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Abstract. Reproducing kernel Hilbert spaces (RKHSs) play an impor-
tant role in many statistics and machine learning applications ranging
from support vector machines to Gaussian processes and kernel embed-
dings of distributions. Operators acting on such spaces are, for instance,
required to embed conditional probability distributions in order to imple-
ment the kernel Bayes rule and build sequential data models. It was
recently shown that transfer operators such as the Perron–Frobenius
or Koopman operator can also be approximated in a similar fashion
using covariance and cross-covariance operators and that eigenfunctions
of these operators can be obtained by solving associated matrix eigen-
value problems. The goal of this paper is to provide a solid functional
analytic foundation for the eigenvalue decomposition of RKHS opera-
tors and to extend the approach to the singular value decomposition.
The results are illustrated with simple guiding examples.

1 Introduction

A majority of the characterizing properties of a linear map such as range, null
space, numerical condition, and different operator norms can be obtained by
computing the singular value decomposition (SVD) of the associated matrix
representation. Furthermore, the SVD is used to optimally approximate matrices
under rank constraints, solve least squares problems, or to directly compute
the Moore–Penrose pseudoinverse. Applications range from solving systems of
linear equations and optimization problems and to a wide variety of methods
in statistics, machine learning, signal processing, image processing, and other
computational disciplines.

Although the matrix SVD can be extended in a natural way to compact
operators on Hilbert spaces [1], this infinite-dimensional generalization is not
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as multifaceted as the finite-dimensional case in terms of numerical applica-
tions. This is mainly due to the complicated numerical representation of infinite-
dimensional operators and the resulting problems concerning the computation
of their SVD. As a remedy, one usually considers finite-rank operators based on
finite-dimensional subspaces given by a set of fixed basis elements. The SVD of
such finite-rank operators will be the main focus of this paper. We will combine
the theory of the SVD of finite-rank operators with the concept of the reproduc-
ing kernel Hilbert space (RKHS), a specific type of function space. A significant
part of the theory of RKHSs was originally developed in a functional analytic
setting [2] and made its way into pattern recognition and statistics [3–5]. RKHSs
are often used to derive nonlinear extensions of linear computational methods.
This is typically achieved by representing observational data in terms of RKHS
elements and rewriting the methods based on the inner product of the RKHS.
This strategy is known as the kernel trick [3]. The approach of embedding a finite
number of observations into the RKHS can be generalized to the embedding of
probability distributions associated with random variables into the RKHS [6].
The theory of the resulting kernel mean embedding (see [7] for a comprehen-
sive review), conditional mean embedding [8–11] and Kernel Bayes rule [12,13]
spawned a wide range of nonparametric approaches to problems in statistics and
machine learning. Recent advances based on the conditional mean embedding
show that data-driven methods in various fields such as transfer operator the-
ory, time series analysis, and image and text processing naturally give rise to a
spectral analysis of finite-rank RKHS operators [14,15].

Practical applications of these spectral analysis techniques include the iden-
tification of the slowest relaxation processes of dynamical systems, e.g., confor-
mational changes of complex molecules or slowly evolving coherent patterns in
fluid flows, but also dimensionality reduction and blind source separation. The
eigendecomposition, however, is beneficial only in the case where the underlying
system is ergodic with respect to some density. If this is not the case, however,
i.e., the stochastic process is time-inhomogeneous, eigendecompositions can be
replaced by singular value decompositions in order to obtain similar information
about the global dynamics [16]. Moreover, outside of the context of stochas-
tic processes, the conditional mean embedding operator has been shown to be
the solution of certain vector-valued regression problems [9,11]. Contrary to the
transfer operator setting, input and output space can differ fundamentally (e.g.,
the input space could be text) and the constraint that the RKHS for input and
output space must be identical is too restrictive. The SVD of RKHS opera-
tors does not require this assumption and is hence a more general analysis tool
applicable to operators that solve regression problems and to transfer operators
associated with more general stochastic processes.

In this paper, we will combine the functional analytic background of the
Hilbert space operator SVD and the theory of RKHSs to develop a self-contained
and rigorous mathematical framework for the SVD of finite-rank operators acting
on RKHSs and show that the SVD of such operators can be computed numer-
ically by solving an auxiliary matrix eigenvalue problem. The remainder of the
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paper is structured as follows: Sect. 2 briefly recapitulates the theory of compact
operators. In Sect. 3, RKHS operators and their eigendecompositions and singu-
lar value decompositions will be described. Potential applications are discussed
in Sect. 4, followed by a brief conclusion and a delineation of open problems in
Sect. 5.

2 Preliminaries

We recall the most important properties of compact operators on Hilbert spaces.
For details, we refer the reader to [1,17]. In what follows, let H be a real Hilbert
space, 〈·, ·〉H its inner product, and ‖·‖H the induced norm. For a Hilbert space
H, we call a set {hi}i∈I ⊆ H with an index set I an orthonormal system if
〈hi, hj〉H = δij for all i, j ∈ I. If additionally span{hi}i∈I is dense in H, then
we call {hi}i∈I a complete orthonormal system. If H is separable, then the index
set I of every complete orthonormal system of H is countable. Given a complete
orthonormal system, every x ∈ H can be expressed by the series expansion
x =

∑
i∈I 〈hi, x〉H hi.

Definition 1. Given two Hilbert spaces H and F and nonzero elements x ∈ H
and y ∈ F , we define the tensor product operator y ⊗ x : H → F by (y ⊗ x)h =
〈x, h〉H y.

Remark 1. When H = R
m and F = R

n and both spaces are equipped with
the Euclidean inner product, the tensor product operator y ⊗ x = y�x ∈ R

n×m

reduces to the standard outer product of vectors in x ∈ H and y ∈ F .

