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Preface

This book is a collection of recent advances on problems in dynamical systems,
optimal control and optimization. In many cases, computational aspects and tech-
niques are central. We dedicate this volume to Michael Dellnitz on the occasion of
his 60th birthday. In one way or the other, there is a connection to Michael’s
research in all of these contributions.

In Part I, we collect chapters related to problems in dynamical systems. We start
with a new technique for computing highly degenerate periodic orbits in ordinary
differential equations, so-called phase resetting curves which appear, e.g., in models
of spiking neurons. The second contribution employs concepts from singularity
theory in order to classify and compute homeostasis points, i.e., points in state space
of, e.g., biochemical networks, in which some output variable is roughly constant
while some input variable is changing. We continue with a review on recent
developments on the set-oriented approximation of invariant sets, a technique that
has been pioneered by Michael and which will reappear in several other chapters in
this volume. In the following paper, this technique is employed to approximate the
transfer operator in non-autonomous differential equations, enabling the computa-
tion of coherent behavior in otherwise turbulent fluid flows. In high-dimensional
systems with high-dimensional invariant sets, other concepts for an approximation
of the transfer operator have to be found—and this is the subject of the next chapter
where empirical bases are employed to construct a finite-rank approximation of this
operator. Eigenfunctions of the (approximate) transfer operator can be used in order
to detect, e.g., rare events like transitions between almost–invariant, respectively,
metastable subsets in state space—an observation which already appears in one
of the earlier works of Michael from the late 1990s. This is built upon in the
subsequent chapter where a new, weaker characterization of slowly changing
coordinates in noisy dynamical systems is proposed. Another way to address the
reliable detection of rare events is based on sampling techniques like importance
sampling and this addressed in the next chapter, where several sampling algorithms
are compared and validated. We close the first part of this book by a chapter which
demonstrates the usefulness of concepts from dynamical systems for solving
questions on the computational complexity of certain problems.
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Part II is dedicated to optimal control problems. In the first contribution, sym-
metric optimal control problems are investigated. Lie group symmetries and
associated motion primitives of mechanical systems are exploited to develop
numerical methods for multi-objective model predictive optimal control problems.
In the second contribution, we review the numerical treatment of a mixed-integer
optimal control problem governed by linear convection–diffusion equations and
binary control variables. Relaxation and sum-up rounding techniques are combined
with model order reduction to make the numerical approximation computationally
more efficient. In the third contribution, we review set-oriented methods for the
construction of globally optimal controllers. Based on a discrete version of
Bellman’s optimality principle applied to a dynamic game, a discrete feedback is
constructed which robustly stabilizes a given nonlinear control system. In the last
contribution, we review and highlight some connections between the problem of
nonlinear smoothing and optimal control problems involving control of probability
densities.

Finally, in Part III, we present three contributions related to optimization. The
first contribution deals with the occurrence of “dents” in Pareto fronts of continuous
multi-objective optimization problems. This can be helpful to obtain information
about the structure of the Pareto front without explicitly computing the entire Pareto
set. The second contribution deals with equality constrained bi-level multi-objective
optimization problems and proposes a novel set-oriented algorithm that aims for a
well-distributed finite-size approximation of the Pareto front of the higher-level
problem. The third contribution reviews the gradient subspace approximation which
allows one to compute descent directions in a best-fit manner from given neigh-
borhood information. The method works particularly well in combination with
set-oriented searchers such as evolutionary algorithms.

Oliver Junge
Oliver Schütze
Gary Froyland

Sina Ober-Blöbaum

April 2020

Kathrin Padberg-Gehle

viii Preface



Acknowledgements

The editors are grateful to the authors for their contributions to this volume
recognizing Michael’s scientific achievements. All editors have been either
graduate students or postdocs with Michael and would like to express their
appreciation for Michael’s mentoring and their collaborative endeavors, both within
and beyond Michael’s research group.

O. Schütze acknowledges support from Conacyt Basic Science project no.
285599 and SEP-Cinvestav project no. 231.

ix



Contents

Dynamics

A Continuation Approach to Computing Phase Resetting Curves . . . . . 3
Peter Langfield, Bernd Krauskopf, and Hinke M. Osinga

Input-Output Networks, Singularity Theory, and Homeostasis . . . . . . . 31
Martin Golubitsky, Ian Stewart, Fernando Antoneli, Zhengyuan Huang,
and Yangyang Wang

The Approximation of Invariant Sets in Infinite Dimensional
Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Raphael Gerlach and Adrian Ziessler

Set-Oriented and Finite-Element Study of Coherent Behavior
in Rayleigh-Bénard Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Anna Klünker, Christiane Schneide, Gary Froyland, Jörg Schumacher,
and Kathrin Padberg-Gehle

Singular Value Decomposition of Operators on Reproducing Kernel
Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Mattes Mollenhauer, Ingmar Schuster, Stefan Klus, and Christof Schütte

A Weak Characterization of Slow Variables in Stochastic
Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Andreas Bittracher and Christof Schütte

Analysis and Simulation of Extremes and Rare Events
in Complex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Meagan Carney, Holger Kantz, and Matthew Nicol

Dynamical Systems Theory and Algorithms for NP-hard Problems . . . . 183
Tuhin Sahai

xi



Optimal Control

Symmetry in Optimal Control: A Multiobjective Model Predictive
Control Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Kathrin Flaßkamp, Sina Ober-Blöbaum, and Sebastian Peitz

POD-Based Mixed-Integer Optimal Control of Evolution Systems . . . . . 238
Christian Jäkle and Stefan Volkwein

From Bellman to Dijkstra: Set-Oriented Construction of Globally
Optimal Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Lars Grüne and Oliver Junge

An Optimal Control Derivation of Nonlinear Smoothing Equations . . . . 295
Jin Won Kim and Prashant G. Mehta

Optimization

Structural Properties of Pareto Fronts: The Occurrence of Dents
in Classical and Parametric Multiobjective Optimization Problems . . . . 315
Katrin Witting, Mirko Hessel-von Molo, and Michael Dellnitz

An Image Set-Oriented Method for the Numerical Treatment
of Bi-Level Multi-objective Optimization Problems . . . . . . . . . . . . . . . . 337
Alessandro Dell’Aere

The Gradient Subspace Approximation and Its Application
to Bi-objective Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Oliver Schütze, Lourdes Uribe, and Adriana Lara

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

xii Contents



List of Contributors

Fernando Antoneli Escola Paulista de Medicina, Universidade Federal de São
Paulo, São Paulo, SP, Brazil

Andreas Bittracher Department of Mathematics and Computer Science, Freie
Universität Berlin, Berlin, Germany

Meagan Carney Max Planck Institute for the Physics of Complex Systems,
Dresden, Germany

Michael Dellnitz Chair of Applied Mathematics, Paderborn University,
Paderborn, Germany

Alessandro Dell’Aere Chair of Applied Mathematics, Institute for Mathematics
University of Paderborn, Paderborn, Germany

Kathrin Flaßkamp Systems Modeling and Simulation, Saarland University,
Saarbrücken, Germany

Gary Froyland School of Mathematics and Statistics, University of New South
Wales, Sydney, NSW, Australia

Raphael Gerlach Paderborn University, Paderborn, Germany

Martin Golubitsky Mathematics Department, The Ohio State University,
Columbus, OH, USA

Lars Grüne Mathematical Institute, University of Bayreuth, Bayreuth, Germany

Zhengyuan Huang The Ohio State University, Columbus, OH, USA

Oliver Junge Department of Mathematics, Technical University of Munich,
Munich, Germany

Christian Jäkle Department of Mathematics and Statistics, University of
Konstanz, Konstanz, Germany

xiii



Holger Kantz Max Planck Institute for the Physics of Complex Systems, Dresden,
Germany

Jin Won Kim Coordinated Science Laboratory and Department of Mechanical
Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL,
USA

Stefan Klus Department of Mathematics and Computer Science, Freie Universität
Berlin, Berlin, Germany

Anna Klünker Institute of Mathematics and its Didactics, Leuphana Universität
Lüneburg, Lüneburg, Germany

Bernd Krauskopf Department of Mathematics, The University of Auckland,
Auckland, New Zealand

Adriana Lara ESFM del Instituto Politécnico Nacional, Mexico City, Mexico

Peter Langfield IHU Liryc, Electrophysiology and Heart Modeling Institute,
Fondation Bordeaux Université, Pessac - Bordeaux, France; Institut deMathématiques
de Bordeaux UMR 5251, Université de Bordeaux, Talence, France

Prashant G. Mehta Coordinated Science Laboratory and Department of
Mechanical Science and Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL, USA

Mattes Mollenhauer Department of Mathematics and Computer Science, Freie
Universität Berlin, Berlin, Germany

Mirko Hessel-von Molo Faculty of Computer Science Fachhochschule
Dortmund – University of Applied Sciences and Arts, Dortmund, Germany

Matthew Nicol Department of Mathematics, University of Houston, Houston, TX,
USA

Sina Ober-Blöbaum Department of Mathematics, Paderborn University,
Paderborn, Germany

Hinke M. Osinga Department of Mathematics, The University of Auckland,
Auckland, New Zealand

Kathrin Padberg-Gehle Institute of Mathematics and its Didactics, Leuphana
Universität Lüneburg, Lüneburg, Germany

Sebastian Peitz Department of Mathematics, Paderborn University, Paderborn,
Germany

Tuhin Sahai Raytheon Technologies Research Center, Berkeley, CA, USA

Christiane Schneide Institute of Mathematics and its Didactics, Leuphana
Universität Lüneburg, Lüneburg, Germany

xiv List of Contributors



Jörg Schumacher Department of Mechanical Engineering, Technische
Universität Ilmenau, Ilmenau, Germany

Ingmar Schuster Zalando Research, Zalando SE, Berlin, Germany

Christof Schütte Department of Mathematics and Computer Science, Freie
Universität Berlin, Berlin, Germany; Zuse Institute Berlin, Berlin, Germany

Oliver Schütze Computer Science Department, Cinvestav-IPN, Mexico City,
Mexico

Ian Stewart Mathematics Institute, University of Warwick, Coventry, UK

Lourdes Uribe ESFM del Instituto Politécnico Nacional, Mexico City, Mexico

Stefan Volkwein Department of Mathematics and Statistics, University of
Konstanz, Konstanz, Germany

Yangyang Wang Department of Mathematics, The University of Iowa, Iowa City,
IA, USA

Katrin Witting dSPACE GmbH, Paderborn, Germany

Adrian Ziessler Paderborn University, Paderborn, Germany

List of Contributors xv



Dynamics



A Continuation Approach to Computing
Phase Resetting Curves

Peter Langfield1,2, Bernd Krauskopf3, and Hinke M. Osinga3(B)

1 IHU Liryc, Electrophysiology and Heart Modeling Institute,
Fondation Bordeaux Université, 33600 Pessac - Bordeaux, France

peter.langfield@u-bordeaux.fr
2 Institut de Mathématiques de Bordeaux UMR 5251,

Université de Bordeaux, 33400 Talence, France
3 Department of Mathematics, The University of Auckland,

Private Bag 92019, Auckland 1142, New Zealand
{b.krauskopf,h.m.osinga}@auckland.ac.nz

Abstract. Phase resetting is a common experimental approach to inves-
tigating the behaviour of oscillating neurons. Assuming repeated spiking
or bursting, a phase reset amounts to a brief perturbation that causes
a shift in the phase of this periodic motion. The observed effects not
only depend on the strength of the perturbation, but also on the phase
at which it is applied. The relationship between the change in phase
after the perturbation and the unperturbed old phase, the so-called
phase resetting curve, provides information about the type of neuronal
behaviour, although not all effects of the nature of the perturbation are
well understood. In this chapter, we present a numerical method based
on the continuation of a multi-segment boundary value problem that
computes phase resetting curves in ODE models. Our method is able
to deal effectively with phase sensitivity of a system, meaning that it is
able to handle extreme variations in the phase resetting curve, includ-
ing resets that are seemingly discontinuous. We illustrate the algorithm
with two examples of planar systems, where we also demonstrate how
qualitative changes of a phase resetting curve can be characterised and
understood. A seven-dimensional example emphasises that our method
is not restricted to planar systems, and illustrates how we can also deal
with non-instantaneous, time-varying perturbations.

1 Introduction

Measuring phase resetting is a common approach for testing neuronal responses
in experiments: a brief current injection perturbs the regular spiking behaviour of
a neuron, resulting generally in a shifted phase as the neuron returns to its regu-
lar oscillating behaviour. This phase shift can be advanced or delayed—meaning
that the next spike arrives earlier or later compared with the unperturbed spik-
ing oscillation—and which effect occurs also depends on the moment when the

c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
O. Junge et al. (Eds.): SON 2020, SSDC 304, pp. 3–30, 2020.
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current is applied; see [9] for more details. A plot of the shifted phase ϑnew versus
the original phase ϑold at which the current was applied is known as the phase
transition curve (PTC). Experimentally, it is often easier to represent the reset
in terms of the resulting phase difference ϑnew −ϑold as a function of ϑold, which
can be measured as the time to the next spike; such a representation is called a
phase response curve or phase resetting curve (PRC).

The shape of a PTC or PRC of a given system obviously depends on the size
of the applied perturbation: already for quite small amplitudes, nonlinear effects
can dramatically affect a PTC or PRC. The shape of the PTC or PRC has been
used to classify neuronal behaviour [1,7,16], where the underlying assumption is
that the size of the applied perturbation is sufficiently small. Hodgkin [17] dis-
tinguished between so-called Type-I and Type-II excitable membranes, where
neurons with membranes of Type II are not able to fire at arbitrarily low fre-
quencies. Note that transitions from Type-I to Type-II can occur when system
parameters are changed [8]. Ermentrout [7] found that the PRC of a Type-I neu-
ron always has the same sign, while that of a Type-II neuron changes sign; this
means that the PTC is always entirely above or below the diagonal for Type-I
neurons, while it intersects the diagonal for Type-II neurons. In either case, the
PTC is invertible for sufficiently small perturbation amplitudes, since it can be
viewed as a continuous and smooth deformation of the identity, which is the
PTC in the limit of zero amplitude. Invertibility itself has also been used as a
distinguishing property of PTCs: noninvertible PTCs are said to be of type 0
(or strong) and invertible PTCs are of type 1 (or weak) [9,37]. If an increasingly
stronger perturbation is applied, for example, in the context of synchronisation,
it is well known that PTCs can change from type 1 to type 0, that is, become
noninvertible [11,37].

A motivation in recent work on phase resetting has been the idea of interpret-
ing the PTC as defining a one-dimensional phase-reduction model that, hope-
fully, captures the essential dynamics of a possibly high-dimensional oscillating
system. The main interest is in coupled systems, formed by two or more (pla-
nar) systems with known PRCs; for example, see [31,32] for mathematical as
well as experimental perspectives. Unfortunately, the convergence back to the
limit cycle after some perturbation can be quite slow for a coupled system, such
that only (infinitesimally) small perturbations are accurately described. Further-
more, it makes physiological sense to assume a time-varying input, usually in the
form of a short input pulse, rather than the instantaneous perturbation assumed
for the theoretical phase reset. Moreover, the perturbation may be repeated at
regular intervals. In this context, PTCs and PRCs can be useful for explaining
the resetting behaviour, though strictly speaking, the theory is only valid at low
firing rates [15,35]. More recently, the idea of a phase-amplitude description has
led to a better understanding of the effects resulting from these kinds of repeated
time-varying resets [2,3,26,30,34].

From a dynamical systems perspective, the key question of phase resetting is
how the perturbed initial conditions relax back to an attracting periodic orbit Γ
with period TΓ of an underlying continuous-time model, which we take here to
be a vector field on R

n, that is, a system of n first-order autonomous ordinary



A Continuation Approach to Computing Phase Resetting Curves 5

differential equations. All points in its basin B(Γ) converge to Γ, and they do so
with a given asymptotic phase. The subset of all points in B(Γ) that converge
to Γ in phase with the point γϑ ∈ Γ, where ϑ ∈ [0, 1) by convention, is called
the (forward-time) isochron of γϑ, which we refer to as I(γϑ). Isochrons were
defined and named by Winfree [36]. Guckenheimer [12] showed that I(γϑ) is,
in fact, an (n − 1)-dimensional invariant stable manifold of the attracting fixed
point γϑ ∈ Γ under the time-TΓ map. In particular, it follows that I(γϑ) is tangent
to the attracting linear eigenspace of γϑ and, hence, transverse to Γ. Moreover,
the ϑ-dependent family of all isochrons I(γϑ) foliates the basin B(Γ). In other
words, any point in B(Γ) has a unique asymptotic phase determined by the
isochron it lies on.

For a given ϑold, consider now the perturbed point γϑold+ Ad ∈ B(Γ), obtained
from γϑold ∈ Γ by applying the perturbation of strength A in the given direction
d. The asymptotic phase ϑnew is, hence, uniquely determined by the isochron
I(γϑnew ) on which this point lies. This defines a circle map P : [0, 1) → [0, 1) with
P(ϑold) = ϑnew. Therefore, finding the PTC is equivalent to determining how the
perturbed cycle Γ + Ad = {γϑold + Ad | ϑold ∈ [0, 1)} intersects the foliation of
B(Γ) by the isochrons I(γϑnew ) for ϑnew ∈ [0, 1). Notice further that the PTC
is the graph of the circle map P on the unit torus T

2, represented by the unit
square [0, 1) × [0, 1).

When considering the amplitude A of the perturbation as a parameter
(while keeping the direction d fixed throughout), one can deduce some impor-
tant properties of the associated PTC. Suppose that 0 < Amax is such that
ΓA := Γ + Ad ⊂ B(Γ) for all 0 ≤ A < Amax. Then none of these perturbed
cycles ΓA intersects the boundary of the basin B(Γ) and the associated circle
map P = PA is well defined for all ϑold ∈ [0, 1). The map P0 for zero perturbation
amplitude is the identity on T

2, which means that, as its graph, the PTC is the
diagonal on [0, 1) × [0, 1) and a 1:1 torus knot on T

2; in particular, P0 is invert-
ible, that is, it is injective and surjective. Because of smooth dependence on the
amplitude A and the fact that PA is a function over [0, 1), the PTC remains a
1:1 torus knot on T

2 and PA is surjective for all 0 ≤ A < Amax.
Since the isochrons are transverse to Γ, the circle map PA is C1-close to

the identity, and hence, also injective, for sufficiently small A. As the graph of
a near-identity transformation, the PTC is then strictly monotone, invertible,
and hence, of type 1 (or weak) in the notation of [9,37]. While surjectivity is
preserved, injectivity may be lost before A = Amax is reached. Indeed, the PTC
is either invertible for all 0 ≤ A < Amax, or there is a maximal 0 < Ainv < Amax

such that PA is invertible only for all 0 < A ≤ Ainv. The loss of injectivity of PA

at A = Ainv happens generically because of the emergence of an inflection point.
For 0 ≤ A < Amax this transition creates a local minimum and a local maximum
of the PTC, which is now no longer invertible and so of type 0 (or strong) in
the notation of [9,37]. As we will show, an inflection point of PA corresponds
to a cubic tangency between the perturbed cycle ΓA and an isochron. Indeed,
additional inflection points and, hence, local minima and maxima may appear at
subsequent cubic isochron tangencies. Since PA is a circle map, these must come
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in pairs; hence, counting the number of its local maxima (or minima) would
provide a further refinement of the notation of a type 0 (or strong) PTC.

The above discussion shows that, when the applied perturbation A is suffi-
ciently weak, it suffices to consider only the linear approximation to the isochron
family, which is given by the ϑ-family of stable eigenspaces of the time-TΓ map
for each ϑ. In practice, nonlinear effects are essential, especially when multiple
time scales are present or the phase reset involves relatively strong perturba-
tions. Isochrons are often highly nonlinear objects of possibly very complicated
geometry [21,36]. While the geometric idea of isochrons determining the phase
resets has been around since the mid 1970s, the practical implementation has
proven rather elusive. In practice, it is not at all straightforward to compute the
isochrons of a periodic orbit. In planar systems, when such isochrons are curves,
three different approaches have been proposed, based on Fourier averages [23,25],
a parametrisation formulated in terms of a functional equation [14,18], and
continuation of solutions to a suitably posed two-point boundary value prob-
lem [21,29]. In principle, all three approaches generalise to higher-dimensional
isochrons, but there are only few explicit examples [14,25].

From the knowledge of the isochron foliation of B(Γ), one can immediately
deduce geometrically the phase resetting for perturbations of any strength and in
any direction. However, already for planar and certainly for higher-dimensional
systems, this is effectively too much information when one is after the PTC
resulting from a perturbation in a fixed direction and with a specific ampli-
tude. In essence, finding a PTC or PRC remains the one-dimensional problem
of finding the asymptotic phase of all points on the perturbed cycle.

In this chapter, we show how this can be achieved with a multi-segment
boundary value problem formulation. Specifically, we adapt the approach
from [21,22] to set up the calculation of the circle map PA by continuation,
first in A from A = 0 for fixed ϑold, and then in ϑold ∈ [0, 1) for fixed A. In
this way, we obtain accurate numerical approximations of the PTC or PRC as
continuous curves, even when the system shows strong phase sensitivity. The
set-up is extremely versatile, and the direct computation of a PTC in this way
does not require the system to be planar. We demonstrate our method with a
constructed example going back to Winfree [37, Chapter 6], where we also show
how injectivity is lost in a first cubic tangency of ΓA with an isochron. The
robustness of the method is then illustrated with the computation of a PTC
of a perturbed cycle that cuts through a region of extreme phase sensitivity in
the (planar) FithHugh–Nagumo system; in spite of very large derivatives due to
this phase sensitivity, the PTC is computed accurately as a continuous curve.
Our final example of a seven-dimensional system from [20] modelling a type of
cardiac pacemaker cell shows that our approach also works in higher dimensions;
this system also features phase sensitivity due to the existence of different time
scales.

This chapter is organised as follows. In the next section, we provide pre-
cise details of the setting and explain the definitions used. Section 3 presents
the numerical set-up for computing a resetting curve by continuation of a
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multi-segment boundary value problem. We then discuss two planar examples in
depth, which are both taken from [22]: a variation of Winfree’s model in Sect. 4
and the FitzHugh–Nagumo system in Sect. 5. The third and higher-dimensional
example from [20] is presented in Sect. 6. A summary of the results is given in
Sect. 7, where we also discuss some consequences of our findings and directions
of future research.

2 Basic Setting and Definitions

As mentioned in the introduction, we consider a dynamical system with an
attracting periodic orbit Γ. For simplicity, we assume that the state space is R

n

and consider the dynamical system

�x = F(x), (1)

where F : Rn
→ R

n is at least once continuously differentiable. We assume that
system (1) has an attracting periodic orbit Γ with period TΓ > 0, that is,

Γ := {γ(t) ∈ R
n
| 0 ≤ t ≤ TΓ with γ(TΓ) = γ(0)},

and TΓ is minimal with this property. We associate a phase ϑ ∈ [0, 1) with
each point γϑ ∈ Γ, defining γϑ := γ(t) with t = ϑTΓ. Here γ0 := γ(0) needs to
be chosen, which is usually done by fixing it to correspond to a maximum in
the first component. The (forward-time) isochron I(γϑ) associated with γϑ ∈ Γ

is then defined in terms of initial conditions x(0) of forward trajectories x :=
{x(t) ∈ R

n
| t ∈ R} of system (1) that accumulate on Γ, namely, as

I(γϑ) := {x(0) ∈ R
n
| lim
k→∞

x(k TΓ) = γϑ with k ∈ N}.

In other words, the trajectory x approaches Γ in phase with γϑ. Note that I(γϑ) is
the stable manifold of the fixed point γϑ of the time-TΓ return map; in particular,
this means that I(γϑ) is of dimension n − 1 and tangent at γϑ to the stable
eigenspace E(γϑ), which is part of the stable Floquet bundle of Γ [12,13]; we
utilise this property when computing isochrons, and also when computing a
PTC or PRC.

We are now ready to give formal definitions of the PTC and PRC; see also [9].

Definition 1 (Phase Transition Curve)
The phase transition curve or PTC associated with a perturbation of amplitude
A ≥ 0 in the direction d ∈ R

n is the graph of the map P : [0, 1) → [0, 1) defined as
follows. For ϑ ∈ [0, 1), the image P(ϑ) is the phase ϕ associated with the isochron
I(γϕ) that contains the point γϑ + Ad for γϑ ∈ Γ.

Definition 2 (Phase Response Curve)
The phase response curve or PRC associated with a perturbation of amplitude
A ≥ 0 in the direction d ∈ R

n is the graph of the phase difference Δ(ϑ) =

P(ϑ) − ϑ (mod 1), where the map P is as above.
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The definitions of the PTC and PRC are based on knowledge of the (forward-
time) isochron I(γϕ) associated with a point γϕ ∈ Γ. We previously designed an
algorithm based on continuation of a two-point boundary value problem (BVP)
that computes one-dimensional (forward-time and backward-time) isochrons of
a planar system up to arbitrarily large arclengths [21,22,29]. Here, we briefly
describe this algorithm in its simplest form, because this is useful for under-
standing the basic set-up, and for introducing some notation. The description
is presented in the style that is used for implementation in the software pack-
age Auto [4,5]. In particular, we consider a time-rescaled version of the vector
field (1), which represents an orbit segment {x(t) | 0 ≤ t ≤ T} of (1) as the orbit
segment {u(t) | 0 ≤ t ≤ 1} of the vector field

�u = T F(u), (2)

so that the total integration time T is now a parameter of the system.
We approximate I(γ0) as the set of initial points of orbit segments that end

on the linear space E(γ0), the linearised isochron of I(γ0), close to γ0 after integer
multiples of the period TΓ. These points are formulated as initial points u(0) of
orbit segments u that end on E(γ0) at a distance η from γ0; hence, η defines
a one-parameter family of orbit segments. Each orbit segment in this family is
a solution of system (2) with T = k TΓ for k ∈ N; the corresponding boundary
conditions are:

[u(1) − γ0] · v⊥0 = 0, (3)

[u(1) − γ0] · v0 = η, (4)

where v0 is the normalised vector that spans E(γ0) and v⊥0 is perpendicular to it.
Note that Γ itself, when starting from γ0, is a solution to the two-point BVP (2)–
(4) with T = TΓ and η = 0. This gives us a first solution to start the continuation
for computing I(γ0). We fix T = TΓ and continue the orbit segment u in η up to a
maximum prespecified tolerance η = ηmax. As the end point u(1) is pushed away
from γ0 along E(γ0), the initial point u(0) traces out a portion of I(γ0).

Once we reach η = ηmax, we can extend I(γ0) further by considering points
that map to E(γ0) after one additional period, that is, after time T = 2TΓ. We
start the continuation with the orbit segment formed by concatenation of the
final orbit segment with Γ; here, we rescale time such that this first orbit is again
defined for 0 ≤ t ≤ 1, we set T = 2TΓ, and η = 0. Note that this orbit segment
has a discontinuity at t = 1

2 , but it is very small and Auto will automatically
correct and close it as part of the first continuation step. This correction will
cause a small shift in η away from 0, but η will still be much smaller than
ηmax (in absolute value). We can keep extending I(γ0) further in this way, by
continuation with T = k TΓ, for integers k > 2. See [21,29] for more details on the
implementation and, in particular, see [19,29] for details on how to find E(γ0)
represented by the first vector v0 in the stable Floquet bundle of Γ.

The computational set-up forms a well-posed two-point BVP with a one-
parameter solution family that can be found by continuation, provided the equal-
ity NDIM − NBC + NPAR = 1 holds for the dimension NDIM of the problem, the
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number NBC of boundary conditions, and the number NPAR of free parameters.
Indeed, for the computation of I(γ0), we have NDIM = 2, because we assumed
that the system is planar; NBC = 2, namely, one condition to restrict u(1) to
the linearised isochron of I(γ0), and one condition to fix its distance to γ0; and
NPAR = 1, because we free the parameter η.

To compute I(γϕ) for other ϕ ∈ [0, 1), this same approach can be used, working
with a shifted periodic orbit Γ so that its head point is γϕ , and determining the
associated direction vector vϕ that spans the eigenspace E(γϕ) to which I(γϕ)
is tangent. In [29], approximations of γϕ and vϕ are obtained by interpolation
of the respective mesh discretisations from Auto. We describe an alternative
approach in [21], where we consider I(γϕ) as the set of initial points of orbit
segments that end in the linear space E(γ0) of I(γ0) sufficiently close to γ0 after
total integration time T = k TΓ + (1 − ϕ)TΓ.

For the computation of a phase resetting curve, we use a combination of these
two approaches, but rather than interpolation, we shift the periodic orbit by
imposing a separate two-point BVP. More precisely, we set up a multi-segment
BVP comprised of several subsystems of two-point BVPs; the set-up for this
extended BVP is explained in detail in the next section.

3 Algorithm for Computing a Phase Resetting Curve

Based on the definition of PTC and PRC, one could now calculate a sufficiently
large number of isochrons and determine the resetting curve numerically from
data. We prefer to compute the PTC or PRC directly also with a BVP set-up
and continuation. The major benefit of such a direct approach is that it avoids
accuracy restrictions arising from the selection of computed isochrons; in partic-
ular, any phase sensitivity of the PTC or PRC will be dealt with automatically
as part of the pseudo-arclength continuation with Auto [4,5].

For ease of presentation, we will formulate and discuss our continuation set-
up for the case of a planar system. We remark, however, that it can readily be
extended for use in R

n with n > 2, because the dimensionality of the problem is
not determined by the dimension n − 1 of the isochrons but by the dimension of
the PTC or PRC, which is always one; see also the example in Sect. 6.

The essential difference between calculating a resetting curve rather than
an isochron is the following: for an isochron I(γϑ), we compute orbit segments
with total integration time T = TΓ (or integer multiples), where we move the
end point u(1) along the linear approximation of I(γϑ) to some distance η from
Γ, while the initial point u(0) traces out a new portion of I(γϑ); imagining the
same set-up, if we move u(0) transverse to I(γϑ), the end point u(1) will move
to lie on the linearisation of an isochron I(γϕ) with a different phase ϕ. (Here,
one should expect that the distance to Γ also changes, but we assume it is still
less than ηmax). The key idea behind our approach is that we find a way to
determine the different phase ϕ, or the phase shift ϕ − ϑ, by allowing Γ and its
corresponding stable Floquet bundle to rotate as part of an extended system. We
ensure the head point of Γ moves with the phase-shifted point, that is, the first
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point on Γ will be γϕ. In this way, we can determine the shifted phase ϕ along
any prescribed arc traced out by u(0), provided it lies in the basin of attraction
of Γ. For the PTC or PRC associated with a perturbation of amplitude A ≥ 0
in the direction d ∈ R

n, this prescribed arc is the perturbed cycle Γ + Ad, that
is, u(0) traces out the closed curve {γϑ + Ad | ϑ ∈ [0, 1)}.

3.1 Continuation Set-Up for Rotated Representation of Γ

We formulate an extended BVP that represents a rotated version of Γ with a
particular phase, meaning that we automatically determine the phase of the head
point relative to γ0. To this end, we assume that the zero-phase point γ0 ∈ Γ

and its associated linear vector v0, or more practical, its perpendicular v⊥0 , are
readily accessible as stored parameters, or constants that do not change. Hence,
even when Γ is rotated and its first point is γϕ for some different ϕ ∈ [0, 1), we
can still access the coordinates of γ0 and v⊥0 from the parameter/constants list.

The extended BVP consists of three components, one to define Γ, one to
define the associated (rotated) linear bundle, and one to define the associated
phase. We start by representing Γ as a closed orbit segment g that solves sys-
tem (2) for T = TΓ. Hence, we define

�g = TΓ F(g), (5)

with periodic boundary condition

g(1) − g(0) = 0. (6)

The stable Floquet bundle of Γ is coupled with the BVP (5)–(6) via the first
variational equation. More precisely, we consider a second orbit segment vg, such
that each point vg(t) represents a vector associated with points g(t) of the orbit
segment that solves (5). The orbit segment vg is a solution to the linearised flow
such that vg(0) is mapped to itself after one rotation around Γ. The length of
vg(0) is contracted after one rotation by the factor exp(TΓ λs), which is the stable
Floquet multiplier of Γ. We prefer formulating this in logarithmic form, which
introduces the stable Floquet exponent λs to the first variational equation, rather
than affecting the length of vg(0). Therefore, the BVP (5)–(6) is extended with
the following system of equations:

�vg = TΓ
[
DgF(g) vg − λs vg

]
, (7)

vg(1) − vg(0) = 0, (8)

||vg(0) ||= 1. (9)

In particular, vg(0) = vg(1) is the normalised vector that spans the local linearised
isochron associated with g(0).

We have not specified a phase condition and, indeed, we allow g to shift and
start at any point γϑ ∈ Γ. Consequently, the linear bundle vg will also shift such
that vg(0) still spans the local linearised isochron associated with g(0).
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Phase shifting the periodic orbit and its linear bundle by continuation in this
way has been performed before [8]. However, the implementation in [8] requires
accurate knowledge of the coordinates of the point γϑ in order to decide when to
stop shifting. Our approach uses another BVP set-up to monitor the phase shift,
so that both γϑ and vϑ are determined up to the accuracy of the computation.
To this end, we introduce a third orbit segment w that lies along Γ, with initial
point w(0) equal to g(0), and end point w(1) equal to γ0. The total integration
time associated with this orbit segment w is the fraction of the period TΓ that
g(0) lies away from γ0 along Γ; hence, it is directly related to the phase of g(0).
We extend the BVP (5)–(9) with the following system of equations:

�w = ν TΓ F(w), (10)

w(0) = g(0), (11)

[w(1) − γ0] · v⊥0 = 0. (12)

Here, we do not impose w(1) = γ0. Instead, condition (12) allows w(1) to move
in the linearisation of I(γ0) at γ0; this relaxation is necessary to ensure that the
BVP remains well posed and the discretised problem has a solution. In practice,
since w(0) ∈ Γ, the difference between w(1) and γ0 will be of the same order
as the overall accuracy of the computation. Note that it is important to ensure
ν ≥ 0 in Eq. (10), because w(1) may diverge from γ0 along E(γ0) otherwise. We
found it convenient to start the calculation with ν = 1, which corresponds to the
orbit segment w = g.

The combined solution {g, vg,w} to the multi-segment BVP (5)–(12) repre-
sents a rotated version of Γ and its stable Floquet bundle so that the head point
is γϕ with phase ϕ = 1 − ν (mod 1). We remark here that this extended set-up
can also be used to compute I(γϕ), for any phase 0 < ϕ < 1, with the method for
I(γ0) described in Sect. 2; such a computation would approximate each isochron
up to the same accuracy, without introducing an additional interpolation error.

3.2 Continuation Set-Up for the Phase Reset

Recall the set-up for computing a phase reset by moving u(0) transversely to
I(γϑ), so that the end point u(1) will move and lie on the linearisation of an
isochron I(γϕ) with a different phase ϕ. Here, the orbit segment u is a solution
of

�u = k TΓ F(u), (13)

for some k ∈ N. The end point u(1) should lie close to Γ on the linearisation of
I(γϕ), for some ϕ ∈ [0, 1). We stipulate that the rotated version of Γ is shifted
such that u(1) lies close to g(0) along the direction vg(0). Hence, we require the
two boundary conditions

[u(1) − g(0)] · vg(0) = η, (14)

[u(1) − g(0)] · vg(0)⊥ = 0, (15)
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where vg(0)⊥ is the vector perpendicular to vg(0). Here, η measures the (signed)
distance between u(1) and g(0), which is along vg(0). Since u is a solution of (13)
and k ∈ N, the initial point u(0) has the same phase as the last point u(1), and
the combined multi-segment BVP (5)–(15) ensures that u(1) has (approximate)
phase 1 − ν (mod 1). In practice, we should choose k ∈ N large enough such that
η < ηmax. If u(0) lies close to Γ, it will be sufficient to set k = 1. In order to
consider phase resets of large perturbations, for which u(0) starts relatively far
away, we need k > 1, to allow for sufficient time to let u converge and have u(1)
lie close to Γ.

At this stage, the multi-segment BVP (5)–(15) is a system of NDIM = 8
ordinary differential equations (for the case of a planar system), with NBC = 10
boundary conditions, and NPAR = 4 free parameters, namely, TΓ, λs, ν, and η;
the period TΓ and stable Floquet exponent λs must remain free parameters to
ensure that the discretised problem has a solution, but their variation will be
almost zero. Hence, NDIM − NBC + NPAR = 2 � 1, and one more condition is
needed to obtain a one-parameter family of solutions.

The final step in the set-up is to impose an extra condition that specifies
how u(0) moves along an arc or closed curve in the phase plane. Consequently,
since k TΓ is fixed, the orbit segment u changes, so that u(1) will move as well,
and g(0), along with vg(0) will shift accordingly. This causes a variation in ν to
maintain w(0) = g(0), and these ν-values precisely define the new phase in the
continuation run as a function of the position along the chosen arc or closed
curve.

To compute the PRC, we need to let u(0) traverse the closed curve {γϑ +

Ad | ϑ ∈ [0, 1)} obtained by the (instantaneous) perturbation of Γ in the direction
d for distance A. We can impose this relatively complicated path on u(0) by
including another system of equations to the multi-segment BVP, namely, the
BVP that defines Γ in terms of another rotated orbit segment gu. Furthermore, in
order to keep track of the phase ϑ along this path, we introduce another segment
wu that plays the same role as w in Sect. 3.1; compare with equations (5)–(6)
and (10)–(12). In other words, we extend the BVP (5)–(15) by the following
system of equations

�gu = T̂Γ F(gu), (16)

gu(1) − gu(0) = 0. (17)

�wu = (1 − ϑ) T̂Γ F(wu), (18)

wu(0) = gu(0), (19)

[wu(1) − γ0] · v⊥0 = 0. (20)

Here, we decrease ϑ from 1 to 0, during which wu grows and gu tracks γϑ . In
order for a solution to exist, the periods TΓ and T̂Γ must be two different free
parameters, although they remain constant (and equal) to within the accuracy
of the computation. The phase reset is now obtained by imposing

u(0) = gu(0) + Ad. (21)
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The multi-segment BVP (5)–(21) is now a system of dimension NDIM = 12,
with NBC = 17 boundary conditions, and NPAR = 6 free parameters, which are
TΓ, λs, ν, η, T̂Γ, and either ϑ or A. Since, NDIM − NBC + NPAR = 1, we obtain
a one-parameter solution family by continuation. As the first solution in the
continuation, we use the known solution g = w = u = gu = Γ, which starts with
the head point γ0, the associated stable linear bundle v0 that we assumed has
been pre-computed, and wu = γ0; then TΓ = T̂Γ and λs are set to their known
computed values, η = A = 0, and ν = ϑ = 1. Initially, k = 1, and one should
monitor η to make sure it does not exceed ηmax.

To obtain the PTC or PRC we first perform a homotopy step, where we fix
ϑ = 1 and vary the amplitude A until the required value is reached. This continu-
ation run produces a one-parameter family of solutions representing the effect of
a reset of varying amplitude A from the point γ0. In the main continuation run,
we then fix A and decrease ϑ until ϑ = 0, so that it covers the unit interval; the
associated solution family of the multi-segment BVP (5)–(21), hence, provides
the resulting phase ϑnew := 1 − ν (mod 1) as a function of the phase ϑold := ϑ
along the perturbed periodic orbit.

4 Illustration of the Method with a Model Example

We illustrate our method for computing a PTC with a constructed exam-
ple, namely, a parametrised version of the model introduced by Winfree [37,
Chapter 6], which we also used in [22]; it is given in polar coordinates as

{
�r = (1 − r) (r − a) r,
�ψ = −1 − ω (1 − r).

In Euclidean coordinates, the system becomes

⎧⎪⎪⎨

⎪⎪
⎩

�x = (1 −

√
x2 + y2)

(
x (
√
x2 + y2 − a) + ωy

)
+ y,

�y = (1 −

√
x2 + y2)

(
y (
√
x2 + y2 − a) − ωx

)
− x.

(22)

Note that this system is invariant under any rotation about the origin; moreover,
its frequency of rotation only depends on r =

√
x2 + y2; see [22] for details. We

now fix the parameters to a = 0 and ω = −0.5, as in [22]. Then the unit circle is
an attracting periodic orbit Γ with period TΓ = 2π and the origin is an unstable
equilibrium x∗.

4.1 Computing the PTC

We choose γ0 = (1, 0) and compute the normalised linear direction associated
with its isochron as v0 ≈ (−0.83,−0.55). As was explained in Sect. 3.2, the com-
putation is performed in two separate continuation runs: first, we apply a per-
turbation to the point γ0 in a fixed direction d, where we vary the amplitude
A from 0 to 0.75 during the homotopy step. Next, we fix A = 0.75 and apply
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Fig. 1. Phase reset of system (22) at fixed γ0 in the direction d = (−1, 0) with amplitude
A ∈ [0, 0.75] (a), and continuation set-up at the three labelled points (b), (c), and (d).
Panel (b) shows the initial set-up when A = 0 and ϑnew = 1, in panel (c) the continuation
has progressed to A = 0.4 and ϑnew = ϑc ≈ 0.96, and in panel (d) A = 0.75 has been
reached and ϑnew = ϑd ≈ 0.76.

the same perturbation to each point γϑ ∈ Γ. For the purpose of visualising the
computational set-up, we choose the (somewhat unusual) direction d = (−1, 0)
and set the maximum distance along the linearised isochron to the relatively
large value of ηmax = 0.2.

The first continuation run of the multi-segment BVP (5)–(21) is illustrated in
Fig. 1. Here, the free amplitude A increases while ϑ = 1 = 0 (mod 1) is fixed and,
hence, the perturbation is always applied at γ0 and grows in size. Figure 1(a)
shows the resulting phase ϑnew as a function of A. Three points are labelled,
indicating the three stages during the continuation that are illustrated in pan-
els (b), (c) and (d). In each of these panels we show the periodic orbit Γ in black,
and the current orbit segment u of the continuation run in green. Note that Γ is
rotated here and its head point g(0) lies at the point on Γ with phase ϑnew. A
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short segment of the associated linearisation of the isochron of γϑnew is shown in
blue. We do not plot the orbit segment w that determines the value of ϑnew, but
it follows Γ from g(0) back to g(0) and then extends (approximately) along Γ to
γ0. Indeed, notice in Fig. 1(a) that ϑnew is decreasing, which means that ν > 1 is
increasing so that w becomes longer. We also do not show the orbit segments gu
and wu that determine the phase ϑ = ϑold at which the perturbation is applied,
because ϑold = 1 is fixed in this continuation run.

Figure 1(b) shows the initial set-up, with g = w = u = gu = Γ, wu = γ0, TΓ = T̂Γ
and λs set to their known values, and ν = 1, η = A = 0, with k = 1 and ϑ = 1.
The dotted line segment in Fig. 1(b) indicates the direction d of the intended
perturbation away from γ0; its length is the maximal intended amplitude A =

0.75. An intermediate continuation step when A = 0.4 is shown in Fig. 1(c). The
perturbation has pushed u(0) out along d, such that u(1) now lies (approximately)
on the linearised isochron, parametrised as g(0) + η vg(0) with 0 < η ≤ ηmax,
associated with the rotated head point g(0) = γϑc , where ϑc ≈ 0.96. Note that
the orbit segment w (not shown) has now changed from its initialisation to match
the solution to subsystem (10)–(12) with ν ≈ 1.04. Figure 1(d) illustrates the last
step of the first continuation run, when A = 0.75. The head point g(0) ∈ Γ has
rotated further to γϑd

with ϑd = 1 − ν ≈ −0.24 = 0.76 (mod 1). Notice that u(1)
lies quite far along the linearised isochron, because we allow a relatively large
distance η. The corresponding orbit segment u is determined for an integration
time of only one period, that is, for k = 1. We show this case for illustration
purposes, but in practice, it would be worth choosing a smaller value for ηmax,
so that u would be extended, and the integer multiple of TΓ set to k = 2, before
reaching A = 0.75.

The second continuation run uses the fixed perturbation of size A = 0.75
along d = (−1, 0), and varies the phase ϑ at which it is applied. Since ϑ controls
the integration time associated with the orbit segment wu, the multi-segment
BVP (16)–(20) with solution {gu,wu} and parameter T̂Γ now plays an important
role. For each ϑ, the head point gu(0) of gu lies (approximately) at γϑ ∈ Γ, and
wu represents the remaining part of Γ from γϑ to γ0; hence, the total integration
time of wu is the fraction 1 − ϑ of T̂Γ, which is equal, up to the computational
accuracy, to the period TΓ of Γ.

Figure 2 illustrates different aspects of this continuation run. As ϑold = ϑ
decreases from 1, the multi-segment BVP (5)–(21) determines the orbit segment
u with u(0) = γϑ + Ad and uses the rotated orbit segment g and w to establish the
resulting phase ϑnew = 1− ν (mod 1) of u(1). Panel (a) shows the PTC computed
for A = 0.75. Note that ν takes values in the covering space R; the output is then
folded onto the unit torus by taking ϑnew = 1−ν (mod 1), giving the solid curve in
Fig. 2. The points labelled (b) and (c) in this panel correspond to ϑold = 0.9 and
ϑold = 0.1, respectively. The continuation set-up for these two cases is shown
in the corresponding panels (b) and (c). As in Fig. 1, the periodic orbit Γ is
black and u is green. The path traced by the initial point u(0) is the magenta
dotted circle, which is Γ shifted by A = 0.75 in the direction d = (−1, 0); hence,
for fixed ϑ, the point u(0) corresponds to the perturbation of the point γϑ ∈ Γ
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Fig. 2. PTC of Γ in system (22) for d = (−1, 0) and A = 0.75 (a), and continuation
set-up at ϑold = 0.9 (b) and at ϑold = 0.1 (c) with w and wu in (d), (d1), (d2) and (e),
(e1), (e2), respectively.
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that lies horizontally to the right of u(0), as indicated by the magenta dotted
line segment. The end point u(1) lies on the linearised isochron, parametrised as
g(0) + η vg(0) with 0 < η ≤ ηmax, associated with the rotated head point of g,
which is determined by subsystem (5)–(9). The phase of this head point is given
by ϑnew = 1 − ν (mod 1), where ν is determined from subsystem (10)–(12) that
defines the orbit segment w.

Hence, the two orbit segments w and wu essentially determine the PTC, that
is, the map P : ϑold �→ ϑnew. Their x-coordinates are plotted versus time in
panel (d) for ϑold = 0.9 and in panel (e) for ϑold = 0.1, respectively, overlaid
on two copies of Γ (black curve), that is, time t runs from 0 to 4π. The further
panels (d1) and (d2) for ϑold = 0.9 and panels (e1) and (e2) for ϑold = 0.1 show w
(yellow curve) and wu (orange curve) individually, relative to the periods TΓ and
T̂Γ, respectively. Note that both w and wu end at x = 1, for t = 4π and t = 2π,
respectively, as required, but their initial points differ. As ϑ decreases from 1
to 0 during the continuation, the orbit segment wu lengthens as expected, but
note that w lengthens as well; this is due to the (near-)monotonically increasing
nature of the PTC for this example.

4.2 Loss of Invertibility

Recall that any PTC is the identity for A = 0, and invertible for sufficiently small
amplitude A of the perturbation, because its graph remains a 1:1 torus knot on
the torus parametrised by the two periodic variables ϑold and ϑnew. However,
the PTC in Fig. 2(a) for A = 0.75 is no longer near the identity: it is not injective
and, hence, not invertible.

To show how injectivity of the PTC is lost as A is increased, we consider again
model (22), but now with a = 0.25; see also [22]. Apart from the attracting unit
circle Γs = Γ with period TΓ = 2π, there exists then also a repelling circle Γu with
radius r = a = 0.25 and period 2π/(1 + ω (1 − a)) = 3.2 π; note that Γu forms the
boundary of the basins of attraction of both Γs and the equilibrium x∗ at the
origin, which is now attracting.

We consider three phase resets of Γs of the form Γs + Ad in the positive
direction d = (1, 0) and with A = 0.54, A = 0.59, and A = 0.64. Figure 3 shows the
three corresponding PTCs, the corresponding PRCs, and the perturbed cycles
Γs+Ad in increasingly darker shades of magenta as A increases in panels (a), (b),
and (c), respectively. Panel (a) shows that the first PTC for A = 0.54 is injective
and invertible. As A is increased to approximately A = 0.59, the graph has a
cubic tangency near (ϑold, ϑnew) = (0.45, 0.24), because the associated map P has
an inflection point at ϑold ≈ 0.45. For larger values of A, such as for A = 0.64,
the PTC has a local maximum followed by a local minimum and is, hence, no
longer invertible. Note from Fig. 3(b) that this qualitative change of the PTC
does not lead to a corresponding qualitative change of the PRC.

Figure 3(c) and the enlargement near the basin boundary Γu in panel (d)
show that the loss of injectivity of the PTC is due to a cubic tangency between
the perturbed cycle Γs+ Ad and the foliation of the basin of Γs by (forward-time)
isochrons; ten isochrons are shown in panel (c) and one hundred in panel (d),
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Fig. 3. Phase resets of Γs in system (22) with a = 0.25 in the direction d = (1, 0) for
amplitudes A ∈ {0.54, 0.59, 0.64} (increasingly darker shades of magenta). The three
PTCs are shown in panel (a) and the corresponding PRCs in panel (b). The three
perturbed cycles are shown in panel (c) together with Γs and ten of its isochrons that
are uniformly distributed over one period; the enlargement near Γu in panel (d) shows
them with 100 uniformly distributed isochrons of Γs and points of tangency at p∗ and
p±. Isochrons are coloured according to the colour bar.

distributed uniformly in phase and coloured according to the colour bar. The left-
most light-magenta cycle for A = 0.54 is transverse to all isochrons. The middle
magenta cycle for A = 0.59, on the other hand, has a single cubic tangency
(approximately) with the isochron I(γ0.24) of phase ϑ = 0.24 at the point p∗ ≈

(−0.33,−0.39), shown in panel (d). For larger A, as for the right-most dark-
magenta cycle for A = 0.64, there are now two quadratic tangencies with two
different isochrons, namely, (approximately) with I(γ0.22) and I(γ0.19) at the
points p+ ≈ (−0.35,−0.14) and p− ≈ (−0.13,−0.64), respectively. As a result, all
isochrons that intersect the perturbed cycle between p+ and p− intersect three
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times; hence, the map P from ϑold to ϑnew is no longer invertible. Note that
p+ and p− correspond to the local maximum and local minimum of the PTC in
panel (a), respectively.

5 Phase Resetting in the FitzHugh-Nagumo Model

We now illustrate the capability of our method by computing the phase reset of a
periodic orbit in the FitzHugh–Nagumo system [10,27]. This model is an iconic
example that motivated early work on isochrons and phase response curves;
in particular, it has a very complicated geometry of isochrons with regions of
extreme phase sensitivity [21,37]. The FitzHugh–Nagumo system is given by
the equations

⎧⎪⎪⎨

⎪⎪
⎩

�x = c
(
y + x − 1

3 x3 + z
)
,

�y = −

x − a + by
c

.
(23)

We set a = 0.7, b = 0.8, and z = −0.4, as in [37], and fix c = 2.5, as was done
in [22]. For these parameter values, there exists an attracting periodic orbit
Γ with period TΓ ≈ 10.71 and a repelling equilibrium x∗ ≈ (0.9066,−0.2582).
The parameter c is a time-scale parameter, the increase of which makes the x-
variable faster than the y-variable. It plays an important role in the onset of
phase sensitivity due to an accumulation of isochrons in a narrow region close to
the slow manifold [21], which is associated with the occurrence of sharp turns in
the isochrons of Γ; see also [29]. For the chosen value of c = 2.5, one finds both
strong phase sensitivity and sharp turns, which makes the computation of any
phase resetting curve quite challenging.

Figure 4 illustrates the phase reset for the FitzHugh–Nagumo model (23) after
a perturbation in the direction d = (1, 0) of amplitude A = 0.25. Panel (a) and
the enlargement near the equilibrium x∗ in panel (b) show how the perturbed
cycle Γ + Ad intersects the isochrons of Γ, of which 100 are shown uniformly
distributed in phase and coloured according to the colour bar in Fig. 3. In par-
ticular, one notices quite a few instances in panel (b) of quadratic tangencies
between the perturbed cycle and different isochrons; one such isochron is the
highlighted I(γ0.62). The green curves O+ and O− in panels (a) and (b) are two
special trajectories, along which the foliation by forward-time isochrons of Γ has
quadratic tangencies with the foliation by backward-time isochrons (not shown)
of the focus x∗. Tangencies between these two foliations were introduced in [22],
where we argued that such tangencies give rise to sharp turns of isochrons. We
remark that the two trajectories O+ and O− of quadratic tangencies appear at
a specific value c∗ < 2.5 where one finds a cubic tangency between the two foli-
ations, called a cubic isochron foliation tangency or CIFT for short; see [22] for
details. The relevance of the special trajectories O+ and O− in the present context
is that along them the isochrons of Γ have sharp turns as they approach x∗. This
can clearly be seen in Fig. 4(b); as the highlighted isochron I(γ0.62) illustrates,
the turns along O− are so sharp that I(γ0.62) appears to retrace itself along
certain segments. Since this happens for all isochrons of Γ, one finds extreme
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Fig. 4. Phase reset for the FitzHugh–Nagumo model (23). Panel (a) shows the periodic
orbit Γ (black), the perturbed cycle Γ + Ad (magenta) with d = (1, 0) and A = 0.25,
the two trajectories O+ and O− (green), and 100 isochrons uniformly distributed in
phase; isochrons are coloured according to the colour bar in Fig. 3, and the isochron
I(γ0.62) is highlighted in orange. Panel (b) is an enlargement near the equilibrium x∗,
and panels (c) and (d) show the corresponding PTC and PRC, respectively; the dashed
orange line in panel (c) indicates the phase of I(γ0.62).

phase sensitivity near the trajectory O−. Moreover, quadratic tangencies of the
perturbed cycle with isochrons of Γ occur near both O+ and O−. Hence, the
number of intersection of Γ + Ad with O+ and O− gives an indication of how
many quadratic tangencies the perturbed cycle has with different isochrons.

As we have seen in Sect. 4.2, any such quadratic tangency between Γ+Ad and
an isochron is associated with a local maximum or minimum of the PTC, which
is, therefore, not expected to be invertible. Figure 4(c) presents the PTC com-
puted with our method as a continuous curve shown in (ϑold, ϑnew)-coordinates
on the unit torus. Clearly, its graph is quite intriguing and features six local
maxima and six local minima. Observe that the local maxima correspond to
quadratic tangencies near O+, while the sharper local minima correspond to
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Fig. 5. Phase reset along the line segment γ0.56 + Ad with d = (1, 0) and A ∈ [0, 0.75]
in the FitzHugh–Nagumo model (23). Panel (a) shows the periodic orbit Γ (black), the
line segment of perturbations (magenta) starting at point γ0.56 ∈ Γ, the two trajectories
O+ and O− (green), and 100 isochrons uniformly distributed in phase; isochrons are
coloured according to the colour bar in Fig. 3, and the isochron I(γ0.4) is highlighted
in orange. Panel (b) is an enlargement near the equilibrium x∗, and panels (c) and (d)
show the periodic variables ϑnew and Δ = ϑnew − ϑold, respectively, as a function of A.

quadratic tangencies near O−; in particular, the tangency with the highlighted
isochron I(γ0.62) near O+ in panel (b) gives rise to a local maximum of the PTC
in panel (c), where the graph has a quadratic tangency with the dashed orange
line at ϑnew = 0.62. Notice that I(γ0.62) intersects the perturbed cycle Γ + Ad
in panel (b), and hence, the PTC in panel (c), five more times. The associated
PRC of the change in phase Δ = ϑnew −ϑold is shown in panel (d); it is also quite
a complicated curve with local maxima and minima. The PTC and PRC both
have six near-vertical segments at ϑold ≈ 0.47, 0.49, 0.50, 0.52, 0.54, and 0.57;
such large gradients arise near the local minima because of the extreme phase
sensitivity near O−.
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Figure 5 illustrates our continuation approach for another type of resetting
experiment, where phase and direction of the perturbation are fixed but its
magnitude varies. Specifically, we calculate the asymptotic phase of points that
are perturbed from γ0.56 ∈ Γ in the positive x-direction d = (1, 0) with amplitude
A ∈ [0, 0.75]. As panels (a) and (b) show, the corresponding line segment γ0.56 +
Ad passes through the phase-sensitive region of accumulating isochrons near x∗,
where it intersects O+ and O− several times. To compute the reset, we first rotate
Γ and, consequently, the entire multi-segment BVP (5)–(21), such that the head
point g(0) of Γ lies at γ0.56. We then proceed as in the first continuation run in
Sect. 4.1 to obtain ϑnew as a function of A. The resulting resets ϑnew and Δ are
shown in panels (c) and (d), respectively; note that Δ is obtained from ϑnew by a
fixed shift of ϑold = 0.56. The resulting reset as a function of A also shows near-
vertical segments near three local minima, which are again directly associated
with the three points where the line segment γ0.56 + Ad intersects the trajectory
O−. Notice that the turns of the isochrons along O− are so very sharp that one
will find a quadratic tangency nearby with respect to the horizontal—or indeed
practically any given direction. Along O+, on the other hand, the turns of the
isochrons are more gradual and the local maxima due to intersections of the
line segment of perturbations are not associated with strong phase sensitivity.
Notice further that the penultimate intersection between γ0.56+ Ad and O+ does
not come with a nearby quadratic tangency and, hence, does not lead to a local
maximum of ϑnew.

6 Phase Resetting in a Seven-Dimensional Sinoatrial
Node Model

We now illustrate how our computational approach can be applied to systems
of dimension higher than two. Indeed, while the multi-segment BVP (5)–(21)
now consists of higher-dimensional subsystems that represent the various orbit
segments in this higher-dimensional phase space, the necessary input-output
information is still given by the two parameters ϑ and ν that determine the
relationship ϑnew = P(ϑold).

We compute the PTC for the seven-dimensional model from [20] of a sinoa-
trial node of a rabbit, which is a type of cardiac pacemaker cell. The model is
described in standard Hodgkin–Huxley formalism: the main variable is voltage
V (measured in mV), which depends on five ionic currents that are determined
by the dynamic opening and closing of six so-called gating variables, denoted m,
h, d, f , p, and q. The five currents (measured in pA) are: a fast inward sodium
current INa, a slow inward current Is, a delayed rectifier potassium current IK,
a pacemaker current Ih, and time-independent leak current Il. The system of
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Fig. 6. The PTC of the seven-dimensional model (24), as presented in [20, Fig. 7 (mid-
dle)] (a) and as computed with our method (b). Panel (a) is from [Krogh-Madsen,
Glass, Doedel and Guevara, Apparent discontinuities in the phase-resetting response
of cardiac pacemakers, J. Theor. Biol. 230(4), 499–519 (2004)] c©Elsevier; reproduced
with permission.

seven equations is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

�V = −

1
Cm

[INa(V,m, h) + Is(V, d, f ) + IK (V, p) + Ih(V, q) + Il(V)],

�m = αm(V) (1 − m) − βm(V)m,

�h = αh(V) (1 − h) − βh(V) h,

�d = αd(V) (1 − d) − βd(V) d,

�f = αf (V) (1 − f ) − βf (V) f ,

�p = αp(V) (1 − p) − βp(V) p,

�q = αq(V) (1 − q) − βq(V) q,

(24)

where, Cm = 0.065 μF is the capacitance. (Note the minus sign in the right-
hand side of the equation for V , which was accidentally omitted in [20].) The
precise form of the ionic currents and the various functions αx and βx with
x ∈ {m, h, d, f , p, q}, and associated parameter values, are given in the Appendix;
see also [20].

System (24) was presented and studied in [20], because experimental data on
similar pacemaker cells suggested that the PTC was discontinuous; see already
Fig. 6(a). Without a possibility to compute the PTC directly, the authors of [20]
reduced the model to a three-dimensional system and used geometric arguments
to explain that the apparent discontinuities were abrupt transitions mediated by
the stable manifold of a weakly unstable manifold in the model. Figure 6 shows
the relevant PTC image from [20] and the PTC as computed with our method.
The comparison confirms that we are able to calculate the PTC directly in the
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Fig. 7. The computed PTC of the seven-dimensional system (24). Shown is ϑnew, also
over the interval [−0.6, 0] (dotted line), as a function of ϑold in panel (a), and as a
function of the arclength L of the PTC in panel (b).

seven-dimensional model as a continuous curve on T
2, even though the PTC has

a near-vertical segment at ϑold ≈ 0.4.
Figure 7 illustrates that the PTC for system (24) is indeed continuous.

Panel (a) reproduces the PTC from Fig. 6(b), but shows the computed values
for ϑnew over the wider range [−0.6, 1] to illustrate that a maximum of ϑnew is
quickly followed by a minimum of ϑnew (lowest point of dashed curve). Since
it is hard to see that the PTC is indeed continuous, panel (b) shows ϑnew over
the same range [−0.6, 1], but now as a function of the arclength L of the PTC
in the (ϑold, ϑnew)-plane from the point (0, −3.56 × 10−3). The near-vertical seg-
ment in the (ϑold, ϑnew)-plane of panel (a) corresponds to the two (almost) linear
segments in the (L, ϑnew)-plane of panel (b). Hence, this representation resolves
the near-vertical part of the PTC in a tiny ϑold-interval near 0.4. Panel (b)
also demonstrates that the PTC is indeed a continuous closed curve on T

2 with
exactly one maximum at ϑnew ≈ 0.35, followed by one minimum at ϑnew ≈ 0.49.

Instead of an instantaneous reset, the reset in [20] is obtained by applying
a current with amplitude Iapp for a fixed duration TON; the specific case for
which a seemingly discontinuous PTC was observed is given by Iapp = −150 pA
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and TON = 0.02 s. Mathematically, this amounts to replacing the V-equation in
system (24) by

�V = −

1
Cm

[INa + Is + IK + Ih + Il] + 150
Cm
, (25)

and switching back to the original equation after 0.02 s. In our set-up, this means
that we add the perturbation Ad to the right-hand side of system (24), where
the direction vector d = (1, 0, 0, 0, 0, 0, 0) is the unit vector pointing purely in the
V-direction and the amplitude A = 150/Cm = 2.31 (mV/s).

We include this time-varying perturbation in the multi-segment BVP (5)–
(21) in much the same way as done in [28], that is, we replace subsystem (13)
defining the orbit segment u, with boundary conditions (14) and (15), by two
subsystems that define orbit segments uON and uOFF. Here, uON exists while
the applied current is ‘on’ and uON(1) determines the location of the reset (21)
after the first 0.02 s. Hence, uON is a solution to system (24) with equation (25)
for V with total integration time TON = 0.02 s, that is,

�uON = TON [F(uON) + Ad] .

The second orbit segment uOFF is a solution to the original system (24), with
applied current ‘off’. The total integration time over both orbit segments com-
bined should be an integer multiple of the period TΓ of the periodic orbit (as
before for u). Hence, we define

�uOFF = (k TΓ − TON)F(uOFF).

The subsystem for uON can be viewed as an initial value problem, with initial
condition

uON(0) = gu(0).

Similarly, the initial point of uOFF should start where uON ends, that is,

uON(1) = uOFF(0).

We refer to [28] for further details.
The end point uOFF(1) of the second segment uOFF plays the same role as

u(1) in the multi-segment BVP (5)–(21). Hence, uOFF(1) must satisfy boundary
conditions (14) and (15). Unfortunately, this formulation requires knowledge of
the Floquet bundle vg specified by subsystem (7)–(9), and specifically the vector
vg(0) to measure the distance of uOFF(1) to Γ in boundary condition (14). In the
seven-dimensional phase space, this Floquet bundle is no longer unique, because
Γ now has six non-trivial Floquet exponents. Note that the perpendicular vectors
v⊥0 , used in boundary conditions (12) and (20), and vg(0)⊥, used in boundary
condition (15), are still well defined in a higher-dimensional phase space, because
the isochrons are codimension-one manifolds. We get around the issue of non-
uniqueness as follows. Firstly, we define subsystem (7)–(9) in terms of the adjoint
Floquet bundle vg⊥, that is, the left eigenvector bundle associated with the trivial
Floquet exponent 0. In other words, we solve the first variational equation

�v⊥g = TΓ DgF
∗

(g) vg
⊥,



26 P. Langfield et al.

with the same boundary conditions (8) and (9) for vg
⊥ instead, namely,

{
vg

⊥

(1) − vg
⊥

(0) = 0,
||vg

⊥

(0) || = 1.

Here DgF
∗

(g) is the transpose Jacobian matrix evaluated along the periodic orbit
g. We similarly assume that v⊥0 , rather than v0, is stored as a known vector.

Secondly, we use the Euclidean norm to measure the distance of uOFF from
g(0), that is, we stipulate

[uOFF(1) − g(0)] · [uOFF(1) − g(0)] = η2, (26)

rather than imposing a signed distance. We remark that a formulation in terms
of the Euclidean norm does make the continuation numerically less stable, but
it still works for our set-up because η is a free parameter that remains positive,
and boundary condition (26) effectively plays a monitoring role.

7 Conclusions

We presented an algorithm for the computation of the phase reset for a dynamical
system with periodic orbit Γ that is subjected to an (instantaneous or time-
varying) perturbation ΓA := Γ + Ad of a given direction d and amplitude A.
In theory, the phase reset can be determined from the isochron foliation of the
basin B(Γ). In particular, for small enough A, it suffices to know only the linear
approximation of the isochrons. Our algorithm is designed for the computation
of phase resets for larger A in systems that exhibit strong nonlinearities, which
is the situation in many practical applications. Our computational set-up has
the distinguishing feature that it automatically tracks the necessary nonlinear
phase information without computing the isochrons themselves. This approach
is efficient, able to deal with extreme phase sensitivity, and suitable for use in
higher-dimensional settings.

Our method is formulated in terms of a multi-segment boundary value prob-
lem that is solved by continuation and gives the new phase ϑnew as a func-
tion of either the perturbation amplitude A or the original phase ϑold before
the reset. The data can readily be used to produce phase transition and phase
response curves. We presented the multi-segment BVP set-up in detail for a
planar system, but also discussed in Sect. 6 the straightforward adaptation to
higher-dimensional systems, and how to implement phase resets arising from
time-varying inputs.

Our approach has the advantage that the map ϑold �→ ϑnew is computed
in a single continuation run, even in the presence of extreme phase sensitivity.
If the amplitude A is such that ΓA ⊂ B(Γ), then the associated circle map
PA : [0, 1) → [0, 1) is obtained in its entirety, and its graph, the phase transition
curve (PTC), is a continuous closed curve on T

2. For A close to 0, the circle map
PA is a near-identity transformation, so that the PTC is a 1:1 torus knot. For
large A it is possible that the PTC is a contractible closed curve on the torus,
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which corresponds to loss of surjectivity of PA. It is well known that surjectivity
is lost as soon as A increases past a value for which ΓA � B(Γ) [11,37].

There typically exists a maximal amplitude Amax such that ΓA ⊂ B(Γ) for
0 ≤ A < Amax . Then PA depends smoothly on A and, hence, the PTC is a 1:1
torus knot for all 0 ≤ A < Amax. Therefore, PA is surjective for all 0 ≤ A < Amax.
We were particularly interested in loss of injectivity of PA as A increases from
0. We showed that this is typically mediated by a cubic tangency between the
PTC and one of the isochrons of Γ. Further tangencies lead to very complicated
PTCs, with possibly many local maxima and minima and very sudden phase
changes. The associated phase sensitivity is known to occur near the boundary
of B(Γ), but our examples illustrate that milder forms of phase sensitivity inside
the basin also lead to complicated PTCs.

We remark that PA is no longer well defined for all ϑold ∈ [0, 1) when ΓA
intersects the boundary of the basin B(Γ). For example, when ΓA crosses an
equilibrium that forms a single component of the basin boundary in a planar
system, there exists exactly one ϑ ∈ [0, 1) such that PA(ϑ) is not defined, because
the perturbed phase point never returns to Γ. Entire intervals of ϑold ∈ [0, 1) must
be excluded, e.g., when ΓA crosses a repelling periodic orbit of a planar system,
such that a closed segment of ΓA lies outside B(Γ). Changes of the PTC during
the transition through different types of boundaries of B(Γ) are beyond the scope
of this chapter and will be reported elsewhere.

Phase resets for higher-dimensional systems are expected to exhibit other,
more complicated behaviours that lead to possibly different mechanisms of loss of
injectivity and/or surjectivity of the circle map associated with the PTC. In par-
ticular, the basin B(Γ) can be a lot more complicated, which affects the isochron
foliation and, consequently, the PTC [24]. Such higher-dimensional systems are
of particular interest when resets are considered in large coupled systems. Even
when the coupling is through the mean-field dynamics, such systems can exhibit
rich collective dynamics that are reflected in their PTCs [6,33]. We believe that
our approach will be useful in this context, in particular, when the perturbation
is a time-dependent stimulus.
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Table 1. Parameter values for system (24) as used for the seven-dimensional fast-
upstroke model in [20].

Cm = 6.5 × 10−2 (μF), gs = 1950 (nS), gh = 52 (nS),

gNa = 325 (nS), gK = 354.9 (nS), gl = 65 (nS).

Appendix: Details of the Sinoatrial Node Model

System (24) is the seven-dimensional fast-upstroke model from [20]. The five
currents in the equation for V are defined as follows:

INa = INa(V,m, h) = gNa m
3 h [V − 40.0],

Is = Is(V, d, f ) = gs d f
[
e(V−40.0)/25.0

− 1.0
]
,

IK = IK(V, p) = gK p
[
e(V+90.0)/36.1

− 1.0
]
e−(V+40.0)/36.1,

Ih = Ih(V, q) = gh q [V + 25.0] ,

Il = Il(V)

= gl

(
1.2

[
1.0 − e−(V+60.0)/25.0

]
+ 0.15 [V − 2.0]

[
1.0 − e−(V−2.0)/5.0

]
−1
)
.

The parameters gNa, gs, gK, gh, and gl, are conductances (measured in nS). The
capacitance Cm and these five conductances are set to the same values as those
of the fast-upstroke model in [20]; see also Table 1. The V-dependent functions
for m are defined as

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

αm(V) = 103 [V + 37.0]
[
1.0 − e−(V+37.0)/10.0

]
−1
,

βm(V) = 4.0 × 104 e−(V+62.0)/17.9,

for h, they are defined as
⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

αh(V) = 0.1209 e−(V+30.0)/6.534,

βh(V) = 102
[
e−(V+40.0)/10.0 + 0.1

]
−1
,

for p, they are

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

αp(V) = 8.0
[
1.0 + e−(V+4.0)/13.0

]
−1
,

βp(V) = 0.17 [V + 40.0]
[
e(V+40.0)/13.3

− 1.0
]
−1
,

for d, they are

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

αd(V) = 1.2 × 103
[
1.0 + e−V/12.0

]
−1
,

βd(V) = 2.5 × 102
[
1.0 + e(V+30.0)/8.0

]
−1
,
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for f , they are

⎧⎪⎪⎨

⎪⎪
⎩

αf (V) = 0.7 [V + 45.0]
[
e(V+45.0)/9.5

− 1.0
]
−1
,

βf (V) = 36.0
[
1.0 + e−(V+21.0)/9.5

]
−1
,

and finally, for q, they are defined as

⎧⎪⎪⎨

⎪⎪
⎩

αq(V) = 0.34 [V + 100.0]
[
e(V+100.0)/4.4

− 1.0
]
−1

+ 0.0495,

βq(V) = 0.5 [V + 40.0]
[
1.0 − e−(V+40.0)/6.0

]
−1

+ 0.0845.
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Abstract. Homeostasis is a regulatory mechanism that keeps some spe-
cific variable close to a set value as other variables fluctuate, and is of
particular interest in biochemical networks. We review and investigate
a reformulation of homeostasis in which the system is represented as an
input-output network, with two distinguished nodes ‘input’ and ‘output’,
and the dynamics of the network determines the corresponding input-
output function of the system. Interpreting homeostasis as an infinitesi-
mal notion—namely, the derivative of the input-output function is zero
at an isolated point—we apply methods from singularity theory to char-
acterise homeostasis points in the input-output function. This approach,
coupled to graph-theoretic ideas from combinatorial matrix theory, pro-
vides a systematic framework for calculating homeostasis points in mod-
els, classifying different types of homeostasis in input-output networks,
and describing all small perturbations of the input-output function near
a homeostasis point.

1 Introduction

Homeostasis is an important concept, occurring widely in biology, especially
biochemical networks, and in many other areas including control engineering. A
system exhibits homeostasis if some output variable remains constant, or almost
constant, when an input variable or parameter changes by a relatively large
amount. In the control theory literature, mathematical models of homeostasis
are often constructed by requiring the output to be constant when the input lies
in some range. That is, the derivative of the input-output function is identically
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zero on that interval of input values. Such models have perfect homeostasis or
perfect adaptation [17,41].

An alternative approach is introduced and studied in [22,23,25,37,42], using
an ‘infinitesimal’ notion of homeostasis—namely, the derivative of the input-
output function is zero at an isolated point—to introduce singularity theory
into the study of homeostasis. From this point of view, perfect homeostasis is an
infinite-codimension phenomenon, hence highly non-generic. It is also unlikely
to occur exactly in a biological system. Nonetheless, perfect homeostasis can be
a reasonable modeling assumption for many purposes.

The singularity-theoretic analysis leads to conditions that are very similar
to those that occur in bifurcation theory when recognizing and unfolding bifur-
cations (see [20,24]). These conditions have been used to organize the numer-
ical computation of bifurcations in nonlinear systems, for example in conjunc-
tion with continuation methods. See for example Dellnitz [9–11], Dellnitz and
Junge [12], Dellnitz et al. [13], Jepson and Spence [27], Jepson et al. [28], and
Moore et al. [31]. It might be possible to adapt some of these methods to home-
ostasis. Donovan [15,16] has used the singularity-theoretic framework to adapt
such numerical methods to homeostasis. As well as organizing the numerical
calculations, singularity theory and homeostasis matrix techniques may help to
simplify them.

Mathematically, homeostasis can be thought of as a network concept. One
variable (a network node) is held approximately constant as other variables
(other nodes) vary (perhaps wildly). Network systems are distinguished from
large systems by the desire to keep track of the output from each node individu-
ally. If we are permitted to mix the output from several nodes, then homeostasis
is destroyed, since the sum of a constant variable with a wildly varying one is
wildly variable. Placing homeostasis in the general context of network dynamics
leads naturally to the methods reviewed here.

Summary of Contents
Section 2 opens the discussion with a motivational example of homeostasis: reg-
ulation of the output ‘body temperature’ in an opossum, when the input ‘envi-
ronmental temperature’ varies. The graph of body temperature against envi-
ronmental temperature I is approximately linear, with nonzero slope, when I

is either small or large, while in between is a broad flat region, where home-
ostasis occurs. This general shape is called a ‘chair’ by Nijhout and Reed [34]
(see also [33,35]), and plays a central role in the singularity theory discussion.
This example is used in Sect. 4 to motivate a reformulation of homeostasis in
terms of the derivative of an output variable with respect to an input being zero
at some point, hence approximately constant near that point. We discuss this
mathematical reformulation in terms of singularities of input-output functions.

Section 5 introduces input-output networks – networks that have input and
output nodes. In such networks the observable is just the value of the output
node as a function of the input that is fed into the input node. This simplified
form of the observable and the input-output map allows us to use Cramer’s rule
to simplify the search for infinitesimal homeostasis points. See Lemma 5.2.
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As it happens, many nodes and arrows in input-output networks may have
no effect on the existence of homeostasis. The end result is that when looking
for infinitesimal homeostasis in the original network, we may first reduce that
network to a ‘core’ network. The definition of and reduction to the core are given
in Sect. 6. These reductions allow us to discuss three different types of infinites-
imal homeostasis in three-node input-output networks. The first is that there
are only three core networks in three-node input-output networks (even though
there are 78 possible input-output three-node networks) and there are three
types of infinitesimal homeostasis (Haldane, null-degradation, and structural)
distinguished by the mathematics. The mathematics of three-node input-output
networks is presented in Sect. 8, and the relation to the biochemical networks
that motivated the mathematics is given in Sect. 3.

Section 9 discusses the relationship between infinitesimal homeostasis and
singularity theory—specifically elementary catastrophe theory [19,36,43]. The
two simplest singularities are simple homeostasis and the chair. We characterize
these singularities, discuss their normal forms (the simplest form into which the
singularity can be transformed by suitable coordinate changes), and universal
unfoldings, which classify all small perturbations as other system parameters
vary. We relate the unfolding of the chair to observational data on two species
of opossum and the spiny rat, Fig. 2. Section 9 also provides a brief discussion of
how chair points can be calculated analytically by implicit differentiation, and
considers a special case with extra structure, common in biochemical applica-
tions, where the calculations simplify.

Catastrophe theory enables us to discuss how infinitesimal homeostasis can
arise in systems with an extra parameter. In Sect. 10 we see that the simplest
such way for homeostasis to evolve is through a chair singularity. This observa-
tion gives a mathematical reason for why infinitesimal chairs are important and
complements the biological reasons given by Nijhout, Reed, and Best [33,35].

Until this point the paper has dealt with input-output functions having one
input variable. This is the most important case; however multiple input systems
are also important. We follow [23] and discuss two input systems in Sect. 11. We
argue that the hyperbolic umbilic of elementary catastrophe theory plays the
role of the chair in systems with two inputs.

The paper ends with a discussion of a possible singularity theory description
of housekeeping genes in Sect. 12. Here we emphasize how both the homeostasis
network theory and the network singularity theory intertwine. The details of this
application are given in Antoneli et al. [1].

2 Thermoregulation: A Motivation for Homeostasis

Homeostasis occurs when some feature of a system remains essentially constant
as an input parameter varies over some range of values. For example, in ther-
moregulation the body temperature of an organism remains roughly constant
despite variations in its environment. (See Fig. 1 for such data in the brown
opossum where body temperature remains approximately constant over a range
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of 18 ◦C in environmental temperature [32,33].) Or in a biochemical network the
equilibrium concentration of some important biochemical molecule might not
change much when the organism ingests food.

5 10 15 20 25 30 35 40
32

34

36

38

40

Fig. 1. Experimental data indicating thermoregulatory homeostasis in the brown opos-
sum. The horizontal axis is environmental temperature (◦C) and the vertical axis is body
temperature (◦C) [32,33].

Homeostasis is almost exactly opposite to bifurcation. At a bifurcation, the
state of the system undergoes a change so extensive that some qualitative prop-
erty (such as number of equilibria, or the topological type of an attractor)
changes. In homeostasis, the state concerned not only remains topologically
the same: some feature of that state does not even change quantitatively. For
example, if a steady state does not bifurcate as a parameter is varied, that
state persists, but can change continuously with the parameter. Homeostasis is
stronger: the steady state persists, and in addition some feature of that steady
state remains almost constant.

Homeostasis is biologically important, because it protects organisms against
changes induced by the environment, shortage of some resource, excess of some
resource, the effect of ingesting food, and so on. The literature is extensive [44].
However, homeostasis is not merely the existence (and persistence as parameters
vary) of a stable equilibrium of the system, for two reasons.

First, homeostasis is a stronger condition than ‘the equilibrium varies
smoothly with parameters’, which just states that there is no bifurcation. In the
biological context, approximately linear variation of the equilibrium with nonzero
slope as parameters change is not normally considered to be homeostasis, unless
the slope is very small. For example, in Fig. 1, body temperature appears to be
varying linearly when the environmental temperature is either below 10 ◦C or
above 30 ◦C and is approximately constant in between. Nijhout et al. [33] call
this kind of variation (linear, constant, linear) a chair.
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Second, some variable(s) of the system may be homeostatic while others
undergo larger changes. Indeed, other variables may have to change dramatically
to keep some specific variable roughly constant.

We assume that there is an input-output function, which we consider to be
the product of a system black box. Specifically, we assume that for each input
I there is an output xo(I). For opossums, I is the environmental temperature
from which the opossum body produces an internal body temperature xo(I).

Nijhout et al. [33] suggest that there is a chair in the body temperature data
of opossums [32]. We take a singularity-theoretic point of view and suggest that
chairs are better described locally by a homogeneous cubic function (that is, like
xo(I) ≈ I

3) rather than by the previous piecewise linear description. Figure 2(a)
shows the least-squares fit of a cubic function to data for the brown opossum,
which is a cubic with a maximum and a minimum. In contrast, the least squares
fit for the eten opossum, Fig. 2(b), is monotone.
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Fig. 2. The horizontal coordinate is environmental temperature; the vertical coordinate
is body temperature. From [32] and [22]: (a) data from the brown opossum; (b) data
from the eten opossum; (c) data from the spiny rat. The smooth curves are the least
squares best fit of the data to a cubic polynomial.

These results suggest that in ‘opossum space’ there should be a hypothetical
type of opossum that exhibits a chair in the system input-output function of
environmental temperature to body temperature. In singularity-theoretic terms,
this higher singularity acts as an organizing center, meaning that the other types
of cubic can be obtained by small perturbations of the homogeneous cubic. In
fact, data for the spiny rat have a best-fit cubic very close to the homogeneous
cubic, Fig. 2(c). We include this example as a motivational metaphor, since we
do not consider a specific model for the regulation of opossum body temperature.

This example, especially Fig. 2, motives a formulation of homeostasis in a way
that can be analyzed using singularity theory. The first step in any discussion
of homeostasis must be the formulation of a model that defines, perhaps only
implicitly, the input-output function xo. Our singularity theory point of view
suggests defining infinitesimal homeostasis as an input I0 where the derivative
of output xo with respect to the input vanishes at I0; that is, x ′o(I0) = 0.
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3 Biochemical Input-Output Networks

We provide context for our results by first introducing some of the biochemical
models discussed by Reed in [37]. In doing so we show that input-output networks
form a natural category in which homeostasis may be explored.

There are many examples of biochemical networks in the literature. In par-
ticular examples, modelers decide which substrates are important and how the
various substrates interact. Figure 3 shows a network resulting from the detailed
modeling of the production of extracellular dopamine (eDA) by Best et al. [3]
and Nijhout et al. [33]. These authors derive a differential equation model for
this biochemical network and use the results to study homeostasis of eDA with
respect to variation of the enzyme tyrosine hydroxylase (TH) and the dopamine
transporters (DAT).

In another direction, relatively small biochemical network models are often
derived to help analyse a particular biochemical phenomenon. We present four
examples; three are discussed in Reed et al. [37] and one in Ma et al. [29].
These examples belong to a class that we call biochemical input-output networks
(Sect. 5) and will help to interpret the mathematical results.

3.1 Feedforward Excitation

The input-output network corresponding to feedforward excitation is in Fig. 4.
This motif occurs in a biochemical network when a substrate activates the
enzyme that removes a product. The standard biochemical network diagram
for this process is shown in Fig. 4a. Here X, Y, Z are the names of chemical sub-
strates and their concentrations are denoted by lower case x, y, z. Each straight
arrow represents a flux coming into or going away from a substrate. The dif-
ferential equations for each substrate simply state that the rate of change of
the concentration is the sum of the arrows going towards the substrate minus
the arrows going away (conservation of mass). The curved line indicates that
substrate is activating an enzyme.

Both diagrams in Fig. 4 represent the same information, but in different ways.
The framework employed in this paper for the mathematics focuses on the struc-
ture of the model ODEs. Figure 4b uses nodes to represent variables, and arrows
to represent couplings. In other areas, conventions can differ, so it is necessary
to translate between the two representations. The simplest method is to write
down the model ODEs.

In this motif, one path consists of two excitatory couplings: g1(x) > 0 from
X to Y and g2(y) > 0 from Y to Z. The other path is an excitatory coupling
f (x) > 0 from X to the synthesis or degradation g3(z) of Z and hence is an
inhibitory path from X to Z having a negative sign.

The equations are the first column of:

�x = I − g1(x) − g4(x)
�y = g1(x) − g2(y) − g5(y)

�z = g2(y) − f (x)g3(z)

�xι = fι(xι,I)
�xρ = fρ(xι, xρ)
�xo = fo(xι, xρ, xo)

(1)
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Fig. 3. Biochemical network for dopamine synthesis, release, and reuptake in Nijhout
et al. [33] and Golubitsky and Stewart [23].

(a)

+ +
-

(b)

Fig. 4. Feedforward excitation: (a) Motif from [37]; (b) Input-output network with two
paths from ι to o corresponding to the motif in (a).

It is shown in [37] (and reproduced using this theory in [25]) that the model
system (1) (left) for feedforward excitation leads to infinitesimal homeostasis at
X0 if

fx(x0) =
g′1(x0)g

′

2(y0)

g3(z0)(g′2(y0) + g′5(y0))

where X0 = (x0, y0, z0) is a stable equilibrium.
Figure 4b redraws the diagram in Fig. 4a using the math network conven-

tions of this paper, together with some extra features that are crucial to this
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particular application. We consider x to be a distinguished input variable, with
z as a distinguished output variable, while y is an intermediate regulatory vari-
able. Accordingly we change notation and write

xι = x xρ = y xo = z

The second column in (1) shows which variables occur in the components of
the model ODE for each of xι, xρ, xo. In Fig. 4b these variables are associated with
three nodes ι, ρ, o. Each node has its own symbol, here a square for ι, circle for ρ,
and triangle for o. Here these symbols are convenient ways to show which type
of variable (input, regulatory, output) the node corresponds to. Arrows indicate
that the variables corresponding to the tail node occur in the component of the
ODE corresponding to the head node. For example, the component for �xo is a
function of xι, xρ, and xo. We therefore draw an arrow from ι to o and an arrow
from ρ to o. We do not draw an arrow from o to itself, however: by convention,
every node variable can appear in the component for that node. In a sense, the
node symbol (circle) represents this ‘internal’ arrow.

The mathematics described here shows that infinitesimal homeostasis occurs
in the system in the second column of (1) if and only if

fρ,xι fo,xρ − fρ,xρ fo,xι = 0

at the stable equilibrium X0.
Here Fig. 4b incorporates some additional information. The arrow from I to

node ι shows that I occurs in the equation for �xι as a parameter. Similarly the
arrow from node o to O shows that node o is the output node. Finally, the ±

signs indicate which arrows are excitatory or inhibitory. This extra information
is special to biochemical networks and does not appear as such in the general
theory.

3.2 Product Inhibition

Here substrate X influences Y, which influences Z, and Z inhibits the flux g1
from X to Y. The biochemical network for this process is shown in Fig. 5a.

This time the model equations for Fig. 5a are in the first column of (2)

�x = I − g4(x) − f (z)g1(x)
�y = f (z)g1(x) − g2(y) − g5(y)

�z = g2(y) − g3(z)

�xι = fι(xι, xo,I)
�xρ = fρ(xι, xρ, xo)
�xo = fo(xρ, xo)

(2)

and the input-output equations in the second column of (2) can be read directly
from the first column. The input-output network in Fig. 5b then follows.

Reed et al. [37] discuss why the model equations for product inhibition also
satisfy

f > 0 g′1 < 0 g′2 < 0 (3)
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(a)

+
(b)

Fig. 5. Product inhibition: (a) Motif from [37]; (b) Input-output network with one
path from ι to o corresponding to the motif in (a).

Our general mathematical results show that the system in the second column of
(2) exhibits infinitesimal homeostasis at a stable equilibrium X0 if and only if
either

fρ,xι = f (z0)g
′

1(x0) = 0 or fo,xρ = g′2(y0) = 0 (4)

It follows from (3) and (4) that the model equations cannot satisfy infinitesimal
homeostasis. Nevertheless, Reed et al. [37] show that these bichemical network
equations do exhibit homeostasis; that is, the output z is almost constant for a
broad range of input values I.

3.3 Substrate Inhibition

The biochemical network model for substrate inhibition is given in Fig. 6a, and
the associated model system is given in the first column of (5). This biochemical
network and the model system are discussed in Reed et al. [37]. In particular,
this paper provides justification for taking g′1(x) > 0 for all relevant x, whereas
the coupling (or kinetics term) g′2(y) can change sign.

(a)

+

(b)

Fig. 6. Substrate inhibition: (a) Motif from [37]; (b) Input-output network correspond-
ing to the motif in (a).

The equations are the first column of:

�x = I − g1(x) − g4(x)
�y = g1(x) − g5(y) − g2(y)

�z = g2(y) − g3(z)

�xι = fι(xι,I)
�xρ = fρ(xι, xρ)
�xo = fo(xρ, xo)

(5)

That model system of ODEs is easily translated to the input-output system in
the second column of (5). Our theory shows that the equations for infinitesimal
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homeostasis are identical to those given in (4) for product inhibition. Given the
assumption on g′1 infinitesimal homeostasis is possible only if the coupling is
neutral (that is, if fo,xρ = g′2 = 0 at the equilibrium point). This observation
agrees with the observation in [37] that Z can exhibit infinitesimal homeostasis
in the substrate inhibition motif if the infinitesimal homeostasis is built into the
kinetics term g2 between Y and Z.

