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�Introduction

Frontotemporal dementia (FTD) is a devastating 
early-onset dementia characterized by the deteri-
oration of the frontal and temporal lobes, severe 
changes in social and personal behaviour and 
blunting of emotions [1]. Up to 40% of cases 
have a positive family history, and mutations in at 
least ten genes explain almost 50% of familial 
cases, and this has been the key to the remarkable 
progress in our understanding of the molecular 
basis of FTD. Among the familial cases, muta-
tions in the microtubule-associated protein tau 
(MAPT), granulin (GRN) and C9orf72 are 
responsible for the majority of cases [2]. 
Neuropathologically, mutations in MAPT are 
associated with neurofibrillary tangles consisting 

of hyperphosphorylated tau protein, and  
mutations in GRN and C9orf72 lead to accumula-
tion of the transactive response DNA-binding 
protein 43 kDa (TDP-43). Although all three 
genes are associated with a clinical FTD pheno-
type, their cellular functions are quite diverse, 
and how these different genes lead to a similar 
clinical phenotype is still an unanswered ques-
tion. Currently, there is no cure for FTD, and for 
the development of successful therapies, it is 
essential to understand the role of all genetic and 
environmental risk factors in the disease process, 
and to investigate which factors are important in 
the progression of the disease in all patients and 
which are specific for subgroups of patients.

It is therefore of utmost importance to identify 
the regulatory mechanisms that lead to neurode-
generation as a consequence of the already iden-
tified mutations and novel genes that are being 
identified by whole-genome sequencing (WGS) 
and whole-exome sequencing (WES) studies and 
genome-wide association studies (GWAS).

Publicly available data resources such as 
Genotype-Tissue Expression (GTEx) (https://
gtexportal.org/home/), Encyclopedia of DNA 
Elements (ENCODE) [3, 4] and the Functional 
Annotation of the Mammalian Genome 
(FANTOM) [5] provide excellent tools to investi-
gate the molecular processes in which identified 
genes and candidate genes for FTD are involved 
and can help to determine the processes that reg-
ulate the expression of these genes, but an 
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important limitation is that all these resources 
have been generated from human tissues and cel-
lular models of unaffected controls. To under-
stand the role of identified genes in the disease 
situation, there is a need to generate a publicly 
available resource from affected cells and tissues 
obtained from patients and animal models. As 
part of the European Union (EU) Joint 
Programme  – Neurodegenerative Diseases 
Research (JPND), we formed the Risk and modi-
fying factors in FTD (RiMod-FTD) consortium 
with the aim to investigate common and distinctly 
affected processes in different groups of FTD 
patients, using a combination of genomic and cell 
biological approaches on tissues of selected 
patient groups and corresponding animal and cel-
lular model systems. Our integrative approach 
allows an unbiased selection of the most suitable 
targets that can improve our understanding of 
disease progression and, in addition, will help 
identify the key genes in the disease process that 
are the most suitable targets to modify the disease 
phenotype, and thus provide better choices for 
therapy development. Here, we describe the cur-
rent state of our resource and provide examples 
of how the data can be mined to understand the 
molecular processes associated with identified 
genes for FTD and help to prioritize candidate 
genes identified through WGS/WES and GWAS 
studies.

�The Risk and Modifying Factors 
in Frontotemporal Dementia 
Resource

In order to generate a comprehensive multi-omics 
data resource, we collected frozen post-mortem 
brain tissue from seven regions (frontal, temporal 
and occipital lobes, hippocampus, cerebellum, 
putamen, caudate) of patients carrying mutations 
in the three most commonly mutated genes in 
FTD—MAPT, GRN and C9orf72—and controls 
without neurological disease for multi-omics 
characterization. Extensive quality control mea-
sures ensured we only included samples that pro-
vided us with high-quality ribonucleic acid 
(RNA), epigenetic and protein data. Because 

human post-mortem brain represents the disease 
end stage, we have also collected tissue at differ-
ent time points of the development of pathology 
from the frontal lobes of established mouse mod-
els for the same three genes. In addition, we have 
used human immune pluripotent stem (iPS) lines 
carrying the same mutations, differentiated them 
into neurons and performed similar analyses. In 
this way, we have created a resource that can be 
used to mine molecular data at the end stage of 
disease but also during life and early differentia-
tion. The inclusion of iPS lines provides us with 
the additional possibility to investigate and vali-
date identified pathways by targeted perturbation 
studies with, for example, RNAi and CRISPR-
Cas9 (Table 1).

