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Abstract. Homeostasis is a regulatory mechanism that keeps some spe-
cific variable close to a set value as other variables fluctuate, and is of
particular interest in biochemical networks. We review and investigate
a reformulation of homeostasis in which the system is represented as an
input-output network, with two distinguished nodes ‘input’ and ‘output’,
and the dynamics of the network determines the corresponding input-
output function of the system. Interpreting homeostasis as an infinitesi-
mal notion—namely, the derivative of the input-output function is zero
at an isolated point—we apply methods from singularity theory to char-
acterise homeostasis points in the input-output function. This approach,
coupled to graph-theoretic ideas from combinatorial matrix theory, pro-
vides a systematic framework for calculating homeostasis points in mod-
els, classifying different types of homeostasis in input-output networks,
and describing all small perturbations of the input-output function near
a homeostasis point.

1 Introduction

Homeostasis is an important concept, occurring widely in biology, especially
biochemical networks, and in many other areas including control engineering. A
system exhibits homeostasis if some output variable remains constant, or almost
constant, when an input variable or parameter changes by a relatively large
amount. In the control theory literature, mathematical models of homeostasis
are often constructed by requiring the output to be constant when the input lies
in some range. That is, the derivative of the input-output function is identically
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zero on that interval of input values. Such models have perfect homeostasis or
perfect adaptation [17,41].

An alternative approach is introduced and studied in [22,23,25,37,42], using
an ‘infinitesimal’ notion of homeostasis—namely, the derivative of the input-
output function is zero at an isolated point—to introduce singularity theory
into the study of homeostasis. From this point of view, perfect homeostasis is an
infinite-codimension phenomenon, hence highly non-generic. It is also unlikely
to occur exactly in a biological system. Nonetheless, perfect homeostasis can be
a reasonable modeling assumption for many purposes.

The singularity-theoretic analysis leads to conditions that are very similar
to those that occur in bifurcation theory when recognizing and unfolding bifur-
cations (see [20,24]). These conditions have been used to organize the numer-
ical computation of bifurcations in nonlinear systems, for example in conjunc-
tion with continuation methods. See for example Dellnitz [9–11], Dellnitz and
Junge [12], Dellnitz et al. [13], Jepson and Spence [27], Jepson et al. [28], and
Moore et al. [31]. It might be possible to adapt some of these methods to home-
ostasis. Donovan [15,16] has used the singularity-theoretic framework to adapt
such numerical methods to homeostasis. As well as organizing the numerical
calculations, singularity theory and homeostasis matrix techniques may help to
simplify them.

Mathematically, homeostasis can be thought of as a network concept. One
variable (a network node) is held approximately constant as other variables
(other nodes) vary (perhaps wildly). Network systems are distinguished from
large systems by the desire to keep track of the output from each node individu-
ally. If we are permitted to mix the output from several nodes, then homeostasis
is destroyed, since the sum of a constant variable with a wildly varying one is
wildly variable. Placing homeostasis in the general context of network dynamics
leads naturally to the methods reviewed here.

Summary of Contents
Section 2 opens the discussion with a motivational example of homeostasis: reg-
ulation of the output ‘body temperature’ in an opossum, when the input ‘envi-
ronmental temperature’ varies. The graph of body temperature against envi-
ronmental temperature I is approximately linear, with nonzero slope, when I

is either small or large, while in between is a broad flat region, where home-
ostasis occurs. This general shape is called a ‘chair’ by Nijhout and Reed [34]
(see also [33,35]), and plays a central role in the singularity theory discussion.
This example is used in Sect. 4 to motivate a reformulation of homeostasis in
terms of the derivative of an output variable with respect to an input being zero
at some point, hence approximately constant near that point. We discuss this
mathematical reformulation in terms of singularities of input-output functions.

Section 5 introduces input-output networks – networks that have input and
output nodes. In such networks the observable is just the value of the output
node as a function of the input that is fed into the input node. This simplified
form of the observable and the input-output map allows us to use Cramer’s rule
to simplify the search for infinitesimal homeostasis points. See Lemma 5.2.
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As it happens, many nodes and arrows in input-output networks may have
no effect on the existence of homeostasis. The end result is that when looking
for infinitesimal homeostasis in the original network, we may first reduce that
network to a ‘core’ network. The definition of and reduction to the core are given
in Sect. 6. These reductions allow us to discuss three different types of infinites-
imal homeostasis in three-node input-output networks. The first is that there
are only three core networks in three-node input-output networks (even though
there are 78 possible input-output three-node networks) and there are three
types of infinitesimal homeostasis (Haldane, null-degradation, and structural)
distinguished by the mathematics. The mathematics of three-node input-output
networks is presented in Sect. 8, and the relation to the biochemical networks
that motivated the mathematics is given in Sect. 3.

Section 9 discusses the relationship between infinitesimal homeostasis and
singularity theory—specifically elementary catastrophe theory [19,36,43]. The
two simplest singularities are simple homeostasis and the chair. We characterize
these singularities, discuss their normal forms (the simplest form into which the
singularity can be transformed by suitable coordinate changes), and universal
unfoldings, which classify all small perturbations as other system parameters
vary. We relate the unfolding of the chair to observational data on two species
of opossum and the spiny rat, Fig. 2. Section 9 also provides a brief discussion of
how chair points can be calculated analytically by implicit differentiation, and
considers a special case with extra structure, common in biochemical applica-
tions, where the calculations simplify.

Catastrophe theory enables us to discuss how infinitesimal homeostasis can
arise in systems with an extra parameter. In Sect. 10 we see that the simplest
such way for homeostasis to evolve is through a chair singularity. This observa-
tion gives a mathematical reason for why infinitesimal chairs are important and
complements the biological reasons given by Nijhout, Reed, and Best [33,35].

Until this point the paper has dealt with input-output functions having one
input variable. This is the most important case; however multiple input systems
are also important. We follow [23] and discuss two input systems in Sect. 11. We
argue that the hyperbolic umbilic of elementary catastrophe theory plays the
role of the chair in systems with two inputs.

The paper ends with a discussion of a possible singularity theory description
of housekeeping genes in Sect. 12. Here we emphasize how both the homeostasis
network theory and the network singularity theory intertwine. The details of this
application are given in Antoneli et al. [1].

2 Thermoregulation: A Motivation for Homeostasis

Homeostasis occurs when some feature of a system remains essentially constant
as an input parameter varies over some range of values. For example, in ther-
moregulation the body temperature of an organism remains roughly constant
despite variations in its environment. (See Fig. 1 for such data in the brown
opossum where body temperature remains approximately constant over a range
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of 18 ◦C in environmental temperature [32,33].) Or in a biochemical network the
equilibrium concentration of some important biochemical molecule might not
change much when the organism ingests food.
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Fig. 1. Experimental data indicating thermoregulatory homeostasis in the brown opos-
sum. The horizontal axis is environmental temperature (◦C) and the vertical axis is body
temperature (◦C) [32,33].

Homeostasis is almost exactly opposite to bifurcation. At a bifurcation, the
state of the system undergoes a change so extensive that some qualitative prop-
erty (such as number of equilibria, or the topological type of an attractor)
changes. In homeostasis, the state concerned not only remains topologically
the same: some feature of that state does not even change quantitatively. For
example, if a steady state does not bifurcate as a parameter is varied, that
state persists, but can change continuously with the parameter. Homeostasis is
stronger: the steady state persists, and in addition some feature of that steady
state remains almost constant.

Homeostasis is biologically important, because it protects organisms against
changes induced by the environment, shortage of some resource, excess of some
resource, the effect of ingesting food, and so on. The literature is extensive [44].
However, homeostasis is not merely the existence (and persistence as parameters
vary) of a stable equilibrium of the system, for two reasons.

First, homeostasis is a stronger condition than ‘the equilibrium varies
smoothly with parameters’, which just states that there is no bifurcation. In the
biological context, approximately linear variation of the equilibrium with nonzero
slope as parameters change is not normally considered to be homeostasis, unless
the slope is very small. For example, in Fig. 1, body temperature appears to be
varying linearly when the environmental temperature is either below 10 ◦C or
above 30 ◦C and is approximately constant in between. Nijhout et al. [33] call
this kind of variation (linear, constant, linear) a chair.
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Second, some variable(s) of the system may be homeostatic while others
undergo larger changes. Indeed, other variables may have to change dramatically
to keep some specific variable roughly constant.