Reed et al. [37] note that neutral coupling can arise from substrate inhibition
of enzymes, enzymes that are inhibited by their own substrates. See the discus-
sion in [38]. This inhibition leads to reaction velocity curves that rise to a max-
imum (the coupling is excitatory) and then descend (the coupling is inhibitory)
as the substrate concentration increases. Infinitesimal homeostasis with neutral
couplings arising from substrate inhibition often has important biological func-
tions and has been estimated to occur in about 20% of enzymes [38].

3.4 Negative Feedback Loop

The input-output network in Fig. 7b corresponding to the negative feedback
loop motif in Fig. 7a has only one simple path ι → o. Our results imply that
infinitesimal homeostasis is possible in the negative feedback loop if and only if
the coupling ι → o is neutral (Haldane) or the linearized internal dynamics of
the regulatory node ρ is zero (null-degradation).

X Z

Y

I

(a)
(b)

Fig. 7. Negative feedback loop: (a) Motif adapted from [29]. Unlike the arrows in
Figs. 4, 6 and 5 that represent mass transfer between substrates, positive or negative
arrows between enzymes in this negative feedback motif indicate the activation or inac-
tivation of an enzyme by a different enzyme. (b) Input-output network corresponding
to the motif in (a).

The equations are:

�x = IkIx
1−x

(1−x)+KIx
− Fxk ′Fx

x
x+K′

Fx

�y = zkzy − Fyk ′Fy

�z = xkxz
1−z

(1−z)+Kxz
− yk ′yz

z
z+K′

yz

�xι = fι(xι,I)
�xρ = fρ(xρ, xo)
�xo = fo(xι, xρ, xo)

(6)

where kIx,KIx, Fx, k ′Fx
,K ′

Fx
, kzy, Fy, k ′Fy

, kxz,Kxz, k ′yz,K
′
yz are 12 constants.

Each enzyme X,Y,Z in the feedback loop motif (Fig. 7a) can have active
and inactive forms. In the kinetic equations (6, left) the coupling from X to
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Z is non-neutral according to [29]. Hence, in this model only null-degradation
homeostasis is possible. In addition, in the model the �y equation does not depend
on y and homeostasis can only be perfect homeostasis. However, this model is a
simplification based on saturation in y [29]. In the original system �y does depend
on y and we expect standard null-degradation homeostasis to be possible in that
system.

Stability of the equilibrium in this motif implies negative feedback. The Jaco-
bian of (6, right) is

J =

⎡
⎢
⎢
⎢
⎢
⎣

fι,xι 0 0
0 fρ,xρ fρ,xo
fo,xι fo,xρ fo,xo

⎤
⎥
⎥
⎥
⎥
⎦

At null-degradation homeostasis ( fρ,xρ = 0) it follows from linear stability that

fι,xι < 0, fo,xo < 0, fρ,xo fo,xρ < 0 (7)

Conditions (7) imply that both the input node and the output node need to
degrade and the couplings ρ → o and o → ρ must have opposite signs. This
observation agrees with [29] that homeostasis is possible in the network motif
Fig. 7a if there is a negative loop between Y and Z and when the linearized
internal dynamics of Y is zero.

Another biochemical example of null-degradation homeostasis can be found
in [17, Fig. 2].

4 Infinitesimal Homeostasis

In applications, homeostasis is often a property of an observable on a many-
variable system of ODEs. Specifically, consider a system of ODEs

�X = F(X,I) (8)

in a vector of variables X = (x1, . . . , xm) ∈ Rm that depends on an input parameter
I ∈ R. Although not always valid in applications we assume that F is infinitely
differentiable. Suppose that (8) has a linearly stable equilibrium at (X0,I0). By
the implicit function theorem there exists a family of linearly stable equilibria
X(I) = (x1(I), . . . , xm(I)) near I0 such that X(I0) = X0 and

F(X(I),I) ≡ 0. (9)

By assumption, we are interested in homeostasis of a chosen observable ϕ : Rm
→

R. The input-output function is

xo(I) ≡ ϕ(X(I)) (10)

This system exhibits homeostasis if the input-output function xo(I) remains
roughly constant as I is varied.

Often times the observable is just one coordinate of the ODE system; that
is, ϕ(X) = xj , which we denote as the output variable xo . This formulation of
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homeostasis is often a network formulation. The output variable is just a choice
of output node and the input parameter can be assumed to affect only one node—
the input node xι.

We now introduce a formal mathematical definition of infinitesimal home-
ostasis, one which opens up a potential singularity-theoretic approach that we
discuss later.

Definition 4.1. The equilibrium X0 is infinitesimally homeostatic at I0 if

x ′o(I0) = 0

where ′ indicates differentiation with respect to I.

By Taylor’s theorem, infinitesimal homeostasis implies homeostasis, but the
converse need not be true. See [37] and the discussion of product inhibition in
Sect. 3.

5 Input-Output Networks

We now apply the notion of infinitesimal homeostasis to input-output networks—
a natural formulation in biochemical networks that we discussed in detail in
Sect. 3. We assume that one node ι is the input node, a second node o is the
output node, and the remaining nodes ρ = (ρ1, . . . , ρn) are the regulatory nodes.
Our discussion of network infinitesimal homeostasis follows [25]. Input-output
networks equations have the form F = ( fι, fρ, fo) where each coordinate function
f� depends on the state variables of the nodes coupled to node � in the network
graph. We assume that only the input node coordinate function fι depends on
the external input variable I.

As shown in [25] there are 13 distinct three-node fully inhomogeneous net-
works and six choices of input and output nodes for each network. Thus, in prin-
ciple, there are 78 possible ways to find homeostasis in three-node input-output
networks. The number of input-output four-node networks increases dramati-
cally: there are 199 fully inhomogeneous networks and more than 2000 four-node
input-output networks.

Further motivated by biochemical networks, we assume:

(a) The state space for each node is 1-dimensional and hence the state space for
an input-output network system of differential equations is Rn+2.

(b) The coordinate functions f� are usually distinct functions, so the network is
assumed to be fully inhomogeneous.

(c) Generically
fι,I � 0 (11)

is valid everywhere, where the notation f�,y denotes the partial derivative of
the coordinate function f� with respect to y.
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Cramer’s Rule and Infinitesimal Homeostasis

The equilibria of an input-output system satisfy the system

fι(xι, xρ, xo,I) = 0
fρ(xι, xρ, xo) = 0
fo(xι, xρ, xo) = 0

(12)

The assumption of a stable equilibrium X0 at I0 implies that the Jacobian

J =

⎡
⎢
⎢
⎢
⎢
⎣

fι,xι fι,xρ fι,xo
fρ,xι fρ,xρ fρ,xo
fo,xι fo,xρ fo,xo

⎤
⎥
⎥
⎥
⎥
⎦

(13)

has eigenvalues with negative real part at (X0,I0), so J is invertible.
To state the next result we first need:

Definition 5.1. The homeostasis matrix is:

H ≡

[

fρ,xι fρ,xρ
fo,xι fo,xρ

]

(14)

Lemma 5.2. The input-output function for the input-output network (12) sat-
isfies

x ′o = ±
fι,I

det(J)
det(H)

Infinitesimal homeostasis occurs at a stable equilibrium X0 = X(I0) if and only if

det(H)(X0) = 0 (15)

Proof. Implicit differentiation of (12) with respect to I yields the matrix system

J

⎡
⎢
⎢
⎢
⎢
⎣

x ′i
x ′ρ
x ′o

⎤
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎣

fι,I
0
0

⎤
⎥
⎥
⎥
⎥
⎦

Cramer’s rule implies that

x ′o =
1

det(J)
det

⎡
⎢
⎢
⎢
⎢
⎣

fι,xι fι,xρ − fι,I
fρ,xι fρ,xρ 0
fo,xι fo,xρ 0

⎤
⎥
⎥
⎥
⎥
⎦

Since fι,I � 0 by genericity assumption (11), X0 is a point of infinitesimal home-
ostasis if and only if x ′o = 0, if and only if (15), as claimed. 	


6 Core Networks

The results in Sects. 6, 7 and 8 will appear in Wang et al. [42].

Definition 6.1. A node ρ is downstream from a node τ if there is a path from
τ to ρ and upstream if there is a path from ρ to τ. An input-output network is
a core network if every node is downstream from ι and upstream from o.

A core network Gc can be associated to any given input-output network G

as follows. The nodes in Gc are the nodes in G that lie on a path from ι to o.
The arrows in Gc are the arrows in G that connect nodes in Gc.
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Reduction to the Core
In this section we discuss why every network that exhibits infinitesimal home-
ostasis can be reduced to a core network in such a way that the core has essen-
tially the same input-output function as the original network. This reduction is
performed in two stages.

(a) Homeostasis implies that the output node o is downstream from the input
node ι.

(b) Nodes that are not upstream from the output node, and nodes that are not
downstream from the input node, may be deleted.

We show that if infinitesimal homeostasis occurs in the original network, then
that infinitesimal homeostasis can be computed in the smaller core network.

Lemma 6.2. In an input-output network, the existence of (generic) infinites-
imal homeostasis implies that the output node o is downstream from the input
node ι.

Heuristically, if the input node is not upstream from the output node, then
changes in the input node cannot affect the dynamics of the output node. So the
input-output map must satistfy x ′o(I) ≡ 0 and the set value xo(I) is constant
(and not generic).

We assume that there is a path from the input node to the output node
and show that nodes that are not upstream from o and nodes that are not
downstream from ι can be deleted without changing the existence of homeostasis.

Proposition 6.3. Let G be a connected input-output network where there is a
path from the input node ι to the output node o. Divide the regulatory nodes ρ
into three classes ρ = (u, σ, d), where

• nodes in u are not upstream from o,
• nodes in d are not downstream from ι, and
• regulatory nodes σ are both upstream from o and downstream from ι.

Then all nodes u, d and all arrows into nodes in u and out of nodes in d can be
deleted to form a core network Gc without affecting the existence of infinitesimal
homeostasis.

Again, heuristically the proof is straightforward. If a node is not upstream
from the output node, than its value cannot affect the output node and if a
node is not downstream from the input node than its value cannot be affected
by the value of the input node. So deleting these nodes should not affect the
input-output map.
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Core Equivalence

Definition 6.4. Two core networks are core equivalent if the determinants of
their homeostasis matrices are identical.

The general result concerning core equivalence is given in Theorem 7.2. Here
we give an example of arrows that do not affect the homeostasis matrix and
therefore the input-output function.

Definition 6.5. A backward arrow is an arrow whose head is the input node ι
or whose tail is the output node o.

Proposition 6.6. If two core networks differ from each other by the presence
or absence of backward arrows, then the core networks are core equivalent.

Proof. Backward arrows are not present in the homeostasis matrix (14). 	


Therefore, backward arrows can be ignored when computing infinitesimal
homeostasis from the homeostasis matrix H. However, backward arrows can-
not be completely ignored, since they can be involved in the existence of both
equilibria of (12) and their stability.

7 Types of Infinitesimal Homeostasis

Infinitesimal homeostasis is found in an input-output network G by simultane-
ously solving two equations: Find a stable equilibrium of an admissible system
�X = F(X,I) and find a zero of the determinant of the homeostasis matrix H. In
this section, we discuss the different types of zeros det(H) can have and (for the
most part) ignore the question of finding an equilibrium and its stability.

The homeostasis matrix H of an admissible system has three types of entries:
linearized coupling strengths fk,x� where node � is connected to node k, linearized
internal dynamics fk,xk of node k, and 0. We emphasize that the entries that are
forced to be 0 depend specifically on network architecture.

Assume that the input-output network has n + 2 nodes: the input ι, the
output o, and the n regulatory nodes ρ = (ρ1, . . . , ρn). It follows that det(H) is a
homogeneous polynomial of degree n + 1 in the variables fk,x� . It is discussed in
[42], based on Frobenius-König theory (see [40] for a historical account), that the
homeostasis matrix H can be put in block upper triangular form. Specifically,
there exist two constant (n+1)× (n+1) permutation matrices P and Q such that

PHQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1 ∗ · · · ∗

0 H2 · · · ∗

...
...

0 0 · · · Hm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)

where the square matrices H1, . . . ,Hm are unique up to permutation, that is,
individually the blocks cannot be brought into the form (16) by permutation of
their rows and columns.



46 M. Golubitsky et al.

Moreover, when det(H) is viewed as a homogeneous polynomial in the entries
of the matrix H there is a factorization

det(H) = det(H1) · · · det(Hm) (17)

into irreducible homogeneous polynomials det(H1), . . . , det(Hm). That is, the irre-
ducible blocks of the decomposition (16) correspond to the irreducible compo-
nents in the factorization (17) (this follows from Theorem 4.2.6 (pp. 114–115)
and Theorem 9.2.4 (p. 296) of [5]). We note that the main nontrivial result
that allows us to write Eq. (17)—proved in [5, Theorem 9.2.4 (p. 296)]—is that
det(Hj) is irreducible as a polynomial if and only if the matrix Hj is irreducible
in the sense that Hj cannot be brought to the form (16) by permutation of Hj ’s
rows and columns.

Low Degree Irreducible Factors of det(H)
Wang et al. [42] show that there can be two types of degree 1 factors (Haldane and
null-degradation) and two types of degree 2 factors (structural and appendage).
The principal result in [42] is the assertion that these four irreducible factors
of det(H) can be associated with topological characteristics of the network G

that in turn defines a type of homeostasis. The connection between the form of
a factor det(Hj) and the topology of the network is given by certain determinant
formulas that are reminiscent of the connection between a directed graph and its
adjacency matrix and has been rediscovered by many authors [7,8,14,26] (see [6]
for a modern account). Before stating the classification we introduce some graph
theoretic terminology.

Definition 7.1. Let G be an input-output network.

(a) A directed path between two nodes is called a simple path if it visits each
node on the path at most once. An ιo-simple path is a simple path connecting
the input node ι to the output node o.

(b) A node in an input-output network G is simple if the node is on an ιo-simple
path and appendage if the node is not simple.

(c) The appendage subnetwork AG of G is the subnetwork consisting of
appendage nodes and arrows in G that connect appendage nodes.

(d) The complementary subnetwork corresponding to an ιo-simple path S is the
network CS consisting of all nodes not in S and all arrows in G between
nodes in CS.

Given these definitions we can state necessary and sufficient conditions for
core equivalence:

Theorem 7.2. Two core networks are core equivalent if and only if they have
the same set of ιo-simple paths and the Jacobian matrices of the complementary
subnetworks to any simple path have the same determinant up to sign.
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We isolate four types of homeostasis.

(A) Haldane homeostasis is associated with the arrow � → k, where k � �, if
homeostasis is caused by the vanishing of the degree 1 irreducible factor
fk,x� of det(H).

Theorem 7.3. Haldane homeostasis associated with an arrow � → k can
occur if and only if the arrow � → k is contained in every ιo-simple path.

(B) Null-degradation homeostasis is associated with a node τ if homeostasis is
caused by the vanishing of the degree 1 irreducible factor fτ,xτ of det(H).

Theorem 7.4. Null-degradation homeostasis associated with a node τ can
occur if and only if for every ιo-simple path S
(a) τ belongs to the complementary subnetwork CS and
(b) τ is not contained in a cycle of CS.

(C) Structural homeostasis of degree 2 is caused by the vanishing of a degree 2
irreducible factor of det(H) that has the form

fρ2,xρ1
fρ3,xρ2

− fρ3,xρ1
fρ2,xρ2

that is, the determinant of the homeostasis matrix of a feedforward loop motif
defined by two ιo-simple path snippets: one snippet is ρ1 → ρ2 → ρ3 and
the other snippet is ρ1 → ρ3. A snippet of a path is a connected subpath.

Theorem 7.5. Structural homeostasis of degree 2 can occur if and only if
(a) two ιo-simple path snippets form a feedforward loop motif and
(b) all ιo-simple paths contain one of the two snippets of the feedforward loop

motif.

Structural homeostasis of degree 2 is exactly the structural homeostasis con-
sidered in [25] for 3-node core networks; it often arises in biochemical net-
works associated with the mechanism of feedforward excitation.

(D) Appendage homeostasis of degree 2 is caused by the vanishing of a degree
2 irreducible factor of det(H) that has the form

fτ1,xτ1 fτ2,xτ2 − fτ2,xτ1 fτ1,xτ2

where the two node cycle A = {τ1
←
→τ2} consists of appendage nodes.

Theorem 7.6. Appendage homeostasis of degree 2 associated with a two-
node cycle A ⊂ AG can occur if and only if for every ιo-simple path S
(a) A belongs to the complementary subnetwork CS and
(b) nodes in A do not form a cycle with other nodes in CS.

The four types of infinitesimal homeostasis (A)–(D) correspond to the only
possible factors of degree � 2. More precisely:

Theorem 7.7. Any factor of degree 1 is of type (A) or (B) and any irreducible
factor of degree 2 is of type (C) or (D).

Homeostasis can also occur in blocks of degree 3 or higher. There are
three types of such blocks: structural (all couplings are between simple nodes),
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appendage (all couplings are between appendage nodes), and mixed (both simple
and appendage nodes appear in the block). Theorem7.6 generalizes to higher
degree appendage homeostasis. Specifically:

Theorem 7.8. Let G be a network with appendage subnetwork A ⊂ AG.
Appendage homeostasis associated with A can occur if and only if for every
ιo-simple path S

(a) A belongs to the complementary subnetwork CS and
(b) nodes in A do not form a cycle with other nodes in CS.

8 Low Degree Homeostasis Types

The homeostasis matrix H of a three-node input-output network is a 2 × 2
matrix. It follows that a homeostasis block is either 1 × 1 or 2 × 2. If the block
is 2× 2, it must be structural. For if it were appendage, the network would need
to have two appendage nodes and one simple node. If the network had only one
simple node, then the input node and the output node would be identical and
that is not permitted.

Examples of Haldane, Structural of Degree 2, and Null Degradation
The admissible systems of differential equations for the three-node networks in
Fig. 8 are:

(a) Haldane (b) Structural of degree 2
(c) Null-degradation

Fig. 8. Homeostasis types in three-node networks.

�xι = fι(xι)
�xρ = fρ(xι, xρ)
�xo = fo(xρ, xo)

�xι = fι(xι)
�xρ = fρ(xι, xρ)
�xo = fo(xι, xρ, xo)

�xι = fι(xι, xτ)
�xτ = fτ(xτ, xo)
�xo = fo(xι, xo)

(a) (b) (c)

(18)

The determinants of the 2 × 2 homeostasis matrices are:

(a) fρ,xι fo,xρ (b) fρ,xι fo,xρ − fρ,xρ fo,xι (c) fo,xι fτ,xτ (19)

A vanishing determinant in (19)(a) leads to two possible instances of Haldane
homeostasis. A vanishing determinant in (19)(b) leads to balancing of two sim-
ple paths and structural homeostasis. Finally, a vanishing determinant in (19)(c)
leads to null-degradation or Haldane homeostasis. These types of homeostasis
were classified in [25] where it was also noted that Haldane occurs in prod-
uct inhibition, structural occurs in feedforward excitation, and null-degradation
occurs in a negative feedback loop.
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Appendage Homeostasis of Degree 2
The admissible systems of differential equations for the four-node network in
Fig. 9 have the form:

�xι = fι(xι, xτ2)
�xτ1 = fτ1(xτ1, xτ2, xo)
�xτ2 = fτ2(xτ1, xτ2 )
�xo = fo(xι, xo)

The homeostasis matrix is

H =

⎡
⎢
⎢
⎢
⎢
⎣

0 fτ1,xτ1 fτ1,xτ2
0 fτ2,xτ1 fτ2,xτ2

fo,xι 0 0

⎤
⎥
⎥
⎥
⎥
⎦

and
det(H) = fo,xι ( fτ1,xτ1 fτ2,xτ2 − fτ1,xτ2 fτ2,xτ1 )

It follows that det(H) = 0 can lead either to Haldane homeostasis or appendage
homeostasis of degree 2.

Oι ο

τ
1

τ
2

I

Fig. 9. Appendage homeostasis of degree 2.

9 Singularity Theory of Input-Output Functions

As discussed in Sect. 2, Nijhout et al. [33,35] observe that homeostasis appears
in many applications through the notion of a chair. Golubitsky and Stewart [23]
observed that a chair can be thought of as a singularity of the input-output
function, one where xo(I) ‘looks like’ a homogeneous cubic xo(I) ≈ I

3. More
precisely, the mathematics of singularity theory [19,36] replaces ‘looks like’ by
‘up to a change of coordinates.’

Definition 9.1. Two functions p, q : R → R are right equivalent on a neighbor-
hood of I0 ∈ R if

q(I) = p(Λ(I)) + K

where Λ : R → R is an invertible change of coordinates on a neighborhood of I0
and K ∈ R is a constant.
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The simplest singularity theory theorem states that q : R → R is right
equivalent to p(I) = I

3 on a neighborhood of the origin if and only if q′(I0) =
q′′(I0) = 0 and q′′′(I0) � 0. Hence we call a point I0 an infinitesimal chair for an
input-output function xo if

x ′o(I0) = x ′′o (I0) = 0 and x ′′′o (I0) � 0 (20)

A simple result is:

Lemma 9.2. An input-output map xo has an infinitesimal chair at I0 if and
only if

h(I0) = h′(I0) = 0 and h′′(Io) � 0

where h(I) = det(H).

Proof. Suppose that x ′o(I) = k(I)h(I) where k(I) is nowhere zero. Then h(I0) =
h′(I0) = 0 if and only if x ′0(I0) = x ′′0 (I0) = 0 because x ′′o = k ′h + kh′. Moreover, if
h = h′ = 0, then x ′′o = kh′′. Finally, it follows from the Cramer’s rule calculation
in Lemma 5.2 that

k = ±
fι,I

det(J)

Hence, k(I) is nowhere zero. 	


A simpler result states the following. The input-output function defines sim-
ple infinitesimal homeostasis if

x ′o = 0 and x ′′o � 0,

which is equivalent to h = 0 and h′ � 0. The graph of xo ‘looks like’ a parabola
near a point of simple infinitesimal homeostasis.

9.1 Chair Points for Blocks of Degree 1 and 2

Lemma 9.2 gives necessary and sufficient conditions for the existence of infinites-
imal homeostasis using the function h = det(H). In general, the homeostasis
function can be simplified by recalling from (16) that the homeostasis matrix
PHQ is block upper triangular. It follows that if homeostasis stems from block
j, then det(H) is a nonzero multiple of det(Hj). The results in Sect. 7 imply

hj ≡ det(Hj) =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

fk,x� Haldane
f�,x� null-degradation
fρ2,xρ1

fρ3,xρ2
− fρ3,xρ1

fρ2,xρ2
structural of degree 2

fτ1,xτ1 fτ2,xτ2 − fτ1,xτ2 fτ2,xτ1 appendage of degree 2

(21)

Theorem 9.3. Given an input-output network. Then, the defining conditions
for infinitesimal chair homeostasis are given by hj = h′j = 0 where hj is defined
by (21).

We now calculate chair equations for the two degree 1 three-node examples.



Input-Output Networks, Singularity Theory, and Homeostasis 51

Lemma 9.4.

(a) If the arrow ρ→ o has Haldane homeostasis in the network ι→ ρ→ o, then

h = h′ = 0 ⇐⇒ fo,xρ = fo,xρxρ = 0

(b) If the node τ has null-degradation homeostasis in the network ι→ o, o → τ,
τ → ι, then

h = h′ = 0 ⇐⇒ fτ,xτ = fτ,xτ xτ = 0

Proof. Suppose h(I) = hj(I)k(I), where k(I0) is nonzero at I0, then h(I0) =

h′(I0) = 0 if and only if hj(I0) = h′j(I0) = 0. The proof proceeds in two parts.

(a) Observe that
hj = fo,xρ (xρ, xo) = 0

is one equation for a Haldane chair and the second equation is

h′j = fo,xρxρ x
′

ρ + fo,xρxo x
′

o = 0

Since h′j is evaluated at a point of homeostasis, x ′o = 0. It follows that either
fo,xρxρ = 0 or x ′ρ = 0. We can use Cramer’s rule to solve for x ′ρ; it is a nonzero
multiple of fρ,xι fo,xo . If fρ,xι = 0, then we would have a second Handane in
the ι → ρ arrow - a codimension 2 homeostasis. So, generically, we can
assume fρ,xι � 0. By computing the Jacobian at the assumed Haldane point
we see that fo,xo is an eigenvalue and therefore negative by the assumed
stabilty.

(b) We use the admissible system equilibrium equations from (18) (c) to see that
null-degradation is defined by hj = fτ,xτ (xτ, xo) = 0 and a chair by

h′j = fτ,xτ xτ x
′

τ + fτ,xτ xo x
′

o = 0

Since x ′o = 0 and x ′τ � 0 at the generic homeostasis point, it follows that
fτ,xτ xτ = 0 is the chair equation, as claimed. 	


9.2 Elementary Catastrophe Theory and Homeostasis

The transformations of the input-output map xo(I) given in Definition 9.1 are
just the standard change of coordinates in elementary catastrophe theory [19,36,
43]. We can therefore use standard results from elementary catastrophe theory
to find normal forms and universal unfoldings of xo(I), as we now explain.

Because xo(I) is 1-dimensional, we consider singularity types near the ori-
gin of a 1-variable function g(I). Such singularities are determined by the first
nonvanishing I-derivative g(k)(0) (unless all derivatives vanish, which is an ‘infi-
nite codimension’ phenomenon that we do not discuss further). Informally, the
codimension of a singularity is the number of conditions on derivatives that
determine it. This is also the minimum number of extra variables required to
specify all small perturbations of the singularity, up to changes of coordinates.
These perturbations can be organized into a family of maps called the universal
unfolding, which has that number of extra variables.
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Definition 9.5. G(I, a) is an unfolding of g(I) if G(I, 0) = g(I). G is a universal
unfolding of g if every unfolding of H(I, b) factors through G. That is,

H(I, b) = G(Λ(I, b), A(b)) + K(b) (22)

It follows that every small perturbation H(·, b) is equivalent to a perturbation
G(·, A(b)) of g in the G family.

If such k exists, the normal form is ±I
k . Simple infintesimal homeostasis

occurs when k = 2, and an infinitesimal chair when k = 3. When k ≥ 3 the
universal unfolding for catastrophe theory equivalence is

±I
k + ak−2I

k−2 + ak−3I
k−3 + · · · + a1I

for parameters aj and when k = 2 the universal unfolding is ±I
2. The codimen-

sion in this setting is therefore k − 2. See [4] Example 14.9 and Theorem 15.1;
[18] chapter IV (4.6) and chapter VI (6.3); and [30] chapter XI Sect. 1.1 and
chapter XII Sects. 3.1, 7.2.

To summarize: the normal form of the input-output function for simple
infinitesimal homeostasis is

xo(I) = ±I
2 (23)

and no unfolding parameter is required. Similarly,

xo(I) = ±I
3 (24)

is the normal form of the input-output function for a chair, and

xo(I; a) = ±I
3 + aI (25)

is a universal unfolding.

10 Evolving Towards Homeostasis

Control-theoretic models of homeostasis often build in an explicit ‘target’ value
for the output, and construct the equations to ensure that the input-output
function is exactly flat over some interval. Such models are common, and provide
useful information for many purposes. In singularity theory an exactly flat input-
output function has ‘infinite codimension’, so our approach is not appropriate
for models of this type.

However, in biology, homeostasis is an emergent property of biochemical net-
works, not a preset target value, and the input-output function is only approx-
imately flat, for example as in Fig. 2 (left). Many of the more recent models
of homeostasis do not assume a preset target value; instead, this emerges from
the dynamics of a biochemical network. Here we expect typical singularities to
have finite codimension, and our approach is then potentially useful. For exam-
ple, in [21, Section 8] we proved that for one such model, of feedforward inhibi-
tion [33,39], the input-output map has a ‘chair’ singularity, with normal form
x3 + λx. Other examples of chair singularities are given in [37].
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A key question is: In a mathematical sense, how does a biological system
evolve towards homeostasis? Imagine a system of differential equations depend-
ing on parameters. Suppose that initially the parameters are set so that the
associated input-output function has no regions of homeostasis. Now vary the
parameters so that a small region of homeostasis appears in the input-output
function. Since this region of homeostasis is small, we can assume that it is
spawned by a singularity associated with infinitesimal homeostasis. How can
that happen?

Singularities Organizing Evolution Towards Homeostasis
A plausible answer follows from the classification of elementary catastrophes.
If there is one input and one output, the assumption of no initial homeostasis
implies that the input-output function xo : R → R is strictly increasing (or
strictly decreasing). Generically, evolving towards infinitesimal homeostasis can
occur in only one way. As a parameter β is varied, at some point I0 the function
xo(I) approaches a singularity, so there is a point I0 where x ′o(I0) = 0. This
process can happen only if x ′′o (I0) = 0 is also satisfied. That is, from a singularity-
theoretic point of view, the simplest way that homeostasis can evolve is through
an infinitesimal chair.

This process can be explained in the following way. The system can evolve
towards infinitesimal homeostasis only if the universal unfolding of the singu-
larity has a parameter region where the associated function is nonsingular. For
example, simple homeostasis (xo(I) = I

2, which is structurally stable) does not
have this property. All small perturbations of I2 have a Morse singularity. The
simplest (lowest codimension) singularity that has nonsingular perturbations is
the fold singularity xo(I) = I

3; that is, the infinitesimal chair.
At least two assumptions underlie this discussion. First, we have assumed

that all perturbations of the input-output function can be realized by perturba-
tions in the system of ODEs. This is true; see Lemma 10.1. Second, we assume
that when evolving towards homeostasis the small region of homeostasis that
forms is one that could have grown from a point of infinitesimal homeostasis.

When xo depends on one parameter, generically the infinitesimal chair is the
only possible singularity that can underlie the formation of homeostasis.

Lemma 10.1. Given a system of ODEs �x = F(x,I) whose zero set is defined by

F(X(I),I) ≡ 0

and a perturbation X̃(I) = X(I) + P(I) of that zero set. Then X̃ is the zero set
of the perturbation

F̃(x,I) = F(x − P(I),I)

Therefore any perturbation of the input-output function xo(I) can be realized by
perturbation of F.
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Proof. Clearly
F̃(X̃(I),I) = F̃(X(I) + P(I),I)

= F(X(I) + P(I) − P(I),I)
= F(X(I),I)
= 0

If we write P(I) = (0, Po(I)) where Po(I) is a small perturbation of xo(I), then
we can obtain the perturbation xo + Po of xo by the associated perturbation of
F. 	


Theorem 10.2. Consider input-output functions with one input and one out-
put. Then the only singularities of codimension ≤ 3 that have perturbations with
no infinitesimal homeostasis are the fold (chair) and the swallowtail.

Proof. It is easy to see that perturbations of Ik always have a local minimum
when k is even. So the only normal forms with perturbations that have no
infinitesimal homeostasis occur when k is odd. Those that have codimension at
most 3 are the fold (k = 3) and the swallowtail (k = 5). 	


We remark that folds occur in the unfoldings of swallowtails and that
the generic non-homeostatic approach to a swallowtail would also give a non-
homeostatic approach to a fold (or chair).

11 Input-Output Maps with Two Inputs

Suppose now that the input I consists of several variables. In general terms,
consider a parametrized family of ODEs

�X = F(X,I) (26)

where X = (x1, . . . , xm) ∈ Rm, I ∈ Rk , and F is infinitely differentiable. We
assume that (26) stems from an input-output network where one of the nodes
(or coordinates of X) is the output node that is denoted, as before, by o. We
also assume that (26) has a stable equilibrium at X0 when I = I0.

The equilibria of (26) are given by:

F(X,I) = 0 (27)

By the implicit function theorem, we can solve (27) near (X0,I0) to obtain a map
X : Rk

→ Rm such that
F(X(I),I) ≡ 0 (28)

where X(I0) = X0. Let
X(I) = (Y (I), xo(I))

Definition 11.1. The input-output map of (27) near (X0,I0) is xo : Rk
→ R.
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Definition 11.2. The point I0 is an infinitesimal homeostasis point of xo if the
derivative

DI xo(I0) = 0 (29)

In particular, I0 is a singularity—that is, the derivative of xo is singular
there—but the vanishing of all first derivatives selects a special subclass of sin-
gularities, said to have ‘full corank’.

The interpretation of an infinitesimal homeostasis point is that xo(I) differs
from xo(I0) in a manner that depends quadratically (or to higher order) on
|I − I0 |. This makes the graph of xo(I) flatter than any growth rate with a
nonzero linear term. This condition motivates for the condition (29) rather than
merely DI xo(I0) being singular.

Definition 11.2 places the study of homeostasis in the context of singularity
theory, and we follow the standard line of development in that subject. A detailed
discussion of singularity theory would be too extensive for this paper. A brief
summary is given in [21] in the context of homeostasis, accessible descriptions
can be found in [36,43], and full technical details are in [18,30] and many other
sources.

Following Nijhout et al. [33] we define:

Definition 11.3. A plateau is a region of I over which X(I) is approximately
constant.

Remark 11.4. Universal unfolding theory implies that small perturbations of xo
(that is, variation of the suppressed parameters) change the plateau region only
slightly. This point was explored for the chair singularity in [21]. It follows that
for sufficiently small perturbations plateaus of singularities depend mainly on
the singularity itself and not on its universal unfolding.

Remark 11.5. In this section we focus on how singularities in the input-output
map shape plateaus, and we use the normal form and unfolding theorems of
elementary catastrophe theory to do this. We remark that typically the variables
other than xo, the manipulated variables Y , can vary substantially while the
output variable is held approximately constant. See, for example, Fig. 3 in [1].

11.1 Catastrophe Theory Classification

The results of [21] reduce the classification of homeostasis points for a single node
to that of singularities of input-output maps Rk

→ R. As mentioned in Sect. 9.2,
this is precisely the abstract set-up for elementary catastrophe theory [4,18,36,
43]. The case k = 1 is discussed there.

We now consider the next case k = 2. Table 1 summarizes the classification
when k = 2, so I = (I1,I2) ∈ R2. Here the list is restricted to codimension
≤ 3. The associated geometry, especially for universal unfoldings, is described
in [4,18,36] up to codimension 4. Singularities of much higher codimension have
also been classified, but the complexities increase considerably. For example
Arnold [2] provides an extensive classification up to codimension 10 (for the
complex analog).
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Table 1. Classification of singularities of input-output maps R2
→ R of codimension

≤ 3.

Name Normal form Codim Universal unfolding

Morse (simple homeostasis) ±I
2
1 ± I

2
2 0 ±I

2
1 ± I

2
2

Fold (chair) I
3
1 ± I

2
2 1 I

3
1 + aI1 ± I

2
2

Cusp ±I
4
1 ± I

2
2 2 ±I

4
1 + aI2

1 + bI1 ± I
2
2

Swallowtail I
5
1 ± I

2
2 3 I

5
1 + aI3

1 + bI2
1 + cI1 ± I

2
2

Hyperbolic umbilic I
3
1 + I

3
2 3 I

3
1 + I

3
2 + aI1I2 + bI1 + cI2

Elliptic umbilic I
3
1 − 3I1I

2
2 3 I

3
1 − 3I1I

2
2 + a(I2

1 + I
2
2 ) + bI1 + cI2

Remark 11.6. Because k = 2, the normal forms for k = 1 appear again, but now
there is an extra quadratic term ±I

2
2 . This term is a consequence of the splitting

lemma in singularity theory, arising here when the second derivative D2xo has
rank 1 rather than rank 0 (corank 1 rather than corank 2). See [4,36,43]. The
presence of the ±I

2
2 term affects the range over which xo(I) changes when I2

varies, but not when I1 varies.

11.2 Normal Forms and Plateaus

The standard geometric features considered in catastrophe theory focus on the
gradient of the function xo(I) in normal form. In contrast, what matters here
is the function itself. Specifically, we are interested in the region in the I-plane
where the function xo is approximately constant.

More specifically, for each normal form xo(I) we choose a small δ > 0 and
form the set

Pδ = {I ∈ R2 : |xo(I)| ≤ δ}. (30)

This is the plateau region on which xo(I) is approximately constant, where δ
specifies how good the approximation is. If xo(I) is perturbed slightly, Pδ varies
continuously. Therefore we can compute the approximate plateau by focusing on
the singularity, rather than on its universal unfolding.

This observation is important because the universal unfolding has many zeros
of the gradient of xo(I), hence ‘homeostasis points’ near which the value of xo(I)
varies more slowly than linear. However, this structure seems less important
when considering the relationship of infinitesimal homeostasis with homeostasis.
See the discussion of the unfolding of the chair summarized in [21, Figure 3].

The ‘qualitative’ geometry of the plateau—that is, its differential topology
and associated invariants—is characteristic of the singularity. This offers one way
to infer the probable type of singularity from numerical data; it also provides
information about the region in which the system concerned is behaving home-
ostatically. We do not develop a formal list of invariants here, but we indicate a
few possibilities.

The main features of the plateaus associated with the six normal forms are
illustrated in Table 1. Figure 10 plots, for each normal form, a sequence of con-
tours from −δ to δ; the union is a picture of the plateaus. By unfolding theory,
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these features are preserved by small perturbations of the model, and by the
choice of δ in (30) provided it is sufficiently small. Graphical plots of such per-
turbations (not shown) confirm this assertion. Again, we do not attempt to make
these statements precise in this paper.

simple+ simple− cusp+ cusp−

chair swallowtail hyperbolic elliptic

Fig. 10. Plateaus shown by contour plots for each singularity in Table 1. Reproduced
from [23, Fig. 4]. 200 equally spaced contours for δ from −0.2 to 0.2.

11.3 The Hyperbolic Umbilic

As we have discussed, homeostasis can occur when one variable is held approxi-
mately constant on variation of two or more input parameters. For example, body
temperature can be homeostatic with respect to both external temperature and
amount of exercise. A biological network example is Fig. 3, where there is home-
ostasis of extracellular dopamine (eDA) in response to variation in the activities
of the enzyme tyrosine hydroxylase (TH) and the dopamine transporters (DAT),
Best et al. [3]. These authors derive a differential equation model for this bio-
chemical network. They fix reasonable values for all parameters in the model
with the exception of the concentrations of TH and DAT. Figure 11 (left) shows
the equilibrium value of eDA as a function of TH and DAT in their model. The
white dots indicate the predicted eDA values for the observationally determined
values of TH and DAT in the wild type genotype (large white disk) and the
polymorphisms observed in human populations (small white disks). Their result
is scientifically important because almost all of the white disks lie on the plateau
(the region where the surface is almost horizontal) that indicates homeostasis of
eDA. Note that the flat region contains a line from left to right at about eDA =
0.9. In this respect the surface graph in Fig. 11 (left) appears to resemble that
of a nonsingular perturbed hyperbolic umbilic (see Table 1) in Fig. 11 (right).
See also the level contours of the hyperbolic umbilic in Fig. 10. This figure shows
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that the hyperbolic umbilic is the only low codimension singularity that contains
a single line in its zero set.

Fig. 11. (Left): Nijhout et al. [33, Fig. 8] and Reed et al. [37, Fig. 14]. At equilibrium
there is homeostasis of eDA as a function of TH and DAT. There is a plateau around
the wild-type genotype (large white disk). Smaller disks indicate positions of polymor-
phisms of TH and DAT found in human populations. (Right): Graph of surface of
perturbed hyperbolic umbilic without singularities: Z(I1,I2) = I

3
1 + I

3
2 + I1 + I2/2.

The number of curves (‘whiskers’) forming the zero-level contour of the
plateau is a characteristic of the plateau. For example, Fig. 11 appears to have
one curve in the plateau. This leads us to conjecture that the hyperbolic umbilic
is the singularity that organizes the homeostatic region of eDA in the exam-
ple discussed in [3]. It may be the case however, that there is no infinitesimal
homeostasis in this example, and the cause is more global. We have discussed
in Sect. 10 why the chair and the hyperbolic umbilic are the singularities that
might be expected to organize two output homeostasis.

Theorem 11.7. Consider input-output functions with two inputs and one out-
put. Then the only singularities of codimension ≤ 3 that have perturbations
with no infinitesimal homeostasis are the fold (chair), swallowtail, and hyper-
bolic umbilic.

The proof of this theorem is in [23].

Remark 11.8. In Sect. 10 we note that a system of equations that evolves toward
infinitesimal homeostasis does so by transitioning through a singularity that has
unfolding parameters with no infinitesimal homeostasis. It follows from Theo-
rems 10.2 and 11.7 that the most likely ways to transition to homeostasis in
systems with one input variable is through the chair and in systems with two
input variables the hyperbolic umbilic and the two variable chair.
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12 Gene Regulatory Networks and Housekeeping Genes

Antoneli et al. [1] use infinitesimal homeostasis to find regions of homeostasis
in a differential equation model for the gene regulatory network (GRN) that is
believed to regulate the production of the protein PGA2 in Escherichia coli and
yeast. Specifically, in this model the input parameter is an external parameter
I that represents the collective influence of other gene proteins on this specific
GRN. We find regions of homeostasis that gives a plausible explanation of how
the level of the PGA2 protein might be held approximately constant while other
reactions are taking place.

Gene expression is a general name for a number of sequential processes,
the most well known and best understood being transcription and translation.
These processes control the level of gene expression and ultimately result in the
production of a specific quantity of a target protein.

The genes, regulators, and the regulatory connections between them forms a
gene regulatory network (GRN). A gene regulatory network can be represented
pictorially by a directed graph where the genes correspond to network nodes,
incoming arrows to transcription factors, and outgoing arrows to levels of gene
expression (protein concentration).

12.1 Gene Regulatory Networks and Homeostasis

Numerous terms are used to describe types of genes according to how they are
regulated. A constitutive gene is a gene that is transcribed continually as opposed
to a facultative gene that is transcribed only when needed. A housekeeping gene
is a gene that is required to maintain basic cellular function and so is typically
expressed in all cell types of an organism. Some housekeeping genes are tran-
scribed at a ‘relatively constant rate’ in most non-pathological situations and are
often used as reference points in experiments to measure the expression rates of
other genes.

Even though this scheme is more or less universal among all life forms, from
uni-cellular to multi-cellular organisms, there are some important differences
according to whether the cell possesses a nucleus (eukaryote) or not (prokary-
ote). In single-cell organisms, gene regulatory networks respond to changes in
the external environment adapting the cell at a given time for survival in this
environment. For example, a yeast cell, finding itself in a sugar solution, will
turn on genes to make enzymes that process the sugar to alcohol.

Recently, there has been an ongoing effort to map out the GRNs of some
the most intensively studied single-cell model organisms: the prokaryote E. coli
and the eukaryote Saccharomyces cerevisiae, a species of yeast. A hypothesis
that has emerged from these efforts is that the GRN has evolved into a modular
structure in terms of small sub-networks appearing as recurrent patterns in the
GRN, called network motifs. Moreover, experiments on the dynamics generated
by network motifs in living cells indicate that they have characteristic dynamical
functions. This suggests that network motifs may serve as building blocks in
modeling gene regulatory networks.
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Much experimental work has been devoted to understanding network motifs
in gene regulatory networks of single-cell model organisms. The GRNs of E. coli
and yeast, for example, contain three main motif families that make up almost
the entire network. Some well-established network motifs and their correspond-
ing functions in the GRN of E. coli and yeast include negative (or inhibitory)
self-regulation, positive (or excitatory) self-regulation and several types of feed-
forward loops. Nevertheless, most analyses of motif function are carried out
looking at the motif operating in isolation. There is, however, mounting evi-
dence that network context, that is, the connections of the motif with the rest of
the network, are important when drawing inferences on characteristic dynamical
functions of the motif.

In this context, an interesting question is how the GRN of a single-cell organ-
ism is able to sustain the production rates of the housekeeping genes and at same
time be able to quickly respond to environmental changes, by turning on and off
the appropriate facultative genes. If we assume that the dynamics of gene expres-
sion is modeled by coupled systems of differential equations then this question
can be formulated as the existence of a homeostatic mechanism associated to
some types of network motifs imbedded in the GRN.

Latest estimates on the number of feedforward loops in the GRN of S. cere-
visiae assert that there are least 50 feedforward loops (not all of the same type)
potentially controlling 240 genes. One example of such a feedforward loop is
shown in Fig. 12. The three genes in this network are considered constitutive.

GAP1

SFP1 GZF3

Fig. 12. An example of feedforward regulation network from the GRN of S. cerevisiae,
involving the genes SFP1, CIN5 and PGA2. The PGA2 gene produces an essential
protein involved in protein trafficking (null mutants have a cell separation defect).
The CIN5 gene is a basic leucine zipper (bZIP) transcription factor. The SPF1 gene
regulates transcription of ribosomal protein and biogenesis genes.
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12.2 Basic Structural Elements of GRNs

The fundamental building block or node in a gene regulatory network is a gene
that is composed of two parts: transcription and translation. The transcription
part produces messenger RNA (mRNA) and the translation part produces the
protein. The system of ODEs associated to one gene has the form

�x = f (x, tJ,I) x = (xR, xP) ∈ R2

where xR is the mRNA concentration, xP is the protein concentration and the
tJ are the coupling protein concentrations of transcription factors that regulate
the gene and are produced by other genes in the network. The parameter I

represents the effect of upstream transcription factors that regulate the gene but
are not part of the network. The vector field f has the form

f = ( f R + I, f P) ∈ R2,

where f R models the dynamics of mRNA concentration and f P models the
dynamics of the protein concentration.

When the gene is not self-regulated the system has the form

�xR = f R(xR, tJ ) + I

�xP = f P(xR, xP)

and when the gene is self-regulated the system of two scalar equations has the
form

�xR = f R(xR, xP, tJ ) + I

�xP = f P(xR, xP)

In both cases the gene output is the scalar variable xP.

12.3 The Gene Regulatory Network for PGA2

Consider the network consisting of three genes (and six nodes) shown in Fig. 13,
where the dashed lines represent inhibitory coupling (repression or negative con-
trol) and the solid lines represent excitatory coupling (activation or positive
control).

Observe that the six-node network in Fig. 13 has two simple paths:

xR → xP → zR → zP and xR → xP → yR → yP → zR → zP

There are two possible Haldane homeostasis arrows xR → xP and zR → zP, and
one structural homeostasis of degree three consisting of two paths xP → yR →

yP → zR and xP → zR. To verify this we compute the homeostasis matrix.
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I

xR

xP

yR

zR

zP

yP

Fig. 13. Example of a 3-gene six-cell network. All arrows are different, but for simplicity
this is not made explicit in the figure. Circles stand for mRNA concentration and
squares for protein concentration. Solid lines indicate excitatory coupling and dashed
lines indicate inhibitory coupling.

The steady-state equations associated with the network in Fig. 13 have the
form:

f R(xR, xP) + I = 0

f P(xR, xP) = 0

gR(xP, yR) = 0

gP(yR, yP) = 0

hR(xP, yP, zR) = 0

hP(zR, zP) = 0

(31)

where the input parameter I represents the action of all upstream transcription
factors that affect the x-gene and do not come from the y- and z-genes. Our goal
is to find regions of homeostasis in the steady-state protein concentration zP as
a function of the input parameter I. To do this we compute det(H), where H is
the 5 × 5 homeostasis matrix.

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f P
xR f P

xP 0 0 0
0 gR

xP gR
yR 0 0

0 0 gP
yR gP

yP 0
0 hR

xP 0 hR
yP hR

zR

0 0 0 0 hP
zR

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(32)

A short calculation shows that

det(H) = f P
xR hP

zR

(

gR
yRg

P
yP h

R
xP + hR

yPg
P
yRg

R
xP

)
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Therefore structural homeostasis is found by solving h = h′ = 0, where

h(I) ≡ gR
yRg

P
yP h

R
xP + hR

yPg
P
yRg

R
xP (33)

This equation is analysed in Antoneli et al. [1], who show that standard ODE
models for gene regulation, when inserted into a feedforward loop motif, do
indeed lead to chair structural homeostasis in the output protein housekeeping
genes. In [1] this cubic expression was obtained by direct calculation and its
appearance was somewhat mysterious; here it emerges from the general theory
of homeostasis matrices in Sect. 7.
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Abstract. In this work we review the novel framework for the computa-
tion of finite dimensional invariant sets of infinite dimensional dynamical
systems developed in [6] and [36]. By utilizing results on embedding tech-
niques for infinite dimensional systems we extend a classical subdivision
scheme [8] as well as a continuation algorithm [7] for the computation of
attractors and invariant manifolds of finite dimensional systems to the
infinite dimensional case. We show how to implement this approach for
the analysis of delay differential equations and partial differential equa-
tions and illustrate the feasibility of our implementation by computing
the attractor of the Mackey-Glass equation and the unstable manifold of
the one-dimensional Kuramoto-Sivashinsky equation.

1 Introduction

In order to understand the long term behavior of complicated nonlinear dynam-
ical systems, a promising approach is to study invariant sets such as the global
attractor and invariant manifolds. To numerically approximate these sets set-
oriented methods have been developed [7–9,17]. The underlying idea is to cover
the set of interest by outer approximations that are generated by multilevel sub-
division or continuation methods. They have been used successfully in various
application areas such as molecular dynamics [30], astrodynamics [11] or ocean
dynamics [18].

Until recently, the applicability of the subdivision scheme and the continu-
ation method was restricted to finite dimensional dynamical systems, i.e., ordi-
nary differential equations or finite dimensional discrete systems. In this work
we show how to extend these algorithms for the computation of attractors as
well as invariant manifolds to the infinite dimensional context, e.g. delay dif-
ferential equations with small delays [3,12] and dissipative partial differential
equations such as the Kuramoto-Sivashinsky equation [25,32], the Ginzburg-
Landau equation and reaction-diffusion equations [22]. For all these systems
a finite dimensional so-called inertial manifold exists to which trajectories are
attracted exponentially fast, e.g., [4,15,34].

The novel approach utilizes infinite dimensional embedding results [21,28]
that allow the reconstruction of finite dimensional invariant sets of infinite
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dimension dynamical systems. These results extend the results of Takens [33]
and Sauer et al. [29] to the infinite dimensional context. The so–called obser-
vation map which consists of observations of the systems dynamics produces –
in a generic sense – a one-to-one image of the underlying (infinite dimensional)
dynamics provided the number of observations is large enough. This observation
map and its inverse are then used for the construction of the core dynamical
system (CDS), i.e., a continuous dynamical system on a state space of finite
dimension. By construction the CDS possesses topologically the same dynam-
ical behavior on the invariant set as the original infinite dimensional system.
Then, application of the subdivision scheme and the continuation method allow
us to compute the reconstructed invariant set of the CDS. The general numeri-
cal approach is in principle applicable to infinite dimensional dynamical systems
described by a Lipschitz continuous operator on a Banach space. However, here
we will restrict our attention to delay differential equations with constant delay
and partial differential equations for the numerical realization. We note that in
[35] the approach has been generalized to delay differential equations with state
dependent time delay.

A detailed outline of the article is as follows. In Sect. 2 we briefly summarize
the infinite dimensional embedding theory introduced in [21,28]. In Sect. 3 we
employ this embedding technique for the construction of the CDS. Then in
Sect. 4 we review the adapted subdivision scheme and continuation method for
infinite dimensional systems developed in [6,36]. A numerical realization of the
CDS for DDEs and PDEs is given in Sect. 5. Finally, in Sect. 6 we illustrate the
efficiency of our methods for the Mackey-Glass delay differential equation and
for the one-dimensional Kuramoto-Sivashinsky equation.

2 Infinite Dimensional Embedding Techniques

We consider dynamical systems of the form

u j+1 = Φ(u j), j = 0, 1, . . . , (1)

where Φ : Y → Y is Lipschitz continuous on a Banach space Y . Moreover, we
assume that Φ has an invariant compact set A, that is

Φ(A) = A.

In order to approximate the set A or invariant subsets of A we combine classical
subdivision and continuation techniques for the computation of such objects in a
finite dimensional space with infinite dimensional embedding results (cf. [21,28]).
For the statement of the main result of [28] we require three particular notions:
prevalence [29], upper box counting dimension and thickness exponent [21].

Definition 1

(a) A Borel subset S of a normed linear space V is prevalent if there is a finite
dimensional subspace E of V (the ‘probe space’) such that for each v ∈ V, v+e
belongs to S for (Lebesgue) almost every e ∈ E.
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Following a remark made in [29] we will say that “almost every” map in
a function space V satisfies a certain property if the set of such maps is
prevalent, even in the infinite dimensional case. Then this property will be
called generic (in the sense of prevalence).

(b) Let Y be a Banach space, and let A ⊂ Y be compact. For ε > 0, denote
by NY (A, ε) the minimal number of balls of radius ε (in the norm of Y)
necessary to cover the set A. Then

d(A;Y ) = lim sup
ε→0

log NY (A, ε)

− log ε
= lim sup

ε→0
− logε NY (A, ε)

denotes the upper box counting dimension of A.
(c) Let Y be a Banach space, and let A ⊂ Y be compact. For ε > 0, denote by

dY (A, ε) the minimal dimension of all finite dimensional subspaces V ⊂ Y
such that every point of A lies within distance ε of V ; if no such V exists,
dY (A, ε) = ∞. Then

σ(A,Y ) = lim sup
ε→0

− logε dY (A, ε)

is called the thickness exponent of A in Y .

These notions are essential in addressing the question when a delay embedding
technique applied to an invariant subset A ⊂ Y will generically work. More
precisely, the results are as follows.

Theorem 1 ([21, Theorem 3.9]). Let Y be a Banach space and A ⊂ Y com-
pact, with upper box counting dimension d(A;Y ) =: d and thickness exponent
σ(A,Y ) =: σ. Let N > 2d be an integer, and let α ∈ R with

0 < α <
N − 2d

N · (1 + σ)
.

Then for almost every (in the sense of prevalence) bounded linear map L : Y → R
N

there is C > 0 such that

C · ‖L(x − y)‖α ≥ ‖x − y‖ for all x, y ∈ A.

Note that this result implies that - if N is large enough - almost every (in the
sense of prevalence) bounded linear map L : Y → R

N will be one-to-one on A.
Using this theorem, the following result concerning embedding techniques can
be proven.

Theorem 2 ([28, Theorem 5.1]). Let Y be a Banach space and A ⊂ Y a com-
pact, invariant set, with upper box counting dimension d, and thickness exponent
σ. Choose an integer k > 2(1 + σ)d and suppose further that the set Ap of p-
periodic points of Φ satisfies d(Ap;Y ) < p/(2 + 2σ) for p = 1, . . . , k. Then for
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almost every (in the sense of prevalence) Lipschitz map f : Y → R the observa-
tion map Dk[ f ,Φ] : Y → R

k defined by

Dk[ f ,Φ](u) = ( f (u), f (Φ(u)), . . . , f (Φk−1(u)))�

is one-to-one on A.

Remark 1

(a) Following an observation already made in [29, Remark 2.9], we note that this
result may be generalized to the case where several distinct observables are
evaluated. More precisely, for almost all (in the sense of prevalence) Lipschitz
maps fi : Y → R, i = 1, . . . , q, the observation map Dk[ f1, . . . , fq,Φ] : Y → R

k ,

u 	→ ( f1(u), . . . , f1(Φ
k1−1(u)), . . . , fq(u), . . . , fq(Φ

kq−1(u)))�

is also one-to-one on A, provided that

k =

q∑

i=1

ki > 2(1 + σ) · d and d(Ap) < p/(2 + 2σ) ∀p ≤ max(k1, . . . , kq).

(b) If the thickness exponent σ is unknown, a worst-case embedding dimension
k > 2(1+ d)d can always be chosen since the thickness exponent is bounded
by the (upper) box counting dimension (cf. [21]).

(c) In [27] it is suspected that many of the attractors arising in dynamical
systems defined by the evolution equations of mathematical physics have
thickness exponent zero. In addition, in [16] it is shown that the thickness
exponent is essentially inversely proportional to smoothness. This result does
not rely on the dynamics associated with the set A or the form of the under-
lying equations, but only on assumptions on the smoothness of functions in
A. Thus, it is reasonable to assume σ = 0, i.e., an embedding dimension
k > 2d is sufficient in most cases.

3 The Core Dynamical System

In this section we show how the results in Sect. 2 lay the theoretical foundation
for the construction of the so–called core dynamical system (CDS). This finite
dimensional dynamical system then allows us to approximate invariant sets of
an infinite dimensional dynamical system. For details on the construction and
corresponding proofs we refer to [6].

Let A be a compact invariant set of an infinite dynamical systems (1) on a
Banach space Y and suppose k ∈ N is large enough such that the embedding
result (Theorem 1 or 2) is valid. Suppose R : Y → R

k is the corresponding
observation map, i.e., R = L or R = Dk[ f ,Φ], respectively. We denote by Ak the
image of A ⊂ Y under the observation map, that is,

Ak = R(A).
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The core dynamical system (CDS)

xj+1 = ϕ(xj), j = 0, 1, 2, . . . ,

with ϕ : R
k → R

k is then constructed as follows: Since R is invertible as a
mapping from A to Ak there is a unique continuous map Ẽ : Ak → Y satisfying

(Ẽ ◦ R)(u) = u ∀u ∈ A and (R ◦ Ẽ)(x) = x ∀x ∈ Ak . (2)

Thus, as a first step this allows us to define ϕ solely on Ak via

ϕ = R ◦ Φ ◦ Ẽ .

For the extension of ϕ to R
k we need to extend the map Ẽ to a continuous map

E : Rk → Y . By employing a generalization of the well-known Tietze extension
theorem [14, I.5.3] found by Dugundji [13, Theorem 4.1] we obtain a continuous
map E : Rk → Y with E |Ak

= Ẽ and we define the CDS by

ϕ = R ◦ Φ ◦ E,

see Fig. 1 for an illustration. Observe that by this construction Ak is an invariant
set for ϕ, and that the dynamics of ϕ on Ak is topologically conjugate to that of
Φ on A.

Proposition 1 ([6, Propostion 1])
There is a continuous map ϕ : Rk → R

k satisfying

ϕ(R(u)) = R(Φ(u)) for all u ∈ A.

Fig. 1. Definition of the CDS ϕ (Figure adapted from [36]).

Note that the arguments stated above only guarantee the existence of the
continuous map E and provide no guideline on how to design or approximate
it. In fact, the particular realization of the map E will depend on the actual
application (see Sect. 5).
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4 Computation of Embedded Invariant Sets

We are now in the position to approximate the embedded invariant set Ak or
invariant subsets such as the invariant manifold of a steady state via the core
dynamical system

ϕ = R ◦ Φ ◦ E .

To this end, we employ the subdivision and continuation schemes as defined in
[8] and [7].

4.1 A Subdivision Scheme for the Approximation of Embedded
Attractors

In this section we give a brief review of the adapted subdivision scheme developed
in [6] that allows us to approximate the set Ak .

Let Q ⊂ R
k be a compact set and suppose Ak ⊂ Q for simplicity. The embed-

ded global attractor relative to Q is defined by

AQ =
⋂

j≥0

ϕ j(Q).

The aim is to approximate this set with a subdivision procedure. Given an initial
finite collection B0 of compact subsets of Rk such that

Q =
⋃

B∈B0

B,

we recursively obtain B� from B�−1 for � = 1, 2, . . . in two steps such that the
diameter

diam(B�) = max
B∈B�

diam(B)

converges to zero for � → ∞.

Algorithm 1. The subdivision method for embedded global attractors

Initialization: Given k > 2(1 + σ)d choose a compact set Q ⊂ R
k and a finite collection

B0, such that Ak ⊂ Q and Q =
⋃

B∈B0
B. Fix 0 < θmin ≤ θmax < 1.

1) Subdivision: Construct a new collection B̂� such that

⋃

B∈B̂�

B =
⋃

B∈B�−1

B

and
diam(B̂�) = θ� diam(B�−1),

where 0 < θmin ≤ θ� ≤ θmax < 1.
2) Selection: Define the new collection B� by

B� =
{
B ∈ B̂� : ∃B̂ ∈ B̂� such that ϕ−1(B) ∩ B̂ � ∅

}
. (3)
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Remark 2

a) A numerical implementation of Algorithm 1 is included in the software pack-
age GAIO (Global Analysis of Invariant Objects) [5,10]. Here, the sets B consti-
tuting the collections B� are realized by generalized k-dimensional rectangles
(“boxes”) of the form

B(c, r) =
{
y ∈ R

k : |yi − ci | ≤ ri for i = 1, . . . , k
}
,

where c, r ∈ R
k, ri > 0 for i = 1, . . . , k, are the center and the radii, respectively.

In each subdivision step each box of the current collection is subdivided by
bisection with respect to the j-th coordinate, where j is varied cyclically.
Therefore, these collections can easily be stored in a binary tree.

b) Given a collection B̂� the selection step is realized as follows: At first ϕ is
evaluated for a large number of test points x ∈ B′ for each box B′ ∈ B̂� . Then
a box B is kept in the collection B� if there is a least one x ∈ B′ such that
ϕ(x) ∈ B. We note that the binary tree structure implemented in GAIO allows
a fast identification of the boxes that are not discarded.

The subdivision step results in decreasing box diameters with increasing �. In
fact, by construction

diam(B�) ≤ θ
�
max diam(B0) → 0 for � → ∞.

In the selection step each subset whose preimage does neither intersect itself
nor any other subset in B̂� is removed. Denote by Q� the collection of compact
subsets obtained after � subdivision steps, that is

Q� =
⋃

B∈B�

B.

Since the Q� ’s define a nested sequence of compact sets, that is, Q�+1 ⊂ Q� we
conclude for each m

Qm =

m⋂

�=1

Q� .

Then by considering

Q∞ =

∞⋂

�=1

Q�

as the limit of the Q� ’s the selection step accounts for the fact that Qm approaches
the relative global attractor.

Proposition 2 ([6, Proposition 2])
Suppose AQ satisfies ϕ−1(AQ) ⊂ AQ. Then

AQ = Q∞.

We note that we can, in general, not expect that Ak = AQ. In fact, by construc-
tion AQ may contain several invariant sets and related heteroclinic connections.
However, if A is an attracting set equality can be proven (see [6]).
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4.2 A Continuation Technique for the Approximation of Embedded
Unstable Manifolds

In [36] the classical continuation method of [7] was extended to the approxima-
tion of embedded unstable manifolds. In the following we state the main result
of this scheme. Let us denote by

Wu
Φ (u

∗) ⊂ A

the unstable manifold of u∗ ∈ A, where u∗ is a steady state solution of the
infinite dimensional dynamical system Φ (cf. (1)). Furthermore, let us define the
embedded unstable manifold Wu(p) by

Wu(p) = R(Wu
Φ (u

∗)) ⊂ Ak,

where p = R(u∗) ∈ R
k and R is the observation map introduced in Sect. 3. We

now choose a compact set Q ⊂ R
k containing p and we assume for simplicity

that Q is large enough so that it contains the entire closure of the embedded
unstable manifold, i.e.,

Wu(p) ⊂ Q.

For the purpose of initializing the developed algorithm we define a partition P

of Q to be a finite family of compact subsets of Q such that
⋃

B∈P

B = Q and intB ∩ intB′ = ∅, for all B, B′ ∈ P, B � B′.

We consider a nested sequence Ps, s ∈ N, of successively finer partitions of Q,
requiring that for all B ∈ Ps there exist B1, . . . , Bm ∈ Ps+1 such that B = ∪iBi

and diam(Bi) ≤ θ diam(B) for some 0 < θ < 1. A set B ∈ Ps is said to be of
level s.

The aim of the continuation method is to approximate subsets Wj ⊂ Wu(p)

where W0 = Wu
loc

(p) = R(Wu
Φ,loc

(u∗)) is the local embedded unstable manifold and

Wj+1 = ϕ(Wj) for j = 0, 1, 2, . . .

in two steps:
At first we approximate Wu

loc
(p) by applying Algorithm1 on a compact neigh-

borhood C ⊂ Ak of p such that p ∈ int C and Wu
loc

(p) ⊂ C in order to compute
the relative global attractor AC . In fact, if the steady state u∗ ∈ A is hyperbolic
Wu

loc
(p) is identical to AC [36, Proposition 3.1 (b)]. In the second step this cov-

ering of Wu
loc

(p) is then to globalized to obtain an approximation of the compact
subsets Wj ⊂ Wu(p) or even the entire closure Wu(p).
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Algorithm 2. The continuation method for embedded unstable manifolds

Initialization: Given k > 2(1 + σ)d choose an initial box Q ⊂ R
k such that Ak ⊂ Q.

Choose a partition Ps of Q and a set C ∈ Ps such that p = R(u∗) ∈ C.

1) Perform � steps of Algorithm 1 on B0 = {C} to obtain a covering B� ⊂ Ps+� of

Wu
loc

(p). Set C
(�)
0 = B� .

2) Continuation: For j = 0, 1, 2, . . . define

C
(�)
j+1

=
{
B ∈ Ps+� : ∃B′ ∈ C

(�)
j

such that B ∩ ϕ(B′) � ∅
}
. (4)

Remark 3

a) Algorithm 2 is also implemented within the software package GAIO. In fact,
the binary tree structure encodes a nested sequence of finer partitions of Q.

b) Numerically the continuation step is realized as follows: At first ϕ is evaluated
for a large number of test points x ∈ B′ for each box B′ ∈ C

(�)
j . Then a box

B ∈ Ps+� is added to the collection C
(�)
j+1 if there is a least one x ∈ B′ such

that ϕ(x) ∈ B.

Observe that the unions
C(�)
j =

⋃

B∈C
(�)
j

B

form a nested sequence in �, i.e.,

C(0)
j ⊃ C(1)

j ⊃ . . . ⊃ C(�)
j . . . .

In fact, it is also a nested sequence in j, i.e.,

C(�)
0 ⊂ C(�)

1 . . . ⊂ C(�)
j . . . .

Due to the compactness of Q the continuation step of Algorthm 2 will terminate
after finitely many, say J� , steps. We denote the corresponding box covering
obtained by the continuation method by

G� =

J�⋃

j=0

C(�)
j = C(�)

J�
.

In [36] it was proven that increasing � eventually leads to convergence of C(�)
j to

the subsets Wj and assuming that the closure of the embedded unstable manifold
Wu(p) is attractive G� converges to Wu(p).
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Proposition 3 ([36, Proposition 5])

(a) The sets C(�)
j are coverings of Wj for all j, � = 0, 1, . . .. Moreover, for fixed j,

we have
∞⋂

�=0

C(�)
j = Wj .

(b) Suppose that Wu(p) is linearly attractive, i.e., there is a λ ∈ (0, 1) and a
neighborhood U ⊃ Q ⊃ Wu(p) such that

dist
(
ϕ(y),Wu(p)

)
≤ λ dist

(
y,Wu(p)

)
∀y ∈ U.

Then the box coverings obtained by Algorithm2 converge to the closure of
the embedded unstable manifold Wu(p). That is,

∞⋂

�=0

G� = Wu(p).

5 Numerical Realization of the CDS

As discussed in the introduction, dynamical systems with infinite dimensional
state space, but finite dimensional attractors arise in particular in two areas of
applied mathematics, namely dissipative partial differential equations and delay
differential equations with small constant delay. In this section we show how to
numerically realize the CDS for both cases. From now on we assume that upper
bounds for both the box counting dimension d and the thickness exponent σ are
available. This allows us to fix k > 2(1 + σ)d according to Theorem 2.

In order to numerically realize the construction of the map ϕ = R ◦ Φ ◦ E
described in Sect. 3, we have to address three tasks: the implementation of E,
of R, and of the time-T-map, denoted by Φ, respectively. For the latter we will
rely on standard methods for forward time integration of DDEs [1] and PDEs,
e.g., a fourth-order time stepping method for the one-dimensional Kuramoto-
Sivashinsky equation [24]. The map R will be realized on the basis of Theorem 2
and Remark 1 by an appropriately chosen observables. For the numerical con-
struction of the continuous map E we will employ a bootstrapping method that
re-uses results of previous computations. This way we will in particular guarantee
that the identities in (2) are at least approximately satisfied.

5.1 Delay Differential Equations

We consider equations of the form

�y(t) = g(y(t), y(t − τ)), (5)

where y(t) ∈ R
n, τ > 0 is a constant time delay and g : Rn×R

n → R
n is a smooth

map. Here, we will only consider the one-dimensional case, that is n = 1, and
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refer to [6] for n > 1. Following [19], we denote by Y = C([−τ, 0],Rn) the (infinite
dimensional) state space of the dynamical system (5). Observe that equipped
with the maximum norm Y is indeed a Banach space. We set T > 0 to be a
natural fraction of τ, that is

T =
τ

K
for K ∈ N. (6)

5.1.1 Numerical Realization of R

For the definition of R we have to specify the time span T and appropriate corre-
sponding observables. In the case of a scalar equation we choose the observable
f to be

f (u) = u(−τ).

Thus, in this case the restriction R is simply given by

R = Dk[ f ,Φ](u) = (u(−τ),Φ(u)(−τ), . . . ,Φk−1(u)(−τ))�.

Observe that a natural choice for K in (6) would be K = k − 1 for k > 1.
That is, for each evaluation of R the observable would be applied to a function
u : [−τ, 0] → R at k equally distributed time steps within the interval [−τ, 0].

5.1.2 Numerical Realization of E

In the application of the subdivision scheme Algorithm1 as well as the continu-
ation method Algorithm 2 the CDS has to be evaluated for a set of test points
(see Remark 2 and Remark 3). Thus, for the evaluation of ϕ = R ◦ Φ ◦ E at a
test point x we need to define the image E(x), i.e., we need to generate adequate
initial conditions for the forward integration of the DDE (5).

In the first selection or continuation step, when no information on A or
Wu
Φ
(u∗), respectively, is available, we construct a piecewise linear function

u = E(z), where
u(ti) = zi,

for ti = −τ + i · T, i = 0, . . . , k − 1. Observe that by this choice of E and R the
condition (R◦E)(x) = x is satisfied for each test point x (see (2)). In the following
steps we make use of the following observations for both schemes:

Remark 4. If a box B ∈ B� (resp. B ∈ C
(�)
j+1), then, by the subdivision (resp.

selection) step, there must have been a B̂ ∈ B�−1 (resp. B̂ ∈ C
(�)
j ) such that

x̄ = R(Φ(E(x̂))) ∈ B for at least one test point x̂ ∈ B̂. Therefore, we can use the
information from the computation of Φ(E(x̂)) to construct an appropriate E(x)
for each test point x ∈ B in both cases.

More concretely, in every step of the procedures, for every set B ∈ B�

(resp. B ∈ C
(�)
j+1) we keep additional information about the trajectories Φ(E(ẑ))

that were mapped into B by R in the previous step. For simplicity, we
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store ki ≥ 1 additional equally distributed function values for each interval
(−τ + (i − 1)T,−τ + iT) for i = 1, . . . , k − 1.

When ϕ(B) is to be computed using test points from B, we first use the points
in B for which additional information is available and generate the corresponding
initial value functions via spline interpolation. Note that the more information
we store, the smaller the error ‖Φ(E(x̂)) − E(x)‖ becomes for x = R(Φ(E(x̂))).
That is, we enforce an approximation of the identity (E ◦ R)(u) = u for all u ∈ A

(see (2)). If the additional information is available only for a few points in B, we
generate new test points in B at random and construct corresponding trajectories
by piecewise linear interpolation.

5.2 Partial Differential Equations

We will consider explicit differential equations of the form

∂

∂t
u(y, t) = F(y, u), u(y, 0) = u0(y), (7)

where u : R
n × R → R

n is in some Banach space Y and F is a (nonlinear)
differential operator. We assume that the dynamical system (7) has a well-defined
semiflow on Y .

5.2.1 Numerical Realization of R

In the previous section for delay differential equations R is defined by the delay
coordinate map. In principle it would also be possible to observe the evolution
of a partial differential equation by a delay coordinate map. However, from a
computational point of view this would be impractical. The reason is that for
the realization of the map E : Rk → Y one would have to reconstruct functions
(i.e., the space-dependent state) from time delay coordinates (of scalar, e.g.,
point-wise observations). Thus, for each point in observation space one would
essentially have to store the entire corresponding function.

To overcome this problem, we will present a different approach. In what
follows, we will assume that the function u ∈ Y can be represented in terms of
an orthonormal basis {Ψi}

∞
i=1, i.e.,

u(y, t) =
∞∑

i=1

xi(t)Ψi(y),

where the Ψi are elements from a Hilbert space. Then our observation map R
will be defined by projecting a function onto k coefficients xi of its Galerkin
expansion. The function u can then be approximated within the (truncated)
linear subspace spanned by the basis {Ψi}

k
i=1:

u(y, t) ≈
k∑

i=1

xi(t)Ψi(y).



78 R. Gerlach and A. Ziessler

For the computation of the basis, we use the well-known Proper Orthogonal
Decomposition (POD), cf. [2,20,31]. The reason is that for each basis size k,
POD yields the optimal basis, i.e., the basis with the minimal L2 projection
error. In order to compute such a basis {Ψi}i we use the so-called method of
snapshots (cf. [20] for details). To this end, we construct the so–called snapshot
matrix SM ∈ R

nx×r , where each column consists of the (discretized) state at
equidistant time instances obtained from a single long-time integration of the
underlying PDE (7). Then we perform a singular value decomposition (SVD)
of the matrix SM and obtain SM = UΣV�, where U ∈ R

nx×nx , Σ ∈ R
nx×r and

V ∈ R
r×r . The columns of U give us a discrete representation of the POD modes

Ψi. Using the fact that this basis is orthogonal, we then define the observation
map by choosing k different observables

fi(u) = 〈u,Ψi〉 = xi for i = 1, . . . , k .

This yields
R(u) = ( f1(u), . . . , fk(u))

� = (x1, . . . , xk)
�.

Observe that R is linear and bounded and hence, for k sufficiently large, The-
orem 1 and Remark 1, respectively, guarantee that generically (in the sense of
prevalence) R will be a one-to-one map on A.

5.2.2 Numerical Realization of E

Since the state space for the CDS ϕ is given by points x ∈ R
k where x1, . . . , xk are

the POD coefficients we simply construct initial conditions u = E(x) by defining
the map E as

E(x) =
k∑

i=1

xiΨi,

if no additional information is available. Observe again that by this choice the
condition (R ◦ E)(x) = x is satisfied for each test point x.

However, the linear space spanned by the first k POD modes is not invariant
under the dynamics of Φ if k is not sufficiently large. Thus, (E ◦ R)(ū) = ū with
ū = Φ(E(x)) will in general not be satisfied anymore. This is not acceptable since
the requirement (E ◦ R)(u) = u for all u ∈ A (see (2)) is crucial in order to
compute reliable coverings.

To enforce this equality at least approximately we extend the expansion and
construct initial functions by

E(x) =
k∑

i=1

xiΨi +

S∑

l=k+1

xlΨl, (8)

where S � k. To address the choice of S we note that the singular values σi of
the snapshot matrix SM , i.e. the diagonal elements of Σ, determine the amount
of information that is neglected by truncating the basis {Ψi}i to size S < r [31].
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Thus, we choose S such that

ε(S) :=
∑S

i=1 σi∑r
j=1 σj

≈ 1.

In (8) only the first k POD coefficients are given by the coordinates of points
inside B ⊂ R

k . Thus, it remains to discuss how to choose the POD coefficients
xk+1, . . . , xS . The idea is to use a heuristic strategy that utilizes statistical infor-
mation. By Remark 4 we can compute the POD coefficients x̄k+1, . . . , x̄S for all
these points x̄ by

x̄i = 〈Φ(E(x̂)),Ψi〉, i = k + 1, . . . , S.

Then we sample the box B with all points x̄ for which additional information
is available. However, the number of these points x̄ might be too small, such
that B is not discretized sufficiently well and we have to generate additional
test points. For this, we first choose a certain number of points x̃ ∈ B at ran-
dom. Then we extend these points to elements in R

S as follows: We first com-
pute componentwise the mean value μi and the variance σ2

i of all POD coeffi-
cients x̄i, for i = k + 1, . . . , S. This allows us to make a Monte Carlo sampling
for the additional coefficients of x̃i for i = k + 1, . . . , S, i.e., x̃i ∼ N(μi, σ

2
i ) for

i = k + 1, . . . , S. Finally, we compute initial functions of the form

E(x̃) =
S∑

i=1

x̃iΨi .

By this construction we expect to generate initial functions that at least approx-
imately satisfy the identity (E ◦ R)(u) = u for all u ∈ A.

6 Numerical Results

In this section we present results of computations carried out for the Mackey-
Glass delay differential equation and the Kuramoto-Sivashinsky equation, respec-
tively.

6.1 The Mackey-Glass Equation

As in [6], we consider the well-known delay differential equation introduced by
Mackey and Glass in 1977 [26], namely

�u(t) = β
u(t − τ)

1 + u(t − τ)η
− γu(t), (9)

where we choose β = 2, γ = 1, η = 9.65, and τ = 2. This equation is a model for
blood production, where u(t) represents the concentration of blood at time t, �u(t)
represents production at time t and u(t−τ) is the concentration at an earlier time.
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Direct numerical simulations indicate that the dimension of the corresponding
attracting set is approximately d = 2. Thus, we choose the embedding dimension
k = 7, and approximate the relative global attractor AQ for Q = [0, 1.5]7 ⊂ R

7.
In Fig. 2 (a) to (c), we show projections of the coverings obtained after

� = 28, 42 and 63 subdivision steps. In order to investigate the effect of using
information retained from prior integration runs in the implementation of the
map E (see Sect. 5.1.2), we show in Fig. 2 (d) a projection of the coverings
obtained after 63 subdivision steps with the map E using only piecewise lin-
ear functions – that is, no additional information from previous time integration
is used. The results indicate that in this case the influence on the quality of the
approximation of Ak is only marginal.

6.2 The Kuramoto-Sivashinsky Equation

The well-known Kuramoto-Sivashinsky equation in one spatial dimension is
given by

ut + 4uyyyy + μ

[
uyy +

1
2
(uy)

2

]
= 0, 0 ≤ y ≤ 2π,

u(y, 0) = u0(y), u(y + 2π, t) = u(y, t).

(10)

Here, the parameter is μ = L2/4π2, where L denotes the size of a typical pattern
scale. As in [36] we are interested in computing the unstable manifold of the
trivial unstable steady state u∗ = 0 for μ = 15.

In what follows, the observation space is defined through projections onto
the first k POD coefficients, and thus, p = R(u∗) = 0 ∈ R

k . We compute the POD
basis (cf. Sect. 5.2.1) by using the snapshot matrix obtained through a long-time
integration with the initial condition

u0(y) = 10−4 · cos (y) · (1 + sin (y)) .

For μ = 15 the Kuramoto-Sivashinsky equation has two stable traveling waves
(see. Fig. 3 (a)) traveling in opposite directions due to the symmetry imposed by
the periodic boundary conditions. In the observation space this corresponds to
two stable limit cycles that are symmetric in the first POD coefficient a1 (see.
Fig. 3 (b)). We assume that the dimension of the embedded unstable manifold
is approximately two since different initial conditions result in trajectories in
observation space that are rotations of each other about the origin. Therefore,
assuming that the thickness exponent is zero, we have to choose k ≥ 5 in order
to obtain a one-to-one image of Wu

Φ
(u∗). To allow for a larger dimension or

thickness exponent we choose the embedding dimension k = 7 in the following.
We choose Q = [−8, 8]7 and initialize a fine partition Ps of Q for s = 21, 35, 49, 63.
Next we set T = 200. In addition, we define a finite time grid {t0, . . . , tN }, where
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Fig. 2. (a)–(c) Successively finer coverings of a relative global attractor after � subdi-
vision steps for the Mackey-Glass equation (9). (d) Embedding E using only piecewise
linear interpolation.

tN = T , and add all boxes that are hit in any of these time steps ti (a similar
approach has been used in [23]). In Fig. 4 (a) to (d) we illustrate successively
finer box coverings of the unstable manifold as well as a transparent box covering
depicting the complex internal structure of the unstable manifold. Observe that
– as mentioned above – the boundary of the unstable manifold consists of two
limit cycles which are symmetric in the first POD coefficient x1. This is due to the
fact that the Kuramoto-Sivashinsky equation with periodic boundary conditions
(10) possesses O(2)-symmetry.
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Fig. 3. (a) Direct simulation of the Kuramoto-Sivashinsky equation for μ = 15. The
initial value is attracted to a traveling wave solution; (b) Corresponding embedding in
observation space. Here, the red dot depicts the unstable steady state. As expected the
CDS possesses a limit cycle (green).

Fig. 4. (a)–(d) Successively finer box-coverings of the unstable manifold for μ = 15.
(d) Transparent box covering for s = 63 and � = 0 depicting the internal structure of
the unstable manifold.
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7 Conclusion

In this work we review the contents of [6] and [36], where infinite dimensional
embedding results have extended to the numerical analysis of infinite dimen-
sional dynamical systems. To this end, a continuous dynamical system, a finite
dimensional core dynamical system (CDS) is constructed to obtain a one-to-one
representation of the underlying dynamics. For the numerical realization of this
system we also identify suitable observables for delay differential and partial
differential equations. This finite dimensional system then employed in the sub-
division scheme for the computation of relative global attractors and the contin-
uation method for the approximation of invariant manifolds feasible for infinite
dimensional systems. The applicability of this novel framework is illustrated by
the computation of the attractor of the Mackey-Glass delay differential equa-
tion and the unstable manifold of the one-dimensional Kuramoto-Sivashinsky
equation.

The numerical effort of the methods proposed in this work essentially depends
on the dimension of the object to be computed, and not on the dimension of the
observation space of the CDS. However, note that for the numerical realization
of the selection step 3 and the continuation step 4 we have to evaluate the CDS
for each box and each test point x ∈ B′. Therefore, for each test point we also
have to evaluate the underlying infinite dimensional dynamical system which
may result in a prohibitively large computational effort. For this reason data-
based local reduced order models can be used in order to significantly reduce the
number of CDS evaluations [35].

Acknowledgments. We would like to acknowledge Michael Dellnitz for developing
the underlying ideas as well as the theoretical foundations of this work.
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Abstract. Transfer operator methods have been recognized as powerful
tools for the computational study of transport and mixing processes in
nonautonomous dynamical systems. The main applications in this con-
text have been geophysical flows with large-scale and long-lived isolated
vortical coherent flow structures such as eddies or gyres. The present
paper aims to demonstrate the applicability of set-oriented and finite-
element frameworks to more complex systems. To this end, we study
coherent behavior in turbulent Rayleigh-Bénard convection in two- and
three-dimensional settings.

1 Introduction

Transport and mixing processes have been widely studied in dynamical sys-
tems. Of key interest are regions in the phase space of an autonomous or a
nonautonomous dynamical system that remain coherent, or minimally disper-
sive, under the action of the flow. Over the last two decades, a number of different
concepts have been proposed that describe the notion of Lagrangian coherent
behavior. For discussions and comparisons of the major current approaches we
refer to [1,2].

Among these established concepts are transfer operator-based methods
within a set-oriented numerical framework. Similar in spirit to cell-mapping tech-
niques [3,4], Dellnitz and Hohmann [5] developed a set-oriented approach for the
outer approximation of attracting sets in dissipative dynamical systems. Dellnitz
and Junge [6,7] extended these ideas to approximate natural invariant measures
as well as almost-invariant and almost-cyclic sets of the underlying dynamical
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system. Almost-invariant sets [6,7] and their finite-time counterparts [8,9] are
spatially fixed regions in phase space with the property that trajectories leave
such a set only with a relatively small probability over a given time span. Hence,
almost-invariant sets mitigate transport between their interior and the rest of
phase space.

The key mathematical tool for this probabilistic approach is the Perron-
Frobenius operator (transfer operator) or, for continuous-time dynamics, its
generator [10]. In a set-oriented framework, the Ulam approximation [11] of
the transfer operator produces a stochastic matrix and there are many results
in the literature, dating back to [12], concerning the convergence of the lead-
ing eigenvector of the resulting stochastic matrix to a physical invariant mea-
sure (when one exists). Eigenvectors corresponding to real eigenvalues close to
one contain information about almost-invariant sets [7]. This latter concept has
been applied to many different dynamical systems, including molecular dynam-
ics [13,14], astrodynamics [15,16], and ocean dynamics [17,18]. A special type
of (almost-) invariant sets are attracting sets in dissipative systems and their
basins, which can also be identified based on leading eigenvectors of the numer-
ical transfer operator [4,19,20] or the generator [21].

The almost-invariant set framework was extended by Froyland and co-
workers to the identification of mobile regions that move about with minimal dis-
persion under the time-asymptotic [22] and finite-time [23–25] action of a nonau-
tonomous dynamical system. In the finite-time setting, subdominant singular
vectors of numerically approximated transfer operators are used to determine
the phase space structures of interest. The relation between almost-invariant
sets and finite-time coherent sets was discussed in [25]. In [26] the existence of
coherent sets over long time spans was linked to the existence of almost-invariant
sets for small time spans, given that the coherent sets move sufficiently slowly.
A study of coherent sets for the Fokker-Planck equation is in [27] and recent
generator-based approaches remove the need for trajectory integration in peri-
odically driven [28] and aperiodically driven [29] flows.

The set-oriented approach to identifying finite-time coherent sets relies on
the addition of small amount of diffusion to create the necessary spectral gap
[24]; in fact this reliance is also present for almost-invariant sets. In practice,
this diffusion is usually provided by the numerical diffusion inherent in the set-
oriented numerics. By formally sending this added diffusion to zero, one arrives
at a second-order differential operator called the dynamic Laplace operator [30].
The dominant eigenfunctions of the dynamic Laplacian correspond to the dom-
inant singular vectors of the transfer operator. A finite-element approach [31]
to approximating the dynamic Laplacian provides a robust, numerical scheme
for sparse trajectory data. The cluster-based approach [32] for the estimation of
finite-time coherent sets from sparse trajectory data with possibly missing tra-
jectory elements has been followed by several other data-based methods [33–36].

Transfer operators can also be employed to estimate finite-time expansive
behavior along trajectories in autonomous and nonautonomous dynamical sys-
tems. Finite-time entropy (FTE) captures nonlinear stretching directly from the
entropy growth experienced by a small localized density evolved by the transfer
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operator. An approximation of the FTE field can be obtained very efficiently
within the set-oriented framework. It gives very similar results to finite-time
Lyapunov exponent [37] calculations, which many of the geometric approaches
for the identification of Lagrangian coherent structures are based on [38]. The
FTE-concept has been introduced in [39], see also [40] for related previous work.

In this chapter we consider Rayleigh–Bénard convection (RBC), which is
an idealized model of thermal convection in natural systems. In RBC a fluid
layer placed between two solid horizontal plates is uniformly heated from below
and cooled from above [41]. This model setting contains already many of the
properties which can be observed in natural convection flows. One is the forma-
tion of large-scale coherent patterns when RBC is investigated in horizontally
extended domains [42–47]. These coherent sets, which have been detected in the
Eulerian frame of reference, are termed turbulent superstructures as the char-
acteristic horizontal scale extends the height of the convection layer. In thermal
convection flows, they consist of convection rolls and cells that are concealed in
instantaneous velocity fields by turbulent fluctuations. However, they show up
prominently after time averaging of the velocity or temperature fields.

In this paper, we will extend our previous Lagrangian investigations of coher-
ent behavior in turbulent Rayleigh-Bénard convection flows [48,49]. We begin
by discussing transport phenomena in nonautonomous systems and the transfer
operator framework for the identification of coherent flow behavior in Sect. 2.
In Sect. 3 the numerical approximation of such operators within a set-oriented
approach is described, and in Sect. 4 the finite-element approach is outlined.
The discretized transfer operator and dynamic Laplace operator are the funda-
mental tools for the extraction of coherent sets and transport barriers and we
will introduce the respective approaches. In Sect. 5 we will apply these methods
to turbulent Rayleigh-Bénard convection flows in two and three dimensions. In
particular, we will extract turbulent superstructures of convection in terms of
dominant convection roles. We conclude with a short discussion and outlook in
Sect. 6.

2 Nonautonomous Dynamics, Transfer Operators
and Transport

We consider a nonautonomous differential equation

ẋ = u(x, t) (1)

with state x ∈ M ⊂ R
d, time t ∈ R and sufficiently smooth right-hand side

u such that the flow map Φ(x, t; τ) : M × R × R → M , M ⊂ R
d exists. Here

τ denotes the flow time and t the initial time. We aim at identifying almost-
invariant and coherent subsets of M , i.e. mobile regions in M that minimally
mix with the surrounding phase space. Frequently used indicators for barriers of
transport and hence boundaries of coherent regions are ridges in the finite-time
Lyapunov exponent (FTLE) field [37]

FTLE(x, t; τ) =
1

2|τ | log
(
λmax[DxΦ(x, t; τ)�DxΦ(x, t; τ)]

)
. (2)
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They are the basis of some geometric approaches for the identification of
Lagrangian coherent structures [38]. In this work, we follow a probabilistic app-
roach, which considers the evolution of sets, or, more abstractly, probability
measures. Later, when discussing the dynamic Laplacian, we follow a geometric
approach related to finding persistently small set boundaries.

