
From Bellman to Dijkstra: Set-Oriented
Construction of Globally Optimal

Controllers

Lars Grüne1 and Oliver Junge2(B)

1 Mathematical Institute, University of Bayreuth, Bayreuth, Germany
lars.gruene@uni-bayreuth.de

2 Department of Mathematics, Technical University of Munich, Munich, Germany
oliver.junge@tum.de

An optimal policy has the property that
whatever the initial state and initial
decision are, the remaining decisions must
constitute an optimal policy with regard to
the state resulting from the first decision.

Richard Bellman, 1957

Abstract. We review an approach for discretizing Bellman’s optimality
principle based on piecewise constant functions. By applying this ansatz
to a suitable dynamic game, a discrete feedback can be constructed which
robustly stabilizes a given nonlinear control system. Hybrid, event and
quantized systems can be naturally handled by this construction.

1 Introduction

Whenever the state of some dynamical system can be influenced be repeatedly
applying some control (“decision”) to the system, the question might arise how
the sequence of controls – the policy – can be chosen in such a way that some
given objective is met. For example, one might be interested in steering the
system to an equilibrium point, i.e. to stabilize the otherwise unstable point. In
many contexts, the application of some control comes at some cost (fuel, money,
time, . . . ) which then is accumulated over time. Typically, one is interested in
meeting the given objective at minimal accumulated cost. This is the context of
Richard Bellman’s famous quote which already hints at how to solve the problem:
One can recursively construct an optimal sequence of controls backwards in time
by starting at the/some final state. It just so happens that this is also the idea
of Edsger Dijkstra’s celebrated algorithm for finding shortest paths in weighted
directed graphs.

At the core, this procedure requires one to store the minimal accumulated
cost at each state, the value function. According to the recursive construction
c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
O. Junge et al. (Eds.): SON 2020, SSDC 304, pp. 265–294, 2020.
https://doi.org/10.1007/978-3-030-51264-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51264-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-51264-4_11


266 L. Grüne and O. Junge

of the sequence of optimal controls, the value function satisfies a recursion, i.e.
a fixed point equation, the Bellman equation. From the value function at some
state, the optimal control associated to that state can be recovered by solving a
static optimization problem. This assignment defines a function on (a subset of)
the states into the set of all possible control values and so the state can be fed
back into the system, yielding a dynamical system without any external input.
By construction, the accumulated cost along some trajectory of this closed loop
system will be minimal.

In the case of a finite state space (with a reasonable number of states),
storing the value function is easy. In many applications from, e.g., the engineering
sciences, however, the state space is a subset of Euclidean space and thus the
value function a function defined on a continuum of states. In this case, the
value function typically cannot be represented in a closed form. Rather, some
approximation scheme has to be decided upon and the value function (and thus
the feedback) has to be approximated numerically.

In this chapter, we review contributions by the authors developing an approach
for approximating the value function and the associated feedback by piecewise
constant functions. This may seem like a bad idea at first, since in general one
would prefer approximation spaces of higher order. However, it turns out that this
ansatz enables an elegant solution of the discretized problem by standard shortest
path algorithms (i.e. Dijkstra’s algorithm). What is more, it also enables a unified
treatment of system classes which otherwise would require specialized algorithms,
like hybrid systems, event systems or systems with quantized state spaces.

As is common for some discretization, the discrete value function does not
inherit a crucial property of the true one: In general, it does not decrease mono-
tonically along trajectories of the closed loop system. In other words, it does not
constitute a Lyapunov function of the closed loop system. As a consequence, the
associated feedback may fail to stabilize some initial state. This deficiency can be
cured by considering a more general problem class, namely a system which can
be influenced by two independent controls – a dynamic game. In particular, if the
second input is interpreted as some perturbation induced by the discretization,
a discrete feedback results which retains the Lyapunov function property.

On the other hand, as any construction based on the Bellman equation,
or more generally as any computational scheme which requires to represent a
function with domain in some Euclidean space, our construction is prone to the
curse of dimension (a term already coined by Bellman): In general, i.e. unless
some specialized approximation space is employed, the computational cost for
storing the value function grows exponentially in the dimension of state space.
That is, in practice, our approach is limited to systems with a low dimensional
state space (i.e. of dimension ≤4, say).

2 Problem Formulation

We are given a control system in discrete time

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , (1)



From Bellman to Dijkstra 267

where xk ∈ X is the state of the system, uk ∈ U is the control input and
wk ∈ W is some external perturbation. We are further given an instantaneous
cost function g which assigns the cost

g(xk, uk) ≥ 0

to any transition xk �→ f(xk, uk, w), w ∈ W .
Our task is to globally and optimally stabilize a given target set T ⊂ X by

constructing a feedback u : S → U , S ⊂ X, such that T is an asymptotically
stable set for the closed loop system

xk+1 = f(xk, u(xk), wk), k = 0, 1, . . . (2)

with x0 ∈ S for any sequence (wk)k of perturbations and such that the accumu-
lated cost

∞∑

k=0

g(xk, u(xk)) (3)

is minimal.

System Classes. Depending on the choice of the spaces X,U and W and the
form of the map f , a quite large class of systems can be modelled by (1). Most
generally, X,U and W have to be compact metric spaces – in particular, they
may be discrete. Common examples which will also be considered later, include

• sampled-data systems: X,U and W are compact subsets of Euclidean space,
f is the time-T -map of the control flow of some underlying continuous time
control system and g typically integrates terms along the continuous time
solution over one sampling interval;

• hybrid systems: X = Y × D, where Y ⊂ R
n compact and D is finite, U and

W may be continuous (compact) sets or finite (cf. Sect. 8);
• discrete event systems: f may be chosen as a (generalized) Poincaré map (cf.

Sect. 8).
• quantized systems: The feedback may receive only quantized information on

the state x, i.e. x is projected onto a finite subset of X before u is evaluated
on this quantized state.

3 The Optimality Principle

The construction of the feedback law u will be based on a discretized version of
the optimality principle. In order to convey the basic idea more clearly, we start
by considering problem (1) without perturbations, i.e.

xk+1 = f(xk, uk), k = 0, 1, . . . (4)

and assume that X ⊂ R
d and U ⊂ R

m are compact, 0 ∈ X and 0 ∈ U . We further
assume that 0 ∈ X is a fixed point of f( · , 0), i.e. f(0, 0) = 0, constituting our



268 L. Grüne and O. Junge

target set T := {0}, that f : X ×U → X and g : X ×U → [0,∞) are continuous,
that g(0, 0) = 0 and infu∈U g(x, u) > 0 for all x 	= 0.

For a given initial state x0 ∈ X and a given sequence u = (u0, u1, . . .) ∈ UN

of controls, there is a unique trajectory x(x0,u) = (xk(x0,u))k∈N of (4). For
x ∈ X, let

U(x) = {u ∈ UN : xk(x,u) → 0 as k → ∞}
denote the set of stabilizing control sequences and

S = {x ∈ X : U(x) 	= ∅}
the stabilizable subset of X. The accumulated cost along some trajectory x(x0,u)
is given by

J(x0,u) =
∞∑

k=0

g(xk(x0,u), uk). (5)

Note that this series might not converge for some (x0,u). The least possible
value of the accumulated cost over all stabilizing control sequences defines the
(optimal) value function V : X → [0,∞],

V (x) = inf
u∈U(x)

J(x,u) (6)

of the problem. Let S0 := {x ∈ X : V (x) < ∞} be the set of states in which the
value function is finite. Clearly, S0 ⊂ S. On S0, the value function satisfies the
optimality principle [2]

V (x) = inf
u∈U

{g(x, u) + V (f(x, u))} . (7)

The right hand side

L[v](x) := inf
u∈U

{g(x, u) + v(f(x, u))}

of (7) defines the Bellman operator L on real valued functions on X. The value
function V is the unique fixed point of L satisfying the boundary condition
V (0) = 0.