We assume that there is an input-output function, which we consider to be
the product of a system black box. Specifically, we assume that for each input
I there is an output xo(I). For opossums, I is the environmental temperature
from which the opossum body produces an internal body temperature xo(I).

Nijhout et al. [33] suggest that there is a chair in the body temperature data
of opossums [32]. We take a singularity-theoretic point of view and suggest that
chairs are better described locally by a homogeneous cubic function (that is, like
xo(I) ≈ I

3) rather than by the previous piecewise linear description. Figure 2(a)
shows the least-squares fit of a cubic function to data for the brown opossum,
which is a cubic with a maximum and a minimum. In contrast, the least squares
fit for the eten opossum, Fig. 2(b), is monotone.
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Fig. 2. The horizontal coordinate is environmental temperature; the vertical coordinate
is body temperature. From [32] and [22]: (a) data from the brown opossum; (b) data
from the eten opossum; (c) data from the spiny rat. The smooth curves are the least
squares best fit of the data to a cubic polynomial.

These results suggest that in ‘opossum space’ there should be a hypothetical
type of opossum that exhibits a chair in the system input-output function of
environmental temperature to body temperature. In singularity-theoretic terms,
this higher singularity acts as an organizing center, meaning that the other types
of cubic can be obtained by small perturbations of the homogeneous cubic. In
fact, data for the spiny rat have a best-fit cubic very close to the homogeneous
cubic, Fig. 2(c). We include this example as a motivational metaphor, since we
do not consider a specific model for the regulation of opossum body temperature.

This example, especially Fig. 2, motives a formulation of homeostasis in a way
that can be analyzed using singularity theory. The first step in any discussion
of homeostasis must be the formulation of a model that defines, perhaps only
implicitly, the input-output function xo. Our singularity theory point of view
suggests defining infinitesimal homeostasis as an input I0 where the derivative
of output xo with respect to the input vanishes at I0; that is, x ′o(I0) = 0.
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3 Biochemical Input-Output Networks

We provide context for our results by first introducing some of the biochemical
models discussed by Reed in [37]. In doing so we show that input-output networks
form a natural category in which homeostasis may be explored.

There are many examples of biochemical networks in the literature. In par-
ticular examples, modelers decide which substrates are important and how the
various substrates interact. Figure 3 shows a network resulting from the detailed
modeling of the production of extracellular dopamine (eDA) by Best et al. [3]
and Nijhout et al. [33]. These authors derive a differential equation model for
this biochemical network and use the results to study homeostasis of eDA with
respect to variation of the enzyme tyrosine hydroxylase (TH) and the dopamine
transporters (DAT).

In another direction, relatively small biochemical network models are often
derived to help analyse a particular biochemical phenomenon. We present four
examples; three are discussed in Reed et al. [37] and one in Ma et al. [29].
These examples belong to a class that we call biochemical input-output networks
(Sect. 5) and will help to interpret the mathematical results.

3.1 Feedforward Excitation

The input-output network corresponding to feedforward excitation is in Fig. 4.
This motif occurs in a biochemical network when a substrate activates the
enzyme that removes a product. The standard biochemical network diagram
for this process is shown in Fig. 4a. Here X, Y, Z are the names of chemical sub-
strates and their concentrations are denoted by lower case x, y, z. Each straight
arrow represents a flux coming into or going away from a substrate. The dif-
ferential equations for each substrate simply state that the rate of change of
the concentration is the sum of the arrows going towards the substrate minus
the arrows going away (conservation of mass). The curved line indicates that
substrate is activating an enzyme.

Both diagrams in Fig. 4 represent the same information, but in different ways.
The framework employed in this paper for the mathematics focuses on the struc-
ture of the model ODEs. Figure 4b uses nodes to represent variables, and arrows
to represent couplings. In other areas, conventions can differ, so it is necessary
to translate between the two representations. The simplest method is to write
down the model ODEs.

In this motif, one path consists of two excitatory couplings: g1(x) > 0 from
X to Y and g2(y) > 0 from Y to Z. The other path is an excitatory coupling
f (x) > 0 from X to the synthesis or degradation g3(z) of Z and hence is an
inhibitory path from X to Z having a negative sign.

The equations are the first column of:

�x = I − g1(x) − g4(x)
�y = g1(x) − g2(y) − g5(y)

�z = g2(y) − f (x)g3(z)

�xι = fι(xι,I)
�xρ = fρ(xι, xρ)
�xo = fo(xι, xρ, xo)

(1)
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Fig. 3. Biochemical network for dopamine synthesis, release, and reuptake in Nijhout
et al. [33] and Golubitsky and Stewart [23].

(a)

+ +
-

(b)

Fig. 4. Feedforward excitation: (a) Motif from [37]; (b) Input-output network with two
paths from ι to o corresponding to the motif in (a).

It is shown in [37] (and reproduced using this theory in [25]) that the model
system (1) (left) for feedforward excitation leads to infinitesimal homeostasis at
X0 if

fx(x0) =
g′1(x0)g

′

2(y0)

g3(z0)(g′2(y0) + g′5(y0))

where X0 = (x0, y0, z0) is a stable equilibrium.
Figure 4b redraws the diagram in Fig. 4a using the math network conven-

tions of this paper, together with some extra features that are crucial to this
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particular application. We consider x to be a distinguished input variable, with
z as a distinguished output variable, while y is an intermediate regulatory vari-
able. Accordingly we change notation and write

xι = x xρ = y xo = z

The second column in (1) shows which variables occur in the components of
the model ODE for each of xι, xρ, xo. In Fig. 4b these variables are associated with
three nodes ι, ρ, o. Each node has its own symbol, here a square for ι, circle for ρ,
and triangle for o. Here these symbols are convenient ways to show which type
of variable (input, regulatory, output) the node corresponds to. Arrows indicate
that the variables corresponding to the tail node occur in the component of the
ODE corresponding to the head node. For example, the component for �xo is a
function of xι, xρ, and xo. We therefore draw an arrow from ι to o and an arrow
from ρ to o. We do not draw an arrow from o to itself, however: by convention,
every node variable can appear in the component for that node. In a sense, the
node symbol (circle) represents this ‘internal’ arrow.

The mathematics described here shows that infinitesimal homeostasis occurs
in the system in the second column of (1) if and only if

fρ,xι fo,xρ − fρ,xρ fo,xι = 0

at the stable equilibrium X0.
Here Fig. 4b incorporates some additional information. The arrow from I to

node ι shows that I occurs in the equation for �xι as a parameter. Similarly the
arrow from node o to O shows that node o is the output node. Finally, the ±

signs indicate which arrows are excitatory or inhibitory. This extra information
is special to biochemical networks and does not appear as such in the general
theory.

3.2 Product Inhibition

Here substrate X influences Y, which influences Z, and Z inhibits the flux g1
from X to Y. The biochemical network for this process is shown in Fig. 5a.

This time the model equations for Fig. 5a are in the first column of (2)

�x = I − g4(x) − f (z)g1(x)
�y = f (z)g1(x) − g2(y) − g5(y)

�z = g2(y) − g3(z)

�xι = fι(xι, xo,I)
�xρ = fρ(xι, xρ, xo)
�xo = fo(xρ, xo)

(2)

and the input-output equations in the second column of (2) can be read directly
from the first column. The input-output network in Fig. 5b then follows.

Reed et al. [37] discuss why the model equations for product inhibition also
satisfy

f > 0 g′1 < 0 g′2 < 0 (3)
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(a)

+
(b)

Fig. 5. Product inhibition: (a) Motif from [37]; (b) Input-output network with one
path from ι to o corresponding to the motif in (a).

Our general mathematical results show that the system in the second column of
(2) exhibits infinitesimal homeostasis at a stable equilibrium X0 if and only if
either

fρ,xι = f (z0)g
′

1(x0) = 0 or fo,xρ = g′2(y0) = 0 (4)

It follows from (3) and (4) that the model equations cannot satisfy infinitesimal
homeostasis. Nevertheless, Reed et al. [37] show that these bichemical network
equations do exhibit homeostasis; that is, the output z is almost constant for a
broad range of input values I.

3.3 Substrate Inhibition

The biochemical network model for substrate inhibition is given in Fig. 6a, and
the associated model system is given in the first column of (5). This biochemical
network and the model system are discussed in Reed et al. [37]. In particular,
this paper provides justification for taking g′1(x) > 0 for all relevant x, whereas
the coupling (or kinetics term) g′2(y) can change sign.

