
Structural Properties of Pareto Fronts:
The Occurrence of Dents in Classical and
Parametric Multiobjective Optimization

Problems

Katrin Witting1(B), Mirko Hessel-von Molo2, and Michael Dellnitz3

1 dSPACE GmbH, Paderborn, Germany
kwitting@dspace.de

2 Faculty of Computer Science Fachhochschule Dortmund – University of Applied
Sciences and Arts,

Dortmund, Germany
mirko.hessel-vonmolo@fh-dortmund.de

3 Chair of Applied Mathematics, Paderborn University, Paderborn, Germany

Abstract. This contribution deals with the occurrence of “dents” in
Pareto fronts of continuous and adequately smooth multiobjective opti-
mization problems. After giving a formal definition of this notion, a sys-
tem of equations is derived that characterizes points on the boundary
of the dent. This can be used to obtain information about the structure
of the Pareto front without computing the entire Pareto set. Further-
more, the evolution of dents in parametric multiobjective optimization
problems is studied using results from bifurcation theory. Theory and
computations are illustrated by several examples, whose construction is
described as well.
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1 Introduction

In many fields of research and industrial applications optimization plays an
important role. In a variety of these not only one but several objectives are
required to be optimal at the same time. For instance, in manufacturing cost has
to be minimized, but at the same time also quality is desired to be maximized –
at least to a certain degree. The development of theory and algorithms for the
determination of solutions that are as good as possible with respect to all objec-
tives is the task of multiobjective optimization. Mathematically, a continuous
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multiobjective optimization problem is given as

min
x

{F (x) : x ∈ S ⊆ R
n},

where F is defined as the vector of the objective functions f1, . . . , fk, k ≥ 2,
which each map from R

n to R, and S denotes the feasible region. The example
mentioned above already illustrates that the several objectives typically contra-
dict each other and thus do not have identical optima. Consequently, the solution
of a multiobjective optimization problem is given by the set of optimal compro-
mises of the objectives, the so-called Pareto set. In the case of minimization
problems the Pareto set is given by the set of solutions in which the value of any
objective function can only be decreased at the cost of increasing another one.

To obtain solutions that lie within the Pareto set many algorithms have been
developed. There are essentially two different types: algorithms that allow for the
computation of only one or a few Pareto points, and algorithms that approximate
the entire Pareto set. In the first case often a priori information, such as a specific
weighting or some kind of ordering of the objectives, is required. Examples for
those methods are the ‘weighted sums method’, the ‘ε-constraint-method’ and
the ‘lexicographic ordering’ (see [8,20]). Over the past years algorithms that
are able to approximate the entire Pareto set have been developed (see e. g.
[2,4,5,11,19,22,23,30]). For the computations of Pareto sets in the examples
given in this work set-oriented, numerical methods which are implemented in
the software package GAIO have been used (see [24]).

Motivated by the fact that in the case of nonconvex objective functions it
is not possible to compute all Pareto optimal solutions by the weighted sums
method, in this chapter the occurrence of dents in Pareto fronts is studied
(restricted to continuous and adequately smooth multiobjective optimization
problems). In [3], Das and Dennis give a trigonometric argument why – in the
case of two objectives – the weighted sums method cannot be used to compute
points in the nonconvex part, as they call the subset of the Pareto front that
contains no global optima of the weighted sum of the objectives for every weight
vector. It is an interesting task to find out if a Pareto front contains nonconvex
parts. If one assumes that the Pareto front is connected, then every nonconvex
part contains a region in which the Pareto front ‘bends inside the feasible region’.
This part of the Pareto front will be called a dent. In Sect. 3 a formal definition
of a dent is given (see also [28]).

It will be shown that at the border of a dent (seen as a subset of the Pareto
front) typically the Hessian of the weighted sum of the objectives is singular.
These points will be called dent border points and the corresponding preimages
on the Pareto set will be called dent border preimages.

In the case of parametric multiobjective optimization problems naturally
the question comes up, how dents evolve under the variation of the external
parameter. This question is addressed in Sect. 4. Making use of results from
bifurcation theory, it is proven that under certain assumptions dent border pre-
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images are turning points of the Kuhn-Tucker equations

Hα�

KT(x, λ) =
k∑

i=1

α�
i ∇xfi(x, λ) = 0,

where α� ist the weight vector corresponding to the dent border preimage. Sev-
eral examples of parametric multiobjective optimization problems in which the
Pareto front contains dents will be given at the end of Sect. 4.

Fig. 1. Typical shape of a Pareto front for a convex problem (left figure) and possible
shape in a nonconvex problem (right figure). The shaded regions represent the image
of the feasible set.