A set A ⊂ M is called Φ-invariant over [t, t + τ ] if Φ(A, t + s;−s) = A for
all 0 ≤ s ≤ τ . That is, the set A remains unchanged under the evolution of Φ.
Almost-invariant sets obey an approximate invariance principle Φ(A, t+s;−s) ≈
A for all 0 ≤ s ≤ τ . To be more precise, given a probability measure μ on M ,
we call a set A ⊂ M with μ(A) �= 0 almost-invariant [6] over [t, t + τ ] if

ρ(A) :=
μ(A ∩ Φ(A, t + τ ;−τ))

μ(A)
≈ 1. (3)

If A ⊂ M is almost-invariant over the interval [t, t + τ ], then the probability
(according to μ) of a trajectory leaving A at some time in [t, t + τ ] and not
returning to A by time t + τ is relatively small.

Unlike almost-invariant sets, coherent sets are allowed to move in phase
space under the evolution of the time-dependent system. Given a reference prob-
ability measure μ on M at time t, one seeks to find pairs of sets (At, At+τ ) [23]
such that

ρ(At, At+τ ) =
μ(At ∩ Φ(At+τ , t + τ ;−τ))

μ(At)
≈ 1. (4)

Equation (4) measures the proportion of the set At at time t that is mapped to
the set At+τ at time t+τ and one seeks to find sets such that At+τ ≈ Φ(At, t; τ).
Under set-oriented discretisation, optimal almost-invariant [8] and coherent [23]
sets maximize (3) and (4).

The NP-hard discrete optimization problems can then be approximately
solved by considering the Perron-Frobenius operator Pt,τ : L1(M,m) →
L1(M,m) associated with the flow map Φ, where m denotes Lebesgue measure.
The transfer operator is defined by

Pt,τf(x) =
f(Φ(x, t + τ ;−τ))

|det DΦ(Φ(x, t + τ ;−τ), t; τ)| (5)

The interpretation is that if f is a density and f(x) the density value in x at time
t, then Pt,τf(x) describes the density value in Φ(x, t; τ) at time t+τ induced by
the flow map. In [24,25] it was shown that maximizing ρ in (3) and (4) can be
described in the framework of optimizing an inner product involving a compact
self-adjoint operator obtained from Pt,τ . In order to avoid the technical func-
tional analytic description underlying [24,25], we will briefly recall the concept
of finite-time coherent sets in the finitary setting [23] in Sect. 3.2 based on a
finite-rank approximation of Pt,τ introduced in Sect. 3.1.

A stretching measure, similar to FTLE in (2), has been derived using the
evolution of Pt,τ [39]. It is based on the concept of differential entropy h(f) =
− ∫

Ω
f log f dm, where Ω is the support of the density f . For a given initial
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condition x0, letfε,x0 := 1
m(Bε(x0))

1Bε(x0) denote a uniform density supported
on Bε(x0), a ball of radius ε about x0. An ε-smoothing operator is then defined
by

Aεf(x) :=
1

m(Bε(x))

∫

Bε(x)

f dm.

The rate of increase in entropy experienced in the ε-neighborhood of x0 over
the time span [t, t + τ ] of the ε-perturbed dynamics can now be described by

FTEε(x0, t; τ) :=
1
|τ | [h(AεPt,τfε,x0) − h(fε,x0)]. (6)

In [39] several properties of FTEε and its deterministic limit limε→0 FTEε have
been derived. In particular, FTEε measures nonlinear stretching and can be
compared with finite-time Lyapunov exponents (2) in the deterministic limit.
In Sect. 3.3 we will outline a very efficient set-oriented approximation of the
FTE-field.

We denote by Pt,τ,ε := AεPt,τAε the slightly mollified transfer operator.
As mentioned above, finite-time coherent sets are extracted from the dominant
singular vectors of the normalised L2-compact operator Lt,τ,ε := Pt,τ,ε/(Pt,τ,ε1);
see [24], also [25].

One could equivalently consider the dominant eigenvectors1 of L∗
t,τ,εLt,τ,ε,

and in the pure advection limit of ε → 0, one obtains

lim
ε→0

L∗
t,τ,εLt,τ,ε − I

ε2
= ΔD

[t,t+τ ],

where ΔD
[t,t+τ ] is the dynamic Laplace operator [30], a self-adjoint, elliptic,

second-order differential operator.
Extending ideas from isoperimetric theory, which concern sets of minimal

boundary size relative to volume (the Cheeger ratio), one can create a dynamic
isoperimetric theory [30] and prove connections between the spectrum of ΔD

[t,t+τ ]

and sets with persistently small boundary size relative to evolved volume (the
dynamic Cheeger ratio). These sets with persistently small boundary size relative
to evolved volume are excellent candidates for finite-time coherent sets because
their boundaries resist filamentation and in the presence of small diffusion, dif-
fusive flux across the boundary is minimised. In analogy to the second singular
value of Lt,τ,ε bounding the mixing factor over [t, t+τ ] of all nonequilibrium dis-
tributions (Theorem 2 [24], Theorems 3 and 4 [25]), the second singular value of
ΔD

[t,t+τ ] bounds the smallest Cheeger ratio taken over all smooth decompositions
of the domain (Corollary 3.6 [30]).

3 Set-Oriented Numerical Framework

We now describe a set-oriented numerical framework for the approximation of
the nonautonomous Perron-Frobenius operator in terms of a transition matrix
1 In the following expression L∗

t,τ,ε is the adjoint of Lt,τ,ε between its domain and
codomain; see [24] for details.
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of a finite-state Markov chain. The discretized transfer operator is the basis for
extracting coherent sets (Sect. 3.2) as well as for the computation of FTE-fields
(Sect. 3.3).

3.1 Approximation of Transfer Operator

Following [23] we consider some compact subset X ⊂ M and a small neigh-
borhood Y of Φ(X, t; τ). Let {B1, . . . , Bk} be a partition of X, {C1, . . . , Cn} a
partition of Y . The partition elements are typically generalized rectangles, but
other settings are possible. Applying Ulam’s method [11] a finite-rank approxi-
mation of Pt,τ : L1(X,m) → L1(Y,m) is given via the transition matrix

Pij =
m(Bi ∩ Φ(Cj , t + τ ;−τ))

m(Bi)
, i = 1, . . . , k, j = 1, . . . , n (7)

where we drop the t and τ -dependence of P for brevity. In practice the entries
Pij of the transition matrix P are estimated via

Pij ≈ #{r : Φ(zi,r, t; τ) ∈ Cj}
R

. (8)

with uniformly distributed sample points zi,r, r = 1, . . . , R chosen in each par-
tition element Bi, i = 1, . . . , k. P is a sparse, row-stochastic matrix and thus
all its eigenvalues are contained in the unit circle. For the efficient computation
of the transition matrix P we use the software package GAIO [50] (available at
http://github.com/gaioguy/GAIO).

The interpretation of the P -induced dynamics is that if p ≥ 0 (component-
wise) is a probability vector (

∑
i pi = 1), then p′ = pP is the push-forward

of p under the discretized action of Φ(·, t; τ). Note that the numerical scheme
introduces diffusion – which is also theoretically needed for robust results [24,25].

3.2 Extracting Finite-Time Coherent Sets

Consider a reference probability measure μ on X at time t, which is discretely
represented as a probability vector p with pi = μ(Bi), i = 1, . . . , k. The image
probability vector on Y at time t + τ is then simply computed as q = pP . We
assume both p > 0 and q > 0 (component-wise) and form a normalized matrix
L via

Lij =
piPij

qj
. (9)

This matrix has the property that 1RkL = 1Rn . In [23,24] it was shown that
(under some technical assumptions) the problem of finding optimal coherent sets
can be approximated by considering the left eigenvectors w2 ∈ R

k of LL∗ and
ŵ2 ∈ R

n of L∗L to the second largest eigenvalue λ2 < 1. Here L∗ = P�. Note
that these two eigenvalue problems can be turned into the task of finding lead-
ing singular values and corresponding left and right singular vectors of a sparse

http://github.com/gaioguy/GAIO
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matrix (see [23] for the exact construction), which can be very efficiently com-
puted by iterative schemes (e.g. svds in MATLAB). The signed vector entries
of w2 and ŵ2 can be interpreted as relaxations of indicator functions of the sets
At and At+τ and their complements. Thus the vector w2 defines fuzzy coherent
sets on X, whereas ŵ2 represents their image on Y . Optimal partitions of X and
Y into finite-time coherent pairs can be approximated via a line search in w2

and ŵ2 [23,25]. However, this approach is restricted to finding two-partitions in
terms of a coherent set and its complement. In practice, there are often k > 2
singular values close to one (followed by a spectral gap) whose corresponding
singular vectors highlight the location of coherent sets. In this case, one can
postprocess the singular vectors by a k-means clustering to obtain a hard par-
tition into k coherent sets. Alternatively, to preserve the eigenspace structure,
one can project the singular vectors to a sparse basis (SEBA) [51], where the
entries of each vector denote probabilities that the underlying box Bi belongs to
a specific coherent set. Hard assignment of boxes to sets may then be performed
by thresholding (see [51]) to form (i) a subpartition of unity, (ii) the largest
collection of disjoint sets, or (iii) by maximum likelihood.

3.3 Set-Oriented Computation of FTE

In the discrete context, densities (which are central to the FTE-construction in
Eq. (6)) are now represented by discrete probability measures μ and the entropy
of a probability vector p with pi = μ(Bi), i = 1, . . . , k, is simply H(p) =
−∑n

i=1 pi log pi. Under the assumption that all partition elements {B1, . . . , Bk}
are of equal volume let δi be a k-vector with a 1 in the ith position and 0
elsewhere. Then the discrete FTE of a partition set Bi is given by

FTE(Bi, t; τ) =
1
|τ |H(δiP ) = − 1

|τ |
n∑

j=1

Pij log Pij . (10)

Note that once the transition matrix P has been computed, the FTE field (6)
can be very quickly approximated by application of Eq. (10). In particular,
we do not require to explicitly push forward probability densities with P . In
addition, stretching rates for differing box volumes as well as for the backward-
time dynamics can be conveniently computed, see [39] for more details.

4 Finite-Element Framework

A set-oriented approach for approximating ΔD
[t,t+τ ] is possible and effective

[30]. The ingredients are Ulam approximation(s) of the dynamics and a finite-
difference approximation of the standard Laplace operator. As the dynamic
Laplace operator is an elliptic second-order differential operator, it turns out to
be more efficient to adapt the well-worn finite-element approximation approach
to our dynamic setting [31]. The main advantages are the ability to produce
good results with dramatically decreased trajectory numbers, and the increased
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smoothness of the estimates (continuous, piecewise-affine approximations rather
than the discontinuous, piecewise-constant approximations from Ulam). One of
the main advantages of the set-oriented framework, namely sparsity, is retained.
The finite-element approach detailed in [31] has other structural benefits, such
as preservation of the symmetry of the true operator, and the ability to have
incomplete trajectories.

Briefly, in the time interval [t, t+τ ], one creates a sequence of n time instances
t = t1 < t2 < · · · < tn = t + τ at which one has N trajectory data points
xi,k := Φ(xi, t; tk − t), i = 1, . . . , N , k = 1, . . . , n. At the time instance tk,
the trajectory points are meshed and a basis of N piecewise-affine nodal hat
functions φi,k : M → R are defined with xi,k the node of the ith hat function.
The function φi,k is locally supported on mesh elements with xi,k as a vertex
and φi,k(xi,k) = 1. The usual stiffness and mass matrices are computed on each
mesh and averaged across time.

D =
1
n

n∑

k=1

Dk, Dk,lm =
∫

Φ(M,t;tk−t)

∇φl,k · ∇φm,k (11)

M =
1
n

n∑

k=1

Mk, Mk,lm =
∫

Φ(M,t;tk−t)

φl,k · φm,k (12)

The discrete representation of the eigenproblem ΔD
[t,t+τ ]f = λf is Dv = λMv,

which is immediately solved in e.g. MATLAB. The approximate solution f is
then recovered as f =

∑N
i=1 viφi,1. An example computation is shown in Fig. 15

for the dominant 17 eigenfunctions.

4.1 Disentangling Multiple Features with SEBA

In both the transfer operator approach of Sect. 3.2 and the dynamic Laplace app-
roach considered here, it is frequently the case that multiple finite-time coherent
sets are encoded in several dominant approximate singular vectors of Lt,τ,ε and
eigenfunctions of ΔD

[t,t+τ ], respectively. This is illustrated in Fig. 15 for the 17
dominant eigenfunctions of ΔD

[t,t+τ ]. In order to disentangle individual finite-time
coherent sets, we seek a rotation of the eigendata so that each rotated vector
contains a single set. We use sparsity as the means to drive the rotation towards
this individual feature separation, because sparse2 vectors imply a small total
feature support in each vector. In more detail, if each singular vector or eigen-
vector vb, b = 1, . . . , B is a column vector in R

N and V := [v1|v2| · · · |vB ] is
an N × B array, we wish to find a sparse array S = [s1|s2| · · · |sB ] for which
span{s1, s2, . . . , sB} ≈ span{v1, v2, . . . , vB}. This is carried out using the SEBA
(Sparse EigenBasis Approximation) algorithm [51], which finds a locally opti-
mal B × B rotation matrix R with V ≈ SR small and S sparse; see Sect. 3 [51]
for further details. Figure 16 shows the conversion of the eigenbasis displayed
2 A sparse vector (resp. array) is a vector (resp. array) with a high proportion of zero

elements.
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in Fig. 15 to a new approximate sparse eigenbasis, with each vector isolating a
single feature. The same approach is employed in the three-dimensional results
in Fig. 18.

5 Application to Rayleigh-Bénard Convection

Turbulent convection flows in nature are often organized in regular large-scale
patterns which evolve gradually compared to the typical convective time unit
and arranged on spatial scales which are much larger than the layer height H.
Prominent examples are cloud streets in atmospheric or granulation and super-
granulation patterns in solar convection. This order in a fully developed turbulent
flow is termed turbulent superstructure of convection in the following. Pandey
et al. [47] reported their appearance in turbulent RBC flows with very different
molecular dissipation properties which are characterized by the dimensionless
Prandtl number Pr. A second dimensionless parameter of RBC which measures
the vigor of convective turbulence is the Rayleigh number Ra. They are defined
as

Ra =
αgΔTH3

νκ
, (13)

Pr =
ν

κ
, (14)

where α, ν, and κ are the isobaric expansion coefficient, the kinematic viscosity,
and the thermal diffusivity of the fluid, respectively. The wall-to-wall tempera-
ture difference is given by ΔT = Tbottom − Ttop. The acceleration vector due to
gravity is given by g = (0, 0,−g). The Prandtl number is extremely small in stel-
lar or solar convection with Pr � 10−6; it is Pr ≈ 0.7 for atmospheric turbulence,
and Pr ≈ 7 for convective motion in the oceans. The large-scale structure forma-
tion in turbulent RBC became recently accessible in direct numerical simulations
(DNS), which can now resolve all involved scales of turbulence in simulations in
horizontally extended domains with a large aspect ratio [42–45].

Here, we study RBC in two different settings. Our first setting is a two-
dimensional DNS of a RBC system with a larger Prandtl number Pr = 10 close
to convection in water at a small aspect ratio of Γ = 4 as in [49]. We restrict here
to a two-dimensional model as it has been previously shown that for large Prandtl
numbers the large- and small-scale quantities show similar scalings in two- and
three-dimensional systems. The second setting is a DNS of three-dimensional
RBC with a smaller Prandtl number Pr = 0.7 corresponding to convection in
air at a larger aspect ratio of Γ = 16 as in [48].
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5.1 2D System

We consider the same two-dimensional RBC system as in [49], given in the
Boussinesq approximation [41], in non-dimensional form by

∂u

∂t
+ u · ∇u = −∇p + Tez +

√
Pr
Ra

∇2u, (15)

∂θ

∂t
+ u · ∇θ = uz +

1√
PrRa

∇2θ, (16)

∇ · u = 0, (17)

where u = (ux, uz), θ, and p are the velocity, temperature fluctuation, and pres-
sure fluctuation fields, respectively. The temperature fluctuations θ are devia-
tions from the linear conductive (equilibrium) profile and related to the total
temperature field T via

T (x, z, t) = Tbottom − ΔT

H
z + θ(x, z, t), (18)

where Tbottom is the temperature at the bottom plate. Equations (15–17) are
nondimensionalized using the height H of the convective layer as the length scale,
the free-fall velocity uf =

√
αgΔTH as the velocity scale, and the temperature

difference ΔT as the temperature scale. Stress-free boundary conditions for the
velocity field are applied at all walls. The side walls have Neumann boundary
conditions, ∂T/∂n = 0. Top and bottom walls are held at constant temperatures
(as already mentioned before). Consequently, θ = 0 at the top and bottom.
Equations (15–17) are solved for Pr = 10 and Ra = 106 in a two-dimensional
box of aspect ratio Γ = Lx/H = 4 subject to appropriate boundary conditions.
The computational details are described in [49].

We start our simulation with random velocity and temperature fields as the
initial condition and continued until a statistically steady state is reached. The
steady state flow structure exhibits a pair of counter-rotating circulation rolls.
Hot fluid rises in the central region whereas cold fluid falls near the sidewalls.
The velocity and temperature fields at all the grid points were written to output
files at every 0.1 tf , with tf = H/uf being the free-fall time (which is taken as
the convective time unit).

The flow map required for setting up the transition matrix P is obtained from
numerical advection of massless particles with coordinates x in the computed
velocity field corresponding to

dx

dt
= u(x, t). (19)

Time integration is done by the RK4 method and spatial interpolation of the
velocities by cubic splines.

We consider a box covering {B1, . . . , Bn} of the simulation domain X =
[0, 4] × [0, 1] by 212 or 216 square boxes. As the system is closed we can choose
Y = X and thus use the same box covering for the initial and the final time.
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For the computation of the transition matrix a 4 × 4 uniform grid of test points
is initialized in each box Bi and advected by the flow map Φ(·, 2000; τ). As in
[49] we consider the two different cases τ = 20tf and τ = 200tf . Note that the
average turnover time for a tracer is 20tf for this setting [49].

In the following, we will compare different Lagrangian methods for coherent
sets in the two-dimensional flow at hand. These are finite-time entropy (FTE),
finite time Lyapunov exponents (FTLE), transfer operator method, and the
sparse eigenbasis approximation (SEBA).

5.1.1 Short Flow Time τ = 20
In order to visualize the major transport barrier separating the two convection
roles, we compute the forward time FTE field from P as described in Sect. 3.3.
As shown in Fig. 1, the FTE field has large values in the box center where hot
fluid rises and also at the boundaries, where cold fluid falls, and thus where the
main heat transport takes place. This result is in agreement with the computed
FTLE field shown in Fig. 2.

Fig. 1. FTE fields FTE(·, 2000; 20) computed over the time interval [2000, 2020] and
plotted with respect to initial positions for two different box coverings (left: 212 boxes;
right: 216 boxes). Dark regions are characterized by large stretching and correspond to
dominant transport barriers.

For the extraction of coherent sets, we compute the leading left and right
singular vectors as described in Sect. 3.2 for the coarse (Fig. 3) and the finer
box discretization (Fig. 4). The second singular vectors identify the left-right
division induced by the major transport barrier and highlight the two different
gyres (Figs. 3 and 4, left columns). The third singular vectors (right columns)
distinguish the two gyre cores from the background flow. Further singular vectors
(not shown) subdivide the gyre cores into smaller structures. This has also been

Fig. 2. FTLE field FTLE(·, 2000; 20) computed over the time interval [2000, 2020]. As
in Fig. 1 dark regions correspond to dominant transport barriers.
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Fig. 3. Left singular vectors w2 and w3 (top row) and corresponding right singular
vectors ŵ2 and ŵ3 (bottom row) obtained from the modified transition matrix (9)
highlight coherent sets at initial and final time of the computation over the short time
interval [2000, 2020]. Here 212 boxes are used for setting up the transition matrix.

observed in [49]. The results for the two different box coverings are very similar,
indicating that the computational results are very robust.

There are spectral gaps after the second singular values in both settings.
However, in order to extract the apparently three dominant coherent sets (two
gyres and background) from the leading singular vectors, we apply a standard
k-means algorithm to the three leading left singular vectors. The results for both
box coverings, which are again very similar, are shown in Fig. 5. This approach
separates the two gyre cores from the background flow, where most of the heat
transport takes place.

As an alternative to the hard-clustering resulting from k-means, we aim to
find a sparse basis representation of the space spanned by the leading three
singular vectors. Using SEBA [51] as briefly explained at the end of Sect. 4, two
of the resulting sparse vectors are supported on each the gyre cores (Fig. 6, top),
and the third sparse vector is supported on the background flow region (Fig. 6,
bottom, left). A superposition of the three vectors (Fig. 6, bottom, right) reveals
in dark blue a particularly incoherent (well mixing) region separating the two

Fig. 4. Left singular vectors w2 and w3 (top row) and corresponding right singular
vectors ŵ2 and ŵ3 (bottom row) obtained from the modified transition matrix (9)
highlight coherent sets at initial and final time of the computation over the short time
interval [2000, 2020]. Here 216 boxes are used for setting up the transition matrix.
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Fig. 5. Extracted coherent sets via an application of the standard k-means algorithm
on the first three left singular vectors based discretizations with 212 boxes (left) and
216 boxes (right) for the short time interval [2000, 2020].

gyres from the background flow. We note that the results are comparable to
those in [49].

Fig. 6. SEBA applied to the first three left singular vectors, 216 boxes, time interval
[2000, 2020]. The upper row shows two of the output sparse vectors. Lower left shows
the third output sparse vector and lower right shows the superposition of the three
sparse vectors, revealing an incoherent region in dark blue.

5.1.2 Long Flow Time τ = 200
For the long flow time τ = 200 we have studied again the system using the coarse
and the fine box covering. As these results are again very similar, we will show
only the results for the finer box covering of 216 boxes.

The FTE field (Fig. 7) highlights extended regions of strong stretching, which
fill the space apart from the gyre cores, which appear to have decreased in size
considerably and have developed into more filamentary shapes. This is confirmed
by the FTLE field shown in Fig. 8.

The shrinking and filamentation of the gyre cores is also observed in the
leading left and right singular vectors (Fig. 9). While the second singular vectors
(left column) are analogous to those of the short time study, the third singular
vector (right column) appears to further subdivide the right gyre. This has also
been observed in our previous studies [49].

As there is a spectral gap after the fourth singular value, we use the corre-
sponding four leading left singular vectors for postprocessing. Applying k-means
(Fig. 10, left) and SEBA (Fig. 10, right) results in the identification of three very
small gyre cores and the background flow.
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Fig. 7. Forward time FTE field computed over the long time interval [2000, 2200] and
plotted with respect to initial positions for a box covering consisting of 216 boxes. Dark
regions are characterized by large stretching and correspond to dominant transport
barriers.

Fig. 8. FTLE field computed over the long time interval [2000, 2200]. Dark regions are
characterized by large stretching and correspond to dominant transport barriers.

Fig. 9. Left singular vectors w2 and w3 (top row) and corresponding right singular
vectors ŵ2 and ŵ3 (bottom row) obtained from the modified transition matrix (9)
highlight coherent sets at initial and final time of the computation over the long time
interval [2000, 2200]. Here 216 boxes are used for setting up the transition matrix.

Fig. 10. Extracted coherent sets from the leading four left singular vectors for the long
time interval [2000, 2200] via k-means (left) and SEBA (right).
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5.2 3D System

Here, we solve the three-dimensional version of RBC which is again given in
dimensionless form by Eqs. (15–17). No-slip boundary conditions for the velocity
field u = (ux, uy, uz) are applied at all walls, i.e., u = 0. The side walls are again
thermally insulated, i.e., Neumann boundary conditions ∂T/∂n = 0 are applied.
At the top and bottom walls, a constant dimensionless temperature of T = 0 and
1 is maintained again. Following ref. [48], we solve these equations numerically
for Ra = 105 and Pr = 0.7 in a closed three dimensional box of aspect ratio
Γ = Lx/H = Ly/H = 16, i.e. M = [−8, 8] × [−8, 8] × [0, 1]. For more details
on the DNS we refer to [48]. During the simulation, the trajectories required for
setting up the transition matrix are approximated. For this 5122 points (tracers
are initialized on a regular grid at a height of z = 0.03 above the bottom plate
which is well inside the thermal boundary layer δT (that has a mean thickness
of about 0.12). The tracers are advected by a 3-step explicit Adams-Bashforth
scheme. The interpolation of the velocity field is done spectrally.

5.2.1 Quasi-2D Set-Oriented Study
As the convection cell is very flat (Γ � 1) the large-scale structures are expected
to be arranged in horizontal patterns. This is clearly visible in the time-averaged
temperature fields, see Fig. 11. We therefore restrict to a quasi-two-dimensional
set-oriented study and take the temperature field in the midplane as the ref-
erence. As discussed in [47], an average of T at a given time t with respect to
the vertical coordinate z would provide basically the same information. Note
also that RBC has a statistical up-down reflection symmetry with respect to the
midplane. Thus for the set-oriented approximation of the transfer operator we
consider the domain X = [−8, 8] × [−8, 8] and ignore the vertical coordinate.
We subdivide X into 214 equally sized square boxes, hence each box contains
16 uniformly distributed test points initially. We set up the transition matrices
corresponding to three different flow times t = 2.6, 5.2, 10.5tf . We also incorpo-
rate a small amount of explicit diffusion as the dynamics is very dissipative at
the beginning. Note that the flow times are short in comparison to the average
turnover time of a tracer in the layer. This time is on average t ≈ 19tf for this
parameter setting [48].

At the beginning of the simulation, the tracers are attracted to the regions
where the hot fluid rises from the bottom to the top of the convection cell, which
correspond to attracting sets, at least on a finite-time span. We first study this
particular behavior by means of the FTE field, see Fig. 12 and compare with
Fig. 11. Regions of strong stretching are observed which appear to bound the
different basins of attraction. Note that these basins can be related to a pair of
convection rolls. In particular, the FTE field for flow time 5.2tf compares very
nicely to the time-averaged temperature fields in Fig. 11. For longer flow times
the picture becomes increasingly fuzzy due to turbulent dispersion. The same
behavior was also observed for the FTLE field in previous work [48], see also
Fig. 13.
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Fig. 11. Time-averaged temperature fields at mid-plane for different time spans
2.6, 5.2, 10.5tf . Light regions correspond to hot rising fluid, dark areas to cold descend-
ing fluid.

Fig. 12. FTE fields obtained from the transition matrices for flow times 2.6, 5.2, 10.5tf .
Dark colors indicate to regions of strong stretching, which compare well with the struc-
tures formed by descending cold fluid in Fig. 11.

Fig. 13. FTLE fields for flow times 2.6, 5.2, 10.5tf . Dark colors indicate to regions of
strong stretching, which compare well with the structures formed by descending cold
fluid in Fig. 11 and also with the corresponding FTE fields in Fig. 12.

We also extract coherent sets based from the numerical transfer operator for
the three different time spans. After inspecting the spectra we use the 13 leading
left singular vectors for the settings with flow times 2.6tf and 5.2tf and 19 for
the longer flow time. The results after a k-means postprocessing are shown in
Fig. 14. The results for the two smaller flow times are very similar and compare
again well to the temperature contours in Fig. 11. In particular, coherent sets
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appear to be made up of pairs of convection roles. The picture becomes more
fuzzy for flow time 10.5tf due to turbulent dispersion. The results compare well
to our previous data-based studies in [48].

Fig. 14. Coherent sets extracted from the leading left singular vectors of the corre-
sponding transition matrices for the three different flow times using k-means clustering.
13 clusters are obtained for flow times 2.6tf (left) and 5.2tf (middle), and 19 clusters
for the long flow time 10.5tf (right).

5.2.2 3D Finite-Element Study
For the remaining experiments we populate the entire three-dimensional domain
with test points distributed throughout the domain. Further, we reduce the
number of test points by more than six-fold to 40,000 and employ the dynamic
Laplace approach of Sect. 4.

Before presenting the fully three-dimensional results, we remove the
z-coordinate and investigate the flow for the longest time duration of 10.5tf .
Triangulating the 40,000 points creates meshes of around 80,000 triangles; we
compute the matrices D and M from (11) and (12) and solve the eigenproblem
Dv = λMv. Using SEBA and the sparse vector heuristic in Sect. 4.2.2 [51], we
choose 17 eigenvectors as a strong local minimum of the envelope produced by
the MATLAB function MinValStackedPlot.m in Appendix A.6 [51], and illus-
trated in Fig. 11 [51]. Figure 15 shows the first 17 eigenfunctions of the dynamic
Laplacian. These dominant 17 eigenvectors are input to SEBA in order to extract
17 individual coherent features. These 17 sparse vectors, representing the like-
lihoods of points belonging to individual coherent sets, are shown in Fig. 16.
Maxima of the likelihoods can be plotted to create a single “hot-spot” image,
and hard thresholded; see Fig. 17.

We now include the z-coordinate and begin our fully three-dimensional exper-
iments. The 40,000 points are meshed into around 265,000 tetrahedra, and the
matrices D and M are computed using the three-dimensional version of FEMDL
(see [31] and http://github.com/gaioguy/FEMDL for examples and code). We
again look for local minima in the MinValStackedPlot.m output and for visual-
isation purposes, choose a slightly smaller number of vectors, namely we use the
most robust 10 SEBA vectors from the most dominant 12 eigenvectors. As in
Fig. 16, each of the 10 vectors provides a pointwise likelihood that a point belongs

http://github.com/gaioguy/FEMDL


Set-Oriented and Finite-Element Study of RBC 103

Fig. 15. Dominant 17 eigenvectors of the dynamic Laplacian for flow time 10.5tf .
The colourmap is chosen so that bright pink and red values are extreme values that
correspond to coherent features.

Fig. 16. Output of SEBA applied to the 17 dominant eigenvectors shown in Fig. 15.
Negative parts have been removed. The colour scale ranges from 0 (white) to 1 (red);
the intensity of red indicates the likelihood that a point belongs to each individual
coherent feature.

to a particular coherent set. To clearly visualise these 10 three-dimensional coher-
ent sets, we plot the isosurface3 at value 1/2. As the likelihood increases toward
the centre of the sets (we verified this visually, not shown), one can interpret

3 Recall a SEBA vector defines a continuous, piecewise-linear function, affine on each
tetrahedron. MATLAB’s isosurface function requires a regular grid, so we reinterpo-
late to approximately the same number of points and the approximately the same
density on a regular 80 × 80 × 10 grid.
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Fig. 17. Left: Maximum of intensities of individual SEBA vectors shown in Fig. 16,
representing total probability to belong to one of the 17 identified coherent sets. Right:
Maximum likelihood coherent sets created from the left image.

these surfaces as containing all points that are more than 50% likely to belong to
each coherent set; one could call them the “cores” of the coherent sets. Figure 18
upper left shows the 10 three-dimensional cores. Note that each of these cores
extends almost all of the way from the bottom to the top of the domain, consis-
tent with the overall nature of the flow, where fluid mostly rises from the bottom
of the domain to the top, before overturning and heading back toward the bot-
tom of the domain. This full vertical extent feature is extremely robust to the
number of eigenvectors and SEBA vectors used. Figure 18 lower left displays the
same image as the upper left, but with commensurate lengths, emphasising that
the domain is much shorter in the vertical direction. Figure 18 right is again the

Fig. 18. Cores of 10 three-dimensional coherent sets for flow time 10.5tf .
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same image, but viewing directly from above. Figure 18 displays cores roughly
of the same size, and in some cases in similar locations, as the coherent sets in
Fig. 17, although with fewer plotted for clearer three-dimensional visualisation.

6 Conclusion and Outlook

In this work, we have applied transfer operator based numerical frameworks for
analyzing coherent behavior in nonautonomous systems to Rayleigh-Bénard con-
vection in two- and three-dimensional settings. To this end, we used set-oriented
approximations of the transfer operator and finite-element approximations of the
dynamic Laplacian. It turns out that these general frameworks reliably identify
the core regions of the various convection rolls as the regions that contribute least
to the turbulent heat transfer from the bottom to the top. The two-dimensional
results compare well with those of previous studies [48,49]. Future work will
address the long-term evolution of the turbulent superstructures of convection
and as well as their impact on transport properties.
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Abstract. Reproducing kernel Hilbert spaces (RKHSs) play an impor-
tant role in many statistics and machine learning applications ranging
from support vector machines to Gaussian processes and kernel embed-
dings of distributions. Operators acting on such spaces are, for instance,
required to embed conditional probability distributions in order to imple-
ment the kernel Bayes rule and build sequential data models. It was
recently shown that transfer operators such as the Perron–Frobenius
or Koopman operator can also be approximated in a similar fashion
using covariance and cross-covariance operators and that eigenfunctions
of these operators can be obtained by solving associated matrix eigen-
value problems. The goal of this paper is to provide a solid functional
analytic foundation for the eigenvalue decomposition of RKHS opera-
tors and to extend the approach to the singular value decomposition.
The results are illustrated with simple guiding examples.

1 Introduction

A majority of the characterizing properties of a linear map such as range, null
space, numerical condition, and different operator norms can be obtained by
computing the singular value decomposition (SVD) of the associated matrix
representation. Furthermore, the SVD is used to optimally approximate matrices
under rank constraints, solve least squares problems, or to directly compute
the Moore–Penrose pseudoinverse. Applications range from solving systems of
linear equations and optimization problems and to a wide variety of methods
in statistics, machine learning, signal processing, image processing, and other
computational disciplines.

Although the matrix SVD can be extended in a natural way to compact
operators on Hilbert spaces [1], this infinite-dimensional generalization is not
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as multifaceted as the finite-dimensional case in terms of numerical applica-
tions. This is mainly due to the complicated numerical representation of infinite-
dimensional operators and the resulting problems concerning the computation
of their SVD. As a remedy, one usually considers finite-rank operators based on
finite-dimensional subspaces given by a set of fixed basis elements. The SVD of
such finite-rank operators will be the main focus of this paper. We will combine
the theory of the SVD of finite-rank operators with the concept of the reproduc-
ing kernel Hilbert space (RKHS), a specific type of function space. A significant
part of the theory of RKHSs was originally developed in a functional analytic
setting [2] and made its way into pattern recognition and statistics [3–5]. RKHSs
are often used to derive nonlinear extensions of linear computational methods.
This is typically achieved by representing observational data in terms of RKHS
elements and rewriting the methods based on the inner product of the RKHS.
This strategy is known as the kernel trick [3]. The approach of embedding a finite
number of observations into the RKHS can be generalized to the embedding of
probability distributions associated with random variables into the RKHS [6].
The theory of the resulting kernel mean embedding (see [7] for a comprehen-
sive review), conditional mean embedding [8–11] and Kernel Bayes rule [12,13]
spawned a wide range of nonparametric approaches to problems in statistics and
machine learning. Recent advances based on the conditional mean embedding
show that data-driven methods in various fields such as transfer operator the-
ory, time series analysis, and image and text processing naturally give rise to a
spectral analysis of finite-rank RKHS operators [14,15].

Practical applications of these spectral analysis techniques include the iden-
tification of the slowest relaxation processes of dynamical systems, e.g., confor-
mational changes of complex molecules or slowly evolving coherent patterns in
fluid flows, but also dimensionality reduction and blind source separation. The
eigendecomposition, however, is beneficial only in the case where the underlying
system is ergodic with respect to some density. If this is not the case, however,
i.e., the stochastic process is time-inhomogeneous, eigendecompositions can be
replaced by singular value decompositions in order to obtain similar information
about the global dynamics [16]. Moreover, outside of the context of stochas-
tic processes, the conditional mean embedding operator has been shown to be
the solution of certain vector-valued regression problems [9,11]. Contrary to the
transfer operator setting, input and output space can differ fundamentally (e.g.,
the input space could be text) and the constraint that the RKHS for input and
output space must be identical is too restrictive. The SVD of RKHS opera-
tors does not require this assumption and is hence a more general analysis tool
applicable to operators that solve regression problems and to transfer operators
associated with more general stochastic processes.

In this paper, we will combine the functional analytic background of the
Hilbert space operator SVD and the theory of RKHSs to develop a self-contained
and rigorous mathematical framework for the SVD of finite-rank operators acting
on RKHSs and show that the SVD of such operators can be computed numer-
ically by solving an auxiliary matrix eigenvalue problem. The remainder of the
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paper is structured as follows: Sect. 2 briefly recapitulates the theory of compact
operators. In Sect. 3, RKHS operators and their eigendecompositions and singu-
lar value decompositions will be described. Potential applications are discussed
in Sect. 4, followed by a brief conclusion and a delineation of open problems in
Sect. 5.

2 Preliminaries

We recall the most important properties of compact operators on Hilbert spaces.
For details, we refer the reader to [1,17]. In what follows, let H be a real Hilbert
space, 〈·, ·〉H its inner product, and ‖·‖H the induced norm. For a Hilbert space
H, we call a set {hi}i∈I ⊆ H with an index set I an orthonormal system if
〈hi, hj〉H = δij for all i, j ∈ I. If additionally span{hi}i∈I is dense in H, then
we call {hi}i∈I a complete orthonormal system. If H is separable, then the index
set I of every complete orthonormal system of H is countable. Given a complete
orthonormal system, every x ∈ H can be expressed by the series expansion
x =

∑
i∈I 〈hi, x〉H hi.

Definition 1. Given two Hilbert spaces H and F and nonzero elements x ∈ H
and y ∈ F , we define the tensor product operator y ⊗ x : H → F by (y ⊗ x)h =
〈x, h〉H y.

Remark 1. When H = R
m and F = R

n and both spaces are equipped with
the Euclidean inner product, the tensor product operator y ⊗ x = y�x ∈ R

n×m

reduces to the standard outer product of vectors in x ∈ H and y ∈ F .

Note that tensor product operators are bounded linear operators. Bound-
edness follows from the Cauchy–Schwarz inequality on H. We define E :=
span{y ⊗ x | x ∈ H, y ∈ F} and call the completion of E with respect to
the inner product

〈y1 ⊗ x1, y2 ⊗ x2〉 := 〈y1, y2〉F 〈x1, x2〉H

the tensor product of the spaces F and H, denoted by F ⊗ H. It follows that
F ⊗H is again a Hilbert space. It is well known that, given a self-adjoint compact
operator A : H → H, there exists an eigendecomposition of the form

A =
∑

i∈I

λi(ei ⊗ ei),

where I is either a finite or countably infinite ordered index set, {ei}i∈I ⊆ H an
orthonormal system, and {λi}i∈I ⊆ R\{0} the set of nonzero eigenvalues. If the
index set I is not finite, then the resulting sequence (λi)i∈I is a null sequence.
Similarly, given a compact operator A : H → F , there exists a singular value
decomposition given by

A =
∑

i∈I

σi(ui ⊗ vi),
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where I is again an either finite or countably infinite ordered index set, {vi}i∈I ⊆
H and {ui}i∈I ⊆ F two orthonormal systems, and {σi}i∈I ⊆ R>0 the set of
singular values. As for the eigendecomposition, the sequence (σi)i∈I is a null
sequence if I is not finite. Without loss of generality, we assume the singular
values of compact operators to be ordered in non-increasing order, i.e., σi ≥ σi+1.
We additionally write σi(A) for the ith singular value of a compact operator A
if we want to emphasize to which operator we refer. The following result shows
the connection of the eigendecomposition and the SVD of compact operators.

Lemma 1 (cf. [1]). Let A : H → F be compact and let {λi}i∈I denote the set
of nonzero eigenvalues of A∗A counted with their multiplicities and {vi}i∈I the
corresponding normalized eigenfunctions of A∗A, then, for ui := λ

−1/2
i Avi, the

singular value decomposition of A is given by

A =
∑

i∈I

λ
1/2
i (ui ⊗ vi).

A bounded operator A : H → F is said to be r-dimensional if rank(A) = r.
If r < ∞, we say that A is finite-rank.

Theorem 1 (cf. [17]). Let H and F be two Hilbert spaces and A : H → F a
linear operator. The operator A is finite-rank with rank(A) = r if and only if
there exist linearly independent sets {hi}1≤i≤r ⊆ H and {fi}1≤i≤r ⊆ F such
that A =

∑r
i=1 fi ⊗ hi. Furthermore, then A∗ =

∑r
i=1 hi ⊗ fi.

The class of finite-rank operators is a dense subset of the class of compact
operators with respect to the operator norm.

Definition 2. Let H and F be Hilbert spaces and {hi}i∈I ⊆ H be a complete
orthonormal system. An operator A : H → F is called a Hilbert–Schmidt operator
if

∑
i∈I ‖Ahi‖2

F < ∞.

The space of Hilbert–Schmidt operators from H to F is itself a Hilbert space
with the inner product 〈A, B〉HS :=

∑
i∈I 〈Ahi, Bhi〉F . Furthermore, it is iso-

morphic to the tensor product space F ⊗ H. The space of finite-rank operators
is a dense subset of the Hilbert–Schmidt operators with respect to the Hilbert–
Schmidt norm. Furthermore, every Hilbert–Schmidt operator is compact and
therefore admits an SVD.

Remark 2. Based on the definitions of the operator norm and the Hilbert–
Schmidt norm, we have ‖A‖ = σ1(A) for any compact operator and ‖A‖HS =
( ∑

i∈I σi(A)2
)1/2 for any Hilbert–Schmidt operator.

We will now derive an alternative characterization of the SVD of compact
operators by generalizing a classical block-matrix decomposition approach to
compact operators. For the matrix version of this result, we refer the reader
to [18]. For two Hilbert spaces H and F , we define the external direct sum
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F ⊕H as the Hilbert space of tuples of the form (f, h), where h ∈ H and f ∈ F ,
with the inner product

〈(f, h), (f ′, h′)〉⊕ := 〈h, h′〉H + 〈f, f ′〉F .

If A : H → F is a compact operator, then the operator T : F ⊕H → F ⊕H, with

(f, h) �→ (Ah,A∗f) (1)

is compact and self-adjoint with respect to 〈·, ·〉⊕. By interpreting the elements
of F ⊕ H as column vectors and generalizing algebraic matrix operations, we
may rewrite the action of the operator T on (f, h) in a block operator notation
as [

A
A∗

] [
f
h

]

=
[

Ah
A∗f

]

.

We remark that the block operator notation should be applied with caution
since vector space operations amongst h ∈ H and f ∈ F in terms of the matrix
multiplication are only defined if F ⊕ H is an internal direct sum.

Lemma 2. Let A : H → F be a compact operator and T : F ⊕ H → F ⊕ H be
the block-operator given by (1). If A admits the SVD

A =
∑

i∈I

σi(ui ⊗ vi) (2)

then T admits the eigendecomposition

T =
∑

i∈I

σi

[
1√
2
(ui, vi) ⊗ 1√

2
(ui, vi)

]
− σi

[
1√
2
(−ui, vi) ⊗ 1√

2
(−ui, vi)

]
. (3)

A proof of this lemma can be found in Appendix A.1.

Corollary 1. Let A : H → F be a compact operator. If σ > 0 is an eigenvalue
of the block-operator T : F ⊕ H → F ⊕ H given by (1) with the corresponding
eigenvector (u, v) ∈ F ⊗H, then σ is a singular value of A with the corresponding
left and right singular vectors ‖u‖−1

F u ∈ F and ‖v‖−1
H v ∈ H.

3 Decompositions of RKHS Operators

We will first introduce reproducing kernel Hilbert spaces, and then consider
empirical operators defined on such spaces. The main results of this section
are a basis orthonormalization technique via a kernelized QR decomposition in
Sect. 3.3 and the eigendecomposition and singular value decomposition of empiri-
cal RKHS operators in Sect. 3.4 and Sect. 3.5 via auxiliary problems, respectively.
The notation is adopted from [7,14] and summarized in Table 1.
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3.1 RKHS

The following definitions are based on [3,5]. In order to distinguish reproducing
kernel Hilbert spaces from standard Hilbert spaces, we will use script style letters
for the latter, i.e., H and F .

Table 1. Overview of notation.

Random variable X Y

Domain X Y

Observation x y

Kernel function k(x, x′) l(y, y′)

Feature map φ(x) ψ(y)

Feature matrix Φ = [φ(x1), . . . , φ(xm)] Ψ = [ψ(y1), . . . , ψ(yn)]

Gram matrix GΦ = Φ�Φ GΨ = Ψ�Ψ

RKHS H F

Definition 3 (Reproducing kernel Hilbert space, [3]). Let X be a set
and H a space of functions f : X → R. Then H is called a reproducing kernel
Hilbert space (RKHS) with corresponding inner product 〈·, ·〉H if a function
k : X × X → R exists such that

(i) 〈f, k(x, ·)〉H = f(x) for all f ∈ H and
(ii) H = span{k(x, ·) | x ∈ X}.

The function k is called reproducing kernel and the first property the repro-
ducing property. It follows in particular that k(x, x′) = 〈k(x, ·), k(x′, ·)〉H . The
canonical feature map φ : X → H is given by φ(x) := k(x, ·). Thus, we obtain
k(x, x′) = 〈φ(x), φ(x′)〉H . It was shown that an RKHS has a unique symmetric
and positive definite kernel with the reproducing property and, conversely, that a
symmetric positive definite kernel k induces a unique RKHS with k as its repro-
ducing kernel [2]. We will refer to the set X as the corresponding observation
space.

3.2 RKHS Operators

Finite-rank operators can be defined by a finite number of fixed basis elements in
the corresponding RKHSs. In practice, finite-rank RKHS operators are usually
estimates of infinite-dimensional operators based on a set of empirical obser-
vations. We later refer to this special type of finite-rank operator as empirical
RKHS operator although the concepts in this section are more general and do
not need the assumption of the data in the observation space being given by
random events.
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Let H and F denote RKHSs based on the observation spaces X and Y,
respectively, with kernels k and l and feature maps φ and ψ. Given x1, . . . , xm ∈
X and y1, . . . , yn ∈ Y, we call

Φ := [φ(x1), . . . , φ(xm)] and Ψ := [ψ(y1), . . . , ψ(yn)]

their associated feature matrices. Note that feature matrices are technically not
matrices but row vectors in H m and Fn, respectively. Since the embedded
observations in the form of φ(xi) ∈ H and ψ(yj) ∈ F can themselves be inter-
preted as (possibly infinite-dimensional) vectors, the term feature matrix is used.
In what follows, we assume that feature matrices contain linearly independent
elements. This is, for example, the case if k(·, ·) is a radial basis kernel and
the observations x1, . . . , xm ∈ X consist of pairwise distinct elements. We adopt
the commonly used notation Φ�v := [〈φ(x1), v〉H , . . . , 〈φ(xm), v〉H ]� for all
v ∈ H , which we also use to express pairwise kernel evaluations between objects
in two feature matrices. Given the feature matrices Φ and Ψ, we can define the
corresponding Gram matrices by GΦ = Φ�Φ ∈ R

m×m and GΨ = Ψ�Ψ ∈ R
n×n.

That is, [GΦ]ij = k(xi, xj) and [GΨ ]ij = l(yi, yj). We will now analyze operators
S : H → F of the form S = ΨBΦ�, where B ∈ R

n×m. Given v ∈ H , we obtain

Sv = ΨBΦ�v =
n∑

i=1

ψ(yi)
m∑

j=1

bij 〈φ(xj), v〉H .

We will refer to operators S of this form as empirical RKHS operators. Examples
of such operators are described in Sect. 4.

Remark 3. If the rows of B are linearly independent in R
m, then the elements of

BΦ� are linearly independent in H . The analogue statement holds for linearly
independent columns of B and elements of ΨB in F .

Proposition 1. The operator S defined above has the following properties:

(i) S is a finite-rank operator. In particular, rank(S) = rank(B).
(ii) S∗ = ΦB�Ψ�.
(iii) Let B = WΣZ� be the singular value decomposition of B, where W =

[w1, . . . ,wn], Σ = diag(σ1, . . . , σr, 0, . . . , 0), and Z = [z1, . . . , zm], then

‖S‖ ≤
r∑

i=1

σi ‖Ψwi‖F ‖Φzi‖H .

Proof. The linearity of S follows directly from the linearity of the inner prod-
uct in H . We now show that properties (i)–(iii) can directly be obtained from
Theorem 1. Using B = WΣZ�, we can write S = (ΨW )Σ(Z�Φ�) and obtain

Sv =
r∑

i=1

σiΨwi 〈Φzi, v〉H for all v ∈ H . (4)
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Since the elements in Φ and Ψ are linearly independent, we see that ΦZ and ΨW
are also feature matrices containing the linearly independent elements Φzi ∈ H
and Ψwi ∈ F as stated in Remark 3. Therefore, (4) satisfies the assumptions
in Theorem 1 if we choose {Φzi}1≤i≤r ⊆ H and {σiΨwi}1≤i≤r ⊆ F to be
the required linearly independent sets. Theorem 1 directly yields all the desired
statements. ��

Note that the characterization (4) is in general not a singular value decom-
position of S since the given basis elements in ΦZ and ΨW are not necessarily
orthonormal systems in H and F , respectively.

3.3 Basis Orthonormalization and Kernel QR Decomposition

When we try to perform any type of decomposition of the operator S = ΨBΦ�,
we face the problem that the representation matrix B is defined to work on fea-
ture matrix entries of Ψ and Φ, which are not necessarily orthonormal systems in
the corresponding RKHSs. This leads to the fact that we can not simply decom-
pose B with standard numerical routines based on the Euclidean inner products
and expect a meaningful equivalent decomposition of S in terms of RKHS inner
products. We therefore orthonormalize the feature matrices with respect to the
RKHS inner products and capture these transformations in a new represen-
tation matrix B̃ which allows using matrix decompositions to obtain operator
decompositions of S. We now generalize the matrix QR decomposition to feature
matrices, which is essentially equivalent to a kernelized Gram–Schmidt proce-
dure [19]. By expressing empirical RKHS operators with respect to orthonormal
feature matrices, we can perform operator decompositions in terms of a simple
matrix decomposition.

Proposition 2 (Kernel QR decomposition). Let Φ ∈ H m be a feature
matrix. Then there exists a unique upper triangular matrix R ∈ R

m×m with
strictly positive diagonal elements and a feature matrix Φ̃ ∈ H m, such that

Φ = Φ̃R

and Φ̃�Φ̃ = Im.

Proof. We have assumed that elements in feature matrices are linearly indepen-
dent. Therefore Φ�Φ is strictly positive definite. We have a Cholesky decomposi-
tion Φ�Φ = R�R for a unique upper triangular matrix R

m×m with positive diag-
onal entries. By setting Φ̃ := ΦR−1 and observing that Φ̃�Φ̃ = (ΦR−1)�ΦR−1 =
Im, the claim follows. ��

By using Proposition 2, we can express empirical operators in orthonormal-
ized basis elements. Given an empirical RKHS operator S = ΨBΦ� and the
two corresponding kernel QR decompositions Φ = Φ̃RΦ and Ψ = Ψ̃RΨ, we can
rewrite

S = (Ψ̃R−1
Ψ )B(Φ̃R−1

Φ )� = Ψ̃(R−1
Ψ B(R−1

Φ )�)Φ̃� = Ψ̃B̃Φ̃�. (5)
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We can now simply perform any type of matrix decomposition on the new
representation matrix B̃ := R−1

Ψ B(R−1
Φ )� to obtain an equivalent decomposition

of the operator S. As examples, we give the SVD and the eigendecomposition
of S.

Corollary 2 (Singular value decomposition). Let S = Ψ̃B̃Φ̃� : H → F
be given by orthonormalized basis elements as above. If B̃ =

∑r
i=1 σiuiv

�
i is the

singular value decomposition of B̃, then

S =
r∑

i=1

σi(Ψ̃ui ⊗ Φ̃vi)

is the singular value decomposition of S.

For the eigendecomposition, we require the operator to be a mapping from
H to itself. We will assume that both the domain and the range of S are defined
via the same feature matrix Φ. We consider the self-adjoint case, that is B (or
equivalently B̃) is symmetric.

Corollary 3 (Eigendecomposition). Let S = Φ̃B̃Φ̃� : H → H be given
by orthonormalized basis elements as above. Let B̃ be symmetric. If B̃ =∑r

i=1 λiviv
�
i is the eigendecomposition of B̃, then

S =
r∑

i=1

λi(Φ̃vi ⊗ Φ̃vi) (6)

is the eigendecomposition of S.

In particular, the matrix B̃ and the operator S share the same singular val-
ues (or eigenvalues, respectively) potentially up to zero. In practice, computing
the singular value decomposition of S by this approach needs two kernel QR
decompositions (which numerically results in Cholesky decompositions of the
Gram matrices), inversions of the triangular matrices RΨ and RΦ and the final
decomposition of B̃. For the eigendecomposition we need a single kernel QR
decomposition and inversion before performing the eigendecomposition of B̃.
Since this may numerically be costly, we give an overview of how eigendecompo-
sitions and singular value decompositions of empirical RKHS operators can be
performed by solving a single related auxiliary problem.

Remark 4. Representation (5) makes it possible to compute classical matrix
decompositions such as Schur decompositions, LU-type decompositions, or polar
decompositions on B̃ and obtain a corresponding decomposition of the operator
S. Note however that when S approximates an operator for n,m → ∞, it is not
necessarily given that these empirical decompositions of S converge to a mean-
ingful infinite-rank concept that is equivalent. For the eigendecomposition and
the singular value decomposition, this reduces to classical operator perturbation
theory [20].
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3.4 Eigendecomposition via Auxiliary Problem

The eigendecomposition of RKHS operators via an auxiliary problem was first
considered in [14]. For the sake of completeness, we will briefly recapitulate the
main result and derive additional properties. For the eigendecomposition, we
again require the operator to be a mapping from H to itself. For this section,
we define a new feature matrix by Υ = [φ(x′

1), . . . , φ(x′
m)]. Note that the sizes

of Φ and Υ have to be identical.

Proposition 3 (cf. [14]). Let S : H → H with S = ΥBΦ� and B ∈ R
m×m

be an empirical RKHS operator. Then the following statements hold:

(i) If λ is an eigenvalue of BΦ�Υ ∈ R
m×m with corresponding eigenvector

w ∈ R
m, then Υw ∈ H is an eigenfunction of S corresponding to λ.

(ii) Conversely, if λ �= 0 is an eigenvalue of S corresponding to the eigenfunction
v ∈ H , then BΦ�v ∈ R

m is an eigenvector of BΦ�Υ ∈ R
m×m correspond-

ing to the eigenvalue λ.

In particular, the operator S and the matrix BΦ�Υ share the same nonzero
eigenvalues.

Proof. For the sake of completeness, we briefly reproduce the gist of the proof.

(i) Let w ∈ R
m be an eigenvector of the matrix BΦ�Υ corresponding to the

eigenvalue λ. Using the associativity of feature matrix multiplication and
kernel evaluation, we have

S(Υw) = Υ(BΦ�Υw) = λΥw.

Furthermore, since w �= 0 ∈ R
m and the elements in Υ are linearly inde-

pendent, we have Υw �= 0 ∈ H . Therefore, Υw is an eigenfunction of S
corresponding to λ.

(ii) Let v be an eigenfunction of S associated with the eigenvalue λ �= 0. By
assumption, we then have

ΥBΦ�v = λv.

By “multiplying” both sides from the left with BΦ� and using the associa-
tivity of the feature matrix notation, we obtain

(BΦ�Υ)BΦ�v = λBΦ�v.

Furthermore, BΦ�v cannot be the zero vector in R
m as we would have

Υ(BΦ�v) = Sv = 0 �= λv otherwise since λ was assumed to be a nonzero
eigenvalue. Therefore, BΦ�v is an eigenvector of the matrix BΦ�Υ. ��
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Remark 5. Eigenfunctions of empirical RKHS operators may be expressed as
a linear combination of elements contained in the feature matrices. However,
there exist other formulations of this result [14]. We can, for instance, define the
alternative auxiliary problem

Φ�ΥBw = λw.

For eigenvalues λ and eigenvectors w ∈ R
m satisfying this equation, we see

that ΥBv ∈ H is an eigenfunction of S. Conversely, for eigenvalues λ �= 0 and
eigenfunctions v ∈ H of S, the auxiliary matrix has the eigenvector Φ�v ∈ R

m.

Example 1. The eigendecomposition of RKHS operators can be used to obtain
an approximation of the Mercer feature space representation1 of a kernel. Let us
consider the domain X = [−2, 2] × [−2, 2] equipped with the Lebesgue measure
and the kernel k(x, x′) =

(
1 + x�x′)2. The associated feature space is in this

case six-dimensional.2 The nonzero eigenvalues and eigenfunctions of the integral
operator Ek defined by

Ekf(x) =
∫

k(x, x′)f(x′)dμ(x′)

are given by

λ1 = 269+
√

60841
90 ≈ 5.72, e1(x) = c1

(
−179+

√
60841

120 + x2
1 + x2

2

)
,

λ2 = 32
9 ≈ 3.56, e2(x) = c2 x1x2,

λ3 = 8
3 ≈ 2.67, e3(x) = c3 x1,

λ4 = 8
3 ≈ 2.67, e4(x) = c4 x2,

λ5 = 64
45 ≈ 1.42, e5(x) = c5

(
x2

1 − x2
2

)
,

λ6 = 269−√
60841

90 ≈ 0.24, e6(x) = c6

(
−179−√

60841
120 + x2

1 + x2
2

)
,

where c1, . . . , c6 are normalization constants so that ‖ei‖μ = 1. Defining φ =
[φ1, . . . , φ6]�, with φi =

√
λiei, we thus obtain the Mercer feature space rep-

resentation of the kernel, i.e., k(x, x′) = 〈φ(x), φ(x′)〉. Here, 〈·, ·〉 denotes the
standard inner product in R

6. For f ∈ H , it holds that Ekf = CXXf , where
CXX is the covariance operator.3 We now compute eigenfunctions of its empirical
1 Given a continuous kernel k on a compact domain, Mercer’s theorem allows for

a series representation of the form k(x, x′) =
∑

i∈I λiei(x) e′
i(x), see, e.g., [5]. In

particular, {√
λi ei}i∈I forms an (at most countable) orthonormal system in H .

The Mercer feature space can be constructed by computing eigenfunctions of the
operator Ek introduced below.

2 For a d-dimensional state space, the polynomial kernel with degree p spans a
(
p+d
p

)
-

dimensional feature space [19].
3 For a detailed introduction of covariance and cross-covariance operators, see Sect. 4.
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estimate ĈXX with the aid of the methods described above. That is, B = 1
mIm.

Drawing m = 5000 test points from the uniform distribution on X, we obtain
the eigenvalues and (properly normalized) eigenfunctions shown in Fig. 1. The
eigenfunctions are in good agreement with the analytically computed ones. We
evaluate the analytically and numerically computed eigenfunctions in the mid-
points of a regular 50 × 50 box discretization and the average relative error is
approximately 2.9% for the first eigenfunction. Note that the eigenspace corre-
sponding to the eigenvalues λ3 and λ4 is only determined up to basis rotations.
The computed eigenvalues λi for i > 6 are numerically zero. This indicates that
the feature space is, as expected, only six-dimensional. �

Fig. 1. Numerically computed eigenvalues and eigenfunctions of ĈXX associated with
the second-order polynomial kernel on X = [−2, 2] × [−2, 2].

While we need the assumption that the eigenvalue λ of S is nonzero to
infer the eigenvector of the auxiliary matrix from the eigenfunction from S, this
assumption is not needed the other way around. This has the simple explanation
that a rank deficiency of B always introduces a rank deficiency to S = ΥBΦ�.
On the other hand, if H is infinite-dimensional, S as a finite-rank operator
always has a natural rank deficiency, even when B has full rank. In this case, S
has the eigenvalue 0 while B does not.

In order to use Proposition 3 as a consistent tool to compute eigenfunctions
of RKHS operators, we must ensure that all eigenfunctions corresponding to
nonzero eigenvalues of empirical RKHS operators can be computed. In particu-
lar, we have to be certain that eigenvalues with a higher geometric multiplicity
allow to capture a full set of linearly independent basis eigenfunctions in the
associated eigenspace.



SVD of Operators on RKHSs 121

Lemma 3. Let S : H → H with S = ΥBΦ� be an empirical RKHS operator.
Then it holds:

(i) If w1 ∈ R
m and w2 ∈ R

m are linearly independent eigenvectors of BΦ�Υ,
then Υw1 ∈ H and Υw2 ∈ H are linearly independent eigenfunctions of S.

(ii) If v1 and v2 are linearly independent eigenfunctions belonging to the eigen-
value λ �= 0 of S, then BΦ�v1 ∈ R

m and BΦ�v2 ∈ R
m are linearly inde-

pendent eigenvectors of BΦ�Υ.

In particular, if λ �= 0, then we have dim ker(BΦ�Υ−λIm) = dim ker(S−λIH ).

Proof. The eigenvalue-eigenfunction correspondence is covered in Proposition 3,
it therefore remains to check the linear independence in statements (i) and (ii).
Part (i) follows from Remark 3. We show part (ii) by contradiction: Let v1 and
v2 be linearly independent eigenfunctions associated with the eigenvalue λ �= 0
of S. Then assume for some α �= 0 ∈ R, we have BΦ�v1 = αBΦ�v2. Applying
Υ from the left to both sides, we obtain

ΥBΦ�v1 = Sv1 = λv1 = αλv2 = αSv2 = ΥαBΦ�v2,

which contradicts the linear independence of v1 and v2. Therefore, BΦ�v1 and
BΦ�v2 have to be linearly independent in R

m.
From (i) and (ii), we can directly infer dim ker(BΦ�Υ−λIm) = dim ker(S −

λIH ) by contradiction: Let λ �= 0 be an eigenvalue of S and BΦ�Υ. We assume
that dim ker(BΦ�Υ − λIm) > dim ker(S − λIH ). This implies that there exist
two eigenvectors w1,w2 ∈ R

m of BΦ�Υ that generate two linearly dependent
eigenfunctions Υw1,Υw2 ∈ H , contradicting statement (i). Hence, we must
have dim ker(BΦ�Υ−λIm) ≤ dim ker(S−λIH ). Analogously, applying the same
logic to statement (ii), we obtain dim ker(BΦ�Υ − λIm) ≥ dim ker(S − λIH ),
which concludes the proof. ��
Corollary 4. If S = ΥBΦ� is an empirical RKHS operator and λ ∈ R is
nonzero, it holds that {Υw | BΦ�Υw = λw} = ker(S − λIH ).

The corollary justifies to refer to the eigenvalue problems Sv = λv as primal
problem and BΦ�Υw = λw as auxiliary problem, respectively.

3.5 Singular Value Decomposition via Auxiliary Problem

We have seen that we can compute eigenfunctions corresponding to nonzero
eigenvalues of empirical RKHS operators. This can be extended in a straightfor-
ward fashion to the singular value decomposition of such operators.

3.5.1 Standard Derivation
We apply the eigendecomposition to the self-adjoint operator S∗S to obtain the
singular value decomposition of S.
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Proposition 4. Let S : H → F with S = ΨBΦ� be an empirical RKHS oper-
ator, where Φ = [φ(x1), . . . , φ(xm)], Ψ = [ψ(y1), . . . , ψ(yn)], and B ∈ R

n×m.
Assume that the multiplicity of each singular value of S is 1. Then the SVD of
S is given by

S =
r∑

i=1

λ
1/2
i (ui ⊗ vi),

where

vi := (w�
i GΦwi)−1/2 Φwi,

ui := λ
−1/2
i Svi,

with the nonzero eigenvalues λ1, . . . , λr ∈ R of the matrix

MGΦ ∈ R
m×m with M := B�GΨB ∈ R

m×m

counted with their multiplicities and corresponding eigenvectors w1, . . . ,
wr ∈ R

m.

Proof. Using Proposition 1, the operator

S∗S = Φ(B�GΨB)Φ� = ΦMΦ�

is an empirical RKHS operator on H . Naturally, S∗S is also positive and self-
adjoint. We apply Corollary 4 to calculate the normalized eigenfunctions

vi := ‖Φwi‖−1
H Φwi = (w�

i GΦwi)−1/2 Φwi

of S∗S by means of the auxiliary problem

MGΦwi = λiwi, wi ∈ R
m,

for nonzero eigenvalues λi. We use Lemma 1 to establish the connection between
the eigenfunctions of S∗S and singular functions of S and obtain the desired form
for the SVD of S. ��
Remark 6. Whenever the operator S possesses singular values with multiplicities
larger than 1, a Gram-Schmidt procedure may need to be applied to the resulting
singular functions in order to ensure that they form an orthonormal system in
the corresponding eigenspaces of S∗S and SS∗.

Remark 7. As described in Remark 5, several different auxiliary problems to
compute the eigendecomposition of S∗S can be derived. As a result, we can
reformulate the calculation of the SVD of S for every possible auxiliary problem.

Example 2. We define a probability density on R
2 by

p(x, y) =
1
2
(
p1(x)p2(y) + p2(x)p1(y)

)
,
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with

p1(x) = 1√
2πρ2

e
− (x−1)2

2ρ2 and p2(x) = 1√
2πρ2

e
− (x+1)2

2ρ2 ,

see Fig. 2(a), and draw m = n = 10000 test points (xi, yi) from this density
as shown in Fig. 2(b). Let us now compute the singular value decomposition of
ĈYX = 1

mΨΦ�, i.e., B = 1
mIm. That is, we have to compute the eigenvalues and

eigenvectors of the auxiliary matrix 1
m2 GΨGΦ. Using the normalized Gaussian

kernel with bandwidth 0.1 results in singular values σ1 ≈ 0.47 and σ2 ≈ 0.43
and the corresponding right and left singular functions displayed in Fig. 2(c)
and Fig. 2(d). The subsequent singular values are close to zero. Thus, we can
approximate ĈYX by a rank-two operator of the form ĈYX ≈ σ1(u1 ⊗v1)+σ2(u2 ⊗
v2), see also Fig. 2(e) and Fig. 2(f). This is due to the decomposability of the
probability density p(x, y). �

Fig. 2. Numerically computed singular value decomposition of ĈYX . (a) Joint probabil-
ity density p(x, y). (b) Histogram of the 10000 sampled data points. (c) First two right
singular functions. (d) First two left singular functions. (e) σ1(u1 ⊗v1). (f) σ2(u2 ⊗v2).

With the aid of the singular value decomposition, we are now, for instance,
able to compute low-rank approximations of RKHS operators—e.g., to obtain
more compact and smoother representations—or their pseudoinverses. This will
be described below. First, however, we show an alternative derivation of the
decomposition. Proposition 4 gives a numerically computable form of the SVD
of the empirical RKHS operator S. Since the auxiliary problem of the eigende-
composition of S∗S involves several matrix multiplications, the problem might
become ill-conditioned.
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3.5.2 Block-Operator Formulation
We now employ the relationship described in Corollary 1 between the SVD of
the empirical RKHS operator S : H → F and the eigendecomposition of the
block-operator T : F ⊕ H → F ⊕ H , with (f, h) �→ (Sh, S∗f).

Theorem 2. The SVD of the empirical RKHS operator S = ΨBΦ� is given by

S =
r∑

i∈I

σi

[(
‖Ψwi‖−1

F Ψwi

)
⊗

(
‖Φzi‖−1

H Φzi

)]
,

where σi are the strictly positive eigenvalues and [wi
zi

] ∈ R
n+m the corresponding

eigenvectors of the auxiliary matrix
[

0 BGΦ

B�GΨ 0

]

∈ R
(n+m)×(n+m). (7)

Proof. The operator T defined above can be written in block form as

T

[
f
h

]

=
[

S
S∗

] [
f
h

]

=
[

Sh
S∗f

]

. (8)

By introducing the block feature matrix Λ := [ Ψ Φ ], we may rewrite (8) as the
empirical RKHS operator

Λ
[

0 B
B� 0

]

Λ�.

Invoking Corollary 4 yields the auxiliary problem
[

0 B
B� 0

]

Λ�Λ =
[

0 B
B� 0

] [
GΨ 0
0 GΦ

]

=
[

0 BGΦ

B�GΨ 0

]

∈ R
(n+m)×(n+m)

for the eigendecomposition of T . We again emphasize that the block-operator
notation has to be used with caution since F ⊕ H is an external direct sum.
We use Corollary 1 to obtain the SVD of S from the eigendecomposition of T .

��
Remark 8. In matrix analysis and numerical linear algebra, one often computes
the SVD of a matrix A ∈ R

n×m through an eigendecomposition of the matrix[
0 A

A� 0

]
. This leads to a symmetric problem, usually simplifying iterative SVD

schemes [18]. The auxiliary problem (7), however, is in general not symmetric.

4 Applications

In this section, we describe different operators of the form S = ΨBΦ� or
S = ΦBΨ�, respectively, and potential applications. All of the presented exam-
ples are empirical estimates of Hilbert–Schmidt RKHS operators. Therefore, the



SVD of Operators on RKHSs 125

SVD of the given empirical RKHS operators converges to the SVD of their ana-
lytical counterparts. For results concerning the convergence and consistency of
the estimators, we refer to [9,11–13]. Note that in practice the examples below
may bear additional challenges such as ill-posed inverse problems and regular-
ization of compact operators, which we will not examine in detail. We will also
not cover details such as measurability of feature maps and properties of related
integral operators in what follows. For these details, the reader may consult, for
example [5].

4.1 Low-Rank Approximation, Pseudoinverse and Optimization

With the aid of the SVD it is now also possible to compute low-rank approx-
imations of RKHS operators. This well-known result is called Eckart–Young
theorem or Eckart–Young–Mirsky theorem, stating that for every compact oper-
ator A with SVD A =

∑
i∈I σi(ui ⊗ vi) and k ≤ rank(A), the operator given by

the truncated SVD

Ak :=
k∑

i=1

σi(ui ⊗ vi)

satisfies the optimality property

Ak = arg min
rank(B)=k

‖A − B‖HS ,

see [21] for details. Another application is the computation of the (not necessar-
ily globally defined) pseudoinverse or Moore–Penrose inverse [22] of operators,
defined as A+ : F ⊇ dom(A+) → H , with

A+ :=
∑

i∈I

σ−1
i (vi ⊗ ui).

We can thus obtain the solution x ∈ H of the—not necessarily well-posed—
inverse problem Ax = y for y ∈ dom(A+) through the Moore–Penrose pseudoin-
verse, i.e.,

A+y = arg min
x∈H

‖Ax − y‖F ,

where A+y in H is the unique minimizer with minimal norm. For the connection
to regularized least-squares problems and the theory of inverse problems, see [22].

4.2 Kernel Covariance and Cross-Covariance Operator

Let X and Y be random variables with values in X and Y defined on a probability
space (Ω,F ,P). The kernel covariance operator CXX : H → H and the kernel
cross-covariance operator [23] CYX : H → F are defined by

CXX =
∫

φ(X) ⊗ φ(X)dP(X) = EX [φ(X) ⊗ φ(X)],

CYX =
∫

ψ(Y ) ⊗ φ(X)dP(Y,X) = EYX [ψ(Y ) ⊗ φ(X)],
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assuming that the second moments (in the Bochner integral sense) of the embed-
ded random variables φ(X), ψ(Y ) exist. Kernel (cross-)covariance operators can
be regarded as generalizations of (cross-)covariance matrices and are frequently
used in nonparametric statistical methods, see [7] for an overview. Given train-
ing data DXY = {(x1, y1), . . . , (xn, yn)} drawn i.i.d. from the joint probability
distribution P(X,Y ), we can estimate these operators by

ĈXX =
1
n

n∑

i=1

φ(xi)⊗φ(xi) =
1
n

ΦΦ� and ĈYX =
1
n

n∑

i=1

ψ(yi)⊗φ(xi) =
1
n

ΨΦ�.

Thus, ĈXX and ĈYX are empirical RKHS operators with B = 1
nIn, where Ψ = Φ

for ĈXX . Decompositions of these operators are demonstrated in Example 1 and
Example 2, respectively, where we show that we can compute approximations of
the Mercer feature space and obtain low-rank approximations of operators.

4.3 Conditional Mean Embedding

The conditional mean embedding is an extension of the mean embedding frame-
work to conditional probability distributions. Under some technical assumptions,
the RKHS embedding of a conditional distribution can be represented as a linear
operator [8]. We will not cover the technical details here and refer the reader
to [10] for the mathematical background. We note that alternative interpreta-
tions of the conditional mean embedding exist in a least-squares context which
needs less assumptions than the operator-theoretic formulation [9,11].

Remark 9. For simplicity, we write C−1
XX for the inverse covariance operator in

what follows. However, note that C−1
XX does in general not exist as a globally

defined bounded operator – in practice, a Tikhonov-regularized inverse (i.e.,
(CXX + εId)−1 for some ε > 0) is usually considered instead (see [22] for details),
leading to regularized matrices in the empirical versions.

The conditional mean embedding operator of P(Y | X) is given by

UY |X = CYXC−1
XX .

Note that when the joint distribution P(X,Y ) and hence CXX and CYX are
unknown, we can not compute UY |X directly. However, if the training data
DXY = {(x1, y1), . . . , (xn, yn)} is drawn i.i.d. from the probability distribution
P(X,Y ), it can be estimated as

ÛY |X = ΨG−1
φ Φ�.

This is an empirical RKHS operator, where B = G−1
φ . The conditional mean

operator is often used for nonparametric models, for example in state-space
models [8], filtering and Bayesian inference [12,13], reinforcement learning [24–
26], and density estimation [27].
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4.4 Kernel Transfer Operators

For this example, we consider a (stochastic) dynamical system X = (Xt)t∈T .
Transfer operators associated with X such as the Perron–Frobenius operator P
and Koopman operator K are frequently used for the analysis of the global
behaviour of molecular dynamics and fluid dynamics problems but also for model
reduction and control [28–30]. Approximations of these operators in RHKSs are
strongly related to the conditional mean embedding framework [14]. The kernel-
based variants Pk and Kk are defined by

Pk = C−1
XX CYX and Kk = C−1

XX CXY ,

where Y = (Xt+τ )t∈T is a time-lagged version of X for a fixed time lag τ . The
empirical estimates of Pk and Kk are given by

P̂k = ΨG−1
ΦΨ G−1

Φ GΦΨΦ� and K̂k = ΦG−1
Φ Ψ�.

Here, we use the feature matrices

Φ := [φ(x1), . . . , φ(xm)] and Ψ := [φ(y1), . . . , φ(yn)]

with data xi and yi = Ξτ (xi), where Ξτ denotes the flow map associated with
the dynamical system X with time step τ . Note that in particular H = F .
Both operators Pk and Kk can be written as empirical RKHS operators, with
B = G−1

ΦΨ G−1
Φ GΦΨ and B = G−1

Φ , respectively, where GΦΨ = Φ�Ψ is a time-
lagged Gram matrix. Examples pertaining to the eigendecomposition of kernel
transfer operators associated with molecular dynamics and fluid dynamics prob-
lems as well as text and video data can be found in [14]. The eigenfunctions and
corresponding eigenvalues of kernel transfer operators contain information about
the dominant slow dynamics and their implied time-scales. Moreover, the singu-
lar value decomposition of kernel transfer operators is known to be connected
to kernel canonical correlation analysis [31] and the detection of coherent sets
in dynamical systems [15]. In particular, the singular value decomposition of the
operator

S := Ĉ−1/2
YY ĈYX Ĉ−1/2

XX

solves the kernel CCA problem. This operator can be written as

S = ΨBΦ�,

where B = G
−1/2
Ψ G

−1/2
Φ . For the derivation, see Appendix A.2. We will give an

example in the context of coherent sets to illustrate potential applications.

Example 3. Let us consider the well-known periodically driven double gyre flow

ẋ1 = −πA sin(πf(x1, t)) cos(πx2),

ẋ2 = πA cos(πf(x1, t)) sin(πx2)
∂f

∂x
(x1, t),
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with f(y, t) = δ sin(ωt) y2 + (1 − 2δ sin(ωt)) y and parameters A = 0.25, δ =
0.25, and ω = 2π, see [32] for more details. We choose the lag time τ = 10
and define the test points xi to be the midpoints of a regular 120 × 60 box
discretization of the domain [0, 2]×[0, 1]. To obtain the corresponding data points
yi = Ξτ (xi), where Ξτ denotes the flow map, we use a Runge–Kutta integrator
with variable step size. We then apply the singular value decomposition to the
operator described above using a Gaussian kernel with bandwidth σ = 0.25. The
resulting right singular functions are shown in Fig. 3. �

Fig. 3. Numerically computed singular values and right singular functions of Ĉ−1/2
YY ĈYX

Ĉ−1/2
XX associated with the double gyre flow.

5 Conclusion

We showed that the eigendecomposition and singular value decomposition of
empirical RKHS operators can be obtained by solving associated matrix eigen-
value problems. To underline the practical importance and versatility of RKHS
operators, we listed potential applications concerning kernel covariance oper-
ators, conditional mean embedding operators, and kernel transfer operators.
While we provide the general mathematical theory for the spectral decompo-
sition of RKHS operators, the interpretation of the resulting eigenfunctions or
singular functions depends strongly on the problem setting. The eigenfunctions
of kernel transfer operators, for instance, can be used to compute conformations
of molecules, coherent patterns in fluid flows, slowly evolving structures in video
data, or topic clusters in text data [14]. Singular value decompositions of transfer
operators might be advantageous for non-equilibrium dynamical systems. Fur-
thermore, the decomposition of the aforementioned operators can be employed
to compute low-rank approximations or their pseudoinverses, which might open
up novel opportunities in statistics and machine learning. Future work includes
analyzing connections to classical methods such as kernel PCA, regularizing
finite-rank RKHS operators by truncating small singular values, solving RKHS
operator regression problems with the aid of the pseudoinverse, and optimizing
numerical schemes to compute the operator SVD by applying iterative schemes
and symmetrization approaches.
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A Appendix

A.1 Proof of Block SVD

Proof (Lemma 2). Let A admit the SVD given in (2). Then by the definition
of T , we have

T (±ui, vi) = (Avi, A
∗ui) = ±σi(±ui, vi)

for all i ∈ I. For any element (f, h) ∈ span{(±ui, vi)}⊥
i∈I , we can immediately

deduce
0 = 〈(f, h), (±ui, vi)〉⊕ = ±〈f, ui〉F + 〈h, vi〉H

for all i ∈ I and hence f ∈ span{ui}⊥
i∈I and h ∈ span{vi}⊥

i∈I . Using the SVD of
A in (2), we therefore have

T
∣
∣
span{(±ui,vi)}⊥

i∈I

= 0.

It now remains to show that
{

1√
2
(±ui, vi)

}

i∈I
is an orthonormal system in F ⊕

H, which is clear since 〈(±ui, vi), (±uj , vj)〉⊕ = 2 δij and 〈(−ui, vi), (uj , vj)〉⊕ =
0 for all i, j ∈ I. Concluding, T has the form (3) as claimed. ��

A.2 Derivation of the Empirical CCA Operator

The claim follows directly when we can show the identity

Φ�(ΦΦ�)−1/2 = G
−1/2
Φ Φ�

and its analogue for the feature map Ψ. Let GΦ = UΛU� be the eigendecom-
position of the Gramian. We know that in this case we have the SVD of the
operator ΦΦ� =

∑
i∈I λi(λ

−1/2
i Φui) ⊗ (λ−1/2

i Φui), since
〈
λ

−1/2
i Φui, λ

−1/2
j Φuj

〉

H
= λ

−1/2
i uiGΦujλ

−1/2
j = δij .

We will write this operator SVD for simplicity as ΦΦ� = (ΦUΛ−1/2)Λ(Λ−1/2

UΦ�) with an abuse of notation. Note that we can express the inverted oper-
ator square root elegantly in this form as (ΦΦ�)−1/2 = (ΦUΛ−1/2)Λ−1/2

(Λ−1/2UΦ�) = (ΦU)Λ−3/2(UΦ�). Therefore, we immediately get

Φ�(ΦΦ�)−1/2 = Φ�(ΦUΛ−3/2U�Φ�)

= GΦUΛ−3/2U�Φ�

= UΛU�UΛ−3/2U�Φ�

= UΛ−1/2U�Φ� = G
−1/2
Φ Φ�,
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which proves the claim. In the regularized case, all operations work the same
with an additional ε-shift of the eigenvalues, i.e., the matrix Λ is replaced with
the regularized version Λ + εI.
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driven model reduction and transfer operator approximation. J. Nonlinear Sci. 28,
985–1010 (2018)

31. Melzer, T., Reiter, M., Bischof, H.: Nonlinear feature extraction using generalized
canonical correlation analysis. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) Arti-
ficial Neural Networks – ICANN 2001, pp. 353–360. Springer, Heidelberg (2001)

32. Froyland, G., Padberg-Gehle, K.: Almost-invariant and finite-time coherent sets:
directionality, duration, and diffusion. In: Bahsoun, W., Bose, C., Froyland, G.
(eds.) Ergodic Theory, Open Dynamics, and Coherent Structures, pp. 171–216.
Springer, New York (2014)



A Weak Characterization of Slow
Variables in Stochastic Dynamical

Systems

Andreas Bittracher1(B) and Christof Schütte1,2
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Abstract. We present a novel characterization of slow variables for con-
tinuous Markov processes that provably preserve the slow timescales.
These slow variables are known as reaction coordinates in molecular
dynamical applications, where they play a key role in system analysis
and coarse graining. The defining characteristics of these slow variables is
that they parametrize a so-called transition manifold, a low-dimensional
manifold in a certain density function space that emerges with progres-
sive equilibration of the system’s fast variables. The existence of said
manifold was previously predicted for certain classes of metastable and
slow-fast systems. However, in the original work, the existence of the
manifold hinges on the pointwise convergence of the system’s transition
density functions towards it. We show in this work that a convergence
in average with respect to the system’s stationary measure is sufficient
to yield reaction coordinates with the same key qualities. This allows
one to accurately predict the timescale preservation in systems where
the old theory is not applicable or would give overly pessimistic results.
Moreover, the new characterization is still constructive, in that it allows
for the algorithmic identification of a good slow variable. The improved
characterization, the error prediction and the variable construction are
demonstrated by a small metastable system.

1 Introduction

The ability and practice to perform all-atom molecular simulations of more and
more complex biochemical systems has led to an unprecedented increase in the
available amount of dynamical data about those systems. This has exponenti-
ated the importance to identify good chemical reaction coordinates (RCs), low-
dimensional observables of the full system that are associated with the relevant,
often slowly-progressing sub-processes. For one, a meaningful RC permits insight
into the essential mechanisms and parameters of a reaction, by acting as a filter
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for the overwhelming complexity of the data. As an example, computing the free
energy (also known as the potential of mean force) along such a coordinate is typ-
ically used for identifying energy barriers and associated transition states [10,37].
RCs are also essential for the development of accurate reduced dynamical mod-
els. The Mori-Zwanzig formalism and related schemes [18,27,42,44] can be used
to derive approximate closed equations of motion of the dynamics projected onto
the image space of the RC. Depending on the chosen RC, the essential dynami-
cal properties of the reduced model — such as transition rates between reactant
and product — may or may not resemble those of the original system [43].
Finally, accelerated sampling schemes such as metadynamics [20], Blue Moon
sampling [8] and umbrella sampling [38] also rely heavily on an accurate RC to
guide them efficiently into unexplored territory.

In each of those applications, the result depends crucially on the “quality”
of the RC, an elusive measure for how well the RC suits the specified task. In
most cases, this quality can be brought down to how well the RC “captures
the essential dynamics”, in particular the rates of transitions between reactant
and product state (see also [28] for an in-depth review on the effect of poorly
chosen RCs on different classic rate theories). Due to this ambiguity, the search
for universal and mathematically rigorous optimality criteria for RCs remains
an active field of research, and numerous new approaches have been suggested
during the last decade. For reactions involving one clearly defined reactant and
product state, a in multiple ways ideal RC is the committor function [3,23], a
one-dimensional observable that in each point describes the probability to hit the
product state before returning to the reactant state. As the committor function is
notoriously hard to compute, advanced numerical schemes have been developed
to either approximate it efficiently [12], or find RCs that are equivalent by certain
metrics [29]. Still, the computation of committor-like RCs often remains out of
reach for high-dimensional systems.

For systems where the relevant behavior involves transitions between more
than tw states [36], where the reaction is not adequately described by a transi-
tion between isolated states [35], or where the states are not known or cannot
be computed, other optimality criteria must be employed. Here one common
approach is to demand the preservation of the system’s longest (equilibration)
time scales under projection of the dynamics onto the RC. This leads naturally
to a characterization of RCs in terms of the eigenvalues of the system’s transfer
operator, a widely used mathematical tool for time scale analysis in molecular
dynamics and beyond [7,11,19,34,41]. It is in this setting where the authors
and coworkers have previously proposed a novel mathematical framework for
the characterization and numerical computation of ideal RCs [6]. The proposed
theory builds on the insight that in many systems, the equilibration of the fast
sub-processes over time manifests as the convergence of the system’s transition
density functions towards a certain low-dimensional manifold in density space,
the so-called transition manifold (TM). This convergence is observed even if
there is no equivalent low-dimensional structure in state space, such as a transi-
tion pathway between isolated states. Any parametrization of the TM then can
in theory be used to construct an ideal RC.
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The framework demands that the convergence towards the TM must occur
for all transition density functions, i.e., for every conceivable starting state. In
practice however, this rather strong condition is often violated for starting states
with high potential energy, as the associated transition density functions may
stay far away from any sensible candidate TM for all times. The probability to
encounter these states in the canonical ensemble is however exponentially low,
and thus should not contribute significantly to the shape of the RC. Indeed, the
numerical methods built around parametrizing the TM are able to successfully
deal with this problem by heuristically ignoring sparse outliers by tuning the
manifold learning algorithm [4,5].

Still, a rigorous argument for why those outliers can be safely ignored was
lacking so far, a gap that the present article aims to fill. In short, we show that
the distance to the TM does not need to be uniformly low for all transition
density functions, but that the distance is permitted to scale with the potential
energy of the starting state. The RC received by parametrizing the TM is then
of the same quality as in the uniform distance case. This extension to the TM
theory will therefore allow to measure the quality of given RCs, and the numerical
computation of ideal RCs in systems that been previously deemed unsuitable for
the theory.

This paper is structured as follows: Section 2 reviews the time scale-based
definition of good RCs. Section 3 presents the main contribution of this article,
weakened but sufficient conditions for the existence of good RCs. In Sect. 4 we
give an example of a metastable toy system that fulfills the relaxed but not the
original reducibility condition, and demonstrate how the new characterization
can improve the quality of error bounds for the dominant timescales. In Sect. 5,
concluding remarks and an outlook on future work are given.

2 Good Reaction Coordinates

Before introducing the (generalized) transition manifold framework, we first
revisit the fundamental time scale-based definition of good reaction coordinates.

2.1 Timescales of Molecular Dynamics

We consider a time- and space-continuous, reversible and ergodic Markov process
Xt on a state space X ⊂ R

n. In a molecular dynamical system consisting of N
atoms, X often is the Euclidean space describing the three-dimensional positions
of all atoms, i.e., X = R

3N (or X = R
6N if the atom’s momenta are also included).

In this case, Xt is typically described by a thermostated Hamiltonian dynamics
or Langevin dynamics.

Xt is fully characterized by its stochastic transition functions pt(x, ·) : X →
R

+, or, equivalently, by its family of transfer operators T t : L1
μ → L1

μ, t ≥ 0,

T tu(x) =
∫
X

ρ(x′)
ρ(x)

pt(x′, x)u(x′)dx′.
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Here, ρ is the system’s (positive) stationary density, which is unique due to the
ergodicity of Xt, and μ is the associated invariant measure. Operating on L1

μ,
T t can be understood as the evolution operator of densities with respect to μ
under the dynamics.

On L1
μ, T t is a linear Markov operator, [21, Chap. 3], and in particular non-

expansive. Hence, no eigenvalue of T t has absolute value greater than 1. Due
to the uniqueness of the stationary density, the eigenvalue λt

0 := 1 is single; the
associated unique eigenfunction is ϕ0 ≡ 1.

Furthermore, T t is well-defined as an operator T t : Lp
μ → Lp

μ for any 1 ≤ p ≤
∞ [2]. We understand T t as an operator on L2

μ from now on, where we will be
able to exploit the additional Hilbert space structure. In particular, T t is self-
adjoint with respect to the inner product on L2

μ [33], hence its point spectrum is
real and therefore confined to the interval (−1, 1]. Note that T t cannot possess
the eigenvalue −1, as this would imply the existence of an eigenfunction ϕ̃0 �= ϕ0

of T 2t to eigenvalue 1. This however contradicts the uniqueness of ϕ0 as the only
eigenfunction to eigenvalue 1 of T t for all t.

In the following we will always order the eigenvalues so that

1 = λt
0 > λt

1 ≥ λt
2 ≥ · · · .

The associated eigenfunctions ϕi of T t form an orthonormal basis of L2
μ.

