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Abstract. In this chapter the authors consider the numerical treat-
ment of a mixed-integer optimal control problem governed by linear
convection-diffusion equations and binary control variables. Using relax-
ation techniques (introduced by [31] for ordinary differential equations)
the original mixed-integer optimal control problem is transferred into a
relaxed optimal control problem with no integrality constraints. After
an optimal solution to the relaxed problem has been computed, binary
admissible controls are constructed by a sum-up rounding technique.
This allows us to construct – in an iterative process – binary admissible
controls such that the corresponding optimal state and the optimal cost
value approximate the original ones with arbitrary accuracy. However,
using finite element (FE) methods to discretize the state and adjoint
equations often yield to extensive systems which make the frequently
calculations time-consuming. Therefore, a model-order reduction based
on the proper orthogonal decomposition (POD) method is applied. Com-
pared to the FE case, the POD approach yields to a significant acceler-
ation of the CPU times while the error stays sufficiently small.

Keywords: Mixed-integer optimal control · Integer programming ·
Relaxation methods · Evolution problems · Proper orthogonal
decomposition

1 Introduction

A simplified optimal control problem is considered which is motivated by energy
efficient building operation. The goal is to reach a certain desired temperature
distribution in a room while choosing an optimal (underfloor) heating strategy.
The temperature is governed by a heat equation with convection which extends
our results in [3,4], where no convection was involved in the modeling of the
heat transfer. Since the heating is described by a time-depending discrete con-
trol, the optimization problem involves continuous and discrete variables. These
kinds of problems are considered in [10,11,22,32]. For partial differential equa-
tions (PDEs) we refer to the note [24]. In particular, mixed-integer problems for
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hyperbolic PDEs are considered, e.g., for problems in gas transportation systems
[15], electric transmission lines [12] and traffic flow [16,17].

Frequently, integer problems are solved with the branch-and-bound method
(see, e.g., [5]) to guarantee global optimality. Especially for finite-dimensional
linear integer programming, the branch-and-bound method is the method of
choice. However, this is often not possible or very expensive for optimal con-
trol problems, where infinite-dimensional control spaces are involved. Therefore,
methods are used to approximate an optimal integer solution by sufficiently accu-
rate solutions, which can be computed by techniques from infinite-dimensional
optimization. In this work we apply relaxation methods which can be found in
[31] for the case of ordinary differential equations and in [16,17] for the case
of PDEs. To solve the relaxed optimal control problems, we rely on techniques
from PDE-constrained optimization ([25,36]). Utilizing sum-up-rounding strate-
gies (introduced by Sager in [31,33]) we construct discrete controls from the
continuous ones; see also [26,27].

To speed-up the numerical solution of the relaxed optimal control problems
we apply reduced-order modeling; cf. [1,34], for instance. In this work the relaxed
optimal control problems are solved by POD Galerkin projection methods; cf.
[14,19]. The POD method is known to be very efficient for dynamical systems. An
POD a-posteriori error analysis – developed in [35] for optimal control problems
– is extended in such a way that the error of the computed suboptimal POD
solution can be controlled. This leads to an efficient and a certified optimization
method which is also analytically based on theoretical results in [17].

Let us mention that there are other reduced-order approaches available, e.g.,
the reduced basis methods; cf. [13]. Especially for non-linear problems, the proper
orthogonal decomposition (POD) method is a popular and widely used method.
Here, predefined points in time are considered by a previously released dynamic
system to build up the so-called snapshot space. The leading eigenfunctions of a
singular value decomposition are then chosen as the basis for the reduced space,
see for example [14]. It has been shown, that this method has good properties
in the context of optimal control problems, especially thanks to an available
a-posteriori estimate, see [23,35].

The chapter is organized as follows: In Sect. 2 the mixed-integer optimal con-
trol problem is introduced. Its relaxation is explained in Sect. 3. The numerical
solution approach is described in Sect. 4 and Sect. 5 is devoted to present numer-
ical results. Finally, we draw some conclusions in Sect. 6.

2 Problem Formulation

Let Ω ⊂ R
n, n ∈ {1, 2, 3}, be a bounded domain with Lipschitz-continuous

boundary Γ = ∂Ω. For T > 0 we set Q = (0, T ) × Ω and Σ = (0, T ) × Γ.
Moreover, let H and V denote the standard real and separable Hilbert spaces
L2(Ω) and H1(Ω), respectively, endowed with the usual inner products

〈ϕ,ψ〉H =
∫

Ω

ϕψ dx, 〈ϕ,ψ〉V =
∫

Ω

ϕψ + ∇ϕ · ∇ψ dx
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and associated induced norms. For more details on Lebesgue and Sobolev spaces
we refer to [9]. Recall the Hilbert space W (0, T ) = {ϕ ∈ L2(0, T ;V ) |ϕt ∈
L2(0, T ;V ′)} endowed with the common inner product [8, pp. 472–479]. It is
well-known that W (0, T ) is continuously embedded into C([0, T ];H), the space
of continuous functions from [0, T ] to H. When t is fixed, the expression ϕ(t)
stands for the function ϕ(t, ·) considered as a function in Ω only.

In this work we consider the following mixed-integer optimal control problem:

min
(y,u)

J(y, u) =
1
2

∫ T

0

∫
Ω

|y(t,x) − yd(t,x)|2 dxdt +
γ

2

m∑
i=1

∫ T

0

|ui(t)|2 dt (1a)

subject to a convection-diffusion equation

yt(t, x) − Δy(t, x) + v(x) · ∇y(t, x) = f(t, x) +

m∑

i=1

ui(t)bi(x), (t, x) ∈ Q, (1b)

∂y

∂n
(t, s) + q(s)y(t, s) = g(t, s), (t, s) ∈ Σ, (1c)

y(0, x) = y◦(x), x ∈ Ω (1d)

and binary control constraints

u(t) ∈ {0, 1}m = {ui}N
i=1 in [0, T ] a.e. (almost everywhere), (1e)

where the ui’s are 0–1-vectors in R
m and N = 2m holds.

