
Set-Oriented and Finite-Element Study
of Coherent Behavior in Rayleigh-Bénard

Convection

Anna Klünker1, Christiane Schneide1, Gary Froyland2, Jörg Schumacher3,
and Kathrin Padberg-Gehle1(B)

1 Institute of Mathematics and its Didactics, Leuphana Universität Lüneburg,
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Abstract. Transfer operator methods have been recognized as powerful
tools for the computational study of transport and mixing processes in
nonautonomous dynamical systems. The main applications in this con-
text have been geophysical flows with large-scale and long-lived isolated
vortical coherent flow structures such as eddies or gyres. The present
paper aims to demonstrate the applicability of set-oriented and finite-
element frameworks to more complex systems. To this end, we study
coherent behavior in turbulent Rayleigh-Bénard convection in two- and
three-dimensional settings.

1 Introduction

Transport and mixing processes have been widely studied in dynamical sys-
tems. Of key interest are regions in the phase space of an autonomous or a
nonautonomous dynamical system that remain coherent, or minimally disper-
sive, under the action of the flow. Over the last two decades, a number of different
concepts have been proposed that describe the notion of Lagrangian coherent
behavior. For discussions and comparisons of the major current approaches we
refer to [1,2].

Among these established concepts are transfer operator-based methods
within a set-oriented numerical framework. Similar in spirit to cell-mapping tech-
niques [3,4], Dellnitz and Hohmann [5] developed a set-oriented approach for the
outer approximation of attracting sets in dissipative dynamical systems. Dellnitz
and Junge [6,7] extended these ideas to approximate natural invariant measures
as well as almost-invariant and almost-cyclic sets of the underlying dynamical
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system. Almost-invariant sets [6,7] and their finite-time counterparts [8,9] are
spatially fixed regions in phase space with the property that trajectories leave
such a set only with a relatively small probability over a given time span. Hence,
almost-invariant sets mitigate transport between their interior and the rest of
phase space.

The key mathematical tool for this probabilistic approach is the Perron-
Frobenius operator (transfer operator) or, for continuous-time dynamics, its
generator [10]. In a set-oriented framework, the Ulam approximation [11] of
the transfer operator produces a stochastic matrix and there are many results
in the literature, dating back to [12], concerning the convergence of the lead-
ing eigenvector of the resulting stochastic matrix to a physical invariant mea-
sure (when one exists). Eigenvectors corresponding to real eigenvalues close to
one contain information about almost-invariant sets [7]. This latter concept has
been applied to many different dynamical systems, including molecular dynam-
ics [13,14], astrodynamics [15,16], and ocean dynamics [17,18]. A special type
of (almost-) invariant sets are attracting sets in dissipative systems and their
basins, which can also be identified based on leading eigenvectors of the numer-
ical transfer operator [4,19,20] or the generator [21].

The almost-invariant set framework was extended by Froyland and co-
workers to the identification of mobile regions that move about with minimal dis-
persion under the time-asymptotic [22] and finite-time [23–25] action of a nonau-
tonomous dynamical system. In the finite-time setting, subdominant singular
vectors of numerically approximated transfer operators are used to determine
the phase space structures of interest. The relation between almost-invariant
sets and finite-time coherent sets was discussed in [25]. In [26] the existence of
coherent sets over long time spans was linked to the existence of almost-invariant
sets for small time spans, given that the coherent sets move sufficiently slowly.
A study of coherent sets for the Fokker-Planck equation is in [27] and recent
generator-based approaches remove the need for trajectory integration in peri-
odically driven [28] and aperiodically driven [29] flows.

The set-oriented approach to identifying finite-time coherent sets relies on
the addition of small amount of diffusion to create the necessary spectral gap
[24]; in fact this reliance is also present for almost-invariant sets. In practice,
this diffusion is usually provided by the numerical diffusion inherent in the set-
oriented numerics. By formally sending this added diffusion to zero, one arrives
at a second-order differential operator called the dynamic Laplace operator [30].
The dominant eigenfunctions of the dynamic Laplacian correspond to the dom-
inant singular vectors of the transfer operator. A finite-element approach [31]
to approximating the dynamic Laplacian provides a robust, numerical scheme
for sparse trajectory data. The cluster-based approach [32] for the estimation of
finite-time coherent sets from sparse trajectory data with possibly missing tra-
jectory elements has been followed by several other data-based methods [33–36].

Transfer operators can also be employed to estimate finite-time expansive
behavior along trajectories in autonomous and nonautonomous dynamical sys-
tems. Finite-time entropy (FTE) captures nonlinear stretching directly from the
entropy growth experienced by a small localized density evolved by the transfer
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operator. An approximation of the FTE field can be obtained very efficiently
within the set-oriented framework. It gives very similar results to finite-time
Lyapunov exponent [37] calculations, which many of the geometric approaches
for the identification of Lagrangian coherent structures are based on [38]. The
FTE-concept has been introduced in [39], see also [40] for related previous work.