Hence, on L2
μ, T t admits the decomposition

T t =
∞∑

i=0

λt
i 〈ϕi, ·〉μ ϕi,

which lets us examine the behavior of Xt on different time scales. The i-th
relaxation rate, i.e., the exponential rate with which the i-th eigenfunction ϕi of
T t decays, is given by

σi = − log(λt
i)/t, i = 0, 1, 2, . . . , (1)

independent of t. These rates, as well as their inverse, the relaxation time scales
ti = 1/σi, i = 0, 1, 2, . . ., measure the influence of the different ϕi on the long
time density transport under T t, and hence are central quantities of the system.

2.2 Reaction Coordinates

A reaction coordinate (RC) now is a continuous map ξ : X → Y ⊂ R
r, where

typically r � n. Note that the term “reaction coordinate” does not imply that
ξ describes a reaction of some sort, it simply is a continuous map. For y ∈ Y, let
Σξ(y) be the y-level set of ξ, i.e.,

Σξ(y) =
{
x ∈ X

∣∣ ξ(x) = y
}
.
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Following [22], we now define the coordinate projection operator Πξ : L1
μ → L1

μ

for a RC ξ by

(
Πξu

)
(x) =

∫
Σξ(ξ(x))

u(x′)dμξ(x)(x′)

=
1

Γ
(
ξ(x)

)
∫

Σξ(ξ(x))

u(x′)ρ(x′) det
(
∇ξ(x′)ᵀ∇ξ(x′)

)−1/2
dσξ(x)(x′),

where Γ(y) is a normalization constant given by

Γ(y) =
∫

Σξ(y)

ρ(x′) det
(
∇ξ(x′)ᵀ∇ξ(x′)

)−1/2
dσy(x′),

and dσy denotes the surface measure on Σξ(y). μy can be understood as the
invariant measure μ conditioned on Σξ(y), and formally is induced by the density

ρy =
ρ

Γ(y)
[
det

(
∇ξᵀ∇ξ

)]−1/2
.

As L2
μ ⊂ L1

μ due to Hölder’s inequality, Πξ is defined on L2
μ as well. Informally,

Πξ has the effect of averaging an input function u over each level set Σξ(y) with
respect to μy.

It has been shown in [6] that Πξ is indeed a projection operator. Moreover,
Πξ is equivalent to the Zwanzig projection operator, described in detail in [17],
although the latter is typically constructed so that its image are functions over
the reduced space Y. For our presentation, however, it is advantageous to define
Πξ to project onto a true subspace of L2

μ (namely the subspace of functions that
are constant on each Σξ(y), y ∈ Y).

The effective transfer operator T t
ξ : L2

μ → L2
μ associated with the RC ξ is

now defined by
T t

ξ = Πξ ◦ T t ◦ Πξ.

Originally considered in [42], T t
ξ has been shown to again be self-adjoint and

bounded in L2
μ-norm by 1 [6]. Hence, the eigenvalues λt

ξ,i, i = 0, 1, 2, . . . of T t
ξ

are also confined to the interval [−1, 1].

2.3 Preservation of Time Scales

Our characterization of good RCs — originally proposed in [6] — now revolves
around the central assumption that the relevant part of the dynamics (the “reac-
tion”) occurs on the slowest time scales of Xt. Moreover, we assume that the
time scales of the reaction are well-separated from non-reactive time scales, i.e.,
t0 > t1 ≥ · · · ≥ td � td+1 for some d ∈ N. This is a sensible and commonly made
assumption [26,31,32,34], as it holds true for many difference classes of chemical
and molecular reactions. However, there are relevant molecular systems whose
effective behavior cannot be explained by its slowest timescales alone [25,40],
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and hence valid criticism of the general equivalence of the slow with the rele-
vant time scales exist. Nevertheless, we assume that the reaction in question is
associated with the d dominant time scales.

With the goal of preserving the dominant time scales under projection onto
the RC, and the close connection between those time scales and the dominant
transfer operator eigenvalues (1), we use the following definition of good RCs:

Definition 1 (Good reaction coordinates [6]). Let λt
i, i = 0, 1, 2, . . . and

λt
ξ,i, i = 0, 1, 2, . . . denote the eigenvalues of T t and T t

ξ , respectively. Let td be
the last time scale of the system that is relevant to the reaction. Let ε > 0.

An RC ξ : X → Y is called a ε-good RC, if for all t > 0 holds

|λt
i − λt

ξ,i| ≤ ε, i = 0, 1, . . . , d. (2)

Informally, we will call ξ a good RC if it is ε-good for small ε.

Alternatively, the following sufficient condition characterizes good RC by the
projection error of the dominant eigenfunctions under Πξ:

Theorem 1 ([6], Corollary 3.6). Let (λt
i, ϕi), i = 1, 2, . . . denote the eigen-

pairs of T t. For any given i, if

‖Πξϕi − ϕi‖L2
μ

≤ ε,

then there is an eigenvalue λt
ξ,i of T t

ξ such that

∣∣λt
i − λt

ξ,i

∣∣ ≤ ε√
1 − ε2

.

Remark 1. By the above theorem, choosing the d dominant eigenfunctions as
the d components of ξ results in a “perfect” RC. However, this approach may
lead to redundancy if the ϕi, i = 1, . . . , d are strongly correlated and can
be parametrized by a common, lower-dimensional ξ. For example, a system
with d metastable sets along a common, one-dimensional transition pathway
would possess d dominant eigenfunctions, but a one-dimensional good RC that
parametrizes the transition pathway (see [6, Sect. 5.2] for a detailed example).

Using eigenfunctions as RCs was also promoted by Froyland et al. [14,15],
for the special case where the timescale separation stems from a pointwise local
separation of the dynamics into a slow and a fast part. Just like for the tran-
sition manifold approach presented in Sect. 3, the short-time equilibration of
the dynamics again plays an important part, but unlike in our approach it is
assumed to take place on certain “fast fibers” of state space. The transition man-
ifold framework can therefore be considered a generalization of the approach of
Froyland et al.
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3 Weak Reducibility of Stochastic Systems

Definition (2) is not constructive, in that it allow one to check the quality of
a given RC, but does not indicate how to find a good RC algorithmically. To
this end, we will now derive a reducibility condition that binds the existence of
good RCs to the existence of a certain low-dimensional structure in the space of
transition density functions. This structure, called the transition manifold, can
be interpreted as the backbone of the essential dynamics, can be visualized, and
ultimately can be used to numerically compute good RCs.

3.1 Condition for Good Reaction Coordinates Based on Transfer
Operator Eigenfunctions

It was shown in [6] that if for some functions ϕ̂i : Y → R the condition

‖ϕi − ϕ̂i ◦ ξ‖∞ ≤ ε, i = 0, 1, . . . , d (3)

holds, then ξ is a ε√
1−ε2 -good RC by Theorem 1. In other words, if the dominant

eigenfunctions are pointwise almost constant along the level sets of ξ, then ξ is
a good RC.

It turns out, however, that condition (3) is unnecessarily strong. To be pre-
cise, the pointwise approximation implied by the ‖ · ‖∞-norm can be replaced
by the following weaker condition. This was already observed previously [6,
Remark 4.3], but has not been proven formally.

Theorem 2. Assume that for an RC ξ : X → Y and some functions ϕ̂i : Y →
R, i = 0, 1, . . . , d holds

∫
Σξ(y)

∣∣ϕi(x′) − ϕ̂i(y)
∣∣dμy(x′) ≤ ε (4)

for all level sets Σξ(y) of ξ. Then

‖Πξϕi − ϕi‖L2
μ

≤ 2ε.

Remark 2. In words, for a specific value y ∈ Y, the dominant eigenfunctions ϕi

do not need to be almost constant everywhere on Σξ(y), but only the average
deviation of ϕi from some value ϕ̂(y) along Σξ(y), weighted by μy, must be
small. Hence, ξ may be a good RC even if ϕi(x′) substantially deviates from
the value ϕ̂(y), as long as it is in regions where the measure μy is small. These
are precisely the regions of state space that are lowly-populated in the canonical
ensemble, and thus are statistically irrelevant.

Proof (Proof of Theorem 2). The projection error is

‖Πξϕi − ϕi‖L2
μ

≤ ‖Πξϕi − (ϕ̂i ◦ ξ)‖L2
μ

+ ‖(ϕ̂i ◦ ξ) − ϕi‖L2
μ
.
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For the first summand, consider
(
Πξϕi

)
(x) =

∫
Σξ(ξ(x))

ϕi(x′)dμξ(x)(x′)

=
∫

Σξ(ξ(x))

(
ϕ̂i

(
ξ(x′)︸ ︷︷ ︸
=ξ(x)

)
+ ϕi(x′) − ϕ̂i

(
ξ(x′)

))
dμξ(x)(x′)

= ϕ̂i

(
ξ(x)

)
+

∫
Σξ(ξ(x))

(
ϕi(x′) − ϕ̂i

(
ξ(x′)

))
dμξ(x)(x′),

and hence

‖Πξϕi − (ϕ̂i ◦ ξ)‖2
L2

μ
≤

∫
X

( ∫
Σξ(ξ(x))

∣∣ϕi(x′) − ϕ̂i

(
ξ(x′)

)∣∣dμξ(x)(x′)

︸ ︷︷ ︸
≤ε

)2

dμ(x)

≤ ε2

∫
X

dμ(x) = ε2.

For the second summand, we get with the co-area formula [13]

‖(ϕ̂i ◦ ξ) − ϕi‖2
L2

μ
=

∫
Y

∫
Σξ(y)

∣∣ϕ̂i

(
ξ(x′)) − ϕi(x′)

∣∣2 dμy(x′)Γ(y)dy

≤
∫
Y

(∫
Σξ(y)

∣∣ϕ̂i

(
ξ(x′)) − ϕi(x′)

∣∣dμy(x′)

︸ ︷︷ ︸
≤ε

)2

Γ(y)dy

≤ ε2

∫
Y

Γ(y)dy = ε2.

3.2 Weak Reducibility and Weak Transition Manifolds

From the abstract condition (4) of good RCs, one can now derive a constructive
condition for the existence of a good RC. We will also repeat the strong version
of this condition, based on (3), which was originally derived in [6].

The parametrizations of certain manifolds will play a central role in our
constructions. Specifically, we consider the special class of manifolds M ⊂ L1

for which a compact and connected set Y ⊂ R
r, as well as a homeomorphism

E : M → Y exists, such that
M = E−1(Y). (5)

Y will later become the image space of our constructed RC.
For a fixed lag time τ > 0, we now call the set of functions

M̃ =
{
pτ (x, ·) | x ∈ X

}
⊂ L1

the fuzzy transition manifold. Note that M̃ is not a manifold; the reason behind
the choice of name will however soon become clear. Now, for any manifold M ⊂ M̃

of form (5), define the projection onto M by

Q : X → M, x �→ arg min
f∈M

‖f − pτ (x, ·)‖L2
1/μ

. (6)
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Definition 2. We call the system strongly (ε, r, τ)-reducible, if there exists a
manifold M ⊂ M̃ of form (5) so that for all x ∈ X

∥∥Q(x) − pτ (x, ·)
∥∥

L2
1/μ

≤ ε. (7)

We call any such M a strong transition manifold.
We call the system weakly (ε, r, τ)-reducible, if there exists a manifold M ⊂ M̃

of form (5) so that for all x ∈ X

∫
ΣQ(Q(x))

∥∥Q(x′) − pτ (x′, ·)
∥∥

L2
1/μ

dμQ(x)(x′) ≤ ε, (8)

where ΣQ(f) is the f -level set of Q. We call any such M a weak transition
manifold.

Example 1. As an illustration of the core idea behind the TM construction,
we give a simple example of a metastable system with a strong TM, originally
published in [5].

Consider a two-dimensional system described by the overdamped Langevin
equation

dXt = −∇V (Xt)dt +
√

2β−1dWt, (9)

where V is the potential energy function and Wt is a Wiener diffusion process
scaled by the inverse temperature β ∈ R

+. Now suppose that V possesses two
local energy wells, connected by a linear, one-dimensional transition path, such
as in Fig. 1(left). The “reaction” in this system is the rare transition from one
well to the other. Hence, an intuitively good RC is the horizontal coordinate of a
point, ξ(x) = x1, as it describes the progress of x along the transition pathway.

The key insight now is that, if the lag time τ was chosen long enough for
a typical trajectory to move to one of the metastable sets, then the transition
densities pτ (x, ·) ∈ L1 also essentially depend only on the progress of x along
the transition path. The reason is that the pτ (x, ·) are essentially convex combi-
nations of two Gaussians1 centered in the energy minima A and B,

pτ (x, ·) ≈ c(x)ρA(·) + (1 − c(x))ρB(·)

with the convex factor c(x) determined by the progress of the starting point x
along the transition path. This is represented in Fig. 1(right) by the fact that the
transition densities for each gray and white starting point, respectively, concen-
trate around one point each in L1. Hence, overall, the fuzzy TM M̃ concentrates
around a one-dimensional manifold in L1. This manifold is therefore a strong
TM.

An example of a system with only a weak TM will be discussed in detail in
Sect. 4.
1 To be precise, the pτ (x, ·) are approximately convex combinations of the quasi-

stationary densities [16] of the metastable sets, that here however resemble Gaus-
sians.



A Weak Characterization of Slow Variables in Stochastic Dynamical Systems 141

Fig. 1. Illustration of the transition manifold concept for metastable systems. Left:
energy potential of a two-dimensional metastable system. Right: Sketch of the (fuzzy)
TM for this system. Starting points x with the same progress along the transition
path get mapped to approximately the same density under the map x �→ pτ (x, ·).
Geometrically, this means that the fuzzy TM concentrates around a one-dimensional
manifold in L1.

Remark 3. Note that we slightly deviate from the original definition of the tran-
sition manifold in [6] by requiring that M ⊂ M̃ instead of only M ⊂ L1. Also note
that Q is now defined on X and not on M̃ as originally in [6]. The interpretation
of Q as “closest point projection onto M” is still valid, however.

Condition (7) indicates whether the fuzzy TM M̃ clusters ε-closely around
an actual manifold M with respect to the L2

1/ρ-norm. Again, condition (8) rep-
resents a relaxation of this condition, as the integral introduces a weighting with
respect to dμQ(x). Informally speaking, for points x′ with ρ(x′) = O(ε), a dis-
tance

∥∥Q(x′) − pτ (x′, ·)
∥∥

L2
1/μ

= O(1) is now permitted without violating the

reducibility condition.
It was shown in [6] that strongly reducible systems possess good RCs. The

following theorem now shows that weakly reducible systems still possess good
RCs. It characterizes Q as a good “M-valued RC” (cf. (4)):

Theorem 3. Let the system be weakly (ε, r, τ)-reducible. Then for each eigenpair
(λτ

i , ϕi) of the transfer operator T τ there exists a map ϕ̃i : M → R so that for
all x ∈ X ∫

ΣQ(Q(x))

∣∣ϕi(x′) − ϕ̃i

(
Q(x′)

)∣∣dμQ(x)(x′) ≤ ε

|λτ
i | .

Proof. As M ⊂ M̃, for x ∈ X we can choose q(x) ∈ X so that Q(x) = pt
(
q(x), ·

)
.

Let ϕ̃i : M → R be defined by

ϕ̃i

(
Q(x)

)
= ϕi

(
q(x)

)
.

Then∫
ΣQ(Q(x))

∣∣ϕi(x
′) − ϕ̃i

(Q(x′)
)∣∣dμQ(x)(x

′) =
∫
ΣQ(Q(x))

∣∣ϕi(x
′) − ϕ̃i

(Q(x)
)∣∣dμQ(x)(x

′)

=

∫
ΣQ(Q(x))

∣∣ϕi(x
′) − ϕi

(
q(x)

)∣∣dμQ(x)(x
′) =: (�)
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As the system is reversible, the detailed balance condition ρ(x)pτ (x, x′′) =
ρ(x′′)pτ (x′′, x) holds. Hence, the eigenfunctions ϕi of T τ have the property

λτ
i ϕi = T τϕi =

∫
X

ρ(x′′)
ρ(x)

pτ (x′′, ·)ϕi(x′′) dx′′ =
∫
X

ϕi(x′′)pτ (·, x′′)dx′′,

and thus

(
) =
∫

ΣQ(Q(x))

1
|λτ

i |

∣∣∣∣
∫
X

ϕi(x′′)
(
pτ (x′, x′′) − pτ

(
q(x), x′′))dx′′

∣∣∣∣dμQ(x)(x′).

Swapping integrals gives

(
) ≤ 1
|λτ

i |

∫
X

∣∣ϕi(x′′)
∣∣
∫

ΣQ(Q(x))

∣∣∣pτ (x′, x′′) − pτ
(
q(x), x′′)∣∣∣dμQ(x)(x′)dx′′,

and with Hölder’s inequality, ‖fg‖L1 ≤ ‖f‖L2
μ
‖g‖L2

1/μ
, we get

≤ 1
|λτ

i | ‖ϕi‖L2
μ︸ ︷︷ ︸

=1

∥∥∥∥
∫

ΣQ(Q(x))

∣∣∣pτ (x′, ·) − pτ
(
q(x), ·

)∣∣∣dμQ(x)(x′)
∥∥∥∥

L2
1/μ

.

Applying triangle inequality and using pτ
(
q(x), ·

)
= Q(x) gives

(
) ≤ 1
|λτ

i |

∫
ΣQ(Q(x))

∥∥∥pt(x′, ·) − pt
(
q(x), ·

)∥∥∥
L2

1/μ

dμQ(x)(x′)

=
1

|λτ
i |

∫
ΣQ(Q(x))

∥∥pt(x′, ·) − Q(x)︸ ︷︷ ︸
=Q(x′)

∥∥
L2

1/μ

dμQ(x)(x′).

By our assumption, this integral is at most ε. Hence,

(
) ≤ ε

|λτ
i | .

As the last step, we can now construct from Q an r-dimensional RC that
meets the condition (2):

Corollary 1. Let the system be weakly (ε, r, τ)-reducible. Let E : M → R
r be

any parametrization of the transition manifold M. Then for the RC

ξ : X → R
r, x �→ E

(
Q(x)

)
(10)

and the eigenpairs (λτ
i , ϕi) of T τ holds

‖Πξϕi − ϕi‖L2
μ

≤ 2ε

|λτ
i | . (11)
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Proof. Let ϕ̃i : M → R as in the proof of Theorem 3, and define ϕ̂i : Y → R via

ϕ̂i(y) := ϕ̃i

(
E−1(y)

)
.

Note that for any x ∈ X holds Σξ

(
ξ(x)

)
= ΣQ(Q(x)). Thus,∫

Σξ(ξ(x))

∣∣ϕi(x
′) − (

ϕ̂i ◦ ξ
)
(x′)

∣∣dμy(x
′) =

∫
ΣQ(Q(x))

∣∣ϕi(x
′) − (

ϕ̃i ◦ Q)
(x′)

∣∣dμQ(x)(x
′)

≤ ε

|λτ
i | ,

where the last inequality is Theorem 3. The assertion now follows from
Theorem 2. ��
If (λτ

i , ϕi) is dominant, i.e., λτ
i ≈ 1, then the projection error (11) is small. In

that case, ξ : x �→ E
(
Q(x)

)
is indeed a good RC, by Theorem 1.

Remark 4. Any RC of form (10) is called an ideal RC [6]. As in practice, however,
neither the projection Q nor the parametrization E of M are known, this RC
cannot be computed analytically. Instead, for strongly reducible systems, an
approximate parametrization of M is computed by applying manifold learning
methods to a finite sample of the fuzzy TM M̃ [4–6]. Our ongoing efforts to
extend these techniques to the newly-identified weak reducibility condition will
be discussed in the outlook in Sect. 5.

4 Numerical Example: A Weakly Reducible System

In order to compare the strong and weak reducibility condition, we consider
a simple two-dimensional metastable system that possesses a one-dimensional
RC. This system, originally considered in [22], is governed by an overdamped
Langevin equation of form (9), where the potential energy function V is given
by

V (x) = (x2
1 − 1)2 + 10(x2

1 + x2 − 1)2.

We choose the inverse temperature β = 1, and consider the system on the domain
X = [−2, 2] × [−2, 2] (though no boundary conditions have been enforced in
the following computations). The potential V , depicted in Fig. 2(a), possesses
two local minima in the states A = (−1, 0) and B = (1, 0). The reaction in
question hence is the transition from the area around one minimum (without
loss of generality state A) to the other (state B). The minimum energy pathway
(MEP) [24], which in the zero temperature limit supports almost all reactive
trajectories [30], is indicated by the white dashed line.

The spectrum of T τ for τ = 0.5, computed by a Ulam method [39] from
a long, equilibrated trajectory of the system, exhibits a spectral gap after λ1

(Fig. 2(b)). The relevant reaction, i.e., the transition between the two metastable
sets, is associated primarily with the process on the dominant timescale t1.

The (MEP) of the potential is given by the set

AMEP = {(x1, x2) ∈ X | x2 = 1 − x2
1}.

Intuitively, the manifold
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Fig. 2. (a) Energy potential of a two-dimensional drift-diffusion system. The reaction
of interest here is the transition between the two local minima. (b) Eigenvalues of the
full transfer operator T τ and of the effective transfer operator T τ

ξ1 projected onto the
computed RC ξ1.

MMEP = {pτ (x, ·) | x ∈ AMEP}

should constitute a good TM. This statement should come with a warning: The
intuition that the MEP allows to construct a good TM is wrong in general. There
are many cases where the relevant transition pathways are completely different
from the MEPs of the underlying system, mainly because for finite temperatures
all statistically relevant transition paths concentrate in regions not close to the
MEP and only converge to the MEP in the limit of zero temperature. In the
case considered herein, however, relevant transition paths concentrate around
the MEP even for finite temperatures.

Before quantitatively assessing whether or not MMEP is indeed is a good TM,
we visualize the fuzzy TM of the system, i.e., the set M̃ = {pτ (x, ·) | x ∈ X}.
As M̃ lies in the function space L1, it first needs to be embedded into a (finite-
dimensional) Euclidean space. This is done by computing the mean of every
pτ (x, ·) ∈ M̃ via the function m : L1 → R

2,

m
(
pτ (x, ·)

)
:=

∫
X

x′ pτ (x, x′)dx′. (12)

The set m
(
M̃

)
then serves as the Euclidean embedding2 of M̃.

2 While for general dynamics m is not an embedding of the fuzzy TM in the strict
topological sense, we conjecture that in this system, no two transition densities
pτ (x1, ·), pτ (x2, ·) possess the same mean, and hence that m is homeomorphic on M̃

and its image. Still, we neither formally confirm this, nor assess the distortion of M̃
under m, and hence m(M̃) as a replacement for M̃ should be handled with care.
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Furthermore, as m
(
M̃

)
is an infinite set, only a finite subsample can be visu-

alized. For this we draw a large number, specifically N = 8000, of starting points
{x1, . . . , xN} uniformly from X and for each xk compute mk := m

(
pτ (xk, ·)

)
.

Here the integral in (12) is approximated via Monte Carlo quadratur, i.e., for
M � 1,

m
(
pτ (xk, ·)

)
≈ 1

M

M∑
l=1

z
(l)
k , (13)

where the z
(l)
k are samples of the density pτ (xk, ·). These were computed numer-

ically by an Euler-Maruyama integrator of (9), starting in xk, with a different
random seed for each l = 1, . . . , M .

The points mk are shown in Fig. 3. We observe that most of the mk lie close
to a parabola-like structure, though there appear to exist systematic outliers,
associated with starting points from the high energy regions in the lower part of
X. The maximum distance is assumed by the starting point x∗ = (0,−2). The
parabola is exactly the Euclidean embedding of MMEP, which is also shown in
Fig. 3.

Fig. 3. Euclidean embeddings via the mean embedding function m of the fuzzy TM
M̃, and the TM based on the minimum energy pathway, MMEP. Shown are N = 8000
sample points of m

(
M̃

)
, and N = 100 sample points of m

(
MMEP

)
. m

(
M̃

)
appears to

cluster around m
(
MMEP

)
, except for outliers from the high energy regions below the

MEP.

However, the outliers prevent MMEP from being a good strong TM by Def-
inition 2. To be precise, for the point x∗ = (0,−3), we get for the distance
in (7) ∥∥Q(x∗) − pt(x∗, ·)

∥∥
L2

1/μ

≈ 2.5, (14)

where again finite samples of M̃ and MMEP, and kernel density estimations of
the pt(x, ·) were used in the computation. Using (14) as a lower bound for the
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eigenvalue approximation (2) via Theorems 2 and 1 is of course worthless, hence
MMEP is not a strong TM.

On the other hand, for the defining condition (8) of weak reducibility holds
∫

ΣQ(Q(x∗))

∥∥Q(x′) − pτ (x′, ·)
∥∥

L2
1/μ

dμQ(x∗)(x′) ≈ 0.02 (15)

for the problematic point x∗. Assuming this value is indeed an upper bound
for (8), the system is weakly reducible with parameter ε = 0.06, and MMEP is
the corresponding weak TM. The eigenvalue error for λτ

1 predicted by Theorems 2
and 1 then is

|λτ
1 − λτ

ξ,1| ≤ 0.06, (16)

for any RC ξ of the form (10).
To confirm this error bound, we now construct such an RC. For this, a

parametrization E of MMEP must be chosen. Any such parametrization is suffi-
cient, for simplicity we choose

E
(
pτ (x, ·)

)
:= x1,

i.e., the map of pτ (x, ·) onto the first component x1 of its starting point x. Next,
the projection Q of M̃ onto the TM MMEP is required. In order to avoid the
costly calculation of kernel density estimates for the large number of starting
points, and to avoid the badly-conditioned scaling by the factor 1/ρ, we replace
the L2

1/ρ distance in (6) by the Euclidean distance between the mean-embedded
densities, i.e., utilize

Q̃(x) = arg min
f∈MMEP

∥∥m(f) − m
(
pτ (x, ·)

)∥∥
2
.

Numerically, this projection is approximated by choosing from the 100 sample
points of m(MMEP) that are shown in Fig. 3 the point of minimum distance from
m(pτ (x, ·)). The point m(pτ (x, ·)) is here again computed via (13). While using
the projection Q̃ instead of Q might slightly distort the computed RC, it will
have a negative impact on the quality of the RC, so if the bound (16) holds for
Q̃, it will hold for Q as well. Moreover, it has been shown in [5] that the L2

1/ρ

distance is equivalent to the distance in certain embedding spaces.
The final RC is then given by ξ1 : x �→ E

(
Q̃(pτ (x, ·))

)
. By numerically eval-

uating ξ1 at the 8000 sample points (where the pτ (x, ·) are again approximated
by finite samples) and interpolating the resulting values bilinearly, we receive
a continuous RC on X. Figure 4 shows the level plot of ξ1. We see that the
level sets of ξ1 are essentially identical to those of the dominant eigenfunction
ϕ1, also shown in Fig. 4. This is not surprising, as ξ1 is constructed to fulfill the
requirements of Theorem 1, i.e., the dominant eigenfunctions are required to be
almost invariant under averaging over the level sets of ξ1. As there is only one
dominant eigenfunction ϕ1, and ξ1 is also one-dimensional, this implies that the
level sets of ξ1 and ϕ1 are almost identical. Note however that the precise ranges
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Fig. 4. Level plots of the RCs ξ1 computed by the TM method, a naively-constructed
RC ξ2, as well as the dominant eigenfunction ϕ1 of T τ . We see that the level sets of
ξ1 and ϕ1 are essentially identical.

of ξ and ϕ1 are not necessarily identical, but strongly depend on the chosen
parametrization E .

The effective transfer operator T τ
ξ1

associated with ξ1 can again be approxi-
mated by an Ulam method. Its leading eigenvalues, shown in Fig. 3(b), approxi-
mate the eigenvalues of the full transfer operator T τ very well. In particular, for
the second dominant eigenvalue holds

|λτ
1 − λτ

ξ,1| ≈ 0.001.

As a consequence, the relaxation rate of the projected system ξ1(Xt), denoted
σξ1 and computed from λξ,1 via (1), also approximate the rate of the full system
σfull very well; we have σξ1 ≈ 0.43, σfull ≈ 0.43 . In contrast, projections onto
other, naively chosen RCs, such as

ξ2(x) := x1,

seem to systematically over-estimate the equilibration rate, hence under-
estimates the metastability of the system. Specifically, we have σξ2 ≈ 0.46.
Reduced models built based on ξ2 would therefore run the risk of equilibrating
quicker than the full model by artificially increasing the number of transitions.

That said, the difference between |σξ1 − σξ2 | ≈ 0.03 is rather small, so the
naive RC ξ2 can already be considered quite good. The reason is that at low
temperatures the dynamics concentrates near the MEP, and here for each level
set of ξ2 there exists a level set of ξ1 that is close (in the sense that the mini-
mum pairwise point distance is small), and the RCs are both smooth. Still, the
difference is measurable, and this causes the discrepancy.
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Overall, this example confirms that

(1) the RC ξ1 derived from a parametrization of MMEP is good, and
(2) the error bound (16) derived from the characterization of MMEP as a weak

TM is reasonably accurate.

5 Conclusion and Outlook

In this work, we derived an improved and generalized characterization of good
reaction coordinates for timescale-separated stochastic processes. We built upon
a recently developed framework that constructs good RCs from parametrizations
of the so-called transition manifold, a potentially low-dimensional manifold in the
space of probability densities. We have shown that the criteria on the underlying
system to possess such a manifold were overly strict, in the sense that certain
systems with demonstrated good reaction coordinates do not possess a transition
manifold by the old definition. We thus provided an alternative, relaxed definition
of the transition manifold that is applicable to a larger class of systems, while
still allowing the construction of good reaction coordinates.

One natural next step would be to implement the novel definition of weak
TMs into a data-driven algorithm for the identification of good RCs. Unlike
in the toy example from Sect. 4, the parametrization of the transition mani-
fold (or of a suitable candidate) is not known analytically in practice. Instead,
an approximate parametrization is identified by applying a nonlinear manifold
learning algorithm to a large sample of M̃ (or a suitable embedding thereof) [4].
Many manifold learning algorithms, such as the diffusion maps algorithm [9] can
be tuned to ignore outliers, which can be seen as a heuristic way weighing with
respect to the invariant measure μ. A more rigorous approach however would
be to directly implement the weighted distance (8) into the diffusion maps algo-
rithm. This could be achieved by using the target measure-extension of diffusion
maps [1], which at the same time allows one to estimate the in general unknown
measure μ from data.
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Abstract. Rare weather and climate events, such as heat waves and
floods, can bring tremendous social costs. Climate data is often limited
in duration and spatial coverage, and so climate forecasting has often
turned to simulations of climate models to make better predictions of
rare weather events. However very long simulations of complex models,
in order to obtain accurate probability estimates, may be prohibitively
slow. It is an important scientific problem to develop probabilistic and
dynamical techniques to estimate the probabilities of rare events accu-
rately from limited data. In this paper we compare four modern meth-
ods of estimating the probability of rare events: the generalized extreme
value (GEV) method from classical extreme value theory; two impor-
tance sampling techniques, geneaological particle analysis (GPA) and the
Giardina-Kurchan-Lecomte-Tailleur (GKLT) algorithm; as well as brute
force Monte Carlo (MC). With these techniques we estimate the proba-
bilities of rare events in three dynamical models: the Ornstein-Uhlenbeck
process, the Lorenz ’96 system and PlaSim (a climate model). We keep
the computational effort constant and see how well the rare event proba-
bility estimation of each technique compares to a gold standard afforded
by a very long run control. Somewhat surprisingly we find that classi-
cal extreme value theory methods outperform GPA, GKLT and MC at
estimating rare events.

1 Extremes and Rare Event Computation.

Rare weather and climate events such as heat waves, floods, hurricanes, and
the like, have enormous social and financial consequences. It is important to
be able to estimate as accurately as possible the probability of the occurrence
and duration of such extreme events. However the time series data available
to predict rare events is usually too short to assess with reasonable confidence
the probability of events with very long recurrence times, for example on the
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order of decades or centuries. In this regard, one may consider return levels of
exceedances which represent the level that is expected to be exceeded on average,
say, once every 100 years by a process. For example, a 100-year return level
estimate of a time series of temperature or precipitation data would tell us the
temperature or amount of precipitation that is expected to be observed only once
in 100 years. It is common, however, that the amount of weather data available
is limited in spatial density and time range. As a result, climate forecasting
has often turned to simulations of climate models to make better predictions
of rare weather events. These simulations are not without limitations; a more
accurate model requires a large amount of inputs to take into account most
of the environmental factors which impact weather. With these more complex
models, very long simulations may be required to obtain probability estimates
of rare events with long return times. These simulations may be very slow and
have motivated the study of statistical techniques which allow for more accurate
rare event probability estimates with lower computational cost.

One approach to estimate the probability of rare events or extremes is to use
classical extreme value theory, perhaps aided by clustering techniques or other
statistical approaches suitable for the application at hand. Other techniques to
accurately estimate the probabilities of rare events include importance sampling
(IS) methods. In general, importance sampling is a probabilistic technique which
allows us to choose those trajectories or paths in a random or deterministic model
which will most likely end in an extreme event. This reduces the number of long
trajectories that are required to obtain an estimate on the tail probabilities of
extremes and essentially changes the sampling distribution to make rare events
less rare. The goal of importance sampling is not only to estimate probabilities
of rare events with less computational cost, but also more accurately in that the
ratio of the likely error in estimation to the probability of the event is lessened.

Importance sampling algorithms have been successfully applied in many
fields, especially in chemical and statistical physics [3,26,28]. Recently these
techniques have been applied to dynamical systems and dynamical climate mod-
els [27,29]. In this paper we will consider two similar types of IS techniques,
geneaological particle analysis (GPA) and the Giardina-Kurchan-Lecomte-
Tailleur (GKLT) algorithm. The GKLT algorithm is designed to estimate prob-
abilities of events such as heatwaves as it considers time-averaged quantities.
GKLT is motivated by ideas from large deviations theory, though in its imple-
mentation it does not explicitly require calculation of large deviation quantities
such as rate functions.

The main goal of this paper is to compare the performance of the gener-
alized extreme value (GEV) method with GPA, GKLT and brute force Monte
Carlo (MC) at estimating rare events of our test models: the Ornstein-Uhlenbeck
process, the Lorenz ’96 system and PlaSim (a climate model). We keep the com-
putational effort constant and see how well the rare event probability estimation
of each technique compares to a gold standard afforded by a very long run con-
trol. Somewhat surprisingly we find that GEV outperforms GPA, GKLT and
MC at estimating rare events. Perhaps this advantage comes from the fact that
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GEV methods are parametric and maximum likelihood estimation, in practice,
results in close to optimal parameters and confidence intervals.

2 The Four Methods

Extreme value theory is a well-established branch of statistics [5,8,23]. Over the
last ten years or so the theory has been investigated in the setting of chaotic
dynamics, for a state of the art review see [2, Chapters 4 and 6]. The goal
of extreme value theory is to estimate probabilities associated to rare events.
Another way to approach this problem is via importance sampling. Recently
ideas from importance sampling have been successfully applied to several dynam-
ical models (a non-exhaustive list includes [16,17,19,20]). How do the methods
compare, for a given computational cost, at accurately determining the proba-
bilities of rare events? We now describe the four methods we investigate in this
paper.

2.1 Generalized Extreme Value Distribution (GEV)

There are two main approaches for classical extreme value theory: peaks over
threshold; and the block maxima method. They are equivalent mathemati-
cally [5], but more research has been done on the block maxima method in
the setting of deterministic models (for a treatment of this topic and further ref-
erences see [2, Chapters 4 and 6]). We will use the block maxima method in this
paper. In the context of modeling extremes in dynamical models, Galfi et al. [14]
have used the peaks over threshold method to benchmark their large deviations
based analysis of heat-waves and cold spells in the PUMA model of atmospheric
circulation. Given a sequence of iid random variables {X1, X2, . . . , Xn, . . .} it is
known that the maxima process Mn = max{X1, X2, . . . , Xn} has only three pos-
sible non-degenerate limit distributions under linear scaling: Types I (Gumbel),
II (Fréchet) and III (Weibull) [13], no matter the distribution of X1. By lin-
ear scaling we mean the choice of a sequence of constants An, Bn such that
P(An(Mn − Bn) ≤ y) → H(y) for a nondegenerate distribution H. The extreme
value distributions are universal and play a similar role to that of the Gaussian
distribution in explaining a wide variety of phenomena. These three distributions
can be subsumed into a Generalized Extreme Value (GEV) distribution

G(x) = exp
(
− [1 + ζ

( x − μ

σ

)
]
−1
ζ

)
(∗)

defined for {x : 1 + ζ
( x−μ

σ

)
> 0} with three parameters −∞ < μ < ∞, σ > 0,

−∞ < ζ < ∞. The parameter μ is the location parameter, σ the scale and ζ
the shape parameter (the most important parameter as ζ determines the tail
behavior). A type I distribution corresponds to the limit as ζ → 0, while Type
II corresponds to ζ > 0 and Type III to ζ < 0. The three types differ in the
behavior of the tail of the distribution function F for the underlying process
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(Xi). For type III the Xi are essentially bounded, while the tail of F decays
exponentially for Type I and polynomially (fat tails) for Type II.

The advantage of using GEV over brute force fitting a tail distribution by
simulation or data collection is that a statistical distribution is assumed, and only
three parameters need to be determined (like fitting a normal distribution, where
only 2 parameters need to be estimated). This has enormous advantages over
methods which try to determine an a priori unknown form of distribution. The
GEV parameters may be estimated, for example, by the method of maximum
likelihood. Once the parameters are known G(x) can be used to make predictions
about extremes. This is done for a time series of observations in the following
way. A sequence of observations are taken X1, X2, ... and grouped into blocks of
length m (for example it could be daily rainfall amounts clumped into blocks of
one year length). This gives a series of block maxima Mm,1, Mm,2, ... where Mm,�

is the maximum of the observations in block � (which consists of m observations).
Using parameter estimation like maximum likelihood, the GEV model is fitted
to the sequence of Mm,� to yield μ, σ and ζ . The probability of certain return
levels of exceedance for the maximum of time-series of length m are obtained
by inverting (*) and subtracting from 1. For example, m could correspond to a
length of one year made of m = 365 daily rainfall data points, then the result is
the level of rainfall a that the yearly maximum is expected to exceed once every
1/(1 − G(a)) years.

One issue in the implementation of GEV is the possibly slow rate of con-
vergence to the limiting distribution. There are some results [12,22] on rates
of convergence to an extreme distribution for chaotic systems, but even in the
iid case rates of convergence may be slow [21]. Another is the assumption of
independence. Time-series from weather readings, climate models or determin-
istic dynamical systems are usually highly correlated. There are conditions in
the statistical literature [6,11,15,23] under which the GEV distributional limit
holds for maxima Mn of observables φ(Xj) which are “weakly dependent” i.e. the
underlying Xj are correlated, and which ensure that Mn has the same extreme
value limit law as an iid process with the same distribution function. Usually two
conditions are given, called Condition D2 (a decay of correlations requirement),
and Condition D

′

(which quantifies short returns) which need to be checked. Col-
let [6] first used variants of Condition D2 and Condition D

′

to establish return
time statistics and extremes for certain dynamical systems. Recent results [2]
have shown that maxima of time-series of Hölder observables on a wide variety
of chaotic dynamical systems (Lorenz models, chaotic billiard systems, logistic-
type maps and other classical systems) satisfy classical extreme value laws. The
development of extreme value theory for deterministic dynamical systems has
been an intensive area of research. For the current state of knowledge we refer
to “Extremes and Recurrence in Dynamical Systems” [2, Chapters 4 and 6].

Even using a parametric model like GEV there is still an issue of having
enough data. There are several approaches to extract the most information pos-
sible from given measurements. For example, in [1,4] sophisticated clustering
techniques based on information theory ideas were used to group measurements
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from different spatial locations and amplify time-series of temperature record-
ings to improve the validity of GEV estimates for annual summer temperature
extremes in Texas and Germany.

Despite these caveats this paper shows that GEV works very well in estimat-
ing probabilities of rare events in realistic models such as PlaSim, performing
better at the same computational cost than MC and the two IS techniques we
investigate.

2.2 Brute Force Monte Carlo

Given a random variable X distributed according to a distribution ρ(x), we want
to estimate the probability of a rare event,

γA = P(X ∈ A) � 1

As a naive approach, one could do this by a brute force Monte Carlo (MC)
estimate,

γ̂A(N) =
1
N

N∑
i=1

1A(Xi)

for some sequence of random variables Xi sampled from ρ(x). Here, E(γ̂A) = γA
(as γ̂A is an unbiased estimator) and for large enough N,

√
N γ̂A(N) ∼ N(γA, σ

2(γ̂A))

by the central limit theorem (where valid). The relative error of an estimator is
defined to be the standard deviation of the estimator divided by the estimated
quantity. As

σ2(1A) = E((1A(X) − γA)
2) = E(1A(X)) − γ

2
A = γA − γ2A ≈ γA

for small γA, and Varγ̂A(N) =
VarγA

N , the relative error is estimated as

σ(γ̂A)(N)/γA ≈
1

√
NγA
,

which is large for small γA. This analysis can be found in [16].

2.3 Importance Sampling Techniques

Importance sampling methods work to lower the relative error by a change of
measure from ρ to another measure ρ̃. The idea is to change the distribution of
X in a way that rare events are sampled more often under ρ̃ and if the steps
in the algorithm by which we do this are accounted for, we obtain an accurate
estimate of the probability of the rare event under ρ with a significantly decreased
relative error in our estimator. In our applications X is a real-valued random
variable (distance from the origin in Ornstein-Uhlenbeck process, energy level in
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the Lorenz’96 model and temperature or averaged temperature in the PlaSim
model) and rare events will correspond to high values of X.

We alter the probability of rare events by using a weight function whose goal
is to perform a change of measure. Provided X has tails which decay exponen-
tially, the weight function can be chosen as an “exponential tilt”. We now provide
an illustration of the exponential tilt in the context of a normally distributed
random variable. Details for the following estimates are provided in [16].

Suppose we want to estimate the probability γA of a rare event A = {X > a}
for X ∼ N(0, 1) so that ρ(X) = e−x

2/2. If we choose,

ρ̃(X) =
ρ(X)eCX

E(eCX )
=

1
√

2π
exp[

−(X − C)2

2
] (1)

we obtain a shift of the average by C. The error of our estimate in the shifted
distribution is given by its variance,

σ2(γ̃A) = PC,1(X > a)eC
2
− γ2A

where PC,1 denotes the probability under a normal distribution with mean C
and variance 1. If we take a = 2 there is a unique minimum of the variance for
a value of C close to 2. In this example a decrease of relative error by a factor
of roughly 4 is produced. Because of the scaling 1√

NγA
it would take a 16 times

longer brute force run to achieve this result. We remark that this exponential tilt
of the original distribution results in an optimal value of C(a) for each threshold
a for which γA = P(X > a). Part of the finesse in using IS techniques is to tune
the parameter C.

We now describe the two importance sampling techniques we investigate.

2.3.1 Genealogical Particle Analysis
Genealogical particle analysis (GPA) [16,17] is an importance sampling algo-
rithm that uses weights to perform a change of measure, by a weight function
V(x) (in the previous example V(x) was taken to be Cx but V(x) is application
specific) applied to the original distribution of particles xt under the dynam-
ics. When we talk of particles we may mean paths in a Markov chain model
or trajectories in a dynamical model such as the Ornstein-Uhlenbeck process or
Lorenz’96. These weights can be thought of as measuring the performance of
a particle’s trajectory. If the particle is behaving as though it comes from the
distribution tilted by the weight function V(x) then it is cloned, otherwise it is
killed and no longer used in the simulation. The act of killing or cloning based on
weights is performed at specified time steps separated by length τ. We will refer
to τ as the resampling time. In theory, the resampling time can chosen between
the limits of the Lyapunov time, so as to not be too large that samples relax
back to their original distribution and the decorrelation time, so as to not be too
small that all clones remain close to each other. In practice, the decorrelation
rate of a trajectory xt under the dynamics is calculated as the autocorrelation
taken over a time lag and the sampling time is then chosen as the smallest time
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lag that results in the autocorrelation of xt being close to zero at a specified
tolerance. A description of the algorithm is given below.

1. Initiate n = 1, . . . , N particles with different initial conditions.
2. For i = 1, . . . ,Tf /τ where Tf is the final integration time.

2a. Iterate each trajectory from time ti−1 = (i − 1)τ to time ti = iτ.
2b. At time ti, stop the simulation and assign a weight to each trajectory n

given by,

Wn,i =
exp(V(xn,ti ) − V(xn,ti−1 ))

Zi
(2)

where

Zi =
1
N

N∑
n=1

Wn,i (3)

is the normalizing factor that ensures the number of particles in each
iteration remains constant.

2c. Determine the number of clones produced by each trajectory,

cn,i = �Wn,i + un (4)

where �· is the integer portion and un are random variables generated
from a uniform distribution on [0, 1].

2d. The number of trajectories present after each iteration is given by,

Ni =

N∑
n=1

cn,i (5)

Clones are used as inputs into the next iteration of the algorithm. For
large N, the normalizing factor ensures the number of particles Ni remains
constant; however, in practice the number of particles fluctuates slightly
on each iteration i. To ensure Ni remains constant it is common to com-
pute the difference ΔNi = Ni − N. If ΔNi > 0, then ΔNi trajectories are
randomly selected (without replacement) and killed. If ΔNi < 0, then ΔNi

trajectories are randomly selected (with replacement) and cloned.
3. Provided τ is chosen between the two bounds specified above, the final set of

particles tends to the new distribution affected by V(x) as N → ∞,

p̃(x) =
p(x)eV (x)

E(eV (x))
. (6)

where p(x) is the original distribution of the sequence of realizations xn,0 and
p̃(x) is the distribution tilted by the weight function V(x).

Probability estimates for rare events γA = P(X > a) under p(x) are obtained
by the reversibility of the algorithm and dividing out the product of weight
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factors applied to the particles. Suppose A is the event (X > a) for X ∼ p(x),
then the expected value in the original distribution denoted by E0 is given by [16],

γA = E0(1A) =
1
N

N∑
n=1

1A(xn,Tf /τ)e
V (xn,0)e−V (xn,Tf /τ

)
Tf /τ∏
i=1

Zi (7)

Since GPA weights consider the end distribution of particles, they result in
a telescoping sum in the exponential where the final rare event estimate is a
function of the first and last weight terms only. For a detailed proof of this
equivalence, we refer the reader to [16]. For an illustration of this algorithm, see
Fig. 1.

Fig. 1. Illustration of the GPA algorithm.

As seen above, the change of measure is completely determined by the choice
of weight function V(x) in the algorithm.

Furthermore, the algorithm can be applied to any observable φ by considering
the continuous random variable Xt = φ(xt ) and defining

Wn,i =
exp(V(φ(xn,ti )) − V(φ(xn,ti−1 ))

Zi
.

where xn(t) is one of our n = 1, . . . , N realizations and xn,ti = xn(ti).
If we are interested in estimating rare event probabilities of a time-averaged

quantity the weight Wn,i =
V (

∫ ti
ti−1

xn (t)dt)

Zi
is given by an integral rather than the

difference Wn,i =
exp(V (xn, ti )−V (xn, ti−1 ))

Zi
and the increments do not telescope. We

next discuss a method, the GKLT algorithm, based on large deviations theory
to estimate probabilities of rare events for time-averaged quantities in the next
section. We note here that the GKLT algorithm in its implementation does not
require explicit computation of large deviation quantities such as rate functions.
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2.3.2 Giardina-Kurchan-Lecomte-Tailleur (GKLT) Algorithm
This technique was developed in a series of papers [7,19,20] and uses ideas
from large deviations theory to make estimates of extremes for time-averaged
quantities, for example heatwaves lasting a couple of months or more where the
averaged maximal daily temperature over the two month period would be high.
The advantage is that over long periods of averaging large deviation theory gives
a method which works well, but a disadvantage is that the period of averaging
needs to be long enough for the heuristic arguments involving the rate function
and other quantities from large deviations theory to be valid. In practice, to
calculate the probability of summer heatwave extremes in Europe, the duration
of heatwaves has been set at the order of 90 to 120 days in the literature [14,18].

Suppose φ is an observable. We will consider time-averaged quantities
1
T

∫ (j+1)T

t=jT
φ(x(t)) dt over a fixed time-window of length T , j = 1, . . . , �Tf /T. We

may choose to apply the weight function V to the integral of n = 1, . . . , N real-
izations φ(xn(t)) by defining the set of weights as,

Wn,i =
V(

∫ ti

ti−1
φ(xn(t)) dt)

Zi
(8)

with normalizing factor,

Zi =
1
N

N∑
n=1

Wn,i

where the resampling time τ = ti−1 − ti is chosen between the limits described in
Sect. 2.3.1 and may differ from the choice of the time-average window length T .

Applying the method described in algorithm Sect. 2.3.1 equipped with Eq. 8
tilts the distribution of the integral

∫ ti

ti−1
φ(x(t)) dt by V(·). As a result, the distri-

bution of the T-time average trajectory 1
T

∫ (j+1)T

t=jT
φ(x(t)) dt is tilted in a similar

way. For an illustration of this algorithm, see Fig. (2).
Since the weight is a function of segments of the trajectory (rather than

the distribution of end particles), the telescoping property no longer holds and
estimates in the original distribution require the reconstruction of N-backward
trajectories φ̂(xn(t)), n = 1, . . . , N.

Let E0 denote the expected value in the original distribution and suppose O
is some functional of φ(xn(t)). Then it can be shown [18],

E0(O({φ(xn(t))}0≤t≤Tf )) ∼
1
N

N∑
n=1

O({φ̂(xn(t))}0≤t≤Tf )e
−V (

∫ Tf
0 φ̂(xn(t))dt)

Tf /τ∏
i=1

Zi . (9)

Often, O in Eq. 9 is taken as some indicator function of a rare event so
that, E0(O({φ(x(t))}0≤t≤Tf )) provides some rare event probability estimate. For
example, to obtain the rare event probability estimate that the T-time averaged
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(a) (b)

Fig. 2. (a) Illustration of the GKLT algorithm and (b) assembly of N backward trajec-
tories. Although shifts in the distribution of the integral are defined by the resampling
time τ, reconstruction of backward trajectories allows for estimates on T-time averaged
trajectories after implementation of GKLT.

observable exceeds some threshold a, we may rewrite Eq. 9 as,

E0

(
1
{ 1
T

∫ ( j+1)T
jT

φ(x(t))dt>a |0≤ j≤�Tf /T  }
(φ(x(t)))

)

∼
1
N

N∑
n=1

E

(
1
{ 1
T

∫ ( j+1)T
jT

φ̂(xn (t))dt>a |0≤ j≤�Tf /T  }
(φ̂(xn(t)))

)
· e−V (

∫ Tf
0 φ̂(xn )(t)dt)

Tf /τ∏
i=1

Zi

(10)

A consequence of Eq. 10 is that rare event probabilities P(Ψ ◦ φ(x(t)) > a) for
any functional Ψ of the observed trajectory φ(x(t)) can be calculated in a similar
way.

Hence, rare event probabilities for longer time-averages can be estimated at
no further computational expense. Different observables are considered in the
next section. We end by remarking that a natural choice is to take V(x) = Cx, if
the rare event consists of exceedance of a certain level.

3 Numerical Results

IS algorithms hinge on their ability to shift the sampling distribution of a system
to increase the probability of the rare event. They open the possibility of reducing
numerical cost while providing a more (or similarly) accurate estimate over a
brute force method. Shifting of the sampling distribution relies on a convergence
assumption to hold for a sufficiently large number N of initial particles. In [16] it
is shown in certain models that the relative error (also a quantity relying on the
number of initial particles N) is smaller for tail probability estimates obtained
from IS methods if the shift is chosen optimally for a specific threshold. For a set
of thresholds ak , statistics on tail probabilities and return time estimates may be
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obtained by averaging over a set of trials, as in [18]. However, this requirement
adds to the true numerical cost of the IS methods. Optimal values of a shift
for any given threshold usually cannot be determined a priori. Moreover, the
magnitude of a shift in the sampling distribution cannot be chosen arbitrarily
because of its heavy dependence on the choice of observable, system and initial
conditions. This dependence limits the algorithm in practice to smaller shift
choices, larger errors and hence, less reliable return time estimates.

We compare numerical results from two well-known IS methods (GPA and
GKLT) with GEV and MC under true numerical costs of obtaining statisti-
cal estimates for sequences of thresholds. In implementation of IS methods, we
choose shifting values as large as possible to obtain accurate return-time esti-
mates and illustrate the problems that occur with dependence on initial condi-
tions. Following recent literature, we use the Ornstein-Uhlenbeck process as a
benchmark for our work and expand to the more complex Lorenz’96 and PlaSim
model. In all systems, we find that the GEV outperforms GPA, GKLT and MC
under the same numerical cost.

3.1 The Generalized Extreme Value (GEV) Model for Numerical
Comparison

3.1.1 GEV Model for Comparison to GPA Tail Estimates
Since the GPA algorithm considers only the distribution of end particles, tail
probability estimates of a trajectory Xt are provided at a sampling rate of Tf

intervals denoted P(XTf > ak) for a sequence of thresholds ak . Recall that in
the case of considering an observable under the dynamics, Xt can be seen as
the random variable Xt = φ(xt ) where xt is the trajectory under the dynamics
at time t. To compare across methods, we use the same sampling rate for MC
brute force and GEV modeling. Following standard literature, we may choose
to consider one long trajectory Xt of length N̂ · Tf , so that we obtain N̂ samples
taken at Tf intervals of Xt . From here, we define the subsequence of Xt taken at
the sampling rate Tf to be X ĵ,Tf

for ĵ = 1, · · · , N̂. We may then define the block
maxima over blocks of length m taken over our subsequence Xi,Tf by,

M�,m = max�m≤i≤(�+1)m Xi,Tf

such that the number of total block maxima is �N̂/m and � = 1, · · · , �N̂/m and
m is chosen at a length that ensures convergence of the block maxima. For the
purposes of this paper, m = 10 and 100 were checked with m chosen as the value
providing the best fit to the control.

Another option is to run many, say N̂ again, trajectories Xî,t for î = 1, · · · , N̂
up to time Tf . We denote the sequence of end particles Xî,Tf

so that Xî,Tf
coincides

with the appropriate fixed sampling rate Tf for each î. Then, we may define the
block maxima over blocks of length m by,

M�,m = max�m≤î≤(�+1)m Xî,Tf
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so that once again, � = 1, · · · , �N̂/m and the total number of block maxima is
�N̂/m. In both cases, the distribution of M�,m is theoretically the same, however
we choose the latter to lower numerical error which builds over long trajectories.
An illustration of how the maxima are defined and their relationship to the GPA
algorithm outcome can be seen in Fig. 3.

Fig. 3. Illustration of the block maxima for GEV to GPA comparison. Many trajecto-
ries are run under the dynamics up to the sampling time Tf and the final values are
used to form the block maxima (indicated by dashed boxes).

Classical results for fitting a GEV to the sequence of block maxima M�,m

require the sequence Xî,Tf
to be independent and stationary. The choice of Tf � τ

ensures that samples taken at Tf intervals are nearly independent. We may fit
the generalized extreme value (GEV) distribution G(x) to the sequence M�,m by
maximum likelihood estimation of the shape, ζ , scale σ, and location μ parame-
ters [5, Section 3.3.2]. Independence assumptions on the sequence Xî,Tf

allows for
reversibility of the probability estimates of the m-block maxima by the following
relationship [5, Section 3.1.1],

G(x) = P(M�,m ≤ x) ≈ (F(x))m

where G(x) is the GEV of the m-block maxima estimated by maximum likelihood
estimation and F(x) is the c.d.f. of the trajectory Xt sampled at a rate of Tf

intervals. Hence,

P(XTf > x) ≈ 1 −
m
√
G(x) (11)

In the event that independence of Xî,Tf
cannot be established, the dependence

weaker conditions such as conditions D2 and D′, if valid, entail convergence of
the sequence of m-block maxima to a GEV distribution.
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3.1.2 GEV Model for Comparison to GKLT Tail Estimates
In the GKLT algorithm, we consider the distribution of the T-time averages
created from the N-backward reconstructed trajectories Xn,t . That is, we consider
the probability P(AT > ak) that the T-time average, AT = 1

T

∫ T

0
X(t) dt is greater

than some threshold (or sequence of thresholds) ak . Recall that Xn,t = φ(xn(t)) is
some realization of a trajectory under the dynamics equipped with an observable
φ. We run N̂ trajectories under the dynamics up to time Tf and denote this
sequence as Xî,t for 0 ≤ t ≤ Tf and î = 1, · · · , N̂. Then the sequence of (non-
overlapping) T-time averages created from the set of trajectories Xî,t is defined
as,

AT, î, j =
1
T

∫ (j+1)T

jT

Xî,t dt

for j = 1, · · · , �Tf −T. For each fixed j, we define the sequence of maxima taken
over blocks of length m

Mh, j,m = max
hm≤î≤(h+1)m

AT, î, j

for h = 1, · · · , ��Tf − T/m so that we have ��Tf − T/m · N̂ number of maxima
in total. Defining the maxima over trajectories for every fixed time step j, rather
than over time steps of a single (long) realization, allows us to keep the integra-
tion time small and minimize numerical error. Following our previous discussion,
we may also choose to consider one long trajectory Xt , break it up into a sequence
of non-overlapping T-time averages, and consider the sequence of maxima taken
over blocks of length m taken from this long sequence of averages. Once again,
we note that T ≥ τ is chosen so that the sequence of averages is roughly inde-
pendent. Hence, the GEV G(x) can be fitted by maximum likelihood estimation
to the sequence Mh, j,m. The independence of the sequence of T-time averages
allows for reversibility of the probability estimates of the m-block maxima by,

G(x) = P(Mh, j,m ≤ x) ≈ (F(x))m

where G(x) is the maximum likelihood estimate for the GEV model of the
sequence of m-block maxima Mh, j,m and F(x) is the c.d.f. of the sequence of
T-time averages taken from the trajectory Xt . Hence,

P(AT > x) ≈ 1 −
m
√
G(x) (12)

An illustration of how the block maxima in estimating the GEV are defined
in terms of the sequence of T-time average trajectories for comparison to the
GKLT algorithm can be found in Fig. 4.
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Fig. 4. Illustration of the block maxima for GEV to GKLT comparison. Many trajecto-
ries are run under the dynamics up to time Tf . T-time average sequences are calculated
from the trajectories. For each fixed time step j, the block maxima (indicated by dashed
boxes) are calculated. The τ interval is shown here to emphasize its difference to T and
does not represent any weighting done to trajectories used in the GEV model.

3.1.3 Return Time Curves
We consider a long trajectory Xt such that Xt is sampled for over threshold
probability estimates at time Tf ≥ τ and a rare event threshold a such that
Xt < a for most times t. We define the return time r(a) as the average waiting
time between two statistically independent events exceeding the value a.

Following the scheme of [18] we divide the sequence Xt into pieces of duration
ΔT and define ak = max{Xt |(k − 1)ΔT ≤ t ≤ kΔT} and sk(a) = 1 if ak > a and
0 otherwise. Then the number of exceedances of the maxima ak over threshold
a can be approximated by a Poisson process with rate λ(a) = 1/r(a). Using the
return time c.d.f. F−1

T for the Poisson process, we have

F−1
T (

1
K

K∑
k=1

sk(a)) =
− log(1 − 1

K

∑K
k=1 sk(a))

λ(a)

where 1
K

∑K
k=1 sk(a) = FT (ΔT) is the probability of observing a return of the

maxima ak above threshold a in ΔT time steps. For any ak we have an associated
probability pk . We denote the reordering of this sequence (âk, p̂k) such that â1 ≥

â2 ≥ · · · ≥ âK . Then the return time is given by,

r(âk) = −
1

log(1 −
∑K

k=m p̂m)
(13)

where
∑K

m=k p̂m gives an approximation of the probability of exceeding threshold
âk .

Return time plots estimated from outcomes of importance sampling methods
are the result of first averaging return time estimates over a number of exper-
iments for each C, then averaging over all C-return time plots. See Fig. (7) for
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an illustration. Only those return times corresponding to threshold values that
fall within 1/2 standard deviation of the tilted distribution are used in this aver-
aging. For the remainder of this paper, the term experiment will be used to
describe a single run of an importance sampling algorithm.

3.2 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process given by,

dx = −λxdt + σdW

is a nice toy-example for importance sampling application because it is simple
to implement, has low numerical cost, the distribution of position x is approxi-
mately Gaussian, and it’s correlations decay exponentially. We use this process
with λ = 1 and σ = 1 as a benchmark for the following numerical investigation.

3.2.1 GKLT
The GKLT importance sampling algorithm is performed on the Ornstein-
Uhlenbeck process with N = 100 initial trajectories, resampling time τ = 0.1,
and a total integration time of Tf = 2.0. Here, the observable of interest is the
position. At each time step of the algorithm, a new value of noise W is sam-
pled from the standard normal distribution for each cloned trajectory to ensure
divergence of the clones. Time average trajectories are calculated by averaging
the N = 100 backward-reconstructed trajectories over time-windows of length
T = 0.25 with step size equal to T so that no window has overlapping values.

Above threshold probabilities of the T-time average position P(AT > ak)

where AT = 1
T

∫ T

0
x(t) dt are estimated for C = [0.01, 0.03, 0.05, 0.07]. We define

the sequence of T-time averages obtained from realizations φ̂(xn(t)) of the N-
backward reconstructed trajectories as,

An, j =
1
T

∫ (j+1)T

jT

φ̂(xn(t))dt, (14)

for j = 1, · · · , �Tf /T. Then the probability estimate for P(AT (t) > a) above a
threshold a from Eq. 10 is given as,

E0(1(x(t)){AT >a |0≤t≤Tf −T }) ∼
1

N

N∑
n=1

E(1(φ̂(xn(t)){An, j >a | j=1····�Tf /T })e
−C(

∫ Tf
0 φ̂(xn (t ))dt )

Tf /τ∏
i=1

Zi .

This approach results in a unique probability estimate for each predefined
threshold a.

Return times are estimated for each value C and sequence of thresholds ak by
Eq. 13 resulting in four return time curves. We perform 100 experiments under
these conditions for a total of 400 return time curves and average to obtain
the result shown in Fig. (5). This process is illustrated in Fig. (7). The total
numerical cost for this estimate is 4 · 104. Monte Carlo (MC) brute force and
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generalized extreme value (GEV) (Eq. 11) probability estimates are obtained
through numerical costs of the same order. We find that GEV and MC brute
force methods outperform GKLT by providing estimates of return times longer
than 1 · 106.

Another option is to define the sequence corresponding to the maximum
T-time average quantity of a single realization φ̂(xn) given by,

an(T) = max
1≤ j≤�Tf /T 

1
T

∫ (j+1)T

jT

φ̂(xn(t))dt . (15)

This results in a sequence of maximum thresholds an(T), one per each realiza-
tion of φ̂(xn(t)). For each threshold an(T), there exists an associated probability
estimate,

pn =
1
N
e−C

∫ Tf
0 φ̂(xn (t))dt

Tf /τ∏
i=1

Zi,

which is the result of plugging the threshold values of Eq. 15 into Eq. 10 and
noting that,

E(1(xn(t)){ 1
T

∫ ( j+1)T
jT

φ̂(xn (t))dt>an (t,T ) |0≤t≤Tf −T }
) = 1.

The sequence (an(T), pn) for 1 ≤ n ≤ N is then reordered for decreasing values
of an. We denote the ranked sequence (ân(t), p̂n) where â1 ≥ â2 ≥ · · · ≥ âN and
associate a return time r(ân) defined by Eq. 13 using the reordered sequence p̂n.
We refer to [18] for more details on this approach. Return time curves are then
obtained by linearly interpolating the pair (ân(T), rn(ân)) over an equal spaced
vector of return times. GKLT is run with the same initial conditions as stated
above. We refer to Fig. (6) for this discussion. Choosing to calculate return time
curves in this way allows for estimates of longer times; however, this tends to be
at the expense of accuracy. Equation 14 allows for more control over the choice
of range of thresholds included from the shifted distribution.

GEV and MC estimates are obtained through numerical costs of the same
order. Deviation statistics for GKLT, GEV, and MC methods, represented by
dashed lines in Fig. (6), are calculated by finding the minimum and maximum
deviation in 100 experiments. Solid lines about the GEV represent the 95% confi-
dence intervals coming from the likelihood function for the GEV estimated from
the corresponding MC simulation. We compare all results against a long control
run of order 1 · 106. We find that GEV and GKLT methods provide more accu-
rate estimates of return times longer than 1 · 105 compared to the MC method.
Moreover, the GEV outperforms the GKLT algorithm by providing surprisingly
accurate return time estimates with smaller deviation for all thresholds except
in a small fraction of cases.

A possible explanation for the poor performance of the GKLT algorithm
comes from the fact that the tilting coefficient C cannot be chosen arbitrar-
ily large to obtain longer return time estimates without some change in the
initial conditions (e.g. integration time, number of starting trajectories). Large
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choices of C result in a lower number of parent trajectories (as many copies are
killed) which causes the tilted distribution to breakdown Fig. (8). This break-
down results in increasingly inaccurate return time estimates, even for thresholds
sitting close to the center of the tilted distribution.

3.2.2 GPA
The GPA importance sampling algorithm is performed with N = 100 starting
trajectories, resampling time τ = 0.1, and a total integration time of Tf = 2.0.
The final trajectories Xn,Tf from GPA with tilting constants C = [2, 3, 4] are used
to estimate the above threshold probabilities P(XTf > ak) and return time curves.
To begin, we perform 10 experiments, with the initial conditions described above,
resulting in a total of 30 return time curves (10 experiments for each value of
C) and average to obtain the result shown in Fig. (9). The total numerical cost
for this estimate is 3 · 103 compared to the long control run of 1 · 106. We find
that GPA and GEV methods provide nearly equivalent results for return times
up to 1 · 104 with GPA and GEV methods outperform Monte Carlo brute force
estimates for return times longer than 1 · 104. On average, GPA provides a
slightly closer approximation to the control curve than that of the GEV method
for longer return times; however, the deviation of this estimate is much larger
than that of GEV.

Next, we consider larger values of C to test whether reliable estimates can
be obtained for thresholds exceeding the control run. We run 30 experiments
for 10 different values of C = [1, 2, . . . , 10] under the same initial conditions
as stated above for a total numerical cost of 3 · 104. We average the resulting
return time curves shown in Fig. (7) to obtain the final return time plot Fig. (10).
As seen in the estimates for GKLT, higher values of C with unchanged initial
conditions provide less accurate return-time results even for those thresholds
which sit at the center (e.g. have the highest probability of occurrence) of the
tilted distribution. On the other hand, GEV methods with the same numerical
cost of 3 ·104 show surprisingly reasonable estimates for return times longer than
the control method can provide at numerical costs of 1 · 106.

3.2.3 Relative Error Estimates
We now discuss relative error estimates on return probabilities across GPA,

GEV, and MC methods. The relative error is estimated as
√∑K

j=1
1
K (γ̂ − γ)2/γ

where γ̂ is the estimate for each of K = 100 experiments and γ is the long control-
run estimate. The relative error is essentially the average deviation of the tail
probability estimate γ̂ from the true value γ where it is assumed that γ̂ follows
a Gaussian distribution with mean γ [16,17] for a sufficiently large number N
of starting particles. For lower values of N, the relative error calculated in this
way has an underlying measurement error in the bias that is observed for γ̂ in
lower N values. Although this bias is often considered negligible, the sensitivity
of long return times to small deviations in the tail probability estimate suggest
otherwise. We first illustrate that the relative error cannot be used reliably for
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thresholds whose optimal tilting value is not approximately C. We calculate an
estimate of the mean μ(γ̂) = 1

K

∑K
k=1 γ̂k for K = 100 experiments with N = 1000

and three different values of C. Then, we calculate the relative deviation of μ(γ̂)
from the “true” mean γ by

√
(μ(γ̂) − γ)2/γ for each value of the threshold. Results

in Fig. (11) show that this deviation is small only for thresholds whose tilting
value C lies near the optimal value.

The effects of this deviation can be seen in return time estimates. We calculate
the return time curves from 100 experiments of GPA and GEV methods with N =

1000 (Fig. (13)) Clearly, GEV methods produce a larger standard deviation for
return times. Under the assumptions above, the relative error for GEV methods
would be larger than that of GPA; however, the mean of the tail probabilities
obtained from GEV are nearly exactly those of the long control run. On the other
hand, GPA produces a much smaller standard deviation (relative error) while
the mean of the tail probabilities have accurate estimates only near thresholds
for which the C value is chosen optimally.

We remark that for a single threshold and a close to optimal value of C,
relative error estimates are reliable and GPA outperforms GEV and MC methods
under relative error (Fig. (12)) while providing accurate return time estimates
(Fig. (13)). These results are consistent with those of [16]. Interestingly, though
not surprisingly, are the results on equivalent relative error for the GEV and MC
methods for shorter return times. This equivalence suggests that the advantage
of GEV over MC methods comes from its ability to estimate longer return times
where MC methods fail to provide results.

3.3 Lorenz Model

The Lorenz 1996 model consists of J coupled sites xl on a ring,

�xl = xl−1(xl+1 − xl−2) + R − xl

l = 0, . . . , J − 1 where the indices are in Z mod J. The parameter R is a forcing
term and the dynamics is chaotic for R ≥ 8 [24,25]. The energy E(x) = 1

2J

∑J
l=1 x

2
l

is conserved and there is a repelling fixed hyperplane xl = R, l = 0, . . . , J − 1.
The extremes of interest investigated numerically in [16] and in our preliminary
work were tail probabilities of the form P(E(x(t)) > Et ). The energy observable
on this system has an approximately Gaussian distribution.

3.3.1 GPA, GEV and MC
The weight function is taken to be the change ΔE of energy i.e. E(x(t+1))−E(t) for
a single time step and from this an exponential weight function W = exp(CΔE) is
constructed, depending on a single parameter C (large C makes tail probabilities
greater). For this analysis, we choose J = 32 sites and a forcing coefficient R = 64.

The GPA importance sampling algorithm is performed with N = 2000 and
5000 starting trajectories, a resampling time τ = 0.08, and a total integration
time of Tf = 1.28. At each time-step of the algorithm, a random perturbation
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sampled from [−ε, ε] where ε = O(10−3) is added to the clones of the previ-
ous iteration to ensure divergence. The final trajectories from GPA with tilting
constants C = [3.2·10−3, 6.4·10−3] are used to calculate the above threshold prob-
abilities and return time curves. The return time curve is calculated by averaging
over 10 experiments. Return time curves from the GEV and MC methods are
created from runs of equal numerical cost 4 · 104, and 1 · 105, respectively. All
estimates are compared to a long control run of 1 ·106. For N = 2000 initial start-
ing particles both GEV and MC methods outperform GPA by providing more
accurate return time estimates for times longer than 1 ·103 (Fig. 14). GPA seems
to provide more accurate estimates for returns longer than 1 · 105 for N = 5000;
however, the deviation of the averaged return time curve is much larger than
that of GEV or MC methods for all thresholds (Fig. 15).

The complexity of the Lorenz’96 highlights some of the major pitfalls in GPA.
Intuitively, the choice of tilting value C is (roughly) the shift required for center
of the distribution of the observable to lie directly over the threshold of interest.
The Lorenz system provides an example of the difficulties involved in choosing
this tilting value in practice. Similar to the OU system, the underlying dynamics
of the Lorenz system equipped with the energy observable distorts the shifted
distribution. Unlike the OU system, this occurs for very low values of C even
though the observable range is much larger. As a result, the intuitive choice of
C for thresholds in the tail of the distribution cannot be used. The values of C
chosen here are taken from preliminary work related to [16].

A related issue is the number of initial particles required to give an accu-
rate return time curve. Relative error arguments for GPA do not hold here both
because the optimal tilting value C to threshold pair is nontrivial for complex
systems and because the value C cannot be chosen arbitrarily large. An alterna-
tive to this issue is to choose a large enough number of initial particles N so that
relative error is only affected by the standard deviation of the tail probability
estimates γ̂ (see. Sect. 3.2); however, this number is nontrivial as convergence
depends on how far the optimal value is from the chosen tilting value.

GEV and GPA methods are able to estimate longer return times compared
to MC brute force methods for the Lorenz 96 system. GEV has the advantage
of maintaining the same relative error growth while difficulties in the optimal
choice of C and initial values cause probability tail estimates from GPA to have
much larger relative error. Furthermore, GEV likelihood estimation requires a
single run to estimate the optimal return level plot with confidence intervals
where relative error can be approximated by the standard brute force growth
rate (≈ 1/

√
NγA). On the other hand, GPA requires many runs to estimate the

relative error and return level plot for threshold values that do not correspond
to the center (or near center) of the C-shifted distribution.

3.4 Planet Simulator (PlaSim)

We now describe a climate model on which our analysis will focus—Planet Simu-
lator (PlaSim): a planet simulation model of intermediate complexity developed
by the Universität Hamburg Meteorological Institute [10]. Like most atmospheric
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models, PlaSim is a simplified model derived from the Navier Stokes equation in
a rotating frame of reference. The model structure is given by five main equa-
tions which allow for the conservation of mass, momentum, and energy. For a
full list of the variables used in the following equations please see Table 1. The
key equations are as follows:

• Vorticity Equation

∂ζ

∂t
=

1
1 − μ2

∂

∂λ
Fv −

∂

∂μ
Fu −

ξ

τF
− K(−1)h �2h ξ (16)

• Divergence Equation

∂D

∂t
=

1

1 − μ2

∂

∂λ
Fu +

∂

∂μ
Fv − �2 (U2 +V2

2(1 − μ2)
+ Φ +TR ln ps

)
−

D

τF
− K(−1)h �2h D (17)

• Thermodynamic Equation
∂T ′

∂t
= −

1

(1 − μ2)

∂

∂λ
(UT ′) −

∂

∂μ
(VT ′) + DT ′ − �σ

∂T

∂σ
+ κ

Tω

p
+
TR −T

τR
− K(−1)h �2h T ′ (18)

• Continuity Equation

∂(ln ps)
∂t

= −
U

1 − μ2
∂(ln ps)
∂λ

− V
∂(ln ps)
∂μ

− D −
∂ �σ

∂σ
(19)

• Hydrostatic Equation

∂Φ

∂(lnσ)
= −T (20)

Here,

U = u cos φ − u
√

1 − μ2, V = v cos φ − v
√

1 − μ2,

Fu = Vζ − �σ
∂U
∂σ

− T ′ ∂(lnps)
∂λ

, Fv = −Uζ − �σ
∂V
∂σ

− T ′(1 − μ2)
∂(ln ps)
∂μ

.

The combination of vorticity (16) and divergence (17) equations ensure the
conservation of momentum in the system while the continuity equation (19)
ensures conservation of mass. The hydrostatic equation (18) describes air pres-
sure at any height in the atmosphere while the thermodynamic equation (18) is
essentially derived from the ideal gas law .

The equations above are solved numerically with discretization given by a
(variable) horizontal Gaussian grid [9] and a vertical grid of equally spaced levels
so that each grid-point has a corresponding latitude, longitude and depth triplet.
(The default resolution is 32 latitude grid points, 64 longitude grid points and
5 levels.) At every fixed time step t and each grid point, the atmospheric flow is
determined by solving the set of model equations through the spectral transform
method which results in a set of time series describing the system; including
temperature, pressure, zonal, meridional and horizontal wind velocity, among
others. The resulting time series can be converted through the PlaSim interface
into a readily accessible data file (such as netcdf) where further analysis can be
performed using a variety of platforms. We refer to [10] for more information.
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Table 1. List of variables used in PUMA.

ζ Absolute vorticity λ Longitude

ξ Relative vorticity φ Latitude

D Divergence μ sin(φ)

Φ Geopotential κ Adiabatic coefficient

ω Vertical velocity τR Timescale of Newtonian cooling

p Pressure τF Timescale of Rayleigh friction

ps Surface pressure σ Vertical coordinate p/ps

K Hyperdiffusion �σ Vertical velocity dσ/dt

u Zonal wind v Meridional wind

h Hyperdiffusion order TR Restoration temperature

T Temperature T ′ T − TR

Fig. 5. Return time estimates for the Ornstein Uhlenbeck process time average observ-
able using GKLT for 4 different C values and 100 experiments, GEV, and Monte Carlo
brute forces methods with numerical cost 4 · 104. Relative error curves for MC brute
force and GEV estimates are represented by dashed lines. Relative error estimated by
100 experiments of the GKLT process is represented by the shaded red region.
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Fig. 6. Return time estimates from the sequence of maxima taken over each
trajectory for the Ornstein Uhlenbeck process time average observable using GKLT
for 4 different C values and 100 experiments, GEV, and Monte Carlo brute forces
methods with numerical cost 4 ·104. Relative error estimates for GEV and MC methods
(dashed lines) and GKLT (red region) are estimated from 100 experiments.

3.4.1 GKLT, GEV and MC
Our observable of interest in PlaSim is the time series of summer European spa-
tial average temperature anomalies. For simplicity, we set the climate bound-
ary data to consistent July 1st conditions and remove the diurnal and annual
cycles. This allows for perpetual summer conditions and saves on computational
time. We define the European spatial average as the average over the set of 2-
dimensional latitude and longitude pairs on the grid located between 36◦N–70◦N
and 11◦W–25◦E. Spatial average values are taken at 6 h intervals. We subtract
the long-run mean to obtain the sequence of summer European spatial average
temperature anomalies used in this analysis.

We perform the GKLT algorithm on the European spatial averaged temper-
ature time-series by considering initial values as the beginning of a year (360
days) to ensure each initial value is independent. It is important to note that
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Fig. 7. Return time estimates for the Ornstein Uhlenbeck process time average observ-
able illustrating the choice of return time curves after GKLT implementation.

10 5 10 10

Return Time

0

0.5

1

1.5

2

2.5

3

3.5

4

T
h

re
sh

o
ld

C = 0.01

-4 -3 -2 -1 0 1 2 3 4

Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

ili
ty

10 5 10 10
0

0.5

1

1.5

2

2.5

3

3.5

4
C = 0.05

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 5 10 10
0

0.5

1

1.5

2

2.5

3

3.5

4
C = 0.15

-4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 5 10 10
0

0.5

1

1.5

2

2.5

3

3.5

4
C = 0.25

-4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 8. Return time estimates for the Ornstein Uhlenbeck process time average observ-
able illustrating the breakdown of the distributions for large values of C.

initial values may be taken at much shorter intervals. We choose one year inter-
vals because this initial data was readily available from the long control run. We
estimate the resampling time τ = 8 days as the approximate time for autocor-
relation to reach near zero. For each experiment, we use 100 years (100 initial
values) run for 17 complete steps of the GKLT algorithm, or 136 days, to esti-
mate anomaly recurrence times for the T = 8-day time average. We remark that
the choice of T and τ here are the same, however this is not a requirement of the
algorithm as illustrated in the Ornstein-Uhlenbeck system in Sect. 3.2. Results
are compared to a 400 year (144,000 day) control run. Added noise to ensure
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Fig. 9. Return time estimates for the Ornstein Uhlenbeck process using GPA for 3
different C values estimated over 10 experiments, GEV, and Monte Carlo brute forces
methods with numerical cost 3 ·103. Relative error estimates for GEV and MC methods
(dashed lines) and GPA (red region) are estimated from 10 experiments.

divergence of cloned trajectories is sampled uniformly from (preprogrammed
noise) [−ε

√
2, ε

√
2] where ε = O(10−4).

Six experiments of the GKLT algorithm are performed on a starting ensemble
of N = 100 trajectories with initial values taken as the starting value of the Euro-
pean spatial average at the beginning of each year. The values C = [0.01, 0.05] (3
experiments per C value) are chosen to tilt the distribution of the spatial-time
average at resampling times τ = 8 days. We remark that constants C = [0.1, 2]
are also tested with less favorable results; however, these tests are not included
in the total numerical cost of MC brute force and GEV methods. We choose the
observable described by Eq. (15), with φ(xn(t)) taken as the European spatial
average temperature, to estimate return time curves of the 8-day time average
of European spatial averaged temperature.

We refer to Fig. 16 for this discussion. GEV and MC methods agree almost
completely up to return times of 1 · 106 with the GEV continuing to provide
estimates for longer return times. 95% confidence intervals for the GEV (green
thin lines) are a result of the likelihood function. The return time curve for GKLT
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Fig. 10. Return time estimates for the Ornstein Uhlenbeck process using GPA for 10
different C values estimated over 30 experiments, GEV, and Monte Carlo brute forces
methods with numerical cost 3·103. Relative error estimates for GEV amd MC methods
(dashed lines) and GPA (red region) are estimated from 30 experiments.

is formed by the set of return time values from each of the 6 experiments that fall
within 1/2 standard deviation of the mean of the shifted distribution. Hence, the
deviation for GKLT (red region) is estimated by the minimum and maximum
deviation of anywhere between 2 and 6 return time values for each threshold.
Compared to that of the long control run, GKLT provides reliable estimates for
return times up to 1 · 104, while GEV estimates remain near those of the long
control run for return times up to 1 · 106. Deviation estimates for GKLT are
smaller than the 95% confidence interval for the GEV for return times longer
than 1 ·103; however, this may be the result of a low number of experiments. We
also remark that the deviation estimate of the GKLT method for return times
of the 8-day average anomaly near 1.5 K are much smaller compared to other
thresholds. This reduction suggests that at least one of the C values chosen in
GKLT is close to optimal for the 1.5 K threshold.
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Fig. 11. Relative deviation for the OU process of the estimated mean μ(γ̂A) from
K = 100 runs of GPA with N = 1000 from the assumed, asymptotic mean γ. This
deviation is only near zero for thresholds whose optimal tilting value C is chosen in
the weight function (marked with a ◦). Relative deviation of the estimated mean from
the GEV method is consistently near zero, suggesting that even though the deviation
is larger, the estimate is more reliable.

4 Discussion

In this paper we have discussed two importance sampling (IS) methods:
Genealogical particle analysis (GPA) which is used to estimate tail probabili-
ties of a time series of observations at a fixed sampling rate, and GKLT which is
used to estimate tail probabilities of a corresponding time average. Both methods
work by tilting the distribution of observations in a reversible way so that the
rare events corresponding to tail probabilities are sampled more often. We have
illustrated the particular case when the observations of interest are distributed
according to a roughly symmetric distribution and a rare event consists of an
exceedance of a certain level where the natural choice of tilt corresponds to a
shift towards the tail.
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Fig. 12. Relative error for OU process of MC, GEV and GPA probability estimates of
fixed threshold 2 and corresponding optimal tilting value C = 4.

We compare results of these two methods with classical statistics where rare
event estimation is given by the Generalized Extreme Value (GEV) distribution.
Under the goal of obtaining a return level curve, we have shown that the GEV
outperforms both IS methods for all three systems used in this analysis by pro-
viding generally lower relative error and longer return time estimates. We have
also illustrated a few disadvantages in IS methods including the strict depen-
dence of the tilting value to initial conditions and requirement of multiple runs
for return time curve and relative error estimation while demonstrating that
classical GEV results only require a single run to estimate return time curves
and follow standard brute force relative error growth. On the other hand, we
have shown that our results do not conflict with previous literature and that
both the GEV and IS methods outperform Monte Carlo brute force methods
in estimating longer return times. In fact, following previous literature we have
shown that IS methods can result in lower relative error than that of the GEV
on subsets of tail probabilities (and hence, that of MC brute force) provided the
optimal tilting value can be chosen.
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Fig. 13. Illustration for the OU process of the deviation of the return time curves from
the control for GEV and 3 different tilting C values of GPA. Notice that the average
return time curve (red) for the GEV fits the control (black ◦) for all long return times
while accurate estimates for GPA only occur near the optimal threshold value.

In general, these results support the idea of using GEV methods over IS
under the condition that optimal tilting values cannot be determined a priori
and/or return time curves, rather than returns for a single level, are of interest.
We emphasize that these results should not be taken to discount the value of
importance sampling. The power of these methods can be seen in the decrease in
relative error when optimal tilting values can be chosen. It would be interesting
to see more theoretical work in estimating such values which, at the moment,
requires an explicit formula of the (unknown) distribution of the observable.
Other numerical work can also be completed using IS methods which does not
involve tail probability estimation. One particular perspective we plan to explore
is the algorithms’ ability to provide the set of trajectories which most likely end
in an extreme event.
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Fig. 14. Return time estimates for the Lorenz’96 process using GPA for C = [3.1 ·

10−3, 6.4·10−3] estimated over 10 experiments for N = 2000 starting particles, GEV, and
Monte Carlo brute forces methods with numerical cost 4 · 104. Relative error estimates
for GEV amd MC methods (dashed lines) and GPA (red region) are estimated from
10 experiments.
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Fig. 15. Return time estimates for the Lorenz’96 process using GPA for C = [3.1 ·

10−3, 6.4·10−3] estimated over 10 experiments for N = 5000 starting particles, GEV, and
Monte Carlo brute forces methods with numerical cost 1 · 105. Relative error estimates
for GEV amd MC methods (dashed lines) and GPA (red region) are estimated from
10 experiments.
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Fig. 16. Return time estimates for 8-day average temperature anomalies from PlaSim
using GKLT for C = 5 · 10−2 for N = 100 over 136 days starting particles, GEV and
Monte Carlo estimates are provided with numerical cost 6×100×136 days. The control
return time curve comes from a long brute-force run of 144, 000 days. Green outer
lines indicate the 95% confidence interval of the GEV. Red filled region indicates the
deviation of the GKLT algorithm estimated over 6 runs.
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Abstract. This article surveys the burgeoning area at the intersection of
dynamical systems theory and algorithms for NP-hard problems. Tradi-
tionally, computational complexity and the analysis of non-deterministic
polynomial-time (NP)-hard problems have fallen under the purview of
computer science and discrete optimization. However, over the past few
years, dynamical systems theory has increasingly been used to construct
new algorithms and shed light on the hardness of problem instances.
We survey a range of examples that illustrate the use of dynamical sys-
tems theory in the context of computational complexity analysis and
novel algorithm construction. In particular, we summarize a) a novel app-
roach for clustering graphs using the wave equation partial differential
equation, b) invariant manifold computations for the traveling salesman
problem, c) novel approaches for building quantum networks of Duffing
oscillators to solve the MAX-CUT problem, d) applications of the Koop-
man operator for analyzing optimization algorithms, and e) the use of
dynamical systems theory to analyze computational complexity.

Keywords: Computational complexity · Dynamical systems theory ·
NP-hardness · Heuristic algorithms · Combinatorial optimization

1 Introduction

Dynamical systems theory and computational complexity have, predominantly,
been developed as independent areas of research over the last century with little
interaction and mutual influence. Dynamical systems theory has its origins in
the seminal work of Henri Poincaré [1] on celestial mechanics. Computational
complexity theory, on the other hand, originated in the works of Alan Turing [2]
and Alonzo Church [3] in the 1930s and has played an intimate role in the
computing revolution of the twentieth century.

Eventually, dynamical systems theory (or nonlinear dynamics) found broad
application beyond celestial mechanics. In particular, it has been used extensively
to model and analyze engineering systems [4], physics of natural phenomena, bio-
logical [5] and chemical processes [6], fluid dynamics [7], and epidemiology [8] to
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name a few. Moreover, the analysis of dynamical systems is typically intimately
tied to numerical methods [9,10] and scientific computation [11].

Links to the applications (outlined in the previous paragraph) have played a
critical role in the theoretical development of the field. For example, they have
influenced the development of various sub-areas within nonlinear dynamics such
as ergodicity [12], chaos theory [13], and symbolic dynamics [14] to name a few.
For a broad overview of the theoretical approaches to dynamical systems, we
refer the reader to [15]. Although, dynamical systems theory has found wide
application in engineering and the sciences, it has received scant attention from
the computer science community.

Local continuous optimization techniques such as Nesterov’s method [16]
have recently been analyzed from a dynamical systems perspective [17]. Nes-
terov’s method is an optimal gradient descent algorithm in terms of convergence
rate. In [17], the authors derive a dynamical system by invoking a continuous
time limit of the optimization step size. They then analyze the resulting ordi-
nary differential equations (ODEs) to provide valuable insight into the algorithm
and its associated optimality. Additionally, in [18] the authors use calculus of
variations to gain additional insight into the convergence rates of accelerated
gradient descent schemes. Although, this body of work does fall under the cate-
gory of novel application of dynamical systems theory to optimization methods,
we will not discuss it at length in this paper for two reasons (a) this work has
sparked extensive follow-on work and consequently, various summary articles
and presentations are already available, and (b) they appear to be restricted to
accelerated gradient methods with no clear extension to the broader theory of
computational complexity.