The desired temperature fulfills yd ∈ L∞(Q). For the regularization param-
eter we have γ > 0. The convection field v is supposed to be in L∞(Ω;Rn).
The heat source function satisfied f ∈ C(Q). For m ∈ N we assume that the
control shape functions fulfill b1, . . . , bm ∈ C(Ω) and bi ≥ 0 on Ω a.e., but at
least for one i ∈ {1, . . . , m} it holds bi > 0 on Ω a.e. The isolation function
satisfies q ∈ L∞(Γ) with q ≥ 0 on Γ a.e. The outer temperature is described by
g and belongs to C(Σ). Finally, for the initial temperature distribution we have
y◦ ∈ C(Ω).

Since we are interested in weak solutions to the state equation (1b)–(1d), we
recall this solution concept for our case: A solution y ∈ W (0, T ) to (1b)–(1d) is
understood as a weak solution, i.e., y belongs to W (0, T ) and satisfies

d
dt

〈y(t), ϕ〉H + a(y(t), ϕ) = 〈F(t, u(t)), ϕ〉V ′,V for all ϕ ∈ V in (0, T ], (2a)

〈y(0), ϕ〉H = 〈y◦, ϕ〉H for all ϕ ∈ V, (2b)

where the bilinear form a : V × V → R is defined as

a(ϕ, φ) =
∫

Ω

∇ϕ · ∇φ dx +
∫

Ω

(v · ∇ϕ)φ dx +
∫

Γ

qϕφ ds for ϕ, φ ∈ V

and the inhomogeinity F : [0, T ] × R
m → V ′ is given by

〈F(t, u), ϕ〉V ′,V =
∫

Ω

(
f(t) +

m∑
i=1

uibi

)
ϕ dx +

∫
Γ

g(t)ϕ ds
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for (t, u) ∈ [0, T ] × R
m, u = (ui)1≤i≤m and ϕ ∈ V . Note that the mapping

F(· , u) is continuous for every u ∈ R
m. The next proposition follows from the

results in [20, Chapter 5].
Proposition 1. Under the above assumptions on the data the following proper-
ties hold:

1) The bilinear form a(· , ·) is continuous and coercive, i.e., there are constants
η ≥ 0, η1 > 0 and η2 ≥ 0 satisfying

|a(ϕ, φ)| ≤ η ‖ϕ‖V ‖φ‖V for all ϕ, φ ∈ V,

|a(ϕ,ϕ)| ≥ η1 ‖ϕ‖2
V − η2 ‖ϕ‖2

H for every ϕ ∈ V.

2) For any u ∈ U = L2(0, T ;Rm) there exists a unique solution y ∈ W (0, T )
to (2) that satisfies

‖y‖W (0,T ) ≤ C
(‖F(· , u(·))‖C([0,T ];V ′) + ‖y◦‖H

)
for a constant C > 0.

Remark 1. The bilinear form a(· , ·) defines a bounded linear operator A : V →
V ′ by

〈Aϕ, φ〉V ′,V = a(ϕ, φ) for ϕ, φ ∈ V.

Furthermore, the operator A can also be considered as an unbounded operator
on H with domain D(A) = H2(Ω) ∩ V ∩ C(Ω) which is dense in C(Ω). The
operator −A generates a C0-semigroup on C(Ω) and the solution y to (2) belongs
to W (0, T ) ∩ C(Q); cf. [29, Chapter 5]. Utilizing the continuity assumptions for
f , b1, . . . , bm, g and y◦ we can write (2) as the Cauchy problem

ẏ(t) = −Ay(t) + F(t, u(t)) for t ∈ (0, T ], y(0) = y◦

posed in C(Ω). It is proved in [28, Theorem 4.3] that −A also generates a holo-
morphic semigroup on C(Ω). ♦

Throughout this work the binary problem (1a)–(1e) is called (BN). Its cost
value at an admissible solution is denoted by JBN . Furthermore, we introduce
a relaxed problem, where (1e) is replaced by the relaxation

u(t) ∈ [0, 1]m in [0, T ] a.e., (1e’)

Problem (1a)–(1d) together with (1e’) is denoted by (RN). We write JRN for
the objective value obtained by an admissible solution for (RN). Let us mention
that (1a)–(1d) together with (1e’) does not involve any integrality constraints.
Thus, solution methods from continuous optimization can be applied.

3 Relaxation Method

Commonly, mixed-integer problems are solved with the branch-and-bound
method (see e.g. [5]) to guarantee global optimality. However, for optimal control
problems this is often computationally too expensive. In order to get an optimal
control problem without any integer restrictions we apply therefore the approach
in [17] which leads to convexified relaxed problems that can be solved by avail-
able techniques from PDE-constrained optimization; see [18,35], for instance.
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3.1 Convexification

Using (1e) we introduce the following representation of the control variable

β(t) ∈ {0, 1}N ,

N∑
i=1

βi(t) = 1 and u(t) =
N∑

i=1

βi(t)ui for t ∈ [0, T ].

To solve our mixed-integer optimal control problem (BN) we consider the fol-
lowing convexification (cf. [17, Section 2])

min
(yβ ,β)

1
2

∫ T

0

∫
Ω

|yβ(t,x) − yd(t,x)|2 dxdt +
γ

2

N∑
i=1

‖ui‖2
Rm

∫ T

0

βi(t) dt (3a)

subject to

d
dt

〈yβ(t), ϕ〉H + a(yβ(t), ϕ) =
N∑

i=1

βi(t) 〈F(t, ui), ϕ〉V ′,V ∀ϕ ∈ V in (0, T ],

(3b)

〈yβ(0), ϕ〉H = 〈y◦, ϕ〉H ∀ϕ ∈ V, (3c)

β(t) =
(
βi(t)

)
1≤i≤N

∈ {0, 1}N in [0, T ], (3d)
N∑

i=1

βi(t) = 1 in [0, T ]. (3e)

The convexification (3) of (BN) is called (BL) and we write JBL for the objec-
tive value obtained by an admissible solution. Of course, (BL) still contains the
integrality constraint (3d). Therefore, we introduce its relaxation – that we call
(RL) – by

min
(yα,α)

1
2

∫ T

0

∫
Ω

|yα(t,x) − yd(t,x)|2 dxdt +
γ

2

N∑
i=1

‖ui‖2
Rm

∫ T

0

αi(t) dt (4a)

subject to

d
dt

〈yα(t), ϕ〉H + a(yα(t), ϕ) =
N∑

i=1

αi(t)〈F(t, ui), ϕ〉V ′,V ∀ϕ ∈ V in (0, T ],

(4b)

〈yα(0), ϕ〉H = 〈y◦, ϕ〉H ∀ϕ ∈ V, (4c)

α(t) =
(
αi(t)

)
1≤i≤N

∈ [0, 1]N in [0, T ], (4d)
N∑

i=1

αi(t) = 1 in [0, T ]. (4e)

We write JRL for the objective value obtained by an admissible solution.
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In the following theorem we show that the convexification does not change
the optimal values of the original problem (BN) and the convexified problem
(BL). The proof is similar to the one in [31, Theorem 4.6] and therefore adapted
from there.

