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Abstract. Rare weather and climate events, such as heat waves and
floods, can bring tremendous social costs. Climate data is often limited
in duration and spatial coverage, and so climate forecasting has often
turned to simulations of climate models to make better predictions of
rare weather events. However very long simulations of complex models,
in order to obtain accurate probability estimates, may be prohibitively
slow. It is an important scientific problem to develop probabilistic and
dynamical techniques to estimate the probabilities of rare events accu-
rately from limited data. In this paper we compare four modern meth-
ods of estimating the probability of rare events: the generalized extreme
value (GEV) method from classical extreme value theory; two impor-
tance sampling techniques, geneaological particle analysis (GPA) and the
Giardina-Kurchan-Lecomte-Tailleur (GKLT) algorithm; as well as brute
force Monte Carlo (MC). With these techniques we estimate the proba-
bilities of rare events in three dynamical models: the Ornstein-Uhlenbeck
process, the Lorenz ’96 system and PlaSim (a climate model). We keep
the computational effort constant and see how well the rare event proba-
bility estimation of each technique compares to a gold standard afforded
by a very long run control. Somewhat surprisingly we find that classi-
cal extreme value theory methods outperform GPA, GKLT and MC at
estimating rare events.

1 Extremes and Rare Event Computation.

Rare weather and climate events such as heat waves, floods, hurricanes, and
the like, have enormous social and financial consequences. It is important to
be able to estimate as accurately as possible the probability of the occurrence
and duration of such extreme events. However the time series data available
to predict rare events is usually too short to assess with reasonable confidence
the probability of events with very long recurrence times, for example on the
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order of decades or centuries. In this regard, one may consider return levels of
exceedances which represent the level that is expected to be exceeded on average,
say, once every 100 years by a process. For example, a 100-year return level
estimate of a time series of temperature or precipitation data would tell us the
temperature or amount of precipitation that is expected to be observed only once
in 100 years. It is common, however, that the amount of weather data available
is limited in spatial density and time range. As a result, climate forecasting
has often turned to simulations of climate models to make better predictions
of rare weather events. These simulations are not without limitations; a more
accurate model requires a large amount of inputs to take into account most
of the environmental factors which impact weather. With these more complex
models, very long simulations may be required to obtain probability estimates
of rare events with long return times. These simulations may be very slow and
have motivated the study of statistical techniques which allow for more accurate
rare event probability estimates with lower computational cost.

One approach to estimate the probability of rare events or extremes is to use
classical extreme value theory, perhaps aided by clustering techniques or other
statistical approaches suitable for the application at hand. Other techniques to
accurately estimate the probabilities of rare events include importance sampling
(IS) methods. In general, importance sampling is a probabilistic technique which
allows us to choose those trajectories or paths in a random or deterministic model
which will most likely end in an extreme event. This reduces the number of long
trajectories that are required to obtain an estimate on the tail probabilities of
extremes and essentially changes the sampling distribution to make rare events
less rare. The goal of importance sampling is not only to estimate probabilities
of rare events with less computational cost, but also more accurately in that the
ratio of the likely error in estimation to the probability of the event is lessened.

Importance sampling algorithms have been successfully applied in many
fields, especially in chemical and statistical physics [3,26,28]. Recently these
techniques have been applied to dynamical systems and dynamical climate mod-
els [27,29]. In this paper we will consider two similar types of IS techniques,
geneaological particle analysis (GPA) and the Giardina-Kurchan-Lecomte-
Tailleur (GKLT) algorithm. The GKLT algorithm is designed to estimate prob-
abilities of events such as heatwaves as it considers time-averaged quantities.
GKLT is motivated by ideas from large deviations theory, though in its imple-
mentation it does not explicitly require calculation of large deviation quantities
such as rate functions.

The main goal of this paper is to compare the performance of the gener-
alized extreme value (GEV) method with GPA, GKLT and brute force Monte
Carlo (MC) at estimating rare events of our test models: the Ornstein-Uhlenbeck
process, the Lorenz ’96 system and PlaSim (a climate model). We keep the com-
putational effort constant and see how well the rare event probability estimation
of each technique compares to a gold standard afforded by a very long run con-
trol. Somewhat surprisingly we find that GEV outperforms GPA, GKLT and
MC at estimating rare events. Perhaps this advantage comes from the fact that
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GEV methods are parametric and maximum likelihood estimation, in practice,
results in close to optimal parameters and confidence intervals.

2 The Four Methods

Extreme value theory is a well-established branch of statistics [5,8,23]. Over the
last ten years or so the theory has been investigated in the setting of chaotic
dynamics, for a state of the art review see [2, Chapters 4 and 6]. The goal
of extreme value theory is to estimate probabilities associated to rare events.
Another way to approach this problem is via importance sampling. Recently
ideas from importance sampling have been successfully applied to several dynam-
ical models (a non-exhaustive list includes [16,17,19,20]). How do the methods
compare, for a given computational cost, at accurately determining the proba-
bilities of rare events? We now describe the four methods we investigate in this
paper.

2.1 Generalized Extreme Value Distribution (GEV)

There are two main approaches for classical extreme value theory: peaks over
threshold; and the block maxima method. They are equivalent mathemati-
cally [5], but more research has been done on the block maxima method in
the setting of deterministic models (for a treatment of this topic and further ref-
erences see [2, Chapters 4 and 6]). We will use the block maxima method in this
paper. In the context of modeling extremes in dynamical models, Galfi et al. [14]
have used the peaks over threshold method to benchmark their large deviations
based analysis of heat-waves and cold spells in the PUMA model of atmospheric
circulation. Given a sequence of iid random variables {X1, X2, . . . , Xn, . . .} it is
known that the maxima process Mn = max{X1, X2, . . . , Xn} has only three pos-
sible non-degenerate limit distributions under linear scaling: Types I (Gumbel),
II (Fréchet) and III (Weibull) [13], no matter the distribution of X1. By lin-
ear scaling we mean the choice of a sequence of constants An, Bn such that
P(An(Mn − Bn) ≤ y) → H(y) for a nondegenerate distribution H. The extreme
value distributions are universal and play a similar role to that of the Gaussian
distribution in explaining a wide variety of phenomena. These three distributions
can be subsumed into a Generalized Extreme Value (GEV) distribution

G(x) = exp
(
− [1 + ζ

( x − μ

σ

)
]
−1
ζ

)
(∗)

defined for {x : 1 + ζ
( x−μ

σ

)
> 0} with three parameters −∞ < μ < ∞, σ > 0,

−∞ < ζ < ∞. The parameter μ is the location parameter, σ the scale and ζ
the shape parameter (the most important parameter as ζ determines the tail
behavior). A type I distribution corresponds to the limit as ζ → 0, while Type
II corresponds to ζ > 0 and Type III to ζ < 0. The three types differ in the
behavior of the tail of the distribution function F for the underlying process
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(Xi). For type III the Xi are essentially bounded, while the tail of F decays
exponentially for Type I and polynomially (fat tails) for Type II.

