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Abstract. We present a novel characterization of slow variables for con-
tinuous Markov processes that provably preserve the slow timescales.
These slow variables are known as reaction coordinates in molecular
dynamical applications, where they play a key role in system analysis
and coarse graining. The defining characteristics of these slow variables is
that they parametrize a so-called transition manifold, a low-dimensional
manifold in a certain density function space that emerges with progres-
sive equilibration of the system’s fast variables. The existence of said
manifold was previously predicted for certain classes of metastable and
slow-fast systems. However, in the original work, the existence of the
manifold hinges on the pointwise convergence of the system’s transition
density functions towards it. We show in this work that a convergence
in average with respect to the system’s stationary measure is sufficient
to yield reaction coordinates with the same key qualities. This allows
one to accurately predict the timescale preservation in systems where
the old theory is not applicable or would give overly pessimistic results.
Moreover, the new characterization is still constructive, in that it allows
for the algorithmic identification of a good slow variable. The improved
characterization, the error prediction and the variable construction are
demonstrated by a small metastable system.

1 Introduction

The ability and practice to perform all-atom molecular simulations of more and
more complex biochemical systems has led to an unprecedented increase in the
available amount of dynamical data about those systems. This has exponenti-
ated the importance to identify good chemical reaction coordinates (RCs), low-
dimensional observables of the full system that are associated with the relevant,
often slowly-progressing sub-processes. For one, a meaningful RC permits insight
into the essential mechanisms and parameters of a reaction, by acting as a filter
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for the overwhelming complexity of the data. As an example, computing the free
energy (also known as the potential of mean force) along such a coordinate is typ-
ically used for identifying energy barriers and associated transition states [10,37].
RCs are also essential for the development of accurate reduced dynamical mod-
els. The Mori-Zwanzig formalism and related schemes [18,27,42,44] can be used
to derive approximate closed equations of motion of the dynamics projected onto
the image space of the RC. Depending on the chosen RC, the essential dynami-
cal properties of the reduced model — such as transition rates between reactant
and product — may or may not resemble those of the original system [43].
Finally, accelerated sampling schemes such as metadynamics [20], Blue Moon
sampling [8] and umbrella sampling [38] also rely heavily on an accurate RC to
guide them efficiently into unexplored territory.

In each of those applications, the result depends crucially on the “quality”
of the RC, an elusive measure for how well the RC suits the specified task. In
most cases, this quality can be brought down to how well the RC “captures
the essential dynamics”, in particular the rates of transitions between reactant
and product state (see also [28] for an in-depth review on the effect of poorly
chosen RCs on different classic rate theories). Due to this ambiguity, the search
for universal and mathematically rigorous optimality criteria for RCs remains
an active field of research, and numerous new approaches have been suggested
during the last decade. For reactions involving one clearly defined reactant and
product state, a in multiple ways ideal RC is the committor function [3,23], a
one-dimensional observable that in each point describes the probability to hit the
product state before returning to the reactant state. As the committor function is
notoriously hard to compute, advanced numerical schemes have been developed
to either approximate it efficiently [12], or find RCs that are equivalent by certain
metrics [29]. Still, the computation of committor-like RCs often remains out of
reach for high-dimensional systems.

For systems where the relevant behavior involves transitions between more
than tw states [36], where the reaction is not adequately described by a transi-
tion between isolated states [35], or where the states are not known or cannot
be computed, other optimality criteria must be employed. Here one common
approach is to demand the preservation of the system’s longest (equilibration)
time scales under projection of the dynamics onto the RC. This leads naturally
to a characterization of RCs in terms of the eigenvalues of the system’s transfer
operator, a widely used mathematical tool for time scale analysis in molecular
dynamics and beyond [7,11,19,34,41]. It is in this setting where the authors
and coworkers have previously proposed a novel mathematical framework for
the characterization and numerical computation of ideal RCs [6]. The proposed
theory builds on the insight that in many systems, the equilibration of the fast
sub-processes over time manifests as the convergence of the system’s transition
density functions towards a certain low-dimensional manifold in density space,
the so-called transition manifold (TM). This convergence is observed even if
there is no equivalent low-dimensional structure in state space, such as a transi-
tion pathway between isolated states. Any parametrization of the TM then can
in theory be used to construct an ideal RC.
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The framework demands that the convergence towards the TM must occur
for all transition density functions, i.e., for every conceivable starting state. In
practice however, this rather strong condition is often violated for starting states
with high potential energy, as the associated transition density functions may
stay far away from any sensible candidate TM for all times. The probability to
encounter these states in the canonical ensemble is however exponentially low,
and thus should not contribute significantly to the shape of the RC. Indeed, the
numerical methods built around parametrizing the TM are able to successfully
deal with this problem by heuristically ignoring sparse outliers by tuning the
manifold learning algorithm [4,5].

