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Abstract. In this chapter, we consider equality constrained bi-level
multi-objective optimization problems, where the lower level problem is
convex. Based on a suitable reformulation of the Kuhn-Tucker equations,
we present an image set-oriented algorithm of reference point type for the
approximation of the solution set, the Pareto set respectively its image,
the Pareto front, of such a problem. The algorithm is designed such that
the generated representation of the Pareto front is well-distributed with
respect to the higher level image space. We first prove convergence for
this algorithm and further on indicate its efficiency on two academic test
problems.

Keywords: Bi-Level multi-objective optimization · Bi-level
optimization · Multi-objective optimization · Hierarchical
optimization · Image set-oriented methods · Reference point methods

1 Introduction

Both, multi-objective optimization problems as well as bi-level optimization prob-
lems have been considered thoroughly during the last decades. The relatively new
class of optimization problems considered in this article can be understood as
a combination of the two above mentioned problems in the sense that both the
higher and the lower level problem of such a bi-level optimization problem are
given by multi-objective optimization problems. In other words, we are concerned
with a multi-objective optimization problem (the higher level of the bi-level opti-
mization problem), where the feasible set itself is restricted by the solution set of
another (parametrized) multi-objective optimization problem (the lower level of
such a bi-level optimization problem). Therefore, we call these problems bi-level
multi-objective optimization problems (BLMOP). To demonstrate the relevance
of such problems from a practical point of view, consider the following exam-
ple. For the design of a perfect passenger car, two important goals are the fuel
consumption (to be minimized) and the power of the engine (to be maximized)
leading to a bi-objective optimization problem in the higher level. However, due
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to safety reasons there is the restriction that in the first place optimality con-
cerning the mechanical guidance of the undercarriage in both horizontal and
vertical direction have to be optimized leading to another bi-objective problem
in the lower level.

In this chapter, we will concentrate on problems with equality constraints1 for
both the higher and lower level problem. Moreover, we assume that the lower
level problem is convex, that is, the lower level objectives are assumed to be
convex and the lower level constraints are assumed to be affine-linear.

The outline of this article is as follows. In Sect. 2 we review the basic def-
initions and concepts of multi-objective optimization and bi-level optimization
needed to understand the contents of the subsequent sections. The proposed
algorithm for the solution of a BLMOP is presented in Sect. 3. In Sect. 4, we
prove convergence of the algorithm. Then, in Sect. 5, we indicate the efficiency
of the algorithm on two academic examples. Finally, we draw our conclusions in
Sect. 6.

2 Background and Related Work

In the following we briefly review the relevant definitions and concepts of multi-
objective optimization and bi-level optimization. Next, we describe in detail the
bi-level multi-objective optimization problem (BLMOP) that we will consider
in this article. We also state a Kuhn-Tucker based reformulation of the given
BLMOP, which is used for the construction of the subproblem to be solved
repeatedly in order to compute the individual points of the solution set as our
new BL-Recovering-IS algorithm presented in Sect. 3 proceeds.

In a multi-objective optimization problem (MOP) one is faced with the prob-
lem that several objectives have to be optimized at the same time. Mathemati-
cally, a continuous MOP can be expressed as

min
x∈S

F (x). (MOP)

Hereby, the map F is defined by the individual objective functions Fi, i.e.,

F : S → R
k, F (x) = (F1(x), . . . , Fk(x))T , (1)

where we assume all functions Fi : S → R, i = 1, . . . , k, to be continuous.
Problems with k = 2 objectives are termed bi-objective optimization problems
(BOPs).

The domain or feasible set S ⊂ R
n of F can in general be expressed by

equality and inequality constraints,

S = {x ∈ R
n | Gi(x) ≤ 0, i = 1, . . . , l, and Hj(x) = 0, j = 1, . . . , p}. (2)

1 Hereby, we assume that involved inequality constraints can be transformed into
equality constraints, e.g., via the use of slack variables.
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If S = R
n, we call the MOP unconstrained.

Optimality of a MOP is based on the concept of dominance.

Definition 1.(a) Let v, w ∈ R
k. Then the vector v is less than w (in short:

v <p w), if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analo-
gously.