In this chapter we consider Rayleigh–Bénard convection (RBC), which is
an idealized model of thermal convection in natural systems. In RBC a fluid
layer placed between two solid horizontal plates is uniformly heated from below
and cooled from above [41]. This model setting contains already many of the
properties which can be observed in natural convection flows. One is the forma-
tion of large-scale coherent patterns when RBC is investigated in horizontally
extended domains [42–47]. These coherent sets, which have been detected in the
Eulerian frame of reference, are termed turbulent superstructures as the char-
acteristic horizontal scale extends the height of the convection layer. In thermal
convection flows, they consist of convection rolls and cells that are concealed in
instantaneous velocity fields by turbulent fluctuations. However, they show up
prominently after time averaging of the velocity or temperature fields.

In this paper, we will extend our previous Lagrangian investigations of coher-
ent behavior in turbulent Rayleigh-Bénard convection flows [48,49]. We begin
by discussing transport phenomena in nonautonomous systems and the transfer
operator framework for the identification of coherent flow behavior in Sect. 2.
In Sect. 3 the numerical approximation of such operators within a set-oriented
approach is described, and in Sect. 4 the finite-element approach is outlined.
The discretized transfer operator and dynamic Laplace operator are the funda-
mental tools for the extraction of coherent sets and transport barriers and we
will introduce the respective approaches. In Sect. 5 we will apply these methods
to turbulent Rayleigh-Bénard convection flows in two and three dimensions. In
particular, we will extract turbulent superstructures of convection in terms of
dominant convection roles. We conclude with a short discussion and outlook in
Sect. 6.

2 Nonautonomous Dynamics, Transfer Operators
and Transport

We consider a nonautonomous differential equation

ẋ = u(x, t) (1)

with state x ∈ M ⊂ R
d, time t ∈ R and sufficiently smooth right-hand side

u such that the flow map Φ(x, t; τ) : M × R × R → M , M ⊂ R
d exists. Here

τ denotes the flow time and t the initial time. We aim at identifying almost-
invariant and coherent subsets of M , i.e. mobile regions in M that minimally
mix with the surrounding phase space. Frequently used indicators for barriers of
transport and hence boundaries of coherent regions are ridges in the finite-time
Lyapunov exponent (FTLE) field [37]

FTLE(x, t; τ) =
1

2|τ | log
(
λmax[DxΦ(x, t; τ)�DxΦ(x, t; τ)]

)
. (2)
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They are the basis of some geometric approaches for the identification of
Lagrangian coherent structures [38]. In this work, we follow a probabilistic app-
roach, which considers the evolution of sets, or, more abstractly, probability
measures. Later, when discussing the dynamic Laplacian, we follow a geometric
approach related to finding persistently small set boundaries.

A set A ⊂ M is called Φ-invariant over [t, t + τ ] if Φ(A, t + s;−s) = A for
all 0 ≤ s ≤ τ . That is, the set A remains unchanged under the evolution of Φ.
Almost-invariant sets obey an approximate invariance principle Φ(A, t+s;−s) ≈
A for all 0 ≤ s ≤ τ . To be more precise, given a probability measure μ on M ,
we call a set A ⊂ M with μ(A) �= 0 almost-invariant [6] over [t, t + τ ] if

ρ(A) :=
μ(A ∩ Φ(A, t + τ ;−τ))

μ(A)
≈ 1. (3)

If A ⊂ M is almost-invariant over the interval [t, t + τ ], then the probability
(according to μ) of a trajectory leaving A at some time in [t, t + τ ] and not
returning to A by time t + τ is relatively small.

Unlike almost-invariant sets, coherent sets are allowed to move in phase
space under the evolution of the time-dependent system. Given a reference prob-
ability measure μ on M at time t, one seeks to find pairs of sets (At, At+τ ) [23]
such that

ρ(At, At+τ ) =
μ(At ∩ Φ(At+τ , t + τ ;−τ))

μ(At)
≈ 1. (4)

Equation (4) measures the proportion of the set At at time t that is mapped to
the set At+τ at time t+τ and one seeks to find sets such that At+τ ≈ Φ(At, t; τ).
Under set-oriented discretisation, optimal almost-invariant [8] and coherent [23]
sets maximize (3) and (4).

The NP-hard discrete optimization problems can then be approximately
solved by considering the Perron-Frobenius operator Pt,τ : L1(M,m) →
L1(M,m) associated with the flow map Φ, where m denotes Lebesgue measure.
The transfer operator is defined by

Pt,τf(x) =
f(Φ(x, t + τ ;−τ))

|det DΦ(Φ(x, t + τ ;−τ), t; τ)| (5)

The interpretation is that if f is a density and f(x) the density value in x at time
t, then Pt,τf(x) describes the density value in Φ(x, t; τ) at time t+τ induced by
the flow map. In [24,25] it was shown that maximizing ρ in (3) and (4) can be
described in the framework of optimizing an inner product involving a compact
self-adjoint operator obtained from Pt,τ . In order to avoid the technical func-
tional analytic description underlying [24,25], we will briefly recall the concept
of finite-time coherent sets in the finitary setting [23] in Sect. 3.2 based on a
finite-rank approximation of Pt,τ introduced in Sect. 3.1.

