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Abstract. Evolutionary algorithms are very popular and are frequently
applied to many different optimization problems. Reasons for this suc-
cess include that methods of this kind are of global nature, very robust,
and only require minimal assumptions on the optimization problem. It
is also known that such methods need quite a few resources to generate
accurate approximations of the solution sets. As a remedy, researchers
have used hybrid (or memetic) algorithms, i.e., evolutionary algorithms
coupled with local search for which mainly techniques from mathematical
programming are utilized. Such hybrids typically yield satisfying results,
the problem, however, remains that the algorithms are relatively expen-
sive since the gradients have to be computed or approximated at each
given candidate solution that is designated for local search.

In this chapter, we review the Gradient Subspace Approximation
(GSA) which allows to compute a descent direction in a best fit manner
from given neighborhood information that is e.g. already given in evo-
lutionary algorithms. The computation of such directions comes hence
for free in terms of additional function evaluations of the given problem
which opens the door for the realization of low-cost local search engines
within evolutionary algorithms. In a next step, we show how GSA can be
applied to the context of bi-objective optimization. Finally, to demon-
strate the benefit of the method we present some results on a hybrid that
is based on the evolutionary algorithm NSGA-II.

Keywords: Gradient Subspace Approximation · Gradient free
optimization · Bi-objective optimization · Descent directions

1 Introduction

In many problems in engineering and finance the problem arises that several
objectives have to be optimized concurrently [3,7,8,11,12,14,17,22,27,28,30,
37]. One main challenge of such multi-objective optimization problems (MOPs)
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is that their solution set—the so-called Pareto set respectively its image, the
Pareto front—typically forms a (k − 1)-dimensional object, where k is the num-
ber of objectives involved in the problem. This is in contrast to classical scalar
optimization problems (SOPs), where one expects that the optimum is taken
at one single solution. Modern heuristics such as Multiobjective Evolutionary
Algorithms (MOEAs, e.g., [2,9,10,23]) are able to provide an approximation of
the entire Pareto set/front of a given MOP in one single run of the algorithm
due to their set oriented approach. These methods are very robust e.g. to ini-
tial conditions and only require minimal assumptions from the model (e.g., no
derivative information). Evolutionary algorithms as well as other related heuris-
tics are hence very popular for the numerical treatment of MOPs as well as
other optimization problems. One drawback, however, that most of them suf-
fer is that they need quite a few function evalutions in order to obtain accuate
approximations of the Pareto sets/fronts. As a remedy, many researchers have in
the past hybridized the (global) evolutionary algorithms with local search tech-
niques mainly coming from Mathematical Programming that utilize derivative
information from the objectives and the constraint functions. Such methods are
termed hybrid evolutionary algorithms or memetic algorithms. While such meth-
ods yield in almost all cases satisfying results, they are still relatively expensive
since the derivative information is required for every point that is designated for
local search.

In this chapter, we review several recently developed tools that allow to real-
ize a local search within a population based optimization algorithm with low
computational cost. The basic idea of the Gradient Subspace Approximation
(GSA, [33]) is to utilize existing neighborhood information to estimate the most
greedy direction within the search space that is spanned by the samples. One
advantage of this approach is that it can easily be extended to the context of
constrained problems. The focus of this chapter is on bi-objective optimization
problems (BOPs, i.e., MOPs with k = 2 objective functions). For this, we will
consider the descent direction for BOPs proposed in [25] and present recent
adaptations for constrained problems ([38]). Next, we will show how GSA can
be used to build a low-cost local search engine that can be used within a pop-
ulation based algorithm such as a MOEA. In order to show the efficiency of
the method, we will show some numerical results from a hybrid evolutionary
algorithm that coupled the GSA based local search engine with the famous evo-
lutionary algorithm NSGSA-II ([10]) which is state-of-the-art for MOPs with
two and three objectives.

The remainder of this chapter is organized as follows: in Sect. 2, we review
the Gradient Subspace Approximation for the approximation of the most greedy
search direction out of given neighborhood information. In Sect. 3, we review a
particular descent direction for bi-objective optimization problems for uncon-
strained, equality and inequality contrained problems. We further combine these
two concepts in order to build a low-cost local searcher within a chosen set-
oriented optimization method (such as an evolutionary algorithm). In Sect. 4



Gradient Subspace Approximation for BOPs 357

we present some numerical examples on a hybrid evolutionary algorithm that is
based on the famous NSGA-II. Finally, we draw our conclusions Sect. 5.

2 Gradient Subspace Approximation

In this section, we will review the Gradient Subspace Approximation that aims to
compute a descent direction at a given point x0 and a given scalar optimization
problem using existing neighborhood information. For more details the reader is
referred to [33].

2.1 Background and Related Work

In this section, we will consider continuous scalar optimization problems (SOP)
of the following form

min
x

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . , m.

(1)

Hereby, f : Rn → R is called the objective function, and the functions
gi : Rn → R and hj : Rn → R are called the inequality and equality constraints,
respectively. We assume that all functions f , gi and hj are differentiable.

A point x is called feasible if it satisfies all constraints. A point x∗ is called
a solution to (1) if it is feasible and if there exists no other feasible point y that
has a lower objective value.

The object of interest in this section is the gradient of a function at a given
point x0. Formally, the gradient of the objective at x0 is defined by

∇f(x) =
(

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)T

∈ Rn. (2)

A vector ν ∈ Rn is called a descent direction for f at x0 if

〈∇f(x0), ν〉 < 0;

in that case, it holds for all sufficiently small step sizes t > 0 that f(x0 + tν) <
f(x0).

When the gradient of a function is not available in analytic form, there are
several ways to obtain either ∇f(x0) at a given point x0 or approximations
of this vector. The most prominent and widely used technique is to use finite
differences (e.g., [29]). The method presented in this section, GSA is also using
a finite difference approach. The variance, however, is that GSA can gather
the sampling points from all directions whereas the classical finite difference
method utilizes samples in coordinate directions. GSA is hence more suited to
the use within population based algorithms since in this case the neighboring
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samples are already given (and typically not aligned in coordinate directions).
In [6], a very similar method is proposed to approximate the Jacobians of the
objective map of a given unconstrained multi-objective optimization problem.
This work, however, does not discuss how to address constrained problems. The
Hill Climber with Sidestep [26] and the Directed Search Method [35,36] both use
neighborhood samples in order to determine promising search directions for the
local search within hybrid evolutionary algorithms. The difference to the GSA
is that these works do not directly aim to approximate the gradient. Automatic
Differentiation (AD, [18]) can be used to evaluate the exact gradient at a given
point x0 if the function is specified by a computer program. One drawback of
AD is that it can not be applied if this computer program is provided in form
of binary code.

Further, there are several methods that replace the original objective by
easier models. One example is response surface methodology (RSM), where the
objective function f is replaced by low-order polynomials f̃ (mainly of degree
one and two) those gradients are approximated using least squares techniques
[24]. If a first-order model is chosen, the match of the gradients ∇f̃(x0) and
∇f(x0) is typically quite good for a nonlinear function f if the chosen point x0 is
sufficiently far away from the optimum. For second-order models, the match is in
general much better, however, this accuracy comes with an additional cost since
n2 parameters have to be fitted at every point x0. Further works that can utilize
scattered samples can be found in [13,20]. In [20], a least squares regression is
performed while in [13] statistical expectation is used. In both works, the authors
restrict themselves to unconstrained problems.

2.2 The Basic Idea

The task is to compute a cost-free good approximation of the normalized gradient

n(x0) := − ∇f(x0)
‖∇f(x0)‖2 , (3)

evaluated at a given point x0 within a particular subspace of the Rn. For this, we
make use of the fact that the gradient is the direction of the steepest ascent, and
hence n(x0) can be seen as the solution of the following optimization problem:

min
ν∈Rn

〈∇f(x0), ν〉
s.t. ‖ν‖22 = 1.