Using the value function V , one can construct the feedback u : S0 → U ,

u(x) := argmin
u∈U

{g(x, u) + V (f(x, u))} , (8)

whenever this minimum exists. Obviously, V then satisfies

V (x) ≥ g(x, u(x)) + V (f(x, u(x))), (9)

for x ∈ S0, i.e. the optimal value function is a Lyapunov function for the closed
loop system on S0 (provided that V is continuous at T = {0}1) – and this
guarantees asymptotic stability of T = {0} for the closed loop system. By con-
struction, this feedback u is also optimal in the sense that the accumulated cost
J is minimized along any trajectory of the closed loop system.
1 This property can be ensured by suitable asymptotic controllability properties and

bounds on g.



From Bellman to Dijkstra 269

4 A Discrete Optimality Principle

In general, the value function (resp. the associated feedback) cannot be deter-
mined exactly and some numerical approximation has to be sought. Here, we
are going to approximate V by functions which are piecewise constant on some
partition of X. This approach is motivated by the fact that the resulting discrete
problem can be solved efficiently and that, via a generalization of the framework
to perturbed systems in Sect. 5 the feedback is also piecewise constant and can
be computed offline.

Let P be a finite partition of the state space X, i.e. a finite collection of
pairwise disjoint subsets of X whose union covers X. For x ∈ X, let π(x) ∈ P

denote the partition element that contains x. In what follows, we identify any
subset {P1, . . . , Pk} of P with the corresponding subset

⋃
i=1,...k Pi of X.

Let R
P ⊂ R

X = {v : X → R} be the subspace of real valued functions on X
which are piecewise constant on the elements of P. Using the projection

ψ[v](x) := inf
x′∈π(x)

v(x′), (10)

from R
X onto R

P, we define the discretized Bellman operator

LP := ψ ◦ L.

Again, this operator has a unique fixed point VP satisfying the boundary condi-
tion VP(0) = 0, which will serve as an approximation to the exact value function
V .

Explicitely, the discretized operator reads

LP[v](x) = inf
x′∈π(x)

{
inf
u∈U

{g(x′, u) + v(f(x′, u))}
}

.

and VP satisfies the optimality principle

VP(x) = inf
x′∈π(x),u∈U

{g(x′, u) + VP(f(x′, u))} . (11)

Recalling that VP is constant on each element P of the partition P, we write
VP(P ) in order to denote the value VP(x) for some x ∈ P . We can rewrite (11)
as

VP(x) = min
P

inf
(x′,u)

{g(x′, u) + VP(P )} (12)

where the min is taken over all P ∈ P for which P ∩ f(π(x), U) 	= ∅ and the
inf over all pairs x′ ∈ π(x), u ∈ U such that f(x′, u) ∈ P . Now define the
multivalued map F : P ⇒ P,

F(P ) = {P ′ ∈ P : P ′ ∩ f(P,U) 	= ∅} (13)



270 L. Grüne and O. Junge

and the cost function G : P × P → [0,∞),

G(P, P ′) = inf
u∈U

{g(x, u) | x ∈ P, f(x, u) ∈ P ′}. (14)

Equation (12) can then be rewritten as

VP(P ) = min
P ′∈F(P )

{G(P, P ′) + VP(P ′)}.

Graph Interpretation. It is useful to think of this reformulation of the discrete
optimality principle in terms of a directed weighted graph GP = (P, EP). The
nodes of the graph are given by the elements of the partition P, the edges are
defined by the map F: there is an edge (P, P ′) ∈ EP whenever P ′ ∈ F(P )
and the edge e = (P, P ′) is weighted by G(e) := G(P, P ′), cf. Fig. 1. In fact,
the value VP(P ) is the length G(p) :=

∑m
k=1 G(ek) of the shortest path p =

(e1, . . . , em) from P to the element π(0) containing 0 in this graph. As such, it can
be computed by (e.g.) the following algorithm with complexity O(|P| log(|P|) +
|E|):

Fig. 1. Partition of phase space, image of an element (left) and corresponding edges in
the induced graph (right).

Algorithm Dijkstra [5]

for each P ∈ P: V (P ) := ∞; V (π(0)) := 0; Q := P

while Q 	= ∅
P := argminP ′∈Q V (P ′)
Q := Q\{P}
for each Q ∈ P with (Q,P ) ∈ EP

if V (Q) > G(Q,P ) + V (P ) then
V (Q) := G(Q,P ) + V (P )

�
The time complexity of this algorithm depends on the data structure which

is used in order to store the set Q. In our implementation we use a binary heap
which leads to a complexity of O((|P| + |E|) log |P|). This can be improved to
O(|P| log |P| + |E|) by employing a Fibonacci heap.



From Bellman to Dijkstra 271

A similar idea is at the core of fast marching methods [16,18] and ordered
upwind methods [17].

Implementation. We use the approach from [3,4] as implemented in GAIO
in order to construct a cubical partition of X, stored in binary tree. For the
construction of the edges and their weights, we use a finite set of sample points
Ũ ⊂ U and P̃ ⊂ P for each P ∈ P and compute the approximate image

F̃(P ) = {P ′ ∈ P : P ′ ∩ f(P̃ , Ũ) 	= ∅}, (15)

so that the set of edges is approximately given by all pairs (P, P ′) for which
P ′ ∈ F̃(P ). Correspondingly, the weight of the edge (P, P ′) is approximated by

G̃(P, P ′) = min
(x,u)∈P̃×Ũ

{g(x, u) | f(x, u) ∈ P ′}.

This construction of the graph via the mapping of sample points indeed consti-
tutes the main computational effort in computing the discrete value function. It
might be particularly expensive if the control system f is given by the control
flow of a continuous time system. Note, however, that a sampling of the sys-
tem will be required in any method that computes the value function. In fact, in
standard methods like value iteration, the same point might be sampled multiple
times (in contrast to the approach described here).

Certainly, this approximation of the box images introduces some error, i.e.
one always has that F̃(P ) ⊂ F(P ), but typically F(P ) � F̃(P ). In experiments,
one often increases the number of sample points until the result of the com-
putation stabilizes. Alternatively, in the case that one is interested in a rigor-
ous computation, either techniques based on Lipschitz estimates [13] or interval
arithmetic [19] can be employed.

Example 1 (A simple 1D system). Consider the system

xk+1 = xk + (1 − a)ukxk, k = 0, 1, . . . , (16)

where xk ∈ X = [0, 1], uk ∈ U = [−1, 1] and a ∈ (0, 1) is a fixed parameter. Let

g(x, u) = (1 − a)x,

such that the optimal control policy is to steer to the origin as fast as possible,
i.e. for every x, the optimal sequence of controls is (−1,−1, . . .). This yields
V (x) = x as the value function.

For the experiment, we consider a = 0.8 and use partitions of equally sized
subintervals of [0, 1]. The edge weights (14) are approximated by minimizing
over 100 equally spaced sample points in each subinterval and 10 equally spaced
points in U . Figure 2 shows the exact and two discrete value functions, resulting
from running the code in Fig. 3 in Matlab (requires the GAIO toolbox2).

2 Available at http://www.github.com/gaioguy/gaio.

http://www.github.com/gaioguy/gaio
http://www.github.com/gaioguy/gaio
http://www.github.com/gaioguy/gaio


272 L. Grüne and O. Junge

Fig. 2. Exact (red) and discrete value functions for the simple example on partitions
of 64 (black) and 1024 (blue) intervals.

Fig. 3. Code: value function for a simple 1d system.

4.1 The Discrete Value Function

Proposition 1 [14]. For every partition P of X, VP(x) ≤ V (x) for all x ∈ X.

