in Lightning.

Protocol: Close (b) (Cheating party & responsive watchtower)
Preconditions: A owns a coins, B owns b coins, W has a locked collateral of c
coins. The last commitment transaction is denoted TXCnA.

1. Party A publishes on-chain an old commitment transaction TXCiA, i < n.
2. During the revocation period t, W publishes the corresponding revocation

transaction TXRiA.
3. W publishes on-chain the reclaim transaction TXRC (can spend it after T ).

Postconditions: The channel is closed, the channel funds are awarded to the
cheated party B, and the collateral returned to the watchtower W .



358 Z. Avarikioti et al.

Protocol: Close (c) (Cheating party & unresponsive/malicious watchtower)
Preconditions: A owns a coins, B owns b coins, W has a locked collateral of c
coins. The last commitment transaction is denoted TXCnA.

1. Party A publishes on-chain an old commitment transaction TXCiA, i < n
waits for the timelock to expire and spends the (a | σA ∧ Δt) output.

2. B checks the chain periodically every time T and notices TXCiA is on-chain
and spent. If W has published the reclaim transaction TXRC , B publishes
Penalty transaction 2 TXP2iA. Else, B publishes Penalty transaction 1
TXP1iA.

Postconditions: The channel is closed, the channel funds are awarded to the
parties according to the published commitment transaction TXCiA, and the
collateral (c coins) is awarded to party B.

Cheating Closure & Unresponsive Watchtower. If the watchtower does not pub-
lish the revocation transaction in time when fraud occurs, the cheated party can
publish a penalty transaction and claim the watchtower’s collateral. Specifically,
if the reclaim transaction is not published, the cheated party publishes penalty
transaction 1. Otherwise, if the watchtower has published the reclaim transaction
but not the revocation transaction, the cheated party publishes penalty transac-
tion 2. Both penalty transactions are valid, as long as the cheated party does not
spend its output of the commitment transaction. Further, penalty transaction 2
is valid only if less than time T has elapsed since the reclaim transaction was
put on-chain. Hence, the cheated party must go online within at most T time to
claim the watchtower’s collateral. Close (c) describes this case.

4.4 Phase: Abort

In this phase, W withdraws the collateral and thus terminates its employment
by party B. Abort is an intermediate phase, that can occur at any time between
phases Open and Close4. To that end, the watchtower publishes on-chain the
reclaim transaction. Consequently, timelock T comes in effect, locking the watch-
tower’s collateral for the penalty period. During this period, an honest hiring
party will check the blockchain once. The party can then close the channel, hire
a new watchtower or monitor the blockchain every t time.

5 Security Analysis

5.1 Security

We show that Cerberus channels are secure within our system model under
any collusion/bribing scheme involving the channel parties and the watchtower.
4 We assume that a rational watchtower will publish the reclaim transaction at the

latest when the channel is closed.
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Fig. 1. Cerberus channel transactions. When many spending conditions are available
in the output, the one used is explicitly shown emphasized in the input.

Lemma 1. Phase Abort does not affect the security of a Cerberus channel,
i.e., no honest party or watchtower can be cheated out of its funds.

Proof. To prove the lemma, we distinguish three cases:

(a) Abort terminates before Close initiates.
(b) Abort terminates during Close.
(c) Abort includes Close entirely, i.e., Close initiates at most T − t after the

reclaim transaction is put on-chain.

In the first case, the watchtower withdraws the collateral, and is not liable
anymore for the channel operation. Specifically, W publishes on-chain the reclaim
transaction. Since no commitment transaction is published on-chain, all penalty
transactions that can interfere with the ownership of the collateral are invalid.
Hence, the watchtower claims the collateral after time T elapses – before Close
initiates. From that point on, the security of the channel – the funds of the hiring
party – is the same as in a Lightning channel, unless the channel is updated with
a new watchtower service.

For the second case, suppose Abort initiates at time t = 0, and there is a time
t′, such that T − t < t′ < T , in which Close initiates. If the closing of the chan-
nel is collaborative between the parties or the last commitment transaction was
published by one of the parties, there are no valid penalty transactions that can
interfere with the ownership of the collateral. Hence, the collateral will be owned
by the watchtower at time T . Further, the funds of the channel parties will be
distributed as last agreed. However, the channel can close with one of the parties
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publishing an old commitment transaction. In this case, both penalty transac-
tions become valid at time t′+t > T . But the watchtower can spend the collateral
at time T , before any penalty transaction becomes valid. Therefore, when Abort
terminates during Close, the watchtower can safely reclaim the collateral, no
matter how a Cerberus channel closes. Note, however, that the watchtower
is not liable for the channel’s correct operation when Abort terminates during
Close. Thus, the watchtower is not obligated to publish the revocation transac-
tion in time. Nevertheless, the hiring party comes online once during the Abort
phase. From then on, it comes online every t time, since it realizes that the
watchtower stops offering its service. Furthermore, it holds t′+ t > T . Therefore,
the hiring party will notice the fraud in time and will publish the revocation
transaction. Hence, no honest hiring party or watchtower can be cheated out of
its funds when Abort terminates during Close.

In contrast to the first two cases, when Abort includes Close entirely, the
watchtower is still responsible for the correct operation of the channel. In such
a case, the security of a Cerberus channel is the same with or without phase
Abort. Thus, Abort does not affect the security of a Cerberus channel. ��
Lemma 2. An honest Cerberus member cannot be cheated out of its funds.

Proof. Watchtowers are incentivized to participate in Cerberus channels due to
the occasional rewards on every update. Thus, we need only show that under any
collusion scheme Cerberus channels remain secure with respect to the system
model of Sect. 3.1. This implies the scheme is also secure if no collusion occurs,
e.g., normal channel operation or the watchtower is offline. Note that whenever
we assume collusion, it can also be the case that the same person handles both
colluding identities. There can be the following collusion schemes:

(i) Both parties of the channel A and B collude. According to the cryptographic
assumptions, the signature of the watchtower cannot be forged, hence the
parties cannot create a penalty transaction without the collaboration of the
watchtower. Moreover, the channel parties only hold the watchtower’s signa-
ture for revocation and penalty transactions of previous commitment trans-
actions. The reclaim transaction is only held by W and phase Abort does
not affect the security of the protocol (Lemma 1). Therefore, the only avail-
able action for the colluding parties is to publish a previous commitment
transaction on purpose. In such a case, an honest hence online watchtower
publishes the corresponding revocation transaction. As soon as the revoca-
tion transaction is on-chain, one of the inputs of both penalty transactions –
which is the same as the one in the revocation transaction – become invalid
thus both penalty transaction become invalid. Therefore, the malicious par-
ties cannot claim an honest watchtower’s collateral.

(ii) Watchtower W colludes with party A. In this case, the malicious parties
try to cheat B’s balance out of the channel (equivalent to at most a + b
coins), while B is offline. We assume Abort has not initiated, since it does
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not affect the security of the channel5 (Lemma 1). The colluding parties
cannot forge B’s signature to close the channel in a new state. Thus, the
only available action is to publish a previous and more favorable to A com-
mitment transaction. However, for each previous commitment transaction,
party B holds two corresponding penalty transactions that award the collat-
eral of the watchtower to B. Therefore, as soon as B goes online (within the
time window T ), B will publish the suitable penalty transaction on-chain
(type 2 if the reclaim transaction is on-chain, type 1 otherwise) and claim
the watchtower’s collateral, c > a + b coins. Note that this argument holds
because the watchtower’s collateral is locked on-chain involving the hiring
party and thus cannot be used in parallel for other channels/parties.

(iii) In the last case, B colludes with watchtower W . This is the simplest case,
since A is either online or employs its own watchtower. If A is online the
security holds similarly to the Lightning protocol, i.e., A publishes the revo-
cation transaction on-chain and receives all the funds of the channel. If A
employs a watchtower, then the previous analysis holds. ��

Lemma 3. A Cerberus channel will not close in a state that is not the last
state agreed by all the participants of the channel.

Proof. Any party of a Cerberus channel cannot gain more profit by deviating
from the honest protocol execution, because all parties involved in a Cerberus
channel always maintain (at least) their funds as shown in Lemma 2. Hence, a
rational party that aims to maximize its profit will honestly follow the Cerberus
protocol in every phase, and ultimately close the Cerberus channel in a non-
cheating state, as described in Sect. 4. ��
Lemma 4. Any party of a Cerberus channel can close it at any time.

Proof. Both parties of the Cerberus channel hold at least one valid commit-
ment transaction (the one created at the last execution of the Update protocol,
or if no update has taken place, the unique commitment transaction created
during the Open protocol) which allows them to initiate phase Close, unilater-
ally, as described in Sect. 4.3. Hence, a Cerberus channel will be closed at the
latest within time t from publishing a commitment transaction on-chain (given
a perfect underlying blockchain protocol and network synchrony). ��
Theorem 1. Cerberus channels achieve Security (as defined in Sect. 3.3).

Proof. Lemma 4 states that any party can close a Cerberus channel at any
time. From Lemma 3, it holds that a Cerberus channel can only close on the
last agreed by all parties state. Hence, any party of a Cerberus channel can
enforce the last agreed state on-chain at any time. ��

5 To be precise, Abort could have initiated but less than T −t time has elapsed between
the reclaim transaction was published on-chain and the time Close initiated.
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5.2 Performance

Next, we show that Cerberus channels scale well, meaning that the number of
on-chain transactions is constant and independent of the number of transactions
executed in a channel, similarly to the Lightning protocol. The analysis below
considers a single watchtower for each party of the channel. We discuss the
scalability of the protocol if we enable multiple watchtowers in Sect. 7.

Theorem 2. Cerberus channels achieve Scale-out.

Proof. In phase Open, a Cerberus channel requires 3 transactions, one funding
transaction to open the channel and two collateral transactions for each watch-
tower to lock the collateral to the corresponding party of the channel. Phase
Update is executed off-chain, hence no transactions are published on-chain.

During phase Close, the number of on-chain transactions can vary, however in
the worst case 4 transactions are published. Specifically, in case of a non-cheating
closure 3 transactions are published: (i) either a commitment transaction pub-
lished unilaterally by a party of the channel, or a collaborative closing transac-
tion published by both parties, (ii)-(iii) one reclaim transaction for each of the
parties’ watchtowers, published by the corresponding watchtowers respectively.

On the contrary, in case of fraud and a responsive watchtower, the following 4
transactions are necessary: (i) an old commitment transaction published by the
cheating party (step 1, protocol Close (B)), (ii) the reclaim transaction of the
cheating party’s watchtower, published by the watchtower, (iii) the revocation
transaction from the cheated party’s watchtower, published by the watchtower
(step 2, protocol Close (B)), and (iv) the reclaim transaction of the cheated
party’s watchtower, published by the watchtower (step 3, protocol Close (B)).

In case of fraud and an unresponsive watchtower, up to 4 transactions are
published on-chain, as illustrated in Protocol Close (C): (i) an old commitment
transaction published by the cheating party, (ii) the reclaim transaction of the
cheating party’s watchtower (published by the watchtower), (iii) the reclaim
transaction of the cheated party’s watchtower (published by the watchtower),
and (iv) the corresponding penalty transaction published by the cheated party.

Phase Abort is an optional intermediate phase that allows the watchtower
to withdraw its service to the channel party. This phase includes one on-chain
transaction – the reclaim transaction – but not additively to phase Close. After
phase Abort the protocol for the party is similar to the Bitcoin Lightning proto-
col, which requires at most 3 on-chain transactions in total per channel. Thus,
the worst case performance analysis does not include phase Abort.

Overall, a Cerberus channel requires at most 7 on-chain transactions. ��

6 Cerberus Transactions Script

Consider a channel between Alice and Bob, where only Bob is using a watch-
tower. The funding and the collateral transactions both have a 2-of-2 multisig
output. Their script is 2 <pubkey1> <pubkey2> 2 OP_CHECKMULTISIG, where
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pubkey1, pubkey2 are the funding keys of Alice and Bob for the funding trans-
action and the collateral keys of Bob and the watchtower for the collateral, sorted
by ascending order of their DER-encodings6.

The reclaim transaction has one input that spends the collateral output with
script 0 <collateral_pubkey1_sig> <collateral_pubkey2_sig>. It has one
output, with the script of Fig. 2. The public keys belong to Bob and the watch-
tower and are sorted by their DER-encodings.

The commitment transaction has a unique input that spends the funding
output with witness script 0 <pubkey1_sig> <pubkey2_sig>. It also has two
outputs, the scripts of which are slight variations of each other (replace Alice
with Bob and vice-versa). Figure 3 depicts the first output, while the exact scripts
of both outputs can be found in the proof-of-concept implementation https://
github.com/OrfeasLitos/cerberus-script. For the first output, the two revocation
public keys are those of Alice and the watchtower, sorted by ascending order of
their DER-encodings. Similarly sorted are the revocation public keys of Bob and
the watchtower in the second output.

OP_IF # Penalty

2 <penalty_pubkey1>

<penalty_pubkey2> 2

OP_CHECKMULTISIG

OP_ELSE # Normal

<long_delay>

OP_CHECKSEQUENCEVERIFY

OP_DROP

<watchtower_penalty_pubkey>

OP_CHECKSIG

OP_ENDIF

Fig. 2. Reclaim transaction output script.

OP_IF # Revocation

2 <revocation_pubkey1>

<revocation_pubkey2> 2

OP_CHECKMULTISIG

OP_ELSE # Normal

<bob_delay>

OP_CHECKSEQUENCEVERIFY

OP_DROP

<alice_delayed_pubkey>

OP_CHECKSIG

OP_ENDIF

Fig. 3. Commitment transaction 1st
output script.

The revocation transaction spends the outputs of the commitment trans-
action following the revocation path. The witness script of both inputs is 0
<revocation_pubkey1_sig> <revocation_pubkey2_sig> 1 with the appropri-
ate signatures for each output. It has a P2WPKH7 output to Bob’s public key.

The penalty transaction 1 spends the second output of the commit-
ment transaction and the output of the collateral transaction. It also has
a single plain P2WPKH output to Bob’s public key. The first input fol-
lows the normal path and has a witness script <bob_delayed_pubkey_sig> 0,
whereas the second input has a witness script 0 <collateral_pubkey1_sig>
<collateral_pubkey2_sig>.

Lastly, the penalty transaction 2 is similar to penalty transaction 1, but
it spends the collateral instead of the reclaim transaction. Explicitly, penalty
6 https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki.
7 https://wiki.trezor.io/P2WPKH.

https://github.com/OrfeasLitos/cerberus-script
https://github.com/OrfeasLitos/cerberus-script
https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki
https://wiki.trezor.io/P2WPKH
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transaction 2 spends the 2nd output of the commitment and the output of the
reclaim transaction following the penalty path. It has a single plain P2WPKH
output to Bob’s public key. The first input follows the normal path and has a
witness script <bob_delayed_pubkey_sig> 0, whereas the second input has a
witness script 0 <penalty_pubkey1_sig> <penalty_pubkey2_sig> 1.

7 Limitations and Future Work

Privacy. Cerberus channels maintain the privacy property, as defined in
Sect. 3.3, assuming that the watchtowers are considered internal to the channel
parties. This means that the transactions executed off-chain during the phase
Update are known only to the parties of the channel and the hired watchtowers.
Any other third-party, external to the channel, does not have any knowledge on
the state of the channel. Nevertheless, Cerberus channels do not guarantee pri-
vacy from the watchtowers. Although Lightning watchtowers preserve the privacy
of transactions from watchtowers, they also suffer from inadequate incentives for
participation in the system. On the other hand, Cerberus channels provide
the necessary incentive mechanisms to guarantee security, but watchtowers are
aware of all transactions executed in the channel. Introducing stronger privacy
mechanisms while maintaining the appropriate incentives is left for future work.

Extension to Multiple Watchtowers. To enhance security against possible
crash failures or withdrawal of watchtower service, parties can employ many
watchtowers. In such a case, every watchtower needs to lock its collateral on-
chain, thus the number of on-chain transactions grows linearly with the number
of watchtowers. However, to guarantee security, the sum of all watchtowers’ col-
lateral can remain the same, i.e., at least greater than the total funds locked in
the channel by both parties. This way the counterparty of the channel cannot
bribe all watchtowers since the sum of the required bribes will exceed the party’s
potential gain. Therefore, there will be at least one watchtower that will publish
the revocation transaction in case of fraud.

Rewards and Collateral. In the current system, rewards are awarded to the
watchtowers on every update of the channel by the hired party via a one-way
channel. Ideally, these rewards should be returned to the hired party if the watch-
tower misbehaves. To this end, we can modify the collateral transaction to build
a bidirectional payment channel in which the watchtower locks collateral and the
hirer locks future rewards. Then, during an update of the Cerberus channel
and upon receiving the signed penalty transaction, the hirer sends some funds in
this channel, paying the watchtower for its service. Note that this process does
not require a fair exchange protocol since the watchtower can simply withdraw
its service in case the hiring party does not pay the reward, similarly to the cur-
rent protocol. However, this modification implies that the watchtowers’ rewards
will be locked during the lifetime of the channel.
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Assumptions. In every channel construction that the counterparty is allowed to
publish on-chain a valid outdated state, timelocks are necessary to secure the con-
struction. Assuming distrusting parties (including the watchtower), this implies
that every party must be online once in a while to verify the correct operation of
the construction. Hence, at best we can alleviate the availability assumption, but
not abolish it completely. In turn, due to timelocks, the security of Cerberus
channels depends on synchrony assumptions and a perfect blockchain that can-
not be censored. Although we enable shorter revocation periods and parties can
go offline for an extended period of time, we cannot decouple the dependency of
the security of payment channels on Bitcoin from the liveness and synchrony of
the underlying blockchain.
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Abstract. Secure multi-party computation (MPC) allows a set of par-
ties to compute a function jointly while keeping their inputs private.
Compared with the MPC based on garbled circuits, some recent research
results show that MPC based on secret sharing (SS) works at a very
high speed. Moreover, SS-based MPC can be easily vectorized and
achieve higher throughput. In SS-based MPC, however, we need many
communication rounds for computing concrete protocols like equality
check, less-than comparison, etc. This property is not suited for large-
latency environments like the Internet (or WAN). In this paper, we con-
struct semi-honest secure communication-efficient two-party protocols.
The core technique is Beaver triple extension, which is a new tool for
treating multi-fan-in gates, and we also show how to use it efficiently.
We mainly focus on reducing the number of communication rounds, and
our protocols also succeed in reducing the number of communication
bits (in most cases). As an example, we propose a less-than comparison
protocol (under practical parameters) with three communication rounds.
Moreover, the number of communication bits is also 38.4% fewer. As a
result, total online execution time is 56.1% shorter than the previous
work adopting the same settings. Although the computation costs of our
protocols are more expensive than those of previous work, we confirm
via experiments that such a disadvantage has small effects on the whole
online performance in the typical WAN environments.

1 Introduction

Secure multi-party computation (MPC) [13,25] allows a set of parties to com-
pute a function f jointly while keeping their inputs private. More precisely, the
N(≥2) parties, each holding private input xi for i ∈ [1, N ], are able to com-
pute the output f(x1, · · · , xN ) without revealing their private inputs xi. Some
recent research showed there are many progresses in the research on MPC based
on secret sharing (SS) and its performance is dramatically improved. SS-based
MPC can be easily vectorized and suitable for parallel executions. We can obtain
c© International Financial Cryptography Association 2020
J. Bonneau and N. Heninger (Eds.): FC 2020, LNCS 12059, pp. 369–385, 2020.
https://doi.org/10.1007/978-3-030-51280-4_20
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large throughput in SS-based MPC since we have no limit on the size of vec-
tors. This is a unique property on SS-based MPC, and it is compatible with the
SIMD operations like mini-batch training in privacy-preserving machine learn-
ing. We cannot enjoy this advantage in the MPC based on garbled circuits (GC)
or homomorphic encryption (HE). The most efficient MPC scheme so far is
three-party computation (3PC) based on 2-out-of-3 SS (e.g., [1,7]). In two-party
computation (2PC), which is the focus of this paper, we need fewer hardware
resources than 3PC. Although it does not work at high speed since we need
heavy pre-computation, we can mitigate this problem by adopting slightly new
MPC models like client/server-aided models that we denote later.

In addition to the advantage as denoted above, the amount of data transfer
in online phase is also small in SS-based MPC than GC/HE-based one. How-
ever, the number of communication rounds we need for computation is large
in SS-based MPC. We need one interaction between computing parties when
we compute an arithmetic multiplication gate or a boolean AND gate, which is
time-consuming when processing non-linear functions since it is difficult to make
the circuit depth shallow. This is a critical disadvantage in real-world privacy-
preserving applications since there are non-linear functions we frequently use in
practice like equality check, less-than comparison, max value extraction, activa-
tion functions in machine learning, etc. In most of the previous research, however,
this problem has not been seriously treated. This is because they assumed there
is (high-speed) LAN connection between computing parties. Under such environ-
ments, total online execution time we need for processing non-linear functions
is small even if we need many interactions between computing parties since the
communication latency is usually very short (typically ≤0.5ms). This assump-
tion is somewhat strange in practice, as the use of LAN suggests that MPC is exe-
cuted on the network that is maintained by the same administrator/organization.
In that case, it is not clear if the requirement for SS that parties do not collude
is held or not. Hence, it looks more suitable to assume non-local networks like
WAN. However, large communication latency in WAN becomes the performance
bottleneck in SS-based MPC. We find by our experiments that the time caused
by the communication latency occupies more than 99% in some cases for online
total execution time. To reduce the effect of the large communication latency,
it is important to develop SS-based MPC with fewer communication rounds. In
other words, we should put in work to make the circuit shallower to improve the
concrete efficiency of SS-based MPC.

1.1 Related Work

MPC Based on Secret Sharing. There are many research results on
SS-based MPC. For example, we have results on highly-efficient MPC (e.g.,
[1,7]), concrete tools or the toolkit (e.g., [4,9,21,22]), mixed-protocol frame-
work [10,18,23], application to privacy-preserving machine learning or data
analysis (e.g., [18,20,23]), proposal of another model for speeding up the pre-
computation [17,20], etc. As denoted previously, however, we have not been
able to obtain good experimental results for computing large circuits over WAN
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environments. For example, [20] denoted the neural network training on WAN
setting is not practical yet.
MPC Based on Garbled Circuit or Homomorphic Encryption. There
are also many research results on GC/HE-based MPC. For example, we have
results on the toolkit (e.g., [16]), encryption switching protocols [8,15], privacy-
preserving machine learning (e.g., [5,11,14]), etc. Recently, we have many
research results on GC for more than three parties (e.g., [19,27]). Note that
it is difficult to improve the circuit size on standard boolean GC [26], which is
a bottleneck on GC-based MPC. Moreover, [3,6] proposed the GC-based MPC
for WAN environments and showed the benchmark using AES, etc. Even if we
adopt the most efficient GC [26] with 128-bit security, however, we need to send
at least 256-bit string per an AND gate. This is two orders of magnitude larger
than SS-based MPC. We construct the round-efficient protocol while keeping
data traffic small.

1.2 Our Contribution

There are two main contributions in this paper. First, we propose the method for
treating multi-fan-in gates in semi-honest secure SS-based 2PC and show how
to use them efficiently. Second, we propose many round-efficient protocols and
show their performance evaluations via experiments. We explain the details of
them as follows:

1. We propose the method for treating multi-fan-in MULT/AND gates over Z2n

and some techniques for reducing the communication rounds of protocols.
Our N -fan-in gates are based on the extension of Beaver triples, which is a
technique for computing standard 2-fan-in gates. In our technique, however,
we have a disadvantage that the computation costs and the memory costs
are exponentially increased by N ; that is, we have to limit the size of N in
practice. On the other hand, we can improve the costs of communication.
More concretely, we can compute arbitrary N -fan-in MULT/AND with one
communication round and the amount of data transfer is also improved. More-
over, we show performance evaluation results on above multi-fan-in gates via
experiments. More concretely, see Sects. 3 and 5.1.

2. We propose round-efficient protocols using multi-fan-in gates. We need fewer
interactions for our protocols between computing parties in online phase than
previous ones. When we use shares over Z232 , compared with the previous
work [4], we reduce the communication rounds as follows: Equality : (5 → 2),
Comparison : (7 → 3), and Max for 3 elements:(18 → 4). Moreover, we show
the performance evaluation results on our protocols via experiments. From
our experiments, we find the computation costs for multi-fan-in gates and pro-
tocols based on them have small effects on the whole online performance in
the typical WAN environments. We also implement an application (a privacy-
preserving exact edit distance protocol for genome strings) using our proto-
cols. More concretely, see Sects. 4, 5.2, and 5.3.
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2 Preliminaries

2.1 Syntax for Secret Sharing

A 2-out-of-2 secret sharing ((2, 2)-SS) scheme over Z2n consists of two algorithms:
Share and Reconst. Share takes as input x ∈ Z2n , and outputs ([[x]]0, [[x]]1) ∈ Z

2
2n ,

where the bracket notation [[x]]i denotes the share of the i-th party (for i ∈
{0, 1}). We denote [[x]] = ([[x]]0, [[x]]1) as their shorthand. Reconst takes as input
[[x]], and outputs x. For arithmetic sharing [[x]]A = ([[x]]A0 , [[x]]A1 ) and boolean
sharing [[x]]B = ([[x]]B0 , [[x]]B1 ), we consider power-of-two integers n (e.g. n = 64)
and n = 1, respectively.

2.2 Secure Two-Party Computation Based on (2, 2)-Additive
Secret Sharing

Here, we explain how to compute arithmetic ADD/MULT gates on (2, 2)-additive
SS. We use the standard (2, 2)-additive SS scheme, defined by

– Share(x): randomly choose r ∈ Z2n and let [[x]]A0 = r and [[x]]A1 = x − r ∈ Z2n .
– Reconst([[x]]A0 , [[x]]A1 ): output [[x]]A0 + [[x]]A1 .

We can compute fundamental operations; that is, ADD(x, y) := x + y and
MULT(x, y) := xy. [[z]] ← ADD([[x]], [[y]]) can be done locally by just adding each
party’s shares on x and on y. [[w]] ← MULT([[x]], [[y]]) can be done in various ways.
We will use the standard method based on Beaver triples (BT) [2]. Such a triple
consists of bt0 = (a0, b0, c0) and bt1 = (a1, b1, c1) such that (a0 + a1)(b0 + b1) =
(c0 + c1). Hereafter, a, b, and c denote a0 + a1, b0 + b1, and c0 + c1, respectively.
We can compute these BT in offline phase. In this protocol, each i-th party Pi

(i ∈ {0, 1}) can compute the multiplication share [[z]]i = [[xy]]i as follows: (1)
Pi first compute ([[x]]i − ai) and ([[y]]i − bi). (2) Pi sends them to P1−i. (3) Pi

reconstruct x′ = x−a and y′ = y−b. (4) P0 computes [[z]]0 = x′y′+x′b0+y′a0+c0
and P1 computes [[z]]1 = x′b1 + y′a1 + c1. Here, [[z]]0 and [[z]]1 calculated as
above procedures are valid shares of xy; that is, Reconst([[z]]0, [[z]]1) = xy. We
abuse notations and write the ADD and MULT protocols simply as [[x]] + [[y]]
and [[x]] · [[y]], respectively. Note that similarly to the ADD protocol, we can also
locally compute multiplication by constant c, denoted by c · [[x]].

We can easily extend above protocols to boolean gates. By converting +
and − to ⊕ in arithmetic ADD and MULT protocols, we can obtain XOR and
AND protocols, respectively. We can construct NOT and OR protocols from the
properties of these gates. When we compute NOT([[x]]B0 , [[x]]B1 ), P0 and P1 out-
put ¬[[x]]B0 and [[x]]B1 , respectively. When we compute OR([[x]], [[y]]), we compute
¬AND(¬[[x]],¬[[y]]). We abuse notations and write the XOR, AND, NOT, and OR
protocols simply as [[x]]⊕ [[y]], [[x]]∧ [[y]], ¬[[x]] (or [[x]]), and [[x]]∨ [[y]], respectively.

2.3 Semi-honest Security and Client-Aided Model

In this paper, we consider simulation-based security notion in the presence of
semi-honest adversaries (for 2PC) as in [12]. As described in [12], composition
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theorem for the semi-honest model holds; that is, any protocol is privately com-
puted as long as its subroutines are privately computed.

In this paper, we adopt client-aided model [20,21] (or server-aided model [17])
for 2PC. In this model, a client (other than computing parties) generates and
distributes shares of secrets. Moreover, the client also generates and distributes
some necessary BTs to the computing parties. This improves the efficiency of
offline computation dramatically since otherwise computing parties would have
to generate BTs by themselves jointly via heavy cryptographic primitives like
homomorphic encryption or oblivious transfer. The only downside for this model
is the restriction that any computing party is assumed to not collude with the
client who generates BTs for keeping the security.

3 Core Tools for Round-Efficient Protocols

In this section, we propose a core tool for round-efficient 2PC that we call
“Beaver triple extension (BTE)”. Moreover, we explain some techniques for pre-
computation to reduce the communication rounds in online phase.

3.1 N-fan-in MULT/AND via N-Beaver Triple Extension

N -Beaver Triple Extension. Let N be a positive integer. Let M = ZM for
some M (e.g., M = 2n). Write [1, N ] = {1, 2, . . . , N}. We define a client-aided
protocol for generating N -BTE as follows:

1. Client randomly chooses [[a{�}]]0 and [[a{�}]]1 from M (� = 1, . . . , N). Let
a{�} ← [[a{�}]]0 + [[a{�}]]1. For each I ⊆ [1, N ] with |I| ≥ 2, by setting aI ←∏

�∈I a{�}, client randomly chooses [[aI ]]0 ∈ M and sets [[aI ]]1 ← aI − [[aI ]]0.
2. Client sends all the [[aI ]]0 to P0 and all the [[aI ]]1 to P1.

Note that, in the protocol above, the process of randomly choosing [[aI ]]0 and
then setting [[aI ]]1 ← aI − [[aI ]]0 is equivalent to randomly choosing [[aI ]]1 and
then setting [[aI ]]0 ← aI − [[aI ]]1. Therefore, the roles of P0 and P1 are symmetric.

Multiplication Protocol. For � = 1, . . . , N , let ([[x�]]0, [[x�]]1) be given shares
of �-th secret input value x� ∈ M. The protocol for multiplication is constructed
as follows:

1. Client generates and distributes N -BTE ([[aI ]]0)I and ([[aI ]]1)I to the two
parties as described above.

2. For k = 0, 1, Pk computes [[x′
�]]k ← [[x�]]k − [[a{�}]]k for � = 1, . . . , N and sends

those [[x′
�]]k to P1−k.

3. For k = 0, 1, Pk computes x′
� ← [[x′

�]]1−k + [[x′
�]]k for � = 1, . . . , N .

4. P0 outputs [[y]]0 given by

[[y]]0 ←
N∏

�=1

x′
� +

∑

∅�=I⊆[1,N ]

⎛

⎝
∏

�∈[1,N ]\I

x′
�

⎞

⎠ [[aI ]]0
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while P1 outputs [[y]]1 given by

[[y]]1 ←
∑

∅�=I⊆[1,N ]

⎛

⎝
∏

�∈[1,N ]\I

x′
�

⎞

⎠ [[aI ]]1 .

We can prove the correctness and semi-honest security of this protocol. Due
to the page limitation, we show the proofs in the full version of this paper.

3.2 Discussion on Beaver Triple Extension

We can achieve the same functionality of N-MULT/AND by using 2-MULT/AND
multiple times and there are some trade-offs between these two strategies. In the
computation of N -fan-in MULT/AND using N -BTE, the memory consumption
and computation cost increase exponentially with N . Therefore, we have to put
a restriction on the size of N and concrete settings change optimal N . In this
paper, we use N-MULT/AND for N ≤ 9 to construct round-efficient protocols.
On the other hand, N -fan-in MULT/AND using N -BTE needs fewer communi-
cation costs. Notably, the number of communication rounds of our protocol does
not depend on N and this improvement has significant effects on practical perfor-
mances in WAN settings. Because of the problems on the memory/computation
costs we denoted above, however, there is a limitation for the size of N . When we
use L-fan-in MULT/AND (L ≤ N) gates, we need �log N	


log L� communication rounds
for computing N -fan-in MULT/AND.

Damg̊ard et al. [9] also proposed how to compute N -fan-in gates in a round-
efficient manner using Lagrange interpolation. Each of their scheme and ours
has its merits and demerits. Their scheme has an advantage over memory con-
sumption and computational costs; that is, their N -fan-in gates do not need
exponentially large memory and computation costs. On the other hand, their
scheme needs two communication rounds to compute N -fan-in gates for any N
and requires the share spaces to be Zp (p: prime). A 2PC scheme over Z2n is
sometimes more efficient than one over Zp when we implement them using low-
level language (e.g., C++) since we do not have to compute remainders modulo
2n for all arithmetic operations.

3.3 More Techniques for Reducing Communication Rounds

On Weights at Most One. We consider the plain input x that all bits are 0,
or only a single bit is 1 and others are 0. In this setting, we can compute the
share representing whether all the bits of x are 0 or not without communications
between P0 and P1. More concretely, we can compute it by locally computing
XOR for all bits on each share. This technique is implicitly used in the previous
work [4] for constructing an arithmetic overflow detection protocol Overflow,
which is an important building block for constructing less-than comparison and
more. We show more skillful use of this technique for constructing Overflow to
avoid heavy computation in our protocols. More concretely, see Sect. 4.2.
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Arithmetic Blinding. We consider the situation that two clients who have
secrets also execute computation (i.e., an input party is equal to a computing
party), which is the different setting from client-aided 2PC. During the multipli-
cation protocol, both P0 and P1 obtain x − a and y − b. Here, P0 finds a and P1

finds b since P0 and P1 know the value of x and y, respectively. Therefore, it does
not matter if P0 and P1 previously know the corresponding values; that is, P0

can send b0 to P1 and P1 can send a1 to P0 in the pre-computation phase. This
operation does not cause security problems. By above pre-processing, P0 and P1

can directly send x − a and y − b in the multiplication protocol, respectively.
As a result, we can reduce the amount of data transfer in the multiplication
protocol. Even in the client-aided 2PC setting, this situation appears in the
boolean-to-arithmetic conversion protocol. More concretely, see Sect. 4.3.

Trivial Sharing. We consider the setting that an input party is not equal to
a computing party, which is the same one as standard client-aided 2PC. In this
situation, we can use the share [[b]]i (i ∈ {0, 1}) itself as a secret value for com-
putations by considering another party has the share [[0]]1−i. Although we find
this technique in the previous work [4], we can further reduce the communica-
tion rounds of two-party protocols by combining this technique and BTE. More
concretely, see Sect. 4.3.

4 Communication-Efficient Protocols

In this section, we show round-efficient 2PC protocols using BTE and the tech-
niques in Sect. 3.3. For simplicity, in this section, we set a share space to Z216

and use N -fan-in gates (N ≤ 5) to explain our proposed protocols. Although
we omit the protocols over Z232/Z264 due to the page limitation, we can obtain
the protocols with the same communication rounds with Z216 by using 7 or less
fan-in AND over Z232 and 9 or less fan-in AND over Z264 . We omit the correctness
of the protocols adopting the same strategy in the previous work [4].

4.1 Equality Check Protocol and Its Application

An equality check protocol Equality([[x]]A, [[y]]A) outputs [[z]]B, where z = 1 iff
x = y. We start from the approach by [4] and focus on reducing communication
rounds. In Equality, roughly speaking, we first compute t = x−y and then check
if all bits of t are 0 or not. If all the bits of t are 0, it means t = x − y = 0. We
show our two-round Equality as in Algorithm 1: In our strategy, more generally,
we need �log n	


log L� communication rounds for executing Equality when we set the
share space to Z2n and use N-OR (N ≤ L). By using our Equality, we can also
obtain a three-round round-efficient table lookup protocol TLU. We show the
construction of our TLU in the full version of this paper.
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Algorithm 1. Our Proposed Equality

Functionality: [[z]]B ← Equality([[x]]A, [[y]]A)
Ensure: [[z]]B, where z = 1 iff x = y.
1: P0 and P1 locally compute [[t]]A0 = [[x]]A0 − [[y]]A0 and [[t]]A1 = [[y]]A1 − [[x]]A1 , respectively.
2: Pi (i ∈ {0, 1}) locally extend [[t]]Ai to binary and see them as boolean shares; that

is, Pi obtain [[[t[15]]]Bi , · · · , [[t[0]]]Bi ].
3: Pi compute [[t′[j]]]B ← 4-OR([[t[4j]]]B, [[t[4j + 1]]]B, [[t[4j + 2]]]B, [[t[4j + 3]]]B)

for j ∈ [0, · · · , 3].
4: Pi compute [[t′′]]B ← 4-OR([[t′[0]]]B, [[t′[1]]]B, [[t′[2]]]B, [[t′[3]]]B).
5: Pi compute [[z]]B = ¬[[t′′]]B.
6: return [[z]]B.

Algorithm 2. Our Proposed MSNZB

Functionality: [[z]]B ← MSNZB([[x]]B)
Ensure: [[z]]B = [[[z[15]]]B, · · · , [[z[0]]]B], where z[j] = 1 for the largest value j such that

x[j] = 1 and z[k] = 0 for all j �= k.
1: Pi (i ∈ {0, 1}) set [[t[j]]]Bi = [[x[j]]]Bi for j ∈ [3, 7, 11, 15]. Then Pi parallelly compute

[[t[j]]]B ← 2-OR([[x[j]]]B, [[x[j + 1]]]B) for j ∈ [2, 6, 10, 14],
[[t[j]]]B ← 3-OR([[x[j]]]B, [[x[j + 1]]]B, [[x[j + 2]]]B) for j ∈ [1, 5, 9, 13], and
[[t[j]]]B ← 4-OR([[x[j]]]B, [[x[j + 1]]]B, [[x[j + 2]]]B, [[x[j + 3]]]B) for j ∈ [0, 4, 8, 12].

2: Pi compute [[t′[j]]]Bi = [[t[j]]]Bi for j ∈ [3, 7, 11, 15] and compute
[[t′[j]]]Bi = [[t[j]]]Bi ⊕ [[t[j + 1]]]Bi for j ∈ [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14].

3: Pi locally compute [[s[j]]]Bi =
⊕4j+3

k=4j [[t
′[k]]]Bi for j ∈ [1, 2, 3].

4: Pi compute [[z[j]]]Bi = [[t′[j]]]Bi for j ∈ [12, · · · , 15]. Then Pi parallelly compute
[[z[j]]]B ← 2-AND([[t′[j]]]B, ¬[[s[3]]]B) for j ∈ [8, · · · , 11],
[[z[j]]]B ← 3-AND([[t′[j]]]B, ¬[[s[2]]]B, ¬[[s[3]]]B) for j ∈ [4, · · · , 7], and
[[z[j]]]B ← 4-AND([[t′[j]]]B, ¬[[s[1]]]B, ¬[[s[2]]]B, ¬[[s[3]]]B) for j ∈ [0, · · · , 3].

5: return [[z]]B = [[[z[15]]]B, · · · , [[z[0]]]B].

4.2 Overflow Detection Protocol and Applications

An arithmetic overflow detection protocol Overflow has many applications and
is also a core building block of less-than comparison protocol. The same as
the approach by [4], we construct Overflow via the most significant non-zero bit
extraction protocol MSNZB. We first explain how to construct MSNZB efficiently
and then show two-round Overflow.

A protocol for extracting the most significant non-zero bit (MSNZB([[x]]B =
[[[x[15]]]B, · · · , [[x[0]]]B])) finds the position of the first “1” of the x and outputs
such a boolean share vector [[z]]B = [[[z[15]]]B, · · · , [[z[0]]]B]. In [4], we used a
“prefix-OR” operation for executing MSNZB. On the other hand, in our con-
struction, we first separate a bit string into some blocks and compute in-block
MSNZB. Then, we compute correct MSNZB for x via in-block MSNZB. We
show our two-round MSNZB as in Algorithm 2. Based on the above MSNZB,
we can construct an arithmetic overflow detection protocol Overflow([[x]]A, k).
This protocol outputs [[z]]B, where z = 1 iff the condition ([[x]]A0 mod 2k + [[x]]A1
mod 2k) ≥ 2k holds. We also start from the approach by [4]. In their Overflow,
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Algorithm 3. Our Proposed Overflow

Functionality: [[z]]B ← Overflow([[x]]A, k)
Ensure: [[z]]B, where z = 1 iff ([[x]]A0 mod 2k) + ([[x]]A1 mod 2k) ≥ 2k.
1: P0 locally extends ([[x]]A0 mod 2k) to binary and obtains

[[d]]B0 = [[[d[15]]]B0 , · · · , [[d[0]]]B0 ]. P1 also locally extends (−[[x]]A1 mod 2k) to binary
and obtains [[d]]B1 = [[[d[15]]]B1 , · · · , [[d[0]]]B1 ].

2: Pi (i ∈ {0, 1}) set [[t[j]]]Bi = [[d[j]]]Bi for j ∈ [3, 7, 11, 15]. Then Pi parallelly compute
[[t[j]]]B ← 2-OR([[d[j]]]B, [[d[j + 1]]]B) for j ∈ [2, 6, 10, 14],
[[t[j]]]B ← 3-OR([[d[j]]]B, [[d[j + 1]]]B, [[d[j + 2]]]B) for j ∈ [1, 5, 9, 13], and
[[t[j]]]B ← 4-OR([[d[j]]]B, [[d[j + 1]]]B, [[d[j + 2]]]B, [[d[j + 3]]]B) for j ∈ [0, 4, 8, 12].

3: Pi compute [[t′[j]]]Bi = [[t[j]]]Bi for j ∈ [3, 7, 11, 15] and compute
[[t′[j]]]Bi = [[t[j]]]Bi ⊕ [[t[j + 1]]]Bi for j ∈ [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14].

4: Pi locally compute [[w[j]]]Bi =
⊕4j+3

k=4j [[t
′[k]]]Bi for j ∈ [1, 2, 3].

5: P0 sets [[u[j]]]B0 = 0 for j ∈ [0, · · · , 15] and
P1 sets [[u[j]]]B1 = [[d[j]]]B1 for j ∈ [0, · · · , 15].

6: Pi parallelly compute
[[v[j]]]B ← 2-AND([[t′[j]]]B, [[u[j]]]B) for j ∈ [12, · · · , 15],
[[v[j]]]B ← 3-AND([[t′[j]]]B, [[u[j]]]B, ¬[[w[3]]]B) for j ∈ [8, · · · , 11],
[[v[j]]]B ← 4-AND([[t′[j]]]B, [[u[j]]]B, ¬[[w[2]]]B, ¬[[w[3]]]B) for j ∈ [4, · · · , 7], and
[[v[j]]]B ← 5-AND([[t′[j]]]B, [[u[j]]]B, ¬[[w[1]]]B, ¬[[w[2]]]B, ¬[[w[3]]]B) for j ∈ [0, · · · , 3].

7: Pi locally compute [[z]]Bi =
⊕15

�=0[[v[�]]]Bi .
8: Pi compute [[z]]B = ¬[[z]]B.
9: If [[x]]A1 = 0, then P1 locally computes [[z]]B1 = [[z]]B1 ⊕ 1

10: return [[z]]B.

we check whether or not there exists 1 in u = (−[[x]]1 mod 2k) at the same posi-
tion of MSNZB on d = (([[x]]0 mod 2k) ⊕ (−[[x]]1 mod 2k)). Even if we apply
our two-round MSNZB in this section, we need three communication rounds
for their Overflow since we need one more round to check the above condition
using 2-AND. Here, we consider further improvements by combining MSNZB
and 2-AND; that is, we increase the fan-in of AND on the step 4 in Algorithm 2
and push the computation of 2-AND into that step as in Algorithm 3: Moreover,
we can construct one-round Overflow for small shares spaces (in practice). We
show a concrete construction in the full version of this paper.

We have many applications of Overflow like less-than comparison Comparison,
which is a building block of the maximum value extraction protocol. In par-
ticular, thanks to the round-efficient Overflow, we can obtain a three-round
Comparison. Morita et al. [21] proposed a constant (= five)-round Comparison
using multi-fan-in gates that works under the shares over Zp [9]. Our Comparison
is more round-efficient than theirs under the parameters we consider in this
paper.

4.3 Boolean-to-Arithmetic Conversion Protocol and Extensions

A boolean-to-arithmetic conversion protocol B2A([[x]]B) outputs [[z]]A, where
z = x. In (1-bit) boolean shares, there are four cases; that is, ([[x]]B0 , [[x]]B1 ) = (0, 0),
(0, 1), (1, 0), (1, 1). Even if we consider these boolean shares as arithmetic ones,
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Algorithm 4. Our Proposed B2A

Functionality: [[z]]A ← B2A([[x]]B)
Ensure: [[z]]A, where z = x.
1: In pre-computation phase, the client randomly chooses a, b ∈ Z216 , computes c =

ab, chooses a randomness r ∈ Z216 , and sets (c0, c1) = (r, c − r). Then the client
sends (a, c0) and (b, c1) to P0 and P1, respectively.

2: Pi (i ∈ {0, 1}) set [[x]]Ai = [[x]]Bi .
3: P0 computes x′ = [[x]]A0 − a and P1 computes

x′′ = [[x]]A1 − b. Then they send them to each other.
4: P0 computes [[z]]A0 = [[x]]A0 − 2(x′x′′ + x′′ · a + c0) and

P1 computes [[z]]A1 = [[x]]A1 − 2(x′ · b + c1).
5: return [[z]]A

it works well in the first three cases; that is, 0 ⊕ 0 = 0 + 0, 0 ⊕ 1 = 0 + 1, and
1⊕0 = 1+0. However, 1⊕1 �= 1+1 and we have to correct the output of this case.
Based on this idea and the technique in Sect. 3.3 (trivial sharing), [4] proposed
the construction of B2A. In their protocol, we use a standard arithmetic multipli-
cation protocol and need one communication round. In the setting of client-aided
2PC, however, B2A satisfies the condition that input party is equal to the com-
puting party. Therefore, we can apply the techniques in Sect. 3.3 (arithmetic
blinding) and construct more efficient B2A as in Algorithm 4: Although the
number of communication rounds is the same as in [4], our protocol is more effi-
cient. First, the data transfer in online phase is reduced from 2n-bits to n-bits.
Moreover, the number of randomnesses we need in pre-computation is reduced
from five to three, and the data amount for sending from the client to P0 and
P1 is reduced from 3n-bits to 2n-bits.

We can extend the above idea and obtain protocols like BX2A: [[b]]B × [[x]]A =
[[bx]]A, BC2A: [[b]]B × [[c]]B = [[bc]]A, and BCX2A: [[b]]B × [[c]]B × [[x]]A = [[bcx]]A.
These protocols are useful when we construct a round-efficient maximum value
extraction protocol (and its variants) in Sect. 4.4.
BX2A: [[b]]B × [[x]]A = [[bx]]A We usually need to compute the multiplication
of a boolean share [[b]]B and an arithmetic one [[x]]A (e.g., TLU, ReLU function
in neural networks). We call this protocol BX2A in this paper. [18] proposed
one-round BX2A under the (2, 3)-replicated SS, such construction in 2PC has
not been known. By almost the same idea as B2A, we can construct one-round
BX2A in 2PC as follows:

1. Pi (i ∈ {0, 1}) set [[b]]Ai = [[b]]Bi .
2. P0 sets [[b′]]A0 = [[b]]B0 and [[b′′]]A0 = 0, and P1 sets [[b′]]A1 = 0 and [[b′′]]A1 = [[b]]B1 .
3. Pi compute

[[s]]Ai ← 2-MULT([[b]]A, [[x]]A)

[[t]]Ai ← 3-MULT([[b′]]A, [[b′′]]A, [[x]]A).

4. Pi computes [[z]]Ai = [[s]]Ai − 2[[t]]Ai .

Here, we denote this computation as [[bx − 2b0b1x]]A.
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BC2A: [[b]]B × [[c]]B = [[bc]]A Almost the same idea as BX2A, we can compute
[[b]]B × [[c]]B = [[bc]]A (BC2A) with one communication round. We use this pro-
tocol in 3-Argmax/3-Argmin in Sect. 4.4. We can construct one-round BC2A by
computing

[[bc − 2b0b1 − 2c0c1 + 2b0c0b1c1 + 2b0c0b1c1]]A.

We need 2-MULT and 4-MULT for this protocol.
BCX2A: [[b]]B × [[c]]B × [[x]]A = [[bcx]]A Almost the same idea as the above proto-
cols, we can also compute [[b]]B × [[c]]B × [[x]]A = [[bc]]A (BCX2A) with one commu-
nication round. We use this protocol in Max/Min in Sect. 4.4. We can construct
one-round BC2A by computing

[[bcx − 2b0b1x − 2c0c1x + 2b0c0b1c1x + 2b0c0b1c1x]]A.

We need 3-MULT and 5-MULT for this protocol.

4.4 The Maximum Value Extraction Protocol and Extensions

The maximum value extraction protocol Max([[x]]A) outputs [[z]]A, where z is
the largest value in x. We first explain the case of Max for three elements
(3-Max), which is used for computing edit distance, etc. We denote a j-th
element of x as x[j]; that is, x = [x[0], x[1], x[2]]. We start from a standard
tournament-based construction. If the condition x[0] < x[1] holds, x′ = x[1].
Otherwise, x′ = x[0]. By repeating the above procedure once more using [[x′]]A

and [[x[2]]]A, we can extract the maximum value among x. In this strategy, we
need 16 (= (6 + 1 + 1) × 2) communication rounds, and 8 (= (3 + 1) × 2) com-
munication rounds even if we apply our three-round Comparison (in Sect. 4.2)
and BX2A (in Sect. 4.3). This is mainly because we cannot parallelly execute
Comparison. To solve this disadvantage, we first check the magnitude relation-
ship for all elements using Comparison. Then we extract the maximum value.
Based on these ideas, we show our 3-Max as in Algorithm 5: Although the com-
putation costs obviously increased, this is four-round 3-Max by applying our
Comparison and BCX2A. Based on the above idea, we can also obtain the mini-
mum value extraction protocol, argument of the maximum/minimum extraction
protocols, and (argument of) the maximum/minimum value extraction proto-
cols with N(>3) inputs. We show the construction of these protocols in the full
version of this paper.

5 Performance Evaluation

We demonstrate the practicality of our arithmetic/boolean gates and proto-
cols. We implemented 2PC simulators and performed all benchmarks on a sin-
gle laptop computer with Intel Core i7-6700K 4.00 GHz and 64 GB RAM. We
implemented simulators using Python 3.7 with Numpy v1.16.2 and vectorized all
gates/protocols. We assumed 10MB/s (= 80000 bits/ms) bandwidth and 40ms
RTT latency as typical WAN settings, and calculate the data transfer time
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Algorithm 5. Our Proposed 3-Max

Functionality: [[z]]A ← Max([[x]]A)
Ensure: [[z]]A, where z is the largest element in x.
1: Pi (i ∈ {0, 1}) parallelly compute

[[c01]]
B ← Comparison([[x[0]]]A, [[x[1]]]A),

[[c02]]
B ← Comparison([[x[0]]]A, [[x[2]]]A), and

[[c12]]
B ← Comparison([[x[1]]]A, [[x[2]]]A).

2: Pi compute [[c10]]
B
i = ¬[[c01]]

B
i , [[c20]]

B
i = ¬[[c02]]

B
i , and [[c21]]

B
i = ¬[[c12]]

B
i .

3: Pi parallelly compute
[[t[0]]]Ai ← BCX2A([[c10]]

B, [[c20]]
B, [[x[0]]]A),

[[t[1]]]Ai ← BCX2A([[c01]]
B, [[c21]]

B, [[x[1]]]A), and
[[t[2]]]Ai ← BCX2A([[c02]]

B, [[c12]]
B, [[x[2]]]A).

4: Pi compute [[z]]Ai = Σ2
j=0[[t[j]]]

A
i .

5: return [[z]]A.

(DTT) and communication latency (CL) using these values. We adopted the
client-aided model; that is, we assumed in our experiments that clients generate
BTE in their local environment without using HE/OT.

5.1 Performance of Basic Gates

Here we show experimental results on N-AND. We set N = [2, · · · , 9] and 1 to
106(= 1000000) batch in our experiments. Here we mainly show the experimental
results on the cases of 1/1000/1000000 batch. The results are as in Table 1 and
Fig. 1: We find (1) the pre-computation time, online computation time, and data
transfer time are exponentially growing up with respect to N ; (2) the dominant
part in online total execution time is WAN latency especially in the case of small
batch. If we compute N(>2)-AND using multiple 2-AND gates, we need two or
more communication rounds. Therefore, our scheme is especially suitable for the
2PC with relatively small batch (e.g., ≤105) as it yields low WAN latency.

5.2 Performance of Our Protocols

Here we show experimental results on our proposed protocols (Equality,
Comparison, and 3-Max). We implemented the baseline protocols [4] and our
proposed ones in Sect. 4. Same as the evaluation of N-AND, we mainly show the
results of our experiments over Z232 with 1/1000/1000000 batch in Table 2 and
Fig. 2 (relations between batch size and online execution time). Same as the cases
with N-AND, WAN latency is the dominant part of the online total execution
time. In relatively small batch (≤104), all our protocols are faster than baseline
ones in the online total execution time since ours require fewer communication
rounds. For example in Comparison with 1 batch, we need more online computa-
tion time than the baseline one. However, communication costs are smaller. As
a result, our Comparison is 56.1% faster than baseline one (280.6ms → 122.1ms)
in our WAN settings. As already mentioned, our protocols are not suitable for a
(extremely) large batch since the computation cost is larger than baseline ones.
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Table 1. Evaluation on N-AND with 1(upper)/1000(middle)/1000000(lower) batch.

pre-comp. online comp. # of comm. data trans. # of comm. comm. online total
time (ms) time (ms) bits (bit) time (ms) rounds latency (ms) exec. time (ms)

0.015 0.019 2 2.5 × 10−5 1 40 40.0
2-AND 2.39 0.033 2 × 103 2.5 × 10−2 1 40 40.1

2439 19.4 2 × 106 25.0 1 40 84.4
0.041 0.032 3 3.75 × 10−5 1 40 40.0

3-AND 4.80 0.053 3 × 103 3.75 × 10−2 1 40 40.1
4899 33.1 3 × 106 37.5 1 40 110.6
0.067 0.055 4 5.0 × 10−5 1 40 40.1

4-AND 9.04 0.091 4 × 103 5.0 × 10−2 1 40 40.1
9383 62.8 4 × 106 50.0 1 40 152.8
0.11 0.089 5 6.25 × 10−5 1 40 40.1

5-AND 17.2 0.16 5 × 103 6.25 × 10−2 1 40 40.2
17700 111.7 5 × 106 62.5 1 40 214.2
0.20 0.16 6 7.5 × 10−5 1 40 40.2

6-AND 33.0 0.28 6 × 103 7.5 × 10−2 1 40 40.4
34059 203.0 6 × 106 75.0 1 40 318.0
0.38 0.32 7 8.75 × 10−5 1 40 40.3

7-AND 64.3 0.53 7 × 103 8.75 × 10−2 1 40 40.6
66123 370.8 7 × 106 87.5 1 40 498.3
0.76 0.64 8 1.0 × 10−4 1 40 40.6

8-AND 125.1 1.06 8 × 103 1.0 × 10−1 1 40 41.2
129553 700.7 8 × 106 100.0 1 40 840.7

1.63 1.39 9 1.125 × 10−4 1 40 41.4
9-AND 245.2 2.25 9 × 103 1.125 × 10−1 1 40 42.4

255847 1346 9 × 106 112.5 1 40 1498.5

5.3 Application: Privacy-Preserving (Exact) Edit Distance

We implemented a privacy-preserving edit distance protocol using our protocols
(Equality, B2A, and 3-Min). Unlike many previous works on approximate edit
distance (e.g., [24]), here we consider the exact edit distance. We computed an
edit distance between two length-L genome strings (S0 and S1) via standard
dynamic programming (DP). It appears four characters in the strings; that is,
A, T, G, and C. In DP-matrix, we fill the cell x[i][j] by the following rule:

x[i][j] = 3-Min([x[i − 1][j] + 1, x[i][j − 1] + 1, x[i − 1][j − 1] + e])

Here, e = 0 if the condition S0[i] = S1[j] holds, and otherwise e = 1. We can
compute e using Equality (two rounds) and B2A (one round). To reduce the total
online execution time, we calculate the edit distance as follows:

1. We parallelly compute e for all cells and store them in advance. This procedure
requires three communication rounds.

2. Diagonal cells in DP-matrix are independent with each other. Therefore, we
can parallelly compute these cells x[d][0], x[d − 1][1], · · · , x[0][d] (for each d)
to reduce the communication rounds.

By applying the above techniques, we can compute exact edit distance for two
length-L strings with 3+4(2L−1) = (8L−1) communication rounds. We used the
arithmetic shares and protocols over Z216 in our experiments. The experimental
results are as in Table 3: As we can see from the experimental results, most of
the online total execution time is occupied by the communication latency.
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Fig. 1. Relations between N (fan-in number), batch size, and online computation time
for N-AND: we show the relations between N and online computation time with
1/1000/1000000 batch (left), and show the relations between batch size and online
computation time for 2/4/8-AND (right).

Table 2. Evaluation of our protocols over Z232 for 1/103/106 batches. In each cell, we
show our experimental results on the baseline (upper) and ours (lower).

pre-comp. online comp. # of comm. data trans. # of comm. comm. online total
time (ms) time (ms) bits (bit) time (ms) rounds latency (ms) exec. time (ms)

Equality 0.15 0.18 62 7.75 × 10−4 5 200 200.2
(1 batch) 0.76 0.52 38 4.75 × 10−4 2 80 80.5

Comparison 1.5 0.54 970 1.21 × 10−2 7 280 280.6
(1 batch) 3.9 2.1 712 8.9 × 10−3 3 120 122.1

3-Max 3.1 1.2 2196 2.75 × 10−2 18 720 721.2
(1 batch) 9.7 2.3 3960 4.95 × 10−2 4 160 162.3

Equality 74.7 0.61 62 × 103 0.78 5 200 201.4
(103 batch) 500.5 1.1 38 × 103 0.48 2 80 80.9

Comparison 1398 8.25 970 × 103 12.1 7 280 300.4
(103 batch) 2745 11.6 712 × 103 8.9 3 120 140.5

3-Max 2891 17.5 2196 × 103 27.5 18 720 765.0
(103 batch) 8635 36.3 3960 × 103 49.5 4 160 245.8

Equality 77574 761.4 62 × 106 780 5 200 1741
(106 batch) 500617 1233 38 × 106 480 2 80 1793

Comparison 1445847 13895 970 × 106 12100 7 280 26275
(106 batch) 2799437 20748 712 × 106 8900 3 120 29768

3-Max 2956155 28252 2196 × 106 27500 18 720 56472
(106 batch) 8571664 69935 3960 × 106 49500 4 160 119595
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Fig. 2. Relations between batch size and online computation/execution time of the
protocols over Z232 .

Table 3. Experimental results of privacy-preserving exact edit distance with 2�-length
two strings (� = [2, · · · , 10]).

string pre-comp. online comp. data trans. comm. online total
length time (s) time (s) time (s) latency (s) exec. time (s)

4 0.04 0.01 4.0 × 10−4 1.24 1.25
8 0.14 0.02 1.4 × 10−3 2.52 2.54

16 0.57 0.04 5.7 × 10−3 5.08 5.13
32 2.2 0.10 2.3 × 10−2 10.2 10.3
64 8.1 0.22 9.2 × 10−2 20.4 20.7

128 33.4 0.54 3.7 × 10−1 40.9 41.8
256 135.7 1.5 1.5 84.9 84.9
512 534.1 4.8 5.9 163.8 174.5

1024 2262 16.0 23.4 327.6 367.0
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Abstract. We consider the problem of securely computing the kth-
ranked element in a sequence of n private integers distributed among n
parties. The kth-ranked element (e.g., minimum, maximum, median) is
of particular interest in collaborative benchmarking and auctions. Previ-
ous secure protocols for the kth-ranked element require a communication
channel between each pair of parties. A server model naturally fits with
the client-server architecture of Internet applications in which clients are
connected to the server and not to other clients. It simplifies secure com-
putation by reducing the number of rounds and improves its performance
and scalability. In this paper, we propose different approaches for pri-
vately computing the kth-ranked element in the server model, using either
garbled circuits or threshold homomorphic encryption. Our schemes have
a constant number of rounds and can compute the kth-ranked element
within seconds for up to 50 clients in a WAN.

Keywords: kth-ranked element · Garbled circuit · Homomorphic
encryption

1 Introduction

Given n parties each holding a private integer, we consider the problem of
securely computing the kth-ranked element (KRE) of these n integers. This is
a secure multiparty computation (SMC) where several parties wish to compute
a function on their private input while revealing only the output of the compu-
tation. The computation of the kth-ranked element is of particular interest in
settings such as collaborative benchmarking and auctions, where the individual
inputs are sensitive, yet the KRE is of mutual interest to all parties [1,22].

Benchmarking. A key performance indicator (KPI) is a statistical quantity
measuring the performance of a business process. Benchmarking is a manage-
ment process where a company compares its KPI to the statistics of the same
KPIs of a group of competitors from a peer group. A peer group is a group of
similar companies, usually competitors, wanting to compare against each other.
c© International Financial Cryptography Association 2020
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Confidentiality. Confidentiality is of the utmost importance in benchmarking,
since KPIs allow the inference of sensitive information. Companies are therefore
hesitant to share their business performance data due to the risk of losing a
competitive advantage [22]. The confidentiality issue can be addressed using
SMC [3,16,32], which guarantees that no party will learn more than the output
of the protocol, i.e., the other parties’ inputs remain confidential.

Communication Model. Generic SMC protocols [1,3,16,32] can be used to
keep KPIs confidential. They require a communication channel between each
pair of parties. We will refer to this approach as the standard model. Protocols
in this model do not scale easily to a large number of parties as they are highly
interactive, resulting in high latency. Moreover, they are difficult to deploy as
special arrangements are required between each pair of parties to establish a
secure connection [10]. A promising approach for overcoming these limitations
is to use the help of a small set of untrusted non-colluding servers. We will
therefore refer to it as the server model. Relying on multiple non-colluding servers
requires a different business model for providers of a privacy-preserving service
[23]. We therefore use a communication model consisting of clients (with private
inputs) and a server. In this model, the server provides no input and does not
learn the output, but makes its computational resources available to the clients
[20,22]. There are communication channels only between each client and the
server resulting in a centralized communication pattern, i.e., a star network. This
model naturally fits with the client-server architecture of Internet applications
and allows a service provider to play the server’s role. It simplifies the secure
protocol, and improves its performance and scalability [10,20].

Table 1. Notations and schemes’ properties
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Table 2. Schemes’ complexity: rows CC-C/S and BC-C/S denote the computation and communi-
cation (bit) complexity for each client and the server, respectively. The columns “sym.” and “asym.”
denote symmetric and asymmetric operations in Kre-Ygc.

Kre-Ygc Kre-Ahe Kre-She [1]

sym. asym.

CC-C O(nμ) O(n) O(nμ) O(μ) O(nμ2)

CC-S O(n2μ) O(n log n) O(n2μ) O(n2μ log μ) n/a

BC-C O(nμλ) O(nκ) O(nμκ) O((μ + n)κ) O(nμ2λ)

BC-S 0 O(n2κ) O(n2μκ) O(nκ) n/a

Contribution. In summary, we propose different approaches for securely com-
puting the kth-ranked element (KRE) in a star network using garbled circuits
(GC) or additive homomorphic encryption (AHE) or somewhat homomorphic
encryption (SHE). Our schemes are secure against a semi-honest adversary:

– Our first scheme Kre-Ygc uses Yao’s GC [2,28] to compare clients’ inputs.
– Our second scheme Kre-Ahe is based on threshold AHE. We perform the

comparison using the DGK protocol [12]. We also propose a modified variant
of the Lin-Tzeng comparison protocol [27] that can be used instead of DGK,
and that is faster at the cost of a small increase of the communication cost.

– The third scheme Kre-She is based on SHE and allows the server to non-
interactively compute the KRE such that the clients only interact to jointly
decrypt the result.

We compare the approaches in Tables 1b and 2 using the following measures:

– Rounds: In contrast to [1], our schemes have a constant number of rounds.
– Collusion-resistance: measures the number of parties that can collude without

violating the privacy of the non-colluding ones.
– Fault-tolerance: measures the number of parties that can fail without pre-

venting the protocol to properly compute the intended functionality.
– Complexity: This refers to the computation and communication complexity.

A summary is illustrated in Table 2. We provide a detailed analysis in the full
paper.

Structure. The remainder of the paper is structured as follows. We begin by
presenting related work in Sect. 2 and some preliminaries in Sect. 3. We present
our security model in Sect. 4 and a technical overview in Sect. 5. The different
approaches are presented in Sects. 6 to 8. We discuss some implementation details
and evaluation results in Sect. 9, before concluding our work in Sect. 10. We
provide further details in the full paper.

2 Related Work

Our work is related to SMC. There are generic SMC protocols [13,21] that
can be used to compute the kth-ranked element (KRE) of the union of n private
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datasets. Aggarwal et al. [1] introduced the first specialized protocol for the KRE.
Their multiparty protocol performs a binary search in the input domain resulting
in O(μ) comparisons and, hence, requiring O(μ) sequential rounds. Each round
requires an SMC that performs two summations with complexity O(nμ) and
two comparisons with complexity O(μ). As a result each client performs O(nμ2)
operations and sends O(nμ2) bits. Our protocols perform O(n2) comparisons,
that can be executed in parallel, and have either 4 or 2 rounds. We stress that all
our O(n2) comparisons can be executed in parallel while the O(μ) comparisons
of Aggarwal et al. must be executed sequentially one per round. In our 4-round
schemes each client is involved in only O(n) comparisons while each comparison
in [1] involves all n clients. As a result, a client in our 4-round schemes has a
complexity of O(n) per round but must execute only 4 rounds, while a client in
[1] has a complexity of O(n) per round as well but must execute up to μ rounds.
In the 2-round scheme, all O(n2) comparisons are performed non-interactively by
the server which in our model is allowed to be computationally more powerful.
Our communication model allows to reduce the number of rounds from μ to 4 or
2. We note that μ=32 in our experiments for the 4-rounds schemes and μ=16 for
the 2-round scheme. A summary of the complexity of our schemes is illustrated
in Table 2.

The server model for SMC was introduced in [15], used in Kerschbaum [23],
and cryptographic studied in [20]. The computation of the kth-ranked element
is also addressed in [4,5] where the server is replaced by a blockchain.

3 Preliminaries

Garbled Circuit (GC). A GC [2,14,28,33] can be used for secure 2-party
computation. To evaluate a function f on input xi, xj , a garbling scheme (F, e)←
Gb(1λ, s, f) takes a security parameter λ, a random seed s, a Boolean encoding
of f and outputs a GC F and an encoding string e that is used to derive garbled
inputs x̄i, x̄j from xi, xj , i.e. there is a function En such that x̄i←En(e, xi) and
x̄j ←En(e, xj). The garbling scheme is correct if F (x̄i, x̄j) = f(xi, xj).

Homomorphic Encryption (HE). A HE consists of the usual algorithms
for key generation (pk, sk) ← KeyGen(λ), encryption Enc(pk,m) (we denote
Enc(pk,m) by [[m]]), decryption Dec(sk, c). HE has an additional evaluation
algorithm Eval(pk, f, c1, . . . , cn) that takes pk, an n-ary function f and cipher-
texts c1, . . . cn. It outputs a ciphertext c such that if ci = [[mi]] then it holds:

Dec(sk,Eval(ek, f, [[m1]], . . . , [[mn]])) =Dec(sk, [[f(m1, . . . ,mn)]]).

We require HE to be IND-CPA secure. If the scheme supports only addition,
then it is additively homomorphic. Schemes such as [24,30] are additively homo-
morphic and have the following properties:

– Add/Multiply: ∀m1,m2, [[m1]] · [[m2]] = [[m1 +m2]], and [[m1]]m2
= [[m1 · m2]],

– Xor: ∀a, b ∈ {0, 1},Xor([[a]], b) = [[a ⊕ b]] = [[1]]b · [[a]](−1)b .
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Threshold Homomorphic Encryption (THE). A THE [6] allows to share
the private key to the parties using a threshold secret sharing scheme such that a
subset of parties is required for decryption. Hence, instead of sk as above, the key
generation outputs a set of shares SK = {sks1, . . . , sksn} which are distributed
to the clients. The decryption algorithm is replaced by the following algorithms:

– m̃i ← Decp(sksi, c): The probabilistic partial decryption algorithm takes a
ciphertext c and a share sksi ∈ SK of the private key and outputs m̃i.

– m′
←Decf(Mt): The deterministic final decryption algorithm takes a subset

Mt = {m̃j1 , . . . , m̃jt} ⊆ {m̃1, . . . , m̃n} of shares and outputs a message m′.

We refer to it as threshold decryption. It is correct if for all Mt = {m̃j1 , . . . , m̃jt}
such that |Mt| ≥ t and m̃ji =Decp(sksji , [[m]]), it holds m =Decf(Mt).
When used in a protocol, we denote by combiner the party which executes
Decf(). It receives a set Mt = {m̃j1 , . . . , m̃jt} of partial decryption, runs m′

←

Decf(Mt) and moves to the next step of the protocol specification.

4 Security Definition

This section provides definitions related to our model and security requirements.
We start by defining the kth-ranked element of a sequence of integers.

Definition 1. Let X = {x1, ..., xn} be a set of n distinct integers and x̃1, . . . , x̃n

be the corresponding sorted set, i.e., x̃1 < . . . < x̃n, and X = {x̃1, . . . , x̃n}. The
rank of an element xi ∈X is j, such that xi = x̃j. The kth-ranked element (KRE)
is the element x̃k with rank k.

If the rank is k =
⌈

n
2

⌉
then the element is called median. If k =1 (resp. k =n) then

the element is called minimum (resp. maximum).

Definition 2. Let C1, . . . , Cn be n clients each holding a private μ-bit integer
x1, . . . , xn and S be a server which has no input. Our ideal functionality FKRE

receives x1, . . . , xn from the clients, computes the KRE x̃k and outputs x̃k to
each client Ci. Moreover, FKRE outputs a leakage Li to each Ci and LS to S.

The leakage is specific to each protocol and contains information such as n, t, λ,
κ, μ (see Table 1a). It can be inferred from the party’s view. In case of collusion,
additional leakage might include comparison results or the rank of some inputs.

Definition 3. The view of the i-th party during an execution of the protocol
on input �x = (x1, . . . , xn) is denoted by: Viewi(�x) = {xi, ri,mi1,mi2, . . .}, where ri

represents the outcome of the i-th party’s internal coin tosses, and mij represents
the j-th message it has received.

Since the server has no input, xi in its view will be replaced by the empty string.
We say that two distributions D1 and D2 are computationally indistinguishable
(denoted D1

c
≡ D1) if no probabilistic polynomial time (PPT) algorithm can

distinguish them except with negligible probability. In this paper, we assume a
semi-honest adversary. That is, parties follow the protocol, but the adversary
tries to infer as much information as possible.
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Definition 4. Let FKRE ∶ ({0, 1}μ)n ↦ {0, 1}μ be the functionality that takes n
μ-bit inputs x1, . . . , xn and returns their KRE. Let I = {i1, . . . , it} ⊂ {1, . . . , n +
1} be a subset of indexes of corrupted parties (Server’s input xn+1 is empty),
�x=(x1, . . . , xn) and ViewI(�x)=(I,Viewi1(�x), . . . ,Viewit(�x)). A protocol t-privately
computes FKRE in the semi-honest model if there exists a PPT simulator SIM
such that: ∀I, |I|= t, LI =

⋃
i∈I Li: SIM(I, (xi1 , . . . , xit),FKRE(�x),LI)

c
≡ ViewI(�x).

5 Technical Overview

In an initialization phase, clients generate and exchange cryptographic keys
through the server, i.e., using the help of a non-colluding trusted third party.
We stress that the initialization is run once and its complexity does not depend
on the functionality FKRE. We therefore focus on the actual computations.

Definition 5. Let xi, xj , 1 ≤ i, j, ≤n, be integer inputs of Ci, Cj. Then the com-
parison bit bij of the pair (xi, xj) is defined as 1 if xi ≥ xj and 0 otherwise. The
computation of xi ≥ xj is distributed and involves Ci, Cj, where they play differ-
ent roles, e.g., generator and evaluator. Similar to the functional programming
notation of an ordered pair, we use head and tail to denote Ci and Cj.

Lemma 1. Let x1, . . . , xn be n distinct integers, r1, . . . , rn ∈ {1, . . . , n} their
respective ranks and bij the comparison bit for (xi, xj). It holds ri =

∑n
j=1 bij .

To make sure that inputs are indeed distinct before the protocol, one can
use the indexes of each Ci as differentiator [1]. Each Ci appends the log n-bit
string of i at the end of the bit string of xi, resulting in a new input of length
μ + log n. Note that, the extended input will be used only for input comparison,
to avoid leaking the index of the winning client. For simplicity, we assume in the
remainder of the paper, that the xi’s are all distinct μ-bit integers. Therefore, it
is not necessary to compare all pairs (xi, xj), since bji = 1 − bij .

We would like to equally distribute the computation tasks among the clients.
As example for n = 3, we need to compute only 3 (instead of 9) comparisons
resulting in three head roles and three tail roles. Then we would like each of the
three clients to play the role head as well as tail exactly once. We use Definition
6 and Lemma 2 to equally distribute the roles head and tail between clients.

Definition 6. Let X = {x1, . . . , xn} be a set of n integers. We define the predicate
Paired as follows

Paired(i, j) ∶= (i ≡ 1 (mod 2) ∧ i > j ∧ j ≡ 1 (mod 2)) ∨ (1a)
(i ≡ 1 (mod 2) ∧ i < j ∧ j ≡ 0 (mod 2)) ∨ (1b)
(i ≡ 0 (mod 2) ∧ i > j ∧ j ≡ 0 (mod 2)) ∨ (1c)
(i ≡ 0 (mod 2) ∧ i < j ∧ j ≡ 1 (mod 2)). (1d)
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Lemma 2. Let X={x1, . . . , xn} be a set of n integers and the predicate Paired
be as above. Then comparing only pairs (xi, xj) such that Paired(i, j) = true is
enough to compute the rank of all elements in X.

For example, if n = 3, we compute bij only for (x1, x2), (x2, x3), (x3, x1). If n = 4,
we compare only (x1, x2), (x1, x4), (x2, x3), (x3, x1), (x3, x4), (x4, x2).

The predicate Paired (Eq. 1) is used in our schemes to reduce the number of
comparisons and to equally distribute the computation task of the comparisons
among the clients. As pointed out by an anonymous reviewer, Paired can be
simplified as: (i > j ∧ i ≡ j (mod 2)) ∨ (i < j ∧ i ≢ j (mod 2)).

Let #headi (resp. #taili) denote the number of times Paired(i, j) = true
(resp. Paired(j, i)=true) holds. For example, if n=3, we have #headi=#taili=1
for all clients. However, for n=4, we have #head1=#head3=2, #tail1=#tail3=1,
#head2 =#head4 = 1 and #tail2 =#tail4 = 2.

Lemma 3. Let X = {x1, . . . , xn} ⊂ N and assume the predicate Paired is used
to sort X. If n is odd then: #headi =#taili =

n−1
2 . If n is even then:

#headi =

{
n
2 if i odd
n
2 − 1 if i even

#taili =

{
n
2 − 1 if i odd
n
2 if i even.

6 Protocol Kre-Ygc

Kre-Ygc is based on GC and consists of an initialization and a main part. It
does not tolerate collision with the server. An AHE ciphertext is denoted by [[·]].

6.1 Kre-Ygc Initialization

The initialization consists of public key distribution and Diffie-Hellman (DH)
key agreement. Each client Ci sends its public key pki of an AHE to the server
S. Then S distributes the pki to all Ci. In our implementation, we use Paillier’s
scheme [30] , but any AHE scheme such as [24] will work. Then each pair (Ci, Cj)
of clients runs DH key exchange through the server to generate a common secret
key ckij = ckji. The key ckij is used by Ci and Cj to seed the pseudorandom
number generator of the garbling scheme that is used to generate a comparison
GC for xi and xj , i.e. Gb(1λ, ckij , f>), where f> is a Boolean comparison circuit.
For GC comparison, we use the schemes of Kolesnikov et al. [25,26].

6.2 Kre-Ygc Main Protocol

Protocol 1 is a 4-round protocol in which we use GC to compare inputs and to
reveal a blinded comparison bit to the server. Then we use AHE to unblind the
comparison bits, compute the ranks and the KRE without revealing anything
to the parties. Let f> be defined as: f>((ai, xi), (aj , xj)) = ai ⊕ aj ⊕ bij , where
ai, aj ∈ {0, 1}, i.e., f> computes bij = [xi > xj ] and blinds the bits bij with ai, aj .



Secure Computation of the kth-Ranked Element in a Star Network 393

Comparing Inputs. For each pair (xi, xj), if Paired(i, j)= true the parties do
the following:

– Ci chooses a masking bit aij
i

$
← {0, 1} and extends its input to (aij

i , xi).
Then using the common key ckij , it computes (F ij

> , e)←Gb(1λ, ckij , f>) and
(āij

i , x̄ij
i )←En(e, (aij

i , xi)), and sends F ij
> , (āij

i , x̄ij
i ) to S.

– Cj chooses a masking bit aij
j

$
← {0, 1} and extends its input xj to (aij

j , xj).
Then using the common key ckji = ckij , it computes (F ij

> , e)←Gb(1λ, ckji, f>)
and (āij

j , x̄ij
j )←En(e, (aij

j , xj)), and sends only (āij
j , x̄ij

j ) to S.
– We have b′

ij ←F ij
> ((āij

i , x̄ij
i ), (āij

j , x̄ij
j ))= aij

i ⊕ aij
j ⊕ bij (i.e. bij is hidden to S).

The server then evaluates all GCs (Steps 1 to 5).

Unblinding Comparison Bits. Using AHE, the parties unblind each b′
ij =

aij
i ⊕aij

j ⊕ bij , where aij
i is known to Ci and aij

j is known to Cj , without learning
anything. As a result [[bij ]]i and [[bij ]]j are revealed to S encrypted under pki and
pkj . This is illustrated in Steps 6 to 16 and works as follows:

– S sends b′
ij to Ci and Cj . They reply with [[aij

j ⊕ bij ]]i and [[aij
i ⊕ bij ]]j .

– S forwards [[aij
i ⊕ bij ]]j , [[a

ij
j ⊕ bij ]]i to Ci, Cj . They reply with [[bij ]]j , [[bij ]]i.

– S sets [[bji]]j = [[1 − bij ]]j .

Computing the Rank. The computation of the rank is done at the server by
homomorphically adding comparison bits. Hence for each i, the server computes
[[ri]]i = [[

∑n
j=1 bij ]]i. Then, it chooses a random number αi and computes [[βi]]i =

[[(ri − k) · αi]]i (Steps 17 to 19). The ciphertext [[βi]]i encrypts 0 if ri = k (i.e., xi

is the kth-ranked element) otherwise it encrypts a random plaintext.

Computing the KRE’s Ciphertext. Each client Ci receives [[βi]]i encrypted
under its public key pki and decrypts it. Then if βi = 0, Ci sets mi = xi other-
wise mi = 0. Finally, Ci encrypts mi under each client’s public key and sends
[[mi]]1, . . . , [[mi]]n to the server (Steps 20 to 22).

Revealing the KRE’s Ciphertext. In the final steps (Steps 23 to 24), the
server adds all [[mj ]]i encrypted under pki and reveals [[

∑n
j=1 mj ]]i to Ci.

Kre-Ygc protocol correctly computes the KRE. The proof follows from the
correctness of the GC protocol, Lemmas 1 and 2 and the correctness of the AHE
scheme. Kre-Ygc is not fault-tolerant and a collusion with the server reveals
all inputs to the adversary. In the next section, we address this using threshold
HE. We stress that using threshold HE in Kre-Ygc is not enough as the server
has all GCs and each client can decode all GCs involving its input.
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Protocol 1. Kre-Ygc Protocol

1: for i ∶ =1, j ∶ =i + 1 to n do
2: if Paired(i, j) then
3: Ci → S: F ij

> , (āij
i , x̄ij

i )
4: Cj → S: (āij

j , x̄ij
j )

5: S: let b′
ij ← F ij

> (x̄ij
i , x̄ij

j )

6: for i ∶ =1, j ∶ =i + 1 to n do
7: if Paired(i, j) then
8: S → Ci: b′

ij = aij
i ⊕ aij

j ⊕ bij

9: S → Cj : b′
ij = aij

i ⊕ aij
j ⊕ bij

10: Ci → S: [[aij
j ⊕ bij ]]i

11: Cj → S: [[aij
i ⊕ bij ]]j

12: S → Ci: [[aij
i ⊕ bij ]]j

13: S → Cj : [[aij
j ⊕ bij ]]i

14: Ci → S: [[bij ]]j
15: Cj → S: [[bij ]]i
16: S: let [[bji]]j ← [[1 − bij ]]j

17: for i ∶ =1 to n do
18: S∶ [[ri]]i ← [[

∑n
j=1 bij ]]i � bii = 1

19: S → Ci: [[βi]]i ← [[(ri − k) · αi]]i, for a
random αi

20: for i ∶ =1 to n do

21: Ci: mi ∶ =

{
xi if βi = 0

0 if βi ≠ 0

22: Ci → S: [[mi]]1, . . . , [[mi]]n

23: for i ∶ =1 to n do
24: S → Ci: [[

∑n
j=1 mj ]]i

7 Protocol Kre-Ahe

In this section, we describe Kre-Ahe (Protocol 4) which instantiates the com-
parison with DGK [12]. We start by describing the initialization.

7.1 Kre-Ahe Initialization

We assume threshold key generation. Hence, there is a public/private key pair
(pk, sk) for an AHE, where sk is split in n shares sks1, . . . , sksn such that
client Ci gets share sksi and at least t shares are required to reconstruct sk.
Additionally, each Ci has its own AHE key pair (pki, ski) and publishes pki. We
denote by [[xi]], [[xi]]j encryptions of xi under pk, pkj respectively (Table 1a).

7.2 DGK Comparison Protocol

We briefly reviewing DGK [12]. To determine whether xi≤xj or xi>xj , one com-
putes for each 1≤u≤μ the following numbers zu: zu=s+xiu−xju+3

∑μ
v=u+1(xiv⊕

xjv). Let (pki, ski) be the key pair of Ci. Client Ci will be called Generator and
Cj Evaluator. Privately evaluating xi ≥ xj works as follows:

– Ci sends [[xiμ]]i, . . . , [[xi1]]i (encrypted under pki) to client Cj .
– Cj chooses a random bit δji, sets s = 1 − 2 · δji, computes [[zu]]i as defined

above, sends ([[zμ]]i, . . . , [[z1]]i) to Ci in a random order and outputs δji.
– If one [[zu]]i decrypts to 0 then Ci sets δij = 1 else δij = 0. Ci outputs δij .

In our server model, clients run the protocol through the server such that after
the computation the server learns [[δij ⊕ δji]] encrypted under pk. That is, Cj

sends [[ziμ]]i, . . . , [[zi1]]i, [[δji]] to Ci via the server, where each [[ziu]]i is encrypted
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under pki and [[δji]] is encrypted under pk. Client Ci computes the shared bit
δij and sends back [[δij ⊕ δji]] to the server. In DGK, clients Ci and Cj perform
respectively O(μ) and O(6μ) asymmetric operations. We will denote a call to
the DGK comparison between Ci, Cj as DgkCompare(i, j).