A stretching measure, similar to FTLE in (2), has been derived using the
evolution of Pt,τ [39]. It is based on the concept of differential entropy h(f) =
− ∫

Ω
f log f dm, where Ω is the support of the density f . For a given initial
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condition x0, letfε,x0 := 1
m(Bε(x0))

1Bε(x0) denote a uniform density supported
on Bε(x0), a ball of radius ε about x0. An ε-smoothing operator is then defined
by

Aεf(x) :=
1

m(Bε(x))

∫

Bε(x)

f dm.

The rate of increase in entropy experienced in the ε-neighborhood of x0 over
the time span [t, t + τ ] of the ε-perturbed dynamics can now be described by

FTEε(x0, t; τ) :=
1
|τ | [h(AεPt,τfε,x0) − h(fε,x0)]. (6)

In [39] several properties of FTEε and its deterministic limit limε→0 FTEε have
been derived. In particular, FTEε measures nonlinear stretching and can be
compared with finite-time Lyapunov exponents (2) in the deterministic limit.
In Sect. 3.3 we will outline a very efficient set-oriented approximation of the
FTE-field.

We denote by Pt,τ,ε := AεPt,τAε the slightly mollified transfer operator.
As mentioned above, finite-time coherent sets are extracted from the dominant
singular vectors of the normalised L2-compact operator Lt,τ,ε := Pt,τ,ε/(Pt,τ,ε1);
see [24], also [25].

One could equivalently consider the dominant eigenvectors1 of L∗
t,τ,εLt,τ,ε,

and in the pure advection limit of ε → 0, one obtains

lim
ε→0

L∗
t,τ,εLt,τ,ε − I

ε2
= ΔD

[t,t+τ ],

where ΔD
[t,t+τ ] is the dynamic Laplace operator [30], a self-adjoint, elliptic,

second-order differential operator.
Extending ideas from isoperimetric theory, which concern sets of minimal

boundary size relative to volume (the Cheeger ratio), one can create a dynamic
isoperimetric theory [30] and prove connections between the spectrum of ΔD

[t,t+τ ]

and sets with persistently small boundary size relative to evolved volume (the
dynamic Cheeger ratio). These sets with persistently small boundary size relative
to evolved volume are excellent candidates for finite-time coherent sets because
their boundaries resist filamentation and in the presence of small diffusion, dif-
fusive flux across the boundary is minimised. In analogy to the second singular
value of Lt,τ,ε bounding the mixing factor over [t, t+τ ] of all nonequilibrium dis-
tributions (Theorem 2 [24], Theorems 3 and 4 [25]), the second singular value of
ΔD

[t,t+τ ] bounds the smallest Cheeger ratio taken over all smooth decompositions
of the domain (Corollary 3.6 [30]).

3 Set-Oriented Numerical Framework

We now describe a set-oriented numerical framework for the approximation of
the nonautonomous Perron-Frobenius operator in terms of a transition matrix
1 In the following expression L∗

t,τ,ε is the adjoint of Lt,τ,ε between its domain and
codomain; see [24] for details.
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of a finite-state Markov chain. The discretized transfer operator is the basis for
extracting coherent sets (Sect. 3.2) as well as for the computation of FTE-fields
(Sect. 3.3).

3.1 Approximation of Transfer Operator

Following [23] we consider some compact subset X ⊂ M and a small neigh-
borhood Y of Φ(X, t; τ). Let {B1, . . . , Bk} be a partition of X, {C1, . . . , Cn} a
partition of Y . The partition elements are typically generalized rectangles, but
other settings are possible. Applying Ulam’s method [11] a finite-rank approxi-
mation of Pt,τ : L1(X,m) → L1(Y,m) is given via the transition matrix

Pij =
m(Bi ∩ Φ(Cj , t + τ ;−τ))

m(Bi)
, i = 1, . . . , k, j = 1, . . . , n (7)

where we drop the t and τ -dependence of P for brevity. In practice the entries
Pij of the transition matrix P are estimated via

Pij ≈ #{r : Φ(zi,r, t; τ) ∈ Cj}
R

. (8)

with uniformly distributed sample points zi,r, r = 1, . . . , R chosen in each par-
tition element Bi, i = 1, . . . , k. P is a sparse, row-stochastic matrix and thus
all its eigenvalues are contained in the unit circle. For the efficient computation
of the transition matrix P we use the software package GAIO [50] (available at
http://github.com/gaioguy/GAIO).

The interpretation of the P -induced dynamics is that if p ≥ 0 (component-
wise) is a probability vector (

∑
i pi = 1), then p′ = pP is the push-forward

of p under the discretized action of Φ(·, t; τ). Note that the numerical scheme
introduces diffusion – which is also theoretically needed for robust results [24,25].