Proof. The statement obviously holds for x ∈ X with V (x) = ∞. So let x ∈ S0,
i.e. V (x) < ∞. For arbitrary ε > 0, let u = (u0, u1, . . .) ∈ U(x) be a control
sequence such that J(x,u) < V (x)+ ε and (xk(x,u))k the associated trajectory
of (4). Consider the path

(e1, . . . , em), ek = (π(xk−1), π(xk)), k = 1, . . . , m,



From Bellman to Dijkstra 273

where x = x0 and and m is minimal with xm ∈ π(0). The length of this path is
m∑

k=1

G(ek) =
m∑

k=1

inf
u∈U

{g(x, u) | x ∈ π(xk−1), f(x, u) ∈ π(xk)}

≤
m∑

k=1

g(xk−1, uk−1) ≤
∞∑

k=1

g(xk−1, uk−1) = J(x,u),

yielding the claim. �
This property immediately yields an efficient aposteriori error estimate for VP:
For x ∈ S0 consider

e(x) = inf
u∈U

{g(x, u) + VP(f(x, u))} − VP(x). (17)

Note that e(x) ≥ 0. Since

V (x) − VP(x) = inf
u∈U

{g(x, u) + V (f(x, u))} − VP(x)

≥ inf
u∈U

{g(x, u) + VP(f(x, u))} − VP(x) = e(x),

we obtain

Proposition 2. The function e : S0 → [0,∞) is a lower bound on the error
between the true value function V and its approximation VP:

e(x) ≤ V (x) − VP(x), x ∈ S0.

Now consider a sequence (P(�))�∈N of partitions of X which is nested in the sense
that for all � and every P ∈ P(�+1) there is a P ′ ∈ P(�) such that P ⊂ P ′. For
the next proposition recall that S ⊂ X is the set of initial conditions that can
be asymptotically controlled to 0.

Proposition 3 [14]. For fixed x ∈ S, the sequence (VP(�)(x))�∈N is monotoni-
cally increasing.

Proof. For x ∈ S, the value VP(�)(x) is the length of a shortest path p =
(e1, . . . , em), ek ∈ EP(�) , connecting π(x) to π(0) in P(�). Suppose that the claim
was not true, i.e. for some � there are shortest paths p in GP(�) and p′ in GP(�+1)

such that G(p′) < G(p). Using p′, we are going to construct a path p̃ in GP(�)

with G(p̃) < G(p), contradicting the minimality of p: Let p′ = (e′
1, . . . , e

′
m′), with

e′
k = (P ′

k−1, P
′
k) ∈ EP(�+1) . Hence, f(P ′

k−1, U) ∩ P ′
k 	= ∅, for k = 1, . . . , m′. Since

the partitions P(�) are nested, there are sets P̃k ∈ P(�) such that P ′
k ⊂ P̃k for

k = 0, . . . , m′. Thus, f(P̃k−1, U)∩ P̃k 	= ∅, i.e. ẽk = (P̃k−1, P̃k) is an edge in EP(�)

and p̃ = (ẽ1, . . . , ẽm′) is a path in GP(�) . Furthermore, for k = 1, . . . , m′,

G(ẽk) = inf
u∈U

{g(x, u) | x ∈ P̃k−1, f(x, u) ∈ P̃k}
≤ inf

u∈U
{g(x, u) | x ∈ P ′

k−1, f(x, u) ∈ P ′
k} = G(e′

k).

This yields G(p̃) ≤ G(p′) < G(p), contradicting the minimality of p. �



274 L. Grüne and O. Junge

So far we have shown that for every x ∈ S we have a monotonically increasing
sequence (VP(�)(x))�∈N, which is bounded by V (x) due to Proposition 1. The
following theorem states that for points x ∈ S the limit is indeed V (x) if the
maximal diameter of the partition elements goes to 0. For some finite partition
P of X, let diam(P) := maxi diam(Pi) be the diameter of the partition P.

Theorem 1 [14]. If diam(P(�)) → 0 then VP(�)(x) → V (x) as � → ∞ for all
x ∈ S.

4.2 The Discrete Feedback

Recall that an optimally stabilizing feedback can be constructed using the (exact)
value function for the problem (cf. (8)). We will use this idea, replacing V by its
approximation VP: using Ũ from (15)3, for x ∈ S we define

uP(x) := argmin
u∈Ũ

{g(x, u) + VP(f(x, u))} (18)

(the minimum exists because Ũ is a finite set) and consider the closed loop
system

xk+1 = f(xk, uP(xk)), k = 0, 1, . . . . (19)

The following theorems state in which sense this feedback is stabilizing and
approximately optimal. Let again (P(�))�∈N be a nested sequence of partitions of
X and D ⊆ S, 0 ∈ D, an open set with the property that for each ε > 0 there
exists �0(ε) > 0 such that

max
x∈D

|V (x) − VP(�)(x)| ≤ ε, for � ≥ �0(ε).

Let further c > 0 be the largest value such that

V −1
P(1)([0, c]) ⊂ D.

Note that by Proposition 3 this implies that V −1
P(�)([0, c]) ⊂ D for all � ∈ N.

Theorem 2 [7]. Under the assumptions above, there exists ε0 > 0 and a func-
tion δ : R → R with limα→0 δ(α) = 0, such that for all ε ∈ (0, ε0], all � ≥ �0(ε/2),
all η ∈ (0, 1) and all x0 ∈ V −1

P(�)([0, c]) the trajectory (xk)k generated by the closed
loop system (19) with feedback uP(�) satisfies

V (xk) ≤ max

⎧
⎨

⎩V (x0) − (1 − η)
k−1∑

j=0

g(xj , uP(�)(xj)), δ(ε/η) + ε

⎫
⎬

⎭ .

3 The subsequent statements remain true if we replace Ũ by any set ̂U ⊂ U with
Ũ ⊂ ̂U for which the argmin in (18) exists.



From Bellman to Dijkstra 275

This apriori estimate shows in which sense the feedback uP approximately
yields optimal performance. However, the theorem does not give information
about the partition P which is needed in order to achieve a desired level of
accuracy. This can be achieved by employing the error function e from above.

Consider some partition P of X. Let g0(x) := infu∈U g(x, u) and Cε(P) :=
{x ∈ V −1

P ([0, c] | g0(x) ≤ ε} and define δ(ε) := supx∈Cε
V (x). Note that if V is

continuous at T = {0} then δ(ε) → 0 as ε → 0 because Cε(P) shrinks down to
0 since g and thus g0 are continuous.

Theorem 3 [7]. Assume that for some ε > 0 and some η ∈ (0, 1), the error
function e satisfies

e(x) ≤ max{ηg0(x), ε} for all x ∈ V −1
P ([0, c]). (20)

Then, for each x0 ∈ V −1
P ([0, c], the trajectory (xk)k generated by the closed loop

system (19) satisfies

VP(xk) ≤ max

⎧
⎨

⎩VP(x0) − (1 − η)
k−1∑

j=0

g(xj , uP(xj)), δ(ε/η) + ε

⎫
⎬

⎭ . (21)

Example 2 (An inverted pendulum). We consider a model for an inverted
pendulum on a cart, cf. [7,14]. We ignore the dynamics of the cart, and so we only
have one degree of freedom, namely the angle ϕ ∈ [0, 2π] between the pendulum
and the upright vertical. The origin (ϕ, ϕ̇) = (0, 0) is an unstable equilibrium
(with the pendulum pointing upright) which we would like to stabilize. The
model reads

(
4
3 − mr cos2 ϕ

)
ϕ̈ + mr

2 ϕ̇2 sin 2ϕ − g
� sin ϕ = −u mr

m� cos ϕ, (22)

where m = 2 is the mass of the pendulum, M = 8 the mass of the cart,
mr = m/(m + M), � = 0.5 the length of the pendulum and g = 9.8 the
gravitational constant. We consider the discrete time control system (4) with
f(x, u) = Φt(x, u), x = (ϕ, ϕ̇), for t = 0.1, where Φt(x, u) denotes the con-
trolled flow of (22) with constant control input u(τ) = u for τ ∈ [0, t]. For the
instantaneous cost function we choose

g(x, u) =
∫ t

0

q(Φτ (x, u), u) dτ,

with the quadratic cost q(x, u) = 1
2

(
0.1ϕ2 + 0.05ϕ̇2 + 0.01u2

)
.