The advantage of using GEV over brute force fitting a tail distribution by
simulation or data collection is that a statistical distribution is assumed, and only
three parameters need to be determined (like fitting a normal distribution, where
only 2 parameters need to be estimated). This has enormous advantages over
methods which try to determine an a priori unknown form of distribution. The
GEV parameters may be estimated, for example, by the method of maximum
likelihood. Once the parameters are known G(x) can be used to make predictions
about extremes. This is done for a time series of observations in the following
way. A sequence of observations are taken X1, X2, ... and grouped into blocks of
length m (for example it could be daily rainfall amounts clumped into blocks of
one year length). This gives a series of block maxima Mm,1, Mm,2, ... where Mm,�

is the maximum of the observations in block � (which consists of m observations).
Using parameter estimation like maximum likelihood, the GEV model is fitted
to the sequence of Mm,� to yield μ, σ and ζ . The probability of certain return
levels of exceedance for the maximum of time-series of length m are obtained
by inverting (*) and subtracting from 1. For example, m could correspond to a
length of one year made of m = 365 daily rainfall data points, then the result is
the level of rainfall a that the yearly maximum is expected to exceed once every
1/(1 − G(a)) years.

One issue in the implementation of GEV is the possibly slow rate of con-
vergence to the limiting distribution. There are some results [12,22] on rates
of convergence to an extreme distribution for chaotic systems, but even in the
iid case rates of convergence may be slow [21]. Another is the assumption of
independence. Time-series from weather readings, climate models or determin-
istic dynamical systems are usually highly correlated. There are conditions in
the statistical literature [6,11,15,23] under which the GEV distributional limit
holds for maxima Mn of observables φ(Xj) which are “weakly dependent” i.e. the
underlying Xj are correlated, and which ensure that Mn has the same extreme
value limit law as an iid process with the same distribution function. Usually two
conditions are given, called Condition D2 (a decay of correlations requirement),
and Condition D

′

(which quantifies short returns) which need to be checked. Col-
let [6] first used variants of Condition D2 and Condition D

′

to establish return
time statistics and extremes for certain dynamical systems. Recent results [2]
have shown that maxima of time-series of Hölder observables on a wide variety
of chaotic dynamical systems (Lorenz models, chaotic billiard systems, logistic-
type maps and other classical systems) satisfy classical extreme value laws. The
development of extreme value theory for deterministic dynamical systems has
been an intensive area of research. For the current state of knowledge we refer
to “Extremes and Recurrence in Dynamical Systems” [2, Chapters 4 and 6].

Even using a parametric model like GEV there is still an issue of having
enough data. There are several approaches to extract the most information pos-
sible from given measurements. For example, in [1,4] sophisticated clustering
techniques based on information theory ideas were used to group measurements
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from different spatial locations and amplify time-series of temperature record-
ings to improve the validity of GEV estimates for annual summer temperature
extremes in Texas and Germany.

Despite these caveats this paper shows that GEV works very well in estimat-
ing probabilities of rare events in realistic models such as PlaSim, performing
better at the same computational cost than MC and the two IS techniques we
investigate.

2.2 Brute Force Monte Carlo

Given a random variable X distributed according to a distribution ρ(x), we want
to estimate the probability of a rare event,

γA = P(X ∈ A) � 1

As a naive approach, one could do this by a brute force Monte Carlo (MC)
estimate,

γ̂A(N) =
1
N

N∑
i=1

1A(Xi)

for some sequence of random variables Xi sampled from ρ(x). Here, E(γ̂A) = γA
(as γ̂A is an unbiased estimator) and for large enough N,

√
N γ̂A(N) ∼ N(γA, σ

2(γ̂A))

by the central limit theorem (where valid). The relative error of an estimator is
defined to be the standard deviation of the estimator divided by the estimated
quantity. As

σ2(1A) = E((1A(X) − γA)
2) = E(1A(X)) − γ

2
A = γA − γ2A ≈ γA

for small γA, and Varγ̂A(N) =
VarγA

N , the relative error is estimated as

σ(γ̂A)(N)/γA ≈
1

√
NγA
,

which is large for small γA. This analysis can be found in [16].

2.3 Importance Sampling Techniques

Importance sampling methods work to lower the relative error by a change of
measure from ρ to another measure ρ̃. The idea is to change the distribution of
X in a way that rare events are sampled more often under ρ̃ and if the steps
in the algorithm by which we do this are accounted for, we obtain an accurate
estimate of the probability of the rare event under ρ with a significantly decreased
relative error in our estimator. In our applications X is a real-valued random
variable (distance from the origin in Ornstein-Uhlenbeck process, energy level in
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the Lorenz’96 model and temperature or averaged temperature in the PlaSim
model) and rare events will correspond to high values of X.

We alter the probability of rare events by using a weight function whose goal
is to perform a change of measure. Provided X has tails which decay exponen-
tially, the weight function can be chosen as an “exponential tilt”. We now provide
an illustration of the exponential tilt in the context of a normally distributed
random variable. Details for the following estimates are provided in [16].

Suppose we want to estimate the probability γA of a rare event A = {X > a}
for X ∼ N(0, 1) so that ρ(X) = e−x

2/2. If we choose,

ρ̃(X) =
ρ(X)eCX

E(eCX )
=

1
√

2π
exp[

−(X − C)2

2
] (1)

we obtain a shift of the average by C. The error of our estimate in the shifted
distribution is given by its variance,

σ2(γ̃A) = PC,1(X > a)eC
2
− γ2A

where PC,1 denotes the probability under a normal distribution with mean C
and variance 1. If we take a = 2 there is a unique minimum of the variance for
a value of C close to 2. In this example a decrease of relative error by a factor
of roughly 4 is produced. Because of the scaling 1√

NγA
it would take a 16 times

longer brute force run to achieve this result. We remark that this exponential tilt
of the original distribution results in an optimal value of C(a) for each threshold
a for which γA = P(X > a). Part of the finesse in using IS techniques is to tune
the parameter C.

We now describe the two importance sampling techniques we investigate.

2.3.1 Genealogical Particle Analysis
Genealogical particle analysis (GPA) [16,17] is an importance sampling algo-
rithm that uses weights to perform a change of measure, by a weight function
V(x) (in the previous example V(x) was taken to be Cx but V(x) is application
specific) applied to the original distribution of particles xt under the dynam-
ics. When we talk of particles we may mean paths in a Markov chain model
or trajectories in a dynamical model such as the Ornstein-Uhlenbeck process or
Lorenz’96. These weights can be thought of as measuring the performance of
a particle’s trajectory. If the particle is behaving as though it comes from the
distribution tilted by the weight function V(x) then it is cloned, otherwise it is
killed and no longer used in the simulation. The act of killing or cloning based on
weights is performed at specified time steps separated by length τ. We will refer
to τ as the resampling time. In theory, the resampling time can chosen between
the limits of the Lyapunov time, so as to not be too large that samples relax
back to their original distribution and the decorrelation time, so as to not be too
small that all clones remain close to each other. In practice, the decorrelation
rate of a trajectory xt under the dynamics is calculated as the autocorrelation
taken over a time lag and the sampling time is then chosen as the smallest time
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lag that results in the autocorrelation of xt being close to zero at a specified
tolerance. A description of the algorithm is given below.