7.3 Modified Lin-Tzeng Comparison Protocol

We now describe our modified version of the Lin-Tzeng comparison protocol [27],
which can be used instead of DGK. It is faster at the cost of sending μ more
ciphertexts for each comparison. The main idea of Lin and Tzeng’s scheme is to
reduce the greater-than comparison to the set intersection of prefixes.

Input Encoding. Let Int(yη ⋯ y1) = y be a function that takes a bit string of
length η and parses it into the η−bit integer y =

∑η
l=1 yl · 2l−1. The 0-encoding

V 0
xi

and 1-encoding V 1
xi

of an integer input xi are the following vectors: V 0
xi
=

(viμ,⋯, vi1), V 1
xi
= (uiμ,⋯, ui1), such that for each l, (1 ≤ l ≤ μ)

vil =

{
Int(xiμxiμ−1 ⋯ xil′1) if xil = 0
r
(0)
il if xil = 1

uil =

{
Int(xiμxiμ−1 ⋯ xil) if xil = 1
r
(1)
il if xil = 0,

where l′ = l + 1, r
(0)
il , r

(1)
il are random numbers of a fixed bitlength ν > μ (e.g.

2μ
≤ r

(0)
il , r

(1)
il < 2

μ+1) with LSB(r(0)il ) = 0 and LSB(r(1)il ) = 1 (LSB is the least
significant bit). If the Int function is used the compute the element at position
l, then we call it a proper encoded element otherwise we call it a random encoded
element. Note that a random encoded element r

(1)
il at position l in the 1-encoding

of xi is chosen such that it is guaranteed to be different to a proper or random
encoded element at position l in the 0-encoding of xj , and vice versa. Hence,
it is enough if r

(1)
il and r

(0)
il are just one or two bits longer than any possible

proper encoded element at position l. Also note that the bitstring xiμxiμ−1⋯xil

is interpreted by the function Int as the bitstring yμ−l+1⋯y1 with length μ− l+1
where y1 = xil, y2 = xi(l+1), . . . , yμ−l+1 = xiμ. If we see V 0

xi
, V 1

xj
as sets, then xi > xj

iff they have exactly one common element.

Lemma 4. Let xi and xj be two integers, then xi > xj iff V = V 1
xi
− V 0

xj
has a

unique position with 0.

The Protocol. Let [[V 0
xi
]]i=([[viμ]]i, . . . , [[vi1]]i), [[V 1

xi
]]i=([[uiμ]]i, . . . , [[ui1]]i) denote

encryption of V 0
xi

and V 1
xi

. Let [[V 1
xi
−V 0

xj
]]i = ([[uiμ − vjμ]]i, . . . , [[ui1 − vj1]]i). Client

Ci sends [[V 0
xi
]]i, [[V 1

xi
]]i to Cj via the server. Client Cj randomly chooses between

evaluating either [[V 1
xi
−V 0

xj
]]i or [[V 1

xj
−V 0

xi
]]i and sets δji←0 or δji←1 accordingly.

Then it randomizes each ciphertext and sends them back to Ci in a random
order. If one of these ciphertexts decrypts to 0, Ci sets δij = 1 else δij = 0. This
is clearly faster than DGK at the cost of increasing the communication (μ more
ciphertexts are sent to Cj). Due to place constraint, we discuss in the full paper
the difference of our modification to the original protocol [27].



396 A. Tueno et al.

7.4 Kre-Ahe Main Protocol

Kre-Ahe is a 4-round protocol in which inputs are compared interactively using
DGK. The comparison bits are encrypted under pk and revealed to the server
which then computes the ranks of the xi’s and triggers a threshold decryption.

Uploading Ciphertext. Each Ci sends [[xi]] (encrypted under pk) and [[xb
i ]]i =

([[xiμ]]i, . . . , [[xi1]]i) (encrypted under its own public key pki) to the server. This
is illustrated in Step 2 of protocol 4. The server then initializes a matrix G =
[g11, . . . , gnn], where gii = [[1]] and gij(i ≠ j) will be computed using DGK as
gij = [[bij ]] if Paired(i, j) is true, and an array X = [[[x1]], . . . , [[xn]]] (Step 3).

Comparing Inputs. In this step, pairs of clients run DgkCompare with the
server as explained above. If (i, j) satisfies the predicate Paired, then Ci runs
DGK as generator and Cj is the evaluator. After the computation, Ci and Cj

get shares δij and δji of the comparison bit and the server gets [[bij ]] = [[δij ⊕ δji]]
which is encrypted under pk (the server cannot decrypt [[bij ]]).

Computing the KRE’s Ciphertext. After all admissible comparisons have
been computed (and the result stored in the matrix G), the server uses Algorithm
2 to compute the rank of each input xi, i.e., [[ri]]= [[

∑n
j=1 bij ]]. Now, the server has

the encrypted ranks [[r1]], . . . , [[rn]], where exactly one [[ri]] encrypts k. Since we
are looking for the element whose rank is k, the server then computes yi = ([[ri]] ·
[[k]]−1)αi · [[xi]] = [[(ri − k)αi + xi]] for all i, where αi is a number chosen randomly
in the plaintext space. Therefore, for the ciphertext [[ri]] encrypting k, yi is equal
to [[xi]]. Otherwise yi encrypts a random plaintext.

Algorithm2. Computing the KRE’s ciphertext in Kre-Ahe

1: functionComputeKreAhe(G, X, k)
2: parse G as [g11, . . . , gnn]
3: parse X as [[[x1]], . . . , [[xn]]]
4: for i ∶ =1 to n do
5: [[ri]]← gii

6: for j ∶ =1 to n (j � =i) do
7: if Paired(i, j) then

8: [[ri]]← [[ri]] · gij

9: else
10: [[ri]]← [[ri]] · [[1]] · g−1

ji

11: for i ∶ =1 to n do
12: yi ← ([[ri]] · [[k]]−1)αi · [[xi]]

13: return [y1, . . . , yn]

Algorithm3. Decryption Request in Kre-Ahe

1: function DecReq(Y, i, t, π)
2: parse Y as [y1, . . . , yn]

3: let Z(i)
= [z

(i)
1 , . . . , z

(i)
t ]

4: for j ∶ =1 to t do
5: u← i − t + j mod n
6: if u ≤ 0 then

7: u← u + n � 1 ≤ u ≤ n

8: I(i)
= I(i) ∪ {u}

9: v ← π(u)

10: z
(i)
j = y′

v

11: return (Z(i), I(i))
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Decrypting the KRE’s Ciphertext. In Step 12, the server distributes the
result Y = [y1, . . . , yn] of Algorithm 2 to the clients for threshold decryption. For
that, the array Y is passed as n × 1 matrix to Algorithm 3.

Lemma 5 shows that the ciphertexts generated from Algorithm 3 allow to
correctly decrypt Y = [y1, . . . , yn]. The first part shows that each Ci receives a
subset of t elements of Y . The second part shows that each yi is distributed to
exactly t different Ci which allows a correct threshold decryption of each row.

Lemma 5. Let X = {x1, . . . , xn} be a set of n elements, Xi = {xi−t+1, . . . , xi},
1 ≤ i ≤ n, where the indexes in Xi are computed modulo n, and t ≤ n. Then:

– Each subset Xi contains exactly t elements of X and
– Each x ∈ X is in exactly t subsets Xi.

In Step 16, the server S receives partial decryptions from the clients, forwards
them to the corresponding combiner (Step 18). Each combiner Cj performs a
final decryption (Step 21) resulting in a message x̃j whose bitlength is less or
equal to μ if it is the KRE. Combiner Cj then sets m(j)

= x̃j if |x̃j |≤μ, otherwise
m(j)

= 0 (Step 22). Then m(j) is encrypted with the public key of all clients and
send to S (Step 23). Finally, the server reveals the KRE to each Ci (Step 25).

Protocol 4. Kre-Ahe Protocol

1: for i ∶ =1 to n do
2: Ci → S: [[xi]], [[x

b
i ]]i

3: S∶ let G = [g11, . . . , gnn]
S∶ let X = [[[x1]], . . . , [[xn]]]

4: for i ∶ =1, j ∶ =i + 1 to n do
5: if Paired(i, j) then
6: Ci, Cj , S: gij ←DgkCompare(i, j)

7: S: Y ←ComputeKreAhe(G, X, k)

8: S: let π
$
← Sn be a permutation

9: S: parse Y as [y1, . . . , yn]
10: S: let Y ′

= [yπ(1), . . . , yπ(n)]
11: for i ∶ =1 to n do
12: S → Ci: Q(i)

←DecReq(Y ′, i, t, π)
13: Ci: parse Q(i) as (Z(i), I(i))

parse I(i) as [j1, . . . , jt]

parse Z(i) as [z
(i)
j1

, . . . , z
(i)
jt

]

14: for i ∶ =1 to n do
15: for each j in I(i) do
16: Ci → S: h

(i)
j ← [[Decp(sksi, z

(i)
j )]]j

17: for j ∶ =1 to n do
18: S → Cj : (h(i1)

j , . . . , h
(it)
j )

19: for j ∶ =1 to n do
20: Cj : du =Dec(skj , h

(iu)
j ), u = 1, . . . , t

21: Cj : x̃j ←Decf(d1, . . . , dt)

22: Cj : m(j)
∶ =

{
x̃j if |x̃j | ≤ μ

0 if |x̃j | > μ

23: Cj → S: [[m(j)]]1, . . . , [[m
(j)]]n

24: for i ∶ =1 to n do
25: S → Ci: [[

∑n
j=1 m(j)]]i

26: Ci: Dec(ski, [[
∑n

j=1 m(j)]]i)

Kre-Ahe correctly computes the KRE. This follows from the correctness of
DGK [12], Lemmas 1 and 5 and the correctness of AHE. Kre-Ahe evaluates
comparisons interactively but requires threshold decryption for O(n) elements.
In Kre-Ahe, we can evaluate either the comparison or the rank at the server, but
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not both. In the next scheme, we compute the KRE’s ciphertext non-interactively
at the server. Clients are only required for the threshold decryption.

8 Protocol Kre-She

This section describes Kre-She based on SHE. Hence, [[x]] now represents an
SHE ciphertext of the plaintext x. The initialization and threshold decryption
are similar to Kre-Ahe.

8.1 SHE Routines

Protocol Kre-She is based on the BGV scheme [9] as implemented in HElib [17]
and requires binary plaintext space and Smart-Vercauteren ciphertext packing
(SVCP) technique [31]. Using SVCP, a ciphertext consists of a fixed number m
of slots encrypting bits, i.e. [[·| · | . . . |·]]. The encryption of a bit b replicates b
to all slots, i.e., [[b]] = [[b|b| . . . |b]]. However, one can pack the bits of xb

i in one
ciphertext and will denote it by [[�xi]] = [[xiμ| . . . |xi1|0| . . . |0]].

Each Ci sends [[xb
i ]], [[�xi]] to S as input to Algorithm 5 which uses built-in

routines to compute the KRE. We denote addition and multiplication routines
by the operators ⊕ and ⊙. Then addition of packed ciphertexts is defined as
component-wise addition mod 2: [[bi1| . . . |bim]]⊕[[bj1| . . . |bjm]]=[[bi1⊕bj1| . . . |bim⊕

bjm]]. The multiplication is defined similarly: [[bi1| . . . |bim]]⊙ [[bj1| . . . |bjm]]= [[bi1⊙

bj1| . . . |bim ⊙ bjm]], where biu ⊙ bju is a multiplication mod 2.
Let xi, xj be two integers, bij = [xi>xj ] and bji= [xj >xi], the routine SheCmp

takes [[xb
i ]], [[x

b
j ]], compares xi and xj and returns [[bij ]], [[bji]]. Note that if the

inputs to SheCmp encrypt the same value, then the routine outputs two cipher-
texts of 0. The comparison circuit has depth log(μ−1)+1 and requires O(μ log μ)
homomorphic multiplications [11].

Let bi1, . . . , bin be n bits such that ri =
∑n

j=1 bij and let rb
i = ri log n, . . . , ri1 be

the bit representation of ri. The routine SheFadder implements a full adder
on [[bi1]], . . . , [[bin]] and returns [[rb

i ]] = ([[ri log n]], . . . , [[ri1]]).
There is no built-in routine for equality check in HElib. We implemented it

using SheCmp and addition. Let xi and xj be two μ-bit integers. We use SheE-
qual to denote the equality check routine and implement SheEqual([[xb

i ]], [[x
b
j ]])

by first computing ([[b′
i]], [[b′′

i ]])=SheCmp([[xb
i ]], [[x

b
j ]]) and then [[βi]]=[[b′

i]]⊕[[b
′′
i ]]⊕[[1]].

This results in βi = 1 if xi = xj and βi = 0 otherwise.

8.2 Kre-She Main Protocol

In Kre-She, the server S receives encrypted inputs from clients. For each client’s
integer xi, the encrypted input consists of:

– an encryption [[xb
i ]] = ([[xiμ]], . . . , [[xi1]]) of the bit representation and

– an encryption [[�xi]] = [[xiμ| . . . |xi1|0| . . . |0]] of the packed bit representation.
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Then the server runs Algorithm 5 which uses SheCmp to pairwise compare
the inputs resulting in encrypted comparison bits [[bij ]]. Then SheFadder is
used to compute the rank of each input by adding comparison bits. The result
is an encrypted bit representation [[rbi ]] of the ranks. Using the encrypted bit
representations [[kb]], [[rbi ]] of k and each rank, SheEqual checks the equality
and returns an encrypted bit [[βi]]. Recall that because of SVCP the encryption
of a bit βi is automatically replicated in all slots, i.e., [[βi]] = [[βi|βi| . . . |βi]], such
that evaluating [[�yi]] ← [[�xi]] ⊙ [[βi]], 1 ≤ i ≤ n, and [[�y1]] ⊕ . . . ⊕ [[ �yn]] returns the
KRE’s ciphertext. Correctness and security follow from Lemma 1, correctness
and security of SHE. The leakage is LS = Li = {n, t, κ, λ, μ}.

Algorithm5. Computing the KRE’s Ciphertext in Kre-She

1: function ComputeKreShe(X, Z, c)
2: parse X as [[[xb

1]], . . . , [[x
b
n]]]

parse Z as [[[�x1]], . . . , [[�xn]]]
parse c as [[kb]]

3: for i ∶ =1 to n do
4: [[bii]]← [[1]]
5: for j ∶ =i + 1 to n do
6: ([[bij ]], [[bji]])←SheCmp([[xb

i ]], [[x
b
j ]])

7: for i ∶ =1 to n do
8: [[rb

i ]]← SheFadder([[bi1]], . . . , [[bin]])

9: for i ∶ =1 to n do
10: [[βi]]← SheEqual([[rb

i ]], [[k
b]])

11: for i ∶ =1 to n do
12: [[�yi]]← [[�xi]] ⊙ [[βi]]

13: return [[�y1]] ⊕ . . . ⊕ [[ �yn]]

9 Evaluation

This section presents our evaluation results. We implemented Kre-Ygc and
Kre-Ahe as client-server Java applications while using SCAPI [14]. As Kre-
She mostly consists of the homomorphic evaluation by the server, we imple-
mented Algorithm 5 and n-out-of-n threshold decryption using HElib [17,18].

Experimental Setup. For Kre-Ygc and Kre-Ahe, we experimented using for
the server a machine with a 6-core Intel(R) Xeon(R) E-2176M CPU @ 2.70GHz
and 32GB of RAM, and for the clients two machines with each two Intel(R)
Xeon(R) CPU E7-4880 v2 @ 2.50GHz. The client machines were equipped with
8GB and 4GB of RAM, and were connected to the server via WAN. Windows 10
Enterprise was installed on all three machines. For each experiment, about 3/5
of the clients were run on the machine with 8GB RAM while about 2/5 were run
on the machine with 4GB RAM. Since the main computation of Kre-She is
done on the server, we evaluate only Algorithm 5 on a Laptop with Intel(R)
Core(TM) i5-7300U CPU @ 2.60GHz running 16.04.1-Ubuntu.
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Fig. 1. Results for Kre-Ygc, Kre-Ahe, Kre-She

Results. We evaluated Kre-Ygc, Kre-Ahe at security level λ = 128, bitlength
μ = 32 and (minimal) threshold t = 2 for threshold decryption. We instantiated
Kre-Ahe with Elliptic Curve ElGamal using curve secp256r1. We implemented
ElGamal using CRT-based technique of Hu et al. [19] and pre-computation of the
logarithm table [7] for fast threshold decryption [8]. Figure 1 shows our results
which are summarized in Table 3 for n = 100.

Kre-Ygc is the most efficient in both computation and communication and
takes 197 s to each client to compute the KRE of 100 clients in a WAN set-
ting. The communication is 0.31MB for each client and 5.42MB for the server.
However, Kre-Ygc is neither collusion-resistant nor fault-tolerant.

Kre-Ahe is the second most efficient and is collusion-resistant and fault-
tolerant. In Kre-Ahe, the comparisons can be evaluated non-interactively using
LinTzeng or interactively using both LinTzeng and DGK. The non-interactive
variant (denoted by Kre-Ahe∗) requires O(n2) threshold decryptions. It compu-
tation cost is illustrated in Fig. 1b. The interactive one, whose cost is illustrated
in Fig. 1c, requires only O(n) threshold decryptions. In Table 3, we also illustrate
the costs when t = 1 (i.e., each Ci knows sk) for both Kre-Ahe and Kre-Ahe∗

and when t = n (i.e., all Ci run the decryption) for Kre-Ahe.
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Table 3. Performance Comparison for 100 clients: C-Bits (resp. S-Bits) denotes the number of bits
sent by each client (resp. the server). t is the number of clients for the treshold decryption.

Kre-Ygc Kre-Ahe Kre-Ahe∗

t n/a 1 2 100 1 2
Time (s) 197.00 353.00 336.00 441.00 1024.00 1749.00
C-Bits (MB) 0.31 0.30 0.30 0.32 0.56 1.11
S-Bits (MB) 5.42 56.07 56.12 60.56 111.37 222.67

Table 4. Performance Comparison to [1]: Rows B-C/S is the communication for each client/server.

n

10 11 12 13 14 15 16 17 18

[1] time (s) 2.09 3.37 3.88 6.26 6.30 13.50 14.48 21.69 23.38

B-C (MB) 13.50 18.21 20.03 25.69 27.83 50.13 53.71 64.97 69.03

Kre-Ygc time (s) 1.20 1.31 1.59 2.02 2.34 2.43 3.02 3.31 3.76

B-C (KB) 30.62 33.24 37.02 39.64 43.43 46.05 49.83 52.46 56.23

B-S (KB) 68.55 81.36 95.24 110.22 126.27 143.40 161.62 180.92 201.28

Kre-Ahe time (s) 3.45 3.96 4.74 4.84 5.31 5.71 5.98 6.70 6.86

B-C (KB) 28.41 34.66 35.22 41.47 42.02 48.27 48.83 55.08 55.63

B-S (KB) 575.15 701.25 840.15 991.21 1155.15 1331.14 1520.10 1721.06 1935.05

We evaluated Algorithm 5 of Kre-She at security level at least 110. The
result is illustrated in Fig. 1e for inputs with bitlength μ=16. The computation is
dominated by the inputs’ comparison and takes less than one hour for 25 clients.
We also evaluated in Fig. 1f the performance of the threshold decryption with
a n-out-of-n secret sharing. For up to 40 clients threshold decryption costs less
than 0.15 s. Kre-She is practically less efficient than all other schemes, but has
the best asymptotic complexity.

As a result Kre-Ygc is suitable if the server is non-colluding and clients
cannot fail. If collusion and failure are an issue, then either Kre-Ahe or Kre-
She is suitable. Kre-She has the best asymptotic complexity, but, requires more
efficient SHE.

Comparison to [1]. We implemented the semi-honest scheme of Aggarwal et
al. [1] using MP-SPDZ [29] which is the state-of-the-art framework for secret
sharing based multiparty computation. We evaluated Kre-Ygc, Kre-Ahe and
[1] on a machine with a 6-core Intel(R) Xeon(R) E-2176M CPU @ 2.70GHz
and 32GB of RAM. The input bitlength is 32. For evaluating [1], we used MP-
SPDZ’s option for semi-honest Shamir. A summary of the evaluation in Table 4
shows that our schemes scale better for increasing values of n.

10 Conclusion

In this paper, we considered the problem of computing the KRE (with applica-
tions to benchmarking) of n clients’ private inputs. We proposed and compare
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different approaches based on garbled circuits or threshold HE. The computa-
tion is supported by the server which coordinates the protocol and undertakes
as much computations as possible. The server is oblivious, and does not learn
the input of the clients. We also implemented and evaluated our schemes.

Acknowledgments. We thank the anonymous reviewers for their valuable comments,
and Andreas Fischer and Jonas Böhler for helpful contribution to some implementa-
tions.
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Abstract. Fairness in Secure Multiparty Computation (MPC) is known
to be impossible to achieve in the presence of a dishonest majority. Pre-
vious works have proposed combining MPC protocols with cryptocur-
rencies in order to financially punish aborting adversaries, providing an
incentive for parties to honestly follow the protocol. The focus of existing
work is on proving that this approach is possible and unfortunately they
present monolithic and mostly inefficient constructions. In this work, we
put forth the first UC secure modular construction of “Insured MPC”,
where either the output of the private computation (which describes how
to distribute funds) is fairly delivered or a proof that a set of parties has
misbehaved is produced, allowing for financial punishments. Moreover,
both the output and the proof of cheating are publicly verifiable, allow-
ing third parties to independently validate an execution. We present
an efficient compiler that implements Insured MPC from an MPC pro-
tocol with certain properties, a standard (non-private) Smart Contract
and a publicly verifiable homomorphic commitment scheme. As an inter-
mediate step, we propose the first construction of a publicly verifiable
homomorphic commitment scheme with composability guarantees.

1 Introduction

Secure Multiparty Computation (MPC) allows a set of mutually distrusting
parties to evaluate an arbitrary function on secret inputs. The participating
parties learn nothing beyond the output of the computation, while malicious
behavior at runtime does not alter the output. An intuitive and in practice
often required feature of MPC is that if a cheating party obtains the output,
then all the honest parties should do so as well. Protocols which guarantee this
are also called fair. In his seminal work, Cleve [18] proved that fair MPC with
a dishonest majority is impossible to achieve in the standard communication
model. While the result can be circumvented for specific functions [3,4,22] in
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the two-party setting, the result of [18] prevents MPC from being applicable in
certain interesting scenarios.

With the advent of cryptocurrencies, [2,8] initiated a line of research that
avoids the aforementioned drawback by imposing financial penalties on misbe-
having parties. Such monetary punishments would then incentivize fair behavior
of the protocol participants, assuming that they are rational and that the penal-
ties are high enough. This is achieved by constructing a protocol which interacts
with a public ledger and digital currency. The overall structure of their idea is as
follows: (i) The parties run the secure computation, but delay the reconstruction
of the output; (ii) Each party deposits a collateral on the public ledger; (iii) The
parties reconstruct the output. Each party obtains the collateral back if it can
prove that it behaved honestly during the reconstruction; and (iv) If some parties
have cheated, then their share of the collateral is distributed among the honest
participants. Several works [27,29,30] generalized this concept and improved the
performance with respect to the amount of interaction with the public ledger as
well as the collateral that each party needs to deposit. In particular, Kumaresan
et al. [1,2,30] introduced the idea of MPC with cash distribution, in which the
inputs and outputs of the parties consist of both data and money. In this latter
case, the public ledger is used both to enforce financial penalties as well as to
distribute money according to the output of the secure computation.

1.1 Related Works: Fair Computation vs. Fair Output Delivery

Before presenting our techniques and design choices, it is worthwhile to discuss
first which adversarial behavior should be punishable: it is possible to obtain
protocols that punish deviations at any point of their execution or protocols that
only punish adversaries who learn the output but prevent the honest parties from
learning it. In this second approach, adversaries that abort the protocol but do
not learn the output are not punished. One therefore has to distinguish between
two types of protocols: those that punish all cheating yield Fair Computation
with Penalties, while the second approach only allows Fair Output Delivery with
Penalties. One can roughly classify the state-of-the-art using this distinction.

Fair Computation. [2] follows this line of work, but have high round and com-
munication complexities overheads. As [27] correctly pointed out, care must be
taken when choosing the “inner” MPC protocol (which is compiled to obtain
financial penalties): to achieve this, the protocol must have a property called
Identifiable Abort (ID-MPC, [25]). As [2] uses GMW [21], their specific con-
struction achieves this property, but not every MPC protocol is suitable for
their approach. On the other hand, [27] requires constant rounds but rely on
expensive generic zero knowledge proofs to achieve the necessary properties.

Fair Output Delivery. This line of work has been independently initiated by
[1,8] and most of the protocols in this line of work still require several rounds of
interaction with the public ledger as well as storing all MPC protocol messages
on the ledger. The currently most efficient approach [9] relies on an “inner” MPC
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protocol that performs the actual computation and then secret shares the result,
outputting not the result itself but commitments to each of the shares and pri-
vately giving to each party the opening for one of these commitments. The parties
subsequently post all (closed) commitments to the public ledger. After the par-
ties agree that the commitments posted on the public ledger correspond to those
obtained from the MPC protocol, each party opens its commitment in public.
This implicitly has identifiable abort because all parties can publicly agree if
another participant has failed to post a valid opening to its commitment on the
ledger. In particular, this approach relies on a smart contract that punishes par-
ties that fail to post valid openings for their commitments to shares. However,
a caveat, both from a theoretical and practical point of view, is that current
protocols compute both the secret sharing of the result and the commitments to
each share inside the MPC in a white-box way, which adds significant computa-
tional and communication overheads. Moreover, in order to achieve composable
security, the expensive preprocessing phase of a composable commitment scheme
would have to be executed as part of the circuit computed by the “inner” MPC
protocol.

Other Related Work. Recently Choudhuri et al. [17] constructed fair MPC
using a Bulletin Board but relying on stronger assumptions (Witness Encryption
or Trusted Hardware). MPC on permissioned ledgers has been suggested in [7]
but requires all messages to be posted on a public ledger for verification and
does not support financial penalties. MPC with public verification such as [6]
requires high bulletin board storage that is unsuitable for smart contracts. ID-
MPC without public verifiability has been constructed in e.g. [25].

Composability and Efficiency. With the exception of [27], none of the pre-
vious works have been shown to achieve composability guarantees. However, the
approach of [27] incurs very high computational and communication overheads,
since it compiles an “inner” MPC protocol to achieve identifiable abort and pub-
lic verifiability by using expensive generic zero-knowledge proofs. Even the previ-
ous works that do not achieve composability [1,2,8,28–31] incur high round and
communication complexities overheads, since they require non-constant extra
rounds for each round of the MPC protocol in order to implement financial
penalties. While the approach of [9] circumvents the need for such extra rounds
by relying on a smart contract, it introduces overheads by requiring secret shar-
ing and commitment schemes to be computed as part of the circuit evaluated
by the MPC protocol after the actual function that is evaluated.

1.2 Our Contributions

In this work, we give the first universally composable modular construction of
MPC achieving fair output delivery with financial penalties that can be instan-
tiated with a concretely efficient protocol. While previous works have focused
at obtaining protocols that can be instantiated using the Bitcoin or Ethereum
blockchains as a public ledger, we focus instead on the MPC aspects of such
constructions. We design a protocol from generic building blocks with security



Insured MPC: Efficient Secure Computation with Financial Penalties 407

analysed in the Global Universal Composability framework (GUC). This mod-
ular approach directly pinpoints the properties that the “inner” MPC protocol
and other underlying protocols must have in such constructions, including pre-
cise definitions of the necessary public verifiability properties. Besides shedding
light on theoretical aspects of MPC with fair output delivery with penalties, our
approach also paves the way for concrete implementations, since it uses generic
building blocks that have highly efficient instantiations and combines them in
a way that yields highly efficient constructions. Moreover, due to its modular
nature, our protocol directly benefits from any future efficiency improvements
to its building blocks (i.e. the more efficient publicly verifiable additively homo-
morphic commitments recently introduced in [15]).

Linearly Homomorphic Commitments with Delayed Public Verifiabil-
ity. This primitive acts as the central hub of our construction. Such commitment
schemes are additively homomorphic, allowing one to open linear combinations of
commitments without revealing the individual commitments themselves. More-
over, they allow for any third party to verify that a message is a valid opening
for a given commitment. We remark that existing constructions achieving all of
these properties do not have composability guarantees.

Modular Design. Based on a multiparty additively homomorphic commit-
ment scheme with delayed public verifiability and a suitable “inner” MPC, we
give a modular approach for constructing “Insured MPC”: first, we combine the
inner MPC with the commitment scheme to achieve MPC with publicly ver-
ifiable output. In this step, we leverage a property of the inner MPC output
phase to avoid computing secret sharing or commitments inside the MPC itself,
instead computing commitments before the actual output is revealed. Given
a (non-private) Smart Contract functionality and a global clock we can then
construct a cheater identifiable output reconstruction phase in a modular way
where the Smart Contract mediates the reconstruction, receiving openings to
the commitments obtained in the previous step. In case of disagreement during
reconstruction, the Smart Contract can identify the cheaters as the parties who
failed to provide commitment openings. This reconstruction phase and posterior
public verification of the resulting output are mostly light-weight due to our
commitment scheme, which allows for verification of openings using only calls
to a Pseudorandom Generator. Our technique adds no overhead to the circuit
being computed inside the MPC (differently from [9,31]) and little overhead to
the MPC protocol (differently from [27]), since each party only computes and
posts to the public ledger a number of commitments linear in the output size.

Efficient Instantiation. We show how to instantiate all sub-protocols effi-
ciently. We modify the constant-round MPC of [23] to work as the “inner” MPC
while essentially keeping the same concrete efficiency. Our publicly verifiable
additively homomorphic commitment scheme only performs Random Oracle calls
after a small number of base Oblivious Transfers (OT) using a publicly verifiable
OT scheme, achieving the same concrete efficiency as the non-publicly verifiable
scheme of [19]. As we use a restricted programmable and observable global RO
[11] we are then still able to prove security of all steps in GUC.
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Full Version. In this extended abstract we only provide an overview of our
construction, while the complete building blocks, protocols and proofs appear in
the full version, which can be found in [10].

2 Preliminaries

Let y
$← F (x) denote running the randomized algorithm F on input x yielding

output y. Similarly, y ← F (x) is used if F is deterministic. For a set X , let
x

$← X denote x chosen uniformly at random from X . For any k ∈ N we write
[k] for the set {1, . . . , k}. Let n be the number of parties in an MPC scheme,
A be an adversary and S the ideal-world simulator. P = {P1, . . . ,Pn} denotes
the set of parties where I � P are the corrupted and I = P \ I the uncorrupted
parties. τ denotes the computational and κ the statistical security parameter.
As we focus on MPC over F2 we use F for conciseness. In this work, the (G)UC
framework [12,13] is used to analyze security. We refer interested readers to the
aforementioned works for more details. Several functionalities in this work allow
public verifiability. To model this, we follow the approach of [5] and allow the
set of verifiers V to be dynamic by adding register and de-register instructions
as well as instructions that allow S to obtain the list of registered verifiers.
Functionalities with public verifiability include the (de-)registration interfaces,
which are omitted in the descriptions for simplicity. Due to space constraints,
the mentioned interfaces are fully described in the full version.

We focus on Secure Multiparty Computation with security against a static,
rushing and malicious adversary A corrupting up to n − 1 of the n parties and
introduce the functionality FOnline which we realize in this work. This function-
ality, as depicted in Fig. 1, realizes what we call MPC with Punishable Abort or
Insured MPC : FOnline computes the result y honestly, but will only output it if
every party Pi sent coins coins(d) to it first. FOnline hands these coins back if
everyone obtains y. A can withhold the output from honest parties, but only
at the expense of losing its provided coins. In case of no cheating, FOnline redis-
tributes additional coins based on y based on a Cash Distribution Function.

Definition 1 (Cash Distribution Function). Let g : F
m ×N

n → N
n be such

that ∀y ∈ F
m, t(1), . . . , t(n) ∈ N it holds that

∑
i t(i) =

∑
i e(i) for (e(1), . . . ,

e(n)) ← g(y, t(1), . . . , t(n)). Then g is called a Cash Distribution Function.

Observe that our functionality FOnline allows A to delay the delivery of the correct
output by some time, which is necessary for technical reasons. FOnline is defined
in the presence of a GUC functionality FClock which we will not fully specify here
(we use the version of [26]). FClock provides a counter readable consistently by
all parties which progresses if all honest parties send a tick signal. One would
obviously like to get a result in terms of wall-clock time, but this is difficult to
specify in UC. We implement FOnline using a Smart Contract functionality which
could emulate wall-clock time to a certain extent. We will furthermore later make
use of a coin-flipping functionality FCT which outputs unbiased random bits to
all parties. Both functionalities are provided in the full version.
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3 The Building Blocks

In this section we will introduce the different building blocks for our construction.

Functionality FOnline interacts with the parties P1, . . . , Pn as well as the global func-
tionality FClock. This functionality is parameterized by a circuit C representing the
computation with an output of length m, the compensation amount q, the security
deposit d ≥ (n − 1)q and a cash distribution function g. S specifies a set I ⊂ [n] of
corrupted parties.

Input: Upon first input (Input, sid, i, x(i)) by Pi and (Input, sid, i, ·) by all other
parties the functionality stores the value (i, x(i)) internally. Every further such mes-
sage with the same sid and i is ignored.

Evaluate: Upon input (Compute, sid) by all parties and if the inputs (i, x(i))i∈[n]

for all parties have been received, compute y = C(x(1), . . . , x(n)). If S sends (Abort,
sid) during Input or Evaluate then send (Abort, sid) to all parties and stop.

Deposit: Wait for each party Pi to send (Deposit, sid, coins(d + t(i))) containing
the d coins of the security deposit as well as the t(i) ≥ 0 coins that Pi wants to
use as financial input in the computation. Send (Deposited, sid, Pi, d + t(i)) to S
upon receiving it. If all honest parties sent their deposit then send (Update, sid) to
FClock. Then query FClock until ν = 1. If by ν = 1 some parties j ∈ I sent coins(c(j))
with c(j) < d then return the collateral to all honest parties and S. Afterwards send
(Abort, sid) to the honest parties and abort. If all went ok, then activate Reveal.

Reveal: Send (Output, sid, y) to S, (Update, sid) to FClock and wait until ν = 2.
S may now either send (No-Output, sid) or (Ok, sid, y). Afterwards send (Update,
sid) to FClock and activate Resolve.

Resolve: Query FClock until ν = 3. Then send (Update, sid) to FClock and query
until ν = 4.
1. Wait for the message (Punish, sid, punish) from S where punish ⊆ I. If S sent

(No-Output, sid, y) in Reveal then ∅ �= punish.

2. Depending on punish do the following:
– If punish = ∅ then compute e(1), . . . , e(n) ← g(y, t(1), . . . , t(n)).

– Otherwise set e(i) ← d + t(i) + |punish| · q for each party Pi ∈ P \ punish

and e(i) ← d − q · (n − |punish|) + t(i) for each Pi ∈ punish.

3. For each Pi ∈ P send (Payout, sid, Pi, coins(e(i))) to Pi and (Payout,
sid, Pi, e

(i)) to each other party.

4. If S sent (Ok, sid, y) in Reveal then send (Output, sid, y) to each honest party,
otherwise send (No-Output, sid).

Fig. 1. Functionality FOnline for Secure Multiparty Computation with Punishable Abort
and Cash Distribution.

Linearly Homomorphic Commitments with Delayed Public Verifiabil-
ity. A crucial building block of our Insured MPC protocol is the multiparty
commitment functionality FHCom that is additively homomorphic and allows
delayed public verifiability (i.e., after the opening phase it is possible for any
third party to verify the opening information). This functionality is depicted in
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Fig. 3. FHCom is GUC-realized with security in the restricted programmable and
observable RO model of Camenisch et al. [11] using multiple building blocks as
depicted in Fig. 2 and sketched below. The full construction including a proof of
security can be found in the full version.

Fig. 2. The Building Blocks of the Additively Homo-
morphic Multiparty Commitment with Public Veri-
fiability.

First, we realize a sim-
ple (non-homomorphic) com-
mitment functionality with
public verifiability FCom by
observing that the canoni-
cal RO based commitment
scheme shown to be UC-
secure in [11] is trivially pub-
licly verifiable.

FCom is then used to real-
ize a publicly verifiable equal-
ity testing functionality FEQ

and a publicly verifiable coin
tossing functionality FCT. These functionalities are versions of the functionalities
in Frederiksen et al. [19] that are augmented to allow public verifiability. We also
use an oblivious transfer functionality with delayed public verifiability FpOT in
which the receiver can activate an interface that allows any party to verify that
the receiver used a given choice bit and received a given message. We show that
FpOT can be realized using FCom and the DDH-based OT protocol of Peikert et
al. [33]. A two-party homomorphic commitment with delayed public verifiability
functionality F2HCom is then realized with a construction based on the scheme
of Cascudo et al. [16], which we augment to achieve public verifiability by lever-
aging FpOT. Finally, F2HCom, FEQ and FCT are used to obtain a public verifiable
version of the protocol of Frederiksen et al. [19], yielding a protocol that realizes
the additively homomorphic multiparty commitment functionality with public
verifiability FHCom.

MPC with Secret-Shared Output. In our construction we depart from a
flavor of MPC that provides partial outputs which can be used to reconstruct
the final output through linear operations, which is captured precisely in func-
tionality FMPC−SO in Fig. 4. This functionality provides a secret-sharing of the
output value: given all shares, any party can use it to obtain the output value
while even n−1 shares do not reveal any information about it. To reconstruct, a
special function f for the reconstruction process must be used. We call this func-
tion f a Reconstruction Function, whose definition and use was already implicit
in previous work [24,34].

Definition 2 (Reconstruction Function). Let f : (Fm)n+1 → F
m be a

function. We call f a reconstruction function if for all ȳ ∈ F
m, for all i ∈ [n]

and for all s(1), . . . s(n−1) ∈ F
m, the induced function f̂i : F

m → F
m such that

f̂i(·) = f(ȳ, s(1), . . . , s(i−1), ·, s(i), . . . , s(n−1)) is a bijection which is poly-time
computable in both directions.
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Functionality FHCom is parameterized by k ∈ N and interacts with a set of parties
P, a set of verifiers V and an adversary S (who may abort at any time).

Init: Upon receiving (Init, sid) from parties P, initialize empty lists raw and actual.

Commit: Upon receiving (Commit, sid, I) from Pi ∈ P where I is a set of unused
identifiers, for every cid ∈ I, sample a random xcid

$← F
k, set raw[cid] = xcid and

send (Commit-Recorded, sid, I) to all parties P and S.
Input: Upon receiving a message (Input, sid, Pi, cid, y) from Pi ∈ P and messages
(Input, sid, Pi, cid) from every party in P other than Pi, if a message (Commit,
sid, I) was previously received from Pi and raw[cid] = xcid �=⊥, set raw[cid] =⊥, set
actual[cid] = y and send (Input-Recorded, sid, Pi, cid) to all parties in P and S.
Otherwise broadcast (Abort, sid) and halt.

Random: Upon receiving (Random, sid, cid) from all parties P, if raw[cid] =
xcid �=⊥, set actual[cid] = xcid, set raw[cid] =⊥ and send (Random-Recorded,
sid, cid) to all parties P and S. Otherwise broadcast (Abort, sid) and halt.

Linear Combination: Upon receiving (Linear, sid, {(cid, αcid)}cid∈I , β, cid′)
where all αcid ∈ F and β ∈ F

k from all parties P, if actual[cid] = xcid �=⊥ for
all cid ∈ I and raw[cid′] = actual[cid′] =⊥, set actual[cid′] = β +

∑
cid∈I αcid · xcid

and send (Linear-Recorded, sid, {(cid, αcid)}cid∈I , β, cid′) to all parties P and S.
Otherwise broadcast (Abort, sid) and halt.

Open: Upon receiving (Open, sid, cid) from all parties P, if actual[cid] = xcid �=⊥,
send (Open, sid, cid, xcid) to S. If S does not abort, send (Open, sid, cid, xcid) to all
parties P.

Check Opening: Upon receiving (Check-Not-Open, sid, cid) from Pi ∈ P ∪ V,
if parties {p̂1, . . . , p̂k} ⊂ P did not send (Open, sid, cid), send (Check-Not-Open,
sid, {p̂1, . . . , p̂k}) to Pi.

Initialize Verification: Upon receiving a message (Verification-Start, sid, Pi)
from a party Pi ∈ P, send (Verification-Start, sid, Pi) to all parties P and
V and ignore all messages with this sid in all other interfaces but messages
(Check-Not-Open, sid, cid) in the Check Opening interface and messages (Verify,
sid, cid, x′

cid) in the Public Verification interface.

Public Verification: Upon receiving (Verify, sid, cid, x′
cid) from a party Vj ∈ V,

if a set of parties {P ′
1, . . . , P ′

m} ⊆ P has not sent a message (Verification-Start,
sid), send (Verify-Fail, sid, {P ′

1, . . . , P ′
m}) to Vj . Otherwise, if a message (Open,

sid, cid) has been received from all parties P and actual[cid] = xcid = x′
cid, set f = 1

(otherwise set f = 0) and send (Verified, sid, cid, f) to Vj .

Fig. 3. Functionality FHCom For Homomorphic Multiparty Commitment With Delayed
Public Verifiability

FMPC−SO can be efficiently realized, for instance, by a slightly modified ver-
sion of the constant-round preprocessed BMR protocol of Hazay et al. [23] which
we provide in the full version of this work.

The Smart Contract. Central to our solution for financially fair output deliv-
ery is the smart contract functionality FSC which is described in Fig. 5. This is
a Global UC-functionality, meaning that other functionalities can contact it (as
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Functionality FMPC−SO interacts with the parties P and is parametrized by a circuit
C with inputs x(1), . . . , x(n) and output y = (y1, . . . , ym) ∈ F

m. S provides a set
I ⊂ [n] of corrupt parties and can at any point send (Abort, sid) to FMPC−SO, which
in turn sends (Abort, sid, ⊥) to P and terminates. Let the reconstruction function
f be the XOR over F.

Input: Upon input (Input, sid, i, x(i)) by Pi and input (Input, sid, i, ·) by all other
parties the functionality stores the value (sid, i, x(i)) internally. Every further such
message with the same sid and i is ignored.

Evaluate: Upon input (Compute, sid) by all parties in P and if the in-
puts (sid, i, x(i))i∈[n] for all parties have been stored internally, compute y =
(y1, . . . , ym) ← C(x(1), . . . , x(n)) and store (sid, y) locally.

Share Output: Upon input (Share-Output, sid) and if Evaluate was finished:
1. For each h ∈ [m], pick an unused cidh and send (Request-Shares,

sid, {cidh}h∈[m]) to S. For each i ∈ I, S sends (Output-Shares,

sid, {(cidh, s
(i)
cidh

)}h∈[m]). Then for i ∈ I sample s
(i)
cidh

$← F, store

(sid, cidh, i, s
(i)
cidh

) and send (Output-Shares, sid, {(cidh, s
(i)
cidh

)}h∈[m]) to Pi.

2. For each h ∈ [m], sample zcidh ∈ F such that f(zcidh , s
(1)
cidh

, . . . , s
(n)
cidh

) = yh and
store (sid, cidh, zcidh). Send (Share-Advices, sid, {(cidh, zcidh)}h∈[m]) to S. If
S sends (Deliver-Advices, sid, {cidh}h∈[m]), then send (Share-Advices, sid,
{(cidh, zcidh)}h∈[m]) to all Pi ∈ I.

Share Random Value: Upon input (Share-Random, sid), pick z
$← F and an

unused cid, set zcid = 0 and send (Request-Shares, sid, cid) to S. For each i ∈
I, S sends (Share, sid, cid, s

(i)
cid). Then sample s

(i)
cid

$← F for i ∈ I such that z =
f(zcid, s

(1)
cid, . . . , s

(n)
cid), store (sid, cid, i, s

(i)
cid) and send (Share, sid, cid, s

(i)
cid) to Pi.

Linear Combination: Upon input (Linear, sid, {(cid, αcid)}cid∈I , cid′) from all
parties P, if all αcid ∈ F, all cid ∈ I have stored values and cid′ is un-
used, set s

(i)

cid′ ← ∑
cid∈I αcid · s

(i)
cid for each i ∈ [n], zcid′ ← ∑

cid∈I αcid ·
zcid, record {(sid, cid′, i, s(i)cid′)}i∈[n], (sid, cid′, zcid′), and send (Linear-Recorded,
sid, {(cid, αcid)}cid∈I , cid′) to all parties P and S.
Reveal: Upon input (Reveal, sid, cid, i) by Pi, send (Reveal, sid, cid, i, s

(i)
cid) to S.

If S sends (Deliver-Reveal, sid, cid, i), send (Reveal, sid, cid, i, s
(i)
cid) to all parties.

Private Reveal: Upon input (Reveal, sid, cid, i, j) by Pi:
– if Pi ∈ I or Pj ∈ I then send (Reveal, sid, cid, i, s

(i)
cid) to S. If S sends

(Deliver-Reveal, sid, cid, i, j), send (Reveal, sid, cid, i, s
(i)
cid) to Pj .

– else send (Reveal, sid, cid, i, s
(i)
cid) to Pj .

Fig. 4. Functionality FMPC−SO for MPC with Secret-Shared Output and Linear Secret
Share Operations.

we will see later). It is defined with respect to the global clock FClock although
it would be possible to include this into FSC already.

The main purpose of FSC is twofold as it abstracts two necessary properties
of certain blockchains such as Ethereum. Namely, it allows parties to contribute
coins towards it and upon which FSC acts in a deterministic, publicly known
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Functionality FSC interacts with the parties P and global functionalities
FIdent, FClock. It is parameterized by the compensation q, the deposit d ≥ (n−1)q, the
reconstruction function f and the cash distribution function g. FSC has an initially
empty list M of messages posted to the authenticated public bulletin board.

Lock-in Deposits: Upon receiving (Lock-In, sid, coins(d + t(i))) from Pi where d
coins are security deposit and t(i) ≥ 0 coins are used by Pi as monetary input in the
computation: Query FClock with (Read, sid). If ν > 0 return the money, otherwise
accept it. If this was the first message (Lock-In, sid) send (Update, sid) to FClock.
Check Deposits: If (Read, sid) to FClock returns ν = 1 for the first time: If
(Pi, sid,Output-Scrambled, y) ∈ M for each i ∈ [n] with the same y and each
Pi sent (Lock-In, sid, coins(d + t(i))) then send (Update, sid) to FClock. If not then
reimburse all parties that sent coins and abort.
Check Outputs: If (Read, sid) to FClock returns ν = 2 for the first time: Let J1 be
the maximal set such that ∀i ∈ J1 : (Pi, sid,Output-Share, z(i)) /∈ M. Then send
(Update, sid) to FClock.
Challenge Outputs: If (Read, sid) to FClock returns ν = 3 for the first time: Let
J2 be the maximal set of parties such that ∀i ∈ J2 : (Pi, sid,Challenge, �) ∈ M.
Send (Update, sid) to FClock.
Obtain Verification Data: If (Read, sid) to FClock returns ν = 4 for the first time:
1. If J1 �= ∅ then run Punish(J1) and stop. If J2 = ∅ then run CompPay() and stop.
2. If J2 �= ∅ then send (Verify, sid, z(1), . . . , z(n)) to FIdent.

– If FIdent returns (Verify-Fail, sid, J3) then run Punish(J3) and stop.
– If FIdent returns (Reveal-Fail, sid, ref(1), . . . , ref(n)) then set J3 ←⋃

i∈[n] ref
(i). Run Punish(J3) and stop.

– If FIdent returns (Open-Fail, sid, J3) and J3 �= ∅ then run Punish(J3) and
stop. If J3 = ∅ then run CompPay().

Post to Bulletin Board: Upon receiving (Post, sid,Off, m) from Pi ∈ P, if there
is no (Pi, sid,Off, m′) ∈ M, append (Pi, sid,Off, m) to the list M of authenticated
messages that were posted in the public bulletin board.
Read from Bulletin Board: Upon receiving (Read, sid) from a party, return M.
Macro Punish(punish): Let punish ⊂ [n] and reimburse = [n]\punish. Define e(i)

as d − q · |reimburse| + t(i) if i ∈ punish and d + q · |punish| + t(i) if i ∈ reimburse

and then run Pay(e(1), . . . , e(n)).
Macro CompPay: Compute y ← f(y, z(1), . . . , z(n)) and (e(1), . . . , e(n)) ←
g(y, t(1), . . . , t(n)). Then run Pay(d + e(1), . . . , d + e(n)).
Macro Pay(e(1), . . . , e(n)): For each Pi ∈ P send (Payout, sid, Pi, coins(e(i))) to Pi

and (Payout, sid, Pi, e
(i)) to each other party.

Fig. 5. The stateful contract functionality FSC that is used to enforce penalties on
parties that misbehave in the multiparty computation protocol and to distribute money.

manner. This can be realized by a standard Smart Contract, hence the name
FSC. Moreover, FSC also provides a public bulletin board functionality which can
also be accessed by third parties. A Bulletin Board is a publicly readable storage
for messages which cannot be erased after being posted. We use an authenticated
Bulletin Board, which means that messages that are posted can be related to
specific parties. These can be implemented from a standard Bulletin Board and
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signatures.1 As we focus on the MPC aspects rather than compatibility with a
blockchain based public ledger, we model the public ledger as an ideal Bulletin
Board that allows for parties to immediately write and read messages.

FSC’s remaining interfaces are then tailored towards our application, interact
with the information stored on the bulletin board and can, as mentioned before,
be realized as a smart contract. Namely, the functionality ensures that first all
parties deposit coins, then all parties send output shares and have the possibil-
ity to challenge outputs that they deem incorrect. In that case, FSC identifies
the cheaters together with FIdent (which is defined later) and punishes cheating
parties by splitting up their deposits. Conversely, if no party cheated or raises
concern then FSC returns the deposits and redistributes additional coins accord-
ing to a cash distribution function g that is fixed in advance.

4 Our Construction

We now describe how the aforementioned building blocks can be combined to
construct FOnline from FMPC−SO. We will therefore proceed in two steps. First,
we realize an intermediate functionality FIdent which realizes a flavor of Publicly
Verifiable MPC, from which we then in a second step construct Insured MPC.

The functionality FIdent can be found in Fig. 7. It describes MPC with a
flavor of publicly verifiable output. Here, the parties can verify that the compu-
tation until the output reconstruction was done correctly. If so, then they run a
subcomputation which reconstructs the output and which furthermore allows to
determine if a party aborted or provided incorrect shares. In particular, FIdent

allows for third parties to verify that either a given output was indeed obtained
from the MPC or a given party has misbehaved in the output phase.

Then, using the functionality FSC we realize FOnline, i.e. MPC with fair output
delivery with penalties. There, FSC uses the properties of FIdent to either deter-
mine the distribution of funds according to the output or punish the identified
cheaters. The relations among the functionalities are summarized in Fig. 6.

Building Publicly Verifiable MPC. We now sketch a protocol ΠIdent which
realizes FIdent in the FMPC−SO,FHCom,FCT-hybrid model with the XOR function
over F

m as the reconstruction function. The full protocol together with a proof
of security is presented in the full version.

Fig. 6. Steps of the MPC Protocol Compiler.

In the protocol, the parties first
use FMPC−SO to securely compute
the output y = C(x(1), . . . , x(n))
inside the MPC functionality. The
output is then not immediately
reconstructed, but instead all parties
learn a vector z ∈ F

m and each party
Pi additionally obtains a share vec-
tor s(i) ∈ F

m such that y = z
⊕

s(i).
Each party also generates random blinding values r(i) ∈ F

κ using FMPC−SO.
1 There exist impossibility results on realizing this primitive [20,32], but we avoid

these by allowing for setup, which is also necessary for UC secure MPC [14].
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Functionality FIdent interacts with the parties P and also provides an interface to
register verifiers V. It is parameterized by a circuit C (with inputs x(1), . . . , x(n)

and output y ∈ F
m) and a reconstruction function f . S provides a set I ⊂ [n] of

corrupt parties. Throughout Init, Input, Evaluate and Share, S can at any point
send (Abort, sid), upon which FIdent broadcasts (Abort, sid, ⊥) and terminates.
Throughout Reveal and Verify, S at any point is allowed to send (Abort, sid, J).
If J ⊆ I then FIdent will send (Abort, sid, J) to all honest parties and terminate.

Init: Upon first input (Init, sid) by all Pi ∈ P set rev, ver, ref(1), . . . , ref(n) ← ∅.
Input: Upon first input (Input, sid, i, x(i)) by Pi and input (Input, sid, i, ·) by all
other parties the functionality stores the value (i, x(i)) internally. Every further such
message with the same sid and i is ignored.

Evaluate: Upon first input (Compute, sid) by all Pi ∈ P and if inputs (i, x(i))i∈[n]

for all parties are stored internally, compute y ← C(x(1), . . . , x(n)) and store y locally.

Share: Upon first input (Share, sid) by Pi ∈ P and if Evaluate was finished:
1. For each Pi ∈ P sample s(i) $← F

m uniformly at random and store it locally.
Then send s(i) for each i ∈ I to S.

2. Upon (Deliver-Share, sid, i) from S for i ∈ I send (Output, sid, s(i)) to Pi.

3. Sample ȳ ∈ F
m such that f(ȳ, s(1), . . . , s(n)) = y.

4. Send (Output, sid, ȳ) to S. If S sends (Deliver-Output, sid, ȳ) then send
(Output, sid, ȳ) to all Pi ∈ I.

Reveal: Upon input (Reveal, sid, i) by Pi, if i �∈ rev and ref(i) = ∅ send (Reveal,
sid, i, s(i)) to S.
– If S sends (Reveal-Ok, sid, i) then set rev ← rev ∪ {i}, send (Reveal,

sid, i, s(i)) to all parties in P.

– If S sends (Reveal-Not-Ok, sid, i, J) with J ⊆ I then send (Reveal-Fail,
sid, i) to all parties in P and set ref(i) ← J .

Test Reveal: Upon input (Test-Reveal, sid) from a party in P∪V define ref(i) =
ref(i) if i ∈ rev and ref

(i) ← ref(i) ∪ {i} otherwise. Then send (Reveal-Fail,

sid, ref
(1)

, . . . , ref
(n)) to P and V.

Allow Verify: Upon input (Start-Verify, sid, i) from party Pi ∈ P set ver ←
ver∪{i}. If ver = [n] then deactivate all interfaces except Test Reveal and Verify.

Verify: Upon input (Verify, sid, z(1), . . . , z(n)) by Vi ∈ V with z(j) ∈ F
m:

– If ver �= [n] then return (Verify-Fail, sid, [n] \ ver).

– If ver = [n] and rev �= [n] then send to Vi what Test Reveal sends.

– If ver = rev = [n] then compute the set ws ← {j ∈ [n] | z(j) �= s(j)} and return
(Open-Fail, sid, ws).

Fig. 7. Functionality FIdent for an MPC with Publicly Verifiable Output.

Then each Pi commits to s(i), r(i) using FHCom in order to make the shares
s(i) publicly verifiable later. To ensure correctness, the parties use FCT to sample
a random matrix α ∈ F

κ×m
2 , compute and open the output α × s(i) + r(i) in

both FMPC−SO,FHCom for each Pi and abort if this value differs for any party.
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Otherwise, the parties set y ← z as their public advice and continue the protocol
with the committed values s(i).

To implement the Reveal and Verify-type interfaces of FIdent we use the
respective interfaces of FHCom. Namely, the opening commands of FHCom can
be used to generate the unreliable but identifiable opening of s(i) by each party.
These openings are made publicly verifiable and tested by using the Verification
interfaces of the functionality.

Theorem 1. The aforementioned ΠIdent UC-realizes FIdent (with XOR over F
m

as the reconstruction function) against static active adversaries corrupting < n
parties in the FMPC−SO,FHCom,FCT-hybrid model with broadcast.

Proof (Sketch). Define a simulator S where FCT,FHCom are global and FMPC−SO

a local functionality and which itself simulates the protocol ΠIdent with A using
dummy honest parties. In the full proof we will first show that if a party obtains
values r(i), s(i) from FMPC−SO but commits to differing values towards FHCom,
then the opened values α × s(i) + r(i) from FMPC−SO,FHCom are identical with
probability O(2−κ) as we are essentially evaluating a universal hash function on
these inputs. We then use the fact that we can extract the shares which A uses
for the dishonest parties from our simulated FMPC−SO to provide these to FIdent.
The shares of the output of FMPC−SO can be altered during the opening of z
so that the advice obtained by A is consistent with the output of FIdent. That
the simulation of the Reveal, Verify interfaces using FHCom is indistinguishable
then follows as the values of the dishonest parties inside FHCom coincide with
those provided to FIdent by S, while the equivocability of FHCom allows to simulate
the opening and verification of the s(i) values.

From Publicly Verifiable MPC to Insured MPC. We now sketch a proto-
col ΠCompiler that realizes the functionality FOnline with punishable abort in the
FIdent,FSC,FClock-hybrid model. In ΠCompiler, FIdent will obtain the inputs x(i)

from all parties and provide both the advice ȳ and shares s(i) that are necessary
for the reconstruction of y to the parties. To reliably reconstruct y, each Pi sends
ȳ as well as coins(d+t(i)) to the bulletin board FSC. The coins coins(d) are used to
reimburse other parties in case Pi aborts, while coins(t(i)) is the input of Pi into
the cash distribution function g. Then, FIdent is used by each party Pi to reveal
its share s(i) to all other parties and a value z(i) is posted on FSC (where z(i)

might be different from s(i) if the adversary cheats). We use FClock to determine
if all parties opened/posted their shares z(i) in time and proceed if so. If a party
cheats during the opening phase with FIdent, the protocol instructs all parties to
post a complaint on FSC within a limited time period (enforced by FClock). Once
the parties have reacted to complaints by activating verification, FSC contacts
FIdent to verify the correctness of the z(i). An adversary may withhold his share,
provide an incorrect share or abort this verification, thus preventing both FSC

and the honest parties from obtaining the result. In such a case, let punish ⊆ I
be the set of aborting or cheating parties, and reimburse = P\punish. Each
party from reimburse will be reimbursed by coins(d − q · |reimburse| + t(i)) by
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FSC, whereas the rest is fairly distributed among the non-cheating parties, which
obtain coins(d+ q · |punish|+ t(i)). If all parties act honestly, then FSC uses g to
determine the correct payoffs that are then sent to all parties. This also happens
if parties cheat by not revealing s(i) via FIdent, but posting the correct value on
FSC, because we cannot distinguish a setting where a dishonest party did not
reveal the correct share towards an honest party (which sends a complaint) from
a dishonest party framing an honest party.

Theorem 2. Protocol ΠCompiler UC-realizes FOnline in the FIdent,FSC-hybrid
model with global FClock against static and active adversaries corrupting < n
parties.

Proof (Sketch). Define a simulator S which will interact with the hybrid-world
adversary A in the presence of FOnline,FClock,FSC. S simulates an instance of
ΠCompiler by emulating honest parties and running copies of FIdent,FSC and FClock.
Both FOnline,FIdent use the same cash distribution function g and reconstruction
function f . S runs ΠCompiler with random inputs for the simulated honest parties,
extracts the inputs of the dishonest parties from FIdent and forwards these to
FOnline. S also inputs coins on behalf of A into FOnline (if A sends these to FSC)
and uses the leakage from FOnline to simulate coins from the emulated parties.
S opens those shares s(i) of honest parties towards A that it obtained from
FOnline (same for y) and forwards any aborts of the dishonest parties to FOnline.
Depending if FSC punishes parties or compensates them send the set used by
Punish to FOnline or ∅. It is easy to see that the output which A obtains during
the simulation is consistent with FOnline, and so are the shares as it does not see
s(i) for i ∈ I until the output y is known to S. The coins-values which S sends
are consistent with those from FSC (and vice versa) and both FOnline,FSC abort
in the same cases. We see that by construction if FSC calls Punish then the set
given to the macro is non-empty. FSC either punishes parties that do not send
z(i), do not activate verification or where verification of z(i) fails. All of these
can only occur for dishonest parties.

Hiding the Output y While Distributing Cash. It is immediate that our
protocol ΠCompiler leaks the value y to any user of the distributed ledger. By
the construction of FSC, we can keep it private if one only wants to obtain
MPC with fair output delivery with penalties (without cash distribution). If
cash distribution is indeed required, then we can augment the MPC input by
t(1), . . . , t(n), the output by e(1), . . . , e(n) and compute the latter based on g,y
inside the MPC. During the output phase we only publish the “public” part of
the advice on FSC, which can then perform the cash distribution reliably.
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Abstract. Smart contract platforms such as Ethereum and Libra pro-
vide ways to seamlessly remove trust and add transparency to various
distributed applications. Yet, these platforms lack mechanisms to guaran-
tee user privacy, even at the level of simple payments, which are essential
for most smart contracts.

In this paper, we propose Zether, a trustless mechanism for privacy-
preserving payments in smart contract platforms. We take an account-
based approach similar to Ethereum and Libra for efficiency and usability.
Zether is implemented as a smart contract that keeps account balances
encrypted and exposes methods to deposit, transfer, and withdraw funds
to/from accounts through cryptographic proofs at only a small cost.

We address several technical challenges to protect Zether against
replay attacks and front-running situations and develop a mechanism
to enable interoperability with arbitrary smart contracts, making appli-
cations like auctions, payment channels, and voting privacy-preserving.
To make Zether efficient, we propose Σ-Bullets, a zero-knowledge proof
system that is optimized for Σ-protocols. We implement Zether as an
Ethereum smart contract and show its practicality by measuring the
amount of gas used by the Zether contract. A Zether confidential trans-
action costs about 0.014 ETH or approximately $1.51 (as of early 2019),
which can be drastically reduced with minor changes to Ethereum that
we describe in the paper.

1 Introduction

Smart contracts are computer programs that can directly control digital
assets [48], and hence automate the execution of operations that involve dig-
ital payments such as digital auctions, lotteries, and crowd-sales. Following
the rise of cryptocurrencies, blockchain-based smart contract platforms such as
Ethereum [23] enable execution of smart contracts in a decentralized, transparent
fashion, removing/reducing the liabilities of trusted intermediaries.

A smart contract is typically written in a powerful programming language,
such as Solidity [47], and is executed over a replicated state that is visible to
the public. While this allows anyone to automatically verify the correct execu-
tion of the contract, it can expose sensitive user data to untrusted entities. One
c© International Financial Cryptography Association 2020
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may choose to simply encrypt all the state data to avoid such exposures. Unfor-
tunately, this makes the verification process significantly expensive, leading to
massively-high execution fees.

In contrast, depending on the application, one may choose to encrypt only
the information pertaining to the transfer of assets (i.e., payments) happening
as part of the contract execution. In fact, in many scenarios, especially those
involving competitive risks such as stock trading and auctions, payments infor-
mation (i.e., amounts and identities of the senders/recipients), are the main
source of privacy concerns. Unfortunately, existing techniques for confidential
and anonymous payments, such as Monero [38] and Zcash [50], do not easily and
efficiently extend to smart contract payments, and popular smart contract plat-
forms such as Ethereum do not provide any privacy mechanism. Furthermore,
existing privacy-preserving smart contract mechanisms, such as Hawk [30] and
Ekiden [17], are not completely trustless (see Sect. 3 for details).

Most existing payment confidentiality mechanisms (e.g., [2,34,36,38,50]) are
in the unspent-transaction-output (UTXO) model popularized by Bitcoin. In
this model, the inputs to a new transaction are the unspent outputs of previous
transactions. UTXOs are not well-suited for applications that need to main-
tain some state [13], so smart-contract platforms like Ethereum operate in the
account-based model. Another drawback of existing UTXO-based mechanisms
is that they require major changes to the design of the underlying cryptocur-
rency (typically Bitcoin), and thus have spun off into separate cryptocurrencies.
An immediate benefit of smart contract platforms like Ethereum is that allow
deploying new applications without much changes to the underlying blockchain
protocol.

Our Contribution. We propose Zether, a fully-decentralized, privacy-
preserving payment mechanism in the account-based model. Zether requires no
changes to the design of the underlying smart contract platform (e.g., Ethereum).
As such, the techniques used in Zether can apply to other account-based cryp-
tocurrencies, completely independent of their blockchain/consensus mechanisms.

Our contributions can be summarized as follows:

– Confidentiality. Transactions on Zether are confidential by design. Account
balances are kept encrypted at all times and users provide cryptographic
proofs to spend their money.

– Anonymity. Zether allows anonymous transfers, i.e., can hide the sender and
the receiver of a transaction among a group of users chosen by the sender. Our
protocol neither requires any trusted setup nor any changes to the underlying
smart contract platform.

– Zero-Knowledge Proofs. To make Zether efficient, we propose a new zero-
knowledge (ZK) proof mechanism, called Σ-Bullets, which enhances the
interoperability of Σ-protocols [21] and Bulletproofs [12] to perform range
proofs with ElGamal encryptions efficiently.

– Implementation. We implement Zether as an Ethereum smart contract and
measure the gas amount required for executing it. We show that Zether is
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practical today and with already-planned enhancements to Ethereum will
become even more efficient.

– Interoperability. Zether allows locking an account to a smart contract, making
it easy to “add” privacy to existing applications. We show how Zether can be
used to perform sealed-bid auction, confidential payment channel, confidential
stake-voting, and private proof-of-stake.

In [11], we describe how Zether can be used in several applications to achieve
a strong notion of privacy. These applications include sealed-bid auctions, confi-
dential payment channels, stake voting, and proof-of-stake consensus.

2 Overview of Zether

Our design consists of a smart contract, referred to as the Zether smart con-
tract (ZSC) that manages Zether tokens denoted by ZTH. The contract main-
tains an encrypted account information, referred to as a Zether account, for
any user who wishes to transact privately using ZTH over the underlying smart
contract platform.

To make payment transactions confidential, several proposals (e.g., [34,
38,41]) use homomorphic commitments, such as Pedersen commitments [39].
Though such commitments are simple and efficient, the opening of these com-
mitments must be transferred to the receiver, say Bob, so that he can spend the
money later. This randomness could be stored on-chain in some encrypted man-
ner or sent directly to Bob through a separate channel. In the UTXO model, if
Bob is unable to recover the randomness (an incorrect value was encrypted/sent,
nothing sent at all, etc), then it cannot spend the UTXO later. However, other
UTXOs controlled by Bob are not affected at all and could still be spent. On the
other hand, with an account-based model, since all the incoming transfers go into
the same account, failure to recover the randomness for even a single transfer
could render the whole account unusable. One could require senders to encrypt
the randomness under receivers’ public key, and prove that the commitment
indeed uses the randomness encrypted.

Zether uses ElGamal encryption with messages in the exponent [19] to achieve
homomorphism and create efficient ZK-proofs of correct encryption. Zether
accounts are identified with ElGamal public keys which are stored in the con-
tract’s internal state. To fund an account with public key y with b ZTH, the user
sends b ETH to ZSC which generates an ElGamal encryption of b with random-
ness 0 and “adds” it to the encrypted balance associated with y.1 The user can
convert ZTH back to ETH by revealing the current balance b� and providing a
ZK-proof that y’s ciphertext indeed encrypts b�.

In order to transfer some b amount of ZTH to a public key y′ without revealing
b itself, one can encrypt b under both y and y′. A ZK-proof is provided to show
that the two ciphertexts are well-formed and the remaining balance associated
1 If y has no record on ZSC yet, then a new record is created and initialized with the

aforementioned ciphertext.
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with y is positive. Zether relies on a new ZK-proof system, called Σ-Bullets, to
efficiently prove correctness statements over the encrypted transfer balance and
the new sender balance.

While the above design is simple and efficient, it introduces multiple chal-
lenges which we briefly discuss in the following.

Front-Running Problem. In Zether, ZK-proofs are generated with respect to a
certain state of the contract. For example, the ZK-proof in a transfer transaction
needs to show that the remaining balance is positive. A user, Alice, generates
this proof with respect to her current account balance, stored in an encrypted
form on the contract. Unfortunately, if another user, Bob, transfers some ZTH
to Alice, and Bob’s transaction gets processed first, then Alice’s transaction
will be rejected because the proof will not be valid anymore. This can happen
even if Bob is totally benign and yet Alice loses the fees she paid to process
her transaction. We refer to this situation as the front-running problem. Burn
transactions have a similar problem, too: a proof that a ciphertext encrypts a
certain value becomes invalid if the ciphertext changes.

To solve this problem, one could introduce a new type of transaction that
just locks an account to keep away incoming transfers. Alice could wait until
this transaction gets into the blockchain before initiating an outgoing transfer
(or doing a burn). While this seems to fix the problem (at the cost of making
transfer, the primary transaction, a two-step process), it creates new problems
for users like Bob who want to send ZTH to Alice. Alice’s account may not be
locked when Bob publishes a transfer transaction tx, but it could get locked
before tx gets in, resulting in tx being rejected.

Pending Transfers. To address the front-running problem, we keep all the
incoming transfers in a pending state. These transfers are rolled over into the
accounts from time to time so that the incoming funds could be spent. This
rollover cannot happen at arbitrary times, otherwise the proofs would get inval-
idated again. To handle this, we divide time into epochs each consisting of k
consecutive transaction blocks. The choice of k depends on two factors: (1) The
gap between the latest state of blockchain and any user’s view, and (2) the time
it takes to get a transaction into the blockchain. At the end of every epoch,
pending transfers are rolled over into the corresponding accounts.

Unfortunately, a smart contract does not do anything unless a transaction is
sent to it. One may rollover the pending transfers for all accounts on the receipt
of the first message in an epoch. This, however, places an unreasonably large
burden on the sender of that message: it will have to pay for the cost of rolling
over the accounts that it does not own, which could be too many. Furthermore,
users would have no way to know if their transaction would be the first in an
epoch, so they cannot estimate the right amount of gas to supply. To avoid this,
Zether rollovers an account in an epoch when the first message from this account
is received; so, one message rolls over only one account. Note that there could
be accounts that do not get rolled over for several consecutive epochs because
no transaction is initiated from them.
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Replay Protection. Ethereum provides replay protection of its own by asso-
ciating nonces with every account, which need to be signed into every transac-
tion. Unfortunately, this level of protection is not enough for Zether because:
(1) Zether accounts have their own public keys which are not associated with
Ethereum addresses, and (2) Zether transactions contain non-interactive ZK-
proofs. A malicious actor can steal these proofs and reuse them in new transac-
tions. If the state of the account has not changed, then the new transactions will
also be processed successfully, leading to loss of funds.

To protect against such issues, we associate a nonce with every Zether
account. The nonces are incremented as transactions are processed. A new trans-
action from an account must sign the latest value of the nonce associated with
the account along with the transaction data, which includes any ZK-proof. This
approach binds all components of a transaction together and ensures freshness.
ZK-proofs cannot be imported into malicious transactions and valid transactions
cannot be replayed.

Anonymous Transfers. To allow anonymous transactions in Zether, we require
more complex ZK-proofs, a new replay and double-spend protection mechanism,
and a new mechanism to lock accounts to smart contracts. An anonymous trans-
action allows a user, Alice, to send some b ZTH to another user, Bob, while hiding
both her and Bob’s identity among a larger group of n users. Alice generates
n ciphertexts C1, . . . , Cn, one for each member of the group, respectively and
provides a ZK-proof, π, showing that all the ciphertexts encrypt 0 ZTH except
two of them which encrypt b ZTH but with difference signs, i.e., b and −b. Also,
the proof shows that the remaining balance of the account with positive amount
is non-negative.

A major challenge in providing anonymity is the size of the new ZK-proof, π,
which increases linearly with the size of the anonymity set, n. Zether provides
several optimizations to reduce the size of π and its verification overhead. Namely,
each ZK-proof contains only two range proofs that are computed using the one-
out-of-many proofs of Groth and Kohlweiss [28]. These proofs can be used to
give a secondary encryption to one out of n ciphertexts without revealing which
original ciphertext was re-encrypted. One-out-of-many proofs can be used to
build ring-signatures. Alice uses this proof to create secondary encryptions of
b and −b, respectively along with a secondary encryption of Alice’s balance b∗.
Alice then shows the relationship between b and −b and that b and b∗ − b are
non-negative using a range proof.

Σ-Bullets. Zether uses a custom ZK-proofs system, Σ-Bullets, to certify the cor-
rectness of encrypted transactions without revealing any additional information
to the public. Σ-Bullets integrate Bulletproofs [12] with Σ-protocols to enable
efficient proofs on algebraically-encoded values such as ∃x : gx = y∧hx = u ∈ G.
Bulletproofs on the other hand is a circuit proof system that is well suited for
range proofs and other more complicated arithmetic statements. Bulletproofs
does enable proofs on Pedersen committed values if all values use the same
commitment key. With Σ-Bullets, we can efficiently prove that a set of ElGa-
mal encrypted values are in some range. Further, we combine one-out-of-many



428 B. Bünz et al.

proofs [28], also known as ring signatures, with range proofs to allow anonymous
transfers. The one-out-of-many proof is a Σ-protocol that hides which account
is being used. Bulletproof is then used to show that the account has sufficient
funds for the transfer.

Σ-Bullets inherits from Bulletproofs the trapdoor-free setup and the short,
logarithmic-sized, proof lengths. The ability to prove statements on encrypted
values further significantly reduces the prover and verifier time compared to a
naive implementation using Bulletproofs. We describe Σ-Bullets in detail in [11].

3 Related Work

Confidential transactions for Bitcoin were first proposed by Maxwell [34] who
uses Pedersen commitments [39] and OR-proofs to hide transaction amounts
while allowing to verify that the sum of outputs of a transaction is no more
than the sum of inputs. Monero [38] uses a special type of signature scheme to
hide the origins and destinations of transactions among a set of UTXOs chosen
by the sender (anonymity set). The size of the signature, however, increases
linearly with the size of the anonymity set. Thus, the anonymity properties of
the extension to Zether is similar to that Monero.

Zcash [50], based on Zerocash [2], provides anonymity at a sublinear cost
using a more sophisticated ZK-proof system called zkSNARKs [26]. Senders and
recipients are hidden among the group of people who use shielded addresses. Both
Monero and ZCash utilize a set of nullifiers which grows linear in the number of
transactions. The downside of using SNARKs is that a large common reference
string (CRS) needs to be generated beforehand in a way that no one knows the
trapdoor, which is a challenging task [42]. Spenders needs to download the CRS
and generate proofs for a large circuit, which is very time consuming [2,51].

CoinJoin [33] provides a way for a set of users to jointly create a Bitcoin
transaction. MimbleWimble/Grin [27,41] combines confidential transactions [34]
and CoinJoin along with techniques to aggregate transactions non-interactively.
CoinShuffle [44] and Mixcoin [8] are mixing protocols for Bitcoin. TumbleBit [29]
uses an untrusted intermediary, called a tumbler, to make transactions unlink-
able. Möbius [35] replaces the tumbler with an Ethereum smart contract. Zether’s
approach to anonymity is different from the above: it does not rely on active par-
ticipation of other users. Zether users can choose their own anonymity set like
Monero. On the other hand, if a mixing service is used actively, it may provide
better anonymity.2

Hawk [30] is a framework for building arbitrary smart contracts in a privacy-
preserving way. In particular, it can completely hide the bid values in an auction.
This generality, however, comes at a significant cost. In Hawk, the private portion
of a contract is converted into a circuit. A manager, who is trusted with the
private inputs of participants, generates a zk-SNARK proof on the circuit [3]
to show that it has been executed correctly. Apart from the fact that SNARKs
2 One can potentially use Zether in combination with Möbius on Ethereum to get the

best of both worlds. We leave this as an interesting open question.
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rely on trusted setup, the reference string is also circuit-dependent, so a different
string needs to be generated for every contract. Moreover, the circuit model puts
a bound on the number of users who can participate.

As a result, though Hawk is quite powerful and could provide better pri-
vacy, it is not fully decentralized and would be too expensive to use for simple
contracts. Another general-purpose framework, Ekiden [17], addresses both the
performance and confidentiality problems with smart contract platforms, but
relies on trusted execution environments like Intel SGX, so are not fully decen-
tralized either.

RSCoin, Solidus, zkLedger, etc. [16,22,37] operate in a model that falls some-
where between a fully decentralized setting like that of Bitcoin/Ethereum and a
centralized setting like that of modern financial systems. In this model, the banks
regulate the monetary supply but use a blockchain to transact. There is some
similarity between the techniques used here and zkLedger’s, where every bank
has an account. A sending bank A in zkLedger creates several commitments to
send some money x to a receiving bank B. The commitment corresponding to
A is to −x, to B is to x, and all other commitments are to zero. Then, there
are proofs to show that the commitments are well-formed and A has more than
x amount of money. While we use similar ideas in our protocol, Zether needs
to deal with issues like front-running, replay, compatibility, etc. that come with
building a smart contract on an open platform.

Concurrent Work. Zexe [10] is a recent proposal for a private scripting lan-
guage for Zerocash-style currencies. It provides similar functionality to Bitcoin
script while hiding the inputs to the script and the script itself. It, however, does
not support stateful computations in the way a smart contract does.

QuisQuis [25] is a new anonymity system designed to address some of the
problems with cryptocurrencies like Monero and Zcash (e.g., the set of unspent
outputs keep growing). Their model is an interesting hybrid of UTXO and
account models. While the basic unit is an account (consisting of a public key
and a commitment), they are only of one-time use: old accounts are destroyed
and new accounts created in a transaction. Our Σ-Bullets protocol is similar to
the techniques used in QuisQuis [25], where a Pedersen commitment contains the
same value as an ElGamal encryption and then execute the Bulletproof on the
ElGamal encrypted values. Σ-Bullets more directly incorporates the Σ-protocol
with the Bulletproof protocol.

Unfortunately, QuisQuis suffers from front-running attacks (public keys in
an anonymity set may get updated just before the transaction is processed) and
puts additional burden on clients (they have to go through the list of all updated
keys to find out which one belongs to them). More importantly, QuisQuis is a
standalone cryptocurrency while Zether is a system that can be deployed on any
smart contract platform, and can be used by other smart contracts to achieve
privacy.
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4 Preliminaries

ElGamal Encryption. ElGamal encryption is a public key encryption scheme
secure under the DDH assumption. A random number from Z

�
p, say x, acts as

a private key, and y = gx is the public key corresponding to that. To encrypt
an integer b, it is first mapped to one or more group elements. If b ∈ Zp, then a
simple mapping would be to just raise g to b. Now, a ciphertext for b is given by
(gbyr, gr) where r ←$ Z

�
p. With knowledge of x, one can divide gbyr by (gr)x to

recover gb. However, gb needs to be brute-forced to compute b.
We argue that this is not an issue. First, as we will see, the Zether smart

contract does not need to do this, only the users would do it. Second, users will
have a good estimate of ZTH in their accounts because, typically, the transfer
amount is known to the receiver. Thus, brute-force computation would occur
only rarely. Third, one could represent a large range of values in terms of smaller
ranges. For instance, if we want to allow amounts up to 64 bits, we could instead
have 2 amounts of 32 bits each, and encrypt each one of them separately. In this
paper, for simplicity, we will work with a single range, 1 to MAX, and set MAX
to be 232 in the implementation.

The primary benefit of putting balances in exponent is that it makes ElGamal
encryption additively homomorphic. If b and b′ are encrypted under the same
public key y to get ciphertexts (CL = gbyr, CR = gr) and (C ′

L = gb′
yr′

, C ′
R = gr′

)
respectively, then (CLC ′

L = gb+b′
yr+r′

, CRC ′
R = gr+r′

) is an encryption of b + b′

under y.

Zero-Knowledge Proofs. A zero-knowledge (ZK) proof of a statement does
not reveal any information beyond the validity of the statement. For example,
one could prove that two ciphertexts encrypt the same message without revealing
the message itself. Though any NP statement can be proved in zero-knowledge,
the concrete costs depend on a number of factors.

Σ-protocols are honest-verifier public-coin zero-knowledge interactive proofs
of a special form. Very efficient Σ protocols exist for proving a wide variety
of algebraic statements like knowledge of b and r s.t. an ElGamal ciphertext
encrypts b with randomness r. The Fiat-Shamir transform is a way of trans-
forming any public-coin honest-verifier ZK-proof (like Σ protocols) into a non-
interactive zero-knowledge proof of knowledge in the random oracle model.

A ZK-proof for the statement

st : {(a, b, c, . . . ;x, y, z, . . .) : f(a, b, c, . . . , x, y, z, . . .)}
means that the prover shows knowledge of x, y, z, . . . such that f(a, b, c,
. . . , x, y, z, . . .) is true, where a, b, c, . . . are public variables. We use st[a, b, c, . . .]
to denote an instance of st where the variables a, b, c, . . . have some fixed values.

We represent a non-interactive ZK (NIZK) proof system with algorithms
(Setupnizk,Prove,Verifynizk), where Setupnizk outputs some public parameters,
Prove generates a proof for a statement given a witness, and Verifynizk checks
if the proof is valid w.r.t the statement. Zether uses NIZKs that are a) correct,
an honest prover can produce a valid proof b) zero-knowledge, a verifier learns
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nothing from the proof but the validity of the statement, and c) sound, a com-
putationally bounded prover cannot convince a verifier of a false statement. Σ
protocols, with the Fiat-Shamir transform applied, have all these properties.

Digital Signatures. Signature schemes are used to authorize messages by sign-
ing them. A verifier can check a signature but will be unable to forge a signature
on a previously unsigned message. Signatures can be built from Fiat-Shamir
transformed NIZK proofs [1].

We represent a signature scheme with algorithms (Setupsig,Sign,Verifynizk),
where Setupsig outputs some public parameters, Sign generates a signature on
an input message, and Verifynizk checks if the signature is valid w.r.t. the mes-
sage. Zether requires a signature scheme that is a) correct, it is possible to create
valid signatures on arbitrary messages and b) existentially unforgeable, a compu-
tationally bounded adversary cannot create a valid signature on a new message,
even after seeing signatures on other messages. We omit formal definitions for
brevity and refer to [6] for a thorough treatment of the properties.

5 The Zether Protocol

Notations. We use λ to denote the security parameter. Let GroupGen be a
polynomial-time algorithm that on input 1λ outputs (p, g,G) where p = Θ(λ),
p is prime, G is a group of order p, g is a generator of G, and the decisional
Diffie-Hellman (DDH) assumption holds in G. The DDH assumption states that
a tuple (g, ga, gb, ga·b) is computationally indistinguishable from (g, ga, gb, gc) for
random a, b, c. It implies the discrete logarithm assumption.

Let Zp denote the integers modulo p. Z�
p is the set of inverses in Zp. We use

[a, b] for a, b ∈ Z to denote the set of integers {a, a + 1, . . . , b − 1, b}. We use
x ←$ S to denote that x is sampled uniformly at random from a set S. We
use PPT as a shorthand for probabilistic polynomial time and negl(λ) to denote
negligible functions.

Zether Components. The Zether consists of three components: a global setup
algorithm that is run once to generate the global parameters for the protocol as
well as to deploy the Zether smart contract. The second component is the Zether
smart contract (ZSC) that handles transactions between users, interoperability
with external smart contracts, and keeps the state of the system. The final com-
ponent of the mechanism are the user algorithms which describe how users can
interact with the smart contract and create valid transactions. A user is of course
not bound to the behavior described in the user algorithms. Our security proof
in [11] shows that even if an adversarial user does not comply with these algo-
rithms, he can’t break Zether’s correctness, privacy and over-draft protections.

Setup. The setup algorithm calls Setupnizk and Setupsig as subroutines which are
the setup algorithms for the proof system and the signature scheme, respectively.
The former setup could depend on the relations for which proofs are constructed.
If these subroutines are trustless, then the whole setup is trustless, meaning that
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its correctness can be verified publicly. In the implementation (Sect. 6), we use
Bulletproofs [12] and Schnorr signatures [45], both of which have a trustless
setup. Zether significantly differs from Zcash [50] in this respect because Zcash
has a trusted setup and its security is broken if the setup is subverted.