Non-deterministic polynomial-time (NP)-hard and -complete complexity
classes can be traced to seminal work by Cook in 1971 [19]. The broad applica-
bility of this work was outlined in a highly influential publication by Karp [20].
NP-hard problems such as the traveling salesman problem (TSP) [21] and lattice-
based vector problems [23] arise in a wide variety of applications ranging from
DNA sequencing and astronomy [22] to encryption [23]. In essence, the compu-
tation of optimal solutions for these problems quickly becomes intractable with
the size of the instance (unlike problems that lie in the P complexity class).
Note that some problems such as graph isomorphism [24] lie in the NP com-
plexity class but are not expected to be NP-complete or NP-hard. Over the last
few years, several efficient heuristic algorithms for approximating the solutions
of NP-hard problems have been developed. For example, careful implementa-
tions of the Lin-Kernighan [25] and branch-and-bound [26] heuristics have been
successful in computing optimal solutions of several large instances of the TSP.
However, most NP-hard problems suffer from a lack of scalable approaches.
Moreover, as long as P �= NP (where P is the complexity class of problems
that can be solved in poylnomial time on a deterministic Turing machine), even
efficient heuristics for some of these problems will remain elusive. See Fig. 1 for
the hypothesized relationship between the most popular classes.
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Fig. 1. The computational complexity map for the most common complexity classes.

In this work, we start by surveying the use of dynamical systems in the
context of constructing state-of-the-art algorithms for NP-hard problems. In
particular, we will cover the use of dynamical systems theory for constructing
decentralized graph clustering algorithms [27,28], solutions for the TSP [29],
and quantum-inspired networks of Duffing oscillators for solving the MAX-CUT
problem [30]. We then switch to the use of dynamical systems theory for analysis
of algorithms [31] and the underlying problems [32,33].

The goal of this survey paper is to highlight the potential application of
dynamical systems theory for optimization of complex functions and analysis
of computational complexity theory. This is a nascent field which presents the
possibility of tremendous impact. Additionally, we expect this area to lead to
new theoretical developments in nonlinear dynamics theory and novel algorithms
for computationally intractable problems.

Ziessler, Surana, Speranzon, Klus, Dellnitz, and Banaszuk have all served as
co-authors in my efforts in this area. However, my extensive discussions with
Prof. Michael Dellnitz inspired me to delve deeper into the area of dynamical
systems and the analysis of algorithms!
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2 Novel Algorithm Construction: Decentralized Graph
Clustering

Overview

Algorithms for graph analysis have a wide variety of applications such as routing,
pattern recognition, database searches, network layout, and Internet PageRank
to name a few [34]. Although some of the problems can be solved efficiently on
present day computing devices, several graph analysis problems are computa-
tionally intractable [35]. For example, the problem of partitioning graphs into
equal size sets while minimizing the weights of cut edges arises in a range of
settings such as social anthropology, gene networks, protein sequences, sensor
networks, computer graphics, and Internet routing algorithms [28]. To avoid
unbalanced cuts, size restrictions are typically placed on the clusters; instead
of minimizing inter-connection strength, if one minimizes the ratio of the inter-
connection strength to the size of individual clusters, the problem becomes NP-
complete [36,37].

In [27,28], a novel decentralized algorithm for clustering/partitioning graphs
that exploits fundamental properties of a dynamically evolving networked system
was constructed. In particular, by propagating waves in a graph, one can compute
partitions or clusters in a completely decentralized setting. The method is orders
of magnitude faster than existing approaches [39]. This is our first example of
a dynamical systems theory based algorithm for a combinatorial optimization
problem. We now discuss the details of the approach.

Let G = (V,E) be a graph with vertex set V = {1, . . . , N} and edge set
E ⊆ V × V , where a weight Wij ≥ 0 is associated with each edge (i, j) ∈ E,
and W is the N × N weighted adjacency matrix of G. We assume that Wij = 0
if and only if (i, j) /∈ E. The (normalized) graph Laplacian is defined as,

Lij =

⎧
⎪⎨

⎪⎩

1 if i = j

−Wij/
∑N

�=1 Wi� if (i, j) ∈ E

0 otherwise ,

(1)

or equivalently, L = I − D−1W where D is the diagonal matrix with the row
sums of W.

Note that in [28], only undirected graphs were considered. The smallest
eigenvalue of the Laplacian matrix is λ1 = 0, with an associated eigenvector
v(1) = 1 = [1, 1, . . . , 1]T . Eigenvalues of L can be ordered as, 0 = λ1 ≤ λ2 ≤
λ3 ≤ · · · ≤ λN with associated eigenvectors 1,v(2),v(3) · · ·v(N) [36]. It is well
known that the multiplicity of λ1 is the number of connected components in the
graph [36].

Given the Laplacian matrix L, associated with a graph G = (V,E), spectral
clustering divides G into two clusters by computing the signs of the N elements
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of the second eigenvector v(2), or Fiedler vector. For further details about the
computation of two or more clusters see [36].

There are many algorithms to compute eigenvectors, such as the Lanczos
method or orthogonal iteration [38]. Although some of these methods are dis-
tributable, convergence is slow [38] and these algorithms do not consider/take
advantage of the fact that the matrix for which the eigenvalues and eigenvectors
need to be computed is the adjacency matrix of the underlying graph. In [39], the
authors propose an algorithm to compute the first k largest eigenvectors (asso-
ciated with the first k eigenvalues with greatest absolute value)1 of a symmetric
matrix. The algorithm in [39] emulates the behavior of orthogonal iteration using
a decentralized process based on gossip algorithms or deterministic random walks
on graphs. This approach can be slow as it converges after O(τ log2 N) itera-
tions [39] where τ is the mixing time for the random walk on the graph and N
is the number of nodes.

This procedure is equivalent to evolving the discretized heat equation on the
graph and can be demonstrated as follows. The heat equation is given by,

∂u

∂t
= Δu ,

where u is a function of time and space, ∂u/∂t is the partial derivative of u with
respect to time, and Δ is the Laplace operator [28].

When the above equation is discretized on a graph G = (V,E) one gets the
following equation:

ui(t + 1) = ui(t) −
∑

j∈N (i)

Lijuj(t) ,

for i, j ∈ V . Here ui(t) is the scalar value of u on node i at time t and N (i)
are the neighbors of node i in the graph. The graph Laplacian L = [Lij ] is the
discrete counterpart of the Δ operator. The above iteration can be re-written,
in matrix form, u(t + 1) = (I − L)u(t) where u(t) = (u1(t), . . . ,uN (t))T . The
solution of this iteration is,

u(t) = C01 + C1(1 − λ2)tv(2) + · · · + CN (1 − λN )tv(N) , (2)

where constants Cj depend on the initial condition u(0). It is interesting to
note that in Eq. (2), the dependence of the solution on higher eigenvectors and
eigenvalues of the Laplacian decays with increasing iteration count. Thus, it is
difficult to devise a fast and distributed method for clustering graphs based on
the heat equation.

In [27,28], a novel algorithm based on the idea of permanent excitation of the
eigenvectors of I−L using dynamical systems theory is constructed. In a theme
similar to Mark Kac’s question “Can one hear the shape of a drum?” [40], it was
demonstrated that by evolving the wave equation in the graph, nodes can “hear”
1 Note that in the case of spectral clustering we desire to compute the smallest k

eigenvectors of L. The algorithm is still applicable if we consider the matrix I − L.
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the eigenvectors of the graph Laplacian using only local information. Moreover,
it was shown, both theoretically and on examples, that the wave equation based
algorithm is orders of magnitude faster than random walk based approaches for
graphs with large mixing times. The overall idea of the wave equation based
approach is to simulate, in a distributed fashion, the propagation of a wave
through the graph and capture the frequencies at which the graph “resonates”.
In other words, it was shown that by using these frequencies one can compute
the eigenvectors of the Laplacian, thus clustering the graph.

The wave equation based clustering approach can be described as follows.
Analogous to the heat equation case (Eq. 2), the solution of the wave equation
can be expanded in terms of the eigenvectors of the Laplacian. However, unlike
the heat equation where the solution eventually converges to the first eigenvector
of the Laplacian, in the wave equation all the eigenvectors remain eternally
excited (a consequence of the second derivative of u with respect to time). This
observation is used to develop a simple, yet powerful, distributed eigenvector
computation algorithm. The algorithm involves evolving the wave equation on
the graph and then computing the eigenvectors using local FFTs. The graph
decomposition/partitioning algorithm based on the discretized wave equation
on the graph is given by,

ui(t) = 2ui(t − 1) − ui(t − 2) − c2
∑

j∈N (i)

Lijuj(t − 1) , (3)

where
∑

j∈N (i) Lijuj(t − 1) originates from the discretization of the spatial
derivatives in the wave equation. The rest of the terms originate from discretiza-
tion of the ∂2u/∂t2 term in the wave equation. To update ui using Eq. (3), one
needs only the value of uj at neighboring nodes and the connecting edge weights
(along with previous values of ui).

The main steps of the algorithm are shown as Algorithm 1. Note that at each
node (node i in the algorithm) one only needs nearest neighbor weights Lij and
the scalar quantities uj(t − 1) also at nearest neighbors. We emphasize, again,
that ui(t) is a scalar quantity and Random([0, 1]) is a random initial condition
on the interval [0, 1]. The vector v(j)

i is the i-th component of the j-th eigenvec-
tor, Tmax is a positive integer derived in [27,28], FrequencyPeak(Y,j) returns
the frequency at which the j-th peak occurs and Coefficient(ωj) return the
corresponding Fourier coefficient.

Proposition 1. The clusters of graph G, determined by the signs of the elements
of the eigenvectors of L, can be computed using the frequencies and coefficients
obtained from the Fast Fourier Transform of (ui(1), . . . ,ui(Tmax)), for all i and
some Tmax > 0. Here ui is governed by the wave equation on the graph (shown
in Eq. 3) with the initial condition u(−1) = u(0) and 0 < c <

√
2.

Proof. For the proofs see [27,28]. �	
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Algorithm 1 . Wave equation based eigenvector computation algorithm for
node i. At node i one computes the sign of the i-th component of the first k
eigenvectors. The cluster assignment is obtained by interpreting the vector of k
signs as a binary number.
1: ui(0) ← Random ([0, 1])
2: ui(−1) ← ui(0)
3: t ← 1
4: while t < Tmax do

5:
ui(t) ← 2ui(t − 1) − ui(t − 2)−

c2
∑

j∈N (i) Lijuj(t − 1)
6: t ← t + 1
7: end while
8: Y ← FFT ([ui(1), . . . . . . ,ui(Tmax)])
9: for j ∈ {1, . . . , k} do

10: ωj ← FrequencyPeak (Y, j)

11: v
(j)
i ← Coefficient(ωj)

12: if v
(j)
i > 0 then

13: Aj ← 1
14: else
15: Aj ← 0
16: end if
17: end for
18: ClusterNumber ← ∑k

j=1 Aj2
j−1

The above proof demonstrates that the approach is fundamentally decentral-
ized. Moreover, it is shown in [27,28] that the convergence of the wave equation
based eigenvector computation depends on the mixing time of the underlying
Markov chain on the graph, and is given by,

Tmax = O

⎛

⎝arccos

(
2 + c2(e−1/τ − 1)

2

)−1
⎞

⎠ + O(N) , (4)

where τ is the mixing time of the Markov chain. Thus, the wave equation based
algorithm has better scaling with τ for graphs of any size (given by N , see Fig. 2).

The above work is an example of the construction of a state-of-the-art algo-
rithm using dynamical systems theory. This work has also found application
in distributed numerical computations [41] and uncertainty quantification [42].
We now present another example of constructing novel algorithms for NP-hard
problems using the theory of nonlinear dynamics and invariant manifold com-
putations.
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Fig. 2. Comparison of convergence rates between the distributed algorithm in [39]
and our proposed wave equation algorithm for c2 = 1.99. The wave equation based
algorithm has better scaling with τ for graphs of any size (given by N). The plots are
upper bounds on the convergence speed. For more details see [28].

3 Novel Algorithm Construction: Invariant Manifolds
and the Traveling Salesman Problem

Overview

Recently, dynamical systems theory was used to construct novel algorithms for
another iconic NP-hard problem [29]. The traveling salesman problem (TSP)
has a long and rich history in the areas of computer science, optimization the-
ory, and computational complexity, and has received decades of interest [19].
This combinatorial optimization problem arises in a wide variety of applications
related to genome map construction, telescope management, and drilling circuit
boards. The TSP also naturally occurs in applications related to target track-
ing [43], vehicle routing, and communication networks to name a few. We refer
the reader to [19,29] for further details.

In its basic form, the statement of the TSP is exceedingly simple. The task is
to find the shortest Hamiltonian circuit through a list of cities, given their pair-
wise distances. Despite its simplistic appearance, the underlying problem is NP-
hard [20]. Several heuristics have been developed over the years to solve the prob-
lem [19] including ant colony optimization, cutting plane methods, Christofides
heuristic algorithm, and the Lin–Kernighan heuristic.
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In [29], inspired by dynamical systems theory, the authors construct novel
orthogonal relaxation based approximations to the TSP. In particular, the con-
structed dynamical system captures the flow on the manifold of orthogonal
matrices and ideally converges to a permutation matrix that minimizes the tour
length. However, in general, the flow typically converges to local minima that are
not competitive when compared to state-of-the-art heuristics. Inspired by this
continuous relaxation, the authors compute the solution to a two-sided orthogo-
nal Procrustes problem [44] that relaxes the TSP to the manifold of orthogonal
matrices. They then combine the Procrustes approach with the Lin–Kernighan
heuristic [25] for computing solutions of the TSP. Additionally, the authors use
set-oriented methods to study the stability of optimal solutions and their stable
manifolds, thereby providing insight into the associated basins of attraction and
the resulting computational complexity of the problem.

Given a list of n cities {C1, C2, . . . , Cn} and the associated distances between
cities Ci and Cj , denoted by dij , the TSP aims to find an ordering σ of
{1, 2, . . . , n} such that the tour cost, given by

c =
n−1∑

i=1

dσ(i),σ(i+1) + dσ(n),σ(1), (5)

is minimized. For the Euclidean TSP, for instance, dij = ||xi − xj ||2, where
xi ∈ Rd is the position of Ci. In general, however, the distance matrix D =
(dij) does not have to be symmetric (for example see [45]). The ordering σ can
be represented as a unique permutation matrix P . Note, however, that due to
the underlying cyclic symmetry, multiple orderings – corresponding to different
permutation matrices – have the same cost.

There are several equivalent ways to define the cost function of the TSP. The
authors restrict themselves to the trace2 formulation. Let Pn denote the set of
all n×n permutation matrices, then the TSP can be written as a combinatorial
optimization problem of the form

min
P∈Pn

tr
(
AT PT BP

)
, (6)

where A = D and B = T . Here, T is defined to be the adjacency matrix of the
cycle graph of length n.

One uses the undirected cycle graph adjacency matrix for symmetric TSPs
and the one corresponding to the directed cycle graphs for asymmetric TSPs.

2 The trace of a matrix A ∈ Rn×n is defined to be the sum of all diagonal entries, i.e.,
tr(A) =

∑n
i=1 aii.
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The matrices are defined as,

Tdir =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1
0 1

. . . . . .
0 1

1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

or Tundir =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 1
1 0 1

. . . . . . . . .
1 0 1

1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The work in [29] focuses on the undirected version of the TSP. By relaxing the
TSP problem to the manifold of orthogonal matrices (since permutation matrices
are orthogonal matrices restricted to 0 or 1 entries), one can use the two sided
Procrustes problem to solve the problem exactly, as outlined in the theorem
below.

Theorem 1. Given two symmetric matrices A and B, whose eigenvalues are
distinct, let A = VAΛAV T

A and B = VBΛBV T
B be eigendecompositions, with ΛA =

diag
(
λ
(1)
A , . . . , λ

(n)
A

)
, ΛB = diag

(
λ
(1)
B , . . . , λ

(n)
B

)
, and λ

(1)
A ≥ · · · ≥ λ

(n)
A as well

as λ
(1)
B ≥ · · · ≥ λ

(n)
B . Then every orthogonal matrix P ∗ which minimizes

min
P∈On

||A − PT BP ||F (7)

has the form
P ∗ = VBSV T

A ,

where S = diag(±1, . . . ,±1).

A proof of this theorem can be found in [46]. If the eigenvalues of A and B
are distinct, then there exist 2n different solutions with the same cost. If one or
both of the matrices possess repeated eigenvalues, then the eigenvectors in the
matrices VA and VB are determined only up to basis rotations, which further
increases the size of the solution space. The Procrustes problem is related to a
dynamical system formulation of the TSP as outlined below.

The orthogonal relaxation of the combinatorial optimization problem (6),
given by (7), can be solved using a steepest descent method on the manifold of
orthogonal matrices. For more details about this formulation see [29]. One can
pose the TSP as a constrained optimization problem of the form,

min
P∈On

tr
(
AT PT BP

)
, (8)

s.t. G(P ) = 0. (9)

This formulation gives rise to the following set of equations,

Ṗ = −P
({

PT BP,A
}

+
{
PT BT P,AT

}) − λP
(
(P ◦ P )T P − PT (P ◦ P )

)
,

λ̇ =
1
3
tr

(
PT (P − (P ◦ P ))

)
.

(10)
The above set of equations are obtained by using gradient descent on the
Lagrangian cost function.
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Example 1. In order to illustrate the gradient flow approach, let us consider a
simple TSP with 10 cities. Using (10), we obtain the results shown in Fig. 3. In
this example, the dynamical system converges to the optimal tour.

Fig. 3. Traveling salesman problem with 10 cities solved using the gradient flow (10).
The original positions of the cities are shown in black, the positions transformed by
the orthogonal matrix P in red. (a) Initial trivial tour given by σ = (1, . . . , 10). b–d)
Intermediate solutions. (e) Convergence to an orthogonal matrix which is “close” to
a permutation matrix with respect to any matrix norm. (f) Extraction of the corre-
sponding permutation matrix. The initial tour was transformed into the optimal tour
by the gradient flow.

The dynamical system without constraints converges to equilibria that are
given by the Procrustes solutions. To shed light on the stability and local dynam-
ics around the optimal TSP solutions one can approximate subsets of the stable
manifold of the Procrustes solutions such that two permutation matrices are
inside these sets. This numerical study enables the analysis of the robustness of
Procrustes solutions under small perturbations of the initial permutation matrix
and the assessment of the ‘closeness’ the Procrustes solution is to the optimal
permutation matrix. In order to compute the sets of interest, set-oriented con-
tinuation techniques developed in [47] are used in [29]. An example computation
is depicted in Fig. 4.

Moreover, one can also use set oriented methods to compute basins of attrac-
tion of optimal permutation matrices for small instances of the TSP. These basins
(subsets of the stable manifold) are computed by perturbing the optimal solu-
tions and integrating the flow backward in time [29]. The solutions are shown
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Fig. 4. Three-dimensional projection of two subsets of the stable manifold. The omega-
limit sets of a small neighborhood of the permutation matrices P1 and P2 form a half
circle on their corresponding Procrustes set.

in Fig. 5. These computations are interesting and capture the “hardness” of the
problem. In particular, one can see that the solutions of relaxed versions of the
problem (such as the relaxations to the manifolds of orthogonal matrices) do not,
in general, lie in the basin of attraction of the optimal solutions of the original
problem. Other such instances of analysis of relaxed solutions of the TSP using
dynamical systems theory are outlined in [29].

Fig. 5. (a)–(b) Three-dimensional projections of the basin of attraction of (P̃ , λ̃). The
dark cells depict the stationary solutions of the gradient flow (10) backward in time.

Although, dynamical systems theory demonstrates that the Procrustes solu-
tions do not typically lie in the basin of attraction of the optimal solutions of
the TSP, a new biasing scheme for the Lin–Kernighan heuristic is constructed
using the aforementioned relaxation [29].
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The Lin–Kernighan heuristic is a popular heuristic for the TSP [25]. Starting
from an initial tour, the approach progresses by extracting edges from the tour
and replacing them with new edges, while maintaining the Hamiltonian cycle
constraint. If k edges in the tour are simultaneously replaced, this is known as
the k-opt move [25]. To prune the search space, the algorithm relies on minimum
spanning trees to identify edges that are more likely to be in the tour. This
“importance” metric for edges is called α-nearness and described in [25,29]. The
algorithm has found great success on large instances of the TSP, see [19] for
more details.

In [29], the α-nearness metric is replaced with a new Procrustes solution–
based metric that prunes/identifies important potential edges to include in the
“candidate set list”. This list is then used to generate the k-opt moves. The met-
ric is captured in Fig. 6. The Procrustes solution tends to capture the longer edges
that are important. To increase the inclusion of the short edges, the approach
in [29] constructs a homotopy between the Procrustes (P -nearness) solution and
the distance matrix. Using a graph Laplacian approach, the mixture of the two
matrices is compared to the α-nearness approach on 22 well-known instances
of the TSP. P -nearness based LKH converges to lower cost values in 18 of the
instances when compared to α-nearness based LKH. Moreover, for 50 random
TSP instances of size 1000 (cities) it is found that P -nearness has lower tour
costs after a fixed number of k-opt moves in 31 of the instances, translating into
an improvement for 62% of the instances.

Fig. 6. Illustration of P -nearness for random TSP instances of size 50 and 100. The left
column contains the edges with shortest distance, the center column has the optimal
tour for the instances, and the right column contains the edges with the highest P -
nearness values for each city. For each city, we plotted the three edges with the highest
nearness values.
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Thus, this is another example that demonstrates that dynamical systems the-
ory can be used to analyze NP-hard problems and construct improved heuristics.

We now show how networks of Duffing oscillators can be used to construct a
new algorithm for the iconic MAX-CUT problem.

4 Novel Algorithm Construction: Network of Duffing
Oscillators for the MAX-CUT Problem

Overview

MAX-CUT [20] is a well-known NP-hard problem that arises in graph theory.
Simply stated, the goal is to compute a subset S of the vertex set in a graph
G, such that the number of edges between S and the rest of the graph are
maximized. The best known approximation ratio of 0.878 can be achieved in
polynomial time using semi-definite programming [48]. The problem naturally
arises in VLSI design and statistical physics, and has been extensively studied.

In [30], the authors construct an optimization algorithm by simulating the
adiabatic evolution of Hamiltonian systems which can be used to approximate
the MAX-CUT solution of an all-to-all connected graph. The approach is inspired
by quantum adiabatic optimization for Ising systems [49] with the following
energy,

EIsing(s) = −1
2

N∑

i=1

N∑

j=1

Jijsisj , (11)

where si are the spins which can take values {−1,1} and Jij is the coupling
coefficient. Finding the lowest energy state of the Ising system is computationally
challenging (for a system with N spins, the potential number of states is 2N ).
Note that one can map the Ising problem to the MAX-CUT problem by setting
Jij = −wij , where wij is the weight of the edge that connects nodes i and j. It
is easy to show that minimizing the energy in Eq. (11) corresponds computing
the solution of the MAX-CUT problem.

The approach outlined in [30] relies on the adiabatic evolution of a network
of nonlinear oscillators. This system exhibits a bifurcation (called “simulated
bifurcation”) for each nonlinear oscillator. The two branches correspond to the
−1 and +1 values for each spin. The authors exploit Graphical Processing Units
(GPU) and Field Programmable Gate Array (FPGA) platforms to compute
the solution of these Hamiltonian systems. This method is compared to exist-
ing methods and displays orders-of-magnitude improvement. The approach is
demonstrated on an Ising system with 100,000 spins.
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Consider the Hamiltonian that arises in Kerr-nonlinear parametric oscilla-
tors,

H(x, y, t) =
N∑

i=1

[
K

4
(x2

i + y2
i )2 − p(t)

2
(x2

i − y2
i ) +

Δi

2
(x2

i + y2
i )

]

− ξ0
2

N∑

i=1

N∑

j=1

Jij(xixj + yiyj). (12)

Here xi and yi are position and momentum of the i-th oscillator respectively, K
is the Kerr coefficient, p(t) is the parametric pumping amplitude, and Δi is the
detuning frequency between the natural frequency of the i-th oscillator and half
the pumping frequency. Using the standard Hamiltonian formulation, one can
derive equations of motion for each oscillator. Evolving these system of equations
for xi and yi converges to low energy solutions of an Ising system (Eq. 11) with
high probability. Thus, the sign of xi at the end of the simulation determines
the i-th spin. However, the above equations are computationally challenging to
simulate from a numerical perspective.

Instead of using the equations that arise from the “full” Hamiltonian in
Eq. (12), the authors (in [30]) construct a simplified Hamiltonian of the form,

H(x, y, t) =
N∑

i=1

Δ
2

y2
i + V (x, t)

=
N∑

i=1

Δ
2

y2
i +

[
K

4
x4

i +
Δ − p(t)

2
x2

i

]

− ξ0
2

N∑

i=1

N∑

j=1

Jijxixj . (13)

The above Hamiltonian corresponds to the following system of equations,

ẋi = Δyi

ẏi = − [
Kx2

i − p(t) + Δ
]
xi + ξ0

N∑

i=1

N∑

j=1

Jijxj . (14)

It is easy to see that the above system of equations are a network of Duffing
oscillators [15]. The separability of the Hamiltonian (Eq. 13) makes the numerical
integration of the system of equations easier. In particular, the authors use an
explicit symplectic Euler scheme which makes it amenable for one to hard wire
the resulting computational circuits on an FPGA platform. The computation
proceeds as follows: all x and y variables are initially set to zero, p(t) is then
increased from 0 and the system in Eq. (14) is evolved. The sign of the final value
of xi serves as an approximation of the i-th spin of the associated Ising system.

The system in Eq. (14) has two branches of solutions as p(t) is increased
from zero. It is easy to see that these branches correspond to ±√

p − Δ/K for
each oscillator and, consequently, leads to a 2N solution space. If one varies
p(t) slowly, the adiabatic theorem ensures that if one converges to a low energy
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solution for p(t) close to 0, the final solutions (for large p(t)) will also correspond
to low energy.

This method is compared to state-of-the-art approaches for two instances
of the MAX-CUT problem. In the first instance, an all-to-all 2000 node MAX-
CUT problem is solved on an FPGA using the above approach. The authors
demonstrate that the above framework successfully converges to the best known
solutions [48] very quickly. Moreover, they test the approach on a 100,000 size
problem (with 5×109 edges) and find that their approach converges to the answer
100–1000 times faster than existing software on GPU hardware. For more details
of the work and associated results we refer the reader to [30].

Thus far, we have summarized three examples in which dynamical systems
theory was used to construct novel algorithms for NP-hard problems. We now
discuss approaches that exploit nonlinear dynamics theory to analyze optimiza-
tion algorithms for NP-hard problems.

5 Analysis of Algorithms: Koopman Operators Based
Analysis of Algorithms

Overview

Koopman operator theory is one of the most active and exciting sub-areas
within dynamical systems theory [50–53]. The approach is based on the con-
struction of an infinite dimensional linear operator that captures the evolution
of the observables of the underlying nonlinear system. Consequently, the spectra
and eigenfunctions of the operator, capture system dynamics. This methodology
has been used used in a wide variety of settings, including system control and
identification. An advantage of Koopman operator based methodologies is that
the computations are typically based on time trace data of system evolution [54].
In recent work [31], Koopman operator theory was used to analyze algorithms. In
particular, the authors consider optimization algorithms that evolve their state
in the form of iterations. An assumption is made that the algorithm state spaces
X ⊆ R

d are smooth k-dimensional Riemannian submanifolds in d-dimensional
Euclidean spaces. A single iteration of the state xn is represented as,

xn+1 = a(xn), n ∈ N, (15)

where n is the iteration count. These iterative algorithms can sometimes be
represented in continuous form (akin to the process used in [16]). In other words,
one can (in the limit) represent the algorithm as a continuous vector field v : X →
R

k. If one starts at an initial condition x0, the continuous time representation
is of the form [31],

dc(s)
ds

= v(c(s)), c(0) = x0. (16)
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As shown in [31], this continuous form can be approximated using a Koop-
man operator framework. The authors then use this approach to study gradient
descent and Newton-Raphson from a global dynamics perspective. Although the
examples fall under the category of continuous optimization, the approach can
certainly be used to study combinatorial optimization algorithms in the future.

Using the same nomenclature as in [31], consider a dynamical system of the
form,

dSt(x0)
dt

= v(St(x0)), (17)

then the family of Koopman operators K t acts on the function space of observ-
ables g : X → C as follows,

[K tg](x) = (g ◦ St)(x). (18)

An L2 function space with an inner product is typically chosen for the space
of observables. For more details, on the approach and choice of function space
see [31]. Note that the Koopman operator is the adjoint of the Perron-Frobenius
operator [55]. Letting t = 1, without loss of generality, The Koopman operator
can be expanded in terms of its spectrum,

K =
∑

k

λkPλk
+

∫

σac

λdE(λ) (19)

where λk lie in the discrete part and σac is the continuous spectrum of the oper-
ator. Pλ and dE(λ) are projection operators for their corresponding eigenspaces.
The eigenfunctions of the Koopman operator are,

[K tφλ](x) = (φλ ◦ St)(x) = λtφλ(x). (20)

Thus, one can predict the evolution of observables,

K tg =
∑

k

ckλtφλ,k. (21)

The operator can be numerically approximated using a data driven app-
roach as outlined in [52,53]. The popular extended dynamic mode decomposition
(EDMD) methodology introduced in [52] is used to analyze algorithms using the
Koopman operator lens [31].

The EDMD approach approximates the action of the infinite dimensional
operator using a finite set of real-valued functions (also called “dictionary”). In
particular, given a smooth manifold M ⊂ R

d sampled by a finite set of points
X = {xi ∈ M}, the EDMD approach computes the action of the Koopman
operator on the dictionary of points in X. The operator itself is approximated
using a least squares approach [52] as outlined below. Given a dictionary of ND

observables D = {di : M → R| i = 1, . . . , ND} one can define a matrix of the
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form G = [d1(X), d2(X), . . . , dND
(X)]. Then the Koopman operator K t can be

approximated as,

K =
1

N2
X

(GT G)†(AT A), (22)

where NX is the size of the dataset and A = [K td1(X),K td2(X), . . . ,
K tdND

(X)]. For more details see [52].
The operator gives a local approximation of the underlying algorithm applied

to a specific instance of a problem. In particular, one can use the data of a short
burst of computation to compute a local approximation of the dynamics of the
algorithm to accelerate its convergence. The eigenvalues, vectors, and modes are
computed using EDMD. This approximation is used as a data-driven surrogate
for the system to accelerate optimization. In [31], the authors use the following
cost function,

f(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2, (23)

to demonstrate utility of the Koopman approach. The function has one local
maximum and four local minima [31]. The authors study the the popular gradient
descent algorithm using the Koopman operator framework. In particular, they
use radial basis functions to form a dictionary and compute 503 eigenvalues
and eigenfunctions. They show that one can construct an ergodic decomposition
of the state space, thereby separating the different basins of attraction [31].
The approach is able to capture the global dynamics of the algorithm in this
setting, providing valuable insight regarding the performance and limitations of
the algorithm.

Additionally, the authors demonstrate the use of Koopman operators for
studying global dynamics of algorithms in high-dimensional spaces. They take
the example of a 100-dimensional problem and show that the dynamics quickly
contracts to a low dimensional subset. They demonstrate that one can accelerate
the prediction of trajectories of gradient descent with high accuracy. The work
concludes with the illustration of the utility of Koopman operators for analyzing
the iconic Newton-Raphson method for root finding [31]. For a complex poly-
nomial of degree two, they show that the eigenfunction diverges at the roots.
They also show that in cases of chaotic behavior of Newton-Raphson, one can
use approximations [56] of the continuous spectrum of the Koopman operator
to study statistical properties of the emergent chaos.

Although the above Koopman methodology was demonstrated on problems
of continuous optimization, it provides a new technique with which one can
study combinatorial optimization problems. We anticipate that the Koopman
operator approach will be a new tool with which to study algorithms for NP-
hard problems and improve their performance.
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6 Analysis of Algorithms: Chaos and Dynamical Systems
for Analyzing the Satisfiability (SAT) Problem

Overview

The satisfiability problem is another iconic problem that frequently arises in
the study of computational complexity theory. The challenge here is to find
a satisfying assignment for a logical formula. In particular, a k-SAT Boolean
formula φ(x) of N Boolean variables and m clauses, φ : {0, 1}N → {0, 1}, is
written in the conjunctive normal form (CNF) [59] as follows,

φ(x) =
m∧

i=1

Ci =
m∧

i=1

(xi1 ∨ xi2 ∨ . . . ∨ xik), (24)

where xil is the lth literal in clause Ci. A SAT formula is said to be satisfiable if
there exists an assignment for the binary variables x such that φ(x) = 1 (true).
It is well known that the satisfiability problem is NP-complete [19]. A criti-
cal parameter associated with the satisfiability problem is the clause density
α = m/N [58]. In particular, the probability that a random k-SAT instance
is satisfiable undergoes a phase transition as a function of α (N → ∞) [58].
The MAX-SAT problem (and the corresponding weighted version) [59] requires
one to find that assignment (or assignments) that maximize the number (or the
cumulative weights) of satisfied clauses. Consider a SAT formula φ, then every
assignment x can be mapped to an “energy” Φ(x) such that,

Φ(x) =
m∑

i=1

Ci, (25)

where Ci = 1, if the i-th clause evaluates to true. In other words, the goal under
the MAX-SAT problem is to find the assignment for x such that the number
of satisfied clauses (or energy) is maximized. The MAX-SAT problem is harder
(from a computational standpoint) than the SAT problem. In particular, it is
known to be strongly NP-hard (there are no polynomial time approximation
schemes). The problem of computing density of states (DOS) encompasses the
SAT and MAX-SAT problems. Classical and quantum algorithms for estimating
the DOS of logical formulae were constructed in [60].

In a series of seminal papers [32,33,57], the authors construct a dynamical
systems approach to study satisfiability problems. They construct a dynamical
system that computes the solutions of SAT instances. Here, the equilibria of
the dynamical system correspond to literal values for which the SAT formula
in Eq. (24) evaluates to true. They prove that the dynamical system admits
no false equilibria or limit cycles. Additionally, they relate the emergence of
transient chaos and fractal boundaries with optimization hardness of the problem
instance [32], pointing to a deep connection between dynamical systems theory
and computational complexity.
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As mentioned in the overview, in [32], the authors embed SAT equations into
a system of ordinary differential equations using the the following mapping: let
sxi

= [−1, 1], i.e. sxi
can take values between −1 and 1 such that,

sxi
=

{
−1, if xi = FALSE
1, if xi = TRUE.

Generalizing the dynamical system for satisfiability problems constructed in [32],
one can define cmi and Km as follows,

cmi =

⎧
⎪⎨

⎪⎩

−1, if sxi
appears in negated form in m-th clause

1, if sxi
appears in direct form in m-th clause

0, otherwise,

Km(s) = 2−k
k−1∏

j=0

N∏

i=1

(1 − cmisxi
) ∀m = 1, 2, . . . ,M.

Note that Km(s) = 0, if and only if m-th clause is satisfied i.e. cmisxi
= 1 for

at least one variable xi that appears in clause m. In [32], the authors define an
energy function of the form V (s) =

∑M
m=1 amKm(s)2 such that V (s∗) = 0 only

at a solution s∗ of the satisfiability problem. The auxiliary variables am ∈ (0,∞)
prevent the non-solution attractors from trapping the search dynamics (for more
information see [32]).

In [32], the authors find that as the constraint density of the k-SAT problem
increases, the trajectories of the dynamical system display intermittent chaos
with fractal basin boundaries [32]. Note that, in this work, the existence of
chaos is associated with the emergence of positive finite size Lyapunov exponents
(FSLE) [15] and the emergence of chaos corresponds to the well known phase
transitions in the k-SAT problem [32].

In [33], the authors further exploit the above system of equations to study
the k-SAT problem with increasing constraint density. They find that hardness
appears as a second order phase transition and discover that the resulting tran-
sient chaos displays a novel exponential-algebraic scaling. In [57], the authors
exploit the above framework to construct novel solvers for the MAX-SAT prob-
lem. This body of work demonstrates that dynamical systems theory can, in fact,
be used to simultaneously study computational complexity theory and construct
novel algorithms for NP-hard problems.

7 Conclusion

Combinatorial optimization is a wide and important area of research with numer-
ous applications. For decades, computer scientists have developed novel algo-
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rithms for addressing these problems. Some problems are amenable to algo-
rithms and theory developed thus far (examples include graph routing and sort-
ing), while others, in general, remain intractable from a computational stand-
point (such as the traveling salesman problem and MAX-SAT) despite signif-
icant efforts. The classification of problems into different classes (such as NP,
NP-hard, and PSPACE) and associated analyses has given rise to the field of
computational complexity theory.

Nonlinear dynamics, on the other hand, arises in a multitude of engineering
and scientific settings. The theory has been used to explain system behavior in a
diverse set of fields such as fluidics, structural mechanics, population dynamics,
epidemiology, optics, and aerospace propulsion. However, the application of the
theory of dynamical systems to combinatorial optimization and computational
complexity remains limited.

In this survey article, we summarize five recent examples of using dynamical
systems theory for constructing and analyzing combinatorial optimization prob-
lems. In particular, we cover (a) a novel approach for clustering graphs using the
wave equation partial differential equation (PDE), (b) invariant manifold com-
putations for the traveling salesman problem, (c) novel approaches for building
quantum networks of Duffing oscillators to solve the MAX-CUT problem, (d)
applications of the Koopman operator for analyzing optimization algorithms,
and (e) the use of dynamical systems theory to analyze computational complex-
ity of the SAT problem.

We note that the above set of examples are not comprehensive and there are
several examples that have been omitted in this survey. However, the goal of
this article is not to provide a complete list of all such examples but to demon-
strate that dynamical systems theory can be exploited to construct algorithms
and approaches for optimization problems. Even more importantly, we hope to
inspire others to extend existing dynamical systems approaches to construct the
next-generation of techniques and insights for combinatorial optimization.
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Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems
Center, Pacific (SSC Pacific) under Contract No. N6600118C4031.
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Abstract. Many dynamical systems possess symmetries, e.g. rotational
and translational invariances of mechanical systems. These can be bene-
ficially exploited in the design of numerical optimal control methods. We
present a model predictive control scheme which is based on a library of
precomputed motion primitives. The primitives are equivalence classes
w.r.t. the symmetry of the optimal control problems. Trim primitives as
relative equilibria w.r.t. this symmetry, play a crucial role in the algo-
rithm. The approach is illustrated using an academic mobile robot exam-
ple.

Keywords: Dynamical systems with symmetry · Model predictive
control · Motion planning · Motion primitives · Multiobjective
optimization · Optimal control · Relative equilibria · Scalarization
methods

1 Introduction

Symmetry and dynamical systems are closely intertwined [52]. Besides discrete
symmetries such as reflections or rotations (by fixed angles), dynamical systems
typically possess continuous symmetries. Colloquially, an object is called sym-
metric if its reflection looks the same. For dynamical systems, symmetric trajec-
tories are indistinguishable, i.e., the dynamic behavior is the same and thus, it is
called invariant with respect to the symmetry action. Symmetry as a mathemat-
ical concept is well studied in the literature, cf. the classical textbooks [33,48],
for instance. Besides revealing and analyzing symmetry structures in dynamical
systems, the existence of symmetry can be used to simplify (i.e., reduce) the
formal description. For mechanical systems moving in R

2 or R3, symmetries are
often given by translational or rotational invariances. Throughout this chapter,
we focus on autonomous systems, such that translation in time provides another
symmetry indeed.
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The concept of symmetry in dynamical systems takes over to control systems
[7,8,13]. From an engineering point of view, a control system can be steered via
inputs such that a given control task is performed. It is thus natural to search
for a control input that performs best w.r.t. given performance criteria. Study-
ing optimal control of dynamical systems also has a long history, dating back
to the famous Brachistochrone problem [64]. Improved computational means
over the past 50 years today allow for the numerical treatment of increasingly
challenging optimal control problems, including the simultaneous consideration
of multiple conflicting criteria. In this case, one cannot hope for single (local)
optima. Instead, the set of optimal compromises – the Pareto set – has to be
computed.

In very early works, symmetries of optimal control problems have been con-
sidered based on symmetries of the optimal control Hamiltonian (see e.g. [67])
and used to construct decompositions of optimal feedback laws [31]. Symmetric
optimal control problems have also been studied in [5,16,65,66] where a Noether
theorem for optimal control problems is proven leading to generalized conserved
quantities along the solutions. However, so far, symmetry in optimal control has
been less studied in motion planning and model predictive control applications
even though it may be advantageously exploited for computational efficiency.

Optimal control and symmetries in dynamical systems both become crucial
when addressing up-to-date problems raising in the design and control of mod-
ern technical systems. Since intelligent technical systems shall autonomously
adapt to current situations and environmental conditions, as well as to tasks
and requirements, multiobjective optimal control problems arise continuously
during operation, and technical systems have to be equipped with highly effi-
cient on-board solution methods.

Having these challenges in mind, this contribution is concerned with model
predictive control (MPC) of symmetric dynamical systems subject to multiple
objectives. We study symmetry properties in the optimal control problems which
have to be solved continuously in MPC, and we provide a symmetry exploiting
planning method for trajectory optimization. Similar methods have been pre-
sented in [57] as well as in [36] for noisy systems. Here, we extend these ideas
by additionally taking into account the concept of trim primitives in motion
planning [24,25,28], where trims and maneuvers appear alternatingly. For illus-
tration, we use an academic example of a mobile robot system, resembling a
box-shaped robot moving on the ground via hovercraft-type propulsion (as intro-
duced e.g. in [21,55]).

Example 1 (Mobile robot). The simplified dynamics of a mechanical system mov-
ing on a plane (cf. Fig. 1) is defined by the Lagrangian function

L(q, q̇) =
1
2
m(ẋ2

1 + ẋ2
2) +

1
2
Θẋ3,

where q = (x1, x2, x3) is the robot’s configuration comprised of the two positions
in the plane, as well as the orientation with respect to the horizontal axis, and
m and Θ are the robot’s mass and inertia. Considering two control inputs as
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depicted in Fig. 1, the dynamics can be described by the following second order
differential equation:

q̈ =

⎛
⎜⎜⎝

1
m (cos(x3)u1 − sin(x3)u2)
1
m (sin(x3)u1 + cos(x3)u2)

− ru2
Θ

⎞
⎟⎟⎠ . (1)

Fig. 1. Simple model of an mobile robot in the plane with second order dynamics.

The remainder of this chapter is organized as follows: We collect mathe-
matical preliminaries in Sect. 2. Symmetry in multiobjective optimal control is
studied in Sect. 3. We present as symmetry exploiting MPC scheme in Sect. 4.
In Sect. 5, numerical results are presented, before we conclude in Sect. 6.

2 Preliminaries

In this section, we summarize the basic concepts in the fields of multiobjective
optimal control, model predictive control (MPC) and symmetry that will be
required throughout the chapter.

2.1 Multiobjective Optimal Control

In multiobjective optimal control one is interested in minimizing multiple con-
flicting objectives while taking the system dynamics into account which are here
described by an ordinary differential equation (see also [57]):

min
x∈X ,u∈U

J(x, u) =

⎛
⎜⎜⎝

∫ te

t0
C1(x(t), u(t)) dt + Φ1(x(te))

...∫ te

t0
Ck(x(t), u(t)) dt + Φk(x(te))

⎞
⎟⎟⎠ (2a)

s.t. ẋ(t) = f(x(t), u(t)), t ∈ (t0, te], (2b)

x(t0) = x0, (2c)
gi(x(t), u(t)) ≤ 0, i = 1, . . . , l, t ∈ (t0, te], (2d)
hj(x(t), u(t)) = 0, j = 1, . . . , m, t ∈ (t0, te], (2e)
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with system state x(t) ∈ R
nx and control u(t) ∈ U ⊂ R

nu with U being closed
and convex and X = W 1,∞([t0, te],Rnx) and U = L∞([t0, te], U) being the corre-
sponding function spaces for the curves x and u respectively. The cost function
J : X×U → R

k involves k conflicting objectives and the functions Ci : Rnx×U →
R, Φi : Rnx → R are continuously differentiable. f : Rnx × U → R

nx is Lipschitz
continuous, and g : Rnx × U → R

l, g = (g1, . . . , gl)� and h : Rnx × U → R
m,

h = (h1, . . . , hm)�, are continuously differentiable inequality and equality con-
straint functions, respectively.

(x, u) is a feasible pair if it satisfies the constraints (2b)–(2e). The space of
the control trajectories U is the decision space and the image of all feasible pairs
forms the objective space.

By introducing the flow of the dynamical system

ϕu(x0, t) = x0 +
∫ t

t0

f(x(t), u(t)) dt, (3)

the explicit dependency of J , g and h on x can be removed. This leads to the
following simplified multiobjective optimal control problem:

min
u∈U

Ĵ(x0, u)

ĝi(x0, u) ≤ 0, i = 1, . . . , l, t ∈ (t0, te],

ĥj(x0, u) = 0, j = 1, . . . , m, t ∈ (t0, te],

(MOCP)

with

Ĵi(x0, u) =
∫ te

t0

Ĉi(x0, u) dt + Φ̂i(x0, u)

with Ĉi(x0, u) := Ci(ϕu(x0, t), u(t)) and Φ̂i(x0, u) := Φi(ϕu(x0, te)) for i =
1, . . . , k. We use the notation u := u|[t0,t] to represent the control function up to
time t which is assumed to uniquely define the state x(t) at time t. The con-
straints ĝ(x0, u) and ĥ(x0, u) are defined accordingly. u is a feasible curve if it sat-
isfies the equality and inequality constraints ĝi, i = 1, . . . , l, and ĥj , j = 1, . . . , m.

Since there exists no total order of the objective function values in R
k with

k ≥ 2, we introduce the following partial order:

Definition 1. Let v, w ∈ R
k. The vector v is less than w (denoted by v < w),

if vi < wi for all i ∈ {1, . . . , k}. The relation ≤ is defined in an analogous way.

In general, we cannot expect to find isolated optimal curves for (MOCP).
Instead, we look for a set of optimal compromises (also called the Pareto set or
set of non-dominated curves) which is defined as follows.

Definition 2. Consider problem (MOCP). Then

1. a feasible curve u∗ dominates a curve u, if Ĵ(x0, u∗) ≤ Ĵ(x0, u) and
Ĵ(x0, u∗) �= Ĵ(x0, u).
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2. a feasible curve u∗ is called globally Pareto optimal if there exists no feasible
curve u ∈ U dominating u∗. The image Ĵ(x0, u∗) of a globally Pareto optimal
curve u∗ is called a globally Pareto optimal value. If this property holds in a
neighborhood U(u∗) ⊂ U , then u∗ is called locally Pareto optimal.

3. the set of non-dominated feasible curves is called the Pareto set P, its image
the Pareto front PF .

An example of Pareto optimality is illustrated in Fig. 2 for a finite-dimensional
problem, i.e. curves reduce to points in the Euclidean space. By varying a point
in the Pareto set (red line in Fig. 2 (a)), we can only improve one objective by
accepting a trade-off in at least one other objective, as shown by the red line in
Fig. 2 (b).

(a) (b)

Fig. 2. Red lines: Pareto set P (a) and Pareto front PF (b) of an example problem
(two paraboloids) of the form minu∈R2 J(u), J : R2 → R

2. The point J∗ = (0, 0)� is
called the utopian point.

For the numerical solution of optimal control problems, there exist many
fundamentally different approaches which can be categorized into direct or indi-
rect solution methods. Direct methods rely on a discretization of the objective
functions, the dynamics and the constraints to transform the problem into a
finite-dimensional multiobjective optimization problem (MOP) – also denoted
as “first discretize, then optimize”, see e.g., [56]). On the other hand, indirect
methods derive necessary optimality conditions based on Pontryagin’s Maximum
Principle (also denoted as “first optimize, then discretize”). For an overview of
different methods, see e.g. [6,45]).

Solution methods for MOCPs typically rely on a direct approach such that
one is faced with finite-dimensional MOPs [46,58,62]. Well-established meth-
ods for solving such MOPs are scalarization techniques, continuation methods,
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evolutionary algorithms [9], set-oriented methods [15,62], or cell-to-cell map-
ping techniques [35,63]. For example, continuation methods make use of the fact
that under certain conditions, the Pareto set is a smooth manifold of dimen-
sion k − 1 that can be approximated using predictor-corrector schemes [37].
More recent continuation methods are, for example, the Pareto Tracer for mul-
tiobjective problems and the Pareto Explorer for many objective optimization
problems [50].

In scalarization, solution approaches for single objective optimization prob-
lems are extended to the multiobjective problem by transforming the MOCP
into a sequence of scalar-valued problems1. In this way, the Pareto set is approx-
imated by a finite set of Pareto optimal curves. There exists a large variety of
scalarization approaches in the literature such as the weighted-sum method, the
ε-constraint method, normal boundary intersection, or reference point methods
[18]. In this work, we focus on the latter to solve MOCPs, which is illustrated
in Fig. 3. In the reference point method, the minimization of the vector val-
ued objective function in (MOCP) is replaced by the minimization of a scalar
function which is the euclidean distance between a feasible point J(u(i)) and an
infeasible target T (i) < J(u(i)):

min
u(i)∈U

∥∥∥Ĵ(x0, u(i)) − T (i)
∥∥∥

2

2

ĝi(x0, u(i)) ≤ 0, i = 1, . . . , l, t ∈ (t0, te],

ĥj(x0, u(i)) = 0, j = 1, . . . , m, t ∈ (t0, te],

(RP)

The solution of problem (RP) for one T (i) yields one Pareto optimal curve and
the corresponding point on the Pareto front. Once two points of the Pareto front
are known, these are used to approximate the tangent space of the front and to
construct the target T (i+1) for the next scalar problem, cf. Fig. 3 (b). This is done
by shifting the point first parallel (i.e., along the vector Ĵ(x0, u(i))−Ĵ(x0, u(i−1)))
and then orthogonal (parallel to the direction T (i) − Ĵ(x0, u(i))) to the Pareto

(a) (b)

Fig. 3. Reference point method. (a) Solution of the ith scalar problem. (b) Construction
of the next target T (i+1), prediction step u(p,i+1), and solution of the next scalar control
problem.

1 In this situation, indirect approaches can be used as well, cf. e.g. [61].
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front. To accelerate the solution process for the next scalar problem (RP), linear
extrapolation is used to compute a predictor u(p,i+1) based on the two points u(i)

and u(i−1). This approach ensures an almost equidistant covering of the front.
For a more detailed description see, e.g., [59, pp. 24–26].

2.2 Model Predictive Control

For taking unforeseen events, disturbances, or model inaccuracies during the
control design into account, MPC methods (also referred to as moving horizon
control or receding horizon control) have become very popular in recent years
[32]. In MPC, open-loop problems are solved repeatedly on a finite prediction
horizon of length tp = ph, where p ∈ N

>0 and h ∈ R
>0 is the sample time

(cf. Fig. 4). More concretely, problem (MOCP) is solved on a moving horizon
(s = 0, 1, . . .) with time constants and initial conditions given as

t0 = ts,

te = ts + hp = ts+p,

x0 = x(ts).

After each finite horizon optimization, a fraction of the control is applied to the
system over the control horizon tc = qh ≤ ph = tp while the optimization is
repeated with the prediction horizon moving forward by the sample time h.

This results in a closed-loop control which is more flexible to react to system
disturbances and unforeseen events. Furthermore, the solution of finite horizon
MOCPs is computationally less expensive because shorter horizons are consid-
ered compared to the full problem. Nevertheless, for complex problems, it is
still hard to meet real-time requirements (note that the optimal control prob-
lem has to be solved within the control horizon tc). This is already challenging
for scalar-valued MPC problems, and considering multiple objectives is clearly
infeasible without taking further measures such as scalarization methods (see

Fig. 4. Sketch of the MPC method. Due to the real-time constraints, the optimization
problem has to be solved within the control horizon tc = qh.
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e.g. [4,69,70]), crude approximation of the entire front [29,44,54] or offline com-
putation of control parameters [34,43]. For a survey of feedback control with
multiple objectives we refer to [60]. Another way to meet real-time requirements
is explicit MPC [3], see also [1] for a survey. Here, the MPC problem is refor-
mulated as a multiparametric optimization problem which can be solved in an
offline phase and the solutions are stored in a library. During the MPC loop,
the computation of an optimal solution is then replaced by extracting the opti-
mal input from the library. The approach presented in this contribution can be
categorized as an explicit MPC method since we pre-compute Pareto optimal
controls in an offline phase. In addition, symmetries of the underlying system are
exploited to reduce the numerical effort. During operation, the best compromise
solution is picked online based on the current situation and the user’s preference.

2.3 Symmetry

Many dynamical systems show symmetry properties. Roughly speaking, a sym-
metric system possess a finite or infinite number of solutions “which look the
same”. In engineering systems, symmetry comes by design, e.g. by modularized
system structures or by reducing the system’s complexity. Here, we focus on
symmetries which can be formally described by actions of Lie groups. We intro-
duce motion primitives as equivalence classes w.r.t. the symmetry and identify
trim primitives as motions with special properties. The presentation follows the
lines of [25,57] and [24].

2.3.1 Equivariance and Equivalence
We formally describe symmetries by a finite-dimensional Lie group G and its
group action ψ which are defined in the following way (see also [25]). A Lie
group is a group (G, ◦), which is also a smooth manifold, for which the group
operations (g, h) 	→ g ◦ h and g 	→ g−1 are smooth. If, in addition, a smooth
manifold M is given, we call a map ψ : G × M → M a left-action of G on M if
and only if the following properties hold:

• ψ(e,x) = x for all x ∈ M where e denotes the neutral element of (G, ◦).
• ψ(g, ψ(h,x)) = ψ(g ◦ h,x) for all g, h ∈ G and x ∈ M .

For convenience, we define ψg : M → M with ψg(x) := ψ(g, x) for g ∈ G and
x ∈ M .

Definition 3 (Symmetry (cf. [28])). Let (G, ◦) a Lie-group and ψ a left-action
of G on R

nx . Then a dynamical control system described by

ẋ(t) = f(x(t), u(t)) ∀t ∈ [t0, te], x(t0) = x0, (4)

is invariant under the group action ψ, or equivalently, G is a symmetry group
for the system (4), if for all g ∈ G, x0 ∈ R

nx , t ∈ [t0, te] and u ∈ U it holds

ψg(ϕu(x0, t)) = ϕu(ψg(x0), t). (5)
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This means that the flow commutes with the group action. Invariance under
a group action implies equivalence of trajectories in the following sense (see also
[24,28,57]).

Definition 4 (Equivalence of trajectories (cf. [28])). Two trajectories π1 :
t ∈ [t0,1, te,1] 	→ (x1(t), u1(t)) and π2 : t ∈ [t0,2, te,2] 	→ (x2(t), u2(t)) of Eq. (4)
are equivalent, if it holds that

(i) te,1 − t0,1 = te,2 − t0,2 and
(ii) there exist a g ∈ G and an T ∈ R such that x1(t) = ψg(x2(t − T )) and

u1(t) = u2(t − T)∀ t ∈ [t0,1, te,1].

Thus, two trajectories are equivalent if one trajectory can be represented
solely by a time translation and the group action applied to the other trajectory.
All equivalent trajectories can be summed up in an equivalence class. By abuse
of notation, we call the equivalence class as well as its representative a motion
primitive (cf. [28]).

Remark 1 (Equivariance of vector fields (cf. [25,57])). Symmetry of a dynamical
control system can be described by the equivariance of the underlying vector
field, i.e., by the condition

f(ψg(x), u) = Dxψg(f(x, u)) ∀x ∈ R
nx , g ∈ G, (6)

where Dxψg : R
nx → R

nx is the tangent lift of ψg which acts on v = ẋ as
Dxψg(v) = d

dxψg(x) · v.

Remark 2 (Invariance of Lagrangian systems). Symmetries of mechanical sys-
tems which can be derived by a Lagrangian L(q, q̇) and corresponding Euler-
Lagrange equations d

dt
∂L
∂q̇ (q, q̇)− ∂L

∂q (q, q̇) = 0 can be described by the invariance
of the Lagrangian function which is defined by the condition

L(ψg(q),Dqψg(q̇)) = L(q, q̇) ∀(q, q̇) ∈ R
n × R

n, g ∈ G,

where Dqψg is the tangent lift of the group action ψg as defined in Remark 1.
Typical symmetries of mechanical systems are translational (G = R

n), rota-
tional (G = SO(n)) and combined (G = SE(n) ≈ SO(n)×R

n) symmetries. The
corresponding action and its lift are given by ψg(q) = Rq+Δq and Dqψg(v) = Rv
with R ∈ SO(n) and Δq ∈ R

n. SO(n) is the special orthogonal group, which can
be represented by the set of matrices {R ∈ R

n,n |R�R = I,det(R) = 1}. The
dimension of a Lie group is given by the number of elements required to repre-
sent a Lie group element g ∈ G. For the examples above, we have dim(Rn) = n,
dim(SO(n)) = n(n − 1)/2 and dim(SE(n)) = n(n − 1)/2 + n.
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2.3.2 Symmetry Exploiting Motion Planning
It was first shown by Frazzoli et al. [26,28] how to formally take advantage
of symmetry in motion planning. Following the idea of quantization (see also
[24,27,40]), such so-called motion primitives are generated by solving optimal
control problems for intermediate problems which can be combined into various
sequences. The problem is thus reduced to searching for the optimal sequence
out of all admissible sequences in a library of motion primitives which can be
realized using global search methods. Extensions towards hybrid systems have
been considered in [22,23].

Definition 5 (Trim primitive (cf. [28])). A solution (x, u) to system dynam-
ics (4) on [t0, te] with initial value x0, that can be written as

x(t) = ψ(exp(tξ), x0), u(t) ≡ ū = const. ∀t ∈ [t0, te] (7)

with ξ ∈ g, the Lie algebra which corresponds to symmetry group G and exp :
g → G, ξ 	→ exp(tξ) ∈ G the exponential map, is called a trim primitive, trim
for short.

Note that the time parametrization defines via exp(tξ) a one-parameter group
orbit in G. If this generates a solution to the system dynamics via the symmetry
lift, we call this trajectory a trim.

Remark 3 (Trim primitives and relative equilibria in Lagrangian/Hamiltonian
systems). In dynamical system theory, trim primitives are known as relative
equilibria. Typically, uncontrolled autonomous systems with symmetry are con-
sidered. Here, a relative equilibrium is a solution which is generated by the
symmetry action and thus, an equilibrium in the non-symmetric part of the
system, i.e. the shape space. Lagrangian or Hamiltonian dynamics allow nice
characterizations of relative equilibria: Classically, Routh studied the case of
cyclic variables (see e.g. [7]), i.e. Lagrangian systems that are independent of
some of the configuration variables (θ). The dynamics can then be reduced to
the remaining variables (q, q̇),

Rμ(q, q̇) =
[
L(q, q̇, θ̇) − μθ̇

]
p=μ

⇒ ∂

∂q
Rμ(q, q̇) − d

dt

∂

∂q̇
Rμ(q, q̇) = 0,

and equilibria of the reduced dynamics correspond to relative equilibria of the
original system. In [49], the generalized version of Lagrangian reduction has been
studied and applied to a double spherical pendulum. In the general Lagrangian
case, a relative equilibrium can be characterized as the critical point of the
amended potential

Vμ = V +
1
2

〈
μ, I−1μ

〉

where μ is the value of the conserved momentum, I the locked inertia tensor,
and 〈·〉 denotes the vector-covector pairing (see [47,49] for details). This can
then be extended to controlled Lagrangian systems: Assuming control that acts
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as a potential force, a trim primitive can be characterized as a critical point of
the constantly controlled amended potential,

V u
μ = V − ν +

1
2

〈
μ, I−1μ

〉
with

∂

∂q
ν(q) = u,

see [21,24] for details.

Trims are uniquely defined by their initial value x0, their control ū and the
Lie algebra element ξ, which makes them easy to store and handle in a library of
motion primitives. More concretely, only the shape space coordinates of the trim
have to be fixed, since any trim, as it is a motion primitive, can be shifted by the
symmetry action. A second benefit of trims is that they are simply parametrized
by time, i.e. their duration need not be fixed in advance, but can be adjusted
during the sequencing (cf. [24,28] for details).

x

y

z

φ

θ

m

r

Fig. 5. The spherical pendulum.

Example 2 (Spherical Pendulum (cf. [21])) Consider a mathematical pendulum
that can move with two degrees of freedom, i.e. on a sphere as depicted in Fig. 5.
Its dynamics (apart from the north/south pole) are described by

θ̈ = −2
cos(ϕ)
sin(ϕ)

ϕ̇θ̇

ϕ̈ = sin(ϕ) cos(ϕ)θ̇2 +
g

r
sin(ϕ).

The system is symmetric w.r.t. rotations about the vertical axis and the sym-
metry group is G = S1, acting by addition only in the horizontal coordinate.

Relative equilibria fulfill θ̇2 = − g
r·cos(ϕ) , i.e. they are purely horizontal rota-

tions (ϕ̇ = 0) in the lower hemisphere (cf. Fig. 6(a)). For every angle ϕ in the
lower hemisphere, there is exactly one (up to the sign) rotational velocity which
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generates a relative equilibrium, i.e. a trim with zero control. If we allow control
in ϕ-direction, the rotational velocity and the height of a trim can be chosen
arbitrarily with uϕ = −mgr sin(ϕ) − mr2 sin(ϕ) cos(ϕ)θ̇2 (cf. Fig. 6(b)).
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0.5
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φ
2 2.5 3

1
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2

θ

(a) (b)

Fig. 6. Trim primitives for the spherical pendulum system: (a) trims without control,
i.e. relative equilibria exist in the lower hemisphere for correct rotational velocity. (b)
If ϕ and θ̇ shall be chosen independently of one another, a constant control value uϕ

has to be chosen according to the control manifold, see [21] for a detailed discussion.

Maneuver Automaton: Typically, it is not possible to continuously switch a con-
trol system from one trim to another (kinematic mechanical systems being an
exception). Thus, control maneuvers have to be provided in order to smoothly
concatenate motion primitives. A finite set of trims and maneuvers form the
maneuver automaton which can be used for motion planning (Fig. 7). The design
procedure is as follows. For details and formal definition in terms of automata
theory, we refer to [28].

0. Assume the system dynamics (4), the symmetry (G,ψ) and the corresponding
Lie algebra g to be known.

1. Choose a finite set of trim primitives T , e.g. by gridding the Lie algebra.
Store their generating triples (x0, ū, ξ).

2. Compute a finite set of maneuvers M that start and end on trims ti, te ∈ T .
This can be done by optimal control methods, for instance [24,40]. Maneuvers
have to be stored as time-discretized control and state trajectories.
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3. Set up the graph structure of the maneuver automaton. Trim primitives form
the vertices and maneuvers the edges. A maneuver mie ∈ M which starts at
trim ti and end in trim te is a directed edge between these two nodes.

Note that every maneuver and every trim of T ∪M is a motion primitive, i.e.
it can be shifted by the symmetry action in order to build trajectory sequences.
For given initial and final states on corresponding trims, a sequence can be found
by planning methods, i.e. sampling-based roadmap algorithms (see [28,40]) or a
modified version of the A* or the D* planning method2.

maneuver

initial

trim

final

trim

trim

trim

trim
trim

trim

Fig. 7. Maneuver automaton adapted from [28]. Trim primitives form the nodes,
maneuvers are the edges. A solution from initial to final trim consists of an alter-
nating sequence of trims and maneuvers. This resembles the execution of a hybrid
automaton, [22].

Remark 4 (Specially structured maneuvers). The definition of a maneuver is
quite broad; the only restriction is that it is compatible with the dynamics
and it has to start and end on a trim primitive of the automaton. This allows
to consider specially structured maneuvers: In [21,24], maneuvers on stable and
unstable manifolds of the uncontrolled dynamics have been integrated into the
motion primitive concept. This formalizes the idea of energy efficient trajectory
generation in astrodynamics (see [10,12,14,30,41,42,51]) by exploiting inherent
system structures, namely stable and unstable manifolds of invariant objects in
the uncontrolled dynamics.

3 Symmetries in Multiobjective Optimal Control

Symmetries do not only play a major role in dynamical control systems but
also in optimal control problems. In this section, we will introduce the notion of
symmetry in multiobjective optimal control and discuss how it can be exploited
for the solution of multiobjective optimal control problems. We mainly follow
2 See e.g. D* code for planning with primitives provided by Marin Kobilarov,

Autonomous Systems, Control and Optimization (ASCO) Laboratory, Johns Hop-
kins University at https://github.com/jhu-asco/dsl.

https://github.com/jhu-asco/dsl
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the definitions and explanation in [57]. Considering symmetries in multiobjec-
tive optimal control problems, we are interested in Pareto optimal solutions of
(MOCP) that remain Pareto optimal when the initial conditions are transformed
by the symmetry group action such that

arg min
u

Ĵ(x0, u) = arg min
u

Ĵ(ψg(x0), u) ∀g ∈ G. (8)

This means that we require the Pareto set to be invariant under group actions
on the initial conditions. Symmetries in single-objective, linear-quadratic explicit
MPC have been studied in [11] and relations to the approach above and related
methods are discussed in [57].

The following theorem provides conditions under which Pareto sets are invari-
ant under group actions, i.e., that satisfy Eq. (8).

Theorem 1 (Symmetry of (MOCP) (cf. [57])). Let X = W 1,∞([t0, te],Rnx)
and U = L∞([t0, te],Rnu). If

1. the dynamics are invariant under the Lie Group action ψ, i.e. Eq. (5) holds
for t ∈ [t0, te];

2. there exist α, β, δ ∈ R, α �= 0, such that the cost functions Ci and the Mayer
terms Φi, i = 1, . . . , k, are invariant under the Lie Group action ψ up to
linear transformations, i.e.,

Ci(ψg(x), u) = αCi(x, u) + β (9)

and
Φi(ψg(xe)) = αΦi(xe) + δ for i = 1, . . . , k; (10)

3. the constraints gi, i = 1, . . . , l and hj, j = 1, . . . , m, are invariant under the
Lie Group action ψ, i.e.,

gi(ψg(x), u) = gi(x, u) for i = 1, . . . , l, (11)
hj(ψg(x), u) = hj(x, u) for j = 1, . . . , m, (12)

then we have

arg min
u

Ĵ(ψg(x0), u) = arg min
u

Ĵ(x0, u) ∀g ∈ G. (8)

We say that problem (MOCP) is invariant under the Lie group action ψg, or
equivalently, G is a symmetry group for problem (MOCP).

A proof can be found in [57].
In principle, Theorem1 states that if the objective function and the con-

straints are invariant (up to linear transformations) under the same group action
as the dynamical control system (Conditions 2 and 3), then all trajectories con-
tained in an equivalence class defined by (5) (Condition 1) will also be contained
in an equivalence class defined by (8). However, the latter class may contain
more solutions since we do not explicitly pose restrictions on the state but only
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require the solutions of (MOCP) (i.e., the control u) to be identical. This is
demonstrated with the following example which involves no dynamical control
system and consequently, no invariance condition on the flow has to be imposed
(see also Corollary 1 in [57]).

Example 3 (Invariance of the arg min) Let us consider the parameter dependent
objective function J(u, γ) from [68, Example 3.12] with J : R2 × R → R

2:

min
u∈R2

⎛
⎝

1
2

(√
1 + (u1 + u2)2 +

√
1 + (u1 − u2)2) + u1 − u2

)
+ γe−(u1−u2)

2

1
2

(√
1 + (u1 + u2)2 +

√
1 + (u1 − u2)2) − u1 + u2

)
+ γe−(u1−u2)

2

⎞
⎠ .

(13)
Here, no dynamical control system is considered as extra constraint, which yields
a finite-dimensional MOP. The Pareto sets and fronts for varying values of γ are
shown in Fig. 8. Clearly, P is invariant under translations in γ (i.e., the arg min
of (13) is invariant under translations in γ).

Fig. 8. Pareto set (a) and Pareto front (b) of Problem (13) for varying values of γ.
Although the fronts vary, P is invariant under translations in γ.

Remark 5 (Group actions on controls and parameters, cf. [57]). One can extend
the notion of symmetry for optimal control problems by introducing the Lie
group actions χh on the control trajectories u and ξl on extra parameters γ ∈ R

nγ

of the optimal control problem (with h and l being elements of the Lie groups
H and L, respectively). More concretely, we consider the group action triple
(ψg, χh, ξl) : Rnx × R

nu × R
nγ → R

nx × R
nu × R

nγ . For a parameter dependent
flow ϕu(x0, t; γ) the invariance condition (5) for the dynamical control system is
then replaced by

ψg(ϕu(x0, t; γ)) = ϕχhu(ψg(x0), t; ξl(γ)). (14)
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and the invariance condition for a parameter dependent optimal control problem
(MOCP) reads

arg min
u

Ĵ(x0, u, γ) = arg min
u

Ĵ(ψg(x0), χh(u), ξl(γ)) ∀g ∈ G, h ∈ H, l ∈ L. (15)

By Theorem 1, (15) is satisfied if dynamics, cost functions, Mayer terms and
constraints are all invariant under the Lie group action (ψg, χh, ξl).

Example 4 (Parameter dependent problems, cf. [57]) An example for parameter
dependent problems are tracking problems with cost functions in the following
form

C(x, γ) = ‖x − γ‖2
2,

where x is the state and γ some reference to be tracked. For translation and
rotation invariant dynamical control systems, i.e., ψg(x) = R ·x+Δx, invariance
of the cost function is ensured by applying the same Lie group action ψg to γ,
i.e., C(ψg(x), ψg(γ)) = ‖ψg(x)−ψg(γ)‖2

2 = ‖R ·x+Δx−(R ·γ+Δx)‖2
2 = C(x, γ)

where the last equality follows from the orthogonality of R. Another parameter
dependent optimal control problem is considered in Sect. 5.

4 Symmetry Exploiting Model Predictive Control

In this work, we exploit all the above mentioned concepts, i.e.,

• multiobjective optimization,
• model predictive control,
• motion planning with motion primitives, and
• symmetry exploitation in optimal control

in order to develop a real-time capable feedback algorithm for nonlinear systems
with the ability to adjust the prioritization of conflicting objectives online. A
similar algorithm was proposed in [57] and extended to uncertainties in [36]. The
main difference here is that we additionally use the concept of motion planning
with trim primitives, i.e., two maneuvers are connected by a trim primitive.
In contrast to classical motion planning with precomputed primitives, we do
not store entire maneuvers and trims in a library, but only the control inputs
resulting in the desired behavior. The dynamics themselves are then “created”
when the plant is running and the optimal control is applied. In general, this can
be done by numerical simulation. For trim primitives, in particular, the defining
expression via Lie algebra, exponential map, and symmetry action can be used
in order to avoid integration errors and improve numerical efficiency.

Remark 6 (Relation to existing methods). For single-objective, linear-quadratic
optimal control, explicit MPC was introduced by Bemporad et al. [3], where
an offline-online decomposition was introduced such that during operation, one
only has to select the precomputed optimal control from a library. For the con-
struction of the library, the control problem is reformulated as a parametric
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Algorithm 1. Offline phase
Require: Bounds x0

min, x
0
max ∈ R

nx , γmin, γmax ∈ R
nγ , distance between grid points δ ∈

R
nx+nγ .

1: Dimension reduction by exploiting symmetries: Decrease dimension of parameter
(x0, γ) ∈ R

nx+nγ to (x̃0, γ̃) ∈ R
ñx+ñγ by exploiting the symmetry groups G and L

(cf. Section 3).
2: Construction of library: Create an (ñx + ñγ)-dimensional grid L for the parameter

(x̃0, γ̃) between (x̃0
min, γ̃min) and (x̃0

max, γ̃max) with distance δi in the ith direction.
3: Compute the Pareto sets P(x̃0,γ̃) for all (x̃0, γ̃) ∈ L using the reference point

method.

optimization problem with the initial condition x0 as the parameter. For linear-
quadratic problems, only a finite number of problems has to be solved in the
offline phase to obtain the exact solution for all parameters, since the optimal
control is an affine function of the initial condition x0. The explicit MPC concept
was later extended to account for symmetries in [11]. This way, the numerical
effort of the offline phase could be significantly reduced. For nonlinear problems,
it is no longer possible to obtain an exact offline solution for all parameter val-
ues. Instead, interpolation between existing library entries has to be performed
[2,17,38,39].

The algorithm consists of an offline phase and an online phase. In the offline
phase, the parameter dependent problem (MOCP) is solved for many different
parameter values, where (x0, γ) can be composed of both the initial condition
and external parameters. The parametrization is discretized on an equidistant
grid with dimension nx + nγ = dim(x0, γ). This means that the numerical effort
of the offline phase grows exponentially with the parameter dimension. In order
to reduce the parameter dimension and thus the cost of the offline phase, symme-
tries in the dynamical control system are exploited. Then, one problem (MOCP)
is solved for each entry in the resulting symmetry-reduced library and stored to
the library L. The entire procedure is summarized in Algorithm1.

The online phase (see Algorithm 2) is strongly related to classical explicit
MPC, but extended by the two steps

a) selection of a compromise solution according to a user-defined weight ρ (line
4 in Algorithm 2), and

b) usage of trim primitives (with u = 0) in case they dominate the solution from
the library with respect to the global objectives (lines 7–10 in Algorithm2).
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Algorithm 2. Online phase
Require: Weight ρ ∈ R

k with
∑k

i=1 ρi = 1 and ρ ≥ 0.

1: for t = t0, t1, t2, . . . do
2: Obtain the current initial condition x̃0 = x̃(t) and the parameter value γ̃ from

the plant.
3: Identify the 2(ñx+ñγ) neighboring grid points of (x̃0, γ̃) in L (i.e., closest below

and above in each component of (x̃0, γ̃)). These points are collected in the index
set I.

4: From each of the corresponding Pareto sets P(x̃0,γ̃)i
, i ∈ I, select a Pareto

optimal control ui according to the weight ρ.
5: Compute the distances di between the entries of the library and (x̃0, γ̃):

di = ‖(x̃0, γ̃)i − (x̃0, γ̃)‖2.

6: Interpolate between the entries in I:

u =

∑|I|
i=1

1
di

ui

∑|I|
i=1

1
di

.

7: Compute the resulting objective values corresponding to the zero control trim
u = 0.

8: if the zero control trim dominates the control selected from the library then
9: u = 0

10: end if
11: Apply u to the plant for the control horizon length tc.
12: end for

5 Results for the Mobile Robot

Consider the mobile robot dynamics given in (1). Let’s first transform the second
order system (1) into a first order system:

˙⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

v1

v2

v3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3
1
m (cos(x3)u1 − sin(x3)u2)
1
m (sin(x3)u1 + cos(x3)u2)

− ru2
Θ

⎞
⎟⎟⎟⎟⎟⎟⎠

= f(x, u), (16)

with x = (x1, x2, x3, v1, v2, v3) and u = (u1, u2). Let us, furthermore, introduce
the variables q = (x1, x2, x3), q̇ = (v1, v2, v3) such that x = (q, q̇) and w = (q̇, q̈).
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The aim is to control the robot in such a way that a desired destination xd

is reached both as fast and as control-efficient as possible:

min
x∈X ,u∈U

(
T∫ T

0
‖u(t)‖2

2 dt

)

s.t. ẋ(t) = f(x(t), u(t)), x(t0) = x0, t ∈ (0, T ],

‖(x1(T ), x2(T ))� − xd‖ ≤ rd

(17)

where T is the time for the entire trajectory, and the destination area is defined
by a circle3 with fixed radius rd and center xd. Introducing the flow notation
(3), a reduced parameter dependent problem of form (MOCP) can be derived
with eight parameters. Of these, six stem from the initial condition of the robot,
and two from the destination:

(x0, γ) = (x0
1, x

0
2, x

0
3, v

0
1 , v0

2 , v0
3 , xd

1, x
d
2),

see also Fig. 9.
Now we identify the symmetries of the MOCP (17). Consider the Lie group

action ψg : R3 → R
3 with

ψg(q) = Q · q + Δq (18)

with Q =
(

Rg3 0
0 1

)
, Rg3 =

(
cos g3 − sin g3

sin g3 cos g3

)
and Δq = (g1, g2, g3)�. This action

represents translations of the robot’s center of mass (q1, q2) and simultaneous
translation in the robot’s orientation x3 and rotation about its center of mass.
The corresponding symmetry group is thus given by G = L = SE(2) with

Fig. 9. Left: Problem with eight degrees of freedom, from which six are the robot’s
degrees of freedom and two are the position xd of the destination. Right: Symmetry-
reduced problem with four degrees of freedom.

3 The reason for specifying the target as a circular area is that this way, the parameter
dimension can be further reduced by one, as we will see below.
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dim(G) = dim(L) = 3. The corresponding action Dψg : R
6 → R

6 acting on
x = (q, q̇) is given by

Dψg(x) =
(

Q 03×3

03×3 Q

)
· x + Δx (19)

with Δx = (g1, g2, g3,03,1)�. Similarly, we can compute D2ψg : R6 → R
6 acting

on w = (q̇, q̈) as

D2ψg(w) =
(

Q 03×3

03×3 Q

)
· w (20)

We are now ready to prove the following result.

Proposition 1. Problem (17) with q = (x1, x2, x3), q̇ = (v1, v2, v3), x = (q, q̇)
and a destination area given by γ = xd is invariant under the group action
(ψg, ξl) ,where ψg is given in (18) and

ξl(γ) = Rg3 · γ + Δγ (21)

with Rg3 =
(

cos g3 − sin g3

sin g3 cos g3

)
and Δγ = (g1, g2)�.

Proof Equivariance of vector field: Using the first order system formulation (16),
we have

f(Dψg(x), u) =

⎛
⎜⎜⎝

Q · q̇
1
m (cos(x3 + g3)u1 − sin(x3 + g3)u2)
1
m (sin(x3 + g3)u1 + cos(x3 + g3)u2)

− ru2
Θ

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

Q · q̇(
cos(g3) − sin(g3)
sin g3 cos(g3)

)(
1
m (cos(x3)u1 − sin(x3)u2)
1
m (sin(x3)u1 + cos(x3)u2)

)

− ru2
Θ

⎞
⎟⎟⎠

=
(

Q 03×3

03×3 Q

)
· f(x, u) = D2ψg(f(x, u)).

Invariance of Cost Functions and Constraints: Since the cost function is inde-

pendent from the state x, it is invariant under the group action. The invariance
of the constraint ‖(x1(T ), x2(T ))� − xd‖ ≤ rd follows with the orthogonality of
R.

The statement follows with Theorem 1. ��

Remark 7. To ensure symmetry of the MOCP, also the destination point xd has
to be translated by the same group action as the center of mass (x1, x2).
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Next, we compute the trim primitives based on the Lie algebra of the sym-
metry group. The Lie algebra of the group of rotation matrices Rg3 is the group
of skew symmetric matrices (

0 −ξ3

ξ3 0

)

and the Lie algebra of the group of 2-dimensional translation is R
2.

Proposition 2 (Trim primitives). The robot with dynamics (16) and sym-
metry action Dψg as defined in (19) has two types of trim primitives:

a) Straight translation: Going straight with constant velocity

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

v1

v2

v3

⎞
⎟⎟⎟⎟⎟⎟⎠

(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
1 + ξ1 · t

x0
2 + ξ2 · t

x0
3

v0
1

v0
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

ξ1 = v0
1 ,

ξ2 = v0
2 ,

ξ3 = 0,
u1 = 0,
u2 = 0.

b) Circular motion:

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

v1

v2

v3

⎞
⎟⎟⎟⎟⎟⎟⎠

(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(ξ3t)x0
1 − sin(ξ3t)x0

2 + ξ1/ξ3 sin(ξ3t) − (1 − cos(ξ3t))ξ2/ξ3

sin(ξ3t)x0
1 + cos(ξ3t)x0

2 + ξ1/ξ3(1 − cos(ξ3t)) + sin(ξ3)ξ2/ξ3

ξ3t
cos(ξ3t)v0

1 − sin(ξ3t)v0
2

sin(ξ3t)v0
1 + cos(ξ3t)v0

2

v0
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with
ξ1 = v0

1 + ξ3x
0
2,

ξ2 = v0
2 − ξ3x

0
1,

ξ3 = v0
3 ,

u2 = 0,
cos(ξ3t)v0

1ξ3 − sin(ξ3t)v0
2ξ3 = 1/m sin(x0

3 + ξ3t)u1,

− sin(ξ3t)v0
1ξ3 − cos(ξ3t)v0

2ξ3 = 1/m cos(x0
3 + ξ3t))u1.

Proof. When defining the Lie algebra as a subgroup of se(2) and using the
Rodriguez formula (cf. e.g. [53]) for the exponential map, the trim represen-
tation follows from direct computation. Constraints on the Lie algebra elements
ξ1, ξ2, ξ3, the initial value (x0

1, x
0
2, x

0
3, v

0
1 , v0

2 , v0
3) and the constant control values

(u1, u2) are derived from comparison with the dynamics (16), since a trim has
to be a valid motion. ��



230 K. Flaßkamp et al.

In our numerical example, we will make use of trims of type a), i.e. straight
motions with constant velocity and zero control.

As an eight-dimensional parameter results in a prohibitively expensive offline
phase, we exploit the translational symmetries in x1, x2, and x3. As long as the
target point xd is translated and rotated accordingly, this leaves the solution of
Problem (17) unchanged and results in a parameter of dimension five:

(x0, γ)′ = (v0
1 , v0

2 , v0
3 , δ1, δ2),

where δ = Rg3x
d now denotes the distance between the robot and the destination

in the rotated frame of reference. In order to further reduce the dimension by
one, we project the destination point onto the circle with radius rd such that
it can be specified exclusively by the angle γ̃ = arctan(δ2/δ1), cf. Fig. 9 for an
illustration. This results in the four-dimensional parameter

(x̃0, γ̃) = (v0
1 , v0

2 , v0
3 , γ̃),

for which we can now introduce a discretization according to Table 1. Note that
we can restrict γ̃ to positive values by exploiting an additional discrete reflection
symmetry, which reduces the computational effort by another 50%. This results
in an offline phase with 14 784 problems of the following form:

min
x̂∈X ,u∈U

= J((x̃0, γ̃), u) = min
x̂∈X ,u∈U

(
te∫ te

t0
‖u(t)‖2

2 dt

)

s.t. (16),

x̂(t0) =
(
0, 0, 0, v0

1 , v0
2 , v0

3

)�
, x(te) =

(
rd cos(γ̃)
rd sin(γ̃)

)
,

(22)

where the x̂ notation indicates the rotated and translated frame of reference.
For the numerical solution, we use a direct method. We discretize both the

state and the control input on an 11-dimensional time grid with a constant time
step δt = κh with h = 0.1 and approximate the dynamics by a fourth-order
Runge-Kutta scheme. The variable κ is a scaling factor for the time step which
we use to allow for a variable end time te in order to address the first objective.
This way, we obtain a 89-dimensional nonlinear MOP (6 · 11 state variables,
2 · 11 control variables and κ) for each parameter (x̃0, γ̃) that we solve using the

Table 1. Parameters for the library L.

Variable Minimal value Maximal value Step size Number of grid points

v1 −7 7 2 8

v2 −7 7 2 8

v3 −5 5 1 11

γ̃ 0 π π/20 21
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Fig. 10. Visualization of the offline phase. The figures represent one entry of the library
L at (x̃0, γ̃) = ((1, 1, 0), 0.85π). Left: Pareto optimal trajectories for Problem (22). As
the discretization of the Pareto set consists of 11 entries, the respective solutions are
identified via weights ρ ∈ {0, 0.1, . . . , 1}. Right: The corresponding Pareto front.

reference point method (RP). For more details on the automated solution of a
large number of MOPs, see [57].

Figure 10 depicts an exemplary solution corresponding to one entry of the
library L. On the left, the trajectories resulting from the Pareto optimal inputs
u are shown. Here, the weight ρ indicates to which extent the second objective
is priorized, i.e., which of the entries from the Pareto set P(x̃0,γ̃) is selected and
applied to the plant. Consequently, ρ = 0 results in fast and ρ = 1 in control-
efficient driving. The figure on the right side then shows the corresponding Pareto
front.

In Fig. 11, we see several solutions of the online phase (Algorithm 2) with the
initial condition (x0) = (0, 0, 0, 1, 0, 0) and a control horizon of length tc = 0.3 for
different weights ρ. In the left plot, several trajectories are shown from the initial
point (0, 0) to the target area around xd = (−40, 20) with rd = 3. One can easily
identify the parts of the trajectories where the zero control trim dominates, as
these result in straight lines. This becomes also apparent in Fig. 12, where the
corresponding controls that are applied to the plant are shown. Consequently, the
MPC behavior resembles the classical motion planning concept, where trims and
maneuvers are used alternatingly. The Pareto front of the corresponding global
objectives (i.e., the objectives evaluated over the entire trajectory) is shown on
the right, and we see that the desired trade-off behavior is achieved by varying
the weight. In addition, online adaptations of ρ (for instance, in order to react
to changing priorization) are easily performed. Two examples are also visualized
in Fig. 11 as dashed lines, where the weight is adapted towards a faster driving
style after 5 and 15 s, respectively.
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Fig. 11. Left: Several robot trajectories for different weights ρ, generated by the
MOMPC Algorithm 2 based on Problem (17). The straight parts correspond to zero
control trims (cf. Fig. 12). The two dashed trajectories represent cases where the weights
are changed during operation. Right: The corresponding Pareto front for the global
objectives.

Fig. 12. The control input generated by the MOMPC Algorithm 2. The large parts
where u = 0 correspond to trim primitives.

Remark 8. (Numerical challenges). It should be noted that the offline-online
multiobjective MPC procedure presented here faces several difficulties from a
numerical perspective:

a) Interpolation needs to be performed for parameter values that are not con-
tained in the library L.

b) The performance can be sensitive to the choice of the prediction horizon
length tc. In particular, a good choice may also depend on the weight ρ, as
optimal controls with a high priority on control costs often result in uncon-
trolled (straight ahead) driving on the first part of the prediction horizon. As
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a consequence, a repeated application of this first part may result in failure
to reach the destination.

These issues will be subject of further research. In particular, an additional –
much cheaper – online phase appears to be promising [36].

6 Concluding Remarks

We have presented an MPC algorithm for nonlinear dynamical systems with
multiple objectives which exploits symmetries in dynamical systems to reduce
the computational effort. Based on Lie group symmetries, Pareto optimal motion
primitives can be identified and stored in a motion planning library in an offline
phase. In the online phase – which is closely related to Explicit MPC – a Pareto
optimal motion primitive is selected based on the decision maker’s preference
and applied to the plant over the control horizon length. In contrast to classical
approaches from motion planning with motion primitives, only Pareto optimal
controls instead of controls and state trajectories have to be stored due to our
definition of symmetry in optimal control problems. Furthermore, as an extension
to [57], we take trim primitives into account which describe motions generated
by the symmetry action and thus, are very easy to store. For the mobile robot
example, the MPC algorithm is applied using trims corresponding to straight
motions with constant velocity. Future work can extend this to all possible types
of trim primitives. However, this requires a shortest path search in the maneuver
automaton. A formal proof of stability can be based on [25]. Moreover, revealing
the relation between motion primitives and turnpikes (cf. [19,20]) within MPC
is promising. Finally, increased robustness (cf. Remark 8) can be achieved by
introducing an online adaptive library. In this case, the library could grow (by
solving additional MOCPs online) if a required entry is missing.

Acknowledgments. We would like to acknowledge Michael Dellnitz, who has been an
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jointly resulted in works on multiobjective optimization, dynamical systems, optimal
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trol of hybrid mechanical systems. J. Comput. Dyn. 2(1), 25–50 (2015)
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Abstract. In this chapter the authors consider the numerical treat-
ment of a mixed-integer optimal control problem governed by linear
convection-diffusion equations and binary control variables. Using relax-
ation techniques (introduced by [31] for ordinary differential equations)
the original mixed-integer optimal control problem is transferred into a
relaxed optimal control problem with no integrality constraints. After
an optimal solution to the relaxed problem has been computed, binary
admissible controls are constructed by a sum-up rounding technique.
This allows us to construct – in an iterative process – binary admissible
controls such that the corresponding optimal state and the optimal cost
value approximate the original ones with arbitrary accuracy. However,
using finite element (FE) methods to discretize the state and adjoint
equations often yield to extensive systems which make the frequently
calculations time-consuming. Therefore, a model-order reduction based
on the proper orthogonal decomposition (POD) method is applied. Com-
pared to the FE case, the POD approach yields to a significant acceler-
ation of the CPU times while the error stays sufficiently small.

Keywords: Mixed-integer optimal control · Integer programming ·
Relaxation methods · Evolution problems · Proper orthogonal
decomposition

1 Introduction

A simplified optimal control problem is considered which is motivated by energy
efficient building operation. The goal is to reach a certain desired temperature
distribution in a room while choosing an optimal (underfloor) heating strategy.
The temperature is governed by a heat equation with convection which extends
our results in [3,4], where no convection was involved in the modeling of the
heat transfer. Since the heating is described by a time-depending discrete con-
trol, the optimization problem involves continuous and discrete variables. These
kinds of problems are considered in [10,11,22,32]. For partial differential equa-
tions (PDEs) we refer to the note [24]. In particular, mixed-integer problems for
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hyperbolic PDEs are considered, e.g., for problems in gas transportation systems
[15], electric transmission lines [12] and traffic flow [16,17].