We use the classical Runge-Kutta scheme of order 4 with step size 0.02 in
order to approximate Φt, choose X = [−8, 8] × [−10, 10] as state space for x =
(ϕ, ϕ̇), which we partition into 29 × 29 boxes of equal size, and U = [−64, 64]
as the control space. In approximating the graph’s edges and their weights, we
map an equidistant grid of 3 × 3 points on each partition box, choosing from 17
equally spaced values in U .



276 L. Grüne and O. Junge

Figure 4 shows the discrete value function as well as the trajectory generated
by the discrete feedback for the initial value (3.1, 0.1), as computed by the GAIO
code in Fig. 6. As shown on the right of this figure, the discrete value function
does not decrease monotonically along the feedback trajectory, indicating that
the assumptions of Theorem 3 are not satisfied. And indeed, as shown in Fig. 5,
this trajectory repeatedly moves through regions in state space where the error
function e is not smaller than g0. In fact, on a coarser partition (27 × 27 boxes),
the discrete feedback (18) is not even stabilizing this initial condition any more.
We will adress this deficiency in the next sections.

Fig. 4. Left: Discrete value function and feedback trajectory for the inverted pendulum.
Right: Behaviour of the discrete value function along the feedback trajectory.

Fig. 5. Inverted pendulum: region where e(x) < g0(x) (green) and feedback trajectory.

http://www.github.com/gaioguy/gaio


From Bellman to Dijkstra 277

Fig. 6. Code: discrete value function for the inverted pendulum

5 The Optimality Principle for Perturbed Systems

Let us now return to the full problem from Sect. 2 of optimally stabilizing the
discrete time perturbed control system

xk+1 = f(xk, uk, wk), k = 0, 1, . . . . (23)

subject to an instantaneous cost g(xk, uk). For the convergence statements later,
we assume f : X × U × W → X and g : X × U → [0,∞) to be continuous
and X ⊂ R

d, U ⊂ R
m and W ⊂ R

� to be compact. More general spaces will
be discussed in Sect. 8. For a given initial state x0 ∈ X, a control sequence
u = (uk)k∈N ∈ UN and a perturbation sequence w = (wk)k∈N ∈ WN, we obtain
the trajectory (xk(x,u,w))k∈N satisfying (23) while the associated accumulated
cost is given by

J(x,u,w) =
∞∑

k=0

g(xk(x,u,w), uk).



278 L. Grüne and O. Junge

Recall that our goal is to derive a feedback u : S → U , S ⊂ X, that stabilizes
the closed loop system

xk+1 = f(xk, u(xk), wk), k = 0, 1, 2, . . . (24)

for any perturbation sequence (wk)k, i.e. for every trajectory (xk(x0,w))k of (24)
with x0 ∈ S and w ∈ WN arbitrary, we have xk → T as k → ∞, where T ⊂ S
is a given target set, and the accumulated cost

∑∞
k=0 g(xk, u(xk)) is minimized.

The problem formulation can be interpreted as describing a dynamic game
(see e.g. [6]), where at each step of the iteration (23) two players choose a control
uk and a perturbation wk, respectively. The goal of the controlling player is to
minimize J , while the perturbing player wants to maximize it. We assume that
the controlling player chooses uk first and that the perturbing player knows uk

when choosing wk. We further assume that the perturbing player cannot foresee
future choices of the controlling player. This can be formalized by restricting the
possible w to

w = β(u),

where β : UN → WN is a nonanticipating strategy, i.e. a strategy satisfying

uk = u′
k ∀k ≤ K ⇒ βk(u) = βk(u′) ∀k ≤ K

for any u = (uk)k,u′ = (u′
k)k ∈ UN. We denote by B the set of all nonanticipat-

ing strategies β : UN → WN.
The control task is finished once we are in T , we therefore assume that T

is compact and robustly forward invariant, i.e. for all x ∈ T there is a control
u ∈ U such that f(x, u, w) ⊂ T for all w ∈ W , that g(x, u) = 0 for all x ∈ T ,
u ∈ U and g(x, u) > 0 for all x 	∈ T , u ∈ U .

Our construction of the feedback u : S → U will be based on the upper value
function V : X → [0,∞],

V (x) = sup
β∈B

inf
u∈UN

J(x,u, β(u)), (25)

of the game (23), which is finite on the set S0 := {x ∈ X | V (x) < ∞}. The
upper value function satisfies the optimality principle [9]

V (x) = inf
u∈U

[
g(x, u) + sup

w∈W
V (f(x, u, w))

]
, x ∈ S0. (26)

The right hand side L[v](x) = infu∈U [g(x, u) + supw∈W v(f(x, u, w))] of this
fixed point equation again defines a dynamic programming operator L : R

X →
R

X . The upper value function is the unique fixed point of L satisying the bound-
ary condition V (x) = 0, x ∈ T . Like in the unperturbed case, using the upper
value function V , one can construct the feedback u : S0 → U ,

u(x) := argmin
u∈U

[
g(x, u) + sup

w∈W
V (f(x, u, w))

]
, (27)

whenever this minimum exists.



From Bellman to Dijkstra 279

6 A Discrete Optimality Principle for Perturbed Systems

Analogously to the discretization in Sect. 4 we now derive a discrete version of
(26), cf. [9]. Again, to this end, we will approximate the upper value function by
a function which is piecewise constant on the elements of some partition of X.
This approach will lead to a directed weighted hypergraph instead of the ordinary
directed graph in Sect. 4 and, again, the approximate upper value function can
be computed by an associated shortest path algorithm.

Let P be a finite partition of X. Using the projection (10), the discretized
dynamic game operator LP : R

P → R
P is defined by

LP := ψ ◦ L.

Again, this operator has a unique fixed point VP satisfying the boundary condi-
tion VP(x) = 0, x ∈ T , which will serve as an approximation to the exact value
function V .

Explicitely, the discretized operator reads

LP[v](x) = inf
x′∈π(x)

(
inf
u∈U

[
g(x′, u) + sup

w∈W
v(f(x′, u, w))

])

and VP satisfies the optimality principle

VP(x) = inf
x′∈π(x),u∈U

[
g(x′, u) + sup

w∈W
VP(f(x′, u, w))

]
. (28)

Note that since VP is constant on each partition element, we can rewrite this as

VP(x) = inf
x′∈π(x),u∈U

[
g(x′, u) + sup

P ′∈F(x′,u)
VP(P ′)

]
,

where
F(x′, u) = {P ∈ P | f(x′, u, w) ∈ P for some w ∈ W}.

Since the partition P is finite, there are only finitely many possible sets F(x′, u)
and we can further rewrite (28) as

VP(x) = min
N

inf
(x′,u)

[
g(x′, u) + sup

P ′∈N
VP(P ′)

]
,

where the min is taken over all collections N ∈ {F(x′, u) | x′ ∈ π(x), u ∈ U} and
the inf over all (x′, u) such that F(x′, u) = N. Now define the multivalued map
F : P ⇒ 2P,

F(P ) = {F(x, u) : (x, u) ∈ P × U},

and the cost function

G(P,N) = inf
u∈U

{g(x, u) : x ∈ P,F(x, u) = N}.



280 L. Grüne and O. Junge

Equation (28) can then be rewritten as

VP(P ) = min
N∈F(P )

[
G(P,N) + sup

P ′∈N
VP(P ′)

]
,

Graph Interpretation. Like in the unperturbed case, we can think of this
reformulation of the optimality principle in terms of a graph. More precisely,
we have a directed hypergraph (P, EP) with the set E ⊂ P × 2P of directed
hyperedges given by

EP = {(P,N) | N = F(x, u) for some (x, u) ∈ P × U} ,

and each edge (P,N) is weighted by G(P,N), c.f. Fig. 7. The discrete upper value
function VP(P ) is the length of a shortest path from P to some element P ′ which
has a nonempty intersection with the target set T (and, thus, by the boundary
condition, VP(P ′) = 0).