3.2 Extracting Finite-Time Coherent Sets

Consider a reference probability measure μ on X at time t, which is discretely
represented as a probability vector p with pi = μ(Bi), i = 1, . . . , k. The image
probability vector on Y at time t + τ is then simply computed as q = pP . We
assume both p > 0 and q > 0 (component-wise) and form a normalized matrix
L via

Lij =
piPij

qj
. (9)

This matrix has the property that 1RkL = 1Rn . In [23,24] it was shown that
(under some technical assumptions) the problem of finding optimal coherent sets
can be approximated by considering the left eigenvectors w2 ∈ R

k of LL∗ and
ŵ2 ∈ R

n of L∗L to the second largest eigenvalue λ2 < 1. Here L∗ = P�. Note
that these two eigenvalue problems can be turned into the task of finding lead-
ing singular values and corresponding left and right singular vectors of a sparse

http://github.com/gaioguy/GAIO
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matrix (see [23] for the exact construction), which can be very efficiently com-
puted by iterative schemes (e.g. svds in MATLAB). The signed vector entries
of w2 and ŵ2 can be interpreted as relaxations of indicator functions of the sets
At and At+τ and their complements. Thus the vector w2 defines fuzzy coherent
sets on X, whereas ŵ2 represents their image on Y . Optimal partitions of X and
Y into finite-time coherent pairs can be approximated via a line search in w2

and ŵ2 [23,25]. However, this approach is restricted to finding two-partitions in
terms of a coherent set and its complement. In practice, there are often k > 2
singular values close to one (followed by a spectral gap) whose corresponding
singular vectors highlight the location of coherent sets. In this case, one can
postprocess the singular vectors by a k-means clustering to obtain a hard par-
tition into k coherent sets. Alternatively, to preserve the eigenspace structure,
one can project the singular vectors to a sparse basis (SEBA) [51], where the
entries of each vector denote probabilities that the underlying box Bi belongs to
a specific coherent set. Hard assignment of boxes to sets may then be performed
by thresholding (see [51]) to form (i) a subpartition of unity, (ii) the largest
collection of disjoint sets, or (iii) by maximum likelihood.

3.3 Set-Oriented Computation of FTE

In the discrete context, densities (which are central to the FTE-construction in
Eq. (6)) are now represented by discrete probability measures μ and the entropy
of a probability vector p with pi = μ(Bi), i = 1, . . . , k, is simply H(p) =
−∑n

i=1 pi log pi. Under the assumption that all partition elements {B1, . . . , Bk}
are of equal volume let δi be a k-vector with a 1 in the ith position and 0
elsewhere. Then the discrete FTE of a partition set Bi is given by

FTE(Bi, t; τ) =
1
|τ |H(δiP ) = − 1

|τ |
n∑

j=1

Pij log Pij . (10)

Note that once the transition matrix P has been computed, the FTE field (6)
can be very quickly approximated by application of Eq. (10). In particular,
we do not require to explicitly push forward probability densities with P . In
addition, stretching rates for differing box volumes as well as for the backward-
time dynamics can be conveniently computed, see [39] for more details.

4 Finite-Element Framework

A set-oriented approach for approximating ΔD
[t,t+τ ] is possible and effective

[30]. The ingredients are Ulam approximation(s) of the dynamics and a finite-
difference approximation of the standard Laplace operator. As the dynamic
Laplace operator is an elliptic second-order differential operator, it turns out to
be more efficient to adapt the well-worn finite-element approximation approach
to our dynamic setting [31]. The main advantages are the ability to produce
good results with dramatically decreased trajectory numbers, and the increased
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smoothness of the estimates (continuous, piecewise-affine approximations rather
than the discontinuous, piecewise-constant approximations from Ulam). One of
the main advantages of the set-oriented framework, namely sparsity, is retained.
The finite-element approach detailed in [31] has other structural benefits, such
as preservation of the symmetry of the true operator, and the ability to have
incomplete trajectories.

Briefly, in the time interval [t, t+τ ], one creates a sequence of n time instances
t = t1 < t2 < · · · < tn = t + τ at which one has N trajectory data points
xi,k := Φ(xi, t; tk − t), i = 1, . . . , N , k = 1, . . . , n. At the time instance tk,
the trajectory points are meshed and a basis of N piecewise-affine nodal hat
functions φi,k : M → R are defined with xi,k the node of the ith hat function.
The function φi,k is locally supported on mesh elements with xi,k as a vertex
and φi,k(xi,k) = 1. The usual stiffness and mass matrices are computed on each
mesh and averaged across time.

D =
1
n

n∑

k=1

Dk, Dk,lm =
∫

Φ(M,t;tk−t)

∇φl,k · ∇φm,k (11)

M =
1
n

n∑

k=1

Mk, Mk,lm =
∫

Φ(M,t;tk−t)

φl,k · φm,k (12)

The discrete representation of the eigenproblem ΔD
[t,t+τ ]f = λf is Dv = λMv,

which is immediately solved in e.g. MATLAB. The approximate solution f is
then recovered as f =

∑N
i=1 viφi,1. An example computation is shown in Fig. 15

for the dominant 17 eigenfunctions.