(4)

To avoid to directly compute the gradient we can make use of neighboring
information as follows: assume that we are given the points x1, . . . , xr in the
vicinity of x0 (e.g., these samples may be contained within the population or
archive of a set based optimization method such as an evolutionary algorithm)
as well as their function values f(xi). In that case, we can use this information
to approximate the directional derivatives in the directions

νi :=
xi − x0

‖xi − x0‖2 , i = 1, . . . , r. (5)
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Since it holds

f ′
νi

(x0) = 〈∇f(x0), νi〉 =
f(xi) − f(x0)
‖xi − x0‖2 + O(‖xi − x0‖2), (6)

where O denotes the Landau symbol, and since we are given the points x0 and
xi with their respective objective values f(x0) and f(xi), we can hence use the
approximations

f ′
νi

(x0) ≈ f(xi) − f(x0)
‖xi − x0‖2 , i = 1, . . . , r. (7)

Given the samples x1, . . . , xr and νi as above we define the subspace S as

S = span{ν1, . . . , νr} (8)

and are interested in a best approximation of n(x0) within S. Since every ν ∈ S
can be written as

v =
r∑

i=1

λiνi (9)

for some λ = (λ1, . . . , λr) ∈ R
r, and

〈∇f(x0), ν〉 =
r∑

i=1

λi〈∇f(x0), νi〉 (10)

we can state problem (4), where we restrict the search to S, as follows:

min
λ∈Rr

r∑
i=1

λi〈∇f(x0), νi〉

s.t.

∥∥∥∥∥
r∑

i=1

λiνi

∥∥∥∥∥
2

2

= 1.

(11)

Hence, when using an approximation of the directional derivatives as in (7)
via using neighboring samples, we can avoid to directly compute the gradient.
One advantage of using problem (11) is that constraint information can directly
be incorporated.

In the following, we will analyze the best fit approximations of n(x0) within
the subspace S both for unconstrained and constrained SOPs. For this, we will
first consider the ideal scenario where we assume that we are given all directional
derivatives, and later on we will discuss the gradient-free realizations.

2.3 Gradient Subspace Approximation

We will in the following discuss how to approximate the most greedy search direc-
tion out of the given data, separately for unconstrained, equality constrained,
and inequality constrained problems.
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2.3.1 Unconstrained Problems
We are given the problem

min
x∈Rn

f(x), (12)

where f : Rn → R. Further, we are given a point x0 ∈ Rn and the samples
x1, . . . , xr ∈ Rn in the vicinity of x0, together with their objective values f(xi).
Further, for purpose of a better analysis of the problem we also assume that we
are given the directional derivatives

〈∇f(x0), νi〉, i = 1, . . . , r. (13)

Define the matrix V by

V = (ν1, . . . , νr) ∈ Rn×r. (14)

Then, the most greedy search direction within the subset

S = span{ν1, . . . , νr} (15)

is given by the solution of the following problem

min
λ∈Rr

r∑
i=1

λi〈∇f(x0), νi〉

s.t. λT V T V λ − 1 = 0.

(16)

The following result shows that the solution of (16) can be computed in closed
form.

Proposition 1. Let ν1, . . . , νr ∈ Rn, r ≤ n, be linearly independent and

λ̃∗ := −(V T V )−1V T ∇f(x0). (17)

Then

λ∗ :=
λ̃∗

‖V λ∗‖22
(18)

is the unique solution of (16) and

ν∗ =
−1

‖V λ∗‖22
V (V T V )−1V T ∇f(x0) (19)

is the most greedy search direction in S.

Proof. The Karush-Kuhn Tucker (KKT) system of (16) reads as

∇λL(λ, μ) = V T ∇f(x0) + 2μV T V λ = 0 (20)
h(λ) = λT V T V λ − 1 = 0. (21)
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Apparently, Equation (21) is only used for normalization. If we omit this
equation and the factor 2μ in (20) we can rewrite (20) as the following normal
equation system

V T V λ = −V T ∇f(x0). (22)

To solve the entire KKT system we have to choose 2μ = ‖V λ∗‖22. Finally, the
claim follows since the Hessian of the Lagrangian

∇2
λλL(λ, μ) = V T V (23)

is positive definite since the directions νi are linearly independent. 
�
Next, we discuss how to approximate the most greedy solution ν∗ without

explicitly computing or approximating the gradients. Since

V T ∇(x0) =

⎛
⎜⎝

〈∇f(x0), ν1〉
...

〈∇f(x0), νr〉

⎞
⎟⎠ (24)

we can do the approximation as follows: let d = (d1, . . . , dr) ∈ R
r, where

di :=
f(xi) − f(x0)
‖xi − x0‖2 , i = 1, . . . , r, (25)

and λ̃ be the vector that solves the system of linear equations

V T V λ̃ = −d, (26)

then the most greedy search direction can be approximated as

ν̃∗ =
−1

‖V λ̃‖22
V (V T V )−1d. (27)

Remark 1. (a) To compute ν∗ one has to solve system (22). It is hence advisable
to avoid to choose directions νi that nearly point into the same directions.
The linear equation system yields the best condition number if the directions
are chosen orthogonal to each other. In this case, we obtain

ν∗ =
−1

‖λ∗‖22
V V T ∇f(x0), (28)

i.e., the orthogonal projection of ∇f(x0) onto S. That is, ν∗ is the best
approximation of n(x0) in S.

(b) In the special case that the coordinate directions are chosen, i.e., if we choose

xi = x0 + tieji , i = 1, . . . , r, (29)

for the samples, where ej denotes the j-th unit vector, we obtain for the
ji-th entry of ν̃∗ (without normalization)

ν̃∗
ji =

f(x0 + tieji) − f(x0)
|ti| . (30)
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That is, if we for instance choose xi = x0 + tiei, i = 1, . . . , n (i.e., all
coordinate directions), the search direction ν∗ coincides with the forward
difference quotient.

(c) The idea of GSA is to utilize existing data whenever possible. However, it
may be the case that for a given point x0 that the existing data is not
sufficient (e.g., not enough individuals of the current population are close
enough to x0). A possible remedy may be to sample further points in order
to compute a search direction. In that case it makes sense to choose the
points so that the resulting directions νi are orthogonal to each other as
well as to all existing directions. See [1] for a possible realization.

Example 1. We consider the objective f : R6 → R, where

f(x) =
6∑

i=1

x2
i . (31)

Let x0 = [1, 1, 1, 1, 1, 1]T , then ∇f(x0) = [2, 2, 2, 2, 2, 2]T and

g =
−1√
24

[2, 2, 2, 2, 2, 2]T (32)

for which 〈∇f(x0), g〉 = −4.8990.
First, we choose three orthogonal search directions that form the matrix V T

as follows:

V T =

⎛
⎝2 0 1 0 0 0

0 1 0 3 0 0
0 0 0 0 3 1

⎞
⎠ . (33)

Doing so, we obtain 〈∇f(x0), v1
‖v1‖ 〉 = 2.6833, 〈∇f(x0), v2

‖v2‖ 〉 = 2.5298 and
〈∇f(x0), v3

‖v3‖ 〉 = 2.5298. If we solve problem (16) we get

v∗ = [−0.5367,−0.1789,−0.2683,−0.5367,−0.5367,−0.1789]T , (34)

for which 〈∇f(x0), v∗〉 = −4.4721.
Next, we use the samples

xi = x0 + 0.1vi, for i = 1, 2, 3, (35)

and via formula (27) we obtain

ṽ∗ = [−0.5237,−0.1813,−0.2618,−0.5438,−0.5438,−0.1813]T

which leads to 〈∇f(x0), ṽ∗〉 = −4.4714.
If choosing the non-orthogonal search directions

V T =

⎛
⎝1 1 0 0 0 0

0 2 1 2 0 0
1 0 2 0 1 2

⎞
⎠ , (36)
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we obtain 〈∇f(x0), v1
‖v1‖ 〉 = 2.8284, 〈∇f(x0), v2

‖v2‖ 〉 = 3.3333 and 〈∇f(x0),
v3

‖v3‖ 〉 = 3.7947.