To thoroughly characterize the molecular 
mechanisms in post-mortem human brain tissue, 
mouse models and induced pluripotent stem cell 
(iPSC)-derived neurons, we generated various 
omics-datasets. RNA-sequencing (RNA-seq), the 
most widely used omics-technology [6], allows 
to measure the gene expression of the entire tran-
scriptome, and it thus represents a central dataset 
in the resource. Additionally, we generated Cap 
Analysis of Gene Expression sequencing (CAGE-
seq) [7] data, which captures the 5′-end of tran-
scripts and can thus be used to profile the 
transcription start site (TSS) of genes. The 
CAGE-seq data thus represents a complementary 
dataset to the RNA-seq data, as it can not only be 
used to measure gene expression but also to iden-
tify different TSS or promoter usage as well as 
enhancers [8]. The transcriptome is heavily influ-
enced by the epigenome, for instance, by CpG 
methylation [9]. To assess potential epigenomic 
changes in FTD, and to help explain observed 
transcriptomic aberrations, we profiled over 
800,000 CpG sites for methylation. Since for all 
protein-coding genes, the end-product of gene 
expression is a protein, we used proteomics tech-
nology to quantify the expression of thousands of 
proteins as an important complementary readout 
to the transcriptome. As both gene expression 
and translation are regulated, in part, by micro 
RNAs (miRNAs), we performed small RNA-
sequencing (smRNA-seq) to identify important 
regulator miRNAs and potentially explain 
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changes observed in the transcriptome or pro-
teome. Finally, Chromatin Immuno-Precipitation 
sequencing (ChIP-seq) was performed for the 
H3K4me3 protein to identify active promoters. 
All the above-mentioned genomics data types 
that have been generated for the RiMod-FTD 
resource focus on different parts of the cellular 
transcriptional machinery. By combining these 
different datasets, it is possible to generate better 
hypotheses about the disease-causing regulatory 
mechanisms or to validate existing hypotheses 
using multiple data modalities. A graphical over-
view of the datasets already generated and 
planned for future releases is depicted in Fig. 1.

�Analysing Multi-omics Datasets

Generating a multi-omics data resource is, of 
course, only the first step on the path to gain new 
knowledge about the condition of interest. The 
next step is to rigorously analyse the data and/or 
integrate it with genetic data to generate new 
hypotheses about disease mechanisms. For large 
and complex datasets such as those found in a 
multi-omics data resource, there exists a plethora 
of bioinformatics methods that can be applied to 
gather new information. For conventional tech-
niques like RNA-seq, there are several accessible 
and established tools. For others, the researchers 
might have to write new algorithms themselves. 
In recent years, specialized algorithms have been 
developed that allow the integration of multiple 
experiments from different technologies [10]. 
Combining the different datasets with the possi-
bilities of modern bioinformatics can then lead to 
new insights. Moreover, having a central disease-
specific data resource available is beneficial in 
more ways than just to create new insights based 
on the resource datasets alone. It depicts a valu-
able asset that FTD-researchers can use to better 
interpret their own experiments or test their 
hypotheses. For instance, a clinician or biologist 
may state a hypothesis about the involvement of 
a new gene in FTD pathology based on results 
from an experiment. Before investing more 
resources in further investigating the role of this 
gene, the researcher would like to see some more 

Table 1  List of datasets that have already been generated 
and processed for RiMod-FTD

Post-mortem human brain tissue

Data type

Brain region Samples
(control, 
MAPT, GRN, 
C9orf72, 
sporadic)

RNA-seq Frontal 47 (16, 11, 7, 
13, 0)