4.1 Disentangling Multiple Features with SEBA

In both the transfer operator approach of Sect. 3.2 and the dynamic Laplace app-
roach considered here, it is frequently the case that multiple finite-time coherent
sets are encoded in several dominant approximate singular vectors of Lt,τ,ε and
eigenfunctions of ΔD

[t,t+τ ], respectively. This is illustrated in Fig. 15 for the 17
dominant eigenfunctions of ΔD

[t,t+τ ]. In order to disentangle individual finite-time
coherent sets, we seek a rotation of the eigendata so that each rotated vector
contains a single set. We use sparsity as the means to drive the rotation towards
this individual feature separation, because sparse2 vectors imply a small total
feature support in each vector. In more detail, if each singular vector or eigen-
vector vb, b = 1, . . . , B is a column vector in R

N and V := [v1|v2| · · · |vB ] is
an N × B array, we wish to find a sparse array S = [s1|s2| · · · |sB ] for which
span{s1, s2, . . . , sB} ≈ span{v1, v2, . . . , vB}. This is carried out using the SEBA
(Sparse EigenBasis Approximation) algorithm [51], which finds a locally opti-
mal B × B rotation matrix R with V ≈ SR small and S sparse; see Sect. 3 [51]
for further details. Figure 16 shows the conversion of the eigenbasis displayed
2 A sparse vector (resp. array) is a vector (resp. array) with a high proportion of zero

elements.
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in Fig. 15 to a new approximate sparse eigenbasis, with each vector isolating a
single feature. The same approach is employed in the three-dimensional results
in Fig. 18.

5 Application to Rayleigh-Bénard Convection

Turbulent convection flows in nature are often organized in regular large-scale
patterns which evolve gradually compared to the typical convective time unit
and arranged on spatial scales which are much larger than the layer height H.
Prominent examples are cloud streets in atmospheric or granulation and super-
granulation patterns in solar convection. This order in a fully developed turbulent
flow is termed turbulent superstructure of convection in the following. Pandey
et al. [47] reported their appearance in turbulent RBC flows with very different
molecular dissipation properties which are characterized by the dimensionless
Prandtl number Pr. A second dimensionless parameter of RBC which measures
the vigor of convective turbulence is the Rayleigh number Ra. They are defined
as

Ra =
αgΔTH3

νκ
, (13)

Pr =
ν

κ
, (14)

where α, ν, and κ are the isobaric expansion coefficient, the kinematic viscosity,
and the thermal diffusivity of the fluid, respectively. The wall-to-wall tempera-
ture difference is given by ΔT = Tbottom − Ttop. The acceleration vector due to
gravity is given by g = (0, 0,−g). The Prandtl number is extremely small in stel-
lar or solar convection with Pr � 10−6; it is Pr ≈ 0.7 for atmospheric turbulence,
and Pr ≈ 7 for convective motion in the oceans. The large-scale structure forma-
tion in turbulent RBC became recently accessible in direct numerical simulations
(DNS), which can now resolve all involved scales of turbulence in simulations in
horizontally extended domains with a large aspect ratio [42–45].

Here, we study RBC in two different settings. Our first setting is a two-
dimensional DNS of a RBC system with a larger Prandtl number Pr = 10 close
to convection in water at a small aspect ratio of Γ = 4 as in [49]. We restrict here
to a two-dimensional model as it has been previously shown that for large Prandtl
numbers the large- and small-scale quantities show similar scalings in two- and
three-dimensional systems. The second setting is a DNS of three-dimensional
RBC with a smaller Prandtl number Pr = 0.7 corresponding to convection in
air at a larger aspect ratio of Γ = 16 as in [48].
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5.1 2D System

We consider the same two-dimensional RBC system as in [49], given in the
Boussinesq approximation [41], in non-dimensional form by

∂u

∂t
+ u · ∇u = −∇p + Tez +

√
Pr
Ra

∇2u, (15)

∂θ

∂t
+ u · ∇θ = uz +

1√
PrRa

∇2θ, (16)

∇ · u = 0, (17)

where u = (ux, uz), θ, and p are the velocity, temperature fluctuation, and pres-
sure fluctuation fields, respectively. The temperature fluctuations θ are devia-
tions from the linear conductive (equilibrium) profile and related to the total
temperature field T via

T (x, z, t) = Tbottom − ΔT

H
z + θ(x, z, t), (18)

where Tbottom is the temperature at the bottom plate. Equations (15–17) are
nondimensionalized using the height H of the convective layer as the length scale,
the free-fall velocity uf =

√
αgΔTH as the velocity scale, and the temperature

difference ΔT as the temperature scale. Stress-free boundary conditions for the
velocity field are applied at all walls. The side walls have Neumann boundary
conditions, ∂T/∂n = 0. Top and bottom walls are held at constant temperatures
(as already mentioned before). Consequently, θ = 0 at the top and bottom.
Equations (15–17) are solved for Pr = 10 and Ra = 106 in a two-dimensional
box of aspect ratio Γ = Lx/H = 4 subject to appropriate boundary conditions.
The computational details are described in [49].

We start our simulation with random velocity and temperature fields as the
initial condition and continued until a statistically steady state is reached. The
steady state flow structure exhibits a pair of counter-rotating circulation rolls.
Hot fluid rises in the central region whereas cold fluid falls near the sidewalls.
The velocity and temperature fields at all the grid points were written to output
files at every 0.1 tf , with tf = H/uf being the free-fall time (which is taken as
the convective time unit).