2 Theoretical Background

In this section the theoretical background from multiobjective optimization,
parametric multiobjective optimization and bifurcation theory needed within
the context of this chapter is summarized.

2.1 Multiobjective Optimization

A continuous (constrained) multiobjective optimization problem (MOP) is given
by

min
x

{F (x) : x ∈ S ⊆ R
n}, (MOP)

where F is defined as the vector of the objective functions f1, . . . , fk, k ≥ 2,
which each map from R

n to R, i. e.

F : Rn → R
k, F (x) = (f1(x), . . . , fk(x)).

The feasible set S is given as

S = {x ∈ R
n : h(x) = 0, g(x) ≤ 0}

with equality constraints h : Rn → R
m, m ≤ n and inequality constraints g :

R
n → R

q. The MOP is called unconstrained MOP, if S = R
n. In all the following
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considerations it is assumed that F = (f1, . . . , fk) consists of at least continuous
objective functions.

It has to be explained what is meant by ‘min’ in the problem (MOP), as
a vector-valued function has to be minimized. The following definition which
introduces an appropriate partial order on R

k allows comparisons of vectors (cf.
[6]).

Definition 1. Let u, v be two vectors in R
k. Then the vector u is less than v

(denoted by u <p v) if

ui < vi for all i ∈ {1, . . . , k}.

In an analogous way, the relation ≤p is defined. The vector u is said to dominate
the vector v if

u ≤p v and ui < vi for at least one i ∈ {1, . . . , k}.

Using the relation ≤p we define what a solution of (MOP) is.

Definition 2. A point x� ∈ R
n is called globally Pareto optimal for (MOP) (or

a global Pareto point of (MOP)) if there exists no x ∈ S ⊆ R
n with

F (x) ≤p F (x�) and fj(x) < fj(x�) for at least one j ∈ {1, . . . , k}.

If this property is only valid inside a neighborhood U(x�) ⊂ S ⊆ R
n, then x� is

called locally Pareto optimal (or a local Pareto point).
The set of all Pareto points is the Pareto set . Following [10], the set of the

function values of all Pareto points is called the Pareto front .

In the literature, one can find several different names for Pareto optimal
solutions. Examples are ‘efficient solutions’ [9,25], ‘noninferior solutions’ [10],
‘nondominated points’ [17], ‘vector minimum points’ [1], and ‘admissible points’
[15]. Especially the image of a Pareto optimal solution often is denoted as an
efficient point .

The following classical result which goes back to Kuhn and Tucker [18] pro-
vides a necessary condition for Pareto optimality. The version of the theorem
written down here can be found in [16], which itself is a reformulated version of
the one given in [14].

Theorem 1 (Kuhn and Tucker, 1951 [18])
Let x� be a Pareto optimal solution of (MOP). It is assumed that ∇hi(x�), i =

1, . . . , m and ∇gj(x�) for j ∈ {J : gJ(x�) = 0} (the active constraints) are
linearly independent. Then there exist vectors α ∈ R

k with αi ≥ 0 for i = 1, . . . , k
and

∑k
i=1 αi = 1, γ ∈ R

m and δ ∈ R
q with δj ≥ 0 for j = 1, . . . , q such that

k∑

i=1

αi∇fi(x�) +
m∑

j=1

γj∇hj(x�) +
q∑

l=1

δl∇gl(x�) = 0

δj · gj(x�) = 0, ∀j = 1, . . . , q.

(1)
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Following [20], points x� ∈ R
n that satisfy the Kuhn-Tucker condition (1) are

called substationary points . Given a Pareto point x� the vector of multipliers α
is called the weight vector corresponding to x�.

Obviously the condition in the Kuhn-Tucker theorem is not sufficient for
Pareto optimality in general. In the case of convex1 objective functions, convex
inequality constraints and affine2 equality constraints, it is proven that for α > 0
the Kuhn-Tucker conditions are also sufficient [14]. However, numerical methods
often make use of this criterion.

An intuitive, classical approach to solve a multiobjective optimization prob-
lem is the weighted sums method, also called the ‘weighting method’, which goes
back to Gass and Saaty [12] and Zadeh [29]. It is a very popular approach which
makes use of the intuitive idea of converting the multiobjective optimization
problem into a single objective one. For this, the objective functions are summed
up, each multiplied with an individual weight. More precisely, k weights αi are
chosen such that αi ≥ 0 for i = 1, . . . , k and

∑k
i=1 αi = 1 and the problem

min
x

gα(x)

s. t. x ∈ S ⊆ R
n,

(2)

with gα(x) =
∑k

i=1 αifi(x) is considered.
Varying the weights αi, different Pareto points can be obtained by solving

(2) – in the case of convex objective functions even all Pareto points can be
computed in this way. The reason for this is that the shape of the Pareto front
is also convex in such a situation. Moreover, the optimization of the weighted
sums results in different points on the Pareto front for different weight vectors.