(b) A vector y ∈ S is called strictly dominated (or simply dominated) by a
vector x ∈ S (x ≺ y) with respect to (MOP) if

F (x) ≤p F (y) and F (x) �= F (y),

else y is called non-dominated by x.

If a feasible point x dominates another feasible point y, then we can consider x
to be ’better’ than y with respect to the given MOP. The definition of optimality
(i.e., the definition of the ‘best’ solutions) in multi-objective optimization is now
straightforward.

Definition 2.(a) A point x ∈ S is called (Pareto) optimal or a Pareto point
of (MOP) if there exists no y ∈ S that dominates x.

(b) The set of all Pareto optimal solutions is called the Pareto set, i.e.,

PS := {x ∈ S : x is a Pareto point of (MOP )}. (3)

(c) The image F (PS) of PS is called the Pareto front.

If all the objectives and constraint functions of the MOP are differentiable
one can state a necessary condition for optimality which is analog to ‘classical’
scalar objective optimization problems (SOPs, i.e., MOPs with k = 1).

Theorem 1 ([25]). Let x∗ be a Pareto point of (MOP), where S is as in (2),
and all objectives and constraint functions are differentiable in x∗. Further, let
the vectors ∇Hi(x∗), i = 1, . . . , p, be linearly independent. Then there exist
vectors α∗ ∈ R

k, λ∗ ∈ R
l, and μ∗ ∈ R

p such that the tuple (x∗, α∗, λ∗, μ∗)
satisfies

k∑

i=1

α∗
i ∇Fi(x∗) +

l∑

i=1

λ∗
i ∇Gi(x) +

p∑

i=1

μ∗
i ∇Hi(x∗) = 0

α∗
i ≥ 0, i = 1, . . . , k

k∑

i=1

α∗
i = 1

λ∗
i ≥ 0, i = 1, . . . , l

λ∗
i Gi(x∗) = 0, i = 1, . . . , l.

(4)

Moreover, it is known that these conditions are already sufficient under the
assumptions used in this article.
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Theorem 2 ([25]). Assume that the objectives Fi, i = 1, . . . , k, are convex.
Further, let the problem contain no inequality constraints and let all equality
constraints Hi, i = 1, . . . , p, be affine-linear. Then the conditions stated in The-
orem 1 are sufficient for a solution of (MOP).

A reference point t ∈ R
k can be regarded as a vector that consists of desirable

objective values called aspiration levels or targets, ti, i = 1, . . . , k.

In the following we will focus on distance function based approaches, which are
relevant for our new algorithm presented in Sect. 3. As indicated by its notation,
distance function based approaches use a distance function, which is typically
based on a norm, to measure the distance between a reference point and a given
point in image space. To state the auxiliary problem corresponding to a target
vector t ∈ R

k, let δ : Rk ×R
k → R+ be a distance function derived from a norm,

i.e., δ(a, b) = ||a−b|| for some norm || · || : Rk → R+. Then the auxiliary problem
to be solved is

min
x∈S

δ(F (x), t). (RPP)

If we have δ(F (x�), t) > 0, where x� is a solution to RPP, then we know that
F (x�) is on the boundary of the image F (S) = {F (x) : x ∈ S ⊂ R

n}. Moreover,
if in addition t <p F (x�) we can expect that x� is (at least a local) Pareto point.
Thus, local Pareto points can be found by first choosing suitable targets and
then solving RPP. Indeed, Theorem 3, which was taken from [13], guarantees
that, under certain assumptions, x� is a Pareto point. For this, recall that a
norm || · || : Rk → R+ is called strictly monotonically increasing, if ||y1|| < ||y2||
for all y1, y2 ∈ R

k with |y1
j | ≤ |y2

j |, j = 1, 2, . . . , k, and |y1
j | �= |y2

j | for some j.

Theorem 3 ([13]). Let || · || be a strictly monotonically increasing norm and
assume ti = min{Fi(x) : x ∈ S} for i = 1, 2, . . . , k. If x� is an optimal solution
of RPP, then x� is a solution of MOP.

We stress that throughout this article it will be || · || = || · ||2 unless stated
differently.