Still, a rigorous argument for why those outliers can be safely ignored was
lacking so far, a gap that the present article aims to fill. In short, we show that
the distance to the TM does not need to be uniformly low for all transition
density functions, but that the distance is permitted to scale with the potential
energy of the starting state. The RC received by parametrizing the TM is then
of the same quality as in the uniform distance case. This extension to the TM
theory will therefore allow to measure the quality of given RCs, and the numerical
computation of ideal RCs in systems that been previously deemed unsuitable for
the theory.

This paper is structured as follows: Section 2 reviews the time scale-based
definition of good RCs. Section 3 presents the main contribution of this article,
weakened but sufficient conditions for the existence of good RCs. In Sect. 4 we
give an example of a metastable toy system that fulfills the relaxed but not the
original reducibility condition, and demonstrate how the new characterization
can improve the quality of error bounds for the dominant timescales. In Sect. 5,
concluding remarks and an outlook on future work are given.

2 Good Reaction Coordinates

Before introducing the (generalized) transition manifold framework, we first
revisit the fundamental time scale-based definition of good reaction coordinates.

2.1 Timescales of Molecular Dynamics

We consider a time- and space-continuous, reversible and ergodic Markov process
Xt on a state space X ⊂ R

n. In a molecular dynamical system consisting of N
atoms, X often is the Euclidean space describing the three-dimensional positions
of all atoms, i.e., X = R

3N (or X = R
6N if the atom’s momenta are also included).

In this case, Xt is typically described by a thermostated Hamiltonian dynamics
or Langevin dynamics.

Xt is fully characterized by its stochastic transition functions pt(x, ·) : X →
R

+, or, equivalently, by its family of transfer operators T t : L1
μ → L1

μ, t ≥ 0,

T tu(x) =
∫
X

ρ(x′)
ρ(x)

pt(x′, x)u(x′)dx′.
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Here, ρ is the system’s (positive) stationary density, which is unique due to the
ergodicity of Xt, and μ is the associated invariant measure. Operating on L1

μ,
T t can be understood as the evolution operator of densities with respect to μ
under the dynamics.

On L1
μ, T t is a linear Markov operator, [21, Chap. 3], and in particular non-

expansive. Hence, no eigenvalue of T t has absolute value greater than 1. Due
to the uniqueness of the stationary density, the eigenvalue λt

0 := 1 is single; the
associated unique eigenfunction is ϕ0 ≡ 1.

Furthermore, T t is well-defined as an operator T t : Lp
μ → Lp

μ for any 1 ≤ p ≤
∞ [2]. We understand T t as an operator on L2

μ from now on, where we will be
able to exploit the additional Hilbert space structure. In particular, T t is self-
adjoint with respect to the inner product on L2

μ [33], hence its point spectrum is
real and therefore confined to the interval (−1, 1]. Note that T t cannot possess
the eigenvalue −1, as this would imply the existence of an eigenfunction ϕ̃0 �= ϕ0

of T 2t to eigenvalue 1. This however contradicts the uniqueness of ϕ0 as the only
eigenfunction to eigenvalue 1 of T t for all t.

In the following we will always order the eigenvalues so that

1 = λt
0 > λt

1 ≥ λt
2 ≥ · · · .

The associated eigenfunctions ϕi of T t form an orthonormal basis of L2
μ.

Hence, on L2
μ, T t admits the decomposition

T t =
∞∑

i=0

λt
i 〈ϕi, ·〉μ ϕi,

which lets us examine the behavior of Xt on different time scales. The i-th
relaxation rate, i.e., the exponential rate with which the i-th eigenfunction ϕi of
T t decays, is given by

σi = − log(λt
i)/t, i = 0, 1, 2, . . . , (1)

independent of t. These rates, as well as their inverse, the relaxation time scales
ti = 1/σi, i = 0, 1, 2, . . ., measure the influence of the different ϕi on the long
time density transport under T t, and hence are central quantities of the system.

2.2 Reaction Coordinates

A reaction coordinate (RC) now is a continuous map ξ : X → Y ⊂ R
r, where

typically r � n. Note that the term “reaction coordinate” does not imply that
ξ describes a reaction of some sort, it simply is a continuous map. For y ∈ Y, let
Σξ(y) be the y-level set of ξ, i.e.,

Σξ(y) =
{
x ∈ X

∣∣ ξ(x) = y
}
.
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Following [22], we now define the coordinate projection operator Πξ : L1
μ → L1

μ

for a RC ξ by

(
Πξu

)
(x) =

∫
Σξ(ξ(x))

u(x′)dμξ(x)(x′)

=
1

Γ
(
ξ(x)

)
∫

Σξ(ξ(x))

u(x′)ρ(x′) det
(
∇ξ(x′)ᵀ∇ξ(x′)

)−1/2
dσξ(x)(x′),

where Γ(y) is a normalization constant given by

Γ(y) =
∫

Σξ(y)

ρ(x′) det
(
∇ξ(x′)ᵀ∇ξ(x′)

)−1/2
dσy(x′),

and dσy denotes the surface measure on Σξ(y). μy can be understood as the
invariant measure μ conditioned on Σξ(y), and formally is induced by the density

ρy =
ρ

Γ(y)
[
det

(
∇ξᵀ∇ξ

)]−1/2
.