Setup algorithm is formally described in Fig. 2. Apart from setting up the
proof system and signature scheme, it initializes account tables acc and pending
transfers table pTransfers (recall that incoming transfers are put into a pending
state first), a last roll over epoch table lastRollOver to keep track of the last
epochs accounts were updated, a lock table lock to keep track of the addresses
to which accounts are locked, a counter table ctr to prevent replay attacks, and
a variable btotal that tracks the total amount of ZTH held by the contract. The
setup also specifies an epoch length E and a maximum amount value MAX.

Zero-Knowledge Relations. Each transfer and burn transaction in Zether
contains a ZK-proof which ensures that the transfer is valid without revealing
the reasons why it is valid.

Burn Transaction. Let us first consider a burn transaction where a user needs
to verifiably decrypt his Zether balance. It can certainly do this by revealing its
secret key to the smart contract. However, an adversary can use the secret key
to decrypt all previous balances and transactions of the user, thus completely
breaking its privacy. So, instead of decrypting in the clear, the user creates a
ZK-proof for the following statement:

stburn :
{

(y, CL, CR, u, b, g, gepoch; sk) : y = gsk ∧ CL = gbCsk
R

}
. (1)

The statement shows that the user knows an sk such that y is indeed the
public key corresponding to sk and (CL, CR) is a valid encryption of b under y.
A simple Σ-protocol can be used to prove the statement.

Transfer Transaction. Let us now consider a transfer transaction. Suppose a
user wants to transfer an amount b� from a public key y to a public key y. Let
(CL, CR) be the encryption of balance associated with y. The smart contract
needs to deduct b� from y’s balance and add the same amount to y’s balance,
which will be put into a pending state. Since we need to hide b� in this process,
user will encrypt b� under both y and y to get (C,D) and (C,D), respectively.
Now, it must provide a proof to show that:

1. both ciphertexts are well formed and encrypt the same value b�;
2. b� is a positive value; and,
3. the remaining balance of y, say b′, is positive too.

More formally, a user proves the following statement:

stConfTransfer :
{
(y, y, CL, CR, C, D, C, g; sk, b�, b′, r) :

C = gb�

yr ∧ C = gb�

yr ∧ D = gr∧
CL/C = gb′

(CR/D)sk ∧ y = gsk∧
b� ∈ [0,MAX] ∧ b′ ∈ [0,MAX]

}
. (2)
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Kurosawa [31] first showed that in the ElGamal encryption scheme, randomness
can be reused to encrypt to multiple recipients. We use the same idea here to
make the zero-knowledge component more efficient: the same random number r
is used to encrypt b� under both y and y.

Zether Contract. The Zether contract (ZSC) is defined in Fig. 1. It consists
of five public methods Fund, Burn, Transfer, Lock, Unlock and two additional
internal helper methods RollOver, CheckLock. The helper methods are used to
modularize the contract’s logic. We use Solidity syntax at some places in the
description of ZSC, instead of introducing new notation. We now discuss ZSC’s
methods in detail.

Rolling Over. Pending transfers for an account must be rolled over into the
account every epoch, or at least in the epochs the account is used. However, no
instruction on a smart contract can execute unless triggered by a transaction. As
a result, all public methods of ZSC first call RollOver on the input public key(s).

Given a public key y, RollOver checks if the last roll over was in an older
epoch. If yes, then it rolls over the pending transfers pTransfers[y] into acc[y]
and resets pending transfers as well as the last roll over epoch.

Check Lock. Every transaction to operate on an account is associated with an
Ethereum address (returned by msg.sender). If the account is unlocked, then it
can be operated from any address. However, if it is locked to a certain address,
then it can only be operated from that address. CheckLock is an internal methods
to check these two conditions. All the methods call CheckLock before operating
on an account.

Locking. Given a public key y, an address addr and a signature σlock, Lock checks
if it is appropriate to operate on the account by calling CheckLock, which will be
discussed in more detail shortly, and verifies that σlock is a valid signature on addr
and the current value of counter ctr[y]. It sets lock[y] to be addr and increments
the counter, which ensures that this lock transaction cannot be replayed. Unlock
method also calls CheckLock first, then sets the pending lock to be ⊥.

Funding. Anybody can fund an account, even an account that he/she does not
own, by simply specifying the public key y and transferring some ETH. The only
exception is for locked accounts; they can only be operated from the locking
address. (One could have a different rule for funding locked accounts.) Fund
converts ETH into ZTH. The ETH gets stored in the smart contract and the
ZTH are homomorphically added to y’s (pending) balance. If the account does
not exist yet, a new one is created. Fund also ensures that the deposit does not
exceed the total amount of funds, MAX, that Zether can handle.

Burn. Burn converts ZTH back to ETH. It verifies the proof πburn against stburn
(see (1)) to ensure that the sender knows the right private key and is claiming the
right amount. It also checks a signature on the transaction data and the current
value of counter, which prevents replay attacks. Note that a burn operation does
not close an account.



434 B. Bünz et al.

Fund

– inputs: public key y

1. RollOver(y)

2. Let b=msg.value

3. require:

− b+btotal ≤MAX

− CheckLock(y,msg.sender)=1

4. If acc[y]=⊥:

− Let H=block.number, e=�H/E�
− Set acc[y]=(1,1)

− Set pTransfers[y]=(gb,1)

− Set lock[y]=⊥
− Set lastRollOver[y]=e

− Set ctr[y]=0

Else:

− Set

pTransfers[y]=pTransfers[y]◦(gb,1)

5. Set btotal=btotal+b

Transfer

– inputs: sender public key y, recipient

public key y, ciphertexts (C,D), (C,D)

proof πTransfer, signature σtransfer

1. RollOver(y)

2. RollOver(y)

3. Let (CL,CR)=acc[y]

4. require:

− CheckLock(y,msg.sender)=1

−
Verifynizk(stConfTransfer[y,y,CL,CR,C,C,D],

πtransfer)=1

− Verifynizk(y,(y,C,C,D,πtransfer,ctr[y]),

σtransfer) =1

5. Set acc[y]=acc[y]◦(C−1,D−1)

6. Set pTransfers[y]=pTransfers[y]◦(C,D)

7. Set ctr[y]=ctr[y]+1

Lock

– inputs: public key y, Ethereum address

addr, signature σlock

1. RollOver(y)

2. require:

− CheckLock(y,msg.sender)=1

− Verifynizk(y,(addr,ctr[y]),σlock)=1

3. Set lock[y]=addr

4. Set ctr[y]=ctr[y]+1

Burn

– inputs: public key y, balance b, proof

πburn, signature σburn

1. RollOver(y)

2. Let (CL,CR)=acc[y]

3. require:

− CheckLock(y,msg.sender)=1

− Verifynizk(stburn[y,CL,CR,b,g],πburn)=

1

− Verifynizk(y,(b,πburn,ctr[y]),σburn)=1

4. Set acc[y]=acc[y]◦(C−1
L ,C−1

R )

5. Set ctr[y]=ctr[y]+1

6. Set btotal=btotal−b

7. Do msg.sender.transfer(b)

Unlock

– inputs: public key y

1. RollOver(y)

2. require:

− CheckLock(y,msg.sender)=1

3. Set lock[y]=⊥

Internal Helper Methods

RollOver

– inputs: public key y

1. Let H=block.number, e=�H/E�
2. If lastRollOver[y]<e:

− Set acc[y]=acc[y]◦pTransfers[y]
− Set pTransfers[y]=(1,1)

− Set lastRollOver[y]=e

CheckLock

– inputs: public key y, Ethereum address

addr

– output: 1 if account y can be operated by

addr; 0 otherwise

1. If lock[y]=⊥ or lock[y]=addr:

− Output 1

Else:

− Output 0

Fig. 1. ZSC: The Zether smart contract
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Setup
input: Security parameter λ (in unary)

1. (p,g,G)←GroupGen(1λ)

2. ppnizk ←Setupnizk(1
λ)

3. ppsig ←Setupsig(1
λ)

4. Initialize

– empty account table, acc :G→G
2

– empty pending transfers table, pTransfers :G→G
2

– an empty last roll over epoch table, lastRollOver :G→Z,
– an empty lock table, lock :G→{0,1}∗,
– an empty counter table, ctr :G→Z,

– total balance btotal ∈Z to 0,

5. Deploy smart contract ZSC (Figure 1) with parameters (p, g, G), ppnizk, ppsig, acc,
pTransfers, lastRollOver, lock, btotal, MAX, E.

Fig. 2. Zether setup

Transfer. Transfer transfers some ZTH from an account to another. The proof
πtransfer makes sure that the ciphertext has the right form and the sender has
enough money (see Eq. (2)). Similar to Burn, there is a signature here to prevent
replay attacks.

Note that the transferred amount is added to pTransfers of the recipient, not
acc (i.e., it will be rolled over into acc in a later epoch). Thus, outgoing transfers
of the recipient in this epoch will not be invalidated.

User Algorithms. User algorithms specify how users can interact with ZSC.
CreateTransferTx and CreateBurnTx first do a roll over of the input public keys to
ensure that any pending transfers are rolled over. CreateBurnTx uses ReadBalance
to recover the amount of ZTH in the account. Using the private key, ReadBalance
finds the right b s.t. CL/Cx

R = gb. In typical cases, a user would not have to try
all positive integers one by one to recover b. She will already have a good estimate
of b (Fig. 3).

5.1 Anonymous Zether

We now describe the anonymous version of Zether. While this version hides both
sender and receiver apart from hiding the transfer amount, it also incurs some
additional costs. First, the size of ZK-proof for a transfer increases linearly with
the size of the anonymity set. Second, as we will see, users would be able to do
only one transfer or burn transaction per epoch (not one of each). We discuss
some issues pertinent to the design of anonymous Zether below. For a detailed
description of anonymous Zether, we refer the reader to the full version of this
paper [11].

Replay and Double-Spend Protection. An anonymous transaction pub-
lished by Alice involves multiple accounts only one of which Alice may own. To
preserve anonymity, all the accounts involved in the transaction must be treated
in the same way. Thus, the nonces associated with each one of them should be
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CreateAddress

– inputs: 1λ

– output: x∈Zp,y∈G

1. x←$Zp

2. y=gx

CreateTransferTx

– inputs: sender public key y, receiver

public key y, sender private key x,

sender balance bfrom, transfer amount

b�, state sth of ZSC

– output:

txtrans=(y,y,C,C,D,πtransfer,σtransfer)

1. Roll over y, y in sth
2. Let (CL,CR)=acc[y]

3. r←$Zp

4. Set C=gb�
yr

5. Set C=gb�
yr

6. Set D=gr

7. Set w=(x,b�,bfrom,r)

8. πtransfer=

Prove(stConfTransfer[y,y,CL,CR,C,C,D,g],w)

9. σtransfer=

Sign(x,(y,C,C,D,πtransfer,ctr[y]))

CreateBurnTx

– inputs: private key x, state sth of ZSC

– output: txburn=(y,b,πburn,σburn)

1. Let b=ReadBalance(x,sth)

2. w=(x)

3. Set y=gx

4. Let (CL,CR)=acc[y]

5. πburn=Prove(st′burn[y,CL,CR,b,g],w)

6. σburn=Sign(x,(b,πburn,ctr[y]))

CreateLockTx

– inputs: private key x, locking

Ethereum address addr, state sth of

ZSC

– output: txlock=(y,addr,σlock)

1. Compute σlock=Sign(x,(addr,ctr[y]))

2. Set y=gx

ReadBalance

– inputs: private key y, state sth of

ZSC

– output: balance b

1. Set y=gx

2. Roll over y in sth
3. (CL,CR)=acc[y]

4. Find b s.t. CL/Cx
R=gb

Fig. 3. User algorithms of Zether

incremented. Other account holders involved in Alice’s transaction may have
generated a transaction with the previous value of nonce. Unfortunately, if their
transactions get in later, then they will be rejected. If even one of them gets in
before, then Alice’s transaction will be rejected.

We take a different approach to replay protection, which has some similarities
with that of Monero. Every epoch will be associated with a base gepoch derived
from hashing some fixed string like ‘Zether’ and the current epoch number. To
initiate a transfer or burn transaction from an account with public key y = gsk,
gskepoch must be included in the transaction. More precisely, the proof π described
above for a transfer transaction will also show knowledge of sk such that g =
gskepoch for g included in the transaction. (Burn transactions’ proofs will also
include this.) Importantly, g is computationally unlinkable to y under the DDH
assumption. We refer to g as a nonce in the sequel.

While in the case of confidential transfers, we subtract the transfer amount
from the sender’s balance immediately but keep it pending for the receiver,
one cannot take the same approach for anonymous transfers. All the transfer
amounts, whether positive (for the receiver), negative (for the sender), or zero
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(for others) have to be kept pending. Thus, an anonymous transaction would
not immediately affect the balance of any of the users involved. This opens up
the system to double-spending attacks. A user could generate two transactions
in an epoch, sending her total balance to two different users. The attached ZK-
proofs would both be valid because they will be verified against the same state.
Fortunately, the nonce, in addition to preventing replay attacks, also prevents
such double-spending attacks.

During every epoch, ZSC will accumulate nonces as they come, rejecting any
transaction that reuses a nonce. An important difference from Monero is that
the set of nonces does not grow indefinitely; it is reset to null at the beginning of
every epoch. Thus, providing anonymity does not lead to a continuous growth
in the size of the state of ZSC. A drawback of this approach to replay protection
and double-spending is that even honest users can only initiate at most one
transfer or burn transaction in a given epoch.

Global Updates. With the new replay protection mechanism in place, a few
global updates need to be made in every epoch: set the base for the epoch and
empty the nonce set. We will have to make the updates at the receipt of the
very first message in an epoch, be it from any account. Thus, users will have to
provide a little more gas to cover the possibility that their message could be the
very first one in an epoch. In most cases, this extra gas will be reimbursed.

Locking to Smart Contracts. If some accounts involved in an anonymous
transfer are locked to a smart contract, then all of the locked accounts must be
locked to the same contract. Furthermore, the transfer is processed only if it
comes from that contract. Also, locking must not come into effect immediately.
Suppose Alice publishes a transaction in a certain epoch to lock her account to
a smart contract. Another user Bob may have published a transfer transaction
(at about the same time as Alice) with Alice in his anonymity set while her
account was still unlocked. If Alice’s transaction gets in first, locking her account,
then Bob’s transaction will be rejected. The same holds for unlocking as well.
Therefore, when ZSC is invoked to lock/unlock an account, it just records the
request but does not act on it immediately. When the account is rolled over in
some later epoch, the request will be executed.

Lock transactions also need replay protection. In fact, using the account
secret key, the sender must sign both the nonce and an address (to which the
account will be locked) in the case of confidential transfers, and both the epoch
base and address in the case of anonymous transfers. As a result, for the latter
case, lock transactions must be published at the beginning of an epoch just like
transfer and burn transactions.

5.2 Σ-Bullets

Transfer and AnonTransfer are relatively-large relations that involve proofs on
encrypted data. We, therefore, want to use a proof system that (1) is efficient,
i.e., has short proofs and efficient verification, and (2) allows proofs on encrypted
data. Bulletproofs [12] is a generic zero-knowledge proof system that produces
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short (logarithmic sized) proofs without relying on a trusted setup. Bulletproofs
was specifically designed to work with Confidential Transactions (CT) [34] as
it directly proves statements containing values committed to as Pedersen com-
mitments. Its short proofs and trustless setup make Bulletproofs an intriguing
choice for Zether’s underlying proof system. However, unlike the UTXO-based
CT, Zether relies on ElGamal encryptions as commitments. We, therefore, aim
to use a proof system that can prove statements on ElGamal ciphertexts.

It is not sufficient to simply replace Pedersen commitments with ElGamal
encryptions as the latter cannot be “opened” similar to commitments and are
also not additively homomorphic if encryptions are under different keys, as is the
case in Zether. Also, for AnonTransfer, we need to combine a one-out-of-many
proof3 with range proofs. A one-out-of-many proof is used to select the receiver
and sender transfer encryption and the range proof ensures that no overdraft
happens. Bulletproofs enables efficient range proofs and there are logarithmic
sized efficient Σ-protocols [18] for doing one-out-of-many proofs [9,28].

To efficiently prove these statements and instantiate Zether, we design Σ-
Bullets as an extension of Bulletproofs. Given an arithmetic circuit, a Σ-Bullets
proof ensures that a public linear combination of the circuit’s wires is equal to
some witness of a Σ-protocol. This enhancement in turn enables proofs on many
different encodings such as ElGamal encryptions, ElGamal commitments, or
Pedersen commitments in different groups or using different generators. Further,
it allows the combination of different specialized Σ-protocols such as one-out-of-
many proofs or accumulator proofs [15] with the generic circuit-base proof system
Bulletproofs. This will benefit other systems that want to prove statements on
additively-encoded witnesses. We describe Σ-Bullets in detail in [11].

6 Empirical Evaluation

We implemented basic Zether as an Ethereum smart contract showing that
Zether is feasible today and can be run on top of the Ethereum virtual machine.
We also discuss several optimizations that we made in order to improve the per-
formance of the contract. Further, we will analyze what small improvements to
the EVM would significantly benefit Zether. Some of these improvements have
been discussed independently and are already part of the Ethereum improvement
proposal (EIP) track.

6.1 Solidity Implementation and Optimizations

The Zether smart contract is implemented in Solidity and makes use of several
observations. Ethereum recently introduced precompiled contracts for elliptic-
curve operations on the curve BN-128 [4]. These precompiled contracts reduce
the cost of executing these operations compared to direct implementations. The

3 A non-interactive one-out-of-many proof can be used to instantiate a ring-signature
in which a signer reveals that she knows a private key out of.
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reason is that miners can use specialized software, i.e., special cryptography
libraries, to run these functions more efficiently. The operations were originally
introduced to support pairing-based ZK-SNARKs. Σ-Bullets do not require pair-
ings and the curve BN-128 is not an optimal choice in terms of efficiency or
security for Bulletproofs/Σ-Bullets. Nevertheless, we chose to implement Zether
using this curve because it is natively supported (precompiled contracts are far
cheaper than a Solidity implementation of another curve such as secp256k1 [46].)
As we explain in Sect. 6.3, this means that we have to rely on the DDH assump-
tion in the G1 group of BN-128. This assumption is called the external DDH or
XDH assumption and is less general than the DDH assumption.

Despite the precompiled contract, a majority of the gas cost lies in the cryp-
tographic operations used, especially curve multiplication. We therefore aimed
to reduce the number of exponentiations to an absolute minimum. We did this
by implementing the optimizations presented in Sect. 6.2 of [12].

We did not implement multi-exponentiation as this would not be beneficial.
Multi-exponentiations reduce the number of curve operations but do this by
splitting up the exponentiation. Multi-exponentiation algorithms assume that
a k-bit exponentiation use k curve operations. This is not the case for Solidity
however. The gas cost for an exponentiation is independent of the exponents
length and curve additions are relatively overpriced to curve multiplications. A
curve multiplication is only 80 times more expensive than a curve addition even
if the exponent has 256 bits. Therefore, multi-exponentiation would not lower
but increase the gas cost.

In a further optimization, we rolled out the inner product argument and com-
bined all possible exponentiations into a single large statement. Furthermore, we
slightly modified the recursive inner product argument such that it terminates
at n = 4 instead of n = 1. By doing this, the prover has to send 6 more elements
in Zp but on the other hand saves sending 4 Pedersen hashes which are elements
in G. Since Solidity does not support point compression, i.e., points in G are
encoded using 64 bytes and scalars using 32 bytes, this small modification there-
fore saves 64 bytes in space and also reduces the number of curve exponentiations
that need to be done. In total for the ConfTransfer transaction, the elliptic curve
operations for the account state manipulations, the Σ-protocol and the 2 32-bit
range proofs use 156 curve additions and 154 curve multiplications (Table 1).

A further optimization concerns the common reference string (CRS). Bul-
letproofs unlike SNARKs do not use a structured reference string which would
require a trusted setup. Nevertheless, Bulletproofs still requires a long linear-
sized reference string that the verifier needs to access. While the CRS could
be generated on the fly, this would add over 3.9 million gas to the cost of the
transaction. Storing the CRS in the blockchain storage also creates high addi-
tional cost as loading a 32-byte word costs 200 gas. On the other hand, loading
a 32-byte code instruction costs only 3 gas which is why we choose to hard-code
the generators into the smart contract. While this makes the contract-generation
process more expensive, it is a one-time cost which is amortized over the lifetime
of a contract.
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Table 1. Gas costs of ZSC methods

Gas Cost In USD EC Cost |tx|
Burn 384k $0.080 329k 160 bytes

Fund 260k $0.035 41k 64 bytes

Transfer 7,188k $1.51 6,455k 1,472 bytes

Lock 223k $0.049 83k 128 bytes

Unlock 193k $0.041 83k 96 bytes

6.2 Measurements

We now present several measurements for our implementation of basic Zether.
We measure the total gas cost which includes the basic cost for sending a transac-
tion, the storage cost as well as the proof/signature verification. We also present
the gas cost in USD using a gas cost price of 2 Gwei per unit of gas [24] and
exchange rate of 105 USD per ETH [32]. At the time of writing, a basic Zether
transaction costs about 1.5 USD. We also show that a majority of the cost
is produced by elliptic-curve operations by factoring out their gas cost. For a
transfer transaction, the elliptic-curve operations make up 90% of the total cost.
For a fund transaction, the majority of the cost comes from initializing a new
account. Adding funds to an existing account is significantly cheaper. Finally,
we present the size of the transaction data. Note that this does not include the
basic Ethereum transaction data which is roughly 110 bytes.

6.3 Ethereum Limitations and Future Directions

Currently, Ethereum’s computation power is very limited. A simplified estimate
is that at 3 gas units per arithmetic operation, Ethereum currently supports less
than 180 k operations per second for the whole network. There are several efforts
to increase the scalability of Ethereum [14,49]. The majority of the cost of a
transaction in Zether comes from the cryptographic operations. Despite heavily
optimizing them, they make up for almost 90% of the cost. These operations
seem overpriced when compared to operations like hashing. This discrepancy
has been noted and discussed independently [5]. There currently exists an EIP
to reduce the gas cost of elliptic curve multiplications by a factor of 6.66 and
additions by a factor of 3.33 [5]. A further EIP reduces the cost of calling a
precompiled contract [43] which would reduce the cost for each cryptographic
operation by another 700 units of gas. If both of these were implemented, the
cost of a Zether transfer would reduce to roughly 1.7 million gas (0.36 USD). At
that point, optimizations on the non-cryptographic part of the contract could
probably further reduce the cost.

There are further changes that Ethereum could make that would benefit
Zether. One of them would be supporting elliptic-curve operations for more
efficient curves like secp256k1 [46] or Curve25519-ristretto [20]. Another would
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be supporting multi-exponentiation techniques that can reduce the number of
cryptographic operations needed to verify the range proofs [40].

A simple but significant optimization that can be implemented without chang-
ing Ethereum applies to the proof verification: Bulletproofs can be batch verified.
This means that verifying k aggregated proofs is significantly faster than veri-
fying k single proofs. If transactions were collected by some service provider,
combined to a single transaction and then sent to the Zether contract, it would
significantly reduce the verification cost per proof. However, all transactions in
a batch must be valid because a single invalid transaction will cause the whole
verification to fail. Batch verification requires randomness but this randomness
can either be sampled from the block header [7] or generated from a hash of the
proofs.
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Abstract. A common approach to bootstrapping a new cryptocurrency
is an airdrop, an arrangement in which existing users give away currency
to entice new users to join. But current airdrops offer no recipient privacy:
they leak which recipients have claimed the funds, and this information
is easily linked to off-chain identities.

In this work, we address this issue by defining a private airdrop and
describing concrete schemes for widely-used user credentials, such as
those based on ECDSA and RSA. Our private airdrop for RSA builds
upon a new zero-knowledge argument of knowledge of the factorization
of a committed secret integer, which may be of independent interest. We
also design a private genesis airdrop that efficiently sends private air-
drops to millions of users at once. Finally, we implement and evaluate.
Our fastest implementation takes 40–180 ms to generate and 3.7–10 ms
to verify an RSA private airdrop signature. Signatures are 1.8–3.3 kiB
depending on the security parameter.

Keywords: Cryptocurrency · Airdrop · User privacy · Zero-knowledge
proof of knowledge of factorization of an RSA modulus

1 Introduction

Newly-created cryptocurrencies face a chicken-and-egg problem: users appear
to prefer currencies that already have a thriving ecosystem [41]. For general-
purpose cryptocurrencies, this might entail a healthy transaction volume. For
currencies supporting distributed applications, it could mean having a critical
mass of clients already using the provided functionality. In both cases, the bottom
line is: to attract users, you must already have some.

This problem is well known in practice. One response is an airdrop, an
arrangement in which the existing users of a cryptocurrency give value in their
currency to non-users, at no cost, to entice them to become users. Airdrops
have become increasingly popular [2,14,16,51], with recent high-profile exam-
ples including Stellar [76] and OmiseGO [63].
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As the name implies, an airdrop is designed to transfer value to passive recip-
ients. To be most effective at recruiting new users, an airdrop should not require
recipients to enroll ahead of time—or, in the best case, even to know about the
airdrop in advance. This is effected by leveraging existing cryptographic infras-
tructure. Commonly, recipients claim their airdropped value on a new blockchain
by reusing their identities from some other, well-established blockchain.

While airdrops to existing blockchains are convenient, using other crypto-
graphic infrastructure may be more effective at recruiting desirable users. A
very interesting example is GitHub, since it has tens of millions of users [44],
many of whom use SSH keys to access repositories and PGP keys to sign com-
mits. GitHub publishes users’ public keys [45,46], which allows cryptocurrencies
to design airdrops intended for developers by allowing them to claim airdropped
funds using keys from GitHub. The PGP web of trust [66], Keybase [53], Git-
Lab [47], and the X.509 PKI [30] are interesting for similar reasons.

Yet, no matter the infrastructure they target, airdrops have a serious flaw:
they offer no privacy to their recipients. This means that an observer can easily
learn whether or not any given recipient has claimed her airdropped value. Even
cryptocurrencies that provide anonymity mechanisms for on-chain transactions
(e.g., [10,20]; §5) do not prevent this leakage, because a recipient must first use
her existing identity to claim the airdropped funds. And using cryptographic
infrastructure like GitHub exacerbates this privacy leak since GitHub accounts,
PGP keys, etc., are often tied to software projects and professional activities. All
told, these issues act as a disincentive for privacy-conscious recipients to redeem
their awards, which reduces the airdrop’s effectiveness in recruiting new users.

Existing solutions fall short of addressing this issue. The simplest possible
approach—sending each recipient a fresh secret key for claiming her funds—
carries an even stronger disincentive: it requires recipients to trust the sender.
Both the sender and recipient know the secret key, so either can take the funds,
but neither can prove who did. Meanwhile, a dishonest sender might garner free
publicity with an airdrop, only to claw back the funds; or an incompetent one
might accidentally disclose the secret keys. To avoid this trust requirement, a
workable solution must allow only the recipient to withdraw the funds.

A more plausible approach is to have recipients claim airdrop funds by prov-
ing their identities in zero knowledge. Concretely, a recipient proves that she
knows the secret key for some pre-existing public key (say, the RSA public key of
her GitHub credential), and that no prior airdrop claim has used this public key.
To preserve her privacy, she must do so without revealing which public key she
is using. But proving knowledge of one secret key among a large list of RSA keys
using general-purpose zero-knowledge proof systems [3,9,12,21,25,27,43,64,80]
is too expensive: infeasible computational cost, enormous proofs, and/or a setup
phase whose incorrect execution allows proving false statements (see §5).

Meanwhile, infrastructures like GitHub are primarily based on RSA because
it is, anecdotally, the most widely-supported key type for both SSH [75] and
PGP [49]. This means that taking advantage of these infrastructures effectively
requires support for airdrops to RSA keys.
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Our Contributions. This work builds an efficient and practical private airdrop
system using special-purpose zero-knowledge proofs designed for this task.

First, we define precisely the required functionality and security properties
for a private airdrop scheme (§2.1). Second, we exhibit practical private airdrop
schemes designed to work with ECDSA (§3) and RSA (§4) credentials. Our
ECDSA scheme extends in a straightforward way to Schnorr [73], EdDSA [13],
and similar credentials. To construct our RSA scheme, we devise a new succinct
zero-knowledge proof of knowledge (ZKPK) of the factorization of a committed
secret integer, which we prove secure in the generic group model for groups of
unknown order [32,74]. This new ZKPK may be of independent interest.

In the full paper, we carefully describe how to use private airdrops to boot-
strap a new cryptocurrency, a scheme we call a private genesis airdrop [79, §5].
This scheme is designed to handle millions of recipients, each of whom has hun-
dreds of keys of mixed types (some RSA, some ECDSA, etc.) and who may
potentially have lost one or more of their keys. The scheme lets the airdrop’s
sender prove the total value of the airdrop, while enabling airdrop recipients to
prove non-payment in case the sender was dishonest.

We have also implemented and evaluated our schemes [79, §6]. Our evalua-
tion focuses on the private airdrop scheme for RSA (which is more costly than
the one for ECDSA) and the private genesis airdrop. Depending on the security
parameter, our fastest implementation takes 40–180 ms for an airdrop recipient
to generate an RSA-based private airdrop signature comprising 1.8–3.3 kiB. The
signature takes miners 3.7–10 ms to verify. The scheme requires a trusted setup
to generate one global RSA modulus with an unknown factorization. Eliminating
trusted setup, by using class groups of unknown order, increases signing and ver-
ifying times by 9–13× in our reference implementation. Compared with a private
airdrop to one recipient, a private genesis airdrop to one million users, each with
one thousand public keys, increases signature size by less than 1.8× in the worst
case. Our implementations are available under open-source licenses [48,50].

2 Background and Definitions

[�] denotes the set of integers {0, 1, . . . , � − 1}. λ is a security parameter (e.g.,
λ = 128); we generally leave λ implicit. Primes(2λ) is the set of the smallest 22λ

odd primes; this is roughly the primes up to 2λ + log(2λ) bits in length.
Detailed knowledge of blockchains and cryptocurrencies is not required to

understand this work. For now, we regard a blockchain simply as an append-
only log of transactions. We give slightly more detail in the full paper [79, §5];
curious readers can also consult the survey of Bonneau et al. [19].

2.1 Private Airdrop Scheme

High-Level Description. In a private airdrop, a sender S creates a token and a
secret for a recipient R whose public key is pk . The sender sends the secret to
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R1 and records the token in a blockchain transaction. To claim the airdrop, R
uses the token, the secret, and her secret key sk (i.e., corresponding to pk) to
sign a new transaction. Any verifier V (i.e., other blockchain stakeholders) can
verify this signature using the token, and does not learn the recipient’s pk .

Syntax. Let SIG := (genSIG, signSIG, verifySIG) be a signature scheme secure against
existential forgery under a chosen message attack. The derived private airdrop
scheme PAD with implicit security parameter λ is a tuple of four algorithms:

setup(1λ) →R pp: Output pp, which is an implicit input to the other algorithms.
send(pk) →R (c, s): Compute and output token c and secret s for public key pk ,

where (pk , sk) ←R genSIG(). Here c is a public airdrop token that can later be
claimed by a recipient whose public key is pk . The element s is a secret that
the recipient will use, along with sk , to claim the token c.

sign(sk , (c, s),msg) →R sig: Sign message msg ∈ {0, 1}� under token-secret pair
(c, s) using secret key sk , where (pk , sk) ←R genSIG() and (c, s) ←R send(pk).
An airdrop recipient uses this algorithm to claim the airdrop token c.

verify(c,msg , sig) → {OK,⊥}: OK if sig is valid for msg and token c, else ⊥.
This algorithm is used to verify a claim for the token c.

PAD may also be validatable, in which case it has an additional algorithm:

validate(pk , (c, s)) → {OK,⊥}: This algorithm outputs OK if token c with secret
s granted to public key pk is valid, else it outputs ⊥.

For schemes that are not validatable, we let validate(·, ·) output OK for all inputs.

Functionality. We require that, for all messages msg ∈ {0, 1}�,

Pr

⎡
⎣

verify(c,msg , sig) = OK ∧ validate(pk , (c, s)) = OK
where pp ←R setup(1λ) (pk , sk) ←R genSIG()

(c, s) ←R send(pk) sig ←R sign(sk , (c, s),msg)

⎤
⎦ ≥ 1 − negl(λ)

Security. PAD is secure if it is anonymous, unforgeable, and orthogonal to SIG.
Anonymity means, informally, that c and sig reveal nothing about pk or sk , other
than a well-defined leakage given by a function Λ. This ensures that claiming a
token c does not reveal the claimant’s identity, as required for privacy.

Definition 1. PAD is Λ-anonymous if there is a leakage function Λ such that
for all PPT adversaries A there exists a simulator Sim such that the following
two distributions are statistically indistinguishable, letting pp ←R setup(1λ):

Dr =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pk , sk) ←R genSIG()
(c, s) ←R send(pk)

(msg , st) ←R A(c)
sig ←R sign(sk , (c, s),msg)
output (pk , c,msg , sig , st)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

; Ds =

⎧
⎪⎪⎨
⎪⎪⎩

(pk , sk) ←R genSIG()
H ←R Λ(pk , sk)

(c,msg , sig , st) ←R Sim(H)
output (pk , c,msg , sig , st)

⎫
⎪⎪⎬
⎪⎪⎭

1 This is usually accomplished by encrypting the secret to the recipient’s pk and
publishing the resulting ciphertext, so no explicit private channel is necessary.
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Remark 1. Sim sees only H (not pk), yet simulates (c,msg , sig , st). This means
that this 4-tuple reveals nothing about the challenge pk except the leakage H =
Λ(pk , sk). A does not learn s because in an airdrop only the sender and recipient
do, and the goal is to keep other parties from learning the recipient’s identity.

Remark 2. Sim appears to forge a valid signature (see Definition 2), but this
does not result in a real-world attack on our private airdrop schemes (§3, §4).
The reason for this is that we instantiate these schemes in the random oracle
model [8], and Sim is allowed to program the random oracle.

Remark 3. A slightly stronger definition of anonymity also includes sk in the
output of both distributions. Anonymity under this definition implies, roughly
speaking, that even knowledge of the key sk corresponding to a token c is not
sufficient to connect sig to pk . The schemes in the following sections meet this
stronger notion, but it does not appear necessary in practice.

Unforgeability means, roughly speaking, that without sk one cannot generate
a valid PAD signature for any message, even given valid PAD signatures for
other messages and valid signatures in the underlying SIG for arbitrary messages.
Consider Forge, a game between adversary A and challenger C:

Setup: C sets pp ←R setup(1λ), (pk , sk) ←R genSIG(), and (c, s) ←R send(pk), then
sends pk , (c, s) to A.

Query: A makes any number of queries of type Q1 and Q2, in any interleaving.
Q1: A sends msgSIG

i to C, who replies with sigSIG

i ←R signSIG(sk ,msgSIG

i ).
Q2: A sends msgj to C, who replies with sigj ←R sign(sk , (c, s),msgj).

Forge: A outputs (m̂, ŝ), winning if verify(c, m̂, ŝ)=OK ∧ ∧
j m̂ �=msgj .

Definition 2. Let adversary A’s advantage in Forge be AdvForgeA = Pr [A wins].

PAD is unforgeable if, for any PPT A, AdvForgeA ≤ negl(λ).

Orthogonality means, informally, that PAD signatures do not help to create a SIG
forgery. In other words, the airdrop scheme does not weaken the user’s credential
(e.g., for authenticating to GitHub). Consider Ortho, a game between adversary
A and challenger C:

Setup: C sets pp ←R setup(1λ) and (pk , sk) ←R genSIG(), then sends pk to A, who
chooses (c, s) and sends them to C. Finally, C aborts if validate(pk , (c, s)) = ⊥.

Query: A makes any number of queries of type Q1 and Q2, in any interleaving.
Q1: A sends msg i to C, who replies with sig i ←R signSIG(sk ,msg i).
Q2: A sends msgPAD

j to C, who replies with sigPAD

j ←R sign(sk , (c, s),msgPAD

j ).
Forge: A outputs (m̂, ŝ), winning if verifySIG(pk , m̂, ŝ)=OK ∧ ∧

i m̂ �=msg i.

The game wkOrtho is similar, but further requires
∧

j m̂ �=msgPAD

j for A to win.

Definition 3. Let adversary A’s advantage in Ortho be AdvOrthoA =
Pr [A wins]. PAD is orthogonal to SIG if, for any PPT adversary A,
AdvOrthoA ≤ negl(λ). PAD is weakly orthogonal if Ortho is replaced with
wkOrtho in this definition.
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Remark 4. The PAD scheme of Sect. 4 gives orthogonality, while the scheme of
Sect. 3 gives only weak orthogonality. In practice, weak orthogonality suffices as
long as messages signed in the PAD scheme cannot be confused with messages
signed in the SIG scheme; this appears to be true in our applications.

2.2 Zero-Knowledge Proofs in Generic Groups

In this section we briefly review the notion of a generic group of unknown order
and zero-knowledge proof systems with respect to such groups, following [18].

Generic Groups. We use the generic group model for groups of unknown order
as defined by Damgård and Koprowski [32]. The group is parameterized by two
integer public parameters A,B. The order of the group is sampled uniformly from
[A,B]. The group G is defined by a random injective function σ : Z|G| → {0, 1}�,
for some � where 2� 
 |G|. The group elements are σ(0), σ(1), . . . , σ(|G| − 1). A
generic group algorithm A is a probabilistic algorithm. Let L be a list that is
initialized with the encodings given to A as input. The algorithm can query two
generic group oracles:

• O1 samples a random r ∈ Z|G| and returns σ(r), which is appended to the
list of encodings L.

• When L has size q, the second oracle O2(i, j,±) takes two indices i, j ∈
{1, . . . , q} and a sign bit, and returns σ(xi ± xj), which is appended to L.

Note that unlike Shoup’s generic group model [74], the algorithm is not given
|G|, the order of the group G.

The Representation Extraction Lemma. Let A be an algorithm that outputs a
generic group element u ∈ G. The following lemma from [37] shows that there is
an extractor that can extract from A an integer representation of u relative to a
supplied set of group generators. Moreover, this integer representation is unique.

Lemma 1 (Unique representation extraction in generic groups). Let
G be a generic group of unknown order where |B − A| is super-polynomial in λ.
Let A1,A2 be two randomized algorithms that interact with group oracles for G

and make at most a polynomial in λ queries to these oracles. Suppose that each
algorithm makes at most q type-1 queries and let g1, . . . , gq ∈ G be the returned
random group elements. Each of A1 and A2 eventually outputs some ui ∈ G.

Then there is an extractor B that emulates the generic group oracles for Ai

i ∈ {1, 2} such that when B interacts with Ai the following holds with overwhelm-
ing probability: if Ai outputs ui ∈ G then the extractor Bi outputs a representa-
tion αi,1, . . . , αi,q ∈ Z such that ui = g

αi,1
1 · · · gαi,q

q . Moreover, if u1 = u2 then
the two representations are the same, namely α1,j = α2,j for j = 1, . . . , q.
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Argument Systems. An argument system for a relation R ⊂ X × W is a triple
of randomized polynomial time algorithms (Pgen,P,V), where Pgen takes an
implicit security parameter λ and outputs a common reference string (crs) pp.
If the setup algorithm uses only public randomness we say that the setup is
transparent and that the crs is unstructured. The prover P takes as input a
statement x ∈ X , a witness w ∈ W, and the crs pp. The verifier V takes as
input pp and x and after interaction with P outputs 0 or 1. We denote the
transcript between the prover and verifier by 〈V(pp, x),P(pp, x, w)〉 and write
〈V(pp, x),P(pp, x, w)〉 = 1 to indicate that the verifier accepted the transcript.
If V uses only public randomness we say that the protocol is public coin.

Definition 4 (Completeness). An argument system (Pgen,P,V) for a rela-
tion R is complete if for all (x,w) ∈ R:

Pr
[ 〈V(pp, x),P(pp, x, w)〉 = 1 : pp ←R Pgen(1λ)

]
= 1.

We now define soundness and knowledge extraction for our protocols. The adver-
sary is modeled as two algorithms A0 and A1, where A0 outputs the instance
x ∈ X after Pgen is run, and A1 runs the interactive protocol with the verifier
using a state output by A0. In slight deviation from the soundness definition
used in statistically sound proof systems, we do not universally quantify over
the instance x (i.e. we do not require security to hold for all input instances x).
This is due to the fact that in the computationally-sound setting the instance
itself may encode a trapdoor of the crs pp (e.g. the order of a group of unknown
order), which can enable the adversary to fool a verifier. Requiring that an
efficient adversary A0 outputs the instance x prevents this. For soundness, no
efficient adversary A1 can make the verifier accept when no witness for x exists.
For an argument of knowledge, there should be an extractor that can extract a
valid witness whenever A1 is convincing.

Definition 5 (Arguments (of Knowledge)). An argument system
(Pgen,P,V) is sound if for all PPT adversaries A = (A0,A1):

Pr

[
〈V(pp, x),A1(pp, x, state)〉 = 1 ∧ �w (x,w) ∈ R

where pp ←R Pgen(1λ), (x, state) ←R A0(pp)

]
≤ negl.

Additionally, the argument system is an argument of knowledge if for all
PPT adversaries A1 there exists a PPT extractor Ext such that for all PPT
adversaries A0:

Pr

⎡
⎢⎢⎣

〈V(pp, x),A1(pp, x, state)〉 = 1 ∧ (x,w′) �∈ R

where pp ←R Pgen(1λ)
(x, state) ←R A0(pp)

w′ ←R Ext(pp, x, state)

⎤
⎥⎥⎦ ≤ negl.

Any argument of knowledge is also sound. In some cases we may further
restrict A in the security analysis, in which case we would say the system is an
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argument of knowledge for a restricted class of adversaries. For example, in this
work we construct argument systems for relations that depend on a group G of
unknown order. In the analysis we replace G with a generic group and restrict A
to a generic group algorithm that interacts with the oracles for this group. We
say that the protocol is an argument of knowledge in the generic group model.

Definition 6 (Zero Knowledge). We say an argument system (Pgen,P,V)
for R has statistical zero-knowledge if there exists a PPT simulator Sim such
that for (x,w) ∈ R the following distribution are statistically indistinguishable:

Dreal =
{ 〈P(pp, x, w),V(pp, x)〉

where pp ←R Pgen(1λ)

}
; DSim =

{
Sim(pp, x,V(pp, x))
where pp ←R Pgen(1λ)

}

Definition 7 (Non interactive arguments). A non-interactive argument
system is an argument system where the interaction between P and V consists
of only a single round. We write the prover P as P(pp, x, w) → π and the verifier
as V(pp, x, π) → {0, 1}.
The Fiat-Shamir heuristic [35] and its multi-round generalization [11] transform
public coin arguments into non-interactive ones, in the random oracle model [8].

3 Warm-Up: A Private Airdrop to ECDSA Keys

Let H with generator ĝ be a cyclic group of prime order q̂. Let the ECDSA
signature scheme in H be the triple (genDSA

H
() →R (pk , sk), signDSA

H
(sk ,msg) →R sig ,

verifyDSA

H
(pk ,msg , sig) → {OK,⊥}); (pk , sk) = (ĝx, x) is an ECDSA key pair.

We now define PAD-DSA, a private airdrop scheme to ECDSA keys. Intu-
itively, the token c in this scheme is a fresh ECDSA public key derived from
an existing key, such that only that key’s owner can compute the corresponding
secret. In particular, PAD-DSA leverages the fact that c = pks = ĝx·s ∈ H is an
ECDSA public key whose corresponding secret key is sk ·s = x ·s ∈ Zq̂. Further,
if s is chosen at random, pks is independent of pk , so c reveals nothing about pk .

Thus, PAD-DSA is the validatable private airdrop scheme given by:

setup(1λ) → pp: Output ⊥; this scheme uses no public parameters.
send(pk) →R (c, s): Choose s ←R [q̂] \ {0}, set c ← pks ∈ H, and output (c, s).
sign(sk , (c, s),msg) →R sig: Output signDSA

H
(sk · s ∈ Zq̂, (c,msg)).

verify(c,msg , sig) → {OK,⊥} : Output verifyDSA

H
(c, (c,msg), sig).

validate(pk , (c, s)) → {OK,⊥}: OK if s ∈ [q̂] \ {0} ∧ c = pks ∈ H, else ⊥.

Theorem 1. PAD-DSA is anonymous (Definition 1), with no leakage.

We prove Theorem 1 in the full paper [79, §3].

Definition 8 (Idealized ECDSA [23,33]). The triple (genDSA

H
, signDSA

H
,

verifyDSA

H
) is the idealized ECDSA algorithm if the two hash functions called

as subroutines by signDSA

H
and verifyDSA

H
are modeled as random oracles.
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Theorem 2. PAD-DSA is unforgeable (Definition 2) when (genDSA

H
, signDSA

H
,

verifyDSA

H
) is modeled as the idealized ECDSA algorithm.

Theorem 3. PAD-DSA is weakly orthogonal to ECDSA in H (Definition 3)
when (genDSA

H
, signDSA

H
, verifyDSA

H
) is modeled as the idealized ECDSA algorithm.

Dauterman et al. [33, Theorem 5, Appendix C] prove a statement equivalent
to Theorem 2. PAD-DSA is, in effect, a signature under a related key; Theorem 3
captures the required security against related-key attacks. Morita et al. [59,
Theorem 2] prove a statement equivalent to this theorem, and also suggest a
tweak to DSA whose use would give full (rather than weak) orthogonality for
PAD-DSA.

An alternative to the above scheme is to use c = pk · ĝs = ĝx+s, with signing
key x+s ∈ Zq̂, similarly to hierarchical deterministic wallets [81]. PAD-DSA also
extends naturally to Schnorr [73], EdDSA [13], and related schemes.

4 A Private Airdrop to RSA Keys

Let G be a group of unknown order (§2.2) with generators g, h having unknown
discrete-log relation. Let H be an auxiliary cyclic group of known prime order
q̂ with generators ĝ, ĥ having unknown discrete-log relation. Let n ∈ [N ] be
a secret integer where N is a public upper bound on n and N > |G| · 2λ. Let
c := gn · hs ∈ G be a Pedersen commitment [65] to n with opening s ←R [N ].

In this section we construct a private airdrop to RSA keys. We proceed in
two steps: we first construct an interactive zero-knowledge proof of knowledge
(ZKPK) of the factorization of an RSA modulus n ∈ Z given a public Pedersen
commitment [65] to this n (see §4.1 and §4.2). We then make this protocol non-
interactive via the Fiat-Shamir heuristic [35], yielding a private airdrop (§4.3).

One way to prove knowledge of the factorization of a committed n is for the
prover to commit to integers p and q, and then prove that they are nontrivial
factors of n. We instantiate this approach in Sect. 4.1, but verifying the proof is
costly: it requires an exponentiation by a several thousand–bit exponent.

To address this, in Sect. 4.2 we describe a second ZKPK that reduces the
verifier’s work by roughly 5× and gives ≈13–49% shorter proofs. The resulting
protocol leaks a small amount of information about n: at most two bits, This can
be reduced to just one leaked bit under a mild assumption (Corollary 1, §4.3).

Remark 5. The protocols of this section are insecure if the group G contains
a non-identity element of known order. In the group Z

×
m the element −1 has

order 2, and hence this group is unsuitable for our protocols. Instead, we work in
the quotient group G := Z

×
m/{±1}, where elements are represented as integers in

the interval [1,m/2] and the product of x and y is defined as x ·y = min(z,m−z)
where z = (x · y mod m). In this group −1 is the same as 1, and presumably
there are no other known elements of known order other than the identity. We
discuss the group G further in the full paper [79, §7].
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4.1 PoKF1: ZKPK of Factorization of a Committed Integer

To prove knowledge of the factorization of n, the prover establishes the relation

R′
g,h :=

{ (
c ∈ G, (n, p, q, s) ∈ [N ] × Z

3
)
, where

c = gn · hs, p · q = n, p �∈ {±1,±n}

}
(1)

where c is the statement and (n, p, q, s) is the witness. At a high level, the proof
works as follows: the prover P sends the verifier V two Pedersen commitments
cp and cq to p and q, respectively, then proves that p · q = n and p /∈ {±1,±n}.
For this purpose, we combine folklore sigma protocols [6,28,31,54,62,73] with
recent work extending such protocols to generic groups of unknown order [18].

To efficiently prove that p /∈ {±1,±n} we make use of the auxiliary group H.
Recall that V has commitments to p and n, and could therefore prove that
p /∈ {±1,±n} by proving that (p2 − 1)(p2 − n2) �= 0 as integers. However, this
requires a relatively large proof containing multiple elements of G.

To sidestep this issue, we take a different approach: rather than execute the
proof in G, our P and V execute it in a much smaller group H of known prime
order (say, an elliptic curve group). For RSA moduli at practical security levels
the order of H is all but certainly coprime to p, p ± 1, and p ± n, so this suffices
to convince V that p /∈ {±1,±n} in Z for essentially any n.

The prover P provides a commitment ĉp2 ∈ H to p2, from which V can
compute a commitment to p2 − 1 as ĉp2/ĝ ∈ H. To do the same for p2 − n2

the verifier V needs a commitment ĉn2 ∈ H to n2. Fortunately, in the airdrop
context this is easy to arrange, by requiring the sender S to compute the token
as (c, ĉn2) with corresponding secret (s, s2). This gives the modified relation

R′′
g,h,ĝ,ĥ

:=

⎧
⎪⎨
⎪⎩

(
(c, ĉn2) ∈ G × H, (n, p, q, s, s2) ∈ [N ] × Z

3 × [q̂]
)
,

where c = gn · hs, ĉn2 = ĝ(n
2) · ĥs2 ,

p · q = n, p �∈ {±1,±n} mod q̂

⎫
⎪⎬
⎪⎭

(2)

for statement (c, ĉn2) and witness (n, p, q, s, s2).
We leave details of PoKF1 to the full paper [79, §4.1, Appxendix B].

4.2 PoKF2: Reducing Costs by Allowing (1-bit) Leakage

As mentioned previously, PoKF1 suffers from high verification cost [79, §4.1,
Appendix B.4]. In this section, we give a protocol that reduces both verification
and communication cost compared to PoKF1, but leaks one bit about n. This
leakage appears to be acceptable in private airdrop applications.

To prove knowledge of factorization of n, the prover establishes the following
relation for w ∈ [N ] where w2 ≡ t (mod n) and t ∈ Z is prime, 2 ≤ t < λ.
(Recall that computing square roots modulo n is equivalent to factoring n.)

Rg,h :=

⎧
⎨
⎩

(
(c, t) ∈ G×[λ], (n, s, w, a) ∈ [N ]4

)
, where

c = gn · hs ∈ G, w2 = t + a · n ∈ Z, 2 ≤ t < λ a prime

⎫
⎬
⎭ (3)
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Here (c, t) is the statement and (n, s, w, a) is the witness. The integer relation
w2 = t + a · n proves that w2 ≡ t (mod n), as required.

Remark 6. Common hardware security tokens for RSA keys (e.g., [82]) imple-
ment a signing oracle abstraction. This means that the device’s owner has access
to (at best) an eth root in Zn for (n, e) = pk—and not to the factorization of n.
Furthermore, these security tokens often fix e = 65537. In principle, it is possible
to adapt our ZKPK to a relation analogous to (3) for w� a 65537th root of t. This
proof would be an order of magnitude longer, but would eliminate the leakage
about n, and support security tokens. We leave to future work the problem of
devising a concretely small ZKPK supporting these security tokens.

We now give an interactive ZKPK for Relation (3), building on the results
of Boneh et al. [18]. This relation leaks that t ∈ Z is a quadratic residue modulo
the committed n. As discussed below (Corollary 1, §4.3), this leakage amounts
to one bit under a standard cryptographic assumption.

Protocol PoKF2 for relation (3) between prover P and verifier V works as
follows. V’s input is (c, t) ∈ G×[λ] with t prime, and P’s input is (c, t, n, s, w, a) ∈
G × [N ]5. To start, P chooses two random integers s1, s2 ←R [N ] and computes
c1 ← gw · hs1 ∈ G and c2 ← ga · hs2 ∈ G. Next, define a homomorphism
φ : Z

8 → G
4 × Z parameterized by g, h, c, c1, c2:

φ

(
w,w2 , s1 , a,
na, s1w , sa, s2

)
:=

(
gw · hs1 , ga · hs2 , gw2 · hs1w/cw

1 ,
gna · hsa/ca, w2 − na

)
(4)

It is easy to see that φ is a group homomorphism whose range is the group
G

4 × Z. We will write the group operation in this group multiplicatively. That
is, if (ai, bi, ci, di, ei) ∈ G

4 × Z for i ∈ {1, 2}, then

(a1, b1, c1, d1, e1) · (a2, b2, c2, d2, e2) := (a1a2, b1b2, c1c2, d1d2, e1 + e2).

To prove knowledge of a witness for relation (3), it suffices for P to prove
that it knows a φ-preimage of T := (c1, c2, 1, 1, t) ∈ G

4 × Z. In other words, we
need a ZKPK for a vector v′ = (w′,w2 ′, s1′, a′,na ′, s1w ′, sa ′, s2′) ∈ Z

8 such that

φ(v′) = T = (c1, c2, 1, 1, t) ∈ G
4 × Z. (5)

This proves that c1 is a commitment to w′ ∈ Z, c2 is a commitment to a′ ∈ Z,
w2 ′ = (w′)2, and na ′ = a′ · n for some integer a′. The fifth term in (5) proves
that (w′)2 − a′ · n = t ∈ Z, as required.

We design a ZKPK for a φ-preimage using a zero-knowledge protocol due to
Boneh et al. [18, Appxendix A]. Here, the verifier V is given T ∈ G

4 ×Z and the
prover P is given T and v ∈ Z

8 where φ(v) = T . The protocol works as follows:

(1) P sets r := (rw, rw2 , rs1 , ra, rna , rs1w , rsa , rs2 ) ∈ Z
8 where

rw, rw2 , rna , ra ←R [22λ+log(2λ) · 2λ] and rs1 , rs1w , rsa , rs2 ←R [N · 22λ+log(2λ)].
P then computes R ← φ(r) ∈ G

4 × Z and sends (c1, c2,R) to V.
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(2) V chooses challenges ch ←R [2λ] and � ←R Primes(2λ),2 and sends them to P.
(3) P computes z ← (ch · v + r) ∈ Z

8, z� ← (z mod �) ∈ [�]8, zq ← �z/�� ∈ Z
8,

and Zq ← φ(zq); and sends (Zq, z�) ∈ (G4 × Z) × [�]8 to V.
(4) V accepts if Z�

q · φ(z�) = T ch · R in G
4 × Z.

Verification cost is dominated by evaluation of Z�
q · φ(z�), which entails four

multi-exponentiations with exponents of size at most 2λ + log(2λ) bits (i.e., the
bit length of �; §2). For λ = 128 and N ≈ 24096, this is roughly 5× less expensive
than the verification cost of protocol PoKF1 from the prior section. As we discuss
in the full paper [79, Appxendix B.4], PoKF2 also gives ≈13–49% smaller proofs.

Remark 7. The commitment c2 to the integer a is necessary for soundness, and
in particular to ensure that a is an integer. If c2 along with s2 and the second
coordinate of φ are eliminated then there is an attack where an adversarial prover
can prove knowledge of (

√
3 mod n) using a = 1/n and w = 2.

Theorem 4. Protocol PoKF2 is a zero-knowledge protocol for Rg,h from (3).

Definition 9. Algorithm G is an honest instance generator for Rg,h

(Eq. (3)) if it chooses integers n, s, t, and outputs (c, t) where c := gn · hs ∈ G

and t ∈ [λ].

Theorem 5. Protocol PoKF2 is an argument of knowledge for the relation Rg,h

in (3) for instances (c, t) generated by an honest instance generator G, when the
group G is a modeled as a generic group of unknown order.

We prove Theorems 4 and 5 in the full paper [79, Appxendix C].

4.3 PAD-RSA: A Private Airdrop for RSA Keys

We construct PAD-RSA by applying the Fiat-Shamir heuristic [35] to the inter-
active ZKPK PoKF2 from Sect. 4.2. We optimize further in [79, §4.4].

Let (genRSA() →R (pk , sk), signRSA(sk ,msg) →R sig , verifyRSA(pk ,msg , sig) →
{OK,⊥}) be an RSA signature scheme, e.g., RSA-FDH [8]. Then PAD-RSA is
given by:

setup(1λ) →R pp: Select a group of unknown order G generated by g and h, and
N > |G| · 2λ an upper bound on the size of RSA moduli that can be used
with these parameters. Output pp = (G, g, h,N, λ). We discuss G candidates
below.

send(pk) →R (c, s): For (n, e) = pk , s ←R [N ], c ← gn · hs ∈ G, output (c, s).
sign(sk , (c, s),msg) →R sig: For (n, p, q) = sk , do:

(1) choose a random prime 2 ≤ t < λ such that t is a quadratic residue in
Zn,

(2) find integers (w, a) such that w2 = t + an in Z (i.e. w2 ≡ t mod n),
2 In an interactive protocol, � ←R Primes(λ) would suffice for soundness. Applying the

Fiat-Shamir heuristic causes a loss in security, thus requiring a larger � [17, §3.3].
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(3) choose a random s1 ←R [N ] and compute c1 ← gw · hs1 ∈ G,
(4) choose a random s2 ←R [N ] and compute c2 ← ga · hs2 ∈ G,
(5) compute v ← (w,w2, s1, a, n · a, s1 · w, s · a, s2),
(6) set r := (rw, rw2 , rs1 , ra, rna , rs1w , rsa , rs2 ) ∈ Z

8 where
rw, rw2 , rna , ra ←R [22λ+log(2λ) · 2λ] and rs1 , rs1w , rsa , rs2 ←R [N · 22λ+log(2λ)],

(7) compute R ← φ(r) ∈ G
4 × Z, where φ is the homomorphism defined

in (4),
(8) compute (ch, �) ← Hash(msg , G, g, h, c, c1, c2, t,R), where ch ∈ [2λ] and

� ∈ Primes(2λ) (e.g., by treating the hash output as a PRG seed),
(9) compute z ← (ch · v + r) ∈ Z

8, z� ← (z mod �) ∈ [�]8, zq ← �z/�� ∈ Z
8,

Zq ← φ(zq) ∈ G
4 × Z,

(10) output the signature sig = (c1, c2, t, ch, �,Zq, z�).
verify(c,msg , sig) → {OK,⊥} : For (c1, c2, t, ch, �,Zq, z�) = sig ,

(1) output ⊥ if t /∈ [λ] or not prime, c1, c2 /∈ G, Zq /∈ G
4 × Z, or z� /∈ [�]8.

(2) with T := (c1, c2, 1, 1, t) ∈ G
4×Z, compute R′ ← Z�

q ·φ(z�)/T ch ∈ G
4×Z,

(3) compute (ch ′, �′) ← Hash(msg , G, g, h, c, c1, c2, t,R′), where ch ′ ∈ [2λ]
and �′ ∈ Primes(2λ),

(4) output OK if ch ′ = ch and �′ = �, else output ⊥.
validate(pk , (c, s)) → {OK,⊥}: Output OK if s ∈ [N ] ∧ c = gn · hs ∈ G, else ⊥.

As discussed in Remark 5, the security of PAD-RSA relies crucially on G

containing no elements of known order other than the identity. Z
×
m/{±1} for

m an RSA modulus with unknown factorization is a convenient choice, but it
requires a trusted setup (to generate m without leaking its factorization). A
candidate G that does not require trusted setup is the class group of imaginary
quadratic order [24]. We discuss further in the full paper [79, §7].

Since the ZKPK of Sect. 4.2 is complete, PAD-RSA is a valid scheme. The
following theorems establish the security properties of PAD-RSA. Corollary 1 and
Theorem 8 rely on the quadratic residuosity assumption (QRA) [15]: informally,
for RSA modulus m with unknown factorization, distinguishing between a square
modulo m and a non-square with Jacobi symbol +1 is infeasible.

Theorem 6. PAD − RSA is ΛRSA-anonymous (Definition 1) in the ROM. ΛRSA

reveals two bits about (n, e) = (pk , sk), namely, a small prime quadratic residue
mod n.

Corollary 1. Under QRA, ΛRSA(pk , sk) leaks one bit about pk with respect to
any RSA modulus of unknown factorization, to any PPT observer.

Theorem 7. PAD − RSA is unforgeable in the random oracle model if comput-
ing

√
t ∈ Zn from RSA public key (n, e) = pk is hard, 2 ≤ t < λ a prime.

Theorem 8. PAD − RSA is orthogonal to RSA under QRA in the ROM.

We prove Theorems 6–8 and Corollary 1 in the full paper [79, §4.3].
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5 Related Work

Anonymity and Privacy for Cryptocurrencies. Our work relates broadly to pri-
vacy for cryptocurrency users, but it attacks a different problem than prior work.
We very briefly rehearse that work for context. Following Bünz et al. [25], we
separate prior work into anonymity, hiding associations between identities and
transactions, and confidentiality, hiding contents of transactions.

While Bitcoin was intended to provide anonymity [60], in practice it does
not [4,57]. Early responses to this issue hide transaction history by shuf-
fling together unrelated transactions [55,71]. More recent work uses crypto-
graphic machinery to give stronger guarantees [10,61,72]. CryptoNote stealth
addresses [72] are similar to a PAD in that they allow a sender to derive an
anonymous identity from a recipient’s public key. But this scheme requires a
special public key format, is incompatible with RSA keys, and has no formal
security statement.

A related line of work deals with confidentiality. Maxwell showed how to con-
struct transactions whose inputs and outputs are hidden in cryptographic com-
mitments, and which include zero-knowledge proofs attesting to validity [56].
Later work built upon and refined this approach [38,52,67,68]. Most recently,
Bünz et al. [25] showed how to significantly improve the costs of the zero-
knowledge proofs on which confidential transactions are built.

Efficient Airdrops. MerkleMine [58] and pooled payments [69] are methods for
compressing airdrops using Merkle trees. These are similar to our private genesis
airdrop (described in the full paper [79, §5]), but our design entails more com-
plexity because it aims to preserve the privacy of recipients, supports multiple
keys per recipient, and allows recipients to accuse the sender of dishonesty.

A recent survey of airdrops [36] discusses the cost of these and other methods.

General-Purpose Zero-Knowledge Proofs and Private Smart Contracts. Several
lines of work have produced frameworks for constructing zero-knowledge proofs
for general NP statements; other work has applied these ideas to constructing
smart contracts. For space reasons we defer this discussion to the full paper [79,
§8]. In sum, these works pay a high cost for their generality, and are far more
expensive than the special-purpose ZKPK of Sect. 4.

Group Signatures, Ring Signatures, etc. In a group signature scheme [7,29],
users join a group by registering with an administrator; thereafter, any user
can sign for the group. This signature does not reveal which user signed, just
that one member of the group did. Private airdrops are vaguely similar to group
signatures, but they disconnect the anonymity set (all users who own a certain
key type) from the signing set (exactly one user, designated by the sender). Our
private genesis airdrop (described in the full paper [79, §5]) is roughly a “one-
time-per-user” group signature with extra properties tailored to our application.

Ad-hoc anonymous identification schemes [34] and ring signatures [70], unlike
group signatures, have no administrator. Instead, users create ad-hoc anonymity
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sets out of existing keys, then create signatures which reveal only that one user
in the anonymity set was the signer. Private airdrops are similar to ring signa-
tures in that they do not require users to register with an administrator, but an
administrator (the sender) is nevertheless required.

The ring signature scheme of Abe et al. [1] admits signatures whose ad-
hoc anonymity sets mix keys of different types. In this scheme, signing and
verifying time and signature size are all linear in the size of the anonymity set.
Our private genesis airdrop scheme also allows signatures with anonymity sets
having mixed key types; it has logarithmic and concretely small cost in the size
of the anonymity set, but requires a sender to set up the scheme.

Anonymous proxy signatures [39] let a delegator give signing privileges to a
proxy. The delegator’s role is faintly reminiscent of the sender’s in a private air-
drop; and like the recipient, the proxy’s identity is kept secret. But the delegator
retains signing privileges after designating a proxy, whereas the private airdrop
sender permanently transfers signing privileges for a given token to its recipient.

Proving Knowledge of Factorization of an RSA Modulus. A large body of work
deals with proving knowledge of factorization of RSA moduli. Much of this is
in the setting where the modulus n is public (e.g., [22,40,42,78]) and is thus
unsuitable for our application, since revealing n would violate anonymity.

Camenisch and Michels [26] give a protocol for proving that a·b ≡ d mod n for
committed values a, b, d, and n, that is secure under the discrete log assumption.
This is considerably milder than our modeling G as a generic group of unknown
order (§4.2; [79, §7]). On the other hand, as a consequence of impossibility results
for Σ-protocols in groups of unknown order [5,77], the protocol requires k repe-
titions for soundness 2−k, wherein each repetition requires five range proofs and
five proofs of knowledge of a commitment’s opening. This means that proofs are
orders of magnitude larger and costlier to verify than in our scheme.

6 Conclusion

We have defined private airdrops, which allow users to create signatures using
their cryptographic credentials without revealing those credentials, and we have
described concrete private airdrop schemes for ECDSA and RSA keys. To con-
struct private airdrops for RSA, we defined a new zero-knowledge argument
of knowledge of the factorization of a committed integer, in generic groups of
unknown order.

In the full paper [79, §5] we describe how to use these private airdrops to
bootstrap a new cryptocurrency, using a design we call a private genesis airdrop.
Private genesis airdrops handle millions of recipients, each having hundreds of
public keys, potentially of different types. The creator of a private genesis airdrop
can prove the total value he has airdropped; if he created the airdrop dishonestly,
recipients can prove that they did not receive the promised funds.

Finally, we have implemented and evaluated our schemes [79, §6]. In our
fastest implementation, private airdrop signatures for RSA keys take tens to
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hundreds of milliseconds to create and milliseconds to verify, and they comprise
at most a few kilobytes. The private genesis airdrop scheme increases signature
size by about a kilobyte for an airdrop to millions of users, each having hundreds
of keys; its computational overhead is negligible. While these costs are expensive
compared to plain RSA signatures, we believe that may be justified, in the
airdrop setting, by the improvement in recipient privacy.

Our implementations are available under open-source licenses [48,50].
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Abstract. In this paper, we propose the most efficient blockchain ring
confidential transaction protocol (RingCT3.0) for protecting the privacy
of the sender’s identity, the recipient’s identity and the confidentiality
of the transaction amount. For a typical 2-input transaction with a ring
size of 1024, the ring signature size of our RingCT3.0 protocol is 98% less
than the ring signature size of the original RingCT1.0 protocol used in
Monero. Taking the advantage of our compact RingCT3.0 transcript size,
privacy-preserving cryptocurrencies can enjoy a much lower transaction
fee which will have a significant impact on the crypto-economy.

In addition to the significant improvement in terms of efficiency, our
scheme is proven secure in a stronger security model. We remove the
trusted setup assumption used in RingCT2.0. Our scheme is anonymous
against non-signing users who are included in the ring, while we show that
the RingCT1.0 is not secure in this improved model. Our implementation
result shows that our protocol outperforms existing solutions, in terms
of efficiency and security.

1 Introduction

Monero, Dash and Zcash are three popular privacy-preserving cryptocurrencies
having total market capitalization of USD 1.5 billion. They are ranked at 16,
26 and 32 of all cryptocurrencies as of December 2019. They use different cryp-
tographic techniques: Monero [15] uses linkable ring signatures, Pedersen com-
mitment and Diffie-Hellman key agreement; Dash uses coin shuffling; Zcash [1]
uses general zero-knowledge proof (zk-SNARK). These cryptographic techniques
mainly suffer from two drawbacks: inefficient signature generation/verification,
or large signature size. The latter is more concerned in public blockchains, since
it is directly related to the transaction fee.
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Transaction Fee. In public blockchain, the miners are motivated for bookkeep-
ing because they earn rewards in terms of new cryptocurrency mined and the
transaction fee from each transaction they recorded. The transaction fee is deter-
mined by the size of the transaction data. Different cryptocurrencies have their
own fee rate, i.e., the price per kB of transaction data. During Nov 2017 to Feb
2018, Bitcoin’s fee rate reaches 0.008 BTC/kB (which is over USD 100/kB at
that time); since then, Bitcoin’s fee rate is relatively stable at 0.0002 BTC/kB
(which is about USD 1.6/kB). Monero has a stable fee rate of about 0.0008
XMR/kB (which is about USD 0.2/kB).

Transaction fee depends on the length of the transaction data, which is dom-
inated by the signature length of the senders. In Bitcoin, a typical transaction of
2-input-2-output contains 2 ECDSA signatures, the length of which is 1kB. As
of December 2019, the average transaction fee of Bitcoin is USD 0.25 and the
monthly transaction fee of the whole Bitcoin system is USD 2.5 M. In Monero,
the total signature size for a typical confidential transaction is 13.2 kB. There-
fore, any effort to reduce the signature size will have a significant impact. The
improvement in signature size is relatively more important than the improvement
in computation efficiency for public blockchains.
Ring Signatures in Blockchain. In this paper, we will focus on the ring
signature [17], which allows a user to dynamically choose a set of public keys
(including his own) and to sign messages on behalf of the set, without revealing
his identity. In anonymous e-cash or cryptocurrency system, linkable-anonymity
is more suitable than perfect anonymity since a double-spent payment can be
detected. In a linkable ring signature [11], given any two signatures, the verifier
knows that whether they are generated by the same signer (even though the
verifier still does not know who the actual signer is).
RingCT. The first blockchain Confidential Transaction (CT) [12] is a proposed
enhancement to the Bitcoin protocol for hiding payment values in the blockchain.
In cryptocurrency Monero, linkable ring signature is used with CT to give a Ring
Confidential Transaction (RingCT) protocol [15]. For M transaction inputs, they
correspond to M ring signatures of ring size O(n) each, where n is the number of
possible signer. In addition the net transaction amount (which should be equal
to a commitment of zero) also corresponds to a ring signature of ring size O(n).
Therefore, Monero’s RingCT1.0 [15] has (M + 1) signatures of size O(n) each.
Since the large signature size limits the number n of possible signers, the value
of n in Monero’s official wallet software ranges from 5 to 20 only. As a result, the
sender anonymity for RingCT1.0 is at most 1-out-of-20. Due to the small ring
size, there are some attacks to the anonymity of Monero users such as [9,14,21].

The RingCT1.0 paper [15] does not give any notion and security model of
RingCT, which are then later formalized in [18] and they give a RingCT2.0
protocol with (M +1) signatures of size O(1) by using trusted public parameters.
However, the use of trusted public parameters is not desirable in the setting of
public blockchain. Note that the above comparison ignores the computation
of range proof (e.g., an efficient range proof can be adopted from [4]), the M
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key images for linking double-spending transactions, and the computation of N
committed output transaction amount.

There are also some post-quantum secure constructions for RingCT. Lattice
RingCT v1.0 [20] is the first RingCT protocol that provides post-quantum secu-
rity. However, it only supports single-input-single-output. That is, “no change”
can be given for any transaction. A multi-input-multi-output veresion has been
proposed as Lattice RingCT v2.0 [19]. These two schemes are not practical, as
the size of the transaction is linear and is about 1 million times larger than the
RingCT 1.0 used in Monero. A more practical solution has been proposed as
MatRiCT [6] which enjoys the log-size efficiency for transactions. It is still a
thousand times larger than the RingCT1.0 for most of the smaller ring size (e.g.
less than 1000 user). Therefore it may be only suitable for those applications
that require post-quantum security.

1.1 Our Contributions

Our goal is to construct a cost-efficient blockchain RingCT protocol by using an
efficient ring signature scheme without trusted setup, and to prove the security
in a stronger security model. Specifically, the contributions of this paper include:

1. We build a novel efficient ring signature scheme to construct RingCT3.0 pro-
tocol with the shortest RingCT transcript size, without using trusted setup.
As shown in Table 1, our RingCT3.0 has ring signature size of O(M + log n)
and the original RingCT1.0 [15] has ring signature size of O(Mn). Consider
a typical transaction (i.e., number of inputs M = 2) with a ring size of 1024,
our ring signature size (1.3 kB) is 98.6% less than the ring signature size of
[15] (98 kB). It provides significant savings of the transaction fee for privacy-
preserving cryptocurrencies. In addition, it becomes practical to include a
larger ring size (e.g., to include 105 users with less than 1800 bytes for the
signature size) and therefore (having a large ring size) makes it extremely
difficult to launch an anonymity attack based on blockchain data analysis.

2. We give a strong security model for RingCT. In particular, we give a clearer
security model for the balance property, and give a stronger security model
for anonymity by considering insider attack. We will show that the original
RingCT1.0 protocol in [15] is not secure in this anonymity model for insider
attack. Then we will show that our RingCT3.0 is secure in this improved
model.

3. Our significant improvements in the RingCT3.0 protocol rely on our proposed
brand new ring signature scheme. It is the shortest ring signature without
trusted setup in the literature (refer to Table 2). The idea comes from an
innovative technique to construct an efficient set membership proof of n public
keys in the base group, instead of in the exponent. We believe these two
primitives are of independent interest and contributions.
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2 Background

Vector Notations. For a scalar c ∈ Zp and a vector �a = (a1, . . . , an) ∈ Z
n
p , we

denote by �b = c�a the vector of bi = c · ai for i ∈ [1, n]. Let 〈�a,�b〉 =
∑n

i=1 aibi

denote the inner product between two vectors �a,�b, and �a◦�b = (a1 ·b1, . . . , an ·bn)
denote the Hadamard product.

Table 1. Size of RingCT without trusted setup for a set of M transaction inputs and
each input generates a ring signature of ring size n (excluding the range proof, the key
images and the input/output accounts), for 128-bit security.

RingCT
Communication Actual Size for M = 2 (Bytes)
G Zp n = 16 n = 64 n = 256 n = 1024 n = 4096

RingCT1.0 M + 1 (M + 1)(n + 1) 1731 6339 24771 98499 393411

This paper 2 lognM + 9 M+8 947 1079 1211 1343 1475

Table 2. Summary of O(log n)-size DL-based ring signatures for n public keys.

Ring Signatures
Signature Size Actual Size (Bytes)
G Zp n = 16 n = 64 n = 256 n = 1024 n = 4096

[8] 4 log n 3 logn + 1 944 1400 1856 2312 2768

[2] logn + 12 3
2

logn + 6 912 1074 1236 1398 1560

This paper 2 logn + 7 7 719 1079 1211 1343 1475

We use �kn to denote the vector containing the first n-th powers of k ∈ Zp.
That is �kn = (1, k, k2, . . . , kn−1) ∈ Z

n
p . We use the vector notation to Pedersen

vector commitment. Let �g = (g1, . . . , gn) ∈ G
n be a vector of generators and

�a = (a1, . . . , an) ∈ Z
n
p , then C = �g�a =

∏n
i=1 gai

i .

3 Overview of RingCT3.0

We give a brief overview on how to improve the efficiency and the security of
the RingCT protocol using a step-by-step approach.

3.1 Efficient RingCT3.0 Protocol

We give a new design of ring signature scheme to build an efficient RingCT
without using trusted setup. This construction is composed of a number of new
primitives and techniques.

Set Membership Proof. Our basic idea is to start with a set membership proof
of a set of public keys, without trusted setup. We give the first set membership
proof without trusted setup for public keys in the base group. The intuition is
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that we can have a set of public keys �Y = (Y1, . . . , Yn) and a binary vector
�bL = (b1, . . . , bn). Denote �Y

�bL =
∏n

i=1 Y bi
i . For a public key Yi ∈ �Y , we set

C = hβYi for some public group element h and randomness β. We observe that
C is a Pedersen commitment of the secret key xi = logg Yi. Also, when �bL only
has the bit at position i equal to 1, we have:

C = hβYi = hβ �Y
�bL .

Define �bR as �bR = �bL − �1n, where �1n = (1, . . . , 1) of length n. We give a zero-
knowledge proof for the above condition of �bL by showing that:

�bL ◦ �bR = �0n, �bL − �bR = �1n, 〈 �bL,�1n〉 = 1,

where ◦ denotes the Hadamard product. Since the zero-knowledge proof hides
the knowledge of �bL, the position index i of the committed public key is hidden.

In order to give an efficient set membership proof of �bL with length n, we
use the inner product argument in [4] to reduce the proof size to log n. One
non-trivial tweak of our construction is to ensure the security of the Pedersen
commitment C on the public key Yi. We have to set h = Hash(�Y ) (Hash denotes
a cryptographic hash function), such that the discrete logarithm (DL) between
the public key Yi and h is not known.

Our set membership proof is fundamentally different from the existing
approaches. [2,3,8] prove that for a set of commitments, one of them is com-
mitted to 0. They use n polynomials of degree log n to hide the prover index
and run a zero-knowledge proof for the polynomials. Our scheme uses a zero-
knowledge proof to prove that �bL is a binary vector with Hamming weight 1 and
uses the inner product argument in [4] to reduce the proof size to log n. Details
of the set membership proof is given in the appendix.

Linkable Ring Signatures. We propose the use of set membership proof
for constructing ring signatures directly. The signer can directly give a zero-
knowledge proof of knowing: (1) a committed public key (C = hβYi) which is
in the set of n public keys, and (2) the secret key which corresponds to the
committed public key. Details of the ring signature is given in the full version of
the paper [22]. However, turning it into linkable ring signature is a non-trivial
task.

Firstly, we convert our ring signature into a linkable ring signature by giving
an extra linkability tag (also called key image in Monero) for each signer. The
security proof of our ring signature scheme requires that the DL between different
users’ public key should be unknown to the adversary. However, in the security
model of balance and non-slanderability for RingCT, the adversary is allowed
to have more than one secret key. If we simply use the users’ public keys as the
representation of users in the ring, the scheme is not secure since the adversary
knows the DL between public keys.

The classical representation of user i in DL-setting is the public key Yi = gxi

where xi is the user’s secret key. Hence, we give a new proposal of using Yig
d
i

as the user representation in the set �Y , where Yi is the public key, gi is the
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system parameter and d is the hash of all public keys in the ring. For each user
representation Yig

d
i , the gi component cannot be canceled out by Yi due to the

exponent d added. Now consider the DL between user representations. Even
though the adversary knows the secret keys xi of other users (which is allowed
in the security model), the DL relation between different users’ representation
is still unknown guaranteed by the DL between g and gi.

Compressing Multiple Inputs for RingCT3.0. A trivial construction of
RingCT with M multiple input is to include M linkable ring signatures and
then proves that the sum of input amount is equal to the sum of output amount.
As a result, we can obtain a RingCT with signature size O(M log n). In this
paper, we follow the technique of proving multiple range proof in [4] to further
compress our RingCT 3.0. In short, we use the first n bit of �bL to represent
the first linkable ring signature, the second n bit of �bL to represent the second
linkable ring signature and so on. As a result, we have a nM bit of �bL for M
inputs. By applying the inner product argument, the correctness of �bL is proven
with a proof of size O(log nM). However, we still need M group elements to
show the correctness of M key images. Therefore, our final RingCT 3.0 has a
proof size of O(M + log n).

3.2 Strong Security Model for RingCT3.0

As compared to the formal security model of RingCT proposed in [18], we pro-
pose a few improvements:

– We remove the use of trapdoor in system parameters. Therefore, this model
is more suitable for public blockchain, as compared with RingCT2.0 [18].

– We give a clearer definition of the balance property. We observe that the bal-
ance property requires that any malicious user cannot (1) spend any account
of an honest user, (2) spend her own accounts with the sum of input amount
being different from that of output amount, and (3) double spend any of her
accounts. Therefore, we break down the balance property into unforgeability,
equivalency and linkability. As a result, the security of each property can be
evaluated easily.

– We give a stronger security model of anonymity than the model in [18]. We
consider the anonymity against insider attacks. Note that the original RingCT
[15] is not secure in this improved model.

Anonymity Against Insider Attacks. We observe that anonymity for
RingCT protocol is more complicated than the anonymity of linkable ring sig-
natures. Given the knowledge of the input and output amount, the level of
anonymity of RingCT protocol may be lowered. For a transaction with multiple
input accounts, multiple linkable ring signatures are generated. Yet, they are
correlated when validating the balance of input and output amount. This extra
relationship may lower the level of anonymity.

The previous model of anonymity [18] only considered outsider security (i.e.,
not against the recipient and other members of the ring). In this paper, we define
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two improved models for anonymity: anonymity against recipient (who knows
all the output account secret keys and their amounts) and anonymity against
ring insiders (who knows some input account secret keys and their amounts).
The collusion of recipient and ring insiders will inevitably lower the level of
anonymity. Therefore, we do not capture it in our security model.1

Anonymity of RingCT1.0. We first review the original RingCT1.0 [15].
Denote Ain as the set of all input accounts and AS as the set of real signers.
Arrange Ain as an M × n matrix with each row containing only one account in
AS . [15] requires that all signing accounts are in the same column in Ain. One
ring signature is generated for each row. The graphical representation is shown
in the following figure.

act
(1)
1 . . . . . act(n)

1 act
(ind)
1

...
...

...
Ain = act

(1)
k act

(n)
k , AS = act

(ind)
k

...
...

...
act

(1)
M act

(n)
M act

(ind)
M

The real signers must be located in the same column. It is because RingCT1.0
[15] includes an extra ring signature, where each “ring public key” is computed
by the product of all coins in each column, divided by all output coins. It is used
to guarantee the balance of the input and output amount.

We observe that if the adversary knows one of the secret key in the first
column, he can check if any of the key images is generated from this secret key.
If not, the adversary can rule out the possibility that the real signer is from the
first column. The level of anonymity is already lowered. By knowing n−1 secret
keys in different columns, the adversary can find out which M input accounts
are the real signer. Therefore, the original RingCT1.0 [15] is not secure against
our model of anonymity against ring insiders.

Anonymity of RingCT3.0. In order to provide anonymity against ring insid-
ers, we have to break the distribution of real signer in Ain in RingCT1.0 [15]. We
achieve this by three steps: (1) for the k-th row, we change the user representa-
tion of our RingCT3.0 as:

�Yk = {(pk(1)in,k)dk−1
0 (C(1)

in,k)d1gd2
1 , . . . , (pk(n)in,k)dk−1

0 (C(n)
in,k)d1gd2

n },

for some hash values d0, d1, d2, and system parameters g1, . . . , gn; (2) compute
a batch inner product argument for the set �Y = �Y1|| . . . || �YM , such that one
element from each �Yk is committed in a commitment B1; (3) prove the sum of
amounts committed in B1 is equal to the sum of amounts for all the output
coins Cout,j . The second step is done by computing B1 as the commitment of
the multiplication of one element in each �Yk for all k. The third step is done via
showing that the coins committed in B1 divides by

∏
j Cd1

out,j is a commitment
to zero. It can be done without the need of using ring signatures.
1 This property is different from the simple ring signature setting [16] or the tumbler

setting [13], since we also consider different transaction amount in different UTXO.



RingCT 3.0 for Blockchain Confidential Transaction 471

4 Security Model for RingCT

We give the security definitions and models for RingCT which is modified from
[18]. A RingCT protocol consists of a tuple of polynomial time algorithms
(Setup, KeyGen, Mint, AccountGen, Spend, Verify), the syntax of which
are described as follows:

– pp ← Setup(1λ): it takes a security parameter λ ∈ N, and outputs the system
parameters pp. All algorithms below have implicitly pp as part of their inputs.

– (sk, pk) ← KeyGen(): In order to provide anonymity to the recipient, the
concept of stealth address was used in RingCT1.0 [15]. It can be viewed as
dividing the algorithm into two parts: generating a long-term key pairs for
each user, and generating a one-time key pairs for each transaction.