Fig. 7. Illustration of the construction of the hypergraph.

Shortest Paths in Hypergraphs. Algorithm 1 can be generalized to the
hypergraph case, cf. [9,20]. To this end, we modify lines 5–7 such that the max-
imization over the perturbations is taken into account:

for each (Q,N) ∈ EP with P ∈ N

if V (Q) > G(Q,N) + maxN∈N V (N) then
V (Q) := G(Q,N) + maxN∈N V (N)

Note that during the while-loop of Algorithm 1,

V (P ) ≥ V (P ′) for all P ′ ∈ P\Q.

Thus, if N ⊂ P\Q, then maxN∈N V (N) = V (P ), and the value of the node Q
will never be decreased again. On the other hand, if N 	⊂ P\Q, then the value of
Q will be further decreased at a later time – and thus we can save on changing it
in the current iteration of the while-loop. We can therefore save on the explicit
maximization and replace lines 5–7 by



From Bellman to Dijkstra 281

for each (Q,N) ∈ EP with P ∈ N

if N ⊂ P\Q then
if V (Q) > G(Q,N) + V (P ) then

V (Q) := G(Q,N) + V (P )

The overall algorithm for the hypergraph case is as follows. Here, T := {P ∈
P | P ∩ T 	= ∅} is the set of target nodes.

Algorithm minmax-Dijkstra

for each P ∈ P: V (P ) := ∞; for each P ∈ T: V (P ) := 0; Q := P

while Q 	= ∅
P := argminP ′∈Q V (P ′)
Q := Q\{P}
for each (Q,N) ∈ EP with P ∈ N

if N ⊂ P\Q then
If V (Q) > G(Q,N) + V (P ) then

V (Q) := G(Q,N) + V (P )

�

Time Complexity. In line 5, each hyperedge is considered at most N times, with
N being a bound on the cardinality of the hypernodes N. Additionally, we need
to perform the check in line 6, which has linear complexity in N . Thus, the overall
complexity of the minmax-Dijkstra algorithm is O(|P| log |P|+|E|N(N +log |P|))
(when using a binary heap for storing Q), cf. [20].

Space Complexity. The storage requirement grows linearly with |P|. This number,
however, grows exponentially with the dimension of state space (if the entire
state space is covered and under the assumption of uniformly large elements).
The number of hyperedges is determined by the Lipschitz constant of f , the size
of the hypernodes N will be given by the magnitude of the perturbation.

Implementation. We use the same approach as in the unperturbed case: A
cubical partition is constructed hierarchically and stored in a binary tree. In
order to approximate the set EP ⊂ P × 2P of hyperedges, we choose finite sets
P̃ ⊂ P , Ũ ⊂ U and W̃ ⊂ W of sample points, set

F̃(x, u) = {P ∈ P | f(x, u, w) ∈ P for some w ∈ W̃}
and compute

F̃(P ) := {F̃(x, u) : (x, u) ∈ P̃ × Ũ} ⊂ 2P

as an approximation to F(P ). Correspondingly, the weight on the hyperedge
(P,N) is approximated by

G̃(P,N) = min{g(x, u) : (x, u) ∈ P̃ × Ũ , F̃(x, u) = N}.

Example: A simple 1D System. We reconsider system (16), adding a small
perturbation at each time step:

xk+1 = xk + (1 − a)ukxk + wk, k = 0, 1, . . . ,



282 L. Grüne and O. Junge

with xk ∈ [0, 1], uk ∈ [−1, 1], wk ∈ [−ε, ε] for some ε > 0 and the fixed parameter
a ∈ (0, 1). The cost function is still g(x, u) = (1−a)x so that the optimal control
policy is again uk = −1 for all k, independently of the perturbation sequence.
The optimal strategy for the perturbing player is to slow down the dynamics
as much as possible, corresponding to wk = ε for all k. The dynamical system
resulting from inserting the optimal strategies is

xk+1 = axk + ε, k = 0, 1, . . . .

This map has a fixed point at x = ε/(1−a). In the worst case, i.e. wk = ε for all
k, it is not possible to get closer than α0 := ε/(1−a) to the origin. We therefore
define T = [0, α] with α > α0 as the target set. With

k(x) =

⌈
log α−α0

x−α0

log a

⌉
+ 1,

the exact optimal value function is

V (x) = (x − α0)
(
1 − ak(x)

)
+ εk(x),

as shown in Fig. 8 for a = 0.8, ε = 0.01 and α = 1.1α0. In that figure, we
also show the approximate optimal value functions on partitions of 64, 256 and
1024 intervals, respectively. In the construction of the hypergraph, we used an
equidistant grid of ten points in each partition interval, in the control space and
in the perturbation space.

6.1 Convergence

It is natural to ask whether the approximate value function converges to the true
one when the element diameter of the underlying partition goes to zero. This
has been proven pointwise on the stabilizable set S in the unperturbed case [14],
as well as in an L1-sense on S and an L∞ sense on the domain of continuity
in the perturbed case, assuming continuity of V on the boundary of the target
set T [9]. The same reference also provides an analysis for state constrained
problems. Here an additional robustness condition is needed, namely that the
optimal value function changes continuously with respect to the Lp-norm for
some p ∈ {1, . . . ,∞} if the state constraints are tightened. If this condition
holds, then the convergence statement remains valid under state constraints,
with L∞ replaced by Lp.

Due to the construction of the discretization, the approximation VP of the
optimal value function is always less or equal than the true optimal value func-
tion. This is not necessarily a good property. For instance, for proving stability
of the system controlled by the numerical feedback law it would be convenient if
VP was a Lyapunov function. Lyapunov functions, however, are supersolutions
to the dynamic programming equation, rather than subsolutions as our VP. In
order to overcome this disadvantage, in the next section we present a particular
construction of a dynamic game in which the discretization error is treated as a
perturbation.



From Bellman to Dijkstra 283

Fig. 8. Exact (red) and discrete upper value functions for the perturbed simple example
on partitions of 64 (black) and 1024 (blue) intervals.

Fig. 9. Code: upper value function for the perturbed simple 1d system.

7 The Discretization as a Perturbation

As shown in Theorems 2 and 3, the discrete feedback (18) will practically stabilize
the closed loop system (19) under suitable conditions. Our numerical experiment
in Example 2, however, revealed that a rather fine partition might be needed in
order to achieve stability. More generally, as we have seen in Fig. 4 (right), the
discrete value function is not a Lyapunov function of the closed loop system in
every case.



284 L. Grüne and O. Junge

Construction of the Dynamic Game. In order to cope with this problem we
are going to use the ideas on treating perturbed systems in Sect. 5 and 6. The
idea is to view the discretization error as a perturbation of the original system.
Under the discretization described in Sect. 4, the original map (x, u) �→ f(x, u)
is perturbed to

(x, u) �→ f̂(x, u, w) := f(x + w, u), x + w ∈ π(x).

Note that this constitutes a generalization of the setting in Sects. 5 and 6 since the
perturbation space W here depends on the state, W = W (x). Correspondingly,
the associated cost function is

ĝ(x, u) = sup
x′∈π(x)

g(x′, u). (29)

Theorem 4 [8]. Let V denote the value function (6) of the control system (f, g),
V̂ the value function (25) of the associated game (f̂ , ĝ) and VP the discrete value
function (28) of (f̂ , ĝ) on a given partition P with numerical target set TP ⊂ P,
T = {0} ⊂ TP. Then VP(x) = V̂ (x) and

V (x) − max
y∈TP

V (y) ≤ VP(x), (30)

i.e. VP is an upper bound for V − max V |TP
. Furthermore, VP satisfies

VP(x) ≥ min
u∈U

{g(x, u) + VP(f(x, u))} (31)

for all x ∈ X \ TP.