Solving (16) leads to

v∗ = [−0.3769,−0.4744,−0.5686,−0.3054,−0.2080,−0.4159]T (37)

with 〈∇f(x0), v∗〉 = −4.6985. For the discretized problem we obtain

ṽ∗ = [−0.3595,−0.4674,−0.5770,−0.3171,−0.2092,−0.4184]T (38)

with 〈∇f(x0), ṽ∗〉 = −4.6972.

2.3.2 Equality Constrained Problems
Next, we assume that the SOP contains some equality constraints, i.e., that we
are given the following problem

min
x∈Rn

f(x)

s.t. hi(x) = 0, i = 1, . . . , p,
(39)

where we assume that each hi : Rn → R is differentiable.
Analogously to the unconstrained case discussed above the most greedy

search direction at x0 in the entire space R
n is given by

min
ν∈Rn

〈∇f(x0), ν〉
s.t. ‖ν‖22 = 1

〈∇hi(x), ν〉 = 0, i = 1, . . . , p,

(40)

and the most greedy direction at x0 within the subspace S is given by

min
λ∈Rr

r∑
i=1

λi〈∇f(x0), νi〉

s.t. λT V T V λ − 1 = 0
r∑

i=1

λi〈∇hj(x0), νi〉 = 0, j = 1, . . . , p.

(41)

Denote the matrix H by

H =

⎛
⎜⎝

∇h1(x0)T

...
∇hp(x0)T

⎞
⎟⎠ ∈ Rp×n. (42)

As for the unconstrained case, we can also express the most greedy solution
for an equality constrained problem analytically.



364 O. Schütze et al.

Proposition 2. Let ν1, . . . , νr ∈ Rn be linearly independent where p ≤ r ≤ n,
let rank(H) = p, and

(
λ̃∗

μ̃∗

)
=

(
V T V (HV )T

HV 0

)−1 (−V T ∇f(x0)

0

)
, (43)

then

λ∗ :=
λ̃∗

‖V λ∗‖22
(44)

is the unique solution of (41) and thus

ν∗ =
−1

‖V λ∗‖22
V (V T V )−1V T ∇f(x0) (45)

is the most greedy search direction in span{νi, . . . , νr}.
Proof. The KKT system of (41) is given by

V T ∇f(x0) + 2μ0V
T V λ + (HV )T μ = 0 (46)

HV λ = 0 (47)
λT V T V λ − 1 = 0, (48)

and via applying the same “normalization trick” as above we can transform the
KKT equations into

(
V T V (HV )T

HV 0

) (
λ

μ

)
=

(−V T ∇f(x0)

0

)
. (49)

To show that the matrix is regular, let y ∈ Rr and z ∈ Rp such that
(

V T V (HV )T

HV 0

) (
y

z

)
= 0. (50)

It follows that HV y = 0 and hence that

0 =

(
y

z

)T (
V T V (HV )T

HV 0

) (
y

z

)
= yV T V y. (51)

Thus, it is y = 0 since V T V is positive definite. Further, by (50) it follows that
V T HT z = 0. Since V T ∈ Rn×r has rank r ≥ p, it follows that V T HT has rank
p. This implies that also z = 0, and thus, that the matrix in (43) is regular.

The rest follows by the discussion above setting 2μ0 = ‖∑r
i=1 λ̃∗

i νi‖22 and
since the Hessian of the Lagrangian ∇2

λλL(λ, μ) = V T V is positive definite. 
�
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The key for a gradient-free approximation of the search direction is the matrix
HV . Since

(HV )ij = ∇hi(x0)T νj ,

we compute an approximation M = (mij) of HV via

mij :=
hi(xj) − hi(x0)

‖xj − xi‖2 , i = 1, . . . , p, j = 1, . . . , r. (52)

Doing so, we can now solve the system
(

V T V MT

M 0

) (
λ

μ

)
=

(−d

0

)
(53)

which leads to λ∗. To obtain ν∗ we proceed as for the unconstrained case using
the approximation V T ∇f(x0) ≈ d.

Example 2. We consider the SOP from Example 1 and impose the constraint

h(x) = x1 + x2 + x3 = 0. (54)

For x0 = [−1, 0, 1, 1, 1, 1]T we have ∇f(x0) = [2, 2, 2, 2, 2, 2]T , g = −1√
24

[2, 2, 2, 2,

2, 2]T , ∇h(x0) = [1, 1, 1, 0, 0, 0]T and 〈∇f(x0), g〉 = −4.8990.

First, we choose again the three orthogonal search directions

V T =

⎛
⎝2 0 1 0 0 0

0 1 0 3 0 0
0 0 0 0 3 1

⎞
⎠ ; (55)

and, we obtain 〈∇f(x0), v1
‖v1‖ 〉 = 2.6833, 〈∇f(x0), v2

‖v2‖ 〉 = 2.5298, 〈∇f(x0),
v3

‖v3‖ 〉 = 2.5298, and

v∗ = [0.1210,−0.1815, 0.0605,−0.5444,−0.7662,−0.2554]T (56)

with 〈∇f(x0), v∗〉 = −3.1322.

Using the above setting and the samples

xi = x0 + 0.1vi, for i = 1, 2, 3 (57)

we obtain the search direction

ṽ∗ = [0.1293,−0.1939, 0.0646,−0.5817,−0.7368,−0.2456]T

which leads to 〈∇f(x0), ṽ∗〉 = −3.1281.
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In a next step, we consider the non-orthogonal search directions

V T =

⎛
⎝1 1 0 0 0 0

0 2 1 2 0 0
1 0 2 0 1 2

⎞
⎠ (58)

leading to 〈∇f(x0), v1
‖v1‖ 〉 = 2.8284, 〈∇f(x0), v2

‖v2‖ 〉 = 3.3333 and 〈∇f(x0),
v3

‖v3‖ 〉 = 3.7947.

When solving (41) we obtain

v∗ = [0.4050, 0.2244,−0.6294,−0.3963,−0.2156,−0.4312]T

with 〈∇f(x0), v∗〉 = −2.0863 for the idealized problem and for the discretized
problem we obtain

ṽ∗ = [0.4490, 0.1617,−0.6107,−0.4742,−0.1868,−0.3736]T

with 〈∇f(x0), ṽ∗〉 = −2.0691.

2.3.3 Inequality Constrained Problems
Finally, we assume we are given an inequality constrained SOP of the form

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , m,
(59)

where we for simplicity assume that all inequalities are active at a given point
x0. The most greedy search direction at x0 is given by

min
ν∈Rn

〈∇f(x0), ν〉
s.t. ‖ν‖22 = 1

〈∇gi(x), ν〉 ≤ 0, i = 1, . . . , m,

(60)

and the related subspace optimization problem reads as

min
λ∈Rr

r∑
i=1

λi〈∇f(x0), νi〉

s.t. λT V T V λ − 1 = 0
r∑

i=1

λi〈∇gj(x0), νi〉 ≤ 0, j = 1, . . . , m.