• LongTermKeyGen. It outputs a long term secret key ltsk and a long
term public key ltpk.
• OneTimePKGen. On input a long term public key ltpk, it outputs pk
and the auxiliary information Rot.
• OneTimeSKGen. On input a one-time public key pk, an auxiliary
information Rot and a long term secret key ltsk, it outputs the one-time
secret key sk.

– (cn, ck) ← Mint(pk, a): it takes as input a public key pk and an amount a,
outputs a coin cn for pk as well as the associated coin key ck.

– (act, ask)/⊥ ← AccountGen(sk, pk, cn, ck, a): it takes as input a user key
pair (sk, pk), a coin cn, a coin key ck and an amount a. It returns ⊥ if ck
is not the coin key of cn with amount a. Otherwise, it outputs the account
act

.= (pk, cn) and the corresponding account secret key is ask
.= (sk, ck, a).

– (Aout, π,S,Ckout)/⊥ ← Spend(m,KS ,AS ,Ain,O): it takes as input a group
AS of accounts together with the corresponding account secret keys KS , an
arbitrary set Ain of groups of input accounts containing AS , a set O of output
public keys with the corresponding output amounts, and some transaction
string m ∈ {0, 1}∗, it outputs ⊥ if the sum of output amount in O is different
from the sum of input amount in KS . Otherwise, it outputs a set of output
accounts Aout, a proof π, a set S of serial numbers and a set of output coin
keys Ckout. Each serial number Si ∈ S corresponds to one account secret key
aski ∈ KS .

– 1/0/−1 ← Verify(m,Ain,Aout, π,S): it takes as input a message m, a set of
input accounts Ain, a set of output accounts Aout, a proof π and a set of
serial numbers S, the algorithm outputs -1 if the serial numbers in S is spent
previously. Otherwise, it checks if the proof π is valid for the transaction tx,
and outputs 1 or 0, meaning a valid or invalid spending respectively.

The formal security model is given in the full version of the paper [22]. We
give a high level description as follows.

Perfect Correctness. The perfect correctness property requires that a user
can spend any group of her accounts w.r.t. an arbitrary set of groups of input
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accounts, each group containing the same number of accounts as the group she
intends to spend.

Anonymity. The anonymity of RingCT is more complicated than the
anonymity of linkable ring signatures, due to the extra knowledge of transaction
amount. The previous model of anonymity in RingCT1.0 only considered out-
sider security only (i.e., not against the recipient and other members of the ring).
As introduced in §3.2, we define two stronger models for anonymity: anonymity
against recipients (who know all the output amounts) and anonymity against
ring insiders (who know some input account secret keys and their amounts).

Anonymity Against Recipients. The anonymity against recipients property
requires that without the knowledge of any input account secret key and input
amount (which are within a valid Range: from 0 to a maximum value), the
spender’s accounts are successfully hidden among all the honestly generated
accounts, even when the output accounts and the output amounts are known.

Anonymity Against Ring Insiders. The anonymity against ring insiders prop-
erty requires that without the knowledge of output account secret key and output
amount (which are within a valid Range), the spender’s accounts are successfully
hidden among all uncorrupted accounts.

Balance. The balance property requires that any malicious user cannot (1)
spend any account of an honest user, (2) spend her own accounts with the sum
of input amount being different from that of output amount, and (3) double
spend any of her accounts. Therefore, the balance property can be modeled by
three security models: unforgeability, equivalence and linkability.

Non-slanderability. The non-slanderability property requires that a malicious
user cannot prevent any honest user from spending. It is infeasible for any mali-
cious user to produce a valid spending that shares at least one serial number
with a honestly generated spending.

5 RingCT 3.0

For the ease of presentation, we first present a basic construction of RingCT3.0
with linkable ring signature. Then we optimize our construction to log(n)-size
by using the inner-product argument in [4], where n is the size of the ring.

5.1 Our Basic Construction

We give our basic construction in this section. Our scheme uses a zero-knowledge
range proof of a value committed in a Pederson commitment. Denote RP =
(RSetup,RProof,RVerify) as a zero-knowledge range proof for the statement:

PoK : {(a, κ) : C = ha
cg

κ
c ∧ a ∈ [Rmin, Rmax]}.

The range proof can be instantiated by the Bulletproof [4].
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Our basic construction is as follows.
Setup. On input security parameter λ and the maximum size of ring nmax, it
picks a group G of prime order p and some generators gc, hc, g, u ∈ G, �g =
(g1, . . . , gnmax), �h = (h1, . . . , hnmax) ∈ G

nmax . Suppose that Hj : {0, 1}∗ → Zp for
j = 1, 2, 4, 5, H3 : {0, 1}∗ → G and H6 : G → Zp are collision resistant hash
functions. It also runs RSetup of the range proof. Assume these parameters are
known in the system.
KeyGen. The algorithm is divided as follows.

– LongTermKeyGen. The user picks his long term secret key ltsk
.= (x1, x2) ∈

Z
2
p and computes his long term public key ltpk

.= (gx1 , gx2).
– OneTimePKGen. On input a long term public key ltpk = (gx1 , gx2), it picks

a random rot ∈ Zp and computes a one-time public key pk = gx1 ·gH6((g
x2 )rot ).

It outputs pk and the auxiliary information Rot
.= grot .

– OneTimeSKGen. On input a one-time public key pk, an auxiliary infor-
mation Rot and a long term secret key ltsk = (x1, x2), it checks if pk =
gx1 · gH6(R

x2
ot ). If it is correct, then it outputs the one-time secret key

sk = x1 + H6(Rx2
ot ).

Mint. On input a public key pk, an amount a ∈ Zp, the algorithm chooses
κ ∈ Zp uniformly at random and computes the coin C = gκ

c ha
c. It returns the

coin C and the coin key ck = κ.
AccountGen. On input a user key pair (sk, pk), a coin C and a coin key ck = κ
(where the pair (pk, C) is listed as the output of a transaction) and an amount
a, it checks if C = gκ

c ha
c. If it is true, then it outputs the account act

.= (pk, C)
and the corresponding account secret key is ask

.= (sk, ck, a).
Spend. On input a set of M signer’s input accounts AS with a set of account
secret keys {askk = (skk, κin,k, ain,k)}k∈[1,M ], a set of nM input accounts Ain

which contains AS (where n < nmax is the size of the ring), a set of N output
amount {aout,j}j∈[1,N ] corresponding to N recipient’s public keys {pkout,j}j∈[1,N ],
and a transaction message m, it first checks the amount balance. If

∑M
k=1 ain,k 
=

∑N
j=1 aout,j , the transaction amount is not correct and it returns ⊥.
Arrange Ain as an M × n matrix with each row containing only one account

in AS . Denote the column index indk as the position of the k-th element in
AS appearing in row k, column indk of Ain. The graphical representation is as
follows:
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1 . . . . . act(n)

1 act
(ind1)
1

...
...

...
Ain = act

(1)
k act

(n)
k , AS = act
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M act

(n)
M act

(indM )
M

The spend protocol can be roughly separated into two parts. The first part
is mainly about the balance of the input and output amount. The second part
is mainly about the ring signature providing anonymity of the sender.
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We first give some sub-protocols for the balance property as follows.

1. Generate One-Time Public Key: The sender converts all recipient’s long term
public keys to one-time public keys by OneTimePKGen. The auxiliary
information is appended to the transaction message m.

2. Generate Output Coins. It first runs (Cout,j , κout,j) ← Mint(aout,j), for all
j ∈ [1, N ]. It sets Aout = {(pkout,j , Cout,j)}j∈[1,N ] as the set of N output
accounts.
The sender can later privately send the amount aout,j and coin key κout,j to
each secret key owner of pkout,j . Denote Ckout as the set of all coin keys.

3. Generate Range Proof. It runs the RProof of the range proof for all aout,j where
j ∈ [1, N ]. Denote πrange as the set of output of RProof for all j.

4. Prepare Balance Proof. Denote the coin for act
(indk)
k as C

(indk)
in,k . Recall that the

coin key of C
(indk)
in,k is (ain,k, κin,k). If sum of input amount is equal to the sum

of output amount, we have
∏M

k=1 C
(indk)
in,k /

∏N
j=1 Cout,j = g

∑M
k=1 κin,k−∑N

j=1 κout,j

c .
Denote Δ

.=
∑M

k=1 κin,k − ∑N
j=1 κout,j .

Next, we give some sub-protocols for the ring signature part. Denote act
(i)
k =

(pk(i)in,k, C
(i)
in,k) for i ∈ [1, n] and the signer index is indk. The sender runs as follows.

1. Generate One-Time Secret Key: The sender converts his long term secret key
to one-time secret keys by OneTimeSKGen.

2. Generate Key Images. Denote (skk, ·, ·) as the account secret key for act
(indk)
k .

It computes the key image Uk = u
1

skk .
3. Ring Formation. Denote the concatenated string str as the concatenation

of {act
(1)
k || . . . ||act

(n)
k }k∈[1,M ]. The prover computes d0 = H2(0, str), d1 =

H2(1, str) and d2 = H2(2, str). The prover sets �Y = �Y1|| . . . || �YM , where:

�Yk = ((pk(1)in,k)dk−1
0 (C(1)

in,k)d1gd2
1 , . . . , (pk(n)in,k)dk−1

0 (C(n)
in,k)d1gd2

n ) for k ∈ [1,M ].

4. Prepare Signer Index. For k ∈ [1,M ], the sender generates a binary vector
�bL,k = (bk,1, . . . , bk,n), where bk,i = 1 when i = indk and bk,i = 0 otherwise.

Define �bL = �bL,1|| . . . || �bL,M and �bR = �bL− �1n. We will prove in zero knowledge
that �bL,k is a binary vector with only one bit equal to 1. It is equivalent to
showing: �bL ◦ �bR = �0n, �bL − �bR = �1n, 〈 �bL,k,�1n〉 = 1 for k ∈ [1,M ].

5. Signature Generation. It consists of the following steps.
– Commit 1. It sets h = H3(�Y ), picks random α1, α2, β, ρ, rα1 , rα2 , rsk1 , . . .,

rskM
, rδ ∈ Zp, �sL, �sR ∈ Z

nM
p and computes:

B1 = hα1

M∏

k=1

(pk
(indk)
in,k )d

k−1
0 (C

(indk)
in,k )d1gd2

indk
, B2 = hα2

M∏

k=1

gindk
, A = hβ�h

�bR ,

S1 = hrα1−d2rα2 g
∑M

k=1 rskk
dk−1
0 g

d1rΔ
c , S2 = hρ �Y �sL�h �sR , S3 =

M∏

k=1

U
rskk

dk−1
0

k .

Observe that B1 = hα1 �Y
�bL .
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– Challenge 1. Denote the concatenated string str′ = �Y ||B1||B2||A||S1||S2||
S3||U1|| . . . ||UM . It computes y = H4(1, str), z = H4(2, str) and w =
H4(3, str).

– Commit 2. It can construct two degree 1 polynomials of variable X:

l(X) = �bL − z�1nM + �sL · X,

r(X) = �ynM ◦ (w �bR + wz�1nM + �sR · X) +
M∑

k=1

z1+k · (�0(k−1)n||�1n||�0(M−k)n).

Denote t(X) = 〈l(X), r(X)〉, which is a degree 2 polynomial. We can
write t(X) = t0 + t1X + t2X

2, and t0, t1, t2 can be computed by using
( �bL, �bR, �sL, �sR, w, y, z). In particular, observe that

t0 = w〈 �bL, �bR ◦ �ynM 〉 + zw〈 �bL − �bR, �ynM 〉 +
M∑

k=1

z1+k〈 �bL,�0(k−1)n||�1n||

�0(M−k)n〉 − wz2〈�1nM , �ynM 〉 −
M∑

k=1

z2+k〈�1nM ,�0(k−1)n||�1n||�0(M−k)n〉,

=
M∑

k=1

z1+k + w(z − z2)〈�1nM , �ynM 〉 −
M∑

k=1

nz2+k.

It picks random τ1, τ2 ∈ Zp, and computes: T1 = gt1hτ1 , T2 = gt2hτ2 .
– Challenge 2. It computes x = H5(w, y, z, T1, T2, m).
– Response. It computes:

τx = τ1 · x + τ2 · x2, μ = α1 + β · w + ρ · x, zα1 = rα1 + α1 · x,

zα2 = rα2 + α2 · x, zΔ = rΔ + Δ · x, zsk,k = rsk,k + skk · x for k ∈ [1, M ],

�r = �ynM ◦ (w �bR + wz�1nM + �sR · x) +
M∑

k=1

z1+k · (�0(k−1)n||�1n||�0(M−k)n),

�l = �bL − z ·�1nM + �sL · x, t = 〈�l, �r〉.

It outputs σring = (B1, B2, A, S1, S2, S3, T1, T2, τx, μ, zα1 , zα2 , zsk,1, . . . , zsk,M , zΔ,
�l, �r, t) and the key image (U1, . . . , UM ).

Output. Denote S as a set of serial number {U1, . . . , UM}. Then the output
of the spend algorithm is (Aout, π = (πrange, σring),S,Ckout).
Verify. On input a message m, a set of input accounts Ain, a set of output
accounts Aout, a proof π and a set S of serial numbers and a set U of serial
numbers in the past, then it checks:

1. If there exists any U in both S and U, returns -1 and exits since it is a double
spending of the previous transaction. We can use Bloom filter on U to speed
up the detection of double spending.

2. It runs the RVerify algorithm of the range proof with input from πrange and
the output coins in Aout.

3. It checks the ring signature σring and key images Uk ∈ S for k ∈ [1,M ]. It
computes d0, d1, d2 and �Y as in the Ring Formation of the Spend protocol,
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using Ain. Denote the concatenated string str = �Y ||B1||B2||A||S1||S2||S3||
U1|| . . . ||UM . It computes h = H3(�Y ), y = H4(1, str), z = H4(2, str), w =
H4(3, str) and x = H5(w, y, z, T1, T2, m). Define �h′ = (h′

1, . . . , h
′
nM ) ∈ G

nM

such that h′
i = hy−i+1

i for i ∈ [1, nM ]. It returns 1 if all of the following hold
and returns 0 otherwise:

t = 〈�l, �r〉, (1)

gthτx = g
∑M

k=1 z1+k(1−nz)+w(z−z2)〈�1nM ,�ynM 〉 · T x
1 · T x2

2 , (2)

hμ�Y
�l �h′�r = B1A

wSx
2
�Y −z·�1nM �h′wz·�ynM+

∑M
k=1 z1+k·(�0(k−1)n||�1n||�0(M−k)n)

, (3)

hzα1−d2zα2 g
∑M

k=1 zsk,kdk−1
0 gd1zΔ

c = S1(B1 ·
∏N

j=1
Cd1

out,j · B−d2
2 )x, (4)

∏N

k=1
U

zsk,kdk−1
0

k = S3 · ux
∑N

k=1 dk−1
0 . (5)

Security Analysis. The security proofs of the following theorems are given in
the full version of the paper [22].

Theorem 1 (Balance). Our scheme is unforgeable if the DL assumption holds
in G in the random oracle model (ROM). Our scheme is equivalent w.r.t. insider
corruption if the DL assumption holds in G in the ROM and RP is a secure zero-
knowledge range proof. Our scheme is linkable w.r.t. insider corruption if the DL
assumption holds in G in the ROM.

Theorem 2 (Anonymity). Our scheme is anonymous against recipients if the
q-DDHI assumption holds in G in the ROM, where q is the number of Spend
oracle query. Our scheme is anonymous against ring insiders if the q-DDHI
assumption holds in G in the ROM and RP is a secure zero-knowledge range
proof.

Theorem 3 (Non-slander). Our scheme is non-slanderable w.r.t. insider cor-
ruption if the DL assumption holds in G in the random oracle model.

5.2 Our Efficient Construction

The last step towards our final construction is to use the improved inner prod-
uct argument in [4] to compress the O(n)-size vector �l, �r in the ring signature
part to a O(log n)-size proof. Denote IPProve, IPVerify as the inner product
argument. Details of the algorithm can be found in [4]. We give the modified
Spend’ and Verify’ algorithms as follows.

– Spend’. On input (m,KS ,AS ,Ain,O), it runs (Aout, π = (πrange, σring),S,
Ckout)
← Spend(m,KS , AS ,Ain, O)). For each σring = (B1, B2, A, S1, S2, S3, T1, T2,
τx, μ, zα1 , zα2 , zsk,1, . . . , zsk,M , zΔ,�l, �r, t), it computes P = �Y

�l�h′�r, where �Y and
�h′ are defined in Spend. it runs (�L, �R, a, b) ← IPProve(�Y ,�h′, t, P,�l, �r).
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Note that �L, �R are vectors of G with size log n. It sets σ′
ring =

(B1, B2, A, S1, S2, S3, T1, T2, τx, μ, zα1 , zα2 , zsk,1, . . . , zsk,M , zΔ, t, P, �L, �R, a, b).
The algorithm outputs (Aout, π = (πrange, σ′

ring),S,Ckout).
– Verify’. On input (m,Ain,Aout, π = (πrange, σ′

ring), S), denote σ′
ring = (B1, B2,

A,S1, S2, S3, T1, T2, τx, μ, zα1 , zα2 , zsk,1, . . . , zsk,M , zΔ, t, P, �L, �R, a, b). It runs
0/1 ← IPVerify(�Y ,�h′, t, P, (�L, �R, a, b)), where �Y and �h′ are defined in Ver-
ify. It outputs 0 if IPVerify outputs 0. Otherwise, it runs as the Verify
algorithm, except that equation (3) is modified to:

hμP = B1 · Aw · Sx
2 · �Y −z·�1nM · �h′wz·�ynM+

∑M
k=1 z1+k·(�0(k−1)n||�1n||�0(M−k)n)

.

The security of our final construction follows from the security of the
improved inner product argument in [4], which is based on the DL assumption
in the random oracle model.

6 Efficiency Analysis

Proof Size of RingCT. RingCT3.0 has size of O(M + log n) excluding the
key images and committed outputs, where n is the size of the ring and M is
the number of transaction input. As shown in Fig. 1a, RingCT3.0 is significantly
shorter than Monero’s RingCT1.0 even for small ring size (ring size ≥ 16) and
hence RingCT3.0 can reduce the transaction fee by more than 90%. Since the
proof size increases logarithmically, the sender can increase the anonymity level
by increasing the ring size without increasing the cost drastically. Increasing the
ring size of 1000 only increases the transaction fee by 45%.

Consider a typical transaction (i.e., number of inputs M = 2) with a ring
size of 1024, our ring signature size (1.3 kB) is 98.6% less than the ring signature
size of [15] (98 kB). For the ring size of 1024, the cost of the ring signature part
for RingCT1.0 is already about USD 20, which is not practical. On the other
hand, the cost of the ring signature part for RingCT3.0 is only about USD 0.27.

Running Time of RingCT. We implemented the RingCT3.0 in Ubuntu 16.04,
Intel Core i5-6200U 2.3GHz, 8GB RAM. We used the BouncyCastle’s Java
library for Curve 25519 in our implementation. Each element in G is represented
by 33 bytes and each element in Zp is represented by 32 bytes.

We compare the running time of the Spend protocol of RingCT3.0 in Fig. 2a
and RingCT1.0 in Fig. 2c. Our RingCT3.0 outperforms RingCT1.0 when the
ring size exceeds 64. Our RingCT3.0 is better for larger ring size and more user
input. When the ring size is 1024 and the input size is 20, RingCT3.0 is about
2 times faster than RingCT1.0.

We compare the running time of the Verify protocol of RingCT3.0 in Fig. 2b
and RingCT1.0 in Fig. 2d. Our RingCT3.0 outperforms RingCT1.0 when the
ring size exceeds 32. When the ring size reaches 1024 and the input size is 20,
RingCT3.0 is more than 2 times faster than RingCT1.0.

In general, the running time of RingCT3.0 is comparatively shorter than the
time of generating a block of transactions, which is 2 min in Monero and 10 min
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Fig. 1. Comparison of RingCT and RingCT3.0 for a transaction with 2 inputs.
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(a) RingCT3.0: Running Time of Spend.
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(b) RingCT3.0: Running Time of Verify.
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(c) RingCT1.0: Running Time of Spend.
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(d) RingCT1.0: Running Time of Verify.

Fig. 2. Performance of RingCT3.0 and RingCT1.0.

in Bitcoin. Therefore, RingCT3.0 will not be the bottleneck of the blockchain
system.
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7 Comparison with Omniring

Recently, a parallel and independent work on RingCT, called Omniring, is pro-
posed [10]. They also used the inner product argument as a building block.
However, they used a different ring formation, especially for the case of mul-
tiple input. Even for M inputs, the total ring size is still n (rather than the
total ring size of nM in our RingCT3.0). The signature size of Omniring is
2 log(3+2n+4M)+9 G or Zp elements. Our scheme is 2 log(nM)+M +17 G or
Zp elements. In practice n is much larger than M (e.g., n ≥ 1024 and M < 5).

Another major difference between our paper and [10] is the modeling on
privacy. They use a single model on privacy to capture the indistinguishability
of all possible combinations of transaction input. We use two different models
to capture the anonymity against ring insiders and recipients. We illustrate the
differences with a simple example. Consider the Omniring [10] with a transaction
of two inputs, one output and ring size 8:

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 → Output

$2 $8 $3 $7 $4 $6 $12 $13 $10

Since their anonymity model allows the adversary to know the account bal-
ance for all parties, their security proof guarantees that no PPT adversary can
distinguish between the case of “Input 1 and 2 are real signers”, “Input 3 and 4
are real signers” and “Input 5 and 6 are real signers”. The level of anonymity is
only limited to the number of possible combinations of transaction input, which
is 1/3 in this case. In practice, a signer does not know the transaction amount
of other UTXOs in RingCT. The chances of having many possible combinations
of transaction input is relatively low, if the signer forms the ring by randomly
picking UTXOs in the blockchain. It is possible that there is only 1 legitimate
combination. In this case, the honest signer has no security guarantees according
to the anonymity model in [10].

On the other hand, our RingCT 3.0 have a structure as follows:
Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 → Output

Ring 1 $2 $8 $3 $7 $4 $6 $12 $13 $10
Ring 2 $7 $11 $6 $12 $4 $7 $5 $2

Our anonymity against ring insiders shows that the real signer in ring 1 (resp.
ring 2) is hidden between input 1 to 8 of ring 1 (resp. ring 2), since the output
amount is hidden from the adversary. Our anonymity against recipients shows
that the real signer in ring 1 (resp. ring 2) is also hidden between input 1 to 8
of ring 1 (resp. ring 2), since the input amount are hidden from the adversary.
The level of anonymity is 1/8 in both cases.

8 Conclusion

We propose the RingCT3.0 protocol, which is more efficient and more secure
than the existing RingCT1.0 used in Monero. For a typical 2-input transaction
with a ring size of 1024, the ring signature size of our RingCT3.0 protocol is
98% less than the ring signature size of the RingCT1.0 protocol.
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A Set Membership Proof without Trusted Setup

We first review the definition of set membership proof in [5] and then we give
our new construction without using trusted setup.

Definition 1. [5] Let C = (Gen,Com,Open) be the generation, the commit
and the open algorithm of a commitment scheme. For an instance c, a proof of
set membership with respect to commitment scheme C and set Φ is a proof of
knowledge for the following statement:

PK{(μ, ρ) : c ← Com(μ; ρ) ∧ μ ∈ Φ}.

The security model for set membership proof follows the standard definitions of
zero-knowledge proof: perfect completeness, computational soundness and per-
fect zero-knowledge.

In this section, we consider the following modified set membership proof for
a set Φ of base group elements :

PK{(μ, ρ) : c = gμhρ ∧ gμ ∈ Φ}.

A.1 Our Basic Construction

Our construction is essentially a set membership proof for group elements which
is the domain of public keys. It is the first set membership proof for public keys
in the base group, instead of in the exponent. The intuition of our scheme is
introduced in the previous section. Our construction is as follows.

– Setup. On input security parameter 1λ and the maximum size of the set
of membership public key N , it picks a group G of prime order p and some
generators g ∈ G,�h = (h1, . . . , hN ) ∈ G

N . Suppose that Hj : {0, 1}∗ → Zp

for j = 1, 2, 3, 4, H6 : {0, 1}∗ → G are collision resistant hash functions. Let
C = (Gen,Com,Open) be the Pedersen commitment scheme. Assume these
parameters are known in the system.

– PKGen. It randomly picks x ∈ Zp and outputs a public key Y = gx.
– Prove. On input the set of n ≤ N public keys as �Y = (Y1, Y2, . . ., Yn) and

denote the set member σ = Yi∗ ∈ �Y , with corresponding secret key xsk,i∗ .
The prover runs as follows.
1. Prepare Index. The prover generates a binary vector �bL = (b1, . . . , bn),

where bi = 1 when i = i∗ and bi = 0 otherwise. Define �bR = �bL − �1n.
It proves in zero knowledge that �bL is a binary vector with only one bit
equal to 1. It is equivalent to showing:

�bL ◦ �bR = �0n, �bL − �bR = �1n, 〈 �bL,�1n〉 = 1.

2. Commit 1. It computes h = H6(�Y ). It picks random α, β, ρ, rα, rsk ∈ Zp,
�sL, �sR ∈ Z

n
p and computes:

A1 = hα�Y
�bL = hαYi∗ , A2 = hβ�h

�bR , S1 = hrαgrsk , S2 = hρ�Y �sL�h �sR .
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Note that A1 is the Pedersen commitment of the secret key of Yi∗ for
randomness α.

3. Challenge 1. Denote the concatenated string str = �Y ||A1||A2|| S1||S2. It
computes y = H2(str), z = H3(str) and w = H4(str).

4. Commit 2. It can construct two degree 1 polynomials of variable X:

l(X) = �bL − z ·�1n + �sL · X,

r(X) = �yn ◦ (w · �bR + wz ·�1n + �sR · X) + z2 ·�1n.

Denote t(X) = 〈l(X), r(X)〉, which is a degree 2 polynomial. We can
write t(X) = t0 + t1X + t2X

2, and t0, t1, t2 can be computed by using
( �bL, �bR, �sL, �sR, w, y, z). In particular, observe that

t0 = w〈 �bL, �bR ◦ �yn〉 + zw〈 �bL − �bR, �yn〉
+ z2〈 �bL,�1n〉 − wz2〈�1n, �yn〉 − z3〈�1n,�1n〉,

= z2 + w(z − z2)〈�1n, �yn〉 − z3〈�1n,�1n〉.
It picks random τ1, τ2 ∈ Zp, and computes:

T1 = gt1hτ1 , T2 = gt2hτ2 .

5. Challenge 2. It computes x = H1(w, y, z, T1, T2).
6. Response. It computes:

τx = τ1 · x + τ2 · x2,

μ = α + β · w + ρ · x,

zα = rα + α · x,

zsk = rsk + xsk,i∗ · x,

�l = l(x) = �bL − z ·�1n + �sL · x,

�r = r(x) = �yn ◦ (w · �bR + wz ·�1n + �sR · x) + z2 ·�1n,

t = 〈�l, �r〉.

It outputs A1 and σ = (A2, S1, S2, T1, T2, τx, μ, zα, zsk,�l, �r, t).
– Verify. On input a set of public keys �Y , A1 and the proof σ =

(A2, S1, S2, T1, T2, τx, μ, zα, zsk,�l, �r, t), denote the concatenated string str =
�Y ||A1||A2||S1||S2. It computes h = H6(�Y ), y = H2(str), z = H3(str),
w = H4(str) and x = H1(w, y, z, T1, T2). Define �h′ = (h′

1, . . . , h
′
n) ∈ G

n

such that h′
i = hy−i+1

i for i ∈ [1, n]. It checks if all of the following hold:

t = 〈�l, �r〉, (6)

gthτx = gz2+w(z−z2)〈�1n,�yn〉−z3〈�1n,�1n〉 · T x
1 · T x2

2 , (7)

hμ�Y
�l �h′�r = A1 · Aw

2 · Sx
2 · �Y −z·�1n · �h′wz·�yn+z2·�1n

, (8)
hzαgzsk = S1A

x
1 . (9)
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Theorem 4. The set membership proof is secure if the discrete logarithm
assumption holds in G in the random oracle model.

The proof is given in the full version of the paper [22].

A.2 Set Membership Proof with Logarithm Size

Our scheme in the last section is linear size of n for the part of �l and �r. Observe

that the verifier can compute A1 · Aw
2 · Sx

2 · �Y −z·�1n · �h′wz·�yn+z2·�1n

. We note that
verifying both equations (6) and (8) is equivalent to verifying the witness �l and �r
satisfying the inner-product relation. Therefore, it can be fitted into the improved
inner-product argument framework from [4] to give a zero knowledge proof π of
�l, �r such that:

P = �Y ′
�l �h′�r ∧ t = 〈�l, �r〉.

The size of π is 2 · log2(n)� elements in G and 2 elements in Zp. The signer’s
work is dominated by log n+1 multi-exponentiations in G of size 2n, n, n/2, . . . , 1
respectively. The verifier’s work is dominated by a single multi-exponentiations
in G of size 2n + 2 log2 n + 1.

To sum up, the set membership proof output is σ = (A1, A2, S1, S2, T1, T2, τx,
μ, zα, zsk, t, π), which has size 2 · log2(n)� + 6 elements in G and 7 elements in
Zp. The signer’s work is dominated by three multi-exponentiations in G of size
2n+1, 2n and n+1 respectively. The verifier’s work is dominated by two multi-
exponentiations in G of size 2n + 2 log2 n + 1 and n + 4 respectively.
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Abstract. Blind signatures constitute basic cryptographic ingredients
for privacy-preserving applications such as anonymous credentials, e-
voting, and Bitcoin. Despite the great variety of cryptographic appli-
cations blind signatures also found their way in real-world scenarios.
Due to the expected progress in cryptanalysis using quantum comput-
ers, it remains an important research question to find practical and secure
alternatives to current systems based on the hardness of classical secu-
rity assumptions such as factoring and computing discrete logarithms.
In this work we present BLAZE: a new practical blind signature scheme
from lattice assumptions. With respect to all relevant efficiency metrics
BLAZE is more efficient than all previous blind signature schemes based
on assumptions conjectured to withstand quantum computer attacks. For
instance, at approximately 128 bits of security signatures are as small
as 6.6 KB, which represents an improvement factor of 2.7 compared to
all previous candidates, and an expansion factor of 2.5 compared to the
NIST PQC submission Dilithium. Our software implementation demon-
strates the efficiency of BLAZE to be deployed in practical applications.
In particular, generating a blind signature takes just 18 ms. The run-
ning time of both key generation and verification is in the same order as
state-of-the-art ordinary signature schemes.

Keywords: Blind signatures · Lattices · Post-quantum · Privacy

1 Introduction

Blind signature schemes allow users while interacting with a signer to generate
signatures on messages such that the signer gets no information about the mes-
sage being signed (blindness). The user in turn is not able to produce any valid
signature without interacting with the signer (one-more unforgeability). Blind
signatures were proposed by Chaum [12] and have become fundamental building
blocks in privacy-oriented cryptography. One of the main applications of blind
c© International Financial Cryptography Association 2020
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signatures is anonymous credentials [6], which allow users to privately obtain
and prove possession of credentials while revealing as little about themselves
as possible. This complies with the European privacy standards [32,33] and
the National Strategy for Trusted Identities in Cyberspace [16]. An established
real-life use case of blind signatures in anonymous credentials is the U-Prove
technology [31] designed by Microsoft. U-Prove is one of the technologies, to
which the Microsoft’s Open Specification Promise [30] applies and is integrated
for example by Gemalto - a leading digital security company - in its smart
card technology in order to enhance privacy [21]. Another application of blind
signatures is e-voting [25], where authorities can blindly sign public keys used
by voters to anonymously cast their votes. Further applications of blind signa-
tures include e-cash systems utilizing the Bitcoin blockchain [22], where entities
blindly sign digital coins withdrawn by users for selling and buying products and
services over the Internet and open networks.

Currently, the real-world applications mentioned above rely on classical blind
signature schemes, where the security is based on the hardness of number-
theoretic assumptions such as factoring large integers and computing discrete
logarithms. For instance, the U-Prove protocol implemented by Gemalto employs
blind signature constructions, which are secure as long as computing discrete log-
arithms is hard [31]. As it is meanwhile known, number-theoretic assumptions
are not secure for the long-term, especially when taking into account the devel-
opments of quantum computers. Consequently, these constructions have to be
replaced with blind signature schemes that are comparable in terms of efficiency
and are secure or at least conjectured to be secure under quantum computer
attacks. More concretely, we need post-quantum candidates of blind signature
schemes in order to further preserve privacy standards and anonymity consid-
erations. While such proposals do exist [9,34,36], they cannot be deployed in
practical applications due to their poor performance as well as large keys and
signatures (see Table 1).

Our Contributions. In this work we present a new and practical lattice-based
blind signature scheme that we call BLAZE. It provides statistical blindness
and strong one-more unforgeability in the random oracle model (ROM) assum-
ing the hardness of the ring short integer solution (RSIS) problem. We pro-
vide a software implementation of BLAZE attesting its practicality and propose
parameters targeting approximately 128 bits of security. Our implementation and
parameters show that BLAZE is more efficient than the previous blind signature
schemes [9,34,36] based on assumptions believed to withstand quantum com-
puter attacks. More precisely, at approximately the same security level BLAZE
achieves significant improvement factors with respect to all efficiency metrics
including key generation, signing, verification, and sizes of keys and signatures
(see Table 1). The parameters used in our implementation are in the order of
current state-of-the-art ordinary signature schemes such as the recent lattice-
based NIST submission Dilithium [17]. For instance, a blind signature produced
by BLAZE occupies only 6.6 KB of memory, which is larger by a factor of 2.5
compared to Dilithium. Furthermore, the fact that BLAZE is strongly one-more
unforgeable (i.e., the same message may be signed arbitrary many times, which
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Table 1. Comparison of the existing blind signature schemes that are conjectured
to be secure under quantum computer attacks. The table contents are adopted from
Sect. 4, [36, Table 3], [34, Table 1,2], and [9, Table 1]. We note that only the size of
public keys and signatures are given in [9]. Sizes are given in kilo bytes (KB), timings
in milliseconds (ms) and cycles (in parentheses). Benchmarking our parameters were
carried out on an Intel Core i7-6500U, operating at 2.3 GHz and 8GB of RAM. The
timings given in [36] were obtained on an AMD Opteron CPU, running at 2.3 GHz,
while those given in [34] were obtained on a 3.3 GHz Intel Quadcore.

Scheme Bit security Sizes Performance
Secret key Public key Signature Key generation Signing Verification

BLAZE
(this work)

113 0.8 3.9 6.6
0.1

(204, 671)
17.8

(35, 547, 397)
0.1

(276, 210)
[36] 102 23.6 23.6 89.4 52 283 57
[34] 102 36.6 54.6 17.6 9392 3662 2656
[9] 100 - 15 200 - - -

is an important feature for schemes deployed in practice), allows us to prove
BLAZE in the new security model honest-user unforgeability recently proposed
by Schröder and Unruh [37, Lemma 10]. It has been shown to be more con-
venient for blind signature schemes as it removes certain types of attacks not
captured in the traditional security model of blind signatures due to Pointcheval
and Stern [35].

Our Techniques. In order to give an overview of our techniques, it is instruc-
tive to sketch the signing protocol of the blind signature scheme introduced by
Rückert [36] at ASIACRYPT 2010 (RBS), since it is also lattice-based. RBS is
one-more unforgeable in the ROM assuming the hardness of RSIS. Its complete
description can be found in the full version of this paper [4]. A signature gener-
ated by RBS has the form (r, ĉ, ẑ), where r is a bit string, ĉ is output by a random
oracle H, and ẑ is a vector of polynomials with bounded coefficients. The signing
protocol works as follows: Upon receiving a “commitment” from the signer S,
the user U computes and blinds ĉ. This is accomplished by computing ĉ∗ = ĉ− û
for some random secret element û and applying rejection sampling on ĉ∗ to make
sure that it masks ĉ. If this is not the case, U selects a new û and repeats until
success and then proceeds by sending ĉ∗ to S. Subsequently, S responds with a
vector ẑ∗ only after carrying out rejection sampling on this vector and making
sure that it does not leak information about the secret key, otherwise S restarts
the protocol. Then, U transforms this response into the vector ẑ. Here, U applies
rejection sampling in order to further maintain blindness. More precisely, the
vector ẑ∗ must be concealed within ẑ = ẑ∗ − v̂, where v̂ is a uniform random
masking vector chosen by U . Finally, U sends a signal to S. This signal is either
an ok message or it includes a proof of failure, which allows S to verify that
no valid signature has been obtained by U in case the last rejection sampling
step has been failed and it further indicates that a protocol restart is required.
In addition, the protocol employs statistically hiding and computationally bind-
ing commitments to ensure blindness and one-more unforgeability over restarts.
In other words, U signs a commitment to the message, using a randomness r,
instead of the message itself and reveals its opening along with the signature.
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The goal of our new design in BLAZE is to improve all relevant sizes and
running times as well as security. Our observation is that removing the first
rejection sampling procedure carried out by U constitutes the main measure
towards achieving this goal. This is established in BLAZE via a new kind of
partitioning and permutation technique, which may be of independent interest.
It works as follows: Rather than subtracting the masking term û from ĉ, we use
signed rotation polynomials for masking. The resulting elements still lie in the
range of H and are randomized by rotation. Here, it is crucial for H to output
elements with exactly κ entries from {±1} and n−κ entries equal to zero, where
n is the number of entries. A random element with entries in other sets may
still leak information even after rotation. More formally, let R = Z[x]/〈xn + 1〉
and p̂j ∈ R (for j = 1, . . . , κ) be signed rotation polynomials, i.e., they have
the form ±xi for some i ∈ Z. We split the output ĉ of H into κ signed rotation
polynomials ĉ1, . . . , ĉκ. These polynomials have each a coefficient from {±1} and
degree at most n − 1. Then, we “permute” each part ĉj using one of the secret
polynomials p̂−1

j . The resulting elements ĉ∗
j will then be signed by S to ẑ∗. In

order for the final signature (output by U) to be successfully verified, we must
account for the partitioning and rotation. That is, multiplying the entries of
ẑ∗ each with p̂j and summing them up with secret masking terms yields the
signature part ẑ. This technique does not only remove one rejection sampling
step, it also ensures shorter signatures and speeds up the remaining two rejection
sampling procedures. This is because the norm bound of ẑ∗ and consequently
ẑ becomes significantly smaller. In RBS, the element ĉ∗ has entries bounded by
n − 1 and hence, the masking term used to compute ẑ∗ must be large enough to
hide the secret term. Consequently, the same must apply to the masking term
used to compute ẑ and hide ẑ∗. In BLAZE, however, smaller masking terms can
be used to compute ẑ∗ and ẑ, since each ĉ∗

j has the norm 1, for j = 1, . . . , κ. We
note that κ is much smaller than n and selected such that H provides enough
security.

In case the last rejection sampling procedure fails, we take a similar approach
to RBS and design a proof of failure allowing U to convince S that no valid
signature has been obtained and hence letting S restart the protocol. This proof
includes all secret elements generated by U during signing. In order to still
ensure statistical blindness, U signs a commitment τ to the message rather than
the message itself and includes its opening in the final signature. The binding
property of τ preserves the strong one-more unforgeability.

Related Work. In addition to RBS, there are other lattice-based constructions
of blind signatures found in literature. However, we show in the full version of
this paper [4] that they are insecure. More precisely, we show for the proposal
in [40] how the secret key can simply be recovered already after two executions
of its signing protocol. For the remaining schemes [13,19,20,38,39] we show that
any user is able to solve the underlying lattice problem in just one execution of
the signing protocol. Concerning lattice-based constructions, this leaves us with
the scheme RBS. Other post-quantum blind signature schemes that we are aware
of is the multivariate-based one from [34] and the code-based one proposed in [9].
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Table 1 shows that BLAZE is more efficient than those schemes in terms of all
efficiency metrics.

Outline. In Sect. 2 we give the background required throughout this work. Then,
we present in Sect. 3 our new blind signature scheme BLAZE. Afterwards, we
propose in Sect. 4 concrete parameters and compare BLAZE with the schemes [9,
34,36]. Finally, we give a conclusion and discuss possible future directions in
Sect. 5.

2 Preliminaries

Notation. We let N,Z,R denote the set of natural numbers, integers, and
real numbers, respectively. For a positive integer k, we let [k] denote the set
{1, 2, . . . , k}. We denote column vectors with bold lower-case letters and matri-
ces with bold upper-case letters. For any positive integer q, we write Zq to denote
the set of integers in the range [− q

2 , q
2 ) ∩ Z. The Euclidean norm (�2-norm) of

a vector v with entries vi is defined as ‖v‖ = (
∑

i |vi|2)1/2, and its �∞-norm
as ‖v‖∞ = maxi |vi|. We define the ring R = Z[x]/〈xn + 1〉 and its quotient
Rq = R/qR, where n is power of 2. A ring element a0+a1x+. . .+an−1x

n−1 ∈ Rq

is denoted by â and it corresponds to a vector a ∈ Z
n
q via coefficient embedding.

Hence, ‖â‖ = ‖a‖ and ‖â‖∞ = ‖a‖∞. We write â = (â1, . . . , âk) ∈ Rk
q to denote

a vector of ring elements. The norms of â are defined by ‖â‖ = (
∑k

i=1 ‖âi‖2)1/2

and ‖â‖∞ = maxi ‖âi‖∞. We let T
n
κ denote the set of all (n − 1)-degree polyno-

mials with coefficients from {−1, 0, 1} and Hamming Weight κ. All logarithms in
this work are to base 2, and we always denote the security parameter by λ ∈ N.
A function f : N → R is called negligible if there exists an n0 ∈ N such that for
all n > n0, it holds f(n) < 1

p(n) for any polynomial p. With negl(λ) we denote
a negligible function in λ. A probability is called overwhelming if it is at least
1−negl(λ). The statistical distance between two distributions X,Y over a count-
able domain D is defined by 1

2

∑
n |X(n) − Y (n)|. We write x ← D to denote

that x is sampled according to a distribution D. By x ←$ S we denote that x is
assigned a uniform random element from a finite set S . For two algorithms A,B
we write (x, y) ← 〈A(a),B(b)〉 to describe the joint execution of A and B in an
interactive protocol with private inputs a for A and b for B as well as private
outputs x for A and y for B. Accordingly, we write A〈·,B(b)〉k

(a) if A can invoke
up to k executions of the protocol with B.

2.1 Blind Signatures and Their Security

Definition 1 (Blind Signature Scheme). A blind signature scheme BS is a
tuple of polynomial-time algorithms BS=(BS.KGen,BS.Sign,BS.Verify) such that:

– BS.KGen(1λ) is a key generation algorithm that outputs a pair of keys (pk,sk),
where pk is a public key and sk is a secret key.

– BS.Sign(sk, pk, μ) is an interactive protocol between a signer S and a user U .
The input of S is a secret key sk, whereas the input of U is a public key pk
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Fig. 1. Security games of blindness and one-more unforgeability. In the blindness game
the modes find, issue, guess are shortened to fin, iss, gue, respectively.

and a message μ ∈ M, where M is the message space. The output of S is a
view V (interpreted as a random variable) and the output of U is a signature
σ, i.e., (V, σ) ← 〈S(sk),U(pk, μ)〉. We write σ = ⊥ to denote failure.

– BS.Verify(pk, μ, σ) is a verification algorithm that outputs 1 if the signature σ
is valid and 0 otherwise.

Blind signature schemes require the completeness property, i.e., BS.Verify
always (or with overwhelming probability) validates honestly signed messages
under honestly created keys. Security of blind signatures is captured by two
security notions: blindness and one-more unforgeability [23,35].

Definition 2 (Blindness). A blind signature scheme BS is called (t, ε)-blind
if for any adversarial signer S∗ running in time at most t and working in modes
find, issue, and guess, the game BlindBS,S∗(λ) depicted in Fig. 1 outputs 1 with
probability Pr[BlindBS,S∗(λ) = 1] ≤ 1

2 + ε, i.e., the advantage of S∗ in the game
is given by ε = AdvBS,S∗(λ) =

∣
∣ Pr[b∗ = b]− 1

2

∣
∣. The scheme is statistically blind

if it is (t = ∞, ε = negl(λ))-blind.

Definition 3 (One-more Unforgeability). Let H be a family of random ora-
cles. A blind signature scheme BS is called (t, qSign, qH, ε)-one-more unforgeable in
the random oracle model if for any adversarial user U∗ running in time at most
t and making at most qSign, qH signing and hash queries, the game ForgeBS,U∗(λ)
depicted in Fig. 1 outputs 1 with probability Pr[ForgeBS,U∗(λ) = 1] ≤ ε. The
scheme is strongly (t, qSign, qH, ε)-one-more unforgeable if the condition μi �= μj

in the game changes to (μi, σi) �= (μj , σj) for all 1 ≤ i < j ≤ l.

2.2 Lattices and Gaussians

Let B = {b1, . . . ,bk} ∈ R
m×k be a set of linearly independent vectors, where

k ≤ m. The m-dimensional lattice L of rank k generated by B is given by
L(B) = {Bx | x ∈ Z

k} ⊂ R
m. If m = k, then L is full-rank. The determinant

of L, denoted by det(L), is given by
√

det(B� · B), where B is any basis of
L. The discrete Gaussian distribution DL,σ,c over a lattice L with standard
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deviation σ > 0 and center c ∈ R
n is defined as follows: The probability of any

x ∈ L is given by DL,σ,c(x) = ρσ,c(x)/ρσ,c(L), where ρσ,c(x) = exp(−‖x−c‖2

2σ2 )
and ρσ,c(L) =

∑
x∈L ρσ,c(x). The subscript c is taken to be 0 when omitted.

Sampling from DL,σ using a specified randomness ρ is denoted by DL,σ(ρ). The
following two lemmas are used throughout this work.

Lemma 1 ([27, Lemma 4.4]). For any t, η > 0 we have

1. Prx←DZ,σ
[|x| > t · σ] ≤ 2 exp(−t2/2).

2. Prx←DZm,σ
[‖x‖ > ησ

√
m] ≤ ηm exp(m

2 (1 − η2)).

Lemma 2 ([27, Theorem 4.6, Lemma 4.7]). Let V ⊆ Z
m with elements

having norms bounded by T , σ = ω(T
√

log m), and h : V → R be a probabil-
ity distribution. Then there exists a constant M = O(1) such that ∀v ∈ V :
Pr[DZm,σ(z) ≤ M · DZm,σ,v(z); z ← DZm,σ] ≥ 1 − ε, where ε = 2−ω(log m). Fur-
thermore, the following two algorithms are within statistical distance δ = ε/M .

1. v ← h, z ← DZm,σ,v, output (z,v) with probability DZm,σ(z)
M ·DZm,σ,v(z)

.
2. v ← h, z ← DZm,σ, output (z,v) with probability 1/M .

Moreover, the probability that the first algorithm outputs something is at least
(1−ε)/M . If σ = αT for any positive α, then M = exp(12α + 1

2α2 ) with ε = 2−100.

We let RejSamp(x) denote an algorithm that carries out rejection sampling
on input x. It outputs 1 if it accepts and 0 otherwise. We write RejSamp(x; r) to
specify the randomness r used within the algorithm. In the following we define
the related lattice problem.

Definition 4 (Ring Short Integer Solution (RSIS) Problem). Let n, q,m
be positive integers and β a positive real. Given a vector â = (â1, . . . , âm) chosen
uniformly random from Rm

q , the Hermite Normal Form of the RSIS problem asks
to find a non-zero vector x̂ = (x̂′, x̂m+1) = (x̂1, . . . , , x̂m, x̂m+1) ∈ Rm+1 such
that ‖x̂‖ ≤ β and [â 1] · x̂ = âx̂′ + x̂m+1 =

∑m
i=1 âix̂i + x̂m+1 = 0 (mod q).

Any instance I of RSIS is called (t, ε)-hard if any algorithm A running in
time at most t can solve I with probability ε.

3 BLAZE: The New Blind Signature Scheme

In this section we present BLAZE: our new and practical blind signature scheme.
It is statistically blind and strongly one-more unforgeable in the ROM. As
opposed to RBS, BLAZE has to pass 2 rejection sampling procedures rather
than 3; one is performed by the signer to conceal the secret key and one by
the user to achieve blindness. That is, we remove one rejection sampling step
from the user side by splitting the output of the random oracle generated by the
user into monomials with entries from {−1, 1} and permuting them using secret
monomials with entries from {−1, 1} as well.

We first introduce new tools and technical lemmas employed within BLAZE.
The proofs are provided in the full version of this paper [4].
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Definition 5. Define by T̂ =
{
(−1)s · xi | for s ∈ N and i ∈ Z

}
the set of

signed permutation polynomials which represent a rotation multiplied by a sign.

Lemma 3. Let p̂ ∈ T̂ with p̂ = (−1)s · xi for some i ∈ Z and s ∈ {0, 1}. Then,
T̂ is a group with respect to multiplication in R and the inverse of p̂ is given by
p̂−1 = (−1)1−s · xn−i ∈ T̂.

Lemma 4. Let ĉ ∈ T
n
κ and ĉ1, . . . , ĉκ be a partition of ĉ such that ĉ =

∑κ
j=1 ĉj

and each ĉj contains exactly the jth non-zero entry of ĉ at exactly the same
position. Furthermore, let ĉ∗

j = p̂−1
j ĉj for random signed rotations p̂1, . . . , p̂κ ∈ T̂.

Then, ĉ∗
j , ĉj ∈ T̂ and we have

Pr
p̂j←$T̂

[(ĉ∗
1, . . . , ĉ

∗
κ) = (p̂−1

1 ĉ1, . . . , p̂
−1
κ ĉκ) | ĉ] = (1a)

Pr
p̂j←$T̂,ĉ←$T

n
κ

[(ĉ∗
1, . . . , ĉ

∗
κ) = (p̂−1

1 ĉ1, . . . , p̂
−1
κ ĉκ)] = (2n)−κ (1b)

In the following we give a detailed description of our new blind signature
scheme BLAZE. We let Expand be a public random function on λ-bit strings
(e.g., a pseudorandom number generator). It takes a uniform random seed from
{0, 1}λ as input and expands it to any desired length. This function is solely used
for saving bandwidth as it is deterministic, i.e., given some input it always gener-
ates the same output. We let H : {0, 1}∗ → T

n
κ be a public hash function modeled

as a random oracle. We further let Com : {0, 1}∗ × {0, 1}λ → {0, 1}λ be a statis-
tically hiding and computationally binding commitment function. Finally, we let
Compress and Decompress be functions for (de)compressing Gaussian elements
(see the full version [4] for description). The respective algorithms of BLAZE are
formally described in Fig. 2.

Key Generation. Given 1λ the algorithm chooses a uniform random seed from
{0, 1}λ and expands it to a vector â ∈ Rm

q using Expand. The secret key is given
by sk = (ŝ1, ŝ2), which is sampled from Dm

Zn,σ × DZn,σ. The public key is set to
pk = (seed, b̂ = âŝ1 + ŝ2 (mod q)).

Signing. Given sk, seed, and a message μ the signer S samples the masking
terms (ŷ∗

j,1, ŷ
∗
j,2) from Dm

Zn,s∗ × DZn,s∗ for j ∈ [κ] and sends the polynomials
ŷj = âŷ∗

j,1 + ŷ∗
j,2 (mod q) to the user U .

Upon receiving ŷ1, . . . , ŷκ, U computes τ = Com(μ; r), τ ′ = Com(ρ′; r′), where
r, r′, ρ′ are selected uniformly random from {0, 1}λ. Then, it expands seed to
the vector â using the function Expand and selects uniformly random elements
p̂1, . . . , p̂κ ∈ T̂. Furthermore, U samples a pair (ê1, ê2) from Dm

Zn,s×DZn,s using a
randomness ρ ∈ {0, 1}λ, which is used to reduce the communication complexity,
i.e., a proof of failure sent by U (see below) includes only ρ rather than the pair
(ê1, ê2). Then, U generates ĉ = H(âê1 + ê2 +

∑κ
j=1 p̂iŷi (mod q), τ ′, τ) ∈ T

n
κ.

Subsequently, U splits ĉ into partitions ĉ1, . . . , ĉκ ∈ T̂ such that ĉ =
∑κ

j=1 ĉj

and the jth partition ĉj contains the jth non-zero entry of ĉ at exactly the same
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Fig. 2. A formal description of the new blind signature scheme BLAZE.

position. Afterwards, U masks each partition ĉj by computing ĉ∗
j = p̂−1

j · ĉj for
all j ∈ [κ]. Then, U sends ĉ∗

1, . . . , ĉ
∗
κ to S.

Using the partitions ĉ∗
j , S computes ẑ∗

j,1 = ŷ∗
j,1 + ŝ1ĉ∗

j and ẑ∗
j,2 = ŷ∗

j,2 + ŝ2ĉ
∗
j .

Subsequently, S applies rejection sampling on (ẑ∗
j,1, ẑ

∗
j,2) to make sure that they

do not leak information about sk. If RejSamp outputs 1, S sends (ẑ∗
j,1, ẑ

∗
j,2) to

U , otherwise S restarts the protocol.
Upon receiving (ẑ∗

j,1, ẑ
∗
j,2), U computes v̂1 =

∑κ
j=1 p̂j ẑ∗

j,1, v̂2 =
∑κ

j=1 p̂j ẑ
∗
j,2

and checks that ‖(v̂1, v̂2)‖ is bounded by ηs∗√(m + 1)κn. This check rules out
malicious signers and ensures that the generated signatures are valid and blind.
This check can be skipped in applications with trustworthy signers. In order for
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Fig. 3. The algorithm carried out by the signer in order to verify the proof of failure
(see Fig. 2).

the verification to succeed, the pair (ẑ1, ẑ2) that will be output by U must be
brought into the form ẑ1 = ŷ∗

1 + ŝ1ĉ, ẑ2 = ŷ∗
2 + ŝ2ĉ, for some ŷ∗

1, ŷ
∗
2 . This is

attained by multiplying ẑ∗
j,1, ẑ

∗
j,2 with p̂j , summing them up together with the

masking terms ê1, ê2, and applying RejSamp(ẑ1, ẑ2; ρ′) to ensure that ẑ∗
j,1, ẑ

∗
j,2

are concealed. Thus, U must already have taken this into account via the input
to H. In fact, we must have âŷ∗

1 + ŷ∗
2 = âê1+ ê2+

∑κ
j=1 p̂j ŷj (mod q). Therefore,

U sets ẑ1 = ê1 +
∑κ

j=1 p̂j ẑ∗
j,1 and ẑ2 = ê2 +

∑κ
j=1 p̂j ẑ

∗
j,2. Finally, U compresses

(ẑ1, ẑ2) using the function Compress and sends result = ok to S. The signature
is given by (τ ′, r, ẑ1, ẑ2, ĉ). If RejSamp outputs 0, U sends S a proof of failure by
setting result = (τ, ρ, ρ′, r′, p̂1, . . . , p̂κ, ĉ). In this case S verifies that U has indeed
not obtained a valid signature (see Fig. 3), and restarts the protocol.

Note that in order to verify that the rejection sampling process applied on
(ẑ1, ẑ2) does not accept using some randomness, S requires the randomness ρ′

used by U for which RejSamp(ẑ1, ẑ2; ρ′) = 0. Therefore, ρ′ must be part of the
proof of failure. However, it cannot be part of the signature, since it may leak
information about the secret terms involved in computing ẑ1, ẑ2. This is why U
computes a commitment τ ′ to ρ′ and involves τ ′ in the computation of ĉ in order
to preserve security, hence τ ′ is included in the signature to allow verification.

Verification. On input (seed, b̂, μ, (τ ′, r, ẑ1, ẑ2, ĉ)) the verifier uses Expand to
compute â out of seed, decompresses (ẑ1, ẑ2) using Decompress. It accepts if and
only if ‖(ẑ1, ẑ2)‖ is smaller than some predefined bound B and the output of H
on

(
âẑ1 + ẑ2 − b̂ĉ (mod q), τ ′,Com(μ; r)

)
is equal to ĉ.

The following states the completeness, blindness, and strong one-more
unforgeability of BLAZE.

Theorem 1 (Completeness). Let Com be a statistically hiding and computa-
tionally binding commitment function. Let α∗, α, η > 0, s∗ = α∗√κ · ‖(ŝ1, ŝ2)‖,
s = ηα

√
(m + 1)κns∗, and B = ηs

√
(m + 1)n. After at most M = MS · MU

repetitions, any blind signature produced by BLAZE is validated with probability
at least 1 − 2−λ, where MS = exp( 12

α∗ + 1
2α∗2 ) and MU = exp(12α + 1

2α2 ) are the
expected number of repetitions by the signer and user, respectively.
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Proof. For an honestly generated signature (τ ′, r, ẑ1, ẑ2, ĉ), the pair (ẑ1, ẑ2) is
distributed according to Dm+1

Zn,s and bounded by ηs
√

(m + 1)n = B with proba-

bility 1 − η(m+1)n exp( (m+1)n
2 (1 − η2)) (see Lemma 1). By a suitable choice of η

we obtain ‖(ẑ1, ẑ2)‖ ≤ B with probability 1 − 2−λ.
The condition H(âẑ1 + ẑ2 − b̂ĉ (mod q), τ ′, τ) = ĉ is satisfied due to the

correctness of Com and the following:

âẑ1 + ẑ2 − b̂ĉ = â
(
ê1 +

κ∑

j=1

p̂j ẑ∗
j,1

)
+

(
ê2 +

κ∑

j=1

p̂j ẑ
∗
j,2

)
− b̂ĉ

= â
(
ê1 +

κ∑

j=1

(ŝ1ĉj + p̂jŷ∗
j,1)

)
+ ê2 +

κ∑

j=1

(ŝ2ĉj + p̂j ŷ
∗
j,2) − b̂ĉ

= âê1 + ê2 +
κ∑

j=1

p̂j

(
âŷ∗

j,1 + ŷ∗
j,2

)
+ (âŝ1 + ŝ2) ĉ − b̂ĉ

= âê1 + ê2 +
κ∑

j=1

p̂j ŷj (mod q)

.

By Lemma 2, the rejection sampling procedure carried out by the signer accepts
with probability

DZ(m+1)κn,s∗(z∗)/(MS · DZ(m+1)κn,s∗,v∗(z∗)),

where z∗,v∗ are the vector representations of

(ẑ∗
1,1, . . . , ẑ

∗
κ,2), (ŝ1ĉ∗

1, . . . , ŝ1ĉ
∗
κ, ŝ2ĉ

∗
1, . . . , ŝ2ĉ

∗
κ)

and the expected number of repetitions is given by MS = exp( 12
α∗ + 1

2α∗2 ) for
s∗ = α∗ ‖v∗‖ = α∗√κ ‖(ŝ1, ŝ2)‖.

The rejection sampling step performed by U accepts with probability

DZ(m+1)n,s(z)/(MU · DZ(m+1)n,s,v(z)),

where z,v are the vector representations of (ẑ1, ẑ2), (
∑κ

j=1 p̂j ẑ∗
j,1,

∑κ
j=1 p̂j ẑ

∗
j,2)

and the expected number of repetitions is MU = exp(12α + 1
2α2 ) for s = α ‖v‖. The

polynomials in v are distributed according to DZn,
√

κs∗ (see [10, Theorem 9]).
Hence, ‖v‖ ≤ η

√
(m + 1)κns∗ and s = ηα

√
(m + 1)κns∗. Therefore, the total

expected number of repetitions is M = MS · MU .
Finally, we note that when choosing η as described above, the condition

‖(v̂1, v̂2)‖ ≤ ηs∗√(m + 1)κn carried out by U (see Fig. 2) is satisfied with prob-
ability at least 1 − 2−λ. ��
Theorem 2 (Blindness). Let Com be a statistically hiding and computation-
ally binding commitment function. The scheme BLAZE is (t = ∞, ε = 2−100

MU
)-

blind.
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Proof. In the game BlindBS,S∗(λ) given in Definition 2 the adversarial signer S∗

selects two messages μ0, μ1 and interacts with the user U twice, i.e., U(seed, μb)
in the first run and subsequently U(seed, μ1−b) for a random bit b chosen by
U . We show that after each interaction, U does not leak any information about
the respective message being signed. More precisely, the exchanged messages
during protocol execution together with the user’s output (interpreted as random
variables) are independently distributed, especially also from the message being
signed. This requires analyzing only the pair (ẑ1, ẑ2), since τ ′ is a statistically
hiding commitment, r is uniformly random, ĉ ∈ T

n
κ and ĉ∗

1, . . . , ĉ
∗
κ ∈ T̂ are

uniformly random and independently distributed from ĉ (see Lemma 4).
Let (ẑ1, ẑ2)b and (ẑ1, ẑ2)1−b be the pairs output by U(seed, μb), U(seed, μ1−b),

respectively. They have the form (ẑ1, ẑ2) = (ê1 +
∑κ

j=1 p̂j ẑ∗
j,1, ê2 +

∑κ
j=1 p̂j ẑ

∗
j,2),

where p̂1, . . . , p̂κ are uniform random elements from T̂, the elements ẑ∗
1,1, . . . , ẑ

∗
κ,2

have entries distributed as DZ,s∗ , and ê1, ê2 have entries distributed according to
DZ,s. When applying rejection sampling (Lemma 2) on (ẑ1, ẑ2)b, (ẑ1, ẑ2)1−b, they
completely hide (ẑ∗

1,1, . . . , ẑ
∗
κ,2)b, (ẑ∗

1,1, . . . , ẑ
∗
κ,2)1−b, respectively, and become

independently distributed within statistical distance of 2−100

MU
from D

(m+1)n
Z,s .

Furthermore, if the protocol needs to be restarted, then the user generates
fresh r, r′, ρ, ρ′, p̂1, . . . , p̂κ. Therefore, protocol executions are independent of each
other and hence the signer does not get information about the message being
signed. Moreover, the proof of failure also maintains blindness due to the statis-
tical hiding property of Com.

Finally, we note that checking the length of (v̂1, v̂2) made by the user
(see Fig. 2) maintains blindness by preventing a malicious signer from choos-
ing (ẑ∗

1,1, . . . , ẑ
∗
κ,2) according to some distribution that makes the protocol

fail. ��
Remark 1. Similar to RBS, we note that BLAZE remains blind under the stronger
blindness definition given in [1], i.e., even if pk is chosen maliciously by S∗. This is
because the above proof does not exploit any special features of the key. Further-
more, selective failure blindness [11] is already achieved since a commitment to
the message is being signed using a statistically hiding commitment scheme [18].

Theorem 3 (Unforgeability). Let Com be a statistically hiding and computa-
tionally binding commitment function. BLAZE is strongly (tA, qSign, qH, εA)-one-
more unforgeable if RSIS is (tD, εD)-hard. That is, if it is hard to find x̂ �= 0 sat-
isfying [â 1]·x̂ = 0 (mod q) and ‖x̂‖ ≤ 2B+s/α, where tD ≤ tA+q

qSign
H (qSign+qH)

and εD ≥ min{ε1, ε2}. The probabilities ε1, ε2 are given in the proof.

Proof. We assume that there exists a forger A that wins the one-more unforge-
ability game given in Definition 3 with probability εA. We construct a reduction
algorithm D that solves RSIS as described in the theorem statement with prob-
ability εD.

Setup. The input of D is a uniform random vector â ∈ Rm
q . The reduction D

samples (ŝ1, ŝ2) from Dm
Zn,σ × DZn,σ and computes b̂ = âŝ1 + ŝ2 (mod q). Then,
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D randomly selects answers for random oracle queries {ĥ1, . . . , ĥqH}, and runs
the forger A with public key (â, b̂).

Random Oracle Query. The reduction D maintains a list LH, which includes
pairs of random oracle queries and their answers. If H was previously queried
on some input, then D looks up its entry in LH and returns its answer ĉ ∈ T

n
κ.

Otherwise, it returns the first unused ĉ and updates the list.

Blind Signature Query. Upon receiving signature queries from the forger A
as a user, D interacts as a signer with A according to the signing protocol (see
Fig. 2).

Output. After k ≤ qSign successful executions of the signing protocol, A outputs
k + 1 distinct messages and their valid signatures (μ1, sig1), . . . , (μk+1, sigk+1).
Then, one of the following two cases applies:

Case 1. D finds two signatures of messages μ, μ′ ∈ {μ1, . . . , μk+1} with the same
random oracle answer ĉ. In this case the verification algorithm yields

H(âẑ1 + ẑ2 − b̂ĉ (mod q), τ ′, τ) = H(âẑ′
1 + ẑ′

2 − b̂ĉ (mod q), ν′, ν) .

This implies that μ = μ′ and âẑ1 + ẑ2 = âẑ′
1 + ẑ′

2 (mod q) with overwhelming
probability (otherwise, A would have found a second preimage of ĉ or the binding
property of Com does not hold). Since μ = μ′, this implies that (ẑ1, ẑ2) �= (ẑ′

1, ẑ
′
2).

This yields â(ẑ1 − ẑ′
1) + (ẑ2 − ẑ′

2) = 0 (mod q). Since the signatures are valid,
we have ‖(ẑ1, ẑ2)‖ ≤ B and ‖(ẑ′

1, ẑ
′
2)‖ ≤ B. Hence, ‖(ẑ1 − ẑ′

1, ẑ2 − ẑ′
2)‖ ≤ 2B.

Case 2. If all signatures output by A have distinct random oracle answers, then
D guesses an index i ∈ [k+1] such that ĉi = ĥj for some j ∈ [qH]. Then, it records
the pair (μi, (τ ′, r, ẑ1, ẑ2, ĉi)) and invokes A again with the same random tape and
random oracle queries {ĥ1, . . . , ĥj−1, ĥ

′
j , . . . , ĥ

′
qH

}, where {ĥ′
j , . . . , ĥ

′
qH

} are fresh
random elements. The output of A includes a pair (μ′

i, (τ
′′, r′′, ẑ′

1, ẑ
′
2, ĉ

′
i)), and D

returns (ẑ1 − ẑ′
1 − ŝ1(ĉi − ĉ′

i), ẑ2 − ẑ′
2 − ŝ2(ĉi − ĉ′

i)). The reduction D retries at
most qk+1

H times with different random tape and random oracle queries.

Analysis. First, we note that the environment of A is perfectly simulated by D
and signatures are generated with the same probability as in the real execution
of BS.Sign. If the first case (Case 1.) applies, D solves RSIS with norm bound
2B. Next, we analyze the second case (Case 2.). In this case one of the k + 1
pairs output by A is by assumption not generated during the execution of the
signing protocol. The probability of correctly guessing the index i corresponding
to this pair is 1/(k+1), where there are qk+1

H index pairs (i, j) such that ĉi = ĥj .
Therefore, one of the qk+1

H reruns of A yields the correct index pair (i, j). The
probability that ĉi was a random oracle query made by A is at least 1 − 1/|Tn

κ|.
Thus, the probability that ĉi = ĥj is at least εA−1/|Tn

κ|. By the General Forking
Lemma [8], the probability that ĉ′

i is used by A in the forgery such that ĉi �= ĉ′
i

and âẑ1 + ẑ2 − b̂ĉi = âẑ′
1 + ẑ′

2 − b̂ĉ′
i (mod q) is at least

εfork ≥
(
εA − 1

|Tn
κ|

)
·
(εA − 1/|Tn

κ|
qSign + qH

− 1
|Tn

κ|
)

.
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Therefore, by setting b̂ = âŝ1 + ŝ2 (mod q) we obtain âv̂1 + v̂2 = 0 (mod q),
where v̂1 = ẑ1 − ẑ′

1 − ŝ1(ĉi − ĉ′
i) and v̂2 = ẑ2 − ẑ′

2 − ŝ2(ĉi − ĉ′
i). Since (ŝ1, ŝ2) are

not uniquely defining b̂ when (m + 1) log(d) > log(q) and d is an integer bound
on the coefficients of (ŝ1, ŝ2), A does not know which (ŝ1, ŝ2) is being used to
construct (v̂1, v̂2). Hence, (v̂1, v̂2) �= 0 with probability at least 1/2. Since both
signatures are valid, we have ‖(ẑ1, ẑ2)‖ ≤ B and ‖(ẑ′

1, ẑ
′
2)‖ ≤ B. Moreover we

have ‖(ŝ1, ŝ2) · (ĉi − ĉ′
i)‖ ≤ 2ησ

√
(m + 1)κn. This implies that

‖(v̂1, v̂2)‖ ≤ 2(B + ησ
√

(m + 1)κn) < 2B + s/α .

The success probability of D is given by ε1 ≥ εfork
2(k + 1)

, which is non-negligible

if εA is non-negligible.
Finally, we analyze the case that users can generate a valid signature after an

aborted interaction with S. The proof of failure result = (τ, ρ, ρ′, r′, p̂1, . . . , p̂κ, ĉ)
satisfies the 3 checks carried out by S (see step 5 in Fig. 3). In the following we
denote these checks by C1, C2, and C3, respectively. Now, assume that a user U
obtains a valid signature (τ ′′, r′′, ẑ′

1, ẑ
′
2, ĉ

′) after an aborted interaction. If ĉ′ = ĉ,
then by C2 we obtain â(ẑ1−ẑ′

1)+ẑ2−ẑ′
2 = 0 (mod q). The case (ẑ1, ẑ2) = (ẑ′

1, ẑ
′
2)

contradicts C3, hence w.l.og. ẑ1 �= ẑ′
1. Note that the norm of (ẑ1, ẑ2) is bounded

by B + ηs∗√(m + 1)κn = B + s/α. Hence, ‖(ẑ1 − ẑ′
1, ẑ2 − ẑ′

2)‖ ≤ 2B + s/α. If
ĉ′ �= ĉ, then by C1 we must have ĉ∗

j = p̂−1
j ĉj = (p̂′

j)
−1ĉ′

j , where p̂′
j �= p̂j for all

j ∈ [κ]. Otherwise, the signature (τ ′′, r′′, ẑ′
1, ẑ

′
2, ĉ

′) was not obtained from the
aborted interaction. Hence, we have p̂−1

j = (p̂′
j)

−1ĉ′
j ĉ

−1
j . Therefore, U must have

predicted the output of H in order to determine p̂−1
j . The success probability

of D by an aborted interaction is at least ε2 ≥ εA(1 − 1/|Tn
κ|), which is non-

negligible if εA is non-negligible. Therefore, the overall success probability of D
is εD ≥ min{ε1, ε2}. ��
Remark 2. As mentioned in Sect. 1, strong one-more unforgeability already
implies strong honest-user unforgeability [37, Lemma 10]. Furthermore, the
above proof assumes that the vector â is given, while in practical applications
it can be generated from a seed in order to save bandwidth by only storing the
seed instead of the whole vector. Security under this assumption can be proven
by the following simple reduction: Assuming the existence of an adversary A
against BLAZE, we construct an adversary B against a variant of BLAZE with
public key (â, b̂). By modeling the function Expand as a programmable random
oracle, B chooses a random seed′, reprograms Expand(seed′) = â, and invokes A
on input (seed′, b̂). The output of B is then the same forgery as the one generated
by A.

4 Concrete Parameters and Comparison

In this section we propose concrete parameters for BLAZE and compare our
results with the previous blind signature schemes [9,34,36]. We review the
parameter description of BLAZE in Table 2. We then describe our parameter
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Table 2. A review of parameters and sizes of keys and signatures of BLAZE.

Parameter Description Bounds
λ security parameter
n dimension power of 2
m + 1 number of polynomials (secret key) m ∈ Z≥1
q modulus prime, q = 1 (mod 2n)
σ standard deviation (secret key) σ > 0, (m + 1) log(tσ) > log(q)

κ Hamming weight of H’s output 2κ

(
n
κ

)
≥ 2λ

s∗ standard deviation (signer) s∗ = α∗√
κ ‖(ŝ1, ŝ2)‖, α∗ > 0

s standard deviation (signatures) s = ηα
√

(m + 1)κns∗, α, η > 0,

η(m+1)n exp(
(m+1)n

2 (1 − η2)) ≤ 2−λ

M number of repetitions M = MS · MU , MS = exp( 12
α∗ + 1

2α∗2 ),

MU = exp( 12
α + 1

2α2 )

secret key size (bit) (m + 1)n�log(tσ + 1)�, 2e−t2/2 ≤ 2−λ

public key size (bit) n�log q� + λ
signature size without compression (bit) κ(1 + �log n�) + (m + 1)n�log(ts + 1)� + 2λ

selection and the methodology to estimate the security. We note that param-
eters for the scheme [9] and [34,36] were selected targeting 100 and 102 bits
of security, respectively. Therefore, we select our parameters targeting approx-
imately the same security level. A description of our software implementation
can be found in the full version of this paper [4].

Parameters. Table 3 shows the parameters selected for BLAZE. We give some
insights of how these parameters were selected. A detailed description of selecting
parameters in lattice-based cryptography can be found in [3]. We set n = 1024,
which is a typical choice for lattice-based schemes targeting medium or high secu-
rity levels. The choice of m = 1 changes the hardness of recovering the secret
key given the public key from RSIS to the ring learning with errors problem [28].
By setting m = 3 and σ = 9.6, key recovery is based on RSIS and the existence
of at least two secret keys given the public key is ensured following Theorem 3.
For optimal efficiency, the performance of BLAZE was evaluated using the first
parameter set. The modulus q is chosen large enough such that the underlying
RSIS instance provides the desired security level. We set κ such that the cardi-
nality of Tn

κ is large enough for security. The parameters α∗, α,MS , and MU are
selected such that the total average number of restarts is given by 2.9.

Security. We describe the methodology used to estimate the security of the
proposed parameters. We considered the asymptotically best algorithms known
to solve the underlying lattice problems with no memory restrictions. More pre-
cisely, we used the well known and widely used LWE estimator [2] (with commit-
id 62b5edc on 2019-09-11) to measure the hardness of recovering the secret key.
Furthermore, we considered the lattice reduction algorithm BKZ [15] to esti-
mate the hardness of forging signatures. BKZ uses a solver for the shortest
vector problem (SVP) in lattices of dimension b, where b is called the block
size. The best known SVP solver [7] runs in time ≈ 20.292b. Running BKZ
with block size b on a k-dimensional lattice L takes time 8k20.292b+16.4 [7]. Due
to [14], after calling BKZ we obtain a vector of length δk · det(L)1/k, where
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Table 3. Concrete parameters for BLAZE and sizes (in KB) of keys and signatures.

λ n m q σ κ α∗ α s∗ s MS MU M sk size pk size signature size

113 1024 1 ≈ 231 0.5 16 20 25 2172.2 11796306 1.8 1.6 2.9 0.8 3.9 6.6
122 1024 3 ≈ 231 9.6 16 20 25 54067.2 380633088 1.8 1.6 2.9 3.5 3.9 15.6

δ =
(
b · (πb)

1
b /(2πe)

) 1
2(b−1)

. According to Theorem 3, forging a signature implies
solving RSIS for the matrix [â 1] with norm bound β = 2B + s/α. Given β we
determined δ by setting β = δk ·det(L)1/k. Then, we used the formula of δ given
above to deduce the minimum block size b required for BKZ to achieve δ. Then,
we computed the cost of BKZ.

Comparison. Table 1 shows that our scheme BLAZE improves upon the pre-
vious blind signature schemes [9,34,36] with respect to all relevant efficiency
metrics. We note that we considered only the best parameter set proposed for
RBS in [36, Table 3] for the target security level of 102 bits.

5 Conclusion

We highlight few notable conclusions from our results and possible future work.
We presented BLAZE, a new practical lattice-based blind signature scheme pro-
viding statistical blindness under adversely-chosen keys [1] and the strongest
version of unforgeability [37] in the ROM. We have shown that BLAZE improves
upon all previous works on blind signatures based on assumptions conjectured
to withstand quantum computer attacks.

Similar to [36], the unforgeability proof of BLAZE requires the signing queries
qSign to be limited to o(λ). As mentioned in [36] and originally by Pointcheval
and Stern [35], this constraint is an artifact of the proof and is not unusual for
efficient blind signatures. It was left open to achieve a polynomial-time reduction
in both qSign and key size. We extend this research question to investigating the
security of BLAZE in the quantum random oracle model (QROM). A possible
direction towards this goal may involve the results of Kiltz et al. [24] on the
security of Fiat-Shamir signatures in QROM. Further improvements that can be
made on BLAZE’s design are the following:

– Utilize the compression technique of Bai and Galbraith [5] to obtain shorter
signatures. This approach requires further analysis regarding correctness and
security. In particular, the strong one-more unforgeability is then not directly
preserved. Consequently, the security of the resulting scheme under the new
security model by Schröder and Unruh [37] cannot be established in a straight-
forward way.

– Reduce the communication complexity of the signing protocol by compressing
the Gaussian vector ẑ∗ using the algorithm Compress before sending them to
the user (see Fig. 2).

– Generalize BLAZE so that it is based on lattices over modules [26]. This allows
for more flexibility when selecting parameters.
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– Finally, we note that BLAZE can directly be transformed into an identity-
based blind signature scheme. Secret keys can be extracted from the master
secret key using any preimage sampleable trapdoor function, e.g., due to [29].
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Abstract. Decentralized consensus protocols based on proof-of-work
(PoW) mining require nodes to download data linear in the size of
the blockchain even if they make use of Simplified Payment Verifica-
tion (SPV). In this work, we put forth a new formalization of proof-of-
work verification by introducing a primitive called Non-Interactive Proofs
of Proof-of-Work (NIPoPoWs). We improve upon the previously known
SPV NIPoPoW by proposing a novel NIPoPoW construction using super-
blocks, blocks that are much heavier than usual blocks, which capture the
fact that proof-of-work took place without sending all of it. Unlike a tra-
ditional blockchain client which must verify the entire linearly-growing
chain of PoWs, clients based on superblock NIPoPoWs require resources
only logarithmic in the length of the chain, instead downloading a com-
pressed form of the chain. Superblock NIPoPoWs are thus succinct proofs
and, due to their non-interactivity, require only a single message between
the prover and the verifier of the transaction. Our construction allows
the creation of superlight clients which can synchronize with the net-
work quickly even if they remain offline for large periods of time. Our
scheme is provably secure in the Bitcoin Backbone model. From a theo-
retical point of view, we are the first to propose a cryptographic prover–
verifier definition for decentralized consensus protocols and the first to
give a construction which can synchronize non-interactively using only a
logarithmically-sized message.

1 Introduction

Proof-of-work blockchain clients such as mobile wallets today are based on the
Simplified Payment Verifications (SPV) protocol, which was described in the
original Bitcoin paper [14], and allows them to synchronize with the network
by downloading only block headers and not the entire blockchain with transac-
tions. However, such initial synchronization still requires receiving all the block
headers. In this work, we study the question of whether better protocols exist
and in particular if downloading fewer block headers is sufficient to securely syn-
chronize with the rest of the blockchain network. Our requirement is that the
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system remains decentralized and that useful facts about the blockchain (such as
the Merkle root of current account balances in Ethereum [5,19]) can be deduced
from the downloaded data.

Our Contributions. We put forth a cryptographic security definition for Non-
Interactive Proofs of Proof-of-Work protocols which describes what such a syn-
chronization protocol must achieve (Sect. 2). We then construct a protocol which
solves the problem and requires sending only a logarithmic number of blocks
from the chain. We construct a protocol which can synchronize recent blocks,
the suffix proofs protocol (Sect. 4). We analyze the security and succinctness of
our protocol in Sect. 5. In Sect. 6, we show a simple addition to the suffix proofs
protocol which allows synchronizing any part of the blockchain that the client
may be interested in, the infix proofs protocol.

Previous Work. The need for succinct clients was first identified by Nakamoto
in his original paper [14]. Predicates pertaining to events occurring in the block-
chain have been explored in the setting of sidechains [2]. It has also been imple-
mented for simple classes of predicates such as atomic swaps [10,15], which
do not allow full synchronization. Non-succinct certificates about proof-of-stake
blockchains have been proposed in [8], but their scheme is not applicable to
proof-of-work. Superblocks were first described in the Bitcoin Forum [13] and
later formalized [11] to describe their Proofs of Proof-of-Work which have lim-
ited applications due to interactivity, lack of security, and inability to prove facts
buried deep within the blockchain. We improve upon their work with a security
definition, an interactive construction, and an attack against their scheme which
works with overwhelming probability.

2 Model and Definitions

Our model is based on the “backbone” model for proof-of-work cryptocurren-
cies [7], extended with SPV. Following their model, we assume synchrony (partial
synchrony with bounded delay [16] is left for future work) and constant difficulty.

Backbone Model. The entities on the blockchain network are of 3 kinds: (1)
Miners, who try to mine new blocks on top of the longest known blockchain
and broadcast them as soon as they are discovered. Miners commit new transac-
tions they receive from clients. (2) Full nodes, who maintain the longest block-
chain without mining and also act as the provers in the network. (3) Verifiers or
stateless clients, who do not store the entire blockchain, but instead connect to
provers and ask for proofs in regards to which blockchain is the largest. The ver-
ifiers attempt to determine the value of a predicate on these chains, for example
whether a particular payment has been finalized.

Our main challenge is to design a protocol so that clients can sieve through
the responses they receive from the network and reach a conclusion that should
never disagree with the conclusion of a full node who is faced with the same
objective and infers it from its local blockchain state.
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We model proof-of-work discovery attempts by using a random oracle [3]. The
random oracle produces κ-bit strings, where κ is the system’s security param-
eter. The network is synchronized into numbered rounds, which correspond to
moments in time. n denotes the total number of miners in the game, while t
denotes the total number of adversarial miners. Each miner is assumed to have
equal mining power captured by the number of queries q available per player to
the random oracle per round, each query of which succeeds independently with
probability p (a successful query produces a block with valid proof-of-work). Min-
ing pools and miners of different computing power can be captured by assuming
multiple players combine their computing power. This is made explicit for the
adversary, as they do not incur any network overhead to achieve communication
between adversarial miners. On the contrary, honest players discovering a block
must diffuse it (broadcast it) to the network at a given round and wait for it to
be received by the rest of the honest players at the beginning of the next round.
A round during which an honest block is diffused is called a successful round ;
if the number of honest blocks diffused is one, it is called a uniquely successful
round. We assume there is an honest majority, i.e., that t/n < 0.5 with a con-
stant minimum gap [7]. We further assume the network is adversarial, but there
is no eclipsing attacks [9]. More specifically, we allow the adversary to reorder
messages transmitted at a particular round, to inject new messages thereby cap-
turing Sybil attacks [6], but not to drop messages. Each honest miner maintains
a local chain C which they consider the current active blockchain. Upon receiving
a different blockchain from the network, the current active blockchain is changed
if the received blockchain is longer than the currently adopted one. Receiving a
different blockchain of the same length as the currently adopted one does not
change the adopted blockchain.

Blockchain blocks are generated by including the following data in them:
ctr, the nonce used to achieve the proof-of-work; x the Merkle tree [12] root of
the transactions confirmed in this block; and interlink [11], a vector containing
pointers to previous blocks, including the id of the previous block. The interlink
data structure contains pointers to more blocks than just the previous block. We
will explain this further in Sect. 3. Given two hash functions H and G modelled
as random oracles, the id of a block is defined as id = H(ctr,G(x, interlink)). In
bitcoin’s case, both H and G would be SHA256.

The Prover and Verifier Model. In our protocol, the nodes include a proof
along with their responses to clients. We need to assume that clients are able
to connect to at least one correctly functioning node (i.e., that they cannot be
eclipsed from the network [1,9]). Each client makes the same request to every
node, and by verifying the proofs the client identifies the correct response. Hence-
forth we will call clients verifiers and nodes provers.