The flow map required for setting up the transition matrix P is obtained from
numerical advection of massless particles with coordinates x in the computed
velocity field corresponding to

dx

dt
= u(x, t). (19)

Time integration is done by the RK4 method and spatial interpolation of the
velocities by cubic splines.

We consider a box covering {B1, . . . , Bn} of the simulation domain X =
[0, 4] × [0, 1] by 212 or 216 square boxes. As the system is closed we can choose
Y = X and thus use the same box covering for the initial and the final time.
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For the computation of the transition matrix a 4 × 4 uniform grid of test points
is initialized in each box Bi and advected by the flow map Φ(·, 2000; τ). As in
[49] we consider the two different cases τ = 20tf and τ = 200tf . Note that the
average turnover time for a tracer is 20tf for this setting [49].

In the following, we will compare different Lagrangian methods for coherent
sets in the two-dimensional flow at hand. These are finite-time entropy (FTE),
finite time Lyapunov exponents (FTLE), transfer operator method, and the
sparse eigenbasis approximation (SEBA).

5.1.1 Short Flow Time τ = 20
In order to visualize the major transport barrier separating the two convection
roles, we compute the forward time FTE field from P as described in Sect. 3.3.
As shown in Fig. 1, the FTE field has large values in the box center where hot
fluid rises and also at the boundaries, where cold fluid falls, and thus where the
main heat transport takes place. This result is in agreement with the computed
FTLE field shown in Fig. 2.

Fig. 1. FTE fields FTE(·, 2000; 20) computed over the time interval [2000, 2020] and
plotted with respect to initial positions for two different box coverings (left: 212 boxes;
right: 216 boxes). Dark regions are characterized by large stretching and correspond to
dominant transport barriers.

For the extraction of coherent sets, we compute the leading left and right
singular vectors as described in Sect. 3.2 for the coarse (Fig. 3) and the finer
box discretization (Fig. 4). The second singular vectors identify the left-right
division induced by the major transport barrier and highlight the two different
gyres (Figs. 3 and 4, left columns). The third singular vectors (right columns)
distinguish the two gyre cores from the background flow. Further singular vectors
(not shown) subdivide the gyre cores into smaller structures. This has also been

Fig. 2. FTLE field FTLE(·, 2000; 20) computed over the time interval [2000, 2020]. As
in Fig. 1 dark regions correspond to dominant transport barriers.
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Fig. 3. Left singular vectors w2 and w3 (top row) and corresponding right singular
vectors ŵ2 and ŵ3 (bottom row) obtained from the modified transition matrix (9)
highlight coherent sets at initial and final time of the computation over the short time
interval [2000, 2020]. Here 212 boxes are used for setting up the transition matrix.

observed in [49]. The results for the two different box coverings are very similar,
indicating that the computational results are very robust.

There are spectral gaps after the second singular values in both settings.
However, in order to extract the apparently three dominant coherent sets (two
gyres and background) from the leading singular vectors, we apply a standard
k-means algorithm to the three leading left singular vectors. The results for both
box coverings, which are again very similar, are shown in Fig. 5. This approach
separates the two gyre cores from the background flow, where most of the heat
transport takes place.

As an alternative to the hard-clustering resulting from k-means, we aim to
find a sparse basis representation of the space spanned by the leading three
singular vectors. Using SEBA [51] as briefly explained at the end of Sect. 4, two
of the resulting sparse vectors are supported on each the gyre cores (Fig. 6, top),
and the third sparse vector is supported on the background flow region (Fig. 6,
bottom, left). A superposition of the three vectors (Fig. 6, bottom, right) reveals
in dark blue a particularly incoherent (well mixing) region separating the two

Fig. 4. Left singular vectors w2 and w3 (top row) and corresponding right singular
vectors ŵ2 and ŵ3 (bottom row) obtained from the modified transition matrix (9)
highlight coherent sets at initial and final time of the computation over the short time
interval [2000, 2020]. Here 216 boxes are used for setting up the transition matrix.
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Fig. 5. Extracted coherent sets via an application of the standard k-means algorithm
on the first three left singular vectors based discretizations with 212 boxes (left) and
216 boxes (right) for the short time interval [2000, 2020].

gyres from the background flow. We note that the results are comparable to
those in [49].

Fig. 6. SEBA applied to the first three left singular vectors, 216 boxes, time interval
[2000, 2020]. The upper row shows two of the output sparse vectors. Lower left shows
the third output sparse vector and lower right shows the superposition of the three
sparse vectors, revealing an incoherent region in dark blue.

5.1.2 Long Flow Time τ = 200
For the long flow time τ = 200 we have studied again the system using the coarse
and the fine box covering. As these results are again very similar, we will show
only the results for the finer box covering of 216 boxes.

The FTE field (Fig. 7) highlights extended regions of strong stretching, which
fill the space apart from the gyre cores, which appear to have decreased in size
considerably and have developed into more filamentary shapes. This is confirmed
by the FTLE field shown in Fig. 8.

The shrinking and filamentation of the gyre cores is also observed in the
leading left and right singular vectors (Fig. 9). While the second singular vectors
(left column) are analogous to those of the short time study, the third singular
vector (right column) appears to further subdivide the right gyre. This has also
been observed in our previous studies [49].