Theorem 1. If the convexified binary optimal control problem (BL) has an
optimal solution (y∗

β , β∗) with objective value JBL, then there exists an m-
dimensional control function u∗ such that (y∗, u∗) is an optimal solution of
the binary optimal control problem (BN) with objective value JBN satisfying
JBL = JBN . The converse holds true as well.

Proof. Assume that (y∗
β , β∗) is a minimizer of (BL). Since it is feasible we have

the special order set property (3e) with β∗
i (·) ∈ {0, 1} for all i = 1, . . . , N . Thus,

there exists one index 1 ≤ j(t) ≤ N for almost all (f.a.a.) t ∈ [0, T ] such that

β∗
j(t) = 1 and β∗

i = 0, i = j(t).

The binary control function

u∗(t) = uj(t), t ∈ [0, T ] a.e.

is therefore well-defined and yields an identical right-hand side function value

F(t, u∗(t)) = F(t, uj(t)) = β∗
j(t)F(t, uj(t)) =

N∑
i=1

β∗
i (t)F(t, ui), t ∈ [0, T ] a.e.

and identical objective function

J(y∗, u∗) = J(y∗, uj(·)) = β∗
j(·)J(y∗

β , uj(·)) =
N∑

i=1

β∗
i (·)J(y∗

β , ui)

compared to the feasible and optimal solution (y∗
β , β∗) of (BL). Therefore

(y∗, u∗) is a feasible solution of (BN) with objective value JBL. Next we show
– by contradiction – that there exists no admissible solution to (BN) with a
smaller cost value than JBL. Hence, we assume that a feasible solution (ŷ, û)
of (BN) exists with objective value ĴBN < JBL. Since the set {u1, . . . , uN}
contains all feasible assignments of û, there exists again an index function ĵ(·)
such that û can be written as

û(t) = uĵ(t), t ∈ [0, T ] a.e.

With the same arguments above, β is defined as

βi(t) =

{
1 if i = ĵ(t),
0 otherwise

}
for i = 1, . . . , 2N and t ∈ [0, T ] a.e..

Consequently, β is feasible for (BL) with objective function value ĴBN < JBL

which contradicts the optimality assumption of problem (BN). Thus (y∗, u∗) is
an optimal solution of problem (BN).
The converse is proven with the same argumentation starting from the optimal
solution (BN).
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In the following we want to apply [17, Theorem 1]. For that purpose we
additionally suppose that f(·,x) and g(· , s) belong to W 1,∞(0, T ) for almost all
x ∈ Ω and s ∈ Γ, respectively. Next we verify assumptions (H0) to (H3) of [17,
Theorem 1]:

• (H0): In [20, Theorem 5.13] is proved that (RL) has a unique optimal
solution.

• (H1): Due to our regularity assumptions for the inhomogeneities f and g, the
objective J and F are (locally) Lipschitz-continuous.

• (H2): Utilizing the W 1,∞-regularity for the inhomogeneities f and g again,
we notice that F(· , ui) belongs also W 1,∞(0, T ) for any i = 1, . . . , N . Now,
(H2) follows from [17, Proposition 1], i.e., there exists a constant C > 0 with

∥∥∥ d
dτ

(
e−A(t−τ)F(τ, ui)

)∥∥∥
C(Ω)

≤ C for 0 < τ < t < T a.e. and 1 ≤ i ≤ N.

• (H3): It follows also that the mapping t �→ F(t, ui) is essentially bounded in
C(Ω) for any i ∈ {1, . . . , N}.

Summarizing we have the following result [17, Theorem 1 and Corollary 1]:

Proposition 2. Let the regularity conditions for the data stated in Sect. 2 hold.
Moreover, f(· ,x) and g(· , s) belong to W 1,∞(0, T ) for almost all x ∈ Ω and
s ∈ Γ, respectively. Suppose that (y∗

α, α∗) is the solution to the relaxed problem
(RL) with objective value JRL. Choose an arbitrary ε > 0. Then there exists a
feasible solution (y∗

ε , u∗
ε) of problem (BN) satisfying

JBN ≤ JRL + ε.

Remark 2. Notice that a feasible solution (y∗
ε , u∗

ε) of problem (BN) can be con-
structed from (y∗

α, α∗) by sum-up rounding; cf. Sect. 4.2 and [17, Algorithm 1]. ♦

4 Numerical Solution Method

In the following we describe in detail how to apply the theoretical results in a
numerical realization. We utilize Algorithm 1 which is based on the approach
described in [17]. To guarantee convergence in a finite number of steps, the
sequences of non-negative accuracies {εk}k∈N and the time discretizations should
be chosen such that εk → 0 and Δtk = maxi=1,...,νk{tki − tki−1} → 0, according
to Theorem 1 in [17].

4.1 Solution of the Relaxed Problem

Let us introduce two particular solutions for the state and dual equations:
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Algorithm 1. Relaxation Method for the FEM Model
1: Choose a time discretization G0 = {0 = t00 < t01 . . . < t0ν0 = T}, a sequence of

non-negative accuracies {εk}k∈N and some fixed tolerance ε > 0.
2: for k = 0, 1, . . . do
3: Find an optimal control αk of (RL) which stops with a tolerance of εk.
4: Set Jk

rel = Ĵ(αk).
5: if αk is binary admissible then
6: break
7: end if
8: Using Gk and αk to define a piecewise constant function βk as described in 4.3.
9: Determine Jk = Ĵ(βk).

10: if |Jk
rel − Jk| ≤ ε/2 and 0 < εk ≤ ε

2
then

11: break
12: end if
13: Choose Gk+1 = {0 = tk+1

0 < tk+1
1 . . . < tk+1

νk+1 = T} such that Gk ⊂ Gk+1.
14: end for
15: Set y∗

bin = Sβk + ŷ, β∗ = βk, y∗ = Sαk + ŷ and u∗(t) =
∑N

j=1 ujβk
j (t).