The prover-verifier interaction is parameterized by a predicate (e.g. “the
transaction tx is committed in the blockchain”). The predicates of interest in
our context are predicates on the active blockchain. Some of the predicates are
more suitable for succinct proofs than others. We focus our attention in stable
predicates having the property that all honest miners share their view of them
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in a way that is updated in a predictable manner, with a truth-value that per-
sists as the blockchain grows (an example of an unstable predicate is e.g., the
least significant bit of the hash of last block). Following the work of [7], we wait
for k blocks to bury a block before we consider it confirmed and thereby the
predicates depending on it stable. k is the common prefix security parameter,
which in Bitcoin folklore is often taken to be k = 6.

In our setting, for a given predicate Q, several provers (including adversar-
ial ones) will generate proofs claiming potentially different truth values for Q
based on their claimed local longest chains. The verifier receives these proofs
and accepts one of the proofs, determining the truth value of the predicate. We
denote a blockchain proof protocol for a predicate Q as a pair (P, V ) where P
is the prover and V is the verifier. P is a PPT algorithm that is spawned by a
full node when they wish to produce a proof, accepts as input a full chain C and
produces a proof π as its output. V is a PPT algorithm which is spawned at
some round (having only Genesis), receives a pair of proofs (πA, πB) from both
an honest party and the adversary and returns its decision d ∈ {T, F} before
the next round and terminates. The honest miners produce proofs for V using
P , while the adversary produces proofs following some arbitrary strategy. Before
we introduce the security properties for blockchain proof protocols we introduce
some necessary notation for blockchains.

Notation. Blockchains are finite block sequences obeying the blockchain prop-
erty : that in every block in the chain there exists a pointer to its previous block.
A chain is anchored if its first block is genesis, denoted Gen. For chain address-
ing we use Python brackets C[·] as in [17]. A zero-based positive number in a
bracket indicates the indexed block in the chain. A negative index indicates a
block from the end, e.g., C[−1] is the tip of the blockchain. A range C[i : j] is
a subarray starting from i (inclusive) to j (exclusive). Given chains C1, C2 and
blocks A,Z we concatenate them as C1C2 or C1A. C2[0] must point to C1[−1] and
A must point to C1[−1]. We denote C{A : Z} the subarray of the chain from A
(inclusive) to Z (exclusive). We can omit blocks or indices from either side of
the range to take the chain to the beginning or end respectively. The id function
returns the id of a block given its data, i.e., id = H(ctr,G(x, interlink)).

2.1 Provable Chain Predicates

Our aim is to prove statements about the blockchain, such as “The transaction
tx is included in the current blockchain” without transmitting all block headers.
We consider a general class of predicates that take on values true or false. Since
a Bitcoin-like blockchain can experience delays and intermittent forks, not all
honest parties will be in exact agreement about the entire chain. However, when
all honest parties are in agreement about the truth value of the predicate, we
require that the verifier also arrives at the same truth value.

To aid the construction of our proofs, we focus on predicates that are mono-
tonic; they start with the value false and, as the blockchain grows, can change
their value to true but not back.
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Definition 1 (Monotonicity). A chain predicate Q(C) is monotonic if for all
chains C and for all blocks B we have that Q(C) ⇒ Q(CB).

Additionally, we require that our predicates only depend on the stable portion
of the blockchain, blocks that are buried under k subsequent blocks. This ensures
that the value of the predicate will not change due to a blockchain reorganization.

Definition 2 (Stability). Parameterized by k ∈ N, a chain predicate Q is k-
stable if its value only depends on the prefix C[: −k].

2.2 Desired Properties

We now define two desired properties of a non-interactive blockchain proof pro-
tocol, succinctness and security.

Definition 3 (Security). A blockchain proof protocol (P, V ) about a predicate
Q is secure if for all environments and for all PPT adversaries A and for all
rounds r ≥ ηk, if V receives a set of proofs P at the beginning of round r, at
least one of which has been generated by the honest prover P , then the output of
V at the end of round r has the following constraints:

– If the output of V is false, then the evaluation of Q(C) for all honest parties
must be false at the end of round r − ηk.

– If the output of V is true, then the evaluation of Q(C) for all honest parties
must be true at the end of round r + ηk.

Fig. 1. The truth value of a fixed predicate Q about the blockchain, as seen from the
point of view of 5 honest nodes, drawn on the vertical axis, over time, drawn as the
horizontal axis. The truth value evolves over time starting as false at the beginning,
indicated by a dashed red line. At some point in time t0, the predicate is ready to
be evaluated as true, indicated by the solid blue line. The various honest nodes each
realize this independently over a period of ηk duration, shaded in gray. The predicate
remains false for everyone before t0 and true for everyone after t0 + ηk. (Color figure
online)

Some explanation is needed for the rationale of the above definition. The
parameter η is borrowed from the Backbone [7] work and indicates the rate at
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which new blocks are produced, i.e., the number of rounds needed on average
to produce a block. If the scheme is secure, this means that the output of the
verifier should match the output of a potential honest full node. However, in
various executions, not all potential honest full node behaviors will be instanti-
ated. Therefore, we require that, if the output of the proof verifier is true then,
consistently with honest behavior, all other honest full nodes will converge to
the value true. Conversely, if the output of the proof verifier is false then, con-
sistently with honest behavior, all honest full nodes must have indicated false
sufficiently long in the past. The period ηk is the period needed for obtaining
sufficient confirmations (k) in a blockchain system. A predicate’s value has the
potential of being true as seen by an honest party starting at time t0. Before
time t0, all honest parties agree that the predicate is false. It takes ηk time for
all parties to agree that the predicate is true, which is certain after time t0 + ηk.
The adversary may be able to convince the verifier that the predicate has any
value during the period from t0 to t0+ηk. However, our security definition man-
dates that before time t0 the verifier will necessarily output false and after time
t0 + ηk the verifier will necessarily output true (Fig. 1).

Definition 4 (Succinctness). A blockchain proof protocol (P, V ) about a pred-
icate Q is succinct if for all PPT provers A, any proof π produced by A at some
round r, the verifier V only reads a O(polylog(r))-sized portion of π.

It is easy to construct a secure but not succinct protocol for any computable
predicate Q: The prover provides the entire chain C as a proof and the verifier
simply selects the longest chain: by the common-prefix property of the backbone
protocol (c.f. [7]), this is consistent with the view of every honest party (as long
as Q depends only on a prefix of the chain, as we explain in more detail shortly).
In fact this is how widely-used cryptocurrency clients (including SPV clients)
operate today.

It is also easy to build succinct but insecure clients: The prover simply sends
the predicate value directly. This is roughly what hosted wallets do [4].

The challenge we will solve is to provide a non-interactive protocol that at
the same time achieves security and succinctness over a large class of useful
predicates. We call this primitive a NIPoPoWs. Our particular instantiation for
NIPoPoWs is a superblock-based NIPoPoW construction.

3 Consensus Layer Support

3.1 The Interlink Pointers Data Structure

In order to construct our protocol, we rely on the interlink data structure [11].
This is an additional hash-based data structure that is proposed to be included
in the header of each block. The interlink data structure is a skip-list [18] that
makes it efficient for a verifier to process a sparse subset of the blockchain, rather
than only consecutive blocks.

Valid blocks satisfy the proof-of-work condition: id ≤ T , where T is the
mining target. Throughout this work, we make the simplifying assumption that
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T is constant. Some blocks will achieve a lower id. If id ≤ T
2µ we say that the block

is of level μ. All blocks are level 0. Blocks with level μ are called μ-superblocks.
μ-superblocks for μ > 0 are also (μ−1)-superblocks. The level of a block is given
as μ = �log(T ) − log(id(B))� and denoted level(B). By convention, for Gen we
set id = 0 and μ = ∞.

Observe that in a blockchain protocol execution it is expected 1/2 of the
blocks will be of level 1; 1/4 of the blocks will be of level 2; 1/8 will be of level 3;
and 1/2µ blocks will be of level μ. In expectation, the number of superblock levels
of a chain C will be Θ(log(C)) [11]. Figure 2 illustrates the blockchain superblocks
starting from level 0 and going up to level 3 in case these blocks are distributed
exactly according to expectation. Here, each level contains half the blocks of the
level below.

We wish to connect the blocks at each level with a previous block pointer
pointing to the most recent block of the same level. These pointers must be
included in the data of the block so that proof-of-work commits to them. As
the level of a block cannot be prediced before its proof-of-work is calculated, we
extend the previous block id structure of classical blockchains to be a vector, the
interlink vector. The interlink vector points to the most recent preceding block
of every level μ. Genesis is of infinite level and hence a pointer to it is included
in every block. The number of pointers that need to be included per block is in
expectation log(|C|).

Fig. 2. The hierarchical blockchain. Higher levels have achieved a lower target (higher
difficulty) during mining. All blocks are connected to the genesis block G.

The algorithm for this construction is shown in Algorithm 1 and is bor-
rowed from [11]. The interlink data structure turns the blockchain into a skiplist-
like [18] data structure.

The updateInterlink algorithm accepts a block B′, which already has an
interlink data structure defined on it. The function evaluates the interlink data
structure which needs to be included as part of the next block. It copies the
existing interlink data structure and then modifies its entries from level 0 to
level(B′) to point to the block B′.
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Algorithm 1. updateInterlink
1: function updateInterlink(B′)
2: interlink ← B′.interlink
3: for μ = 0 to level(B′) do
4: interlink[μ] ← id(B′)
5: end for
6: return interlink
7: end function

Traversing the Blockchain. As we have now extended blocks to contain mul-
tiple pointers to previous blocks, if certain blocks are omitted from the middle
of a chain we will obtain a subchain, as long as the blockchain property is main-
tained (i.e., that each block must contain an interlink pointer to its previous
block in the sequence).

Blockchains are sequences, but it is more convenient to use set notation for
some operations. Specifically, B ∈ C and ∅ have the obvious meaning. C1 ⊆ C2

means that all blocks in C1 exist in C2, perhaps with additional blocks inter-
twined. C1 ∪ C2 is the chain obtained by sorting the blocks contained in both
C1 and C2 into a sequence (this may be not always defined, as pointers may
be missing). We will freely use set builder notation {B ∈ C : p(B)}. C1 ∩ C2 is
the chain {B : B ∈ C1 ∧ B ∈ C2}. In all cases, the blockchain property must
be maintained. The lowest common ancestor is LCA(C1, C2) = (C1 ∩ C2)[−1]. If
C1[0] = C2[0] and C1[−1] = C2[−1], we say the chains C1, C2 span the same block
range.

It will soon become clear that it is useful to construct a chain containing only
the superblocks of another chain. Given C and level μ, the upchain C↑µ is defined
as {B ∈ C : level(B) ≥ μ}. A chain containing only μ-superblocks is called a
μ-superchain. It is also useful, given a μ-superchain C′ to go back to the regular
chain C. Given chains C′ ⊆ C, the downchain C′↓C is defined as C{C′[0] : C′[−1]}.
C is the underlying chain of C′. The underlying chain is often implied by context,
so we will simply write C′↓ . By the above definition, the C↑ operator is absolute:
(C↑µ)↑µ+i= C↑µ+i. Given a set of consecutive rounds S = {r, r +1, · · · , r + j} ⊆
N, we define CS = {B ∈ C : B was generated during S}.

4 Non-interactive Blockchain suffix proofs

In this section, we introduce our non-interactive suffix proofs. With foresight,
we caution the reader that the non-interactive construction we present in this
section is insecure. A small patch will later allow us to modify our construction
to achieve security.

We allow provers to prove general predicates Q about the chain C. Among
the predicates which are stable, in this section, we will limit ourselves to suffix
sensitive predicates. We extend the protocol to support more flexible predicates
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(such as transaction inclusion, as needed for our applications) which are not
limited to the suffix in Sect. 6.

Definition 5 (Suffix sensitivity). A chain predicate Q is called k-suffix sen-
sitive if its value can be efficiently computed given the last k blocks of the chain.

Example. In general our applications will require predicates that are not suffix-
sensitive. However, as an example, consider the predicate “an Ethereum contract
at address C has been initialized with code h at least k blocks ago” where h
does not invoke the selfdestruct opcode. This can be implemented in a suffix-
sensitive way because, in Ethereum, each block includes a Merkle Trie over all
of the contract codes [5,19], which cannot be changed after initialization. This
predicate is thus also monotonic and k-stable. Any predicate which is both suffix-
sensitive and k-stable must solely depend on data at block C[−k].

4.1 Construction

We next present a generic form of the verifier first and the prover afterwards.
The generic form of the verifier works with any practical suffix proof protocol.
Therefore, we describe the generic verifier first before we talk about the specific
instantiation of our protocol. The generic verifier is given access to call a protocol-
specific proof comparison operator ≤m that we define. We begin the description
of our protocol by first illustrating the generic verifier. Next, we describe the
prover specific to our protocol. Finally, we show the instantiation of the ≤m

operator, which plugs into the generic verifier to make a concrete verifier for our
protocol.

The Generic Verifier. The Verify function of our NIPoPoW construction for
suffix predicates is described in Algorithm 2. The verifier algorithm is parame-
terized by a chain predicate Q and security parameters k,m; k pertains to the
amount of proof-of-work needed to bury a block so that it is believed to remain
stable (e.g., k = 6); m is a security parameter pertaining to the prefix of the
proof, which connects the genesis block to the k-sized suffix. The verifier receives
several proofs by different provers in a collection of proofs P at least one of which
will be honest. Iterating over these proofs, it extracts the best.

Each proof is a chain. For honest provers, these are subchains of the adopted
chain. Proofs consist of two parts, π and χ; πχ must be a valid chain; χ is the
proof suffix; π is the prefix. We require |χ| = k. For honest provers, χ is the
last k blocks of the adopted chain, while π consists of a selected subset of blocks
from the rest of their chain preceding χ. The method of choice of this subset will
become clear soon.
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Algorithm 2. The Verify algorithm for the NIPoPoW protocol
1: function VerifyQ

m,k(P)
2: π̃ ← (Gen) � Trivial anchored blockchain
3: for (π, χ) ∈ P do � Examine each proof (π, χ) in P
4: if validChain(πχ) ∧ |χ| = k ∧ π ≥m π̃ then
5: π̃ ← π
6: χ̃ ← χ � Update current best
7: end if
8: end for
9: return Q̃(χ̃)

10: end function

The verifier compares the proof prefixes provided to it by calling the ≥m

operator. We will get to the operator’s definition shortly. Proofs are checked
for validity before comparison by ensuring |χ| = k and calling validChain which
checks if πχ is an anchored blockchain.

At each loop iteration, the verifier compares the next candidate proof prefix
π against the currently best known proof prefix π̃ by calling π ≥m π̃. If the
candidate prefix is better than the currently best known proof prefix, then the
currently known best prefix is updated by setting π̃ ← π. When the best known
prefix is updated, the suffix χ̃ associated with the best known prefix is also
updated to match the suffix χ of the candidate proof by setting χ̃ ← χ. While
χ̃ is needed for the final predicate evaluation, it is not used as part of any
comparison, as it has the same size k for all proofs. The best known proof prefix
is initially set to (Gen), the trivial anchored chain containing only the genesis
block. Any well-formed proof compares favourably against the trivial chain.

After the end of the for loop, the verifier will have determined the best proof
(π̃, χ̃). We will later prove that this proof will necessarily belong to an honest
prover with overwhelming probability. Since the proof has been generated by an
honest prover, it is associated with an underlying honestly adopted chain C. The
verifier then extracts the value of the predicate Q on the underlying chain. Note
that, because the full chain is not available to the verifier, the verifier here must
evaluate the predicate on the suffix. Because the predicate is suffix-sensitive, it is
possible to do so. As a technical detail, we denote Q̃ the predicate which accepts
only a k-suffix of a blockchain and outputs the same value that Q would have
output if it had been evaluated on a chain with that suffix.
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Algorithm 3. The Prove algorithm for the NIPoPoW protocol
1: function Provem,k(C)
2: B ← C[0] � Genesis
3: for μ = |C[−k − 1].interlink| down to 0 do
4: α ← C[: −k]{B :}↑μ

5: π ← π ∪ α
6: if m < |α| then
7: B ← α[−m]
8: end if
9: end for

10: χ ← C[−k :]
11: return πχ
12: end function

The Concrete Prover. The NIPoPoW prover construction is shown in Algo-
rithm 3. The honest prover is supplied with an honestly adopted chain C and
security parameters m, k and returns proof πχ, which is a chain. The suffix χ
is the last k blocks of C. The prefix π is constructed by selecting various blocks
from C[: −k] and adding them to π, which consists of a number of blocks for
every level μ from the highest level |C[−k].interlink| down to 0. At the highest
possible level at which at least m blocks exist, all these blocks are included.
Then, inductively, for every superchain of level μ that is included in the proof,
the suffix of length m is taken. Then the underlying superchain of level μ − 1
spanning from this suffix until the end of the blockchain is also included. All
the μ-superblocks which are within this range of m blocks will also be (μ − 1)-
superblocks and so we do not want to keep them in the proof twice (we use the
union set notation to indicate this). Each underlying superchain will have 2m
blocks in expectation and always at least m blocks. This is repeated until level
μ = 0 is reached. Note that no check is necessary to make sure the top-most
level has at least m blocks, even though the verifier requires this. The reason is
the following: Assume the blockchain has at least m blocks in total. Then, when
a superchain of level μ has less than m blocks in total, these blocks will all be
necessarily included into the proof by a lower-level superchain μ − i for some
i > 0. Therefore, it does not hurt to add them to π earlier.

Figure 3 contains an example proof constructed for parameters m = k = 3.
The top superchain level which contains at least m blocks is level μ = 2. For the
m-sized suffix of that level, 6 blocks of superblock level 1 are included to span the
same range (2m blocks at this level). For the last 3 blocks of the 1-superchain,
blocks of level 0 spanning the same range are included (again 2m blocks at this
level). Note that the superchain at a lower levels may reach closer to the end of
the blockchain than a higher level. Level 3 was not used, as it does not yet have
a sufficient number of blocks.
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Fig. 3. NIPoPoW prefix π for m = 3. It includes the Genesis block G, three 2-
superblocks, six 1-superblocks, and six 0-blocks.

Algorithm 4. The algorithm implementation for the ≥m operator to compare
two proofs in the NIPoPoW protocol parameterized with security parameter
m. Returns true if the underlying chain of player A is deemed longer than the
underlying chain of player B.
1: function best-argm(π, b)
2: M ← {μ : |π↑μ {b :}| ≥ m} ∪ {0} � Valid levels
3: return maxμ∈M{2μ · |π↑μ {b :}|} � Score for level
4: end function
5: operator πA ≥m πB

6: b ← (πA ∩ πB)[−1] � LCA
7: return best-argm(πA, b) ≥ best-argm(πB , b)
8: end operator

The Concrete Verifier. The ≥m operator which performs the comparison of
proofs is presented in Algorithm 4. It takes proofs πA and πB and returns true if
the first proof is winning, or false if the second is winning. It first computes the
LCA block b between the proofs. As parties A and B agree that the blockchain
is the same up to block b, arguments will then be taken for the diverging chains
after b. An argument is a subchain of a proof provided by a prover such that its
blocks are after the LCA block b and they are all at the same level μ. The best
possible argument from each player’s proof is extracted by calling the best-argm
function. To find the best argument of a proof π given b, best-argm collects
all the indices μ which point to superblock levels that contain valid arguments
after block b. Argument validity requires that there are at least m μ-superblocks
following block b, which is captured by the comparison |π↑µ {b :}| ≥ m. 0 is
always considered a valid level, regardless of how many blocks are present there.
These level indices are collected into set M . For each of these levels, the score
of their respective argument is evaluated by weighting the number of blocks by
the level as 2µ|π↑µ {b :}|. The highest possible score across all levels is returned.
Once the score of the best argument of both A and B is known, they are directly
compared and the winner returned. An advantage is given to the first proof in
case of a tie by making the ≥m operator favour the adversary A.



Non-interactive Proofs of Proof-of-Work 517

Looking ahead, the core of the security argument will be that, given a block b,
it will be difficult for a mining minority adversary to produce blocks descending
from b faster than the honest party. This holds for blocks of any level.

5 Analysis

We now give a sketch indicating why our construction is secure. The fully formal
security proof, together with a detail in the construction which ensures statistical
goodness and is necessary for withstanding full 1/2 adversaries, appears in the
appendix.

Theorem 1 (Security). Assuming honest majority, the Non-interactive
Proofs of Proof-of-Work construction for computable k-stable monotonic suffix-
sensitive predicates is secure with overwhelming probability in κ.

Proof (Sketch). Suppose an adversary produces a proof πA and an honest party
produces a proof πB such that the two proofs cause the predicate Q to evaluate
to different values, while at the same time all honest parties have agreed that
the correct value is the one obtained by πB . Because of Bitcoin’s security, A will
be unable to make these claims for an actual underlying 0-level chain.

We now argue that the operator ≤m will signal in favour of the honest parties.
Suppose b is the LCA block between πA and πB. If the chain forks at b, there
can be no more adversarial blocks after b than honest blocks after b, provided
there are at least k honest blocks (due to the Common Prefix property). We will
now argue that, further, there can be no more disjoint μA-level superblocks than
honest μB-level superblocks after b.

To see this, let b be an honest block generated at some round r1 and let
the honest proof be generated at some round r3. Then take the sequence of
consecutive rounds S = (r1, · · · , r3). Because the verifier requires at least m
blocks from each of the provers, the adversary must have m μA-superblocks
in πA{b :} which are not in πB{b :}. Therefore, using a negative binomial tail
bound argument, we see that |S| must be long; intuitively, it takes a long time
to produce a lot of blocks |πA{b :}|. Given that |S| is long and that the honest
parties have more mining power, they must have been able to produce a longer
πB{b :} argument (of course, this comparison will have the superchain lengths
weighted by 2µA , 2µB respectively). To prove this, we use a binomial tail bound
argument; intuitively, given a long time |S|, a lot of μB-superblocks |πB{b :}|
will have been honestly produced.

We therefore have a fixed value for the length of the adversarial argument,
a negative binomial random variable for the number of rounds, and a binomial
random variable for the length of the honest argument. By taking the expecta-
tions of the above random variables and applying a Chernoff bound, we see that
the actual values will be close to their means with overwhelming probability,
completing the proof. ��

We formalize the above proof sketch in the full version of this paper.
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Lastly, the following theorem illustrates that our proofs are succinct. Intu-
itively, the number of levels exchanged is logarithmic in the length of the chain,
and the number of blocks in each level is constant. The formal proofs are included
in the Appendix.

Theorem 2 (Optimistic succinctness). In an optimistic execution, Non-
Interactive Proofs of Proof-of-Work produced by honest provers are succinct with
the number of blocks bounded by 4m log(|C|), with overwhelming probability in m.

6 Non-interactive Blockchain infix proofs

In the main body we have seen how to construct proofs for suffix predicates. As
mentioned, the main purpose of that construction is to serve as a stepping stone
for the construction of this section that presents a more useful class of proofs.
This class of proofs allows proving more general predicates that can depend on
multiple blocks even buried deep within the blockchain.

More specifically, the generalized prover for infix proofs allows proving any
predicate Q(C) that depends on a number of blocks that can appear anywhere
within the chain (except the k suffix for stability). These blocks constitute a
subset C′ of blocks, the witness, which may not necessarily form a chain. This
allows proving useful statements such as, for example, whether a transaction is
confirmed. We next formally define the class of predicates that will be of interest.

Definition 6 (Infix sensitivity). A chain predicate Qd,k is infix sensitive if
it can be written in the form

Qd,k(C) =

{
true, if ∃C′ ⊆ C[: −k] : |C′| ≤ d ∧ D(C′)
false, otherwise

where D is an arbitrary efficiently computable predicate such that, for any
block sets C1 ⊆ C2 we have that D(C1) → D(C2).

Note that C′ is a blockset and may not necessarily be a blockchain. Further-
more, observe that for all blocksets C′ ⊆ C we have that Q(C′) → Q(C). This will
allow us to later argue that adding more blocks to a blockchain cannot invalidate
its witness.

Similarly to suffix-sensitive predicates, infix-sensitive predicates Q can be
evaluated very efficiently. Intuitively this is possible because of their localized
nature and dependency on the D(·) predicate which requires only a small number
of blocks to conclude whether the predicate should be true.

Example. We next show how to express the predicate that asks whether a cer-
tain transaction with id txid has been confirmed as an infix sensitive predicate.
We define the predicate Dtxid that receives a single block and tests whether a
transaction with id txid is included. The predicate Qtxid

1,k is defined as in Defini-
tion 6 using the predicate Dtxid and the parameter k which in this case deter-
mines the desired stability of the assertion that txid is included (e.g., k = 6). Q
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alone proves that a particular block is included in the blockchain. Some auxiliary
data is supplied by the prover to aid the provability of transaction inclusion: the
Merkle Tree proof-of-inclusion path to the transactions Merkle Tree root, similar
to an SPV proof. This data is logarithmic in the number of transactions in the
block and, hence, constant with respect to blockchain size. In case of a vendor
awaiting transaction confirmation to ship a product, the proof that a certain
transaction paid into a designated address for the particular order is sufficient.
In this scheme it is impossible to determine whether the money has subsequently
been spent in a future block, and so must only be used by the vendor holding
the respective secret keys.

In the above example, note that if the verifier outputs false, this behavior will
generally be inconclusive in the sense that the verifier could be outputting false
either because the payment has not yet been confirmed or because the payment
was never made.

Fig. 4. An infix proof descend. Only blue blocks are included in the proof. Blue blocks
of level 4 are part of π, while the blue blocks of level 1 through 3 are produced by
followDown to get to the block of level 0 which is part of C′. (Color figure online)

Algorithm 5. The Prove algorithm for infix proofs
1: function ProveInfixm,k(C, C′, height)
2: aux ← ∅
3: (π, χ) ← Provem,k(C) � Start with a suffix proof
4: for B ∈ C′ do
5: for E ∈ π do
6: if height[E] ≥ height[B] then
7: aux ← aux ∪ followDown(E, B, height)
8: break
9: end if

10: end for
11: end for
12: return (aux ∪ π, χ)
13: end function
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The construction of these proofs is shown in Algorithm 5. The infix prover
accepts two parameters: The chain C which is the full blockchain and C′ which is a
sub-blockset of the blockchain and whose blocks are of interest for the predicate
in question. The prover calls the previous suffix prover to produce a proof as
usual. Then, having the prefix π and suffix χ of the suffix proof in hand, the
infix prover adds a few auxiliary blocks to the prefix π. The prover ensures that
these auxiliary blocks form a chain with the rest of the proof π. Such auxiliary
blocks are collected as follows: For every block B of the subset C′, the immediate
previous (E′) and next (E) blocks in π are found. Then, a chain of blocks R
which connects E back to B is found by the algorithm followDown. If E′ is of
level μ, there can be no other μ-superblock between B and E′, otherwise it would
have been included in π. Therefore, B already contains a pointer to E′ in its
interlink, completing the chain.

The way to connect a superblock to a previous lower-level block is imple-
mented in Algorithm 6. Block B′ cannot be of higher or equal level than E,
otherwise it would be equal to E and the followDown algorithm would return.
The algorithm proceeds as follows: Starting at block E, it tries to follow a pointer
to as far as possible. If following the pointer surpasses B, then the procedure at
this level is aborted and a lower level is tried, which will cause a smaller step
within the skiplist. If a pointer was followed without surpassing B, the operation
continues from the new block, until eventually B is reached, which concludes the
algorithm.

Algorithm 6. The followDown function which produces the necessary blocks to
connect a superblock E to a preceeding regular block B.
1: function followDown(E, B, height)
2: aux ← ∅; μ ← level(E)
3: while E 
= B do
4: B′ ← blockById[E.interlink[μ]]
5: if height[B′] < height[B] then
6: μ ← μ − 1
7: else
8: aux ← aux ∪ {E}
9: E ← B′

10: end if
11: end while
12: return aux
13: end function

An example of the output of followDown is shown in Fig. 4. This is a portion
of the proof shown at the point where the superblock levels are at level 4. A
descend to level 0 was necessary so that a regular block would be included in
the chain. The level 0 block can jump immediately back up to level 4 because it
has a high-level pointer.
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The verification algorithm must then be modified as in Algorithm7.
The algorithm works by calling the suffix verifier. It also maintains a

blockDAG collecting blocks from all proofs (it is a DAG because interlink can be
adversarially defined in adversarially mined blocks). This DAG is maintained in
the blockById hashmap. Using it, ancestors uses simple graph search to extract
the set of ancestor blocks of a block. In the final predicate evaluation, the set of
ancestors of the best blockchain tip is passed to the predicate. The ancestors are
included to avoid an adversary who presents an honest chain but skips the blocks
of interest. In particular, such an adversary would work by including a complete
suffix proof, but “forgetting” to include the blocks generated by followDown for
the infix proof pertaining to blocks in C′.

Algorithm 7. The verify algorithm for the NIPoPoW infix protocol
1: function ancestors(B, blockById)
2: if B = Gen then
3: return {B}
4: end if
5: C ← ∅
6: for id ∈ B.interlink do
7: if id ∈ blockById then
8: B′ ← blockById[id]
9: C ← C ∪ ancestors(B′, blockById) � Collect into DAG

10: end if
11: end for
12: return C ∪ {B}
13: end function
14: function verify-infxD

�,m,k(P)
15: blockById ← ∅
16: for (π, χ) ∈ P do
17: for B ∈ π do
18: blockById[id(B)] ← B
19: end for
20: end for
21: π̃ ← best π ∈ P according to suffix verifier
22: return D(ancestors(π̃[−1], blockById))
23: end function
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Abstract. Proof-of-burn has been used as a mechanism to destroy cryp-
tocurrency in a verifiable manner. Despite its well known use, the mech-
anism has not been previously formally studied as a primitive. In this
paper, we put forth the first cryptographic definition of what a proof-
of-burn protocol is. It consists of two functions: First, a function which
generates a cryptocurrency address. When a user sends money to this
address, the money is irrevocably destroyed. Second, a verification func-
tion which checks that an address is really unspendable. We propose the
following properties for burn protocols. Unspendability, which mandates
that an address which verifies correctly as a burn address cannot be used
for spending; binding, which allows associating metadata with a partic-
ular burn; and uncensorability, which mandates that a burn address is
indistinguishable from a regular cryptocurrency address. Our definition
captures all previously known proof-of-burn protocols. Next, we design
a novel construction for burning which is simple and flexible, making
it compatible with all existing popular cryptocurrencies. We prove our
scheme is secure in the Random Oracle model. We explore the application
of destroying value in a legacy cryptocurrency to bootstrap a new one.
The user burns coins in the source blockchain and subsequently creates
a proof-of-burn, a short string proving that the burn took place, which
she then submits to the destination blockchain to be rewarded with a
corresponding amount. The user can use a standard wallet to conduct
the burn without requiring specialized software, making our scheme user
friendly. We propose burn verification mechanisms with different security
guarantees, noting that the target blockchain miners do not necessarily
need to monitor the source blockchain. Finally, we implement the verifica-
tion of Bitcoin burns as an Ethereum smart contract and experimentally
measure that the gas costs needed for verification are as low as standard
Bitcoin transaction fees, illustrating that our scheme is practical.

1 Introduction

Since the dawn of history, humans have entertained the defiant thought of
money burning, sometimes literally, for purposes ranging from artistic effect [8]
to protest [21], or to prevent it from falling into the hands of pirates [11,20].
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People did not shy away from the practice in the era of cryptocurrencies. Acts of
money burning immediately followed the inception of Bitcoin [22] in 2009, with
the first recorded instance of intentional cryptocurrency destruction taking place
on August 2010 [27], a short three months after the first real-world transaction
involving cryptocurrency in May 2010 [7]. For the first time, however, cryptocur-
rencies exhibit the unique ability for money burning to be provable retroactively
in a so-called proof-of-burn.

First proposed by Iain Stewart in 2012 [26], proof-of-burn constitutes a mech-
anism for the destruction of cryptocurrency irrevocably and provably. The abil-
ity to create convincing proofs changed the practice of money burning from a
fringe act to a rational and potentially useful endeavour. It has since been dis-
covered that metadata of the user’s choice—a so-called tag—can be uniquely
ascribed to an act of burning, allowing each burn to become tailored to a par-
ticular purpose. Such protocols have been used as a consensus mechanism sim-
ilar to proof-of-stake (Slimcoin [23]), as a mechanism for establishing identity
(OpenBazaar [24,32]), and for notarization (Carbon dating [12] and OpenTimes-
tamps [28]). A particularly apt use case is the destruction of one type of cryp-
tocurrency to create another. In one prolific case, users destroyed more than
2,130.87 BTC ($1.7M at the time, $21.6M in today’s prices) for the bootstrap-
ping of the Counterparty cryptocurrency [1].

While its adoption is undeniable, there has not been a formal treatment for
proof-of-burn. This is the gap this work aims to fill.

Our Contributions. A summary of our contributions is as follows:

(i) Primitive definition. Our definitional contribution introduces proof-of-
burn as a cryptographic primitive for the first time. We define it as a proto-
col which consists of two algorithms, a burn address generator and a burn
address verifier. We put forth the foundational properties which make for
secure burn protocols, namely unspendability, binding, and uncensorability.
One of the critical features of our formalization is that a tag has to be
bound cryptographically with any proof-of-burn operation.

(ii) Novel construction. We propose a novel and simple construction which
is flexible and can be adapted for use in existing cryptocurrencies, as long
as they use public key hashes for address generation. To our knowledge,
all popular cryptocurrencies are compatible with our scheme. We prove our
construction secure in the Random Oracle model [6].

(iii) Bootstrapping mechanism. We propose a cryptocurrency proof-of-burn
bootstrapping mechanism which for the first time does not require target
blockchainminers to connect to externalblockchainnetworks.Ourmechanism
in principle allows burning from any proof-of-work-based cryptocurrency.

(iv) Experimental results. We provide a comprehensively tested production
grade implementation of the bootstrapping mechanism in Ethereum written
in Solidity, which we release as open source software. Our implementation can
be used to consume proofs of burn of a source blockchain within a target block-
chain. We provide experimental measurements for the cost of burn verifica-
tion and find that, in current Ethereum prices, burn verification costs $0.28
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per transaction. This allows coins burned on one blockchain to be consumed
on another for the purposes of, for example, ERC-20 tokens creation [30].

Workflow. A user who wishes to burn her coins generates an address which
we call a burn address. This address encodes some user-chosen metadata called
the tag. She then proceeds to send any amount of cryptocurrency to the burn
address. After burning her cryptocurrency, she proves to any interested party
that she irrevocably destroyed the cryptocurrency in question.

Properties. We define the following properties for a proof-of-burn protocol:

– Unspendability. No one can spend the burned cryptocurrency.
– Binding. The burn commits only to a single tag.
– Uncensorability. Miners who do not agree with the scheme cannot censor

burn transactions.

Finally, we consider the usability of a proof-of-burn protocol important:
whether a user is able to create a burn transaction using her regular cryptocur-
rency wallet.

Notation. We use U(S) to denote the uniform distribution obtained by sampling
any item of the finite set S with probability 1

|S| . We denote the support of a
distribution D by [D]. We also use [n] to denote the set of integers from 1 to n.
We denote the empty string by ε and string concatenation by ‖.

2 Defining Proof-of-Burn

We now formally define what a proof-of-burn protocol is. Let κ be the security
parameter. The protocol consists of two functions GenBurnAddr and BurnVerify
and works as follows. Alice first generates an address burnAddr to which she sends
some cryptocurrency. The address is generated by invoking GenBurnAddr(1κ, t)
and encodes information contained in a tag t, a string of Alice’s choice. When
the transaction is completed, she gives the transaction and tag to Bob who
invokes BurnVerify(1κ, t, burnAddr) to verify she irrevocably destroyed the cryp-
tocurrency while committing to the provided tag.

Definition 1 (Burn protocol). A burn protocol Π consists of two functions
GenBurnAddr(1κ, t) and BurnVerify(1κ, t, burnAddr) which work as follows:

– GenBurnAddr(1κ, t): Given a tag t ∈ {0, 1}∗, generate a burn address.
– BurnVerify(1κ, t, burnAddr): Given a tag t ∈ {0, 1}∗ and an address burnAddr,

return true if and only if burnAddr is a burn address and correctly encodes t.

We require that the burn scheme is correct.

Definition 2 (Correctness). A burn protocol Π is correct if for all t ∈ {0, 1}∗

and for all κ ∈ N it holds that BurnVerify(1κ, t,GenBurnAddr(1κ, t)) = true.
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With foresight, we remark that the implementation of GenBurnAddr and
BurnVerify will typically be deterministic, which alleviates the need for a prob-
abilistic correctness definition.

Naturally, for GenBurnAddr to generate addresses that “look” valid but are
unspendable according to the blockchain protocol requires that the burn protocol
respects its format. We abstract the address generation and spending verification
of the given system into a blockchain address protocol :

Definition 3 (Blockchain address protocol). A blockchain address protocol
Πα consists of two functions GenAddr and SpendVerify:

– GenAddr(1κ): Returns a tuple (pk, sk), denoting the cryptocurrency address
pk (a public key) used to receive money and its respective secret key sk which
allows spending from that address.

– SpendVerify(m, σ, pk): Returns true if the transaction m spending from receiv-
ing address pk has been authorized by the signature σ (by being signed by the
respective private key).

We note that, while the blockchain address protocol is not part of the burn
protocol, the security properties of a burn protocol Π will be defined with respect
to a blockchain address protocol Πα.

These two functionalities are typically implemented using a public key sig-
nature scheme and accompanied by a respective signing algorithm. The signing
algorithm is irrelevant for our burn purposes, as burning entails the inability to
spend. As the format of m is cryptocurrency-specific, we intentionally leave it
undefined. In both Bitcoin and Ethereum, m corresponds to transaction data.
When a new candidate transaction is received from the network, the blockchain
node calls SpendVerify, passing the public key pk, which is the address spending
money incoming to the new transaction m, together with a signature σ, which
signs m and should be produced using the respective secret key.

To state that the protocol generates addresses which cannot be spent from,
we introduce a game-based security definition. The unspendability game spend-
-attack is illustrated in Algorithm1.

Algorithm 1. The challenger for the burn protocol game-based security.
1: function spend-attackA,Π(κ)
2: (t, m, σ, pk) ← A(1κ)
3: return (BurnVerify(1κ, t, pk) ∧ SpendVerify(m, σ, pk))
4: end function

Definition 4 (Unspendability). A burn protocol Π is unspendable with
respect to a blockchain address protocol Πα if for all probabilistic polynomial-
time adversaries A there exists a negligible function negl(κ) such that Pr[spend-
-attackA,Π(κ) = true] ≤ negl(κ).
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Algorithm 2. The challenger for the burn protocol game-based security.
1: function bind-attackA,Π(κ)
2: (t, t′, burnAddr) ← A(1κ)
3: return (t �= t′ ∧ BurnVerify(1κ, t, burnAddr) ∧ BurnVerify(1κ, t′, burnAddr))
4: end function

It is desired that a burn address encodes one and only one tag. Concretely,
given a burn address burnAddr, BurnVerify(1κ, t, burnAddr) should only evaluate
to true for a single tag t. The game bind-attack in Algorithm 2 captures this
property.

Definition 5 (Binding). A burn protocol Π is binding if for all probabilistic
polynomial-time adversaries A there is a negligible function negl(κ) such that
Pr[bind-attackA,Π(κ)] ≤ negl(κ).

We note here that the correctness and binding properties of a burn protocol
are irrespective of the blockchain address protocol it was designed for.

We are now ready to define what constitutes a secure proof-of-burn protocol.

Definition 6 (Security). Let Π be a correct burn protocol. We say Π is secure
with respect to a blockchain address protocol Πα if it is unspendable and binding
with respect to Πα.

The aforementioned properties form a good basis for a burn protocol. We
observe that it may be possible to detect whether an address is a burn address.
While this is desirable in certain circumstances, it allows miners to censor burn
transactions. To mitigate this, we propose uncensorability, a property which
mandates that a burn address is indistinguishable from a regular address if its
tag is not known. During the execution of protocols which satisfy this property,
when the burn transaction appears on the network, only the user who performed
the burn knows that it constitutes a burn transaction prior to revealing the tag.
Naturally, as soon as the tag is revealed, correctness mandates that the burn
transaction becomes verifiable.

Definition 7 (Uncensorability). Let T be a distribution of tags. A burn
protocol Π is uncensorable if the distribution ensembles {(pk, sk) ←
GenAddr(1κ); pk}κ and {t ← T ; pk ← GenBurnAddr(1κ, t); pk}κ are computa-
tionally indistinguishable.

3 Construction

We now present our construction for an uncensorable proof-of-burn protocol. To
generate a burn address, the tag t is hashed and a perturbation is performed on
the hash by toggling the last bit. Verifying a burn address burnAddr encodes a cer-
tain tag t is achieved by invoking GenBurnAddr with tag t and checking whether
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the result matches burnAddr. If it matches, the burnAddr correctly encodes t.
Our construction is illustrated in Algorithm 3.

Algorithm 3. Our uncensorable proof-of-burn protocol for Bitcoin P2PKH.
1: function GenBurnAddrH(1κ, t)
2: th ← H(t)
3: th′ ← th ⊕ 1 � Key perturbation
4: return th’
5: end function
6: function BurnVerifyH(1κ, t, th′)
7: return (GenBurnAddrH(1κ, t) = th′)
8: end function

We outline the blockchain address protocol for Bitcoin Pay to Public Key
Hash (P2PKH) [2], with respect to which we prove our construction secure and
uncensorable in Sect. 5. It is parametrized by a secure signature scheme S and
a hash function H. GenAddr uses S to generate a keypair and hashes the public
key to generate the public key hash. A tuple consisting of the public key hash
and the secret key is returned. SpendVerify takes a spending transaction m, a
scriptSig σ and a public key hash pkh. The scriptSig should contain the public
key pk corresponding to pkh such that H(pk) = pkh and a valid signature σ′ for
the spending transaction m [2]. If these conditions are met, the function returns
true, otherwise it returns false. The blockchain address protocol is illustrated in
Algorithm 4.

Algorithm 4. The Bitcoin P2PKH algorithm, parameterized by a signature
scheme S = (Gen,Sig,Ver).
1: function GenAddrS,H(1κ)
2: (pk, sk) ← Gen(1κ)
3: pkh ← H(pk)
4: return (pkh, sk)
5: end function
6: function SpendVerifyS,H(m, σ, pkh)
7: (pk, σ′) ← σ
8: return (H(pk) = pkh ∧ Ver(m, σ′, pk))
9: end function

4 Comparison

We now compare three alternatives for proof-of-burn proposed in previous work
against our scheme: OP RETURN, P2SH OP RETURN and nothing-up-my-sleeve.
These schemes are instances of our burn primitive.
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We study whether the aforementioned schemes satisfy binding, unspendabil-
ity and uncensorability. Additionally, we compare them on how easily they trans-
late to multiple cryptocurrencies, a property we call flexibility, as well as whether
a standard user friendly wallet can be used to burn money. A summary of our
comparison is illustrated on Table 1.

Table 1. Comparison between proof-of-burn schemes.

Binding Flexible Unspendable Uncensorable User friendly

OP RETURN • •
P2SH OP RETURN • • • •

Nothing-up-my-sleeve • • • •
a ⊕ 1 (this work) • • • • •

OP RETURN. Bitcoin supplies a native OP RETURN [5] opcode. The Bitcoin Script
interpreter deems an output unspendable when this opcode is encountered.
The tag is included directly in the Bitcoin Script, hence the scheme is binding
by definition. This Bitcoin-specific opcode is inflexible and does not translate to
other cryptocurrencies such as Monero [29]. It is trivially censorable. However,
the output is prunable, benefiting the network. Standard wallets do not pro-
vide a user friendly interface for such transactions. Any provably failing [26]
Bitcoin Script can be used in OP RETURN’s stead.

P2SH OP RETURN. An OP RETURN can be used as the redeemScript for a Pay
to Script Hash (P2SH) [4] address. Binding and unspendability are accom-
plished by the collision resistance of the hash function RIPEMD160 ◦ SHA256.
Similarly to OP RETURN this scheme is inflexible. From the one-wayness of the
hash function it is uncensorable. Finally, the scheme is user friendly since
any wallet can create a burn transaction.

Nothing-up-My-Sleeve. An address is manually crafted so that it is clear it
was not generated from a regular keypair. For example, the all-zeros address is
considered nothing-up-my-sleeve1. The scheme is not binding, as no tag can
be associated with such a burn, and flexible because such an address can be
generated for any cryptocurrency. It is hard to obtain a public key hashing to
this address, thus funds sent to it are unspendable. On the other hand, because
a widely known address is used, the scheme is censorable. Finally, the address
is a regular recipient and any wallet can be used to fund it, making it user
friendly.

1 The Bitcoin address 1111111111111111111114oLvT2 encodes the all-zeros string and
has received more than 50,000 transactions dating back to Aug 2010.
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5 Analysis

We now move on to the analysis of our scheme. As the scheme is deterministic,
its correctness is straightforward to show.

Theorem 1 (Correctness). The proof-of-burn protocol Π of Sect. 3 is correct.

Proof. Based on Algorithm 3, BurnVerify(1κ, t,GenBurnAddr(1κ, t)) = true if and
only if GenBurnAddr(1κ, t) = GenBurnAddr(1κ, t), which always holds as Gen-
BurnAddr is deterministic. ��

We now state a simple lemma pertaining to the distribution of Random
Oracle outputs.

Lemma 1 (Perturbation). Let p(κ) be a polynomial and F : {0, 1}κ −→
{0, 1}κ be a permutation. Consider the process which samples p(κ) strings
s1, s2, . . . , sp(κ) uniformly at random from the set {0, 1}κ. The probability that
there exists i 
= j such that si = F (sj) is negligible in κ.

We will now apply the above lemma to show that our scheme is unspenable.

Theorem 2 (Unspendability). If H is a Random Oracle, then the protocol
Π of Sect. 3 is unspendable.

Proof. Let A be an arbitrary probabilistic polynomial time spend-attack
adversary. A makes at most a polynomial number of queries p(κ) to the Ran-
dom Oracle. Let Match denote the event that there exist i 
= j with si = F (sj)
where F (s) = s ⊕ 1.

If the adversary is successful then it has presented t, pk, pkh such that
H(pk) = pkh and H(t)⊕1 = pkh. Observe that spend-attackA,Π(κ) = true ⇒
Match. Therefore Pr[spend-attackA,Π(κ)] ≤ Pr[Match]. Apply Lemma 1 on
F to obtain Pr[spend-attackA,Π(κ)] ≤ negl(κ). ��

We note that the security of the signature scheme is not needed to prove
unspendability. Were the signature scheme of the underlying cryptocurrency
ever found to be forgeable, the coins burned through our scheme would remain
unspendable. We additionally remark that the choice of the permutation F (x) =
x ⊕ 1 is arbitrary. Any one-to-one function beyond the identity function would
work equally well.

Preventing Proof-of-Burn. It is possible for a cryptocurrency to prevent
proof-of-burn by requiring every address to be accompanied by a proof of pos-
session [25]. To the best of our knowledge, no cryptocurrency features this.

Next, our binding theorem only requires that the hash function used is col-
lision resistant and is in the standard model.

Theorem 3 (Binding). If H is a collision resistant hash function then the
protocol of Sect. 3 is binding.
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Algorithm 5. The collision adversary A∗ against H using a proof-of-burn bind-
-attack adversary A.
1: function A∗

A(1κ)
2: (t, t′, ) ← A(1κ)
3: return (t, t’)
4: end function

Proof. Let A be an arbitrary adversary against Π. We will construct the Colli-
sion Resistance adversary A∗ against H.

The collision resistance adversary, illustrated in Algorithm5, calls A and
obtains two outputs, t and t′. If A is successful then t 
= t′ and H(t) ⊕ 1 =
H(t′) ⊕ 1. Therefore H(t) = H(t′).

We thus conclude that A∗ is successful in the collision game if and only if
A is successful in the bind-attack game.

Pr[bind-attackA,Π(κ) = true] = Pr[collisionA∗,H(κ) = true]

From the collision resistance of H it follows that Pr[collisionA∗,H = true] <
negl(κ). Therefore, Pr[bind-attackA,Π = true] < negl(κ), so the protocol Π is
binding. ��

We now posit that no adversary can predict the public key of a secure sig-
nature scheme, except with negligible probability. We call a distribution unpre-
dictable if no probabilistic polynomial-time adversary can predict its sampling.

Lemma 2 (Public key unpredictability). Let S = (Gen,Sig,Ver) be a secure sig-
nature scheme. Then the distribution ensemble Xκ = {(sk, pk) ← Gen(1κ); pk}
is unpredictable.

The following lemma shows that the output of the random oracle is indistin-
guishable from random if the input is unpredictable (for the complete proofs see
the Appendix).

Lemma 3 (Random Oracle unpredictability). Let T be an unpredictable dis-
tribution ensemble and H be a Random Oracle. The distribution ensemble
X = {t ← T ;H(t)} is indistinguishable from the uniform distribution ensemble
U({0, 1}κ).

Theorem 4 (Uncensorability). Let S = (Gen,Sig,Ver) be a secure signature
scheme, H be a Random Oracle, and T be an unpredictable tag distribution.
Then the protocol of Sect. 3 instantiated with H,S, T is uncensorable.

Proof. Let X be the distribution ensemble of public keys generated using
GenAddr and Y that of keys generated using GenBurnAddr.

From Lemma 2 the distribution of public keys generated from S is unpre-
dictable. The function GenAddr samples a public key from S and applies the
random oracle H to it. Applying Lemma 3, we obtain that X ≈c U({0, 1}κ).
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The function H ′(x) = H(x) ⊕ 1 is a random oracle (despite not being inde-
pendent from the random oracle H). Since T is unpredictable, and applying
Lemma 3 with random oracle H ′, we obtain that Y ≈c U({0, 1}κ).

By transitivity, X and Y are computationally indistinguishable. ��

From the above, we conclude that the tags used during the burn process must
be unpredictable. If the tag is chosen to contain a randomly generated public key
from a secure signature scheme, or its hash, Lemmas 2 and 3 show that sufficient
entropy exists to ensure uncensorability. Our cross-chain application makes use
of this fact.

6 Consumption

Over the last 5 years there has been an explosion of new cryptocurrencies. Unfor-
tunately, it is hard for a new cryptocurrency to gain traction. Without traction,
no market depth ensues and a cryptocurrency has difficulty getting listed in
exchanges. But without being listed in exchanges, a cryptocurrency cannot gain
traction.

This chicken-and-egg situation presents the need for a solution that circum-
vents exchanges and allows users to acquire the cryptocurrency directly. We
propose utilizing proof-of-burn to allow users to obtain capital on a new target
cryptocurrency by burning a legacy source cryptocurrency. The target block-
chain may support burning from multiple sources.

Workflow. A user wishes to acquire a target cryptocurrency. She uses her target
address as a tag to generate a source burn address. She then sends an amount
of source cryptocurrency to that address. She submits a proof of this burn to a
smart contract [10] on the target chain, where it is verified and she is credited
an equivalent amount of currency. Proof-of-burn verification happens in either
a centralized manner which is lighter on computation, or in a decentralized
manner using Non-Interactive Proofs of Proof-of-Work (NIPoPoWs) [9,15–18].
Target miners need not be connected to every other source blockchain network.
We call this property miner-isolation and propose methods to achieve it.

We now describe how a target smart contract verifies a burn took place on
the source chain. We make use of the Proof-of-Work Sidechains mechanism [19]
in which they propose a generic information transfer construction. We tailor it
towards our purposes for proof-of-burn transfers. We call the user the prover
and the smart contract the verifier. The prover wishes to convince the verifier
that an event occurred on the source chain. We define an event as a simple
value transfer described by a transaction id txid, a receiving address addr and an
amount. Simple value transfers are supported by all cryptocurrencies, allowing a
verifier to process burns from a wide range of source blockchains. Note that this
event type does not yet distinguish between burn and non-burn addresses.

A verifier checks an event occurred on the source chain by ensuring its trans-
action is contained in a stable block [13,14] in the best source chain. Specifically,
the following data are supplied to the smart contract as a proof:
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– tx: The transaction which contains the burn on the source chain.
– b: The block header for the block which contains tx.
– τtx: An inclusion proof showing tx ∈ b.
– τb: A proof that b is contained in the best (i.e., most proof-of-work) source

chain and is stable.

We assume the source blockchain provides a function verify-tx(addr, amount,
b, tx, τtx) which can be written in the smart contract language of the target
blockchain and verifies the validity of a source transaction. It takes a source
address addr, an amount, a block b, a transaction tx and a proof τtx for the
inclusion of tx in b. It returns true if tx contains a transfer of amount to addr
and the proof τtx is valid.

The proof τtx is usually a Merkle Tree inclusion proof. More concretely, in
Bitcoin, each block header contains a commitment to the set of transaction
ids in the block in the form of a Merkle Tree root. Ethereum stores a similar
commitment in its header—the root of a Merkle–Patricia Trie [31].

For verifying that a provided block b belongs to the best source blockchain
and is stable, we assume the existence of a function in-best-chain(b). We explore
how it can be implemented in the “Verifying block connection” paragraph below.

Bootstraping Mechanism. Being able to verify events, we can grant target
cryptocurrency to users who burn source cryptocurrency. After burning on the
source blockchain, the user calls the claim function with the aforementioned event
and a proof for it. This function ensures that the event provided is valid and
has not been claimed before (i.e. no one has been granted target cryptocurrency
for this specific event in the past), that it corresponds to the transaction tx
and that the block b is stable, belongs to the best source chain and contains tx.
Then, after verifying by invoking BurnVerify that the receiving address of the
event is a burn address where the tag is the function caller’s address, it releases
the amount of coins burned in the form of an ERC-20 token. We present the
contract burn-verifier with this capability in Algorithm6.

Algorithm 6. A contract for verifying burns from the source chain. This smart
contract runs within the target blockchain.
1: contract burn-verifier extends crosschain; ERC20
2: mapping(address ⇒ uint256) balances
3: claimed-events ← ∅
4: function claim(e, b, τtx)
5: block-ok ← in-best-chain(b)
6: tx-ok ← verify-tx(e.addr, e.amount, b, e.tx, τtx)
7: event-ok ← e /∈ claimed-events
8: if block-ok ∧ tx-ok ∧ event-ok ∧ BurnVerify(msg.sender, e.addr) then
9: claimed-events ← claimed-events ∪ {e}

10: balances[msg.sender] += e.amount
11: end if
12: end function
13: end contract
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In the interest of keeping this implementation generic we assume that the
user receives a token in return for his burn. However, instead of minting a token,
the target cryptocurrency could allow the burn verifier contract to mint native
cryptocurrency for any user who successfully claims an event. This would allow
the target cryptocurrency to be bootstrapped entirely though burning as desired.

Verifying Block Connection. We now shift our attention to the problem of
verifying a block belongs in the best source chain. We provide multiple ways of
implementing the aforementioned in-best-chain method.

Direct Observation. Miners connect to the source blockchain network and
have access to the best source chain. A miner can thus evaluate if a block is
included in that chain and is stable. This mechanism does not provide miner-
isolation. It is adopted by Counterparty.

NIPoPoWs. Verifying block connection can be achieved through NIPoPoWs,
as in [19]. We remark that with this setup a block connection proof may be
considered valid provisionally, but there needs to be a period in which the proof
can be disputed for the smart contract to be certain for the validity of the
proof. Specifically, when a user performs a claim, they have to put down some
collateral. If they have provided a valid NIPoPoW, a contestation period begins.
Within that period a challenger can dispute the provided proof which – provided
that the dispute is successful – would turn the result of in-best-chain to false,
abort the claim and grant the challenger the user’s collateral. If the contestation
period ends with the proof undisputed, then in-best-chain evaluates to true, the
collateral gets returned to the user and the claim is performed successfully.

Federation. A simpler approach is to allow a federation of n nodes monitoring
the source chain to vote for their view of the best source chain. This construction
works under the assumption that the majority of the federation is honest.

The best source chain is expressed as the root M of a Merkle Tree contain-
ing the chain’s stable blocks as leaves. Each federation node connects to both
blockchain networks, calculates M and submits their vote for it every time a
new source chain block is found. When a majority of �n

2 � + 1 nodes agrees on
the same M, it is considered valid.

Having a valid M, a verifier verifies a Merkle Tree inclusion proof τb for
b ∈ M and is certain the block provided is part of the best source chain and is
stable. This approach is illustrated in Algorithm 7. The more suitable Merkle
Mountain Range [9] data structure can be used to store M in place of regular
Merkle Trees, as they constitute a more efficient append-only structure.

7 Empirical Results

In order to evaluate our consumption mechanisms, we implement the federated
consumption mechanism in Solidity. We provide a concrete implementation of
the burn-verifier contract described in Algorithm 6. We implement the crosschain
parent contract from [19]. We verify transaction data by making use of the open
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Algorithm 7. A in-best-chain implementation which verifies that a block b is
included in the best source chain using the federation mechanism. M denotes
the latest MMR approved by the federation majority.
1: votes ← ∅
2: best-idx ← 0
3: M ← ε
4: function votefed(m, σ, pk)
5: if pk ∈ fed∧Ver(m, σ, pk) then � Check that pk is a valid federation member
6: (M∗, idx) ← m
7: votes[m] ← votes[m] ∪ {pk}
8: if |votes[m]| ≥ � |fed|

2
� + 1 ∧ idx > best-idx then

9: M ← M∗ � Update accepted MMR
10: best-idx ← idx
11: end if
12: end if
13: end function
14: function in-best-chainM(b, τb)
15: return VerMT (M, b, τb)
16: end function

source bitcoin-spv library [3]. Finally, the federation mechanism for verifying
block connection is employed. The members of the federation can vote on their
computed checkpoints using the vote function.

We release our implementation as open source software under the MIT
license2. The implementation is production-ready and fully tested with 100%
code coverage.

At the time of writing we obtain the median gas price of 6.9 gwei and the
price of Ethereum in US Dollars at $170.07. The cost of gas in USD is calculated
by the formula gas ∗ 1.173483 ∗ 10−6 rounded to two decimal places.

Method Gas cost Equivalent in USD

vote 50103 gas $0.06

submit-event-proof 157932 gas $0.19

claim 78267 gas $0.09

Total claim cost 262817 gas $0.28

For the end user to prove an event and claim her burn, the cost is thus $0.28.
Comparatively, for a Bitcoin transaction to be included in the next block at the
time of writing a user has to spend $0.77.

2 https://github.com/decrypto-org/burn-paper/tree/master/experiment.

https://github.com/decrypto-org/burn-paper/tree/master/experiment
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Appendix: Full Proofs

Applying an efficiently computable function to indistinguishable distributions
preserves indistinguishability.

Lemma 4 (Indistinguishability preservation). Given two computationally indis-
tinguishable distribution ensembles {Xκ}κ∈N and {Yκ}κ∈N, let {fκ}κ∈N be a fam-
ily of efficiently computable functions. Then the distribution ensembles X ′ =
{fκ(Xκ)}κ∈N and Y ′ = {fκ(Yκ)}κ∈N are computationally indistinguishable.

We call a distribution ensemble unpredictable if no polynomial-time adversary
can guess its output. We observe that, if each element of a distribution appears
with negligible probability, then the distribution must be unpredictable. Public
keys generated from secure signature schemes must be unpredictable.

Algorithm 8. The existential forgery A which tries to guess the secret key
through sampling.
1: function AS(1κ, pk)
2: (pk, sk) ← Gen(1κ)
3: return (ε, Sig(sk, ε))
4: end function

Lemma 2 (Public key unpredictability). Let S = (Gen,Sig,Ver) be a secure sig-
nature scheme. Then the distribution ensemble Xκ = {(sk, pk) ← Gen(1κ); pk}
is unpredictable.

Proof. Let p = max
̂pk∈[Xκ]

Prpk←Xκ
[pk = ̂pk]. Consider the existential forgery

adversary A illustrated in Algorithm 8 which works as follows. It receives pk
as its input from the challenger, but ignores it and generates a new key pair
(pk′, sk′) ← Gen(1κ). Since the two invocations of Gen are independent,

Pr[pk = pk′] ≥ max
̂pk∈[Xκ]

Pr[pk = ̂pk ∧ pk′ = ̂pk]

= max
̂pk∈[Xκ]

Pr[pk = ̂pk] Pr[pk′ = ̂pk]

= max
̂pk∈[Xκ]

(

Pr[pk = ̂pk]
)2

= p2 .

The adversary checks whether pk = pk′. If not, it aborts. Otherwise, it uses
sk′ to sign the message m = ε and returns the forgery σ = Sig(sk,m). From the
correctness of the signature scheme, if pk = pk′, then Ver(pk,Sig(sk,m)) =
true and the adversary is successful. Since the signature scheme is secure,
Pr[Sig-forgecma

A,S ] = negl(κ). But Pr[pk = pk′] ≤ Pr[Sig-forgecma
A,S ] and therefore

p ≤
√

Pr[pk = pk′] ≤ negl(κ). From this, we deduce that the distribution ensem-
ble Xκ is unpredictable. ��
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Algorithm 9. The predictor A∗ of the distribution X which makes use of a
distinguisher A between X and U({0, 1}κ).
1: i ← 0
2: Q ← ∅ � Record of all random oracle queries
3: function H ′

H(x)
4: i ← i + 1
5: Q[i] ← H(x)
6: return Q[i]
7: end function
8: function A∗

X,A(1κ)

9: b
$← {0, 1}

10: if b = 0 then
11: z ← X
12: j

$← [r]
13: else
14: z ← U({0, 1}κ)
15: end if
16: b∗ ← AH′

(z)
17: if b = 1 ∨ j > i then
18: return failure
19: end if
20: return Q[j]
21: end function

Lemma 3 (Random Oracle unpredictability). Let T be an unpredictable dis-
tribution ensemble and H be a Random Oracle. The distribution ensemble
X = {t ← T ;H(t)} is indistinguishable from the uniform distribution ensemble
U({0, 1}κ).

Proof. Let A be an arbitrary polynomial distinguisher between X and
U({0, 1}κ). We construct an adversary A∗ against predictT . Let r denote the
(polynomial) maximum number of random oracle queries of A. The adversary
A∗ is illustrated in Algorithm 9 and works as follows. Initially, it chooses a ran-
dom bit b

$← {0, 1} and sets Z = X if b = 0, otherwise sets Z = U({0, 1}κ). It
samples z ← Z. If b = 0, then z is chosen by applying GenAddr which involves
calling the random oracle H with some input pk. It then chooses one of A’s
queries j

$← [r] uniformly at random. Finally, it outputs the input received by
the random oracle during the jth query of A.

We will consider two cases. Either A makes a random oracle query con-
taining pk, or it does not. We will argue that, if A makes a random oracle
query containing pk with non-negligible probability, then A∗ will be success-
ful with non-negligible probability. However, we will argue that, if A does not
make the particular random oracle query, it will be unable to distinguish X from
U({0, 1}κ).

Let qry denote the event that b = 0 and A asks a random oracle query with
input pk. Let x denote the random variable sampled by the challenger in the
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predictability game of A∗. Let exqry denote the event that b = 0 and A asks
a random oracle query with input equal to x. Observe that, since the input to
A does not depend on x, we have that Pr[exqry] = Pr[qry]. As j is chosen
independently of the execution of A, conditioned on exqry the probability that
A∗ is able to correctly guess which query caused exqry will be 1

r . Therefore
we obtain that Pr[predictA∗,T (κ) = true] = 1

r Pr[exqry] = 1
r Pr[qry]. As

Pr[predictA∗,T (κ) = true] ≤ negl(κ) and r is polynomial in κ, we deduce that
Pr[qry] ≤ negl(κ).

Consider the computational indistinguishability game in which the distin-
guisher gives a guess b∗ attempting to identify the origin b of its input (with
b = 0 indicating that the first distribution was sampled, and b = 1 indicating
that the second distribution was sampled). If b = 0, then the distinguisher A
receives a truly random input pkh = H(pk). If the distinguisher does not query
the random oracle with input pk, the input of the distinguisher is truly random
and therefore Pr[b∗ = 0|b = 0|¬qry] = Pr[b∗ = 0|b = 1].

Consider the case where b = 0 and apply total probability to obtain

Pr[b∗ = 0|b = 0] =
Pr[b∗ = 0|qry] Pr[qry] + Pr[b∗ = 0|b = 0|¬qry] Pr[¬qry]

≤Pr[b∗ = 0|qry] Pr[qry] + Pr[b∗ = 0|b = 0|¬qry]
≤Pr[qry] + Pr[b∗ = 0|b = 0|¬qry]

Then Pr[dist-gameA,X,U({0,1}κ) = true] = Pr[b = b∗] is the probability of
success of the distinguisher. Applying total probability we obtain

Pr[b = b∗] = Pr[b = b∗|b = 0]Pr[b = 0] + Pr[b = b∗|b = 1]Pr[b = 1]

=
1
2
(Pr[b∗ = 0|b = 0] + Pr[b∗ = 1|b = 1])

≤ 1
2
(Pr[qry] + Pr[b∗ = 0|b = 0|¬qry] + Pr[b∗ = 1|b = 1])

=
1
2
(Pr[qry] + Pr[b∗ = 0|b = 1] + Pr[b∗ = 1|b = 1])

=
1
2
(Pr[qry] + Pr[b∗ = 0|b = 1] + (1 − Pr[b∗ = 0|b = 1]))

=
1
2
(1 + Pr[qry]) ≤ 1

2
+ negl(κ)

��
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Abstract. We present the first treatment of non-interactive publicly-
verifiable timestamping schemes in the Universal Composability frame-
work. Inspired by the timestamping properties of Bitcoin, we use non-
parallelizable computational work that relates to elapsed time to avoid
previous impossibility results on non-interactive timestamping. We intro-
duce models of verifiable delay functions (VDF) related to a clock and
non-interactive timestamping in the UC-framework. These are used to
present a secure construction that provides improvements over previous
concrete constructions. Namely, timestamps forged by the adversary are
now limited to a certain time-window that depends only on the adver-
sary’s ability to compute VDFs more quickly and on the length of corrup-
tion. Finally, we discuss how our construction can be added to non-PoW
blockchain protocols to prevent costless simulation attacks.

Keywords: Non-interactive cryptographic timestamping · Universal
composability · Verifiable delay functions · Time-lock cryptography

1 Introduction

In the digital domain, giving evidence that a certain amount of time has passed
is more challenging than in the physical world. Exploring how to reliably create
digital timestamps has been an active research area for the last thirty years.
The first paper to deal with digital timestamping by Haber and Stornetta [9]
presented solutions which utilized cryptography to limit the trust deposited on
the party doing the timestamping. Their solution is based on a hashchain: a
sequence of documents linked through a collision-resistant hash function.

In the literature, almost every timestamping service requires interaction with
a group of validators and provides security guarantees only for the ordering of
events, timestamping relative to other events. Non-interactive timestamping has
been explored previously in [12], where the authors present a generic impos-
sibility result. Because there is no interaction between prover and verifier, an
c© International Financial Cryptography Association 2020
J. Bonneau and N. Heninger (Eds.): FC 2020, LNCS 12059, pp. 541–558, 2020.
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adversarial prover could simply simulate the execution of an honest prover ‘in
the past’ to generate a fake timestamp. They sidestep this result by working in
the bounded-storage model where they construct a secure protocol, where the
adversary is unable to simulate an honest prover due to lack of storage. Another
approach to sidestep this result is to relate computational work to elapsed time.
This was mentioned in [11] as a possible application for their proof-of-sequential-
work construction. The same idea is what allows Bitcoin to act as a decentralized
timestamping service.

Haber and Stornetta’s timestamping hashchain served as the inspiration for
the blockchain that underlies Bitcoin [13]. Even when it was not its stated goal,
Bitcoin achieved timestamps that are more trustworthy than those of the original
construction. Proofs of work were introduced to prevent malicious adversaries
from overwhelming honest parties through false identities. Each block of the
Bitcoin blockchain contains a certificate that, on average, a certain amount of
work has been invested in its creation. Given an idea of how much computational
power is available to the network, it is possible to assert the age of any piece
of data on the blockchain, with higher certainty than previous non-centralized
systems. One can assume the age of a record approximately corresponds to its
depth in the blockchain, unless an adversary’s computational power exceeds the
honest Bitcoin miners’ computational power. Under non-standard yet realistic
assumptions, Bitcoin provides long-term proofs of the age of its blocks.

While timestamping is mentioned as a goal of Bitcoin in the original whitepa-
per its security properties were only recently formalized in [1]. There, the
authors study which timestamping guarantees can be achieved through inter-
action with an existing ledger. While there is a level of public verifiability in
ledger-based timestamping, they require accepting the assumptions of the under-
lying blockchain protocol. Bitcoin was able to sidestep impossibility results about
non-interactive timestamping by connecting time with work, but at a high price.

Unfortunately proof of work is incredibly wasteful, which is why there has
been a search for more sustainable replacements. While there are many propos-
als for different Sybil-resistance mechanisms, none of them provide these addi-
tional timestamping guarantees. In fact, all of these solutions explicitly avoid the
computational investment that allows for timestamping in Bitcoin. However,
the large computational work is the mechanism behind Bitcoin’s resilience to
costless-simulation and long-range attacks. Non-proof-of-work solutions require
additional cryptographic assumptions, like secure erasures [8], in order to main-
tain the same level of robustness as Bitcoin.

The main goal of this paper is to find another solution to base the security
of timestamping on computational work in a manner that is not wasteful while
being easy to apply. We take ideas from the same timestamping protocol that
influenced Bitcoin to construct a hashchain-based protocol using verifiable delay
functions (VDFs). Using non-parallelizable work allows us to have assumptions
that are realistic, as adversaries only gain a computational advantage with faster
processors, not with more processors. We quantify the advantage of the adversary
in terms of the factor that she is able to compute VDFs faster compared to an
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honest prover. Our scheme offers similar timestamping guarantees of proofs of
work for distributed ledgers that do not rely on proof of work, as we briefly
discuss in the last section of this paper.

1.1 Our Contributions

We study non-interactive cryptographic timestamping based on Verifiable Delay
Functions (VDFs) in the Universal-Composability (UC) framework and the
Random-Oracle Model (ROM). This is the first treatment of non-interactive
timestamping in the UC model by introducing non-interactive computational
proofs-of-age which act as a lower bound on the age of a record.

We define an ideal timestamping functionality Fα
ts that maintains a time-

stamped record of messages. It can be queried to generate a non-interactive
proof for the record’s age at the time of proof-generation. We parametrize the
adversary’s advantage with a time-diluting factor α.

For a record of age TrueAge, the ideal functionality allows timestamps of age
StampAge that are correct (StampAge ≤ TrueAge) or forged timestamps with a
claimed age bounded as StampAge ≤ α · min(tcorr,TrueAge), where tcorr is the
time since corruption (or −∞ if uncorrupted).

In particular this implies that she cannot create any forged timestamps with
age larger than T ·α, which is possible in a similar construction by Mahmoody et
al. [11], where for any record of any age the adversary can craft forged timestamps
that are at most α times older than the record’s true age. In the full version of
this paper we provide a treatment of Mahmoody et al.’s construction in the
UC-framework for easy comparison with our work.

Our main contribution is presented in Sect. 4. We define the functional-
ity Fα

ts and present our hashchain-based protocol. We show our construction
securely realizes the timestamping functionality in the random-oracle model and
universal-composability framework against an adversary that can compute ver-
ifiable delay functions faster than the prover by the time-diluting factor α.

2 Model and Definitions

We construct our protocol in the universal-composability framework [5,6] where
two PPT algorithms Z and A interact with parties executing a protocol. We
assume a hybrid model where parties have access to a global clock, random ora-
cles, an unforgeable signature scheme and the FΓ

VDF functionality that represents
our verifiable delay function.

Time. We will work in the synchronous model presented in [10] where par-
ties have access to a clock functionality Fclock (as seen in [2]). For the clock
to advance, each party must input an instruction to the clock that they have
done all their computations for the current round. Once every party and the
adversary have finished their computations for the round, the clock ticks and
the next round begins. The clock allows us to give meaningful statements about
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the passage of time, but our protocol does not make any assumption on the syn-
chronicity of communication between the parties. We will refer to the encoding
of the round number as a time receipt with constant length θ.

Cryptographic Hash Function. Let H : {0, 1}∗ → {0, 1}λ be a collision-resistant
cryptographic hash function, which we model as a random oracle.

Sequences. We denote a sequence of � elements from a set X as S = 〈xi |
xi ∈ X〉�, where the elements of the sequence are indexed by i ∈ {0, . . . , � − 1}.
When it is more practical or clear from context, we may denote a sequence as
S = 〈x0 . . . , x�−1〉� or simply 〈xi〉�. We also avoid writing the subscript � when
the length of the sequence is not relevant. When we wish to append an element
x to the end of a sequence S we write 〈S, x〉.

Public-Key Signatures. We assume a EU-CMA signature scheme with security
parameter κ. For consistency, we represent the computations related to this
scheme as interaction with a signature oracle Σ in the following way:

– Each participant has a public/secret key pair (pk, sk) known to Σ.
– On query Σ.sign(sk,msg):

A signature sig ∈ {0, 1}κ is generated and the tuple (sk,msg, sig) is stored
in memory. Return sig.

– On query Σ.verify(pk,msg, sig):
If (sk,msg, sig) is in the memory of Σ and (pk, sk) is a valid keypair, return
1. Otherwise, return 0.

We assume the probability that any PPT adversary forges a signature without
knowledge of the corresponding secret key is negligible in κ.

3 Verifiable Delay Functions

Informally, verifiable delay functions are functions that require inherently
sequential computation and can be efficiently verified.

Definition 3.1. A verifiable delay function (VDF) is a triple of algorithms
(initVDF, evalVDF, verifyVDF) with security parameter μ and parameters g, v ∈ N

initVDF(μ) → pp A probabilistic algorithm which, given a security parameter μ
outputs public parameters pp.

evalVDF(pp, x, s) → (y, p) is a slow cryptographic algorithm that given public
parameters pp, input x ∈ {0, 1}∗ and a strength parameter s computes an
output y and a proof p.

verifyVDF(pp, x, s, y, p) is a fast cryptographic algorithm that for public parameters
pp, input x, strength parameter s, output y and proof p ∈ {0, 1}μ outputs 1
if y is the correct output of the VDF on input x given pp and s.
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For clarity, we avoid writing pp as inputs to evalVDF and verifyVDF. As verifi-
able delay functions are a recent invention, the current definitions differ slightly
from each other. Our definition is closer to the definitions in [14,15] where both
the solving and verification algorithms get as input a parameter s that represents
the number of sequential work necessary to execute evalVDF. In other construc-
tions, this parameter is input only to the initialization algorithm [3,4]. Choosing
to use it as an input at the time of execution allows us to run VDFs for different
strengths given the same initial parameters. While generally VDFs are computed
with the strength determined in advance, it is possible to execute some of them
[14,15] and halting them at some unknown point in the future.

A VDF must satisfy the following security properties:

Correctness verifyVDF(x, s, evalVDF(x, s)) = 1 for all x ∈ {0, 1}∗ and s ∈ N.
Soundness The probability that verifyVDF(x, s, y, p) = 1 when y �= evalVDF(x, s)

is negligible.
Sequentiality No efficient algorithm A that executes less than s sequential

steps can compute values (y, p) for an input x (with sufficient min-entropy)
such that verifyVDF(x, s, y, p) = 1 with non-negligible probability.

Uniqueness For each x there an unique y such that verifyVDF(x, s, y, p) = 1.

Additionally, we expect verification of the VDF to be efficient. The algorithm
verifyVDF must not take more than O(log(s)) sequential computational steps.

Wesolowski presents a simple VDF in [15] based on iterated squaring in
groups of unknown order. His construction is particularly practical because of
its succinctness, as the proof consists of a single group element. Additionally,
it does not require to choose the strength s before starting the computation.
Computing the function consists of repeated squarings, which can be stopped
at any moment to get an output of strength s after s squarings. Continuous
execution has only a linear cost on space, in order to save enough values to
efficiently compute the proof p.

Wesolowski’s VDF fulfills all the security properties expected from a VDF
and is the model from which we construct our functionality FΓ

VDF. Additionally,
the security of our scheme is based on assumptions on the possibility of comput-
ing the VDF quickly enough to ensure that the adversary’s advantage through
faster hardware is minimal. Research on optimized algorithms and specialized
hardware for computing [15] is an active research topic1, 2 meaning that our
assumptions should not be too far from reality.

3.1 The VDF Functionality

The primary goal of our construction is to generate non-interactive proofs that
a certain amount of time has passed since a message was recorded by the prover.
The first step to do that is representing our VDF in the UC framework.

1 https://vdfresearch.org/.
2 https://medium.com/@chia network/chia-vdf-competition-guide-5382e1f4bd39.

https://vdfresearch.org/
https://medium.com/@chia_network/chia-vdf-competition-guide-5382e1f4bd39
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Oracle FΓ
VDF

The functionality is parametrized by a set Γ and a parameter ψ and has access to
the clock Fclock and the random oracle VDF : {0, 1}∗ ×N → {0, 1}μ ×{0, 1}μ. The
functionality manages a set P of parties Pi. For every party, it manages a query
set Qi and a rate γi ∈ Γ . The functionality holds corresponding parameters QA
and γA for the adversary. All Qi as well as P are initialized as ∅.
Whenever FΓ

VDF is activated, it sets t∗ ← Fclock.clock-read.

Computing the function

– On input (start, x) from any party Pi or the adversary A, the functionality
adds (x, t∗) to Qi. It then sends started back.

– On input (output, x) from any party Pi or the adversary A, the functionality
checks if the party started the computation, that is (x, ts) ∈ Qi. If it did not,
output ⊥. If it did, compute the strength s by taking the time elapsed since
the start and letting s ← �t∗−ts/γi�. Let (y, p) ← VDF(x, s) and return (s, y).

– On input (proof, x, s, y) from a party Pi or the adversary A, check whether
(x, t′) ∈ Qi with t∗ − t′ ≤ γis + 	ψ/γi
. If they did not, return ⊥. Otherwise,
let (y, p) ← VDF(x, s) and return p. Otherwise, return ⊥.

Verification

– On input (verify, x, y, s, p) from any party Pi or A, checks whether (y, p) =
VDF(x, s). If so, outputs 1. Otherwise, output 0.

Corruption

– Whenever A corrupts a party Pi, additionally update the adversarial query
list: Q∗

A ← Q∗
A ∪ {(x, t∗ − γA/γi(t∗ − t)) | (x, t) ∈ Qi}. Then send Qi to A;

Fig. 1. The functionality FΓ
VDF is the only way to query the random oracle VDF.

The universal composability framework is very powerful but requires multi-
ple simplifying assumptions. In order to avoid explicitly dealing with simulation
overheads and fine-grained complexity in general, UC deals with closed com-
plexity classes. Any time an ITM is activated, it can perform arbitrary polytime
computations. Without additional tools, it is impossible to quantify the amount
of computation executed by any party. Moderately-hard functions, like VDFs
as well as proofs-of-resource (work, space, replication etc.) are functions that
will eventually be computed at a cost of time or some other resource. Universal
composability is not natively equipped to handle such functions, as there is no
natural way to represent this cost.

A way to utilize these functions in UC is through functionality wrappers,
as exemplified in [2] where parties can only query the random oracle a certain
number of times per timestep We follow a similar approach, where our VDF
functionality is the only way parties can access an underlying random oracle. It
is a natural question whether the VDF presented in [15] can actually UC-realize
our functionality. This question goes beyond the scope of our paper, but further
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work is ongoing to understand whether it is possible to prove this within the
constraints of the UC framework. On the other hand, the functionality fulfills
the expected security properties of a VDF.

Our functionality FΓ
VDF is described in Fig. 1 and simulates the continuous

execution of the VDF. When the execution of the VDF is finished, the party
gets back the output of the VDF after a certain number of iterations, which we
call strength. Whenever an execution of the VDF is completed, the strength is
also output to the party, so they receive the pair (s, y). In order to calculate the
appropriate strength of an execution after a certain amount of time we introduce
the parameter γP which represents the time needed for an iteration of the under-
lying function for party P . We call this parameter the rate of party P . In this
setting with only one party, we assume the adversary has rate γA = γ/α where
her advantage α ≥ 1 is not too large (≤2). While we cannot ensure the physical
reality of this assumption, the impossibility of parallelization greatly limits this
possible advantage, in contrast to generic (parallelizable) computation.

The functionality has access to the random oracle VDF which has an output
of size 2μ which we parse as two distinct outputs: the result of the VDF (y)
and its proof (p), which allows for verification. On occassion we will refer to
the pair (y, p) as Y . Parties can only access this random oracle through FΓ

VDF.
Given an output query, they get the function output y, which constitutes the
first half of the random oracle, as well as the strength. A proof query, requires
the output y and returns p. This functionality depends on the clock functionality
Fclock presented in [2], our version of which can be found on the full version of
this paper.

The functionality FΓ
VDF captures the desirable properties of a verifiable delay

function. Correctness, soundness and uniqueness follow from the use of a ran-
dom oracle for VDF. The functionality models sequentiality because a certain
amount of time must pass before a party can get certain output. The func-
tionality extends the standard corruption mechanism [6, §7.1] of an adversary
corrupting a party and allows not only the adversary taking over that party’s
existing VDF computations, but also to continue them with its faster rate. To
do so, the functionality checks the current strength of the computed function
(t∗−t/γ) and multiplies it by the adversary’s rate to compute the hypothetical
time in which the adversary would have started the computation to reach the
strength at corruption. It then saves that time in the adversary’s query log QA.

Participants are able to input any string to the functionality, as a full-domain
hash is applied to any inputs in our choice of VDF to prevent trivially re-using
previously computed proofs. We require a canonical unambiguous encoding of
integers s ∈ N as bitstrings, so (s, y, p) has a natural description as a bitstring
s||y||p ∈ {0, 1}∗.

4 Creating a Timestamping Scheme

In this section we will first present the timestamping functionality Fα
ts and then

a protocol that realizes it through our VDF functionality.
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4.1 A Timestamping Functionality

The goal of the timestamping functionality Fα
ts is to generate proofs of age and

prevent dishonest parties from claiming that something is older than it really is.
Because we want to reflect the realities of an adversary having access to faster
computational rates, the functionality allows for timestamps to be forged under
certain circumstances. The adversary will be able to dilute the proven age by
at most a time-dilution factor α ≥ 1. We then show that we can efficiently and
securely instantiate this functionality with the use of VDFs. What our func-
tionality does not do is prevent an attacker from post-dating a record, that is,
pretending the record is “younger” and was first recorded later than it was. A
simpler functionality, based on the construction from [11] can be found in the full
version of this paper. The main difference between the two is that the following
functionality does not allow the adversary to take advantage of already existing
timestamps. That is, an adversary must start from scratch whenever she tries to
forge a timestamp and cannot take advantage of honestly-computed work. We
present our functionality in Fig. 2.

The functionality accepts three inputs from the parties and manages the cor-
ruption of the prover. When the prover is corrupted, the adversary can start
forging timestamps by a factor α. The functionality receives records through
the record query and stores them when this happens. It generates a timestamp
whenever it receives a stamp input with the appropriate record. The adversary
can choose how the timestamp looks like but can only modify the age if she has
corrupted the prover. She is limited by the checkstamp procedure, which checks
whether the presented age of the timestamp is correct. If the prover is honest,
it simply checks whether the age in the timestamp does not exceed the time
elapsed since the record was originally queried. When the prover has been cor-
rupted, the adversary can stretch a timestamp by a factor α but only if enough
time has elapsed since corruption of the prover. An adversary can only modify
a timestamp if she has been in control of the functionality for at least the age of
the timestamp divided by α. This implies that any accepted timestamp produced
by the adversary with claimed age older than α · (Fclock.clock-read − tcorr) is
truthful. Such a assertion cannot be established for the scheme in [11]. The pro-
cedure additionally checks whether the triple of record, timestamp and age has
been registered before. Then, the triple is registered with a validity bit v which
states whether the timestamp is valid. The verify query simply checks whether
a triple is in the list of generated timestamps and outputs the associated valid-
ity bit. If the timestamp was not previously generated but is within acceptable
parameters, it queries the adversary whether it is a valid timestamp or not and
outputs the adversary’s answer.