As L2
μ ⊂ L1

μ due to Hölder’s inequality, Πξ is defined on L2
μ as well. Informally,

Πξ has the effect of averaging an input function u over each level set Σξ(y) with
respect to μy.

It has been shown in [6] that Πξ is indeed a projection operator. Moreover,
Πξ is equivalent to the Zwanzig projection operator, described in detail in [17],
although the latter is typically constructed so that its image are functions over
the reduced space Y. For our presentation, however, it is advantageous to define
Πξ to project onto a true subspace of L2

μ (namely the subspace of functions that
are constant on each Σξ(y), y ∈ Y).

The effective transfer operator T t
ξ : L2

μ → L2
μ associated with the RC ξ is

now defined by
T t

ξ = Πξ ◦ T t ◦ Πξ.

Originally considered in [42], T t
ξ has been shown to again be self-adjoint and

bounded in L2
μ-norm by 1 [6]. Hence, the eigenvalues λt

ξ,i, i = 0, 1, 2, . . . of T t
ξ

are also confined to the interval [−1, 1].

2.3 Preservation of Time Scales

Our characterization of good RCs — originally proposed in [6] — now revolves
around the central assumption that the relevant part of the dynamics (the “reac-
tion”) occurs on the slowest time scales of Xt. Moreover, we assume that the
time scales of the reaction are well-separated from non-reactive time scales, i.e.,
t0 > t1 ≥ · · · ≥ td � td+1 for some d ∈ N. This is a sensible and commonly made
assumption [26,31,32,34], as it holds true for many difference classes of chemical
and molecular reactions. However, there are relevant molecular systems whose
effective behavior cannot be explained by its slowest timescales alone [25,40],
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and hence valid criticism of the general equivalence of the slow with the rele-
vant time scales exist. Nevertheless, we assume that the reaction in question is
associated with the d dominant time scales.

With the goal of preserving the dominant time scales under projection onto
the RC, and the close connection between those time scales and the dominant
transfer operator eigenvalues (1), we use the following definition of good RCs:

Definition 1 (Good reaction coordinates [6]). Let λt
i, i = 0, 1, 2, . . . and

λt
ξ,i, i = 0, 1, 2, . . . denote the eigenvalues of T t and T t

ξ , respectively. Let td be
the last time scale of the system that is relevant to the reaction. Let ε > 0.

An RC ξ : X → Y is called a ε-good RC, if for all t > 0 holds

|λt
i − λt

ξ,i| ≤ ε, i = 0, 1, . . . , d. (2)

Informally, we will call ξ a good RC if it is ε-good for small ε.

Alternatively, the following sufficient condition characterizes good RC by the
projection error of the dominant eigenfunctions under Πξ:

Theorem 1 ([6], Corollary 3.6). Let (λt
i, ϕi), i = 1, 2, . . . denote the eigen-

pairs of T t. For any given i, if

‖Πξϕi − ϕi‖L2
μ

≤ ε,

then there is an eigenvalue λt
ξ,i of T t

ξ such that

∣∣λt
i − λt

ξ,i

∣∣ ≤ ε√
1 − ε2

.

Remark 1. By the above theorem, choosing the d dominant eigenfunctions as
the d components of ξ results in a “perfect” RC. However, this approach may
lead to redundancy if the ϕi, i = 1, . . . , d are strongly correlated and can
be parametrized by a common, lower-dimensional ξ. For example, a system
with d metastable sets along a common, one-dimensional transition pathway
would possess d dominant eigenfunctions, but a one-dimensional good RC that
parametrizes the transition pathway (see [6, Sect. 5.2] for a detailed example).

Using eigenfunctions as RCs was also promoted by Froyland et al. [14,15],
for the special case where the timescale separation stems from a pointwise local
separation of the dynamics into a slow and a fast part. Just like for the tran-
sition manifold approach presented in Sect. 3, the short-time equilibration of
the dynamics again plays an important part, but unlike in our approach it is
assumed to take place on certain “fast fibers” of state space. The transition man-
ifold framework can therefore be considered a generalization of the approach of
Froyland et al.
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3 Weak Reducibility of Stochastic Systems

Definition (2) is not constructive, in that it allow one to check the quality of
a given RC, but does not indicate how to find a good RC algorithmically. To
this end, we will now derive a reducibility condition that binds the existence of
good RCs to the existence of a certain low-dimensional structure in the space of
transition density functions. This structure, called the transition manifold, can
be interpreted as the backbone of the essential dynamics, can be visualized, and
ultimately can be used to numerically compute good RCs.