• ŷ ∈ W (0, T ) is the weak solution to

ŷt(t,x) − Δŷ(t,x) + v(x) · ∇ŷ(t,x) = f(t,x) in Q a.e.,
∂ŷ

∂n
(t, s) + q(s)ŷ(t, s) = g(t, s) on Σ a.e.,

ŷ(0,x) = y◦(x) in Ω a.e.

• Further, p̂ ∈ W (0, T ) is the weak solution to

−p̂t(t,x) − Δp̂(t,x) − ∇ · (
v(x)p̂(t,x)

)
= yd(t,x) − ŷ(t,x) in Q a.e.,

∂p̂

∂n
(t, s) +

(
q(s) + v(s) · n(s)

)
p̂(t, s) = 0 on Σ a.e.,

p̂(T,x) = 0 in Ω a.e.,

where n denotes the outwart normal vector.

The first step in Algorithm 1 is to solve (RL). To do so we use a first-order
augmented Lagrange method. Thus, we consider for c ≥ 0

min Ĵ(α) +
c

2

∫ T

0

∣∣∣∣
N∑

j=1

α(t) − 1
∣∣∣∣
2

dt s.t. α ∈ Aad and
N∑

j=1

αj(t) = 1, (5)

where the penalty term
c

2

∫ T

0

∣∣∣∣
N∑

j=1

α(t) − 1
∣∣∣∣
2

dt

is the augmentation term, Ĵ(α) = J(yα, α) is the reduced cost functional and
yα solves (4b)–(4c). The set Aad is defined by

Aad =
{
α ∈ A ∣∣ αj(t) ∈ [0, 1] on [0, T ] a.e. for j = 1, . . . , N

}
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and A = L2(0, T ;RN ). For c > 0 the augmented Lagrangian is given as

Lc(α, λ) = Ĵ(α) +
〈 N∑

j=1

αj(·) − 1, λ

〉
L2(0,T )

+
c

2

∥∥∥∥
N∑

j=1

αj(·) − 1
∥∥∥∥

2

L2(0,T )

.

For the inner optimization (i.e., the minimization of Lc(·λ) with respect to the
primal variable α) we choose a multiplier λ0 ∈ A and set k = 0. Then, for
k = 0, 1, . . ., we solve for ck > 0

min Lck
(α, λk) s.t. α ∈ Aad (Pk

c )

and set

λk+1 = λk + ck

⎛
⎝ N∑

j=1

αj(·) − 1

⎞
⎠ .

For more details about Lagrangian methods see, e.g., [6, Chapter 3 and 4]. We
repeat this process until we have

∥∥∥∥
N∑

j=1

αj(·) − 1
∥∥∥∥

2

L2(0,T )

≤ ε

for a given tolerance ε > 0. The optimality conditions are given as

∂αL(ᾱ, λ̄)(α − ᾱ) = 〈∇αLc(ᾱ, λ̄), α − ᾱ〉A ≥ 0 for all α ∈ Aad,

where ∂αL(ᾱ, λ̄) : A → R stands for the partial derivative with respect to α,
Lc(ᾱ, λ̄) ∈ A is the gradient with respect to α. Moreover, ᾱ is a local optimal
solution to (Pk

c ), and we have

∂αL(ᾱ, λ̄)αδ = 〈∇αLc(ᾱ, λ̄), αδ〉A

= Ĵ ′(ᾱ)αδ +
N∑

j=1

〈ᾱδ
j , λ̄〉

L2(0,T )
+ c

N∑
j=1

N∑
l=1

〈ᾱj − 1, αδ
l 〉L2(0,T )

for all directions αδ ∈ A. For a given point α ∈ Aad and a direction αδ ∈ A the
directional derivative Ĵ ′(α)αδ can be computed as follows:

1) Compute for a given α = (αi)1≤i≤N ∈ Aad the state yα solving

(yα)t(t,x) − Δyα(t,x) + v(x) · ∇yα(t,x) =
N∑

j=1

( m∑
i=1

bi(x)uj
i

)
αj in Q a.e.,

∂yα

∂n
(t, s) + q(s)yα(t, s) = 0 on Σ a.e.,

yα(0,x) = 0 in Ω a.e.

and set y = ŷ + yα.
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2) Solve the adjoint equation

−(pα)t(t,x) − Δpα(t,x) − ∇ · (
v(x)pα(t,x)

)
= −yα(t,x) in Q a.e.,

∂pα

∂n
(t, s) +

(
q(s) + v(s) · n(s)

)
pα(t, s) = 0 on Σ a.e.,

pα(T,x) = 0 in Ω a.e.

and set p = p̂ + pα.
3) Set for αδ ∈ A

Ĵ ′(α)αδ =
γ

2

N∑

j=1

( ∫ T

0

m∑

i=1

uj
i αδ

j (t) dt

)
−

∫ T

0

∫

Ω

N∑

j=1

( m∑

i=1

bi(x)u
j
i

)
αδ

j (t)pdxdt

=

N∑

j=1

∫ T

0

(
γ

2

m∑

i=1

(
uj

i αδ
j (t)

) − αδ
j (t)

∫

Ω
p(t, x)

m∑

i=1

(
bi(x)u

j
i

)
dx

)
dt

=
N∑

j=1

∫ T

0

(
γ

2

m∑

i=1

uj
i −

∫

Ω
p(t, x)

m∑

i=1

(
bi(x)u

j
i

)
dx

)
αδ

j (t) dt

=

〈(γ

2

m∑

i=1

uj
i −

∫

Ω
p(· , x)

m∑

i=1

(
bi(x)u

j
i

)
dx

)

1≤j≤N
, αδ

〉

L2(0,T )

.

Therefore we can introduce the Riesz representant of the linear, bounded func-
tional Ĵ ′(α) : A → R by

(
γ

2

m∑
i=1

uj
i −

∫
Ω

p(· ,x)
m∑

i=1

(
bi(x)uj

i

)
dx

)
1≤j≤N

=: ∇Ĵ(α) ∈ A.

In particular, Ĵ ′(α) = 〈∇Ĵ(α), ·〉L2(0,T ) holds true.