4.2 Random Oracle Sequences

In order to construct a protocol that realizes our functionality, we need to intro-
duce some additional concepts. Exclusively using verifiable delay functions for
timestamping is not practical, as it requires continuous execution of the function
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Timestamping functionality Fα
ts

The functionality is parametrized with an adversarial time-diluting factor α ≥ 1.
It answers queries for a dummy prover P and a set V of dummy verifiers Vi and
interacts with an adversary A.
Let tcorr ← ∞ represent the time the adversary sends a corrupt message to
the functionality. It maintains two internal lists: R ⊂ {0, 1}∗ × {0, 1}θ for
(record,time)-tuples and C ⊂ {0, 1}∗ × {0, 1}θ × {0, 1}∗ × {0, 1} for (record, age,
proof, valid)-tuples. Whenever Fα

ts is activated, it sets t∗ ← Fclock.clock-read.

Creating a timestamp

– On input (record, c), the functionality records (c, t∗) in R and sends a
message (record, c) to the adversary. After she responds with ok, it sends
ok back to the prover.

– On input (stamp, c), the functionality relays (stamp, c) to the adversary.
After she responds with (c, a, u, v), the functionality runs the procedure
checkstamp(c, a, u, v) and returns (c, a, u) to the prover, where u is the times-
tamp string certifying age a.

Verifying a timestamp

– On input (verify, c, a, u), if a tuple of the form (c, a, u, v̂) exists in C then
it outputs v̂. If no such tuple is found then it inputs (cnewstamp, c, a, u) to
the adversary and gets back (v′) and runs checkstamp(c, a, u, v′). After that,
a unique tuple (c, a, u, v̂) will exist in C and it outputs v̂.

Party Corruption

– On input (corrupt) to P, set tcorr ← t, beyond standard corruption man-
agement [6, §7.2].

Procedure checkstamp(c, a, u, v)

Let t̂ = min({t | (c, t) ∈ R} ∪ {∞} ).
If a > (t∗ − t̂): /* Claimed age a larger than true age */

If a > α · min(t∗ − tcorr, t
∗ − t̂) then v ← 0;

If ∃(c, a, u, v̂) ∈ C then v ← v̂; /* For consistency. */

Let C ← C ∪ (c, a, u, v).

Fig. 2. Timestamping functionality Fα
ts

in order to have an up-to-date timestamp. Additionally, each record would need
a different instance of the VDF, making it impractical to timestamp multiple
records. Instead, our construction is based on the hashchain originally presented
in [9]. Instead of simply providing an ordering of events, the VDFs allow for
a proof of age. Our timestamps consist of sequences of VDF-proofs that are
linked to each other through cryptographic hash functions, modelled as random-
oracle sequences as originally presented in [7]. We enhance these constructions
by adding VDFs to the sequences, maintaining the property that dictates that
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such sequences can only be built in a sequential manner, allowing us to realize
our timestamping functionality.

First we introduce Merkle trees, which will allow us to construct our desired
sequences. Merkle trees are balanced binary trees, where the ordered leaf nodes
are each labeled with a bitstring, and where each non-leaf node has two child
nodes and is labeled by the hash of its children’s labels. The root hash of a
Merkle tree equals the label of the root node. Merkle trees allow for short set
membership proofs of length O(log(N)) for a set of size N . For convenience
we define some interface functions that deal with Merkle trees in a canonical
deterministic way.

MT.root(T ) computes the root hash h of the Merkle Tree for some finite ordered
sequence T = 〈xi | xi ∈ {0, 1}∗〉 of bit strings and outputs h ∈ {0, 1}λ.

MT.path(T, v) outputs the Merkle path described as a sequence of strings 〈xi |
xi ∈ {0, 1}λ〉� where x0 = v, x�−1 = MT.root(T ), xi ∈ {0, 1}λ and either
xi+1 = H(xi||H(xi−1)) or xi+1 = H(H(xi−1)||xi) for all i > 0.

MT.verify(P ) given an input sequence P = 〈xi | xi ∈ {0, 1}λ〉� outputs 1 if P is
a valid Merkle path. It outputs 0 otherwise.

With a slight abuse of notation we also use MT.root(T ) recursively, i.e., if
one of the elements S of T is not a bitstring but a set or sequence, we use
MT.root(S) as the bitstring representing S. For example, if T = (a, b, S) with
bitstrings a, b ∈ {0, 1}∗ and a set of bitstrings S = {c, d, e}, then MT.root(T ) =
MT.root((a, b,MT.root(S))). This similarly extends to MT.path(T, v), e.g., where
v ∈ S in the previous example.

Our timestamps are based on random-oracle sequences, originally presented
in [7]. In contrast with that work, our sequences are generated by two distinct
random oracles, H and VDF, which is why we call them H2-sequences:

Definition 4.1 (H2-sequence). Given functions H : {0, 1}∗ → {0, 1}λ and
VDF : {0, 1}∗ ×N → {0, 1}μ, an H2-sequence of length � is defined as a sequence
S = 〈(si, xi) | si ∈ N ∪ {⊥}, xi ∈ {0, 1}∗〉�, where the following holds for each
0 ≤ i < �: if si = ⊥ then H(xi) is contained in xi+1 as continuous substring3;
otherwise si ∈ N and VDF(si, xi) is contained in xi+1 as a continuous substring.
We let IVDF be the index set of all elements (si, xi) ∈ S such that si �= ⊥ and
call it the VDF-index set of S and we call S[IVDF] = 〈(si, xi) ∈ S | i ∈ IVDF〉 the
VDF-subsequence of S. We refer to str(S) =

∑
i∈IVDF

si as the strength of the
H2-sequence S.

Additionally, our sequences must contain time receipts, which we need to
ensure that adversaries cannot take advantage of existing timestamps in order
to forge new timestamps, forcing them to start from scratch.

Definition 4.2 (H2T -sequence). Let S = 〈(si, xi)〉� be an H2-sequence of
length � with IVDF the VDF-index set of S and I−1

VDF = {i−1 | i ∈ IVDF, si−1 = ⊥}.
We call S an H2T -sequence if the following properties hold:
3 That is, xi+1 = a||H(xi)||b for some a, b ∈ {0, 1}∗.
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1. For i ∈ I−1
VDF ∪ IVDF: xi = ti||ri where ti ∈ {0, 1}θ is a time receipt and ri is

an arbitrary string.
2. For all i, j ∈ I−1

VDF ∪ IVDF: if i < j then ti ≤ tj.
3. For all i, j ∈ IVDF: if i < j then ti < tj.

We say S has ε delay if for all i ∈ IVDF, if i − 1 ∈ I−1
VDF then we have that

ti − ti−1 ≤ ε. If I �= ∅ then we call the first element of S[I−1
VDF] the root of S

(root(S)) and the time receipt tmin in root(S) the root time of S and we call
age(S) = tmax − tmin the age of the sequence, where tmax = max{ti | i ∈ IVDF}
is the last time receipt.

It is important to make sure that these sequences can only be constructed
sequentially, one element at a time. When she has access to a faster rate, the
adversary will be able to forge a sequence’s age up to a certain point. We can
bound the ability of the adversary to create a sequence which seems τ time steps
older than it really is.

Lemma 4.3 (Unforgeable H2T -sequences). If t1 − t0 < τ · γ
γA−γ then an

adversary can create an H2T -sequence S of age age(S) = t1 − (t0 − τ) within
t1 − t0 time steps with probability at most 2 · (q1 · 2−λ + q2 · 2−μ) · (Q1 + Q2 +
|S|), where A made q1 queries of total bitlength Q1 to H and q2 queries of total
bitlength Q2 to FΓ

VDF.

Proof. The proof can be found in the full version.

Additionally, we use signatures to prevent the adversary to output valid
sequences without corrupting the prover.

Definition 4.4 (H2TS-sequence). Let pk be a public key for a signature
scheme Σ and S = 〈(si, xi)〉� be an H2T -sequence of length � with IVDF and
I−1
VDF defined the same way as Definition 4.2. We call S an H2TS-sequence
for pk if for i ∈ I−1

VDF: xi = ti||ri||σi where ti ∈ {0, 1}θ is a time receipt and
σi ∈ {0, 1}κ is such that Σ.verify(pk, ti||ri, σi) = 1.

The aforementioned sequences provide the security properties that we expect
our timestamps to have. Instead of dealing with them directly, our prover main-
tains a list of blocks, each containing the VDF proof and the record to be times-
tamped as well as additional information. These blocks are chained through the
use of hash functions, each block containing a hash of the previous block, similar
to a blockchain.

Definition 4.5 (Block). We define a block for a party P with public key pk ∈
{0, 1}∗ as a tuple B = (rnd, prev, vi, vo, t, c) and

1. rnd ∈ N is the sequence number of the block;
2. prev ∈ {0, 1}∗ is the root hash MT.root(Brnd−1) of the previous block Brnd−1,

or prev = H(pk) when rnd = 0;
3. vi = (tu, sig) ∈ {0, 1}θ × {0, 1}κ is a (time receipt, signature)-pair such that

Σ.verify(pk, tu||prev, sig) = 1;
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4. vo = (s, Y ) is a VDF output: Y = VDF(tu||prev||sig, s)
5. t ∈ {0, 1}θ is a time receipt of the creation of the block;
6. c ∈ {0, 1}∗ is the entry to be timestamped;

For convenience we use the notation B.pk, B.rnd, B.prev, B.vi, B.vo, B.tu,
B.sig, B.t, B.s, B.Y and B.c to refer to these elements in block B. Note that
B.Y is the pair (y, p) which is an output of VDF.

We assume that there is a canonical construction for the Merkle tree of a block
such that B.t||B.Y is a leaf of the tree. This choice comes from the fact that
elements of S[IVDF] look like this, where each element of the sequence consists
of the output of a VDF (Y ) preceded by a time receipt (t).

Additionally, we have that prev and c must also be leaves, for similar reasons.
These assumptions allow for an easy characterization of the link between these
instances and the next VDF input.

Definition 4.6 (Chain). We define a chain for a party P with public key pk ∈
{0, 1}∗ as a sequence of blocks C = (B0, . . . , Bk) where for all 0 ≤ i ≤ k:

1. Bi.rnd = i;
2. B0.prev = H(pk) and Bi.prev = MT.root(Bi−1) for i > 0;
3. Bi.Y = VDF(Bi.t

u||Bi.prev||Bi.sig,Bi.s) for i ≥ 0;
4. Σ.verify(pk,Bi.t

u||Bi.prev,Bi.sig) = 1;
5. Bi.t < Bj .t for all i < j ≤ k;

Let len(C) = k be the length of C. We define the notations C[i] = Bi for block
indexing, last(C) = Bk for the last block of C and C[i : r) = (Bi, . . . , Br−1) for
subchains (in particular C[i :) = (Bi, . . . , last(C))).

Having Bi.prev = MT.root(Bi−1) (and prev being a leaf of the canonical
Merkle tree) allows us to generate a Merkle tree for the entire chain by con-
catenating Merkle trees through prev. This construction allows us to create an
H2TS-sequence starting from any element in a block (in particular c) and end-
ing at the end of the chain, passing through every VDF proof and including
every time receipt t and tu. This allows a party to attest an age of c. A detailed
explanation of this construction can be found in the full version. Given a chain C
we refer to the H2TS-sequence starting from Bi.c and going through the entire
subchain C[i :) as h2ts(C, i). Note that if we want to keep the timestamped
records secret, we can ensure that B.c is simply a hash of the record. The first
element of the H2TS-sequence would simply be the record, followed by its hash.

4.3 Realizing the Functionality

In Fig. 3 we present a timestamping protocol based on the chains presented in
Definition 4.6 and H2TS-sequences. We then show that this protocol realizes
the functionality Fα

ts from Fig. 2. Each time that the prover gets a new record
query, they stop their current execution of FΓ

VDF, then create a block containing
the input from the record query and the output of FΓ

VDF. Finally, they query the
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H2TS-based prover Pγ,ε
H2TS

Given parameter VDF rate γ, interrupt time ε. It answers queries from the
environment Z and interacts with its oracle FΓ

VDF and executes a digital sig-
nature scheme Σ with keypair (pk, sk). It maintains a chain C initialized by
a block ((0,H(pk), (⊥, 0), (0θ, 0κ), 0θ, ⊥)) and a variable triple (tu, prev, sig).
Upon initialization, it sets tu ← Fclock.clock-read, prev ← MT.root(B0) and
sig ← Σ.sign(sk, tu||prev) and inputs (start, tu||prev||sig) to FΓ

VDF. The block
creation process takes at most ε time steps. That is, for any consecutive blocks
in the chain Bi and Bi+1, we have that Bi+1.t

u − Bi.t ≤ ε. Whenever Pγ,ε
H2TS is

activated, it sets t∗ ← Fclock.clock-read.

– On input (record, c), the prover stops its current instance of FΓ
VDF by querying

output(tu||prev||sig) and gets back (s, y) returns ok. UIf it has a backlog of
record queries, then it it at the end.

– When the prover is active 	ψ/γ
 timesteps after the record, query, it queries
for the VDF proof with proof(tu||prev||sig, s, y), getting back p. The prover
then constructs a block in the following manner and then appends it at
the end of C: block ← (len(C) + 1, prev, (tu, sig), (s, (y, p)), t∗, c). The prover
saves new values for its variables tu ← Fclock.clock-read, prev ← MT.root(C)
and sig ← Σ.sign(sk, tu||prev). Finally, it starts the VDF computation again
by inputting (start, tu||prev||sig) to FΓ

VDF. If the prover has a backlog of
record queries, it acts as if it just received the one at the top of the list.

– On input (stamp, c), the prover checks whether there is a block Bi in C
that contains c in Bi.c. If there is no such i∗, it returns (c, 0, ⊥). If such
block exists, it takes the smallest such i∗. It then constructs u by computing
h2ts(C, i). The prover then outputs (c, a∗, u).

H2TS-based verifier Vγ,ε
H2TS

Given parameter VDF rate γ and interrupt time ε. It answers queries from the
environment Z and interacts with its oracle FΓ

VDF and can make queries of the
form Σ.verify(pk, msg, sig) for a given pk. Whenever Vγ,ε

H2TS is activated, it sets
t∗ ← Fclock.clock-read.

– On input (verify, c, a, u), the verifier parses u as an H2TS-sequence
S := 〈(si, xi)〉l with VDF-index set IVDF and time receipt index I−1

VDF and
first element (⊥, c). If it can’t, it returns 0. Then, it verifies all signatures
in the elements of S[I−1

VDF], the correctness of the H2TS-structure with
h2tsverify(S, γ, ε) and the additional information through ¬verchain(C). If
all these checks are successful, it outputs 1, else it outputs 0.

Fig. 3. H2TS-based timestamping protocol

VDF functionality again with this block as an input. When creating a timestamp,
the prover finds the block with the expected record and extracts the H2TS-
sequence from it up to the end of the chain.

It is important to ensure the correct structure of the timestamp sequences to
meaningfully realize Fα

ts. Timestamps can be split and recombined, creating new
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timestamps without interacting with the functionality. While this is a desirable
feature in general, it introduces complications in UC. Our functionality can deal
with cases of timestamps that are merged to create a longer timestamp for a
certain value. In these cases, the functionality asks the adversary whether the
new proof is valid. The adversary is still not able to make the functionality accept
a proof that is longer than it should be (the timestamp must pass checkstamp).

However, our functionality is not equipped to deal with other cases that
would occur naturally. For example, take the following H2TS-sequence, where
z = H(x)||H(y):

〈(⊥, x), (⊥,H(x)||H(y)), (⊥, t||H(z)||sig), (s, t∗||VDF(x2, s))〉.
It is clear that substituting the first element of the sequence with (⊥, y) results
in a valid H2TS-sequence of strength s for y. In order to properly construct
a protocol that realizes this functionality we must either give the functionality
understanding of the structure of Merkle trees or “artificially” require additional
parameters for verification. We choose to do the latter. The verifier can check
whether an H2TS-sequence corresponds to the canonical Merkle tree of a chain.
This makes cases like the previous example invalid (assuming that x was the
content c of the block). We call this verification function verchain.

We constructed our H2TS-sequences with an ε-delay, representing the time
between VDF executions. Such a delay is required as we need to take into account
the time spent creating a new block. For simplicity, we assume that the adversary
also has an advantage constructing the chain. Instead of taking ε time steps, the
adversary takes εA = �ε/α. In this setting, we consider that �ψ/γ < ε as it is
necessary to add the proof of the VDF for quick verification. In practice, the
proof may be presented in a different place, allowing us to make ε smaller.

Theorem 4.7. Let μ ∈ N
+ be the security parameter. For any real-world PPT

adversary A with oracle access to FΓ
VDF, there exists a black-box PPT simulator

Aid such that for any PPT environment Z the probability that Z can distinguish
between the ideal world with Fα

ts and Aid (cf. Fig. 2, 4) and the real world with
A, Pγ,ε

H2TS and Vγ,ε
H2TS (cf. Fig. 3) is negligible in μ, λ and κ.

Proof. Let SA
H2TS be as defined in Fig. 4. We consider the distribution of the

joint views of all parties in the execution

(Πideal,Πreal) ← Exec(ZIdeal(Fα
ts,SA

H2TS),ZReal(Pγ,ε
H2TS,Vγ,ε

H2TS,A)),

where all ITMs receive the same starting input tape and randomness tape in
the real and ideal worlds.

In order to prove the theorem we only have to bound the probability that
the two views of Z diverge:

|Pr[ZIdeal = 1] − Pr[ZReal = 1]| ≤ Pr[View(Ideal) �= View(Real)].

One can verify that in the ideal world all queries by Z and their answers by
Pγ,ε

H2TS are perfectly forwarded by the functionality and the simulator. Actually
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the only way for Z’s view to be different is when a verify query by Z results
in a different outcome between the ideal world and real world. We now bound
the probability that this event occurs. Let (tbad, Z, (verify, c, a, u)) be the first
query for which the answer oi in the ideal world differs from the output or �= oi

in the real world. Let qverify, and qVDF be the maximum of the amount of verify
and VDF queries, respectively, made in Πreal or Πideal. Below we only consider
what happened up to time tbad and disregard anything afterwards.

Assume oi = 1, this is only possible if SA
H2TS has output (c, a, u, 1) (as

answer to a stamp query or as a stamped query). That can only happen when
Vγ,ε

H2TS(verify, c, a, u) = 1 and thus that or = 1, which is a contradiction. It
follows that oi = 0 and or = 1 and u is of the form

〈((si, pi), ti, ci, σi)|si ∈ N
+, pi ∈ {0, 1}μ, ti ∈ {0, 1}θ, σi ∈ {0, 1}κ〉l

where:

Σ.verify((si, pi)||ti||ci, σi, pkP) = 1 a =
∑

si/γ

VDF((si, pi)||ti||ci||σi, si+1) = pi+1 a ≤ (tbad − t0)

Now consider the case when (c, a, u) was not legitimately constructed through
the functionality in the ideal world. Then, the simulator has to more actively
deal with proofs that were not generated through stamp but constructed by the
adversary/environment. If u was constructed by truncating and recombining
previous proof chains in a valid way, they would have been accepted through
the checknewstamp query to SA

H2TS. Additionally, proofs legitimately computed
by the adversary would be accepted through this mechanism, as the simulator
ensures that the appropriate record query is created whenever a start query
is input into FΓ

VDF.
To continue, we bound the probability that the adversary has constructed

the proof in a non-sequential manner by Lemma 4.3 as at most 2 · (qH · 2−λ +
qVDF ·2−μ) ·(QH+QVDF+ |S|). Thus in the remainder of the proof we can assume
the adversary has constructed the proof sequentially.

Since oi = 0, it must be caused by one of the rules in Procedure checkstamp
resulting in v = 0 for (c, a, u):

1. The case that c was not recorded by Fα
ts:

Whenever A wants to construct a valid timestamp for a record c, they
must take a particular hash r as part of the input to FΓ

VDF such that it
fulfills verchain. Any other sequence of hashes will not be accepted by
Vγ,ε

H2TS. As SA
H2TS has access to all random oracle calls, it can check the c

used to construct a particular r that is input to FΓ
VDF and generate the

respective record to Fα
ts. Therefore, A can only construct a timestamp

without triggering a record query through a collision in H, which has
probability at most qH · 2−λ · QH.

2. The case that the claimed age a is older than the real age ar times α:
As A only has access to FΓ

VDF then they can only create H2TS-sequences
diluted by a factor α. As the time-dilution factor acts the same over
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Simulator SA
H2TS

The simulator SA
H2TS simulates an instance of prover P ′ who runs Pγ,ε

H2TS and
verifiers V ′ which run Vγ,ε

H2TS. It maintains a list R of all stamp queries and
responses from Fα

ts. It simulates FΓ
VDF through lazy sampling of VDF.

Creating a timestamp

– On input (record, c) from Fα
ts, the simulator inputs (record, c) into P and

then sends back ok.
– On input (stamp, c) from Fα

ts, the simulator queries the relevant proof from
P ′ with a (stamp, c) query. Then it checks the validity of such a proof through
Vγ,ε
H2TS.verify(c, a, u) to get a validity bit v. Then it returns (c, a, u, v) to

Fα
ts.

– If the prover has been corrupted, whenever the adversary A inputs
(start, t||MT.root(Bi)||σ) to FΓ

VDF, if Σ.verify(t||MT.root(Bi), σ, pkP) = 1
then input (record, Bi.c) to Fα

ts through the backdoor tape.

Getting a new timestamp

– On input from (cnewstamp, c, a, u) from Fα
ts. The simulator checks the validity

of such a proof through Vγ,ε
H2TS.verify(c, a, u) and returns the response.

Fig. 4. Simulator SA
H2TS

γ and ε, the adversary gains no additional advantage by changing the
spacing of the time receipts in the sequence. Hence, it is impossible for
the adversary to have created this proof in a sequential manner.

3. The case that the claimed age a is older than the time acorr since corruption
times α:

The adversary cannot stretch VDF strengths of an honest chain in order
to make it seem older because of the honest time receipts. Hence, if the
adversary created this proof in a sequential manner and it started with
a VDF of the form VDF(t||x||σ) with a valid signature then it is clear
the adversary succeeded in forging a digital signature before corruption.
The probability of this event is negligible in κ.

4. The case that (c, a, u, 0) ∈ R:
The same analysis holds, but then for the first time checkstamp(c, a, u)
was called.

As the number to all queries are polynomially bounded by μ, λ or κ, the prob-
ability of distinguishing is negligible in μ, λ and κ. ��

We have shown that we can create secure timestamps through random-oracle
sequences. This result also allows for an efficient way to create timestamps for
a large number of records through Merkle trees. Our analysis naturally extends
to that context, as we only require the existence of an H2TS-sequence.
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5 Beyond Timestamping

We have constructed a timestamping protocol based on verifiable delay func-
tions. Our motivation, however, was to replicate the robustness of proof-of-
work blockchains with respect to costless-simulation and long-range attacks. Our
timestamping protocol adds a sequential-computation cost that does not have
the associated economic and environmental costs of proof-of-work. Fortunately,
our construction already looks like a blockchain where the entries of the ledger
are encoded in c as defined in Definition 4.5. As long as a blockchain contains
the outputs of verifiable delay functions over the block hashes it will be possible
to extract the necessary H2TS-sequences. We leave it to further work to find
the best way to implement this while allowing for network delays and forks.
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Abstract. OpenBazaar, a decentralized electronic commerce market-
place, has received significant attention since its development was first
announced in early 2014. Using multiple daily crawls of the OpenBazaar
network over approximately 14 months (June 25, 2018–September 3,
2019), we measure its evolution over time. We observed 6,651 unique
participants overall, including 980 who used Tor at one point or another.
More than half of all users (3,521) were only observed on a single day
or less, and, on average, only approximately 80 users are simultaneously
active on a given day. As a result, economic activity is, unsurprisingly,
much smaller than on centralized anonymous marketplaces. Furthermore,
while a majority of the 24,379 distinct items listed seem to be legal
offerings, a majority of the measurable economic activity appears to be
related to illicit products. We also discover that vendors are not always
using prudent security practices, which makes a strong case for imposing
secure defaults. We conclude that OpenBazaar, so far, has not gained
much traction to usher in the new era of decentralized, private, and
legitimate electronic commerce it was promising. This could be due to a
lack of user demand for decentralized marketplaces, lack of integration
of private features, or other factors, such as a higher learning curve for
users compared to centralized alternatives.

Keywords: Measurement · Peer-to-peer systems · Electronic
commerce

1 Introduction

OpenBazaar, originally called DarkMarket, is a peer-to-peer electronic commerce
platform that has attracted significant media attention [10,13,14]. It was first
envisioned in 2014 as a response to the government takedown of the Silk Road
[6] online anonymous (“darknet”) marketplace [10]. However, OpenBazaar devel-
opers quickly pivoted away from the darknet marketplace space and toward a
decentralized e-commerce platform. The project raised several million dollars in
seed funding through a startup called OB1 [13,14].

While the default OpenBazaar search engine is developed by OB1 and filters
undesirable items such as narcotics [15], the OpenBazaar project itself is open-
source and the developers cannot prevent vendors from listing such items using
the platform.
c© International Financial Cryptography Association 2020
J. Bonneau and N. Heninger (Eds.): FC 2020, LNCS 12059, pp. 561–577, 2020.
https://doi.org/10.1007/978-3-030-51280-4_30
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Interestingly, the takedown of the Silk Road marketplace failed to curb illicit
activity on centralized anonymous marketplaces. On the contrary, Silk Road’s
successors have been thriving [9,18,21,30]: As of 2017, the leading marketplaces
were grossing hundreds of millions of dollars per year [9], with no decline in sight,
despite adversarial events such as law enforcement operations and “exit scams,”
in which some marketplace operators abruptly shut down their servers, taking
with them any money left in escrow on the platform.

Given that OpenBazaar, thanks to its decentralized architecture, could pre-
vent or mitigate most of these adversarial events, and given the clear economic
demand for such services, we would expect thriving economic activity on a peer-
to-peer platform such as OpenBazaar. This is what we measure in this paper.

For approximately 14 months (June 25, 2018–September 3, 2019), we have
been crawling the OpenBazaar network on a near-daily basis to get a sense of the
number of participants and the size of the overall network. By scraping listings
offered by each vendor and the associated feedback left by buyers (similar to
techniques used in related work, e.g., [6,18,30]), we also estimate the economic
activity taking place on OpenBazaar. Finally, we can examine the extent of users’
mindfulness about operational security when trading in illicit or illegal products.

Our findings are rather sobering. While there is undeniable network activity,
and a reasonably large number of items available on the OpenBazaar network (at
least 24,379 distinct listings observed during our measurement period), economic
activity remains modest, and appears to be mostly generated by illicit product
sales. Furthermore, many vendors appear to misunderstand the security guar-
antees offered by OpenBazaar or fall prey to some configuration defaults, and
publicly reveal some potentially compromising information about themselves:
Nearly a fifth of the vendors that use OpenBazaar over the Tor network [8] have
accidentally revealed their IP address at some point in time.

The remainder of this paper is organized as follows. We discuss relevant
background on OpenBazaar in Sect. 2, describe our collection methodology in
Sect. 3, and present our results in Sect. 4. We explain how our work differs from
related efforts in Sect. 5, and conclude in Sect. 6.

2 The OpenBazaar System

Imagine Alice wishes to join the OpenBazaar network and purchase an item.
First, she downloads the OpenBazaar client from https://openbazaar.org, where
she is presented with a “Get Started” page which allows her to edit her profile.
Since all users on the platform can act as both buyers and vendors, she may also
begin creating item listings if she were so inclined. Crucially, if Alice proceeds
with the default setup process even once, her public IP address will be leaked to
the network. Indeed, using Tor with OpenBazaar requires an extra configuration
step, which is not immediately evident to first-time users. While the OpenBazaar
client prompts the user if it detects that Tor is already running on the user’s
machine, we do not expect this to be common for most users.

Once Alice creates her account, she can explore the listings on the platform.
OpenBazaar’s peer-to-peer backbone is the InterPlanetary File System (IPFS),

https://openbazaar.org
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an open-source protocol which allows content storage and addressing across a
network of distributed nodes [3]. IPFS can be used as an alternative to a tra-
ditional client/server architecture – instead of clients requesting data from a
server, here, a node provides a hash of the content it is requesting to its peers,
who are either able to provide the requested content or query their own peers
for its location.

Since IPFS does not support a centralized repository of item listings, search
is implemented through a third-party search engine. At the time of writing,
the only search engine enabled by default in the OpenBazaar GUI is created
by the OB1 developers – other known search engines, such as SearchBizarre
and a service operated by BlockStamp, require a manual addition to the client
which may not be intuitive for new users. These search engines operate their
own crawlers which travel the network to index users and listings, where their
results can then be queried by users who have added their search engine to the
OpenBazaar client. Existing third-party search engines exist mainly to provide
an uncensored view of listings on the platform, as OB1’s search engine does not
include listings for illicit products.

Listings are stored over IPFS using a Distributed Hash Table (DHT), where
nodes store the hash of a given user, item, or feedback along with their location
on the network. If a node visits a vendor page or views one of its listings, it also
stores the information it receives locally for a certain period of time, allowing
for an added level of redundancy across the network. This enables vendors not
to be perpetually logged in. The system has been designed with the intention
that individual listings will be re-seeded for about a week after their owner was
last seen online [22].

When Alice clicks on a listing she is interested in, her client attempts to
fetch the relevant information from her peers by querying the DHT for the item
hash. If Bob, the store owner, is online, Alice will often be able to receive the
listing directly from Bob – otherwise, Bob’s data is typically seeded by other
IPFS peers for a set period of time. If Alice can retrieve the item hash, she is
brought to a listing page which contains information about the item such as its
price, description, shipping details, preferred cryptocurrency payment method,
and pictures of the item. Currently, OpenBazaar supports payment in Bitcoin,
Bitcoin Cash, Litecoin, and Zcash [2]. Zcash required a full installation of its
binary for more than half of the duration of our study, which raises usability
concerns; Litecoin was added only in the second half of our measurement interval.

When purchasing an item through OpenBazaar, Alice may opt to directly
send cryptocurrency to Bob to pay him, or to use a moderator service to hold the
funds in escrow until the item is received. Moderators are OpenBazaar users who
volunteer to mediate disputes between other users and decide the eventual distri-
bution of funds using multisignature transactions, and usually do so in exchange
for a small fixed-percentage fee. Moderators receive community feedback, but
individual moderators are chosen by the vendor at the time of listing creation.
Regardless, Alice sends her payment details and shipping information to Bob



564 J. E. Arps and N. Christin

through the platform and the sale proceeds as it would on existing services such
as eBay.

3 Data Collection Methodology

We turn now to our data collection methodology, outlining our objectives first,
before discussing the mechanisms we use and their limitations.

3.1 Objectives

Contrary to traditional dark-web marketplaces [30], data collection on Open-
Bazaar is encouraged rather than discouraged, which eschews most of the con-
straints one faces when attempting to scrape a network stealthily. In fact, since
OpenBazaar is not regulated by any central authority, our node cannot be eas-
ily banned from the network. While it could be blocked by individual nodes,
we received no indication that this happened at any point during the study.
Therefore, our primary focuses were on data completeness and collection speed.

We elected to scrape data ourselves, despite the existence of several search
providers for OpenBazaar. Some OpenBazaar search providers service the Open-
Bazaar GUI (i.e., they return JSON parseable by the OpenBazaar client GUI),
while others simply serve their results on public-facing webpages. Regardless
of the method used, we noticed some search engines – in particular, the most
popular search engine, run by OB1 at http://openbazaar.com – do not display
results for illicit products. As a result, we needed to build our own OpenBazaar
crawling infrastructure to obtain uncensored data.

Ethics of Data Collection. The data we collect are volunteered by OpenBazaar
participants. In particular, listings, descriptions, and user feedback are all made
publicly available for everyone to see. We previously referred to our Institutional
Review Board (IRB) to determine whether data collected in related work [6,30]
could be publicly reshared. Our IRB had opined this line of work was not human-
subject research. The only difference with previous research is that here, we do
collect IP addresses of other clients. But, in doing so, our crawler does not collect
any information a regular OpenBazaar node would not collect for operational
purposes. In short, like most peer-to-peer network measurement research (see
e.g., [7]), our measurements do not put users at additional risk compared to
participating in the peer-to-peer network in the first place.

3.2 Crawler Design

Our crawler runs over Tor and leverages the OpenBazaar API [24],
which is a modified version of the IPFS API. First, our crawler queries
a list of its connected peers (GET http://localhost:4002/ob/peers/).
For each of those peers, we retrieve their closest connected peers (GET
http://localhost:4002/ob/closestpeers/[peer ID]), and add them to a

http://openbazaar.com
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list, recursively continuing until we no longer find any new peers (in our testing,
this usually took between five and seven rounds). Using each peer’s unique user
ID, we can then make separate API calls to retrieve all of their current listings
(GET http://localhost:4002/ob/listings/[peer ID]) as well as all reviews
left for those listings. Users, items, and reviews are all uniquely identified within
OpenBazaar by a 46-character alphanumeric hash, which allows us to reliably
track them across different scrapes. We log the approximate geographic location
of peers with public IP addresses with FreeGeoIP (now called ipstack, [1]).

The crawler makes use of Python’s Requests library [26], and the relatively
small size of the network means that it is very fast (often completing in an hour
or less). However, to avoid too much redundancy and to reduce strain on the
Tor network, we chose to scrape the network once every two to four hours. This
provided sufficient coverage on a daily basis, and by leaving our OpenBazaar
node running while the scraper was not in use, we also contributed to the overall
health of the network.

3.3 Potential Limitations
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Fig. 1. Estimated coverage as a function of the number of scrapes.

Network Coverage. One risk of measuring a decentralized marketplace is that
our node could lack a complete view of the network, and it was not uncommon
for our scraper’s requests to the DHT to time out for certain items or users.
Figure 1 depicts the relative coverage percentage of items seen on the network
during April 2019. We observed 6,292 items on the network during this time,
and saw 85% of them during the first two days (i.e., the first 24 scrapes), encoun-
tering the rest over the following seven. The large number of scrapes required to
observe this proportion of the network is indicative of the high levels of churn
we discuss in Sect. 4.1. Non-seller nodes (which make up the majority of network
participants) also have little incentive to leave their OpenBazaar clients open for
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long periods of time, as they do not need their listings to be seeded by other
network participants. The diminishing returns shown by the curve suggest that
there are few items remaining to be found by the crawler.

While the number of items we observe is less than the number reported by
the OB1 developers [5], we often found through manual inspection that many
items returned in the later pages of a given search result performed through their
service failed to load in our client. This is likely because the OpenBazaar protocol
attempts to cache data from inactive nodes for approximately a week [22] before
they are “forgotten” by the network. For example, if Alice owns a store and
do not log on for a few days, other nodes should still be able to access Alice’s
store for approximately a week because it will be cached collectively by the other
nodes in the network. Since OB1’s search engine returns results indexed by its
crawlers and then stored on its own servers, it is likely that its results contain
stale listings that are no longer reachable on the network.

We therefore believe that our view of the network is typical of that seen by
an average node; this motivates the need for our crawler to frequently scrape the
entire network to increase coverage.

Economic Coverage. Unlike many other marketplaces, leaving a review is not
mandatory after a purchase on OpenBazaar. We were unable to purchase any
items ourselves as a part of this study due to our legal counsel’s concerns about
inadvertently participating in money laundering, but we confirmed this with one
of the OpenBazaar developers. As a result, our sales numbers in Sect. 4.2 are a
lower bound, even if we assume complete coverage of the network.

Despite this caveat, we are confident that our results are useful for two rea-
sons. First, social norms on anonymous marketplaces have proven quite strong
over the years: even when leaving feedback is not mandatory, buyers often do so,
especially if they plan on buying from the same seller again in the future [30].
Soska and Christin’s analysis, based on feedback ratings [30], showed numbers
very close to those obtained externally through criminal complaints, when ven-
dors were arrested or through marketplace takedowns, even when leaving feed-
back was not actively enforced by all marketplaces. The importance of feedback
on those marketplaces was also evident when the original Silk Road changed
the way feedback was tallied (shifting from per-item feedback, to aggregate,
per-vendor feedback) and quickly reversed course in the face of customer com-
plaints [6].

Furthermore, our reported distribution of sales by category is likely valid.
One could think that users purchasing illicit items on OpenBazaar would be less
likely to leave a public review than users purchasing legal products. As we will
see, our results do not support this hypothesis.

4 Results

We next turn to our measurement results. We first describe network-level metrics
such as the size of the peer-to-peer network, or the underlying churn in IP
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addresses we see participating in the network, before turning to discussing the
economic activity that appears to take place on OpenBazaar. We then examine
the security and privacy precautions vendors take.

4.1 Network-Level Metrics

The OpenBazaar Peer-to-Peer Network. Over our entire measurement interval,
we have observed 6,651 distinct network participants, using 6,116 distinct IP
addresses.

Table 1. OpenBazaar demographics. Users do not have any product listings; sellers
have at least one active listing; active sellers have realized at least one documented
sale.

With Tor Without Tor Total

Users 743 4,487 5,230

Sellers 197 1,057 1,254

Active sellers 40 127 167

Total 980 5,670 6,651

Table 1 breaks down these participants into finer-grained demographics, dis-
tinguishing between users, who do not list any product, and are therefore
assumed to be solely browsing or buying items; sellers, who list at least one
product, but do not have any documented sale – that is no one left any feedback
for them; and active sellers, who have received at least one piece of feedback. We
also break down these participants between those who use Tor and those who
do not.

Figure 2 shows, for each day, the number of OpenBazaar hosts we have
encountered during our multiple scrapes on that day. The lighter curve denotes
the fraction of hosts that are using the Tor network. We observe that the popula-
tion has been relatively steady, at approximately 80 users simultaneously online
on any given day throughout our measurement interval. The few downward
spikes denote measurement issues rather than network instability.

The gaps in the plot denote times during which our measurement infrastruc-
ture was disabled, or otherwise unable to properly collect data.

The seemingly decreasing number of Tor users toward the end of the mea-
surement interval might be a slight undercount. Through experimentation with
our own test nodes, we discovered that OpenBazaar nodes in version 2.3.1 and
higher running over Tor, sometimes failed to appear in our crawls, despite being
online and reachable (that is, if one knew their node ID). This coincides, and
may be due to the backwards-incompatible [23] software upgrade on March 19,
2019 (OpenBazaar 2.3.1), which may have affected some long-term participants
over Tor. Overall, compared to Table 1, this plot seems to indicate that the vast
majority of OpenBazaar users are actually rarely online. To better understand
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Fig. 2. Number of hosts on the OpenBazaar peer-to-peer network. Each point is the
cumulative number of different hosts seen over all measurements taken on a specific
day.

the dynamics of the OpenBazaar network, we next turn to a survivability analy-
sis. Similar to Christin [6], we estimate vendor “lifespan” by recording the time
we first saw a vendor, and the time we saw them last. They may have left and
rejoined in the meantime—here we are looking at the vendor lifetime, regardless
of their transient activity. To account for measurement effects (e.g., vendors still
being present on the last day of measurement), Fig. 3 depicts a Kaplan-Meier
estimator [16] that shows the probability a given user seen on day 0 will be seen
again after x days, broken down by the categories defined in Table 1.

Churn is high among regular users: more than two thirds of them stay less
than a day. Vendors, on the other hand tend to stay longer, especially vendors
that have documented sales (i.e., that have received feedback). Roughly three
quarters of all participants do not stay more than a week; a few users remain
on the network throughout our measurement interval. Log-rank tests confirm
that visually striking differences between the survival curves for all of these user
categories are statistically significant (p < 0.0001). In short: vendors tend to be
long-lived, while regular users are not, and usage of Tor is positively correlated
with longer presence on the network.

Geographical Considerations. Figure 4 shows the geolocation of the IP addresses
of participants that are not using Tor. OpenBazaar seems to be fairly interna-
tional, with the usually observed concentration of users in North America and
Europe. A couple of points with strange locations (e.g., Easter Island) suggest
certain participants use VPNs, some of which are known to advertise implausible
locations that fool geolocation databases [32]. We generally do not observe mean-
ingful differences between different types of users, even though Western Africa,



Open Market or Ghost Town? The Curious Case of OpenBazaar 569

+
+

++

+

+

+

+++
+++

++ +
++ + + ++

+

+
+

+
++++++++++ + + + + + + +0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

+
+

+
+

+
+

Active seller (w/ Tor)

Active seller (w/o Tor)

Seller (w/ Tor)

Seller (w/o Tor)

User (w/ Tor)

User (w/o Tor)

Fig. 3. Survivability analysis of OpenBazaar users. Kaplan-Meier estimator that shows
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for different types of users. Shaded areas indicate 95% C.I. (Color figure online)

India and Thailand/Malaysia feature a larger proportion than we expected of
active sellers – again, it is hard to tell whether this could be due to VPN usage.

4.2 Economic Activity

We next turn to a study of economic activity on OpenBazaar. We observed
24,379 distinct item listings during our measurement intervals. The apparent
high average ratio of listings per seller (≈40) is due to the ease of creating
listings (including test listings) and to a few “power users” who have thousands
of listed items on the platform.

Item Listing Survivability. We start with a survival plot in Fig. 5 shows the
probability an item seen at time zero will still be available on the network x days
later. The median item stays online for approximately three weeks. One quarter
of all items disappears (i.e., are delisted) within a day, which further motivates
the need to repeatedly crawl the network for completeness. A handful of items
were present throughout our measurement interval. The “jumps” observed in
the graph correspond to a large number of items belonging to a given vendor
being all delisted on the same day, presumably because the vendor node had
been offline for long enough to have its listings cleared from the IPFS cache.1

1 Item listings do not automatically disappear when an item is sold out. The seller
needs to either delete the listing, or be offline for a long enough period of time for
the listing to stop being seeded by the network. We differentiate between the two
cases by only counting visible reviews for an item as a sale and not considering
disappearing listings as possible sales.
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Fig. 4. Geolocation of OpenBazaar users. Users are network participants; Sellers are
users with at least one listing; Active sellers are sellers with at least one feedback.

Overall, the survivability analysis paints a picture eerily similar to that of
the early days of online anonymous marketplaces [6]: most items are very short-
lived. As discussed in prior work [6,30], short-lived items are usually indicative
of vendors holding low stocks, which in turn suggests that vendors operates
primarily in the retail space, with small product quantities, and (usually) low
sales volumes.

Preliminary Economic Analysis. We next examine economic activity on Open-
Bazaar, across item categories. We initially attempted to feed each of the 24,379
item listings we observed into the 16-category item classifier proposed by Soska
and Christin [30], who trained their item classification with listings from the
Agora and Evolution marketplaces and showed very high (>98%) accuracy when
evaluating a priori unknown listings.

We realized, however, that items classified in the “Miscellaneous” category
represented a disproportionately high fraction of all listings, which led us to
further break this category down into additional categories: Adult Toys, Art,
Clothing, Jewelry, Print Media, and Souvenirs. We took 200 new items from
our OpenBazaar corpus, hand-labeled them,2 and added them five times (i.e.,
an extra 1,000 items) to the original training set consisting of 62,989 labeled
items from Evolution and Agora. Our resulting classifier operates on 22 cate-
gories. Table 2 shows very good performance metrics, with precision and recall,

2 A single researcher was tasked with this labeling, hence we do not report agreement
numbers.
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Fig. 5. Survivability analysis of OpenBazaar items. The plot is a Kaplan-Meier esti-
mator that shows the probability a given item seen on day 0 will be seen again after x
days. The median lifetime of an item is approximately 22 days. The curve fully overlaps
the very narrow 95% confidence interval.

overall, being over 0.96. This is unsurprising, given that the modified classifier
is very close to the original classifier from Soska and Christin – we merely added
1,000/63,989≈1.6% of new training data to the original classifier. The support,
here, is much larger than the number of items we observed in OpenBazaar, since
we are evaluating with 10-fold cross-validation on the original dataset provided
by Soska and Christin3 [30] and the OpenBazaar data. Certain categories (e.g.,
Adult Toys) do appear very rarely, though. The overall support for the new cat-
egories is fairly small (240 items); this again is unsurprising, as the imbalance in
training sets means that an item needs to closely resemble a training example to
be classified as one of the new sub-categories. In other words, our modified clas-
sifier closely mimics what Soska and Christin used; in a few “obvious” cases, it
will manage to further identify a subcategory, but will do so very conservatively.

Next, we present the category breakdown for these 24,379 listings in Table 3.
Simply looking at listing counts (columns 2 and 3), close to half of the listings
are in the “Misc.,” “Print Media,” and “Souvenirs” categories, which generally
denote legitimate items. The third largest category, “Digital goods,” contains
a mix of legitimate (e.g., e-books and other guides) and illegitimate (porno-
graphic website account passwords) items. In short, a majority of items listed
on OpenBazaar shops appear to be for legal products.

However, looking at actual sales (columns 4 through 6) paints a very different
picture. To compute sales for a given item listing, using the same technique as
in related efforts [6,30], we add up the price of the item to its total sales at
each time a feedback for a sale of that item is recorded. Feedback that were
recorded prior to our monitoring the OpenBazaar network are counted if the
corresponding item was still listed when we scraped the network, and feedback

3 The dataset is available from IMPACT, https://www.impactcybertrust.org.

https://www.impactcybertrust.org
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Table 2. Classifier performance.

Category Precision Recall F1-score Support

Adult Toys 1.00 1.00 1.00 3

Art 1.00 1.00 1.00 24

Benzos 0.97 0.98 0.97 21,132

Cannabis 1.00 1.00 1.00 113,516

Clothing 1.00 1.00 1.00 38

Digital Goods 0.94 0.96 0.95 158,162

Dissociatives 1.00 0.99 0.99 7,172

Drug Paraphernalia 0.97 0.98 0.97 15,740

Ecstasy 1.00 0.99 0.99 49,184

Electronics 0.96 0.94 0.95 5,379

Jewelry 0.76 1.00 0.87 13

Misc 0.87 0.80 0.83 47,651

Opioids 0.98 0.98 0.98 25,511

Prescription 0.95 0.93 0.94 23,023

Print Media 1.00 0.96 0.98 113

Psychedelics 1.00 1.00 1.00 31,023

Sildenafil 0.98 0.97 0.97 31,22

Souvenirs 1.00 0.90 0.95 49

Steroids 0.99 1.00 0.99 17,044

Stimulants 0.98 0.99 0.99 55,555

Tobacco 1.00 1.00 1.00 3,966

Weapons 0.99 0.97 0.98 5,341

Total 0.96 0.96 0.96 582,761

was still accessible. As noted before, reviews are not mandatory in OpenBazaar,
so that the sales numbers presented are a lower bound. Even with this caveat,
sales volumes appear to be very modest. We only count around $217,000 in total
sales over our measurement interval. By comparison, sales on Silk Road [6,30]
and AlphaBay [21], two of the largest online anonymous marketplaces, reached
hundreds of millions of dollars in revenue.

Looking a bit more carefully at the data revealed an interesting outlier: one
vendor, P...A, appeared to be single-handedly responsible for 60% of all sales
on OpenBazaar. In particular, that vendor had three pieces of feedback for a
$36,000+ listing for a kilogram of cocaine, which should have accounted for more
than $100,000 in sales by itself. When we manually inspected this specific vendor,
we discovered that for most of their items, the feedback appeared to be fake: very
closely clustered timestamps, all with highly positive ratings and uninformative
messages for highly priced items. This strongly suggested an attempt at manip-
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Table 3. Sales observed during our measurement interval. The values in columns 4–6
exclude vendor P...A, whose feedback seems highly questionable, and likely fake.

Category Listings
(count)

Listings
(%)

Sales
(count,
corrected)

Sales
(USD,
corrected)

Sales
(%,
corrected)

Adult Toys 182 0.747 0 0 0.0

Art 331 1.358 10 975 1.13

Benzos 155 0.636 8 1,650 1.92

Cannabis 1,910 7.835 318 22,450 26.1

Clothing 1,881 7.72 30 375 0.437

Digital Goods 2,701 11.079 139 1,312 1.53

Dissociatives 21 0.086 2 1,050 1.22

Drug Paraphernalia 829 3.4 13 224 0.261

Ecstasy 243 0.997 10 4,895 5.69

Electronics 1,906 7.818 23 2,389 2.78

Jewelry 354 1.452 9 208 0.243

Misc 6,796 27.876 333 4,028 4.69

Opioids 223 0.915 17 2,207 2.57

Prescription 289 1.185 23 808 0.941

Print Media 4,902 20.107 6 123 0.144

Psychedelics 242 0.993 125 17,653 20.5

Sildenafil 45 0.185 41 792 0.921

Souvenirs 791 3.245 60 3,587 4.17

Steroids 69 0.283 2 11 0.0128

Stimulants 242 0.993 24 20,835 24.2

Tobacco 34 0.139 1 5 0.005

Weapons 233 0.956 8 374 0.436

Total 24,379 100 1,202 85,954 100

ulation by the vendor.4 While in centralized marketplaces, padding feedback
with misleading information is prohibited, and frequently results in banning
the vendors engaging in such deceptive practices, the decentralized nature of
OpenBazaar makes this kind of enforcement difficult. We do note, though, that
OpenBazaar supports moderators that can assist in ensuring transactions are
conducted satisfactorily (see Sect. 2); unsurprisingly, all of P...A’s listings were
unmoderated. We removed this vendor, and the 33 associated sales, from further
consideration in columns 4–6, to obtain an hopefully more accurate picture of

4 Interestingly, one of their items seemed to have legitimate feedback, which pre-dated
all of the seemingly deceptive feedback discussed here.
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sales on OpenBazaar – excluding P...A, the total amount of sales is actually
around $86,000.

As Table 3 shows, the category distribution of items that do sell is very
different from the category distribution of items that are merely listed. Over
25% of all recorded sales are for cannabis-related products (including seeds),
and more than three quarters of all recorded sales are for drugs – prescription
drugs or narcotics.5 This higher economic activity occurs despite the fact that
the OpenBazaar developers have taken active measures to try to make illicit
items harder to find, by excluding them from their built-in search engine search
results, which suggests that the demand for illicit offerings far outpaces that for
legitimate goods available on OpenBazaar.

Table 4. Distribution of feedback ratings. 5 is best, 1 is worst.

Score Count Percent

5 1,302 85.32%

4 28 1.83%

3 34 2.22%

2 29 1.90%

1 133 8.71%

Feedback Ratings. An alternative hypothesis would be that buyers of legitimate
products are somehow less likely to leave feedback than buyers of illicit goods.
We found no evidence to support that hypothesis. Specifically, we present the
feedback ratings we observed in Table 4. OpenBazaar uses a 5-point rating scale,
where higher scores are better, i.e., vendor strive to obtain 5-star feedback. The
ratings we see heavily skew positive, as has been observed in general (legitimate)
e-commerce platforms [27], and feedback distribution presents striking similari-
ties with with that obtained for feedback left by Silk Road patrons [6, Table 3]:
5’s dominate, followed by 1’s, and other ratings are less frequently used.

4.3 Operational Security

While much of the core OpenBazaar vendor base tends to connect over Tor, not
all of these users are truly anonymous. Indeed, user IDs are persistent across
sessions. By comparing the unique user IDs of the 980 nodes seen connecting
over Tor with those seen connecting over public IP addresses, we found that
173 users (17.7%) had revealed an IP address at some point in time. Not all of
these users may have wished to remain anonymous during the entire collection
cycle, but we did observe some obvious lapses in operational security, such as
US vendors selling marijuana offering global shipping. It appears a version of

5 The disproportionate volume of Psychedelics sales seems to be mostly influenced
by one specific vendor, who has been highly successful on various online anonymous
markets, and also operates their own vendor shop, and has presence on OpenBazaar.
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the OpenBazaar client which is pre-bundled with Tor is in development, which
should alleviate this problem over time [25].

At the beginning of our measurement timeframe, OpenBazaar nodes were
tied to a single cryptocurrency – if a vendor wished to, for example, sell the
same items both with Bitcoin and Bitcoin Cash, they were required to maintain
two distinct nodes with identical listings. Furthermore, for some time using Zcash
on the platform also required running a full Zcash node. As a result, activity
on the platform was conducted almost entirely in Bitcoin until the release of
a multiwallet feature on January 17, 2019, which added native support for the
three currencies mentioned plus Litecoin. Previous studies (e.g., [20]) have shown
that Bitcoin is highly traceable, meaning that early purchases on the platform
may be able to de-anonymize certain vendors. Since the introduction of the
multiwallet, however, there has been large growth in Zcash usage, with at least6

12,441 observed listings accepting payment in the currency.

5 Related Work

This work follows a long lineage of peer-to-peer network measurements, which
can be traced back to studies of file-sharing networks such as Napster [29], or
Gnutella [28]; or, beyond file-sharing, of Skype [11]. Later papers focused on spe-
cific metrics to better understand user behavior. For instance, Gummadi et al.
studied peer churn on Kazaa [12], while others investigated overall peer availabil-
ity [4,31], or resilience to poisoning attacks [7,19]. A number of papers looked into
the economics of online anonymous marketplaces and have documented their rise
in popularity [6,9,30]. In comparison, our analysis of OpenBazaar shows fairly
modest revenues. Finally, also related to the operational security aspects we out-
line in this paper are attempts to quantify cryptocurrency traceability – notably
efforts to trace Bitcoin [20], Monero [21], and Zcash [17].

6 Conclusion

We conducted multiple daily crawls of the OpenBazaar distributed marketplace
over approximately 14 months (June 25, 2018–September 3, 2019). More than
half of the 6,651 participants we observed were present only for less than a day,
but users relying on Tor tended to be much longer lived, particularly if they
were actively selling items. Economic activity is orders of magnitude smaller
than on centralized anonymous marketplaces, and while most listed items are
for legitimate products, the majority of items that do result in sales are for
narcotics. Finally, vendors are not always using prudent security practices, leak-
ing for instance their IP address despite generally connecting over Tor, which
makes a strong case for imposing secure defaults—fortunately, the OpenBazaar
developers are already reportedly working on this [25].

6 A bug in our parser code for items with multiple currencies prevented us from pre-
cisely computing the number of such listings, but we could recover this lower bound.
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We conclude that OpenBazaar, so far, has not gained much traction to usher
in the new era of decentralized, private, and legitimate electronic commerce it
was promising.7 This could be due to a lack of user demand for decentralized
marketplaces, lack of integration of private features, or other factors, such as a
higher learning curve for users compared to centralized alternatives.
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Abstract. As of September 2019, Monero is the most capitalized
privacy-preserving cryptocurrency, and is ranked tenth among all cryp-
tocurrencies. Monero’s on-chain data privacy guarantees, i.e., how mix-
ins are selected in each transaction, have been extensively studied. How-
ever, despite Monero’s prominence, the network of peers running Monero
clients has not been analyzed. Such analysis is of prime importance, since
potential vulnerabilities in the peer-to-peer network may lead to attacks
on the blockchain’s safety (e.g., by isolating a set of nodes) and on users’
privacy (e.g., tracing transactions flow in the network).

This paper provides the first step study on understanding Monero’s
peer-to-peer (P2P) network. In particular, we deconstruct Monero’s P2P
protocol based on its source code, and develop a toolset to explore Mon-
ero’s network, which allows us to infer its topology, size, node distri-
bution, and node connectivity. During our experiments, we collected
510GB of raw data, from which we extracted 21,678 IP addresses of
Monero nodes distributed in 970 autonomous systems. We show that
Monero’s network is highly centralized—13.2% of the nodes collectively
maintain 82.86% of the network connections. We have identified approxi-
mately 2,758 active nodes per day, which is 68.7% higher than the number
reported by the MoneroHash mining pool. We also identified all concur-
rent outgoing connections maintained by Monero nodes with very high
probability (on average 97.98% for nodes with less than 250 outgoing
connections, and 93.79% for nodes with more connections).

1 Introduction

As blockchains aim at implementing decentralized and trustworthy systems, they
often rely on peer-to-peer (P2P) protocols for membership management and
information dissemination. This makes the P2P network a critical element of
blockchains, as the security of the underlying consensus protocols and the privacy
of transactions are all tightly related to its implementation [1–7].
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Monero is a privacy-centric cryptocurrency, and is currently ranked the first
among privacy-preserving cryptocurrencies with a market capitalization of 1.248
Billion USD, and the 10th among all cryptocurrencies1. Much research has been
done on analysing the privacy of Monero [8–12], with a focus on on-chain data
analysis, i.e., how the mixins (a.k.a. decoy inputs) are selected in each transaction
and how they provide privacy guarantees. However, little research has been done
to investigate Monero’s P2P network, even though network level attacks have
been studied on the specific networks of Bitcoin and Ethereum [1–3,13–15].

Analysing the resilience of a blockchain to network level attacks is challeng-
ing, as it requires a deep understanding on the underlying network. In this paper,
we present a first step of work towards analysing Monero’s security and privacy
against network level attacks. In particular, we perform an analysis of Monero’s
network protocol, and identify possible ways to infer the network topology. We
develop a toolset to implement our findings. Our tool set includes NodeScanner
and NeighborFinder. NodeScanner automatically discovers peers in the Monero
network, no matter whether they are currently online or not. We classify the dis-
covered peers in three categories, namely active and reachable nodes, active and
unreachable nodes, and inactive nodes. A node is active if it is currently online,
and is reachable if NodeScanner can successfully connect to it. Compared to pre-
vious works [6,16–18], NeighborFinder is able to identify the unreachable active
nodes in the network, which are the active direct neighbors of nodes that could
be reached, for the network topology inference.

Our experimental results show that Monero’s network is highly centralized—
0.7% of the active nodes maintain more than 250 outgoing connections, and
86.8% of the nodes do not maintain more than 8 outgoing connections. These
86.8% nodes collectively maintain only 17.14% of the overall connections in the
network. Our toolset is also very effective in observing the network – after a
single week of data collection, our toolset already discovered 68.7% more active
peers than Monerohash [19] – a Monero mining pool that is the only known
pool providing data on the Monero node distribution. On average, our toolset
identified approximately 2,758 active nodes per day, while Monerohash only
showed about 1,635 active nodes. Furthermore, we report our analysis of the
collected data regarding an estimation of our network coverage, the network
connectivity, and the node distribution in the Monero P2P network.

Our contributions are summarized as follows:

– to the best of our knowledge, our work is the first to describe how to infer
Monero’s peer-to-peer network, which would enable further studies on the
network level security analysis of Monero;

– we provide the first toolset to implement our findings on exploring the Mon-
ero peer-to-peer network. In particular, NodeScanner explores existing and
historical nodes in the Monero network, and NeighborFinder identifies neigh-
bors of the Monero nodes. We plan to release our toolset as an open source
project shortly; and

1 https://coinmarketcap.com. Data fetched on Sept. 12, 2019.

https://coinmarketcap.com
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– we conduct an experiment to evaluate Monero’s network, and show the effec-
tiveness of our methods. We provide insights and a security analysis of its
network size, distribution, and connectivity.

Disclosure. We have disclosed our research findings to the Monero team, which
has been working on patching the peer-to-peer protocol, and publicly acknowl-
edged our findings in their git commit2.

The remaining of this paper is organized as follows. Section 2 provides a
high level overview on the different designs of P2P protocol in different major
cryptocurrencies, and highlights the particularities of Monero’s P2P member-
ship protocol. Section 3 provides an overview of our analysis pipeline, and the
algorithms we used to implement the discovery of the nodes and the inference
of their connections. Section 4 details the results obtained after analyzing the
data collected during one week, and provides a discussion on the privacy and
security issues that can arise after a P2P network exposure. Section 5 reviews
related works, and we conclude this paper in Sect. 6.

2 Monero’s P2P Membership Protocol

Peer-to-peer (P2P) networks have been designed and extensively studied to allow
decentralized message exchanges. They have been getting a renewed attention
since Satoshi Nakamoto described Bitcoin in 2008. Indeed, inspired by Bitcoin,
thousands of cryptocurrencies serving different purposes have been created. How-
ever, no standard P2P protocol has been proposed for blockchains. Instead,
different P2P protocols have been designed and adapted by different cryptocur-
rencies [20–22].

Monero relies on its peer-to-peer network to disseminate transactions and
blocks. Unfortunately, a proper presentation of Monero’s peer-to-peer protocol
has been missing from the literature. This section describes Monero’s peer-to-
peer membership protocol based on its source code, which is available from
Monero’s official working repository3.

2.1 Initialization

Monero hardcodes a set of hostnames, which can be translated to IP addresses
through the DNS service, and IP addresses of seed nodes that new participants
can contact to be bootstrapped into the peer-to-peer network. Those seed nodes
are operated by the Monero core team.

New joiners can obtain a limited number of active peers’ IP addresses from
the seed nodes to initialize their peer lists. They can then start initiating con-
nections with peers, exchange membership lists and discover other peers, until
they have established their desired number of connections.
2 https://github.com/monero-project/monero/blob/960c2158010d30a375207310a36a

7a942b9285d2/src/p2p/net peerlist.h.
3 Commit hash 14a5c2068f53cfe1af3056375fed2587bc07d320, https://github.com/

monero-project/monero.

https://github.com/monero-project/monero/blob/960c2158010d30a375207310a36a7a942b9285d2/src/p2p/net_peerlist.h
https://github.com/monero-project/monero/blob/960c2158010d30a375207310a36a7a942b9285d2/src/p2p/net_peerlist.h
https://github.com/monero-project/monero
https://github.com/monero-project/monero
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Fig. 1. Message exchange in the Monero network

2.2 Peer List

In Monero, each node maintains a peer list consisting of two parts, i.e., a
white list, and a gray list. In the peer list of a peer A, the information of
each recorded peer not only contains its identity, its IP address, and the TCP
port number it uses, but also a special last seen data field, which is the time at
which the peer has interacted with peer A for the last time. All the peers in the
lists are ordered chronologically according to their last seen data, i.e., the most
recently seen peers are at the top of the list.

Each time a node receives information about a set of peers, this information is
inserted into its gray list. Nodes update their white list and gray list through
a mechanism called “graylist housekeeping”, which periodically pings randomly
selected peers in the gray list. If a peer from the gray list is responsive, then
its information will be promoted to the white list with an updated last seen
field, otherwise it will be removed from the gray list. To handle idle connections,
nodes check their connections through the IDLE HANDSHAKE protocol, and
update the last seen fields if they successfully connected to the corresponding
neighbors, otherwise they drop the associated connection. Nodes also periodi-
cally handshake their current connections, and update the last seen field of the
associated responsive peers. If a peer does not respond to the handshake request,
then the requesting node will disconnect from this neighbor, and connect to a
new neighbor chosen from the white list. The disconnected peers will stay in
the white list. The maximum sizes of the white list, and of the gray list, are
equal to 1,000 and 5,000, respectively. If the number of peers in these lists grow
over the maximum allowed size, then the peers with the oldest last seen fields
will be removed from the list.

Nodes broadcast messages (e.g., transactions and blocks) to their neighbors
through TCP connections. Nodes choose their neighbors from the white list.
If not enough peers from the white list are currently online, then a node will
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choose its neighbors from the gray list. Nodes to which previous connections
were established are classified as anchor nodes, and stored in the white list.
Monero ensures that every node is connected to at least two anchor nodes to
prevent a node from being isolated by an attacker. To discover other participants,
nodes exchange membership messages by sending a TCP SYN message to their
neighbors. Upon receiving a SYN message, the neighbors create a message whose
payload contains detailed information of its top 250 peers in the white list, and
send it back to the requester. The requester inserts the received peer data into
its gray list, and runs the graylist housekeeping protocol to update the lists.
More details about the TCP connection and data transmission will be presented
in Sect. 2.3.

2.3 Information Propagation

By default, each peer maintains 8 outgoing connections and accepts 1 incoming
connection. A peer residing behind a firewall or a NAT does not accept incoming
connections, and only maintains 8 outgoing connections. Peers are allowed to
define their maximum number of outgoing and incoming connections. Monero
recommends peers to increase the number of their connections according to their
capacity, for an improved network connectivity.

Three types of messages are propagated in Monero, respectively containing
peers information, transactions, and blocks. A node establishes connections with
others through a TCP handshake (SYN-SYN-ACK) as illustrated in Fig. 1, and
can subsequently exchange peer information through the established connection.

3 Analysis Pipeline Overview

In this section, we introduce the different data structures and the processes we
implemented, along with the associated network tools they rely on. We also
detail our algorithmic approaches to monitor the active Monero nodes and to
infer their neighbors. The analysis pipeline is illustrated in Fig. 2.

3.1 Construction

We deploy full Monero nodes to collect data in the Monero network. These nodes
establish connections with peers in the network, and store packets into their local
storage. We adapt two network measurement tools, i.e., tcpflow4 and nmap5, to
collect data and analyze the Monero network. As mentioned in Sect. 2, each
received TCP packet contains the most recent 250 IP addresses of the sender’s
white list. Thus, all received IP addresses are recent out-bound peers of the
sender. We then use our first tool, NodeScanner, to collect the IP addresses of
discovered Monero nodes and store them in the NodePool.

4 https://www.tecmint.com/tcpflow-analyze-debug-network-traffic-in-linux/.
5 https://nmap.org/.

https://www.tecmint.com/tcpflow-analyze-debug-network-traffic-in-linux/
https://nmap.org/
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Fig. 2. Analysis pipeline overview

We use our second tool NeighborFinder to infer the neighbors of reached
nodes that sent the TCP packets to collectors, and store them in the Connec-
tionPool. Each connection consists of a node we reached and of its neighbor,
which are both active. We introduce in greater details our developed tools in
Sect. 3.3.

3.2 Neighbor Inference Based on Membership Messages

As introduced in Sect. 2.2, Monero clients execute a gray list housekeeping proto-
col and an idle connections prevention protocol to evict inactive nodes from their
peer list. As a consequence, the outbound neighbors of a node are often associ-
ated with the freshest last seen in its peer list, which enables the identification
of a node’s neighbors from the membership messages it sends.

3.3 Nodes Discovery and Connections Inference

Our deployed nodes accept incoming connections and initiate outgoing connec-
tions to receive TCP packets from other nodes. Let P = {P1, P2, P3, ..., Pj} be
the set of j TCP packets a collector receives from a reached node, such that
each packet Pk (k ∈ [1, j]) contains a set Ak = {Ak,1, Ak,2, Ak,3, ..., Ak,250} of IP
addresses and a set Tk = {Tk,1, Tk,2, Tk,3, ..., Tk,250} of last seen timestamps.

NodeScanner. After having received a set P of packets from node N , NodeS-
canner identifies the set A = {A1, A2, A3, ..., Aj} of included IP addresses,
extracts the set U = A1 ∪ A2 ∪ A3 ∪ ... ∪ Aj of unique IP addresses from A,
and inserts all unique IP addresses into the NodePool.

NeighborFinder. Our second tool aims at identifying a set Nk of neighbors
from each Pk (k ∈ [1, j]). Over the various packets P1 to Pj , it identifies the
overall set of neighbors N = N1 ∪ N2 ∪ N3 ∪ ... ∪ Nj . In the following, we first
indicate our neighbors inference approach based on the time difference of the
nodes’ last seen timestamps in a single packet, and then refine this approach by
relying on several received packets.
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Neighbors Inference Based on a Single Packet. For any received packet
Pk from a node N , we assume that it contains r < 250 neighbors. Because all
neighbors of N are updated at the same time, the neighbors of N tend to be the
first r adjacent IP addresses of Ak, and the difference between any two neighbors’
timestamps tends to be small. If we assume that there is a maximum time
difference µ6 between the timestamps of any two neighbors, then we can extract
a set N ′

k = {Ak,i, Ak,i+1, Ak,i+2, ..., Ak,i+r−1| r ∈ [1, 250], i ∈ [1, 251 − r], ∀x ∈
[i, i + r − 1], Tk,x − Tk,x+1 ≤ µ} of neighbors from Pk as shown in Algorithm 1.

Algorithm 1. Neighbors inference based on a single received packet
Input : Pk: Packets;

µ: The maximum time difference between the last seen timestamps of
a node’s neighbors;

Ak: the IP addresses of Pk;
Tk: the last seen timestamps of Pk

Output: Neighbors set N ′
k;

1 for (y = 1, y < 250, y++) do
2 if Tk,y - Tk,(y+1) ≤ µ then
3 N ′

k ←− Ak,y

4 end
5 if Tk,(y+1) - Tk,(y+2) > µ then
6 N ′

k ←− Ak,(y+1); break
7 end

8 end

Each node iteratively checks its connections through the IDLE HANDSHAKE
procedure, which makes a node send SYN packets to all of its neighbors. Fol-
lowing this procedure, the last seen timestamps of handshaked neighbors are
updated with the current time if nodes can be contacted, otherwise connections
are dropped. This mechanism prevents idle connections to be maintained. How-
ever, the answers to the SYN packet can be received at a different time, which
leads to different answer delays. It is therefore necessary to set µ to a value
that is large enough to discover all neighbors, but small enough to limit false
positives. This problem only exists when we rely on a single packet to infer the
neighbors of a target node, and disappears when multiple packets are used.

Improved Neighbors Inference Based on Multiple Packets. During a
connection with a node, it frequently happens that our monitoring nodes suc-
cessively receive multiple packets from a node. If an IP address appears in suc-
cessive packets, and its last seen has been updated, then we can conclude that
the node corresponding to this IP address is a neighbor of the sender. We use
the set N ′′ = {Ak,y | , Ak,y = A(k+1),z, Tk,y �= T(k+1),z, Ak,y ∈ Pk, Tk,y ∈ Pk,

6 We set µ to the value of the IDLE HANDSHAKE interval, i.e., 60 seconds.



Exploring the Monero Peer-to-Peer Network 585

Algorithm 2. Neighbors inference based on two received packets
Input : Packets Pk and P(k+1);

Ak, A(k+1): the IP addresses in Pk, resp. Pk+1;
Tk, T(k+1): the last seen timestamps in Pk, resp. Pk+1;

Output: Neighbors set N ′′
k ;

1 foreach Ak,y = A(k+1),z do
2 if Tk,y �= T(k+1),z then
3 N ′′

k ←− Ak,y

4 end

5 end

A(k+1),z ∈ P(k+1), T(k+1),z ∈ P(k+1)} to denote the IP addresses that have been
updated between packets Pk and P(k+1). We then extract the neighbors of node
N following Algorithm 2.

4 Experiments

This section describes our experimental settings, validation approach, data anal-
ysis methods and results. We also discuss the potential threats of a network
topology exposure.

4.1 Settings

We deployed four full nodes in the Monero network: two in the U.S. (California
and Virginia), one in Europe (Luxembourg), and one in Asia (Japan). Each
node ran on an Ubuntu 16.04 machine with an Intel Xeon Platinum 8000 series
processor. We make use of the four nodes not only to collect data, but also to
have access to a ground truth and verify our neighbor inference algorithms.

We manually modified the settings on our Monero nodes so that they could
establish the largest number of connections with other nodes. First, we set the
maximum number of incoming and outgoing connections to 99,999 to force our
nodes to actively search for new neighbors. Second, we modified the number of
opened files, socket receive buffer, and socket send buffer of used machines to
the maximum number (1,048,576, 33,554,432, 33,554,432 respectively) in order
to simultaneously maintain a large amount of TCP connections.

We collected 510 GB of raw data containing 12,563,962 peer list messages (as
shown in Table 1). We extracted 21,678 IP addresses, which belong to 970 ASs7.
Out of these collected IP addresses, our nodes established connections with 3,626
peers, and identified 703 peers to which no connection could not be established,
but that were active and connected to reached nodes. We say that peers are
active and reachable if our nodes can establish connections with them. We say

7 We use the whois (https://www.ultratools.com/tools/ipWhoisLookup) database to
find the ASN for each IP address.

https://www.ultratools.com/tools/ipWhoisLookup
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Table 1. Data collected from Tokyo (T), Luxembourg (L), California (C), and Virginia
(V)

#Received Peer List Messages Node Connection

T: 1,971,514; L: 2,308,968
C: 3,892,225; V: 4,391,255

IP Addresses ASN Host Level AS Level

21,678 970 338,023 87,013

peers are active but unreachable if they are connected to nodes we connected to
and if a connection could not be established with them. We say a peer is inactive
if it is neither connected to our nodes, nor connected to responsive peers. If our
nodes were not able to connect to a peer, then it either meant that the peer
was already fully connected during the data collection, or that it was offline. To
reduce the number of possible false negatives, we consider that a peer is offline
if the peer is not connected to our nodes or to the neighbors of our nodes, and
if their last seen has not been updated during the data collection process.

4.2 Validation

We used the node in Luxembourg to establish three connections with the nodes
in California, Virgina, and Tokyo respectively. We compared the identities of
the nodes identified by NeighborFinder as neighbors with the ground truth of
our deployed nodes. Since the payload data of membership messages can contain
at most 250 IP addresses, a part of a node’s neighbors could not be observed
in a single message when it maintained more than 250 outgoing connections.
Therefore, we specifically set up a node maintaining more than 250 outgoing
neighbors in Tokyo to verify our algorithms. The validation reported a precision
of 100% with 97.98% recall (i.e., all inferred neighbors were real neighbors, and
2.12% of the nodes identified as Non-neighbors were false negatives) when the
number of neighbors is smaller than 250, and a precision of 100% with 93.79%
recall for the node in Tokyo.

4.3 Measuring the Network Coverage

Previous tools [23–26] relied on the number of reached nodes to estimate their
network coverage in Bitcoin and Ethereum. However, unreachable active nodes,
which are also a part of the nework, have been overlooked by these tools. In this
section, we introduce our method, which takes unreachable nodes into account,
to estimate the network coverage. We show the effectiveness of our tools by com-
paring our results with the data provided by the MoneroHash mining pool [19].

NeighborFinder determined the neighbors of reached nodes even when it was
not possible to contact them. This allowed us to:

– identify the fully connected nodes. When a node has reached its maxi-
mum number of incoming connections, it does not accept any new inbound
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(a) Collected nodes. (b) Reached active nodes.

(c) Unreached active nodes. (d) Proportion of unreached active
nodes.

Fig. 3. Analysis of the collected IP addresses during the data collection process.

neighbor. In this case, previous approaches cannot identify these fully con-
nected active nodes. However, NeighborFinder can discover them through the
connections they have established with reached nodes.

– estimate the network size by observing the proportion of unreached
active nodes. Unfortunately, there is no ground truth to validate the network
size in permissionless blockchains. We use num. unreached active nodes

num. collected nodes ∈ [0, 1] as
a metric to estimate the proportion of the Monero network that has been
reached. In practice, our tools have discovered almost all long-term running
nodes in the network when the new reached nodes cannot present information
about any new nodes. The overall proportion of unreached active nodes is
illustrated in Fig. 3(d).

We present the data collection statistics in Fig. 3, where we respectively show
the data collected by the node in California in red, Virginia in black, Japan in
yellow, and Luxembourg in green. The total number of reached nodes is rep-
resented in blue. Figure 3(a) shows the number of discovered peers. Figure 3(b)
shows the number of active nodes connected to our servers. Figure 3(c) shows
the number of active but unreachable peers. Figure 3(d) shows the evolution
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of proportion of unreached active peers. After the first 80 h, the proportion of
unreached active nodes are stabilizing, which means that our toolset has detected
almost all the long-term running active nodes. Thus, it is likely that the Monero
network contains around 2,758 active nodes per day as shown in Fig. 4. Com-
pared with Monerohash [19], which discovered 1,635 active nodes in average per
day, the number of active nodes we discovered is 68.7% higher than the number
reported by the MoneroHash mining pool. To the best of our knowledge, Mon-
erohash is the only Monero mining pool providing information related to the
number of active nodes in the network. Moreover, the number of daily active
nodes in Bitcoin [23] and Ethereum [24] is estimated to be close to 10,000. It is
not a surprise to see that Monero has far less daily active nodes than those two
more largely used cryptocurrencies.

Fig. 4. Active nodes discovered daily by NeighborFinder and MoneroHash.

4.4 Node Distribution

In a cryptocurrency P2P overlay, different nodes play different roles and exhibit
various connectivities in a real world implementation. It is essential to analyze
how nodes are connected and located in the network to measure the resilience of
the blockchain systems to network level attacks, which are surveyed in Sect. 5.
In this section, we present the experiment results regarding to peer freshness,
connectivity, and node distributions alongside with their implications.

Peer Freshness. Our approach shows that only about 20% (i.e., 4,329) of
the discovered nodes were active, and the remaining nodes were offline dur-
ing the data collection period. This indicates that a majority of the exchanged
IP addresses are inactive in Monero’s network, and might decrease the network
connectivity.
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Fig. 5. Snapshot of the Monero network obtained after one hour. Each dot represents a
Monero node, whose darkness is proportional to the number of connections it maintains.
The lightness of lines denotes their uptimes.

Connectivity. We say that a node is of degree N if it maintains at most N
outgoing connections. We classify active nodes into three categories based on
their degree: light node (degree ≤ 8), medium node (8 <degree ≤ 250), and heavy
node (degree> 250). As shown in Table 2, most of the nodes (86.8%) collectively
maintain only 17.14% of the connections, while the remaining 13.2% of the nodes
maintain 82.86% of the connections. On the other hand, Monero has hardcoded
8 seed nodes in the system, and we initially suspected that all of them would be
heavy nodes. Our experiments showed that only 3 of the seed nodes were active,
and that two of them were heavy nodes, while another one was a medium node.
Later on, we contacted the Monero team for clarification, and they confirmed
that 5 seed nodes were not available8. By comparing the discovered heavy nodes
with public Monero mining pools9 and seed nodes10, we found that 9 heavy

Table 2. Number of active nodes in the ConnectionPool.

Light nodes Medium nodes Heavy nodes Total

Reached 3146 (86.8%) 452 (12.5%) 28 (0.7%) 3626

Unreached - - - 703

Total 3146 452 28 4329

8 https://github.com/monero-project/monero/issues/5314.
9 http://moneropools.com/.

10 https://github.com/monero-project/monero/blob/577a8f5c8431d385bf9d11c30b5e3
e8855c16cca/src/p2p/net node.inl.

https://github.com/monero-project/monero/issues/5314
http://moneropools.com/
https://github.com/monero-project/monero/blob/577a8f5c8431d385bf9d11c30b5e3e8855c16cca/src/p2p/net_node.inl
https://github.com/monero-project/monero/blob/577a8f5c8431d385bf9d11c30b5e3e8855c16cca/src/p2p/net_node.inl
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nodes are maintained by mining pools, and that 2 heavy nodes are Monero seed
nodes. Due to the lack of public information, we could not identify the other 17
heavy nodes. However, we assume that the remaining unidentified heavy nodes
are likely to be the front-end nodes of private mining pools.

Snapshot of the Monero Network Topology. We collected snapshots of the
network topology thanks to the ConnectionPool, which continuously records the
connections’ updates. Those snapshots provide useful information concerning
the network structure. We represent a one hour snapshot of the Monero network
topology observed on 12/24/2018 in Fig. 5. It is obvious that an user’s IP address
is exposed along with its connections. This leaves a chance for the adversary
to identify different roles (miner or client) in the network depending on their
connectivity. On the other hand, we hypothesize that the vast inequality of node
connectivity (In our experiment, the heaviest node could maintain more than
1000 connections, the lightest node just maintain 8 connections) might lead to
network vulnerabilities [27], where the high degree node could significantly affect
low degree node to select neighbors.

Geographic Distribution. We present in Fig. 6 the location of the Monero
nodes depending on their classification. Approximately 50% of the heavy nodes,
which are likely the mining pools, are located in the US, while the light nodes,
which are likely clients, are more evenly distributed around the world.

(a) Light nodes. (b) Medium nodes. (c) Heavy nodes.

Fig. 6. Nodes location distribution

Degree Distribution. Monero’s peer-to-peer network is unstructured, permis-
sionless and very dynamic. In particular, a node is allowed to change its neighbors
as we analyzed in Sect. 2. To further analyze how nodes are connected over time,
we counted the numbers of neighbors of active nodes during one week, and plot
their distribution in Fig. 7. The blue dots represent the distribution of outgoing
neighbors of the nodes. The results indicate that a small fraction of the nodes
have more than 1000 outgoing neighbors, while a large fraction of nodes have less
than 100 outgoing neighbors. The red dots represent the distributions of both
incoming and outgoing neighbors. Comparing with the blue dots, one can see
that the node with a large number of outgoing neighbors are likely to maintain a
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Fig. 7. Number of outgoing neighbors of heavy, medium, and light nodes. (Color figure
online)

large number of incoming neighbors as well. More importantly, the small jumps
in both blue and red dots indicate that a number of nodes have not kept the
number of connections fixed by default in order to gain a better connectivity. We
point out that this is an unique feature of Monero, which implies a high network
dynamism.

4.5 Potential Threats

Using our tools, one can identify Monero’s network topology and the connectivity
of nodes. An example is shown in Fig. 8, which illustrates the neighbors of a light
node (5.X.X.X)11 during the 9-h monitoring process. Each color represents a
neighbor of the node. It shows that neighbor 1–6 stayed connected with the node
for the entire 9 h, whereas the connection with neighbor 7 is dropped around the

Fig. 8. Dynamic neighbor tracking of a light node in 9 h.

11 Hidden IP address to protect the privacy of this light node.
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8th hour, and a connection with neighbor 11 was established to replace neighbor
7. Similarly, a connection with neighbor 9 was established to replace neighbor 8
after 3 h.

With such knowledge, an attacker can potentially launch different types
of attacks. For example, an attacker could launch a targeted attack by monop-
olizing all connections of a victim node [1], selectively partition the network [3],
or even deanonymize transactions by identifying the first node relaying a trans-
action [5,6].

5 Related Work

Previous works studied the network information of leading cryptocurrencies,
e.g., Bitcoin and Ethereum. Decker and Wattenhofer [16,28] measured the rate
of information propagation between reached nodes in Bitcoin. Relying on the
received messages from reached nodes, interconnections of reached nodes were
inferred in Bitcoin [18,29] to evaluate network properties. To infer whether two
reached nodes are connected in Bitcoin, Grundmann et al. [30] suggested to
use double spent transactions as probing messages, and S. D. Segura et al. [31]
suggested to use orphan transactions. Kim et al. [26] deployed 30 nodes on one
machine to collect network messages to measure the Ethereum network. How-
ever, the node interconnections are difficult to infer in Ethereum, and unreach-
able nodes cannot be observed.

Network level attacks have been studied in Bitcoin and Ethereum. Routing
attacks [3,15] are facilitated by the fact that Bitcoin’s protocol makes nodes
exchange messages in plain text during the peer-to-peer communications. This
allows an adversary to partition the network, and delay the dissemination of
messages among nodes. Eclipse attacks, in Bitcoin [1,13] and in Ethereum [2],
pointed out that unsolicited incoming connections can be leveraged by an adver-
sary to continuously send large amount of fake packets to a given node, and fill
the table of its stored IP addresses, forcing it to restart. These attacks demon-
strated that an attacker can monopolize all connections of a targeted node with
high probability. Deanonymization attacks [5,6,32] have been introduced to track
transactions and discover the generator’s IP address. These attacks aim at linking
the IP address of a node with the transactions it created, with the requirement
of monitoring interconnections. Such attacks require, or are facilitated, by an
understanding of the peer-to-peer overlay and topology.