Note that tensor product operators are bounded linear operators. Bound-
edness follows from the Cauchy–Schwarz inequality on H. We define E :=
span{y ⊗ x | x ∈ H, y ∈ F} and call the completion of E with respect to
the inner product

〈y1 ⊗ x1, y2 ⊗ x2〉 := 〈y1, y2〉F 〈x1, x2〉H

the tensor product of the spaces F and H, denoted by F ⊗ H. It follows that
F ⊗H is again a Hilbert space. It is well known that, given a self-adjoint compact
operator A : H → H, there exists an eigendecomposition of the form

A =
∑

i∈I

λi(ei ⊗ ei),

where I is either a finite or countably infinite ordered index set, {ei}i∈I ⊆ H an
orthonormal system, and {λi}i∈I ⊆ R\{0} the set of nonzero eigenvalues. If the
index set I is not finite, then the resulting sequence (λi)i∈I is a null sequence.
Similarly, given a compact operator A : H → F , there exists a singular value
decomposition given by

A =
∑

i∈I

σi(ui ⊗ vi),
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where I is again an either finite or countably infinite ordered index set, {vi}i∈I ⊆
H and {ui}i∈I ⊆ F two orthonormal systems, and {σi}i∈I ⊆ R>0 the set of
singular values. As for the eigendecomposition, the sequence (σi)i∈I is a null
sequence if I is not finite. Without loss of generality, we assume the singular
values of compact operators to be ordered in non-increasing order, i.e., σi ≥ σi+1.
We additionally write σi(A) for the ith singular value of a compact operator A
if we want to emphasize to which operator we refer. The following result shows
the connection of the eigendecomposition and the SVD of compact operators.

Lemma 1 (cf. [1]). Let A : H → F be compact and let {λi}i∈I denote the set
of nonzero eigenvalues of A∗A counted with their multiplicities and {vi}i∈I the
corresponding normalized eigenfunctions of A∗A, then, for ui := λ

−1/2
i Avi, the

singular value decomposition of A is given by

A =
∑

i∈I

λ
1/2
i (ui ⊗ vi).

A bounded operator A : H → F is said to be r-dimensional if rank(A) = r.
If r < ∞, we say that A is finite-rank.

Theorem 1 (cf. [17]). Let H and F be two Hilbert spaces and A : H → F a
linear operator. The operator A is finite-rank with rank(A) = r if and only if
there exist linearly independent sets {hi}1≤i≤r ⊆ H and {fi}1≤i≤r ⊆ F such
that A =

∑r
i=1 fi ⊗ hi. Furthermore, then A∗ =

∑r
i=1 hi ⊗ fi.

The class of finite-rank operators is a dense subset of the class of compact
operators with respect to the operator norm.

Definition 2. Let H and F be Hilbert spaces and {hi}i∈I ⊆ H be a complete
orthonormal system. An operator A : H → F is called a Hilbert–Schmidt operator
if

∑
i∈I ‖Ahi‖2

F < ∞.

The space of Hilbert–Schmidt operators from H to F is itself a Hilbert space
with the inner product 〈A, B〉HS :=

∑
i∈I 〈Ahi, Bhi〉F . Furthermore, it is iso-

morphic to the tensor product space F ⊗ H. The space of finite-rank operators
is a dense subset of the Hilbert–Schmidt operators with respect to the Hilbert–
Schmidt norm. Furthermore, every Hilbert–Schmidt operator is compact and
therefore admits an SVD.

Remark 2. Based on the definitions of the operator norm and the Hilbert–
Schmidt norm, we have ‖A‖ = σ1(A) for any compact operator and ‖A‖HS =
( ∑

i∈I σi(A)2
)1/2 for any Hilbert–Schmidt operator.

We will now derive an alternative characterization of the SVD of compact
operators by generalizing a classical block-matrix decomposition approach to
compact operators. For the matrix version of this result, we refer the reader
to [18]. For two Hilbert spaces H and F , we define the external direct sum
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F ⊕H as the Hilbert space of tuples of the form (f, h), where h ∈ H and f ∈ F ,
with the inner product

〈(f, h), (f ′, h′)〉⊕ := 〈h, h′〉H + 〈f, f ′〉F .

If A : H → F is a compact operator, then the operator T : F ⊕H → F ⊕H, with

(f, h) �→ (Ah,A∗f) (1)

is compact and self-adjoint with respect to 〈·, ·〉⊕. By interpreting the elements
of F ⊕ H as column vectors and generalizing algebraic matrix operations, we
may rewrite the action of the operator T on (f, h) in a block operator notation
as [

A
A∗

] [
f
h

]

=
[

Ah
A∗f

]

.

We remark that the block operator notation should be applied with caution
since vector space operations amongst h ∈ H and f ∈ F in terms of the matrix
multiplication are only defined if F ⊕ H is an internal direct sum.

Lemma 2. Let A : H → F be a compact operator and T : F ⊕ H → F ⊕ H be
the block-operator given by (1). If A admits the SVD

A =
∑

i∈I

σi(ui ⊗ vi) (2)

then T admits the eigendecomposition

T =
∑

i∈I

σi

[
1√
2
(ui, vi) ⊗ 1√

2
(ui, vi)

]
− σi

[
1√
2
(−ui, vi) ⊗ 1√

2
(−ui, vi)

]
. (3)

A proof of this lemma can be found in Appendix A.1.

Corollary 1. Let A : H → F be a compact operator. If σ > 0 is an eigenvalue
of the block-operator T : F ⊕ H → F ⊕ H given by (1) with the corresponding
eigenvector (u, v) ∈ F ⊗H, then σ is a singular value of A with the corresponding
left and right singular vectors ‖u‖−1

F u ∈ F and ‖v‖−1
H v ∈ H.

3 Decompositions of RKHS Operators

We will first introduce reproducing kernel Hilbert spaces, and then consider
empirical operators defined on such spaces. The main results of this section
are a basis orthonormalization technique via a kernelized QR decomposition in
Sect. 3.3 and the eigendecomposition and singular value decomposition of empiri-
cal RKHS operators in Sect. 3.4 and Sect. 3.5 via auxiliary problems, respectively.
The notation is adopted from [7,14] and summarized in Table 1.
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3.1 RKHS

The following definitions are based on [3,5]. In order to distinguish reproducing
kernel Hilbert spaces from standard Hilbert spaces, we will use script style letters
for the latter, i.e., H and F .

Table 1. Overview of notation.