Remark 3. The first order optimality conditions for problem (Pk
c ) are given by

the variational inequality

〈(γ

2

m∑
i=1

uj
i −

∫
Ω

p(· ,x)
m∑

i=1

(
bi(x)uj

i

)
dx + λ̄

)
1≤j≤N

, α − ᾱ

〉
A

+ c

N∑
j=1

N∑
l=1

〈ᾱj − 1, αl − ᾱl〉L2(0,T ) ≥ 0

for all α = (αi)1≤i≤N ∈ Aad, where ᾱ is the optimal solution to (5). For more
details see [20, Chapter 5]. ♦

4.2 Sum-Up Rounding

Assume that we have found an optimal solution α to (RL). The next step in
Algorithm 1 is to construct a binary admissible control function β for (BL).
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There we need to guarantee that we will not lose the special ordered set prop-
erty (SOS-1). Therefore we construct β by using the following so-called sum up
rounding strategy (compare to [17] and [31, Section 5.1]) as follows.

Let G = {t0, t1, . . . , tν} be a time grid with 0 = t0 < t1 < · · · < tν = T .
Define β = (β1, . . . , βN ) : [0, T ] → {0, 1}N by

βi(t) = pi,j , t ∈ [tj , tj+1), i = 1, . . . , N, j = 0, . . . , ν − 1,

where for all i = 1, . . . , N , j = 0, . . . , ν − 1

pi,j =

⎧⎪⎨
⎪⎩

1 if (p̂i,j ≥ p̂l,j ∀l ∈ {1, . . . , N} \ {i}) and
(i < l : ∀l ∈ {1, . . . , N} \ {i} : p̂i,j = p̂l,j)

0 else

ˆpj,i =
∫ tj+1

0

αi(τ)dτ −
j−1∑
l=0

pi,l(tl+1 − tl).

Finally, to define a binary admissible control function for (BN) u : [0, T ] →
{0, 1}m we set

u(t) =
N∑

j=1

ujβj(t).

Thanks to Theorem 1 we get then JBL = JBN , where JBL depends on β and
JBN depends on u.

4.3 Redefine the Time Discretization

If the values between the cost functions of (BN) and (RL) are not small enough
we need to redefine the time grid to get a better solution. To do so, there are
several strategies given in [31, Section 5.3]. However, the simplest way would be
just to define the grid in an equidistant way by double it and to use the old
solution as a warmstart. In our numerical experiments this is the way we have
done.

4.4 The POD Method

The most expensive part in Algorithm 1 is to find an optimal control α of (RL).
If one use here, e.g., finite elements to discretize the state and adjoint equa-
tions these leads to huge computational time. Therefore, to reduce the cost of
the numerical solution method we apply a POD-method. To apply POD to the
convexified problem assume that we have already computed a POD basis of
rank � and the corresponding POD space V 	 = span{ψ1, . . . , ψ	} ⊂ V is given.
Moreover, we assume that we have computed the inhomogeneous part ŷ of the
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solution to the state equation. With the same notations as in Sect. 4.1 we intro-
duce the weak formulation of the homogeneous part of the reduced-order state
equation

d
dt

〈y	
α(t), ψ〉H + a(y	

α(t), ψ) =
〈 m∑

i=1

uibi, ψ

〉
H

∀ψ ∈ V 	 in (0, T ], (6)

〈y	
α(0), ψ〉H = 0 ∀ψ ∈ V 	. (7)

and set y	 = ŷ + y	
α. Moreover we define the POD approximated reduced cost

function by

Ĵ	(α) :=
1
2

‖y	 − yd‖2

L2(Q) +
γ

2

N∑
j=1

‖uj‖2

Rm

∫ T

0

αj(t) dt.

With the definition of the POD approximated reduced cost we can define the
POD approximated reduced problem for the inner optimization of the Lagrange
method, more precisely for (Pk

c ). For the inner optimization we consider therefore
the POD approximated reduced problem

min L	
ck

(α, λk) s.t. α ∈ Aad (P	,k
c )

for a given ck and λk, where we have for c ≥ 0

L	
c(α, λk) = Ĵ	(α) +

〈 N∑
j=1

αj − 1, λk

〉
L2(0,T )

+
c

2

∥∥∥∥
N∑

j=1

αj − 1
∥∥∥∥

2

L2(0,T )

.

Then the gradient of Ĵ	 is given by

∇Ĵ	(α) =
(

γ

2

m∑
i=1

uj
i −

∫
Ω

p	(· ,x)
m∑

i=1

(
bi(x)uj

i

)
dx

)
1≤j≤N

∈ A,

where p	 = p̂ + p	
α holds true und p	

α solves the adjoint problem

− d
dt

〈p	
α(t), ψ〉H + a(ψ, p	

α(t)) = −〈y	
α(t), ψ〉H ∀ψ ∈ V 	 in (0, T ], (8)

〈p	
α(T ), ψ〉H = 0 ∀ψ ∈ V 	. (9)

In [20, Theorem 5.38] is the following a-priori convergence result given.

Theorem 2. Suppose assumptions from Sect. 2 hold. Let the linear, bounded
operator B : A → L2(0, T ; (V 	)′) be given as

〈Bα)(t), ψ〉(V �)′,V � =
N∑

j=1

αj(t)
m∑

i=1

uj
i 〈bi, ψ〉H for α ∈ A in [0, T ] a.e.

We assume that B is injective. For arbitrarily given α ∈ A we suppose that the
solutions yα and pα to (6) and (9), respectively, belong to H1(0, T ;V ) \ {0}.
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1) If we compute the POD space V 	 by solving

min
4∑

j=1

∫ T

0

∥∥∥yj(t)−
	∑

i=1

〈yj(t), ψi〉V ψi

∥∥∥2

V
dt s.t. {ψi}	

i=1 ⊂ V, 〈ψi, ψj〉V = δij

using the snapshots y1 = yα, y2 = (yα)t, y3 = pα and y4 = (pα)t, then the
optimal solution ᾱ of (Pk

c ) and the optimal solution ᾱ	 to the reduced problem
(P	,k

c ) satisfy
lim

	→∞
‖ᾱ	 − ᾱ‖A = 0.