(a)

+

(b)

Fig. 6. Substrate inhibition: (a) Motif from [37]; (b) Input-output network correspond-
ing to the motif in (a).

The equations are the first column of:

�x = I − g1(x) − g4(x)
�y = g1(x) − g5(y) − g2(y)

�z = g2(y) − g3(z)

�xι = fι(xι,I)
�xρ = fρ(xι, xρ)
�xo = fo(xρ, xo)

(5)

That model system of ODEs is easily translated to the input-output system in
the second column of (5). Our theory shows that the equations for infinitesimal
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homeostasis are identical to those given in (4) for product inhibition. Given the
assumption on g′1 infinitesimal homeostasis is possible only if the coupling is
neutral (that is, if fo,xρ = g′2 = 0 at the equilibrium point). This observation
agrees with the observation in [37] that Z can exhibit infinitesimal homeostasis
in the substrate inhibition motif if the infinitesimal homeostasis is built into the
kinetics term g2 between Y and Z.

Reed et al. [37] note that neutral coupling can arise from substrate inhibition
of enzymes, enzymes that are inhibited by their own substrates. See the discus-
sion in [38]. This inhibition leads to reaction velocity curves that rise to a max-
imum (the coupling is excitatory) and then descend (the coupling is inhibitory)
as the substrate concentration increases. Infinitesimal homeostasis with neutral
couplings arising from substrate inhibition often has important biological func-
tions and has been estimated to occur in about 20% of enzymes [38].

3.4 Negative Feedback Loop

The input-output network in Fig. 7b corresponding to the negative feedback
loop motif in Fig. 7a has only one simple path ι → o. Our results imply that
infinitesimal homeostasis is possible in the negative feedback loop if and only if
the coupling ι → o is neutral (Haldane) or the linearized internal dynamics of
the regulatory node ρ is zero (null-degradation).

X Z

Y

I

(a)
(b)

Fig. 7. Negative feedback loop: (a) Motif adapted from [29]. Unlike the arrows in
Figs. 4, 6 and 5 that represent mass transfer between substrates, positive or negative
arrows between enzymes in this negative feedback motif indicate the activation or inac-
tivation of an enzyme by a different enzyme. (b) Input-output network corresponding
to the motif in (a).

The equations are:

�x = IkIx
1−x

(1−x)+KIx
− Fxk ′Fx

x
x+K′

Fx

�y = zkzy − Fyk ′Fy

�z = xkxz
1−z

(1−z)+Kxz
− yk ′yz

z
z+K′

yz

�xι = fι(xι,I)
�xρ = fρ(xρ, xo)
�xo = fo(xι, xρ, xo)

(6)

where kIx,KIx, Fx, k ′Fx
,K ′

Fx
, kzy, Fy, k ′Fy

, kxz,Kxz, k ′yz,K
′
yz are 12 constants.

Each enzyme X,Y,Z in the feedback loop motif (Fig. 7a) can have active
and inactive forms. In the kinetic equations (6, left) the coupling from X to
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Z is non-neutral according to [29]. Hence, in this model only null-degradation
homeostasis is possible. In addition, in the model the �y equation does not depend
on y and homeostasis can only be perfect homeostasis. However, this model is a
simplification based on saturation in y [29]. In the original system �y does depend
on y and we expect standard null-degradation homeostasis to be possible in that
system.

Stability of the equilibrium in this motif implies negative feedback. The Jaco-
bian of (6, right) is

J =

⎡
⎢
⎢
⎢
⎢
⎣

fι,xι 0 0
0 fρ,xρ fρ,xo
fo,xι fo,xρ fo,xo

⎤
⎥
⎥
⎥
⎥
⎦

At null-degradation homeostasis ( fρ,xρ = 0) it follows from linear stability that

fι,xι < 0, fo,xo < 0, fρ,xo fo,xρ < 0 (7)

Conditions (7) imply that both the input node and the output node need to
degrade and the couplings ρ → o and o → ρ must have opposite signs. This
observation agrees with [29] that homeostasis is possible in the network motif
Fig. 7a if there is a negative loop between Y and Z and when the linearized
internal dynamics of Y is zero.

Another biochemical example of null-degradation homeostasis can be found
in [17, Fig. 2].

4 Infinitesimal Homeostasis

In applications, homeostasis is often a property of an observable on a many-
variable system of ODEs. Specifically, consider a system of ODEs

�X = F(X,I) (8)

in a vector of variables X = (x1, . . . , xm) ∈ Rm that depends on an input parameter
I ∈ R. Although not always valid in applications we assume that F is infinitely
differentiable. Suppose that (8) has a linearly stable equilibrium at (X0,I0). By
the implicit function theorem there exists a family of linearly stable equilibria
X(I) = (x1(I), . . . , xm(I)) near I0 such that X(I0) = X0 and

F(X(I),I) ≡ 0. (9)

By assumption, we are interested in homeostasis of a chosen observable ϕ : Rm
→

R. The input-output function is

xo(I) ≡ ϕ(X(I)) (10)

This system exhibits homeostasis if the input-output function xo(I) remains
roughly constant as I is varied.

Often times the observable is just one coordinate of the ODE system; that
is, ϕ(X) = xj , which we denote as the output variable xo . This formulation of
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homeostasis is often a network formulation. The output variable is just a choice
of output node and the input parameter can be assumed to affect only one node—
the input node xι.

We now introduce a formal mathematical definition of infinitesimal home-
ostasis, one which opens up a potential singularity-theoretic approach that we
discuss later.

Definition 4.1. The equilibrium X0 is infinitesimally homeostatic at I0 if

x ′o(I0) = 0

where ′ indicates differentiation with respect to I.

By Taylor’s theorem, infinitesimal homeostasis implies homeostasis, but the
converse need not be true. See [37] and the discussion of product inhibition in
Sect. 3.

5 Input-Output Networks

We now apply the notion of infinitesimal homeostasis to input-output networks—
a natural formulation in biochemical networks that we discussed in detail in
Sect. 3. We assume that one node ι is the input node, a second node o is the
output node, and the remaining nodes ρ = (ρ1, . . . , ρn) are the regulatory nodes.
Our discussion of network infinitesimal homeostasis follows [25]. Input-output
networks equations have the form F = ( fι, fρ, fo) where each coordinate function
f� depends on the state variables of the nodes coupled to node � in the network
graph. We assume that only the input node coordinate function fι depends on
the external input variable I.

As shown in [25] there are 13 distinct three-node fully inhomogeneous net-
works and six choices of input and output nodes for each network. Thus, in prin-
ciple, there are 78 possible ways to find homeostasis in three-node input-output
networks. The number of input-output four-node networks increases dramati-
cally: there are 199 fully inhomogeneous networks and more than 2000 four-node
input-output networks.

Further motivated by biochemical networks, we assume:

(a) The state space for each node is 1-dimensional and hence the state space for
an input-output network system of differential equations is Rn+2.

(b) The coordinate functions f� are usually distinct functions, so the network is
assumed to be fully inhomogeneous.

(c) Generically
fι,I � 0 (11)

is valid everywhere, where the notation f�,y denotes the partial derivative of
the coordinate function f� with respect to y.
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Cramer’s Rule and Infinitesimal Homeostasis

The equilibria of an input-output system satisfy the system

fι(xι, xρ, xo,I) = 0
fρ(xι, xρ, xo) = 0
fo(xι, xρ, xo) = 0

(12)

The assumption of a stable equilibrium X0 at I0 implies that the Jacobian

J =

⎡
⎢
⎢
⎢
⎢
⎣

fι,xι fι,xρ fι,xo
fρ,xι fρ,xρ fρ,xo
fo,xι fo,xρ fo,xo

⎤
⎥
⎥
⎥
⎥
⎦

(13)

has eigenvalues with negative real part at (X0,I0), so J is invertible.
To state the next result we first need:

Definition 5.1. The homeostasis matrix is:

H ≡

[

fρ,xι fρ,xρ
fo,xι fo,xρ

]

(14)

Lemma 5.2. The input-output function for the input-output network (12) sat-
isfies

x ′o = ±
fι,I

det(J)
det(H)

Infinitesimal homeostasis occurs at a stable equilibrium X0 = X(I0) if and only if

det(H)(X0) = 0 (15)

Proof. Implicit differentiation of (12) with respect to I yields the matrix system

J

⎡
⎢
⎢
⎢
⎢
⎣

x ′i
x ′ρ
x ′o

⎤
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎣

fι,I
0
0

⎤
⎥
⎥
⎥
⎥
⎦

Cramer’s rule implies that

x ′o =
1

det(J)
det

⎡
⎢
⎢
⎢
⎢
⎣

fι,xι fι,xρ − fι,I
fρ,xι fρ,xρ 0
fo,xι fo,xρ 0

⎤
⎥
⎥
⎥
⎥
⎦

Since fι,I � 0 by genericity assumption (11), X0 is a point of infinitesimal home-
ostasis if and only if x ′o = 0, if and only if (15), as claimed. 	