Random variable X Y

Domain X Y

Observation x y

Kernel function k(x, x′) l(y, y′)

Feature map φ(x) ψ(y)

Feature matrix Φ = [φ(x1), . . . , φ(xm)] Ψ = [ψ(y1), . . . , ψ(yn)]

Gram matrix GΦ = Φ�Φ GΨ = Ψ�Ψ

RKHS H F

Definition 3 (Reproducing kernel Hilbert space, [3]). Let X be a set
and H a space of functions f : X → R. Then H is called a reproducing kernel
Hilbert space (RKHS) with corresponding inner product 〈·, ·〉H if a function
k : X × X → R exists such that

(i) 〈f, k(x, ·)〉H = f(x) for all f ∈ H and
(ii) H = span{k(x, ·) | x ∈ X}.

The function k is called reproducing kernel and the first property the repro-
ducing property. It follows in particular that k(x, x′) = 〈k(x, ·), k(x′, ·)〉H . The
canonical feature map φ : X → H is given by φ(x) := k(x, ·). Thus, we obtain
k(x, x′) = 〈φ(x), φ(x′)〉H . It was shown that an RKHS has a unique symmetric
and positive definite kernel with the reproducing property and, conversely, that a
symmetric positive definite kernel k induces a unique RKHS with k as its repro-
ducing kernel [2]. We will refer to the set X as the corresponding observation
space.

3.2 RKHS Operators

Finite-rank operators can be defined by a finite number of fixed basis elements in
the corresponding RKHSs. In practice, finite-rank RKHS operators are usually
estimates of infinite-dimensional operators based on a set of empirical obser-
vations. We later refer to this special type of finite-rank operator as empirical
RKHS operator although the concepts in this section are more general and do
not need the assumption of the data in the observation space being given by
random events.
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Let H and F denote RKHSs based on the observation spaces X and Y,
respectively, with kernels k and l and feature maps φ and ψ. Given x1, . . . , xm ∈
X and y1, . . . , yn ∈ Y, we call

Φ := [φ(x1), . . . , φ(xm)] and Ψ := [ψ(y1), . . . , ψ(yn)]

their associated feature matrices. Note that feature matrices are technically not
matrices but row vectors in H m and Fn, respectively. Since the embedded
observations in the form of φ(xi) ∈ H and ψ(yj) ∈ F can themselves be inter-
preted as (possibly infinite-dimensional) vectors, the term feature matrix is used.
In what follows, we assume that feature matrices contain linearly independent
elements. This is, for example, the case if k(·, ·) is a radial basis kernel and
the observations x1, . . . , xm ∈ X consist of pairwise distinct elements. We adopt
the commonly used notation Φ�v := [〈φ(x1), v〉H , . . . , 〈φ(xm), v〉H ]� for all
v ∈ H , which we also use to express pairwise kernel evaluations between objects
in two feature matrices. Given the feature matrices Φ and Ψ, we can define the
corresponding Gram matrices by GΦ = Φ�Φ ∈ R

m×m and GΨ = Ψ�Ψ ∈ R
n×n.

That is, [GΦ]ij = k(xi, xj) and [GΨ ]ij = l(yi, yj). We will now analyze operators
S : H → F of the form S = ΨBΦ�, where B ∈ R

n×m. Given v ∈ H , we obtain

Sv = ΨBΦ�v =
n∑

i=1

ψ(yi)
m∑

j=1

bij 〈φ(xj), v〉H .

We will refer to operators S of this form as empirical RKHS operators. Examples
of such operators are described in Sect. 4.

Remark 3. If the rows of B are linearly independent in R
m, then the elements of

BΦ� are linearly independent in H . The analogue statement holds for linearly
independent columns of B and elements of ΨB in F .

Proposition 1. The operator S defined above has the following properties:

(i) S is a finite-rank operator. In particular, rank(S) = rank(B).
(ii) S∗ = ΦB�Ψ�.
(iii) Let B = WΣZ� be the singular value decomposition of B, where W =

[w1, . . . ,wn], Σ = diag(σ1, . . . , σr, 0, . . . , 0), and Z = [z1, . . . , zm], then

‖S‖ ≤
r∑

i=1

σi ‖Ψwi‖F ‖Φzi‖H .

Proof. The linearity of S follows directly from the linearity of the inner prod-
uct in H . We now show that properties (i)–(iii) can directly be obtained from
Theorem 1. Using B = WΣZ�, we can write S = (ΨW )Σ(Z�Φ�) and obtain

Sv =
r∑

i=1

σiΨwi 〈Φzi, v〉H for all v ∈ H . (4)
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Since the elements in Φ and Ψ are linearly independent, we see that ΦZ and ΨW
are also feature matrices containing the linearly independent elements Φzi ∈ H
and Ψwi ∈ F as stated in Remark 3. Therefore, (4) satisfies the assumptions
in Theorem 1 if we choose {Φzi}1≤i≤r ⊆ H and {σiΨwi}1≤i≤r ⊆ F to be
the required linearly independent sets. Theorem 1 directly yields all the desired
statements. ��

Note that the characterization (4) is in general not a singular value decom-
position of S since the given basis elements in ΦZ and ΨW are not necessarily
orthonormal systems in H and F , respectively.

3.3 Basis Orthonormalization and Kernel QR Decomposition

When we try to perform any type of decomposition of the operator S = ΨBΦ�,
we face the problem that the representation matrix B is defined to work on fea-
ture matrix entries of Ψ and Φ, which are not necessarily orthonormal systems in
the corresponding RKHSs. This leads to the fact that we can not simply decom-
pose B with standard numerical routines based on the Euclidean inner products
and expect a meaningful equivalent decomposition of S in terms of RKHS inner
products. We therefore orthonormalize the feature matrices with respect to the
RKHS inner products and capture these transformations in a new represen-
tation matrix B̃ which allows using matrix decompositions to obtain operator
decompositions of S. We now generalize the matrix QR decomposition to feature
matrices, which is essentially equivalent to a kernelized Gram–Schmidt proce-
dure [19]. By expressing empirical RKHS operators with respect to orthonormal
feature matrices, we can perform operator decompositions in terms of a simple
matrix decomposition.

Proposition 2 (Kernel QR decomposition). Let Φ ∈ H m be a feature
matrix. Then there exists a unique upper triangular matrix R ∈ R

m×m with
strictly positive diagonal elements and a feature matrix Φ̃ ∈ H m, such that

Φ = Φ̃R

and Φ̃�Φ̃ = Im.