3.1 Condition for Good Reaction Coordinates Based on Transfer
Operator Eigenfunctions

It was shown in [6] that if for some functions ϕ̂i : Y → R the condition

‖ϕi − ϕ̂i ◦ ξ‖∞ ≤ ε, i = 0, 1, . . . , d (3)

holds, then ξ is a ε√
1−ε2 -good RC by Theorem 1. In other words, if the dominant

eigenfunctions are pointwise almost constant along the level sets of ξ, then ξ is
a good RC.

It turns out, however, that condition (3) is unnecessarily strong. To be pre-
cise, the pointwise approximation implied by the ‖ · ‖∞-norm can be replaced
by the following weaker condition. This was already observed previously [6,
Remark 4.3], but has not been proven formally.

Theorem 2. Assume that for an RC ξ : X → Y and some functions ϕ̂i : Y →
R, i = 0, 1, . . . , d holds

∫
Σξ(y)

∣∣ϕi(x′) − ϕ̂i(y)
∣∣dμy(x′) ≤ ε (4)

for all level sets Σξ(y) of ξ. Then

‖Πξϕi − ϕi‖L2
μ

≤ 2ε.

Remark 2. In words, for a specific value y ∈ Y, the dominant eigenfunctions ϕi

do not need to be almost constant everywhere on Σξ(y), but only the average
deviation of ϕi from some value ϕ̂(y) along Σξ(y), weighted by μy, must be
small. Hence, ξ may be a good RC even if ϕi(x′) substantially deviates from
the value ϕ̂(y), as long as it is in regions where the measure μy is small. These
are precisely the regions of state space that are lowly-populated in the canonical
ensemble, and thus are statistically irrelevant.

Proof (Proof of Theorem 2). The projection error is

‖Πξϕi − ϕi‖L2
μ

≤ ‖Πξϕi − (ϕ̂i ◦ ξ)‖L2
μ

+ ‖(ϕ̂i ◦ ξ) − ϕi‖L2
μ
.
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For the first summand, consider
(
Πξϕi

)
(x) =

∫
Σξ(ξ(x))

ϕi(x′)dμξ(x)(x′)

=
∫

Σξ(ξ(x))

(
ϕ̂i

(
ξ(x′)︸ ︷︷ ︸
=ξ(x)

)
+ ϕi(x′) − ϕ̂i

(
ξ(x′)

))
dμξ(x)(x′)

= ϕ̂i

(
ξ(x)

)
+

∫
Σξ(ξ(x))

(
ϕi(x′) − ϕ̂i

(
ξ(x′)

))
dμξ(x)(x′),

and hence

‖Πξϕi − (ϕ̂i ◦ ξ)‖2
L2

μ
≤

∫
X

( ∫
Σξ(ξ(x))

∣∣ϕi(x′) − ϕ̂i

(
ξ(x′)

)∣∣dμξ(x)(x′)

︸ ︷︷ ︸
≤ε

)2

dμ(x)

≤ ε2

∫
X

dμ(x) = ε2.

For the second summand, we get with the co-area formula [13]

‖(ϕ̂i ◦ ξ) − ϕi‖2
L2

μ
=

∫
Y

∫
Σξ(y)

∣∣ϕ̂i

(
ξ(x′)) − ϕi(x′)

∣∣2 dμy(x′)Γ(y)dy

≤
∫
Y

(∫
Σξ(y)

∣∣ϕ̂i

(
ξ(x′)) − ϕi(x′)

∣∣dμy(x′)

︸ ︷︷ ︸
≤ε

)2

Γ(y)dy

≤ ε2

∫
Y

Γ(y)dy = ε2.

3.2 Weak Reducibility and Weak Transition Manifolds

From the abstract condition (4) of good RCs, one can now derive a constructive
condition for the existence of a good RC. We will also repeat the strong version
of this condition, based on (3), which was originally derived in [6].

The parametrizations of certain manifolds will play a central role in our
constructions. Specifically, we consider the special class of manifolds M ⊂ L1

for which a compact and connected set Y ⊂ R
r, as well as a homeomorphism

E : M → Y exists, such that
M = E−1(Y). (5)

Y will later become the image space of our constructed RC.
For a fixed lag time τ > 0, we now call the set of functions

M̃ =
{
pτ (x, ·) | x ∈ X

}
⊂ L1

the fuzzy transition manifold. Note that M̃ is not a manifold; the reason behind
the choice of name will however soon become clear. Now, for any manifold M ⊂ M̃

of form (5), define the projection onto M by

Q : X → M, x �→ arg min
f∈M

‖f − pτ (x, ·)‖L2
1/μ

. (6)
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Definition 2. We call the system strongly (ε, r, τ)-reducible, if there exists a
manifold M ⊂ M̃ of form (5) so that for all x ∈ X

∥∥Q(x) − pτ (x, ·)
∥∥

L2
1/μ

≤ ε. (7)

We call any such M a strong transition manifold.
We call the system weakly (ε, r, τ)-reducible, if there exists a manifold M ⊂ M̃

of form (5) so that for all x ∈ X

∫
ΣQ(Q(x))

∥∥Q(x′) − pτ (x′, ·)
∥∥

L2
1/μ

dμQ(x)(x′) ≤ ε, (8)

where ΣQ(f) is the f -level set of Q. We call any such M a weak transition
manifold.