6 Core Networks

The results in Sects. 6, 7 and 8 will appear in Wang et al. [42].

Definition 6.1. A node ρ is downstream from a node τ if there is a path from
τ to ρ and upstream if there is a path from ρ to τ. An input-output network is
a core network if every node is downstream from ι and upstream from o.

A core network Gc can be associated to any given input-output network G

as follows. The nodes in Gc are the nodes in G that lie on a path from ι to o.
The arrows in Gc are the arrows in G that connect nodes in Gc.



44 M. Golubitsky et al.

Reduction to the Core
In this section we discuss why every network that exhibits infinitesimal home-
ostasis can be reduced to a core network in such a way that the core has essen-
tially the same input-output function as the original network. This reduction is
performed in two stages.

(a) Homeostasis implies that the output node o is downstream from the input
node ι.

(b) Nodes that are not upstream from the output node, and nodes that are not
downstream from the input node, may be deleted.

We show that if infinitesimal homeostasis occurs in the original network, then
that infinitesimal homeostasis can be computed in the smaller core network.

Lemma 6.2. In an input-output network, the existence of (generic) infinites-
imal homeostasis implies that the output node o is downstream from the input
node ι.

Heuristically, if the input node is not upstream from the output node, then
changes in the input node cannot affect the dynamics of the output node. So the
input-output map must satistfy x ′o(I) ≡ 0 and the set value xo(I) is constant
(and not generic).

We assume that there is a path from the input node to the output node
and show that nodes that are not upstream from o and nodes that are not
downstream from ι can be deleted without changing the existence of homeostasis.

Proposition 6.3. Let G be a connected input-output network where there is a
path from the input node ι to the output node o. Divide the regulatory nodes ρ
into three classes ρ = (u, σ, d), where

• nodes in u are not upstream from o,
• nodes in d are not downstream from ι, and
• regulatory nodes σ are both upstream from o and downstream from ι.

Then all nodes u, d and all arrows into nodes in u and out of nodes in d can be
deleted to form a core network Gc without affecting the existence of infinitesimal
homeostasis.

Again, heuristically the proof is straightforward. If a node is not upstream
from the output node, than its value cannot affect the output node and if a
node is not downstream from the input node than its value cannot be affected
by the value of the input node. So deleting these nodes should not affect the
input-output map.
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Core Equivalence

Definition 6.4. Two core networks are core equivalent if the determinants of
their homeostasis matrices are identical.

The general result concerning core equivalence is given in Theorem 7.2. Here
we give an example of arrows that do not affect the homeostasis matrix and
therefore the input-output function.

Definition 6.5. A backward arrow is an arrow whose head is the input node ι
or whose tail is the output node o.

Proposition 6.6. If two core networks differ from each other by the presence
or absence of backward arrows, then the core networks are core equivalent.

Proof. Backward arrows are not present in the homeostasis matrix (14). 	


Therefore, backward arrows can be ignored when computing infinitesimal
homeostasis from the homeostasis matrix H. However, backward arrows can-
not be completely ignored, since they can be involved in the existence of both
equilibria of (12) and their stability.

7 Types of Infinitesimal Homeostasis

Infinitesimal homeostasis is found in an input-output network G by simultane-
ously solving two equations: Find a stable equilibrium of an admissible system
�X = F(X,I) and find a zero of the determinant of the homeostasis matrix H. In
this section, we discuss the different types of zeros det(H) can have and (for the
most part) ignore the question of finding an equilibrium and its stability.

The homeostasis matrix H of an admissible system has three types of entries:
linearized coupling strengths fk,x� where node � is connected to node k, linearized
internal dynamics fk,xk of node k, and 0. We emphasize that the entries that are
forced to be 0 depend specifically on network architecture.

Assume that the input-output network has n + 2 nodes: the input ι, the
output o, and the n regulatory nodes ρ = (ρ1, . . . , ρn). It follows that det(H) is a
homogeneous polynomial of degree n + 1 in the variables fk,x� . It is discussed in
[42], based on Frobenius-König theory (see [40] for a historical account), that the
homeostasis matrix H can be put in block upper triangular form. Specifically,
there exist two constant (n+1)× (n+1) permutation matrices P and Q such that

PHQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1 ∗ · · · ∗

0 H2 · · · ∗

...
...

0 0 · · · Hm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)

where the square matrices H1, . . . ,Hm are unique up to permutation, that is,
individually the blocks cannot be brought into the form (16) by permutation of
their rows and columns.
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Moreover, when det(H) is viewed as a homogeneous polynomial in the entries
of the matrix H there is a factorization

det(H) = det(H1) · · · det(Hm) (17)

into irreducible homogeneous polynomials det(H1), . . . , det(Hm). That is, the irre-
ducible blocks of the decomposition (16) correspond to the irreducible compo-
nents in the factorization (17) (this follows from Theorem 4.2.6 (pp. 114–115)
and Theorem 9.2.4 (p. 296) of [5]). We note that the main nontrivial result
that allows us to write Eq. (17)—proved in [5, Theorem 9.2.4 (p. 296)]—is that
det(Hj) is irreducible as a polynomial if and only if the matrix Hj is irreducible
in the sense that Hj cannot be brought to the form (16) by permutation of Hj ’s
rows and columns.

Low Degree Irreducible Factors of det(H)
Wang et al. [42] show that there can be two types of degree 1 factors (Haldane and
null-degradation) and two types of degree 2 factors (structural and appendage).
The principal result in [42] is the assertion that these four irreducible factors
of det(H) can be associated with topological characteristics of the network G

that in turn defines a type of homeostasis. The connection between the form of
a factor det(Hj) and the topology of the network is given by certain determinant
formulas that are reminiscent of the connection between a directed graph and its
adjacency matrix and has been rediscovered by many authors [7,8,14,26] (see [6]
for a modern account). Before stating the classification we introduce some graph
theoretic terminology.

Definition 7.1. Let G be an input-output network.

(a) A directed path between two nodes is called a simple path if it visits each
node on the path at most once. An ιo-simple path is a simple path connecting
the input node ι to the output node o.

(b) A node in an input-output network G is simple if the node is on an ιo-simple
path and appendage if the node is not simple.

(c) The appendage subnetwork AG of G is the subnetwork consisting of
appendage nodes and arrows in G that connect appendage nodes.

(d) The complementary subnetwork corresponding to an ιo-simple path S is the
network CS consisting of all nodes not in S and all arrows in G between
nodes in CS.

Given these definitions we can state necessary and sufficient conditions for
core equivalence:

Theorem 7.2. Two core networks are core equivalent if and only if they have
the same set of ιo-simple paths and the Jacobian matrices of the complementary
subnetworks to any simple path have the same determinant up to sign.
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We isolate four types of homeostasis.

(A) Haldane homeostasis is associated with the arrow � → k, where k � �, if
homeostasis is caused by the vanishing of the degree 1 irreducible factor
fk,x� of det(H).

Theorem 7.3. Haldane homeostasis associated with an arrow � → k can
occur if and only if the arrow � → k is contained in every ιo-simple path.

(B) Null-degradation homeostasis is associated with a node τ if homeostasis is
caused by the vanishing of the degree 1 irreducible factor fτ,xτ of det(H).

Theorem 7.4. Null-degradation homeostasis associated with a node τ can
occur if and only if for every ιo-simple path S
(a) τ belongs to the complementary subnetwork CS and
(b) τ is not contained in a cycle of CS.

(C) Structural homeostasis of degree 2 is caused by the vanishing of a degree 2
irreducible factor of det(H) that has the form

fρ2,xρ1
fρ3,xρ2

− fρ3,xρ1
fρ2,xρ2

that is, the determinant of the homeostasis matrix of a feedforward loop motif
defined by two ιo-simple path snippets: one snippet is ρ1 → ρ2 → ρ3 and
the other snippet is ρ1 → ρ3. A snippet of a path is a connected subpath.