(61)

One way to find a solution to (61) is to use gradient projection which is
advantageous in particular if m is small and r � m. In the following, we first
discuss the special case m = 1 (i.e., one active inequality constraint) and will
later on discuss the general case.
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The classical gradient projection approach is to take the solution ν∗ of the
underlying unconstrained problem (16) and to project it to the space ∇g(x0)⊥

that is orthogonal to ∇g(x0) (see Fig. 1): given a QR decomposition of ∇g(x0),
i.e.,

∇g(x0) = QR = (q1, . . . , qn)R, (62)

then the vectors q2, . . . , qn build an orthonormal basis (ONB) of ∇g(x0)⊥. Using
Qg = (q2, . . . , qn), the projection is hence given by

νnew = QgQ
T
g ν∗. (63)

It is of course not advisable to follow this approach directly since ∇g(x0) is
neither given, nor do we want to approximate it. Alternatively, we propose to
proceed as follows: let

M := ∇g(x0)T V = (〈∇g(x0), ν1〉, . . . , 〈∇g(x0), νr〉) ∈ R1×r. (64)

Note that if w is a kernel vector of M then V w is perpendicular to ∇g(x0)
and vice versa. Thus, we can compute the matrix

K = (k1, . . . , kr−1) ∈ Rr×(r−1) (65)

those column vectors build an ONB of the kernel of M . If the search directions
νi are orthogonal, then also the vectors V k1, . . . , V kr−1 are orthogonal to each
other. The latter are the column vectors of V K ∈ Rn×(r−1) (if the νi’s are
not orthogonal to each other, V K has to be orthogonalized via another QR
decomposition). Doing so, the projected vector to the kernel of M is given by

ν̃new = V K(V K)T ν∗ = V KKT V T ν∗. (66)

Fig. 1. Handling inequality constraints using gradient projection.

For a general number m of inequality constraints we can extend the method
as follows: let

M = GV = (〈∇gi(x0), νj〉) i=1,...,m
j=1,...,r

, (67)
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and perform the following steps

(1) compute an orthonormal basis K ∈ Rr×(r−m) of the kernel of M
(2) compute V K = QR = (q1, . . . , qr−m, . . . , qn)R and set O := (q1, . . . , qr−m) ∈

Rn×(r−m)

(3) ν̃new = Q̃Q̃T ν∗

Example 3. We consider again the SOP from Example 1 but this time we impose
the inequality

g(x) = 1 − x1 ≤ 0. (68)

For x0 = [1, 1, 1, 1, 1, 1]T we have ∇f(x0) = [2, 2, 2, 2, 2, 2]T , g = −1√
24

[2, 2, 2,

2, 2, 2]T and ∇c(x0) = [−1, 0, 0, 0, 0, 0]T . Thus 〈∇f(x0), g〉 = −4.8990.

First, we again choose the three orthogonal search directions

V T =

⎛
⎝2 0 1 0 0 0

0 1 0 3 0 0
0 0 0 0 3 1

⎞
⎠ , (69)

and obtain 〈∇f(x0), v1
‖v1‖ 〉 = 2.6833, 〈∇f(x0), v2

‖v2‖ 〉 = 2.5298 and 〈∇f(x0),
v3

‖v3‖ 〉 = 2.5298.

For the search direction we obtain

v∗ = [−0.5367,−0.1789,−0.2683,−0.5367,−0.5367,−0.1789]T

with 〈∇f(x0), v∗〉 = −4.4721. Then by the gradient projection approach and v∗,
we obtain the projected vector

vnew = [0,−0.1789,−0.2683,−0.5367,−0.5367,−0.1789]T

with 〈∇f(x0), vnew〉 = −3.3988. Next, we obtain

ṽnew = [0,−0.1789, 0,−0.5367,−0.5367,−0.1789]T

via Eq. (54) with 〈∇f(x0), ṽnew〉 = −2.8622.

Next we use the sampling

xi = x0 + 0.1vi, for i = 1, 2, 3 (70)

which leads to the search direction

ṽ∗ = [−0.5237,−0.1813,−0.2618,−0.5438,−0.5438,−0.1813]T

with 〈∇f(x0), ṽ∗〉 = −4.4714. Then by the gradient projection approach and
ṽ∗, we obtain ṽnew = [0,−0.1813, 0,−0.5438,−0.5438,−0.1813]T and 〈∇f(x0),
ṽnew〉 = −2.9004.
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3 Bi-objective Optimization

In this section, we will review a descent direction for bi-objective optimization
problems, and will show how GSA can be used approximate these directions
gradient-free. For details the reader is referred to [38].

3.1 Background and Related Work

In many applications one is faced with the problem that several objectives have
to be optimized concurrently leading to a multi-objective optimization problem
(MOP, e.g., [3,8,12,14,17,27,28,30,37]).

A continuous MOP can be expressed mathematically as

min
x

(f1(x), . . . , fk(x))T

s.t. gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . , m,

(71)

where the fi, i = 1, . . . , k are the objectives to be minimized, and the gi’s and
hj ’s are the inequalities and equalities, respectively. Denote by Q the feasible
set. We assume that all objectives and all constraint functions are differentiable.
To define optimality of a MOP the concept of Pareto dominance is used: let
v, w ∈ R

k, then we say that the vector v is less than the vector w (v <p w), if
vi < wi for all i ∈ {1, . . . , k}; the relation ≤p is defined analogously. A vector
y ∈ Q is dominated by a vector x ∈ Q (x ≺ y) with respect to (71) if F (x) ≤p

F (y) and F (x) �= F (y), else y is called non-dominated by x. A point x∗ ∈ R
n is

Pareto optimal to (71) if there is no y ∈ Q which dominates x. The set of all the
Pareto optimal points is called the Pareto set and its image is the Pareto front.
Both Pareto set and front form under certain (mild) smoothness assumptions a
(k − 1)-dimensional object ([21]). We will in this section focus on bi-objective
problems (BOPs), i.e., on MOPs where k = 2.

A Multi-objective Descent Direction (MODD) ν at a point x0 and a given
MOP is a direction in which a sufficiently small movement yields dominating
solutions, i.e.,

x0 + tν ≺ x0 ∀t ∈ (0, t̄) (72)

for a certain t̄ > 0. In [25], a descent direction has been proposed for uncon-
strained BOPs.

Proposition 3 ([25]). Let x ∈ R
n and f1, f2 : Rn → R define an unconstrained

BOP. If ∇fi(x) �= 0 for i ∈ {1, 2} then

νL := −
[ ∇f1(x)
‖∇f1(x)‖ +

∇f2(x)
‖∇f2(x)‖

]
, (73)

is a descent direction of x at F.
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In the sequel we will show how to adapt this to the context of constrained
BOPs, and how to make a gradient-free realization via utilizing GSA.

It is worth mentioning that there exist some proposals to compute MODDs in
general; they make use of first or second-order information related to the objec-
tive functions. Among these proposals is what is called the Steepest Descent
Direction [15], which requires the solution to a quadratic programming problem
involving the Jacobian of F . This method is valid for both convex or non-convex
Pareto fronts. In [32], the authors introduced a mathematical formula that uses
the solution of a stochastic differential equation related to the Karush-Kuhn-
Tucker conditions in order to generate the solution set. This technique requires
all the involved functions to be continuously differentiable, and it only works for
unconstrained MOPs. One particular work to mention is [5] where appears the
idea of the descent cone. The descent cone gets determined by the intersection
of the negative half-spaces generated by the objective function gradients. In [4]
the authors notice that computing a MODD yields again a multi-objective opti-
mization problem since the negative gradient of every objective function is in
conflict with the remaining objectives’ gradients. In this same work, the authors
propose a way to calculate the entire set of MODDs to take one of them at ran-
dom finally. Another proposal [19], called the Pareto Descent Method, computes
a set of possible Pareto descent directions by solving a linear programming prob-
lem with the information from the descent cones. This method applies just for
unconstrained and inequality CMOP. There exist also approaches based on the
Newton method as [14] where at each iteration of a line search, one minimization
subproblem has to be solved to obtain the direction to follow. In this method, the
Hessians of all functions need to be available. In this direction, also, [12,16,34]
proposed an extension of the multi-objective Newton method for equality con-
strained problems. In this chapter, we decided to work with expression (73) since
it is the easiest and no-cost proposal since no linear or quadratic programming
solvers are necessary for its computation. This feature also makes it suitable for
the application presented in Sect. 4 when this direction will be introduced into
a population-based heuristic.