Proof. We first note that V̂ is constant on the elements of P: On TP, this is
true since TP is a union of partition elements by assumption. Outside of TP, by
definition of the game (f̂ , ĝ) we have

V̂ (x) = inf
u∈U

{
sup

x′∈π(x)

g(x′, u) + sup
x′∈f(π(x),u)

V̂ (x′)

}
,

so that infx′∈π(x) V̂ (x′) = V̂ (x). On the other hand, according to [9, Proposi-
tion 7.1] we have VP(x) = infx′∈π(x) V̂ (x′), so that VP = V̂ .

Now for x /∈ TP, Eq. (26) yields

V̂ (x) = inf
u∈U

sup
x′∈π(x)

{
g(x′, u) + V̂ (f(x′, u))

}

≥ min
u∈U

{
g(x, u) + V̂ (f(x, u))

}
(32)

which shows (31).
In order to prove (30), we order the elements P1, P2, . . . ∈ P such that i ≥ j

implies VP(Pi) ≥ VP(Pj). Since infu∈U g(x, u) > 0 for x 	= 0 by assumption,



From Bellman to Dijkstra 285

VP(Pi) = 0 is equivalent to Pi ⊆ TP. By the ordering of the elements this
implies that there exists i∗ ≥ 1 such that Pi ⊆ TP ⇔ i ∈ {1, . . . , i∗} and thus
(30) holds for x ∈ P1, . . . , Pi∗ . We now use induction: fix some i ∈ N, assume (30)
holds for x ∈ P1, . . . , Pi−1 and consider x ∈ Pi. If VP(Pi) = ∞ there is nothing
to show. Otherwise, since V satisfies the dynamic programming principle, using
(32) we obtain

V (x) − V̂ (x) ≤ inf
u∈U

{g(x, u) + V (f(x, u))} − min
u∈U

{
g(x, u) + V̂ (f(x, u))

}

≤ V (f(x, u∗)) − V̂ (f(x, u∗)),

where u∗ ∈ U realizes the minimum in (32). Now, since g(x, u∗) > 0, we have
V̂ (f(x, u∗)) < V̂ (x) implying f(x, u∗) ∈ Pj for some j < i. Since by the induction
assumption the inequality in (30) holds on Pj , this implies that it also holds on
Pi which finishes the induction step. �

The Feedback Is the Shortest Path. As usual, we construct the discrete
feedback by

uP(x) := argmin
u∈U

[
ĝ(x, u) + sup

x′∈f(π(x),u)

VP(x′)

]
.

By construction, this feedback is constant on each partition element. Moreover,
we can directly extract uP from the minmax-Dijkstra algorithm: We associate
the minimizing control value u(P,N) to each hyperedge (P,N),

u(P,N) = argmin
u∈U,F(P )=N

[
sup
x∈P

g(x, u)
]

. (33)

The feedback is then immediately given by

uP(x) = u(π(x),N(π(x))), (34)

where

N(P ) = argmin
N∈F(P )

{
G(P,N) + sup

N∈N
VP(N)

}

is defining the hypernode of minimal value adjacent to some node P in the
hypergraph. The computation of N(P ) can be done on the fly within the minmax-
Dijkstra Algorithm 2:



286 L. Grüne and O. Junge

Algorithm. minmax-Dijkstra with feedback

for each P ∈ P: V (P ) := ∞, N(P ) := ∅; for each P ∈ T: V (P ) := 0; Q := P

while Q 	= ∅
P := argminP ′∈Q V (P ′)
Q := Q\{P}
for each (Q,N) ∈ EP with P ∈ N

if N ⊂ P\Q then
if V (Q) > G(Q,N) + V (P ) then

V (Q) := G(Q,N) + V (P )
N(Q) := N

�
Consequently, the discrete feedback u can be computed offline. Once

u(P,N(P )) has been computed for every partition element P , the only remain-
ing online computation is the determination of π(xk) for each state xk on the
feedback trajectory. In our case, this can be done efficiently, since we store the
partition in a binary tree. Note, however, that the fast online evaluation of the
feedback law is enabled by a comparatively large offline computation, namely
the construction of the hypergraph.

Behaviour of the Closed Loop System

Theorem 5 [8]. Under the assumptions of Theorem4, if (xk)k denotes the tra-
jectory of the closed loop system (19) with feedback (34) and if VP(x0) < ∞,
then there exists k∗ ∈ N such that xk∗ ∈ T and

VP(xk) ≥ g(xk, uP(xk)) + VP(xk+1), k = 0, . . . , k∗ − 1.

Proof. From the construction of uP we immediately obtain the inequality

VP(xk) ≥ g(xk, uP(xk)) + VP(xk+1) (35)

for all k ∈ N0 with xk ∈ X \ TP. This implies the existence of k∗ such that the
first two properties hold since g(xk, uP(xk)) > 0 for xk 	∈ TP, VP is piecewise
constant and equals zero only on TP. �

Theorem 5 implies that the closed-loop solution reaches the target TP at
time step k∗ and that the optimal value function decreases monotonically until
the target is reached, i.e., it behaves like a Lyapunov function. While it is in
principle possible that the closed-loop solution leaves the target after time k∗,
this Lyapunov function property implies that after such excursions it will return
to TP.

If the system (4) is asymptotically controllable to the origin and V is con-
tinuous, then we can use the same arguments as in [9] in order to show that on
increasingly finer partitions P� and for targets TP�

shrinking down to {0} we



From Bellman to Dijkstra 287

obtain VP�
→ V . This can also be used to conclude that the distance of possible

excursions from the target TP�
become smaller and smaller as P� becomes finer.

We note that the Lyapunov function property of VP outside TP holds regard-
less of the size of the partition elements. However, if the partition is too coarse
then VP = ∞ will hold on large parts of X, which makes the Lyapunov function
property useless. In case that large partition elements are desired—for instance,
because they correspond to a quantization of the state space representing, e.g.,
the resolution of certain sensors—infinite values can be avoided by choosing the
control value not only depending on one partition element but on two (or more)
consecutive elements. The price to pay for this modification is that the construc-
tion of the hypergraph becomes significantly more expensive, but the benefit is
that stabilization with much coarser discretization or quantization is possible.
For details we refer to [10,11].

Example 3 (The inverted pendulum reconsidered.). We reconsider Exam-
ple 2 and apply the construction from this section. Figure 10, which results from
running the code shown in Fig. 11 as well as lines 25ff. from the code in Fig. 6,
shows the discrete upper value function on a partition of 216 boxes with target
set T = [−0.1, 0.1]2 as well as the trajectory generated by the discrete feedback
(33) for the initial value (3.1, 0.1). As expected, the approximate value function
is decreasing monotonically along this trajectory. Furthermore, this trajectory is
clearly closer to the optimal one because it converges to the origin much faster.

Fig. 10. Inverted pendulum: Discrete upper value function and robust feedback tra-
jectory (left); decrease of the discrete value function along the feedback trajectory.

8 Hybrid, Event and Quantized Systems

Hybrid Systems. The discretization of the optimality principle described in
Sects. 4–7 can be used in order to deal with hybrid systems in a natural way.
Hybrid systems can often be modeled by a discrete time control system of the
form

xk+1 = fc(xk, yk, uk)
yk+1 = fd(xk, yk, uk) k = 0, 1, . . . , (36)



288 L. Grüne and O. Junge

Fig. 11. Code: discrete upper value function and robust feedback for the inverted
pendulum

with two maps fc : X × Y × U → X ⊂ R
n and fd : X × Y × U → Y . The set

U of control inputs can be discrete or continuous, the (compact) set X ⊂ R
n is

the continuous part of state space and the set Y of discrete states (or modes)
is a finite set. The class of hybrid systems described by (36) is quite general: It
comprises

• models with purely continuous state space (i.e. Y = {0}, fc(x, y, u) = fc(x, u),
fd ≡ 0), but discrete or finite control space U ;

• models in which the continuous part fc is controlled by the mode y and only
the discrete part fd of the map is controlled by the input (fc(x, y, u) = fc(x, y)
and fd(x, y, u) = fd(y, u) may be given by an automaton);

• models with state dependent switching: Here we have a general map fc and
fd(x, y, u) = fd(x).