Theorem 7.5. Structural homeostasis of degree 2 can occur if and only if
(a) two ιo-simple path snippets form a feedforward loop motif and
(b) all ιo-simple paths contain one of the two snippets of the feedforward loop

motif.

Structural homeostasis of degree 2 is exactly the structural homeostasis con-
sidered in [25] for 3-node core networks; it often arises in biochemical net-
works associated with the mechanism of feedforward excitation.

(D) Appendage homeostasis of degree 2 is caused by the vanishing of a degree
2 irreducible factor of det(H) that has the form

fτ1,xτ1 fτ2,xτ2 − fτ2,xτ1 fτ1,xτ2

where the two node cycle A = {τ1
←
→τ2} consists of appendage nodes.

Theorem 7.6. Appendage homeostasis of degree 2 associated with a two-
node cycle A ⊂ AG can occur if and only if for every ιo-simple path S
(a) A belongs to the complementary subnetwork CS and
(b) nodes in A do not form a cycle with other nodes in CS.

The four types of infinitesimal homeostasis (A)–(D) correspond to the only
possible factors of degree � 2. More precisely:

Theorem 7.7. Any factor of degree 1 is of type (A) or (B) and any irreducible
factor of degree 2 is of type (C) or (D).

Homeostasis can also occur in blocks of degree 3 or higher. There are
three types of such blocks: structural (all couplings are between simple nodes),
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appendage (all couplings are between appendage nodes), and mixed (both simple
and appendage nodes appear in the block). Theorem7.6 generalizes to higher
degree appendage homeostasis. Specifically:

Theorem 7.8. Let G be a network with appendage subnetwork A ⊂ AG.
Appendage homeostasis associated with A can occur if and only if for every
ιo-simple path S

(a) A belongs to the complementary subnetwork CS and
(b) nodes in A do not form a cycle with other nodes in CS.

8 Low Degree Homeostasis Types

The homeostasis matrix H of a three-node input-output network is a 2 × 2
matrix. It follows that a homeostasis block is either 1 × 1 or 2 × 2. If the block
is 2× 2, it must be structural. For if it were appendage, the network would need
to have two appendage nodes and one simple node. If the network had only one
simple node, then the input node and the output node would be identical and
that is not permitted.

Examples of Haldane, Structural of Degree 2, and Null Degradation
The admissible systems of differential equations for the three-node networks in
Fig. 8 are:

(a) Haldane (b) Structural of degree 2
(c) Null-degradation

Fig. 8. Homeostasis types in three-node networks.

�xι = fι(xι)
�xρ = fρ(xι, xρ)
�xo = fo(xρ, xo)

�xι = fι(xι)
�xρ = fρ(xι, xρ)
�xo = fo(xι, xρ, xo)

�xι = fι(xι, xτ)
�xτ = fτ(xτ, xo)
�xo = fo(xι, xo)

(a) (b) (c)

(18)

The determinants of the 2 × 2 homeostasis matrices are:

(a) fρ,xι fo,xρ (b) fρ,xι fo,xρ − fρ,xρ fo,xι (c) fo,xι fτ,xτ (19)

A vanishing determinant in (19)(a) leads to two possible instances of Haldane
homeostasis. A vanishing determinant in (19)(b) leads to balancing of two sim-
ple paths and structural homeostasis. Finally, a vanishing determinant in (19)(c)
leads to null-degradation or Haldane homeostasis. These types of homeostasis
were classified in [25] where it was also noted that Haldane occurs in prod-
uct inhibition, structural occurs in feedforward excitation, and null-degradation
occurs in a negative feedback loop.
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Appendage Homeostasis of Degree 2
The admissible systems of differential equations for the four-node network in
Fig. 9 have the form:

�xι = fι(xι, xτ2)
�xτ1 = fτ1(xτ1, xτ2, xo)
�xτ2 = fτ2(xτ1, xτ2 )
�xo = fo(xι, xo)

The homeostasis matrix is

H =

⎡
⎢
⎢
⎢
⎢
⎣

0 fτ1,xτ1 fτ1,xτ2
0 fτ2,xτ1 fτ2,xτ2

fo,xι 0 0

⎤
⎥
⎥
⎥
⎥
⎦

and
det(H) = fo,xι ( fτ1,xτ1 fτ2,xτ2 − fτ1,xτ2 fτ2,xτ1 )

It follows that det(H) = 0 can lead either to Haldane homeostasis or appendage
homeostasis of degree 2.

Oι ο

τ
1

τ
2

I

Fig. 9. Appendage homeostasis of degree 2.

9 Singularity Theory of Input-Output Functions

As discussed in Sect. 2, Nijhout et al. [33,35] observe that homeostasis appears
in many applications through the notion of a chair. Golubitsky and Stewart [23]
observed that a chair can be thought of as a singularity of the input-output
function, one where xo(I) ‘looks like’ a homogeneous cubic xo(I) ≈ I

3. More
precisely, the mathematics of singularity theory [19,36] replaces ‘looks like’ by
‘up to a change of coordinates.’

Definition 9.1. Two functions p, q : R → R are right equivalent on a neighbor-
hood of I0 ∈ R if

q(I) = p(Λ(I)) + K

where Λ : R → R is an invertible change of coordinates on a neighborhood of I0
and K ∈ R is a constant.
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The simplest singularity theory theorem states that q : R → R is right
equivalent to p(I) = I

3 on a neighborhood of the origin if and only if q′(I0) =
q′′(I0) = 0 and q′′′(I0) � 0. Hence we call a point I0 an infinitesimal chair for an
input-output function xo if

x ′o(I0) = x ′′o (I0) = 0 and x ′′′o (I0) � 0 (20)

A simple result is:

Lemma 9.2. An input-output map xo has an infinitesimal chair at I0 if and
only if

h(I0) = h′(I0) = 0 and h′′(Io) � 0

where h(I) = det(H).

Proof. Suppose that x ′o(I) = k(I)h(I) where k(I) is nowhere zero. Then h(I0) =
h′(I0) = 0 if and only if x ′0(I0) = x ′′0 (I0) = 0 because x ′′o = k ′h + kh′. Moreover, if
h = h′ = 0, then x ′′o = kh′′. Finally, it follows from the Cramer’s rule calculation
in Lemma 5.2 that

k = ±
fι,I

det(J)

Hence, k(I) is nowhere zero. 	


A simpler result states the following. The input-output function defines sim-
ple infinitesimal homeostasis if

x ′o = 0 and x ′′o � 0,

which is equivalent to h = 0 and h′ � 0. The graph of xo ‘looks like’ a parabola
near a point of simple infinitesimal homeostasis.

9.1 Chair Points for Blocks of Degree 1 and 2

Lemma 9.2 gives necessary and sufficient conditions for the existence of infinites-
imal homeostasis using the function h = det(H). In general, the homeostasis
function can be simplified by recalling from (16) that the homeostasis matrix
PHQ is block upper triangular. It follows that if homeostasis stems from block
j, then det(H) is a nonzero multiple of det(Hj). The results in Sect. 7 imply

hj ≡ det(Hj) =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

fk,x� Haldane
f�,x� null-degradation
fρ2,xρ1

fρ3,xρ2
− fρ3,xρ1

fρ2,xρ2
structural of degree 2

fτ1,xτ1 fτ2,xτ2 − fτ1,xτ2 fτ2,xτ1 appendage of degree 2

(21)

Theorem 9.3. Given an input-output network. Then, the defining conditions
for infinitesimal chair homeostasis are given by hj = h′j = 0 where hj is defined
by (21).

We now calculate chair equations for the two degree 1 three-node examples.
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Lemma 9.4.

(a) If the arrow ρ→ o has Haldane homeostasis in the network ι→ ρ→ o, then

h = h′ = 0 ⇐⇒ fo,xρ = fo,xρxρ = 0

(b) If the node τ has null-degradation homeostasis in the network ι→ o, o → τ,
τ → ι, then

h = h′ = 0 ⇐⇒ fτ,xτ = fτ,xτ xτ = 0

Proof. Suppose h(I) = hj(I)k(I), where k(I0) is nonzero at I0, then h(I0) =

h′(I0) = 0 if and only if hj(I0) = h′j(I0) = 0. The proof proceeds in two parts.