2) If an optimal POD basis of rank � is computed by choosing the snapshots
y1 = yᾱ, y2 = (yᾱ)t, y3 = pᾱ and y4 = (pᾱ)t, then we have

lim
	→∞

‖ᾱ	 − ᾱ‖A ≤ C

∞∑
i=	+1

μi,

where {μ}i∈N are the eigenvalues of the corresponding POD problem satisfying
the error formula

4∑
j=1

∫ T

0

∥∥∥yj(t) −
	∑

i=1

〈yj(t), ψi〉V ψi

∥∥∥2

V
dt =

∞∑
i=	+1

μi;

cf. [14], for instance.

The following a-posteriori error estimate guarantees that the error stays small
in the numerical solution method. A proof can be found in [20, Theorem 5.39].

Theorem 3. Let all assumptions of Theorem2 hold. For arbitrarily given α ∈ A
we choose the snapshots y1 = yα, y2 = (yα)t, y3 = pα and y4 = (pα)t. Define
the function ζ	 ∈ A by

ζ	
i (t) =

⎧⎪⎨
⎪⎩

−min(0, ξ	
i (t)) a.e. in A	

0,i = {t ∈ [0, T ] | ᾱl
i(t) = 0},

max(0, ξ	
i (t)) a.e. in A	

1,i = {t ∈ [0, T ] | ᾱl
i(t) = 1},

−ξ	
i (t) a.e. in [0, T ] \ (A	

0,i ∪ A	
1,i),

where ξ	 = ∇αLc(α	, λ) in A. Then, for c > 0 we get the a-posteriori error
estimate

‖ᾱ − ᾱ	‖2

A ≤ 1
c
‖ζ	‖A, (10)

and in particular, lim
	→∞

‖ζ	‖A = 0.

With these results, we can solve (RL) with the POD method and control the
error with the a-posteriori error estimate in our numerical solution approach.
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Table 1. Parameter and function values for the numerical experiments

Symbol Value Description

T 1 Final time

Ω (0, 1)2 Spatial domain

v(x) (1, 1)T for all x ∈ Ω Convection term

q(x) 0.1 on ∂Ω Isolation of the room

f(t, x) 0 No influence from the source term f

g(t, x) see Fig. 1 Outside temperature modeled by a
polynomial with degree 3

5 Numerical Experiments

In this section we investigate the mixed-integer optimal control problem numer-
ically by the method introduced in Sect. 4. To recall, we consider the following
mixed-integer optimal control problem:

min
y,u

J(y, u) =
1
2

∫ T

0

∫
Ω

|y(t,x) − yd(t,x)|2dxdt +
γ

2

m∑
i=1

∫ T

0

|ui(t)|2dt (11a)

subject to a convection-diffusion equation

2yt − Δy + v · ∇y = f +
m∑

i=1

uibi in Ω (11b)

∂y

∂n
+ qy = g on Σ (11c)

y(0) = y0 in Ω (11d)

and binary admissibility of u(·)

u(t) ∈ {0, 1}m in [0, T ] a.e. (almost everywhere). (11e)

We will use the parameters and function values which are given in Table 1.
Moreover, for the desired temperature we first want a decrease in the temperature
to 10◦ until t = 0.25, an increase to 18◦ until t = 0.75 and then again a decrease
to 10◦. With this we want to avoid simple solutions which are like u(t) = 1 or
u(t) = 0 for all t ∈ [0, T ]. Therefore we set for all x ∈ Ω

yd(t, x) =

{
10 if t < 0.25 or t > 0.75,

18 otherwise.

In the following we will use all notations from the previous sections. The
implementations are done in Python where we use the packages NumPy, SciPy
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and Matplotlib, see [21] as well as FEniCS, see [2,30]. All computations are
done on a standard laptop (Acer Aspire 5, Intel(R) Core(TM) i5-8250U, 1.6 GHz
(up to 3.4 GHz), 8 GB DDR4-RAM).

For solving the relaxed optimal control problems (RL) we use for the inner
optimization in each iteration of the augmented Lagrange method (e.g. solving
(Pk

c )) the L-BFGS-B method from SciPy, [7]. The maximum number of iterations
for the L-BFGS-B method is set up to 100. For the first time grid we utilize a
tolerance of ε0 = 10−4. After each modification of the time grid we divided
ε0 by 10 until εk = 10−7 which give us a sequence of non-negative accuracies
{εk}. To solve the integer problem we use as a tolerance ε = 10−5. The first
time discretization is given by an equidistant time grid G0 ⊂ [0, T ] with 50 time
steps. The first optimal control problem (RL) is solved with a (pseudo) random
initial control function. After that one we reuse the old solution to get faster
convergence results. We stop the algorithm either if

∣∣JBN − JRL
∣∣ ≤ ε

or if the size of the time grid is bigger than 800 grid points. We redefine the time
grid in an equidistant way by double it.

In the tests we consider a tow dimensional control and impose a floor heating
in the subdomains Ωb1 = (0, 0.25)×(0, 0.5) ⊂ Ω and Ωb2 = (0.25, 0.5)×(0, 0.5) ⊂
Ω. Therefore we set b1(x) = 1 for all x ∈ Ωb1 and b2(x) = 1 for all x ∈ Ωb2 . Set
u1

1 = 0, u2
1 = 1, u1

2 = 0 and u2
2 = 1 the convexification and the relaxation leads

to (RL) which has the form

min
y,α

J(y, α) =
1

2

∫ T

0

∫

Ω
|y(t, x)− yd(t, x)|2dxdt +

γ

2

∫ T

0
(α2(t) + α3(t) + 2α4(t))dt

subject to

yt − Δy + v · ∇y = f + b1α2 + b2α3 + (b1 + b2)α4, in Ω,

∂y

∂n
+ qy = g, on Σ,

y(0) = y0, in Ω,

α(t) ∈ [0, 1]4, in [0, T ] a.e.,
4∑

i=1

αi(t) = 1, in [0, T ] a.e..

After finding an optimal control α we use the sum-up rounding strategy as
described in Sect. 4.2 to get a binary admissible β and set

u(t) =
(

0
0

)
β1(t) +

(
1
0

)
β2(t) +

(
0
1

)
β3(t) +

(
1
1

)
β4(t)

for all t ∈ [0, T ].
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Fig. 1. Temperature outside given by real data and the interpolated polynom.