In contrast to this, for nonconvex objective functions the Pareto front can
contain nonconvex parts as illustrated in Fig. 1 on the right. Here, the nonconvex
part is defined to be a subset of the Pareto front that contains no global optima
of the weighted sum of the objectives for every weight vector. Pareto points,
which are mapped into the nonconvex part of the Pareto front, can have the
same weight vector as other Pareto points whose weighted sum has a smaller
value (cf. Fig. 2), as they are only local minima or saddle points of gα(x).

In [3], Das and Dennis give a trigonometric argument, why – in the case of
two objectives – the weighted sums method cannot be used to compute points
in the nonconvex part.

It is an interesting question to find out if a Pareto front contains nonconvex
parts. If one assumes that the Pareto front is connected, then any nonconvex
part contains a region in which the Pareto front ‘curves inside the image of the
feasible region’. This part of the Pareto front will be called a ‘dent’. In Sect. 3 the
formal definition of a dent is given and an approach which allows the numerical
computation of dents in Pareto fronts is presented.

1 A function f : Rn → R is convex, if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all
x, y ∈ R

n, 0 ≤ λ ≤ 1, see e. g. [27].
2 A function f : Rn → R is affine, if f(λx + (1 − λ)y) = λf(x) + (1 − λ)f(y) for all

x, y ∈ R
n, 0 ≤ λ ≤ 1, see e. g. [27].
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Fig. 2. Schematic illustration of the weighted sums approach

2.2 Parametric Multiobjective Optimization Problems

An unconstrained (one-) parametric multiobjective optimization problem is
given as

min
x

{F (x, λ) : x ∈ R
n, λ ∈ [λstart, λend] ⊆ R}, (ParMOP)

where F is defined as the vector of the objective functions, i. e.

F : Rn × [λstart, λend] → R
k, F (x, λ) = (f1(x, λ), . . . , fk(x, λ)).

The solution set of (ParMOP) is a λ-dependent family of Pareto sets.
Every point in this family satisfies the necessary condition of Kuhn and

Tucker with respect to the x-variables. As (ParMOP) is an unconstrained mul-
tiobjective optimization problem, Theorem 1 reduces to the fact that there exist
multipliers α1, . . . , αk ∈ R+,0 such that

HKT(x, α, λ) =

(∑k
i=1 αi∇xfi(x, λ)∑k

i=1 αi − 1

)
= 0, (3)

where (x, λ) is a solution of (ParMOP).

Definition 3. If x ∈ R
n satisfies the Kuhn-Tucker condition (3) for a specific

value of λ, then it is called – as in the non-parametric case – a substationary
point . The set of all substationary points for the respective value of λ is denoted
by Sλ.

2.3 Bifurcation Theory

Bifurcation theory analyzes the behavior of solutions of parameter-dependent
systems of equations when they become singular under variation of the parame-
ter. In the context of this work it becomes applicable when considering solutions
of the Kuhn–Tucker–Eq. (3) for the parametric, unconstrained case.
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It will be shown in Sect. 3 that in a dent border point a zero eigenvalue
of the Hessian of gα occurs, where gα(x, λ) =

∑k
i=1 αifi(x, λ). The Hessian

of gα equals ∂
∂xHα

KT, as Hα
KT(x, λ) = ∇xgα(x, λ). Thus, the implicit function

theorem is not applicable to the Kuhn-Tucker equations (with respect to x) in
a dent border point. Whenever the Jacobian with respect to x of a parametric
system of equations is singular, the structure of the solution set may change. One
possibility is that the system of equations has no solution before the singularity
occurs, and two solutions afterwards (here, “before” and “afterwards” have to
be understood in terms of the values of λ). In this case, the solution curve
“turns” at the point (x�, λ�), where the Jacobian with respect to x is singular.
More formally, such a turning point – which sometimes is also called saddle-node
bifurcation or fold in the literature – is defined as follows:

Definition 4 (Turning point (see [21]))
Consider the solutions of a nonlinear system of equations H(x, λ) = 0, where

H : RN × R → R
N . Assume that (x�, λ�) is such a solution which satisfies

(i) there exists φ� ∈ R
N\{0} with ker

(
∂
∂xH(x�, λ�)

)
= span{φ�},

(ii) ∂
∂λH(x�, λ�) /∈ im ∂

∂xH(x�, λ�).

Then, (x�, λ�) is called a turning point .