The analytic expression of the entire (exact) Pareto set/front is except for
some academic test problems in general not possible. In literature, a huge vari-
ety of different methods can be found for the effective numerical treatment of
MOPs. There are, for instance, mathematical programming (MP) techniques,
point-wise iterative search techniques that generate a sequence of solutions that
can converge toward one optimal solution (e.g., [16,30] and references therein.).
The most widely used sub-class of the MP techniques is given by scalariza-
tion methods that replace the given MOP into a suitable auxiliary SOP (e.g.,
[19,20,32,38,39]). Via identifying a clever sequence of such SOPs a suitable
approximation of the entire Pareto set/front can be obtained in certain cases
(e.g., [5,14,17,18,24,30,33]). Reference point methods use feasible or infeasible
reference points for the construction of scalar valued auxiliary functions. For an
overview on different types of reference point methods the reader is referred to
[16].
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Another class of methods are given by continuation-like methods that take
advantage of the fact that the solution set forms at least locally a manifold. Such
methods start from a given solution and perform a search along the solution
manifold ([22,27–29,34,36,37,43]). However, one potential drawback of all the
above mentioned methods is that they are of local nature, i.e, that they may
get stuck in local Pareto optimal solutions of the given MOP depending on the
chosen starting point and the chosen method to solve the auxiliary SOP.

Next to these point-wise iterative methods there exist specialized set oriented
methods such as multi-objective evolutionary strategies (MOEAs, e.g., [2,3,6]),
subdivision techniques [10,23,41,42] or cell mapping techniques [21,31,35,45,46,
48,49]. These methods have in common that they use entire sets in an iterative
manner and are thus able to deliver an approximation of the solution set in
one run of the algorithm. Further, the set based approach allows a more global
view on the problem leading to a reduced probability to get stuck in local opti-
mal solutions. Cell mapping techniques are particularly advantageous over other
methods if a thorough investigation of the entire (low or moderate dimensional)
system is of interest as they deliver next to Pareto set/front approximations also
approximations of the set of nearly optimal solutions as well as the set of local
solutions, as we will discuss in the following.

A bi-level optimization problem can be understood as an optimization
problem (the higher level problem), where the feasible set is restricted by the
solution set of another (parametrized) optimization problem (the lower level
problem).

Many different approaches for solving (classical) bi-level optimization prob-
lems have been proposed in the past, as there are for example descent algo-
rithms, bundle algorithms, penalty methods, trust region methods, smoothing
methods, and branch-and-bound methods. Many of these approaches are based
on the conversion of the bi-level problem to an ordinary (or classical) opti-
mization problem (a one-level problem). One possibility is to replace the lower
level objective f by an additional non-differentiable equation f(x, y) = ϕ(y),
where ϕ(y) = minx{f(x, y) : g(x, y) ≤ 0, h(x, y) = 0}. Other approaches
use the implicit function theorem to derive a local description of the function
x(y) : Rm → R

n, which is then inserted into the higher level problem. Another
concept is to replace the lower level problem by its Kuhn-Tucker conditions.
In general, the resulting one-level problem, which is a mathematical program
with equilibrium constraints or MPEC, see [26], is not equivalent to the original
problem, but the desired equivalence is ensured in the particular case where the
lower level problem is a convex one. For an overview on bi-level optimization the
reader is referred to [1,4,7,11,12,15,44,47].

In this article, we are concerned with the case where both the higher and lower
level problem are given by multi-objective optimization problems. Such problems
are called bi-level multi-objective optimization problem (BLMOP), see
[9,14,15].

The higher level problem of a BLMOP can be written as
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min
y

min
x

{F (x, y) : x ∈ ψ(y)} (BLMOP-H)

s.t. H(x, y) = 0,

where ψ(y) denotes for every fixed y ∈ R
m the solution, that is, the Pareto

set of the lower level problem given by

min
x

f(x, y) (BLMOP-L)

s.t. h(x, y) = 0,

It should be mentioned that in the notions of [11], BLMOP-H and BLMOP-
L correspond to an optimistic formulation of the general Bi-Level Optimization
Problem. Since in this article we concentrate on the case with a convex lower
level problem, the lower level problem can be replaced by the corresponding
Kuhn-Tucker conditions stated in Theorem1 to obtain an expression which is
equivalent to BLMOP-H. For this, we assume that the higher level problem
includes k objective functions Fi : Rn ×R