3.2 A Descent Direction for Constrained BOPs

3.3 Equality Constrained BOPs

Here we consider equality constrained BOPs of the form

min
x∈Rn

F (x) := [f1(x), f2(x)]T ,

s.t hj(x) = 0, j = 1, . . . , m. (74)

We will in the following discuss separately the cases where x0 is feasible and
infeasible.
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Feasible Case
We first assume that x0 is feasible, i.e., that hj(x0) = 0 for all j = 1, . . . , m.
One way to obtain a MODD for the given BOP is to project the MODD of the
related unconstrained BOP to the tangent space Th−1(0)(x0) of the feasible set
h−1(0) at x0: let ν be the MODD for the unconstrained BOP, i.e.,

ν := −
[ ∇f1(x0)
‖∇f1(x0)‖ +

∇f2(x0)
‖∇f2(x0)‖

]
, (75)

and let

HT = (∇h1(x0) . . . , ∇hm(x0)) = QR = (q1, . . . , qm, qm+1, . . . , qn) R (76)

be a QR-factorization of HT . Then, the vectors q1, . . . , qm build an orthonormal
basis of the image of HT . Further, since the image of HT is the orthogonal
complement of the kernel of H, we have for i = m + 1, . . . , n:

Hqi = 0 ⇔ (∇hj(x0)T qi = 0, j = 1, . . . , m). (77)

That is, the column vectors of

Q̃ := (qm+1, . . . , qn) (78)

form an orthonormal basis of the tangent space Th−1(0)(x0) of h−1(0) at x0.
The orthogonal projection of ν onto Th−1(0)(x0) is hence given by (see also
Algorithm 1)

νp := Q̃Q̃T ν. (79)

The following result establishes criteria under which νp is a MODD.

Algorithm 1. Computation of the search direction νp for equality constrained
BOPs, feasible case
Require: BOP of form (), x0 with ∇fi(x0) �= 0, i = 1, 2
Ensure: search direction νp

1: ν := −
[

∇f1(x0)
‖∇f1(x0)‖ + ∇f2(x0)

‖∇f2(x0)‖

]

2: H :=

⎛
⎜⎝

∇h1(x0)
T

...
∇hm(x0)

T

⎞
⎟⎠

3: compute Q and R s.t. HT = QR = (q1, . . . , qm, qm+1, . . . , qn)R
4: Q̃ := (qm+1, . . . , qn)
5: νp := Q̃Q̃T ν
6: return νp
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Proposition 4. Let a BOP of the form (74) be given and x0 with ∇fi(x0) �= 0
for i ∈ {1, 2} and hj(x0) = 0, j = 1, . . . , m. Further, let νp by given as in
Eq. (79) such that 〈νp,∇hj(x0)〉 = 0 for j ∈ {1, . . . , m}. Then the following
holds:

(a) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) > 0, then νp is a MODD of F at x0.
(b) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) = 0 and Q̃T ∇fi(x0) �= 0 for an index i ∈ {1, 2},

then νp is a MODD of F at x0.
(c) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) < 0, then νp is not a descent direction of F at x0.

Proof. Note that for the first objective we obtained

∇f1(x0)T νp = ∇f1(x0)T Q̃Q̃T νL

= −
[

∇f1(x0)T Q̃Q̃T ∇f1(x0)
‖∇f1(x0)‖ +

∇f1(x0)T Q̃Q̃T ∇f2(x0)
‖∇f2(x0)‖

]
, (80)

and for the second objective

∇f2(x0)T νp = ∇f2(x0)T Q̃Q̃T νL

= −
[

∇f2(x0)T Q̃Q̃T ∇f1(x0)
‖∇f1(x0)‖ +

∇f2(x0)T Q̃Q̃T ∇f2(x0)
‖∇f2(x0)‖

]
. (81)

Further, since 0 < ‖∇f1(x0)‖ and 0 < ‖∇f2(x0)‖, and Q̃Q̃T is symmetric we
obtain

∇f1(x0)T Q̃Q̃T ∇f2(x0) = ∇f2(x0)T Q̃Q̃T ∇f1(x0) (82)

and

∇fi(x0)T Q̃Q̃T ∇fi(x0) =
〈
Q̃T ∇fi(x0), Q̃T ∇fi(x0)

〉

= ‖Q̃T ∇fi(x0)‖2 ≥ 0 for i ∈ {1, 2}. (83)

Then, three cases arise:

Case 1. If ∇f1(x0)T Q̃Q̃T ∇f2(x0) > 0 holds, then by (80), (81) and (83) we
obtain

∇f1(x0)T νp < 0 and ∇f2(x0)T νp < 0;

which means that νp is a descent direction of F at x0.

Case 2. If ∇f1(x0)T Q̃Q̃T ∇f2(x0) = 0, then
(i) If ‖Q̃T ∇fi(x0)‖ > 0 for i ∈ {1, 2}, then by (80), (81) and (83)

∇fi(x0)T νp < 0 for i ∈ {1, 2}, i.e., νp is a descent direction for F at
x0.

(ii) If ‖Q̃T ∇f1(x0)‖ > 0 and ‖Q̃∇f2(x0)‖ = 0, then ∇f1(x0)T νp < 0 and
∇f2(x0)T νp = 0, i.e., νp is a descent direction for F at x0.
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(iii) If ‖Q̃T ∇f1(x0)‖ = 0 and ‖Q̃∇f2(x0)‖ > 0, then ∇f1(x0)T νp = 0 and
∇f2(x0)T νp < 0, i.e., νp is a descent direction for F at x0.

Therefore, if ∇f1(x0)T Q̃Q̃T ∇f2(x0) = 0 and Q̃T ∇fi(x0) �= 0 for an index i ∈
{1, 2}, then νp is a descent direction of F at x0.
Case 3. If ∇f1(x0)T Q̃Q̃T ∇f2(x0) < 0 assume, for the sake of contradiction,
that νp is a descent direction for F at x0.

Then, if ∇f1(x0)T νp < 0 we have by Eq. (80) the following:

∇f1(x0)T Q̃Q̃T ∇f2(x0)
‖∇f2(x0)‖ <

∇f1(x0)T Q̃Q̃T ∇f1(x0)
‖∇f1(x0)‖

⇔ 〈Q̃T ∇f1(x0), Q̃T ∇f2(x0)〉
‖∇f2(x0)‖ <

〈Q̃T ∇f1(x0), Q̃T ∇f1(x0)〉
‖∇f1(x0)‖

⇔ ‖Q̃T ∇f1(x0)‖‖Q̃T ∇f2(x0)‖ cos θ

‖∇f2(x0)‖ <
‖Q̃T ∇f1(x0)‖2

‖∇f1(x0)‖

⇔ ‖Q̃T ∇f2(x0)‖ cos θ

‖∇f2(x0)‖ <
‖Q̃T ∇f1(x0)‖

‖∇f1(x0)‖
⇔

∥∥∥Q̃T ∇f2(x0)
‖∇f2(x0)‖

∥∥∥ cos θ <
∥∥∥Q̃T ∇f1(x0)

‖∇f1(x0)‖
∥∥∥

⇔ cos θ <

∥∥∥Q̃T ∇f1(x0)
‖∇f1(x0)‖

∥∥∥∥∥∥Q̃T ∇f2(x0)
‖∇f2(x0)‖

∥∥∥ . (84)

Analogously, if ∇f2(x0)T νp < 0 then by Eq. (81) we have

cos θ <

∥∥∥Q̃T ∇f2(x0)
‖∇f2(x0)‖

∥∥∥∥∥∥Q̃T ∇f1(x0)
‖∇f1(x0)‖

∥∥∥ .