(a) Observe that
hj = fo,xρ (xρ, xo) = 0

is one equation for a Haldane chair and the second equation is

h′j = fo,xρxρ x
′

ρ + fo,xρxo x
′

o = 0

Since h′j is evaluated at a point of homeostasis, x ′o = 0. It follows that either
fo,xρxρ = 0 or x ′ρ = 0. We can use Cramer’s rule to solve for x ′ρ; it is a nonzero
multiple of fρ,xι fo,xo . If fρ,xι = 0, then we would have a second Handane in
the ι → ρ arrow - a codimension 2 homeostasis. So, generically, we can
assume fρ,xι � 0. By computing the Jacobian at the assumed Haldane point
we see that fo,xo is an eigenvalue and therefore negative by the assumed
stabilty.

(b) We use the admissible system equilibrium equations from (18) (c) to see that
null-degradation is defined by hj = fτ,xτ (xτ, xo) = 0 and a chair by

h′j = fτ,xτ xτ x
′

τ + fτ,xτ xo x
′

o = 0

Since x ′o = 0 and x ′τ � 0 at the generic homeostasis point, it follows that
fτ,xτ xτ = 0 is the chair equation, as claimed. 	


9.2 Elementary Catastrophe Theory and Homeostasis

The transformations of the input-output map xo(I) given in Definition 9.1 are
just the standard change of coordinates in elementary catastrophe theory [19,36,
43]. We can therefore use standard results from elementary catastrophe theory
to find normal forms and universal unfoldings of xo(I), as we now explain.

Because xo(I) is 1-dimensional, we consider singularity types near the ori-
gin of a 1-variable function g(I). Such singularities are determined by the first
nonvanishing I-derivative g(k)(0) (unless all derivatives vanish, which is an ‘infi-
nite codimension’ phenomenon that we do not discuss further). Informally, the
codimension of a singularity is the number of conditions on derivatives that
determine it. This is also the minimum number of extra variables required to
specify all small perturbations of the singularity, up to changes of coordinates.
These perturbations can be organized into a family of maps called the universal
unfolding, which has that number of extra variables.



52 M. Golubitsky et al.

Definition 9.5. G(I, a) is an unfolding of g(I) if G(I, 0) = g(I). G is a universal
unfolding of g if every unfolding of H(I, b) factors through G. That is,

H(I, b) = G(Λ(I, b), A(b)) + K(b) (22)

It follows that every small perturbation H(·, b) is equivalent to a perturbation
G(·, A(b)) of g in the G family.

If such k exists, the normal form is ±I
k . Simple infintesimal homeostasis

occurs when k = 2, and an infinitesimal chair when k = 3. When k ≥ 3 the
universal unfolding for catastrophe theory equivalence is

±I
k + ak−2I

k−2 + ak−3I
k−3 + · · · + a1I

for parameters aj and when k = 2 the universal unfolding is ±I
2. The codimen-

sion in this setting is therefore k − 2. See [4] Example 14.9 and Theorem 15.1;
[18] chapter IV (4.6) and chapter VI (6.3); and [30] chapter XI Sect. 1.1 and
chapter XII Sects. 3.1, 7.2.

To summarize: the normal form of the input-output function for simple
infinitesimal homeostasis is

xo(I) = ±I
2 (23)

and no unfolding parameter is required. Similarly,

xo(I) = ±I
3 (24)

is the normal form of the input-output function for a chair, and

xo(I; a) = ±I
3 + aI (25)

is a universal unfolding.

10 Evolving Towards Homeostasis

Control-theoretic models of homeostasis often build in an explicit ‘target’ value
for the output, and construct the equations to ensure that the input-output
function is exactly flat over some interval. Such models are common, and provide
useful information for many purposes. In singularity theory an exactly flat input-
output function has ‘infinite codimension’, so our approach is not appropriate
for models of this type.

However, in biology, homeostasis is an emergent property of biochemical net-
works, not a preset target value, and the input-output function is only approx-
imately flat, for example as in Fig. 2 (left). Many of the more recent models
of homeostasis do not assume a preset target value; instead, this emerges from
the dynamics of a biochemical network. Here we expect typical singularities to
have finite codimension, and our approach is then potentially useful. For exam-
ple, in [21, Section 8] we proved that for one such model, of feedforward inhibi-
tion [33,39], the input-output map has a ‘chair’ singularity, with normal form
x3 + λx. Other examples of chair singularities are given in [37].
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A key question is: In a mathematical sense, how does a biological system
evolve towards homeostasis? Imagine a system of differential equations depend-
ing on parameters. Suppose that initially the parameters are set so that the
associated input-output function has no regions of homeostasis. Now vary the
parameters so that a small region of homeostasis appears in the input-output
function. Since this region of homeostasis is small, we can assume that it is
spawned by a singularity associated with infinitesimal homeostasis. How can
that happen?

Singularities Organizing Evolution Towards Homeostasis
A plausible answer follows from the classification of elementary catastrophes.
If there is one input and one output, the assumption of no initial homeostasis
implies that the input-output function xo : R → R is strictly increasing (or
strictly decreasing). Generically, evolving towards infinitesimal homeostasis can
occur in only one way. As a parameter β is varied, at some point I0 the function
xo(I) approaches a singularity, so there is a point I0 where x ′o(I0) = 0. This
process can happen only if x ′′o (I0) = 0 is also satisfied. That is, from a singularity-
theoretic point of view, the simplest way that homeostasis can evolve is through
an infinitesimal chair.

This process can be explained in the following way. The system can evolve
towards infinitesimal homeostasis only if the universal unfolding of the singu-
larity has a parameter region where the associated function is nonsingular. For
example, simple homeostasis (xo(I) = I

2, which is structurally stable) does not
have this property. All small perturbations of I2 have a Morse singularity. The
simplest (lowest codimension) singularity that has nonsingular perturbations is
the fold singularity xo(I) = I

3; that is, the infinitesimal chair.
At least two assumptions underlie this discussion. First, we have assumed

that all perturbations of the input-output function can be realized by perturba-
tions in the system of ODEs. This is true; see Lemma 10.1. Second, we assume
that when evolving towards homeostasis the small region of homeostasis that
forms is one that could have grown from a point of infinitesimal homeostasis.

When xo depends on one parameter, generically the infinitesimal chair is the
only possible singularity that can underlie the formation of homeostasis.

Lemma 10.1. Given a system of ODEs �x = F(x,I) whose zero set is defined by

F(X(I),I) ≡ 0

and a perturbation X̃(I) = X(I) + P(I) of that zero set. Then X̃ is the zero set
of the perturbation

F̃(x,I) = F(x − P(I),I)

Therefore any perturbation of the input-output function xo(I) can be realized by
perturbation of F.
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Proof. Clearly
F̃(X̃(I),I) = F̃(X(I) + P(I),I)

= F(X(I) + P(I) − P(I),I)
= F(X(I),I)
= 0

If we write P(I) = (0, Po(I)) where Po(I) is a small perturbation of xo(I), then
we can obtain the perturbation xo + Po of xo by the associated perturbation of
F. 	


Theorem 10.2. Consider input-output functions with one input and one out-
put. Then the only singularities of codimension ≤ 3 that have perturbations with
no infinitesimal homeostasis are the fold (chair) and the swallowtail.

Proof. It is easy to see that perturbations of Ik always have a local minimum
when k is even. So the only normal forms with perturbations that have no
infinitesimal homeostasis occur when k is odd. Those that have codimension at
most 3 are the fold (k = 3) and the swallowtail (k = 5). 	


We remark that folds occur in the unfoldings of swallowtails and that
the generic non-homeostatic approach to a swallowtail would also give a non-
homeostatic approach to a fold (or chair).

11 Input-Output Maps with Two Inputs

Suppose now that the input I consists of several variables. In general terms,
consider a parametrized family of ODEs

�X = F(X,I) (26)

where X = (x1, . . . , xm) ∈ Rm, I ∈ Rk , and F is infinitely differentiable. We
assume that (26) stems from an input-output network where one of the nodes
(or coordinates of X) is the output node that is denoted, as before, by o. We
also assume that (26) has a stable equilibrium at X0 when I = I0.