Proof. We have assumed that elements in feature matrices are linearly indepen-
dent. Therefore Φ�Φ is strictly positive definite. We have a Cholesky decomposi-
tion Φ�Φ = R�R for a unique upper triangular matrix R

m×m with positive diag-
onal entries. By setting Φ̃ := ΦR−1 and observing that Φ̃�Φ̃ = (ΦR−1)�ΦR−1 =
Im, the claim follows. ��

By using Proposition 2, we can express empirical operators in orthonormal-
ized basis elements. Given an empirical RKHS operator S = ΨBΦ� and the
two corresponding kernel QR decompositions Φ = Φ̃RΦ and Ψ = Ψ̃RΨ, we can
rewrite

S = (Ψ̃R−1
Ψ )B(Φ̃R−1

Φ )� = Ψ̃(R−1
Ψ B(R−1

Φ )�)Φ̃� = Ψ̃B̃Φ̃�. (5)
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We can now simply perform any type of matrix decomposition on the new
representation matrix B̃ := R−1

Ψ B(R−1
Φ )� to obtain an equivalent decomposition

of the operator S. As examples, we give the SVD and the eigendecomposition
of S.

Corollary 2 (Singular value decomposition). Let S = Ψ̃B̃Φ̃� : H → F
be given by orthonormalized basis elements as above. If B̃ =

∑r
i=1 σiuiv

�
i is the

singular value decomposition of B̃, then

S =
r∑

i=1

σi(Ψ̃ui ⊗ Φ̃vi)

is the singular value decomposition of S.

For the eigendecomposition, we require the operator to be a mapping from
H to itself. We will assume that both the domain and the range of S are defined
via the same feature matrix Φ. We consider the self-adjoint case, that is B (or
equivalently B̃) is symmetric.

Corollary 3 (Eigendecomposition). Let S = Φ̃B̃Φ̃� : H → H be given
by orthonormalized basis elements as above. Let B̃ be symmetric. If B̃ =∑r

i=1 λiviv
�
i is the eigendecomposition of B̃, then

S =
r∑

i=1

λi(Φ̃vi ⊗ Φ̃vi) (6)

is the eigendecomposition of S.

In particular, the matrix B̃ and the operator S share the same singular val-
ues (or eigenvalues, respectively) potentially up to zero. In practice, computing
the singular value decomposition of S by this approach needs two kernel QR
decompositions (which numerically results in Cholesky decompositions of the
Gram matrices), inversions of the triangular matrices RΨ and RΦ and the final
decomposition of B̃. For the eigendecomposition we need a single kernel QR
decomposition and inversion before performing the eigendecomposition of B̃.
Since this may numerically be costly, we give an overview of how eigendecompo-
sitions and singular value decompositions of empirical RKHS operators can be
performed by solving a single related auxiliary problem.

Remark 4. Representation (5) makes it possible to compute classical matrix
decompositions such as Schur decompositions, LU-type decompositions, or polar
decompositions on B̃ and obtain a corresponding decomposition of the operator
S. Note however that when S approximates an operator for n,m → ∞, it is not
necessarily given that these empirical decompositions of S converge to a mean-
ingful infinite-rank concept that is equivalent. For the eigendecomposition and
the singular value decomposition, this reduces to classical operator perturbation
theory [20].
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3.4 Eigendecomposition via Auxiliary Problem

The eigendecomposition of RKHS operators via an auxiliary problem was first
considered in [14]. For the sake of completeness, we will briefly recapitulate the
main result and derive additional properties. For the eigendecomposition, we
again require the operator to be a mapping from H to itself. For this section,
we define a new feature matrix by Υ = [φ(x′

1), . . . , φ(x′
m)]. Note that the sizes

of Φ and Υ have to be identical.

Proposition 3 (cf. [14]). Let S : H → H with S = ΥBΦ� and B ∈ R
m×m

be an empirical RKHS operator. Then the following statements hold:

(i) If λ is an eigenvalue of BΦ�Υ ∈ R
m×m with corresponding eigenvector

w ∈ R
m, then Υw ∈ H is an eigenfunction of S corresponding to λ.

(ii) Conversely, if λ �= 0 is an eigenvalue of S corresponding to the eigenfunction
v ∈ H , then BΦ�v ∈ R

m is an eigenvector of BΦ�Υ ∈ R
m×m correspond-

ing to the eigenvalue λ.

In particular, the operator S and the matrix BΦ�Υ share the same nonzero
eigenvalues.

Proof. For the sake of completeness, we briefly reproduce the gist of the proof.

(i) Let w ∈ R
m be an eigenvector of the matrix BΦ�Υ corresponding to the

eigenvalue λ. Using the associativity of feature matrix multiplication and
kernel evaluation, we have

S(Υw) = Υ(BΦ�Υw) = λΥw.

Furthermore, since w �= 0 ∈ R
m and the elements in Υ are linearly inde-

pendent, we have Υw �= 0 ∈ H . Therefore, Υw is an eigenfunction of S
corresponding to λ.

(ii) Let v be an eigenfunction of S associated with the eigenvalue λ �= 0. By
assumption, we then have

ΥBΦ�v = λv.

By “multiplying” both sides from the left with BΦ� and using the associa-
tivity of the feature matrix notation, we obtain

(BΦ�Υ)BΦ�v = λBΦ�v.

Furthermore, BΦ�v cannot be the zero vector in R
m as we would have

Υ(BΦ�v) = Sv = 0 �= λv otherwise since λ was assumed to be a nonzero
eigenvalue. Therefore, BΦ�v is an eigenvector of the matrix BΦ�Υ. ��
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Remark 5. Eigenfunctions of empirical RKHS operators may be expressed as
a linear combination of elements contained in the feature matrices. However,
there exist other formulations of this result [14]. We can, for instance, define the
alternative auxiliary problem

Φ�ΥBw = λw.

For eigenvalues λ and eigenvectors w ∈ R
m satisfying this equation, we see

that ΥBv ∈ H is an eigenfunction of S. Conversely, for eigenvalues λ �= 0 and
eigenfunctions v ∈ H of S, the auxiliary matrix has the eigenvector Φ�v ∈ R

m.