When considering −1 < cos θ < 1,

∥∥∥Q̃T ∇f1(x0)
‖∇f1(x0)‖

∥∥∥∥∥∥Q̃T ∇f2(x0)
‖∇f2(x0)‖

∥∥∥ < 1 and

∥∥∥Q̃T ∇f2(x0)
‖∇f2(x0)‖

∥∥∥∥∥∥Q̃T ∇f1(x0)
‖∇f1(x0)‖

∥∥∥ < 1

leads to

∥∥∥Q̃T ∇f1(x0)

‖∇f1(x0)‖
∥∥∥ <

∥∥∥Q̃T ∇f2(x0)

‖∇f2(x0)‖
∥∥∥ and

∥∥∥Q̃T ∇f2(x0)

‖∇f2(x0)‖
∥∥∥ <

∥∥∥Q̃T ∇f1(x0)

‖∇f1(x0)‖
∥∥∥,

which is not possible. Thus, we conclude that if ∇f1(x0)T Q̃Q̃T ∇f2(x0) < 0,
then νp is not a descent direction of F at x0, and we are done. 
�
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Fig. 2. Considering a feasible starting point when computing νp using Eq. (73). Here
νp is a MODD of BOP (85). This figure illustrates the case presented in Example 4.

Example 4. Consider the following BOP:

Minimize

f1(x1, x2) = x2
1 + (x2 + 3)2 (85)

f2(x1, x2) = (x1 + 3)2 + x2
2

subject to

h(x1, x2) = x2
1 + x2

2 − 1 = 0.

For this example, consider the computation of direction νp starting from a
feasible initial point. Figure 2 illustrates the case when νp lays over the descent
cone, hence νp is a descent direction.

Infeasible Case
Next, we consider that the initial point x0 is infeasible, i.e., that for at least one
j ∈ {1, . . . , m} it holds hj(x) �= 0. Further, we assume that all equalities are
linear, i.e., we are given the problem
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min
x∈Rn

F (x) := [f1(x), f2(x)]T , (86)

s.t h(x) = Ax − b = 0,

where A ∈ R
m×n. In this case we can consider the Newton method applied to

the residual r : R
n+m+k → R

n+m+k which is given by

r(x, α, ν) =

⎛
⎝J(x)T α + AT ν

Ax − b
ēT α − 1

⎞
⎠ , (87)

where J denotes the Jacobian of F and ē = [1, . . . , 1]T ∈ R
k. The first order

Taylor approximation of r near an estimate y = (x, α, ν) ∈ R
n+k+m is given by

r(y + z) ≈ r(y) + Dr(y)z, (88)

where Dr(y) is the Jacobian of r at y. The Newton step Δy for the Newton
method applied to r solves the following linear system of equations:

Dr(y)Δy = −r(y). (89)

Denote

Wα :=
2∑

j=1

αj∇2fj(x), (90)

then

Dr(x, α, ν) =

⎛
⎝Wα J(x)T AT

A 0 0
0 ēT 0

⎞
⎠ , (91)

and the Newton step is given by the vector

Δy = (Δx,Δα,Δν)

that solves ⎛
⎝Wα J(x)T AT

A 0 0
0 ēT 0

⎞
⎠

⎛
⎝ Δx

Δα
Δν

⎞
⎠ = −

⎛
⎝J(x)T α + AT ν

Ax − b
ēT α − 1

⎞
⎠ . (92)

If we set ν+ := ν + Δν, we can rewrite the above system as⎛
⎝Wα J(x)T AT

A 0 0
0 ēT 0

⎞
⎠

⎛
⎝ Δx

Δα
ν+

⎞
⎠ = −

⎛
⎝ J(x)T α

Ax − b
ēT α − 1

⎞
⎠ . (93)

The following discussion shows that the norm of r decreases for sufficiently
small step sizes in direction Δy: it is

d

dt
‖r(y + tΔy)‖2∣∣

t=0
= −2r(y)T Dr(y)Δy

= −2r(y)T r(y). (94)



376 O. Schütze et al.

Taking out the square leads to

d

dt
‖r(y + tΔy)‖∣∣

t=0
= −r(y)T r(y) = −‖r(y)‖ (95)

which is negative at y with r(y) �= 0.

In the following we summarize this result.

Proposition 5. Let a BOP be of the form (86) and suppose x0 is given such
that hj(x0) �= 0 for at least one j ∈ {1, . . . , m}. The Newton step on the residual
r as defined in (87) is given by the vector that solves equation system (93), and
‖r‖ decreases for sufficiently small steps in direction of the Newton step.

Proof. It follows by the above discussion. 
�
Example 5. Consider

F : R5 → R
2

subject to one linear equality constraint as

fj(x) =
∑5

i=1,i 
=j

(
xi − ai

i

)2 +
(
xj − aj

j

)4

, j = 1, 2
s.t. 1

2x1 = x2.
(96)

Here, a1 = [1, ..., 1]T ∈ R
5 and a2 = −a1. We apply Newton’s method for the

initial infeasible point p0 = a1 with h(po) = −0.5. Figure 3 shows the obtained
solutions in each Newton step in the (a) variable and (b) objective space. In the
fourth step we obtain the final solution

p4 = [0.2668, 0.1334, 0.3750, 0.3750, 0.3750]T

with h(p4) = −2.7756e−17, which can be considered to be feasible.

3.4 Inequality Constrained BOPs

Next we consider inequality constrained BOPs of the form

min
x∈Rn

F (x) := [f1(x), f2(x)]T ,

s.t gj(x) ≤ 0, j = 1, . . . , p. (97)

Let x0 be given and denote by

I(x0) := {gi1(x0), gi2(x0), . . . , gis(x0)} (98)

the set of active inequalities at x0. Assume that I(x0) is not empty, i.e., that
s ≥ 1. Denote by

G :=

⎛
⎜⎝

∇gi1(x0)T

...
∇gis(x0)T

⎞
⎟⎠ ∈ R

s×n (99)
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Fig. 3. Newton steps starting from p0 which is an infeasible point for Problem (96).
This figure illustrates Example 5.

the matrix formed by the gradients of the active inequality constraints.

Similarly to the feasible case for equality constrained BOPs, we can also
in this case generate descent directions via projection as follows: suppose that
rank(G) = s (i.e., maximal), then we can compute the factorization

GT = QR = (q1, . . . , qs, qs+1, . . . , qn) R, (100)

where Q ∈ R
n×n is orthogonal and R ∈ R

n×s right upper triangular. Doing so,
the last n − s column vectors of Q form an orthonormal basis of the tangent
space of the feasible set g−1

i (0) at x0 with ∇fi(x0) �= 0 and gi(x0) = 0. The
orthogonal projection νp onto Tg−1

i (0)(x) is hence given by

νp := Q̃Q̃T νL, (101)

where νL is as in (73) and

Q̃ := (qs+1, . . . , qn) . (102)

Similarly to the equality constrained case, νp is a descent direction under
certain conditions (see also Algorithm 2).

Proposition 6. For a BOP of the form (97), suppose ∇fi(x0) �= 0 for i ∈
{1, 2}. Let νp be as in Eq. (101) such that 〈νp,∇gi(x0)〉 = 0. Let x ∈ R

n such
that gi(x0) = 0 for every i ∈ I(x0). Then

(a) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) > 0, then νp is a MOPP of F at x0.
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(b) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) = 0 and Q̃T ∇fi(x0) �= 0 for an index i ∈ {1, 2},
then νp is a MODD of F at x0.

(c) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) < 0, then νp is not a descent direction of F at x0.