m → R, which are collected in the vec-
tor valued function F : Rn ×R

m → R
k, F (x, y) = (F1(x, y), . . . , Fk(x, y))t, and r

equality constraints Hi : Rn ×R
m → R, which are collected in the vector valued

function H : Rn × R
m → R

r, H(x, y) = (H1(x, y), . . . , Hr(x, y))t. Analogously,
we assume that the lower level problem includes l objectives fi : Rn ×R

m → R,
which are collected in the vector valued function f : Rn × R

m → R
l, f(x, y) =

(f1(x, y), . . . , fl(x, y))t and p equality constraints hi : R
n × R

m → R, which
are collected in the vector valued function h : R

n × R
m → R

p, h(x, y) =
(h1(x, y), . . . , hp(x, y))t. We denote by

L(x, y, α, λ) :=
l∑

i=1

αifi(x, y) +
p∑

i=1

λihi(x, y)

the lower level Lagrangian and by ∇xL the gradient of L with respect to x.
According to Theorem 2, x ∈ ψ(y) if and only if

h(x, y) = 0,
∇xL(x, y, α, λ) = 0,

l∑

i=1

αi = 1,

αi ≥ 0, i = 1, . . . , l

for some α ∈ R
l and λ ∈ R

p. Let

F̂ (x, y, α, λ, s) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

h(x, y)
H(x, y)

∇xL(x, y, α, λ)
l∑

i=1

αi − 1

α − (s ◦ s)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,
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where s ∈ R
l is a vector of l slack variables and a◦b denotes the component-wise

product of two vectors a, b. Moreover, let z := (x, y, α, λ, s), Ŝ := {z : F̂ (z) =
0}, and denote by π(z) the projection of z to the (x, y)-space R

n+m. Observe
that {π(z) : z ∈ Ŝ} is the feasible set of BLMOP-H and therefore the desired
reformulation for the given Problem can be written as follows:

min
z∈Ŝ

F (π(z)), (BLMOP-R)

where again minimization has to be understood in the sense of Definition 1.
In order to handle BLMOP-R by the use of reference point methods, we define
the following variant of RPP:

min
z∈Ŝ

δ(F (π(z)), t) (RPP-R)

Note that RPP-R will be the method used for the computation of the indi-
vidual Pareto points of the given BLMOP while our BL-Recovering-IS algorithm
presented in Sect. 3 proceeds.

3 Algorithm and Realization

We present the BL-Recovering-IS algorithm for the solution of equality con-
strained BLMOPs with a convex lower level problem. This algorithm can be
understood as an extension of our algorithm for the solution of unconstrained
MOPs described in [8]. In addition, we state some theoretical results which apply
both to the algorithm presented here and to the algorithm presented in [8].

The aim of the BL-Recovering-IS algorithm is to generate both a box covering
and a discrete representation of the entire Pareto front of the given BLMOP (see
also Fig. 1).

We assume that this representation is required to be well-distributed in higher
level image space in the following sense: Denote by Q ⊂ R

k the region of interest
in image space. For formal reasons denote by Pd a complete partition2 of the set
Q into boxes of subdivision size – or depth – d, which are generated by successive
bisection of Q. These boxes are understood to be half-open, that is, they can
be written as cartesian products [a1, b1)×, . . . ,×[ak, bk) of half-open intervals
[ai, bi), i = 1, . . . , k. Then there exists for every point F̄ ∈ Q exactly one box
B(F̄ , d) ∈ Pd such that F̄ ∈ B(F̄ , d). The algorithm computes both a covering

B =
⋃

B∈Pd∩F (P )

and a discrete representation of the Pareto set P . The discrete representation is
well-distributed in the sense that for every B ∈ Pd ∩ F (P ) there is at least one
computed point (x, y) ∈ R

n+m such that F (x, y) ∈ B.
2 Pd has not to be explicitly computed by our algorithm.
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Fig. 1. Idea fo the BL-Recovering-IS algorithm: use boxes to obtain a uniform spread
of solutions around the Pareto front.

In order to compute these points, our new image set-oriented algorithm pre-
sented in the following repeatedly solves a variant of RPP-R while the targets are
varying. To state a corollary which guarantees that the corresponding solutions
are at least locally Pareto optimal we denote T = (T1, . . . , Tk), where

Ti = min{Fi(π(z)) : z ∈ Ŝ} for i = 1, 2, . . . , k,

and define for a given target vector t ∈ R
k the modified feasible set

Ŝt = {z ∈ Ŝ : Fi(π(z)) ≥ ti, i = 1, . . . , k}.