5.1 Full Finite Element Method Model

In our numerical experiments we compare the behavior of the algorithm with
different regularization parameters γ. Notice, that for γ = 0 the problem leads
to a bang-bang solution. Therefore, as bigger the regularization parameter gets,
as more complicated is the integer problem. But on the other hand, big regular-
ization parameters should make the relaxed problem easier to handle.

5.1.1 Case γ = 0.01
The first test is done with γ = 0.01. Here we use the initial condition that
represents a constant temperature of 16◦ in the whole room, i.e. y0(x) = 16 for
all x ∈ Ω. After four times redefining the grid, the algorithm has found a solution
with a difference between JBN = JBL and JRL around 6·10−5. The convergence
behavior is given in the left subfigure of Fig. 2. Notice, that in the same figure
we see also the difference between JBN = JBL and JRL (blue line) as well as the
difference between JBN and JRN (orange line) which is close to the other one,
caused of the small regularization parameter γ. Notice as well that we always
have that JRL < JRN which we could expect from the theoretical results. In
Fig. 3 are the optimal control functions u1 and u2 and the corresponding binary
functions β1, β2, β3 and β4. Notice that all control functions are close to bang-
bang. Notice as well that to guarantee the SOS-1 property for the binary control
functions βi we need in β2 an additional 1 at time step t ≈ 0.08 which we don’t
see in the relaxed control α2.



254 C. Jäkle and S. Volkwein

Fig. 2. Difference between JBN and JRL as well as between JBN and JRN . Case
γ = 0.01 on the top left, γ = 0.1 on the top right and γ = 1 on the bottom middle.

5.1.2 Case γ = 0.1
Next we increase the regularization parameter and set therefore γ = 0.1. The
algorithm modifies the time grid four times to reach a tolerance around 10−6

for the difference of JBN = JBL and JRL. The convergence behavior is given in
the right subfigure of Fig. 2. Notice that the difference of JBN = JBL and JRN

is bigger compared to the case γ = 0.01 and would not converge to a solution
which is as close as that one we have found. Or in other words, just relax the
integer problem leads to big duality gaps which do not close by just redefining
the time grid.

5.1.3 Case γ = 1
Finally, we do the same test with γ = 1. To avoid solutions which are zero
everywhere, we set y0(x) = 14 for all x ∈ Ω. The algorithm is done after four
times redefinition of the time grid and a difference between JBN = JBL and JRL

which is ≈ 10−6. The convergence behavior is given in the bottom subfigure
of Fig. 2. Notice that there is a big difference between JBN and JRN . Here
we see again the nice benefit of the convexification. Without that, it would be
impossible to get such a small difference as for the solution, and we could say
nothing how good our solution would be. Again we see that the duality gab
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Fig. 3. Optimal control functions (relaxed and rounded) and corresponding optimal
binary functions βi for γ = 0.01.

between the integer solution and the relaxed solution without convexification is
huge compared to the gap of the confexified problem.

If we have a look on Fig. 4 we can see the influence of the convection term
in the control functions. The second control function is on the right side in the
domain and from the convection therefore more expansive in the costs, although
we do not weight our control functions. Therefore we get a zero control function
for the second control. For the first one we have a little (but less than in the
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Fig. 4. Optimal control functions (relaxed and rounded) and corresponding optimal
binary functions βi for γ = 1.

case without convexification) chattering behavior. Summarized we see for a two-
dimensional problem that the convexification leads to good solutions and the
gap between integer and relaxed closes nicely. We also see, that the estimate
between JBN and JRL is sharp, in contrast to JRN which we could expect from
the theoretical results. Moreover, we see a nice linear convergence behavior for
the solutions by redefining the time grid in an equidistant way by doubling it.
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5.2 The Reduced POD Model

In the following we do the same tests as in Sect. 5.1 but apply the POD method
on the corresponding relaxed problems. We investigated the quality of the POD
approximated solutions with the a-posteriori error estimate from Theorem 3 and
compare the computational time. Since we are solving an integer problem we
expect similar solutions as before and compare therefore the values of the cost
functions corresponding to (RL) as well as (RN).

To generate a POD basis of rank l we use the snapshots y1 = Sα0 and
y2 = Aα0, where α0 is a (pseudo) random initial control function which we
use for both problems as initial one e.g. we start both optimal control problems
with this one. We compute the POD basis as describes in [20, Section 4] using
trapezoidal weights and solve the eigenvalue problem corresponding to the POD
problem with the SVD method. As weighting matrix we use the mass matrix
and we use l = 10 snapshots. The offline phase, which mean calculating the POD
ansatz functions need in all three cases around 0.025 s.

5.2.1 Case γ = 0.01
For the FEM method, the algorithm needs to redefine the grid four times and
found a solution after 1994.2 s. The algorithm spends the most time (around
1400 s) in the last time grid. This could come from a bad initial condition since
in all other cases, the reuse of the old solution works pretty well. The difference
between JBN = JBL and JRL is ≈ 7 ∗ 10−5.

The POD method needs 154.2 s and is therefore more than 12 times faster,
although we have use the same initial condition. In this test for u2, at t ≈ 0.5
the POD method has found a solution where uPOD

2 (t) = 1 and uFEM
2 (t) = 0.

The rest is equal. The convergence behavior of the full problem and the POD
problem is given in Fig. 5 as well as the difference between JRL

FEM and JRL
FEM . In

Table 2 we have given all values of the cost in the different time grids for the full
problem as well as for the POD problem. Notice the interesting behavior of the
a-posteriori error functions ζ.

Finally we have a look of the difference of the controls in the final grid. Here
we have

∥∥uRel
FEM − uRel

POD

∥∥
A

= 0.02171,
∥∥uInt

FEM − uInt
POD

∥∥
A

= 0.02.

Therefore we can conclude that the POD method founds a similar solution and
is much faster than the full method. Moreover, we can see that the POD method
has found a solution in each time grid which is equal or slightly bigger than that
one from the full model.
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Fig. 5. Convergence behavior of the cost for γ = 0.01. On the top left, difference
between the relaxed and the binary cost for the FEM. On the top right the difference
for the POD method and on the bottom middle the difference between the convexified
relaxed cost for the FEM and the POD method.

Table 2. Summarized values in the different time grids for γ = 0.01.