Frequently, integer problems are solved with the branch-and-bound method
(see, e.g., [5]) to guarantee global optimality. Especially for finite-dimensional
linear integer programming, the branch-and-bound method is the method of
choice. However, this is often not possible or very expensive for optimal con-
trol problems, where infinite-dimensional control spaces are involved. Therefore,
methods are used to approximate an optimal integer solution by sufficiently accu-
rate solutions, which can be computed by techniques from infinite-dimensional
optimization. In this work we apply relaxation methods which can be found in
[31] for the case of ordinary differential equations and in [16,17] for the case
of PDEs. To solve the relaxed optimal control problems, we rely on techniques
from PDE-constrained optimization ([25,36]). Utilizing sum-up-rounding strate-
gies (introduced by Sager in [31,33]) we construct discrete controls from the
continuous ones; see also [26,27].

To speed-up the numerical solution of the relaxed optimal control problems
we apply reduced-order modeling; cf. [1,34], for instance. In this work the relaxed
optimal control problems are solved by POD Galerkin projection methods; cf.
[14,19]. The POD method is known to be very efficient for dynamical systems. An
POD a-posteriori error analysis – developed in [35] for optimal control problems
– is extended in such a way that the error of the computed suboptimal POD
solution can be controlled. This leads to an efficient and a certified optimization
method which is also analytically based on theoretical results in [17].

Let us mention that there are other reduced-order approaches available, e.g.,
the reduced basis methods; cf. [13]. Especially for non-linear problems, the proper
orthogonal decomposition (POD) method is a popular and widely used method.
Here, predefined points in time are considered by a previously released dynamic
system to build up the so-called snapshot space. The leading eigenfunctions of a
singular value decomposition are then chosen as the basis for the reduced space,
see for example [14]. It has been shown, that this method has good properties
in the context of optimal control problems, especially thanks to an available
a-posteriori estimate, see [23,35].

The chapter is organized as follows: In Sect. 2 the mixed-integer optimal con-
trol problem is introduced. Its relaxation is explained in Sect. 3. The numerical
solution approach is described in Sect. 4 and Sect. 5 is devoted to present numer-
ical results. Finally, we draw some conclusions in Sect. 6.

2 Problem Formulation

Let Ω ⊂ R
n, n ∈ {1, 2, 3}, be a bounded domain with Lipschitz-continuous

boundary Γ = ∂Ω. For T > 0 we set Q = (0, T ) × Ω and Σ = (0, T ) × Γ.
Moreover, let H and V denote the standard real and separable Hilbert spaces
L2(Ω) and H1(Ω), respectively, endowed with the usual inner products

〈ϕ,ψ〉H =
∫

Ω

ϕψ dx, 〈ϕ,ψ〉V =
∫

Ω

ϕψ + ∇ϕ · ∇ψ dx
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and associated induced norms. For more details on Lebesgue and Sobolev spaces
we refer to [9]. Recall the Hilbert space W (0, T ) = {ϕ ∈ L2(0, T ;V ) |ϕt ∈
L2(0, T ;V ′)} endowed with the common inner product [8, pp. 472–479]. It is
well-known that W (0, T ) is continuously embedded into C([0, T ];H), the space
of continuous functions from [0, T ] to H. When t is fixed, the expression ϕ(t)
stands for the function ϕ(t, ·) considered as a function in Ω only.

In this work we consider the following mixed-integer optimal control problem:

min
(y,u)

J(y, u) =
1
2

∫ T

0

∫
Ω

|y(t,x) − yd(t,x)|2 dxdt +
γ

2

m∑
i=1

∫ T

0

|ui(t)|2 dt (1a)

subject to a convection-diffusion equation

yt(t, x) − Δy(t, x) + v(x) · ∇y(t, x) = f(t, x) +

m∑

i=1

ui(t)bi(x), (t, x) ∈ Q, (1b)

∂y

∂n
(t, s) + q(s)y(t, s) = g(t, s), (t, s) ∈ Σ, (1c)

y(0, x) = y◦(x), x ∈ Ω (1d)

and binary control constraints

u(t) ∈ {0, 1}m = {ui}N
i=1 in [0, T ] a.e. (almost everywhere), (1e)

where the ui’s are 0–1-vectors in R
m and N = 2m holds.

The desired temperature fulfills yd ∈ L∞(Q). For the regularization param-
eter we have γ > 0. The convection field v is supposed to be in L∞(Ω;Rn).
The heat source function satisfied f ∈ C(Q). For m ∈ N we assume that the
control shape functions fulfill b1, . . . , bm ∈ C(Ω) and bi ≥ 0 on Ω a.e., but at
least for one i ∈ {1, . . . , m} it holds bi > 0 on Ω a.e. The isolation function
satisfies q ∈ L∞(Γ) with q ≥ 0 on Γ a.e. The outer temperature is described by
g and belongs to C(Σ). Finally, for the initial temperature distribution we have
y◦ ∈ C(Ω).

Since we are interested in weak solutions to the state equation (1b)–(1d), we
recall this solution concept for our case: A solution y ∈ W (0, T ) to (1b)–(1d) is
understood as a weak solution, i.e., y belongs to W (0, T ) and satisfies

d
dt

〈y(t), ϕ〉H + a(y(t), ϕ) = 〈F(t, u(t)), ϕ〉V ′,V for all ϕ ∈ V in (0, T ], (2a)

〈y(0), ϕ〉H = 〈y◦, ϕ〉H for all ϕ ∈ V, (2b)

where the bilinear form a : V × V → R is defined as

a(ϕ, φ) =
∫

Ω

∇ϕ · ∇φ dx +
∫

Ω

(v · ∇ϕ)φ dx +
∫

Γ

qϕφ ds for ϕ, φ ∈ V

and the inhomogeinity F : [0, T ] × R
m → V ′ is given by

〈F(t, u), ϕ〉V ′,V =
∫

Ω

(
f(t) +

m∑
i=1

uibi

)
ϕ dx +

∫
Γ

g(t)ϕ ds
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for (t, u) ∈ [0, T ] × R
m, u = (ui)1≤i≤m and ϕ ∈ V . Note that the mapping

F(· , u) is continuous for every u ∈ R
m. The next proposition follows from the

results in [20, Chapter 5].
Proposition 1. Under the above assumptions on the data the following proper-
ties hold:

1) The bilinear form a(· , ·) is continuous and coercive, i.e., there are constants
η ≥ 0, η1 > 0 and η2 ≥ 0 satisfying

|a(ϕ, φ)| ≤ η ‖ϕ‖V ‖φ‖V for all ϕ, φ ∈ V,

|a(ϕ,ϕ)| ≥ η1 ‖ϕ‖2
V − η2 ‖ϕ‖2

H for every ϕ ∈ V.

2) For any u ∈ U = L2(0, T ;Rm) there exists a unique solution y ∈ W (0, T )
to (2) that satisfies

‖y‖W (0,T ) ≤ C
(‖F(· , u(·))‖C([0,T ];V ′) + ‖y◦‖H

)
for a constant C > 0.

Remark 1. The bilinear form a(· , ·) defines a bounded linear operator A : V →
V ′ by

〈Aϕ, φ〉V ′,V = a(ϕ, φ) for ϕ, φ ∈ V.

Furthermore, the operator A can also be considered as an unbounded operator
on H with domain D(A) = H2(Ω) ∩ V ∩ C(Ω) which is dense in C(Ω). The
operator −A generates a C0-semigroup on C(Ω) and the solution y to (2) belongs
to W (0, T ) ∩ C(Q); cf. [29, Chapter 5]. Utilizing the continuity assumptions for
f , b1, . . . , bm, g and y◦ we can write (2) as the Cauchy problem

ẏ(t) = −Ay(t) + F(t, u(t)) for t ∈ (0, T ], y(0) = y◦

posed in C(Ω). It is proved in [28, Theorem 4.3] that −A also generates a holo-
morphic semigroup on C(Ω). ♦

Throughout this work the binary problem (1a)–(1e) is called (BN). Its cost
value at an admissible solution is denoted by JBN . Furthermore, we introduce
a relaxed problem, where (1e) is replaced by the relaxation

u(t) ∈ [0, 1]m in [0, T ] a.e., (1e’)

Problem (1a)–(1d) together with (1e’) is denoted by (RN). We write JRN for
the objective value obtained by an admissible solution for (RN). Let us mention
that (1a)–(1d) together with (1e’) does not involve any integrality constraints.
Thus, solution methods from continuous optimization can be applied.

3 Relaxation Method

Commonly, mixed-integer problems are solved with the branch-and-bound
method (see e.g. [5]) to guarantee global optimality. However, for optimal control
problems this is often computationally too expensive. In order to get an optimal
control problem without any integer restrictions we apply therefore the approach
in [17] which leads to convexified relaxed problems that can be solved by avail-
able techniques from PDE-constrained optimization; see [18,35], for instance.
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3.1 Convexification

Using (1e) we introduce the following representation of the control variable

β(t) ∈ {0, 1}N ,

N∑
i=1

βi(t) = 1 and u(t) =
N∑

i=1

βi(t)ui for t ∈ [0, T ].

To solve our mixed-integer optimal control problem (BN) we consider the fol-
lowing convexification (cf. [17, Section 2])

min
(yβ ,β)

1
2

∫ T

0

∫
Ω

|yβ(t,x) − yd(t,x)|2 dxdt +
γ

2

N∑
i=1

‖ui‖2
Rm

∫ T

0

βi(t) dt (3a)

subject to

d
dt

〈yβ(t), ϕ〉H + a(yβ(t), ϕ) =
N∑

i=1

βi(t) 〈F(t, ui), ϕ〉V ′,V ∀ϕ ∈ V in (0, T ],

(3b)

〈yβ(0), ϕ〉H = 〈y◦, ϕ〉H ∀ϕ ∈ V, (3c)

β(t) =
(
βi(t)

)
1≤i≤N

∈ {0, 1}N in [0, T ], (3d)
N∑

i=1

βi(t) = 1 in [0, T ]. (3e)

The convexification (3) of (BN) is called (BL) and we write JBL for the objec-
tive value obtained by an admissible solution. Of course, (BL) still contains the
integrality constraint (3d). Therefore, we introduce its relaxation – that we call
(RL) – by

min
(yα,α)

1
2

∫ T

0

∫
Ω

|yα(t,x) − yd(t,x)|2 dxdt +
γ

2

N∑
i=1

‖ui‖2
Rm

∫ T

0

αi(t) dt (4a)

subject to

d
dt

〈yα(t), ϕ〉H + a(yα(t), ϕ) =
N∑

i=1

αi(t)〈F(t, ui), ϕ〉V ′,V ∀ϕ ∈ V in (0, T ],

(4b)

〈yα(0), ϕ〉H = 〈y◦, ϕ〉H ∀ϕ ∈ V, (4c)

α(t) =
(
αi(t)

)
1≤i≤N

∈ [0, 1]N in [0, T ], (4d)
N∑

i=1

αi(t) = 1 in [0, T ]. (4e)

We write JRL for the objective value obtained by an admissible solution.
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In the following theorem we show that the convexification does not change
the optimal values of the original problem (BN) and the convexified problem
(BL). The proof is similar to the one in [31, Theorem 4.6] and therefore adapted
from there.

Theorem 1. If the convexified binary optimal control problem (BL) has an
optimal solution (y∗

β , β∗) with objective value JBL, then there exists an m-
dimensional control function u∗ such that (y∗, u∗) is an optimal solution of
the binary optimal control problem (BN) with objective value JBN satisfying
JBL = JBN . The converse holds true as well.

Proof. Assume that (y∗
β , β∗) is a minimizer of (BL). Since it is feasible we have

the special order set property (3e) with β∗
i (·) ∈ {0, 1} for all i = 1, . . . , N . Thus,

there exists one index 1 ≤ j(t) ≤ N for almost all (f.a.a.) t ∈ [0, T ] such that

β∗
j(t) = 1 and β∗

i = 0, i = j(t).

The binary control function

u∗(t) = uj(t), t ∈ [0, T ] a.e.

is therefore well-defined and yields an identical right-hand side function value

F(t, u∗(t)) = F(t, uj(t)) = β∗
j(t)F(t, uj(t)) =

N∑
i=1

β∗
i (t)F(t, ui), t ∈ [0, T ] a.e.

and identical objective function

J(y∗, u∗) = J(y∗, uj(·)) = β∗
j(·)J(y∗

β , uj(·)) =
N∑

i=1

β∗
i (·)J(y∗

β , ui)

compared to the feasible and optimal solution (y∗
β , β∗) of (BL). Therefore

(y∗, u∗) is a feasible solution of (BN) with objective value JBL. Next we show
– by contradiction – that there exists no admissible solution to (BN) with a
smaller cost value than JBL. Hence, we assume that a feasible solution (ŷ, û)
of (BN) exists with objective value ĴBN < JBL. Since the set {u1, . . . , uN}
contains all feasible assignments of û, there exists again an index function ĵ(·)
such that û can be written as

û(t) = uĵ(t), t ∈ [0, T ] a.e.

With the same arguments above, β is defined as

βi(t) =

{
1 if i = ĵ(t),
0 otherwise

}
for i = 1, . . . , 2N and t ∈ [0, T ] a.e..

Consequently, β is feasible for (BL) with objective function value ĴBN < JBL

which contradicts the optimality assumption of problem (BN). Thus (y∗, u∗) is
an optimal solution of problem (BN).
The converse is proven with the same argumentation starting from the optimal
solution (BN).
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In the following we want to apply [17, Theorem 1]. For that purpose we
additionally suppose that f(·,x) and g(· , s) belong to W 1,∞(0, T ) for almost all
x ∈ Ω and s ∈ Γ, respectively. Next we verify assumptions (H0) to (H3) of [17,
Theorem 1]:

• (H0): In [20, Theorem 5.13] is proved that (RL) has a unique optimal
solution.

• (H1): Due to our regularity assumptions for the inhomogeneities f and g, the
objective J and F are (locally) Lipschitz-continuous.

• (H2): Utilizing the W 1,∞-regularity for the inhomogeneities f and g again,
we notice that F(· , ui) belongs also W 1,∞(0, T ) for any i = 1, . . . , N . Now,
(H2) follows from [17, Proposition 1], i.e., there exists a constant C > 0 with

∥∥∥ d
dτ

(
e−A(t−τ)F(τ, ui)

)∥∥∥
C(Ω)

≤ C for 0 < τ < t < T a.e. and 1 ≤ i ≤ N.

• (H3): It follows also that the mapping t �→ F(t, ui) is essentially bounded in
C(Ω) for any i ∈ {1, . . . , N}.

Summarizing we have the following result [17, Theorem 1 and Corollary 1]:

Proposition 2. Let the regularity conditions for the data stated in Sect. 2 hold.
Moreover, f(· ,x) and g(· , s) belong to W 1,∞(0, T ) for almost all x ∈ Ω and
s ∈ Γ, respectively. Suppose that (y∗

α, α∗) is the solution to the relaxed problem
(RL) with objective value JRL. Choose an arbitrary ε > 0. Then there exists a
feasible solution (y∗

ε , u∗
ε) of problem (BN) satisfying

JBN ≤ JRL + ε.

Remark 2. Notice that a feasible solution (y∗
ε , u∗

ε) of problem (BN) can be con-
structed from (y∗

α, α∗) by sum-up rounding; cf. Sect. 4.2 and [17, Algorithm 1]. ♦

4 Numerical Solution Method

In the following we describe in detail how to apply the theoretical results in a
numerical realization. We utilize Algorithm 1 which is based on the approach
described in [17]. To guarantee convergence in a finite number of steps, the
sequences of non-negative accuracies {εk}k∈N and the time discretizations should
be chosen such that εk → 0 and Δtk = maxi=1,...,νk{tki − tki−1} → 0, according
to Theorem 1 in [17].

4.1 Solution of the Relaxed Problem

Let us introduce two particular solutions for the state and dual equations:
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Algorithm 1. Relaxation Method for the FEM Model
1: Choose a time discretization G0 = {0 = t00 < t01 . . . < t0ν0 = T}, a sequence of

non-negative accuracies {εk}k∈N and some fixed tolerance ε > 0.
2: for k = 0, 1, . . . do
3: Find an optimal control αk of (RL) which stops with a tolerance of εk.
4: Set Jk

rel = Ĵ(αk).
5: if αk is binary admissible then
6: break
7: end if
8: Using Gk and αk to define a piecewise constant function βk as described in 4.3.
9: Determine Jk = Ĵ(βk).

10: if |Jk
rel − Jk| ≤ ε/2 and 0 < εk ≤ ε

2
then

11: break
12: end if
13: Choose Gk+1 = {0 = tk+1

0 < tk+1
1 . . . < tk+1

νk+1 = T} such that Gk ⊂ Gk+1.
14: end for
15: Set y∗

bin = Sβk + ŷ, β∗ = βk, y∗ = Sαk + ŷ and u∗(t) =
∑N

j=1 ujβk
j (t).

• ŷ ∈ W (0, T ) is the weak solution to

ŷt(t,x) − Δŷ(t,x) + v(x) · ∇ŷ(t,x) = f(t,x) in Q a.e.,
∂ŷ

∂n
(t, s) + q(s)ŷ(t, s) = g(t, s) on Σ a.e.,

ŷ(0,x) = y◦(x) in Ω a.e.

• Further, p̂ ∈ W (0, T ) is the weak solution to

−p̂t(t,x) − Δp̂(t,x) − ∇ · (
v(x)p̂(t,x)

)
= yd(t,x) − ŷ(t,x) in Q a.e.,

∂p̂

∂n
(t, s) +

(
q(s) + v(s) · n(s)

)
p̂(t, s) = 0 on Σ a.e.,

p̂(T,x) = 0 in Ω a.e.,

where n denotes the outwart normal vector.

The first step in Algorithm 1 is to solve (RL). To do so we use a first-order
augmented Lagrange method. Thus, we consider for c ≥ 0

min Ĵ(α) +
c

2

∫ T

0

∣∣∣∣
N∑

j=1

α(t) − 1
∣∣∣∣
2

dt s.t. α ∈ Aad and
N∑

j=1

αj(t) = 1, (5)

where the penalty term
c

2

∫ T

0

∣∣∣∣
N∑

j=1

α(t) − 1
∣∣∣∣
2

dt

is the augmentation term, Ĵ(α) = J(yα, α) is the reduced cost functional and
yα solves (4b)–(4c). The set Aad is defined by

Aad =
{
α ∈ A ∣∣ αj(t) ∈ [0, 1] on [0, T ] a.e. for j = 1, . . . , N

}



246 C. Jäkle and S. Volkwein

and A = L2(0, T ;RN ). For c > 0 the augmented Lagrangian is given as

Lc(α, λ) = Ĵ(α) +
〈 N∑

j=1

αj(·) − 1, λ

〉
L2(0,T )

+
c

2

∥∥∥∥
N∑

j=1

αj(·) − 1
∥∥∥∥

2

L2(0,T )

.

For the inner optimization (i.e., the minimization of Lc(·λ) with respect to the
primal variable α) we choose a multiplier λ0 ∈ A and set k = 0. Then, for
k = 0, 1, . . ., we solve for ck > 0

min Lck
(α, λk) s.t. α ∈ Aad (Pk

c )

and set

λk+1 = λk + ck

⎛
⎝ N∑

j=1

αj(·) − 1

⎞
⎠ .

For more details about Lagrangian methods see, e.g., [6, Chapter 3 and 4]. We
repeat this process until we have

∥∥∥∥
N∑

j=1

αj(·) − 1
∥∥∥∥

2

L2(0,T )

≤ ε

for a given tolerance ε > 0. The optimality conditions are given as

∂αL(ᾱ, λ̄)(α − ᾱ) = 〈∇αLc(ᾱ, λ̄), α − ᾱ〉A ≥ 0 for all α ∈ Aad,

where ∂αL(ᾱ, λ̄) : A → R stands for the partial derivative with respect to α,
Lc(ᾱ, λ̄) ∈ A is the gradient with respect to α. Moreover, ᾱ is a local optimal
solution to (Pk

c ), and we have

∂αL(ᾱ, λ̄)αδ = 〈∇αLc(ᾱ, λ̄), αδ〉A

= Ĵ ′(ᾱ)αδ +
N∑

j=1

〈ᾱδ
j , λ̄〉

L2(0,T )
+ c

N∑
j=1

N∑
l=1

〈ᾱj − 1, αδ
l 〉L2(0,T )

for all directions αδ ∈ A. For a given point α ∈ Aad and a direction αδ ∈ A the
directional derivative Ĵ ′(α)αδ can be computed as follows:

1) Compute for a given α = (αi)1≤i≤N ∈ Aad the state yα solving

(yα)t(t,x) − Δyα(t,x) + v(x) · ∇yα(t,x) =
N∑

j=1

( m∑
i=1

bi(x)uj
i

)
αj in Q a.e.,

∂yα

∂n
(t, s) + q(s)yα(t, s) = 0 on Σ a.e.,

yα(0,x) = 0 in Ω a.e.

and set y = ŷ + yα.
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2) Solve the adjoint equation

−(pα)t(t,x) − Δpα(t,x) − ∇ · (
v(x)pα(t,x)

)
= −yα(t,x) in Q a.e.,

∂pα

∂n
(t, s) +

(
q(s) + v(s) · n(s)

)
pα(t, s) = 0 on Σ a.e.,

pα(T,x) = 0 in Ω a.e.

and set p = p̂ + pα.
3) Set for αδ ∈ A

Ĵ ′(α)αδ =
γ

2

N∑

j=1

( ∫ T

0

m∑

i=1

uj
i αδ

j (t) dt

)
−

∫ T

0

∫

Ω

N∑

j=1

( m∑

i=1

bi(x)u
j
i

)
αδ

j (t)pdxdt

=

N∑

j=1

∫ T

0

(
γ

2

m∑

i=1

(
uj

i αδ
j (t)

) − αδ
j (t)

∫

Ω
p(t, x)

m∑

i=1

(
bi(x)u

j
i

)
dx

)
dt

=
N∑

j=1

∫ T

0

(
γ

2

m∑

i=1

uj
i −

∫

Ω
p(t, x)

m∑

i=1

(
bi(x)u

j
i

)
dx

)
αδ

j (t) dt

=

〈(γ

2

m∑

i=1

uj
i −

∫

Ω
p(· , x)

m∑

i=1

(
bi(x)u

j
i

)
dx

)

1≤j≤N
, αδ

〉

L2(0,T )

.

Therefore we can introduce the Riesz representant of the linear, bounded func-
tional Ĵ ′(α) : A → R by

(
γ

2

m∑
i=1

uj
i −

∫
Ω

p(· ,x)
m∑

i=1

(
bi(x)uj

i

)
dx

)
1≤j≤N

=: ∇Ĵ(α) ∈ A.

In particular, Ĵ ′(α) = 〈∇Ĵ(α), ·〉L2(0,T ) holds true.

Remark 3. The first order optimality conditions for problem (Pk
c ) are given by

the variational inequality

〈(γ

2

m∑
i=1

uj
i −

∫
Ω

p(· ,x)
m∑

i=1

(
bi(x)uj

i

)
dx + λ̄

)
1≤j≤N

, α − ᾱ

〉
A

+ c

N∑
j=1

N∑
l=1

〈ᾱj − 1, αl − ᾱl〉L2(0,T ) ≥ 0

for all α = (αi)1≤i≤N ∈ Aad, where ᾱ is the optimal solution to (5). For more
details see [20, Chapter 5]. ♦

4.2 Sum-Up Rounding

Assume that we have found an optimal solution α to (RL). The next step in
Algorithm 1 is to construct a binary admissible control function β for (BL).
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There we need to guarantee that we will not lose the special ordered set prop-
erty (SOS-1). Therefore we construct β by using the following so-called sum up
rounding strategy (compare to [17] and [31, Section 5.1]) as follows.

Let G = {t0, t1, . . . , tν} be a time grid with 0 = t0 < t1 < · · · < tν = T .
Define β = (β1, . . . , βN ) : [0, T ] → {0, 1}N by

βi(t) = pi,j , t ∈ [tj , tj+1), i = 1, . . . , N, j = 0, . . . , ν − 1,

where for all i = 1, . . . , N , j = 0, . . . , ν − 1

pi,j =

⎧⎪⎨
⎪⎩

1 if (p̂i,j ≥ p̂l,j ∀l ∈ {1, . . . , N} \ {i}) and
(i < l : ∀l ∈ {1, . . . , N} \ {i} : p̂i,j = p̂l,j)

0 else

ˆpj,i =
∫ tj+1

0

αi(τ)dτ −
j−1∑
l=0

pi,l(tl+1 − tl).

Finally, to define a binary admissible control function for (BN) u : [0, T ] →
{0, 1}m we set

u(t) =
N∑

j=1

ujβj(t).

Thanks to Theorem 1 we get then JBL = JBN , where JBL depends on β and
JBN depends on u.

4.3 Redefine the Time Discretization

If the values between the cost functions of (BN) and (RL) are not small enough
we need to redefine the time grid to get a better solution. To do so, there are
several strategies given in [31, Section 5.3]. However, the simplest way would be
just to define the grid in an equidistant way by double it and to use the old
solution as a warmstart. In our numerical experiments this is the way we have
done.

4.4 The POD Method

The most expensive part in Algorithm 1 is to find an optimal control α of (RL).
If one use here, e.g., finite elements to discretize the state and adjoint equa-
tions these leads to huge computational time. Therefore, to reduce the cost of
the numerical solution method we apply a POD-method. To apply POD to the
convexified problem assume that we have already computed a POD basis of
rank � and the corresponding POD space V 	 = span{ψ1, . . . , ψ	} ⊂ V is given.
Moreover, we assume that we have computed the inhomogeneous part ŷ of the
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solution to the state equation. With the same notations as in Sect. 4.1 we intro-
duce the weak formulation of the homogeneous part of the reduced-order state
equation

d
dt

〈y	
α(t), ψ〉H + a(y	

α(t), ψ) =
〈 m∑

i=1

uibi, ψ

〉
H

∀ψ ∈ V 	 in (0, T ], (6)

〈y	
α(0), ψ〉H = 0 ∀ψ ∈ V 	. (7)

and set y	 = ŷ + y	
α. Moreover we define the POD approximated reduced cost

function by

Ĵ	(α) :=
1
2

‖y	 − yd‖2

L2(Q) +
γ

2

N∑
j=1

‖uj‖2

Rm

∫ T

0

αj(t) dt.

With the definition of the POD approximated reduced cost we can define the
POD approximated reduced problem for the inner optimization of the Lagrange
method, more precisely for (Pk

c ). For the inner optimization we consider therefore
the POD approximated reduced problem

min L	
ck

(α, λk) s.t. α ∈ Aad (P	,k
c )

for a given ck and λk, where we have for c ≥ 0

L	
c(α, λk) = Ĵ	(α) +

〈 N∑
j=1

αj − 1, λk

〉
L2(0,T )

+
c

2

∥∥∥∥
N∑

j=1

αj − 1
∥∥∥∥

2

L2(0,T )

.

Then the gradient of Ĵ	 is given by

∇Ĵ	(α) =
(

γ

2

m∑
i=1

uj
i −

∫
Ω

p	(· ,x)
m∑

i=1

(
bi(x)uj

i

)
dx

)
1≤j≤N

∈ A,

where p	 = p̂ + p	
α holds true und p	

α solves the adjoint problem

− d
dt

〈p	
α(t), ψ〉H + a(ψ, p	

α(t)) = −〈y	
α(t), ψ〉H ∀ψ ∈ V 	 in (0, T ], (8)

〈p	
α(T ), ψ〉H = 0 ∀ψ ∈ V 	. (9)

In [20, Theorem 5.38] is the following a-priori convergence result given.

Theorem 2. Suppose assumptions from Sect. 2 hold. Let the linear, bounded
operator B : A → L2(0, T ; (V 	)′) be given as

〈Bα)(t), ψ〉(V �)′,V � =
N∑

j=1

αj(t)
m∑

i=1

uj
i 〈bi, ψ〉H for α ∈ A in [0, T ] a.e.

We assume that B is injective. For arbitrarily given α ∈ A we suppose that the
solutions yα and pα to (6) and (9), respectively, belong to H1(0, T ;V ) \ {0}.
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1) If we compute the POD space V 	 by solving

min
4∑

j=1

∫ T

0

∥∥∥yj(t)−
	∑

i=1

〈yj(t), ψi〉V ψi

∥∥∥2

V
dt s.t. {ψi}	

i=1 ⊂ V, 〈ψi, ψj〉V = δij

using the snapshots y1 = yα, y2 = (yα)t, y3 = pα and y4 = (pα)t, then the
optimal solution ᾱ of (Pk

c ) and the optimal solution ᾱ	 to the reduced problem
(P	,k

c ) satisfy
lim

	→∞
‖ᾱ	 − ᾱ‖A = 0.

2) If an optimal POD basis of rank � is computed by choosing the snapshots
y1 = yᾱ, y2 = (yᾱ)t, y3 = pᾱ and y4 = (pᾱ)t, then we have

lim
	→∞

‖ᾱ	 − ᾱ‖A ≤ C

∞∑
i=	+1

μi,

where {μ}i∈N are the eigenvalues of the corresponding POD problem satisfying
the error formula

4∑
j=1

∫ T

0

∥∥∥yj(t) −
	∑

i=1

〈yj(t), ψi〉V ψi

∥∥∥2

V
dt =

∞∑
i=	+1

μi;

cf. [14], for instance.

The following a-posteriori error estimate guarantees that the error stays small
in the numerical solution method. A proof can be found in [20, Theorem 5.39].

Theorem 3. Let all assumptions of Theorem2 hold. For arbitrarily given α ∈ A
we choose the snapshots y1 = yα, y2 = (yα)t, y3 = pα and y4 = (pα)t. Define
the function ζ	 ∈ A by

ζ	
i (t) =

⎧⎪⎨
⎪⎩

−min(0, ξ	
i (t)) a.e. in A	

0,i = {t ∈ [0, T ] | ᾱl
i(t) = 0},

max(0, ξ	
i (t)) a.e. in A	

1,i = {t ∈ [0, T ] | ᾱl
i(t) = 1},

−ξ	
i (t) a.e. in [0, T ] \ (A	

0,i ∪ A	
1,i),

where ξ	 = ∇αLc(α	, λ) in A. Then, for c > 0 we get the a-posteriori error
estimate

‖ᾱ − ᾱ	‖2

A ≤ 1
c
‖ζ	‖A, (10)

and in particular, lim
	→∞

‖ζ	‖A = 0.

With these results, we can solve (RL) with the POD method and control the
error with the a-posteriori error estimate in our numerical solution approach.
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Table 1. Parameter and function values for the numerical experiments

Symbol Value Description

T 1 Final time

Ω (0, 1)2 Spatial domain

v(x) (1, 1)T for all x ∈ Ω Convection term

q(x) 0.1 on ∂Ω Isolation of the room

f(t, x) 0 No influence from the source term f

g(t, x) see Fig. 1 Outside temperature modeled by a
polynomial with degree 3

5 Numerical Experiments

In this section we investigate the mixed-integer optimal control problem numer-
ically by the method introduced in Sect. 4. To recall, we consider the following
mixed-integer optimal control problem:

min
y,u

J(y, u) =
1
2

∫ T

0

∫
Ω

|y(t,x) − yd(t,x)|2dxdt +
γ

2

m∑
i=1

∫ T

0

|ui(t)|2dt (11a)

subject to a convection-diffusion equation

2yt − Δy + v · ∇y = f +
m∑

i=1

uibi in Ω (11b)

∂y

∂n
+ qy = g on Σ (11c)

y(0) = y0 in Ω (11d)

and binary admissibility of u(·)

u(t) ∈ {0, 1}m in [0, T ] a.e. (almost everywhere). (11e)

We will use the parameters and function values which are given in Table 1.
Moreover, for the desired temperature we first want a decrease in the temperature
to 10◦ until t = 0.25, an increase to 18◦ until t = 0.75 and then again a decrease
to 10◦. With this we want to avoid simple solutions which are like u(t) = 1 or
u(t) = 0 for all t ∈ [0, T ]. Therefore we set for all x ∈ Ω

yd(t, x) =

{
10 if t < 0.25 or t > 0.75,

18 otherwise.

In the following we will use all notations from the previous sections. The
implementations are done in Python where we use the packages NumPy, SciPy
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and Matplotlib, see [21] as well as FEniCS, see [2,30]. All computations are
done on a standard laptop (Acer Aspire 5, Intel(R) Core(TM) i5-8250U, 1.6 GHz
(up to 3.4 GHz), 8 GB DDR4-RAM).

For solving the relaxed optimal control problems (RL) we use for the inner
optimization in each iteration of the augmented Lagrange method (e.g. solving
(Pk

c )) the L-BFGS-B method from SciPy, [7]. The maximum number of iterations
for the L-BFGS-B method is set up to 100. For the first time grid we utilize a
tolerance of ε0 = 10−4. After each modification of the time grid we divided
ε0 by 10 until εk = 10−7 which give us a sequence of non-negative accuracies
{εk}. To solve the integer problem we use as a tolerance ε = 10−5. The first
time discretization is given by an equidistant time grid G0 ⊂ [0, T ] with 50 time
steps. The first optimal control problem (RL) is solved with a (pseudo) random
initial control function. After that one we reuse the old solution to get faster
convergence results. We stop the algorithm either if

∣∣JBN − JRL
∣∣ ≤ ε

or if the size of the time grid is bigger than 800 grid points. We redefine the time
grid in an equidistant way by double it.

In the tests we consider a tow dimensional control and impose a floor heating
in the subdomains Ωb1 = (0, 0.25)×(0, 0.5) ⊂ Ω and Ωb2 = (0.25, 0.5)×(0, 0.5) ⊂
Ω. Therefore we set b1(x) = 1 for all x ∈ Ωb1 and b2(x) = 1 for all x ∈ Ωb2 . Set
u1

1 = 0, u2
1 = 1, u1

2 = 0 and u2
2 = 1 the convexification and the relaxation leads

to (RL) which has the form

min
y,α

J(y, α) =
1

2

∫ T

0

∫

Ω
|y(t, x)− yd(t, x)|2dxdt +

γ

2

∫ T

0
(α2(t) + α3(t) + 2α4(t))dt

subject to

yt − Δy + v · ∇y = f + b1α2 + b2α3 + (b1 + b2)α4, in Ω,

∂y

∂n
+ qy = g, on Σ,

y(0) = y0, in Ω,

α(t) ∈ [0, 1]4, in [0, T ] a.e.,
4∑

i=1

αi(t) = 1, in [0, T ] a.e..

After finding an optimal control α we use the sum-up rounding strategy as
described in Sect. 4.2 to get a binary admissible β and set

u(t) =
(

0
0

)
β1(t) +

(
1
0

)
β2(t) +

(
0
1

)
β3(t) +

(
1
1

)
β4(t)

for all t ∈ [0, T ].
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Fig. 1. Temperature outside given by real data and the interpolated polynom.

5.1 Full Finite Element Method Model

In our numerical experiments we compare the behavior of the algorithm with
different regularization parameters γ. Notice, that for γ = 0 the problem leads
to a bang-bang solution. Therefore, as bigger the regularization parameter gets,
as more complicated is the integer problem. But on the other hand, big regular-
ization parameters should make the relaxed problem easier to handle.

5.1.1 Case γ = 0.01
The first test is done with γ = 0.01. Here we use the initial condition that
represents a constant temperature of 16◦ in the whole room, i.e. y0(x) = 16 for
all x ∈ Ω. After four times redefining the grid, the algorithm has found a solution
with a difference between JBN = JBL and JRL around 6·10−5. The convergence
behavior is given in the left subfigure of Fig. 2. Notice, that in the same figure
we see also the difference between JBN = JBL and JRL (blue line) as well as the
difference between JBN and JRN (orange line) which is close to the other one,
caused of the small regularization parameter γ. Notice as well that we always
have that JRL < JRN which we could expect from the theoretical results. In
Fig. 3 are the optimal control functions u1 and u2 and the corresponding binary
functions β1, β2, β3 and β4. Notice that all control functions are close to bang-
bang. Notice as well that to guarantee the SOS-1 property for the binary control
functions βi we need in β2 an additional 1 at time step t ≈ 0.08 which we don’t
see in the relaxed control α2.
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Fig. 2. Difference between JBN and JRL as well as between JBN and JRN . Case
γ = 0.01 on the top left, γ = 0.1 on the top right and γ = 1 on the bottom middle.

5.1.2 Case γ = 0.1
Next we increase the regularization parameter and set therefore γ = 0.1. The
algorithm modifies the time grid four times to reach a tolerance around 10−6

for the difference of JBN = JBL and JRL. The convergence behavior is given in
the right subfigure of Fig. 2. Notice that the difference of JBN = JBL and JRN

is bigger compared to the case γ = 0.01 and would not converge to a solution
which is as close as that one we have found. Or in other words, just relax the
integer problem leads to big duality gaps which do not close by just redefining
the time grid.

5.1.3 Case γ = 1
Finally, we do the same test with γ = 1. To avoid solutions which are zero
everywhere, we set y0(x) = 14 for all x ∈ Ω. The algorithm is done after four
times redefinition of the time grid and a difference between JBN = JBL and JRL

which is ≈ 10−6. The convergence behavior is given in the bottom subfigure
of Fig. 2. Notice that there is a big difference between JBN and JRN . Here
we see again the nice benefit of the convexification. Without that, it would be
impossible to get such a small difference as for the solution, and we could say
nothing how good our solution would be. Again we see that the duality gab
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Fig. 3. Optimal control functions (relaxed and rounded) and corresponding optimal
binary functions βi for γ = 0.01.

between the integer solution and the relaxed solution without convexification is
huge compared to the gap of the confexified problem.

If we have a look on Fig. 4 we can see the influence of the convection term
in the control functions. The second control function is on the right side in the
domain and from the convection therefore more expansive in the costs, although
we do not weight our control functions. Therefore we get a zero control function
for the second control. For the first one we have a little (but less than in the



256 C. Jäkle and S. Volkwein

Fig. 4. Optimal control functions (relaxed and rounded) and corresponding optimal
binary functions βi for γ = 1.

case without convexification) chattering behavior. Summarized we see for a two-
dimensional problem that the convexification leads to good solutions and the
gap between integer and relaxed closes nicely. We also see, that the estimate
between JBN and JRL is sharp, in contrast to JRN which we could expect from
the theoretical results. Moreover, we see a nice linear convergence behavior for
the solutions by redefining the time grid in an equidistant way by doubling it.
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5.2 The Reduced POD Model

In the following we do the same tests as in Sect. 5.1 but apply the POD method
on the corresponding relaxed problems. We investigated the quality of the POD
approximated solutions with the a-posteriori error estimate from Theorem 3 and
compare the computational time. Since we are solving an integer problem we
expect similar solutions as before and compare therefore the values of the cost
functions corresponding to (RL) as well as (RN).

To generate a POD basis of rank l we use the snapshots y1 = Sα0 and
y2 = Aα0, where α0 is a (pseudo) random initial control function which we
use for both problems as initial one e.g. we start both optimal control problems
with this one. We compute the POD basis as describes in [20, Section 4] using
trapezoidal weights and solve the eigenvalue problem corresponding to the POD
problem with the SVD method. As weighting matrix we use the mass matrix
and we use l = 10 snapshots. The offline phase, which mean calculating the POD
ansatz functions need in all three cases around 0.025 s.

5.2.1 Case γ = 0.01
For the FEM method, the algorithm needs to redefine the grid four times and
found a solution after 1994.2 s. The algorithm spends the most time (around
1400 s) in the last time grid. This could come from a bad initial condition since
in all other cases, the reuse of the old solution works pretty well. The difference
between JBN = JBL and JRL is ≈ 7 ∗ 10−5.

The POD method needs 154.2 s and is therefore more than 12 times faster,
although we have use the same initial condition. In this test for u2, at t ≈ 0.5
the POD method has found a solution where uPOD

2 (t) = 1 and uFEM
2 (t) = 0.

The rest is equal. The convergence behavior of the full problem and the POD
problem is given in Fig. 5 as well as the difference between JRL

FEM and JRL
FEM . In

Table 2 we have given all values of the cost in the different time grids for the full
problem as well as for the POD problem. Notice the interesting behavior of the
a-posteriori error functions ζ.

Finally we have a look of the difference of the controls in the final grid. Here
we have

∥∥uRel
FEM − uRel

POD

∥∥
A

= 0.02171,
∥∥uInt

FEM − uInt
POD

∥∥
A

= 0.02.

Therefore we can conclude that the POD method founds a similar solution and
is much faster than the full method. Moreover, we can see that the POD method
has found a solution in each time grid which is equal or slightly bigger than that
one from the full model.
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Fig. 5. Convergence behavior of the cost for γ = 0.01. On the top left, difference
between the relaxed and the binary cost for the FEM. On the top right the difference
for the POD method and on the bottom middle the difference between the convexified
relaxed cost for the FEM and the POD method.

Table 2. Summarized values in the different time grids for γ = 0.01.

Time instances 50 100 200 400 800
1
c
‖ζ‖ 6 · 10−8 0.00011 10−8 6 · 10−5 8 · 10−6

JBN = JBL 11.5186 11.4813 11.4924 11.5009 11.5027

JRN 11.5143 11.4805 11.4919 11.5006 11.5026

JRL 11.5144 11.4806 11.4919 11.5006 11.5026

JBN
POD = JBL

POD 11.5186 11.4815 11.4924 11.5009 11.5028

JRN
POD 11.5143 11.4805 11.4919 11.5007 11.5027

JRL
POD 11.5144 11.4806 11.4919 11.5007 11.5027

5.2.2 Case γ = 0.1
Like before both algorithms need to redefine the time grid four times. For the
full model the algorithm needs 1789.4 s. Again, the augmented Lagrange method
in the final time grid needs the most time of the whole process. The difference
between JBN = JBL and JRL is ≈ 10−6 and therefore reached our accuracy.
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For the reduced POD model the algorithm needs 144.9 s and is therefore again
more than 12 times faster. But the difference between JBN

POD = JBL
POD and JRL

POD

is ≈ 10−5 and therefore a bit worse than for the full model. The convergence
behavior of the costs for the full model and the POD model is given in Fig. 6.
Table 3 shows again the different values of the cost and the behavior of the error
functions ζ.

Again we have a look at the difference of the control in the final grid. This
time we have∥∥uRel

FEM − uRel
POD

∥∥
A

= 0.039,
∥∥uInt

FEM − uInt
POD

∥∥
A

= 0.141.

The discrete control u1 of the full model and the POD model differs for

t ∈ {
0.13625, 0.48875, 0.49, 0.49125

}
and the discrete control u2 differs for

t ∈ {
0.13375, 0.135, 0.41, 0.4125, 0.49125

}
which causes the difference of the binary control functions. Notice, again the
value of the cost function JBN

POD is equal at every time grid except in the case
where the grid is of the size 200. Here the value of JBN

POD is slightly bigger.

Fig. 6. Convergence behavior of the cost for γ = 0.1. On the top left, difference between
the relaxed and the binary cost for the FEM. On the top right the difference for the
POD method and on the bottom middle the difference between the convexified relaxed
cost for the FEM and the POD method.
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Table 3. Summarized values in the different time grids for γ = 0.1.

Time instances 50 100 200 400 800
1
c
‖ζ‖ 1 · 10−9 8 · 10−5 6 · 10−5 5 · 10−7 4 · 10−6

JBN = JBL 11.5494 11.5126 11.5246 11.5338 11.5355

JRN 11.5465 11.5115 11.5241 11.5335 11.5353

JRL 11.5467 11.5122 11.5243 11.5337 11.5355

JBN
POD = JBL

POD 11.5494 11.5126 11.5247 11.5338 11.5355

JRN
POD 11.5465 11.5116 11.5238 11.5335 11.5353

JRL
POD 11.5466 11.5122 11.5246 11.5337 11.5352

5.2.3 Case γ = 1
The full model redefines the time grid three times and needed 277.1 s. The differ-
ence between JBN = JBL and JRL is ≈ 10−6, so we reach our tolerance what is
the reason why the algorithm needs much less time and one time grid less than
in the cases of γ = 0.01 and γ = 0.1. This could come from a good initial control
u0. Notice in the test of Subsect. 5.1 the algorithm needed one time grid more to
reach this tolerance. Using the reduced POD model the algorithm needs 42.8 s
and redefined the time grids three times. The plots of the convergence behavior
are given in Fig. 7 and in Table 4 we have summarized our findings. Notice this
time the value of JBL

POD is a bit smaller or equal than the cost JBL for the full
model. The difference between JBN

POD = JBL
POD and JRL

POD is ≈ 10−6.
Having a look at the difference of the control functions in the final time grid

we get
∥∥uRel

FEM − uRel
POD

∥∥
A

= 0.0073,∥∥uInt
FEM − uInt

POD

∥∥
A

= 0.02.

The only difference in the binary control functions is for u1 at t = 0.205.

Table 4. Summarized values in the different time grids for γ = 1.

Time instances 50 100 200 400
1
c
‖ζ‖ 2 · 10−9 1 · 10−6 6 · 10−6 1 · 10−6

JBN = JBL 12.2703 12.2492 12.2561 12.2936

JRN 12.2697 12.2466 12.2529 12.2903

JRL 12.2697 12.2491 12.2566 12.2936

JBN
POD = JBL

POD 12.2703 12.2492 12.2561 12.2936

JRN
POD 12.2697 12.2466 12.2579 12.2903

JRL
POD 12.2697 12.2491 12.2561 12.2936
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Fig. 7. Convergence behavior of the cost for γ = 1. On the top left, difference between
the relaxed and the binary cost for the FEM. On the top right the difference for the
POD method and on the bottom middle the difference between the convexified relaxed
cost for the FEM and the POD method.

Table 5. Different computational times for the FEM method and the POD method
for different regularization parameter.

Computational time

FEM/POD

γ = 0.01 FEM 1994.2 s 12, 9

POD 154.2 s

γ = 0.1 FEM 1789.4 s 12.3

POD 144.9 s

γ = 1 FEM 277.1 s 6.5

POD 42.8 s

Summarized we can definitely say that working with a reduced POD model
instead of the full model gives a huge improvement of the computational time
(see Table 5 for summarizing the speed up). Moreover, we get with this approach
similar solutions which can lead incidental to smaller values of the cost function,
therefore even better solutions. We have also seen, that a very small number l
of ansatz functions for the POD basis are enough to reach this good solutions.
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6 Conclusions and Outlook

In this chapter the authors have dealt with the application of relaxation meth-
ods combined with proper orthogonal decomposition (POD) methods for model
order reduction to solve mixed-integer optimal control problems governed by
linear convection-diffusion equations. After adopting the algorithm of [17] and
verifying that this problem satisfies the assumptions of Theorem 1 in [17] to
guarantee convergence a detailed description of the numerical solution method
was given. Since the finite element method to discretize the state and adjoint
equations from the optimization procedure leads to huge systems which have to
be solved frequently, the POD method was introduced. This reduced the time-
consuming optimization process and leads to a significant acceleration of the
CPU times while the error remains small. The functionality of the algorithm
and this behavior was verified by numerical experiments.
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An optimal policy has the property that
whatever the initial state and initial
decision are, the remaining decisions must
constitute an optimal policy with regard to
the state resulting from the first decision.

Richard Bellman, 1957

Abstract. We review an approach for discretizing Bellman’s optimality
principle based on piecewise constant functions. By applying this ansatz
to a suitable dynamic game, a discrete feedback can be constructed which
robustly stabilizes a given nonlinear control system. Hybrid, event and
quantized systems can be naturally handled by this construction.

1 Introduction

Whenever the state of some dynamical system can be influenced be repeatedly
applying some control (“decision”) to the system, the question might arise how
the sequence of controls – the policy – can be chosen in such a way that some
given objective is met. For example, one might be interested in steering the
system to an equilibrium point, i.e. to stabilize the otherwise unstable point. In
many contexts, the application of some control comes at some cost (fuel, money,
time, . . . ) which then is accumulated over time. Typically, one is interested in
meeting the given objective at minimal accumulated cost. This is the context of
Richard Bellman’s famous quote which already hints at how to solve the problem:
One can recursively construct an optimal sequence of controls backwards in time
by starting at the/some final state. It just so happens that this is also the idea
of Edsger Dijkstra’s celebrated algorithm for finding shortest paths in weighted
directed graphs.

At the core, this procedure requires one to store the minimal accumulated
cost at each state, the value function. According to the recursive construction
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to Springer Nature Switzerland AG 2020
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of the sequence of optimal controls, the value function satisfies a recursion, i.e.
a fixed point equation, the Bellman equation. From the value function at some
state, the optimal control associated to that state can be recovered by solving a
static optimization problem. This assignment defines a function on (a subset of)
the states into the set of all possible control values and so the state can be fed
back into the system, yielding a dynamical system without any external input.
By construction, the accumulated cost along some trajectory of this closed loop
system will be minimal.

In the case of a finite state space (with a reasonable number of states),
storing the value function is easy. In many applications from, e.g., the engineering
sciences, however, the state space is a subset of Euclidean space and thus the
value function a function defined on a continuum of states. In this case, the
value function typically cannot be represented in a closed form. Rather, some
approximation scheme has to be decided upon and the value function (and thus
the feedback) has to be approximated numerically.

In this chapter, we review contributions by the authors developing an approach
for approximating the value function and the associated feedback by piecewise
constant functions. This may seem like a bad idea at first, since in general one
would prefer approximation spaces of higher order. However, it turns out that this
ansatz enables an elegant solution of the discretized problem by standard shortest
path algorithms (i.e. Dijkstra’s algorithm). What is more, it also enables a unified
treatment of system classes which otherwise would require specialized algorithms,
like hybrid systems, event systems or systems with quantized state spaces.

As is common for some discretization, the discrete value function does not
inherit a crucial property of the true one: In general, it does not decrease mono-
tonically along trajectories of the closed loop system. In other words, it does not
constitute a Lyapunov function of the closed loop system. As a consequence, the
associated feedback may fail to stabilize some initial state. This deficiency can be
cured by considering a more general problem class, namely a system which can
be influenced by two independent controls – a dynamic game. In particular, if the
second input is interpreted as some perturbation induced by the discretization,
a discrete feedback results which retains the Lyapunov function property.

On the other hand, as any construction based on the Bellman equation,
or more generally as any computational scheme which requires to represent a
function with domain in some Euclidean space, our construction is prone to the
curse of dimension (a term already coined by Bellman): In general, i.e. unless
some specialized approximation space is employed, the computational cost for
storing the value function grows exponentially in the dimension of state space.
That is, in practice, our approach is limited to systems with a low dimensional
state space (i.e. of dimension ≤4, say).

2 Problem Formulation

We are given a control system in discrete time

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , (1)
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where xk ∈ X is the state of the system, uk ∈ U is the control input and
wk ∈ W is some external perturbation. We are further given an instantaneous
cost function g which assigns the cost

g(xk, uk) ≥ 0

to any transition xk �→ f(xk, uk, w), w ∈ W .
Our task is to globally and optimally stabilize a given target set T ⊂ X by

constructing a feedback u : S → U , S ⊂ X, such that T is an asymptotically
stable set for the closed loop system

xk+1 = f(xk, u(xk), wk), k = 0, 1, . . . (2)

with x0 ∈ S for any sequence (wk)k of perturbations and such that the accumu-
lated cost

∞∑

k=0

g(xk, u(xk)) (3)

is minimal.

System Classes. Depending on the choice of the spaces X,U and W and the
form of the map f , a quite large class of systems can be modelled by (1). Most
generally, X,U and W have to be compact metric spaces – in particular, they
may be discrete. Common examples which will also be considered later, include

• sampled-data systems: X,U and W are compact subsets of Euclidean space,
f is the time-T -map of the control flow of some underlying continuous time
control system and g typically integrates terms along the continuous time
solution over one sampling interval;

• hybrid systems: X = Y × D, where Y ⊂ R
n compact and D is finite, U and

W may be continuous (compact) sets or finite (cf. Sect. 8);
• discrete event systems: f may be chosen as a (generalized) Poincaré map (cf.

Sect. 8).
• quantized systems: The feedback may receive only quantized information on

the state x, i.e. x is projected onto a finite subset of X before u is evaluated
on this quantized state.

3 The Optimality Principle

The construction of the feedback law u will be based on a discretized version of
the optimality principle. In order to convey the basic idea more clearly, we start
by considering problem (1) without perturbations, i.e.

xk+1 = f(xk, uk), k = 0, 1, . . . (4)

and assume that X ⊂ R
d and U ⊂ R

m are compact, 0 ∈ X and 0 ∈ U . We further
assume that 0 ∈ X is a fixed point of f( · , 0), i.e. f(0, 0) = 0, constituting our
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target set T := {0}, that f : X ×U → X and g : X ×U → [0,∞) are continuous,
that g(0, 0) = 0 and infu∈U g(x, u) > 0 for all x 	= 0.

For a given initial state x0 ∈ X and a given sequence u = (u0, u1, . . .) ∈ UN

of controls, there is a unique trajectory x(x0,u) = (xk(x0,u))k∈N of (4). For
x ∈ X, let

U(x) = {u ∈ UN : xk(x,u) → 0 as k → ∞}
denote the set of stabilizing control sequences and

S = {x ∈ X : U(x) 	= ∅}
the stabilizable subset of X. The accumulated cost along some trajectory x(x0,u)
is given by

J(x0,u) =
∞∑

k=0

g(xk(x0,u), uk). (5)

Note that this series might not converge for some (x0,u). The least possible
value of the accumulated cost over all stabilizing control sequences defines the
(optimal) value function V : X → [0,∞],

V (x) = inf
u∈U(x)

J(x,u) (6)

of the problem. Let S0 := {x ∈ X : V (x) < ∞} be the set of states in which the
value function is finite. Clearly, S0 ⊂ S. On S0, the value function satisfies the
optimality principle [2]

V (x) = inf
u∈U

{g(x, u) + V (f(x, u))} . (7)

The right hand side

L[v](x) := inf
u∈U

{g(x, u) + v(f(x, u))}

of (7) defines the Bellman operator L on real valued functions on X. The value
function V is the unique fixed point of L satisfying the boundary condition
V (0) = 0.

Using the value function V , one can construct the feedback u : S0 → U ,

u(x) := argmin
u∈U

{g(x, u) + V (f(x, u))} , (8)

whenever this minimum exists. Obviously, V then satisfies

V (x) ≥ g(x, u(x)) + V (f(x, u(x))), (9)

for x ∈ S0, i.e. the optimal value function is a Lyapunov function for the closed
loop system on S0 (provided that V is continuous at T = {0}1) – and this
guarantees asymptotic stability of T = {0} for the closed loop system. By con-
struction, this feedback u is also optimal in the sense that the accumulated cost
J is minimized along any trajectory of the closed loop system.
1 This property can be ensured by suitable asymptotic controllability properties and

bounds on g.
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4 A Discrete Optimality Principle

In general, the value function (resp. the associated feedback) cannot be deter-
mined exactly and some numerical approximation has to be sought. Here, we
are going to approximate V by functions which are piecewise constant on some
partition of X. This approach is motivated by the fact that the resulting discrete
problem can be solved efficiently and that, via a generalization of the framework
to perturbed systems in Sect. 5 the feedback is also piecewise constant and can
be computed offline.

Let P be a finite partition of the state space X, i.e. a finite collection of
pairwise disjoint subsets of X whose union covers X. For x ∈ X, let π(x) ∈ P

denote the partition element that contains x. In what follows, we identify any
subset {P1, . . . , Pk} of P with the corresponding subset

⋃
i=1,...k Pi of X.

Let R
P ⊂ R

X = {v : X → R} be the subspace of real valued functions on X
which are piecewise constant on the elements of P. Using the projection

ψ[v](x) := inf
x′∈π(x)

v(x′), (10)

from R
X onto R

P, we define the discretized Bellman operator

LP := ψ ◦ L.

Again, this operator has a unique fixed point VP satisfying the boundary condi-
tion VP(0) = 0, which will serve as an approximation to the exact value function
V .

Explicitely, the discretized operator reads

LP[v](x) = inf
x′∈π(x)

{
inf
u∈U

{g(x′, u) + v(f(x′, u))}
}

.

and VP satisfies the optimality principle

VP(x) = inf
x′∈π(x),u∈U

{g(x′, u) + VP(f(x′, u))} . (11)

Recalling that VP is constant on each element P of the partition P, we write
VP(P ) in order to denote the value VP(x) for some x ∈ P . We can rewrite (11)
as

VP(x) = min
P

inf
(x′,u)

{g(x′, u) + VP(P )} (12)

where the min is taken over all P ∈ P for which P ∩ f(π(x), U) 	= ∅ and the
inf over all pairs x′ ∈ π(x), u ∈ U such that f(x′, u) ∈ P . Now define the
multivalued map F : P ⇒ P,

F(P ) = {P ′ ∈ P : P ′ ∩ f(P,U) 	= ∅} (13)
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and the cost function G : P × P → [0,∞),

G(P, P ′) = inf
u∈U

{g(x, u) | x ∈ P, f(x, u) ∈ P ′}. (14)

Equation (12) can then be rewritten as

VP(P ) = min
P ′∈F(P )

{G(P, P ′) + VP(P ′)}.

Graph Interpretation. It is useful to think of this reformulation of the discrete
optimality principle in terms of a directed weighted graph GP = (P, EP). The
nodes of the graph are given by the elements of the partition P, the edges are
defined by the map F: there is an edge (P, P ′) ∈ EP whenever P ′ ∈ F(P )
and the edge e = (P, P ′) is weighted by G(e) := G(P, P ′), cf. Fig. 1. In fact,
the value VP(P ) is the length G(p) :=

∑m
k=1 G(ek) of the shortest path p =

(e1, . . . , em) from P to the element π(0) containing 0 in this graph. As such, it can
be computed by (e.g.) the following algorithm with complexity O(|P| log(|P|) +
|E|):

Fig. 1. Partition of phase space, image of an element (left) and corresponding edges in
the induced graph (right).

Algorithm Dijkstra [5]

for each P ∈ P: V (P ) := ∞; V (π(0)) := 0; Q := P

while Q 	= ∅
P := argminP ′∈Q V (P ′)
Q := Q\{P}
for each Q ∈ P with (Q,P ) ∈ EP

if V (Q) > G(Q,P ) + V (P ) then
V (Q) := G(Q,P ) + V (P )

�
The time complexity of this algorithm depends on the data structure which

is used in order to store the set Q. In our implementation we use a binary heap
which leads to a complexity of O((|P| + |E|) log |P|). This can be improved to
O(|P| log |P| + |E|) by employing a Fibonacci heap.
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A similar idea is at the core of fast marching methods [16,18] and ordered
upwind methods [17].

Implementation. We use the approach from [3,4] as implemented in GAIO
in order to construct a cubical partition of X, stored in binary tree. For the
construction of the edges and their weights, we use a finite set of sample points
Ũ ⊂ U and P̃ ⊂ P for each P ∈ P and compute the approximate image

F̃(P ) = {P ′ ∈ P : P ′ ∩ f(P̃ , Ũ) 	= ∅}, (15)

so that the set of edges is approximately given by all pairs (P, P ′) for which
P ′ ∈ F̃(P ). Correspondingly, the weight of the edge (P, P ′) is approximated by

G̃(P, P ′) = min
(x,u)∈P̃×Ũ

{g(x, u) | f(x, u) ∈ P ′}.

This construction of the graph via the mapping of sample points indeed consti-
tutes the main computational effort in computing the discrete value function. It
might be particularly expensive if the control system f is given by the control
flow of a continuous time system. Note, however, that a sampling of the sys-
tem will be required in any method that computes the value function. In fact, in
standard methods like value iteration, the same point might be sampled multiple
times (in contrast to the approach described here).

Certainly, this approximation of the box images introduces some error, i.e.
one always has that F̃(P ) ⊂ F(P ), but typically F(P ) � F̃(P ). In experiments,
one often increases the number of sample points until the result of the com-
putation stabilizes. Alternatively, in the case that one is interested in a rigor-
ous computation, either techniques based on Lipschitz estimates [13] or interval
arithmetic [19] can be employed.

Example 1 (A simple 1D system). Consider the system

xk+1 = xk + (1 − a)ukxk, k = 0, 1, . . . , (16)

where xk ∈ X = [0, 1], uk ∈ U = [−1, 1] and a ∈ (0, 1) is a fixed parameter. Let

g(x, u) = (1 − a)x,

such that the optimal control policy is to steer to the origin as fast as possible,
i.e. for every x, the optimal sequence of controls is (−1,−1, . . .). This yields
V (x) = x as the value function.

For the experiment, we consider a = 0.8 and use partitions of equally sized
subintervals of [0, 1]. The edge weights (14) are approximated by minimizing
over 100 equally spaced sample points in each subinterval and 10 equally spaced
points in U . Figure 2 shows the exact and two discrete value functions, resulting
from running the code in Fig. 3 in Matlab (requires the GAIO toolbox2).

2 Available at http://www.github.com/gaioguy/gaio.

http://www.github.com/gaioguy/gaio
http://www.github.com/gaioguy/gaio
http://www.github.com/gaioguy/gaio
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Fig. 2. Exact (red) and discrete value functions for the simple example on partitions
of 64 (black) and 1024 (blue) intervals.

Fig. 3. Code: value function for a simple 1d system.

4.1 The Discrete Value Function

Proposition 1 [14]. For every partition P of X, VP(x) ≤ V (x) for all x ∈ X.

Proof. The statement obviously holds for x ∈ X with V (x) = ∞. So let x ∈ S0,
i.e. V (x) < ∞. For arbitrary ε > 0, let u = (u0, u1, . . .) ∈ U(x) be a control
sequence such that J(x,u) < V (x)+ ε and (xk(x,u))k the associated trajectory
of (4). Consider the path

(e1, . . . , em), ek = (π(xk−1), π(xk)), k = 1, . . . , m,
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where x = x0 and and m is minimal with xm ∈ π(0). The length of this path is
m∑

k=1

G(ek) =
m∑

k=1

inf
u∈U

{g(x, u) | x ∈ π(xk−1), f(x, u) ∈ π(xk)}

≤
m∑

k=1

g(xk−1, uk−1) ≤
∞∑

k=1

g(xk−1, uk−1) = J(x,u),

yielding the claim. �
This property immediately yields an efficient aposteriori error estimate for VP:
For x ∈ S0 consider

e(x) = inf
u∈U

{g(x, u) + VP(f(x, u))} − VP(x). (17)

Note that e(x) ≥ 0. Since

V (x) − VP(x) = inf
u∈U

{g(x, u) + V (f(x, u))} − VP(x)

≥ inf
u∈U

{g(x, u) + VP(f(x, u))} − VP(x) = e(x),

we obtain

Proposition 2. The function e : S0 → [0,∞) is a lower bound on the error
between the true value function V and its approximation VP:

e(x) ≤ V (x) − VP(x), x ∈ S0.

Now consider a sequence (P(�))�∈N of partitions of X which is nested in the sense
that for all � and every P ∈ P(�+1) there is a P ′ ∈ P(�) such that P ⊂ P ′. For
the next proposition recall that S ⊂ X is the set of initial conditions that can
be asymptotically controlled to 0.

Proposition 3 [14]. For fixed x ∈ S, the sequence (VP(�)(x))�∈N is monotoni-
cally increasing.

Proof. For x ∈ S, the value VP(�)(x) is the length of a shortest path p =
(e1, . . . , em), ek ∈ EP(�) , connecting π(x) to π(0) in P(�). Suppose that the claim
was not true, i.e. for some � there are shortest paths p in GP(�) and p′ in GP(�+1)

such that G(p′) < G(p). Using p′, we are going to construct a path p̃ in GP(�)

with G(p̃) < G(p), contradicting the minimality of p: Let p′ = (e′
1, . . . , e

′
m′), with

e′
k = (P ′

k−1, P
′
k) ∈ EP(�+1) . Hence, f(P ′

k−1, U) ∩ P ′
k 	= ∅, for k = 1, . . . , m′. Since

the partitions P(�) are nested, there are sets P̃k ∈ P(�) such that P ′
k ⊂ P̃k for

k = 0, . . . , m′. Thus, f(P̃k−1, U)∩ P̃k 	= ∅, i.e. ẽk = (P̃k−1, P̃k) is an edge in EP(�)

and p̃ = (ẽ1, . . . , ẽm′) is a path in GP(�) . Furthermore, for k = 1, . . . , m′,

G(ẽk) = inf
u∈U

{g(x, u) | x ∈ P̃k−1, f(x, u) ∈ P̃k}
≤ inf

u∈U
{g(x, u) | x ∈ P ′

k−1, f(x, u) ∈ P ′
k} = G(e′

k).

This yields G(p̃) ≤ G(p′) < G(p), contradicting the minimality of p. �
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So far we have shown that for every x ∈ S we have a monotonically increasing
sequence (VP(�)(x))�∈N, which is bounded by V (x) due to Proposition 1. The
following theorem states that for points x ∈ S the limit is indeed V (x) if the
maximal diameter of the partition elements goes to 0. For some finite partition
P of X, let diam(P) := maxi diam(Pi) be the diameter of the partition P.

Theorem 1 [14]. If diam(P(�)) → 0 then VP(�)(x) → V (x) as � → ∞ for all
x ∈ S.

4.2 The Discrete Feedback

Recall that an optimally stabilizing feedback can be constructed using the (exact)
value function for the problem (cf. (8)). We will use this idea, replacing V by its
approximation VP: using Ũ from (15)3, for x ∈ S we define

uP(x) := argmin
u∈Ũ

{g(x, u) + VP(f(x, u))} (18)

(the minimum exists because Ũ is a finite set) and consider the closed loop
system

xk+1 = f(xk, uP(xk)), k = 0, 1, . . . . (19)

The following theorems state in which sense this feedback is stabilizing and
approximately optimal. Let again (P(�))�∈N be a nested sequence of partitions of
X and D ⊆ S, 0 ∈ D, an open set with the property that for each ε > 0 there
exists �0(ε) > 0 such that

max
x∈D

|V (x) − VP(�)(x)| ≤ ε, for � ≥ �0(ε).

Let further c > 0 be the largest value such that

V −1
P(1)([0, c]) ⊂ D.

Note that by Proposition 3 this implies that V −1
P(�)([0, c]) ⊂ D for all � ∈ N.

Theorem 2 [7]. Under the assumptions above, there exists ε0 > 0 and a func-
tion δ : R → R with limα→0 δ(α) = 0, such that for all ε ∈ (0, ε0], all � ≥ �0(ε/2),
all η ∈ (0, 1) and all x0 ∈ V −1

P(�)([0, c]) the trajectory (xk)k generated by the closed
loop system (19) with feedback uP(�) satisfies

V (xk) ≤ max

⎧
⎨

⎩V (x0) − (1 − η)
k−1∑

j=0

g(xj , uP(�)(xj)), δ(ε/η) + ε

⎫
⎬

⎭ .

3 The subsequent statements remain true if we replace Ũ by any set ̂U ⊂ U with
Ũ ⊂ ̂U for which the argmin in (18) exists.
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This apriori estimate shows in which sense the feedback uP approximately
yields optimal performance. However, the theorem does not give information
about the partition P which is needed in order to achieve a desired level of
accuracy. This can be achieved by employing the error function e from above.

Consider some partition P of X. Let g0(x) := infu∈U g(x, u) and Cε(P) :=
{x ∈ V −1

P ([0, c] | g0(x) ≤ ε} and define δ(ε) := supx∈Cε
V (x). Note that if V is

continuous at T = {0} then δ(ε) → 0 as ε → 0 because Cε(P) shrinks down to
0 since g and thus g0 are continuous.

Theorem 3 [7]. Assume that for some ε > 0 and some η ∈ (0, 1), the error
function e satisfies

e(x) ≤ max{ηg0(x), ε} for all x ∈ V −1
P ([0, c]). (20)

Then, for each x0 ∈ V −1
P ([0, c], the trajectory (xk)k generated by the closed loop

system (19) satisfies

VP(xk) ≤ max

⎧
⎨

⎩VP(x0) − (1 − η)
k−1∑

j=0

g(xj , uP(xj)), δ(ε/η) + ε

⎫
⎬

⎭ . (21)

Example 2 (An inverted pendulum). We consider a model for an inverted
pendulum on a cart, cf. [7,14]. We ignore the dynamics of the cart, and so we only
have one degree of freedom, namely the angle ϕ ∈ [0, 2π] between the pendulum
and the upright vertical. The origin (ϕ, ϕ̇) = (0, 0) is an unstable equilibrium
(with the pendulum pointing upright) which we would like to stabilize. The
model reads

(
4
3 − mr cos2 ϕ

)
ϕ̈ + mr

2 ϕ̇2 sin 2ϕ − g
� sin ϕ = −u mr

m� cos ϕ, (22)

where m = 2 is the mass of the pendulum, M = 8 the mass of the cart,
mr = m/(m + M), � = 0.5 the length of the pendulum and g = 9.8 the
gravitational constant. We consider the discrete time control system (4) with
f(x, u) = Φt(x, u), x = (ϕ, ϕ̇), for t = 0.1, where Φt(x, u) denotes the con-
trolled flow of (22) with constant control input u(τ) = u for τ ∈ [0, t]. For the
instantaneous cost function we choose

g(x, u) =
∫ t

0

q(Φτ (x, u), u) dτ,

with the quadratic cost q(x, u) = 1
2

(
0.1ϕ2 + 0.05ϕ̇2 + 0.01u2

)
.

We use the classical Runge-Kutta scheme of order 4 with step size 0.02 in
order to approximate Φt, choose X = [−8, 8] × [−10, 10] as state space for x =
(ϕ, ϕ̇), which we partition into 29 × 29 boxes of equal size, and U = [−64, 64]
as the control space. In approximating the graph’s edges and their weights, we
map an equidistant grid of 3 × 3 points on each partition box, choosing from 17
equally spaced values in U .
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Figure 4 shows the discrete value function as well as the trajectory generated
by the discrete feedback for the initial value (3.1, 0.1), as computed by the GAIO
code in Fig. 6. As shown on the right of this figure, the discrete value function
does not decrease monotonically along the feedback trajectory, indicating that
the assumptions of Theorem 3 are not satisfied. And indeed, as shown in Fig. 5,
this trajectory repeatedly moves through regions in state space where the error
function e is not smaller than g0. In fact, on a coarser partition (27 × 27 boxes),
the discrete feedback (18) is not even stabilizing this initial condition any more.
We will adress this deficiency in the next sections.

Fig. 4. Left: Discrete value function and feedback trajectory for the inverted pendulum.
Right: Behaviour of the discrete value function along the feedback trajectory.

Fig. 5. Inverted pendulum: region where e(x) < g0(x) (green) and feedback trajectory.

http://www.github.com/gaioguy/gaio
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Fig. 6. Code: discrete value function for the inverted pendulum

5 The Optimality Principle for Perturbed Systems

Let us now return to the full problem from Sect. 2 of optimally stabilizing the
discrete time perturbed control system

xk+1 = f(xk, uk, wk), k = 0, 1, . . . . (23)

subject to an instantaneous cost g(xk, uk). For the convergence statements later,
we assume f : X × U × W → X and g : X × U → [0,∞) to be continuous
and X ⊂ R

d, U ⊂ R
m and W ⊂ R

� to be compact. More general spaces will
be discussed in Sect. 8. For a given initial state x0 ∈ X, a control sequence
u = (uk)k∈N ∈ UN and a perturbation sequence w = (wk)k∈N ∈ WN, we obtain
the trajectory (xk(x,u,w))k∈N satisfying (23) while the associated accumulated
cost is given by

J(x,u,w) =
∞∑

k=0

g(xk(x,u,w), uk).
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Recall that our goal is to derive a feedback u : S → U , S ⊂ X, that stabilizes
the closed loop system

xk+1 = f(xk, u(xk), wk), k = 0, 1, 2, . . . (24)

for any perturbation sequence (wk)k, i.e. for every trajectory (xk(x0,w))k of (24)
with x0 ∈ S and w ∈ WN arbitrary, we have xk → T as k → ∞, where T ⊂ S
is a given target set, and the accumulated cost

∑∞
k=0 g(xk, u(xk)) is minimized.

The problem formulation can be interpreted as describing a dynamic game
(see e.g. [6]), where at each step of the iteration (23) two players choose a control
uk and a perturbation wk, respectively. The goal of the controlling player is to
minimize J , while the perturbing player wants to maximize it. We assume that
the controlling player chooses uk first and that the perturbing player knows uk

when choosing wk. We further assume that the perturbing player cannot foresee
future choices of the controlling player. This can be formalized by restricting the
possible w to

w = β(u),

where β : UN → WN is a nonanticipating strategy, i.e. a strategy satisfying

uk = u′
k ∀k ≤ K ⇒ βk(u) = βk(u′) ∀k ≤ K

for any u = (uk)k,u′ = (u′
k)k ∈ UN. We denote by B the set of all nonanticipat-

ing strategies β : UN → WN.
The control task is finished once we are in T , we therefore assume that T

is compact and robustly forward invariant, i.e. for all x ∈ T there is a control
u ∈ U such that f(x, u, w) ⊂ T for all w ∈ W , that g(x, u) = 0 for all x ∈ T ,
u ∈ U and g(x, u) > 0 for all x 	∈ T , u ∈ U .

Our construction of the feedback u : S → U will be based on the upper value
function V : X → [0,∞],

V (x) = sup
β∈B

inf
u∈UN

J(x,u, β(u)), (25)

of the game (23), which is finite on the set S0 := {x ∈ X | V (x) < ∞}. The
upper value function satisfies the optimality principle [9]

V (x) = inf
u∈U

[
g(x, u) + sup

w∈W
V (f(x, u, w))

]
, x ∈ S0. (26)

The right hand side L[v](x) = infu∈U [g(x, u) + supw∈W v(f(x, u, w))] of this
fixed point equation again defines a dynamic programming operator L : R

X →
R

X . The upper value function is the unique fixed point of L satisying the bound-
ary condition V (x) = 0, x ∈ T . Like in the unperturbed case, using the upper
value function V , one can construct the feedback u : S0 → U ,

u(x) := argmin
u∈U

[
g(x, u) + sup

w∈W
V (f(x, u, w))

]
, (27)

whenever this minimum exists.
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6 A Discrete Optimality Principle for Perturbed Systems

Analogously to the discretization in Sect. 4 we now derive a discrete version of
(26), cf. [9]. Again, to this end, we will approximate the upper value function by
a function which is piecewise constant on the elements of some partition of X.
This approach will lead to a directed weighted hypergraph instead of the ordinary
directed graph in Sect. 4 and, again, the approximate upper value function can
be computed by an associated shortest path algorithm.

Let P be a finite partition of X. Using the projection (10), the discretized
dynamic game operator LP : R

P → R
P is defined by

LP := ψ ◦ L.

Again, this operator has a unique fixed point VP satisfying the boundary condi-
tion VP(x) = 0, x ∈ T , which will serve as an approximation to the exact value
function V .

Explicitely, the discretized operator reads

LP[v](x) = inf
x′∈π(x)

(
inf
u∈U

[
g(x′, u) + sup

w∈W
v(f(x′, u, w))

])

and VP satisfies the optimality principle

VP(x) = inf
x′∈π(x),u∈U

[
g(x′, u) + sup

w∈W
VP(f(x′, u, w))

]
. (28)

Note that since VP is constant on each partition element, we can rewrite this as

VP(x) = inf
x′∈π(x),u∈U

[
g(x′, u) + sup

P ′∈F(x′,u)
VP(P ′)

]
,

where
F(x′, u) = {P ∈ P | f(x′, u, w) ∈ P for some w ∈ W}.

Since the partition P is finite, there are only finitely many possible sets F(x′, u)
and we can further rewrite (28) as

VP(x) = min
N

inf
(x′,u)

[
g(x′, u) + sup

P ′∈N
VP(P ′)

]
,

where the min is taken over all collections N ∈ {F(x′, u) | x′ ∈ π(x), u ∈ U} and
the inf over all (x′, u) such that F(x′, u) = N. Now define the multivalued map
F : P ⇒ 2P,

F(P ) = {F(x, u) : (x, u) ∈ P × U},

and the cost function

G(P,N) = inf
u∈U

{g(x, u) : x ∈ P,F(x, u) = N}.
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Equation (28) can then be rewritten as

VP(P ) = min
N∈F(P )

[
G(P,N) + sup

P ′∈N
VP(P ′)

]
,

Graph Interpretation. Like in the unperturbed case, we can think of this
reformulation of the optimality principle in terms of a graph. More precisely,
we have a directed hypergraph (P, EP) with the set E ⊂ P × 2P of directed
hyperedges given by

EP = {(P,N) | N = F(x, u) for some (x, u) ∈ P × U} ,

and each edge (P,N) is weighted by G(P,N), c.f. Fig. 7. The discrete upper value
function VP(P ) is the length of a shortest path from P to some element P ′ which
has a nonempty intersection with the target set T (and, thus, by the boundary
condition, VP(P ′) = 0).

Fig. 7. Illustration of the construction of the hypergraph.

Shortest Paths in Hypergraphs. Algorithm 1 can be generalized to the
hypergraph case, cf. [9,20]. To this end, we modify lines 5–7 such that the max-
imization over the perturbations is taken into account:

for each (Q,N) ∈ EP with P ∈ N

if V (Q) > G(Q,N) + maxN∈N V (N) then
V (Q) := G(Q,N) + maxN∈N V (N)

Note that during the while-loop of Algorithm 1,

V (P ) ≥ V (P ′) for all P ′ ∈ P\Q.

Thus, if N ⊂ P\Q, then maxN∈N V (N) = V (P ), and the value of the node Q
will never be decreased again. On the other hand, if N 	⊂ P\Q, then the value of
Q will be further decreased at a later time – and thus we can save on changing it
in the current iteration of the while-loop. We can therefore save on the explicit
maximization and replace lines 5–7 by
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for each (Q,N) ∈ EP with P ∈ N

if N ⊂ P\Q then
if V (Q) > G(Q,N) + V (P ) then

V (Q) := G(Q,N) + V (P )

The overall algorithm for the hypergraph case is as follows. Here, T := {P ∈
P | P ∩ T 	= ∅} is the set of target nodes.

Algorithm minmax-Dijkstra

for each P ∈ P: V (P ) := ∞; for each P ∈ T: V (P ) := 0; Q := P

while Q 	= ∅
P := argminP ′∈Q V (P ′)
Q := Q\{P}
for each (Q,N) ∈ EP with P ∈ N

if N ⊂ P\Q then
If V (Q) > G(Q,N) + V (P ) then

V (Q) := G(Q,N) + V (P )

�

Time Complexity. In line 5, each hyperedge is considered at most N times, with
N being a bound on the cardinality of the hypernodes N. Additionally, we need
to perform the check in line 6, which has linear complexity in N . Thus, the overall
complexity of the minmax-Dijkstra algorithm is O(|P| log |P|+|E|N(N +log |P|))
(when using a binary heap for storing Q), cf. [20].

Space Complexity. The storage requirement grows linearly with |P|. This number,
however, grows exponentially with the dimension of state space (if the entire
state space is covered and under the assumption of uniformly large elements).
The number of hyperedges is determined by the Lipschitz constant of f , the size
of the hypernodes N will be given by the magnitude of the perturbation.

Implementation. We use the same approach as in the unperturbed case: A
cubical partition is constructed hierarchically and stored in a binary tree. In
order to approximate the set EP ⊂ P × 2P of hyperedges, we choose finite sets
P̃ ⊂ P , Ũ ⊂ U and W̃ ⊂ W of sample points, set

F̃(x, u) = {P ∈ P | f(x, u, w) ∈ P for some w ∈ W̃}
and compute

F̃(P ) := {F̃(x, u) : (x, u) ∈ P̃ × Ũ} ⊂ 2P

as an approximation to F(P ). Correspondingly, the weight on the hyperedge
(P,N) is approximated by

G̃(P,N) = min{g(x, u) : (x, u) ∈ P̃ × Ũ , F̃(x, u) = N}.

Example: A simple 1D System. We reconsider system (16), adding a small
perturbation at each time step:

xk+1 = xk + (1 − a)ukxk + wk, k = 0, 1, . . . ,
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with xk ∈ [0, 1], uk ∈ [−1, 1], wk ∈ [−ε, ε] for some ε > 0 and the fixed parameter
a ∈ (0, 1). The cost function is still g(x, u) = (1−a)x so that the optimal control
policy is again uk = −1 for all k, independently of the perturbation sequence.
The optimal strategy for the perturbing player is to slow down the dynamics
as much as possible, corresponding to wk = ε for all k. The dynamical system
resulting from inserting the optimal strategies is

xk+1 = axk + ε, k = 0, 1, . . . .

This map has a fixed point at x = ε/(1−a). In the worst case, i.e. wk = ε for all
k, it is not possible to get closer than α0 := ε/(1−a) to the origin. We therefore
define T = [0, α] with α > α0 as the target set. With

k(x) =

⌈
log α−α0

x−α0

log a

⌉
+ 1,

the exact optimal value function is

V (x) = (x − α0)
(
1 − ak(x)

)
+ εk(x),

as shown in Fig. 8 for a = 0.8, ε = 0.01 and α = 1.1α0. In that figure, we
also show the approximate optimal value functions on partitions of 64, 256 and
1024 intervals, respectively. In the construction of the hypergraph, we used an
equidistant grid of ten points in each partition interval, in the control space and
in the perturbation space.

6.1 Convergence

It is natural to ask whether the approximate value function converges to the true
one when the element diameter of the underlying partition goes to zero. This
has been proven pointwise on the stabilizable set S in the unperturbed case [14],
as well as in an L1-sense on S and an L∞ sense on the domain of continuity
in the perturbed case, assuming continuity of V on the boundary of the target
set T [9]. The same reference also provides an analysis for state constrained
problems. Here an additional robustness condition is needed, namely that the
optimal value function changes continuously with respect to the Lp-norm for
some p ∈ {1, . . . ,∞} if the state constraints are tightened. If this condition
holds, then the convergence statement remains valid under state constraints,
with L∞ replaced by Lp.

Due to the construction of the discretization, the approximation VP of the
optimal value function is always less or equal than the true optimal value func-
tion. This is not necessarily a good property. For instance, for proving stability
of the system controlled by the numerical feedback law it would be convenient if
VP was a Lyapunov function. Lyapunov functions, however, are supersolutions
to the dynamic programming equation, rather than subsolutions as our VP. In
order to overcome this disadvantage, in the next section we present a particular
construction of a dynamic game in which the discretization error is treated as a
perturbation.
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Fig. 8. Exact (red) and discrete upper value functions for the perturbed simple example
on partitions of 64 (black) and 1024 (blue) intervals.

Fig. 9. Code: upper value function for the perturbed simple 1d system.

7 The Discretization as a Perturbation

As shown in Theorems 2 and 3, the discrete feedback (18) will practically stabilize
the closed loop system (19) under suitable conditions. Our numerical experiment
in Example 2, however, revealed that a rather fine partition might be needed in
order to achieve stability. More generally, as we have seen in Fig. 4 (right), the
discrete value function is not a Lyapunov function of the closed loop system in
every case.
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Construction of the Dynamic Game. In order to cope with this problem we
are going to use the ideas on treating perturbed systems in Sect. 5 and 6. The
idea is to view the discretization error as a perturbation of the original system.
Under the discretization described in Sect. 4, the original map (x, u) �→ f(x, u)
is perturbed to

(x, u) �→ f̂(x, u, w) := f(x + w, u), x + w ∈ π(x).

Note that this constitutes a generalization of the setting in Sects. 5 and 6 since the
perturbation space W here depends on the state, W = W (x). Correspondingly,
the associated cost function is

ĝ(x, u) = sup
x′∈π(x)

g(x′, u). (29)

Theorem 4 [8]. Let V denote the value function (6) of the control system (f, g),
V̂ the value function (25) of the associated game (f̂ , ĝ) and VP the discrete value
function (28) of (f̂ , ĝ) on a given partition P with numerical target set TP ⊂ P,
T = {0} ⊂ TP. Then VP(x) = V̂ (x) and

V (x) − max
y∈TP

V (y) ≤ VP(x), (30)

i.e. VP is an upper bound for V − max V |TP
. Furthermore, VP satisfies

VP(x) ≥ min
u∈U

{g(x, u) + VP(f(x, u))} (31)

for all x ∈ X \ TP.

Proof. We first note that V̂ is constant on the elements of P: On TP, this is
true since TP is a union of partition elements by assumption. Outside of TP, by
definition of the game (f̂ , ĝ) we have

V̂ (x) = inf
u∈U

{
sup

x′∈π(x)

g(x′, u) + sup
x′∈f(π(x),u)

V̂ (x′)

}
,

so that infx′∈π(x) V̂ (x′) = V̂ (x). On the other hand, according to [9, Proposi-
tion 7.1] we have VP(x) = infx′∈π(x) V̂ (x′), so that VP = V̂ .

Now for x /∈ TP, Eq. (26) yields

V̂ (x) = inf
u∈U

sup
x′∈π(x)

{
g(x′, u) + V̂ (f(x′, u))

}

≥ min
u∈U

{
g(x, u) + V̂ (f(x, u))

}
(32)

which shows (31).
In order to prove (30), we order the elements P1, P2, . . . ∈ P such that i ≥ j

implies VP(Pi) ≥ VP(Pj). Since infu∈U g(x, u) > 0 for x 	= 0 by assumption,
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VP(Pi) = 0 is equivalent to Pi ⊆ TP. By the ordering of the elements this
implies that there exists i∗ ≥ 1 such that Pi ⊆ TP ⇔ i ∈ {1, . . . , i∗} and thus
(30) holds for x ∈ P1, . . . , Pi∗ . We now use induction: fix some i ∈ N, assume (30)
holds for x ∈ P1, . . . , Pi−1 and consider x ∈ Pi. If VP(Pi) = ∞ there is nothing
to show. Otherwise, since V satisfies the dynamic programming principle, using
(32) we obtain

V (x) − V̂ (x) ≤ inf
u∈U

{g(x, u) + V (f(x, u))} − min
u∈U

{
g(x, u) + V̂ (f(x, u))

}

≤ V (f(x, u∗)) − V̂ (f(x, u∗)),

where u∗ ∈ U realizes the minimum in (32). Now, since g(x, u∗) > 0, we have
V̂ (f(x, u∗)) < V̂ (x) implying f(x, u∗) ∈ Pj for some j < i. Since by the induction
assumption the inequality in (30) holds on Pj , this implies that it also holds on
Pi which finishes the induction step. �

The Feedback Is the Shortest Path. As usual, we construct the discrete
feedback by

uP(x) := argmin
u∈U

[
ĝ(x, u) + sup

x′∈f(π(x),u)

VP(x′)

]
.

By construction, this feedback is constant on each partition element. Moreover,
we can directly extract uP from the minmax-Dijkstra algorithm: We associate
the minimizing control value u(P,N) to each hyperedge (P,N),

u(P,N) = argmin
u∈U,F(P )=N

[
sup
x∈P

g(x, u)
]

. (33)

The feedback is then immediately given by

uP(x) = u(π(x),N(π(x))), (34)

where

N(P ) = argmin
N∈F(P )

{
G(P,N) + sup

N∈N
VP(N)

}

is defining the hypernode of minimal value adjacent to some node P in the
hypergraph. The computation of N(P ) can be done on the fly within the minmax-
Dijkstra Algorithm 2:
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Algorithm. minmax-Dijkstra with feedback

for each P ∈ P: V (P ) := ∞, N(P ) := ∅; for each P ∈ T: V (P ) := 0; Q := P

while Q 	= ∅
P := argminP ′∈Q V (P ′)
Q := Q\{P}
for each (Q,N) ∈ EP with P ∈ N

if N ⊂ P\Q then
if V (Q) > G(Q,N) + V (P ) then

V (Q) := G(Q,N) + V (P )
N(Q) := N

�
Consequently, the discrete feedback u can be computed offline. Once

u(P,N(P )) has been computed for every partition element P , the only remain-
ing online computation is the determination of π(xk) for each state xk on the
feedback trajectory. In our case, this can be done efficiently, since we store the
partition in a binary tree. Note, however, that the fast online evaluation of the
feedback law is enabled by a comparatively large offline computation, namely
the construction of the hypergraph.

Behaviour of the Closed Loop System

Theorem 5 [8]. Under the assumptions of Theorem4, if (xk)k denotes the tra-
jectory of the closed loop system (19) with feedback (34) and if VP(x0) < ∞,
then there exists k∗ ∈ N such that xk∗ ∈ T and

VP(xk) ≥ g(xk, uP(xk)) + VP(xk+1), k = 0, . . . , k∗ − 1.