Furthermore, we define variants of BLMOP-R and RPP-R, respectively, by
replacing Ŝ by Ŝt:

min
z∈Ŝt

F (π(z)), (BLMOP − R ’)

min
z∈Ŝt

δ(F (π(z)), t). (RPP − R ’)

Now, with these notations we can state the following result.

Corollary 1. Let F be continuous on the compact domain Ŝ. Moreover, let
|| · || be a strictly monotonically increasing norm and assume that T <p t <p

F (π(z�)), where z� is an optimal solution of RPP-R’. Then π(z�) is a local
solution of the given BLMOP.

Proof. Since Fi is continuous and since there are z̄i, z� ∈ Ŝ with Fi(π(z̄i)) = Ti <
ti < Fi(π(z�)), there exist zi ∈ Ŝ such that Fi(π(zi)) = ti for all i = 1, 2, . . . , k.
¿From construction of Ŝt it is obvious, that z� ∈ Ŝt and ti = min{Fi(π(z)) :
z ∈ Ŝt}. Thus, Theorem 3 guarantees that z� solves BLMOP-R’. Since Ŝt is
constructed from Ŝ just by constraining the image of F , such that F (π(Ŝt))
contains a part of a local Pareto optimal set in image space, z� is a local solution
of BLMOP-R, that is, π(z�) is a local solution of the given BLMOP. �
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In practice, a randomly chosen point t ∈ R
k does not necessarily belong

to the image F (π(Ŝ)) = {F (π(z)) : z ∈ Ŝ}, that is, we do not know a priori
whether there is any z ∈ Ŝ such that F (π(z)) = t. Moreover, if F (π(z)) = t for
some z ∈ Ŝ, we do not know whether π(z) is Pareto optimal. To get an answer
to these questions, we solve the auxiliary problem RPP-R’. If t <p F (π(z�))
for a solution z� of RPP-R’, then we know that – under suitable assumptions
– π(z�) is at least locally Pareto optimal. Otherwise, if t = F (π(z�)), then we
repeatedly have to vary t and solve RPP-R’ until t <p F (π(z�)). A strategy for
the choice and variation of the targets t can be found later on in this section. In
the algorithm described below and for the remainder of this article the distance
function δ is based on the norm || · ||2 that is, δ(a, b) = ||a− b||2 for all a, b ∈ R

k.
Our algorithm belongs to the family of continuation methods ([8,22,40]), that
is, the aim of every step is to compute Pareto points in the neighborhood of
Pareto points already found in a previous step. Accordingly, we assume that at
least one box B along with a point z� with F (π(z�)) ∈ F (P ) has been computed
previously, e.g., by the solution of RPP-R’ for the target t = (t1, . . . , tk), ti =
min{Fi(π(z)) : z ∈ Ŝ} for i = 1, 2, . . . , k.

Then, for a given box collection Bj ⊂ R
k (in image space) of subdivision

depth d and denoting by zB and FB the previously generated solution (in param-
eter and image space, respectively) associated with a box B ∈ Bj , a step of the
BL-Recovering-IS algorithm can be written as shown in Algorithm 1.

It remains to answer the question of how to choose the target vectors ti,
i = 1, 2, . . . , nt, near a current box B in order to compute Pareto points which
are well-distributed in the sense mentioned above. Efficient strategies for the
choice of target vectors can be defined, particularly by using local information
on the Pareto set, e.g. orientation or curvature, which can be calculated via
objective derivatives (or numerical approximations of the derivatives). In the
following we will focus on a particular strategy for the choice of the targets
which was originally designed for problems with smooth objectives, but is also
applicable and works satisfactorily in the case of more general objectives. Let us
assume that the higher level image F (P ) ⊂ R