6 Conclusion

In this work, we presented methods we developed to observe Monero’s peer-to-
peer network, and infer its topology. We described how one can deploy Monero
nodes to discover all the nodes participating in the protocol, and their intercon-
nections, using the last seen timestamps in the peer lists that nodes exchange.
For accuracy, we compared our methods’ results with the ground truth of our
deployed nodes. Our experiments show that even though Monero is a privacy-
preserving cryptocurrency, it is still possible to accurately discover the nodes
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in the network and their interconnections. Our analysis provides insights about
Monero’s degree of centralization, and about the privacy and security issues
potentially caused by a network topology exposure. As future work, we will con-
duct a deeper network-based security and privacy analysis of Monero, based on
the tools provided in this paper.
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Recherche Luxembourg (FNR) through PEARL grant FNR/P14/8149128.
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Abstract. With the massive growth of cryptocurrency markets in
recent years has come an influx of new users and investors, pushing
the overall number of owners into the millions. At the same time, the
number of distinct cryptocurrencies has exploded to over 4,900. In this
burgeoning and chaotic “cryptojungle,” new and unexplored incentives
and risks drive the behavior of users and non-users of cryptocurren-
cies. While previous research has focused almost exclusively on Bitcoin,
other cryptocurrencies and utility tokens have been ignored. This paper
presents findings from an interview study of cryptocurrency users and
non-users (N = 20). We specifically focus on their perceptions and man-
agement of cryptocurrency risks as well as their reasons for or against
involvement with cryptocurrencies. Our results suggest that associated
risks and mitigation strategies (among other factors) might be specific
to a particular crypto-asset and its application area. Further, we iden-
tify misunderstandings of both users and non-users that might lead to
skewed risk perceptions or dangerous errors. Lastly, we discuss ways of
aiding users with managing risks, as well as design implications for coin
management tools.

1 Introduction

Cryptocurrencies have come a long way since the introduction of Bitcoin in
2009 [24]. Emerging technologies, such as Ethereum or EOS, allow the issuance
of tokens, and this was one of the reasons for the rapid expansion of the domain.
Nowadays, the resulting “cryptojungle” entails close to 5,000 different cryptocur-
rencies and tokens [12] with wide-ranging application areas.

Despite prior research on security risks in the blockchain domain, little is
known about users’ perception and management of risk. The main focus in
the literature has been on identifying potential attack vectors and risk sce-
narios [18,20], without taking the respective end-users into account. While Sas
et al. [25] present some risks experienced by Bitcoin users, risk management has
not been investigated any further. Addressing this knowledge gap will inform
the development of more effective technology support for the users of cryptocur-
rencies and tokens.
c© International Financial Cryptography Association 2020
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It is also vital to understand informed non-users’ perceptions of the risks
associated with cryptocurrencies. Gao et al. [16] were the first to study non-users
of Bitcoin and identified lack of perceived usefulness and lack of understanding as
two reasons for non-involvement. Unlike Gao et al., who interviewed participants
with very limited knowledge about cryptocurrencies, our goal was to recruit
informed non-users who had considered involvement with cryptocurrencies but
had decided against it. Potential findings could then be leveraged by industry
to ease the onboarding process and eventually facilitate adoption.

To investigate how cryptocurrency users and non-users perceive and manage
risks, we conducted semi-structured interviews. We recruited 20 participants
from the metropolitan area of Vancouver, Canada, comprising 11 users and 9
non-users. Some interviews were in person and others via telephone. An iter-
ative coding approach based on Grounded Theory [14] was applied by three
researchers, and data was collected until theoretical saturation was reached.

Several themes emerged when we probed our participants more deeply about
risks in the cryptocurrency domain. User participants identified a variety of risks,
such as scam coins and questionable exchanges, but only a few of those risks
resulted in actual losses. Further, risk acceptance turned out to be a prominent
risk-management technique employed by users. Non-users, on the other hand,
were concerned with the potential implications of involvement with cryptocur-
rency. Amongst other concerns, our participants mentioned the possibility of
being judged by their social circle, as well as the poor usability of exchanges and
tools. Our findings suggest that perceived risks depend on the particular asset
as well as the individual’s reasons and motivations for using it. The perceived
risk severity appears to be linked to the amount invested.

Lastly, we identified our participants’ misunderstandings. Most were not
knowledgeable about the underlying cryptography, including private and pub-
lic keys, while some non-users had a skewed risk perception. For example, the
latter were concerned with governments tracing potential cryptocurrency trans-
actions back to them. While the implications of misperceptions differ, both users
and non-users are affected. For users, misunderstandings can lead to monetary
losses, and non-users might decide against any involvement at all because they
have assessed the risks incorrectly.

One of the main issues to emerge was the usability of coin management tools
(CMTs). In our study, both users and non-users reported having faced challenges
when looking into purchasing or using cryptocurrencies, with some participants
saying that the usability of current CMTs posed a significant risk and barrier to
entry. Some users had addressed transactions incorrectly or failed to make them
in the first place, and non-users reported being overwhelmed by the onboarding
process of exchanges and the overall number of available CMTs.

To summarize, our contributions are as follows:

– We conducted the first investigation of risks perceived by users and informed
non-users of cryptocurrencies.

– We identified factors linked to risk perception and mitigation in the cryp-
tocurrency domain.
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– We identified misunderstandings in both users and non-users that can lead
to monetary losses or non-involvement, respectively.

2 Background

2.1 Cryptocurrencies and Utility Tokens

Bitcoin and cryptocurrencies in general make use of public-key cryptography and
consequently force users to deal with this in one way or another. Traditionally,
cryptocurrency wallets can be seen as means for storing one or more private and
public cryptographic key pairs. Wallet addresses consist of hashes of the respec-
tive public cryptographic keys, and transactions are cryptographically signed
transfers of funds from one public key to another. Unlike in centralized payment
systems, however, the responsibility is shifted onto the user, and payments can
only be successfully concluded by using a private key.

Besides private keys, wallets can also be accessed by using mnemonics. These
consist of 12 to 24 words in the case of the BIP-39 standard [1], which are
used to deterministically create key pairs for a cryptocurrency wallet. To further
enhance the security, a passphrase can be used as a salt, thus guaranteeing that
adversaries who know the mnemonic will still be denied access to the funds. This
option is supported by many wallet providers [7].

Nowadays, the application areas of cryptocurrencies are wide-ranging and
go beyond the initial vision of an alternative payment system. Emerging tech-
nologies, such as Ethereum, allow the issuance of tokens, which exist on the
respective blockchain and are used within applications. Examples of such appli-
cations are social networks and games. Some participants in our study used the
terms cryptocurrencies and tokens interchangeably. In the following sections,
we make distinctions where applicable and otherwise use the term crypto-assets
when referring to both of them.

2.2 Coin Management Tools

A wide range of options exist when it comes to storing crypto-assets. Such wal-
lets, or coin management tools, as Krombholz et al. [21] defined them, emerged.
In the case of hosted wallets, the responsibility is shifted from the users to the
CMT providers. To use hosted wallets, users are often asked by providers to ver-
ify their identities in a so-called know-your-customer (KYC) process to combat
money laundering and fraud. Prominent examples of hosted wallets are major
exchanges, such as Binance, which do not give users access to the private keys.
This abstraction, while arguably making the exchange more usable, poses a risk
for users, as they might lose assets in the case of shutdowns or hacks, which has
indeed happened (Mt.Gox [10], QuadrigaCX [11]).

Besides transferring funds to third parties, users also can choose to be solely
responsible for the management of their crypto-assets. Here, two options exist:
hot wallets and cold wallets. Hot wallets are connected to the internet and can
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be mobile applications, desktop wallets, online wallets, or utility platforms run
by blockchain start-ups. Compared to hot wallets, cold wallets can provide a
better level of protection. Hardware wallets, which are specialized cold wallets,
often store private keys in the secure key storage provided by microcontrollers.
However, cold wallets are kept offline. Paper wallets with printed private and
public keys, as well as USB sticks with key files, also fall under this category.

3 Related Work

3.1 Risks in the Cryptocurrency Domain

When users interact with blockchain-based technologies, they are directly or
indirectly exposed to a significant number of risks. Bonneau et al. [9] survey the
underlying security concerns in Bitcoin and possible attack vectors that might
compromise the distributed ledger. Most of these attack vectors, however, only
indirectly affect the users of crypto-assets.

To understand users’ perception, one has to determine what risks affect them.
Bitcoin’s pseudonymity, for example, is considered one of its key features, but
as research has shown, this pseudonymity can be used to track and identify
users [5,23]. Third-party sites can also pose a risk to users. Goldfeder et al. [17]
showed that payment gateways may leak personally identifiable information,
including the names, emails, and addresses of crypto-asset users.

Risks associated with the usage of Bitcoin are well documented. However,
other crypto-assets have not yet been investigated. Both Böhme et al. [8] and
Grant et al. [18] provide comprehensive overviews of Bitcoin risks, and Kiran et
al. [20] further propose a grouping of these into social risks, legal risks, economic
risks, technological risks, and security risks.

Besides identifying potential risks, qualitative investigations have been con-
ducted providing insights into user experiences and perceptions. Here, Sas
et al. [25] were the first to uncover some reasons for monetary losses.

Perception of risks associated with Bitcoin can be found in the litera-
ture [4,21]. While users were asked to assess the severity of risk scenarios in [21],
Abramova et al. [4] investigated factors influencing risk perception among Bit-
coin users. Results suggest that Bitcoin users are concerned with potential mone-
tary losses, regulatory restrictions imposed by governments, and a general lack of
adoption. However, it has yet to be determined how well aware users are of these
risks and what controls they personally apply for mitigation. We further believe
that perceived risks and mitigation techniques depend on the crypto-asset and
are influenced by factors unidentified in previous studies.

3.2 Concerns Regarding Usable Security and Privacy

In addition to crypto-assets being lost due to technological vulnerabilities, user-
induced errors are very common. Bitcoins are theft resistant by design, and
assets can only be compromised by private key leakages [13]. Eskandari et al. [15]
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conducted a cognitive walkthrough for various Bitcoin key management systems.
Their findings suggest that the metaphors being used can often be unclear for
end-users, leading them to make dangerous errors.

Empirical evidence of users experiencing such dangerous errors was first
offered by Krombholz et al. [21]. Out of the 990 participants in an online survey,
almost 23% indicated they had lost bitcoins. Of those who had, 43% indicated
the loss had been their own fault.

Gao et al. [16] conducted the first purely qualitative study investigating the
mental models of both users and non-users of Bitcoin. The main contributions of
the study were to identify misconceptions about privacy and security properties,
as well as a general lack of understanding in both users and non-users about the
underlying technology.

Investigating the mental models of risk should make it possible to address
inconsistencies that could lead to dangerous errors. Such errors pose a risk and
can lead to the loss of bitcoins, as reported by Sas et al. [25]. It is therefore of
interest to understand the behavior of users when it comes to the protection of
their crypto-assets. By expanding the study beyond Bitcoin, and investigating
security behaviors regarding crypto-assets in general, it should be possible to
understand what factors influence users in their decision making.

4 Methodology

In this section we describe our recruitment process, the interview procedure
itself, as well as the coding methodology and process.

4.1 Recruitment and Participants

We recruited participants aged 19 and older from the metropolitan region
around our university. Users of crypto-assets were recruited through professional
blockchain LinkedIn groups, our department’s graduate reading seminar, a mail-
ing list, and the community Slack channel of a blockchain club at our university,
as well as a meetup group focused on decentralization. Non-users were recruited
with the help of community managers of a local cryptocurrency exchange plat-
form and through personal contacts. There was no formal screening process;
instead, we were in direct contact with all potential participants. This was espe-
cially necessary for non-users, whom we wanted to ensure had some prior famil-
iarity with crypto-assets.

4.2 Interview Procedure

We conducted semi-structured interviews both in person and via telephone.
The researchers followed an interview guide (AppendixA), ensuring consistency
across participants. The following broad research questions were investigated.
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– RQ1: What are the current usages of cryptocurrencies?
– RQ2: How do owners manage their cryptocurrencies?
– RQ3: What is the perception of cryptocurrency-related risks?
– RQ4: How do owners manage the risks?
– RQ5: What factors influence users’ security behavior?

Naturally, non-users could not answer some of these questions. We therefore
focused on their perception of risks and how that influenced their decisions about
crypto-assets. For both users and non-users, we validated the questions by con-
ducting two pilot interviews and altered the questions, if needed. All interviews
were recorded, transcribed, and anonymized. Each participant was compensated
$15. The study was approved by our university’s research ethics board.

4.3 Coding Procedure

An iterative coding approach based on Grounded Theory [14] was applied.
Three researchers independently performed open coding of the interview tran-
scripts, and the results were discussed and added to a shared codebook once the
researchers’ codes converged. Axial coding followed, whereby themes and con-
cepts between codes emerged. During the selective coding process, the raw data
was analyzed again to further enrich the results of the previous coding stages.

We do not report on inter-coder reliability, as codes are only an interim
product in Grounded Theory and change throughout the data analysis [14]. We
stopped recruiting once it became clear that we had reached code saturation.
Throughout the study, the interviews were recoded several times after our codes
converged, and the interview guide was adjusted based on our intermediate find-
ings [14].

4.4 Limitations

As with all qualitative investigations, the results of this study are not necessarily
generalizable to the whole population of cryptocurrency users and informed non-
users. Our aim, however, was to interview a diverse sample. We ensured its
diversity by recruiting through multiple channels and including participants from
diverse backgrounds, including investors, miners, consultants, and blockchain
developers. Since we investigated users’ security and privacy behaviors, it is
possible that some participants decided against disclosing sensitive information
such as monetary losses. Some potential participants might have chosen not to
participate in our study because of privacy concerns.

All of our participants were in North America. While this geographical
restriction might have impacted our results, we strove to recruit a diverse sam-
ple. Compared to previous qualitative studies [16,19,25], our sample was more
diverse in terms of gender, education, occupation, and age.
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5 Results

5.1 Participants

We interviewed 20 participants, 11 of whom were users (age: max. = 43, mean
= 28.8, median = 28, min. = 19) and 9 non-users (age: max. 57, mean = 32.4,
median = 30, min. = 19). Seven of the 11 users had a technical background and 5
were active members of blockchain-related meetup groups. Detailed demograph-
ics can be found in AppendixB.

5.2 Motivation for Using Crypto-Assets (RQ1)

A prevalent underlying theme in users’ involvement with crypto-assets is invest-
ment. While potential monetary gains are regarded as one of the main reasons for
involvement [16,21], participants in our study broke this down into short-term
and long-term investments. PU61 considered crypto-assets, and bitcoins in par-
ticular, as a personal retirement plan: “For me, I think [...] that’s my retirement
plan [...]. I don’t see it necessarily as a store of value.” PU2, PU3, PU4, PU5,
PU6, and PU9 referred to the investment strategy as “holding” crypto-assets,
with PU9 explaining: “I feel like I’m holding a lot of bags still [...] I own bitcoins,
I own Ethereum, EOS, MakerDao [...] and Power Ledger.”

Participants also indicated having used cryptocurrencies to purchase goods.
Some of these goods were physical and others digital. PU1 bought a ticket for a
cryptocurrency convention, and PU6 mentioned a partial asset value transfer: “I
like to buy precious metals, so I get bullion with my bitcoins.” None of the par-
ticipants indicated they had purchased illicit goods. One user described having
gotten into the cryptocurrency space through a friend who was a drug dealer at
the time and was using cryptocurrencies.

Everyday items were also purchased, as explained by PU10: “I have a
friend who has a yoga studio who accepts [cryptocurrencies] as payment and
another friend who has a restaurant that used to accept [cryptocurrencies as]
payment.” Digital goods bought with cryptocurrencies included video games.
PU7 explained: “So [I purchased video games from] Steam for example [...] not
drugs.”

Unlike speculators, who deal mostly with exchanges, participants who use
cryptocurrencies as a medium of exchange interact with various parties, such as
merchants. Therefore, the risks also differ. Some respondents used cryptocurren-
cies as alternatives to banks. PU1, PU4, and PU6 all reported instances where
banks fell short in their eyes, with PU6 saying: “the one thing that intrigues me
about cryptocurrencies is that you’re your own bank.”

A desire to learn more about crypto-assets was another motivation for some
users. PU1, PU2, and PU7 cited curiosity as one of the main reasons for looking
into the domain, with PU1 stating: “Curiosity and learning. I’m in a time in
my life where learning is very important. So I just want to learn more.”
1 We use the prefix “PU” when referring to those participants who used crypto-assets
at the time of the interview.
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Lastly, user participants reported owning utility tokens. The application areas
of these tokens were wide ranging and included browsers, social media, betting
platforms, and games. PU1, PU4, PU7, and PU8 all mentioned having used
various platforms, with PU1 recalling placing a bet with Augur: “I would scroll
through a bunch of different markets, like sports, politics, and I clicked on things
that were interesting and I said, ‘Okay, Golden State is winning this year.’”

For all the above-mentioned application areas of crypto-assets, the interac-
tion partners appeared to differ depending on the area. PU1, PU7, and PU10
purchased goods and interacted with merchants that accepted cryptocurrency,
whereas others only interacted with exchanges (PU6 and PU8). Therefore, it
is possible that the users would have been exposed to different risks, based on
which crypto-assets they owned and how they used them.

5.3 Reasons for Not Using Crypto-Assets (RQ1)

During interviews with non-users, several reasons for their non-involvement
emerged. Negative views about cryptocurrencies were prevalent among non-
users. PN1,2 PN2, PN3, PN5, PN6, and PN8 associated cryptocurrencies with
the drug trade and other illegal activities, with PN3 saying: “Somebody told me
about the dark net [...] you know, selling drugs and guns and all kinds of illegal
[stuff].”

Non-users believed that some cryptocurrencies, bitcoin in particular, had
reached their peak values and that this was a reason for not purchasing any.
PN1, PN3, PN5, PN6, and PN8 expressed their concerns about investment in
cryptocurrencies not making sense from a financial standpoint, with PN5 stating
the belief that the “Bitcoin price was about $20,000 and there was not much room
for an increase.”

The ability of the government to trace all cryptocurrency transactions was
another stumbling block. PN3 stated they would consider getting cryptocurren-
cies “if you actually had privacy and the government couldn’t track it [back to
me].” This belief was not shared by all non-users, though, as PN8 trusted Bit-
coin’s anonymity: “I feel like [Bitcoin] would be extremely private. I don’t think
it has been hacked at this point, like, there’s no way to trace a payment.” Inter-
estingly, although expressing opposing views, both of these statements hint at
PN3’s and PN8’s inadequate mental models about cryptocurrencies.

On the other hand, the lack of government involvement in the domain was
a deterrent for some non-users. PN2, PN4, PN5, PN6, and PN9 stated that
regulations could potentially lead to more transparency, which could result in
wider adoption. Such regulations could also reduce undesirable volatility, as PN4
explained: “Well, if it’s not regulated, I just feel like it could be just so volatile.”

When trying to enter the cryptocurrency domain, non-users had experienced
barriers to entry. PN1 expressed displeasure with the verification processes of
exchanges, saying, “I think it takes a few weeks to get verified for the ID. And

2 We use the prefix “PN” to refer to those participants who did not use crypto-assets
at the time of the interview.
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then, when you make a purchase, you have to do another type of verification.”
This non-user had also considered getting cryptocurrencies through mining but
faced challenges: “I tried [mining] but I realized that all [...] the computers [are]
specifically made for mining bitcoins. So maybe my personal computer is really
good [but for mining] it doesn’t really work.”

5.4 Handling of Crypto-Assets (RQ2)

The following sections highlight how participants were storing their crypto-
assets, what CMTs they were using, and why they were doing so. We also discuss
the usability concerns about existing tools that many of the users brought up.

Storage. Hosted wallets were one of the most popular CMTs among our partici-
pants. All 11 users had used a cryptocurrency exchange at some point. Coinbase,
Binance, Bittrex, and QuadrigaCX were some of the exchanges they mentioned.

While all of the users interacted with an exchange, the nature of their interac-
tions varied. PU1 only purchased Ethereum on Coinbase, just to transfer it over
to his personal software wallet, whereas others kept most of their crypto-assets on
exchanges. PU7, for example, said: “I actually put a lot of funds on exchanges,
as I think [keeping them in your own wallet is] the equivalent of keeping cash
under your mattress [...].”

Their method for storing crypto-assets appeared to be linked to the amount
owned. PU1, PU2, PU10, and PU3 were all willing to consider different storing
options, with PU2 summing it up thus: “If I store more, I’ll think about storing
it in a safer place.”

Software wallets were also a popular type of CMT. All of our user participants
had used software wallets, such as Exodus, Parity, MetaMask, or Jaxx. PU4,
PU6, PU7, and PU11 reported having used paper wallets, whereas hardware
wallets were the least reported, used only by PU4, PU6, and PU11.

Options for storing crypto-assets also appeared to depend on the way they
were used. PU4, PU5, and PU6 all reported storing bitcoins more securely than
other crypto-assets. PU4 and PU6 stored bitcoins in hardware wallets, with
PU4 breaking down investments into two categories: “Long-term holdings like
bitcoins—I store offline. Small investments—I’m not necessarily super concerned
about. A lot of them are utility tokens, and I’m not necessarily interested in a
return.” Although using a software wallet, PU5 had additional tactics for increas-
ing its security: “I have a software wallet and then I hide my files on something
else and then I encrypt.” Further, PU5 and PU6 reported having certain cryp-
tocurrencies solely to trade them on exchanges to gather more bitcoins. For this
purpose, PU5 used Litecoin, which has faster confirmation times (∼2 min) than
Bitcoin (10 min). PU6 reported storing so-called “shitcoins”3 on exchanges, stat-
ing: “Only my bitcoins [are stored in a hardware wallet]; shitcoins all stay on the
exchanges till they make me bitcoins and then [bitcoins] get sent back [to my
hardware wallet].”
3 A pejorative term for crypto-assets that have no intrinsic value.
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Users Experience Issues with Existing CMTs. Several users reported
usability concerns about existing CMTs. PU1, PU5, PU7, PU9, and PU11 all
mentioned usability issues with current software. PU11 explained specific trou-
bles with MetaMask: “You have to enter a gas amount in some other currency
that you have never heard called Gwei and then a lot of the times the recom-
mended amount isn’t enough.” PU7 described a long learning curve: “I consider
myself [...] decently tech-savvy, [but] it took me a while to kind of get used to
it. [...] It’s not difficult but it’s not intuitive.” PU1, talking about Augur, men-
tioned: “I would scroll through a bunch of different markets [...] but I wasn’t able
to post [the] transaction.” PN1, although interested in purchasing cryptocurren-
cies, had not been able to do so: “I had a really hard time learning [Ethereum].
[...] I spent a few days [...] and I just gave up, cause it is kind of too hard.”

Several users had encountered too much friction in the onboarding phase
at exchanges. PU1, PU2, PU4, PU5, PU7, and PU8 expressed dissatisfaction
with the verification processes, with PU2 saying: “Just too bothersome to get the
KYC. At the beginning of the year, I KYCed Bitstamp; it took me 2 months to
get approved.”

When it came to ownership and the underlying technology, participants
appeared to have misunderstandings. PU1 claimed to own the private key on
Coinbase, which is not possible. PU2 stated that she did not understand the
cryptographic principles: “I haven’t figured out how they have the private key on
the phone wallet [...] I still don’t understand the private and public key.”

5.5 Risks

Besides commonly known risks, such as volatility or lack of regulatory involve-
ment, our participants also discussed risks that, to the best of our knowledge,
have not yet been reported in the academic literature.

Perceived Risks (RQ3). Non-users were afraid of being judged by their social
circle if they purchased cryptocurrency. PN6 explained: “Cryptocurrency was
initially used on the black markets, right, and if you tell people that you have
some bitcoins or other cryptocurrencies, people will think that maybe you are
buying something illegal.”

Personal safety associated with cryptocurrency ownership was also considered
a risk. PU6 stated: “somebody could literally take a gun and put it against your
head and say ‘give me your private key.’ It’s not like [they] can take you to the
bank and say ‘give me all your money’.”

The risk of inheritors not being able to access cryptocurrency after the pur-
chaser’s death was also brought up. PU11 explained: “I think one risk that a
lot of people don’t think about is what happens when you die—so making sure
that there’s a way for whoever is going to be inheriting your cryptocurrency to
actually access it.”

While some users spoke favorably about cryptocurrency adoption, others had
concerns about what effects it might bring. PU11 explained how decentralization
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could be jeopardized by corporations: “we’re starting to see that with Facebook
talking about doing a stable coin, or Microsoft and Google and Amazon all kind
of launching blockchain as a service type product, so potentially the benefits of
decentralized systems could be lost.” PU9 believed that rapid cryptocurrency
adoption might undermine governments: “governments now have power that’s
underpinned by their ability to control currency, and if they lost that, I’m con-
cerned about how they would allocate capital and value to underpin some of the
public needs of society [...].” This user further explained how early adopters
would have an unfair monetary advantage compared to the general public: “if
you own, say, 1 to 10 bitcoins now, you will be the 0.01% or 0.001% of the
world’s wealthiest people in 20 years potentially [...] and I think in that sense
[one] risk is a massive redistribution of wealth.”

Risk perception appeared to be linked to the amount of money invested.
PU1, PU2, PU10, and PU3 said that the severity of the risks would grow if they
invested more, with PU1 saying: “If I had multiple thousands, I’d consider it
more, but I haven’t given [the risk of storing cryptocurrency on exchanges] too
much thought.”

Experienced Losses (RQ3). Losses were attributed to only a few risks,
despite our participants mentioning many more. However, none of the partici-
pants reported having had their cryptocurrencies compromised. PU4, PU5, PU6,
PU9, and PU11 had all experienced losses, each for different reasons. PU4 said
that he had been phished after exposing and explaining a scam to others: “I see
an email request, you can tell the URL is wrong. Then, I close that MyEther-
Wallet. [...] Then I opened it up the next day, they happened to leave the scam
tab open [and I used the phishing website to import my wallet file].”

PU11 and PU5 had lost cryptocurrency due to their own errors. PU11
explained: “I definitely have one wallet with a small amount of bitcoins that
I can’t access—I lost the key.” PU9 also had lost a key, when using an ATM:
“[I] went to an ATM years ago [and] bought one bitcoin for like $100 or $200
like that, uh, and it stopped in a wallet I don’t have the secret, I don’t have a
private key.” PU6 experienced an exchange shutdown, resulting in the loss of a
substantial amount of cryptocurrency: “I ended up losing a third of my portfolio
that was on that exchange [...] it was over 100 Litecoins or something.”

Risk Management (RQ4 & RQ5). The risk-management techniques of our
participants can be grouped into three categories: avoidance, reduction, and
acceptance. Risk avoidance was most prevalent in non-users.

Volatility was a major concern for both user and non-user participants. The
former reduced this risk through portfolio diversification. PU3 and PU4 reported
counteracting volatility by purchasing multiple coin types instead of a single one,
with PU3 saying: “We like sort of started [...] dividing our assets. [...] so maybe
we made sure we are safe from all sides in case the value falls.” Unlike the rest
of the participants, PU6 enjoyed the volatility, explaining: “it’s very volatile [...]
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and that’s when you gonna make the most money [...] So I personally love the
volatility.”

When it came to securing assets, some participants emphasized the impor-
tance of having a private key. This technique was mentioned by PU3, PU4,
PU7, PU9, PU10, and PU11, with PU7 saying: “Keep your own private key [...]
When I say that, I know it’s so difficult because it’s not easy to operate.” PU2
and PU4 said that using multiple wallets and multiple devices prevents a single
point of failure: “In general, being across multiple devices, multiple wallets just
helps protect [against] all those one-off dramas.”

The choice of wallets was influenced by whether or not users were able to
access their private key. PU3, PU4, PU7, PU9, PU10, and PU11 preferred wallets
with private key access, with PU7 equating key and ownership the following way:
“If you don’t have the private key, it’s not yours. It’s that easy [...].”

Fully insured storages were viewed as ultimate solutions. Both PU6 and PU9
explained how these solutions would provide the best security, with PU9 saying:
“it’s these underground vaults in Switzerland—they’re all over the world, you
don’t really know where they are, and it’s a fully insured cold storage solution,
but the thing is it’s like multi-sig so [...] if they want to move your coins or your
assets, they need your signature.”

One user considered seed phrases superior to key-based CMTs. PU1 argued
that the seed phrase was a good alternative to the concept of private keys: “The
memorization of a seed phrase seems very plausible. I think people can memorize
12 words and then you could take it totally offline.”

Education was considered a possible mitigation technique by both users and
non-users. PU4 stated that education is important and can be used as a way to
prevent losses in the context of pyramid schemes: “Education is very important.
If there is a mining rig and you are getting paid day by day and everything works
fine until one day it is not.” Similarly, PN4 stressed the importance of research
for non-users, saying: “I would have to do the research to understand it to be
comfortable putting my money into something.”

One common theme among users was the acceptance of potential risks. PU4,
PU5, PU6, and PU7 reported that when using exchanges, they knew they did not
own the private key and everything would be gone in the case of an exchange
shutdown. PU6 summarized this sentiment well: “It’s just part of the game.”
When talking about “shitcoins,” the same user expressed a willingness to oper-
ate on questionable exchanges, stating that “especially with a lot of these real
shitcoins, they’re on really [questionable] exchanges right? So [...] you kind of
have to play in there, in the mud and get dirty.”

An overview of risks and mitigation techniques can be found in AppendixC.

6 Discussion

Participants’ three major reasons for using crypto-assets were speculation,
exchange, and utility. Each particular application area exposes the respective
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user to new CMTs, such as software wallets, hardware wallets, payment proces-
sors, and utility platforms. User interfaces as well as underlying technological
features differ according to the CMT and consequently expose users to different
risks. Hosted wallets, such as exchanges, do not allow users to access their private
keys, which in the case of a shutdown results in monetary loss. Cold wallets, on
the other hand, while not affected by shutdowns are often more complex to use,
as reported by our participants. Our findings suggest that usage scenarios were
important factors linked to the user experience (UX), as well as risk perception
and management.

All user participants had used exchanges at some point during their involve-
ment. One voiced a willingness to accept the risk of losing crypto-assets in order
to make gains on questionable exchanges with so-called “shitcoins.” Four users
accepted the risk of storing their crypto-assets on exchanges without having
direct access to their private key.

Risk perception also seemed to depend on how much participants valued the
respective crypto-asset. Here, we consider the amount invested in the particular
asset. Our user participants stored their long-term holdings in the form of bit-
coins in more secure ways and said they did not consider risks associated with
short-term holdings a major concern. Similarly, four other users with smaller
amounts said they would consider more secure storage options, but only if they
had purchased more.

6.1 Misconceptions and Usability Barriers

Users had dangerous knowledge gaps and misconceptions when it came to the
key building blocks of cryptocurrencies. Some users did not know the differ-
ence between public and private keys, and one incorrectly believed that they
had access to their private key while using an exchange. Such a misconception
could lead to a false sense of security and control over wallets, particularly nowa-
days when the crypto markets (and the exchanges that operate on them) are so
volatile.

Non-users had their own set of misconceptions. Some believed that cryp-
tocurrencies are mainly used to purchase illicit drugs. While this was one of the
main uses of bitcoin in its early days [6], the applications nowadays are wide
ranging. Non-users also discussed the notion of cryptocurrency privacy. While
some believed that transactions could be traced back to them by the government,
others believed in their anonymity.

Current CMTs have usability problems. Combined with misconceptions
about cryptocurrencies’ building blocks, these UX problems result in barriers
that are hard to overcome. Participants’ usability concerns also seemed depen-
dent on the respective crypto-asset. One participant explained having failed to
use Augur, as they were not able to make a transaction using their applica-
tion’s interface. Another found Monero harder to use than other cryptocurren-
cies because of the two pairs of keys: private and public. We therefore believe
that findings on usability issues with Bitcoin key management tools [15] and the
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identified risks affecting Bitcoin usability [13] are not necessarily applicable to
other crypto-assets and their applications.

6.2 Risks

Our results suggest that risk perception and management among crypto-asset
(non)users goes beyond Bitcoin, as it depends on such factors as the application
area, storage method, and amount invested. Further investigation is needed to
reveal other factors related to risk perception and to further our understanding
of the risk-management practices among users and informed non-users.

New crypto-assets bring new risks for users. The vast majority of our user
participants owned multiple crypto-assets, with PU7 owning as many as 50.
Such variety can be dangerous, as different crypto-assets pose different risks and
challenges for their respective users. For example, initial coin offerings (ICOs)
are not always created in good faith [2], and utility tokens can end up being
pyramid schemes [3], as reported by PU4, PU5, and PU6. While risks associated
with Bitcoin are fairly well documented [8,15,18,20], other crypto-assets have
thus far been ignored by the research community.

Design recommendations to combat some of the risks can be found in the
literature. Authorized exchanges were proposed by Sas et al. [25] to combat dis-
honest traders through verification processes for buyers and sellers. Our data,
however, suggests that both users and non-users consider such procedures both-
ersome and a significant barrier to entry. Since verification is mandatory, it
should be in the interest of exchanges to optimize this process.

Public key cryptography appeared to still be a hindrance for many. Some
participants considered keeping the private key private to avoid losses in poten-
tial shutdowns of exchanges. This, however, can only be done if the respective
user understands the value of the private key. Some of our participants reported
having accidentally deleted wallet files, while others did not understand what
private and public keys were in the first place. One possible reason for this find-
ing is that CMT providers do not convey the importance of keys clearly enough.
While hosted wallets, such as exchanges, do not allow users access to private
keys, others such as software wallets do. Therefore, depending on the CMT,
users require a different level of understanding to ensure correct and secure han-
dling. Sandboxes allowing newcomers to first get familiar with the terms and
technology, as well as more guidance from CMT providers could especially help
new users overcome existing fears of the unknown, as reported by many of our
informed non-users.

Personalization would be another way to support users [22]. Perhaps wallet
providers could create separate user profiles for beginners and experts, allowing
users to select a level of abstraction. For example, advanced transaction set-
tings would only be displayed for experienced users, whereas new users would
only see the bare minimum. Simpler terms—e.g., “transaction fees” instead of
“gas price”—could further improve the user experience for newcomers, making
involvement in the domain less foreign.
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6.3 Implications for Theory and Practice

Our investigation of crypto-assets other than Bitcoin has revealed risks and
usability concerns previously undocumented in the literature. Usability research
on blockchain-based technologies has been Bitcoin-centric [16,20,21,25]. While
bitcoin is still the most popular cryptocurrency, our results suggest that associ-
ated risks do depend on the application area and crypto-asset. Pyramid schemes
in the form of mining pools, unregulated ICOs, “shitcoins,” and tokens all pose
new risks to both existing and new users and can lead to monetary losses.

When looking at crypto-assets, one also has to consider CMTs, as they are
vital to UX. Our participants reported owning as many as 50 different currencies,
and while exchanges support a variety of tokens, not all software wallets do. Such
wallets support different subsets of crypto-assets, and the included features are
also wide ranging. Newcomers looking into purchasing cryptocurrency can easily
be overwhelmed by the number of different wallets, as was the case for PN1.

Monetary losses due to self-induced errors were reported by multiple user
participants. By creating more usable and intuitive software wallets, possibly
employing terms from payment platforms already familiar to users, one might be
able to decrease the chances of losing crypto-assets due to self-induced errors. By
also adding two-factor authentication, similar to some online banking platforms,
it would be possible to reduce the risk of users sending crypto-assets to an
incorrect address, which some participants reported having done.

Some informed non-users seemed to hold negative beliefs about cryptocur-
rency use. Educating potential new users about other application areas for
blockchain-based technologies could help reduce the negative views and social
risks associated with cryptocurrency involvement.

7 Conclusion

We conducted semi-structured interviews to further an understanding of how
users and non-users perceive and manage risks related to crypto-assets. We iden-
tified that perceived risks and mitigation techniques are dependent on the specific
crypto-asset, its storage options, and the amount being invested. Further, mis-
understandings seemed to be prevalent in both users and non-users and could
lead to dangerous errors, potentially resulting in monetary losses.

To truly understand risk perception and management in the domain, one
therefore needs to study crypto-assets beyond bitcoin, as they expose users to
new risks and challenges. We believe that to reduce risks, further public edu-
cation is necessary, and government involvement is needed to combat pyramid
schemes and unregulated ICOs.
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Appendices

A Interview Questions

Interview guides for both users and non-users of cryptocurrencies follow.
Research questions that were addressed are in bold.

A.1 Users of Cryptocurrencies

RQ1: What are the current usages of cryptocurrencies?
Q1. Please tell me about how you got into cryptocurrencies.
Q2. How much money have you spent?
Q3. What do you use cryptocurrencies for?
Q3.1 How many transactions do you perform?
Q4. How has this usage changed over time? If it did, why?
Q5. How many different currencies do you own?
Q5.1 What three currencies have you invested the most money in? Why?
Q5.2 Do you use these currencies for different use cases? Why?
Q6. What factors influence you when making a decision to invest in a currency?
Q6.1 How well do you research the currency prior to an investment?
Q6.2 How knowledgeable are you about currencies that you have invested in?
Q6.3 Can you explain the concept behind blockchain to me?

RQ2: How do holders manage their cryptocurrency?
Q.7 How do you store your cryptocurrencies?
Q7.1 Please name the wallets you personally use the most.
Q7.2 Why did you choose these wallets?
Q7.3 How many different wallets do you use?
Q7.4 For how many of these wallets do you own the private key?
Q7.5 Can you explain to me what a private key is?
Q7.6 What do you need the private key for?
Q7.8 How is a private key different from a public key?
Q7.9 Do you store different currencies in different wallets?

RQ3: What is the perception of cryptocurrency-related security risk?
Q8 Have you ever lost cryptocurrency?
Q8.1 How much money did you lose?
Q8.2 Were you able to recover the key(s)?
Q9 What risks are you personally aware of when it comes to cryptocurrencies?
Q9.1 What is the most severe one according to you? Why?
Q10 What measures do you use to mitigate those risks? (RQ4)
Q10.1 What measures worked and which ones did not? Why?
Q11. In what ways do you protect different cryptocurrencies? (RQ5)
Q11.1 What factors influence your decisions?



Surviving the Cryptojungle 611

A.2 Non-Users of Cryptocurrencies

RQ1: What are the current usages of cryptocurrencies?
Q1. What payment systems do you use in your daily life?
Q2. How did you hear about cryptocurrencies for the first time?
Q3. What cryptocurrencies have you heard of?
Q4. How do you view your understanding of cryptocurrencies?
Q4.1 And of the underlying technological background?
Q5. What do you think cryptocurrencies are used for?
Q6. Why do you believe people purchase cryptocurrencies?
Q7. Why did you choose not to purchase cryptocurrencies?
Q7.1 What would have to happen for you to reconsider?

RQ3: What is the perception of cryptocurrency-related security risk?
Q8. What risks come with the usage of cryptocurrencies?
Q8.1 What is the most severe one? Why?
Q9. Can you think of ways users can protect themselves? (RQ4)

B Participant Demographics

The following two tables display the participants’ demographics. The number
of owned crypto-assets was self-reported and the ownership was not validated
(Tables 1 and 2).

Table 1. User demographics

Participant Age Gender
Degree
Achieved

Occupation
User
Since

Number of
Owned

Crypto-Assets

PU1 21 M Bachelor’s Looking for work 2016 2

PU2 28 F Master’s
News editor

(blockchain domain)
2017 4

PU3 23 F Bachelor’s Student 2016 1

PU4 22 M Bachelor’s
Entrepreneur

(blockchain domain)
2016 12

PU5 40 - College
Systems analyst

(web technologies)
2013 3

PU6 30 M No degree Small business owner 2012 4

PU7 19 M High school Blockchain advisor 2014 50

PU8 21 M High school Student 2014 12

PU9 31 M Bachelor’s Sales 2013 6

PU10 43 M Master’s
Software developer

(energy)
2013 4

PU11 39 M JD
Blockchain advisor

(law)
2015 5



612 A. Voskobojnikov et al.

Table 2. Non-user demographics

Participant Age Gender
Degree
Achieved

Occupation

PN1 23 F Bachelor’s Student

PN2 53 F No high school diploma Asst. manager (money exchange)

PN3 57 M College Driver

PN4 30 F ND Naturopathic doctor

PN5 30 M PhD Research assistant

PN6 30 F PhD Financial advisor

PN7 25 M Bachelor’s Teaching assistant

PN8 25 M Bachelor’s Student

PN9 19 M High school Student

C Schematic Overview of the Results

The following figure depicts the findings of the interview study. Based on our
research questions we created five groups, use cases, reasons against an involve-
ment, perceived risks, reasons for losses, and risk management. We use distinct
colors for users and non-users and show relationships where appropriate (Fig. 1).

Fig. 1. Findings overview
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Abstract. For many years, address clustering for the identification of
entities has been the basis for a variety of graph-based investigations
of the Bitcoin blockchain and its derivatives. Especially in the field of
fraud detection it has proven to be useful. With the popularization and
increasing use of alternative blockchains, the question arises how to rec-
ognize entities in these new systems. Currently, there are no heuristics
that can directly be applied to Ethereum’s account balance model. This
drawback also applies to other smart contract platforms like EOS or
NEO, for which previous transaction network analyses have been lim-
ited to address graphs. In this paper, we show how addresses can be
clustered in Ethereum, yielding entities that are likely in control of mul-
tiple addresses. We propose heuristics that exploit patterns related to
deposit addresses, multiple participation in airdrops and token autho-
rization mechanisms. We quantify the applicability of each individual
heuristic over the first 4 years of the Ethereum blockchain and illustrate
identified entities in a sample token network. Our results show that we
can cluster 17.9% of all active externally owned account addresses, indi-
cating that there are more than 340,000 entities that are likely in control
of multiple addresses. Comparing the heuristics, we conclude that the
deposit address heuristic is currently the most effective approach.

Keywords: Blockchain · Accounts · Ethereum · Network analysis

1 Introduction

Since the introduction and popularization of Bitcoin [22] in 2009, blockchain and
cryptocurrency analysis has gained a foothold in science as well as in business. A
number of established companies and startups are investigating blockchain data
for purposes related to cryptoasset assessment, insights for financial institutions
and the support of law enforcement [7]. In most of these networks, an individual
can participate with several pseudonymous addresses, the creation of which is
virtually cost-free. For outsiders, it is not necessarily obvious that they belong
to the same entity. Cryptocurrencies are also used for criminal activities where
the perpetrators hope to cover up their traces. To hide their identity, extortion-
ists do not use the same address for every victim [25], and money laundering
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is carried out using a large number of addresses [21]. In blockchain-based vot-
ing systems, where currency balance determines voting power, equality could
be faked when a user distributes their assets to multiple addresses. Therefore,
a core component of many investigations is the detection of single entities that
interact through multiple addresses. To detect such entities, a number of address
clustering heuristics have been proposed for Bitcoin, that have also been reused
in derivatives like Litecoin and ZCash [11,14]. Most of the existing heuristics
are based on Bitcoin’s UTXO model which allows a single transaction to have
multiple inputs and outputs. However, a growing number of blockchain imple-
mentations have not adopted this model. A prominent example is Ethereum,
which instead employs an account model where a regular transaction has one
source and one destination account address. Apart from Ethereum, this account
model is also present in other popular smart contract platforms such as EOS or
NEO. Existing address clustering heuristics based on multiple inputs or outputs
cannot be used for transactions with single inputs and outputs.

However, performing entity identification on account model blockchains such
as Ethereum is of great interest, as it forms the basis for entity graph analy-
sis, which allows for better assessment of network properties related to usage,
wealth distribution and fraudulent activity. For example, Ether payments are
also accepted in darknet marketplaces [15], and ponzi schemes exist through
smart contracts [2,6]. It is likely that money laundering also exist on Ethereum,
and the emergence of decentralized finance services like on-chain derivatives,
loans and the use of decentralized exchanges are likely targets for manipula-
tion. The underlying schemes may rely on the idea of creating the illusion of
interaction between supposedly distinct participants.

Our Contribution. In this work, we propose several novel address clustering
heuristics for Ethereum’s account model, derived from the analysis of phenom-
ena surrounding deposit addresses, multiple participation in airdrops and self-
authorization. We explore each heuristic in detail and quantify their applicability
over time. Our results show that we can cluster 17.9% of all active externally
owned account addresses, indicating that there are more than 340,000 entities
likely in control of multiple addresses. Comparing the heuristics, we conclude
that the deposit address heuristic is currently the most effective approach. To
allow for the heuristics to be used in practice, we published an implementation
of them on GitHub1.

The remainder of this paper is structured as follows: In Sects. 2 and 3, we
provide an overview of the background on Ethereum, Tokens and Airdrops, as
well as existing research results on address clustering for entity identification. In
Sect. 4, we describe the data that forms the basis of our analyses and provide a
set of high-level statistics of our data set. In Sect. 5 we study the heuristics of
exchange deposit address reuse, airdrop multi-participation and token transfer
authorization. We analyze the heuristics over time in Sect. 6, before discussing
(Sect. 7) and summarizing the results of our paper in Sect. 8.

1 https://github.com/etherclust/etherclust.

https://github.com/etherclust/etherclust
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2 Background

After the creation of Bitcoin in 2009 [22], many alternative blockchains and
associated cryptocurrencies have been proposed. By market capitalization in
2019, Ethereum [33] is the second most popular blockchain after Bitcoin. Both
systems are open-source, public, distributed and rely on a Proof-of-Work-based
consensus algorithm. To interact with the transaction network, users typically
use a wallet software. They can create and manage multiple public/private key
pairs, which can be used to sign transactions. For each key pair, an address is
derived from the public key, serving as a pseudonymous identifier.

While both Bitcoin and Ethereum share the basic notion of an address, they
differ in their abstraction of currency transfer. In Bitcoin, each transaction on
the ledger must have one or multiple Unspent Transaction Output (UTXO) as
input, which may be used by the corresponding holders of the private keys. Each
UTXO contains a certain amount of Bitcoin. With each transaction, the inputs
are spent, and the outputs are new UTXO.

In Ethereum, each regular transaction has one sender and one receiver
account address. An account can either be an Externally Owned Account (EOA),
where the private key is owned by an external user, or a smart contract account.
Smart contract accounts contain executable code and don’t have a private key.
Their address is determined by the deployer’s address and nonce, and the code
can be executed by sending transactions to them, optionally with parameters.

2.1 Tokens

Smart contracts are frequently used to create token systems. A token can repre-
sent a variety of transferable and countable goods such as votes, memberships,
loyalty points, shares or other utility [3]. To create a new token that is compatible
with popular wallet software, developers can follow implementation standards
such as ERC202 for fungible tokens, or ERC7213 for non-fungible tokens. Similar
standards exist on other smart contract platforms.

2.2 ICOs, Bounties and Airdrops

Startups have embraced the idea of tokens in order to raise funds in an Initial
Coin Offering (ICO), and distribute tokens in return for investment. Apart from
distributing tokens only for investment, some token creators also offer so-called
bounties, in which social-media engagement, translation and other activities are
rewarded with tokens. This idea can also be found in several so-called Airdrops,
in which a large number of participants can obtain tokens either for free or for
similar online activities such as re-tweeting or following an online presence. By
giving out tokens to a large number of addresses, the airdrop operators hope to
kickstart their project. If the value of the tokens increases at a later stage, the
founders can sell some of their retained tokens.

2 https://eips.ethereum.org/EIPS/eip-20.
3 https://eips.ethereum.org/EIPS/eip-721.

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
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3 Related Work

In the context of distributed ledgers, address clustering heuristics determine a
one-to-many mapping of entities to addresses [9]. While the addresses are likely
to be controlled by the same entity, some addresses could be clustered incorrectly.
Due to a lack of ground truth, quantifying the error rate is very difficult.

Notwithstanding, a long line of research has examined the anonymity prop-
erties of Bitcoin [1,18,24,27,31], frequently using address clustering to identify
entities. Therefore, they can study transaction graphs between entities. This is in
contrast to Ethereum, where the existing studies focus on the address graph [5,8,
30,32], as no entity identification heuristics have been proposed so far.

3.1 Address Clustering Methods

The most frequently used approaches to cluster addresses in Bitcoin and other
UTXO based ledgers are the multiple input heuristic, and the change heuris-
tic. The multiple input heuristic is based on the idea that multiple UTXOs
which are used as input for a transaction are most likely controlled by the same
entity [18,26]. Similarly, the change heuristic assumes that a previously unused
one-time change address created by a transaction is likely controlled by the same
entity that created the transaction [1,18,31]. The effectiveness of these heuristics
has been studied [9] and are implemented in open source analysis software like
BlockSci [13] and GraphSense [11], which enable a range of features, including
the tagging of entire address clusters given a label of one of its members.

By exploiting Airdrops based on existing wallets on Bitcoin, the reuse of
addresses in newly created blockchains has enabled cross-ledger address cluster-
ing [10]. Related, and as an example of heuristics proposed for an alternative
blockchain, Moreno-Sanchez et al. have developed clustering heuristics for the
Ripple platform [20]. They exploit exchange gateways that allow exchanging
Ripple with Bitcoins and other altcoins and are thus able to link wallets across
cryptocurrencies. However, the approach it is not based on deposit address reuse,
which is introduced in this paper.

Considering network-level information, Neudecker and Hartenstein associate
IP addresses to transactions and exploit correlations with clusters [23]. Apart
from these heuristics, Bitcoin users have been identified based on features derived
from their transaction behavior [19]. By similar means, Jourdan et al. have char-
acterized Bitcoin entities [12]. To the best of our knowledge, no clustering heuris-
tics have been proposed for Ethereum’s account model so far.

3.2 Address Clustering Countermeasures

To complicate the analysis of currency flows and disguise existing entities, a num-
ber of coin mixing services have been developed. These include CoinJoin [16]
which lets separate entities create transactions jointly, causing the standard
multiple-input heuristic to produce false results, as well as XIM [4] and Coin-
Shuffle [28]. Coin mixing services have also been proposed for Ethereum, through
smart contract-based solutions like Möbius [17] and Mixeth [29].
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4 Data Collection

To perform our analyses, we have collected all blocks, transactions and event data
up until block number 8,500,000 on the Ethereum blockchain, which appeared
on September 7th, 2019. The following fundamental data was used:

– Transaction data consists of a source and a target account address, as well
as the amount of Ether transferred or smart contract function called. This
data also includes internal transactions, that originate from smart contracts
but are originally triggered by an EOA.

– Event data consists of a list of topics, that characterize the event, and a
data field carries some value. This lets us extract any type of event a smart
contract has triggered. Therefore, we extract all token Transfer events and
the token minting events Mint, Distr, Airdrop and Tokendrop, that are
sometimes used for initial token distributions. Finally, we retrieve Approval
events, which state that an owner approves another address to spend some of
his tokens. The type and number of extracted events are listed in Table 1.

4.1 Account Types

For the following heuristics and analyses, we make extensive use of knowledge
about the characteristics of addresses on the Ethereum blockchain. We catego-
rize each address into whether it is an EOA or a smart contract, if it has mined
blocks, and whether any transactions originate from it. If an address was never
source of a transaction, we define it as inactive. One such inactive address is
0x0000000000000000000000000000000000000000, which is commonly used to
burn cryptoassets. Ether or tokens that are sent to this address become inacces-
sible because in all likelihood no one has the private key to this account.

Finally, we also obtained a list of addresses that are known to belong to
exchanges. To do so, we have extracted all exchange addresses as listed by Ether-
scan4, adding additional addresses manually, which we identified through our
own exchange deposits and research on public discussion forums. Table 2 shows
the number and type of accounts in our dataset.

Table 1. Event types and counts

Event type Count

Transfer 255,931,124
Mint 3,528,933
Distr 7,978,077
Airdrop 156,131
Tokendrop 19,036
Approval 7,325,925

Table 2. Account address types and counts

Account characteristic Count

EOA, active 53,291,969
EOA, inactive 22,641,698
Smart contract 17,970,742
Miner address 4,922
EOA, exchange 186
Smart contract, exchange 28

4 https://etherscan.io/accounts/label/exchange.

https://etherscan.io/accounts/label/exchange
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5 Heuristics

In the following subsections, we illustrate three entity identification heuristics:
deposit address reuse, airdrop multi-participation and self-authorization. Each of
the heuristics are based on usage patterns that can be observed on the Ethereum
ledger. This means they are not inherent to the protocol, so that their effective-
ness could change over time.

5.1 Deposit Address Reuse

The fact that the reuse of exchange deposit addresses provides a way to link
addresses to each other is practically known, but has not yet been systematically
exploited. In order to sell Ether or other cryptoassets, a user has to send them to
an exchange. To credit the assets to the correct account, exchanges typically cre-
ate so-called deposit addresses, which will then forward received funds to a main
address. As these deposit addresses are created per customer, multiple addresses
that send funds to the same deposit address are highly likely to be controlled by
the same entity. This concept is illustrated in Fig. 1. The key challenge lies in iden-
tifying these deposit addresses. Their characteristic property is that they forward
received amounts to a major exchange account. The forwarded amount is often
slightly less than what was received, as the exchange has to pay for the transac-
tion costs. In most cases, deposit addresses are EOAs, but they can also be smart
contracts. When depositing tokens on the cryptocurrency exchange Kraken for
example, users are instructed to send them to a given smart contract address,
identical versions of which have been mass deployed in advance. This makes it triv-
ial to identify all identical token deposit contracts deployed by Kraken. They are
designed to forward received tokens automatically, thereby passing on the trans-
action costs to the user. Here, we focus on the forwarding principle.

Identifying deposit addresses relies on two parameters: the maximum amount
difference between what was received and forwarded: amax and the maximum

Fig. 1. Deposit address reuse: if 0xd1 to 0xd6 are exchange controlled deposit addresses
that forward what is received, we cluster addresses that use the same deposit address.
We can see 5 entities: 2 exchanges (dotted/dashed) and 3 potential users (colored).
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time difference between receiving and forwarding: tmax. While the timing restric-
tion ensures the forwarding characteristic, avoiding coincidental matches, amax

frequently corresponds to the transaction fees that are paid in the forwarding
process. However, if a deposit address is a smart contract, the fee can be 0, as the
EOA initiating the transaction pays for the fee. Secondly, if a sufficiently small
amount of Ether is transferred to a forwarding deposit address, the exchange
may wait for more deposits to make it worth the transaction fees. In the case of
tokens, amax is typically 0, as transaction fees cannot be paid with tokens.

Sometimes exchanges send funds to one another. As these could accidentally
appear as a deposit address in a forwarding trace, we exclude known exchange
addresses. We also require that the deposit address only forwards to a single
exchange address. In practice however, an exchange may change their main wal-
let address. By imposing this restriction, we avoid accidentally linking major
exchanges to the same entity. Finally, we exclude addresses using a deposit
address that are either a known exchange address or have mined blocks. The for-
mer case appears frequently when users send funds directly between exchanges,
the latter is frequent in mining pools, where participants request their share to
be sent to a deposit address directly. For the full process see Algorithm 1.

Algorithm 1: Deposit address reuse heuristic
Input : G(V,E), Vexch ⊂ V , Vminer ⊂ V , amax, tmax

V : addresses, E: Ether transactions and token transfers
Output: Mappings Me and Mu of addresses for each entity

1 foreach path vu → vd → ve,
2 where vu /∈ Vexch ∪ Vminer, vd /∈ Vexch, ve ∈ Vexch do
3 e1 = vuvd; e2 = vdve;
4 if e1.type = e2.type and
5 e1.amount − e2.amount ∈ [0, amax] and
6 e2.blockNumber − e1.blockNumber ∈ [0, tmax] then
7 depositAddresses.add(vd);
8 exchangeEntities.addPath(vd → ve); // builds a graph
9 userEntities.addPath(vu → vd); // builds a graph

10 // find weakly connected components as address clusters
11 Me = getWCC(exchangeEntities) ; // for exchanges
12 // remove deposit addresses as they belong to exchanges
13 Mu = getWCC(userEntities) \ depositAddresses ; // for users

Parameter Estimation. We initially identify Ether and token forwarding
traces in a time window tmax of 10,000 blocks, and an amount difference amax

of 1 Ether. In the result, the empirical amax in non-contract forwards is 0.0083
Ether at the 95th percentile, and tmax at the 95th percentile is 3,185 blocks, cor-
responding to approximately 13 h. Hence we rerun the extraction with thresholds
amax = 0.01 Ether and tmax = 3,200 blocks. As a result, we identify 13,104,448
traces that forward Ether or tokens to an EOA exchange address.
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Fig. 2. Top 10 EOA exchange addresses
by number of deposit addresses that only
forward Ether and tokens to them. About
1.7 million belong to Shapeshift.

Fig. 3. CCDF showing how many enti-
ties each map to a minimum number
of addresses. For example, about 10,000
entities consist of 10 or more addresses.

Results. Clustering the deposit addresses with the exchanges provides insight
into how large the exchange clusters are. Figure 2 illustrates the top 10 exchange
addresses by cluster size. We can see that Shapeshift and Binance form some
of the largest clusters, with the former covering more than 1.7 million deposit
addresses. In total, we can associate 6,670,392 deposit addresses to 186 EOA
exchange addresses. Out of these, 5,671,405 are EOA, which means relative to
all active EOA accounts, exchange deposit addresses account for 10.6%.

With respect to the accounts that have sent transactions or tokens to deposit
addresses, we can make the following statements: Out of the 3,261,091 addresses
that have used a deposit address, 1,446,715 (44.3%) have reused a deposit address
with more than one account. In total, there are 333,107 entities that consist of
more than one address. We can explore the full distribution with a comple-
mentary cumulative distribution function (CCDF), which is illustrated in Fig. 3.
There, we can also see that we find 4 entities with each more than 1,000 addresses
(indicated by the cutoff). While not impossible, we believe such large address
clusters are unlikely, and therefore ignore them.

Limitations. To consider how this heuristic could lead to false positives, we
assume the role of an adversary. As soon as we receive a transaction from an
arbitrary address, we send the same amount to one of the known Exchange
wallets. This would result in our account being considered a forwarding deposit
address. In this way, the sending address cluster could be extended to include our
own address. Furthermore, we’ve only investigated one layer of forwarding. With
this approach, we also can’t capture which major exchange addresses belong to
each other, as we’ve limited deposit addresses to only have one target.
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5.2 Airdrop Multi-participation

Airdrops are a popular mechanism to distribute tokens. On the Ethereum
blockchain, they are performed through smart contracts. The owners of the smart
contract may choose recipients randomly, based on past activity, or ask users to
sign up through online forms. Some of these registration processes require users
to perform certain actions on social media, such as posting articles or becoming
a follower. The amount of tokens given to each user is either fixed, or based
on existing account balances. If the amount is fixed, there is an incentive to
cheat the system. A single user could sign up with multiple email addresses and
perform actions with multiple social media accounts. Once the airdrop is per-
formed, the user will receive the tokens on all of his registered addresses. Since
it is impractical to manage the tokens on all of them, they are usually collected
and aggregated to one address.

We can exploit this pattern to identify single entities that receive tokens
multiple times. The concept is illustrated in Fig. 4. We identify Airdrops where
a fixed amount of tokens is distributed to many recipients. Then we search for
addresses that have been forwarded the same amount from the initial recipients.
It is important to ensure that these second hop recipients are not exchange
wallets or DEX contracts, as several honest recipients may transfer their tokens
there directly. Furthermore, they must not be inactive accounts, as this could
indicate many recipients burning the token.

Fig. 4. In a token airdrop, where a large number of addresses (0xa1, ..., 0xan) receive
the same token amount (in this case 1), we cluster addresses that forward the exact
received amount to a single address. Receiving addresses should be active EOAs, and
should not be an exchange or a smart contract, such as a DEX.
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Fig. 5. CCDF illustrating fixed amount
token distribution sizes. At the threshold,
there are about 10,000 distribution events
with at least 1,000 recipients.

Fig. 6. CDF illustrating median block
difference between airdrop distribution
transactions. At a difference of less than
2, there are 6,819 distribution events.

The heuristic depends on two inputs. First, a set of airdrops with equal
amounts, characterized by a signature of a distributing address, a token network
and an amount. Second, the minimum number of token aggregations aggmin into
a single address. The second parameter is trivial to choose, as multi-participation
in its smallest form consists of two airdrop recipient addresses forwarding their
tokens to a third address (aggmin = 2). In this case a single entity would be in
control of at least 3 addresses.

Input and Parameter Choice. The main challenge lies in identifying airdrops.
As we have no ground truth on airdrops, we first examine all same-source, fixed
amount token distribution events. Figure 5 shows the CCDF of same amount
token distributions. We can observe that there are about 10,000 distribution
events with at least 1,000 recipients. Manual inspection reveals that this also
includes token transfers within the EOS token network, which was an ICO, not
an airdrop. Therefore we must further filter the set of token distribution events.
As airdrops are frequently distributed in an automated fashion, we can inspect
the temporal domain of such a distribution event. We calculate the block dif-
ference between the individual airdrop token transfers and calculate the median
block difference. If it is very low, a large number of addresses received their
tokens in a short time frame, so we assume it to be an airdrop. Figure 6 shows
a cumulative distribution function (CDF) of how many distribution events fall
into a maximum median block difference. The fastest same-amount EOS trans-
fers with at least 1,000 recipients occur with a median block difference of 4.
Therefore, we only select distributions where this difference is less than 2. This
means at least 500 recipients have received their tokens in consecutive time steps
of at most one block, corresponding to about 15 s on average.
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Fig. 7. CDF illustrating recipient aggre-
gation instances. For example, there are
111,174 instances where between 2 and
1,000 recipients are aggregated.

Fig. 8. CDF illustrating the final cluster
sizes after joining. At the chosen thresh-
old, there are 20,453 clusters containing
between 2 and 1000 addresses.

Secondly, we need to determine what constitutes a suspicious aggregation
process. Figure 7 shows the CDF of aggregation instances by maximum num-
ber of addresses collected from. Already two airdrop recipients forwarding their
tokens to a single address can constitute multi-participation. Visible in the plot,
the CDF reaches a plateau from about 1,000 token receiver aggregations. There
are aggregations with more addresses participating, but only very few of them.

Results. Retrieving all aggregations results in 4,880,118 traces from airdrop
source to final collecting address. The median time between airdrop and collec-
tion is 10 days, with the lower quartile at 40 h. One user likely participates in mul-
tiple airdrops, where each multi-participation may slightly differ. Depending on
the requirements for airdrop participation, users may add additional addresses,
or not use all of them. As such, address clusters can merge. Once the joining is
performed, we obtain our final entity clusters. The corresponding distribution is
illustrated in Fig. 8. Due to the merging, the number of entities we can extract
is lower than the number of aggregation instances depicted in Fig. 7. Some very
large clusters have formed, which are unlikely to exist. This could be due to a
collecting address that is actually a service used by many users. Secondly, some
token transfers may have been falsely identified as airdrops. To reduce such
issues, we only consider entities consisting of at most 1,000 addresses. Using this
threshold, we count 675,512 addresses, likely controlled by 20,453 entities.

5.3 Self-authorization

The ERC20 token standard requires an approve function to allow another
address to spend tokens on behalf of the actual owner. Through the execution,
a spender address gains access to a limited amount of tokens. This functionality
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is mainly used in connection with smart contracts, especially with decentral-
ized exchanges. Although smart contract use is the main purpose, this type of
authorization can also be used for regular EOA addresses.

In this section, we exploit this functionality under the assumption that there
are users that approve another address they own. We call this process self-
authorization. Reasons for such self approval might include test purposes or risk
distribution over several addresses with partial accessibility. Successful func-
tion calls typically emit an Approval event, which contains the owner, spender
and permitted amount. As stated in Sect. 4, we have obtained 7,325,925 such
events. Out of these, 338,510 (≈4.6%) are between active EOA addresses. As
there may still be exchange addresses among the approved spenders, we remove
them accordingly. Finally, we extract all unique pairs of owners and spenders,
disregarding the type of token or the amount.

Fig. 9. Most EOA owners approve
exactly one EOA spender. More than
100 approved spenders appears once.

Fig. 10. Most spenders have been
approved by one owner, one spender is
approved by more than 10,000 owners.

We can then study the relationship between these owners and spenders.
Figure 9 illustrates that the vast majority of owner addresses only approve one
spender address. However, it appears that this single spender address is fre-
quently the same across many owner addresses: On the far right side of Fig. 10,
we can observe that there is one spender address, that has been approved by
more than 10,000 owners, and 65 addresses with more than 1,000 owners. For
these, it is unlikely that they belong to the same entity. To extract entities, we
believe a limit of up to 10 owners approving the same spender and up to 10
spenders approved by the same owner is a plausible. Doing so, lets us extract
4,599 entities from 7,107 addresses.
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6 Analysis

In this section, we study the applicability of each clustering heuristic over time.
Secondly, we apply the heuristics on a sample token network which highlights
how the results allow for an interpretation of the interactions in the network.

Figure 11 illustrates how many newly seen addresses are clustered with an
existing entity per block range of 100,000 blocks. It clearly illustrates that the
deposit address clustering heuristic is the most effective by number of captured
addresses. Most of these however, are the exchange deposit addresses themselves.
Both deposit address reuse and multiple airdrop participation decrease in num-
ber of captured addresses. Even though the number of addresses captured by
multi-airdrop participation is much lower, they appear consistently relative to
the total number of addresses captured by all heuristics. The self-authorization
heuristic however, only captures a very small number of addresses. In fact, there
are so few of them, that they are not visible in the chart. With all clustering
heuristics combined, we can cluster 10,561,143 addresses into 343,467 entities.
The majority of these addresses belong to the exchange entities, which include
smart contract deposit addresses. The number of EOA addresses we were able
to cluster is 9,562,153, which equates to a share of 17.9% relative to all active
EOAs.

Fig. 11. Newly seen addresses that are clustered with previously seen addresses. The
exchange deposit address clustering heuristic is responsible for most address clusters.
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Fig. 12. The Bionic token network (0xef51c9377feb29856e61625caf9390bd0b67ea18).
Nodes close to each other with the same shade of gray indicate the same entity. Node
size corresponds with their indegree. The Bionic token network contains an airdrop
source at D4, the circle surrounding it are recipients that received tokens, but never
did anything with them. But there are many airdrop recipients that appear to belong
to the same entity, as they aggregate their received tokens. At D9, the HotBit exchange
is visible. Deposit addresses belonging to HotBit are visible in C8.

In Fig. 12, we illustrate the airdrop and deposit heuristics applied to the token
transfers of only the Bionic token network, and highlight entities with shades
of gray. In the token network, we can see that an airdrop has been performed
originating from D4. The airdrop itself is responsible for a large part of all
transfers. Many recipients did not forward their received tokens, but some of
them trade them on exchanges like IDEX (E8) or Hotbit (D9). Airdrop recipients
in C7-D7 forward tokens to Hotbit’s deposit addresses in D8. Addresses in D10
have received tokens from Hotbit, and some have been sent back.

Surrounding the airdrop, there are 170 clusters of entities that likely control
multiple addresses. They have received airdropped tokens and forwarded them
to a single address, indicated by a larger node size. The majority of these entities
have then forwarded tokens to the decentralized exchange IDEX, most likely in
order to sell them. Due to the many transfers involved in collecting from multiple
addresses, the token network appears to have significant activity, when in reality,
a large portion of this activity originates from a few entities.
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7 Discussion

Due to a lack of ground-truth labels on which addresses actually belong to the
same entity, it is very difficult to assess the quality of the clustering heuris-
tics. This same issue is prevalent in existing UTXO-based clustering heuristics.
In comparison to them, the proposed approaches in this paper have the draw-
back that they are not parameter-free. They require lists of previously known
addresses or thresholds. Nevertheless, in the case of deposit address reuse, the
advantage lies in the fact that the usefulness can be improved when provided
with more labels of major exchange addresses. Some of the very large cluster
formations could be due to unknown exchange addresses. In the case of airdrop
multi-participation, the main challenge is identifying airdrops correctly. We have
chosen the path of counting same amount recipients, as well as considering the
temporal domain. As a result, some very large clusters have formed which we
had to exclude. The quality of the results would benefit from more sophisticated
airdrop detection methods. With respect to the utility of each of the heuristics,
we can state the following: whereas deposit address reuse and self-authorization
may provide insightful links for future analysis surrounding fraudulent behav-
ior, we expect that the clusters around airdrop multi-participation are mostly
limited to the particular use case of multi-participation.

8 Conclusion and Future Work

This paper is the first to propose clustering heuristics for Ethereum’s account
model, including an analysis of their applicability. We have explored deposit
address reuse, airdrop multi-participation and self-authorization. For each
heuristic, we have analyzed and selected parameters as inputs. We have shown
that the exchange deposit address reuse heuristic captures the majority of
addresses, whereas the airdrop multi-participation heuristic can provide fewer
but additional address clusters. The self-authorization heuristic however, has
only provided very few results. Overall, we are able to cluster 17.9% of active
addresses on the Ethereum blockchain, which may form the foundation of future
entity graph analyses related to usage assessments or fraud detection.

8.1 Future Work

As part of future work, we believe the detection of exchange wallets is impor-
tant to improve the clustering results. Further usage patterns on the Ethereum
blockchain can be studied. They may provide insight into how entities use them,
which in turn allows for clustering heuristics. Examples include online wallets,
identity management solutions like ERC 725, smart contracts related to games,
gambling or services in the realm of decentralized finance.

Another challenge is the question of how to treat smart contract accounts
when identifying entities. A smart contract could act as a regular wallet, in
which case the owner is likely the creator. But it is also possible that the smart
contract merely forwards currency, in which case an owner is not important.
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Abstract. An important problem in smart contract security is under-
standing the likelihood and criticality of discovered, or potential, weak-
nesses in contracts. In this paper we provide a summary of Ethereum
smart contract audits performed for 23 professional stakeholders, avoid-
ing the common problem of reporting issues mostly prevalent in low-
quality contracts. These audits were performed at a leading company
in blockchain security, using both open-source and proprietary tools, as
well as human code analysis performed by professional security engineers.
We categorize 246 individual defects, making it possible to compare the
severity and frequency of different vulnerability types, compare smart
contract and non-smart contract flaws, and to estimate the efficacy of
automated vulnerability detection approaches.

1 Introduction

Smart contracts are versatile instruments that can not only facilitate and verify
transactions in financial services, but also track the movement of physical goods
and intellectual property. Security and correctness are essential for smart con-
tract technology, because contracts possess the authority to allocate high-value
resources between complex systems and are, for the most part, autonomous.

Security researchers have worked to describe vulnerabilities and produce tools
that find flaws in smart contracts, but most of the discussions of such flaws
concentrate on a small number of actual exploits [20,24]. Moreover, many studies
examine all the contracts on a blockchain or focus on “popular” [2] contracts,
but these contracts often are produced by development efforts where security
and correctness are not prioritized. While informative, these analyses do not
represent the contracts that are likely to become the infrastructure of a smart-
contract future.

A better alternative for understanding smart contract flaws is to analyze bugs
discovered during professional security audits. Early investors in smart contracts
expose themselves to risks that could be devastating if the code is insecure or
incorrect. Given these consequences, it is more likely that an initial effort is
made to produce correct code. Therefore, flaws discovered during paid security
c© International Financial Cryptography Association 2020
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https://doi.org/10.1007/978-3-030-51280-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51280-4_34&domain=pdf
https://doi.org/10.1007/978-3-030-51280-4_34


What are the Actual Flaws in Important Smart Contracts? 635

audits provide a better ground truth for recommending ways to improve smart
contract security. This paper presents an analysis of the types of flaws detected
in 23 Solidity/Ethereum [4,32] smart contract audits performed by Trail of Bits
(https://trailofbits.com), a leading company in the field.

2 Related Work

To our knowledge, no previous work reports flaws detected in paid security audits
of important smart contracts. We have not even found any manual examination
of large numbers of smart contracts with reasonable criteria for removing unin-
teresting contracts (which would ensure quality analysis). However, there are
other important efforts to classify or describe smart contract flaws. Atzei, Bar-
toletti, and Cimoli produced a taxonomy of possible attacks on smart contracts,
with examples of actual exploit code [1]. Their categories have some overlap with
those used in this paper, but are more focused on specific-exploit patterns and
exclude some types of flaws that are not tied to a specific attack. We believe
that every category present in their taxonomy is also represented by at least one
finding in our set. Their purpose is largely orthogonal to ours and presents a
useful alternative view of the topic, but one based more on speculation about
exploits than on concrete data about the prevalence and seriousness of flaws
in real contracts. Mense and Flatscher [16] combine a summary of known vul-
nerability types with a simple comparison of then-available tools, while Saad et
al. [23] expand the scope of analysis to general blockchain attack surfaces, but
provide a similar categorization of smart contract vulnerabilities. Dika’s thesis
also [7] provides another, earlier, summary of vulnerability types, analyses, and
tools. In general, the types of flaws discussed in these works are a subset of those
we discuss below.

Perez and Livshits provide a (provocatively titled) analysis of actual executed
exploits on 21K contracts reported in various academic papers, which provides a
useful additional perspective, but they use a very different data set with purposes
almost completely unrelated to ours [19]. They find that, while reentrancy is the
most dangerous category of problem (over 65% of actual exploits in the wild),
even reentrancy exploits have resulted in loss of less than 10K Ether to date.
The relatively small size of exploits to date vs. potential future losses affirms
that information about undetected flaws in audited high-value, high-visibility
contracts is important to the community.

Smart contract analysis/verification research often touches on the topic of
expected vulnerabilities [3,6,8–10,10,11,13,14,18,22,30], but this research is, to
our knowledge, always based on author perceptions of threats, not statistical
inference from close examinations of high-quality/critical contracts.

3 Summary of Findings

The results below are based on 23 audits performed by Trail of Bits. Of these,
all but five are public, and the reports are available online [29]. The number of

https://trailofbits.com
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findings per audit ranged from 2–22, with a median and mean of 10 findings.
Reports ranged in size from just under 2K words to nearly 13K words, with
a total size of over 180K words. It is also worth mentioning that each audit
focused on a code-base that has between one to a few dozen of contracts that
Trail of Bits reviewed manually and using automated tools. The total number
of audited contracts is thus considerably more than 23 (some individual audits
covered more than 23 contracts).

The time allotted for audits ranged from one person-week to twelve person-
weeks, with a mean of six person-weeks and a median of four person-weeks.
The audits were prepared by a total of 24 different auditors, with most audits
prepared by multiple individuals (up to five). The mean number of authors
was 2.6, and the median was three. The most audits in which a single author
participated was 12, the mean was 3.2; the median was only two audits. In
general, while these audits are all the product of a single company, there is
considerable diversity in the set of experts involved.

Most of these assessments used static and dynamic analysis tools in addition
to manual analysis of code, but the primary source of findings was manual. In
particular, a version of the Slither static analyzer [9] which included a num-
ber of detectors not available in the public version, was applied to many of the
contracts. In some cases, property-based testing with Echidna [26] and sym-
bolic analysis with Manticore [17,25] were also applied to detect some problems.
Only five audits did not use automated tools. Fifteen of the audits made use of
Slither, ten made use of Manticore, and eight made use of Echidna. However,
when Slither was used in audits, it was usually used much more extensively than
Manticore or Echidna, which were typically restricted to a few chosen properties
of high interest. Only four findings are explicitly noted in the findings as pro-
duced by a tool, all by Slither. However, other findings may have resulted from
automated analyses in a less explicit fashion.

3.1 Smart Contract Findings

Our analysis is based on 246 total findings. Tables 1 and 2 summarize informa-
tion on these findings (Table 2). Each flaw is classified according to its severity,
considering the potential impact of the exploit to be:

– High if it affects a large numbers of users, or has serious legal and financial
implications;

– Medium if it affects individual users’ information, or has possible legal impli-
cations for clients and moderate financial impact;

– Low if the risk is relatively small or is not a risk the customer has indicated
is important;

– Informational if the issue does not pose an immediate risk, but is relevant to
security best practices.

Another important property of each finding is how difficult it is to exploit:

– Low for commonly exploited flaws where public tools exist or exploitation
can be easily automated;
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– Medium for flaws that require in-depth knowledge of a complex system;
– High for flaws where an attacker must have privileged insider access to the

system, or must discover other weaknesses, for exploitation.

The findings categories are sorted by the frequency of severity counts; ties in
the high-severity findings count are broken by counting medium-severity findings,
and further ties are broken by low-severity findings. AppendixA shows exact
counts for categories and severities/difficulties. Raw data is also available [28].

The categories in these tables are generally the categories used in the audit
reports submitted to clients, but in some cases we have corrected obviously
incorrect categories given the continuous evolution of the security landscape for
smart contracts. Additionally, we have introduced a few new categories in cases
where findings were clearly placed in a category of dubious relevance due to the
lack of a suitable category. The most significant systematic change is that we
separated race conditions and front-running from all other timing issues, due
to 1) the large number of race conditions relative to other timing issues; 2) the
general qualitative difference between race conditions and other timing-based
exploits (e.g., there is a large literature addressing detection and mitigation
of race conditions specifically); and 3) the specific relevance of front-running
to smart contracts. Our analysis calls special attention to findings classified as
high-low, that is high severity and low difficulty. These offer attackers an
easy way to inflict potentially severe harm. There were 27 high-low findings, all
classified as one of eight categories: data validation, access controls, numerics,
undefined behavior, patching, denial of service, authentication, or timing.

Data Validation. Data validation covers the large class of findings in which the
core problem is that input received from an untrusted source (e.g., arguments to
a public function of a contract) is not properly vetted, with potentially harmful
consequences (the type of harm varies widely). Not only is this a frequently
appearing problem, with more than three times as many findings as the next most
common category, it is a serious issue in many cases, with the largest absolute
number of high-low findings (10), and a fairly high percent of high-low findings
(11%). Data validation can sometimes be detected statically, by using taint to
track unchecked user input to a dangerous operation (e.g., an array de-reference),
but in many cases the consequences are not obviously problematic unless one
understands a contract’s purpose. Ironically, the safer execution semantics of
Solidity/EVM make some problems that would clearly be security flaws in C or
C++ harder to automatically detect. In Solidity, it is not always incorrect to
allow a user to provide an array index: If the index is wrong, in many cases,
the call will simply revert, and there is no rule that contract code should never
revert. From the point of view of a fuzzer or static analysis tool, distinguishing
bad reverts from intended ones is difficult without guidance. Automated static
or dynamic analysis to detect many of the instances of missing/incorrect data
validation identified in the audits would require some user annotations, either
in the form of properties or at least annotating some functions or statements as
not expected to revert, but given that information, would likely prove effective.
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Table 1. Severity and difficulty distributions for finding categories. The second column
shows what percent of all findings that category represents; the remaining columns are
percentages within-category.

Severity Difficulty
Category % High-Low High Med. Low Info. Und. High Med. Low Und.
data validation 36% 11% 21% 36% 24% 13% 6% 27% 16% 55% 2%
access controls 10% 25% 42% 25% 12% 21% 0% 33% 12% 54% 0%
race condition 7% 0% 41% 41% 6% 12% 0% 100% 0% 0% 0%
numerics 5% 23% 31% 23% 38% 8% 0% 31% 8% 62% 0%
undefined behavior 5% 23% 31% 15% 31% 8% 15% 15% 8% 77% 0%
patching 7% 11% 17% 11% 39% 28% 6% 6% 11% 61% 22%
denial of service 4% 10% 20% 30% 30% 20% 0% 50% 0% 40% 10%
authentication 2% 25% 50% 25% 25% 0% 0% 50% 0% 50% 0%
reentrancy 2% 0% 50% 25% 25% 0% 0% 50% 25% 0% 25%
error reporting 3% 0% 29% 14% 0% 57% 0% 43% 29% 29% 0%
configuration 2% 0% 40% 0% 20% 20% 20% 60% 20% 20% 0%
logic 1% 0% 33% 33% 33% 0% 0% 100% 0% 0% 0%
data exposure 1% 0% 33% 33% 0% 33% 0% 33% 33% 33% 0%
timing 2% 25% 25% 0% 75% 0% 0% 75% 0% 25% 0%
coding-bug 2% 0% 0% 67% 33% 0% 0% 17% 0% 83% 0%
front-running 2% 0% 0% 80% 0% 20% 0% 100% 0% 0% 0%
auditing and logging 4% 0% 0% 0% 33% 44% 22% 33% 0% 56% 11%
missing-logic 1% 0% 0% 0% 67% 33% 0% 0% 0% 100% 0%
cryptography 0% 0% 0% 0% 100% 0% 0% 100% 0% 0% 0%
documentation 2% 0% 0% 0% 25% 50% 25% 0% 0% 75% 25%
API inconsistency 1% 0% 0% 0% 0% 100% 0% 0% 0% 100% 0%
code-quality 1% 0% 0% 0% 0% 100% 0% 0% 0% 100% 0%

Access Controls. Access control findings describe cases where use of a legiti-
mate operation of a contract should be restricted to certain callers (the owner,
minters, etc.), but access control is either faulty or not implemented at all. Most
often, access control findings are cases where access control is too permissive, but
nearly a third of these findings involve overly restrictive access control. While
there are three times as many data validation findings as access control find-
ings, there are nearly as many high-low findings for access control as for data
validation. One in four access control findings is high-low, and 42% of access
control findings are high severity. In general, automatic detection of access con-
trol problems without additional specification is often plausible. In four of our
findings, it would suffice to check standard ERC20 token semantics, enforce the
paused state for a contract, or assume that only certain users should be able
to cause self-destruction. Cases where access controls are too restrictive would
require additional specification, but, given that effort, are also often likely to be
handled well by property-based testing.
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Table 2. Optimistic percentages of each category detectable by automated methods.

Category % Dynamic % Static Category % Dynamic % Static
data validation 57% 22% logic 0% 0%
access controls 50% 4% data exposure 0% 0%
race condition 6% 59% timing 50% 25%
numerics 46% 69% coding-bug 67% 50%
undefined behavior 0% 31% front-running 0% 0%
patching 17% 33% auditing and logging 0% 38%
denial of service 40% 0% missing-logic 67% 0%
authentication 25% 0% cryptography 0% 100%
reentrancy 75% 100% documentation 0% 0%
error reporting 29% 14% API inconsistency 0% 0%
configuration 0% 0% code-quality 0% 67%

Race Condition. Race conditions are cases in which the behavior of a contract
depends (in an unintended way) on an improperly restricted ordering of oper-
ations or events. Often, the consequence of one particular unexpected ordering
is clearly incorrect. The race condition category had zero high-low findings, but
was responsible for seven of the 60 total high-severity findings across all audits.
The top three categories (data validation, access controls, and race conditions)
made up over half of all high-severity findings. A full 41% of race conditions are
high severity. Nearly half (nine) of the race condition findings concern a known
ERC20 issue [31], and could certainly be identified automatically by a static anal-
ysis tool. Due to the nature of many blockchain race conditions, understanding
the impact of the race would often be hard for a dynamic analysis.

Numerics. Numerics findings involve the semantics of Solidity arithmetic: Most
are overflow errors, some are underflow errors, and a few involve precision losses.
These findings also include cases where a “safe math” library or function is
used, so there is no actual overflow/underflow resulting in an incorrect value,
but the resulting revert causes problems. Three numerics findings are high-low
(23%), and 31% are high severity. Rounding or precision (six findings) and over-
flow (three findings) are the most common numerics errors. Many rounding and
overflow problems can likely be flagged using static analysis, but to determine
whether the behavior is problematic would require custom properties.

Undefined Behavior. The undefined behavior category includes cases where
a contract relies on unspecified or under-specified semantics of the Solidity lan-
guage or the EVM, so the actual semantic intent of the contract is either cur-
rently unclear or may become so in the future. For instance, in Solidity, the
evaluation order of expressions in the same statement is not specified. Instead,
it is only guaranteed that statements are executed in order. Three (23%) of the
undefined behavior findings are high-low, and 31% of undefined behavior findings
are high severity. Undefined behavior is often easy to statically detect.
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Patching. Patching findings concern flaws in the process to upgrade or change
contract behavior. The immutability of code on the blockchain requires the use
of complex, hard-to-get-right methods to allow changes. Two (11%) of the patch-
ing findings are high-low, and 17% are high severity. Many patching issues are
complex environmental problems that likely require human expertise, but some
common patterns of bad upgrade logic might be amenable to static detection,
and a dynamic analysis can detect that a contract is broken after a faulty update.