Example 1. The eigendecomposition of RKHS operators can be used to obtain
an approximation of the Mercer feature space representation1 of a kernel. Let us
consider the domain X = [−2, 2] × [−2, 2] equipped with the Lebesgue measure
and the kernel k(x, x′) =

(
1 + x�x′)2. The associated feature space is in this

case six-dimensional.2 The nonzero eigenvalues and eigenfunctions of the integral
operator Ek defined by

Ekf(x) =
∫

k(x, x′)f(x′)dμ(x′)

are given by

λ1 = 269+
√

60841
90 ≈ 5.72, e1(x) = c1

(
−179+

√
60841

120 + x2
1 + x2

2

)
,

λ2 = 32
9 ≈ 3.56, e2(x) = c2 x1x2,

λ3 = 8
3 ≈ 2.67, e3(x) = c3 x1,

λ4 = 8
3 ≈ 2.67, e4(x) = c4 x2,

λ5 = 64
45 ≈ 1.42, e5(x) = c5

(
x2

1 − x2
2

)
,

λ6 = 269−√
60841

90 ≈ 0.24, e6(x) = c6

(
−179−√

60841
120 + x2

1 + x2
2

)
,

where c1, . . . , c6 are normalization constants so that ‖ei‖μ = 1. Defining φ =
[φ1, . . . , φ6]�, with φi =

√
λiei, we thus obtain the Mercer feature space rep-

resentation of the kernel, i.e., k(x, x′) = 〈φ(x), φ(x′)〉. Here, 〈·, ·〉 denotes the
standard inner product in R

6. For f ∈ H , it holds that Ekf = CXXf , where
CXX is the covariance operator.3 We now compute eigenfunctions of its empirical
1 Given a continuous kernel k on a compact domain, Mercer’s theorem allows for

a series representation of the form k(x, x′) =
∑

i∈I λiei(x) e′
i(x), see, e.g., [5]. In

particular, {√
λi ei}i∈I forms an (at most countable) orthonormal system in H .

The Mercer feature space can be constructed by computing eigenfunctions of the
operator Ek introduced below.

2 For a d-dimensional state space, the polynomial kernel with degree p spans a
(
p+d
p

)
-

dimensional feature space [19].
3 For a detailed introduction of covariance and cross-covariance operators, see Sect. 4.
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estimate ĈXX with the aid of the methods described above. That is, B = 1
mIm.

Drawing m = 5000 test points from the uniform distribution on X, we obtain
the eigenvalues and (properly normalized) eigenfunctions shown in Fig. 1. The
eigenfunctions are in good agreement with the analytically computed ones. We
evaluate the analytically and numerically computed eigenfunctions in the mid-
points of a regular 50 × 50 box discretization and the average relative error is
approximately 2.9% for the first eigenfunction. Note that the eigenspace corre-
sponding to the eigenvalues λ3 and λ4 is only determined up to basis rotations.
The computed eigenvalues λi for i > 6 are numerically zero. This indicates that
the feature space is, as expected, only six-dimensional. �

Fig. 1. Numerically computed eigenvalues and eigenfunctions of ĈXX associated with
the second-order polynomial kernel on X = [−2, 2] × [−2, 2].

While we need the assumption that the eigenvalue λ of S is nonzero to
infer the eigenvector of the auxiliary matrix from the eigenfunction from S, this
assumption is not needed the other way around. This has the simple explanation
that a rank deficiency of B always introduces a rank deficiency to S = ΥBΦ�.
On the other hand, if H is infinite-dimensional, S as a finite-rank operator
always has a natural rank deficiency, even when B has full rank. In this case, S
has the eigenvalue 0 while B does not.

In order to use Proposition 3 as a consistent tool to compute eigenfunctions
of RKHS operators, we must ensure that all eigenfunctions corresponding to
nonzero eigenvalues of empirical RKHS operators can be computed. In particu-
lar, we have to be certain that eigenvalues with a higher geometric multiplicity
allow to capture a full set of linearly independent basis eigenfunctions in the
associated eigenspace.
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Lemma 3. Let S : H → H with S = ΥBΦ� be an empirical RKHS operator.
Then it holds:

(i) If w1 ∈ R
m and w2 ∈ R

m are linearly independent eigenvectors of BΦ�Υ,
then Υw1 ∈ H and Υw2 ∈ H are linearly independent eigenfunctions of S.

(ii) If v1 and v2 are linearly independent eigenfunctions belonging to the eigen-
value λ �= 0 of S, then BΦ�v1 ∈ R

m and BΦ�v2 ∈ R
m are linearly inde-

pendent eigenvectors of BΦ�Υ.

In particular, if λ �= 0, then we have dim ker(BΦ�Υ−λIm) = dim ker(S−λIH ).

Proof. The eigenvalue-eigenfunction correspondence is covered in Proposition 3,
it therefore remains to check the linear independence in statements (i) and (ii).
Part (i) follows from Remark 3. We show part (ii) by contradiction: Let v1 and
v2 be linearly independent eigenfunctions associated with the eigenvalue λ �= 0
of S. Then assume for some α �= 0 ∈ R, we have BΦ�v1 = αBΦ�v2. Applying
Υ from the left to both sides, we obtain

ΥBΦ�v1 = Sv1 = λv1 = αλv2 = αSv2 = ΥαBΦ�v2,

which contradicts the linear independence of v1 and v2. Therefore, BΦ�v1 and
BΦ�v2 have to be linearly independent in R

m.
From (i) and (ii), we can directly infer dim ker(BΦ�Υ−λIm) = dim ker(S −

λIH ) by contradiction: Let λ �= 0 be an eigenvalue of S and BΦ�Υ. We assume
that dim ker(BΦ�Υ − λIm) > dim ker(S − λIH ). This implies that there exist
two eigenvectors w1,w2 ∈ R

m of BΦ�Υ that generate two linearly dependent
eigenfunctions Υw1,Υw2 ∈ H , contradicting statement (i). Hence, we must
have dim ker(BΦ�Υ−λIm) ≤ dim ker(S−λIH ). Analogously, applying the same
logic to statement (ii), we obtain dim ker(BΦ�Υ − λIm) ≥ dim ker(S − λIH ),
which concludes the proof. ��
Corollary 4. If S = ΥBΦ� is an empirical RKHS operator and λ ∈ R is
nonzero, it holds that {Υw | BΦ�Υw = λw} = ker(S − λIH ).