The equilibria of (26) are given by:

F(X,I) = 0 (27)

By the implicit function theorem, we can solve (27) near (X0,I0) to obtain a map
X : Rk

→ Rm such that
F(X(I),I) ≡ 0 (28)

where X(I0) = X0. Let
X(I) = (Y (I), xo(I))

Definition 11.1. The input-output map of (27) near (X0,I0) is xo : Rk
→ R.
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Definition 11.2. The point I0 is an infinitesimal homeostasis point of xo if the
derivative

DI xo(I0) = 0 (29)

In particular, I0 is a singularity—that is, the derivative of xo is singular
there—but the vanishing of all first derivatives selects a special subclass of sin-
gularities, said to have ‘full corank’.

The interpretation of an infinitesimal homeostasis point is that xo(I) differs
from xo(I0) in a manner that depends quadratically (or to higher order) on
|I − I0 |. This makes the graph of xo(I) flatter than any growth rate with a
nonzero linear term. This condition motivates for the condition (29) rather than
merely DI xo(I0) being singular.

Definition 11.2 places the study of homeostasis in the context of singularity
theory, and we follow the standard line of development in that subject. A detailed
discussion of singularity theory would be too extensive for this paper. A brief
summary is given in [21] in the context of homeostasis, accessible descriptions
can be found in [36,43], and full technical details are in [18,30] and many other
sources.

Following Nijhout et al. [33] we define:

Definition 11.3. A plateau is a region of I over which X(I) is approximately
constant.

Remark 11.4. Universal unfolding theory implies that small perturbations of xo
(that is, variation of the suppressed parameters) change the plateau region only
slightly. This point was explored for the chair singularity in [21]. It follows that
for sufficiently small perturbations plateaus of singularities depend mainly on
the singularity itself and not on its universal unfolding.

Remark 11.5. In this section we focus on how singularities in the input-output
map shape plateaus, and we use the normal form and unfolding theorems of
elementary catastrophe theory to do this. We remark that typically the variables
other than xo, the manipulated variables Y , can vary substantially while the
output variable is held approximately constant. See, for example, Fig. 3 in [1].

11.1 Catastrophe Theory Classification

The results of [21] reduce the classification of homeostasis points for a single node
to that of singularities of input-output maps Rk

→ R. As mentioned in Sect. 9.2,
this is precisely the abstract set-up for elementary catastrophe theory [4,18,36,
43]. The case k = 1 is discussed there.

We now consider the next case k = 2. Table 1 summarizes the classification
when k = 2, so I = (I1,I2) ∈ R2. Here the list is restricted to codimension
≤ 3. The associated geometry, especially for universal unfoldings, is described
in [4,18,36] up to codimension 4. Singularities of much higher codimension have
also been classified, but the complexities increase considerably. For example
Arnold [2] provides an extensive classification up to codimension 10 (for the
complex analog).
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Table 1. Classification of singularities of input-output maps R2
→ R of codimension

≤ 3.

Name Normal form Codim Universal unfolding

Morse (simple homeostasis) ±I
2
1 ± I

2
2 0 ±I

2
1 ± I

2
2

Fold (chair) I
3
1 ± I

2
2 1 I

3
1 + aI1 ± I

2
2

Cusp ±I
4
1 ± I

2
2 2 ±I

4
1 + aI2

1 + bI1 ± I
2
2

Swallowtail I
5
1 ± I

2
2 3 I

5
1 + aI3

1 + bI2
1 + cI1 ± I

2
2

Hyperbolic umbilic I
3
1 + I

3
2 3 I

3
1 + I

3
2 + aI1I2 + bI1 + cI2

Elliptic umbilic I
3
1 − 3I1I

2
2 3 I

3
1 − 3I1I

2
2 + a(I2

1 + I
2
2 ) + bI1 + cI2

Remark 11.6. Because k = 2, the normal forms for k = 1 appear again, but now
there is an extra quadratic term ±I

2
2 . This term is a consequence of the splitting

lemma in singularity theory, arising here when the second derivative D2xo has
rank 1 rather than rank 0 (corank 1 rather than corank 2). See [4,36,43]. The
presence of the ±I

2
2 term affects the range over which xo(I) changes when I2

varies, but not when I1 varies.

11.2 Normal Forms and Plateaus

The standard geometric features considered in catastrophe theory focus on the
gradient of the function xo(I) in normal form. In contrast, what matters here
is the function itself. Specifically, we are interested in the region in the I-plane
where the function xo is approximately constant.

More specifically, for each normal form xo(I) we choose a small δ > 0 and
form the set

Pδ = {I ∈ R2 : |xo(I)| ≤ δ}. (30)

This is the plateau region on which xo(I) is approximately constant, where δ
specifies how good the approximation is. If xo(I) is perturbed slightly, Pδ varies
continuously. Therefore we can compute the approximate plateau by focusing on
the singularity, rather than on its universal unfolding.

This observation is important because the universal unfolding has many zeros
of the gradient of xo(I), hence ‘homeostasis points’ near which the value of xo(I)
varies more slowly than linear. However, this structure seems less important
when considering the relationship of infinitesimal homeostasis with homeostasis.
See the discussion of the unfolding of the chair summarized in [21, Figure 3].

The ‘qualitative’ geometry of the plateau—that is, its differential topology
and associated invariants—is characteristic of the singularity. This offers one way
to infer the probable type of singularity from numerical data; it also provides
information about the region in which the system concerned is behaving home-
ostatically. We do not develop a formal list of invariants here, but we indicate a
few possibilities.

The main features of the plateaus associated with the six normal forms are
illustrated in Table 1. Figure 10 plots, for each normal form, a sequence of con-
tours from −δ to δ; the union is a picture of the plateaus. By unfolding theory,
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these features are preserved by small perturbations of the model, and by the
choice of δ in (30) provided it is sufficiently small. Graphical plots of such per-
turbations (not shown) confirm this assertion. Again, we do not attempt to make
these statements precise in this paper.

simple+ simple− cusp+ cusp−

chair swallowtail hyperbolic elliptic

Fig. 10. Plateaus shown by contour plots for each singularity in Table 1. Reproduced
from [23, Fig. 4]. 200 equally spaced contours for δ from −0.2 to 0.2.

11.3 The Hyperbolic Umbilic

As we have discussed, homeostasis can occur when one variable is held approxi-
mately constant on variation of two or more input parameters. For example, body
temperature can be homeostatic with respect to both external temperature and
amount of exercise. A biological network example is Fig. 3, where there is home-
ostasis of extracellular dopamine (eDA) in response to variation in the activities
of the enzyme tyrosine hydroxylase (TH) and the dopamine transporters (DAT),
Best et al. [3]. These authors derive a differential equation model for this bio-
chemical network. They fix reasonable values for all parameters in the model
with the exception of the concentrations of TH and DAT. Figure 11 (left) shows
the equilibrium value of eDA as a function of TH and DAT in their model. The
white dots indicate the predicted eDA values for the observationally determined
values of TH and DAT in the wild type genotype (large white disk) and the
polymorphisms observed in human populations (small white disks). Their result
is scientifically important because almost all of the white disks lie on the plateau
(the region where the surface is almost horizontal) that indicates homeostasis of
eDA. Note that the flat region contains a line from left to right at about eDA =
0.9. In this respect the surface graph in Fig. 11 (left) appears to resemble that
of a nonsingular perturbed hyperbolic umbilic (see Table 1) in Fig. 11 (right).
See also the level contours of the hyperbolic umbilic in Fig. 10. This figure shows
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that the hyperbolic umbilic is the only low codimension singularity that contains
a single line in its zero set.

Fig. 11. (Left): Nijhout et al. [33, Fig. 8] and Reed et al. [37, Fig. 14]. At equilibrium
there is homeostasis of eDA as a function of TH and DAT. There is a plateau around
the wild-type genotype (large white disk). Smaller disks indicate positions of polymor-
phisms of TH and DAT found in human populations. (Right): Graph of surface of
perturbed hyperbolic umbilic without singularities: Z(I1,I2) = I

3
1 + I

3
2 + I1 + I2/2.

The number of curves (‘whiskers’) forming the zero-level contour of the
plateau is a characteristic of the plateau. For example, Fig. 11 appears to have
one curve in the plateau. This leads us to conjecture that the hyperbolic umbilic
is the singularity that organizes the homeostatic region of eDA in the exam-
ple discussed in [3]. It may be the case however, that there is no infinitesimal
homeostasis in this example, and the cause is more global. We have discussed
in Sect. 10 why the chair and the hyperbolic umbilic are the singularities that
might be expected to organize two output homeostasis.