As there is a spectral gap after the fourth singular value, we use the corre-
sponding four leading left singular vectors for postprocessing. Applying k-means
(Fig. 10, left) and SEBA (Fig. 10, right) results in the identification of three very
small gyre cores and the background flow.
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Fig. 7. Forward time FTE field computed over the long time interval [2000, 2200] and
plotted with respect to initial positions for a box covering consisting of 216 boxes. Dark
regions are characterized by large stretching and correspond to dominant transport
barriers.

Fig. 8. FTLE field computed over the long time interval [2000, 2200]. Dark regions are
characterized by large stretching and correspond to dominant transport barriers.

Fig. 9. Left singular vectors w2 and w3 (top row) and corresponding right singular
vectors ŵ2 and ŵ3 (bottom row) obtained from the modified transition matrix (9)
highlight coherent sets at initial and final time of the computation over the long time
interval [2000, 2200]. Here 216 boxes are used for setting up the transition matrix.

Fig. 10. Extracted coherent sets from the leading four left singular vectors for the long
time interval [2000, 2200] via k-means (left) and SEBA (right).



100 A. Klünker et al.

5.2 3D System

Here, we solve the three-dimensional version of RBC which is again given in
dimensionless form by Eqs. (15–17). No-slip boundary conditions for the velocity
field u = (ux, uy, uz) are applied at all walls, i.e., u = 0. The side walls are again
thermally insulated, i.e., Neumann boundary conditions ∂T/∂n = 0 are applied.
At the top and bottom walls, a constant dimensionless temperature of T = 0 and
1 is maintained again. Following ref. [48], we solve these equations numerically
for Ra = 105 and Pr = 0.7 in a closed three dimensional box of aspect ratio
Γ = Lx/H = Ly/H = 16, i.e. M = [−8, 8] × [−8, 8] × [0, 1]. For more details
on the DNS we refer to [48]. During the simulation, the trajectories required for
setting up the transition matrix are approximated. For this 5122 points (tracers
are initialized on a regular grid at a height of z = 0.03 above the bottom plate
which is well inside the thermal boundary layer δT (that has a mean thickness
of about 0.12). The tracers are advected by a 3-step explicit Adams-Bashforth
scheme. The interpolation of the velocity field is done spectrally.

5.2.1 Quasi-2D Set-Oriented Study
As the convection cell is very flat (Γ � 1) the large-scale structures are expected
to be arranged in horizontal patterns. This is clearly visible in the time-averaged
temperature fields, see Fig. 11. We therefore restrict to a quasi-two-dimensional
set-oriented study and take the temperature field in the midplane as the ref-
erence. As discussed in [47], an average of T at a given time t with respect to
the vertical coordinate z would provide basically the same information. Note
also that RBC has a statistical up-down reflection symmetry with respect to the
midplane. Thus for the set-oriented approximation of the transfer operator we
consider the domain X = [−8, 8] × [−8, 8] and ignore the vertical coordinate.
We subdivide X into 214 equally sized square boxes, hence each box contains
16 uniformly distributed test points initially. We set up the transition matrices
corresponding to three different flow times t = 2.6, 5.2, 10.5tf . We also incorpo-
rate a small amount of explicit diffusion as the dynamics is very dissipative at
the beginning. Note that the flow times are short in comparison to the average
turnover time of a tracer in the layer. This time is on average t ≈ 19tf for this
parameter setting [48].

At the beginning of the simulation, the tracers are attracted to the regions
where the hot fluid rises from the bottom to the top of the convection cell, which
correspond to attracting sets, at least on a finite-time span. We first study this
particular behavior by means of the FTE field, see Fig. 12 and compare with
Fig. 11. Regions of strong stretching are observed which appear to bound the
different basins of attraction. Note that these basins can be related to a pair of
convection rolls. In particular, the FTE field for flow time 5.2tf compares very
nicely to the time-averaged temperature fields in Fig. 11. For longer flow times
the picture becomes increasingly fuzzy due to turbulent dispersion. The same
behavior was also observed for the FTLE field in previous work [48], see also
Fig. 13.
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Fig. 11. Time-averaged temperature fields at mid-plane for different time spans
2.6, 5.2, 10.5tf . Light regions correspond to hot rising fluid, dark areas to cold descend-
ing fluid.

Fig. 12. FTE fields obtained from the transition matrices for flow times 2.6, 5.2, 10.5tf .
Dark colors indicate to regions of strong stretching, which compare well with the struc-
tures formed by descending cold fluid in Fig. 11.

Fig. 13. FTLE fields for flow times 2.6, 5.2, 10.5tf . Dark colors indicate to regions of
strong stretching, which compare well with the structures formed by descending cold
fluid in Fig. 11 and also with the corresponding FTE fields in Fig. 12.

We also extract coherent sets based from the numerical transfer operator for
the three different time spans. After inspecting the spectra we use the 13 leading
left singular vectors for the settings with flow times 2.6tf and 5.2tf and 19 for
the longer flow time. The results after a k-means postprocessing are shown in
Fig. 14. The results for the two smaller flow times are very similar and compare
again well to the temperature contours in Fig. 11. In particular, coherent sets
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appear to be made up of pairs of convection roles. The picture becomes more
fuzzy for flow time 10.5tf due to turbulent dispersion. The results compare well
to our previous data-based studies in [48].