Denial of Service. Denial of service covers findings that are not well described
by another class (e.g., if lack of data validation causes denial of service, we still
classify it as data validation), and where the consequence of a flaw is either
complete shut-down of a contract or significant operational inefficiency. If we
included all cases where denial of service is an important potential consequence
of a flaw, or even the only important consequence, the category would be larger.
One denial of service finding was high-low, and 20% of findings were high severity.
Most denial of service findings would require fairly complex custom properties
specifying system behavior, in part because “simple” denial of service due to
some less complex cause falls under another category.

Authentication. Authentication findings specifically concern cases where the
mechanism used to determine identity or authorization is flawed, as opposed
to cases where the access rules are incorrect. That is, in authentication prob-
lems, the logic of who is allowed to do what is correct, but the determination
of “who” is flawed. While only one authentication finding is high-low, fully half
of all authentication problems are high severity; in fact, authentication is tied
with the infamous reentrancy problem in terms having the greatest percent-
age of high severity issues. Three of the observed authentication problems are
highly idiosyncratic, and may not even be automatically detectable with com-
plex custom properties. However, the remaining problem should be dynamically
detectable using “off-the-shelf” ERC20 token semantics properties.

Reentrancy. Reentrancy is a widely discussed and investigated flaw in
Ethereum smart contracts [1]. In a reentrancy attack, a contract calls an external
contract, before “internal work” (primarily state changes) is finished. Through
some route, the external contract re-enters code that expected the internal work
to be complete. No reentrancy problems detected in audits were high-low, but
50% of the findings were high severity. Reentrancy is a serious problem, but, due
to its well-defined structure, is usually amenable to static and dynamic detec-
tion. In particular, static detection with relatively few false positives is probably
already possible using Slither, for most important reentrancies.

Error Reporting. Error reporting findings involve cases in which a contract
does not properly report, propagate, or handle error conditions. There are no
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high-low error reporting findings in the audits, but 29% of error reporting find-
ings are high severity. In some cases error reporting is a difficulty category to cap-
ture without further specification, and specifying that errors should be reported
or handled in a certain way generally requires the same understanding that
would have produced correct code in the first place. However, ERC20 seman-
tics make some error reporting problems easy to automatically detect. Incorrect
error propagation is also usually statically detectable [21]; however, this was not
the type of error reporting problem discovered in audits.

Configuration. Configuration findings generally describe cases in which a bad
configuration may lead to bad behavior even when the contract itself is correct. In
smart contracts, this is often related to financial effects, e.g., bad market/pricing
parameters. There are no high-low findings in this category, but 40% of findings
are high priority. Configuration problems are usually fairly subtle, or even eco-
nomic/financial in nature, and detection is likely to rely on manual analysis.

Logic. Logic findings describe incorrect protocols or business logic, where the
implementation is as intended, but the reasoning behind the intention is incor-
rect. Somewhat surprisingly, this category has no high-low findings, and only
three fundamental logic flaws were described in the audits. One of the three
logic flaws described was high severity, however. Based on the small number of
findings it is hard to guess how often custom properties might allow dynamic
detection of logic flaws. If the bad logic often leads to a violation of the expected
invariants of a contract, then it can be detected, but if the fault is in the under-
standing of desirable invariants (which may often be the case), manual inspection
by another set of expert eyes may be the only plausible detection method.

Data Exposure. Data exposure findings are those in which information
that should not be public is made public. For instance, some smart contracts
offer guarantees to users regarding the information about them stored on the
blockchain. If an attacker can infer data about users by observing confirmed or
unconfirmed transactions, then that is classified as a data exposure issue. There
are no high-low data exposure findings, but 33% are high severity. Most data
exposure problems are not likely to be amenable to automatic detection.

Timing. Timing findings concern cases (that are neither race conditions nor
front-running) where manipulation of timing has negative consequences. For the
most part, these findings involved assuming intervals between events (especially
blocks) that may not hold in practice. One of the four timing findings (the only
high severity one) was high-low. Timing problems can be amenable to automated
detection in that static or dynamic analysis can certainly recognize when code
depends on, for instance, the block timestamp.
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Coding-Bug. Coding-bug is a catch-all category for problems that, whatever
their consequences, amount to a “typo” in code, rather than a likely intentional
error on a developer’s part. Off-by-one loop bounds that do not traverse an entire
array are a simple example. There were no high-low or high-severity coding bugs
in the smart contracts audited, which suggests that the worst simple coding
problems may be detected by existing unit tests or human inspection of code,
in the relatively small code bases of even larger smart contracts. On the other
hand, 67% of coding bugs were medium severity, the second-highest rate for that
severity; only one other class exceeded 41% medium-severity findings.

Front-Running. Front-running generalizes the financial market concept of
front-running, where a trader uses advance non-public knowledge of a pending
transaction to “predict” future prices and/or buy or sell before the pending state
change. In smart contracts, this means that a contract 1) exposes information
about future state changes (especially to a “market”) and 2) allows transactions
that exploit this knowledge. It is both a timing and data exposure problem, but
is assigned its own category because the remedy is often different. Front-running
is a well-known concern in smart contracts, but in fact no high-low or even high-
severity front-running problems were detected in our audits. On the other hand,
front-running had the largest percent of medium-severity findings (80%), so it is
not an insignificant problem. Front-running, by its nature, is probably hard to
detect dynamically, and very hard to detect statically.

Auditing and Logging. Auditing and logging findings describe inadequate
or incorrect logging; in most cases incorrect or missing contract events. There
were no high-low, high-severity, or medium-severity auditing or logging findings.
If explicit checks for events are included in (automated) testing, such problems
can easily be detected, but if such checks are included, the important events
are also likely to be present and correct, so this is not a great fit for dynamic
analysis. On the other hand, it is often easy to statically note when an important
state change is made but no event is associated with it.

Missing-Logic. Missing-logic findings are cases in which—rather than incor-
rect logic for handling a particular set of inputs, or missing validation to exclude
those inputs—there is a correct way to handle inputs, but it is missing. Struc-
turally, missing-logic means that code should add another branch to handle a
special case. Interestingly, while this seems like a potentially serious issue, there
were no high-low or even medium-severity missing-logic findings. The ease of
detecting missing logic with custom properties depends on the consequences of
the omission; static analysis seems unlikely find most missing logic.

Cryptography. Cryptography findings concern cases where incorrect or insuf-
ficient cryptography is used. In our smart contract audits, the one (low sever-
ity, high difficulty) cryptography finding concerned use of an improper pseudo-
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Table 3. Most common finding categories in other audits.

Category # % Change Category # % Change
data validation 41 53% -17% patching 6 8% -1%
denial of service 23 30% -26% authentication 5 6% -4%
configuration 20 26% -24% timing 4 5% -3%
data exposure 18 23% -22% numerics 2 3% +3%
access controls 14 18% -8% auditing and logging 2 3% +1%
cryptography 12 16% -16% race condition 1 1% +6%
undefined behavior 7 9% -4% error reporting 1 1% +2%

random number generator, something a static analysis tool can often flag in the
blockchain context, where bad sources of randomness are fairly limited.

Documentation. Documentation findings describe cases where the contract
code is not incorrect, but there is missing or erroneous documentation. As you
would expect, this is never a high- or even medium-severity issue, and is not
amenable to automated detection.

API Inconsistency. API inconsistencies are cases in which a contract’s indi-
vidual functions are correct, but the calling pattern or semantics of related func-
tionalities differs in a way likely to mislead a user and produce incorrect code
calling the contract. All of these issues were informational, and while it is con-
ceivable that machine learning approaches could identify API inconsistencies, it
is not a low-hanging fruit for automated detection.

Code-Quality. Finally, code quality issues have no semantic impact, but involve
code that is hard to read or maintain. As expected, such issues are purely infor-
mational. Code quality problems in general would seem to be highly amenable
to static analysis, but not to dynamic analysis.

3.2 Comparison to Non-Smart-Contract Audits

It is interesting to compare the distribution of finding types for smart contract
audits to other security audits [29] performed by the same company. Table 3
compares smart contract audit frequencies with those for a random sample of
15 non-smart contract audits, with categories never present in smart contract
audits or only present in smart contract audits removed.

The largest changes are categories of findings that are common in other
audits, but not common in smart contracts. One of these, denial of service, may
be primarily due to the re-categorization of denial of service findings with a clear
relevance to another category in the smart contract findings. Changing the five
findings whose type was clarified back to denial of service still leaves a significant
gap, however. This is likely due to the different nature of interactions with the
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network in non-smart-contract code; in a sense, many denial of service problems
and solutions are delegated to the general Ethereum blockchain, so individual
contracts have less responsibility and thus fewer problems.

A more general version of the same difference likely explains why configu-
ration problems are far less prevalent in smart contract code. At heart, smart
contracts are more specialized and focused, and live in a simple environment
(e.g., no OS/network interactions), so the footprint of configurations, and thus
possible mis-configurations, is smaller. Similarly, the temptation to roll your own
cryptography in a smart contract is much smaller. For one thing, implementing
any custom cryptography in Solidity would be impractical enough to daunt even
those unwise enough to attempt it, and gas costs would be prohibitive. Data
validation is also easier in a world where, for the most part, transactions are the
only inputs. Data exposure problems are probably less common because it is well
understood that information on the blockchain is public, so the amount of data
that is presumed unexposed is much smaller, or, in many cases, non-existent.

3.3 Threats to Validity

Contracts submitted for audit varied in their level of maturity; some assessments
were performed on contracts essentially ready for release (or already released)
that reflected the final stage of internal quality control processes. Others were
performed on much more preliminary implementations and designs. This does
not invalidate the findings, but some flaw types may be more prevalent in less
polished contracts. Of course, the primary threat to validity is that the data is
all drawn from a set of 23 audits performed by one company over a period of
about two years. We address this concern in Sect. 5.

4 Discussion: How to Find Flaws in Smart Contracts

4.1 Property-Based Testing and Symbolic Execution

Property-based testing [5,12,15] involves 1) a user defining custom properties
(usually, in practice, reachability properties declaring certain system states or
function return values as “bad”), and then 2) using either fuzzing or symbolic
execution to attempt to find inputs or call sequences violating the properties.
Some variant of property-based testing is a popular approach to smart contract
analysis. Automated testing with custom properties is both a significant low-
hanging fruit and anything but a panacea. Of the 246 findings, only 91 could be
possibly labeled as detectable with user-defined properties, or with automated
testing for standard semantics of ERC20 tokens and other off-the-shelf dynamic
checks. On the other hand, 17 of the 27 most important, high severity, low
difficulty, findings, were plausibly detectable using such properties. While not
effective for some classes of problems, analysis using custom properties (and
thus, likely, dynamic rather than static analysis), might have detected over 60%
of the most important findings. This mismatch in overall (37%) and high-low
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(63%) percent of findings amenable to property-based testing is likely due to the
fact that categories almost never detectable by automated testing—code quality,
documentation, auditing and logging—are seldom high-low, and those where it
is most effective—data validation, access controls, and numerics—constitute a
large portion of the total set of high-low findings. Also, intuition tells us that if a
finding has major detrimental consequences (high severity) but is not extremely
hard to exploit (low difficulty) this is precisely the class of problems a set of key
invariants plus effective fuzzing or symbolic execution is suited to find.

4.2 Static Analysis

The full potential of static analysis is harder to estimate. Four of the issues
in these findings were definitely detected using the Slither static analysis tool,
which has continued to add new detectors and fix bugs since the majority of the
audits were performed. Of these four issues, one was high severity, undetermined
difficulty, a classic reentrancy. An additional four issues are certainly detectable
using Slither (these involve deletion of mappings, which is also the root issue in
one of the findings that was definitely detected by Slither). Some of the over-
flow/underflow problems, as noted above, might also be statically detectable if
false positives are allowed. There are likely other individual findings amenable
to static analysis, but determining the practicality of such detection is in some
ways more difficult than with dynamic analysis using a property-based specifi-
cation. The low-hanging fruit for static analysis is general patterns of bad code,
not reachability of a complex bad state. While some cases in which we speculate
that a finding is describable by a reachability property may not, in fact, prove
practical—current tools may have too much trouble generating a transaction
sequence demonstrating the problem—it is fairly easy to determine that there
is indeed an actual state of the contract that can be identified with the finding.
Whether a finding falls into a more general pattern not currently captured by,
for instance, a Slither detector, is harder to say, since the rate of false positives
and scalability of precision needed to identify a problem is very hard to estimate.
Our conservative guess is that perhaps 65 of the 246 findings (26%), and 9 of the
high-low findings (33%), are plausibly detectable by static analysis. While these
are lower percentages than for dynamic approaches, the effort required is much,
much lower: The dynamic analysis usually depends on a user actually thinking
of, and correctly implementing, the right property, as well as a tool reaching
the bad state. For the statically detectable problems, issues like those in these
findings would almost always be found just by running the static analysis tool.

4.3 Unit Testing

There was no additional unit testing as part of the security audits performed.
It is therefore impossible to say how effective adding unit tests would be in
discovering flaws during audits, based on this data. However, it is possible to
examine the relationship between pre-existing unit tests and the audit results.
Fourteen of the contracts audited had what appeared to be considerable unit
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tests; it is impossible to determine the quality of these tests, but there was
certainly quantity, and significant development effort. Two of the contracts had
moderate unit tests; not as good as the 14 contracts in the first category, but still
representing a serious effort to use unit testing. Two contracts had modest unit
tests: non-trivial, but clearly far from complete tests. Three had weak unit tests;
technically there were unit tests, but they are practically of almost no value in
checking the correctness of the contract. Finally, two contracts appeared to have
no unit tests at all. Did the quantity of unit tests have an impact on audit results?
If so, the impact was far from clear. The contracts that appeared to lack unit tests
had nine and four findings, respectively: fewer than most other contracts. The
largest mean number of issues (11.5) was for contracts with modest unit tests,
but essentially the mean finding counts for considerable (11.1), moderate (10.5),
modest (11.5), and weak (11) unit tests were indistinguishable. Furthermore,
restricting the analysis to counting only high-severity findings also produces no
significant correlation. For total findings, Kendall τ correlation is an extremely
weak 0.09 (p = 0.61) indicating even this correlation is likely to be pure chance.
For high-severity findings, the τ correlation drops to 0.5 (p = 0.78). Note further
that these weak/unsupported correlations are in the “wrong” direction. It seems
fair to say that even extensive unit tests are not the most effective way to avoid
the kind of problems found in high-quality security audits.

4.4 Manual Analysis

With few exceptions, these findings demonstrate the effectiveness of manual
analysis. Expert attention from experienced auditors can reveal serious problems
even in well-tested code bases. While four of the audits produced no high-severity
findings, 11 audits found three or more. As far as we can tell, all of the high-
low severity issues were the result of manual analysis alone, though there were
recommendations for how to use tools to detect/confirm correction in some cases.

4.5 Recommendations

The set of findings that could possibly be detected by either dynamic or static
analysis is slightly more than 50%, and, most importantly, includes 21 of the
27 high-low findings. That is, making generous assumptions about scalability,
property-writing, and willingness to wade through false positives, a skilled user
of both static and dynamic tools could detect more than three out of four high-
low issues. Note that the use of both approaches is key: 61 findings overall and 12
high-low findings are likely to only be detectable dynamically, while 35 findings,
four of them high-low, are likely to only by found using static analysis.

While static analysis alone is less powerful than manual audits or dynamic
analysis, the low effort, and thus high cost-benefit ratio, makes the use of all
available high-quality static analysis tools an obvious recommendation. (Also,
printers and code understanding tools often provided by static analyzers make
manual audits more effective [9].) Some of the findings in these audits could have
been easily detected by developers using then-current versions of the best tools.
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When 35% of high-severity findings are not likely to be detected even with
considerable tool improvement and manual effort to write correctness properties,
it is implausible to claim that tools will be a “silver bullet” for smart contract
security. It is difficult, at best, to imagine that nearly half of the total findings
and almost 25% of the high-low findings would be detected even with high-
effort, high-expertise construction of custom properties and the use of better-
than-state-of-the-art dynamic and static analysis. Therefore, manual audits by
external experts will remain a key part of serious security and correctness efforts
for smart contracts for the foreseeable future.

On the other hand, the gap between current tool-based detection rates (very
low) and our estimated upper limit on detection rates (50% of all issues, and over
75% of the most important issues) suggests that there is a large potential payoff
from improving state-of-the-art standards for analysis tools and putting more
effort into property-based testing. The experience of the security community
using AFL, libFuzzer, and other tools also suggests that there are “missing”
findings. The relatively immature state of analysis tools when most of these
audits were performed likely means that bugs unlikely to be detected by human
reasoning were probably not detected. The effectiveness of fuzzing in general sug-
gests that such bugs likely exist in smart contracts as well, especially since the
most important target category of findings for dynamic analyses, data validation,
remains a major source of smart contract findings. In fact, a possible additional
explanation for the difference of 36% data validation findings for smart contract
audits and 51% for non-smart-contract audits could be that non-smart-contract
audits have access to more powerful fuzzers. Eliminating the low-hanging fruit for
automated tools will give auditors more time to focus on the vulnerabilities that
require humans-in-the-loop and specialized skills. Moreover, effort spent writing
custom properties is likely to pay off, even if dynamic analysis tools are not yet
good enough to produce a failing test. Just understanding what invariants should
hold is often enough to alert a human to a flaw.

Finally, while it is impossible to make strong claims based on a set of only
23 audits, it seems likely that unit tests, even quite substantial ones, do not
provide an effective strategy for avoiding the kinds of problems detected during
audits. Unit tests, of course, have other important uses, and should be considered
an essential part of high-quality code development, but developer-constructed
manual unit tests may not really help detect high-severity security issues. It
does seem likely that the effort involved in writing high-quality unit tests would
be very helpful in dynamic analysis: Generalizing from unit tests to invariants
and properties for property-based testing seems likely to be an effective way to
detect some of what the audits exposed.
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5 Audits from Other Companies

In order to partially validate our findings, we also performed an analysis of
audits prepared by two other leading companies in the field [27], ChainSecurity
and ConsenSys Diligence. While differences in reporting standards and catego-
rizations, and the fact that we do not have access to unpublished reports (which
could bias statistics), make it difficult to analyze these results with the same con-
fidence as our own reports, the overall picture that emerged was broadly compat-
ible with our conclusions. The assignment of findings to semantically equivalent
difficulties and severities, and the assessment of potential for automated analysis
methods, was performed by a completely independent team. The results summa-
rized here are for 225 findings in public reports for ChainSecurity and 168 from
ConsenSys Diligence, over 19 and 18 audits, respectively. AppendixB provides
detailed results on these findings.

First, the potential of automated methods is similar. For ChainSecurity, 39%
of all issues were plausibly detectable by dynamic analysis (e.g., property-based
testing, possibly with a custom property), and 22% by automated static analy-
sis. For ConsenSys Diligence, those numbers were 41% and 24%. Restricting our
interest to high-low findings, the percentages were 67% and 63% for dynamic
analysis and 11% and 38% for static analysis, respectively. Combining both meth-
ods, the potential detection rates were 51% and 52% for all findings, and 67% and
75% for high-low findings. The extreme similarity of these results to ours affirms
that our results concerning detection methods are unlikely to be an artifact of
our audit methods or the specific set of contracts we audited.

Second, while the category frequencies were quite different than those in our
audits (e.g., more numerics and access controls, fewer data validation findings),
there were no new categories, and all of our categories were present (though
ChainSecurity found no race conditions). Reentrancy was not, as previous lit-
erature might lead one to suspect, a prominent source of high-low problems, or
even a very common problem, and there was only one high-low reentrancy.

6 Conclusions

Understanding how best to protect high-value smart contracts against attack-
ers (and against serious errors by non-malicious users or the creators of the
contract) is difficult in the absence of information about the actual problems
found in high-value smart contracts by experienced auditors using state-of-the-
art technologies. This paper presents a wealth of empirical evidence to help
smart-contract developers, security researchers, and security auditors improve
their understanding of the types of faults found in contracts, and the potential
for various methods to detect those faults. Based on an in-depth examination of
23 paid smart contract audits performed by Trail of Bits, validated by a more
limited examination of public audits performed by ChainSecurity and Consen-
Sys Diligence, we conclude that 1) the literature is somewhat misleading with
respect to the most important kinds of smart contract flaws, which are more
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like flaws in other critical code than one might think; 2) there is likely a large
potential payoff in making more effective use of automatic static and dynamic
analyses to detect the worst problems in smart contracts; 3) nonetheless, many
key issues will never be amenable to purely-automated or formal approaches,
and 4) high-quality unit tests alone do not provide effective protection against
serious contract flaws. As future work, we plan to extend our analysis of other
companies’ audits to include unit test quality, and examine issues that cut across
findings categories, such as the power of ERC20 standards to help find flaws.

Appendix A: Raw Counts for Finding Categories

This table provides exact counts for categories, and severities within categories.
Severity Difficulty

Category # High-Low High Med. Low Info. Und. High Med. Low Und.
data validation 89 10 19 32 21 12 5 24 14 49 2
access controls 24 6 10 6 3 5 0 8 3 13 0
race condition 17 0 7 7 1 2 0 17 0 0 0
numerics 13 3 4 3 5 1 0 4 1 8 0
undefined behavior 13 3 4 2 4 1 2 2 1 10 0
patching 18 2 3 2 7 5 1 1 2 11 4
denial of service 10 1 2 3 3 2 0 5 0 4 1
authentication 4 1 2 1 1 0 0 2 0 2 0
reentrancy 4 0 2 1 1 0 0 2 1 0 1
error reporting 7 0 2 1 0 4 0 3 2 2 0
configuration 5 0 2 0 1 1 1 3 1 1 0
logic 3 0 1 1 1 0 0 3 0 0 0
data exposure 3 0 1 1 0 1 0 1 1 1 0
timing 4 1 1 0 3 0 0 3 0 1 0
coding-bug 6 0 0 4 2 0 0 1 0 5 0
front-running 5 0 0 4 0 1 0 5 0 0 0
auditing and logging 9 0 0 0 3 4 2 3 0 5 1
missing-logic 3 0 0 0 2 1 0 0 0 3 0
cryptography 1 0 0 0 1 0 0 1 0 0 0
documentation 4 0 0 0 1 2 1 0 0 3 1
API inconsistency 2 0 0 0 0 2 0 0 0 2 0
code-quality 2 0 0 0 0 2 0 0 0 2 0
Total 246 27 60 68 60 46 12 88 26 122 10

Appendix B: ChainSecurity and ConsenSys Audits

The process for analyzing findings in other companies’ audits involved 1) map-
ping the category of the finding to our set, and 2) translating a different formu-
lation of worst-case impact and probability estimation into our high-low severity
and difficulty classes. For more details see the full data set [27]. The first two
tables show severity and difficulty distributions. The first table in each pair of
tables is for ChainSecurity, and the second is for ConsenSys Diligence.
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Severity Difficulty
Category % High-Low High Med. Low Info. Und. High Med. Low Und.
access controls 24% 8% 28% 21% 45% 6% 0% 40% 26% 34% 0%
data validation 14% 3% 19% 28% 47% 6% 0% 47% 9% 44% 0%
logic 6% 7% 36% 50% 14% 0% 0% 29% 50% 21% 0%
numerics 9% 0% 10% 15% 75% 0% 0% 40% 20% 40% 0%
denial of service 5% 0% 17% 25% 58% 0% 0% 67% 33% 0% 0%
configuration 3% 14% 29% 29% 43% 0% 0% 71% 0% 29% 0%
authentication 2% 0% 50% 25% 25% 0% 0% 0% 75% 25% 0%
coding-bug 2% 20% 40% 0% 60% 0% 0% 20% 0% 80% 0%
missing-logic 4% 0% 13% 13% 63% 13% 0% 25% 0% 75% 0%
cryptography 1% 50% 50% 50% 0% 0% 0% 50% 0% 50% 0%
patching 7% 0% 7% 0% 73% 20% 0% 87% 13% 0% 0%
reentrancy 2% 0% 20% 0% 80% 0% 0% 80% 0% 20% 0%
documentation 4% 0% 13% 0% 50% 38% 0% 13% 13% 63% 0%
data exposure 0% 0% 100% 0% 0% 0% 0% 100% 0% 0% 0%
timing 5% 0% 0% 27% 64% 9% 0% 45% 27% 27% 0%
front-running 2% 0% 0% 25% 75% 0% 0% 75% 25% 0% 0%
auditing and logging 3% 0% 0% 14% 29% 57% 0% 14% 0% 86% 0%
error reporting 2% 0% 0% 25% 50% 25% 0% 0% 25% 75% 0%
undefined behavior 1% 0% 0% 50% 50% 0% 0% 50% 50% 0% 0%
API-inconsistency 2% 0% 0% 0% 100% 0% 0% 40% 0% 60% 0%
code-quality 3% 0% 0% 0% 50% 50% 0% 0% 0% 83% 0%
race condition 0% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Severity Difficulty
Category % High-Low High Med. Low Info. Und. High Med. Low Und.
access controls 10% 0% 35% 12% 47% 6% 0% 29% 29% 41% 0%
configuration 10% 6% 25% 13% 56% 0% 0% 56% 6% 31% 6%
front-running 4% 14% 57% 14% 29% 0% 0% 71% 14% 14% 0%
reentrancy 4% 14% 43% 43% 14% 0% 0% 57% 14% 29% 0%
coding-bug 6% 10% 30% 10% 50% 10% 0% 20% 10% 70% 0%
logic 8% 8% 15% 31% 54% 0% 0% 15% 23% 62% 0%
numerics 13% 5% 10% 14% 71% 5% 0% 52% 24% 24% 0%
data validation 6% 0% 10% 20% 70% 0% 0% 50% 20% 30% 0%
API inconsistency 2% 0% 25% 25% 50% 0% 0% 25% 0% 75% 0%
cryptography 1% 50% 50% 50% 0% 0% 0% 50% 0% 50% 0%
error reporting 3% 20% 20% 0% 80% 0% 0% 20% 0% 80% 0%
timing 2% 0% 25% 0% 75% 0% 0% 50% 0% 50% 0%
race condition 1% 0% 100% 0% 0% 0% 0% 100% 0% 0% 0%
missing-logic 11% 0% 0% 26% 68% 5% 0% 0% 11% 84% 0%
authentication 1% 0% 0% 100% 0% 0% 0% 50% 50% 0% 0%
denial of service 2% 0% 0% 67% 0% 0% 0% 0% 33% 33% 0%
documentation 2% 0% 0% 33% 33% 33% 0% 67% 0% 33% 0%
data exposure 1% 0% 0% 100% 0% 0% 0% 0% 0% 100% 0%
code-quality 7% 0% 0% 0% 82% 9% 0% 45% 9% 36% 0%
patching 3% 0% 0% 0% 80% 20% 0% 80% 0% 20% 0%
undefined behavior 1% 0% 0% 0% 50% 50% 0% 0% 0% 0% 100%
auditing and logging 3% 0% 0% 0% 0% 100% 0% 0% 0% 100% 0%

The next two tables show absolute severity and difficulty counts for finding
categories for other company audits, as in AppendixA.
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Severity Difficulty
Category # High-Low High Med. Low Info. Und. High Med. Low Und.
access controls 53 4 15 11 24 3 0 21 14 18 0
data validation 32 1 6 9 15 2 0 15 3 14 0
logic 14 1 5 7 2 0 0 4 7 3 0
numerics 20 0 2 3 15 0 0 8 4 8 0
denial of service 12 0 2 3 7 0 0 8 4 0 0
configuration 7 1 2 2 3 0 0 5 0 2 0
authentication 4 0 2 1 1 0 0 0 3 1 0
coding-bug 5 1 2 0 3 0 0 1 0 4 0
missing-logic 8 0 1 1 5 1 0 2 0 6 0
cryptography 2 1 1 1 0 0 0 1 0 1 0
patching 15 0 1 0 11 3 0 13 2 0 0
reentrancy 5 0 1 0 4 0 0 4 0 1 0
documentation 8 0 1 0 4 3 0 1 1 5 0
data exposure 1 0 1 0 0 0 0 1 0 0 0
timing 11 0 0 3 7 1 0 5 3 3 0
front-running 4 0 0 1 3 0 0 3 1 0 0
auditing and logging 7 0 0 1 2 4 0 1 0 6 0
error reporting 4 0 0 1 2 1 0 0 1 3 0
undefined behavior 2 0 0 1 1 0 0 1 1 0 0
API inconsistency 5 0 0 0 5 0 0 2 0 3 0
code-quality 6 0 0 0 3 3 0 0 0 5 0
Total 225 9 42 45 117 21 0 96 44 83 0

Severity Difficulty
Category # High-Low High Med. Low Info. Und. High Med. Low Und.
access controls 17 0 6 2 8 1 0 5 5 7 0
configuration 16 1 4 2 9 0 0 9 1 5 1
front-running 7 1 4 1 2 0 0 5 1 1 0
reentrancy 7 1 3 3 1 0 0 4 1 2 0
coding-bug 10 1 3 1 5 1 0 2 1 7 0
logic 13 1 2 4 7 0 0 2 3 8 0
numerics 21 1 2 3 15 1 0 11 5 5 0
data validation 10 0 1 2 7 0 0 5 2 3 0
API inconsistency 4 0 1 1 2 0 0 1 0 3 0
cryptography 2 1 1 1 0 0 0 1 0 1 0
error reporting 5 1 1 0 4 0 0 1 0 4 0
timing 4 0 1 0 3 0 0 2 0 2 0
race condition 1 0 1 0 0 0 0 1 0 0 0
missing-logic 19 0 0 5 13 1 0 0 2 16 0
authentication 2 0 0 2 0 0 0 1 1 0 0
denial of service 3 0 0 2 0 0 0 0 1 1 0
documentation 3 0 0 1 1 1 0 2 0 1 0
data exposure 1 0 0 1 0 0 0 0 0 1 0
code-quality 11 0 0 0 9 1 0 5 1 4 0
patching 5 0 0 0 4 1 0 4 0 1 0
undefined behavior 2 0 0 0 1 1 0 0 0 0 2
auditing and logging 5 0 0 0 0 5 0 0 0 5 0
Total 168 8 30 31 91 13 0 61 24 77 3

The final two tables report the estimated automated dynamic and static
analysis detection potential for the categories in the other companies’ audits.

Category % Dynamic % Static Category % Dynamic % Static
access controls 43% 6% reentrancy 60% 100%
data validation 31% 13% documentation 0% 0%
logic 50% 7% data exposure 0% 0%
numerics 80% 55% %63%63gnimit
denial of service 33% 25% front-running 0% 0%
configuration 29% 0% auditing and logging 0% 0%
authentication 50% 25% error reporting 100% 25%
coding-bug 100% 40% undefined behavior 0% 50%
missing-logic 63% 0% API-inconsistency 20% 20%
cryptography 50% 0% code-quality 0% 17%
patching 7% 73% race condition N/A N/A
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Category % Dynamic % Static Category % Dynamic % Static
access controls 18% 12% timing 25% 0%
configuration 31% 25% race condition 0% 0%
front-running 0% 0% missing-logic 47% 0%
reentrancy 100% 71% authentication 50% 0%
coding-bug 50% 10% denial of service 67% 0%

%8%26cigol documentation 0% 0%
numerics 95% 71% data exposure 0% 0%
data validation 20% 10% code-quality 9% 45%
API inconsistency 50% 25% patching 0% 60%
cryptography 100% 0% undefined behavior 0% 50%
error reporting 20% 40% auditing and logging 0% 0%
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Abstract. In this paper, we present the first large-scale and system-
atic study to characterize the code reuse practice in the Ethereum smart
contract ecosystem. We first performed a detailed similarity comparison
study on a dataset of 10 million contracts we had harvested, and then we
further conducted a qualitative analysis to characterize the diversity of
the ecosystem, understand the correlation between code reuse and vul-
nerabilities, and detect the plagiarized DApps. Our analysis revealed that
over 96% of the contracts had duplicates, while a large number of them
were similar, which suggests that the ecosystem is highly homogeneous.
Our results also suggested that roughly 9.7% of the similar contract pairs
have exactly the same vulnerabilities, which we assume were introduced
by code clones. In addition, we identified 41 DApps clusters, involving 73
plagiarized DApps which had caused huge financial loss to the original
creators, accounting for 1/3 of the original market volume.

Keywords: Code clone · Smart contract · Ethereum · Vulnerability

1 Introduction

Smart contracts, the most important innovation of Ethereum, provide the ability
to “digitally facilitate, verify, and enforce the negotiation or performance of a
contract” [45], while the correctness of its execution is ensured by the consensus
protocol of Ethereum. Such a courageous attempt has been approved by the mar-
ket, i.e., Ethereum’s market cap was around $14.5B on February 26th, 2019 [2],
the largest volume besides Bitcoin. As of this writing, roughly 10 million smart
contracts have been deployed on the Ethereum Mainnet.

Smart contracts are typically written in higher level languages, e.g., Solid-
ity [39] (a language similar to JavaScript and C++), then compiled to Ethereum
Virtual Machine (EVM) bytecode. As one of the most important rules on
Ethereum, “Code is Law”, means all executions and transactions are final and
immutable.
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(a) Original Fomo3D (b) Modified Fomo3D

DiviesInterface constant private Divies = \
    DiviesInterface(0xc7029...);
JIincForwarderInterface constant private Jekyll_Island_Inc = \
    JIincForwarderInterface(0xdd49...);
PlayerBookInterface constant private PlayerBook = \
    PlayerBookInterface(0xD60d...);
F3DexternalSettingsInterface constant private extSettings = \
    F3DexternalSettingsInterface(0x3296...);

string constant public name = "FoMo3D Long Official";
string constant public symbol = "F3D";
uint256 private rndExtra_ = extSettings.getLongExtra();     
uint256 private rndGap_ = extSettings.getLongGap();         
uint256 constant private rndInit_ = 1 hours;                
uint256 constant private rndInc_ = 30 seconds;              
uint256 constant private rndMax_ = 24 hours;     

PlayerBookInterface constant private PlayerBook = \
    PlayerBookInterface(0x8676...);

string constant public name = "imfomo Long Official";
string constant public symbol = "imfomo";
uint256 private rndExtra_ = 30;                            
uint256 private rndGap_ = 30;                              
uint256 constant private rndInit_ = 10 minutes;            
uint256 constant private rndInc_ = 60 seconds;             
uint256 constant private rndMax_ = 10 minutes;

Fig. 1. The original Fomo3D and a plagiarized contract from it.

As a result, one main characteristic of smart contracts is that a consider-
able number of them published source code to gain the users’ trust and prove
the security of their code, especially for the popular ones [22]. This feature is
more noticeable for Decentralized Applications (DApps for short, which consist
of one or more contracts). In general, their code base should be available for
scrutiny and governed by autonomy, distinguished from the traditional closed-
source applications that require the end users to trust the developers in terms
of decentralization as they cannot directly access data via any central source.

However, the open-source nature of smart contracts has provided convenience
for plagiarists to create contract clones, i.e., copying code from other avail-
able contracts. The impact of contract clones is two-fold. On one hand, the
plagiarists could insert arbitrary/malicious code into the normal contracts. A
typical example is the so-called honeypot smart contracts [26–28], which are
scam contracts that try to fool users with stealthy tricks. On the other hand, as
many smart contracts are suffering from serious vulnerabilities, the copy-paste
vulnerabilities would be inherited by the plagiarized contracts.

Here, we use Fomo3D [36] as a motivating example, which is a popular and
phenomenal Ponzi-like game. At its peak in 2018, Fomo3D had over 10, 000 daily
active users with a volume of over 40, 000 ETHs [35]. As a result, numerous
Fomo3D-like games sprang up with plagiarism behaviors by simply reusing the
source code of the original one. Unfortunately, some hackers had figured out the
design flaw of the airdrop mechanism in the original Fomo3D [25]. Consequently,
almost all the awkward imitators were exposed to those attackers. LastWinner,
one of the most successful followers of Fomo3D, was attacked and lost more than
5, 000 ETHs within 4 days [31]. Figure 1 shows a plagiarized contract example
originated from Fomo3D [35]. Interestingly, the vulnerable part was kept wholly
intact by the plagiarist, but all the dependent contracts, and some arguments
like round timer and round increment, were modified to make it appear as a
brand new game as shown in Fig. 1.

This Paper. We present a large scale systematic study to characterize the code
clone behaviors of Ethereum smart contracts in a comprehensive manner. To
this end, we have collected by far the largest Ethereum smart contract dataset
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with nearly 10 million smart contracts deployed between July 2015 to December
2018. To address the scalability issues introduced by the large scale dataset, we
first seek to identify the duplicate contracts by removing code from unrelated
functions (e.g., creation code and Swarm code), and tokenizing the code to keep
opcodes only. After the pre-processing step to remove duplicate contracts, the
dataset has been shrunk to less than 1% of the original size. For the remain-
ing 78, 611 distinct contracts, we take advantage of a customized fuzzy hashing
approach to generate the fingerprints and then conduct a pair-wise similarity
comparison. Specifically, we adopt a pruning strategy to discard “very different”
contracts by comparing the meta features (e.g., length of opcode), to accelerate
the comparison procedure. Based on a similarity threshold of 70, we are able to
identify 472, 663 similar smart contract pairs (with 47, 242 contracts involved)
for user-created contracts, which suggested that over 63.29% of the distinct user-
created contracts have at least one similar contract in our dataset.

Then, we further seek to understand the reasons leading to contract clones
and characterize their security impacts.

(1) The Reasons Leading to Contract Clones. Over 60% of the distinct
contracts were grouped into roughly 10 K clusters, while the cluster distribution
follows a typical Pareto principle. Top 20% of the clusters occupied over 60%
of the distinct contracts. With regard to the whole dataset including all the
duplicates, the top 1% of the clusters account for 95% of the contracts. ERC20
token contracts, ICO and AirDrop, and Game contracts are the most popular
clusters. A large number of similar contracts were created based on the same
template (i.e., ERC20 template). We have manually summarized a list of 53
common templates used in the Ethereum smart contract ecosystem. This result
reveals the homogeneity nature of the smart contract ecosystem.

(2) Vulnerability Provenance. Copy-paste vulnerabilities were prevalent in
most popular software systems. Here, we study the relationship between con-
tract clones and the presence of vulnerabilities, from two aspects. First, we
scanned all the unique contracts using a state-of-the-art vulnerability scan-
ner [37]. Over 20, 346 distinct smart contracts (27.26%) contain at least one
vulnerability. Considering the large number of duplicates, we were able
to identify tenfold vulnerable contracts (205, 010). Then, for the distinct
contracts, as a number of them have similar code, we further compare whether
they were exposed to similar vulnerabilities. Overall, our results suggest
that roughly 9.7% of the similar contract pairs have exactly the same
vulnerabilities, which we assume were introduced by code clones.

(3) Plagiarized DApps. As a DApp is more complicated than a smart con-
tract, i.e., one DApp could include one or more contracts, thus we further study
the similarity between DApps, seeking to identify the plagiarized ones. Using a
bipartite graph matching approach, we identified 41 DApp clusters, involving 73
plagiarized DApps. The plagiarized ones have caused huge financial loss
to the original creators, accounting for 1/3 of the original volume.
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To the best of our knowledge, this is the first systematic study of code clones
in the Ethereum smart contract ecosystem at scale. Our results revealed the
highly homogeneous nature of the ecosystem, i.e., code clones are prevalent,
which helps spread vulnerabilities and makes it easier for plagiarists. Our results
motivated the need for research efforts to identify security issues introduced by
copy-paste behaviors. Our efforts can positively contribute to the smart contract
ecosystem, and promote the best operational practices for developers.

2 Background

2.1 Ethereum

External Owned Account vs. Contract Account. The basic unit of
Ethereum is an account and there are two types of accounts [21]: External Owned
Account (EOA) and Contract Account. An EOA is controlled by private keys
that are externally owned by a user. More importantly, there is no code asso-
ciated with it. One can send messages from an EOA by creating and signing a
transaction. On the contrary, a contract account is controlled by its associated
contract code, which might be activated on receiving a message.

User-Created Contract vs. Contract-Created Contract. Smart contract
can be created either by users, or by existing contracts. In this paper, we fol-
low the terminology “user-created contract” and “contract-created contract”
adopted by Kiffer et al. [60] to distinguish these two types of creations.

Decentralized Applications (DApps). Ethereum aims to create an alter-
native protocol to build DApps [34], which are stored on and executed by the
Ethereum system. Specifically, a DApp is a contract or a collection of contracts
that have an interface on the Internet, typically a website or a browser game,
which could be interacted by players or users directly. A number of websites
emerged to host DApps lists [15–17].

2.2 Ethereum Virtual Machine (EVM)

EVM is the runtime environment for smart contracts. Specifically, a sandboxed
virtual stack machine is embedded within each full Ethereum node, responsible
for executing contract bytecode with a 256-bit register stack [20]. Its operators
and operands are all pushed onto the stack indistinguishably, except for data
that require persistent storage space. Therefore, all the immediate numbers and
data to be used by the operation code will be pushed onto the stack.

Generally, developers implement their smart contracts with the Solidity lan-
guage, then build the source code using the Solidity compiler, a.k.a. solc, to
generate the EVM bytecode. A typical EVM bytecode is composed of three
parts: creation code, runtime code and swarm code, as shown in Fig. 2.

Creation code is only executed by EVM once during the transaction of
the contract deployment. It determines the initial states of the smart contract
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pragma solidity ^0.4.24;

library SafeMath {
    function add(uint a, uint b) internal 
    pure returns (uint c) {
        c = a + b;
        require(c >= a);
    }
    ...
}

contract helloWorld {
    using SafeMath for uint;
    
    function doSimpleMath 
    (uint a, uint b) public pure
    returns (uint) {
        uint c = a.add(b);
        return c;
    }
}

000 PUSH1 80
002 PUSH1 40
004 MSTORE
...
030 RETURN
031 STOP
032 PUSH1 80
034 PUSH1 40
036 MSTORE
...
454 JUMP
455 STOP
456 LOG1
457 PUSH6 627a7a723058
464 SHA3
...
488 INVALID
489 PUSH11 4351d018b76b210029

000 PUSH1 80
002 PUSH1 40
004 MSTORE
...
030 RETURN
031 STOP

032 PUSH1 80
034 PUSH1 40
036 MSTORE
...
454 JUMP
455 STOP

456 LOG1
457 PUSH6 627a7a723058
464 SHA3
...
488 INVALID
489 PUSH11 4351d018b76b210029HelloWorld.sol compiled bytecode

creation code

runtime code

Swarm code

solc

Fig. 2. An example of Helloworld.sol and its corresponding bytecode.

being deployed and returns a copy of the runtime code. It usually end with the
sequence: PUSH 0x00, RETURN, STOP, corresponding to 0x6000f300 (cf. Fig. 2).

Runtime code is the most crucial part, including function selector, function
wrapper, function body and exception handling. Based on the corresponding
operations, EVM will execute runtime code accordingly. Besides, in order to
label jumping destinations of the function selector, solc sorts functions by their
signatures, i.e., the leading 4 bytes of the SHA-3 hashes of function declarations
with a well-defined format [38]. Accordingly, adding new functions or deleting
existing ones will not affect the relative order of the remaining functions.

Swarm code is not served for execution purpose. Solc uses the metadata of a
contract, including compiler version, source code and the located block number,
to calculate the so-called Swarm hash, which can be used to query on Swarm, a
decentralized storage system, to prove the consistency between the contract you
see and the contract being deployed, namely what you see is what you get. As
a result, re-deploying a smart contract would result in a different swarm code,
even with the same creation code and runtime code. Swarm code always begins
with 0xa165, i.e., LOG1 PUSH 6. The following six bytes are 0x627a7a723058,
whose leading four bytes can be decoded as “bzzr”, the Swarm’s URL scheme.
Furthermore, Swarm code always ends with 0x0029, which means the hash part
length between 0xa165 and 0x0029 is 41 bytes long. In short, we are able to
identify the swarm code quickly and precisely based on those hard-coded bytes.

3 Methodology

Overall Process. We summarize our approach in Fig. 3. The pipeline starts
with the dataset with nearly 10 million smart contracts we have collected. We
first seek to remove duplicate smart contracts to reduce the computational work-
load in two steps: 1) removing the creation and Swarm code parts, which are not
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Fig. 3. An overview of our approach on smart contract similarity comparison.

useful for analyzing; 2) removing all assigned values in assignment statements
and function calls. To this end, the smart contracts were scanned for tokeniza-
tion by generating token hashes, which allow us to capture subtle differences of
the clones. After that, for the remaining contracts with distinct token hashes,
we take advantage of a customized fuzzy hashing approach to generate the fin-
gerprints. Lastly, we enforce a pair-wise comparison strategy with pruning to
achieve scalability. The output of the whole analysis pipeline is a set of contract
clone pairs with the corresponding similarity scores. Note that the output results
will be further correlated with our in-depth analysis in Sect. 5, including contract
clustering, vulnerability provenance and DApps plagiarism detection.

In this paper, we did not rely on heavy-weight methods such as comparing
the control-flow graph (CFG) and program dependency graph (PDG), mainly
due to two reasons. First, our approach should be scalable. Second, the simplic-
ity of smart contracts and EVM bytecode, i.e., the relatively simple logic and
function invocations, makes it unnecessary to adopt those heavy approaches. To
the best of our knowledge, we did not even identify smart contracts with heavy
obfuscation. We evaluate the effectiveness of our approach in Sect. 4.

3.1 Pre-processing

The purpose of pre-processing is two-fold: first identifying the duplicate con-
tracts, and then tokenizing contracts for further comparison.

As we mentioned, creation code and Swarm code have nothing to do with
similarity calculation. Fortunately, they can be easily identified and removed
from the bytecode. Afterwards, we use a hash set to guarantee the uniqueness of
the remaining contracts in terms of runtime code. Secondly, to enable fast and
accurate fingerprint generation, we further remove all the immediate numbers
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Safemath in HelloWorld.sol

UnSafemath in ModifiedHelloWorld.sol

Fingerprint of original

Fingerprint of modified

Similarity Score: 88.0

Fig. 4. An example of fingerprint generation and similarity comparison.

after opcode PUSH to eliminate the interference of operands. Again, we use a
hash table to guarantee the uniqueness of the remaining contracts. In this way,
we obtain a minimized database with little feature lost for similarity detection.

3.2 Generating Fingerprint

Calculating the edit distance between two given sequences is a well-known way
to measure their similarity. In this work, we use a fuzzy hashing technique [61] to
condense the original bytecode to a much shorter fingerprint and then calculate
the edit distance between two fingerprints. Unlike traditional hash functions,
fuzzy hashing first divides the bytecode sequence into smaller pieces, then uses
a piece-wise hash function to perform the calculation for each piece and finally
concatenates those generated piece-wise hashes to form a fingerprint. Suppose
someone modifies one particular function, all the related pieces would generate
different piece-wise hashes with the original ones, but the other pieces were not
affected at all. In short, fuzzy hashing has advantages of accurate representation
and less computing-time consumption.

However, there still exists challenges to determine the boundary of each piece.
Previous work chooses a boundary randomly or simply divides the sequence by
a pre-defined step (e.g., seven bytes) [40]. Nevertheless, a smart contract is not
just a piece of plain-text. It has semantic meaning. To address the challenge, we
propose a customized fuzzy hashing algorithm, which is capable of segmenting
smart contracts precisely to generate feasible piece-wise hashes.

Customized Fuzzy Hashing. After investigating the bytecode and its execu-
tion procedure in EVM, we identify the runtime code that can be further divided
into several sub-sequences to perform a basic block level analysis. In Solidity,
opcodes JUMP, JUMPI, REVERT, STOP, RETURN are the indicators of the interrup-
tion of logical relationship, and these opcodes often mean that the current block
should be terminated in building the control flow graph (CFG). Furthermore,
as we mentioned in Sect. 2, runtime code always keeps the order of function
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selector, function wrapper, etc., and maintains the relative order between func-
tions. After dividing, the piece-wise hash function will be applied on each of the
blocks to generate a four byte hexadecimal digest and then mapped to a base-64
character after modulo 64. Finally, a fingerprint is generated by concatenating
these characters (cf. Algorithm 1 in Appendix and Fig. 4).

3.3 Similarity Comparison

At this stage, we are able to perform pair-wise comparison to characterize the
similarity between contracts. Since pair-wise comparisons are computationally
expensive (billions of comparisons), we propose a pruning strategy here to tackle
the problem. Intuitively, similar contracts should share similar attributes with
minor modifications (opcode length in particular). If two contracts are “very
different” in the opcode length, we will stop comparing the fingerprints and
mark them as dissimilar. In our implementation, if more than 30% attributes of
two smart contracts are different, the comparison process will stop.

For each contract pair, we calculate the edit distance between the fingerprints,
and then map it to a similarity score in the range of 0 to 100, as follows:

similarityScore =
[
1 − distance

max(len(fp1), len(fp2))

]
∗ 100 (1)

Figure 4 shows an example of the fingerprints we generated for HelloWorld.sol
and its modified version, respectively. In the modified version, we have removed
the require statement of the SafeMath library, which may lead to an overflow
vulnerability. The difference between these two fingerprints is highlighted. Obvi-
ously, only a few characters within the fingerprint have changed, and the simi-
larity score calculated by our approach is 88.0.

4 Quantitative Analysis

In this section, we focus exclusively on quantitative analysis, which provides
some straightforward but interesting findings we observed before we perform
more detailed analysis in Sect. 5.

4.1 Dataset

We have collected by far the largest smart contract dataset at the time of writing,
covering almost 10 million smart contracts deployed on the Ethereum Main-
net from July 30th, 2015 to December 31st, 2018. As shown in Table 1, only
2.1 million contracts are user-created, and the number of contract-created con-
tracts is four times greater than user-created ones. They were owned by 124, 015
accounts, including 94, 307 for the user-created contracts and 29, 708 for the
contract-created contracts.
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Table 1. An overview of the dataset before and after pre-processing.

Contract type
# Contracts (#

Owned Accounts)
After Swarm code

removing
After push arguments

removing

user-created 2,121,745 (94,307) 105,258 74,647
contract-created 7,729,012 (29,708) 4,539 3,964

4.2 Pre-processing

The pre-processing step is helpful in removing duplicates. It turns out that
the proportion of contracts to be analyzed has been shrunk dramatically to
0.798%(78, 611/9, 850, 757) of the original dataset we collected. Especially for
the contract-created contracts, only 3, 964 distinct contracts remained.

To figure out the reason for the huge number of duplicates, we first grouped
the duplicated contracts into clusters, and then analyzed the distribution of those
clusters (cf. Figure 8 in Appendix.) We list the top 10 contracts with the most
duplicates in Table 2. It shows that the top 10 clusters represent the majority of
the user-created contracts (62.37%) and the contract-created contracts (82.26%).

After further investigation, we found that most of the user-created contracts
belonged to transfer wallets. The transfer wallet can be used in different
ways, e.g., avoiding regulation by initiating multiple and multilevel small trans-
fers, which splits a large balance from one account to several seemingly irrele-
vant accounts. Some contracts are regarded as forwarders (the contract name),
which are not wallets but might be functionally similar to those transfer wallets
in some way, such as transferring ETHs or tokens. Note that there are forwarders
in contract-created contracts as well. Besides, some of the other duplicated con-
tracts are controlled by exchanges, e.g., Poloniex [24], to manage issued tokens,
such as Golem [44] and Storj [41].

As for the contract-created contracts, some clusters are owned by the Bittrex
exchange [23]. More interestingly, the second largest cluster is a token issued by
Gastoken [43], which allows users to make profits by tokenizing gas based on the
refund mechanism on storage in Ethereum. We also found lots of Proxy con-
tracts, which were used to redirect all incoming message calls to other deployed
contracts. In addition, many contracts belong to ENS [19] (Ethereum Name Ser-
vice), a naming system based on the Ethereum Blockchain. Finally, there are two
interesting groups related to CryptoMidwives [4], which are a kind of contracts
aiming to get profit from ‘CryptoServices’ (i.e., CryptoKitties-like games).

4.3 Similarity Comparison

For all the original 10 million smart contracts, it would be unfeasible for us to
perform pair-wise comparison. Taking advantage of our pruning strategies, we
are able to narrow down the contract pairs by almost four orders of magnitude,
which greatly reduces the burden on similarity comparison.

The Distribution of Similarity Score. With our pruning strategies, over
308 million user-created contract pairs and 1.2 million contract-created pairs
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Table 2. Top 10 contracts with the most number of duplicates.

User-created contracts Contract-created contracts
# Duplicates Use # Duplicates Use

390,020 Transfer wallet 1,619,511 Bittrex wallet
306,600 Transfer wallet 1,284,440 Gastoken
125,929 Transfer wallet 776,441 Bittrex wallet
123,787 Transfer wallet 544,834 Proxy
89,134 Transfer wallet 540,094 Proxy
85,782 Transfer wallet 511,894 Forwarder
68,297 Token manager of Poloniex 420,822 ENS
59,543 Token-only forwarder 277,380 CryptoMidwives
37,628 Transfer wallet 196,260 CryptoMidwives
36,625 Token manager of Poloniex 185,889 Forwarder

(a) Distribution of user-created
contracts similarity score

(b) Distribution of contract-created
contracts similarity score

Fig. 5. The distribution of similarity scores for smart contract pairs.

were compared, and Fig. 5 shows the distribution of similarity scores. Roughly
90% of the contract pairs have similarity scores less than 40, while only a small
percentage of contract pairs have similarity scores higher than 70, among them
are 0.153% of user-created contracts and 0.879% of contract-created contracts.
In addition, 300 contract pairs have the highest similarity score, i.e., 100.

Determining the Threshold. First, for smart contract pairs with similarity
score at different ranges (e.g., [50, 60) and [60, 70)), we randomly samples 100
pairs each range (1,100 pairs in total). Note that, to better get the ground truth,
we select only the smart contract pairs with source code available. The first two
authors performed manually comparison of the source code to label the ground
truth. In this way, we could measure the accuracy of our approach at different
thresholds. It is interesting to observe that, with a threshold of 80, our approach
could achieve a precision of 100%, while with only 66% of recall. With a threshold
of 60, our approach could achieve a recall rate of 96%, while with only 86% of
precision. As a result, we empirically found that 70 is a good indicator to achieve
the balance, with 97.5% of precision and 88% of recall at this threshold. It is
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also the reason why we propose a prune strategy (cf. Section 3.3) to discard the
different smart contract pairs. Note that, this threshold is inline with other fuzzy
hashing based code clone detection studies [56,75].

In the end, 472, 663 user-created contracts pairs (with 47,242 contracts
involved) and 11, 161 contract-created contracts pairs (with 2,409 contracts
involved) were considered to be similar.

5 Qualitative Analysis

Our previous observations suggest that over 96.07% of user-created contracts
and 99.97% of contract-created contracts have duplicates, and a large number
of contract pairs were similar. In this section, we delve deeper into qualitative
evaluation. We first seek to cluster the distinct contracts into groups based on
their similarity scores, for which we try to understand the reasons leading to
contract clones and study the diversity of the ecosystem (e.g., what are these
contracts?). Then we propose to explore the correlation between code clones and
vulnerabilities, i.e., whether code clones lead to the spread of vulnerabilities. At
last, we try to identify the DApp Clones in the wild and measure their impact.

5.1 Clustering Smart Contracts

The Clustering Approach. Here, we use a simple but effective approach to
cluster these contracts based on their similarity scores. Specifically, we cluster
any contract pair whose similarity score is 70 or higher. Therefore, we are able
to build a weighted undirected graph by treating each contract as a node.
There will be an edge between two nodes if their similarity score (i.e., weight)
is larger than or equal to 70. Then, we traverse the graph and consider each
connected component as a cluster. To sum up, only unique contracts are used
to construct the graph, and only contracts with edges whose weights are higher
than 70 can be regarded as a connected component to form a cluster.

Clustering Result. We apply the clustering approach on user-created contracts
and contract-created contracts, respectively. The results are presented in Fig. 6,
which follows a long-tail distribution. For user-created contracts, over 63.29% of
them were clustered into 9,971 clusters, with 27,405 isolated nodes. For contract-
created contracts, 60.77% of them were clustered into 2,409 clusters.

We further investigate whether these clusters follow the Pareto principle
(i.e., the 80/20 rule). The results suggest that the distribution of clusters follows
a typical Pareto Effect after cluster size based normalization, as shown in
Fig. 7. For the distinct contracts, the top 20% of the clusters account for 60%
of the contracts. With regards to all the contracts, including all the duplicates,
the top 1% of the clusters account for over 95% of the contracts (95.24% and
95.30% for the user-created and contract-created contracts, respectively).

What are These Smart Contract Clusters? Table 3 lists the top 10 clusters
for user-created contracts and contract-created contracts. We manually went
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(a) Clustering result for user-created contracts (b) Clustering result for contract-created contracts

Fig. 6. The distribution of clusters.

(a) CDF for user-created contracts (a) CDF for contract-created contracts

Fig. 7. CDF of smart contracts according to cluster sizes.

through these clusters and labelled them according to their functionalities. Each
type of contracts has its own characteristic functions, e.g., refund and deposit,
airdrop and distribution, transfer and so on. Our exploration suggests that the
largest clusters mainly fall into the following categories:

(1) ERC-20 Clusters. ERC-20 related contracts take the majority of popular
clusters. We successfully identified a number of ERC-20 clusters, which might
derive from different solc versions, as new versions of solc may bring in new
opcodes; or more importantly, from different ERC-20 templates, as a result of dif-
ferent implementations of revisions of ERC-20 standard (e.g., OpenZeppelin [42]
libraries). By manually analyzing the top 100 clusters, we have compiled a list of
53 different templates that were widely used in smart contracts. Note that the
similar contracts created by these templates were not necessarily plagiarized.

(2) Game Contracts. Many popular clusters are game contracts. The largest
game cluster is Fomo3D-like contracts. Due to the popularity of Fomo3D,
numerous developers just copied and pasted the original open-source contracts to
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Table 3. Top 10 clusters for both user-created and contract-created contracts.

User-created contracts Contract-created contracts
Size (with dup) Usage Size (with dup) Usage

3,338 (15,713) ERC-20 token 382 (1,799) ERC-20 token
2,293 (19,263) ERC-20 token 295 (1,983) ERC-20 token
1,596 (11,737) ERC-20 token 76 (1,210) ERC-20 token
1,155 (6,174) ERC-20 token 43 (209) ICO
1,022 (6,466) ERC-20 token 28 (223) ICO
724 (4,494) ERC-20 token 20 (571) Airdrop Exploit
662 (2,418) ERC-20 token 18 (39) ERC-20 token
343 (1,054) Other contract 16 (30) ITO
278 (972) ERC-20 Token 15 (922) Airdrop Exploit
253 (509) Fomo3D-like game 13 (20) Exchange wallet

create similar games. Besides Fomo3D, other popular games such as PoWH3D [12]
and CryptoKitties [3], have contract clones as well.

(3) ICO and Airdrop Exploit Contracts. ICO [29] stands for Initial Coin
Offering, the cryptocurrency equivalent of IPO (Initial Public Offering). It is a
way for crypto startups to raise money by selling tokens. ICO has experienced
an explosive growth since 2017 [32] (and the bubble burst at the end of the third
quarter 2018), which explains why a vast number of such contracts were deployed
during this period. In terms of Airdrop Exploit contracts [18], attackers have to
create large numbers of these contracts to win the ‘race of exploitation’.

(4) Other Contracts. We also observed that there do exist some short con-
tracts with extremely simple operations, e.g., a pair of getter and setter, fetching
data from storage, etc.. Such contracts were grouped into clusters as well.

Observation-1: Although millions of contracts were deployed on Ethereum, most
of them were duplicates and share same/similar code and functionalities, which

suggested the homogeneous nature of the ecosystem.

5.2 Vulnerability Provenance

We then seek to explore the correlation between code clones and security vul-
nerabilities in two ways. First, we want to measure the vulnerability introduced
by duplicate contracts, i.e., the original contracts are suffering from vulnerabil-
ities, and other duplicate contracts (with same hash values) would inherit the
vulnerabilities. Then, for the distinct contracts that were very similar, we seek to
measure whether they have the same vulnerabilities introduced by code clones.

Vulnerability Detection. To identify security vulnerabilities, we take advan-
tage of a state-of-the-art tool [37] developed by PeckShield. It is a bytecode level
static analysis framework composed of multiple program analysis techniques,
including control flow analysis, data flow analysis and symbolic execution. We
focus on 7 types of vulnerabilities that might cause damages with real impact,
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Table 4. Distribution of vulnerability similarity across similar contract pairs.

Same Vul behaviors Different Vul Behaviors

Neither is
vulnerable

Both are
vulnerable

One is
vulnerable

Both are
vul & overlapped

Both are
vul & not
overlapped

Same author 26,570 3,813 6,368 1,678 247
Different author 180,101 42,368 143,146 58,338 10,034

Total 206,671 46,181 149,514 60,016 10,281

including (1) reentrancy, (2) overflow, (3) cross-function race condition, (4) mis-
matched constructor, (5) ownership takeover, (6) manipulable suicide address
and (7) ERC-20 related vulnerabilities. As it is not the emphasis of this paper,
we will use the results directly without giving technical details of the tool.

Vulnerable Duplicate Smart Contracts. We have scanned all the distinct
contracts, including 74, 647 user-created and 3, 964 contract-created contracts.
It is interesting to see that, although only 25 K distinct user-created contracts
were vulnerable, considering all the duplicate contracts, we have identified over
1.2 million vulnerable contracts. As for the contract-created contracts, the result
is more striking. Only 51 unique contract-created contracts were vulnerable, but
we have identified over 2.2 million vulnerable contracts when we consider all the
duplicates. This result suggests that a large number of duplicate contracts would
suffer from the vulnerability issues inherited from the original contracts.

Copy-Paste Vulnerabilities. Then, we try to measure the copy-paste vulner-
abilities from those similar contract pairs (with different hash values). For the
472 K similar pairs we identified (with scores over 70), we measure the similarity
in vulnerabilities between them, i.e., whether they share the same types of vul-
nerabilities and the same number of vulnerabilities. For contracts that share both
the same types and same number of vulnerabilities, we will mark them as having
exactly the same vulnerability behaviors. Note that, we further differentiate the
authors of the contracts to determine whether the contract pairs are code clones
between different authors or the re-deployment from the same author. As shown
in Table 4, we have classified the results into two general categories.

Same Vulnerability Behaviors. Over 53% of similar contract pairs have the
same vulnerability behaviors. Over 46 K contract pairs share the same vulnera-
bilities, and over 90% of them were created by different authors. This indicates
that when someone copied the code, he/she did not know that the original con-
tracts were vulnerable, and thus inherited the same vulnerabilities.

Different Vulnerability Behaviors. Over 46% of the similar contract pairs
have different vulnerability behaviors. For over 149 K contract pairs where only
one contract is vulnerable, roughly 96% of them were created by different
authors. It indicates that when the authors copy and paste the code, they may
have identified the vulnerabilities and thus patched them. Another scenario to
explain this is that their modification of the original contracts may introduce
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new security vulnerabilities. Besides, over 12% of the similar contract pairs were
found sharing vulnerabilities, which could also be introduced by code reuse.

Case Study. Here, we use the Fomo3D-like game contracts as a case study. We
have identified 253 distinct contracts belonging to this cluster. As the original
Fomo3d game suffers from the “Airdrop Vulnerability [1]”, over 80% (213 out of
253) of its contract clones also share the same vulnerability.

Observation-2: Copy-paste vulnerabilities were prevalent in the smart contract
ecosystem, duplicate contracts and similar contract would inherit security issues

from the original vulnerable ones.

5.3 Clone Detection of DApps

As Ethereum DApps are usually open-source, the plagiaristic behaviors could
also be widespread. Different from the normal smart contracts, a DApp may
consist of one or more smart contracts. To measure the extent of similarity
between DApps, we proposed an advanced similarity detection method.

Definition. Here, we use the term DApp Clones to describe the scenario where
two DApps deployed by different authors share the similar core functionalities.
We use the accounts to differentiate the authorship. As a large number of smart
contracts were created on top of templates, thus we will first eliminate the impact
introduced by the templates based on the list we labelled in Sect. 5.1.

Approach. For a given DApp pair, we first construct a weighted bipartite graph
for them, and conduct bipartite graph matching on the graph. A bipartite graph
is a graph whose vertices (contracts) can be divided into two disjoint sets U
and V, such that every edge connects a vertex in U to one in V, i.e., U and V
are independent sets. Here, we will calculate the similarity score between con-
tracts and take the score as the weight of the corresponding edge. Specifically,
we take advantage of the Kuhn–Munkres algorithm [30] to identify the maxi-
mum matching - a set of the most edges with the following two properties: 1)
no two edges share an endpoint; 2) the weight of edges must be guaranteed
to be the highest. Therefore, we are able to calculate the similarity between
DApps with more than one contract. As the calculation is not commutative,
i.e., Sim(DApp1,DApp2) �= Sim(DApp2,DApp1), we keep the higher one as
the final score.

Result. We have made our best efforts to collect 2, 533 DApps from well-known
DApp browsers [15–17]. We also crawled related metadata, e.g., category, vol-
ume, and the deployed time. Based on the definition of DApp clones, we have
successfully identified 127 DApp clone pairs with 114 distinct DApps in total.
We further grouped them into 41 clusters by leveraging the approach mentioned
in Sect. 5.1. The results are shown in Fig. 9 (cf. Appendices).

Impact. To measure the impact of DApp Clones, we decided to take the his-
torical volume as the indicator to identify the potential financial losses. Even
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worse, the high volume often means an active market which might attract more
capital inflows, thus it would cause more damage to the original authors.

In particular, we first analyzed all these 41 clusters and treated the earli-
est deployed DApp as the original one. Thus, we have 41 original DApps, and
73 plagiarized DApp clones in our dataset. Then we calculated the differences
between the original volume and the plagiarized volumes.

The overall volume of the 41 original DApps is 304, 797.344 ETH, while
the volume of the 73 DApp clones reaches 89, 565.321 ETH (more than USD
19 million on Sep 21, 2019, around 30% of the original market. The figures
are diverse across the clusters by examining those clusters individually. For 18
out of the 41 clusters, the volumes of the clones are higher than those of the
corresponding original DApps, with some clones attracting two to three times
more volumes than the original. In Table 5 (cf. Appendices), we summarized the
statistics for the top 10 clusters in Fig. 9.

Observation-3: DApp clones caused great financial losses to the original DApps,
which exposed a contradiction between copyright protection and the open-source

nature of the Ethereum ecosystem.

6 Related Work

Characterizing the Blockchain Ecosystem. Several work have already been
published to measure the Blockchain ecosystem [50,57,67,68,73]. For example,
Chen et al. characterized money transfer, contract creation and contract invo-
cation of Ethereum based on graph analysis [50]. Some researchers focused on
financial activities, including the Ponzi scheme [51] and ICO behavior [55] These
studies may have a correlation with part of our work, however, our work is the
first systematic attempt to study contract clone phenomenon and its impact.

Program Analysis of the Smart contracts. Based on program analysis
techniques (e.g., symbolic execution and formal verification), several frameworks
have been proposed to detect vulnerabilities in contracts [33,58,66,71]. Some
other studies were focused on topics including reverse engineering [76], detecting
gas-costly patterns [49], automatically creating exploits [62], etc. However, none
of them performed a comprehensive study on the vulnerability provenance.

Code Clone Detection. Code clone detection techniques have been studied
extensively for dozens of years, including text-based techniques [63,69], token-
based techniques [46,47,59,64], counting-based techniques [74], and syntactic
approaches [48,52,70], etc. These techniques were also widely explored in related
domains, such as mobile app repackaging detection [53,54,72,75]. In this work,
we take advantage of a customized fuzzy hashing technique [61], which is both
light-weight and effective. A limited number of studies have explored code cloning
in smart contracts. For example, Kiffer et al. identified substantial code reuse in
Ethereum [60]. Furthermore, Liu et al. proposed ECLONE [65], which is able to
detect semantic clones for smart contracts. However, none of them have measured
the ecosystem in large-scale, and characterized their security impacts.
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7 Concluding Remarks and Future Work

We present the first systematic attempt to characterize the code clone phe-
nomenon in the Ethereum ecosystem. By analyzing the 10 million contracts, we
have revealed the homogeneity nature of the ecosystem. We discovered and mea-
sured the security impacts of contract clones, e.g., helping spread the security
vulnerabilities and causing financial losses to the original DApps authors, etc.

There are a number of future lines of work we will explore. First, the thresh-
old used to identify contract clones can be improved by adopting adaptive
approaches. Second, we may have coverage issues on manually labelling the con-
tract templates, which can be alleviated by exploring some advanced techniques.
Lastly, part of our findings, such as those economic intensive phenomena in the
Ethereum ecosystem, deserve more focused studies. Nonetheless, we believe our
efforts and observations could positively contribute to the community and pro-
mote the best operational practices for smart contract developers.
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8 Appendices

8.1 Fingerprint Generation Algorithm

The detailed fingerprint generation algorithm is shown in Algorithm 1.

Algorithm 1. Generating the fingerprint for smart contract.
Input: bytecode of arbitrary contract
Output: Fingerprint fp
Description: pc - character representing current piece, ph - the piece hash, tv - trigger
value, b64map - mapping integer to base64 character

1: procedure GenerateFp(bytecode)
2: InitTriggerValue(tv)
3: InitBase64Map(b64map)
4: InitPieceCharacter(pc)
5: InitPieceHash(ph)
6: pieces ← CutOff(bytecode, tv)
7: for all piece from pieces do
8: UpdatePieceHash(ph, piece)
9: MapToPieceCharacter(pc, ph, b64map)

10: fp ← Concatenate(fp, pc)
11: InitPieceHash(ph)

12: return fp
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Fig. 8. The distribution of contract clusters grouped by opcode hash values.
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Fig. 9. Clustering results of 127 DApp clone pairs (114 unique DApps).

8.2 The Distribution of Contract Clusters Grouped by Opcode
Hash Values

Figure 8 shows the distribution of contract clusters grouped by opcode hash
values.

8.3 Clustering Results of the 127 Dapp Clone Pairs

Figure 9 shows the result of the clustering results of the 127 Dapp clone pairs
we identified.

8.4 Top Dapp Clone Clusters and Their Volumes

Table 5 lists the statistics of the top 10 Dapp clone clusters.
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Table 5. Top 10 Dapp Clone clusters and their volumes (ETH).

Original DApp # Clones
Original
volume

Plagiarized
volume

Ratio

CryptoCountries [5] 4 67,885.244 2.355 <0.01%
PoWTF [13] 4 331.074 1,012.649 305.87%

Po50 [10] 4 76.801 213.058 277.42%
Pepe Farm [9] 4 25.428 33.577 132.05%

Crypto Miner [7] 4 17,312.026 155.437 0.90%
PoWH 3D [12] 4 187,950.872 1,778.146 0.95%

CryptoTubers [8] 3 95.378 470.967 493.79%
PoHD [11] 3 242.607 5,867.961 2418.71%

Proof Of Craig Grant Coin [14] 3 642.056 94.315 14.69%
Crypto Gaming Coin [6] 3 4.711 555.142 11783.95%
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Abstract. We study blockchain-based integrity-protected smart con-
tracts as an implementation mechanism for municipal government pro-
cesses. To this end, we attempted a prototype implementation of such a
process in collaboration with a Danish Municipality. We find that such an
implementation is possible, despite the obvious confidentiality require-
ments, and that it does provide benefits: integrity guarantees, verifiabil-
ity, direct collaboration and payments between the parties. These ben-
efits come at the cost of latency, pr. transactions charges, immutability
of errors, and a very concerning single point of failure the municipal
government: losing blockchain private keys means losing control over
municipal government casework, with no recourse. Our municipal gov-
ernment partner felt that altogether no immediately pressing problem
was solved by the implementation, and that the latter risk clearly out-
weighed any benefits. We note that smart contract implementations of
government processes needs to be immutable and outside of the govern-
ment’s control when running; however, they also need to be updatable
when laws change, and provide an “out” for the rare case when errors in
the contract implementation result in unlawful behaviour. We propose
these conflicting requirements as a foundational research challenge for
blockchain to be applicable to governmental processes.

Keywords: Applications of blockchain · Electronic government ·
Smart contracts · Ethereum · Governmental processes

1 Introduction

Municipal governments in modern democracies exercise power over their citizens:
they decide who is or is not entitled to receive welfare benefits; which sports clubs
receive financial support, which parents are unfit for their role. This power is
checked by national or federal laws defining exactly how these decisions are made,
and appeals institutions providing redress to citizens who can prove that these
laws were violated. Even so, for society to function, the public must trust that
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municipal governments mostly do right; that decisions are fair and in accordance
with law; that appeals are mostly unnecessary, and that the successful appeal is
the rare exception.

In this paper, we investigate to what extent we can supplant trust in munici-
pal government with the integrity guarantees provided by smart contracts [3,18]
running on a blockchain [14,17]. We do so by experiment: In collaboration with
the Danish Syddjurs Municipality, we have constructed a prototype implemen-
tation of a specific social benefits process as an Ethereum smart contract. The
implementation is available online [2].

The process is defined by §42 in the Danish Law on Social Service [7], which
describes the circumstances under which parents are entitled to compensation
for earnings lost due to the caring for a child with a long-term illness. The
implementation revolves around an Ethereum smart contract which serves as an
intermediary between the citizen, the municipal government caseworker, and the
Appeals Board. This contract encodes (to an extent) the law: the caseworker
records in the contract that necessary steps, like procuring documentation or
conducting public hearings, has been taken; the contract does not allow decisions
until all such steps require by law have been concluded.

We conducted this case study in collaboration with the Danish Syddjurs
Municipality, who assisted us in both understanding the §42 process and in
evaluating the eventual prototype.

Our key findings are that it is possible to replace part of the trust in municipal
government with a smart contract while preserving the necessary confidentiality
requirements. Doing so provides transparency to both the citizen, incontrovert-
ible history for the appeals institution, and reduces the possibility for procedu-
ral errors by the municipal government, such as deciding upon a case without
having procured all law-mandated documentation. It allows for streamlining of
the process through semi-automated intervention by an appeals institution, and
potentially removes the possibility for the municipality to ignore a reversal on
appeal (which would otherwise have to be remedied in court).

Syddjurs Municipality expressed severe concerns that (a) the additional
integrity guarantees provide no real-world benefit; (b) it remains unresolved who
defines the smart contract and how it will be updated when the law changes;
and, most severely, (c) the contract introduces a single-point of failure: should
the municipal government leak the keys to the smart contract, they will have
lost control of their processes (and payouts) with no possible recourse. We con-
clude that addressing this dichotomy between on the one hand providing trust-
worthy immutable contracts, on the other requiring the ability to support (1)
constantly changing laws and (2) the reversal of outlier cases which were han-
dled in an unlawful manner is a significant research challenge for blockchain to
be applicable to governmental processes.

Related Work. Ours is not the first to study applications of blockchain technol-
ogy to governmental processes. Most notably, [23] considers such applications in
the abstract, proposing a number of possible applications and their trade-offs.
However, that paper does not consider the question of who controls the eventual
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update of smart contracts and treats the subject purely in theory, whereas in the
current paper we take an experimental approach. In [5] a case study of applying
blockchain technologies to governmental processes is presented. Along similar
lines, [6] provides an overview of a large set of ongoing governmental projects
that include the application of blockchain technologies. This paper provides an
analysis and discussion of the potential consequences of such projects for society
at large. The paper [15] provides a brief overview of existing academic litera-
ture related to blockchain technologies and discusses potential applications in
e-government, going in more detail on one proposed case study. Unlike the cur-
rent paper, this study is however hypothetical, with no actual implementation
to underpin it. For process management in general, opportunities and challenges
for blockchain was discussed in [12], and implementation of generic “process
engines” on Ethereum is well-studied [4,8,9].

Process. Our explorative case study proceeded as follows. Staff from the Syd-
djurs Municipality Digitalisation Office proposed the §42 process to us; then
kindly provided both a presentation of their §42 workflows, an interview, and
subsequent e-mail clarifications. Based on this information, we independently
designed and implemented a smart-contract–based prototype system supporting
this workflow. Finally, we evaluated this prototype jointly with Syddjurs Munic-
ipality Digitalisation Office staff and management. The present paper mirrors
this structure: we first present the §42 process (Sect. 2); then present the proto-
type design and implementation (Sect. 3); and finally present findings based on
the joint evaluation (Sect. 4).

2 The §42 Process

The process implemented in our experiment is defined in §42 of the Social Ser-
vices Act [7], which describes how parents of children with disabilities or long-
term illness may, under certain conditions, be compensated by the municipality
for their loss of earnings due to the necessity of caring for the child at home.
Citizens may appeal decisions, in which case the process includes the Appeals
Board, a Danish public institution that may overrule municipal governments.

A recent study by the Appeals Board [1] found across-the-board issues in
municipalities’ execution of these processes, especially (1) failure to obtain suf-
ficient information for lawful processing of a case, and (2) failure to sufficiently
justify decisions. Note that while a smart contract may alleviate (1)—by requir-
ing that documents are uploaded before a decision is made—it seems unlikely
that (2) can be detected by automated methods, as we cannot (yet) automati-
cally decide if the contents of those documents warrants a particular decision.

The process proceeds through 3 phases depicted in Fig. 1; decisions are made
along the way, and the process terminates on unfavourable decisions.

In Phase 1 (Fig. 2), the municipal government calls the parents for a guid-
ance meeting. The caseworker may at this point decide that the parents’ situa-
tion is out of scope for §42. Otherwise, the caseworker collects documentation to
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Fig. 1. The full §42 process

Fig. 2. Phase 1 of the §42 process

establish that care at home is (a) necessary and (b) most expedient. Again, the
caseworker may at this point decide that (a) and (b) are not the case, and the
parents not eligible. In Phase 2, the caseworker collects additional documen-
tation to calculate lost earnings, and any possible offsetting absent of expenses
(e.g., gasoline not used when not driving to work). In Phase 3, decisions are
made regards to payouts. Each month the parents document their lost earnings,
and the caseworker then issues a payout. Every six months the municipality must
review the case from (repeat Phase 1), and every year the government updates
their rate and the compensation has to be recalculated from Phase 2.

The citizen may appeal any decisions made (Fig. 3). The appealed decision is
then either ratifies or amended by the caseworker. A ratified decision is immedi-
ately forwarded to the appeals board, which eventually either ratifies, changes,
disbands, or returns the decision; in the latter case requiring the municipal gov-
ernment to re-process the case from the previous decision onwards.

Fig. 3. The appeal process
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Fig. 4. Illustration of the Appeals Board marking a data in the process

3 Prototype

The prototype system comprises a smart contract (enforcing the process), web-
interfaces for each of the actors (citizen, municipal caseworker, appeals board),
and a local database each for the municipality and the appeals board.

Each task in the is classified as either a decision; the acquisition or processing
of data in the form of documents or numbers (say, a number of hours or the
claimed amount); or payments. The smart contract accordingly implements a
simple process engine along the lines of [8,9]. The process itself is specified as
a dependency graph over tasks; a task is only available for execution if all of
its dependencies have been executed. A task can be marked as requiring re-
execution (used in appeals, see below). The process model assigns roles to tasks
(citizen, municipal caseworker, or appeals board), and implements role-based
access control via Ethereum addresses.

An appeal of a decision interrupts the process and forces the municipality to
review the case by marking the tasks after the previous decision as requiring re-
execution. If the municipality changes its decision, the case continues (although
the citizen may again appeal the changed decision). If the decision is re-executed
with the same data (the same decision), the appeal and case is sent to the Appeals
Board. Via the smart contract, the Appeals Board manifests its decision by
marking tasks for re-execution, thereby forcing the municipality to re-evaluate
the case; or by setting the process state outright, thereby overruling the decision.
We illustrate the process state after an appeals decision in Fig. 4.

Confidentiality and Verifiability. Data involved in the process is generally sensi-
tive (e.g., the child’s medical condition and the parents income), and so cannot
be stored publicly on a blockchain. We store instead a hash of the information;
the municipal government stores the actual data in a local database. With the
hash public, a citizen can verify that the process really contains the data he has
submitted. Similarly the appeals board, who must receive the actual data for the
case from the municipality on a distinct, trusted channel, can similarly verify
that the municipal government is forwarding the correct data.

In contrast to, e.g., [22], we do not decentralise storage of data: The municipal
government and possibly the Appeals Board both retain—and have responsibil-
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Fig. 5. Overview of communication with a local blockchain

ity for—full local copies of the data involved in the case. The privacy of the
citizen towards the municipal government is not an issue here: he has none1.

Implementation. The system (Fig. 5) comprises front-end “React” webapps [16]
for the citizen and the municipal caseworker, back-end smart contracts on the
blockchain, and a local database for the municipal government. Each of actor
(citizen, municipal caseworker, appeals board) interacts with the system through
a web interface resembling contemporary case management systems in use at
Syddjurs such as Acadre or the Open Case Manager. The backend consists of
Ethereum contracts written in Solidity 0.5.0, deployed with Truffle [19]. The
front-end application React [16] webapps uses the MetaMask [13] library to
communicate with the blockchain. The prototype was deployed only on a local
test chain. We expect deployment on the “real” Ethereum blockchain to be
straightforward, even under the concomitant increased latency and cost.

4 Findings

So what have we learned from our implementation of the §42 process? First of all:
it is possible. It was, at the outset, not obvious that confidentiality requirements
could be met, nor that the complex mechanics of appeals and process rollbacks
could be (easily) implemented; nor was it obvious that the formalisation of pro-
cess execution rules in a smart contract would be helpful.

Pros. The implementation realises both the main envisioned benefits of (1) pro-
cess transparency and verifiability by citizens and Appeals Board alike; and (2)
that process execution is guaranteed to follows the steps set out in the law.
This key benefit was identified both by our municipal government partner and,
implicitly, by the Appeals Board [1]. Moreover, (3) the implementation allows the

1 It is an interesting question whether government institutions ought to process cases
anonymously, and how that might be arranged. We leave this for future work.
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Appeals Board to impose directions directly on the process rather than relying on
a possibly intransigent municipal government to act against its own convictions.
Finally, (4) assuming a generally accepted blockchain based currency accessible
to the smart contract, direct payout from the contract may significantly decrease
the municipal governments banking costs.

Cons. In societies like the Scandinavian countries, where government motiva-
tion (but perhaps not ability) is generally trusted by the public, correct process
execution (2) could just as well be enforced by an ordinary (non-blockchain)
computer system, operated by some central government authority.

Moreover, several additional concerns are apparent or were raised by our
municipal government partner in the final evaluation. (A) On the blockchain,
immutability cuts both ways [10,11]: once deployed, there is no mechanism for
the municipal government to alter or fix a smart contract; and there is similarly
no mechanism for the municipal government to fix its own (non-decision) proces-
sual mistakes. This point is especially acute if the contract has access to munic-
ipal government funds, and may disburse these independently. Moreover, (B)
transaction latency and (C) transaction cost remain considerable concerns [21].

It is the estimation of our municipal government partner that because there
is public trust in government institutions, (2) does not apply, and it is sufficient
to implement better traditional IT systems; that savings from on-chain payouts
are not realisable in the foreseeable future (4); and that latency costs (B) and
transaction costs (C) already outweigh the remaining benefits of verifiability (1)
and direct Appeals Board interventions (3).

Moreover, the loss of control of the parts of the process for which it
has responsibility implicit in (A) is completely unacceptable. While concerns
regarding latency and transaction costs can be addressed by permissioned
blockchains [20], such blockchains also place control of the processes firmly back
in the governments hands, obviating any reduction in trust. In addition, chal-
lenges regarding the updateability of running processes would remain. These
challenges are general to the application of blockchain technologies in govern-
ment: government institutions are in general responsible for both administering
particular laws, and organising transitions when the law changes.

Thus we conclude this paper with a challenge to the community: It seems
smart contract implementations of government processes needs on the one hand
to be immutable and outside the governments control when running; however,
they also need to be updatable when laws change, and have an “out” for the rare
case when errors in the contract implementation result in unlawful behaviour.
We propose these conflicting requirements as a foundational research challenge
for blockchain to be applicable to governmental processes.
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