k of the Pareto set P is smooth and
forms a (k−1)-dimensional manifold in a neighborhood Nε(F �) of a given Pareto
optimal point F � ∈ F (P ) in higher level image space. Since an approximation of
F (P ) at F � is given by the tangent space TF �F (P ), there are certainly further
Pareto points near TF �F (P ) ∩ Nε(F �). Consequently, we can expect that there
are λ ∈ R and p ∈ TF �F (P ) ∩ Nε(F �), such that suitable targets needed for
the computation of further Pareto points can be expressed by p + λd, where
d ≤p 0 denotes a basis vector of the 1-dimensional space (TF �F (P ))⊥. Thus,
to apply this idea in practice, we first have to construct d and a basis V :=
{b1, b2, . . . , bk−1} of TF �F (P ) and then to specify targets

ti = F �
i +

k−1∑

j=1

αi,j bj + λi d, i = 1, 2, . . . , nt

by determining the coefficients αi,j and λi. Fortunately, as stated in the following
lemma, if F (P ) forms a smooth manifold in a neighborhood of F � and if F � was
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Algorithm 1. Algorithm BL-Recovering-IS
Require: current box collection Bj

Ensure: new box collection Bj+1

1: for all B ∈ Bj do
2: B.active := TRUE
3: end for
4: for k = 1, . . . , MaxStep do
5: B̂ := Bj

6: for all B ∈ {B ∈ Bj : B.active == TRUE} do
7: choose target vectors {ti}i=1,...,nt near B with ti <p FB

8: find z�
i = arg minz∈Ŝti

||F (π(z)) − ti||, i = 1, . . . , nt i = 1, . . . , nt

9: F �
i := F (π(z�

i )), i = 1, . . . , nt

10: B.active := FALSE
11: for all i = 1, . . . , nt do
12: if B(F �

i , d) �∈ B̂ then
13: B̌ := B(F �

i , d), zB̌ := z�
i , FB̌ := F �

i

14: B̌.active := TRUE
15: B̂ := B̂ ∪ B̌
16: end if
17: end for
18: end for
19: if B̂ == Bj then
20: BREAK
21: end if
22: end for
23: Bj+1 := B̂
24: Return Bj+1

found in a previous step by solving RPP-R’ for a given target t�, t� <p F �, then
d can be obtained without any additional effort by d := t� − F �.

Lemma 1. Let Fi ∈ C1(Rn,R) for i = 1, . . . , k, and consider the multi-objective
optimization problem

min
z∈Ŝ

F (π(z)).

Denote by P the corresponding Pareto set and let F � := F (π(z�)), where z� is the
unique solution of RPP-R’ associated with the target t� <p F �. Moreover, assume
that F (P ) makes up a (k − 1)-dimensional smooth manifold in a neighborhood
of F �. Then

F � − t� ∈ TF �F (P )⊥.

Proof. Let ∂F denote the boundary of {F (π(z)) : z ∈ Ŝ}. Since F (P ) forms
a differentiable manifold in a neighborhood of F �, there exists a differentiable
curve α : [−1, 1] → ∂F with α(0) = F �, α′(0) ∈ TF �F (P ) and α(λ) ∈ F (P ) for
all λ ∈ [0, 1]. Then, since z� is a solution of RPP’, λ = 0 is a solution of

min
λ∈[−1,1]

||α(λ) − t�||2
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and therefore

d

dλ
||α(λ) − t�||2 =

d

dλ
〈α(λ) − t�, α(λ) − t�〉 = 2 〈α(λ) − t�, α′(λ)〉 = 0

for λ = 0. With α(0) = F � we obtain

〈F � − t�, α′(0)〉 = 0,

that is, F � − t� ∈ TF �F (P )⊥. �
Once d is available, any standard method for the construction of an orthogo-
nal basis, e.g. the Grahm-Schmidt method can be used to obtain the required
basis V . For all i = 1, 2, . . . , nt, the coefficients αi,j are chosen such that
pi :=

∑k−1
j=1 αi,j bj is located inside a neighbor box of the current box. More-

over, the pi should be well-distributed around F �. With this heuristic, it is very
likely to find new boxes containing the image of Pareto points. For the choice
of λi an adaptive concept has to be applied, because a computed solution z of
RPP-R’ can only be accepted, if ti <p F (π(z)) is satisfied. Such an adaptive
concept should be guided by the fact that ti <p F (π(z)) certainly holds if λi is
sufficiently large, but it should also be considered that RPP-R’ is ill-conditioned
if λi is too large.