The corollary justifies to refer to the eigenvalue problems Sv = λv as primal
problem and BΦ�Υw = λw as auxiliary problem, respectively.

3.5 Singular Value Decomposition via Auxiliary Problem

We have seen that we can compute eigenfunctions corresponding to nonzero
eigenvalues of empirical RKHS operators. This can be extended in a straightfor-
ward fashion to the singular value decomposition of such operators.

3.5.1 Standard Derivation
We apply the eigendecomposition to the self-adjoint operator S∗S to obtain the
singular value decomposition of S.
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Proposition 4. Let S : H → F with S = ΨBΦ� be an empirical RKHS oper-
ator, where Φ = [φ(x1), . . . , φ(xm)], Ψ = [ψ(y1), . . . , ψ(yn)], and B ∈ R

n×m.
Assume that the multiplicity of each singular value of S is 1. Then the SVD of
S is given by

S =
r∑

i=1

λ
1/2
i (ui ⊗ vi),

where

vi := (w�
i GΦwi)−1/2 Φwi,

ui := λ
−1/2
i Svi,

with the nonzero eigenvalues λ1, . . . , λr ∈ R of the matrix

MGΦ ∈ R
m×m with M := B�GΨB ∈ R

m×m

counted with their multiplicities and corresponding eigenvectors w1, . . . ,
wr ∈ R

m.

Proof. Using Proposition 1, the operator

S∗S = Φ(B�GΨB)Φ� = ΦMΦ�

is an empirical RKHS operator on H . Naturally, S∗S is also positive and self-
adjoint. We apply Corollary 4 to calculate the normalized eigenfunctions

vi := ‖Φwi‖−1
H Φwi = (w�

i GΦwi)−1/2 Φwi

of S∗S by means of the auxiliary problem

MGΦwi = λiwi, wi ∈ R
m,

for nonzero eigenvalues λi. We use Lemma 1 to establish the connection between
the eigenfunctions of S∗S and singular functions of S and obtain the desired form
for the SVD of S. ��
Remark 6. Whenever the operator S possesses singular values with multiplicities
larger than 1, a Gram-Schmidt procedure may need to be applied to the resulting
singular functions in order to ensure that they form an orthonormal system in
the corresponding eigenspaces of S∗S and SS∗.

Remark 7. As described in Remark 5, several different auxiliary problems to
compute the eigendecomposition of S∗S can be derived. As a result, we can
reformulate the calculation of the SVD of S for every possible auxiliary problem.

Example 2. We define a probability density on R
2 by

p(x, y) =
1
2
(
p1(x)p2(y) + p2(x)p1(y)

)
,
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with

p1(x) = 1√
2πρ2

e
− (x−1)2

2ρ2 and p2(x) = 1√
2πρ2

e
− (x+1)2

2ρ2 ,

see Fig. 2(a), and draw m = n = 10000 test points (xi, yi) from this density
as shown in Fig. 2(b). Let us now compute the singular value decomposition of
ĈYX = 1

mΨΦ�, i.e., B = 1
mIm. That is, we have to compute the eigenvalues and

eigenvectors of the auxiliary matrix 1
m2 GΨGΦ. Using the normalized Gaussian

kernel with bandwidth 0.1 results in singular values σ1 ≈ 0.47 and σ2 ≈ 0.43
and the corresponding right and left singular functions displayed in Fig. 2(c)
and Fig. 2(d). The subsequent singular values are close to zero. Thus, we can
approximate ĈYX by a rank-two operator of the form ĈYX ≈ σ1(u1 ⊗v1)+σ2(u2 ⊗
v2), see also Fig. 2(e) and Fig. 2(f). This is due to the decomposability of the
probability density p(x, y). �

Fig. 2. Numerically computed singular value decomposition of ĈYX . (a) Joint probabil-
ity density p(x, y). (b) Histogram of the 10000 sampled data points. (c) First two right
singular functions. (d) First two left singular functions. (e) σ1(u1 ⊗v1). (f) σ2(u2 ⊗v2).

With the aid of the singular value decomposition, we are now, for instance,
able to compute low-rank approximations of RKHS operators—e.g., to obtain
more compact and smoother representations—or their pseudoinverses. This will
be described below. First, however, we show an alternative derivation of the
decomposition. Proposition 4 gives a numerically computable form of the SVD
of the empirical RKHS operator S. Since the auxiliary problem of the eigende-
composition of S∗S involves several matrix multiplications, the problem might
become ill-conditioned.
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3.5.2 Block-Operator Formulation
We now employ the relationship described in Corollary 1 between the SVD of
the empirical RKHS operator S : H → F and the eigendecomposition of the
block-operator T : F ⊕ H → F ⊕ H , with (f, h) �→ (Sh, S∗f).

Theorem 2. The SVD of the empirical RKHS operator S = ΨBΦ� is given by

S =
r∑

i∈I

σi

[(
‖Ψwi‖−1

F Ψwi

)
⊗

(
‖Φzi‖−1

H Φzi

)]
,

where σi are the strictly positive eigenvalues and [wi
zi

] ∈ R
n+m the corresponding

eigenvectors of the auxiliary matrix
[

0 BGΦ

B�GΨ 0

]

∈ R
(n+m)×(n+m). (7)

Proof. The operator T defined above can be written in block form as

T

[
f
h

]

=
[

S
S∗

] [
f
h

]

=
[

Sh
S∗f

]

. (8)

By introducing the block feature matrix Λ := [ Ψ Φ ], we may rewrite (8) as the
empirical RKHS operator

Λ
[

0 B
B� 0

]

Λ�.

Invoking Corollary 4 yields the auxiliary problem
[

0 B
B� 0

]

Λ�Λ =
[

0 B
B� 0

] [
GΨ 0
0 GΦ

]

=
[

0 BGΦ

B�GΨ 0

]

∈ R
(n+m)×(n+m)

for the eigendecomposition of T . We again emphasize that the block-operator
notation has to be used with caution since F ⊕ H is an external direct sum.
We use Corollary 1 to obtain the SVD of S from the eigendecomposition of T .