Time instances 50 100 200 400 800
1
c
‖ζ‖ 6 · 10−8 0.00011 10−8 6 · 10−5 8 · 10−6

JBN = JBL 11.5186 11.4813 11.4924 11.5009 11.5027

JRN 11.5143 11.4805 11.4919 11.5006 11.5026

JRL 11.5144 11.4806 11.4919 11.5006 11.5026

JBN
POD = JBL

POD 11.5186 11.4815 11.4924 11.5009 11.5028

JRN
POD 11.5143 11.4805 11.4919 11.5007 11.5027

JRL
POD 11.5144 11.4806 11.4919 11.5007 11.5027

5.2.2 Case γ = 0.1
Like before both algorithms need to redefine the time grid four times. For the
full model the algorithm needs 1789.4 s. Again, the augmented Lagrange method
in the final time grid needs the most time of the whole process. The difference
between JBN = JBL and JRL is ≈ 10−6 and therefore reached our accuracy.
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For the reduced POD model the algorithm needs 144.9 s and is therefore again
more than 12 times faster. But the difference between JBN

POD = JBL
POD and JRL

POD

is ≈ 10−5 and therefore a bit worse than for the full model. The convergence
behavior of the costs for the full model and the POD model is given in Fig. 6.
Table 3 shows again the different values of the cost and the behavior of the error
functions ζ.

Again we have a look at the difference of the control in the final grid. This
time we have∥∥uRel

FEM − uRel
POD

∥∥
A

= 0.039,
∥∥uInt

FEM − uInt
POD

∥∥
A

= 0.141.

The discrete control u1 of the full model and the POD model differs for

t ∈ {
0.13625, 0.48875, 0.49, 0.49125

}
and the discrete control u2 differs for

t ∈ {
0.13375, 0.135, 0.41, 0.4125, 0.49125

}
which causes the difference of the binary control functions. Notice, again the
value of the cost function JBN

POD is equal at every time grid except in the case
where the grid is of the size 200. Here the value of JBN

POD is slightly bigger.

Fig. 6. Convergence behavior of the cost for γ = 0.1. On the top left, difference between
the relaxed and the binary cost for the FEM. On the top right the difference for the
POD method and on the bottom middle the difference between the convexified relaxed
cost for the FEM and the POD method.
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Table 3. Summarized values in the different time grids for γ = 0.1.

Time instances 50 100 200 400 800
1
c
‖ζ‖ 1 · 10−9 8 · 10−5 6 · 10−5 5 · 10−7 4 · 10−6

JBN = JBL 11.5494 11.5126 11.5246 11.5338 11.5355

JRN 11.5465 11.5115 11.5241 11.5335 11.5353

JRL 11.5467 11.5122 11.5243 11.5337 11.5355

JBN
POD = JBL

POD 11.5494 11.5126 11.5247 11.5338 11.5355

JRN
POD 11.5465 11.5116 11.5238 11.5335 11.5353

JRL
POD 11.5466 11.5122 11.5246 11.5337 11.5352

5.2.3 Case γ = 1
The full model redefines the time grid three times and needed 277.1 s. The differ-
ence between JBN = JBL and JRL is ≈ 10−6, so we reach our tolerance what is
the reason why the algorithm needs much less time and one time grid less than
in the cases of γ = 0.01 and γ = 0.1. This could come from a good initial control
u0. Notice in the test of Subsect. 5.1 the algorithm needed one time grid more to
reach this tolerance. Using the reduced POD model the algorithm needs 42.8 s
and redefined the time grids three times. The plots of the convergence behavior
are given in Fig. 7 and in Table 4 we have summarized our findings. Notice this
time the value of JBL

POD is a bit smaller or equal than the cost JBL for the full
model. The difference between JBN

POD = JBL
POD and JRL

POD is ≈ 10−6.
Having a look at the difference of the control functions in the final time grid

we get
∥∥uRel

FEM − uRel
POD

∥∥
A

= 0.0073,∥∥uInt
FEM − uInt

POD

∥∥
A

= 0.02.

The only difference in the binary control functions is for u1 at t = 0.205.

Table 4. Summarized values in the different time grids for γ = 1.

Time instances 50 100 200 400
1
c
‖ζ‖ 2 · 10−9 1 · 10−6 6 · 10−6 1 · 10−6

JBN = JBL 12.2703 12.2492 12.2561 12.2936

JRN 12.2697 12.2466 12.2529 12.2903

JRL 12.2697 12.2491 12.2566 12.2936

JBN
POD = JBL

POD 12.2703 12.2492 12.2561 12.2936

JRN
POD 12.2697 12.2466 12.2579 12.2903

JRL
POD 12.2697 12.2491 12.2561 12.2936
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Fig. 7. Convergence behavior of the cost for γ = 1. On the top left, difference between
the relaxed and the binary cost for the FEM. On the top right the difference for the
POD method and on the bottom middle the difference between the convexified relaxed
cost for the FEM and the POD method.

Table 5. Different computational times for the FEM method and the POD method
for different regularization parameter.

Computational time

FEM/POD

γ = 0.01 FEM 1994.2 s 12, 9

POD 154.2 s

γ = 0.1 FEM 1789.4 s 12.3

POD 144.9 s

γ = 1 FEM 277.1 s 6.5

POD 42.8 s

Summarized we can definitely say that working with a reduced POD model
instead of the full model gives a huge improvement of the computational time
(see Table 5 for summarizing the speed up). Moreover, we get with this approach
similar solutions which can lead incidental to smaller values of the cost function,
therefore even better solutions. We have also seen, that a very small number l
of ansatz functions for the POD basis are enough to reach this good solutions.



262 C. Jäkle and S. Volkwein

6 Conclusions and Outlook

In this chapter the authors have dealt with the application of relaxation meth-
ods combined with proper orthogonal decomposition (POD) methods for model
order reduction to solve mixed-integer optimal control problems governed by
linear convection-diffusion equations. After adopting the algorithm of [17] and
verifying that this problem satisfies the assumptions of Theorem 1 in [17] to
guarantee convergence a detailed description of the numerical solution method
was given. Since the finite element method to discretize the state and adjoint
equations from the optimization procedure leads to huge systems which have to
be solved frequently, the POD method was introduced. This reduced the time-
consuming optimization process and leads to a significant acceleration of the
CPU times while the error remains small. The functionality of the algorithm
and this behavior was verified by numerical experiments.
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