1. Initiate n = 1, . . . , N particles with different initial conditions.
2. For i = 1, . . . ,Tf /τ where Tf is the final integration time.

2a. Iterate each trajectory from time ti−1 = (i − 1)τ to time ti = iτ.
2b. At time ti, stop the simulation and assign a weight to each trajectory n

given by,

Wn,i =
exp(V(xn,ti ) − V(xn,ti−1 ))

Zi
(2)

where

Zi =
1
N

N∑
n=1

Wn,i (3)

is the normalizing factor that ensures the number of particles in each
iteration remains constant.

2c. Determine the number of clones produced by each trajectory,

cn,i = �Wn,i + un (4)

where �· is the integer portion and un are random variables generated
from a uniform distribution on [0, 1].

2d. The number of trajectories present after each iteration is given by,

Ni =

N∑
n=1

cn,i (5)

Clones are used as inputs into the next iteration of the algorithm. For
large N, the normalizing factor ensures the number of particles Ni remains
constant; however, in practice the number of particles fluctuates slightly
on each iteration i. To ensure Ni remains constant it is common to com-
pute the difference ΔNi = Ni − N. If ΔNi > 0, then ΔNi trajectories are
randomly selected (without replacement) and killed. If ΔNi < 0, then ΔNi

trajectories are randomly selected (with replacement) and cloned.
3. Provided τ is chosen between the two bounds specified above, the final set of

particles tends to the new distribution affected by V(x) as N → ∞,

p̃(x) =
p(x)eV (x)

E(eV (x))
. (6)

where p(x) is the original distribution of the sequence of realizations xn,0 and
p̃(x) is the distribution tilted by the weight function V(x).

Probability estimates for rare events γA = P(X > a) under p(x) are obtained
by the reversibility of the algorithm and dividing out the product of weight
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factors applied to the particles. Suppose A is the event (X > a) for X ∼ p(x),
then the expected value in the original distribution denoted by E0 is given by [16],

γA = E0(1A) =
1
N

N∑
n=1

1A(xn,Tf /τ)e
V (xn,0)e−V (xn,Tf /τ

)
Tf /τ∏
i=1

Zi (7)

Since GPA weights consider the end distribution of particles, they result in
a telescoping sum in the exponential where the final rare event estimate is a
function of the first and last weight terms only. For a detailed proof of this
equivalence, we refer the reader to [16]. For an illustration of this algorithm, see
Fig. 1.

Fig. 1. Illustration of the GPA algorithm.

As seen above, the change of measure is completely determined by the choice
of weight function V(x) in the algorithm.

Furthermore, the algorithm can be applied to any observable φ by considering
the continuous random variable Xt = φ(xt ) and defining

Wn,i =
exp(V(φ(xn,ti )) − V(φ(xn,ti−1 ))

Zi
.

where xn(t) is one of our n = 1, . . . , N realizations and xn,ti = xn(ti).
If we are interested in estimating rare event probabilities of a time-averaged

quantity the weight Wn,i =
V (

∫ ti
ti−1

xn (t)dt)

Zi
is given by an integral rather than the

difference Wn,i =
exp(V (xn, ti )−V (xn, ti−1 ))

Zi
and the increments do not telescope. We

next discuss a method, the GKLT algorithm, based on large deviations theory
to estimate probabilities of rare events for time-averaged quantities in the next
section. We note here that the GKLT algorithm in its implementation does not
require explicit computation of large deviation quantities such as rate functions.
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2.3.2 Giardina-Kurchan-Lecomte-Tailleur (GKLT) Algorithm
This technique was developed in a series of papers [7,19,20] and uses ideas
from large deviations theory to make estimates of extremes for time-averaged
quantities, for example heatwaves lasting a couple of months or more where the
averaged maximal daily temperature over the two month period would be high.
The advantage is that over long periods of averaging large deviation theory gives
a method which works well, but a disadvantage is that the period of averaging
needs to be long enough for the heuristic arguments involving the rate function
and other quantities from large deviations theory to be valid. In practice, to
calculate the probability of summer heatwave extremes in Europe, the duration
of heatwaves has been set at the order of 90 to 120 days in the literature [14,18].

Suppose φ is an observable. We will consider time-averaged quantities
1
T

∫ (j+1)T

t=jT
φ(x(t)) dt over a fixed time-window of length T , j = 1, . . . , �Tf /T. We

may choose to apply the weight function V to the integral of n = 1, . . . , N real-
izations φ(xn(t)) by defining the set of weights as,

Wn,i =
V(

∫ ti

ti−1
φ(xn(t)) dt)

Zi
(8)

with normalizing factor,

Zi =
1
N

N∑
n=1

Wn,i

where the resampling time τ = ti−1 − ti is chosen between the limits described in
Sect. 2.3.1 and may differ from the choice of the time-average window length T .

Applying the method described in algorithm Sect. 2.3.1 equipped with Eq. 8
tilts the distribution of the integral

∫ ti

ti−1
φ(x(t)) dt by V(·). As a result, the distri-

bution of the T-time average trajectory 1
T

∫ (j+1)T

t=jT
φ(x(t)) dt is tilted in a similar

way. For an illustration of this algorithm, see Fig. (2).
Since the weight is a function of segments of the trajectory (rather than

the distribution of end particles), the telescoping property no longer holds and
estimates in the original distribution require the reconstruction of N-backward
trajectories φ̂(xn(t)), n = 1, . . . , N.

Let E0 denote the expected value in the original distribution and suppose O
is some functional of φ(xn(t)). Then it can be shown [18],

E0(O({φ(xn(t))}0≤t≤Tf )) ∼
1
N

N∑
n=1

O({φ̂(xn(t))}0≤t≤Tf )e
−V (

∫ Tf
0 φ̂(xn(t))dt)

Tf /τ∏
i=1

Zi . (9)

Often, O in Eq. 9 is taken as some indicator function of a rare event so
that, E0(O({φ(x(t))}0≤t≤Tf )) provides some rare event probability estimate. For
example, to obtain the rare event probability estimate that the T-time averaged
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(a) (b)

Fig. 2. (a) Illustration of the GKLT algorithm and (b) assembly of N backward trajec-
tories. Although shifts in the distribution of the integral are defined by the resampling
time τ, reconstruction of backward trajectories allows for estimates on T-time averaged
trajectories after implementation of GKLT.

observable exceeds some threshold a, we may rewrite Eq. 9 as,

E0

(
1
{ 1
T

∫ ( j+1)T
jT

φ(x(t))dt>a |0≤ j≤�Tf /T  }
(φ(x(t)))

)

∼
1
N

N∑
n=1

E

(
1
{ 1
T

∫ ( j+1)T
jT

φ̂(xn (t))dt>a |0≤ j≤�Tf /T  }
(φ̂(xn(t)))

)
· e−V (

∫ Tf
0 φ̂(xn )(t)dt)

Tf /τ∏
i=1

Zi

(10)

A consequence of Eq. 10 is that rare event probabilities P(Ψ ◦ φ(x(t)) > a) for
any functional Ψ of the observed trajectory φ(x(t)) can be calculated in a similar
way.