4 Convergence

Since the described BL-Recovering-IS algorithm is realized by minimizing a refor-
mulation of the BLMOP, which can be understood as an equality constrained
MOP, in the following we prove convergence for the more general class of image
set-oriented recovering algorithms for the solution of MOP as defined in Sect. 2.
This includes in particular the Recovering-IS algorithm presented in [8].

The proof is carried out in two steps: first, Theorem 4 states that for every
subset B ⊂ R

k containing a part of the Pareto optimal solution in image space,
there is a minimal set of targets, such that for at least one of these targets the
corresponding distance minimization subproblem leads to a Pareto point x� with
F (x�) ∈ B. Then, this result is used in Corollary 2 to complete the proof from
the global point of view. In the following, let

dist(y,X ) = min
t∈X

||y, t||

be the distance between a point y ∈ R
k and a subset X ⊂ R

k.

Theorem 4. Let F : Rn → R
k, S ⊂ R

n and denote by P the Pareto set of the
constrained MOP:

min
x∈S

F (x).

Assume that the norm || · || is strictly monotonically increasing. Let B ⊂ R
k be

an open subset such that B ∩ F (P ) �= ∅. Then there is d > 0, such that for any
set X ⊂ B of targets with dist(y,X ) < d for all y ∈ B ∩ F (P ) there exists a
target t ∈ X with F (x�) ∈ F (P ) ∩ B, where x� := arg min

x∈St

||F (x) − t||.
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Proof. There are ȳ ∈ F (P ) and ε > 0, such that Uε(ȳ) ⊂ B. Let d := ε
8
√

k
and

c := ȳ − 2 d

k∑

i=1

ei, where ei denotes the i-th standard basis vector in R
k. Then,

for every y ∈ Ud(c), we have

||y − ȳ|| ≤ ||y − c|| + ||c − ȳ|| ≤ d + 2d
√

k =
ε

8
√

k
+

ε

4
<

ε

2
,

that is, Ud(c) ⊂ Uε(ȳ). Consequently, there is a target t = c + v ∈ X , ||v|| ≤ d,
such that

min
x∈St

||F (x) − t|| ≤ ||t − ȳ|| <
ε

2

and
ti = ci + vi = ȳi − 2d + vi < ȳi for i = 1, . . . , k.

With x� = arg min
x∈St

||F (x) − t||, it follows that

||F (x�) − ȳ|| ≤ ||F (x�) − t|| + ||t − ȳ|| <
ε

2
+

ε

2
= ε

and therefore
F (x�) ∈ Uε(ȳ) ⊂ B.

Now we have to show that F (x�) is not dominated by any ŷ ∈ F (P ) ∩ St.
For F (x�) = ŷ this nondominance is obvious. For the case F (x�) �= ŷ we have
to show that Fi(x�) < ŷi for at least one i = 1, . . . , k. To see this, assume that
the opposite is true. Then Fi(x�) ≥ ŷi > ti for all i = 1, . . . , k, where, since
F (x�) �= ŷ, strict inequality holds for at least one i ∈ {1, . . . , k}. Consequently,
since || · || is strictly monotonically increasing,

||F (x�) − t|| > ||ŷ − t||,

which is a contradiction to ||F (x�) − t|| = min
x∈St

||F (x) − t||. Finally, since F (x�)

is not dominated by any ŷ ∈ F (P )∩St, we have F (x�) ∈ F (P ), which completes
the proof. �
To guarantee that an image set-oriented recovering method converges towards
the union of those connected components of F (P ) which correspond to the initial
box collection B0, in every step of the algorithm the set of targets ti has to be
chosen properly, such that all desired boxes are found, that is, boxes which are
both neighbors of the boxes generated in the respective previous step and contain
a part of the respective connected component of F (P ). To this end, we denote
by B̄ the closure of a box B and we state the following



An Image Set-Oriented Method for the Numerical Treatment of BLMOP 349

Corollary 2. Using the notations of Theorem4 and denoting by B0 a box col-
lection of (fixed) subdivision depth d covering a part of F (P ), assume that every
step of the Recovering-IS or BL-Recovering-IS algorithm, respectively, is realized
in a way such that for every B ∈ Bj\Bj−1 targets are chosen according to The-
orem4 within all boxes C ∈ {C : C̄ ∩ B̄ �= ∅, C /∈ Bj}. Moreover, assume that
F (P ) is bounded. Then, the algorithm terminates after a finite number of steps
such that the final box collection covers those connected components of F (P ),
which correspond to at least one B ∈ B0.