Let ψ� be a left eigenvector of the zero eigenvalue of ∂
∂xH(x�, λ�), i. e.

ψ� ∂

∂x
H(x�, λ�) = 0.

If in addition to (i) and (ii) ψ�
(

∂2

∂x2 H(x�, λ�)φ�φ�
)


= 0, then the point (x�, λ�)
is called a simple turning point .

In Fig. 3 an example of an equation whose solution curve includes a turning
point is sketched. As one can observe, the solution curve turns in the point (0, 0).

Fig. 3. For the equation H(x, λ) = x2 − λ = 0, H : R×R → R, a turning point occurs
in the point (0, 0)
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3 Dents in Non-parametric Pareto Fronts

In Fig. 1 it has already been illustrated that the Pareto front may curve inside
the image of the feasible region in the case of nonconvex objective functions.
As already mentioned in Sect. 2 Pareto points whose images lie in such a dent
cannot be computed by using the weighted sums method. The reason is that two
or more Pareto points satisfy the Kuhn-Tucker equations with the same weight
vector α while the weighted sum

∑k
i=1 αifi(x) cannot be minimal for all these

solutions. The following definition gives a mathematical description of a dent.

Definition 5 (Dent point, Dent preimage)
Let P ⊆ S be the Pareto set of a multiobjective optimization problem

minx∈S F (x) with F : R
n → R

k, F (x) = (f1(x), . . . , fk(x))T and fi at least
twice continuously differentiable ∀ i = 1, . . . , k. For αi ∈ [0, 1] with

∑k
i=0 αi = 1

define gα : Rn → R by

gα(x) =
k∑

i=1

αifi(x).

A point x� ∈ P is called a dent preimage if it is a saddle point of gα. The
corresponding point y� = F (x�) on the Pareto front is called a dent point .

Definition 6 (Dent, dent border, complete dent)
Let P ⊆ S be the Pareto set of an at least twice continuously differentiable

multiobjective optimization problem minx∈S F : Rn → R
k and let PF = F (P )

be the Pareto front. Let y� ∈ PF be a dent point. Then, the connected com-
ponent of dent points which includes y� is called a dent corresponding to y�,
denoted by Dy� :

Dy� = {y ∈ PF | ∃δ ≥ 0 and ∃c : [0, δ] → PF, c continuous, with c(0) = y�,

c(δ) = y, and c(s) is a dent point ∀ s ∈ [0, δ]} .

A dent Dy� is called complete , if

∂PF ∩ Dy� = ∅,

where ∂PF is the boundary of the Pareto front PF as a subset of ∂F (S) (with
the induced topology from R

k).
The boundary ∂Dy� of a complete dent Dy� (seen as a subset of PF ) is called

dent border and a boundary point yb ∈ ∂Dy� is called a dent border point . A
point xb ∈ P with F (xb) = yb is called a dent border preimage of yb.

Remark 1. In [16] dents have been studied from a differential geometric point of
view. In this book it has been shown that – under certain geometrical assump-
tions on the multiobjective optimization problem – saddle points of gα occur if
and only if the corresponding point on the Pareto front has at least one negative
principal curvature.
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In [16] it has already been considered what happens during the transition
from a minimizer x1 of gα1 to a saddle point x2 of gα2 on a connected Pareto
front i. e. during the transition of non-dent preimages to dent preimages (α1 and
α2 denote the weight vectors corresponding to x1 and x2, respectively):
Assume that the non-dent preimage x1 can be connected to the dent preimage
x2 by a continuous curve γ : [0, 1] → P ⊆ S with γ(τ) = (x(τ), α(τ)), γ(0) =
(x1, α1) and γ(1) = (x2, α2). To each curve point γ(τ) the n-tuple of eigenvalues
of ∂2

∂x2 gα(x), denoted by (e1(τ), . . . , en(τ))T , is assigned, where α again is the
corresponding weight vector to x. This leads to another continuous curve γ̃ : τ �→
(e1(τ), . . . , en(τ))T corresponding to γ. As x1 is a minimizer of gα1 , γ̃(0) > 0.
In the saddle point x2 of gα2 , there exists an index i ∈ {1, . . . , n} such that
ei(1) < 0. Because of the continuity of γ̃ there must exist τ̄ ∈ [0, 1] with ei(τ̄) = 0.

To sum up, in dent border points a zero-eigenvalue of the Hessian of gα

occurs.

Definition 7 (Simple dent border point/preimage)
Let P ⊆ S be the Pareto set of an at least twice continuously differentiable

multiobjective optimization problem F : Rn → R
k and let PF = F (P ) be the

Pareto front. Let y�
b ∈ PF be a dent border point and let x�

b ∈ P be a dent
border preimage of y�

b .
Then, y�

b is called a simple dent border point if the zero eigenvalue of the
Hessian g′′

α(x�
b) is simple. In this case, x�

b is called a simple dent border preimage.

