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Abstract. In this work we review the novel framework for the computa-
tion of finite dimensional invariant sets of infinite dimensional dynamical
systems developed in [6] and [36]. By utilizing results on embedding tech-
niques for infinite dimensional systems we extend a classical subdivision
scheme [8] as well as a continuation algorithm [7] for the computation of
attractors and invariant manifolds of finite dimensional systems to the
infinite dimensional case. We show how to implement this approach for
the analysis of delay differential equations and partial differential equa-
tions and illustrate the feasibility of our implementation by computing
the attractor of the Mackey-Glass equation and the unstable manifold of
the one-dimensional Kuramoto-Sivashinsky equation.

1 Introduction

In order to understand the long term behavior of complicated nonlinear dynam-
ical systems, a promising approach is to study invariant sets such as the global
attractor and invariant manifolds. To numerically approximate these sets set-
oriented methods have been developed [7–9,17]. The underlying idea is to cover
the set of interest by outer approximations that are generated by multilevel sub-
division or continuation methods. They have been used successfully in various
application areas such as molecular dynamics [30], astrodynamics [11] or ocean
dynamics [18].

Until recently, the applicability of the subdivision scheme and the continu-
ation method was restricted to finite dimensional dynamical systems, i.e., ordi-
nary differential equations or finite dimensional discrete systems. In this work
we show how to extend these algorithms for the computation of attractors as
well as invariant manifolds to the infinite dimensional context, e.g. delay dif-
ferential equations with small delays [3,12] and dissipative partial differential
equations such as the Kuramoto-Sivashinsky equation [25,32], the Ginzburg-
Landau equation and reaction-diffusion equations [22]. For all these systems
a finite dimensional so-called inertial manifold exists to which trajectories are
attracted exponentially fast, e.g., [4,15,34].

The novel approach utilizes infinite dimensional embedding results [21,28]
that allow the reconstruction of finite dimensional invariant sets of infinite
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dimension dynamical systems. These results extend the results of Takens [33]
and Sauer et al. [29] to the infinite dimensional context. The so–called obser-
vation map which consists of observations of the systems dynamics produces –
in a generic sense – a one-to-one image of the underlying (infinite dimensional)
dynamics provided the number of observations is large enough. This observation
map and its inverse are then used for the construction of the core dynamical
system (CDS), i.e., a continuous dynamical system on a state space of finite
dimension. By construction the CDS possesses topologically the same dynam-
ical behavior on the invariant set as the original infinite dimensional system.
Then, application of the subdivision scheme and the continuation method allow
us to compute the reconstructed invariant set of the CDS. The general numeri-
cal approach is in principle applicable to infinite dimensional dynamical systems
described by a Lipschitz continuous operator on a Banach space. However, here
we will restrict our attention to delay differential equations with constant delay
and partial differential equations for the numerical realization. We note that in
[35] the approach has been generalized to delay differential equations with state
dependent time delay.

A detailed outline of the article is as follows. In Sect. 2 we briefly summarize
the infinite dimensional embedding theory introduced in [21,28]. In Sect. 3 we
employ this embedding technique for the construction of the CDS. Then in
Sect. 4 we review the adapted subdivision scheme and continuation method for
infinite dimensional systems developed in [6,36]. A numerical realization of the
CDS for DDEs and PDEs is given in Sect. 5. Finally, in Sect. 6 we illustrate the
efficiency of our methods for the Mackey-Glass delay differential equation and
for the one-dimensional Kuramoto-Sivashinsky equation.

2 Infinite Dimensional Embedding Techniques

We consider dynamical systems of the form

u j+1 = Φ(u j), j = 0, 1, . . . , (1)

where Φ : Y → Y is Lipschitz continuous on a Banach space Y . Moreover, we
assume that Φ has an invariant compact set A, that is

Φ(A) = A.

In order to approximate the set A or invariant subsets of A we combine classical
subdivision and continuation techniques for the computation of such objects in a
finite dimensional space with infinite dimensional embedding results (cf. [21,28]).
For the statement of the main result of [28] we require three particular notions:
prevalence [29], upper box counting dimension and thickness exponent [21].

Definition 1

(a) A Borel subset S of a normed linear space V is prevalent if there is a finite
dimensional subspace E of V (the ‘probe space’) such that for each v ∈ V, v+e
belongs to S for (Lebesgue) almost every e ∈ E.
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Following a remark made in [29] we will say that “almost every” map in
a function space V satisfies a certain property if the set of such maps is
prevalent, even in the infinite dimensional case. Then this property will be
called generic (in the sense of prevalence).