Hence, rare event probabilities for longer time-averages can be estimated at
no further computational expense. Different observables are considered in the
next section. We end by remarking that a natural choice is to take V(x) = Cx, if
the rare event consists of exceedance of a certain level.

3 Numerical Results

IS algorithms hinge on their ability to shift the sampling distribution of a system
to increase the probability of the rare event. They open the possibility of reducing
numerical cost while providing a more (or similarly) accurate estimate over a
brute force method. Shifting of the sampling distribution relies on a convergence
assumption to hold for a sufficiently large number N of initial particles. In [16] it
is shown in certain models that the relative error (also a quantity relying on the
number of initial particles N) is smaller for tail probability estimates obtained
from IS methods if the shift is chosen optimally for a specific threshold. For a set
of thresholds ak , statistics on tail probabilities and return time estimates may be
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obtained by averaging over a set of trials, as in [18]. However, this requirement
adds to the true numerical cost of the IS methods. Optimal values of a shift
for any given threshold usually cannot be determined a priori. Moreover, the
magnitude of a shift in the sampling distribution cannot be chosen arbitrarily
because of its heavy dependence on the choice of observable, system and initial
conditions. This dependence limits the algorithm in practice to smaller shift
choices, larger errors and hence, less reliable return time estimates.

We compare numerical results from two well-known IS methods (GPA and
GKLT) with GEV and MC under true numerical costs of obtaining statisti-
cal estimates for sequences of thresholds. In implementation of IS methods, we
choose shifting values as large as possible to obtain accurate return-time esti-
mates and illustrate the problems that occur with dependence on initial condi-
tions. Following recent literature, we use the Ornstein-Uhlenbeck process as a
benchmark for our work and expand to the more complex Lorenz’96 and PlaSim
model. In all systems, we find that the GEV outperforms GPA, GKLT and MC
under the same numerical cost.

3.1 The Generalized Extreme Value (GEV) Model for Numerical
Comparison

3.1.1 GEV Model for Comparison to GPA Tail Estimates
Since the GPA algorithm considers only the distribution of end particles, tail
probability estimates of a trajectory Xt are provided at a sampling rate of Tf

intervals denoted P(XTf > ak) for a sequence of thresholds ak . Recall that in
the case of considering an observable under the dynamics, Xt can be seen as
the random variable Xt = φ(xt ) where xt is the trajectory under the dynamics
at time t. To compare across methods, we use the same sampling rate for MC
brute force and GEV modeling. Following standard literature, we may choose
to consider one long trajectory Xt of length N̂ · Tf , so that we obtain N̂ samples
taken at Tf intervals of Xt . From here, we define the subsequence of Xt taken at
the sampling rate Tf to be X ĵ,Tf

for ĵ = 1, · · · , N̂. We may then define the block
maxima over blocks of length m taken over our subsequence Xi,Tf by,

M�,m = max�m≤i≤(�+1)m Xi,Tf

such that the number of total block maxima is �N̂/m and � = 1, · · · , �N̂/m and
m is chosen at a length that ensures convergence of the block maxima. For the
purposes of this paper, m = 10 and 100 were checked with m chosen as the value
providing the best fit to the control.

Another option is to run many, say N̂ again, trajectories Xî,t for î = 1, · · · , N̂
up to time Tf . We denote the sequence of end particles Xî,Tf

so that Xî,Tf
coincides

with the appropriate fixed sampling rate Tf for each î. Then, we may define the
block maxima over blocks of length m by,

M�,m = max�m≤î≤(�+1)m Xî,Tf
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so that once again, � = 1, · · · , �N̂/m and the total number of block maxima is
�N̂/m. In both cases, the distribution of M�,m is theoretically the same, however
we choose the latter to lower numerical error which builds over long trajectories.
An illustration of how the maxima are defined and their relationship to the GPA
algorithm outcome can be seen in Fig. 3.

Fig. 3. Illustration of the block maxima for GEV to GPA comparison. Many trajecto-
ries are run under the dynamics up to the sampling time Tf and the final values are
used to form the block maxima (indicated by dashed boxes).

Classical results for fitting a GEV to the sequence of block maxima M�,m

require the sequence Xî,Tf
to be independent and stationary. The choice of Tf � τ

ensures that samples taken at Tf intervals are nearly independent. We may fit
the generalized extreme value (GEV) distribution G(x) to the sequence M�,m by
maximum likelihood estimation of the shape, ζ , scale σ, and location μ parame-
ters [5, Section 3.3.2]. Independence assumptions on the sequence Xî,Tf

allows for
reversibility of the probability estimates of the m-block maxima by the following
relationship [5, Section 3.1.1],

G(x) = P(M�,m ≤ x) ≈ (F(x))m

where G(x) is the GEV of the m-block maxima estimated by maximum likelihood
estimation and F(x) is the c.d.f. of the trajectory Xt sampled at a rate of Tf

intervals. Hence,

P(XTf > x) ≈ 1 −
m
√
G(x) (11)

In the event that independence of Xî,Tf
cannot be established, the dependence

weaker conditions such as conditions D2 and D′, if valid, entail convergence of
the sequence of m-block maxima to a GEV distribution.
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3.1.2 GEV Model for Comparison to GKLT Tail Estimates
In the GKLT algorithm, we consider the distribution of the T-time averages
created from the N-backward reconstructed trajectories Xn,t . That is, we consider
the probability P(AT > ak) that the T-time average, AT = 1

T

∫ T

0
X(t) dt is greater

than some threshold (or sequence of thresholds) ak . Recall that Xn,t = φ(xn(t)) is
some realization of a trajectory under the dynamics equipped with an observable
φ. We run N̂ trajectories under the dynamics up to time Tf and denote this
sequence as Xî,t for 0 ≤ t ≤ Tf and î = 1, · · · , N̂. Then the sequence of (non-
overlapping) T-time averages created from the set of trajectories Xî,t is defined
as,

AT, î, j =
1
T

∫ (j+1)T

jT

Xî,t dt

for j = 1, · · · , �Tf −T. For each fixed j, we define the sequence of maxima taken
over blocks of length m

Mh, j,m = max
hm≤î≤(h+1)m

AT, î, j

for h = 1, · · · , ��Tf − T/m so that we have ��Tf − T/m · N̂ number of maxima
in total. Defining the maxima over trajectories for every fixed time step j, rather
than over time steps of a single (long) realization, allows us to keep the integra-
tion time small and minimize numerical error. Following our previous discussion,
we may also choose to consider one long trajectory Xt , break it up into a sequence
of non-overlapping T-time averages, and consider the sequence of maxima taken
over blocks of length m taken from this long sequence of averages. Once again,
we note that T ≥ τ is chosen so that the sequence of averages is roughly inde-
pendent. Hence, the GEV G(x) can be fitted by maximum likelihood estimation
to the sequence Mh, j,m. The independence of the sequence of T-time averages
allows for reversibility of the probability estimates of the m-block maxima by,

G(x) = P(Mh, j,m ≤ x) ≈ (F(x))m

where G(x) is the maximum likelihood estimate for the GEV model of the
sequence of m-block maxima Mh, j,m and F(x) is the c.d.f. of the sequence of
T-time averages taken from the trajectory Xt . Hence,

P(AT > x) ≈ 1 −
m
√
G(x) (12)

An illustration of how the block maxima in estimating the GEV are defined
in terms of the sequence of T-time average trajectories for comparison to the
GKLT algorithm can be found in Fig. 4.