Fig. 4. Pareto front and dent points (black) for Example 1
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Example 1 (Computation of dents)
Consider the bi-objective optimization problem defined by the two objectives

f1(x, λ) =
1
2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 + x1 − x2) + λ · e−(x1−x2)
2

f2(x, λ) =
1
2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 − x1 + x2) + λ · e−(x1−x2)
2

with a fixed value λ = 0.6 and x = (x1, x2). Then, the Pareto set can be
approximated e. g. by use of the set-oriented techniques.

The algorithm returns a set of boxes that covers the Pareto set. Within
these boxes, a number of test points is evaluated, the best of which are in the
following considered as the Pareto set. By solving the Kuhn-Tucker equations of
F = (f1, f2) for each of these points, the corresponding weight vectors α ∈ R

k

can be computed. Then, the eigenvalues of the Hessians of the weighted sums of
the objectives are determined. All points x, in which both eigenvalues > 0 and
eigenvalues < 0 exist, are dent preimages. The Pareto front and the resulting
dent points for this example are visualized in Fig. 4.

4 Evolution of Dents in Parameter-Dependent Pareto
Fronts

In the previous section dents in Pareto fronts have been defined motivated by
the fact that these points cannot be computed by the weighted sums method .
Also, dent border points have been defined. When considering parametric mul-
tiobjective optimization problems, naturally the question arises, how dents and
especially dent border points evolve. The Kuhn-Tucker Eq. (3) provide a neces-
sary condition for Pareto optimality. Within this section this parametric system
of equations will be analyzed in order to obtain results about the local behavior
of parameter-dependent Pareto fronts.

Solutions of parametric systems of equations have already been widely stud-
ied in bifurcation theory. The first part of this section deals with the study of
properties of dent border points. It will be proven that under certain assump-
tions dent border preimages are turning points of the Kuhn-Tucker equations.
In the second part of this section, several numerical examples for parametric
multiobjective optimization problems in which dents occur are given.

Within this section it is assumed that the objective functions are at least
twice continuously differentiable. Only points x ∈ Pλ are considered for which the
corresponding weight vector α is an element of (0, 1)k. Define Hα

KT : Rn×R → R
n

by

Hα
KT(x, λ) =

k∑

i=1

αi∇xfi(x, λ).
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4.1 Properties of Dent Border Points

First, it will be shown that dent border preimages can be characterized as certain
turning points of the Kuhn-Tucker equations

Proposition 1. Let Pλ ⊆ Sλ be the Pareto set of a parametric multi-
objective optimization problem min F : R

n × R → R
k with F (x, λ) =

(f1(x, λ), . . . , fk(x, λ))T . Let x� ∈ Pλ� be a simple dent border preimage. Let
α� denote the weight vector corresponding to x� and assume that the Jacobian
Hα�

KT

′
(x, λ) has full rank.

Then, (x�, λ�) is a turning point of Hα�

KT(x, λ) with respect to λ.

Proof. It has been shown in [16] (see also Sect. 3) that dent border preim-
ages x� are solutions of the Kuhn-Tucker equations Hα�

KT(x�, λ�) = 0 in which
∂2

∂x2 gα�(x�, λ�) is singular. Thus, there exists an eigenvector φ� of ∂2

∂x2 gα�(x�, λ�)
with (

∂2

∂x2
gα�(x�, λ�)

)
φ� = 0. (4)

From the assumption that the dent border preimage is simple, i. e. exactly one
eigenvalue of ∂2

∂x2 gα�(x�, λ�) equals zero (cf. Definition 7), it directly follows that

dim ker
(

∂2

∂x2
gα�(x�, λ�)

)
= 1. (5)

As Hα
KT(x, λ) = ∇xgα(x, λ), and thus

∂

∂x
Hα

KT(x, λ) =
∂

∂x
(∇xgα(x, λ)) =

∂2

∂x2
gα(x, λ),

(4) is equivalent to
∂

∂x
Hα�

KT(x�, λ�)ϕ� = 0

and (5) is the same as

dim ker
(

∂

∂x
Hα�

KT(x�, λ�)
)

= 1.