As in the previous chapters, we denote the solutions of (36) for initial values
x0 = x, y0 = y and some control sequence u = (u0, u1, . . .) ∈ UN by xk(x, y,u)
and yk(x, y,u), respectively. We assume that for each k, the map xk(·, y,u) is
continuous for each y ∈ Y and each u ∈ UN. We prescribe a target set T ⊂ X
(i.e. a subset of the continuous part of state space) and our aim is to find a control
sequence u = (uk)k∈N such that xk(x, y,u) → T as k → ∞ for initial values
x, y in some stabilizable set S ⊂ X × Y , while minimizing the accumulated cost∑∞

k=0 g(xk, yk, uk), where g : X × Y × U → [0,∞) is a given instantaneous cost
with g(x, y, u) > 0 for all x /∈ T , y ∈ Y and u ∈ U . To this end, we would like
to construct an approximately optimal feedback u : S → U such that a suitable
asymptotic stability property for the resulting closed loop system holds. Again,



From Bellman to Dijkstra 289

the construction will be based on a discrete value function. For an appropriate
choice of g this function is continuous in x at least in a neighborhood of T [12].

Computational Approach. Let Q be a partition of the continuous part X of state
space. Then the sets

P := {Qi × {y} |Qi ∈ Q, y ∈ Y } (37)

form a partition of the product state space Z = X × Y . On P the approaches
from Sects. 4–7 can be applied literally.

Example 4 (Example: A switched voltage controller). This is an example
taken from [15]: Within a device for DC to DC conversion, a semiconductor is
switching the polarity of a voltage source Vin in order to keep the ouput voltage
x1 as constant as possible close to a prescribed value Vref, cf. Fig. 12, while the
load is varying and thus the output current Iload changes. The model is

ẋ1 =
1
C

(x2 − Iload)

ẋ2 = − 1
L

x1 − R

L
x2 +

1
L

uVin (38)

ẋ3 = Vref − x1,

where u ∈ {−1, 1} is the control input. The corresponding discrete time system
is given by the time-t-map Φt (t = 0.1 in our case) of (38), with the control input
held constant during this sampling period. We use the quadratic instantaneous
cost function

g(x, u) = qP (Φt
1(x) − Vref)2 + qD(Φt

2(x) − Iload)2 + qIΦt
3(x)3.

The third component in (38) is only used in order to penalize a large L1-error
of the output voltage. We slightly simplify the problem (over its original formu-
lation in [15]) by using x3 = 0 as initial value in each evaluation of the discrete
map. Correspondingly, the map reduces to a two-dimensional one on the x1, x2-
plane.

Fig. 12. A switched DC/DC converter (cf. [15]).

In the following numerical experiment we use the same parameter values as
given in [15], i.e. Vin = 1V , Vref = 0.5, R = 1Ω, L = 0.1H, C = 4F , Iload = 0.3 A,
qP = 1, qD = 0.3 and qI = 1. Confining our domain of interest to the rectangle
X = [0, 1] × [−1, 1], our target set is given by T = {Vref} × [−1, 1]. For the



290 L. Grüne and O. Junge

construction of the finite graph, we employ a partition of X into 64× 64 equally
sized boxes. We use 4 test points in each box, namely their vertices, in order to
construct the edges of the graph.

Using the resulting discrete value function (associated to a nominal Iload =
0.3 A) and the associated feedback, we repeated the stabilization experiment
from [15], where the load current is changed after every 100 iterations. Figure 13
shows the result of this simulation, proving that our controller stabilizes the
system as requested.

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

Vo
lta

ge

0 50 100 150 200 250 300 350 400

−0.5

0

0.5

C
ur

re
nt

0 50 100 150 200 250 300 350 400
−1

−0.5

0

0.5

1

Sample

Sw
itc

h 
si

gn

Fig. 13. Simulation of the controlled switched power converter.

Event Systems. In many cases, the discrete-time system (1) is given by time-
sampling an underlying continuous time control system (an ordinary differential
equation with inputs u and w), i.e. by the time-t-map of the flow of the con-
tinuous time system. In some cases, instead of fixing the time step t in each
evaluation of f , it might be more appropriate to chosen t in dependence of the
dynamics. Formally, based on the discrete time model (1) of the plant, we are
dealing with the discrete time system

x�+1 = f̃(x�, u�), � = 0, 1, . . . , (39)

where
f̃(x, u) = fr(x,u)(x, u), (40)

r : X × U → N0 is a given event function and the iterate fr is defined by
f0(x, u) = x and fr(x, u) = f(fr−1(x, u), u), cf. [10]. The associated instanta-
neous cost g̃ : X × U → [0,∞) is given by

g̃(x, u) =
r(x,u)−1∑

k=0

g(fk(x, u), u). (41)



From Bellman to Dijkstra 291

The time k of the underlying system (1) can be recovered from the event time �
through

k�+1 = k� + r(x�, u�).

Note that this model comprises an event-triggered scenario where the event func-
tion is constructed from a comparison of the state of (1) with the state of (39),
as well as the scenario of self-triggered control (cf. [1]) where the event function
is computed from the state of (1) alone.

Quantized Systems. The approach for discretizing the optimality principle
described in Sects. 4–6 is based on a discretization of state space in form of
a finite partition. While in general the geometry of the partition elements is
arbitrary (except from reasonable regularity assumptions), in many cases (e.g.
in our implementation in GAIO) cubical partitions are a convenient choice. In
this case, the discretization can be interpreted as a quantization of (1), where
the quantized system is given by the finite state system

Pk+1 = F (Pk, uk, γk), k = 0, 1, . . . , (42)

with
F (P, u, γ) = π(f(γ(P ), u)), P ∈ P, u ∈ U,

where γ : P → X is a function which chooses a point x from some partition
element P ∈ P, i.e. it satisfies π(γ(P )) = P for all P ∈ P [10]. The choice function
models the fact that it is unknown to the controller from which exact state xk the
system transits to the next cell Pk+1. It may be viewed as a perturbation which
might prevent us from reaching the target set – in this sense, (42) constitutes a
dynamic game in the sense of Sect. 6.

9 Lazy Feedbacks

In some applications, e.g. when data needs to be transmitted between the system
and the controller over a channel with limited bandwidth, it might be desirable
to minimize the amount of transmitted data. More specifically, the question
might be how to minimize the number of times that a new control value has to
be transmitted from the controller to the system. In this section, we show how
this can be achieved in an optimization based feedback construction by defining
a suitable instantaneous cost function.

In order to detect a change in the control value we need to be able to compare
its current value to the one in the previous time step. Based on the setting from
Sect. 2, we consider the discrete-time control system

zk+1 = f̄(zk, uk), k = 0, 1, 2, . . . (43)

with zk = (xk, wk) ∈ Z := X × U , uk ∈ U and

f̄(z, u) = f̄((x,w), u) :=
[

f(x, u)
u

]
.



292 L. Grüne and O. Junge

Given some target set T ⊂ X, we define T̄ := T × U as the target set in the
extended state space Z. The instantaneous cost function ḡ : Z × U → [0,∞),
which penalizes control value changes is given by

ḡλ(z, u) = ḡλ((x,w), u) := (1 − λ)g(x, u) + λδ(u − w) (44)

with

δ(u) =
{

0 if u = 0,
1 else. (45)

Here, λ ∈ [0, 1) (in particular, λ < 1 in order to guarantee that ḡ(z, u) = 0 iff
z ∈ T̄ ).

In order to apply the construction from Sect. 7, we choose a finite partition
P of X. Let V̂P denote the associated discrete upper value function, Ŝ = {x ∈
X : V̂P(x) < ∞} the stabilizable set, and ûP the associated feedback for the
original system (f, g). For simplicity, we assume that U is finite and use P × U
as the partition of the extended state space Z. We denote the discrete upper
value function of (f̄ , ḡλ) by V̄λ : Z → [0,∞], the stabilizable subset by S̄λ :=
{z ∈ Z : V̄λ(z) < ∞} and the associated feedback by ūλ : S̄λ → U .