164 M. Carney et al.

Fig. 4. Illustration of the block maxima for GEV to GKLT comparison. Many trajecto-
ries are run under the dynamics up to time Tf . T-time average sequences are calculated
from the trajectories. For each fixed time step j, the block maxima (indicated by dashed
boxes) are calculated. The τ interval is shown here to emphasize its difference to T and
does not represent any weighting done to trajectories used in the GEV model.

3.1.3 Return Time Curves
We consider a long trajectory Xt such that Xt is sampled for over threshold
probability estimates at time Tf ≥ τ and a rare event threshold a such that
Xt < a for most times t. We define the return time r(a) as the average waiting
time between two statistically independent events exceeding the value a.

Following the scheme of [18] we divide the sequence Xt into pieces of duration
ΔT and define ak = max{Xt |(k − 1)ΔT ≤ t ≤ kΔT} and sk(a) = 1 if ak > a and
0 otherwise. Then the number of exceedances of the maxima ak over threshold
a can be approximated by a Poisson process with rate λ(a) = 1/r(a). Using the
return time c.d.f. F−1

T for the Poisson process, we have

F−1
T (

1
K

K∑
k=1

sk(a)) =
− log(1 − 1

K

∑K
k=1 sk(a))

λ(a)

where 1
K

∑K
k=1 sk(a) = FT (ΔT) is the probability of observing a return of the

maxima ak above threshold a in ΔT time steps. For any ak we have an associated
probability pk . We denote the reordering of this sequence (âk, p̂k) such that â1 ≥

â2 ≥ · · · ≥ âK . Then the return time is given by,

r(âk) = −
1

log(1 −
∑K

k=m p̂m)
(13)

where
∑K

m=k p̂m gives an approximation of the probability of exceeding threshold
âk .

Return time plots estimated from outcomes of importance sampling methods
are the result of first averaging return time estimates over a number of exper-
iments for each C, then averaging over all C-return time plots. See Fig. (7) for



Analysis and Simulation of Extremes and Rare Events in Complex Systems 165

an illustration. Only those return times corresponding to threshold values that
fall within 1/2 standard deviation of the tilted distribution are used in this aver-
aging. For the remainder of this paper, the term experiment will be used to
describe a single run of an importance sampling algorithm.

3.2 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process given by,

dx = −λxdt + σdW

is a nice toy-example for importance sampling application because it is simple
to implement, has low numerical cost, the distribution of position x is approxi-
mately Gaussian, and it’s correlations decay exponentially. We use this process
with λ = 1 and σ = 1 as a benchmark for the following numerical investigation.

3.2.1 GKLT
The GKLT importance sampling algorithm is performed on the Ornstein-
Uhlenbeck process with N = 100 initial trajectories, resampling time τ = 0.1,
and a total integration time of Tf = 2.0. Here, the observable of interest is the
position. At each time step of the algorithm, a new value of noise W is sam-
pled from the standard normal distribution for each cloned trajectory to ensure
divergence of the clones. Time average trajectories are calculated by averaging
the N = 100 backward-reconstructed trajectories over time-windows of length
T = 0.25 with step size equal to T so that no window has overlapping values.

Above threshold probabilities of the T-time average position P(AT > ak)

where AT = 1
T

∫ T

0
x(t) dt are estimated for C = [0.01, 0.03, 0.05, 0.07]. We define

the sequence of T-time averages obtained from realizations φ̂(xn(t)) of the N-
backward reconstructed trajectories as,

An, j =
1
T

∫ (j+1)T

jT

φ̂(xn(t))dt, (14)

for j = 1, · · · , �Tf /T. Then the probability estimate for P(AT (t) > a) above a
threshold a from Eq. 10 is given as,

E0(1(x(t)){AT >a |0≤t≤Tf −T }) ∼
1

N

N∑
n=1

E(1(φ̂(xn(t)){An, j >a | j=1····�Tf /T })e
−C(

∫ Tf
0 φ̂(xn (t ))dt )

Tf /τ∏
i=1

Zi .

This approach results in a unique probability estimate for each predefined
threshold a.

Return times are estimated for each value C and sequence of thresholds ak by
Eq. 13 resulting in four return time curves. We perform 100 experiments under
these conditions for a total of 400 return time curves and average to obtain
the result shown in Fig. (5). This process is illustrated in Fig. (7). The total
numerical cost for this estimate is 4 · 104. Monte Carlo (MC) brute force and
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generalized extreme value (GEV) (Eq. 11) probability estimates are obtained
through numerical costs of the same order. We find that GEV and MC brute
force methods outperform GKLT by providing estimates of return times longer
than 1 · 106.

Another option is to define the sequence corresponding to the maximum
T-time average quantity of a single realization φ̂(xn) given by,

an(T) = max
1≤ j≤�Tf /T 

1
T

∫ (j+1)T

jT

φ̂(xn(t))dt . (15)

This results in a sequence of maximum thresholds an(T), one per each realiza-
tion of φ̂(xn(t)). For each threshold an(T), there exists an associated probability
estimate,

pn =
1
N
e−C

∫ Tf
0 φ̂(xn (t))dt

Tf /τ∏
i=1

Zi,

which is the result of plugging the threshold values of Eq. 15 into Eq. 10 and
noting that,

E(1(xn(t)){ 1
T

∫ ( j+1)T
jT

φ̂(xn (t))dt>an (t,T ) |0≤t≤Tf −T }
) = 1.

The sequence (an(T), pn) for 1 ≤ n ≤ N is then reordered for decreasing values
of an. We denote the ranked sequence (ân(t), p̂n) where â1 ≥ â2 ≥ · · · ≥ âN and
associate a return time r(ân) defined by Eq. 13 using the reordered sequence p̂n.
We refer to [18] for more details on this approach. Return time curves are then
obtained by linearly interpolating the pair (ân(T), rn(ân)) over an equal spaced
vector of return times. GKLT is run with the same initial conditions as stated
above. We refer to Fig. (6) for this discussion. Choosing to calculate return time
curves in this way allows for estimates of longer times; however, this tends to be
at the expense of accuracy. Equation 14 allows for more control over the choice
of range of thresholds included from the shifted distribution.

GEV and MC estimates are obtained through numerical costs of the same
order. Deviation statistics for GKLT, GEV, and MC methods, represented by
dashed lines in Fig. (6), are calculated by finding the minimum and maximum
deviation in 100 experiments. Solid lines about the GEV represent the 95% confi-
dence intervals coming from the likelihood function for the GEV estimated from
the corresponding MC simulation. We compare all results against a long control
run of order 1 · 106. We find that GEV and GKLT methods provide more accu-
rate estimates of return times longer than 1 · 105 compared to the MC method.
Moreover, the GEV outperforms the GKLT algorithm by providing surprisingly
accurate return time estimates with smaller deviation for all thresholds except
in a small fraction of cases.