5 Numerical Results

In the following we demonstrate the working principle and strength of the pro-
posed algorithm on two academic benchmark problems.

5.1 Example 1

In our first example we consider a classical (i.e., one-level) bi-objective optimiza-
tion problem in order to demonstrate the working principle of the IS recovering
techniques. For this, let the BOP be given by

F = (F1, F2)t : R3 → R
2

F (x1, x2, x3) =
(

(x1 − 1)2 + (x2 − 1)2 + (x3 − 1)4

(x1 + 1)4 + (x2 + 1)2 + (x3 + 1)2

)

We assume that the decision maker is only interested in solutions for which
both objective values are located within the interval I := [0, 20], and therefore
define

S := {x ∈ R
3 : Fi(x) ∈ I, i = 1, 2}.

Figure 2 shows the solutions generated by the Recovering-IS algorithm using
different box sizes (depths). Here, the reader can get an impression of how the
density of the computed representation can be controlled by choosing the box
size.

5.2 Example 2

Next, we consider the following equality constrained bi-level multi-objective opti-
mization problem with a convex lower level problem:

min
x ∈R3, y ∈R

F (x, y) =
(

4((x1 + 1)2 + (x2 − 1 − y)4 + x2
3)

(x1 − 1)2 + (x2 + 1 − y)2 + (x3 − 0.5)4

)
,
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such that H(x, y) = x2
1 + x3 − y2 = 0,

and x solves:

min
x ∈R3

f(x, y) =

⎛

⎝
(x1 − 1)2 + 0.5(x2 + y)2 + (x3 − 0.5)4

(x1 + 1)2 + 0.5(x2 + y)2 + (x3 + 1)2

x2
1 + x2

2 + (x3 + 1)2

⎞

⎠

such that h1 = x1 − x2y = 0.

The solution of this problem was computed by the presented BL-Recovering-
IS algorithm. For this, we have chosen Q = [0, 10]2 for the domain of interest
in higher level image space. The partition Pd was chosen corresponding to 5
virtual subdivisions in each coordinate, such that all boxes B ∈ Pd are of the
size 0.31252. The computed solution in higher level image space along with the
generated boxes is shown on top of Fig. 3. As expected, the solution is well-
distributed in the sense that there is at least one computed point in every box of
the box collection covering the Pareto set. The projection of the corresponding
Pareto set to the x-space is shown on the bottom of Fig. 3.

Fig. 2. Numerical results on Example 1 computed by the image set-oriented recovering
algorithm using different box sizes in image space.
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Fig. 3. The Pareto set of the example problem computed by our algorithm in higher
level image space (top) and in parameter space (projection to the x-space)(bottom).

6 Conclusions

In this chapter, we have considered the class of bi-level multi-objective opti-
mization problems (BLMOP) with equality constraints for both the higher and
lower level problem. The lower level problem was assumed to be convex, that
is, the lower level objectives are convex and the lower level equality constraints
are affine-linear. Due to the concentration to this particular subclass, we have
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been able to write down an equivalent formulation based on the well-known
Kuhn-Tucker optimality conditions for multi-objective optimization problems.
The resulting reformulation has the form of a general equality constrained multi-
objective optimization problem. We have presented an image set-oriented algo-
rithm for the approximation of the Pareto set P of the given BLMOP. The
representation of P computed by this algorithm turns out to be well-distributed
in the sense that in every box B ⊂ R

k with B ∩F (P ) �= ∅ of a given partition Pd

of the higher level image space R
k, there is the image of at least one of the com-

puted Pareto points. Convergence has been proved in the sense that after a finite
number of iterations, the box collection formed by those boxes containing the
images of the computed Pareto points, covers the image of the entire connected
components of P , which correspond to the given initial points. The efficiency
of the algorithm was demonstrated on an academic example, where comparison
to the state-of-the-art is still missing, which we leave for future work. Finally,
also the development of algorithms for the solution of the more general BLMOP,
which includes non-convex lower level problems, shall be investigated in the
future.
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