Fig. 14. Coherent sets extracted from the leading left singular vectors of the corre-
sponding transition matrices for the three different flow times using k-means clustering.
13 clusters are obtained for flow times 2.6tf (left) and 5.2tf (middle), and 19 clusters
for the long flow time 10.5tf (right).

5.2.2 3D Finite-Element Study
For the remaining experiments we populate the entire three-dimensional domain
with test points distributed throughout the domain. Further, we reduce the
number of test points by more than six-fold to 40,000 and employ the dynamic
Laplace approach of Sect. 4.

Before presenting the fully three-dimensional results, we remove the
z-coordinate and investigate the flow for the longest time duration of 10.5tf .
Triangulating the 40,000 points creates meshes of around 80,000 triangles; we
compute the matrices D and M from (11) and (12) and solve the eigenproblem
Dv = λMv. Using SEBA and the sparse vector heuristic in Sect. 4.2.2 [51], we
choose 17 eigenvectors as a strong local minimum of the envelope produced by
the MATLAB function MinValStackedPlot.m in Appendix A.6 [51], and illus-
trated in Fig. 11 [51]. Figure 15 shows the first 17 eigenfunctions of the dynamic
Laplacian. These dominant 17 eigenvectors are input to SEBA in order to extract
17 individual coherent features. These 17 sparse vectors, representing the like-
lihoods of points belonging to individual coherent sets, are shown in Fig. 16.
Maxima of the likelihoods can be plotted to create a single “hot-spot” image,
and hard thresholded; see Fig. 17.

We now include the z-coordinate and begin our fully three-dimensional exper-
iments. The 40,000 points are meshed into around 265,000 tetrahedra, and the
matrices D and M are computed using the three-dimensional version of FEMDL
(see [31] and http://github.com/gaioguy/FEMDL for examples and code). We
again look for local minima in the MinValStackedPlot.m output and for visual-
isation purposes, choose a slightly smaller number of vectors, namely we use the
most robust 10 SEBA vectors from the most dominant 12 eigenvectors. As in
Fig. 16, each of the 10 vectors provides a pointwise likelihood that a point belongs

http://github.com/gaioguy/FEMDL
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Fig. 15. Dominant 17 eigenvectors of the dynamic Laplacian for flow time 10.5tf .
The colourmap is chosen so that bright pink and red values are extreme values that
correspond to coherent features.

Fig. 16. Output of SEBA applied to the 17 dominant eigenvectors shown in Fig. 15.
Negative parts have been removed. The colour scale ranges from 0 (white) to 1 (red);
the intensity of red indicates the likelihood that a point belongs to each individual
coherent feature.

to a particular coherent set. To clearly visualise these 10 three-dimensional coher-
ent sets, we plot the isosurface3 at value 1/2. As the likelihood increases toward
the centre of the sets (we verified this visually, not shown), one can interpret

3 Recall a SEBA vector defines a continuous, piecewise-linear function, affine on each
tetrahedron. MATLAB’s isosurface function requires a regular grid, so we reinterpo-
late to approximately the same number of points and the approximately the same
density on a regular 80 × 80 × 10 grid.
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Fig. 17. Left: Maximum of intensities of individual SEBA vectors shown in Fig. 16,
representing total probability to belong to one of the 17 identified coherent sets. Right:
Maximum likelihood coherent sets created from the left image.

these surfaces as containing all points that are more than 50% likely to belong to
each coherent set; one could call them the “cores” of the coherent sets. Figure 18
upper left shows the 10 three-dimensional cores. Note that each of these cores
extends almost all of the way from the bottom to the top of the domain, consis-
tent with the overall nature of the flow, where fluid mostly rises from the bottom
of the domain to the top, before overturning and heading back toward the bot-
tom of the domain. This full vertical extent feature is extremely robust to the
number of eigenvectors and SEBA vectors used. Figure 18 lower left displays the
same image as the upper left, but with commensurate lengths, emphasising that
the domain is much shorter in the vertical direction. Figure 18 right is again the

Fig. 18. Cores of 10 three-dimensional coherent sets for flow time 10.5tf .
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same image, but viewing directly from above. Figure 18 displays cores roughly
of the same size, and in some cases in similar locations, as the coherent sets in
Fig. 17, although with fewer plotted for clearer three-dimensional visualisation.

6 Conclusion and Outlook

In this work, we have applied transfer operator based numerical frameworks for
analyzing coherent behavior in nonautonomous systems to Rayleigh-Bénard con-
vection in two- and three-dimensional settings. To this end, we used set-oriented
approximations of the transfer operator and finite-element approximations of the
dynamic Laplacian. It turns out that these general frameworks reliably identify
the core regions of the various convection rolls as the regions that contribute least
to the turbulent heat transfer from the bottom to the top. The two-dimensional
results compare well with those of previous studies [48,49]. Future work will
address the long-term evolution of the turbulent superstructures of convection
and as well as their impact on transport properties.
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