Example 1. As an illustration of the core idea behind the TM construction,
we give a simple example of a metastable system with a strong TM, originally
published in [5].

Consider a two-dimensional system described by the overdamped Langevin
equation

dXt = −∇V (Xt)dt +
√

2β−1dWt, (9)

where V is the potential energy function and Wt is a Wiener diffusion process
scaled by the inverse temperature β ∈ R

+. Now suppose that V possesses two
local energy wells, connected by a linear, one-dimensional transition path, such
as in Fig. 1(left). The “reaction” in this system is the rare transition from one
well to the other. Hence, an intuitively good RC is the horizontal coordinate of a
point, ξ(x) = x1, as it describes the progress of x along the transition pathway.

The key insight now is that, if the lag time τ was chosen long enough for
a typical trajectory to move to one of the metastable sets, then the transition
densities pτ (x, ·) ∈ L1 also essentially depend only on the progress of x along
the transition path. The reason is that the pτ (x, ·) are essentially convex combi-
nations of two Gaussians1 centered in the energy minima A and B,

pτ (x, ·) ≈ c(x)ρA(·) + (1 − c(x))ρB(·)

with the convex factor c(x) determined by the progress of the starting point x
along the transition path. This is represented in Fig. 1(right) by the fact that the
transition densities for each gray and white starting point, respectively, concen-
trate around one point each in L1. Hence, overall, the fuzzy TM M̃ concentrates
around a one-dimensional manifold in L1. This manifold is therefore a strong
TM.

An example of a system with only a weak TM will be discussed in detail in
Sect. 4.
1 To be precise, the pτ (x, ·) are approximately convex combinations of the quasi-

stationary densities [16] of the metastable sets, that here however resemble Gaus-
sians.
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Fig. 1. Illustration of the transition manifold concept for metastable systems. Left:
energy potential of a two-dimensional metastable system. Right: Sketch of the (fuzzy)
TM for this system. Starting points x with the same progress along the transition
path get mapped to approximately the same density under the map x �→ pτ (x, ·).
Geometrically, this means that the fuzzy TM concentrates around a one-dimensional
manifold in L1.

Remark 3. Note that we slightly deviate from the original definition of the tran-
sition manifold in [6] by requiring that M ⊂ M̃ instead of only M ⊂ L1. Also note
that Q is now defined on X and not on M̃ as originally in [6]. The interpretation
of Q as “closest point projection onto M” is still valid, however.

Condition (7) indicates whether the fuzzy TM M̃ clusters ε-closely around
an actual manifold M with respect to the L2

1/ρ-norm. Again, condition (8) rep-
resents a relaxation of this condition, as the integral introduces a weighting with
respect to dμQ(x). Informally speaking, for points x′ with ρ(x′) = O(ε), a dis-
tance

∥∥Q(x′) − pτ (x′, ·)
∥∥

L2
1/μ

= O(1) is now permitted without violating the

reducibility condition.
It was shown in [6] that strongly reducible systems possess good RCs. The

following theorem now shows that weakly reducible systems still possess good
RCs. It characterizes Q as a good “M-valued RC” (cf. (4)):

Theorem 3. Let the system be weakly (ε, r, τ)-reducible. Then for each eigenpair
(λτ

i , ϕi) of the transfer operator T τ there exists a map ϕ̃i : M → R so that for
all x ∈ X ∫

ΣQ(Q(x))

∣∣ϕi(x′) − ϕ̃i

(
Q(x′)

)∣∣dμQ(x)(x′) ≤ ε

|λτ
i | .

Proof. As M ⊂ M̃, for x ∈ X we can choose q(x) ∈ X so that Q(x) = pt
(
q(x), ·

)
.

Let ϕ̃i : M → R be defined by

ϕ̃i

(
Q(x)

)
= ϕi

(
q(x)

)
.

Then∫
ΣQ(Q(x))

∣∣ϕi(x
′) − ϕ̃i

(Q(x′)
)∣∣dμQ(x)(x

′) =
∫
ΣQ(Q(x))

∣∣ϕi(x
′) − ϕ̃i

(Q(x)
)∣∣dμQ(x)(x

′)

=

∫
ΣQ(Q(x))

∣∣ϕi(x
′) − ϕi

(
q(x)

)∣∣dμQ(x)(x
′) =: (�)
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As the system is reversible, the detailed balance condition ρ(x)pτ (x, x′′) =
ρ(x′′)pτ (x′′, x) holds. Hence, the eigenfunctions ϕi of T τ have the property

λτ
i ϕi = T τϕi =

∫
X

ρ(x′′)
ρ(x)

pτ (x′′, ·)ϕi(x′′) dx′′ =
∫
X

ϕi(x′′)pτ (·, x′′)dx′′,

and thus

(
) =
∫

ΣQ(Q(x))

1
|λτ

i |

∣∣∣∣
∫
X

ϕi(x′′)
(
pτ (x′, x′′) − pτ

(
q(x), x′′))dx′′

∣∣∣∣dμQ(x)(x′).