Proof. From the construction of uP we immediately obtain the inequality

VP(xk) ≥ g(xk, uP(xk)) + VP(xk+1) (35)

for all k ∈ N0 with xk ∈ X \ TP. This implies the existence of k∗ such that the
first two properties hold since g(xk, uP(xk)) > 0 for xk 	∈ TP, VP is piecewise
constant and equals zero only on TP. �

Theorem 5 implies that the closed-loop solution reaches the target TP at
time step k∗ and that the optimal value function decreases monotonically until
the target is reached, i.e., it behaves like a Lyapunov function. While it is in
principle possible that the closed-loop solution leaves the target after time k∗,
this Lyapunov function property implies that after such excursions it will return
to TP.

If the system (4) is asymptotically controllable to the origin and V is con-
tinuous, then we can use the same arguments as in [9] in order to show that on
increasingly finer partitions P� and for targets TP�

shrinking down to {0} we
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obtain VP�
→ V . This can also be used to conclude that the distance of possible

excursions from the target TP�
become smaller and smaller as P� becomes finer.

We note that the Lyapunov function property of VP outside TP holds regard-
less of the size of the partition elements. However, if the partition is too coarse
then VP = ∞ will hold on large parts of X, which makes the Lyapunov function
property useless. In case that large partition elements are desired—for instance,
because they correspond to a quantization of the state space representing, e.g.,
the resolution of certain sensors—infinite values can be avoided by choosing the
control value not only depending on one partition element but on two (or more)
consecutive elements. The price to pay for this modification is that the construc-
tion of the hypergraph becomes significantly more expensive, but the benefit is
that stabilization with much coarser discretization or quantization is possible.
For details we refer to [10,11].

Example 3 (The inverted pendulum reconsidered.). We reconsider Exam-
ple 2 and apply the construction from this section. Figure 10, which results from
running the code shown in Fig. 11 as well as lines 25ff. from the code in Fig. 6,
shows the discrete upper value function on a partition of 216 boxes with target
set T = [−0.1, 0.1]2 as well as the trajectory generated by the discrete feedback
(33) for the initial value (3.1, 0.1). As expected, the approximate value function
is decreasing monotonically along this trajectory. Furthermore, this trajectory is
clearly closer to the optimal one because it converges to the origin much faster.

Fig. 10. Inverted pendulum: Discrete upper value function and robust feedback tra-
jectory (left); decrease of the discrete value function along the feedback trajectory.

8 Hybrid, Event and Quantized Systems

Hybrid Systems. The discretization of the optimality principle described in
Sects. 4–7 can be used in order to deal with hybrid systems in a natural way.
Hybrid systems can often be modeled by a discrete time control system of the
form

xk+1 = fc(xk, yk, uk)
yk+1 = fd(xk, yk, uk) k = 0, 1, . . . , (36)
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Fig. 11. Code: discrete upper value function and robust feedback for the inverted
pendulum

with two maps fc : X × Y × U → X ⊂ R
n and fd : X × Y × U → Y . The set

U of control inputs can be discrete or continuous, the (compact) set X ⊂ R
n is

the continuous part of state space and the set Y of discrete states (or modes)
is a finite set. The class of hybrid systems described by (36) is quite general: It
comprises

• models with purely continuous state space (i.e. Y = {0}, fc(x, y, u) = fc(x, u),
fd ≡ 0), but discrete or finite control space U ;

• models in which the continuous part fc is controlled by the mode y and only
the discrete part fd of the map is controlled by the input (fc(x, y, u) = fc(x, y)
and fd(x, y, u) = fd(y, u) may be given by an automaton);

• models with state dependent switching: Here we have a general map fc and
fd(x, y, u) = fd(x).

As in the previous chapters, we denote the solutions of (36) for initial values
x0 = x, y0 = y and some control sequence u = (u0, u1, . . .) ∈ UN by xk(x, y,u)
and yk(x, y,u), respectively. We assume that for each k, the map xk(·, y,u) is
continuous for each y ∈ Y and each u ∈ UN. We prescribe a target set T ⊂ X
(i.e. a subset of the continuous part of state space) and our aim is to find a control
sequence u = (uk)k∈N such that xk(x, y,u) → T as k → ∞ for initial values
x, y in some stabilizable set S ⊂ X × Y , while minimizing the accumulated cost∑∞

k=0 g(xk, yk, uk), where g : X × Y × U → [0,∞) is a given instantaneous cost
with g(x, y, u) > 0 for all x /∈ T , y ∈ Y and u ∈ U . To this end, we would like
to construct an approximately optimal feedback u : S → U such that a suitable
asymptotic stability property for the resulting closed loop system holds. Again,
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the construction will be based on a discrete value function. For an appropriate
choice of g this function is continuous in x at least in a neighborhood of T [12].

Computational Approach. Let Q be a partition of the continuous part X of state
space. Then the sets

P := {Qi × {y} |Qi ∈ Q, y ∈ Y } (37)

form a partition of the product state space Z = X × Y . On P the approaches
from Sects. 4–7 can be applied literally.

Example 4 (Example: A switched voltage controller). This is an example
taken from [15]: Within a device for DC to DC conversion, a semiconductor is
switching the polarity of a voltage source Vin in order to keep the ouput voltage
x1 as constant as possible close to a prescribed value Vref, cf. Fig. 12, while the
load is varying and thus the output current Iload changes. The model is

ẋ1 =
1
C

(x2 − Iload)

ẋ2 = − 1
L

x1 − R

L
x2 +

1
L

uVin (38)

ẋ3 = Vref − x1,

where u ∈ {−1, 1} is the control input. The corresponding discrete time system
is given by the time-t-map Φt (t = 0.1 in our case) of (38), with the control input
held constant during this sampling period. We use the quadratic instantaneous
cost function

g(x, u) = qP (Φt
1(x) − Vref)2 + qD(Φt

2(x) − Iload)2 + qIΦt
3(x)3.

The third component in (38) is only used in order to penalize a large L1-error
of the output voltage. We slightly simplify the problem (over its original formu-
lation in [15]) by using x3 = 0 as initial value in each evaluation of the discrete
map. Correspondingly, the map reduces to a two-dimensional one on the x1, x2-
plane.

Fig. 12. A switched DC/DC converter (cf. [15]).

In the following numerical experiment we use the same parameter values as
given in [15], i.e. Vin = 1V , Vref = 0.5, R = 1Ω, L = 0.1H, C = 4F , Iload = 0.3 A,
qP = 1, qD = 0.3 and qI = 1. Confining our domain of interest to the rectangle
X = [0, 1] × [−1, 1], our target set is given by T = {Vref} × [−1, 1]. For the
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construction of the finite graph, we employ a partition of X into 64× 64 equally
sized boxes. We use 4 test points in each box, namely their vertices, in order to
construct the edges of the graph.

Using the resulting discrete value function (associated to a nominal Iload =
0.3 A) and the associated feedback, we repeated the stabilization experiment
from [15], where the load current is changed after every 100 iterations. Figure 13
shows the result of this simulation, proving that our controller stabilizes the
system as requested.
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Fig. 13. Simulation of the controlled switched power converter.

Event Systems. In many cases, the discrete-time system (1) is given by time-
sampling an underlying continuous time control system (an ordinary differential
equation with inputs u and w), i.e. by the time-t-map of the flow of the con-
tinuous time system. In some cases, instead of fixing the time step t in each
evaluation of f , it might be more appropriate to chosen t in dependence of the
dynamics. Formally, based on the discrete time model (1) of the plant, we are
dealing with the discrete time system

x�+1 = f̃(x�, u�), � = 0, 1, . . . , (39)

where
f̃(x, u) = fr(x,u)(x, u), (40)

r : X × U → N0 is a given event function and the iterate fr is defined by
f0(x, u) = x and fr(x, u) = f(fr−1(x, u), u), cf. [10]. The associated instanta-
neous cost g̃ : X × U → [0,∞) is given by

g̃(x, u) =
r(x,u)−1∑

k=0

g(fk(x, u), u). (41)
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The time k of the underlying system (1) can be recovered from the event time �
through

k�+1 = k� + r(x�, u�).

Note that this model comprises an event-triggered scenario where the event func-
tion is constructed from a comparison of the state of (1) with the state of (39),
as well as the scenario of self-triggered control (cf. [1]) where the event function
is computed from the state of (1) alone.

Quantized Systems. The approach for discretizing the optimality principle
described in Sects. 4–6 is based on a discretization of state space in form of
a finite partition. While in general the geometry of the partition elements is
arbitrary (except from reasonable regularity assumptions), in many cases (e.g.
in our implementation in GAIO) cubical partitions are a convenient choice. In
this case, the discretization can be interpreted as a quantization of (1), where
the quantized system is given by the finite state system

Pk+1 = F (Pk, uk, γk), k = 0, 1, . . . , (42)

with
F (P, u, γ) = π(f(γ(P ), u)), P ∈ P, u ∈ U,

where γ : P → X is a function which chooses a point x from some partition
element P ∈ P, i.e. it satisfies π(γ(P )) = P for all P ∈ P [10]. The choice function
models the fact that it is unknown to the controller from which exact state xk the
system transits to the next cell Pk+1. It may be viewed as a perturbation which
might prevent us from reaching the target set – in this sense, (42) constitutes a
dynamic game in the sense of Sect. 6.

9 Lazy Feedbacks

In some applications, e.g. when data needs to be transmitted between the system
and the controller over a channel with limited bandwidth, it might be desirable
to minimize the amount of transmitted data. More specifically, the question
might be how to minimize the number of times that a new control value has to
be transmitted from the controller to the system. In this section, we show how
this can be achieved in an optimization based feedback construction by defining
a suitable instantaneous cost function.

In order to detect a change in the control value we need to be able to compare
its current value to the one in the previous time step. Based on the setting from
Sect. 2, we consider the discrete-time control system

zk+1 = f̄(zk, uk), k = 0, 1, 2, . . . (43)

with zk = (xk, wk) ∈ Z := X × U , uk ∈ U and

f̄(z, u) = f̄((x,w), u) :=
[

f(x, u)
u

]
.
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Given some target set T ⊂ X, we define T̄ := T × U as the target set in the
extended state space Z. The instantaneous cost function ḡ : Z × U → [0,∞),
which penalizes control value changes is given by

ḡλ(z, u) = ḡλ((x,w), u) := (1 − λ)g(x, u) + λδ(u − w) (44)

with

δ(u) =
{

0 if u = 0,
1 else. (45)

Here, λ ∈ [0, 1) (in particular, λ < 1 in order to guarantee that ḡ(z, u) = 0 iff
z ∈ T̄ ).

In order to apply the construction from Sect. 7, we choose a finite partition
P of X. Let V̂P denote the associated discrete upper value function, Ŝ = {x ∈
X : V̂P(x) < ∞} the stabilizable set, and ûP the associated feedback for the
original system (f, g). For simplicity, we assume that U is finite and use P × U
as the partition of the extended state space Z. We denote the discrete upper
value function of (f̄ , ḡλ) by V̄λ : Z → [0,∞], the stabilizable subset by S̄λ :=
{z ∈ Z : V̄λ(z) < ∞} and the associated feedback by ūλ : S̄λ → U .

For some arbitrary feedback uλ : S̄λ → U , consider the closed loop system

zk+1 = f̄(zk, uλ(zk)), k = 0, 1, 2, . . . . (46)

We will show that for any sufficiently large λ < 1 the closed loop system with
uλ = ūλ is asymptotically stable on S̄λ, more precisely that for z0 ∈ S̄λ the
trajectory of (46) enters T̄ in finitely many steps and that the number of control
value changes along this trajectory is minimal.

To this end, for some initial state z0 ∈ S̄λ, let (zk)k ∈ ZN, zk = (xk, wk),
be the trajectory of (46). Let κ(z0, uλ) = min{k ≥ 0 : zk ∈ T̄} be the minimal
number of time steps until the trajectory reaches the target set T̄ ,

E(z0, uλ) =
κ(z0,uλ)∑

k=0

δ
(
uλ(zk) − wk

)

the number of control value changes along the corresponding trajectory as well
as

J(z0, uλ) =
κ(z0,uλ)∑

k=0

g(xk, u(zk)), resp. J̄(z0, uλ) =
κ(z0,uλ)∑

k=0

ḡ(zk, u(zk))

the associated accumulated costs. Note that

J̄(z0, uλ) = (1 − λ)J(z0, uλ) + λE(z0, uλ).

Theorem 6. For all λ ∈ [0, 1), Ŝ × U ⊂ S̄λ. Using the optimal feedback ūλ in
(46) and for z0 ∈ S̄λ, zk → T̄ as k → ∞. Further, there exists λ < 1 such that
for any feedback uλ : S̄λ → U and z0 ∈ S̄λ with κ(z0, uλ) < K for some arbitrary
K ∈ N, we have E(z0, uλ) ≥ E(z0, ūλ).
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Proof. By construction, the system (43, 44) fulfills the assumptions of The-
orem 5, so we have asymptotic stability of the closed loop system (46) with
uλ = ūλ for all z0 ∈ S̄λ.

In order to show that Ŝ × U ⊂ S̄λ for all λ ∈ [0, 1), choose λ ∈ [0, 1) and
some initial value z0 = (x0, u0) ∈ Ŝ × U . Consider the feedback

u(z) = u((x, u)) := ûP(x)

for system (43). This leads to a trajectory (xk, uk)k of the extended system
with (xk)k being a trajectory of the the closed loop system for f with feedback
ûP. Since x0 ∈ Ŝ, V̂P(x0) is finite and the accumulated cost J̄(z0, u) for this
trajectory does not exceed (1 − λ)V̂P(x0) + λκ(z0, u) which is finite. According
to the optimality of Vλ,

Vλ(z0) ≤ (1 − λ)V̂P(x0) + λκ(z0, u) < ∞

follows, i.e. z0 ∈ S̄λ.
To show the optimality of ūλ with respect to the functional E, assume there

exists a feedback uλ : S̄λ → U with E(z0, uλ) ≤ E(z0, ūλ) − 1 for some z0 ∈ S̄λ.
Since ūλ is optimal, the following inequality holds:

(1 − λ)J(z0, uλ) + λE(z0, uλ) = J̄(z0, uλ)
≥ J̄(z0, ūλ)
= (1 − λ)J(z0, ūλ) + λE(z0, ūλ)
≥ (1 − λ)J(z0, ūλ) + λE(z0, uλ) + λ

and thus
(1 − λ)J(z0, uλ) ≥ (1 − λ)J(z0, ūλ) + λ. (47)

Let C(uλ) = maxz0{J(z0, uλ) | κ(z0, uλ) < K} which is finite. From (47) we get

(1 − λ)C(uλ) ≥ (1 − λ)C(ūλ) + λ. (48)

so that λ → 1 leads to a contradiction. �
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7. Grüne, L., Junge, O.: A set oriented approach to optimal feedback stabilization.
Syst. Control Lett. 54(2), 169–180 (2005)
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9. Grüne, L., Junge, O.: Global optimal control of perturbed systems. J. Optim.
Theory Appl. 136(3), 411–429 (2008)

10. Grüne, L., Müller, F.: An algorithm for event-based optimal feedback control. In:
Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai,
China, pp. 5311–5316 (2009)
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Abstract. The purpose of this paper is to review and highlight some
connections between the problem of nonlinear smoothing and optimal
control of the Liouville equation. The latter has been an active area of
recent research interest owing to work in mean-field games and optimal
transportation theory. The nonlinear smoothing problem is considered
here for continuous-time Markov processes. The observation process is
modeled as a nonlinear function of a hidden state with an additive Gaus-
sian measurement noise. A variational formulation is described based
upon the relative entropy formula introduced by Newton and Mitter.
The resulting optimal control problem is formulated on the space of
probability distributions. The Hamilton’s equation of the optimal con-
trol are related to the Zakai equation of nonlinear smoothing via the log
transformation. The overall procedure is shown to generalize the classical
Mortensen’s minimum energy estimator for the linear Gaussian problem.

Keywords: Markov processes ⋅ Bayesian inference ⋅ Stochastic
smoothing ⋅ Nonlinear filtering ⋅ Duality ⋅ Optimal control

1 Introduction

There is a fundamental dual relationship between estimation and control. The
most basic of these relationships is the well known duality between controllability
and observability of a linear system [8, Ch. 15]. The relationship suggests that
the problem of filter (estimator) design can be re-formulated as a variational
problem of optimal control. Such variational formulations are referred to as the
duality principle of optimal filtering. The first duality principle appears in the
seminal (1961) paper of Kalman-Bucy, where the problem of minimum variance
estimation is shown to be dual to a linear quadratic optimal control problem.
In these classical settings, the dual variational formulations are of the following
two types [1, Sec. 7.3]: (i) minimum variance estimator and (ii) minimum energy
estimator.
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The classical minimum energy estimator represents a solution of the smooth-
ing problem. The estimator is modeled as a controlled version of the state pro-
cess in which the process noise term is replaced by a control input. The optimal
control input is obtained by maximizing the log of the conditional (smoothed)
distribution. For this reason, the estimator is also referred to as the maximum
a posteriori (MAP) estimator. The MAP solution coincides with the optimal
smoother in the linear-Gaussian case. The earliest construction of the minimum
energy estimator is due to Mortensen [11].

A variational formulation of the nonlinear smoothing problem – the focus
of this paper – leading to the conditional distribution appears in [10]. The for-
mulation is based upon the variational Kallianpur-Striebel formula [17, Lemma
2.2.1]. The divergence is expressed as an optimal control objective function which
turns out to be identical to the objective function considered in the MAP estima-
tor [11]. The difference is that the constraint now is a controlled stochastic pro-
cess, in contrast to a single trajectory in the MAP estimator. With the optimal
control input, the law of the stochastic process is the conditional distribution.

The purpose of this paper is to review and highlight some connections
between nonlinear smoothing and optimal control problems involving control
of probability densities. In recent years, there has been a lot of interest in mean-
field-type optimal control problems where the constraint is a controlled Liouville
or a Fokker-Plank equation describing the evolution of the probability density [2–
4]. In this paper, it is shown that the variational formulation proposed in [10]
is easily described and solved in these terms. The formulation as a mean-field-
type optimal control problem is more natural compared to a stochastic opti-
mal control formulation considered in [10]. In particular, the solution with the
density constraint directly leads to the forward-backward equation of pathwise
smoothing. This also makes explicit the connection to the log transformation
which is known to transform the Bellman equation of optimal control into the
Zakai equation of filtering [7,9]. Apart from the case of the Itô-diffusion, the
continuous-time Markov chain is also described. The overall procedure is shown
to generalize the classical Mortensen’s minimum energy estimator for the linear
Gaussian problem.

The outline of the remainder of this chapter is as follows: the smoothing prob-
lem and its solution in terms of the forward-backward Zakai equation and their
pathwise representation is reviewed in Sect. 2. The variational formulation lead-
ing to a mean-field optimal control problem and its solution appears in Sect. 3.
The relationship to the log transformation and to the minimum energy estimator
is described. The conclusions appear in Sect. 4. All the proofs are contained in
the Appendix.

Notation. We denote the ith element of a vector by [ ⋅ ]i, and similarly, (i, j)
element of a matrix is denoted by [ ⋅ ]ij . Ck(Rd ;S) is the space of functions with
continuous k-th order derivative. For a function f ∈C2(Rd ;R), ∇f is the gradient
vector and D2f is the Hessian matrix. For a vector field F ∈C1(Rd ;Rd), div(F )
denotes the divergence of F . For a vector v ∈ Rd, diag(v) denotes a diagonal
matrix with diagonal entries given by the vector; ev and v2 are defined in an
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element-wise manner, that is, [ev]i = e[v]i and [v2]i = ([v]i)
2 for i = 1, . . . , d. For

a matrix, tr(⋅) denotes the trace.

2 Preliminaries and Background

2.1 The Smoothing Problem

Consider a pair of continuous-time stochastic processes (X,Z). The state X =
{Xt ∶ t ∈ [0, T ]} is a Markov process taking values in the state space S. The
observation process Z = {Zt ∶ t ∈ [0, T ]} is defined according to the model:

Zt = ∫
t

0
h(Xs)ds +Wt (1)

where h ∶ S → R is the observation function and W = {Wt ∶ t ≥ 0} is a standard
Wiener process.

The smoothing problem is to compute the posterior distribution P(Xt∈ ⋅ ∣ZT )
for arbitrary t ∈ [0, T ], where ZT ∶ =σ(Zs ∶ 0 ≤ s ≤ T ) is the sigma-field generated
by the observation up to the terminal time T .

2.2 Solution of the Smoothing Problem

The smoothing problem requires a model of the Markov process X. In appli-
cations involving nonlinear smoothing, a common model is the Itô-diffusion in
Euclidean settings:

Euclidean State Space. The state space S=Rd. The state process X is modeled
as an Itô diffusion:

dXt = a(Xt)dt + σ(Xt)dBt, X0 ∼ ν0

where a∈C1(Rd;Rd), σ∈C2(Rd;Rd×p) and B={Bt ∶t≥0} is a standard Wiener pro-
cess. The initial distribution of X0 is denoted as ν0(x)dx where ν0(x) is the prob-
ability density with respect to the Lebesgue measure. For (1), the observation
function h ∈C2(Rd;R). It is assumed that X0,B,W are mutually independent.

The infinitesimal generator of X, denoted as A, acts on C2 functions in its
domain according to

(Af)(x) ∶ =a⊺(x)∇f(x) +
1
2
tr(σσ⊺(x)(D2f)(x)).

The adjoint operator is denoted by A†. It acts on C2 functions in its domain
according to

(A†f)(x) = −div(af)(x) +
1
2

d

∑
i,j=1

∂2

∂xi∂xj

([σσ⊺]ijf)(x).
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The solution of the smoothing problem is described by a forward-backward
system of stochastic partial differential equations (SPDE) (see [12, Thm. 3.8]):

(forward)∶ dpt(x) = (A
†pt)(x)dt + h(x)pt(x)dZt

p0(x) = ν0(x), ∀x ∈Rd (2a)

(backward)∶ −dqt(x) = (Aqt)(x)dt + h(x)qt(x)
←�
dZt

qT (x) ≡ 1 (2b)

where
←�
dZt denotes a backward Itô integral (see [12, Remark 3.3]). The smoothed

distribution is then obtained as follows:

P(Xt ∈ dx ∣ZT ) ∝ pt(x)qt(x)dx.

Each of (2) is referred to as the Zakai equation of nonlinear filtering.

2.3 Path-Wise Representation of the Zakai Equations

There is a representation of the forward-backward SPDEs where the only appear-
ance of randomness is in the coefficients. This is referred to as the pathwise (or
robust) form of the filter [14, Sec. VI.11].

Using Itô’s formula for log pt,

d(log pt)(x) =
1

pt(x)
(A†pt)(x)dt + h(x)dZt −

1
2
h2(x)dt.

Therefore, upon defining μt(x) ∶ = log pt(x) −h(x)Zt, the forward Zakai Eq. (2a)
is transformed into a parabolic partial differential equation (pde):

∂μt

∂t
(x) = e−(μt(x)+Zth(x))(A†e(μt(⋅)+Zth(⋅)))(x) −

1
2
h2(x)

μ0(x) = log ν0(x), ∀x ∈Rd. (3)

Similarly, upon defining λt(x) = log qt(x) +h(x)Zt, the backward Zakai Eq. (2b)
is transformed into the parabolic pde:

−
∂λt

∂t
(x) = e−(λt(x)−Zth(x))(Aeλt(⋅)−Zth(⋅))(x) −

1
2
h2(x)

λT (x) =ZT h(x), ∀x ∈Rd. (4)

The pde (3)–(4) are referred to as pathwise equations of nonlinear smoothing.

2.4 The Finite State-Space Case

Apart from Itô-diffusion, another common model is a Markov chain in finite
state-space settings:
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Finite State Space. Let the state-space be S = {e1, e2, . . . , ed}, the canonical
basis in R

d. For (1), the linear observation model is chosen without loss of gen-
erality: for any function h ∶ S → R, we have h(x) = h̃⊺x where h̃ ∈ Rd is defined
by h̃i = h(ei). Thus, the function space on S is identified with R

d. With a slight
abuse of notation, we will drop the tilde and simply write h(x) = h⊺x.

The state process X is a continuous-time Markov chain evolving in S. The
initial distribution for X0 is denoted as ν0. It is an element of the probability
simplex in R

d. The generator of the chain is denoted as A. It is a d × d row-
stochastic matrix. It acts on a function f ∈ Rd through right multiplication:
f ↦ Af . The adjoint operator is the matrix transpose A⊺. It is assumed that X
and W are mutually independent.

The solution of the smoothing problem for the finite state-space settings
is entirely analogous: Simply replace the generator A in (2) by the matrix A,
and the probability density by the probability mass function. The Zakai pde is
now the Zakai sde. The formula for the pathwise representation are also entirely
analogous:

[
dμt

dt
]
i
= [e−(μt+Zth)]i[A

⊺eμt+Zth]i −
1
2
[h2]i (5)

−[
dλt

dt
]
i
= [e−(λt−Zth)]i[Aeλt−Zth]i −

1
2
[h2]i (6)

with boundary condition [μ0]i = log[ν0]i and [λ0]i =ZT [h]i, for i = 1, . . . , d.

3 Optimal Control Problem

3.1 Variational Formulation

For the smoothing problem, an optimal control formulation is derived in the
following two steps:

Step 1. A control-modified version of the Markov process X is introduced. The
controlled process is denoted as X̃ ∶ ={X̃t ∶ 0 ≤ t ≤ T}. The control problem is to
pick (i) the initial distribution π0 ∈ P(S) and (ii) the state transition, such that
the distribution of X̃ equals the conditional distribution. For this purpose, an
optimization problem is formulated in the next step.

Step 2. The optimization problem is formulated on the space of probability laws.
Let P denote the law for X, P̃ denote the law for X̃, and Qz denote the law for
X given an observation path z = {zt ∶ 0 ≤ t ≤ T}. Assuming these are equivalent,
the objective function is the relative entropy between P̃ and Qz:

min
P̃

EP̃ ( log
dP̃

dP
) − EP̃ ( log

dQz

dP
).

Upon using the Kallianpur-Striebel formula (see [17, Lemma 1.1.5 and Prop.
1.4.2]), the optimization problem is equivalently expressed as follows:

min
P̃

D(P̃ ∥P ) + E(∫
T

0
zt dh(X̃t) +

1
2
∣h(X̃t)∣

2 dt − zT h(X̃T )). (7)



300 J. W. Kim and P. G. Mehta

The first of these terms depends upon the details of the model used to
parametrize the controlled Markov process X̃. For the two types of Markov
processes, this is discussed in the following sections.

Remark 1. The Schrödinger bridge problem is a closely related problem of recent
research interest where one picks P̃ to minimize D(P̃ ∥P ) subject to the con-
straints on marginals at time t=0 and T ; cf., [5] where connections to stochastic
optimal control theory are also described. Applications of such models to the
filtering and smoothing problems is discussed in [13]. There are two differences
between the Schrödinger bridge problem and the smoothing problem considered
here:

1. The objective function for the smoothing problem also includes an additional
integral term in (7) to account for conditioning due to observations z made
over time t ∈ [0, T ];

2. The constraints on the marginals at time t=0 and t=T are not present in the
smoothing problem. Rather, one is allowed to pick the initial distribution π0

for the controlled process and there is no constraint present on the distribution
at the terminal time t = T .

3.2 Optimal Control: Euclidean State-Space

The modified process X̃ evolves on the state space R
d. It is modeled as a con-

trolled Itô-diffusion

dX̃t = a(X̃t)dt + σ(X̃t)(ut(X̃t)dt + dB̃t), X̃0 ∼ π0

where B̃={B̃t ∶0 ≤ t ≤ T} is a copy of the process noise B. The controlled process
is parametrized by:

1. The initial density π0(x).
2. The control function u ∈C1([0, T ] ×R

d;Rp). The function of two arguments
is denoted as ut(x).

The parameter π0 and the function u are chosen as a solution of an optimal
control problem.

For a given function v ∈C1(Rd;Rp), the generator of the controlled Markov
process is denoted by Ã(v). It acts on a C2 function f in its domain according
to

(Ã(v)f)(x) = (Af)(x) + (σv)⊺(x)∇f(x).

The adjoint operator is denoted by A†(v). It acts on C2 functions in its domain
according to

(Ã†(v)f)(x) = (A†f)(x) − div(σvf)(x).

For a density ρ and a function g, define ⟨ρ, g⟩ ∶ = ∫Rd g(x)ρ(x)dx.
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With this notation, define the controlled Lagrangian L ∶ C2(Rd;R+) ×
C1(Rd;Rp) ×R→ R as follows:

L(ρ, v ; y) ∶ =
1
2
⟨ρ, ∣ v ∣2 + h2⟩ + y ⟨ρ, Ã(v)h⟩.

The justification of this form of the Lagrangian starting from the relative entropy
cost appears in Appendix A.1.

For a given fixed observation path z = {zt ∶ 0 ≤ t ≤ T}, the optimal control
problem is as follows:

Min
π0,u

∶J(π0, u ; z) =D(π0∥ν0) − zT ⟨πT , h⟩ + ∫
T

0
L(πt, ut; zt)dt (8a)

Subj. ∶
∂πt

∂t
(x) = (Ã†(ut)πt)(x). (8b)

Remark 2. This optimal control problem is a mean-field-type problem on
account of the presence of the entropy term D(π0∥ν0) in the objective func-
tion. The Lagrangian is in a standard stochastic control form and the problem
can be solved as a stochastic control problem as well [10]. In this paper, the
mean-field-type optimal control formulation is stressed as a straightforward way
to derive the equations of the nonlinear smoothing.

The solution to this problem is given in the following proposition, whose
proof appears in the Appendix A.3.

Proposition 1. Consider the optimal control problem (8). For this problem, the
Hamilton’s equations are as follows:

(forward)
∂πt

∂t
(x) = (Ã†(ut)πt)(x) (9a)

(backward) −
∂λt

∂t
(x) = e−(λt(x)−zth(x))(Aeλt(⋅)−zth(⋅))(x) −

1
2
h2(x) (9b)

(boundary) λT (x) = zT h(x).

The optimal choice of the other boundary condition is as follows:

π0(x) =
1
C

ν0(x)e
λ0(x)

where C = ∫Rd ν0(x)e
λ0(x) dx is the normalization factor. The optimal control is

as follows:
ut(x) = σ⊺(x)∇(λt − zth)(x).

3.3 Optimal Control: Finite State-Space

The modified process X̃ is a Markov chain that also evolves in S = {e1, e2, . . . , ed}.
The control problem is parametrized by the following:
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1. The initial distribution denoted as π0 ∈R
d.

2. The state transition matrix denoted as Ã(v) where v ∈ (R+)d×d is the control
input. After [17, Sec. 2.1.1.], it is defined as follows:

[Ã(v)]ij =

⎧⎪⎪
⎨
⎪⎪⎩

[A]ij[v]ij i ≠ j

−∑j≠i[Ã(v)]ij i = j

and we set [v]ij = 1 if i = j or if [A]ij = 0.

To set up the optimal control problem, define a function C ∶ (R+)d×d → R
d as

follows

[C(v)]i =
d

∑
j=1

[A]ij[v]ij(log[v]ij − 1), i = 1, . . . , d.

The Lagrangian for the optimal control problem is as follows:

L(ρ, v; y) ∶ =ρ⊺(C(v) +
1
2
h2) + y ρ⊺(Ã(v)h).

The justification of this form of the Lagrangian starting from the relative entropy
cost appears in Appendix A.2.

For given observation path z = {zt ∶ 0 ≤ t ≤ T}, the optimal control problem is
as follows:

Min
π0,u

∶ J(π0, u ; z) =D(π0∥ν0) − zT π⊺T h + ∫
T

0
L(πt, ut; zt)dt (10a)

Subj. ∶
dπt

dt
= Ã⊺(ut)πt. (10b)

The solution to this problem is given in the following proposition, whose
proof appears in the Appendix.

Proposition 2. Consider the optimal control problem (10). For this problem,
the Hamilton’s equations are as follows:

(forward)
dπt

dt
= Ã⊺(ut)πt (11a)

(backward) −
dλt

dt
= diag(e−(λt−zth)) Aeλt−zth −

1
2
h2 (11b)

(boundary) λT = zT h.

The optimal boundary condition for π0 is given by:

[π0]i =
1
C
[ν0]i[e

λ0]i, i = 1, . . . , d

where C = ν⊺0 eλ0 . The optimal control is

[ut]ij = e([λt−zth]j−[λt−zth]i).
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3.4 Derivation of the Smoothing Equations

The pathwise equations of nonlinear filtering are obtained through a coordi-
nate transformation. The proof for the following proposition is contained in the
Appendix A.5.

Proposition 3. Suppose (πt(x), λt(x)) is the solution to the Hamilton’s Eq. (9).
Consider the following transformation:

μt(x) = log(πt(x)) − λt(x) + log(C).

The pair (μt(x), λt(x)) satisfy path-wise smoothing Eqs. (3)–(4). Also,

P(Xt ∈ dx ∣ZT ) = πt(x)dx ∀t ∈ [0, T ].

For the finite state-space case (11), the analogous formulae are as follows:

[μt]i = log([πt]i) − [λt]i + log(C)

and
P(Xt = ei ∣ZT ) = [πt]i ∀t ∈ [0, T ]

for i = 1, . . . , d.

3.5 Relationship to the Log Transformation

In this paper, we have stressed the density control viewpoint. Alternatively, one
can express the problem as a stochastic control problem for the X̃ process. For
this purpose, define the cost function l ∶Rd ×R

p ×R→ R as follows:

l(x, v ; y) ∶ =
1
2
∣v∣2 + h2(x) + y(Ã(v)h)(x).

The stochastic optimal control problem for the Euclidean case then is as follows:

Min
π0,Ut

∶ J(π0, Ut ; z)

= E( log
dπ0

dν0
(X̃0) − zT h(X̃T ) + ∫

T

0
l(X̃t, Ut ; zt)dt) (12a)

Subj. ∶ dX̃t = a(X̃t)dt + σ(X̃t)(Ut dt + dB̃t). (12b)

Its solution is given in the following proposition whose proof appears in the
Appendix A.6.

Proposition 4. Consider the optimal control problem (12). For this problem,
the HJB equation for the value function V is as follows:

−
∂Vt

∂t
(x) = (A(Vt + zth))(x) + h2(x) −

1
2
∣σ⊺∇(Vt + zth)(x)∣

2

VT (x) = −zT h(x).
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The optimal control is of the state feedback form as follows:

Ut = ut(X̃t)

where ut(x) = −σ⊺∇(Vt + zth)(x).

The HJB equation thus is exactly the Hamilton’s Eq. (9b) and

Vt(x) = −λt(x), ∀x ∈Rd, ∀ t ∈ [0, T ].

Noting λt(x)=log qt(x)+h(x)zt, the HJB equation for the value function Vt(x) is
related to the backward Zakai equation for qt(x) through the log transformation
(see also [7, Eqn. 1.4]):

Vt(x) = − log (qt(x)e
zth(x)).

3.6 Linear Gaussian Case

The linear-Gaussian case is a special case in the Euclidean setting with the
following assumptions on the model:

1. The drift is linear in x. That is,

a(x) =A⊺x and h(x) =H⊺x

where A ∈Rd×d and H ∈Rd.
2. The coefficient of the process noise

σ(x) = σ

is a constant matrix. We denote Q ∶ =σσ⊺ ∈Rd×d.
3. The prior ν0 is a Gaussian distribution with mean m̄0∈R

d and variance Σ0≻0.

For this problem, we make the following restriction: The control input ut(x)
is restricted to be constant over R

d. That is, the control input is allowed to
depend only upon time. With such a restriction, the controlled state evolves
according to the sde:

dX̃t =A⊺X̃t dt + σut dt + σ dB̃t, X̃0 ∼N(m0, V0).

With a Gaussian prior, the distribution πt is also Gaussian whose mean mt and
variance Vt evolve as follow:

dmt

dt
=A⊺mt + σut

dVt

dt
=A⊺Vt + VtA + σσ⊺.

Since the variance is not affected by control, the only constraint for the optimal
control problem is due to the equation for the mean.
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It is an easy calculation to see that for the linear model,

(Ã(v)h)(x) =H⊺(A⊺x + σv).

Therefore, the Lagrangian becomes

L(ρ, v; y) = ∣v∣2 + ∣H⊺m∣2 + tr(HH⊺V ) + yH⊺(A⊺m + σv)

provided that ρ ∼N(m,V ).
For Gaussian distributions π0=N(m0, V0) and ν0=N(m̄0,Σ0), the divergence

is given by the well known formula

D(π0∥ν0) =
1
2

log
∣V0∣

∣Σ0∣
−

d

2
+

1
2
tr(V0Σ−10 ) +

1
2
(m0 − m̄0)

⊺Σ−10 (m0 − m̄0)

and the term due to the terminal condition is easily evaluated as

⟨πT , h⟩ =H⊺mT .

Because the control input does not affect the variance process, we retain only
the terms with mean and the control and express the optimal control problem
as follows:

Minimize
m0,u

∶J(m0, u ; z) =
1
2
(m0 − m̄0)

⊺Σ−10 (m0 − m̄0) (13a)

+ ∫
T

0

1
2
∣ut∣

2 +
1
2
∣H⊺mt∣

2 + z⊺t H⊺ṁt dt − z⊺T H⊺mT

Subject to ∶
dmt

dt
=A⊺mt + σut. (13b)

By a formal integration by parts,

J(m0, u ; z) =
1
2
(m0 − m̄0)

⊺Σ̄−10 (m0 − m̄0)

+ ∫
T

0

1
2
∣ut∣

2 +
1
2
∣ż −H⊺mt∣

2 dt − ∫
T

0

1
2
∣żt∣

2 dt.

This form appears in the construction of the minimum energy estimator
[1, Ch. 7.3].

4 Conclusions

In this paper, we provide a self-contained exposition of the equations of nonlinear
smoothing as well as connections and interpretations to some of the more recent
developments in mean-field-type optimal control theory. These connections sug-
gest that the numerical approaches for mean-field type optimal control problems
can also be applied to obtain approximate filters. Development of numerical
techniques, e.g., particle filters to empirically approximate the conditional dis-
tribution, has been an area of intense research interest; cf., [13] and references
therein. Approximate particle filters based upon approximation of dual optimal
control-type problems have appeared in [6,9,13,15,16].
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A Appendix

A.1 Derivation of Lagrangian: Euclidean Case

By Girsanov’s theorem, the Radon-Nikodym derivative is obtained (see [13, Eqn.
35]) as follows:

dP̃

dP
(X̃) =

dπ0

dν0
(X̃0) exp(∫

T

0

1
2
∣ut(X̃t)∣

2 dt + ut(X̃t)dB̃t).

Thus, we obtain the relative entropy formula:

D(P̃ ∥P ) = E( log
dπ0

dν0
(X̃0) + ∫

T

0

1
2
∣ut(X̃t)∣

2 dt + ut(X̃t)dB̃t)

=D(π0∥ν0) + ∫
T

0

1
2
⟨πt, ∣ut∣

2⟩dt.

A.2 Derivation of Lagrangian: Finite State-Space Case

The derivation of the Lagrangian is entirely analogous to the Euclidean case
except the R-N derivative is given according to [17, Prop. 2.1.1]:

dP̃

dP
(X̃) =

dπ0

dν0
(X̃0) exp( −∑

i,j
∫

T

0
[A]ij[ut]ij1X̃t=ei

)

∏
0<t≤T

∑
i≠j

[ut−]ij1X̃t−=ei
1X̃t=ej

.

Upon taking log and expectation of both sides, we arrive at the relative entropy
formula:

D(P̃ ∥P ) = E( log
dπ0

dν0
(X̃0) + ∫

T

0
−∑

i,j

[A]ij[u]ij1X̃t=ei
)

+ E( ∑
0<t≤T

∑
i≠j

log[ut−]ij1X̃t−=ei
1X̃t=ej

)

=D(π0∥ν0) + ∫
T

0
π⊺t C(ut)dt.

A.3 Proof of Proposition 1

The standard approach is to incorporate the constraint into the objective func-
tion by introducing the Lagrange multiplier λ = {λt ∶ 0 ≤ t ≤ T} as follows:

J̃(u,λ ;π0, z)

=D(π0∥ν0) + ∫
T

0

1
2
⟨πt, ∣ut∣

2 + h2⟩ + zt⟨πt, Ã(ut)h⟩dt

+ ∫
T

0
⟨λt,

∂πt

∂t
− Ã†(ut)πt⟩dt − zT ⟨πT , h⟩.
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Upon using integration by parts and the definition of the adjoint operator, after
some manipulation involving completion of squares, we arrive at

J̃(u,λ ;π0, z) =D(π0∥ν0) + ∫
T

0

1
2
⟨πt, ∣ut − σ⊺∇(λt − zth)∣

2⟩dt

− ∫
T

0
⟨πt,

∂

∂t
λt +A(λt − zth) −

1
2
h2 +

1
2
∣σ⊺∇(λt − zth)∣

2⟩dt

+ ⟨πT , λT − zT h⟩ − ⟨π0, λ0⟩.

Therefore, it is natural to pick λ to satisfy the following partial differential
equation:

−
∂λt

∂t
(x) = (A(λt(⋅) − zth(⋅))) −

1
2
h2(x) +

1
2
∣σ⊺∇(λt − zth)(x)∣

2
(14)

= e−(λt(x)−zth(x))(Aeλt(⋅)−zth(⋅))(x) −
1
2
h2(x)

with the boundary condition λT (x) = zT h(x). With this choice, the objective
function becomes

J̃(u ;λ,π0, z) =D(π0∥ν0) − ⟨π0, λ0⟩

+ ∫
T

0

1
2
πt(∣ut − σ⊺∇(λt − zth)∣

2
)dt

which suggest the optimal choice of control is:

ut(x) = σ⊺(x)∇(λt − zth)(x).

With this choice, the objective function becomes

D(π0∥ν0) − ⟨π0, λ0⟩ = ∫
S

π0(x) log
π0(x)

ν0(x)
− λ0(x)π0(x)dx

= ∫
S

π0(x) log
π0(x)

ν0 exp(λ0(x))
dx

which is minimized by choosing

π0(x) =
1
C

ν0(x) exp(λ0(x))

where C is the normalization constant.

A.4 Proof of Proposition 2

The proof for the finite state-space case is entirely analogous to the proof for the
Euclidean case. The Lagrange multiplier λ = {λt ∈R

d ∶ 0 ≤ t ≤ T} is introduced to
transform the optimization problem into an unconstrained problem:

J̃(u,λ ;π0, z) =D(π0∥ν0) + ∫
T

0
π⊺t (C(ut) +

1
2
h2 + ztÃ(ut)h)dt

+ ∫
T

0
λ⊺t (

dπt

dt
− Ã⊺(ut)πt)dt − zT h⊺πT .
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Upon using integral by parts,

J̃(u,λ ;π0, z) =D(π0∥ν0) + ∫
T

0
π⊺t (C(ut) − Ã(ut)(λt − zth))dt

+ ∫
T

0
π⊺t (−λ̇t +

1
2
h2)dt + π⊺T (λT − zT h) − π⊺0λ0.

The first integrand is

[C(ut) − Ã(ut)(λt −Zth)]i

=∑
j≠i

Aij([u]ij(log[ut]ij − 1)

− [ut]ij([λt −Zth]j − [λt −Zth]i)) −Aii.

The minimizer is obtained, element by element, as

[ut]ij = e([λt−zth]j−[λt−zth]i)

and the corresponding minimum value is obtained by:

[C(u∗t ) − Ãt(λt −Zth)]i = −[Aeλt−zth]i[e
−(λt−zth)]i.

Therefore with the minimum choice of ut above,

J̃(u,λ ;π0, z) =D(π0∥ν0) + ∫
T

0
π⊺t ( − (Aeλt−zth) ⋅ e−(λt−zth))dt

+ ∫
T

0
π⊺t (−λ̇t +

1
2
h2)dt + π⊺T (λT − zT h) − π⊺0λ0.

Upon choosing λ according to:

−[λ̇t]i = [Aeλt−zth]i[e
−(λt−zth)]i −

1
2
h2

i , λT = zT h.

The objective function simplifies to

D(π0∥ν0) − π⊺0λ0 =
d

∑
i=1

[π0]i log
[π0]i

[ν0]ie[λ0]i

where the minimum value is obtained by choosing

[π0]i =
1
C
[ν0]ie

[λ0]i

where C is the normalization constant.

A.5 Proof of Proposition 3

Euclidean Case. Equation (9b) is identical to the backward path-wise Eq. (4).
So, we need to only derive the equation for μt. Using the regular form of the
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product formula,

∂μt

∂t
=

1
πt

∂πt

∂t
−

∂λt

∂t

=
1
πt
(Ã†(ut)πt) + e−(λt−zth)(Aeλt(⋅)−zth(⋅)) −

1
2
h2.

With optimal control ut = σ⊺∇(λt − zth),

(Ã†(ut)πt) = (A
†πt) − div (σσ⊺∇πt)

+ πt div (σσ⊺∇(μt + zth))

+ (∇πt)
⊺(σσ⊺∇(μt + zth))

and

e−(λt−zth)(Aeλt(⋅)−zth(⋅))

=
1
πt
(Aπt) −

1
2
∣σ⊺∇ logπt∣

2 − (A(μt + zth))

+
1
2
∣σ⊺∇ log(πt) − σ⊺∇(μt + zth)∣

2
.

Therefore,

∂μt

∂t
=

1
πt

((A†πt) + (Aπt) − div(σσ⊺∇πt))

− (A(μt + zth)) + div (σσ⊺∇(μt + zth))

+
1
2
∣σ⊺∇(μt + zth)∣

2
−

1
2
h2

= e−(μt(x)+zth(x))(A†e(μt(⋅)+zth(⋅)))(x) −
1
2
h2(x)

with the boundary condition μ0 = log ν0.

Finite State-Space Case. Equation (11b) is identical to the backward path-
wise Eq. (6). To derive the equation for μt, use the product formula

[
dμt

dt
]
i
=

1
[πt]i

[
dπt

dt
]
i
− [

dλt

dt
]
i

=
1

[πt]i
[Ã⊺(ut)πt]i + [e

−(λt−zth)]i[Aeλt+zth]i −
1
2
[h2]i.

The first term is:

[Ã⊺(ut)πt]i =
d

∑
j=1

([A]ji[ut]ji[πt]j − [A]ij[ut]ij[πt]i)
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and the second term is:

[e−(λt−zth)]i[Aeλt+zth]i

=
1

[πt]i
[eμt+zth]i

d

∑
j=1

[A]ij[πt]j[e
−(μt+zth)]j .

The formula for the optimal control gives

[ut]ij =
[πt]j

[πt]i
[e−(μt+zth)]j[e

μt+zth]i.

Combining these expressions,

[
dμt

dt
]
i
=

d

∑
j=1

[A]ji[e
−(μt+zth)]i[e

μt+zth]j −
1
2
[h2]i

= [e−(μt+zth)]i[A
⊺eμt+zth]i −

1
2
[h2]i

which is precisely the path-wise form of the Eq. (5). At time t=0, μ0=log(C[π0]i)−
[λ0]i = log[ν0]i.

Smoothing Distribution. Since (λt, μt) is the solution to the path-wise form
of the Zakai equations, the optimal trajectory

πt =
1
C

eμt+λt

represents the smoothing distribution.

A.6 Proof of Proposition 4

The dynamic programming equation for the optimal control problem is given by
(see [1, Ch. 11.2]):

min
u∈Rp

{
∂Vt

∂t
(x) + (Ã(u)Vt)(x) + l(x,u ; zt)} = 0. (15)

Therefore,

−
∂Vt

∂t
(x) = (AVt)(x) + h2(x) + zt(Ah)(x)

+min
u
{
1
2
∣u∣2 + u⊺(σ⊺∇Vt(x) + ztσ

⊺∇h(x))}.

Upon using the completion-of-square trick, the minimum is attained by a feed-
back form:

u∗ = −σ⊺∇(Vt + zth)(x).
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The resulting HJB equation is given by

−
∂Vt

∂t
(x) = (A(Vt + zth))(x) + h2(x) −

1
2
∣σ⊺∇(Vt + zth)∣

2

with boundary condition VT (x)=−zT h(x). Compare the HJB equation with the
Eq. (14) for λ, and it follows

Vt(x) = −λt(x).
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ume 2, Itô Calculus, vol. 2. Cambridge University Press, Cambridge (2000)

15. Ruiz, H., Kappen, H.J.: Particle smoothing for hidden diffusion processes: adaptive
path integral smoother. IEEE Trans. Signal Process. 65(12), 3191–3203 (2017)

16. Sutter, T., Ganguly, A., Koeppl, H.: A variational approach to path estimation
and parameter inference of hidden diffusion processes. J. Mach. Learn. Res. 17,
6544–80 (2016)

17. Van Handel, R.: Filtering, stability, and robustness. Ph.D. thesis, California Insti-
tute of Technology (2006)



Optimization



Structural Properties of Pareto Fronts:
The Occurrence of Dents in Classical and
Parametric Multiobjective Optimization

Problems

Katrin Witting1(B), Mirko Hessel-von Molo2, and Michael Dellnitz3

1 dSPACE GmbH, Paderborn, Germany
kwitting@dspace.de

2 Faculty of Computer Science Fachhochschule Dortmund – University of Applied
Sciences and Arts,

Dortmund, Germany
mirko.hessel-vonmolo@fh-dortmund.de

3 Chair of Applied Mathematics, Paderborn University, Paderborn, Germany

Abstract. This contribution deals with the occurrence of “dents” in
Pareto fronts of continuous and adequately smooth multiobjective opti-
mization problems. After giving a formal definition of this notion, a sys-
tem of equations is derived that characterizes points on the boundary
of the dent. This can be used to obtain information about the structure
of the Pareto front without computing the entire Pareto set. Further-
more, the evolution of dents in parametric multiobjective optimization
problems is studied using results from bifurcation theory. Theory and
computations are illustrated by several examples, whose construction is
described as well.

Keywords: Multiobjective optimization · Parametric multiobjective
optimization · Dents in Pareto fronts

1 Introduction

In many fields of research and industrial applications optimization plays an
important role. In a variety of these not only one but several objectives are
required to be optimal at the same time. For instance, in manufacturing cost has
to be minimized, but at the same time also quality is desired to be maximized –
at least to a certain degree. The development of theory and algorithms for the
determination of solutions that are as good as possible with respect to all objec-
tives is the task of multiobjective optimization. Mathematically, a continuous
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multiobjective optimization problem is given as

min
x

{F (x) : x ∈ S ⊆ R
n},

where F is defined as the vector of the objective functions f1, . . . , fk, k ≥ 2,
which each map from R

n to R, and S denotes the feasible region. The example
mentioned above already illustrates that the several objectives typically contra-
dict each other and thus do not have identical optima. Consequently, the solution
of a multiobjective optimization problem is given by the set of optimal compro-
mises of the objectives, the so-called Pareto set. In the case of minimization
problems the Pareto set is given by the set of solutions in which the value of any
objective function can only be decreased at the cost of increasing another one.

To obtain solutions that lie within the Pareto set many algorithms have been
developed. There are essentially two different types: algorithms that allow for the
computation of only one or a few Pareto points, and algorithms that approximate
the entire Pareto set. In the first case often a priori information, such as a specific
weighting or some kind of ordering of the objectives, is required. Examples for
those methods are the ‘weighted sums method’, the ‘ε-constraint-method’ and
the ‘lexicographic ordering’ (see [8,20]). Over the past years algorithms that
are able to approximate the entire Pareto set have been developed (see e. g.
[2,4,5,11,19,22,23,30]). For the computations of Pareto sets in the examples
given in this work set-oriented, numerical methods which are implemented in
the software package GAIO have been used (see [24]).

Motivated by the fact that in the case of nonconvex objective functions it
is not possible to compute all Pareto optimal solutions by the weighted sums
method, in this chapter the occurrence of dents in Pareto fronts is studied
(restricted to continuous and adequately smooth multiobjective optimization
problems). In [3], Das and Dennis give a trigonometric argument why – in the
case of two objectives – the weighted sums method cannot be used to compute
points in the nonconvex part, as they call the subset of the Pareto front that
contains no global optima of the weighted sum of the objectives for every weight
vector. It is an interesting task to find out if a Pareto front contains nonconvex
parts. If one assumes that the Pareto front is connected, then every nonconvex
part contains a region in which the Pareto front ‘bends inside the feasible region’.
This part of the Pareto front will be called a dent. In Sect. 3 a formal definition
of a dent is given (see also [28]).

It will be shown that at the border of a dent (seen as a subset of the Pareto
front) typically the Hessian of the weighted sum of the objectives is singular.
These points will be called dent border points and the corresponding preimages
on the Pareto set will be called dent border preimages.

In the case of parametric multiobjective optimization problems naturally
the question comes up, how dents evolve under the variation of the external
parameter. This question is addressed in Sect. 4. Making use of results from
bifurcation theory, it is proven that under certain assumptions dent border pre-
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images are turning points of the Kuhn-Tucker equations

Hα�

KT(x, λ) =
k∑

i=1

α�
i ∇xfi(x, λ) = 0,

where α� ist the weight vector corresponding to the dent border preimage. Sev-
eral examples of parametric multiobjective optimization problems in which the
Pareto front contains dents will be given at the end of Sect. 4.

Fig. 1. Typical shape of a Pareto front for a convex problem (left figure) and possible
shape in a nonconvex problem (right figure). The shaded regions represent the image
of the feasible set.

2 Theoretical Background

In this section the theoretical background from multiobjective optimization,
parametric multiobjective optimization and bifurcation theory needed within
the context of this chapter is summarized.

2.1 Multiobjective Optimization

A continuous (constrained) multiobjective optimization problem (MOP) is given
by

min
x

{F (x) : x ∈ S ⊆ R
n}, (MOP)

where F is defined as the vector of the objective functions f1, . . . , fk, k ≥ 2,
which each map from R

n to R, i. e.

F : Rn → R
k, F (x) = (f1(x), . . . , fk(x)).

The feasible set S is given as

S = {x ∈ R
n : h(x) = 0, g(x) ≤ 0}

with equality constraints h : Rn → R
m, m ≤ n and inequality constraints g :

R
n → R

q. The MOP is called unconstrained MOP, if S = R
n. In all the following
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considerations it is assumed that F = (f1, . . . , fk) consists of at least continuous
objective functions.

It has to be explained what is meant by ‘min’ in the problem (MOP), as
a vector-valued function has to be minimized. The following definition which
introduces an appropriate partial order on R

k allows comparisons of vectors (cf.
[6]).

Definition 1. Let u, v be two vectors in R
k. Then the vector u is less than v

(denoted by u <p v) if

ui < vi for all i ∈ {1, . . . , k}.

In an analogous way, the relation ≤p is defined. The vector u is said to dominate
the vector v if

u ≤p v and ui < vi for at least one i ∈ {1, . . . , k}.

Using the relation ≤p we define what a solution of (MOP) is.

Definition 2. A point x� ∈ R
n is called globally Pareto optimal for (MOP) (or

a global Pareto point of (MOP)) if there exists no x ∈ S ⊆ R
n with

F (x) ≤p F (x�) and fj(x) < fj(x�) for at least one j ∈ {1, . . . , k}.

If this property is only valid inside a neighborhood U(x�) ⊂ S ⊆ R
n, then x� is

called locally Pareto optimal (or a local Pareto point).
The set of all Pareto points is the Pareto set . Following [10], the set of the

function values of all Pareto points is called the Pareto front .

In the literature, one can find several different names for Pareto optimal
solutions. Examples are ‘efficient solutions’ [9,25], ‘noninferior solutions’ [10],
‘nondominated points’ [17], ‘vector minimum points’ [1], and ‘admissible points’
[15]. Especially the image of a Pareto optimal solution often is denoted as an
efficient point .

The following classical result which goes back to Kuhn and Tucker [18] pro-
vides a necessary condition for Pareto optimality. The version of the theorem
written down here can be found in [16], which itself is a reformulated version of
the one given in [14].

Theorem 1 (Kuhn and Tucker, 1951 [18])
Let x� be a Pareto optimal solution of (MOP). It is assumed that ∇hi(x�), i =

1, . . . , m and ∇gj(x�) for j ∈ {J : gJ(x�) = 0} (the active constraints) are
linearly independent. Then there exist vectors α ∈ R

k with αi ≥ 0 for i = 1, . . . , k
and

∑k
i=1 αi = 1, γ ∈ R

m and δ ∈ R
q with δj ≥ 0 for j = 1, . . . , q such that

k∑

i=1

αi∇fi(x�) +
m∑

j=1

γj∇hj(x�) +
q∑

l=1

δl∇gl(x�) = 0

δj · gj(x�) = 0, ∀j = 1, . . . , q.

(1)
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Following [20], points x� ∈ R
n that satisfy the Kuhn-Tucker condition (1) are

called substationary points . Given a Pareto point x� the vector of multipliers α
is called the weight vector corresponding to x�.

Obviously the condition in the Kuhn-Tucker theorem is not sufficient for
Pareto optimality in general. In the case of convex1 objective functions, convex
inequality constraints and affine2 equality constraints, it is proven that for α > 0
the Kuhn-Tucker conditions are also sufficient [14]. However, numerical methods
often make use of this criterion.

An intuitive, classical approach to solve a multiobjective optimization prob-
lem is the weighted sums method, also called the ‘weighting method’, which goes
back to Gass and Saaty [12] and Zadeh [29]. It is a very popular approach which
makes use of the intuitive idea of converting the multiobjective optimization
problem into a single objective one. For this, the objective functions are summed
up, each multiplied with an individual weight. More precisely, k weights αi are
chosen such that αi ≥ 0 for i = 1, . . . , k and

∑k
i=1 αi = 1 and the problem

min
x

gα(x)

s. t. x ∈ S ⊆ R
n,

(2)

with gα(x) =
∑k

i=1 αifi(x) is considered.
Varying the weights αi, different Pareto points can be obtained by solving

(2) – in the case of convex objective functions even all Pareto points can be
computed in this way. The reason for this is that the shape of the Pareto front
is also convex in such a situation. Moreover, the optimization of the weighted
sums results in different points on the Pareto front for different weight vectors.

In contrast to this, for nonconvex objective functions the Pareto front can
contain nonconvex parts as illustrated in Fig. 1 on the right. Here, the nonconvex
part is defined to be a subset of the Pareto front that contains no global optima
of the weighted sum of the objectives for every weight vector. Pareto points,
which are mapped into the nonconvex part of the Pareto front, can have the
same weight vector as other Pareto points whose weighted sum has a smaller
value (cf. Fig. 2), as they are only local minima or saddle points of gα(x).

In [3], Das and Dennis give a trigonometric argument, why – in the case of
two objectives – the weighted sums method cannot be used to compute points
in the nonconvex part.

It is an interesting question to find out if a Pareto front contains nonconvex
parts. If one assumes that the Pareto front is connected, then any nonconvex
part contains a region in which the Pareto front ‘curves inside the image of the
feasible region’. This part of the Pareto front will be called a ‘dent’. In Sect. 3 the
formal definition of a dent is given and an approach which allows the numerical
computation of dents in Pareto fronts is presented.

1 A function f : Rn → R is convex, if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all
x, y ∈ R

n, 0 ≤ λ ≤ 1, see e. g. [27].
2 A function f : Rn → R is affine, if f(λx + (1 − λ)y) = λf(x) + (1 − λ)f(y) for all

x, y ∈ R
n, 0 ≤ λ ≤ 1, see e. g. [27].
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Fig. 2. Schematic illustration of the weighted sums approach

2.2 Parametric Multiobjective Optimization Problems

An unconstrained (one-) parametric multiobjective optimization problem is
given as

min
x

{F (x, λ) : x ∈ R
n, λ ∈ [λstart, λend] ⊆ R}, (ParMOP)

where F is defined as the vector of the objective functions, i. e.

F : Rn × [λstart, λend] → R
k, F (x, λ) = (f1(x, λ), . . . , fk(x, λ)).

The solution set of (ParMOP) is a λ-dependent family of Pareto sets.
Every point in this family satisfies the necessary condition of Kuhn and

Tucker with respect to the x-variables. As (ParMOP) is an unconstrained mul-
tiobjective optimization problem, Theorem 1 reduces to the fact that there exist
multipliers α1, . . . , αk ∈ R+,0 such that

HKT(x, α, λ) =

(∑k
i=1 αi∇xfi(x, λ)∑k

i=1 αi − 1

)
= 0, (3)

where (x, λ) is a solution of (ParMOP).

Definition 3. If x ∈ R
n satisfies the Kuhn-Tucker condition (3) for a specific

value of λ, then it is called – as in the non-parametric case – a substationary
point . The set of all substationary points for the respective value of λ is denoted
by Sλ.

2.3 Bifurcation Theory

Bifurcation theory analyzes the behavior of solutions of parameter-dependent
systems of equations when they become singular under variation of the parame-
ter. In the context of this work it becomes applicable when considering solutions
of the Kuhn–Tucker–Eq. (3) for the parametric, unconstrained case.
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It will be shown in Sect. 3 that in a dent border point a zero eigenvalue
of the Hessian of gα occurs, where gα(x, λ) =

∑k
i=1 αifi(x, λ). The Hessian

of gα equals ∂
∂xHα

KT, as Hα
KT(x, λ) = ∇xgα(x, λ). Thus, the implicit function

theorem is not applicable to the Kuhn-Tucker equations (with respect to x) in
a dent border point. Whenever the Jacobian with respect to x of a parametric
system of equations is singular, the structure of the solution set may change. One
possibility is that the system of equations has no solution before the singularity
occurs, and two solutions afterwards (here, “before” and “afterwards” have to
be understood in terms of the values of λ). In this case, the solution curve
“turns” at the point (x�, λ�), where the Jacobian with respect to x is singular.
More formally, such a turning point – which sometimes is also called saddle-node
bifurcation or fold in the literature – is defined as follows:

Definition 4 (Turning point (see [21]))
Consider the solutions of a nonlinear system of equations H(x, λ) = 0, where

H : RN × R → R
N . Assume that (x�, λ�) is such a solution which satisfies

(i) there exists φ� ∈ R
N\{0} with ker

(
∂
∂xH(x�, λ�)

)
= span{φ�},

(ii) ∂
∂λH(x�, λ�) /∈ im ∂

∂xH(x�, λ�).

Then, (x�, λ�) is called a turning point .

Let ψ� be a left eigenvector of the zero eigenvalue of ∂
∂xH(x�, λ�), i. e.

ψ� ∂

∂x
H(x�, λ�) = 0.

If in addition to (i) and (ii) ψ�
(

∂2

∂x2 H(x�, λ�)φ�φ�
)


= 0, then the point (x�, λ�)
is called a simple turning point .

In Fig. 3 an example of an equation whose solution curve includes a turning
point is sketched. As one can observe, the solution curve turns in the point (0, 0).

Fig. 3. For the equation H(x, λ) = x2 − λ = 0, H : R×R → R, a turning point occurs
in the point (0, 0)
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3 Dents in Non-parametric Pareto Fronts

In Fig. 1 it has already been illustrated that the Pareto front may curve inside
the image of the feasible region in the case of nonconvex objective functions.
As already mentioned in Sect. 2 Pareto points whose images lie in such a dent
cannot be computed by using the weighted sums method. The reason is that two
or more Pareto points satisfy the Kuhn-Tucker equations with the same weight
vector α while the weighted sum

∑k
i=1 αifi(x) cannot be minimal for all these

solutions. The following definition gives a mathematical description of a dent.

Definition 5 (Dent point, Dent preimage)
Let P ⊆ S be the Pareto set of a multiobjective optimization problem

minx∈S F (x) with F : R
n → R

k, F (x) = (f1(x), . . . , fk(x))T and fi at least
twice continuously differentiable ∀ i = 1, . . . , k. For αi ∈ [0, 1] with

∑k
i=0 αi = 1

define gα : Rn → R by

gα(x) =
k∑

i=1

αifi(x).

A point x� ∈ P is called a dent preimage if it is a saddle point of gα. The
corresponding point y� = F (x�) on the Pareto front is called a dent point .

Definition 6 (Dent, dent border, complete dent)
Let P ⊆ S be the Pareto set of an at least twice continuously differentiable

multiobjective optimization problem minx∈S F : Rn → R
k and let PF = F (P )

be the Pareto front. Let y� ∈ PF be a dent point. Then, the connected com-
ponent of dent points which includes y� is called a dent corresponding to y�,
denoted by Dy� :

Dy� = {y ∈ PF | ∃δ ≥ 0 and ∃c : [0, δ] → PF, c continuous, with c(0) = y�,

c(δ) = y, and c(s) is a dent point ∀ s ∈ [0, δ]} .

A dent Dy� is called complete , if

∂PF ∩ Dy� = ∅,

where ∂PF is the boundary of the Pareto front PF as a subset of ∂F (S) (with
the induced topology from R

k).
The boundary ∂Dy� of a complete dent Dy� (seen as a subset of PF ) is called

dent border and a boundary point yb ∈ ∂Dy� is called a dent border point . A
point xb ∈ P with F (xb) = yb is called a dent border preimage of yb.

Remark 1. In [16] dents have been studied from a differential geometric point of
view. In this book it has been shown that – under certain geometrical assump-
tions on the multiobjective optimization problem – saddle points of gα occur if
and only if the corresponding point on the Pareto front has at least one negative
principal curvature.
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In [16] it has already been considered what happens during the transition
from a minimizer x1 of gα1 to a saddle point x2 of gα2 on a connected Pareto
front i. e. during the transition of non-dent preimages to dent preimages (α1 and
α2 denote the weight vectors corresponding to x1 and x2, respectively):
Assume that the non-dent preimage x1 can be connected to the dent preimage
x2 by a continuous curve γ : [0, 1] → P ⊆ S with γ(τ) = (x(τ), α(τ)), γ(0) =
(x1, α1) and γ(1) = (x2, α2). To each curve point γ(τ) the n-tuple of eigenvalues
of ∂2

∂x2 gα(x), denoted by (e1(τ), . . . , en(τ))T , is assigned, where α again is the
corresponding weight vector to x. This leads to another continuous curve γ̃ : τ �→
(e1(τ), . . . , en(τ))T corresponding to γ. As x1 is a minimizer of gα1 , γ̃(0) > 0.
In the saddle point x2 of gα2 , there exists an index i ∈ {1, . . . , n} such that
ei(1) < 0. Because of the continuity of γ̃ there must exist τ̄ ∈ [0, 1] with ei(τ̄) = 0.

To sum up, in dent border points a zero-eigenvalue of the Hessian of gα

occurs.

Definition 7 (Simple dent border point/preimage)
Let P ⊆ S be the Pareto set of an at least twice continuously differentiable

multiobjective optimization problem F : Rn → R
k and let PF = F (P ) be the

Pareto front. Let y�
b ∈ PF be a dent border point and let x�

b ∈ P be a dent
border preimage of y�

b .
Then, y�

b is called a simple dent border point if the zero eigenvalue of the
Hessian g′′

α(x�
b) is simple. In this case, x�

b is called a simple dent border preimage.

Fig. 4. Pareto front and dent points (black) for Example 1
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Example 1 (Computation of dents)
Consider the bi-objective optimization problem defined by the two objectives

f1(x, λ) =
1
2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 + x1 − x2) + λ · e−(x1−x2)
2

f2(x, λ) =
1
2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 − x1 + x2) + λ · e−(x1−x2)
2

with a fixed value λ = 0.6 and x = (x1, x2). Then, the Pareto set can be
approximated e. g. by use of the set-oriented techniques.

The algorithm returns a set of boxes that covers the Pareto set. Within
these boxes, a number of test points is evaluated, the best of which are in the
following considered as the Pareto set. By solving the Kuhn-Tucker equations of
F = (f1, f2) for each of these points, the corresponding weight vectors α ∈ R

k

can be computed. Then, the eigenvalues of the Hessians of the weighted sums of
the objectives are determined. All points x, in which both eigenvalues > 0 and
eigenvalues < 0 exist, are dent preimages. The Pareto front and the resulting
dent points for this example are visualized in Fig. 4.

4 Evolution of Dents in Parameter-Dependent Pareto
Fronts

In the previous section dents in Pareto fronts have been defined motivated by
the fact that these points cannot be computed by the weighted sums method .
Also, dent border points have been defined. When considering parametric mul-
tiobjective optimization problems, naturally the question arises, how dents and
especially dent border points evolve. The Kuhn-Tucker Eq. (3) provide a neces-
sary condition for Pareto optimality. Within this section this parametric system
of equations will be analyzed in order to obtain results about the local behavior
of parameter-dependent Pareto fronts.

Solutions of parametric systems of equations have already been widely stud-
ied in bifurcation theory. The first part of this section deals with the study of
properties of dent border points. It will be proven that under certain assump-
tions dent border preimages are turning points of the Kuhn-Tucker equations.
In the second part of this section, several numerical examples for parametric
multiobjective optimization problems in which dents occur are given.

Within this section it is assumed that the objective functions are at least
twice continuously differentiable. Only points x ∈ Pλ are considered for which the
corresponding weight vector α is an element of (0, 1)k. Define Hα

KT : Rn×R → R
n

by

Hα
KT(x, λ) =

k∑

i=1

αi∇xfi(x, λ).
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4.1 Properties of Dent Border Points

First, it will be shown that dent border preimages can be characterized as certain
turning points of the Kuhn-Tucker equations

Proposition 1. Let Pλ ⊆ Sλ be the Pareto set of a parametric multi-
objective optimization problem min F : R

n × R → R
k with F (x, λ) =

(f1(x, λ), . . . , fk(x, λ))T . Let x� ∈ Pλ� be a simple dent border preimage. Let
α� denote the weight vector corresponding to x� and assume that the Jacobian
Hα�

KT

′
(x, λ) has full rank.

Then, (x�, λ�) is a turning point of Hα�

KT(x, λ) with respect to λ.

Proof. It has been shown in [16] (see also Sect. 3) that dent border preim-
ages x� are solutions of the Kuhn-Tucker equations Hα�

KT(x�, λ�) = 0 in which
∂2

∂x2 gα�(x�, λ�) is singular. Thus, there exists an eigenvector φ� of ∂2

∂x2 gα�(x�, λ�)
with (

∂2

∂x2
gα�(x�, λ�)

)
φ� = 0. (4)

From the assumption that the dent border preimage is simple, i. e. exactly one
eigenvalue of ∂2

∂x2 gα�(x�, λ�) equals zero (cf. Definition 7), it directly follows that

dim ker
(

∂2

∂x2
gα�(x�, λ�)

)
= 1. (5)

As Hα
KT(x, λ) = ∇xgα(x, λ), and thus

∂

∂x
Hα

KT(x, λ) =
∂

∂x
(∇xgα(x, λ)) =

∂2

∂x2
gα(x, λ),

(4) is equivalent to
∂

∂x
Hα�

KT(x�, λ�)ϕ� = 0

and (5) is the same as

dim ker
(

∂

∂x
Hα�

KT(x�, λ�)
)

= 1.

Thus, property (i) of Definition 4 is proven for H(x, λ) = Hα�

KT(x, λ).
Property (ii) of Definition 4 directly follows from the assumption that the

Jacobian Hα�

KT

′
(x, λ) has full rank, i. e. rank n: if the vector ∂

∂λHKTα�

(x�, λ�)
were in the image of the n×n-matrix ∂

∂xHα�

KT(x�, λ�), then the rank of the Jaco-
bian Hα�

KT

′
(x, λ) were n − 1, in contradiction to the assumption. Thus, it has to

be true that
(

∂
∂λHα�

KT(x�, λ�)
)

/∈ im ∂
∂xHα�

KT(x�, λ�).

To sum up, both properties given in Definition 4 are satisfied, and thus
(x�, λ�) is a turning point of Hα�

KT(x, λ) with respect to λ. ��
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Remark 2. Using the notation of the proof of Proposition 1 one observes that the
matrix ∂

∂xHα�

KT is symmetric, as it is the Hessian of the weighted sums function
gα. Thus, ψ� = (φ�)T is a left eigenvector of ∂

∂xHα�

KT(x�, λ�). It follows that, if
additionally to (i) and (ii) of Definition 4

(φ�)T

(
∂2

∂x2
Hα�

KT(x�, λ�)
)

φ�φ� 
= 0,

then (x�, λ�) is a simple turning point of Hα�

KT(x, λ) with respect to λ.

To sum up, a dent border preimage can be obtained by solving the system
of equations

Hα�

KT(x, λ) = 0
∂

∂x
Hα�

KT(x, λ) · φ = 0 (6)

lT φ − 1 = 0

with an arbitrary but fixed vector l ∈ R
n which satisfies lT φ� 
= 0 and has non-

zero entries, and x, φ ∈ R
n, λ ∈ R. In the literature, this system of equations is

also called the extended system of Hα�

KT(x, λ) (cf. [21]).

Remark 3. A family of dent border preimages can be obtained by solving

∇xgα(x, λ) = 0
k∑

i=1

αi − 1 = 0

∂2

∂x2
gα(x, λ) · φ = 0 (7)

lT φ − 1 = 0

with an arbitrary fixed vector l ∈ R
n which satisfies lT φ� 
= 0 and has non-zero

entries, x, φ ∈ R
n, λ ∈ R and α ∈ R

k with αi > 0 ∀i = 1, . . . , k.

4.2 Numerical Examples

In the following, several new examples for parametric multiobjective optimiza-
tion problems are presented and its construction is motivated. The examples
all have in common that the corresponding Pareto fronts contain dents for spe-
cific values of the external parameter λ. Moreover, under the variation of λ,
dents originate or vanish (cf. Examples 2 and 4), or dents double or merge
(cf. Example 3).
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Example 2. We again consider the bi-objective optimization problem defined by
the two objectives

f1(x1, x2, λ) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 + x1 − x2) + λ · e−(x1−x2)
2

f2(x1, x2, λ) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 − x1 + x2) + λ · e−(x1−x2)
2

which we have already seen in Example 1.
Before we are going to examine this example numerically, it is worthwhile

to note that it can be understood geometrically and/or analytically. To see the
picture, we can use the vectors q = (1, 1)T and q⊥ = (1,−1)T as a basis of R2

and new coordinates u1 = x1 + x2 and u2 = x1 − x2, so that for x = (x1, x2)T

we have x = 1/2 · (u1 · q + u2 · q⊥). Then we can write the objective as

F (u1, u2, λ) =
(

1
2

·
(√

1 + u2
1 +

√
1 + u2

2

)
+ λ · e−u2

2

)
· q + u2 · q⊥

=
1
2

·
√

1 + u2
1 · q

︸ ︷︷ ︸
=:F 1(u1)

+
(

1
2

·
√

1 + u2
2 + λ · e−u2

2

)
· q + u2 · q⊥

︸ ︷︷ ︸
=:F 2(u2,λ)

This means the q⊥-component of F (u1, u2, λ) is simply u2 · q⊥, while the q-
component is a sum of three terms, two of which are functions of u2 only, and
only one of which depends on λ. Now an easy computation shows that the q-
component of F 2 is a convex function for λ < 1/4 and that it has a non-convex
part around u2 = 0 for λ > 1/4. This is the reason for the generation of a dent
in the Pareto front. To see this, observe that the image of F 2 determines the
form of the boundary of the image of F , as the F1 term adds a component in
positive q-direction only, i.e. a component that moves the image “further inside”
the positive quadrant of R2, and has its minimum for u1 = 0. Thus by adjusting
the value of λ, we can control whether the boundary of the image of F is given
by a convex function, that is, whether the Pareto front has a dent or not.

In Fig. 5 the Pareto sets of these two objectives for (x1, x2) ∈ [−1.3, 1.3]2

are plotted for different values of the external parameter λ: for λ = 0 (green),
λ = 0.2 (gray), λ = 0.4 (light blue), λ = 0.6 (cyan), and for λ = 0.8 (magenta).
We see that they are all part of the line given by u1 = 0.

In the same figure, an example for a λ-dependent solution path of the Kuhn-
Tucker equations with a fixed weight vector α� ≈ (0.25, 0.75) which corresponds
to the dent border preimage (x�

1, x
�
2) ≈ (−0.28, 0.28) of the dent border point

(y�
1 , y

�
2) ≈ (1.23, 1.79), located on the Pareto front for λ� = 0.6, is visualized

for λ ∈ [0, 1] (black paths). The paths have been computed with the help of
the software package AUTO2000 [7]. As one can observe, y� is indeed a simple
turning point of Hα�

KT(x, λ) with respect to λ. Figure 6 shows the same results in
objective space. Here one clearly observes that the Pareto front does not have a
dent for λ < 0.25 and does have a dent for λ > 0.25.

In Fig. 7 the entire curve of dent border points in objective space is plotted.
To compute this λ-dependent solution curve (red), again the software pack-
age AUTO2000 has been used. One can observe that the point (y�

1 , y
�
2 , λ

�) =
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Fig. 5. Visualization of some Pareto sets and the solution curve of Hα�

KT(x, λ) = 0
(black) for the dent border preimage x� (red) for Example 2

Fig. 6. Visualization of some Pareto fronts and the image of the solution curve of
Hα�

KT(x, λ) = 0 (black) for a dent border point y� (red) for Example 2

(1.25, 1.25, 0.25) (with the corresponding weight vector α� = (0.5, 0.5)), marked
by a black dot, is specific: in this point a dent originates, i. e. for λ < λ� the
Pareto front contains no dent whereas for λ > λ� a dent is contained in the
Pareto front.
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Fig. 7. Some Pareto fronts, the curve of dent border points (red) and the point in
which the dent originates (black dot) for Example 2

In Fig. 8 the solutions of Hα�

KT(x, λ) = 0 with α� = (0.5, 0.5), i. e. the λ-
dependent path containing the specific point in which a non-dent point changes
into a dent point, are visualized for λ ∈ [0, 1]. One can observe that a pitchfork
bifurcation3 occurs in this point. Figure 9 shows the same results in objective
space.

Example 3. Consider the bi-objective optimization problem defined by the two
objectives

f1(x1, x2, λ) =
√

1 + x2
1 +

√
1 + x2

2 + e−(x2−λ)2 + e−(x2+λ)2 − x2

f2(x1, x2, λ) =
√

1 + x2
1 +

√
1 + x2

2 + e−(x2−λ)2 + e−(x2+λ)2 + x2.

Using the same notation as in Example 2, we can write the objective as

F (x1, x2, λ) =
√

1 + x2
1 · q +

(√
1 + x2

2 + e−(x2−λ)2 + e−(x2+λ)2
)

· q + x2 · q⊥

︸ ︷︷ ︸
=:F 2(x2,λ)

and apply a similar analysis. Here the q-component of F 2 is non-convex for every
λ (in fact, for λ = 0 we have the same situation as for λ = 1 in Example 2),

3 The definition and statements about properties of pitchfork bifurcations can be found
in [13] and [26], for example.
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Fig. 8. Visualization of some Pareto sets and the λ-dependent solution curve of
Hα�

KT(x, λ) = 0 with α� = (0.5, 0.5) (black) for Example 2

Fig. 9. Visualization of some Pareto fronts and the image of the solution curve of
Hα�

KT(x, λ) = 0 with α� = (0.5, 0.5) (black) for Example 2

and a variation of λ results in the movement of the “peaks” of the exponential
terms. Thus we obtain, for |λ| sufficiently large, two separate non-convex parts
of the q-component of F 2, while there is only one non-convex part for λ = 0.
Correspondingly, one dent in the Pareto front for λ = 0 will split into two dents
for a larger value of λ.
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Fig. 10. Pareto fronts for the multiobjective optimization problem given in Example
3 for different values of λ

In Fig. 10 the Pareto fronts which result from the minimization of these two
objectives are plotted for different values of λ. As one can observe the Pareto
front contains one dent for λ = 0.4, for example. Under the variation of λ
it changes into two dents (cp. for instance λ = 0.8). In between, there is a
specific point in which the dent splits up into two dents, which is given by
(x1, x2, λ) ≈ (0, 0, 0.5716) with the corresponding weight vector α� = (0.5, 0.5).
In Fig. 11 the solutions of the Kuhn-Tucker equations for the fixed weight vector
α� = (0.5, 0.5) are sketched. One can observe that in the point where the dent
splits up into two dents a pitchfork bifurcation occurs.

Example 4. Consider the three-objective optimization problem defined by the
following three objectives

f1(x1, x2, x3, λ) =
√

1 + x2
1 +

√
1 + x2

2 +
√

1 + x2
3 + λ · e−(x2

2+x2
3) +

√
2x2

f2(x1, x2, x3, λ) =
√

1 + x2
1 +

√
1 + x2

2 +
√

1 + x2
3 + λ · e−(x2

2+x2
3) −

√
2

2
x2 +

√
3

2
x3

f3(x1, x2, x3, λ) =
√

1 + x2
1 +

√
1 + x2

2 +
√

1 + x2
3 + λ · e−(x2

2+x2
3) −

√
2

2
x2 −

√
3

2
x3.
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Fig. 11. Pareto fronts and solutions of the Kuhn-Tucker equations for α� = (0.5, 0.5)
in (f1, f2, λ)-space for Example 3

In this case, the analysis is somewhat more complicated. Using the vector q =
(1, 1, 1)T , we can write

F (x1, x2, x3, λ) =

(√
1 + x2

1 +
√

1 + x2
2 +

√
1 + x2

3 + λ · e−(x2
2+x2

3) −
√

2

3
· x2

)
· q

+

⎛

⎜⎜
⎝

8

3
√
2

0

− 4

3
√
2

√
3
2

− 4

3
√
2

−
√

3
2

⎞

⎟⎟
⎠

︸ ︷︷ ︸
=:q⊥

·
(

x2

x3

)

where, similarly to Examples 2 and 3, the matrix q⊥ spans the orthogonal com-
plement to q. Thus we see that again the q-component of F consists of a convex
function independent of λ and a λ-dependent non-convex term that introduces
a dent into the Pareto front for sufficiently large values of λ.

Figure 12 shows the Pareto fronts which result when minimizing these three
objectives for x ∈ [−2, 2]3 for different values of λ. One can observe that under
the variation of λ a dent originates.

Remark 4. It has been observed in Examples 2 and 3 that pitchfork bifurcations
occur in those points where – under the variation of λ – a dent originates in
the Pareto front PFλ, or a dent splits up into two dents, respectively. Pitchfork
bifurcations typically occur if the system of equations H(x, λ) = 0, in our case
Hα�

KT(x, λ) = 0, includes a symmetry of the form

H(Sx, λ) = SH(x, λ), (Z2)
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Fig. 12. Pareto fronts for the multiobjective optimization problem given in Example
4 for different values of the parameter λ

where S is a suitable symmetry matrix with S 
= 1 and S2 = 1 (cf. [26]).
In the examples mentioned above, indeed symmetries occur. The Kuhn-

Tucker equations of the objective functions given in Example 2 have a Z2-
symmetry for α� = (0.5, 0.5). In this case, possible symmetry matrices are given
as

S1 =
(

0 1
1 0

)
and S2 =

(−1 0
0 −1

)
.

The Kuhn-Tucker equations of the objective functions given in Example 3
satisfy the symmetry condition (Z2) with

S1 =
(

1 0
0 −1

)
if α� = (0.5, 0.5), and

S2 =
(−1 0

0 1

)
independent of the weight vector α.
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The Kuhn-Tucker equations for the objective functions given in Example 4
also satisfy the symmetry condition (Z2) with

S =

⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠

for arbitrary weight vectors α�.

5 Conclusion and Outlook

In this work the occurrence of dents in Pareto fronts has been studied. A formal
definition of a dent has been introduced. Points at the border of a (complete)
dent have a significant property. In these points a zero eigenvalue of the Hes-
sian of the weighted sum of the objectives occurs. Thus, dent border points are
solutions of a certain system of equations. Given a sufficiently smooth multi-
objective optimization problem it is possible to find out if dent border points,
and thus also possibly dents, occur in the Pareto front by solving this system
of equations. Consequently, information about the geometry of the Pareto front
can be obtained without computing the entire Pareto set. This information can
for example serve as a criterion for the choice of the algorithm one wants to use
for solving the multiobjective optimization problem.

Based on theoretical results from bifurcation theory, parameter-dependen-
cies in multiobjective optimization problems have been studied in this chapter.
It has been proven that dent border points are turning points of the Kuhn-Tucker
equations with a fixed weight vector corresponding to the dent border point.

Several examples for parametric multiobjective optimization problems have
been constructed in which dents occur. It is still an open question what happens
if a dent originates or vanishes under the variation of the external parameter.
The examples given at the end of Sect. 4 lead to the conjecture that in this
case pitchfork bifurcations of the Kuhn-Tucker equations occur. However, the
theoretical analysis of this statement has to be addressed in future work.
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orative Research Center 614 – Self-Optimizing Concepts and Structures in Mechan-
ical Engineering – University of Paderborn, and was partly funded by the Deutsche
Forschungsgemeinschaft.
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Abstract. In this chapter, we consider equality constrained bi-level
multi-objective optimization problems, where the lower level problem is
convex. Based on a suitable reformulation of the Kuhn-Tucker equations,
we present an image set-oriented algorithm of reference point type for the
approximation of the solution set, the Pareto set respectively its image,
the Pareto front, of such a problem. The algorithm is designed such that
the generated representation of the Pareto front is well-distributed with
respect to the higher level image space. We first prove convergence for
this algorithm and further on indicate its efficiency on two academic test
problems.

Keywords: Bi-Level multi-objective optimization · Bi-level
optimization · Multi-objective optimization · Hierarchical
optimization · Image set-oriented methods · Reference point methods

1 Introduction

Both, multi-objective optimization problems as well as bi-level optimization prob-
lems have been considered thoroughly during the last decades. The relatively new
class of optimization problems considered in this article can be understood as
a combination of the two above mentioned problems in the sense that both the
higher and the lower level problem of such a bi-level optimization problem are
given by multi-objective optimization problems. In other words, we are concerned
with a multi-objective optimization problem (the higher level of the bi-level opti-
mization problem), where the feasible set itself is restricted by the solution set of
another (parametrized) multi-objective optimization problem (the lower level of
such a bi-level optimization problem). Therefore, we call these problems bi-level
multi-objective optimization problems (BLMOP). To demonstrate the relevance
of such problems from a practical point of view, consider the following exam-
ple. For the design of a perfect passenger car, two important goals are the fuel
consumption (to be minimized) and the power of the engine (to be maximized)
leading to a bi-objective optimization problem in the higher level. However, due
c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
O. Junge et al. (Eds.): SON 2020, SSDC 304, pp. 337–354, 2020.
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to safety reasons there is the restriction that in the first place optimality con-
cerning the mechanical guidance of the undercarriage in both horizontal and
vertical direction have to be optimized leading to another bi-objective problem
in the lower level.

In this chapter, we will concentrate on problems with equality constraints1 for
both the higher and lower level problem. Moreover, we assume that the lower
level problem is convex, that is, the lower level objectives are assumed to be
convex and the lower level constraints are assumed to be affine-linear.

The outline of this article is as follows. In Sect. 2 we review the basic def-
initions and concepts of multi-objective optimization and bi-level optimization
needed to understand the contents of the subsequent sections. The proposed
algorithm for the solution of a BLMOP is presented in Sect. 3. In Sect. 4, we
prove convergence of the algorithm. Then, in Sect. 5, we indicate the efficiency
of the algorithm on two academic examples. Finally, we draw our conclusions in
Sect. 6.

2 Background and Related Work

In the following we briefly review the relevant definitions and concepts of multi-
objective optimization and bi-level optimization. Next, we describe in detail the
bi-level multi-objective optimization problem (BLMOP) that we will consider
in this article. We also state a Kuhn-Tucker based reformulation of the given
BLMOP, which is used for the construction of the subproblem to be solved
repeatedly in order to compute the individual points of the solution set as our
new BL-Recovering-IS algorithm presented in Sect. 3 proceeds.

In a multi-objective optimization problem (MOP) one is faced with the prob-
lem that several objectives have to be optimized at the same time. Mathemati-
cally, a continuous MOP can be expressed as

min
x∈S

F (x). (MOP)

Hereby, the map F is defined by the individual objective functions Fi, i.e.,

F : S → R
k, F (x) = (F1(x), . . . , Fk(x))T , (1)

where we assume all functions Fi : S → R, i = 1, . . . , k, to be continuous.
Problems with k = 2 objectives are termed bi-objective optimization problems
(BOPs).

The domain or feasible set S ⊂ R
n of F can in general be expressed by

equality and inequality constraints,

S = {x ∈ R
n | Gi(x) ≤ 0, i = 1, . . . , l, and Hj(x) = 0, j = 1, . . . , p}. (2)

1 Hereby, we assume that involved inequality constraints can be transformed into
equality constraints, e.g., via the use of slack variables.
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If S = R
n, we call the MOP unconstrained.

Optimality of a MOP is based on the concept of dominance.

Definition 1.(a) Let v, w ∈ R
k. Then the vector v is less than w (in short:

v <p w), if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analo-
gously.

(b) A vector y ∈ S is called strictly dominated (or simply dominated) by a
vector x ∈ S (x ≺ y) with respect to (MOP) if

F (x) ≤p F (y) and F (x) �= F (y),

else y is called non-dominated by x.

If a feasible point x dominates another feasible point y, then we can consider x
to be ’better’ than y with respect to the given MOP. The definition of optimality
(i.e., the definition of the ‘best’ solutions) in multi-objective optimization is now
straightforward.