��
Remark 8. In matrix analysis and numerical linear algebra, one often computes
the SVD of a matrix A ∈ R

n×m through an eigendecomposition of the matrix[
0 A

A� 0

]
. This leads to a symmetric problem, usually simplifying iterative SVD

schemes [18]. The auxiliary problem (7), however, is in general not symmetric.

4 Applications

In this section, we describe different operators of the form S = ΨBΦ� or
S = ΦBΨ�, respectively, and potential applications. All of the presented exam-
ples are empirical estimates of Hilbert–Schmidt RKHS operators. Therefore, the
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SVD of the given empirical RKHS operators converges to the SVD of their ana-
lytical counterparts. For results concerning the convergence and consistency of
the estimators, we refer to [9,11–13]. Note that in practice the examples below
may bear additional challenges such as ill-posed inverse problems and regular-
ization of compact operators, which we will not examine in detail. We will also
not cover details such as measurability of feature maps and properties of related
integral operators in what follows. For these details, the reader may consult, for
example [5].

4.1 Low-Rank Approximation, Pseudoinverse and Optimization

With the aid of the SVD it is now also possible to compute low-rank approx-
imations of RKHS operators. This well-known result is called Eckart–Young
theorem or Eckart–Young–Mirsky theorem, stating that for every compact oper-
ator A with SVD A =

∑
i∈I σi(ui ⊗ vi) and k ≤ rank(A), the operator given by

the truncated SVD

Ak :=
k∑

i=1

σi(ui ⊗ vi)

satisfies the optimality property

Ak = arg min
rank(B)=k

‖A − B‖HS ,

see [21] for details. Another application is the computation of the (not necessar-
ily globally defined) pseudoinverse or Moore–Penrose inverse [22] of operators,
defined as A+ : F ⊇ dom(A+) → H , with

A+ :=
∑

i∈I

σ−1
i (vi ⊗ ui).

We can thus obtain the solution x ∈ H of the—not necessarily well-posed—
inverse problem Ax = y for y ∈ dom(A+) through the Moore–Penrose pseudoin-
verse, i.e.,

A+y = arg min
x∈H

‖Ax − y‖F ,

where A+y in H is the unique minimizer with minimal norm. For the connection
to regularized least-squares problems and the theory of inverse problems, see [22].

4.2 Kernel Covariance and Cross-Covariance Operator

Let X and Y be random variables with values in X and Y defined on a probability
space (Ω,F ,P). The kernel covariance operator CXX : H → H and the kernel
cross-covariance operator [23] CYX : H → F are defined by

CXX =
∫

φ(X) ⊗ φ(X)dP(X) = EX [φ(X) ⊗ φ(X)],

CYX =
∫

ψ(Y ) ⊗ φ(X)dP(Y,X) = EYX [ψ(Y ) ⊗ φ(X)],
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assuming that the second moments (in the Bochner integral sense) of the embed-
ded random variables φ(X), ψ(Y ) exist. Kernel (cross-)covariance operators can
be regarded as generalizations of (cross-)covariance matrices and are frequently
used in nonparametric statistical methods, see [7] for an overview. Given train-
ing data DXY = {(x1, y1), . . . , (xn, yn)} drawn i.i.d. from the joint probability
distribution P(X,Y ), we can estimate these operators by

ĈXX =
1
n

n∑

i=1

φ(xi)⊗φ(xi) =
1
n

ΦΦ� and ĈYX =
1
n

n∑

i=1

ψ(yi)⊗φ(xi) =
1
n

ΨΦ�.

Thus, ĈXX and ĈYX are empirical RKHS operators with B = 1
nIn, where Ψ = Φ

for ĈXX . Decompositions of these operators are demonstrated in Example 1 and
Example 2, respectively, where we show that we can compute approximations of
the Mercer feature space and obtain low-rank approximations of operators.

4.3 Conditional Mean Embedding

The conditional mean embedding is an extension of the mean embedding frame-
work to conditional probability distributions. Under some technical assumptions,
the RKHS embedding of a conditional distribution can be represented as a linear
operator [8]. We will not cover the technical details here and refer the reader
to [10] for the mathematical background. We note that alternative interpreta-
tions of the conditional mean embedding exist in a least-squares context which
needs less assumptions than the operator-theoretic formulation [9,11].

Remark 9. For simplicity, we write C−1
XX for the inverse covariance operator in

what follows. However, note that C−1
XX does in general not exist as a globally

defined bounded operator – in practice, a Tikhonov-regularized inverse (i.e.,
(CXX + εId)−1 for some ε > 0) is usually considered instead (see [22] for details),
leading to regularized matrices in the empirical versions.

The conditional mean embedding operator of P(Y | X) is given by

UY |X = CYXC−1
XX .

Note that when the joint distribution P(X,Y ) and hence CXX and CYX are
unknown, we can not compute UY |X directly. However, if the training data
DXY = {(x1, y1), . . . , (xn, yn)} is drawn i.i.d. from the probability distribution
P(X,Y ), it can be estimated as

ÛY |X = ΨG−1
φ Φ�.

This is an empirical RKHS operator, where B = G−1
φ . The conditional mean

operator is often used for nonparametric models, for example in state-space
models [8], filtering and Bayesian inference [12,13], reinforcement learning [24–
26], and density estimation [27].
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4.4 Kernel Transfer Operators

For this example, we consider a (stochastic) dynamical system X = (Xt)t∈T .
Transfer operators associated with X such as the Perron–Frobenius operator P
and Koopman operator K are frequently used for the analysis of the global
behaviour of molecular dynamics and fluid dynamics problems but also for model
reduction and control [28–30]. Approximations of these operators in RHKSs are
strongly related to the conditional mean embedding framework [14]. The kernel-
based variants Pk and Kk are defined by

Pk = C−1
XX CYX and Kk = C−1

XX CXY ,

where Y = (Xt+τ )t∈T is a time-lagged version of X for a fixed time lag τ . The
empirical estimates of Pk and Kk are given by

P̂k = ΨG−1
ΦΨ G−1

Φ GΦΨΦ� and K̂k = ΦG−1
Φ Ψ�.