Thus, property (i) of Definition 4 is proven for H(x, λ) = Hα�

KT(x, λ).
Property (ii) of Definition 4 directly follows from the assumption that the

Jacobian Hα�

KT

′
(x, λ) has full rank, i. e. rank n: if the vector ∂

∂λHKTα�

(x�, λ�)
were in the image of the n×n-matrix ∂

∂xHα�

KT(x�, λ�), then the rank of the Jaco-
bian Hα�

KT

′
(x, λ) were n − 1, in contradiction to the assumption. Thus, it has to

be true that
(

∂
∂λHα�

KT(x�, λ�)
)

/∈ im ∂
∂xHα�

KT(x�, λ�).

To sum up, both properties given in Definition 4 are satisfied, and thus
(x�, λ�) is a turning point of Hα�

KT(x, λ) with respect to λ. ��
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Remark 2. Using the notation of the proof of Proposition 1 one observes that the
matrix ∂

∂xHα�

KT is symmetric, as it is the Hessian of the weighted sums function
gα. Thus, ψ� = (φ�)T is a left eigenvector of ∂

∂xHα�

KT(x�, λ�). It follows that, if
additionally to (i) and (ii) of Definition 4

(φ�)T

(
∂2

∂x2
Hα�

KT(x�, λ�)
)

φ�φ� 
= 0,

then (x�, λ�) is a simple turning point of Hα�

KT(x, λ) with respect to λ.

To sum up, a dent border preimage can be obtained by solving the system
of equations

Hα�

KT(x, λ) = 0
∂

∂x
Hα�

KT(x, λ) · φ = 0 (6)

lT φ − 1 = 0

with an arbitrary but fixed vector l ∈ R
n which satisfies lT φ� 
= 0 and has non-

zero entries, and x, φ ∈ R
n, λ ∈ R. In the literature, this system of equations is

also called the extended system of Hα�

KT(x, λ) (cf. [21]).

Remark 3. A family of dent border preimages can be obtained by solving

∇xgα(x, λ) = 0
k∑

i=1

αi − 1 = 0

∂2

∂x2
gα(x, λ) · φ = 0 (7)

lT φ − 1 = 0

with an arbitrary fixed vector l ∈ R
n which satisfies lT φ� 
= 0 and has non-zero

entries, x, φ ∈ R
n, λ ∈ R and α ∈ R

k with αi > 0 ∀i = 1, . . . , k.

4.2 Numerical Examples

In the following, several new examples for parametric multiobjective optimiza-
tion problems are presented and its construction is motivated. The examples
all have in common that the corresponding Pareto fronts contain dents for spe-
cific values of the external parameter λ. Moreover, under the variation of λ,
dents originate or vanish (cf. Examples 2 and 4), or dents double or merge
(cf. Example 3).
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Example 2. We again consider the bi-objective optimization problem defined by
the two objectives

f1(x1, x2, λ) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 + x1 − x2) + λ · e−(x1−x2)
2

f2(x1, x2, λ) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 − x1 + x2) + λ · e−(x1−x2)
2

which we have already seen in Example 1.
Before we are going to examine this example numerically, it is worthwhile

to note that it can be understood geometrically and/or analytically. To see the
picture, we can use the vectors q = (1, 1)T and q⊥ = (1,−1)T as a basis of R2

and new coordinates u1 = x1 + x2 and u2 = x1 − x2, so that for x = (x1, x2)T

we have x = 1/2 · (u1 · q + u2 · q⊥). Then we can write the objective as

F (u1, u2, λ) =
(

1
2

·
(√

1 + u2
1 +

√
1 + u2

2

)
+ λ · e−u2

2

)
· q + u2 · q⊥

=
1
2

·
√

1 + u2
1 · q

︸ ︷︷ ︸
=:F 1(u1)

+
(

1
2

·
√

1 + u2
2 + λ · e−u2

2

)
· q + u2 · q⊥

︸ ︷︷ ︸
=:F 2(u2,λ)

This means the q⊥-component of F (u1, u2, λ) is simply u2 · q⊥, while the q-
component is a sum of three terms, two of which are functions of u2 only, and
only one of which depends on λ. Now an easy computation shows that the q-
component of F 2 is a convex function for λ < 1/4 and that it has a non-convex
part around u2 = 0 for λ > 1/4. This is the reason for the generation of a dent
in the Pareto front. To see this, observe that the image of F 2 determines the
form of the boundary of the image of F , as the F1 term adds a component in
positive q-direction only, i.e. a component that moves the image “further inside”
the positive quadrant of R2, and has its minimum for u1 = 0. Thus by adjusting
the value of λ, we can control whether the boundary of the image of F is given
by a convex function, that is, whether the Pareto front has a dent or not.

In Fig. 5 the Pareto sets of these two objectives for (x1, x2) ∈ [−1.3, 1.3]2

are plotted for different values of the external parameter λ: for λ = 0 (green),
λ = 0.2 (gray), λ = 0.4 (light blue), λ = 0.6 (cyan), and for λ = 0.8 (magenta).
We see that they are all part of the line given by u1 = 0.