(b) Let Y be a Banach space, and let A ⊂ Y be compact. For ε > 0, denote
by NY (A, ε) the minimal number of balls of radius ε (in the norm of Y)
necessary to cover the set A. Then

d(A;Y ) = lim sup
ε→0

log NY (A, ε)

− log ε
= lim sup

ε→0
− logε NY (A, ε)

denotes the upper box counting dimension of A.
(c) Let Y be a Banach space, and let A ⊂ Y be compact. For ε > 0, denote by

dY (A, ε) the minimal dimension of all finite dimensional subspaces V ⊂ Y
such that every point of A lies within distance ε of V ; if no such V exists,
dY (A, ε) = ∞. Then

σ(A,Y ) = lim sup
ε→0

− logε dY (A, ε)

is called the thickness exponent of A in Y .

These notions are essential in addressing the question when a delay embedding
technique applied to an invariant subset A ⊂ Y will generically work. More
precisely, the results are as follows.

Theorem 1 ([21, Theorem 3.9]). Let Y be a Banach space and A ⊂ Y com-
pact, with upper box counting dimension d(A;Y ) =: d and thickness exponent
σ(A,Y ) =: σ. Let N > 2d be an integer, and let α ∈ R with

0 < α <
N − 2d

N · (1 + σ)
.

Then for almost every (in the sense of prevalence) bounded linear map L : Y → R
N

there is C > 0 such that

C · ‖L(x − y)‖α ≥ ‖x − y‖ for all x, y ∈ A.

Note that this result implies that - if N is large enough - almost every (in the
sense of prevalence) bounded linear map L : Y → R

N will be one-to-one on A.
Using this theorem, the following result concerning embedding techniques can
be proven.

Theorem 2 ([28, Theorem 5.1]). Let Y be a Banach space and A ⊂ Y a com-
pact, invariant set, with upper box counting dimension d, and thickness exponent
σ. Choose an integer k > 2(1 + σ)d and suppose further that the set Ap of p-
periodic points of Φ satisfies d(Ap;Y ) < p/(2 + 2σ) for p = 1, . . . , k. Then for
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almost every (in the sense of prevalence) Lipschitz map f : Y → R the observa-
tion map Dk[ f ,Φ] : Y → R

k defined by

Dk[ f ,Φ](u) = ( f (u), f (Φ(u)), . . . , f (Φk−1(u)))�

is one-to-one on A.

Remark 1

(a) Following an observation already made in [29, Remark 2.9], we note that this
result may be generalized to the case where several distinct observables are
evaluated. More precisely, for almost all (in the sense of prevalence) Lipschitz
maps fi : Y → R, i = 1, . . . , q, the observation map Dk[ f1, . . . , fq,Φ] : Y → R

k ,

u 	→ ( f1(u), . . . , f1(Φ
k1−1(u)), . . . , fq(u), . . . , fq(Φ

kq−1(u)))�

is also one-to-one on A, provided that

k =

q∑

i=1

ki > 2(1 + σ) · d and d(Ap) < p/(2 + 2σ) ∀p ≤ max(k1, . . . , kq).

(b) If the thickness exponent σ is unknown, a worst-case embedding dimension
k > 2(1+ d)d can always be chosen since the thickness exponent is bounded
by the (upper) box counting dimension (cf. [21]).

(c) In [27] it is suspected that many of the attractors arising in dynamical
systems defined by the evolution equations of mathematical physics have
thickness exponent zero. In addition, in [16] it is shown that the thickness
exponent is essentially inversely proportional to smoothness. This result does
not rely on the dynamics associated with the set A or the form of the under-
lying equations, but only on assumptions on the smoothness of functions in
A. Thus, it is reasonable to assume σ = 0, i.e., an embedding dimension
k > 2d is sufficient in most cases.

3 The Core Dynamical System

In this section we show how the results in Sect. 2 lay the theoretical foundation
for the construction of the so–called core dynamical system (CDS). This finite
dimensional dynamical system then allows us to approximate invariant sets of
an infinite dimensional dynamical system. For details on the construction and
corresponding proofs we refer to [6].