For some arbitrary feedback uλ : S̄λ → U , consider the closed loop system

zk+1 = f̄(zk, uλ(zk)), k = 0, 1, 2, . . . . (46)

We will show that for any sufficiently large λ < 1 the closed loop system with
uλ = ūλ is asymptotically stable on S̄λ, more precisely that for z0 ∈ S̄λ the
trajectory of (46) enters T̄ in finitely many steps and that the number of control
value changes along this trajectory is minimal.

To this end, for some initial state z0 ∈ S̄λ, let (zk)k ∈ ZN, zk = (xk, wk),
be the trajectory of (46). Let κ(z0, uλ) = min{k ≥ 0 : zk ∈ T̄} be the minimal
number of time steps until the trajectory reaches the target set T̄ ,

E(z0, uλ) =
κ(z0,uλ)∑

k=0

δ
(
uλ(zk) − wk

)

the number of control value changes along the corresponding trajectory as well
as

J(z0, uλ) =
κ(z0,uλ)∑

k=0

g(xk, u(zk)), resp. J̄(z0, uλ) =
κ(z0,uλ)∑

k=0

ḡ(zk, u(zk))

the associated accumulated costs. Note that

J̄(z0, uλ) = (1 − λ)J(z0, uλ) + λE(z0, uλ).

Theorem 6. For all λ ∈ [0, 1), Ŝ × U ⊂ S̄λ. Using the optimal feedback ūλ in
(46) and for z0 ∈ S̄λ, zk → T̄ as k → ∞. Further, there exists λ < 1 such that
for any feedback uλ : S̄λ → U and z0 ∈ S̄λ with κ(z0, uλ) < K for some arbitrary
K ∈ N, we have E(z0, uλ) ≥ E(z0, ūλ).



From Bellman to Dijkstra 293

Proof. By construction, the system (43, 44) fulfills the assumptions of The-
orem 5, so we have asymptotic stability of the closed loop system (46) with
uλ = ūλ for all z0 ∈ S̄λ.

In order to show that Ŝ × U ⊂ S̄λ for all λ ∈ [0, 1), choose λ ∈ [0, 1) and
some initial value z0 = (x0, u0) ∈ Ŝ × U . Consider the feedback

u(z) = u((x, u)) := ûP(x)

for system (43). This leads to a trajectory (xk, uk)k of the extended system
with (xk)k being a trajectory of the the closed loop system for f with feedback
ûP. Since x0 ∈ Ŝ, V̂P(x0) is finite and the accumulated cost J̄(z0, u) for this
trajectory does not exceed (1 − λ)V̂P(x0) + λκ(z0, u) which is finite. According
to the optimality of Vλ,

Vλ(z0) ≤ (1 − λ)V̂P(x0) + λκ(z0, u) < ∞

follows, i.e. z0 ∈ S̄λ.
To show the optimality of ūλ with respect to the functional E, assume there

exists a feedback uλ : S̄λ → U with E(z0, uλ) ≤ E(z0, ūλ) − 1 for some z0 ∈ S̄λ.
Since ūλ is optimal, the following inequality holds:

(1 − λ)J(z0, uλ) + λE(z0, uλ) = J̄(z0, uλ)
≥ J̄(z0, ūλ)
= (1 − λ)J(z0, ūλ) + λE(z0, ūλ)
≥ (1 − λ)J(z0, ūλ) + λE(z0, uλ) + λ

and thus
(1 − λ)J(z0, uλ) ≥ (1 − λ)J(z0, ūλ) + λ. (47)

Let C(uλ) = maxz0{J(z0, uλ) | κ(z0, uλ) < K} which is finite. From (47) we get

(1 − λ)C(uλ) ≥ (1 − λ)C(ūλ) + λ. (48)

so that λ → 1 leads to a contradiction. �

Acknowledgements. OJ thanks Michael Dellnitz for being his mentor, colleague and
friend since more than 25 years. OJ and LG gratefully acknowledge the support through
the Priority Programme SPP 1305 Control Theory of Digitally Networked Dynamic
Systems of the German Research Foundation. OJ additionally acknowledges support
through a travel grant by DAAD.

References

1. Anta, A., Tabuada, P.: To sample or not to sample: self-triggered control for non-
linear systems. IEEE Trans. Autom. Control 55(9), 2030–2042 (2010)

2. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)



294 L. Grüne and O. Junge

3. Dellnitz, M., Froyland, G., Junge, O.: The algorithms behind GAIO-set oriented
numerical methods for dynamical systems. In: Ergodic Theory, Analysis, and Effi-
cient Simulation of Dynamical Systems, pp. 145–174, 805–807. Springer, Berlin
(2001)

4. Dellnitz, M., Hohmann, A.: A subdivision algorithm for the computation of unsta-
ble manifolds and global attractors. Numerische Mathematik 75(3), 293–317 (1997)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269–271 (1959)

6. Fleming, W.H.: The convergence problem for differential games. J. Math. Anal.
Appl. 3, 102–116 (1961)

7. Grüne, L., Junge, O.: A set oriented approach to optimal feedback stabilization.
Syst. Control Lett. 54(2), 169–180 (2005)

8. Grüne, L., Junge, O.: Approximately optimal nonlinear stabilization with preser-
vation of the Lyapunov function property. In: Proceedings of the 46th IEEE Con-
ference on Decision and Control, pp. 702–707 (2007)

9. Grüne, L., Junge, O.: Global optimal control of perturbed systems. J. Optim.
Theory Appl. 136(3), 411–429 (2008)

10. Grüne, L., Müller, F.: An algorithm for event-based optimal feedback control. In:
Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai,
China, pp. 5311–5316 (2009)

11. Grüne, L., Müller, F.: Global optimal control of quantized systems. In: Proceedings
of the 18th International Symposium on Mathematical Theory of Networks and
Systems — MTNS2010, Budapest, Hungary, pp. 1231–1237 (2010)

12. Grüne, L., Nešić, D.: Optimization-based stabilization of sampled-data nonlin-
ear systems via their approximate discrete-time models. SIAM J. Control Optim.
42(1), 98–122 (2003)

13. Junge, O.: Rigorous discretization of subdivision techniques. In: International Con-
ference on Differential Equations, vol. 1, 2 (Berlin, 1999), pp. 916–918. World Sci-
entific Publishing, River Edge (2000)

14. Junge, O., Osinga, H.M.: A set oriented approach to global optimal control. ESAIM
Control Optim. Calc. Var. 10(2), 259–270 (2004)

15. Lincoln, B., Rantzer, A.: Relaxing dynamic programming. IEEE Trans. Autom.
Control 51(8), 1249–1260 (2006)

16. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proc. Natl. Acad. Sci. U.S.A. 93(4), 1591–1595 (1996)

17. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-
Jacobi equations. Proc. Natl. Acad. Sci. U.S.A. 98(20), 11069–11074 (2001)

18. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans.
Autom. Control 40(9), 1528–1538 (1995)

19. Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations.
Princeton University Press, Princeton (2011)

20. von Lossow, M.: A min-man version of Dijkstra’s algorithm with application to per-
turbed optimal control problems. In: Proceedings of the GAMM Annual Meeting,
Zürich, Switzerland (2007)


	From Bellman to Dijkstra: Set-Oriented Construction of Globally Optimal Controllers
	1 Introduction
	2 Problem Formulation
	3 The Optimality Principle
	4 A Discrete Optimality Principle
	4.1 The Discrete Value Function
	4.2 The Discrete Feedback

	5 The Optimality Principle for Perturbed Systems
	6 A Discrete Optimality Principle for Perturbed Systems
	6.1 Convergence

	7 The Discretization as a Perturbation
	8 Hybrid, Event and Quantized Systems
	9 Lazy Feedbacks
	References