In the same figure, an example for a λ-dependent solution path of the Kuhn-
Tucker equations with a fixed weight vector α� ≈ (0.25, 0.75) which corresponds
to the dent border preimage (x�

1, x
�
2) ≈ (−0.28, 0.28) of the dent border point

(y�
1 , y

�
2) ≈ (1.23, 1.79), located on the Pareto front for λ� = 0.6, is visualized

for λ ∈ [0, 1] (black paths). The paths have been computed with the help of
the software package AUTO2000 [7]. As one can observe, y� is indeed a simple
turning point of Hα�

KT(x, λ) with respect to λ. Figure 6 shows the same results in
objective space. Here one clearly observes that the Pareto front does not have a
dent for λ < 0.25 and does have a dent for λ > 0.25.

In Fig. 7 the entire curve of dent border points in objective space is plotted.
To compute this λ-dependent solution curve (red), again the software pack-
age AUTO2000 has been used. One can observe that the point (y�

1 , y
�
2 , λ

�) =
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Fig. 5. Visualization of some Pareto sets and the solution curve of Hα�

KT(x, λ) = 0
(black) for the dent border preimage x� (red) for Example 2

Fig. 6. Visualization of some Pareto fronts and the image of the solution curve of
Hα�

KT(x, λ) = 0 (black) for a dent border point y� (red) for Example 2

(1.25, 1.25, 0.25) (with the corresponding weight vector α� = (0.5, 0.5)), marked
by a black dot, is specific: in this point a dent originates, i. e. for λ < λ� the
Pareto front contains no dent whereas for λ > λ� a dent is contained in the
Pareto front.
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Fig. 7. Some Pareto fronts, the curve of dent border points (red) and the point in
which the dent originates (black dot) for Example 2

In Fig. 8 the solutions of Hα�

KT(x, λ) = 0 with α� = (0.5, 0.5), i. e. the λ-
dependent path containing the specific point in which a non-dent point changes
into a dent point, are visualized for λ ∈ [0, 1]. One can observe that a pitchfork
bifurcation3 occurs in this point. Figure 9 shows the same results in objective
space.

Example 3. Consider the bi-objective optimization problem defined by the two
objectives

f1(x1, x2, λ) =
√

1 + x2
1 +

√
1 + x2

2 + e−(x2−λ)2 + e−(x2+λ)2 − x2

f2(x1, x2, λ) =
√

1 + x2
1 +

√
1 + x2

2 + e−(x2−λ)2 + e−(x2+λ)2 + x2.

Using the same notation as in Example 2, we can write the objective as

F (x1, x2, λ) =
√

1 + x2
1 · q +

(√
1 + x2

2 + e−(x2−λ)2 + e−(x2+λ)2
)

· q + x2 · q⊥

︸ ︷︷ ︸
=:F 2(x2,λ)

and apply a similar analysis. Here the q-component of F 2 is non-convex for every
λ (in fact, for λ = 0 we have the same situation as for λ = 1 in Example 2),

3 The definition and statements about properties of pitchfork bifurcations can be found
in [13] and [26], for example.
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Fig. 8. Visualization of some Pareto sets and the λ-dependent solution curve of
Hα�

KT(x, λ) = 0 with α� = (0.5, 0.5) (black) for Example 2

Fig. 9. Visualization of some Pareto fronts and the image of the solution curve of
Hα�

KT(x, λ) = 0 with α� = (0.5, 0.5) (black) for Example 2

and a variation of λ results in the movement of the “peaks” of the exponential
terms. Thus we obtain, for |λ| sufficiently large, two separate non-convex parts
of the q-component of F 2, while there is only one non-convex part for λ = 0.
Correspondingly, one dent in the Pareto front for λ = 0 will split into two dents
for a larger value of λ.
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Fig. 10. Pareto fronts for the multiobjective optimization problem given in Example
3 for different values of λ

In Fig. 10 the Pareto fronts which result from the minimization of these two
objectives are plotted for different values of λ. As one can observe the Pareto
front contains one dent for λ = 0.4, for example. Under the variation of λ
it changes into two dents (cp. for instance λ = 0.8). In between, there is a
specific point in which the dent splits up into two dents, which is given by
(x1, x2, λ) ≈ (0, 0, 0.5716) with the corresponding weight vector α� = (0.5, 0.5).
In Fig. 11 the solutions of the Kuhn-Tucker equations for the fixed weight vector
α� = (0.5, 0.5) are sketched. One can observe that in the point where the dent
splits up into two dents a pitchfork bifurcation occurs.