Let A be a compact invariant set of an infinite dynamical systems (1) on a
Banach space Y and suppose k ∈ N is large enough such that the embedding
result (Theorem 1 or 2) is valid. Suppose R : Y → R

k is the corresponding
observation map, i.e., R = L or R = Dk[ f ,Φ], respectively. We denote by Ak the
image of A ⊂ Y under the observation map, that is,

Ak = R(A).
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The core dynamical system (CDS)

xj+1 = ϕ(xj), j = 0, 1, 2, . . . ,

with ϕ : R
k → R

k is then constructed as follows: Since R is invertible as a
mapping from A to Ak there is a unique continuous map Ẽ : Ak → Y satisfying

(Ẽ ◦ R)(u) = u ∀u ∈ A and (R ◦ Ẽ)(x) = x ∀x ∈ Ak . (2)

Thus, as a first step this allows us to define ϕ solely on Ak via

ϕ = R ◦ Φ ◦ Ẽ .

For the extension of ϕ to R
k we need to extend the map Ẽ to a continuous map

E : Rk → Y . By employing a generalization of the well-known Tietze extension
theorem [14, I.5.3] found by Dugundji [13, Theorem 4.1] we obtain a continuous
map E : Rk → Y with E |Ak

= Ẽ and we define the CDS by

ϕ = R ◦ Φ ◦ E,

see Fig. 1 for an illustration. Observe that by this construction Ak is an invariant
set for ϕ, and that the dynamics of ϕ on Ak is topologically conjugate to that of
Φ on A.

Proposition 1 ([6, Propostion 1])
There is a continuous map ϕ : Rk → R

k satisfying

ϕ(R(u)) = R(Φ(u)) for all u ∈ A.

Fig. 1. Definition of the CDS ϕ (Figure adapted from [36]).

Note that the arguments stated above only guarantee the existence of the
continuous map E and provide no guideline on how to design or approximate
it. In fact, the particular realization of the map E will depend on the actual
application (see Sect. 5).
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4 Computation of Embedded Invariant Sets

We are now in the position to approximate the embedded invariant set Ak or
invariant subsets such as the invariant manifold of a steady state via the core
dynamical system

ϕ = R ◦ Φ ◦ E .

To this end, we employ the subdivision and continuation schemes as defined in
[8] and [7].

4.1 A Subdivision Scheme for the Approximation of Embedded
Attractors

In this section we give a brief review of the adapted subdivision scheme developed
in [6] that allows us to approximate the set Ak .

Let Q ⊂ R
k be a compact set and suppose Ak ⊂ Q for simplicity. The embed-

ded global attractor relative to Q is defined by

AQ =
⋂

j≥0

ϕ j(Q).

The aim is to approximate this set with a subdivision procedure. Given an initial
finite collection B0 of compact subsets of Rk such that

Q =
⋃

B∈B0

B,

we recursively obtain B� from B�−1 for � = 1, 2, . . . in two steps such that the
diameter

diam(B�) = max
B∈B�

diam(B)

converges to zero for � → ∞.

Algorithm 1. The subdivision method for embedded global attractors

Initialization: Given k > 2(1 + σ)d choose a compact set Q ⊂ R
k and a finite collection

B0, such that Ak ⊂ Q and Q =
⋃

B∈B0
B. Fix 0 < θmin ≤ θmax < 1.

1) Subdivision: Construct a new collection B̂� such that

⋃

B∈B̂�

B =
⋃

B∈B�−1

B

and
diam(B̂�) = θ� diam(B�−1),

where 0 < θmin ≤ θ� ≤ θmax < 1.
2) Selection: Define the new collection B� by

B� =
{
B ∈ B̂� : ∃B̂ ∈ B̂� such that ϕ−1(B) ∩ B̂ � ∅

}
. (3)
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Remark 2

a) A numerical implementation of Algorithm 1 is included in the software pack-
age GAIO (Global Analysis of Invariant Objects) [5,10]. Here, the sets B consti-
tuting the collections B� are realized by generalized k-dimensional rectangles
(“boxes”) of the form

B(c, r) =
{
y ∈ R

k : |yi − ci | ≤ ri for i = 1, . . . , k
}
,

where c, r ∈ R
k, ri > 0 for i = 1, . . . , k, are the center and the radii, respectively.

In each subdivision step each box of the current collection is subdivided by
bisection with respect to the j-th coordinate, where j is varied cyclically.
Therefore, these collections can easily be stored in a binary tree.

b) Given a collection B̂� the selection step is realized as follows: At first ϕ is
evaluated for a large number of test points x ∈ B′ for each box B′ ∈ B̂� . Then
a box B is kept in the collection B� if there is a least one x ∈ B′ such that
ϕ(x) ∈ B. We note that the binary tree structure implemented in GAIO allows
a fast identification of the boxes that are not discarded.