Proof. Note that by construction ∇gi(x0)T νp = 0 for all active i ∈ I(x0); thus,
the proof is analog to the one from Proposition 4. 
�

Algorithm 2. Computation of the search direction νp for inequality constrained
BOPs
Require: BOP of form (97), x0 with ∇fi(x0) �= 0, i = 1, 2
Ensure: search direction νp

1: ν := −
[

∇f1(x0)
‖∇f1(x0)‖ + ∇f2(x0)

‖∇f2(x0)‖

]

2: G :=

⎛
⎜⎝

∇gi1(x0)
T

...
∇gis(x0)

T

⎞
⎟⎠ ∈ R

s×n

3: compute Q and R s.t. GT = QR = (q1, . . . , qs, qs+1, . . . , qn)R
4: Q̃ := (qs+1, . . . , qn)
5: νp := Q̃Q̃T ν
6: return νp

Example 6. Consider the following BOP proposed in [8]:

Minimize

f1(x) = x1 (103)

f2(x) = g(x) ∗
(

1 −
√

x1

g(x)

)
,

with g(x) = 1 + x2.

Subject to

cos θ (f2(x1, x2) − e) − sin θf1(x1, x2) ≥ (104)
a| sin (bπ (sin θ (f2(x1, x2) − e) + cos θf1(x1, x2))

c) |d, (105)

where 0 ≤ xi ≤ 1 for i ∈ {1, 2}. And a = 0.1, b = 10, c = 2, d = 0.5, e = 1 and
θ = −0.2 ∗ π. Fig. 4 shows an example of the proposed MODD. Note that νp

lays over the descent cone and fulfills the above criterion; thus νp is a descent
direction.
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Fig. 4. Considering a starting point for an active constraint when computing νp using
Eq. (73), it can be a descent direction or not. This figure illustrates the behavior in
decision variable space for Example 6.

3.5 A Gradient Free Approximation of a MODD for CBOPs

In the following we use the GSA method to compute the above discussed descent
directions for (unconstrained or constrained) bi-objective optimization problems.

We assume that we are given a candidate solution x0 that is designated for
local search, and that we are given sample points x1, x2, . . . , xr in the vicinity
of x0. We further assume that their objective functions values f(xi) are already
known, which is indeed the case if the xi’s are chosen from a given population
within a MOEA. Recall from GSA that we can use

νi :=
xi − x0

‖xi − x0‖2 , di :=
f(xi) − f(x0)
‖xi − x0‖2 , i ∈ {1, . . . , r}, (106)

Thus, (16) turns into

min λT d (107)
s.t. λT V T V λ − 1 = 0,

which is the problem we have to solve. Then, consider the matrix

Ṽ := (ν1, . . . , νr), (108)

to finally obtain

ν̃∗ = − 1
‖Ṽ λ̃∗‖ Ṽ (Ṽ T Ṽ )−1d. (109)
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Then, ν̃∗ is the most greedy direction for a single-objective. It is worth to
notice that this derivation can be done for all objective functions in a MOP.

Unconstrained Case
For the unconstrained case, we can apply the previous idea to approximate
Eq. (73), hence obtaining a gradient-free descent direction. Recall that

νL := −
[ ∇f1(x)
‖∇f1(x)‖ +

∇f2(x)
‖∇f2(x)‖

]
, (110)

then we can approximate ∇f1(x) and ∇f2(x) as follows:

ν̃∗
j = − 1

‖Ṽ λ̃∗‖ Ṽ (Ṽ T Ṽ )−1dj , (111)

for j = {1, 2}. Then, we can approximate νL as

ν̃L := −
[

ν̃∗
1

‖ν̃∗
1‖ +

ν̃∗
2

‖ν̃∗
2‖

]
. (112)

Equality Constrained Case
For this scenario assume that x0 is a feasible solution, and that we are given
x1, x2, . . . , xr which are sample points in the neighborhood of x0; also, that their
objective functions values f(xi) are already known. From the constrained case
of GSA recall that the Matrix M := (mji) ∈ R

m×r is given by

mj,i :=
hj(xi) − hj(x0)

‖xi − x0‖2 , i ∈ {1, . . . , r}, j ∈ {1, . . . , m}. (113)

Via Eqs. (108) and (113) we can compute an approximation H̃T of the Jaco-
bian matrix HT of the constraint functions given by

H̃T = Ṽ (Ṽ T Ṽ )−1MT (114)

that will be used to compute the projection of νp. Then, considering a feasible
solution x0, we proceed analogously to the unconstrained case, and first compute
ν̃L as in Eq. (112). Next, in order to compute ν̃p, we compute a QR decomposition
of H̃T , and define

Q̃ := (q̃m+1, . . . , q̃n) ,

where q̃i, i ∈ {m+1, . . . , n}, are the last n−m column vectors of the orthogonal
matrix Q obtained by the QR-decomposition of H̃T . Then

ν̃p := Q̃Q̃T ν̃L, (115)

is the orthogonal projection of ν̃p onto the set of feasible directions. Assuming the
notation for Ṽ and dj

i as in Eq. (108) and (106), the following criteria manages
the application of our gradient-free proposal:
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For a BOP of the form (74), with ∇fi(x) �= 0 for i ∈ {1, 2} and hj(x) = 0.
Compute ν̃p, as in Eq. (115) and

Cg := d1T (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1d2. (116)

Then we proceed as follows:

1. If Cg > 0, then perform a line search over ν̃p.

2. If Cg = 0 and diT (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1di �= 0 for an index i ∈ {1, 2},
then perform a line search over ν̃p.

3. If Cg < 0, then the line search is not applied.

Note that the above criteria allow us to decide, during the algorithm’s running
time, when the information available is likely enough to have an approximation
of a MODD. After deciding to approximate such direction, we compute the new
iterative point xi as follows:

xi := x0 + tν̃p, (117)

where t is a suitable step length. In this work, we computed t by a backtracking
procedure based on the Armijo’s condition [29]. The description in Algorithm3
corresponds to the standalone gradient-free algorithm for equality constrained
MOPs.

Inequality Constrained Case
In the case that inequality constraints are present, the consideration is made
over I(x), that is the set of active inequality constraints at x. Thus we obtain
the new approximation of ν̃p

L as follows:

ν̃p
L := Q̃Q̃T ν̃L. (118)

Assuming the notation for Ṽ and dj
i as in Eq. (108) and (113), the following

result states the criteria for the application of the gradient-free proposal:
For a BOP of the form (97), with ∇fi(x) �= 0 for i ∈ {1, 2} and gi(x) = 0 for

every i ∈ I(x). Compute ν̃p
L as in Eq. (118) and

Cg := d1T (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1d2. (119)

Then we proceed as follows:

1. If Cg > 0, then perform a line search over ν̃p.
2. If Cg = 0 and diT (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1di �= 0 for an index i ∈ {1, 2},

then perform a line search over ν̃p.
3. If Cg < 0, then the line search is not applied.
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Algorithm 3. Standalone gradient-free MODD for equality constrained BOPs.
Require: x0 :initial solution, r :number of neighbors, ε : threshold for Cg

Ensure: xf :final solution.
1: while Stopping Criterion does not fulfill do
2: i ← 1;
3: xi ← x0;
4: Compute x1, . . . , xr neighbor points for x0;
5: Compute νi and d as in Eq. (113);
6: Compute Ṽ as in Eq. (108);
7: if xi is a feasible solution then
8: Compute Cg as in Eq. (116).
9: cj ← djT (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1dj j = 1, 2;

10: if Cg > 0 then
11: Compute ν̃p as in Eq. (115);
12: Compute t ∈ R

+;
13: xi+1 ← xi + tν̃L;
14: i ← i + 1;
15: else if |Cg| < ε then
16: if c1 > 0 or c2 > 0 then
17: Compute ν̃p as in Eq. (115);
18: Compute t ∈ R

+, a suitable step size
19: xi+1 ← xi + tν̃L;
20: i ← i + 1;
21: else
22: It is not a descent direction.
23: end if
24: else
25: It is not a descent direction.
26: end if
27: end if
28: end while
29:
30: return xf ← xi;

After deciding to approximate such direction, we compute the new iterative
point xi as follows:

xi := x0 + tν̃p
L, (120)

where t is a suitable step length. In this work, we compute t via a backtrack-
ing procedure based again on Armijo’s condition. The standalone algorithm for
inequality CMOPs is described in Algorithm 4.