A possible explanation for the poor performance of the GKLT algorithm
comes from the fact that the tilting coefficient C cannot be chosen arbitrar-
ily large to obtain longer return time estimates without some change in the
initial conditions (e.g. integration time, number of starting trajectories). Large
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choices of C result in a lower number of parent trajectories (as many copies are
killed) which causes the tilted distribution to breakdown Fig. (8). This break-
down results in increasingly inaccurate return time estimates, even for thresholds
sitting close to the center of the tilted distribution.

3.2.2 GPA
The GPA importance sampling algorithm is performed with N = 100 starting
trajectories, resampling time τ = 0.1, and a total integration time of Tf = 2.0.
The final trajectories Xn,Tf from GPA with tilting constants C = [2, 3, 4] are used
to estimate the above threshold probabilities P(XTf > ak) and return time curves.
To begin, we perform 10 experiments, with the initial conditions described above,
resulting in a total of 30 return time curves (10 experiments for each value of
C) and average to obtain the result shown in Fig. (9). The total numerical cost
for this estimate is 3 · 103 compared to the long control run of 1 · 106. We find
that GPA and GEV methods provide nearly equivalent results for return times
up to 1 · 104 with GPA and GEV methods outperform Monte Carlo brute force
estimates for return times longer than 1 · 104. On average, GPA provides a
slightly closer approximation to the control curve than that of the GEV method
for longer return times; however, the deviation of this estimate is much larger
than that of GEV.

Next, we consider larger values of C to test whether reliable estimates can
be obtained for thresholds exceeding the control run. We run 30 experiments
for 10 different values of C = [1, 2, . . . , 10] under the same initial conditions
as stated above for a total numerical cost of 3 · 104. We average the resulting
return time curves shown in Fig. (7) to obtain the final return time plot Fig. (10).
As seen in the estimates for GKLT, higher values of C with unchanged initial
conditions provide less accurate return-time results even for those thresholds
which sit at the center (e.g. have the highest probability of occurrence) of the
tilted distribution. On the other hand, GEV methods with the same numerical
cost of 3 ·104 show surprisingly reasonable estimates for return times longer than
the control method can provide at numerical costs of 1 · 106.

3.2.3 Relative Error Estimates
We now discuss relative error estimates on return probabilities across GPA,

GEV, and MC methods. The relative error is estimated as
√∑K

j=1
1
K (γ̂ − γ)2/γ

where γ̂ is the estimate for each of K = 100 experiments and γ is the long control-
run estimate. The relative error is essentially the average deviation of the tail
probability estimate γ̂ from the true value γ where it is assumed that γ̂ follows
a Gaussian distribution with mean γ [16,17] for a sufficiently large number N
of starting particles. For lower values of N, the relative error calculated in this
way has an underlying measurement error in the bias that is observed for γ̂ in
lower N values. Although this bias is often considered negligible, the sensitivity
of long return times to small deviations in the tail probability estimate suggest
otherwise. We first illustrate that the relative error cannot be used reliably for
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thresholds whose optimal tilting value is not approximately C. We calculate an
estimate of the mean μ(γ̂) = 1

K

∑K
k=1 γ̂k for K = 100 experiments with N = 1000

and three different values of C. Then, we calculate the relative deviation of μ(γ̂)
from the “true” mean γ by

√
(μ(γ̂) − γ)2/γ for each value of the threshold. Results

in Fig. (11) show that this deviation is small only for thresholds whose tilting
value C lies near the optimal value.

The effects of this deviation can be seen in return time estimates. We calculate
the return time curves from 100 experiments of GPA and GEV methods with N =

1000 (Fig. (13)) Clearly, GEV methods produce a larger standard deviation for
return times. Under the assumptions above, the relative error for GEV methods
would be larger than that of GPA; however, the mean of the tail probabilities
obtained from GEV are nearly exactly those of the long control run. On the other
hand, GPA produces a much smaller standard deviation (relative error) while
the mean of the tail probabilities have accurate estimates only near thresholds
for which the C value is chosen optimally.

We remark that for a single threshold and a close to optimal value of C,
relative error estimates are reliable and GPA outperforms GEV and MC methods
under relative error (Fig. (12)) while providing accurate return time estimates
(Fig. (13)). These results are consistent with those of [16]. Interestingly, though
not surprisingly, are the results on equivalent relative error for the GEV and MC
methods for shorter return times. This equivalence suggests that the advantage
of GEV over MC methods comes from its ability to estimate longer return times
where MC methods fail to provide results.

3.3 Lorenz Model

The Lorenz 1996 model consists of J coupled sites xl on a ring,

�xl = xl−1(xl+1 − xl−2) + R − xl

l = 0, . . . , J − 1 where the indices are in Z mod J. The parameter R is a forcing
term and the dynamics is chaotic for R ≥ 8 [24,25]. The energy E(x) = 1

2J

∑J
l=1 x

2
l

is conserved and there is a repelling fixed hyperplane xl = R, l = 0, . . . , J − 1.
The extremes of interest investigated numerically in [16] and in our preliminary
work were tail probabilities of the form P(E(x(t)) > Et ). The energy observable
on this system has an approximately Gaussian distribution.

3.3.1 GPA, GEV and MC
The weight function is taken to be the change ΔE of energy i.e. E(x(t+1))−E(t) for
a single time step and from this an exponential weight function W = exp(CΔE) is
constructed, depending on a single parameter C (large C makes tail probabilities
greater). For this analysis, we choose J = 32 sites and a forcing coefficient R = 64.

The GPA importance sampling algorithm is performed with N = 2000 and
5000 starting trajectories, a resampling time τ = 0.08, and a total integration
time of Tf = 1.28. At each time-step of the algorithm, a random perturbation
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sampled from [−ε, ε] where ε = O(10−3) is added to the clones of the previ-
ous iteration to ensure divergence. The final trajectories from GPA with tilting
constants C = [3.2·10−3, 6.4·10−3] are used to calculate the above threshold prob-
abilities and return time curves. The return time curve is calculated by averaging
over 10 experiments. Return time curves from the GEV and MC methods are
created from runs of equal numerical cost 4 · 104, and 1 · 105, respectively. All
estimates are compared to a long control run of 1 ·106. For N = 2000 initial start-
ing particles both GEV and MC methods outperform GPA by providing more
accurate return time estimates for times longer than 1 ·103 (Fig. 14). GPA seems
to provide more accurate estimates for returns longer than 1 · 105 for N = 5000;
however, the deviation of the averaged return time curve is much larger than
that of GEV or MC methods for all thresholds (Fig. 15).

The complexity of the Lorenz’96 highlights some of the major pitfalls in GPA.
Intuitively, the choice of tilting value C is (roughly) the shift required for center
of the distribution of the observable to lie directly over the threshold of interest.
The Lorenz system provides an example of the difficulties involved in choosing
this tilting value in practice. Similar to the OU system, the underlying dynamics
of the Lorenz system equipped with the energy observable distorts the shifted
distribution. Unlike the OU system, this occurs for very low values of C even
though the observable range is much larger. As a result, the intuitive choice of
C for thresholds in the tail of the distribution cannot be used. The values of C
chosen here are taken from preliminary work related to [16].