The subdivision step results in decreasing box diameters with increasing �. In
fact, by construction

diam(B�) ≤ θ
�
max diam(B0) → 0 for � → ∞.

In the selection step each subset whose preimage does neither intersect itself
nor any other subset in B̂� is removed. Denote by Q� the collection of compact
subsets obtained after � subdivision steps, that is

Q� =
⋃

B∈B�

B.

Since the Q� ’s define a nested sequence of compact sets, that is, Q�+1 ⊂ Q� we
conclude for each m

Qm =

m⋂

�=1

Q� .

Then by considering

Q∞ =

∞⋂

�=1

Q�

as the limit of the Q� ’s the selection step accounts for the fact that Qm approaches
the relative global attractor.

Proposition 2 ([6, Proposition 2])
Suppose AQ satisfies ϕ−1(AQ) ⊂ AQ. Then

AQ = Q∞.

We note that we can, in general, not expect that Ak = AQ. In fact, by construc-
tion AQ may contain several invariant sets and related heteroclinic connections.
However, if A is an attracting set equality can be proven (see [6]).
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4.2 A Continuation Technique for the Approximation of Embedded
Unstable Manifolds

In [36] the classical continuation method of [7] was extended to the approxima-
tion of embedded unstable manifolds. In the following we state the main result
of this scheme. Let us denote by

Wu
Φ (u

∗) ⊂ A

the unstable manifold of u∗ ∈ A, where u∗ is a steady state solution of the
infinite dimensional dynamical system Φ (cf. (1)). Furthermore, let us define the
embedded unstable manifold Wu(p) by

Wu(p) = R(Wu
Φ (u

∗)) ⊂ Ak,

where p = R(u∗) ∈ R
k and R is the observation map introduced in Sect. 3. We

now choose a compact set Q ⊂ R
k containing p and we assume for simplicity

that Q is large enough so that it contains the entire closure of the embedded
unstable manifold, i.e.,

Wu(p) ⊂ Q.

For the purpose of initializing the developed algorithm we define a partition P

of Q to be a finite family of compact subsets of Q such that
⋃

B∈P

B = Q and intB ∩ intB′ = ∅, for all B, B′ ∈ P, B � B′.

We consider a nested sequence Ps, s ∈ N, of successively finer partitions of Q,
requiring that for all B ∈ Ps there exist B1, . . . , Bm ∈ Ps+1 such that B = ∪iBi

and diam(Bi) ≤ θ diam(B) for some 0 < θ < 1. A set B ∈ Ps is said to be of
level s.

The aim of the continuation method is to approximate subsets Wj ⊂ Wu(p)

where W0 = Wu
loc

(p) = R(Wu
Φ,loc

(u∗)) is the local embedded unstable manifold and

Wj+1 = ϕ(Wj) for j = 0, 1, 2, . . .

in two steps:
At first we approximate Wu

loc
(p) by applying Algorithm1 on a compact neigh-

borhood C ⊂ Ak of p such that p ∈ int C and Wu
loc

(p) ⊂ C in order to compute
the relative global attractor AC . In fact, if the steady state u∗ ∈ A is hyperbolic
Wu

loc
(p) is identical to AC [36, Proposition 3.1 (b)]. In the second step this cov-

ering of Wu
loc

(p) is then to globalized to obtain an approximation of the compact
subsets Wj ⊂ Wu(p) or even the entire closure Wu(p).
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Algorithm 2. The continuation method for embedded unstable manifolds

Initialization: Given k > 2(1 + σ)d choose an initial box Q ⊂ R
k such that Ak ⊂ Q.

Choose a partition Ps of Q and a set C ∈ Ps such that p = R(u∗) ∈ C.

1) Perform � steps of Algorithm 1 on B0 = {C} to obtain a covering B� ⊂ Ps+� of

Wu
loc

(p). Set C
(�)
0 = B� .