Swapping integrals gives

(
) ≤ 1
|λτ

i |

∫
X

∣∣ϕi(x′′)
∣∣
∫

ΣQ(Q(x))

∣∣∣pτ (x′, x′′) − pτ
(
q(x), x′′)∣∣∣dμQ(x)(x′)dx′′,

and with Hölder’s inequality, ‖fg‖L1 ≤ ‖f‖L2
μ
‖g‖L2

1/μ
, we get

≤ 1
|λτ

i | ‖ϕi‖L2
μ︸ ︷︷ ︸

=1

∥∥∥∥
∫

ΣQ(Q(x))

∣∣∣pτ (x′, ·) − pτ
(
q(x), ·

)∣∣∣dμQ(x)(x′)
∥∥∥∥

L2
1/μ

.

Applying triangle inequality and using pτ
(
q(x), ·

)
= Q(x) gives

(
) ≤ 1
|λτ

i |

∫
ΣQ(Q(x))

∥∥∥pt(x′, ·) − pt
(
q(x), ·

)∥∥∥
L2

1/μ

dμQ(x)(x′)

=
1

|λτ
i |

∫
ΣQ(Q(x))

∥∥pt(x′, ·) − Q(x)︸ ︷︷ ︸
=Q(x′)

∥∥
L2

1/μ

dμQ(x)(x′).

By our assumption, this integral is at most ε. Hence,

(
) ≤ ε

|λτ
i | .

As the last step, we can now construct from Q an r-dimensional RC that
meets the condition (2):

Corollary 1. Let the system be weakly (ε, r, τ)-reducible. Let E : M → R
r be

any parametrization of the transition manifold M. Then for the RC

ξ : X → R
r, x �→ E

(
Q(x)

)
(10)

and the eigenpairs (λτ
i , ϕi) of T τ holds

‖Πξϕi − ϕi‖L2
μ

≤ 2ε

|λτ
i | . (11)
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Proof. Let ϕ̃i : M → R as in the proof of Theorem 3, and define ϕ̂i : Y → R via

ϕ̂i(y) := ϕ̃i

(
E−1(y)

)
.

Note that for any x ∈ X holds Σξ

(
ξ(x)

)
= ΣQ(Q(x)). Thus,∫

Σξ(ξ(x))

∣∣ϕi(x
′) − (

ϕ̂i ◦ ξ
)
(x′)

∣∣dμy(x
′) =

∫
ΣQ(Q(x))

∣∣ϕi(x
′) − (

ϕ̃i ◦ Q)
(x′)

∣∣dμQ(x)(x
′)

≤ ε

|λτ
i | ,

where the last inequality is Theorem 3. The assertion now follows from
Theorem 2. ��
If (λτ

i , ϕi) is dominant, i.e., λτ
i ≈ 1, then the projection error (11) is small. In

that case, ξ : x �→ E
(
Q(x)

)
is indeed a good RC, by Theorem 1.

Remark 4. Any RC of form (10) is called an ideal RC [6]. As in practice, however,
neither the projection Q nor the parametrization E of M are known, this RC
cannot be computed analytically. Instead, for strongly reducible systems, an
approximate parametrization of M is computed by applying manifold learning
methods to a finite sample of the fuzzy TM M̃ [4–6]. Our ongoing efforts to
extend these techniques to the newly-identified weak reducibility condition will
be discussed in the outlook in Sect. 5.

4 Numerical Example: A Weakly Reducible System

In order to compare the strong and weak reducibility condition, we consider
a simple two-dimensional metastable system that possesses a one-dimensional
RC. This system, originally considered in [22], is governed by an overdamped
Langevin equation of form (9), where the potential energy function V is given
by

V (x) = (x2
1 − 1)2 + 10(x2

1 + x2 − 1)2.

We choose the inverse temperature β = 1, and consider the system on the domain
X = [−2, 2] × [−2, 2] (though no boundary conditions have been enforced in
the following computations). The potential V , depicted in Fig. 2(a), possesses
two local minima in the states A = (−1, 0) and B = (1, 0). The reaction in
question hence is the transition from the area around one minimum (without
loss of generality state A) to the other (state B). The minimum energy pathway
(MEP) [24], which in the zero temperature limit supports almost all reactive
trajectories [30], is indicated by the white dashed line.

The spectrum of T τ for τ = 0.5, computed by a Ulam method [39] from
a long, equilibrated trajectory of the system, exhibits a spectral gap after λ1

(Fig. 2(b)). The relevant reaction, i.e., the transition between the two metastable
sets, is associated primarily with the process on the dominant timescale t1.

The (MEP) of the potential is given by the set

AMEP = {(x1, x2) ∈ X | x2 = 1 − x2
1}.