Here, we use the feature matrices

Φ := [φ(x1), . . . , φ(xm)] and Ψ := [φ(y1), . . . , φ(yn)]

with data xi and yi = Ξτ (xi), where Ξτ denotes the flow map associated with
the dynamical system X with time step τ . Note that in particular H = F .
Both operators Pk and Kk can be written as empirical RKHS operators, with
B = G−1

ΦΨ G−1
Φ GΦΨ and B = G−1

Φ , respectively, where GΦΨ = Φ�Ψ is a time-
lagged Gram matrix. Examples pertaining to the eigendecomposition of kernel
transfer operators associated with molecular dynamics and fluid dynamics prob-
lems as well as text and video data can be found in [14]. The eigenfunctions and
corresponding eigenvalues of kernel transfer operators contain information about
the dominant slow dynamics and their implied time-scales. Moreover, the singu-
lar value decomposition of kernel transfer operators is known to be connected
to kernel canonical correlation analysis [31] and the detection of coherent sets
in dynamical systems [15]. In particular, the singular value decomposition of the
operator

S := Ĉ−1/2
YY ĈYX Ĉ−1/2

XX

solves the kernel CCA problem. This operator can be written as

S = ΨBΦ�,

where B = G
−1/2
Ψ G

−1/2
Φ . For the derivation, see Appendix A.2. We will give an

example in the context of coherent sets to illustrate potential applications.

Example 3. Let us consider the well-known periodically driven double gyre flow

ẋ1 = −πA sin(πf(x1, t)) cos(πx2),

ẋ2 = πA cos(πf(x1, t)) sin(πx2)
∂f

∂x
(x1, t),
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with f(y, t) = δ sin(ωt) y2 + (1 − 2δ sin(ωt)) y and parameters A = 0.25, δ =
0.25, and ω = 2π, see [32] for more details. We choose the lag time τ = 10
and define the test points xi to be the midpoints of a regular 120 × 60 box
discretization of the domain [0, 2]×[0, 1]. To obtain the corresponding data points
yi = Ξτ (xi), where Ξτ denotes the flow map, we use a Runge–Kutta integrator
with variable step size. We then apply the singular value decomposition to the
operator described above using a Gaussian kernel with bandwidth σ = 0.25. The
resulting right singular functions are shown in Fig. 3. �

Fig. 3. Numerically computed singular values and right singular functions of Ĉ−1/2
YY ĈYX

Ĉ−1/2
XX associated with the double gyre flow.

5 Conclusion

We showed that the eigendecomposition and singular value decomposition of
empirical RKHS operators can be obtained by solving associated matrix eigen-
value problems. To underline the practical importance and versatility of RKHS
operators, we listed potential applications concerning kernel covariance oper-
ators, conditional mean embedding operators, and kernel transfer operators.
While we provide the general mathematical theory for the spectral decompo-
sition of RKHS operators, the interpretation of the resulting eigenfunctions or
singular functions depends strongly on the problem setting. The eigenfunctions
of kernel transfer operators, for instance, can be used to compute conformations
of molecules, coherent patterns in fluid flows, slowly evolving structures in video
data, or topic clusters in text data [14]. Singular value decompositions of transfer
operators might be advantageous for non-equilibrium dynamical systems. Fur-
thermore, the decomposition of the aforementioned operators can be employed
to compute low-rank approximations or their pseudoinverses, which might open
up novel opportunities in statistics and machine learning. Future work includes
analyzing connections to classical methods such as kernel PCA, regularizing
finite-rank RKHS operators by truncating small singular values, solving RKHS
operator regression problems with the aid of the pseudoinverse, and optimizing
numerical schemes to compute the operator SVD by applying iterative schemes
and symmetrization approaches.
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A Appendix

A.1 Proof of Block SVD

Proof (Lemma 2). Let A admit the SVD given in (2). Then by the definition
of T , we have

T (±ui, vi) = (Avi, A
∗ui) = ±σi(±ui, vi)

for all i ∈ I. For any element (f, h) ∈ span{(±ui, vi)}⊥
i∈I , we can immediately

deduce
0 = 〈(f, h), (±ui, vi)〉⊕ = ±〈f, ui〉F + 〈h, vi〉H

for all i ∈ I and hence f ∈ span{ui}⊥
i∈I and h ∈ span{vi}⊥

i∈I . Using the SVD of
A in (2), we therefore have

T
∣
∣
span{(±ui,vi)}⊥

i∈I

= 0.

It now remains to show that
{

1√
2
(±ui, vi)

}

i∈I
is an orthonormal system in F ⊕

H, which is clear since 〈(±ui, vi), (±uj , vj)〉⊕ = 2 δij and 〈(−ui, vi), (uj , vj)〉⊕ =
0 for all i, j ∈ I. Concluding, T has the form (3) as claimed. ��

A.2 Derivation of the Empirical CCA Operator

The claim follows directly when we can show the identity

Φ�(ΦΦ�)−1/2 = G
−1/2
Φ Φ�

and its analogue for the feature map Ψ. Let GΦ = UΛU� be the eigendecom-
position of the Gramian. We know that in this case we have the SVD of the
operator ΦΦ� =

∑
i∈I λi(λ

−1/2
i Φui) ⊗ (λ−1/2

i Φui), since
〈
λ

−1/2
i Φui, λ

−1/2
j Φuj

〉

H
= λ

−1/2
i uiGΦujλ

−1/2
j = δij .

We will write this operator SVD for simplicity as ΦΦ� = (ΦUΛ−1/2)Λ(Λ−1/2

UΦ�) with an abuse of notation. Note that we can express the inverted oper-
ator square root elegantly in this form as (ΦΦ�)−1/2 = (ΦUΛ−1/2)Λ−1/2

(Λ−1/2UΦ�) = (ΦU)Λ−3/2(UΦ�). Therefore, we immediately get

Φ�(ΦΦ�)−1/2 = Φ�(ΦUΛ−3/2U�Φ�)

= GΦUΛ−3/2U�Φ�

= UΛU�UΛ−3/2U�Φ�

= UΛ−1/2U�Φ� = G
−1/2
Φ Φ�,
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which proves the claim. In the regularized case, all operations work the same
with an additional ε-shift of the eigenvalues, i.e., the matrix Λ is replaced with
the regularized version Λ + εI.
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