2) Continuation: For j = 0, 1, 2, . . . define

C
(�)
j+1

=
{
B ∈ Ps+� : ∃B′ ∈ C

(�)
j

such that B ∩ ϕ(B′) � ∅
}
. (4)

Remark 3

a) Algorithm 2 is also implemented within the software package GAIO. In fact,
the binary tree structure encodes a nested sequence of finer partitions of Q.

b) Numerically the continuation step is realized as follows: At first ϕ is evaluated
for a large number of test points x ∈ B′ for each box B′ ∈ C

(�)
j . Then a box

B ∈ Ps+� is added to the collection C
(�)
j+1 if there is a least one x ∈ B′ such

that ϕ(x) ∈ B.

Observe that the unions
C(�)
j =

⋃

B∈C
(�)
j

B

form a nested sequence in �, i.e.,

C(0)
j ⊃ C(1)

j ⊃ . . . ⊃ C(�)
j . . . .

In fact, it is also a nested sequence in j, i.e.,

C(�)
0 ⊂ C(�)

1 . . . ⊂ C(�)
j . . . .

Due to the compactness of Q the continuation step of Algorthm 2 will terminate
after finitely many, say J� , steps. We denote the corresponding box covering
obtained by the continuation method by

G� =

J�⋃

j=0

C(�)
j = C(�)

J�
.

In [36] it was proven that increasing � eventually leads to convergence of C(�)
j to

the subsets Wj and assuming that the closure of the embedded unstable manifold
Wu(p) is attractive G� converges to Wu(p).
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Proposition 3 ([36, Proposition 5])

(a) The sets C(�)
j are coverings of Wj for all j, � = 0, 1, . . .. Moreover, for fixed j,

we have
∞⋂

�=0

C(�)
j = Wj .

(b) Suppose that Wu(p) is linearly attractive, i.e., there is a λ ∈ (0, 1) and a
neighborhood U ⊃ Q ⊃ Wu(p) such that

dist
(
ϕ(y),Wu(p)

)
≤ λ dist

(
y,Wu(p)

)
∀y ∈ U.

Then the box coverings obtained by Algorithm2 converge to the closure of
the embedded unstable manifold Wu(p). That is,

∞⋂

�=0

G� = Wu(p).

5 Numerical Realization of the CDS

As discussed in the introduction, dynamical systems with infinite dimensional
state space, but finite dimensional attractors arise in particular in two areas of
applied mathematics, namely dissipative partial differential equations and delay
differential equations with small constant delay. In this section we show how to
numerically realize the CDS for both cases. From now on we assume that upper
bounds for both the box counting dimension d and the thickness exponent σ are
available. This allows us to fix k > 2(1 + σ)d according to Theorem 2.

In order to numerically realize the construction of the map ϕ = R ◦ Φ ◦ E
described in Sect. 3, we have to address three tasks: the implementation of E,
of R, and of the time-T-map, denoted by Φ, respectively. For the latter we will
rely on standard methods for forward time integration of DDEs [1] and PDEs,
e.g., a fourth-order time stepping method for the one-dimensional Kuramoto-
Sivashinsky equation [24]. The map R will be realized on the basis of Theorem 2
and Remark 1 by an appropriately chosen observables. For the numerical con-
struction of the continuous map E we will employ a bootstrapping method that
re-uses results of previous computations. This way we will in particular guarantee
that the identities in (2) are at least approximately satisfied.

5.1 Delay Differential Equations

We consider equations of the form

�y(t) = g(y(t), y(t − τ)), (5)

where y(t) ∈ R
n, τ > 0 is a constant time delay and g : Rn×R

n → R
n is a smooth

map. Here, we will only consider the one-dimensional case, that is n = 1, and
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refer to [6] for n > 1. Following [19], we denote by Y = C([−τ, 0],Rn) the (infinite
dimensional) state space of the dynamical system (5). Observe that equipped
with the maximum norm Y is indeed a Banach space. We set T > 0 to be a
natural fraction of τ, that is

T =
τ

K
for K ∈ N. (6)

5.1.1 Numerical Realization of R

For the definition of R we have to specify the time span T and appropriate corre-
sponding observables. In the case of a scalar equation we choose the observable
f to be

f (u) = u(−τ).

Thus, in this case the restriction R is simply given by

R = Dk[ f ,Φ](u) = (u(−τ),Φ(u)(−τ), . . . ,Φk−1(u)(−τ))�.

Observe that a natural choice for K in (6) would be K = k − 1 for k > 1.
That is, for each evaluation of R the observable would be applied to a function
u : [−τ, 0] → R at k equally distributed time steps within the interval [−τ, 0].