A related issue is the number of initial particles required to give an accu-
rate return time curve. Relative error arguments for GPA do not hold here both
because the optimal tilting value C to threshold pair is nontrivial for complex
systems and because the value C cannot be chosen arbitrarily large. An alterna-
tive to this issue is to choose a large enough number of initial particles N so that
relative error is only affected by the standard deviation of the tail probability
estimates γ̂ (see. Sect. 3.2); however, this number is nontrivial as convergence
depends on how far the optimal value is from the chosen tilting value.

GEV and GPA methods are able to estimate longer return times compared
to MC brute force methods for the Lorenz 96 system. GEV has the advantage
of maintaining the same relative error growth while difficulties in the optimal
choice of C and initial values cause probability tail estimates from GPA to have
much larger relative error. Furthermore, GEV likelihood estimation requires a
single run to estimate the optimal return level plot with confidence intervals
where relative error can be approximated by the standard brute force growth
rate (≈ 1/

√
NγA). On the other hand, GPA requires many runs to estimate the

relative error and return level plot for threshold values that do not correspond
to the center (or near center) of the C-shifted distribution.

3.4 Planet Simulator (PlaSim)

We now describe a climate model on which our analysis will focus—Planet Simu-
lator (PlaSim): a planet simulation model of intermediate complexity developed
by the Universität Hamburg Meteorological Institute [10]. Like most atmospheric
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models, PlaSim is a simplified model derived from the Navier Stokes equation in
a rotating frame of reference. The model structure is given by five main equa-
tions which allow for the conservation of mass, momentum, and energy. For a
full list of the variables used in the following equations please see Table 1. The
key equations are as follows:

• Vorticity Equation

∂ζ

∂t
=

1
1 − μ2

∂

∂λ
Fv −

∂

∂μ
Fu −

ξ

τF
− K(−1)h �2h ξ (16)

• Divergence Equation

∂D

∂t
=

1

1 − μ2

∂

∂λ
Fu +

∂

∂μ
Fv − �2 (U2 +V2

2(1 − μ2)
+ Φ +TR ln ps

)
−

D

τF
− K(−1)h �2h D (17)

• Thermodynamic Equation
∂T ′

∂t
= −

1

(1 − μ2)

∂

∂λ
(UT ′) −

∂

∂μ
(VT ′) + DT ′ − �σ

∂T

∂σ
+ κ

Tω

p
+
TR −T

τR
− K(−1)h �2h T ′ (18)

• Continuity Equation

∂(ln ps)
∂t

= −
U

1 − μ2
∂(ln ps)
∂λ

− V
∂(ln ps)
∂μ

− D −
∂ �σ

∂σ
(19)

• Hydrostatic Equation

∂Φ

∂(lnσ)
= −T (20)

Here,

U = u cos φ − u
√

1 − μ2, V = v cos φ − v
√

1 − μ2,

Fu = Vζ − �σ
∂U
∂σ

− T ′ ∂(lnps)
∂λ

, Fv = −Uζ − �σ
∂V
∂σ

− T ′(1 − μ2)
∂(ln ps)
∂μ

.

The combination of vorticity (16) and divergence (17) equations ensure the
conservation of momentum in the system while the continuity equation (19)
ensures conservation of mass. The hydrostatic equation (18) describes air pres-
sure at any height in the atmosphere while the thermodynamic equation (18) is
essentially derived from the ideal gas law .

The equations above are solved numerically with discretization given by a
(variable) horizontal Gaussian grid [9] and a vertical grid of equally spaced levels
so that each grid-point has a corresponding latitude, longitude and depth triplet.
(The default resolution is 32 latitude grid points, 64 longitude grid points and
5 levels.) At every fixed time step t and each grid point, the atmospheric flow is
determined by solving the set of model equations through the spectral transform
method which results in a set of time series describing the system; including
temperature, pressure, zonal, meridional and horizontal wind velocity, among
others. The resulting time series can be converted through the PlaSim interface
into a readily accessible data file (such as netcdf) where further analysis can be
performed using a variety of platforms. We refer to [10] for more information.
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Table 1. List of variables used in PUMA.

ζ Absolute vorticity λ Longitude

ξ Relative vorticity φ Latitude

D Divergence μ sin(φ)

Φ Geopotential κ Adiabatic coefficient

ω Vertical velocity τR Timescale of Newtonian cooling

p Pressure τF Timescale of Rayleigh friction

ps Surface pressure σ Vertical coordinate p/ps

K Hyperdiffusion �σ Vertical velocity dσ/dt

u Zonal wind v Meridional wind

h Hyperdiffusion order TR Restoration temperature

T Temperature T ′ T − TR

Fig. 5. Return time estimates for the Ornstein Uhlenbeck process time average observ-
able using GKLT for 4 different C values and 100 experiments, GEV, and Monte Carlo
brute forces methods with numerical cost 4 · 104. Relative error curves for MC brute
force and GEV estimates are represented by dashed lines. Relative error estimated by
100 experiments of the GKLT process is represented by the shaded red region.
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Fig. 6. Return time estimates from the sequence of maxima taken over each
trajectory for the Ornstein Uhlenbeck process time average observable using GKLT
for 4 different C values and 100 experiments, GEV, and Monte Carlo brute forces
methods with numerical cost 4 ·104. Relative error estimates for GEV and MC methods
(dashed lines) and GKLT (red region) are estimated from 100 experiments.

3.4.1 GKLT, GEV and MC
Our observable of interest in PlaSim is the time series of summer European spa-
tial average temperature anomalies. For simplicity, we set the climate bound-
ary data to consistent July 1st conditions and remove the diurnal and annual
cycles. This allows for perpetual summer conditions and saves on computational
time. We define the European spatial average as the average over the set of 2-
dimensional latitude and longitude pairs on the grid located between 36◦N–70◦N
and 11◦W–25◦E. Spatial average values are taken at 6 h intervals. We subtract
the long-run mean to obtain the sequence of summer European spatial average
temperature anomalies used in this analysis.

We perform the GKLT algorithm on the European spatial averaged temper-
ature time-series by considering initial values as the beginning of a year (360
days) to ensure each initial value is independent. It is important to note that
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Fig. 7. Return time estimates for the Ornstein Uhlenbeck process time average observ-
able illustrating the choice of return time curves after GKLT implementation.
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Fig. 8. Return time estimates for the Ornstein Uhlenbeck process time average observ-
able illustrating the breakdown of the distributions for large values of C.

initial values may be taken at much shorter intervals. We choose one year inter-
vals because this initial data was readily available from the long control run. We
estimate the resampling time τ = 8 days as the approximate time for autocor-
relation to reach near zero. For each experiment, we use 100 years (100 initial
values) run for 17 complete steps of the GKLT algorithm, or 136 days, to esti-
mate anomaly recurrence times for the T = 8-day time average. We remark that
the choice of T and τ here are the same, however this is not a requirement of the
algorithm as illustrated in the Ornstein-Uhlenbeck system in Sect. 3.2. Results
are compared to a 400 year (144,000 day) control run. Added noise to ensure
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Fig. 9. Return time estimates for the Ornstein Uhlenbeck process using GPA for 3
different C values estimated over 10 experiments, GEV, and Monte Carlo brute forces
methods with numerical cost 3 ·103. Relative error estimates for GEV and MC methods
(dashed lines) and GPA (red region) are estimated from 10 experiments.

divergence of cloned trajectories is sampled uniformly from (preprogrammed
noise) [−ε

√
2, ε

√
2] where ε = O(10−4).