Intuitively, the manifold
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Fig. 2. (a) Energy potential of a two-dimensional drift-diffusion system. The reaction
of interest here is the transition between the two local minima. (b) Eigenvalues of the
full transfer operator T τ and of the effective transfer operator T τ

ξ1 projected onto the
computed RC ξ1.

MMEP = {pτ (x, ·) | x ∈ AMEP}

should constitute a good TM. This statement should come with a warning: The
intuition that the MEP allows to construct a good TM is wrong in general. There
are many cases where the relevant transition pathways are completely different
from the MEPs of the underlying system, mainly because for finite temperatures
all statistically relevant transition paths concentrate in regions not close to the
MEP and only converge to the MEP in the limit of zero temperature. In the
case considered herein, however, relevant transition paths concentrate around
the MEP even for finite temperatures.

Before quantitatively assessing whether or not MMEP is indeed is a good TM,
we visualize the fuzzy TM of the system, i.e., the set M̃ = {pτ (x, ·) | x ∈ X}.
As M̃ lies in the function space L1, it first needs to be embedded into a (finite-
dimensional) Euclidean space. This is done by computing the mean of every
pτ (x, ·) ∈ M̃ via the function m : L1 → R

2,

m
(
pτ (x, ·)

)
:=

∫
X

x′ pτ (x, x′)dx′. (12)

The set m
(
M̃

)
then serves as the Euclidean embedding2 of M̃.

2 While for general dynamics m is not an embedding of the fuzzy TM in the strict
topological sense, we conjecture that in this system, no two transition densities
pτ (x1, ·), pτ (x2, ·) possess the same mean, and hence that m is homeomorphic on M̃

and its image. Still, we neither formally confirm this, nor assess the distortion of M̃
under m, and hence m(M̃) as a replacement for M̃ should be handled with care.
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Furthermore, as m
(
M̃

)
is an infinite set, only a finite subsample can be visu-

alized. For this we draw a large number, specifically N = 8000, of starting points
{x1, . . . , xN} uniformly from X and for each xk compute mk := m

(
pτ (xk, ·)

)
.

Here the integral in (12) is approximated via Monte Carlo quadratur, i.e., for
M � 1,

m
(
pτ (xk, ·)

)
≈ 1

M

M∑
l=1

z
(l)
k , (13)

where the z
(l)
k are samples of the density pτ (xk, ·). These were computed numer-

ically by an Euler-Maruyama integrator of (9), starting in xk, with a different
random seed for each l = 1, . . . , M .

The points mk are shown in Fig. 3. We observe that most of the mk lie close
to a parabola-like structure, though there appear to exist systematic outliers,
associated with starting points from the high energy regions in the lower part of
X. The maximum distance is assumed by the starting point x∗ = (0,−2). The
parabola is exactly the Euclidean embedding of MMEP, which is also shown in
Fig. 3.

Fig. 3. Euclidean embeddings via the mean embedding function m of the fuzzy TM
M̃, and the TM based on the minimum energy pathway, MMEP. Shown are N = 8000
sample points of m

(
M̃

)
, and N = 100 sample points of m

(
MMEP

)
. m

(
M̃

)
appears to

cluster around m
(
MMEP

)
, except for outliers from the high energy regions below the

MEP.

However, the outliers prevent MMEP from being a good strong TM by Def-
inition 2. To be precise, for the point x∗ = (0,−3), we get for the distance
in (7) ∥∥Q(x∗) − pt(x∗, ·)

∥∥
L2

1/μ

≈ 2.5, (14)

where again finite samples of M̃ and MMEP, and kernel density estimations of
the pt(x, ·) were used in the computation. Using (14) as a lower bound for the
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eigenvalue approximation (2) via Theorems 2 and 1 is of course worthless, hence
MMEP is not a strong TM.

On the other hand, for the defining condition (8) of weak reducibility holds
∫

ΣQ(Q(x∗))

∥∥Q(x′) − pτ (x′, ·)
∥∥

L2
1/μ

dμQ(x∗)(x′) ≈ 0.02 (15)

for the problematic point x∗. Assuming this value is indeed an upper bound
for (8), the system is weakly reducible with parameter ε = 0.06, and MMEP is
the corresponding weak TM. The eigenvalue error for λτ

1 predicted by Theorems 2
and 1 then is

|λτ
1 − λτ

ξ,1| ≤ 0.06, (16)

for any RC ξ of the form (10).
To confirm this error bound, we now construct such an RC. For this, a

parametrization E of MMEP must be chosen. Any such parametrization is suffi-
cient, for simplicity we choose

E
(
pτ (x, ·)

)
:= x1,

i.e., the map of pτ (x, ·) onto the first component x1 of its starting point x. Next,
the projection Q of M̃ onto the TM MMEP is required. In order to avoid the
costly calculation of kernel density estimates for the large number of starting
points, and to avoid the badly-conditioned scaling by the factor 1/ρ, we replace
the L2

1/ρ distance in (6) by the Euclidean distance between the mean-embedded
densities, i.e., utilize

Q̃(x) = arg min
f∈MMEP

∥∥m(f) − m
(
pτ (x, ·)

)∥∥
2
.