5.1.2 Numerical Realization of E

In the application of the subdivision scheme Algorithm1 as well as the continu-
ation method Algorithm 2 the CDS has to be evaluated for a set of test points
(see Remark 2 and Remark 3). Thus, for the evaluation of ϕ = R ◦ Φ ◦ E at a
test point x we need to define the image E(x), i.e., we need to generate adequate
initial conditions for the forward integration of the DDE (5).

In the first selection or continuation step, when no information on A or
Wu
Φ
(u∗), respectively, is available, we construct a piecewise linear function

u = E(z), where
u(ti) = zi,

for ti = −τ + i · T, i = 0, . . . , k − 1. Observe that by this choice of E and R the
condition (R◦E)(x) = x is satisfied for each test point x (see (2)). In the following
steps we make use of the following observations for both schemes:

Remark 4. If a box B ∈ B� (resp. B ∈ C
(�)
j+1), then, by the subdivision (resp.

selection) step, there must have been a B̂ ∈ B�−1 (resp. B̂ ∈ C
(�)
j ) such that

x̄ = R(Φ(E(x̂))) ∈ B for at least one test point x̂ ∈ B̂. Therefore, we can use the
information from the computation of Φ(E(x̂)) to construct an appropriate E(x)
for each test point x ∈ B in both cases.

More concretely, in every step of the procedures, for every set B ∈ B�

(resp. B ∈ C
(�)
j+1) we keep additional information about the trajectories Φ(E(ẑ))

that were mapped into B by R in the previous step. For simplicity, we
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store ki ≥ 1 additional equally distributed function values for each interval
(−τ + (i − 1)T,−τ + iT) for i = 1, . . . , k − 1.

When ϕ(B) is to be computed using test points from B, we first use the points
in B for which additional information is available and generate the corresponding
initial value functions via spline interpolation. Note that the more information
we store, the smaller the error ‖Φ(E(x̂)) − E(x)‖ becomes for x = R(Φ(E(x̂))).
That is, we enforce an approximation of the identity (E ◦ R)(u) = u for all u ∈ A

(see (2)). If the additional information is available only for a few points in B, we
generate new test points in B at random and construct corresponding trajectories
by piecewise linear interpolation.

5.2 Partial Differential Equations

We will consider explicit differential equations of the form

∂

∂t
u(y, t) = F(y, u), u(y, 0) = u0(y), (7)

where u : R
n × R → R

n is in some Banach space Y and F is a (nonlinear)
differential operator. We assume that the dynamical system (7) has a well-defined
semiflow on Y .

5.2.1 Numerical Realization of R

In the previous section for delay differential equations R is defined by the delay
coordinate map. In principle it would also be possible to observe the evolution
of a partial differential equation by a delay coordinate map. However, from a
computational point of view this would be impractical. The reason is that for
the realization of the map E : Rk → Y one would have to reconstruct functions
(i.e., the space-dependent state) from time delay coordinates (of scalar, e.g.,
point-wise observations). Thus, for each point in observation space one would
essentially have to store the entire corresponding function.

To overcome this problem, we will present a different approach. In what
follows, we will assume that the function u ∈ Y can be represented in terms of
an orthonormal basis {Ψi}

∞
i=1, i.e.,

u(y, t) =
∞∑

i=1

xi(t)Ψi(y),

where the Ψi are elements from a Hilbert space. Then our observation map R
will be defined by projecting a function onto k coefficients xi of its Galerkin
expansion. The function u can then be approximated within the (truncated)
linear subspace spanned by the basis {Ψi}

k
i=1:

u(y, t) ≈
k∑

i=1

xi(t)Ψi(y).
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For the computation of the basis, we use the well-known Proper Orthogonal
Decomposition (POD), cf. [2,20,31]. The reason is that for each basis size k,
POD yields the optimal basis, i.e., the basis with the minimal L2 projection
error. In order to compute such a basis {Ψi}i we use the so-called method of
snapshots (cf. [20] for details). To this end, we construct the so–called snapshot
matrix SM ∈ R

nx×r , where each column consists of the (discretized) state at
equidistant time instances obtained from a single long-time integration of the
underlying PDE (7). Then we perform a singular value decomposition (SVD)
of the matrix SM and obtain SM = UΣV�, where U ∈ R

nx×nx , Σ ∈ R
nx×r and

V ∈ R
r×r . The columns of U give us a discrete representation of the POD modes

Ψi. Using the fact that this basis is orthogonal, we then define the observation
map by choosing k different observables

fi(u) = 〈u,Ψi〉 = xi for i = 1, . . . , k .