Example 4. Consider the three-objective optimization problem defined by the
following three objectives

f1(x1, x2, x3, λ) =
√

1 + x2
1 +

√
1 + x2

2 +
√

1 + x2
3 + λ · e−(x2

2+x2
3) +

√
2x2

f2(x1, x2, x3, λ) =
√

1 + x2
1 +

√
1 + x2

2 +
√

1 + x2
3 + λ · e−(x2

2+x2
3) −

√
2

2
x2 +

√
3

2
x3

f3(x1, x2, x3, λ) =
√

1 + x2
1 +

√
1 + x2

2 +
√

1 + x2
3 + λ · e−(x2

2+x2
3) −

√
2

2
x2 −

√
3

2
x3.
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Fig. 11. Pareto fronts and solutions of the Kuhn-Tucker equations for α� = (0.5, 0.5)
in (f1, f2, λ)-space for Example 3

In this case, the analysis is somewhat more complicated. Using the vector q =
(1, 1, 1)T , we can write

F (x1, x2, x3, λ) =

(√
1 + x2

1 +
√

1 + x2
2 +

√
1 + x2

3 + λ · e−(x2
2+x2

3) −
√

2

3
· x2

)
· q

+

⎛

⎜⎜
⎝

8

3
√
2

0

− 4

3
√
2

√
3
2

− 4

3
√
2

−
√

3
2

⎞

⎟⎟
⎠

︸ ︷︷ ︸
=:q⊥

·
(

x2

x3

)

where, similarly to Examples 2 and 3, the matrix q⊥ spans the orthogonal com-
plement to q. Thus we see that again the q-component of F consists of a convex
function independent of λ and a λ-dependent non-convex term that introduces
a dent into the Pareto front for sufficiently large values of λ.

Figure 12 shows the Pareto fronts which result when minimizing these three
objectives for x ∈ [−2, 2]3 for different values of λ. One can observe that under
the variation of λ a dent originates.

Remark 4. It has been observed in Examples 2 and 3 that pitchfork bifurcations
occur in those points where – under the variation of λ – a dent originates in
the Pareto front PFλ, or a dent splits up into two dents, respectively. Pitchfork
bifurcations typically occur if the system of equations H(x, λ) = 0, in our case
Hα�

KT(x, λ) = 0, includes a symmetry of the form

H(Sx, λ) = SH(x, λ), (Z2)
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Fig. 12. Pareto fronts for the multiobjective optimization problem given in Example
4 for different values of the parameter λ

where S is a suitable symmetry matrix with S 
= 1 and S2 = 1 (cf. [26]).
In the examples mentioned above, indeed symmetries occur. The Kuhn-

Tucker equations of the objective functions given in Example 2 have a Z2-
symmetry for α� = (0.5, 0.5). In this case, possible symmetry matrices are given
as

S1 =
(

0 1
1 0

)
and S2 =

(−1 0
0 −1

)
.

The Kuhn-Tucker equations of the objective functions given in Example 3
satisfy the symmetry condition (Z2) with

S1 =
(

1 0
0 −1

)
if α� = (0.5, 0.5), and

S2 =
(−1 0

0 1

)
independent of the weight vector α.
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The Kuhn-Tucker equations for the objective functions given in Example 4
also satisfy the symmetry condition (Z2) with

S =

⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠

for arbitrary weight vectors α�.

5 Conclusion and Outlook

In this work the occurrence of dents in Pareto fronts has been studied. A formal
definition of a dent has been introduced. Points at the border of a (complete)
dent have a significant property. In these points a zero eigenvalue of the Hes-
sian of the weighted sum of the objectives occurs. Thus, dent border points are
solutions of a certain system of equations. Given a sufficiently smooth multi-
objective optimization problem it is possible to find out if dent border points,
and thus also possibly dents, occur in the Pareto front by solving this system
of equations. Consequently, information about the geometry of the Pareto front
can be obtained without computing the entire Pareto set. This information can
for example serve as a criterion for the choice of the algorithm one wants to use
for solving the multiobjective optimization problem.

Based on theoretical results from bifurcation theory, parameter-dependen-
cies in multiobjective optimization problems have been studied in this chapter.
It has been proven that dent border points are turning points of the Kuhn-Tucker
equations with a fixed weight vector corresponding to the dent border point.

Several examples for parametric multiobjective optimization problems have
been constructed in which dents occur. It is still an open question what happens
if a dent originates or vanishes under the variation of the external parameter.
The examples given at the end of Sect. 4 lead to the conjecture that in this
case pitchfork bifurcations of the Kuhn-Tucker equations occur. However, the
theoretical analysis of this statement has to be addressed in future work.
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