Numerically, this projection is approximated by choosing from the 100 sample
points of m(MMEP) that are shown in Fig. 3 the point of minimum distance from
m(pτ (x, ·)). The point m(pτ (x, ·)) is here again computed via (13). While using
the projection Q̃ instead of Q might slightly distort the computed RC, it will
have a negative impact on the quality of the RC, so if the bound (16) holds for
Q̃, it will hold for Q as well. Moreover, it has been shown in [5] that the L2

1/ρ

distance is equivalent to the distance in certain embedding spaces.
The final RC is then given by ξ1 : x �→ E

(
Q̃(pτ (x, ·))

)
. By numerically eval-

uating ξ1 at the 8000 sample points (where the pτ (x, ·) are again approximated
by finite samples) and interpolating the resulting values bilinearly, we receive
a continuous RC on X. Figure 4 shows the level plot of ξ1. We see that the
level sets of ξ1 are essentially identical to those of the dominant eigenfunction
ϕ1, also shown in Fig. 4. This is not surprising, as ξ1 is constructed to fulfill the
requirements of Theorem 1, i.e., the dominant eigenfunctions are required to be
almost invariant under averaging over the level sets of ξ1. As there is only one
dominant eigenfunction ϕ1, and ξ1 is also one-dimensional, this implies that the
level sets of ξ1 and ϕ1 are almost identical. Note however that the precise ranges
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Fig. 4. Level plots of the RCs ξ1 computed by the TM method, a naively-constructed
RC ξ2, as well as the dominant eigenfunction ϕ1 of T τ . We see that the level sets of
ξ1 and ϕ1 are essentially identical.

of ξ and ϕ1 are not necessarily identical, but strongly depend on the chosen
parametrization E .

The effective transfer operator T τ
ξ1

associated with ξ1 can again be approxi-
mated by an Ulam method. Its leading eigenvalues, shown in Fig. 3(b), approxi-
mate the eigenvalues of the full transfer operator T τ very well. In particular, for
the second dominant eigenvalue holds

|λτ
1 − λτ

ξ,1| ≈ 0.001.

As a consequence, the relaxation rate of the projected system ξ1(Xt), denoted
σξ1 and computed from λξ,1 via (1), also approximate the rate of the full system
σfull very well; we have σξ1 ≈ 0.43, σfull ≈ 0.43 . In contrast, projections onto
other, naively chosen RCs, such as

ξ2(x) := x1,

seem to systematically over-estimate the equilibration rate, hence under-
estimates the metastability of the system. Specifically, we have σξ2 ≈ 0.46.
Reduced models built based on ξ2 would therefore run the risk of equilibrating
quicker than the full model by artificially increasing the number of transitions.

That said, the difference between |σξ1 − σξ2 | ≈ 0.03 is rather small, so the
naive RC ξ2 can already be considered quite good. The reason is that at low
temperatures the dynamics concentrates near the MEP, and here for each level
set of ξ2 there exists a level set of ξ1 that is close (in the sense that the mini-
mum pairwise point distance is small), and the RCs are both smooth. Still, the
difference is measurable, and this causes the discrepancy.
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Overall, this example confirms that

(1) the RC ξ1 derived from a parametrization of MMEP is good, and
(2) the error bound (16) derived from the characterization of MMEP as a weak

TM is reasonably accurate.

5 Conclusion and Outlook

In this work, we derived an improved and generalized characterization of good
reaction coordinates for timescale-separated stochastic processes. We built upon
a recently developed framework that constructs good RCs from parametrizations
of the so-called transition manifold, a potentially low-dimensional manifold in the
space of probability densities. We have shown that the criteria on the underlying
system to possess such a manifold were overly strict, in the sense that certain
systems with demonstrated good reaction coordinates do not possess a transition
manifold by the old definition. We thus provided an alternative, relaxed definition
of the transition manifold that is applicable to a larger class of systems, while
still allowing the construction of good reaction coordinates.

One natural next step would be to implement the novel definition of weak
TMs into a data-driven algorithm for the identification of good RCs. Unlike
in the toy example from Sect. 4, the parametrization of the transition mani-
fold (or of a suitable candidate) is not known analytically in practice. Instead,
an approximate parametrization is identified by applying a nonlinear manifold
learning algorithm to a large sample of M̃ (or a suitable embedding thereof) [4].
Many manifold learning algorithms, such as the diffusion maps algorithm [9] can
be tuned to ignore outliers, which can be seen as a heuristic way weighing with
respect to the invariant measure μ. A more rigorous approach however would
be to directly implement the weighted distance (8) into the diffusion maps algo-
rithm. This could be achieved by using the target measure-extension of diffusion
maps [1], which at the same time allows one to estimate the in general unknown
measure μ from data.
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