This yields
R(u) = ( f1(u), . . . , fk(u))

� = (x1, . . . , xk)
�.

Observe that R is linear and bounded and hence, for k sufficiently large, The-
orem 1 and Remark 1, respectively, guarantee that generically (in the sense of
prevalence) R will be a one-to-one map on A.

5.2.2 Numerical Realization of E

Since the state space for the CDS ϕ is given by points x ∈ R
k where x1, . . . , xk are

the POD coefficients we simply construct initial conditions u = E(x) by defining
the map E as

E(x) =
k∑

i=1

xiΨi,

if no additional information is available. Observe again that by this choice the
condition (R ◦ E)(x) = x is satisfied for each test point x.

However, the linear space spanned by the first k POD modes is not invariant
under the dynamics of Φ if k is not sufficiently large. Thus, (E ◦ R)(ū) = ū with
ū = Φ(E(x)) will in general not be satisfied anymore. This is not acceptable since
the requirement (E ◦ R)(u) = u for all u ∈ A (see (2)) is crucial in order to
compute reliable coverings.

To enforce this equality at least approximately we extend the expansion and
construct initial functions by

E(x) =
k∑

i=1

xiΨi +

S∑

l=k+1

xlΨl, (8)

where S � k. To address the choice of S we note that the singular values σi of
the snapshot matrix SM , i.e. the diagonal elements of Σ, determine the amount
of information that is neglected by truncating the basis {Ψi}i to size S < r [31].
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Thus, we choose S such that

ε(S) :=
∑S

i=1 σi∑r
j=1 σj

≈ 1.

In (8) only the first k POD coefficients are given by the coordinates of points
inside B ⊂ R

k . Thus, it remains to discuss how to choose the POD coefficients
xk+1, . . . , xS . The idea is to use a heuristic strategy that utilizes statistical infor-
mation. By Remark 4 we can compute the POD coefficients x̄k+1, . . . , x̄S for all
these points x̄ by

x̄i = 〈Φ(E(x̂)),Ψi〉, i = k + 1, . . . , S.

Then we sample the box B with all points x̄ for which additional information
is available. However, the number of these points x̄ might be too small, such
that B is not discretized sufficiently well and we have to generate additional
test points. For this, we first choose a certain number of points x̃ ∈ B at ran-
dom. Then we extend these points to elements in R

S as follows: We first com-
pute componentwise the mean value μi and the variance σ2

i of all POD coeffi-
cients x̄i, for i = k + 1, . . . , S. This allows us to make a Monte Carlo sampling
for the additional coefficients of x̃i for i = k + 1, . . . , S, i.e., x̃i ∼ N(μi, σ

2
i ) for

i = k + 1, . . . , S. Finally, we compute initial functions of the form

E(x̃) =
S∑

i=1

x̃iΨi .

By this construction we expect to generate initial functions that at least approx-
imately satisfy the identity (E ◦ R)(u) = u for all u ∈ A.

6 Numerical Results

In this section we present results of computations carried out for the Mackey-
Glass delay differential equation and the Kuramoto-Sivashinsky equation, respec-
tively.

6.1 The Mackey-Glass Equation

As in [6], we consider the well-known delay differential equation introduced by
Mackey and Glass in 1977 [26], namely

�u(t) = β
u(t − τ)

1 + u(t − τ)η
− γu(t), (9)

where we choose β = 2, γ = 1, η = 9.65, and τ = 2. This equation is a model for
blood production, where u(t) represents the concentration of blood at time t, �u(t)
represents production at time t and u(t−τ) is the concentration at an earlier time.
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Direct numerical simulations indicate that the dimension of the corresponding
attracting set is approximately d = 2. Thus, we choose the embedding dimension
k = 7, and approximate the relative global attractor AQ for Q = [0, 1.5]7 ⊂ R

7.
In Fig. 2 (a) to (c), we show projections of the coverings obtained after

� = 28, 42 and 63 subdivision steps. In order to investigate the effect of using
information retained from prior integration runs in the implementation of the
map E (see Sect. 5.1.2), we show in Fig. 2 (d) a projection of the coverings
obtained after 63 subdivision steps with the map E using only piecewise lin-
ear functions – that is, no additional information from previous time integration
is used. The results indicate that in this case the influence on the quality of the
approximation of Ak is only marginal.