We have presented in this section some criteria to decide when a solution is
a MODD. The potential of these criteria will be displayed in the next section
when used in combination with population-based heuristics.
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Algorithm 4. Standalone gradient-free MODD for inequality CBOPs.
Require: x0 :initial solution, r :number of neighbors, ε : threshold for Cg, I(x) :active

set.
Ensure: xf :final solution.
1: while Stopping Criterion does not fulfill do
2: i ← 1;
3: xi ← x0; Compute x1, . . . , xr neighbor points for x0;
4: Compute νi and d as in Eq. (113);
5: Compute Ṽ as in Eq. (108);
6: Compute Cg as in Eq. (119);
7: cj ← djT (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1dj j = 1, 2;
8: if Cg > 0 then
9: Compute ν̃p as in Eq. (115);

10: Compute t ∈ R
+, a suitable step size

11: xi+i ← xi + tν̃L;
12: i ← i + 1;
13: else if |Cg| < ε then
14: if c1 > 0 or c2 > 0 then
15: Compute ν̃p as in Eq. (115);
16: Compute t ∈ R

+;
17: xi+1 ← xi + tν̃L;
18: i ← i + 1;
19: else
20: It is not a descent direction;
21: end if
22: else
23: It is not a descent direction;
24: end if
25: end while
26:
27: return xf ← xi;

4 Application: Use of GFDD Within NSGA-II

In order to apply the developed ideas, we will in the following show some exam-
ples of the integration the above ideas to perform a multi-objective local search
within the execution of the well-known algorithm NSGA-II [10] as demonstra-
tor. This is a state-of-the-art algorithm for bi- and three-objective optimization
problems that makes use of an archiving strategy based on the crowding dis-
tance. This strategy will play an important role in the hybridization as it will
help us to decide which individual is a suitable starting point to perform the
local search.

Algorithm 5 shows a pseudo code of a hybrid of GFDD and NSGA-II which
also shows that such a coupling can be done relatively easily with in principle
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Fig. 5. Points p1 and p2 are considered to be neighbors of p0. The green triangles
outside the circle are population elements which are not used for the GSA computation.

Algorithm 5. Pseudocode of NSGA − II + Localsearch

Require: Ps := Population size, size := Problem Size, Pc := crossover probability,
Pm := mutation probability

Ensure: Set of approximated solutions
1: Population ← InitializePopulation(Ps, size)
2: FitnessEvaluation(Population)
3: FastNondominatedSort(Population)

4: Selected ← SelectParentsByRank(Population, Ps)
5: Offspring ← CrossoverAndMutation(Selected, Pc, Pm)
6: while ¬StopCondition() do
7: FitnessEvaluation(Offspring)
8: Union ← Merge(Population, Offspring)
9: Fronts ← FastNondominatedSort(Union)

10: CrowdingDistanceAssignment(Fronts)
11: Selected ← SelectParentsByRankAndDistance(Parents, Ps)
12: Population ← Offspring
13: Selected individual xs

14: ApplyLocalSearch(xs) if suitable
15: Offspring ← CrossoverAndMutation(Selected, Pc, Pm)
16: end while
17:
18: return Offspring
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Fig. 6. This figure illustrates a particular instant of a certain iteration in the
population-based algorithm. The population is represented by circles, while the initial
and final solutions involved in the local search procedure are marked by light and dark
diamonds correspondingly. The tested function corresponds to the CZDT2 from [31].

any other MOEA.The first part of the algorithm (lines 1 to 12) coincides with
the evolutionary process of the NSGA-II. Then, the interleaving of our proposal
starts; in lines 13 and 14 we select an individual xs related to the biggest crowding
value. If xs is feasible we decide based on the propositions presented above if the
local search is suitable. For the case of inequality constraints we just consider
the set of active constraints. Once the proposed low-cost MODD is successfully
computed, we apply a regular line search through it with a suitable step size
control provided with a traditional backtracking tuning.

At each generation, we applied the local search only to one selected indi-
vidual mainly because we do not want to make big changes through the entire
population of the evolutionary algorithm. If we apply the local search from many
individual the possibility of diversity losses or premature convergence increases.
Also, the computational cost (in terms of function evaluations) will increase
due to step size computation. When selecting the starting point for the local
search, the straight decision is to choose the individual with the most significant
crowding distance value in order to assure the existence of close neighbors. These
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Fig. 7. This figure illustrates a particular instant of a certain iteration in the
population-based algorithm. The population is represented by circles, while the ini-
tial and final solutions involved in the local search procedure are marked by light and
dark diamonds correspondingly. The image of the constraint function is also marked
in the figure. The tested function corresponds to the CZDT3 from [31].

neighbors are used to approximate the gradient information required by the pro-
posed operator (see Fig. 5). By doing this, there is a chance to generate a new
individual such that: (i) it is not that far from xs; but (ii) it can be deleted by
the crowding process itself. Therefore, there is a compromise between choosing
a candidate that has enough neighbors to approximate the gradient-free MODD
and the chances of losing the new candidate due to crowding. A better idea could
be to choose an individual xs with an average crowding value and at least r close
neighbors.

Numerical results that support the advantages of the use of this proposal
can be found in [38]. Next, we present some examples of the performance of a
population-based algorithm when applying this proposed low-cost local search.
Figures 6 and 7 illustrates the application of NSGA-II applied to the CZDT2
and CZDT3 benchmark functions given in [31]. These functions are bi-objective
optimization problems with equality constraints. The figures show a certain
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Fig. 8. This figure illustrates a particular instant of a certain iteration in the
population-based algorithm. The population is represented by circles, while the ini-
tial and final solutions involved in the local search procedure are marked by light and
dark diamonds correspondingly. The tested function corresponds to the CF2 from [39].

generation of the Multi-objective Evolutionary Algorithm (MOEA) when the
local search is applied to generate a new individual. Figures 8 and 9 illustrates
the application of NSGA-II applied to the CF2 and CF4 benchmark functions
[39]. These functions are bi-objective optimization problems with inequality con-
straints. The figures show a certain generation of the MOEA when the local
search is applied to generate a new individual.
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Fig. 9. This figure illustrates a particular instant of a certain iteration in the
population-based algorithm. The population is represented by circles, while the ini-
tial and final solutions involved in the local search procedure are marked by light and
dark diamonds correspondingly. The tested function corresponds to the CF4 from [39].

5 Conclusions

In this chapter we have reviewed some tools that allow to realize a local search
engine for consrained bi-objective optimization problems with a low cost when
using within set based optimization strategies such as evolutionary algorithms.
The basic idea of the Gradient Subspace Approximation is to compute the most
greedy search direction at a given point out of given neighborhood informa-
tion. Next, we have presented a way of how to compute descent directions for
bi-objective optimization problems. The method can be applied both to uncon-
strained as well as to constrained problems. Next, we have shown how to utilize
GSA in order to obtain a “gradient free” approximation of these search direc-
tions. Finally, we have demonstrated the possible benefit of such a resulting
low cost searcher on a hybrid evolutionary algorithm, which couples the pro-
posed search technique with the widely used evolutionary algorithm NSGA-II.
We stress, however, that the gradient free local search engine can in principle
be integrated into any other evolutionary algorithm or any other set-oriented
search heuristic.
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