Six experiments of the GKLT algorithm are performed on a starting ensemble
of N = 100 trajectories with initial values taken as the starting value of the Euro-
pean spatial average at the beginning of each year. The values C = [0.01, 0.05] (3
experiments per C value) are chosen to tilt the distribution of the spatial-time
average at resampling times τ = 8 days. We remark that constants C = [0.1, 2]
are also tested with less favorable results; however, these tests are not included
in the total numerical cost of MC brute force and GEV methods. We choose the
observable described by Eq. (15), with φ(xn(t)) taken as the European spatial
average temperature, to estimate return time curves of the 8-day time average
of European spatial averaged temperature.

We refer to Fig. 16 for this discussion. GEV and MC methods agree almost
completely up to return times of 1 · 106 with the GEV continuing to provide
estimates for longer return times. 95% confidence intervals for the GEV (green
thin lines) are a result of the likelihood function. The return time curve for GKLT
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Fig. 10. Return time estimates for the Ornstein Uhlenbeck process using GPA for 10
different C values estimated over 30 experiments, GEV, and Monte Carlo brute forces
methods with numerical cost 3·103. Relative error estimates for GEV amd MC methods
(dashed lines) and GPA (red region) are estimated from 30 experiments.

is formed by the set of return time values from each of the 6 experiments that fall
within 1/2 standard deviation of the mean of the shifted distribution. Hence, the
deviation for GKLT (red region) is estimated by the minimum and maximum
deviation of anywhere between 2 and 6 return time values for each threshold.
Compared to that of the long control run, GKLT provides reliable estimates for
return times up to 1 · 104, while GEV estimates remain near those of the long
control run for return times up to 1 · 106. Deviation estimates for GKLT are
smaller than the 95% confidence interval for the GEV for return times longer
than 1 ·103; however, this may be the result of a low number of experiments. We
also remark that the deviation estimate of the GKLT method for return times
of the 8-day average anomaly near 1.5 K are much smaller compared to other
thresholds. This reduction suggests that at least one of the C values chosen in
GKLT is close to optimal for the 1.5 K threshold.
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Fig. 11. Relative deviation for the OU process of the estimated mean μ(γ̂A) from
K = 100 runs of GPA with N = 1000 from the assumed, asymptotic mean γ. This
deviation is only near zero for thresholds whose optimal tilting value C is chosen in
the weight function (marked with a ◦). Relative deviation of the estimated mean from
the GEV method is consistently near zero, suggesting that even though the deviation
is larger, the estimate is more reliable.

4 Discussion

In this paper we have discussed two importance sampling (IS) methods:
Genealogical particle analysis (GPA) which is used to estimate tail probabili-
ties of a time series of observations at a fixed sampling rate, and GKLT which is
used to estimate tail probabilities of a corresponding time average. Both methods
work by tilting the distribution of observations in a reversible way so that the
rare events corresponding to tail probabilities are sampled more often. We have
illustrated the particular case when the observations of interest are distributed
according to a roughly symmetric distribution and a rare event consists of an
exceedance of a certain level where the natural choice of tilt corresponds to a
shift towards the tail.
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Fig. 12. Relative error for OU process of MC, GEV and GPA probability estimates of
fixed threshold 2 and corresponding optimal tilting value C = 4.

We compare results of these two methods with classical statistics where rare
event estimation is given by the Generalized Extreme Value (GEV) distribution.
Under the goal of obtaining a return level curve, we have shown that the GEV
outperforms both IS methods for all three systems used in this analysis by pro-
viding generally lower relative error and longer return time estimates. We have
also illustrated a few disadvantages in IS methods including the strict depen-
dence of the tilting value to initial conditions and requirement of multiple runs
for return time curve and relative error estimation while demonstrating that
classical GEV results only require a single run to estimate return time curves
and follow standard brute force relative error growth. On the other hand, we
have shown that our results do not conflict with previous literature and that
both the GEV and IS methods outperform Monte Carlo brute force methods
in estimating longer return times. In fact, following previous literature we have
shown that IS methods can result in lower relative error than that of the GEV
on subsets of tail probabilities (and hence, that of MC brute force) provided the
optimal tilting value can be chosen.
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Fig. 13. Illustration for the OU process of the deviation of the return time curves from
the control for GEV and 3 different tilting C values of GPA. Notice that the average
return time curve (red) for the GEV fits the control (black ◦) for all long return times
while accurate estimates for GPA only occur near the optimal threshold value.

In general, these results support the idea of using GEV methods over IS
under the condition that optimal tilting values cannot be determined a priori
and/or return time curves, rather than returns for a single level, are of interest.
We emphasize that these results should not be taken to discount the value of
importance sampling. The power of these methods can be seen in the decrease in
relative error when optimal tilting values can be chosen. It would be interesting
to see more theoretical work in estimating such values which, at the moment,
requires an explicit formula of the (unknown) distribution of the observable.
Other numerical work can also be completed using IS methods which does not
involve tail probability estimation. One particular perspective we plan to explore
is the algorithms’ ability to provide the set of trajectories which most likely end
in an extreme event.



Analysis and Simulation of Extremes and Rare Events in Complex Systems 179

Fig. 14. Return time estimates for the Lorenz’96 process using GPA for C = [3.1 ·

10−3, 6.4·10−3] estimated over 10 experiments for N = 2000 starting particles, GEV, and
Monte Carlo brute forces methods with numerical cost 4 · 104. Relative error estimates
for GEV amd MC methods (dashed lines) and GPA (red region) are estimated from
10 experiments.
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Fig. 15. Return time estimates for the Lorenz’96 process using GPA for C = [3.1 ·

10−3, 6.4·10−3] estimated over 10 experiments for N = 5000 starting particles, GEV, and
Monte Carlo brute forces methods with numerical cost 1 · 105. Relative error estimates
for GEV amd MC methods (dashed lines) and GPA (red region) are estimated from
10 experiments.
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Fig. 16. Return time estimates for 8-day average temperature anomalies from PlaSim
using GKLT for C = 5 · 10−2 for N = 100 over 136 days starting particles, GEV and
Monte Carlo estimates are provided with numerical cost 6×100×136 days. The control
return time curve comes from a long brute-force run of 144, 000 days. Green outer
lines indicate the 95% confidence interval of the GEV. Red filled region indicates the
deviation of the GKLT algorithm estimated over 6 runs.
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