6.2 The Kuramoto-Sivashinsky Equation

The well-known Kuramoto-Sivashinsky equation in one spatial dimension is
given by

ut + 4uyyyy + μ

[
uyy +

1
2
(uy)

2

]
= 0, 0 ≤ y ≤ 2π,

u(y, 0) = u0(y), u(y + 2π, t) = u(y, t).

(10)

Here, the parameter is μ = L2/4π2, where L denotes the size of a typical pattern
scale. As in [36] we are interested in computing the unstable manifold of the
trivial unstable steady state u∗ = 0 for μ = 15.

In what follows, the observation space is defined through projections onto
the first k POD coefficients, and thus, p = R(u∗) = 0 ∈ R

k . We compute the POD
basis (cf. Sect. 5.2.1) by using the snapshot matrix obtained through a long-time
integration with the initial condition

u0(y) = 10−4 · cos (y) · (1 + sin (y)) .

For μ = 15 the Kuramoto-Sivashinsky equation has two stable traveling waves
(see. Fig. 3 (a)) traveling in opposite directions due to the symmetry imposed by
the periodic boundary conditions. In the observation space this corresponds to
two stable limit cycles that are symmetric in the first POD coefficient a1 (see.
Fig. 3 (b)). We assume that the dimension of the embedded unstable manifold
is approximately two since different initial conditions result in trajectories in
observation space that are rotations of each other about the origin. Therefore,
assuming that the thickness exponent is zero, we have to choose k ≥ 5 in order
to obtain a one-to-one image of Wu

Φ
(u∗). To allow for a larger dimension or

thickness exponent we choose the embedding dimension k = 7 in the following.
We choose Q = [−8, 8]7 and initialize a fine partition Ps of Q for s = 21, 35, 49, 63.
Next we set T = 200. In addition, we define a finite time grid {t0, . . . , tN }, where
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Fig. 2. (a)–(c) Successively finer coverings of a relative global attractor after � subdi-
vision steps for the Mackey-Glass equation (9). (d) Embedding E using only piecewise
linear interpolation.

tN = T , and add all boxes that are hit in any of these time steps ti (a similar
approach has been used in [23]). In Fig. 4 (a) to (d) we illustrate successively
finer box coverings of the unstable manifold as well as a transparent box covering
depicting the complex internal structure of the unstable manifold. Observe that
– as mentioned above – the boundary of the unstable manifold consists of two
limit cycles which are symmetric in the first POD coefficient x1. This is due to the
fact that the Kuramoto-Sivashinsky equation with periodic boundary conditions
(10) possesses O(2)-symmetry.
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Fig. 3. (a) Direct simulation of the Kuramoto-Sivashinsky equation for μ = 15. The
initial value is attracted to a traveling wave solution; (b) Corresponding embedding in
observation space. Here, the red dot depicts the unstable steady state. As expected the
CDS possesses a limit cycle (green).

Fig. 4. (a)–(d) Successively finer box-coverings of the unstable manifold for μ = 15.
(d) Transparent box covering for s = 63 and � = 0 depicting the internal structure of
the unstable manifold.
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7 Conclusion

In this work we review the contents of [6] and [36], where infinite dimensional
embedding results have extended to the numerical analysis of infinite dimen-
sional dynamical systems. To this end, a continuous dynamical system, a finite
dimensional core dynamical system (CDS) is constructed to obtain a one-to-one
representation of the underlying dynamics. For the numerical realization of this
system we also identify suitable observables for delay differential and partial
differential equations. This finite dimensional system then employed in the sub-
division scheme for the computation of relative global attractors and the contin-
uation method for the approximation of invariant manifolds feasible for infinite
dimensional systems. The applicability of this novel framework is illustrated by
the computation of the attractor of the Mackey-Glass delay differential equa-
tion and the unstable manifold of the one-dimensional Kuramoto-Sivashinsky
equation.

The numerical effort of the methods proposed in this work essentially depends
on the dimension of the object to be computed, and not on the dimension of the
observation space of the CDS. However, note that for the numerical realization
of the selection step 3 and the continuation step 4 we have to evaluate the CDS
for each box and each test point x ∈ B′. Therefore, for each test point we also
have to evaluate the underlying infinite dimensional dynamical system which
may result in a prohibitively large computational effort. For this reason data-
based local reduced order models can be used in order to significantly reduce the
number of CDS evaluations [35].
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