Definition 2.(a) A point x ∈ S is called (Pareto) optimal or a Pareto point
of (MOP) if there exists no y ∈ S that dominates x.

(b) The set of all Pareto optimal solutions is called the Pareto set, i.e.,

PS := {x ∈ S : x is a Pareto point of (MOP )}. (3)

(c) The image F (PS) of PS is called the Pareto front.

If all the objectives and constraint functions of the MOP are differentiable
one can state a necessary condition for optimality which is analog to ‘classical’
scalar objective optimization problems (SOPs, i.e., MOPs with k = 1).

Theorem 1 ([25]). Let x∗ be a Pareto point of (MOP), where S is as in (2),
and all objectives and constraint functions are differentiable in x∗. Further, let
the vectors ∇Hi(x∗), i = 1, . . . , p, be linearly independent. Then there exist
vectors α∗ ∈ R

k, λ∗ ∈ R
l, and μ∗ ∈ R

p such that the tuple (x∗, α∗, λ∗, μ∗)
satisfies

k∑

i=1

α∗
i ∇Fi(x∗) +

l∑

i=1

λ∗
i ∇Gi(x) +

p∑

i=1

μ∗
i ∇Hi(x∗) = 0

α∗
i ≥ 0, i = 1, . . . , k

k∑

i=1

α∗
i = 1

λ∗
i ≥ 0, i = 1, . . . , l

λ∗
i Gi(x∗) = 0, i = 1, . . . , l.

(4)

Moreover, it is known that these conditions are already sufficient under the
assumptions used in this article.
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Theorem 2 ([25]). Assume that the objectives Fi, i = 1, . . . , k, are convex.
Further, let the problem contain no inequality constraints and let all equality
constraints Hi, i = 1, . . . , p, be affine-linear. Then the conditions stated in The-
orem 1 are sufficient for a solution of (MOP).

A reference point t ∈ R
k can be regarded as a vector that consists of desirable

objective values called aspiration levels or targets, ti, i = 1, . . . , k.

In the following we will focus on distance function based approaches, which are
relevant for our new algorithm presented in Sect. 3. As indicated by its notation,
distance function based approaches use a distance function, which is typically
based on a norm, to measure the distance between a reference point and a given
point in image space. To state the auxiliary problem corresponding to a target
vector t ∈ R

k, let δ : Rk ×R
k → R+ be a distance function derived from a norm,

i.e., δ(a, b) = ||a−b|| for some norm || · || : Rk → R+. Then the auxiliary problem
to be solved is

min
x∈S

δ(F (x), t). (RPP)

If we have δ(F (x�), t) > 0, where x� is a solution to RPP, then we know that
F (x�) is on the boundary of the image F (S) = {F (x) : x ∈ S ⊂ R

n}. Moreover,
if in addition t <p F (x�) we can expect that x� is (at least a local) Pareto point.
Thus, local Pareto points can be found by first choosing suitable targets and
then solving RPP. Indeed, Theorem 3, which was taken from [13], guarantees
that, under certain assumptions, x� is a Pareto point. For this, recall that a
norm || · || : Rk → R+ is called strictly monotonically increasing, if ||y1|| < ||y2||
for all y1, y2 ∈ R

k with |y1
j | ≤ |y2

j |, j = 1, 2, . . . , k, and |y1
j | �= |y2

j | for some j.

Theorem 3 ([13]). Let || · || be a strictly monotonically increasing norm and
assume ti = min{Fi(x) : x ∈ S} for i = 1, 2, . . . , k. If x� is an optimal solution
of RPP, then x� is a solution of MOP.

We stress that throughout this article it will be || · || = || · ||2 unless stated
differently.

The analytic expression of the entire (exact) Pareto set/front is except for
some academic test problems in general not possible. In literature, a huge vari-
ety of different methods can be found for the effective numerical treatment of
MOPs. There are, for instance, mathematical programming (MP) techniques,
point-wise iterative search techniques that generate a sequence of solutions that
can converge toward one optimal solution (e.g., [16,30] and references therein.).
The most widely used sub-class of the MP techniques is given by scalariza-
tion methods that replace the given MOP into a suitable auxiliary SOP (e.g.,
[19,20,32,38,39]). Via identifying a clever sequence of such SOPs a suitable
approximation of the entire Pareto set/front can be obtained in certain cases
(e.g., [5,14,17,18,24,30,33]). Reference point methods use feasible or infeasible
reference points for the construction of scalar valued auxiliary functions. For an
overview on different types of reference point methods the reader is referred to
[16].
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Another class of methods are given by continuation-like methods that take
advantage of the fact that the solution set forms at least locally a manifold. Such
methods start from a given solution and perform a search along the solution
manifold ([22,27–29,34,36,37,43]). However, one potential drawback of all the
above mentioned methods is that they are of local nature, i.e, that they may
get stuck in local Pareto optimal solutions of the given MOP depending on the
chosen starting point and the chosen method to solve the auxiliary SOP.

Next to these point-wise iterative methods there exist specialized set oriented
methods such as multi-objective evolutionary strategies (MOEAs, e.g., [2,3,6]),
subdivision techniques [10,23,41,42] or cell mapping techniques [21,31,35,45,46,
48,49]. These methods have in common that they use entire sets in an iterative
manner and are thus able to deliver an approximation of the solution set in
one run of the algorithm. Further, the set based approach allows a more global
view on the problem leading to a reduced probability to get stuck in local opti-
mal solutions. Cell mapping techniques are particularly advantageous over other
methods if a thorough investigation of the entire (low or moderate dimensional)
system is of interest as they deliver next to Pareto set/front approximations also
approximations of the set of nearly optimal solutions as well as the set of local
solutions, as we will discuss in the following.

A bi-level optimization problem can be understood as an optimization
problem (the higher level problem), where the feasible set is restricted by the
solution set of another (parametrized) optimization problem (the lower level
problem).

Many different approaches for solving (classical) bi-level optimization prob-
lems have been proposed in the past, as there are for example descent algo-
rithms, bundle algorithms, penalty methods, trust region methods, smoothing
methods, and branch-and-bound methods. Many of these approaches are based
on the conversion of the bi-level problem to an ordinary (or classical) opti-
mization problem (a one-level problem). One possibility is to replace the lower
level objective f by an additional non-differentiable equation f(x, y) = ϕ(y),
where ϕ(y) = minx{f(x, y) : g(x, y) ≤ 0, h(x, y) = 0}. Other approaches
use the implicit function theorem to derive a local description of the function
x(y) : Rm → R

n, which is then inserted into the higher level problem. Another
concept is to replace the lower level problem by its Kuhn-Tucker conditions.
In general, the resulting one-level problem, which is a mathematical program
with equilibrium constraints or MPEC, see [26], is not equivalent to the original
problem, but the desired equivalence is ensured in the particular case where the
lower level problem is a convex one. For an overview on bi-level optimization the
reader is referred to [1,4,7,11,12,15,44,47].

In this article, we are concerned with the case where both the higher and lower
level problem are given by multi-objective optimization problems. Such problems
are called bi-level multi-objective optimization problem (BLMOP), see
[9,14,15].

The higher level problem of a BLMOP can be written as
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min
y

min
x

{F (x, y) : x ∈ ψ(y)} (BLMOP-H)

s.t. H(x, y) = 0,

where ψ(y) denotes for every fixed y ∈ R
m the solution, that is, the Pareto

set of the lower level problem given by

min
x

f(x, y) (BLMOP-L)

s.t. h(x, y) = 0,

It should be mentioned that in the notions of [11], BLMOP-H and BLMOP-
L correspond to an optimistic formulation of the general Bi-Level Optimization
Problem. Since in this article we concentrate on the case with a convex lower
level problem, the lower level problem can be replaced by the corresponding
Kuhn-Tucker conditions stated in Theorem1 to obtain an expression which is
equivalent to BLMOP-H. For this, we assume that the higher level problem
includes k objective functions Fi : Rn ×R

m → R, which are collected in the vec-
tor valued function F : Rn ×R

m → R
k, F (x, y) = (F1(x, y), . . . , Fk(x, y))t, and r

equality constraints Hi : Rn ×R
m → R, which are collected in the vector valued

function H : Rn × R
m → R

r, H(x, y) = (H1(x, y), . . . , Hr(x, y))t. Analogously,
we assume that the lower level problem includes l objectives fi : Rn ×R

m → R,
which are collected in the vector valued function f : Rn × R

m → R
l, f(x, y) =

(f1(x, y), . . . , fl(x, y))t and p equality constraints hi : R
n × R

m → R, which
are collected in the vector valued function h : R

n × R
m → R

p, h(x, y) =
(h1(x, y), . . . , hp(x, y))t. We denote by

L(x, y, α, λ) :=
l∑

i=1

αifi(x, y) +
p∑

i=1

λihi(x, y)

the lower level Lagrangian and by ∇xL the gradient of L with respect to x.
According to Theorem 2, x ∈ ψ(y) if and only if

h(x, y) = 0,
∇xL(x, y, α, λ) = 0,

l∑

i=1

αi = 1,

αi ≥ 0, i = 1, . . . , l

for some α ∈ R
l and λ ∈ R

p. Let

F̂ (x, y, α, λ, s) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

h(x, y)
H(x, y)

∇xL(x, y, α, λ)
l∑

i=1

αi − 1

α − (s ◦ s)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,
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where s ∈ R
l is a vector of l slack variables and a◦b denotes the component-wise

product of two vectors a, b. Moreover, let z := (x, y, α, λ, s), Ŝ := {z : F̂ (z) =
0}, and denote by π(z) the projection of z to the (x, y)-space R

n+m. Observe
that {π(z) : z ∈ Ŝ} is the feasible set of BLMOP-H and therefore the desired
reformulation for the given Problem can be written as follows:

min
z∈Ŝ

F (π(z)), (BLMOP-R)

where again minimization has to be understood in the sense of Definition 1.
In order to handle BLMOP-R by the use of reference point methods, we define
the following variant of RPP:

min
z∈Ŝ

δ(F (π(z)), t) (RPP-R)

Note that RPP-R will be the method used for the computation of the indi-
vidual Pareto points of the given BLMOP while our BL-Recovering-IS algorithm
presented in Sect. 3 proceeds.

3 Algorithm and Realization

We present the BL-Recovering-IS algorithm for the solution of equality con-
strained BLMOPs with a convex lower level problem. This algorithm can be
understood as an extension of our algorithm for the solution of unconstrained
MOPs described in [8]. In addition, we state some theoretical results which apply
both to the algorithm presented here and to the algorithm presented in [8].

The aim of the BL-Recovering-IS algorithm is to generate both a box covering
and a discrete representation of the entire Pareto front of the given BLMOP (see
also Fig. 1).

We assume that this representation is required to be well-distributed in higher
level image space in the following sense: Denote by Q ⊂ R

k the region of interest
in image space. For formal reasons denote by Pd a complete partition2 of the set
Q into boxes of subdivision size – or depth – d, which are generated by successive
bisection of Q. These boxes are understood to be half-open, that is, they can
be written as cartesian products [a1, b1)×, . . . ,×[ak, bk) of half-open intervals
[ai, bi), i = 1, . . . , k. Then there exists for every point F̄ ∈ Q exactly one box
B(F̄ , d) ∈ Pd such that F̄ ∈ B(F̄ , d). The algorithm computes both a covering

B =
⋃

B∈Pd∩F (P )

and a discrete representation of the Pareto set P . The discrete representation is
well-distributed in the sense that for every B ∈ Pd ∩ F (P ) there is at least one
computed point (x, y) ∈ R

n+m such that F (x, y) ∈ B.
2 Pd has not to be explicitly computed by our algorithm.
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Fig. 1. Idea fo the BL-Recovering-IS algorithm: use boxes to obtain a uniform spread
of solutions around the Pareto front.

In order to compute these points, our new image set-oriented algorithm pre-
sented in the following repeatedly solves a variant of RPP-R while the targets are
varying. To state a corollary which guarantees that the corresponding solutions
are at least locally Pareto optimal we denote T = (T1, . . . , Tk), where

Ti = min{Fi(π(z)) : z ∈ Ŝ} for i = 1, 2, . . . , k,

and define for a given target vector t ∈ R
k the modified feasible set

Ŝt = {z ∈ Ŝ : Fi(π(z)) ≥ ti, i = 1, . . . , k}.

Furthermore, we define variants of BLMOP-R and RPP-R, respectively, by
replacing Ŝ by Ŝt:

min
z∈Ŝt

F (π(z)), (BLMOP − R ’)

min
z∈Ŝt

δ(F (π(z)), t). (RPP − R ’)

Now, with these notations we can state the following result.

Corollary 1. Let F be continuous on the compact domain Ŝ. Moreover, let
|| · || be a strictly monotonically increasing norm and assume that T <p t <p

F (π(z�)), where z� is an optimal solution of RPP-R’. Then π(z�) is a local
solution of the given BLMOP.

Proof. Since Fi is continuous and since there are z̄i, z� ∈ Ŝ with Fi(π(z̄i)) = Ti <
ti < Fi(π(z�)), there exist zi ∈ Ŝ such that Fi(π(zi)) = ti for all i = 1, 2, . . . , k.
¿From construction of Ŝt it is obvious, that z� ∈ Ŝt and ti = min{Fi(π(z)) :
z ∈ Ŝt}. Thus, Theorem 3 guarantees that z� solves BLMOP-R’. Since Ŝt is
constructed from Ŝ just by constraining the image of F , such that F (π(Ŝt))
contains a part of a local Pareto optimal set in image space, z� is a local solution
of BLMOP-R, that is, π(z�) is a local solution of the given BLMOP. �
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In practice, a randomly chosen point t ∈ R
k does not necessarily belong

to the image F (π(Ŝ)) = {F (π(z)) : z ∈ Ŝ}, that is, we do not know a priori
whether there is any z ∈ Ŝ such that F (π(z)) = t. Moreover, if F (π(z)) = t for
some z ∈ Ŝ, we do not know whether π(z) is Pareto optimal. To get an answer
to these questions, we solve the auxiliary problem RPP-R’. If t <p F (π(z�))
for a solution z� of RPP-R’, then we know that – under suitable assumptions
– π(z�) is at least locally Pareto optimal. Otherwise, if t = F (π(z�)), then we
repeatedly have to vary t and solve RPP-R’ until t <p F (π(z�)). A strategy for
the choice and variation of the targets t can be found later on in this section. In
the algorithm described below and for the remainder of this article the distance
function δ is based on the norm || · ||2 that is, δ(a, b) = ||a− b||2 for all a, b ∈ R

k.
Our algorithm belongs to the family of continuation methods ([8,22,40]), that
is, the aim of every step is to compute Pareto points in the neighborhood of
Pareto points already found in a previous step. Accordingly, we assume that at
least one box B along with a point z� with F (π(z�)) ∈ F (P ) has been computed
previously, e.g., by the solution of RPP-R’ for the target t = (t1, . . . , tk), ti =
min{Fi(π(z)) : z ∈ Ŝ} for i = 1, 2, . . . , k.

Then, for a given box collection Bj ⊂ R
k (in image space) of subdivision

depth d and denoting by zB and FB the previously generated solution (in param-
eter and image space, respectively) associated with a box B ∈ Bj , a step of the
BL-Recovering-IS algorithm can be written as shown in Algorithm 1.

It remains to answer the question of how to choose the target vectors ti,
i = 1, 2, . . . , nt, near a current box B in order to compute Pareto points which
are well-distributed in the sense mentioned above. Efficient strategies for the
choice of target vectors can be defined, particularly by using local information
on the Pareto set, e.g. orientation or curvature, which can be calculated via
objective derivatives (or numerical approximations of the derivatives). In the
following we will focus on a particular strategy for the choice of the targets
which was originally designed for problems with smooth objectives, but is also
applicable and works satisfactorily in the case of more general objectives. Let us
assume that the higher level image F (P ) ⊂ R

k of the Pareto set P is smooth and
forms a (k−1)-dimensional manifold in a neighborhood Nε(F �) of a given Pareto
optimal point F � ∈ F (P ) in higher level image space. Since an approximation of
F (P ) at F � is given by the tangent space TF �F (P ), there are certainly further
Pareto points near TF �F (P ) ∩ Nε(F �). Consequently, we can expect that there
are λ ∈ R and p ∈ TF �F (P ) ∩ Nε(F �), such that suitable targets needed for
the computation of further Pareto points can be expressed by p + λd, where
d ≤p 0 denotes a basis vector of the 1-dimensional space (TF �F (P ))⊥. Thus,
to apply this idea in practice, we first have to construct d and a basis V :=
{b1, b2, . . . , bk−1} of TF �F (P ) and then to specify targets

ti = F �
i +

k−1∑

j=1

αi,j bj + λi d, i = 1, 2, . . . , nt

by determining the coefficients αi,j and λi. Fortunately, as stated in the following
lemma, if F (P ) forms a smooth manifold in a neighborhood of F � and if F � was



346 A. Dell’Aere

Algorithm 1. Algorithm BL-Recovering-IS
Require: current box collection Bj

Ensure: new box collection Bj+1

1: for all B ∈ Bj do
2: B.active := TRUE
3: end for
4: for k = 1, . . . , MaxStep do
5: B̂ := Bj

6: for all B ∈ {B ∈ Bj : B.active == TRUE} do
7: choose target vectors {ti}i=1,...,nt near B with ti <p FB

8: find z�
i = arg minz∈Ŝti

||F (π(z)) − ti||, i = 1, . . . , nt i = 1, . . . , nt

9: F �
i := F (π(z�

i )), i = 1, . . . , nt

10: B.active := FALSE
11: for all i = 1, . . . , nt do
12: if B(F �

i , d) �∈ B̂ then
13: B̌ := B(F �

i , d), zB̌ := z�
i , FB̌ := F �

i

14: B̌.active := TRUE
15: B̂ := B̂ ∪ B̌
16: end if
17: end for
18: end for
19: if B̂ == Bj then
20: BREAK
21: end if
22: end for
23: Bj+1 := B̂
24: Return Bj+1

found in a previous step by solving RPP-R’ for a given target t�, t� <p F �, then
d can be obtained without any additional effort by d := t� − F �.

Lemma 1. Let Fi ∈ C1(Rn,R) for i = 1, . . . , k, and consider the multi-objective
optimization problem

min
z∈Ŝ

F (π(z)).

Denote by P the corresponding Pareto set and let F � := F (π(z�)), where z� is the
unique solution of RPP-R’ associated with the target t� <p F �. Moreover, assume
that F (P ) makes up a (k − 1)-dimensional smooth manifold in a neighborhood
of F �. Then

F � − t� ∈ TF �F (P )⊥.

Proof. Let ∂F denote the boundary of {F (π(z)) : z ∈ Ŝ}. Since F (P ) forms
a differentiable manifold in a neighborhood of F �, there exists a differentiable
curve α : [−1, 1] → ∂F with α(0) = F �, α′(0) ∈ TF �F (P ) and α(λ) ∈ F (P ) for
all λ ∈ [0, 1]. Then, since z� is a solution of RPP’, λ = 0 is a solution of

min
λ∈[−1,1]

||α(λ) − t�||2
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and therefore

d

dλ
||α(λ) − t�||2 =

d

dλ
〈α(λ) − t�, α(λ) − t�〉 = 2 〈α(λ) − t�, α′(λ)〉 = 0

for λ = 0. With α(0) = F � we obtain

〈F � − t�, α′(0)〉 = 0,

that is, F � − t� ∈ TF �F (P )⊥. �
Once d is available, any standard method for the construction of an orthogo-
nal basis, e.g. the Grahm-Schmidt method can be used to obtain the required
basis V . For all i = 1, 2, . . . , nt, the coefficients αi,j are chosen such that
pi :=

∑k−1
j=1 αi,j bj is located inside a neighbor box of the current box. More-

over, the pi should be well-distributed around F �. With this heuristic, it is very
likely to find new boxes containing the image of Pareto points. For the choice
of λi an adaptive concept has to be applied, because a computed solution z of
RPP-R’ can only be accepted, if ti <p F (π(z)) is satisfied. Such an adaptive
concept should be guided by the fact that ti <p F (π(z)) certainly holds if λi is
sufficiently large, but it should also be considered that RPP-R’ is ill-conditioned
if λi is too large.

4 Convergence

Since the described BL-Recovering-IS algorithm is realized by minimizing a refor-
mulation of the BLMOP, which can be understood as an equality constrained
MOP, in the following we prove convergence for the more general class of image
set-oriented recovering algorithms for the solution of MOP as defined in Sect. 2.
This includes in particular the Recovering-IS algorithm presented in [8].

The proof is carried out in two steps: first, Theorem 4 states that for every
subset B ⊂ R

k containing a part of the Pareto optimal solution in image space,
there is a minimal set of targets, such that for at least one of these targets the
corresponding distance minimization subproblem leads to a Pareto point x� with
F (x�) ∈ B. Then, this result is used in Corollary 2 to complete the proof from
the global point of view. In the following, let

dist(y,X ) = min
t∈X

||y, t||

be the distance between a point y ∈ R
k and a subset X ⊂ R

k.

Theorem 4. Let F : Rn → R
k, S ⊂ R

n and denote by P the Pareto set of the
constrained MOP:

min
x∈S

F (x).

Assume that the norm || · || is strictly monotonically increasing. Let B ⊂ R
k be

an open subset such that B ∩ F (P ) �= ∅. Then there is d > 0, such that for any
set X ⊂ B of targets with dist(y,X ) < d for all y ∈ B ∩ F (P ) there exists a
target t ∈ X with F (x�) ∈ F (P ) ∩ B, where x� := arg min

x∈St

||F (x) − t||.
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Proof. There are ȳ ∈ F (P ) and ε > 0, such that Uε(ȳ) ⊂ B. Let d := ε
8
√

k
and

c := ȳ − 2 d

k∑

i=1

ei, where ei denotes the i-th standard basis vector in R
k. Then,

for every y ∈ Ud(c), we have

||y − ȳ|| ≤ ||y − c|| + ||c − ȳ|| ≤ d + 2d
√

k =
ε

8
√

k
+

ε

4
<

ε

2
,

that is, Ud(c) ⊂ Uε(ȳ). Consequently, there is a target t = c + v ∈ X , ||v|| ≤ d,
such that

min
x∈St

||F (x) − t|| ≤ ||t − ȳ|| <
ε

2

and
ti = ci + vi = ȳi − 2d + vi < ȳi for i = 1, . . . , k.

With x� = arg min
x∈St

||F (x) − t||, it follows that

||F (x�) − ȳ|| ≤ ||F (x�) − t|| + ||t − ȳ|| <
ε

2
+

ε

2
= ε

and therefore
F (x�) ∈ Uε(ȳ) ⊂ B.

Now we have to show that F (x�) is not dominated by any ŷ ∈ F (P ) ∩ St.
For F (x�) = ŷ this nondominance is obvious. For the case F (x�) �= ŷ we have
to show that Fi(x�) < ŷi for at least one i = 1, . . . , k. To see this, assume that
the opposite is true. Then Fi(x�) ≥ ŷi > ti for all i = 1, . . . , k, where, since
F (x�) �= ŷ, strict inequality holds for at least one i ∈ {1, . . . , k}. Consequently,
since || · || is strictly monotonically increasing,

||F (x�) − t|| > ||ŷ − t||,

which is a contradiction to ||F (x�) − t|| = min
x∈St

||F (x) − t||. Finally, since F (x�)

is not dominated by any ŷ ∈ F (P )∩St, we have F (x�) ∈ F (P ), which completes
the proof. �
To guarantee that an image set-oriented recovering method converges towards
the union of those connected components of F (P ) which correspond to the initial
box collection B0, in every step of the algorithm the set of targets ti has to be
chosen properly, such that all desired boxes are found, that is, boxes which are
both neighbors of the boxes generated in the respective previous step and contain
a part of the respective connected component of F (P ). To this end, we denote
by B̄ the closure of a box B and we state the following
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Corollary 2. Using the notations of Theorem4 and denoting by B0 a box col-
lection of (fixed) subdivision depth d covering a part of F (P ), assume that every
step of the Recovering-IS or BL-Recovering-IS algorithm, respectively, is realized
in a way such that for every B ∈ Bj\Bj−1 targets are chosen according to The-
orem4 within all boxes C ∈ {C : C̄ ∩ B̄ �= ∅, C /∈ Bj}. Moreover, assume that
F (P ) is bounded. Then, the algorithm terminates after a finite number of steps
such that the final box collection covers those connected components of F (P ),
which correspond to at least one B ∈ B0.

5 Numerical Results

In the following we demonstrate the working principle and strength of the pro-
posed algorithm on two academic benchmark problems.

5.1 Example 1

In our first example we consider a classical (i.e., one-level) bi-objective optimiza-
tion problem in order to demonstrate the working principle of the IS recovering
techniques. For this, let the BOP be given by

F = (F1, F2)t : R3 → R
2

F (x1, x2, x3) =
(

(x1 − 1)2 + (x2 − 1)2 + (x3 − 1)4

(x1 + 1)4 + (x2 + 1)2 + (x3 + 1)2

)

We assume that the decision maker is only interested in solutions for which
both objective values are located within the interval I := [0, 20], and therefore
define

S := {x ∈ R
3 : Fi(x) ∈ I, i = 1, 2}.

Figure 2 shows the solutions generated by the Recovering-IS algorithm using
different box sizes (depths). Here, the reader can get an impression of how the
density of the computed representation can be controlled by choosing the box
size.

5.2 Example 2

Next, we consider the following equality constrained bi-level multi-objective opti-
mization problem with a convex lower level problem:

min
x ∈R3, y ∈R

F (x, y) =
(

4((x1 + 1)2 + (x2 − 1 − y)4 + x2
3)

(x1 − 1)2 + (x2 + 1 − y)2 + (x3 − 0.5)4

)
,
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such that H(x, y) = x2
1 + x3 − y2 = 0,

and x solves:

min
x ∈R3

f(x, y) =

⎛

⎝
(x1 − 1)2 + 0.5(x2 + y)2 + (x3 − 0.5)4

(x1 + 1)2 + 0.5(x2 + y)2 + (x3 + 1)2

x2
1 + x2

2 + (x3 + 1)2

⎞

⎠

such that h1 = x1 − x2y = 0.

The solution of this problem was computed by the presented BL-Recovering-
IS algorithm. For this, we have chosen Q = [0, 10]2 for the domain of interest
in higher level image space. The partition Pd was chosen corresponding to 5
virtual subdivisions in each coordinate, such that all boxes B ∈ Pd are of the
size 0.31252. The computed solution in higher level image space along with the
generated boxes is shown on top of Fig. 3. As expected, the solution is well-
distributed in the sense that there is at least one computed point in every box of
the box collection covering the Pareto set. The projection of the corresponding
Pareto set to the x-space is shown on the bottom of Fig. 3.

Fig. 2. Numerical results on Example 1 computed by the image set-oriented recovering
algorithm using different box sizes in image space.



An Image Set-Oriented Method for the Numerical Treatment of BLMOP 351

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

F
1

F
2

−1
−0.8

−0.6
−0.4

−0.2
0

−0.3

−0.25

−0.2

−0.15

−0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

x
1x

2

x
3

Fig. 3. The Pareto set of the example problem computed by our algorithm in higher
level image space (top) and in parameter space (projection to the x-space)(bottom).

6 Conclusions

In this chapter, we have considered the class of bi-level multi-objective opti-
mization problems (BLMOP) with equality constraints for both the higher and
lower level problem. The lower level problem was assumed to be convex, that
is, the lower level objectives are convex and the lower level equality constraints
are affine-linear. Due to the concentration to this particular subclass, we have
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been able to write down an equivalent formulation based on the well-known
Kuhn-Tucker optimality conditions for multi-objective optimization problems.
The resulting reformulation has the form of a general equality constrained multi-
objective optimization problem. We have presented an image set-oriented algo-
rithm for the approximation of the Pareto set P of the given BLMOP. The
representation of P computed by this algorithm turns out to be well-distributed
in the sense that in every box B ⊂ R

k with B ∩F (P ) �= ∅ of a given partition Pd

of the higher level image space R
k, there is the image of at least one of the com-

puted Pareto points. Convergence has been proved in the sense that after a finite
number of iterations, the box collection formed by those boxes containing the
images of the computed Pareto points, covers the image of the entire connected
components of P , which correspond to the given initial points. The efficiency
of the algorithm was demonstrated on an academic example, where comparison
to the state-of-the-art is still missing, which we leave for future work. Finally,
also the development of algorithms for the solution of the more general BLMOP,
which includes non-convex lower level problems, shall be investigated in the
future.
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Abstract. Evolutionary algorithms are very popular and are frequently
applied to many different optimization problems. Reasons for this suc-
cess include that methods of this kind are of global nature, very robust,
and only require minimal assumptions on the optimization problem. It
is also known that such methods need quite a few resources to generate
accurate approximations of the solution sets. As a remedy, researchers
have used hybrid (or memetic) algorithms, i.e., evolutionary algorithms
coupled with local search for which mainly techniques from mathematical
programming are utilized. Such hybrids typically yield satisfying results,
the problem, however, remains that the algorithms are relatively expen-
sive since the gradients have to be computed or approximated at each
given candidate solution that is designated for local search.

In this chapter, we review the Gradient Subspace Approximation
(GSA) which allows to compute a descent direction in a best fit manner
from given neighborhood information that is e.g. already given in evo-
lutionary algorithms. The computation of such directions comes hence
for free in terms of additional function evaluations of the given problem
which opens the door for the realization of low-cost local search engines
within evolutionary algorithms. In a next step, we show how GSA can be
applied to the context of bi-objective optimization. Finally, to demon-
strate the benefit of the method we present some results on a hybrid that
is based on the evolutionary algorithm NSGA-II.

Keywords: Gradient Subspace Approximation · Gradient free
optimization · Bi-objective optimization · Descent directions

1 Introduction

In many problems in engineering and finance the problem arises that several
objectives have to be optimized concurrently [3,7,8,11,12,14,17,22,27,28,30,
37]. One main challenge of such multi-objective optimization problems (MOPs)
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is that their solution set—the so-called Pareto set respectively its image, the
Pareto front—typically forms a (k − 1)-dimensional object, where k is the num-
ber of objectives involved in the problem. This is in contrast to classical scalar
optimization problems (SOPs), where one expects that the optimum is taken
at one single solution. Modern heuristics such as Multiobjective Evolutionary
Algorithms (MOEAs, e.g., [2,9,10,23]) are able to provide an approximation of
the entire Pareto set/front of a given MOP in one single run of the algorithm
due to their set oriented approach. These methods are very robust e.g. to ini-
tial conditions and only require minimal assumptions from the model (e.g., no
derivative information). Evolutionary algorithms as well as other related heuris-
tics are hence very popular for the numerical treatment of MOPs as well as
other optimization problems. One drawback, however, that most of them suf-
fer is that they need quite a few function evalutions in order to obtain accuate
approximations of the Pareto sets/fronts. As a remedy, many researchers have in
the past hybridized the (global) evolutionary algorithms with local search tech-
niques mainly coming from Mathematical Programming that utilize derivative
information from the objectives and the constraint functions. Such methods are
termed hybrid evolutionary algorithms or memetic algorithms. While such meth-
ods yield in almost all cases satisfying results, they are still relatively expensive
since the derivative information is required for every point that is designated for
local search.

In this chapter, we review several recently developed tools that allow to real-
ize a local search within a population based optimization algorithm with low
computational cost. The basic idea of the Gradient Subspace Approximation
(GSA, [33]) is to utilize existing neighborhood information to estimate the most
greedy direction within the search space that is spanned by the samples. One
advantage of this approach is that it can easily be extended to the context of
constrained problems. The focus of this chapter is on bi-objective optimization
problems (BOPs, i.e., MOPs with k = 2 objective functions). For this, we will
consider the descent direction for BOPs proposed in [25] and present recent
adaptations for constrained problems ([38]). Next, we will show how GSA can
be used to build a low-cost local search engine that can be used within a pop-
ulation based algorithm such as a MOEA. In order to show the efficiency of
the method, we will show some numerical results from a hybrid evolutionary
algorithm that coupled the GSA based local search engine with the famous evo-
lutionary algorithm NSGSA-II ([10]) which is state-of-the-art for MOPs with
two and three objectives.

The remainder of this chapter is organized as follows: in Sect. 2, we review
the Gradient Subspace Approximation for the approximation of the most greedy
search direction out of given neighborhood information. In Sect. 3, we review a
particular descent direction for bi-objective optimization problems for uncon-
strained, equality and inequality contrained problems. We further combine these
two concepts in order to build a low-cost local searcher within a chosen set-
oriented optimization method (such as an evolutionary algorithm). In Sect. 4
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we present some numerical examples on a hybrid evolutionary algorithm that is
based on the famous NSGA-II. Finally, we draw our conclusions Sect. 5.

2 Gradient Subspace Approximation

In this section, we will review the Gradient Subspace Approximation that aims to
compute a descent direction at a given point x0 and a given scalar optimization
problem using existing neighborhood information. For more details the reader is
referred to [33].

2.1 Background and Related Work

In this section, we will consider continuous scalar optimization problems (SOP)
of the following form

min
x

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . , m.

(1)

Hereby, f : Rn → R is called the objective function, and the functions
gi : Rn → R and hj : Rn → R are called the inequality and equality constraints,
respectively. We assume that all functions f , gi and hj are differentiable.

A point x is called feasible if it satisfies all constraints. A point x∗ is called
a solution to (1) if it is feasible and if there exists no other feasible point y that
has a lower objective value.

The object of interest in this section is the gradient of a function at a given
point x0. Formally, the gradient of the objective at x0 is defined by

∇f(x) =
(

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)T

∈ Rn. (2)

A vector ν ∈ Rn is called a descent direction for f at x0 if

〈∇f(x0), ν〉 < 0;

in that case, it holds for all sufficiently small step sizes t > 0 that f(x0 + tν) <
f(x0).

When the gradient of a function is not available in analytic form, there are
several ways to obtain either ∇f(x0) at a given point x0 or approximations
of this vector. The most prominent and widely used technique is to use finite
differences (e.g., [29]). The method presented in this section, GSA is also using
a finite difference approach. The variance, however, is that GSA can gather
the sampling points from all directions whereas the classical finite difference
method utilizes samples in coordinate directions. GSA is hence more suited to
the use within population based algorithms since in this case the neighboring
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samples are already given (and typically not aligned in coordinate directions).
In [6], a very similar method is proposed to approximate the Jacobians of the
objective map of a given unconstrained multi-objective optimization problem.
This work, however, does not discuss how to address constrained problems. The
Hill Climber with Sidestep [26] and the Directed Search Method [35,36] both use
neighborhood samples in order to determine promising search directions for the
local search within hybrid evolutionary algorithms. The difference to the GSA
is that these works do not directly aim to approximate the gradient. Automatic
Differentiation (AD, [18]) can be used to evaluate the exact gradient at a given
point x0 if the function is specified by a computer program. One drawback of
AD is that it can not be applied if this computer program is provided in form
of binary code.

Further, there are several methods that replace the original objective by
easier models. One example is response surface methodology (RSM), where the
objective function f is replaced by low-order polynomials f̃ (mainly of degree
one and two) those gradients are approximated using least squares techniques
[24]. If a first-order model is chosen, the match of the gradients ∇f̃(x0) and
∇f(x0) is typically quite good for a nonlinear function f if the chosen point x0 is
sufficiently far away from the optimum. For second-order models, the match is in
general much better, however, this accuracy comes with an additional cost since
n2 parameters have to be fitted at every point x0. Further works that can utilize
scattered samples can be found in [13,20]. In [20], a least squares regression is
performed while in [13] statistical expectation is used. In both works, the authors
restrict themselves to unconstrained problems.

2.2 The Basic Idea

The task is to compute a cost-free good approximation of the normalized gradient

n(x0) := − ∇f(x0)
‖∇f(x0)‖2 , (3)

evaluated at a given point x0 within a particular subspace of the Rn. For this, we
make use of the fact that the gradient is the direction of the steepest ascent, and
hence n(x0) can be seen as the solution of the following optimization problem:

min
ν∈Rn

〈∇f(x0), ν〉
s.t. ‖ν‖22 = 1.

(4)

To avoid to directly compute the gradient we can make use of neighboring
information as follows: assume that we are given the points x1, . . . , xr in the
vicinity of x0 (e.g., these samples may be contained within the population or
archive of a set based optimization method such as an evolutionary algorithm)
as well as their function values f(xi). In that case, we can use this information
to approximate the directional derivatives in the directions

νi :=
xi − x0

‖xi − x0‖2 , i = 1, . . . , r. (5)
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Since it holds

f ′
νi

(x0) = 〈∇f(x0), νi〉 =
f(xi) − f(x0)
‖xi − x0‖2 + O(‖xi − x0‖2), (6)

where O denotes the Landau symbol, and since we are given the points x0 and
xi with their respective objective values f(x0) and f(xi), we can hence use the
approximations

f ′
νi

(x0) ≈ f(xi) − f(x0)
‖xi − x0‖2 , i = 1, . . . , r. (7)

Given the samples x1, . . . , xr and νi as above we define the subspace S as

S = span{ν1, . . . , νr} (8)

and are interested in a best approximation of n(x0) within S. Since every ν ∈ S
can be written as

v =
r∑

i=1

λiνi (9)

for some λ = (λ1, . . . , λr) ∈ R
r, and

〈∇f(x0), ν〉 =
r∑

i=1

λi〈∇f(x0), νi〉 (10)

we can state problem (4), where we restrict the search to S, as follows:

min
λ∈Rr

r∑
i=1

λi〈∇f(x0), νi〉

s.t.

∥∥∥∥∥
r∑

i=1

λiνi

∥∥∥∥∥
2

2

= 1.

(11)

Hence, when using an approximation of the directional derivatives as in (7)
via using neighboring samples, we can avoid to directly compute the gradient.
One advantage of using problem (11) is that constraint information can directly
be incorporated.

In the following, we will analyze the best fit approximations of n(x0) within
the subspace S both for unconstrained and constrained SOPs. For this, we will
first consider the ideal scenario where we assume that we are given all directional
derivatives, and later on we will discuss the gradient-free realizations.

2.3 Gradient Subspace Approximation

We will in the following discuss how to approximate the most greedy search direc-
tion out of the given data, separately for unconstrained, equality constrained,
and inequality constrained problems.
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2.3.1 Unconstrained Problems
We are given the problem

min
x∈Rn

f(x), (12)

where f : Rn → R. Further, we are given a point x0 ∈ Rn and the samples
x1, . . . , xr ∈ Rn in the vicinity of x0, together with their objective values f(xi).
Further, for purpose of a better analysis of the problem we also assume that we
are given the directional derivatives

〈∇f(x0), νi〉, i = 1, . . . , r. (13)

Define the matrix V by

V = (ν1, . . . , νr) ∈ Rn×r. (14)

Then, the most greedy search direction within the subset

S = span{ν1, . . . , νr} (15)

is given by the solution of the following problem

min
λ∈Rr

r∑
i=1

λi〈∇f(x0), νi〉

s.t. λT V T V λ − 1 = 0.

(16)

The following result shows that the solution of (16) can be computed in closed
form.

Proposition 1. Let ν1, . . . , νr ∈ Rn, r ≤ n, be linearly independent and

λ̃∗ := −(V T V )−1V T ∇f(x0). (17)

Then

λ∗ :=
λ̃∗

‖V λ∗‖22
(18)

is the unique solution of (16) and

ν∗ =
−1

‖V λ∗‖22
V (V T V )−1V T ∇f(x0) (19)

is the most greedy search direction in S.

Proof. The Karush-Kuhn Tucker (KKT) system of (16) reads as

∇λL(λ, μ) = V T ∇f(x0) + 2μV T V λ = 0 (20)
h(λ) = λT V T V λ − 1 = 0. (21)



Gradient Subspace Approximation for BOPs 361

Apparently, Equation (21) is only used for normalization. If we omit this
equation and the factor 2μ in (20) we can rewrite (20) as the following normal
equation system

V T V λ = −V T ∇f(x0). (22)

To solve the entire KKT system we have to choose 2μ = ‖V λ∗‖22. Finally, the
claim follows since the Hessian of the Lagrangian

∇2
λλL(λ, μ) = V T V (23)

is positive definite since the directions νi are linearly independent. 
�
Next, we discuss how to approximate the most greedy solution ν∗ without

explicitly computing or approximating the gradients. Since

V T ∇(x0) =

⎛
⎜⎝

〈∇f(x0), ν1〉
...

〈∇f(x0), νr〉

⎞
⎟⎠ (24)

we can do the approximation as follows: let d = (d1, . . . , dr) ∈ R
r, where

di :=
f(xi) − f(x0)
‖xi − x0‖2 , i = 1, . . . , r, (25)

and λ̃ be the vector that solves the system of linear equations

V T V λ̃ = −d, (26)

then the most greedy search direction can be approximated as

ν̃∗ =
−1

‖V λ̃‖22
V (V T V )−1d. (27)

Remark 1. (a) To compute ν∗ one has to solve system (22). It is hence advisable
to avoid to choose directions νi that nearly point into the same directions.
The linear equation system yields the best condition number if the directions
are chosen orthogonal to each other. In this case, we obtain

ν∗ =
−1

‖λ∗‖22
V V T ∇f(x0), (28)

i.e., the orthogonal projection of ∇f(x0) onto S. That is, ν∗ is the best
approximation of n(x0) in S.

(b) In the special case that the coordinate directions are chosen, i.e., if we choose

xi = x0 + tieji , i = 1, . . . , r, (29)

for the samples, where ej denotes the j-th unit vector, we obtain for the
ji-th entry of ν̃∗ (without normalization)

ν̃∗
ji =

f(x0 + tieji) − f(x0)
|ti| . (30)
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That is, if we for instance choose xi = x0 + tiei, i = 1, . . . , n (i.e., all
coordinate directions), the search direction ν∗ coincides with the forward
difference quotient.

(c) The idea of GSA is to utilize existing data whenever possible. However, it
may be the case that for a given point x0 that the existing data is not
sufficient (e.g., not enough individuals of the current population are close
enough to x0). A possible remedy may be to sample further points in order
to compute a search direction. In that case it makes sense to choose the
points so that the resulting directions νi are orthogonal to each other as
well as to all existing directions. See [1] for a possible realization.

Example 1. We consider the objective f : R6 → R, where

f(x) =
6∑

i=1

x2
i . (31)

Let x0 = [1, 1, 1, 1, 1, 1]T , then ∇f(x0) = [2, 2, 2, 2, 2, 2]T and

g =
−1√
24

[2, 2, 2, 2, 2, 2]T (32)

for which 〈∇f(x0), g〉 = −4.8990.
First, we choose three orthogonal search directions that form the matrix V T

as follows:

V T =

⎛
⎝2 0 1 0 0 0

0 1 0 3 0 0
0 0 0 0 3 1

⎞
⎠ . (33)

Doing so, we obtain 〈∇f(x0), v1
‖v1‖ 〉 = 2.6833, 〈∇f(x0), v2

‖v2‖ 〉 = 2.5298 and
〈∇f(x0), v3

‖v3‖ 〉 = 2.5298. If we solve problem (16) we get

v∗ = [−0.5367,−0.1789,−0.2683,−0.5367,−0.5367,−0.1789]T , (34)

for which 〈∇f(x0), v∗〉 = −4.4721.
Next, we use the samples

xi = x0 + 0.1vi, for i = 1, 2, 3, (35)

and via formula (27) we obtain

ṽ∗ = [−0.5237,−0.1813,−0.2618,−0.5438,−0.5438,−0.1813]T

which leads to 〈∇f(x0), ṽ∗〉 = −4.4714.
If choosing the non-orthogonal search directions

V T =

⎛
⎝1 1 0 0 0 0

0 2 1 2 0 0
1 0 2 0 1 2

⎞
⎠ , (36)
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we obtain 〈∇f(x0), v1
‖v1‖ 〉 = 2.8284, 〈∇f(x0), v2

‖v2‖ 〉 = 3.3333 and 〈∇f(x0),
v3

‖v3‖ 〉 = 3.7947.

Solving (16) leads to

v∗ = [−0.3769,−0.4744,−0.5686,−0.3054,−0.2080,−0.4159]T (37)

with 〈∇f(x0), v∗〉 = −4.6985. For the discretized problem we obtain

ṽ∗ = [−0.3595,−0.4674,−0.5770,−0.3171,−0.2092,−0.4184]T (38)

with 〈∇f(x0), ṽ∗〉 = −4.6972.

2.3.2 Equality Constrained Problems
Next, we assume that the SOP contains some equality constraints, i.e., that we
are given the following problem

min
x∈Rn

f(x)

s.t. hi(x) = 0, i = 1, . . . , p,
(39)

where we assume that each hi : Rn → R is differentiable.
Analogously to the unconstrained case discussed above the most greedy

search direction at x0 in the entire space R
n is given by

min
ν∈Rn

〈∇f(x0), ν〉
s.t. ‖ν‖22 = 1

〈∇hi(x), ν〉 = 0, i = 1, . . . , p,

(40)

and the most greedy direction at x0 within the subspace S is given by

min
λ∈Rr

r∑
i=1

λi〈∇f(x0), νi〉

s.t. λT V T V λ − 1 = 0
r∑

i=1

λi〈∇hj(x0), νi〉 = 0, j = 1, . . . , p.

(41)

Denote the matrix H by

H =

⎛
⎜⎝

∇h1(x0)T

...
∇hp(x0)T

⎞
⎟⎠ ∈ Rp×n. (42)

As for the unconstrained case, we can also express the most greedy solution
for an equality constrained problem analytically.
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Proposition 2. Let ν1, . . . , νr ∈ Rn be linearly independent where p ≤ r ≤ n,
let rank(H) = p, and

(
λ̃∗

μ̃∗

)
=

(
V T V (HV )T

HV 0

)−1 (−V T ∇f(x0)

0

)
, (43)

then

λ∗ :=
λ̃∗

‖V λ∗‖22
(44)

is the unique solution of (41) and thus

ν∗ =
−1

‖V λ∗‖22
V (V T V )−1V T ∇f(x0) (45)

is the most greedy search direction in span{νi, . . . , νr}.
Proof. The KKT system of (41) is given by

V T ∇f(x0) + 2μ0V
T V λ + (HV )T μ = 0 (46)

HV λ = 0 (47)
λT V T V λ − 1 = 0, (48)

and via applying the same “normalization trick” as above we can transform the
KKT equations into

(
V T V (HV )T

HV 0

) (
λ

μ

)
=

(−V T ∇f(x0)

0

)
. (49)

To show that the matrix is regular, let y ∈ Rr and z ∈ Rp such that
(

V T V (HV )T

HV 0

) (
y

z

)
= 0. (50)

It follows that HV y = 0 and hence that

0 =

(
y

z

)T (
V T V (HV )T

HV 0

) (
y

z

)
= yV T V y. (51)

Thus, it is y = 0 since V T V is positive definite. Further, by (50) it follows that
V T HT z = 0. Since V T ∈ Rn×r has rank r ≥ p, it follows that V T HT has rank
p. This implies that also z = 0, and thus, that the matrix in (43) is regular.

The rest follows by the discussion above setting 2μ0 = ‖∑r
i=1 λ̃∗

i νi‖22 and
since the Hessian of the Lagrangian ∇2

λλL(λ, μ) = V T V is positive definite. 
�
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The key for a gradient-free approximation of the search direction is the matrix
HV . Since

(HV )ij = ∇hi(x0)T νj ,

we compute an approximation M = (mij) of HV via

mij :=
hi(xj) − hi(x0)

‖xj − xi‖2 , i = 1, . . . , p, j = 1, . . . , r. (52)

Doing so, we can now solve the system
(

V T V MT

M 0

) (
λ

μ

)
=

(−d

0

)
(53)

which leads to λ∗. To obtain ν∗ we proceed as for the unconstrained case using
the approximation V T ∇f(x0) ≈ d.

Example 2. We consider the SOP from Example 1 and impose the constraint

h(x) = x1 + x2 + x3 = 0. (54)

For x0 = [−1, 0, 1, 1, 1, 1]T we have ∇f(x0) = [2, 2, 2, 2, 2, 2]T , g = −1√
24

[2, 2, 2, 2,

2, 2]T , ∇h(x0) = [1, 1, 1, 0, 0, 0]T and 〈∇f(x0), g〉 = −4.8990.

First, we choose again the three orthogonal search directions

V T =

⎛
⎝2 0 1 0 0 0

0 1 0 3 0 0
0 0 0 0 3 1

⎞
⎠ ; (55)

and, we obtain 〈∇f(x0), v1
‖v1‖ 〉 = 2.6833, 〈∇f(x0), v2

‖v2‖ 〉 = 2.5298, 〈∇f(x0),
v3

‖v3‖ 〉 = 2.5298, and

v∗ = [0.1210,−0.1815, 0.0605,−0.5444,−0.7662,−0.2554]T (56)

with 〈∇f(x0), v∗〉 = −3.1322.

Using the above setting and the samples

xi = x0 + 0.1vi, for i = 1, 2, 3 (57)

we obtain the search direction

ṽ∗ = [0.1293,−0.1939, 0.0646,−0.5817,−0.7368,−0.2456]T

which leads to 〈∇f(x0), ṽ∗〉 = −3.1281.
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In a next step, we consider the non-orthogonal search directions

V T =

⎛
⎝1 1 0 0 0 0

0 2 1 2 0 0
1 0 2 0 1 2

⎞
⎠ (58)

leading to 〈∇f(x0), v1
‖v1‖ 〉 = 2.8284, 〈∇f(x0), v2

‖v2‖ 〉 = 3.3333 and 〈∇f(x0),
v3

‖v3‖ 〉 = 3.7947.

When solving (41) we obtain

v∗ = [0.4050, 0.2244,−0.6294,−0.3963,−0.2156,−0.4312]T

with 〈∇f(x0), v∗〉 = −2.0863 for the idealized problem and for the discretized
problem we obtain

ṽ∗ = [0.4490, 0.1617,−0.6107,−0.4742,−0.1868,−0.3736]T

with 〈∇f(x0), ṽ∗〉 = −2.0691.

2.3.3 Inequality Constrained Problems
Finally, we assume we are given an inequality constrained SOP of the form

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , m,
(59)

where we for simplicity assume that all inequalities are active at a given point
x0. The most greedy search direction at x0 is given by

min
ν∈Rn

〈∇f(x0), ν〉
s.t. ‖ν‖22 = 1

〈∇gi(x), ν〉 ≤ 0, i = 1, . . . , m,

(60)

and the related subspace optimization problem reads as

min
λ∈Rr

r∑
i=1

λi〈∇f(x0), νi〉

s.t. λT V T V λ − 1 = 0
r∑

i=1

λi〈∇gj(x0), νi〉 ≤ 0, j = 1, . . . , m.

(61)

One way to find a solution to (61) is to use gradient projection which is
advantageous in particular if m is small and r � m. In the following, we first
discuss the special case m = 1 (i.e., one active inequality constraint) and will
later on discuss the general case.
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The classical gradient projection approach is to take the solution ν∗ of the
underlying unconstrained problem (16) and to project it to the space ∇g(x0)⊥

that is orthogonal to ∇g(x0) (see Fig. 1): given a QR decomposition of ∇g(x0),
i.e.,

∇g(x0) = QR = (q1, . . . , qn)R, (62)

then the vectors q2, . . . , qn build an orthonormal basis (ONB) of ∇g(x0)⊥. Using
Qg = (q2, . . . , qn), the projection is hence given by

νnew = QgQ
T
g ν∗. (63)

It is of course not advisable to follow this approach directly since ∇g(x0) is
neither given, nor do we want to approximate it. Alternatively, we propose to
proceed as follows: let

M := ∇g(x0)T V = (〈∇g(x0), ν1〉, . . . , 〈∇g(x0), νr〉) ∈ R1×r. (64)

Note that if w is a kernel vector of M then V w is perpendicular to ∇g(x0)
and vice versa. Thus, we can compute the matrix

K = (k1, . . . , kr−1) ∈ Rr×(r−1) (65)

those column vectors build an ONB of the kernel of M . If the search directions
νi are orthogonal, then also the vectors V k1, . . . , V kr−1 are orthogonal to each
other. The latter are the column vectors of V K ∈ Rn×(r−1) (if the νi’s are
not orthogonal to each other, V K has to be orthogonalized via another QR
decomposition). Doing so, the projected vector to the kernel of M is given by

ν̃new = V K(V K)T ν∗ = V KKT V T ν∗. (66)

Fig. 1. Handling inequality constraints using gradient projection.

For a general number m of inequality constraints we can extend the method
as follows: let

M = GV = (〈∇gi(x0), νj〉) i=1,...,m
j=1,...,r

, (67)
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and perform the following steps

(1) compute an orthonormal basis K ∈ Rr×(r−m) of the kernel of M
(2) compute V K = QR = (q1, . . . , qr−m, . . . , qn)R and set O := (q1, . . . , qr−m) ∈

Rn×(r−m)

(3) ν̃new = Q̃Q̃T ν∗

Example 3. We consider again the SOP from Example 1 but this time we impose
the inequality

g(x) = 1 − x1 ≤ 0. (68)

For x0 = [1, 1, 1, 1, 1, 1]T we have ∇f(x0) = [2, 2, 2, 2, 2, 2]T , g = −1√
24

[2, 2, 2,

2, 2, 2]T and ∇c(x0) = [−1, 0, 0, 0, 0, 0]T . Thus 〈∇f(x0), g〉 = −4.8990.

First, we again choose the three orthogonal search directions

V T =

⎛
⎝2 0 1 0 0 0

0 1 0 3 0 0
0 0 0 0 3 1

⎞
⎠ , (69)

and obtain 〈∇f(x0), v1
‖v1‖ 〉 = 2.6833, 〈∇f(x0), v2

‖v2‖ 〉 = 2.5298 and 〈∇f(x0),
v3

‖v3‖ 〉 = 2.5298.

For the search direction we obtain

v∗ = [−0.5367,−0.1789,−0.2683,−0.5367,−0.5367,−0.1789]T

with 〈∇f(x0), v∗〉 = −4.4721. Then by the gradient projection approach and v∗,
we obtain the projected vector

vnew = [0,−0.1789,−0.2683,−0.5367,−0.5367,−0.1789]T

with 〈∇f(x0), vnew〉 = −3.3988. Next, we obtain

ṽnew = [0,−0.1789, 0,−0.5367,−0.5367,−0.1789]T

via Eq. (54) with 〈∇f(x0), ṽnew〉 = −2.8622.

Next we use the sampling

xi = x0 + 0.1vi, for i = 1, 2, 3 (70)

which leads to the search direction

ṽ∗ = [−0.5237,−0.1813,−0.2618,−0.5438,−0.5438,−0.1813]T

with 〈∇f(x0), ṽ∗〉 = −4.4714. Then by the gradient projection approach and
ṽ∗, we obtain ṽnew = [0,−0.1813, 0,−0.5438,−0.5438,−0.1813]T and 〈∇f(x0),
ṽnew〉 = −2.9004.
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3 Bi-objective Optimization

In this section, we will review a descent direction for bi-objective optimization
problems, and will show how GSA can be used approximate these directions
gradient-free. For details the reader is referred to [38].

3.1 Background and Related Work

In many applications one is faced with the problem that several objectives have
to be optimized concurrently leading to a multi-objective optimization problem
(MOP, e.g., [3,8,12,14,17,27,28,30,37]).

A continuous MOP can be expressed mathematically as

min
x

(f1(x), . . . , fk(x))T

s.t. gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . , m,

(71)

where the fi, i = 1, . . . , k are the objectives to be minimized, and the gi’s and
hj ’s are the inequalities and equalities, respectively. Denote by Q the feasible
set. We assume that all objectives and all constraint functions are differentiable.
To define optimality of a MOP the concept of Pareto dominance is used: let
v, w ∈ R

k, then we say that the vector v is less than the vector w (v <p w), if
vi < wi for all i ∈ {1, . . . , k}; the relation ≤p is defined analogously. A vector
y ∈ Q is dominated by a vector x ∈ Q (x ≺ y) with respect to (71) if F (x) ≤p

F (y) and F (x) �= F (y), else y is called non-dominated by x. A point x∗ ∈ R
n is

Pareto optimal to (71) if there is no y ∈ Q which dominates x. The set of all the
Pareto optimal points is called the Pareto set and its image is the Pareto front.
Both Pareto set and front form under certain (mild) smoothness assumptions a
(k − 1)-dimensional object ([21]). We will in this section focus on bi-objective
problems (BOPs), i.e., on MOPs where k = 2.

A Multi-objective Descent Direction (MODD) ν at a point x0 and a given
MOP is a direction in which a sufficiently small movement yields dominating
solutions, i.e.,

x0 + tν ≺ x0 ∀t ∈ (0, t̄) (72)

for a certain t̄ > 0. In [25], a descent direction has been proposed for uncon-
strained BOPs.

Proposition 3 ([25]). Let x ∈ R
n and f1, f2 : Rn → R define an unconstrained

BOP. If ∇fi(x) �= 0 for i ∈ {1, 2} then

νL := −
[ ∇f1(x)
‖∇f1(x)‖ +

∇f2(x)
‖∇f2(x)‖

]
, (73)

is a descent direction of x at F.
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In the sequel we will show how to adapt this to the context of constrained
BOPs, and how to make a gradient-free realization via utilizing GSA.

It is worth mentioning that there exist some proposals to compute MODDs in
general; they make use of first or second-order information related to the objec-
tive functions. Among these proposals is what is called the Steepest Descent
Direction [15], which requires the solution to a quadratic programming problem
involving the Jacobian of F . This method is valid for both convex or non-convex
Pareto fronts. In [32], the authors introduced a mathematical formula that uses
the solution of a stochastic differential equation related to the Karush-Kuhn-
Tucker conditions in order to generate the solution set. This technique requires
all the involved functions to be continuously differentiable, and it only works for
unconstrained MOPs. One particular work to mention is [5] where appears the
idea of the descent cone. The descent cone gets determined by the intersection
of the negative half-spaces generated by the objective function gradients. In [4]
the authors notice that computing a MODD yields again a multi-objective opti-
mization problem since the negative gradient of every objective function is in
conflict with the remaining objectives’ gradients. In this same work, the authors
propose a way to calculate the entire set of MODDs to take one of them at ran-
dom finally. Another proposal [19], called the Pareto Descent Method, computes
a set of possible Pareto descent directions by solving a linear programming prob-
lem with the information from the descent cones. This method applies just for
unconstrained and inequality CMOP. There exist also approaches based on the
Newton method as [14] where at each iteration of a line search, one minimization
subproblem has to be solved to obtain the direction to follow. In this method, the
Hessians of all functions need to be available. In this direction, also, [12,16,34]
proposed an extension of the multi-objective Newton method for equality con-
strained problems. In this chapter, we decided to work with expression (73) since
it is the easiest and no-cost proposal since no linear or quadratic programming
solvers are necessary for its computation. This feature also makes it suitable for
the application presented in Sect. 4 when this direction will be introduced into
a population-based heuristic.

3.2 A Descent Direction for Constrained BOPs

3.3 Equality Constrained BOPs

Here we consider equality constrained BOPs of the form

min
x∈Rn

F (x) := [f1(x), f2(x)]T ,

s.t hj(x) = 0, j = 1, . . . , m. (74)

We will in the following discuss separately the cases where x0 is feasible and
infeasible.
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Feasible Case
We first assume that x0 is feasible, i.e., that hj(x0) = 0 for all j = 1, . . . , m.
One way to obtain a MODD for the given BOP is to project the MODD of the
related unconstrained BOP to the tangent space Th−1(0)(x0) of the feasible set
h−1(0) at x0: let ν be the MODD for the unconstrained BOP, i.e.,

ν := −
[ ∇f1(x0)
‖∇f1(x0)‖ +

∇f2(x0)
‖∇f2(x0)‖

]
, (75)

and let

HT = (∇h1(x0) . . . , ∇hm(x0)) = QR = (q1, . . . , qm, qm+1, . . . , qn) R (76)

be a QR-factorization of HT . Then, the vectors q1, . . . , qm build an orthonormal
basis of the image of HT . Further, since the image of HT is the orthogonal
complement of the kernel of H, we have for i = m + 1, . . . , n:

Hqi = 0 ⇔ (∇hj(x0)T qi = 0, j = 1, . . . , m). (77)

That is, the column vectors of

Q̃ := (qm+1, . . . , qn) (78)

form an orthonormal basis of the tangent space Th−1(0)(x0) of h−1(0) at x0.
The orthogonal projection of ν onto Th−1(0)(x0) is hence given by (see also
Algorithm 1)

νp := Q̃Q̃T ν. (79)

The following result establishes criteria under which νp is a MODD.

Algorithm 1. Computation of the search direction νp for equality constrained
BOPs, feasible case
Require: BOP of form (), x0 with ∇fi(x0) �= 0, i = 1, 2
Ensure: search direction νp

1: ν := −
[

∇f1(x0)
‖∇f1(x0)‖ + ∇f2(x0)

‖∇f2(x0)‖

]

2: H :=

⎛
⎜⎝

∇h1(x0)
T

...
∇hm(x0)

T

⎞
⎟⎠

3: compute Q and R s.t. HT = QR = (q1, . . . , qm, qm+1, . . . , qn)R
4: Q̃ := (qm+1, . . . , qn)
5: νp := Q̃Q̃T ν
6: return νp
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Proposition 4. Let a BOP of the form (74) be given and x0 with ∇fi(x0) �= 0
for i ∈ {1, 2} and hj(x0) = 0, j = 1, . . . , m. Further, let νp by given as in
Eq. (79) such that 〈νp,∇hj(x0)〉 = 0 for j ∈ {1, . . . , m}. Then the following
holds:

(a) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) > 0, then νp is a MODD of F at x0.
(b) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) = 0 and Q̃T ∇fi(x0) �= 0 for an index i ∈ {1, 2},

then νp is a MODD of F at x0.
(c) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) < 0, then νp is not a descent direction of F at x0.

Proof. Note that for the first objective we obtained

∇f1(x0)T νp = ∇f1(x0)T Q̃Q̃T νL

= −
[

∇f1(x0)T Q̃Q̃T ∇f1(x0)
‖∇f1(x0)‖ +

∇f1(x0)T Q̃Q̃T ∇f2(x0)
‖∇f2(x0)‖

]
, (80)

and for the second objective

∇f2(x0)T νp = ∇f2(x0)T Q̃Q̃T νL

= −
[

∇f2(x0)T Q̃Q̃T ∇f1(x0)
‖∇f1(x0)‖ +

∇f2(x0)T Q̃Q̃T ∇f2(x0)
‖∇f2(x0)‖

]
. (81)

Further, since 0 < ‖∇f1(x0)‖ and 0 < ‖∇f2(x0)‖, and Q̃Q̃T is symmetric we
obtain

∇f1(x0)T Q̃Q̃T ∇f2(x0) = ∇f2(x0)T Q̃Q̃T ∇f1(x0) (82)

and

∇fi(x0)T Q̃Q̃T ∇fi(x0) =
〈
Q̃T ∇fi(x0), Q̃T ∇fi(x0)

〉

= ‖Q̃T ∇fi(x0)‖2 ≥ 0 for i ∈ {1, 2}. (83)

Then, three cases arise:

Case 1. If ∇f1(x0)T Q̃Q̃T ∇f2(x0) > 0 holds, then by (80), (81) and (83) we
obtain

∇f1(x0)T νp < 0 and ∇f2(x0)T νp < 0;

which means that νp is a descent direction of F at x0.

Case 2. If ∇f1(x0)T Q̃Q̃T ∇f2(x0) = 0, then
(i) If ‖Q̃T ∇fi(x0)‖ > 0 for i ∈ {1, 2}, then by (80), (81) and (83)

∇fi(x0)T νp < 0 for i ∈ {1, 2}, i.e., νp is a descent direction for F at
x0.

(ii) If ‖Q̃T ∇f1(x0)‖ > 0 and ‖Q̃∇f2(x0)‖ = 0, then ∇f1(x0)T νp < 0 and
∇f2(x0)T νp = 0, i.e., νp is a descent direction for F at x0.
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(iii) If ‖Q̃T ∇f1(x0)‖ = 0 and ‖Q̃∇f2(x0)‖ > 0, then ∇f1(x0)T νp = 0 and
∇f2(x0)T νp < 0, i.e., νp is a descent direction for F at x0.

Therefore, if ∇f1(x0)T Q̃Q̃T ∇f2(x0) = 0 and Q̃T ∇fi(x0) �= 0 for an index i ∈
{1, 2}, then νp is a descent direction of F at x0.
Case 3. If ∇f1(x0)T Q̃Q̃T ∇f2(x0) < 0 assume, for the sake of contradiction,
that νp is a descent direction for F at x0.

Then, if ∇f1(x0)T νp < 0 we have by Eq. (80) the following:

∇f1(x0)T Q̃Q̃T ∇f2(x0)
‖∇f2(x0)‖ <

∇f1(x0)T Q̃Q̃T ∇f1(x0)
‖∇f1(x0)‖

⇔ 〈Q̃T ∇f1(x0), Q̃T ∇f2(x0)〉
‖∇f2(x0)‖ <

〈Q̃T ∇f1(x0), Q̃T ∇f1(x0)〉
‖∇f1(x0)‖

⇔ ‖Q̃T ∇f1(x0)‖‖Q̃T ∇f2(x0)‖ cos θ

‖∇f2(x0)‖ <
‖Q̃T ∇f1(x0)‖2

‖∇f1(x0)‖

⇔ ‖Q̃T ∇f2(x0)‖ cos θ

‖∇f2(x0)‖ <
‖Q̃T ∇f1(x0)‖

‖∇f1(x0)‖
⇔

∥∥∥Q̃T ∇f2(x0)
‖∇f2(x0)‖

∥∥∥ cos θ <
∥∥∥Q̃T ∇f1(x0)

‖∇f1(x0)‖
∥∥∥

⇔ cos θ <

∥∥∥Q̃T ∇f1(x0)
‖∇f1(x0)‖

∥∥∥∥∥∥Q̃T ∇f2(x0)
‖∇f2(x0)‖

∥∥∥ . (84)

Analogously, if ∇f2(x0)T νp < 0 then by Eq. (81) we have

cos θ <

∥∥∥Q̃T ∇f2(x0)
‖∇f2(x0)‖

∥∥∥∥∥∥Q̃T ∇f1(x0)
‖∇f1(x0)‖

∥∥∥ .

When considering −1 < cos θ < 1,

∥∥∥Q̃T ∇f1(x0)
‖∇f1(x0)‖

∥∥∥∥∥∥Q̃T ∇f2(x0)
‖∇f2(x0)‖

∥∥∥ < 1 and

∥∥∥Q̃T ∇f2(x0)
‖∇f2(x0)‖

∥∥∥∥∥∥Q̃T ∇f1(x0)
‖∇f1(x0)‖

∥∥∥ < 1

leads to

∥∥∥Q̃T ∇f1(x0)

‖∇f1(x0)‖
∥∥∥ <

∥∥∥Q̃T ∇f2(x0)

‖∇f2(x0)‖
∥∥∥ and

∥∥∥Q̃T ∇f2(x0)

‖∇f2(x0)‖
∥∥∥ <

∥∥∥Q̃T ∇f1(x0)

‖∇f1(x0)‖
∥∥∥,

which is not possible. Thus, we conclude that if ∇f1(x0)T Q̃Q̃T ∇f2(x0) < 0,
then νp is not a descent direction of F at x0, and we are done. 
�
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Fig. 2. Considering a feasible starting point when computing νp using Eq. (73). Here
νp is a MODD of BOP (85). This figure illustrates the case presented in Example 4.

Example 4. Consider the following BOP:

Minimize

f1(x1, x2) = x2
1 + (x2 + 3)2 (85)

f2(x1, x2) = (x1 + 3)2 + x2
2

subject to

h(x1, x2) = x2
1 + x2

2 − 1 = 0.

For this example, consider the computation of direction νp starting from a
feasible initial point. Figure 2 illustrates the case when νp lays over the descent
cone, hence νp is a descent direction.

Infeasible Case
Next, we consider that the initial point x0 is infeasible, i.e., that for at least one
j ∈ {1, . . . , m} it holds hj(x) �= 0. Further, we assume that all equalities are
linear, i.e., we are given the problem
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min
x∈Rn

F (x) := [f1(x), f2(x)]T , (86)

s.t h(x) = Ax − b = 0,

where A ∈ R
m×n. In this case we can consider the Newton method applied to

the residual r : R
n+m+k → R

n+m+k which is given by

r(x, α, ν) =

⎛
⎝J(x)T α + AT ν

Ax − b
ēT α − 1

⎞
⎠ , (87)

where J denotes the Jacobian of F and ē = [1, . . . , 1]T ∈ R
k. The first order

Taylor approximation of r near an estimate y = (x, α, ν) ∈ R
n+k+m is given by

r(y + z) ≈ r(y) + Dr(y)z, (88)

where Dr(y) is the Jacobian of r at y. The Newton step Δy for the Newton
method applied to r solves the following linear system of equations:

Dr(y)Δy = −r(y). (89)

Denote

Wα :=
2∑

j=1

αj∇2fj(x), (90)

then

Dr(x, α, ν) =

⎛
⎝Wα J(x)T AT

A 0 0
0 ēT 0

⎞
⎠ , (91)

and the Newton step is given by the vector

Δy = (Δx,Δα,Δν)

that solves ⎛
⎝Wα J(x)T AT

A 0 0
0 ēT 0

⎞
⎠

⎛
⎝ Δx

Δα
Δν

⎞
⎠ = −

⎛
⎝J(x)T α + AT ν

Ax − b
ēT α − 1

⎞
⎠ . (92)

If we set ν+ := ν + Δν, we can rewrite the above system as⎛
⎝Wα J(x)T AT

A 0 0
0 ēT 0

⎞
⎠

⎛
⎝ Δx

Δα
ν+

⎞
⎠ = −

⎛
⎝ J(x)T α

Ax − b
ēT α − 1

⎞
⎠ . (93)

The following discussion shows that the norm of r decreases for sufficiently
small step sizes in direction Δy: it is

d

dt
‖r(y + tΔy)‖2∣∣

t=0
= −2r(y)T Dr(y)Δy

= −2r(y)T r(y). (94)
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Taking out the square leads to

d

dt
‖r(y + tΔy)‖∣∣

t=0
= −r(y)T r(y) = −‖r(y)‖ (95)

which is negative at y with r(y) �= 0.

In the following we summarize this result.

Proposition 5. Let a BOP be of the form (86) and suppose x0 is given such
that hj(x0) �= 0 for at least one j ∈ {1, . . . , m}. The Newton step on the residual
r as defined in (87) is given by the vector that solves equation system (93), and
‖r‖ decreases for sufficiently small steps in direction of the Newton step.

Proof. It follows by the above discussion. 
�
Example 5. Consider

F : R5 → R
2

subject to one linear equality constraint as

fj(x) =
∑5

i=1,i 
=j

(
xi − ai

i

)2 +
(
xj − aj

j

)4

, j = 1, 2
s.t. 1

2x1 = x2.
(96)

Here, a1 = [1, ..., 1]T ∈ R
5 and a2 = −a1. We apply Newton’s method for the

initial infeasible point p0 = a1 with h(po) = −0.5. Figure 3 shows the obtained
solutions in each Newton step in the (a) variable and (b) objective space. In the
fourth step we obtain the final solution

p4 = [0.2668, 0.1334, 0.3750, 0.3750, 0.3750]T

with h(p4) = −2.7756e−17, which can be considered to be feasible.

3.4 Inequality Constrained BOPs

Next we consider inequality constrained BOPs of the form

min
x∈Rn

F (x) := [f1(x), f2(x)]T ,

s.t gj(x) ≤ 0, j = 1, . . . , p. (97)

Let x0 be given and denote by

I(x0) := {gi1(x0), gi2(x0), . . . , gis(x0)} (98)

the set of active inequalities at x0. Assume that I(x0) is not empty, i.e., that
s ≥ 1. Denote by

G :=

⎛
⎜⎝

∇gi1(x0)T

...
∇gis(x0)T

⎞
⎟⎠ ∈ R

s×n (99)
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Fig. 3. Newton steps starting from p0 which is an infeasible point for Problem (96).
This figure illustrates Example 5.

the matrix formed by the gradients of the active inequality constraints.

Similarly to the feasible case for equality constrained BOPs, we can also
in this case generate descent directions via projection as follows: suppose that
rank(G) = s (i.e., maximal), then we can compute the factorization

GT = QR = (q1, . . . , qs, qs+1, . . . , qn) R, (100)

where Q ∈ R
n×n is orthogonal and R ∈ R

n×s right upper triangular. Doing so,
the last n − s column vectors of Q form an orthonormal basis of the tangent
space of the feasible set g−1

i (0) at x0 with ∇fi(x0) �= 0 and gi(x0) = 0. The
orthogonal projection νp onto Tg−1

i (0)(x) is hence given by

νp := Q̃Q̃T νL, (101)

where νL is as in (73) and

Q̃ := (qs+1, . . . , qn) . (102)

Similarly to the equality constrained case, νp is a descent direction under
certain conditions (see also Algorithm 2).

Proposition 6. For a BOP of the form (97), suppose ∇fi(x0) �= 0 for i ∈
{1, 2}. Let νp be as in Eq. (101) such that 〈νp,∇gi(x0)〉 = 0. Let x ∈ R

n such
that gi(x0) = 0 for every i ∈ I(x0). Then

(a) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) > 0, then νp is a MOPP of F at x0.
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(b) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) = 0 and Q̃T ∇fi(x0) �= 0 for an index i ∈ {1, 2},
then νp is a MODD of F at x0.

(c) If ∇f1(x0)T Q̃Q̃T ∇f2(x0) < 0, then νp is not a descent direction of F at x0.

Proof. Note that by construction ∇gi(x0)T νp = 0 for all active i ∈ I(x0); thus,
the proof is analog to the one from Proposition 4. 
�

Algorithm 2. Computation of the search direction νp for inequality constrained
BOPs
Require: BOP of form (97), x0 with ∇fi(x0) �= 0, i = 1, 2
Ensure: search direction νp

1: ν := −
[

∇f1(x0)
‖∇f1(x0)‖ + ∇f2(x0)

‖∇f2(x0)‖

]

2: G :=

⎛
⎜⎝

∇gi1(x0)
T

...
∇gis(x0)

T

⎞
⎟⎠ ∈ R

s×n

3: compute Q and R s.t. GT = QR = (q1, . . . , qs, qs+1, . . . , qn)R
4: Q̃ := (qs+1, . . . , qn)
5: νp := Q̃Q̃T ν
6: return νp

Example 6. Consider the following BOP proposed in [8]:

Minimize

f1(x) = x1 (103)

f2(x) = g(x) ∗
(

1 −
√

x1

g(x)

)
,

with g(x) = 1 + x2.

Subject to

cos θ (f2(x1, x2) − e) − sin θf1(x1, x2) ≥ (104)
a| sin (bπ (sin θ (f2(x1, x2) − e) + cos θf1(x1, x2))

c) |d, (105)

where 0 ≤ xi ≤ 1 for i ∈ {1, 2}. And a = 0.1, b = 10, c = 2, d = 0.5, e = 1 and
θ = −0.2 ∗ π. Fig. 4 shows an example of the proposed MODD. Note that νp

lays over the descent cone and fulfills the above criterion; thus νp is a descent
direction.
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Fig. 4. Considering a starting point for an active constraint when computing νp using
Eq. (73), it can be a descent direction or not. This figure illustrates the behavior in
decision variable space for Example 6.

3.5 A Gradient Free Approximation of a MODD for CBOPs

In the following we use the GSA method to compute the above discussed descent
directions for (unconstrained or constrained) bi-objective optimization problems.

We assume that we are given a candidate solution x0 that is designated for
local search, and that we are given sample points x1, x2, . . . , xr in the vicinity
of x0. We further assume that their objective functions values f(xi) are already
known, which is indeed the case if the xi’s are chosen from a given population
within a MOEA. Recall from GSA that we can use

νi :=
xi − x0

‖xi − x0‖2 , di :=
f(xi) − f(x0)
‖xi − x0‖2 , i ∈ {1, . . . , r}, (106)

Thus, (16) turns into

min λT d (107)
s.t. λT V T V λ − 1 = 0,

which is the problem we have to solve. Then, consider the matrix

Ṽ := (ν1, . . . , νr), (108)

to finally obtain

ν̃∗ = − 1
‖Ṽ λ̃∗‖ Ṽ (Ṽ T Ṽ )−1d. (109)
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Then, ν̃∗ is the most greedy direction for a single-objective. It is worth to
notice that this derivation can be done for all objective functions in a MOP.

Unconstrained Case
For the unconstrained case, we can apply the previous idea to approximate
Eq. (73), hence obtaining a gradient-free descent direction. Recall that

νL := −
[ ∇f1(x)
‖∇f1(x)‖ +

∇f2(x)
‖∇f2(x)‖

]
, (110)

then we can approximate ∇f1(x) and ∇f2(x) as follows:

ν̃∗
j = − 1

‖Ṽ λ̃∗‖ Ṽ (Ṽ T Ṽ )−1dj , (111)

for j = {1, 2}. Then, we can approximate νL as

ν̃L := −
[

ν̃∗
1

‖ν̃∗
1‖ +

ν̃∗
2

‖ν̃∗
2‖

]
. (112)

Equality Constrained Case
For this scenario assume that x0 is a feasible solution, and that we are given
x1, x2, . . . , xr which are sample points in the neighborhood of x0; also, that their
objective functions values f(xi) are already known. From the constrained case
of GSA recall that the Matrix M := (mji) ∈ R

m×r is given by

mj,i :=
hj(xi) − hj(x0)

‖xi − x0‖2 , i ∈ {1, . . . , r}, j ∈ {1, . . . , m}. (113)

Via Eqs. (108) and (113) we can compute an approximation H̃T of the Jaco-
bian matrix HT of the constraint functions given by

H̃T = Ṽ (Ṽ T Ṽ )−1MT (114)

that will be used to compute the projection of νp. Then, considering a feasible
solution x0, we proceed analogously to the unconstrained case, and first compute
ν̃L as in Eq. (112). Next, in order to compute ν̃p, we compute a QR decomposition
of H̃T , and define

Q̃ := (q̃m+1, . . . , q̃n) ,

where q̃i, i ∈ {m+1, . . . , n}, are the last n−m column vectors of the orthogonal
matrix Q obtained by the QR-decomposition of H̃T . Then

ν̃p := Q̃Q̃T ν̃L, (115)

is the orthogonal projection of ν̃p onto the set of feasible directions. Assuming the
notation for Ṽ and dj

i as in Eq. (108) and (106), the following criteria manages
the application of our gradient-free proposal:
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For a BOP of the form (74), with ∇fi(x) �= 0 for i ∈ {1, 2} and hj(x) = 0.
Compute ν̃p, as in Eq. (115) and

Cg := d1T (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1d2. (116)

Then we proceed as follows:

1. If Cg > 0, then perform a line search over ν̃p.

2. If Cg = 0 and diT (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1di �= 0 for an index i ∈ {1, 2},
then perform a line search over ν̃p.

3. If Cg < 0, then the line search is not applied.

Note that the above criteria allow us to decide, during the algorithm’s running
time, when the information available is likely enough to have an approximation
of a MODD. After deciding to approximate such direction, we compute the new
iterative point xi as follows:

xi := x0 + tν̃p, (117)

where t is a suitable step length. In this work, we computed t by a backtracking
procedure based on the Armijo’s condition [29]. The description in Algorithm3
corresponds to the standalone gradient-free algorithm for equality constrained
MOPs.

Inequality Constrained Case
In the case that inequality constraints are present, the consideration is made
over I(x), that is the set of active inequality constraints at x. Thus we obtain
the new approximation of ν̃p

L as follows:

ν̃p
L := Q̃Q̃T ν̃L. (118)

Assuming the notation for Ṽ and dj
i as in Eq. (108) and (113), the following

result states the criteria for the application of the gradient-free proposal:
For a BOP of the form (97), with ∇fi(x) �= 0 for i ∈ {1, 2} and gi(x) = 0 for

every i ∈ I(x). Compute ν̃p
L as in Eq. (118) and

Cg := d1T (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1d2. (119)

Then we proceed as follows:

1. If Cg > 0, then perform a line search over ν̃p.
2. If Cg = 0 and diT (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1di �= 0 for an index i ∈ {1, 2},

then perform a line search over ν̃p.
3. If Cg < 0, then the line search is not applied.
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Algorithm 3. Standalone gradient-free MODD for equality constrained BOPs.
Require: x0 :initial solution, r :number of neighbors, ε : threshold for Cg

Ensure: xf :final solution.
1: while Stopping Criterion does not fulfill do
2: i ← 1;
3: xi ← x0;
4: Compute x1, . . . , xr neighbor points for x0;
5: Compute νi and d as in Eq. (113);
6: Compute Ṽ as in Eq. (108);
7: if xi is a feasible solution then
8: Compute Cg as in Eq. (116).
9: cj ← djT (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1dj j = 1, 2;

10: if Cg > 0 then
11: Compute ν̃p as in Eq. (115);
12: Compute t ∈ R

+;
13: xi+1 ← xi + tν̃L;
14: i ← i + 1;
15: else if |Cg| < ε then
16: if c1 > 0 or c2 > 0 then
17: Compute ν̃p as in Eq. (115);
18: Compute t ∈ R

+, a suitable step size
19: xi+1 ← xi + tν̃L;
20: i ← i + 1;
21: else
22: It is not a descent direction.
23: end if
24: else
25: It is not a descent direction.
26: end if
27: end if
28: end while
29:
30: return xf ← xi;

After deciding to approximate such direction, we compute the new iterative
point xi as follows:

xi := x0 + tν̃p
L, (120)

where t is a suitable step length. In this work, we compute t via a backtrack-
ing procedure based again on Armijo’s condition. The standalone algorithm for
inequality CMOPs is described in Algorithm 4.

We have presented in this section some criteria to decide when a solution is
a MODD. The potential of these criteria will be displayed in the next section
when used in combination with population-based heuristics.
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Algorithm 4. Standalone gradient-free MODD for inequality CBOPs.
Require: x0 :initial solution, r :number of neighbors, ε : threshold for Cg, I(x) :active

set.
Ensure: xf :final solution.
1: while Stopping Criterion does not fulfill do
2: i ← 1;
3: xi ← x0; Compute x1, . . . , xr neighbor points for x0;
4: Compute νi and d as in Eq. (113);
5: Compute Ṽ as in Eq. (108);
6: Compute Cg as in Eq. (119);
7: cj ← djT (Ṽ T Ṽ )−1Ṽ T Q̃Q̃T Ṽ (Ṽ T Ṽ )−1dj j = 1, 2;
8: if Cg > 0 then
9: Compute ν̃p as in Eq. (115);

10: Compute t ∈ R
+, a suitable step size

11: xi+i ← xi + tν̃L;
12: i ← i + 1;
13: else if |Cg| < ε then
14: if c1 > 0 or c2 > 0 then
15: Compute ν̃p as in Eq. (115);
16: Compute t ∈ R

+;
17: xi+1 ← xi + tν̃L;
18: i ← i + 1;
19: else
20: It is not a descent direction;
21: end if
22: else
23: It is not a descent direction;
24: end if
25: end while
26:
27: return xf ← xi;

4 Application: Use of GFDD Within NSGA-II

In order to apply the developed ideas, we will in the following show some exam-
ples of the integration the above ideas to perform a multi-objective local search
within the execution of the well-known algorithm NSGA-II [10] as demonstra-
tor. This is a state-of-the-art algorithm for bi- and three-objective optimization
problems that makes use of an archiving strategy based on the crowding dis-
tance. This strategy will play an important role in the hybridization as it will
help us to decide which individual is a suitable starting point to perform the
local search.

Algorithm 5 shows a pseudo code of a hybrid of GFDD and NSGA-II which
also shows that such a coupling can be done relatively easily with in principle
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Fig. 5. Points p1 and p2 are considered to be neighbors of p0. The green triangles
outside the circle are population elements which are not used for the GSA computation.

Algorithm 5. Pseudocode of NSGA − II + Localsearch

Require: Ps := Population size, size := Problem Size, Pc := crossover probability,
Pm := mutation probability

Ensure: Set of approximated solutions
1: Population ← InitializePopulation(Ps, size)
2: FitnessEvaluation(Population)
3: FastNondominatedSort(Population)

4: Selected ← SelectParentsByRank(Population, Ps)
5: Offspring ← CrossoverAndMutation(Selected, Pc, Pm)
6: while ¬StopCondition() do
7: FitnessEvaluation(Offspring)
8: Union ← Merge(Population, Offspring)
9: Fronts ← FastNondominatedSort(Union)

10: CrowdingDistanceAssignment(Fronts)
11: Selected ← SelectParentsByRankAndDistance(Parents, Ps)
12: Population ← Offspring
13: Selected individual xs

14: ApplyLocalSearch(xs) if suitable
15: Offspring ← CrossoverAndMutation(Selected, Pc, Pm)
16: end while
17:
18: return Offspring
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Fig. 6. This figure illustrates a particular instant of a certain iteration in the
population-based algorithm. The population is represented by circles, while the initial
and final solutions involved in the local search procedure are marked by light and dark
diamonds correspondingly. The tested function corresponds to the CZDT2 from [31].

any other MOEA.The first part of the algorithm (lines 1 to 12) coincides with
the evolutionary process of the NSGA-II. Then, the interleaving of our proposal
starts; in lines 13 and 14 we select an individual xs related to the biggest crowding
value. If xs is feasible we decide based on the propositions presented above if the
local search is suitable. For the case of inequality constraints we just consider
the set of active constraints. Once the proposed low-cost MODD is successfully
computed, we apply a regular line search through it with a suitable step size
control provided with a traditional backtracking tuning.

At each generation, we applied the local search only to one selected indi-
vidual mainly because we do not want to make big changes through the entire
population of the evolutionary algorithm. If we apply the local search from many
individual the possibility of diversity losses or premature convergence increases.
Also, the computational cost (in terms of function evaluations) will increase
due to step size computation. When selecting the starting point for the local
search, the straight decision is to choose the individual with the most significant
crowding distance value in order to assure the existence of close neighbors. These
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Fig. 7. This figure illustrates a particular instant of a certain iteration in the
population-based algorithm. The population is represented by circles, while the ini-
tial and final solutions involved in the local search procedure are marked by light and
dark diamonds correspondingly. The image of the constraint function is also marked
in the figure. The tested function corresponds to the CZDT3 from [31].

neighbors are used to approximate the gradient information required by the pro-
posed operator (see Fig. 5). By doing this, there is a chance to generate a new
individual such that: (i) it is not that far from xs; but (ii) it can be deleted by
the crowding process itself. Therefore, there is a compromise between choosing
a candidate that has enough neighbors to approximate the gradient-free MODD
and the chances of losing the new candidate due to crowding. A better idea could
be to choose an individual xs with an average crowding value and at least r close
neighbors.

Numerical results that support the advantages of the use of this proposal
can be found in [38]. Next, we present some examples of the performance of a
population-based algorithm when applying this proposed low-cost local search.
Figures 6 and 7 illustrates the application of NSGA-II applied to the CZDT2
and CZDT3 benchmark functions given in [31]. These functions are bi-objective
optimization problems with equality constraints. The figures show a certain
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Fig. 8. This figure illustrates a particular instant of a certain iteration in the
population-based algorithm. The population is represented by circles, while the ini-
tial and final solutions involved in the local search procedure are marked by light and
dark diamonds correspondingly. The tested function corresponds to the CF2 from [39].

generation of the Multi-objective Evolutionary Algorithm (MOEA) when the
local search is applied to generate a new individual. Figures 8 and 9 illustrates
the application of NSGA-II applied to the CF2 and CF4 benchmark functions
[39]. These functions are bi-objective optimization problems with inequality con-
straints. The figures show a certain generation of the MOEA when the local
search is applied to generate a new individual.
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Fig. 9. This figure illustrates a particular instant of a certain iteration in the
population-based algorithm. The population is represented by circles, while the ini-
tial and final solutions involved in the local search procedure are marked by light and
dark diamonds correspondingly. The tested function corresponds to the CF4 from [39].

5 Conclusions

In this chapter we have reviewed some tools that allow to realize a local search
engine for consrained bi-objective optimization problems with a low cost when
using within set based optimization strategies such as evolutionary algorithms.
The basic idea of the Gradient Subspace Approximation is to compute the most
greedy search direction at a given point out of given neighborhood informa-
tion. Next, we have presented a way of how to compute descent directions for
bi-objective optimization problems. The method can be applied both to uncon-
strained as well as to constrained problems. Next, we have shown how to utilize
GSA in order to obtain a “gradient free” approximation of these search direc-
tions. Finally, we have demonstrated the possible benefit of such a resulting
low cost searcher on a hybrid evolutionary algorithm, which couples the pro-
posed search technique with the widely used evolutionary algorithm NSGA-II.
We stress, however, that the gradient free local search engine can in principle
be integrated into any other evolutionary algorithm or any other set-oriented
search heuristic.
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