Theorem 11.7. Consider input-output functions with two inputs and one out-
put. Then the only singularities of codimension ≤ 3 that have perturbations
with no infinitesimal homeostasis are the fold (chair), swallowtail, and hyper-
bolic umbilic.

The proof of this theorem is in [23].

Remark 11.8. In Sect. 10 we note that a system of equations that evolves toward
infinitesimal homeostasis does so by transitioning through a singularity that has
unfolding parameters with no infinitesimal homeostasis. It follows from Theo-
rems 10.2 and 11.7 that the most likely ways to transition to homeostasis in
systems with one input variable is through the chair and in systems with two
input variables the hyperbolic umbilic and the two variable chair.
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12 Gene Regulatory Networks and Housekeeping Genes

Antoneli et al. [1] use infinitesimal homeostasis to find regions of homeostasis
in a differential equation model for the gene regulatory network (GRN) that is
believed to regulate the production of the protein PGA2 in Escherichia coli and
yeast. Specifically, in this model the input parameter is an external parameter
I that represents the collective influence of other gene proteins on this specific
GRN. We find regions of homeostasis that gives a plausible explanation of how
the level of the PGA2 protein might be held approximately constant while other
reactions are taking place.

Gene expression is a general name for a number of sequential processes,
the most well known and best understood being transcription and translation.
These processes control the level of gene expression and ultimately result in the
production of a specific quantity of a target protein.

The genes, regulators, and the regulatory connections between them forms a
gene regulatory network (GRN). A gene regulatory network can be represented
pictorially by a directed graph where the genes correspond to network nodes,
incoming arrows to transcription factors, and outgoing arrows to levels of gene
expression (protein concentration).

12.1 Gene Regulatory Networks and Homeostasis

Numerous terms are used to describe types of genes according to how they are
regulated. A constitutive gene is a gene that is transcribed continually as opposed
to a facultative gene that is transcribed only when needed. A housekeeping gene
is a gene that is required to maintain basic cellular function and so is typically
expressed in all cell types of an organism. Some housekeeping genes are tran-
scribed at a ‘relatively constant rate’ in most non-pathological situations and are
often used as reference points in experiments to measure the expression rates of
other genes.

Even though this scheme is more or less universal among all life forms, from
uni-cellular to multi-cellular organisms, there are some important differences
according to whether the cell possesses a nucleus (eukaryote) or not (prokary-
ote). In single-cell organisms, gene regulatory networks respond to changes in
the external environment adapting the cell at a given time for survival in this
environment. For example, a yeast cell, finding itself in a sugar solution, will
turn on genes to make enzymes that process the sugar to alcohol.

Recently, there has been an ongoing effort to map out the GRNs of some
the most intensively studied single-cell model organisms: the prokaryote E. coli
and the eukaryote Saccharomyces cerevisiae, a species of yeast. A hypothesis
that has emerged from these efforts is that the GRN has evolved into a modular
structure in terms of small sub-networks appearing as recurrent patterns in the
GRN, called network motifs. Moreover, experiments on the dynamics generated
by network motifs in living cells indicate that they have characteristic dynamical
functions. This suggests that network motifs may serve as building blocks in
modeling gene regulatory networks.
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Much experimental work has been devoted to understanding network motifs
in gene regulatory networks of single-cell model organisms. The GRNs of E. coli
and yeast, for example, contain three main motif families that make up almost
the entire network. Some well-established network motifs and their correspond-
ing functions in the GRN of E. coli and yeast include negative (or inhibitory)
self-regulation, positive (or excitatory) self-regulation and several types of feed-
forward loops. Nevertheless, most analyses of motif function are carried out
looking at the motif operating in isolation. There is, however, mounting evi-
dence that network context, that is, the connections of the motif with the rest of
the network, are important when drawing inferences on characteristic dynamical
functions of the motif.

In this context, an interesting question is how the GRN of a single-cell organ-
ism is able to sustain the production rates of the housekeeping genes and at same
time be able to quickly respond to environmental changes, by turning on and off
the appropriate facultative genes. If we assume that the dynamics of gene expres-
sion is modeled by coupled systems of differential equations then this question
can be formulated as the existence of a homeostatic mechanism associated to
some types of network motifs imbedded in the GRN.

Latest estimates on the number of feedforward loops in the GRN of S. cere-
visiae assert that there are least 50 feedforward loops (not all of the same type)
potentially controlling 240 genes. One example of such a feedforward loop is
shown in Fig. 12. The three genes in this network are considered constitutive.

GAP1

SFP1 GZF3

Fig. 12. An example of feedforward regulation network from the GRN of S. cerevisiae,
involving the genes SFP1, CIN5 and PGA2. The PGA2 gene produces an essential
protein involved in protein trafficking (null mutants have a cell separation defect).
The CIN5 gene is a basic leucine zipper (bZIP) transcription factor. The SPF1 gene
regulates transcription of ribosomal protein and biogenesis genes.
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12.2 Basic Structural Elements of GRNs

The fundamental building block or node in a gene regulatory network is a gene
that is composed of two parts: transcription and translation. The transcription
part produces messenger RNA (mRNA) and the translation part produces the
protein. The system of ODEs associated to one gene has the form

�x = f (x, tJ,I) x = (xR, xP) ∈ R2

where xR is the mRNA concentration, xP is the protein concentration and the
tJ are the coupling protein concentrations of transcription factors that regulate
the gene and are produced by other genes in the network. The parameter I

represents the effect of upstream transcription factors that regulate the gene but
are not part of the network. The vector field f has the form

f = ( f R + I, f P) ∈ R2,

where f R models the dynamics of mRNA concentration and f P models the
dynamics of the protein concentration.

When the gene is not self-regulated the system has the form

�xR = f R(xR, tJ ) + I

�xP = f P(xR, xP)

and when the gene is self-regulated the system of two scalar equations has the
form

�xR = f R(xR, xP, tJ ) + I

�xP = f P(xR, xP)

In both cases the gene output is the scalar variable xP.

12.3 The Gene Regulatory Network for PGA2

Consider the network consisting of three genes (and six nodes) shown in Fig. 13,
where the dashed lines represent inhibitory coupling (repression or negative con-
trol) and the solid lines represent excitatory coupling (activation or positive
control).

Observe that the six-node network in Fig. 13 has two simple paths:

xR → xP → zR → zP and xR → xP → yR → yP → zR → zP

There are two possible Haldane homeostasis arrows xR → xP and zR → zP, and
one structural homeostasis of degree three consisting of two paths xP → yR →

yP → zR and xP → zR. To verify this we compute the homeostasis matrix.
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I

xR

xP

yR

zR

zP

yP

Fig. 13. Example of a 3-gene six-cell network. All arrows are different, but for simplicity
this is not made explicit in the figure. Circles stand for mRNA concentration and
squares for protein concentration. Solid lines indicate excitatory coupling and dashed
lines indicate inhibitory coupling.

The steady-state equations associated with the network in Fig. 13 have the
form:

f R(xR, xP) + I = 0

f P(xR, xP) = 0

gR(xP, yR) = 0

gP(yR, yP) = 0

hR(xP, yP, zR) = 0

hP(zR, zP) = 0

(31)

where the input parameter I represents the action of all upstream transcription
factors that affect the x-gene and do not come from the y- and z-genes. Our goal
is to find regions of homeostasis in the steady-state protein concentration zP as
a function of the input parameter I. To do this we compute det(H), where H is
the 5 × 5 homeostasis matrix.

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f P
xR f P

xP 0 0 0
0 gR

xP gR
yR 0 0

0 0 gP
yR gP

yP 0
0 hR

xP 0 hR
yP hR

zR

0 0 0 0 hP
zR

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(32)

A short calculation shows that

det(H) = f P
xR hP

zR

(

gR
yRg

P
yP h

R
xP + hR

yPg
P
yRg

R
xP

)
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Therefore structural homeostasis is found by solving h = h′ = 0, where

h(I) ≡ gR
yRg

P
yP h

R
xP + hR

yPg
P
yRg

R
xP (33)

This equation is analysed in Antoneli et al. [1], who show that standard ODE
models for gene regulation, when inserted into a feedforward loop motif, do
indeed lead to chair structural homeostasis in the output protein housekeeping
genes. In [1] this cubic expression was obtained by direct calculation and its
appearance was somewhat mysterious; here it emerges from the general theory
of homeostasis matrices in Sect. 7.
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