CAGE-seq Frontal, temporal, 
caudate, hippocampus, 
occipital, cerebellum, 
and putamen

248 (66, 61, 
42, 53, 24)

smRNA-seq Frontal and temporal 87 (27, 25, 
14, 21, 0)

Proteomics Frontal and temporal 69 (16, 24, 
12, 17, 0)

Methylation Frontal 48 (14, 13, 7, 
14, 0)

ChIP-seq 
H3K4me3

Frontal 16 (4, 4, 4, 4, 
0)

ChIP-seq 
H3K4me3

Sorted neurons 
(frontal)

25 (8, 8, 3, 6, 
0)

Mouse models
Data type Model

Mouse line
Samples

CAGE-seq MAPT-P301L
rTg(TauP301L)4510

32 (control: 
16, 
transgenic: 
16)

CAGE-seq GRN knockout
Grntm1.1Pvd

33 (control: 
17, knockout: 
16)

CAGE-seq C9orf72 knockdown
C57BL/6j-
Tg(C9orf72_
i3)112Lutzy/J

29 (WT: 12, 
scramble: 9, 
knockdown: 
8)

Proteomics MAPT-P301L
rTg(TauP301L)4510

33 (control: 
16, 
transgenic: 
17)

Proteomics GRN knockout
Grntm1.1Pvd

33 (control: 
17, knockout: 
16)

Proteomics C9orf72 knockdown
C57BL/6j-
Tg(C9orf72_
i3)112Lutzy/J

31 (WT: 12, 
scramble: 9, 
knockdown: 
10)

iPSC-derived cells
Data type Cell type Samples 

(control, 
MAPT, 
GRN, 
C9orf72)

smRNA-seq Neurons 21 (9, 7, 4, 6)
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evidence. In such a case, RiMod-FTD allows to 
quickly check the transcriptional state of this 
gene in several FTD subtypes or whether the 
quantities of the protein product are changed in 
the disease. Additionally, the researcher could 
examine whether the gene is differentially meth-
ylated and, finally, check whether aberrant regu-
lation of the gene can be observed in multiple 
model systems. With more datasets added to the 
resource in the future, the possibilities for vali-
dating experimental results will further increase. 
Being able to validate scientific findings from 
own experiments in public data is obviously of 

great value and helps to identify the best research 
paths to pursue and thus to accelerate the scien-
tific progress. In the following, we cover the dif-
ferent technologies used to generate the datasets 
found in the resource, how these data can be ana-
lysed and, where suitable, we present some 
examples related to FTD.

�Pre-processing
Before any dataset generated in the wet lab can 
be mined for interesting results, it first has to be 
processed and brought into a format suitable for 
analysis. While great efforts have been undertaken 

Fig. 1  The RiMod-FTD data resource consists of datas-
ets generated from post-mortem human brain tissue, 
iPSC-derived neurons and brain tissue from mouse mod-
els covering FTD caused by MAPT, GRN and C9orf72. 

The multi-omics technologies used to generate the data 
cover ChIP-seq, CAGE-seq, RNA-seq, smRNA-seq, epi-
genetic arrays and proteomics
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to simplify this part of the analysis, it remains a 
very crucial and important step in bioinformatics. 
The process of converting the raw data that come, 
for instance, from a sequencing machine, into 
interpretable and biologically meaningful data 
points usually requires several steps, each of 
which is executed with a specialized algorithm. 
This sequence of steps is commonly called a pro-
cessing or analysis pipeline. Writing such a pipe-
line for any omics-data type requires extensive 
technical knowledge about the data-generating 
process as well as a good understanding of bioin-
formatics algorithms capable of handling the 
respective data. All datasets in RiMod-FTD have 
been processed and analysed carefully and are 
available in raw data as well as processed data 
format. This makes the data more accessible for 
scientists without extensive domain knowledge, 
while preserving the raw data for any scientist 
who wants to process the data with a different 
pipeline.

�Analysing the Transcriptome 
with Ribonucleic Acid Sequencing
The transcriptome is probably the most com-
monly studied ‘ome’ and plays a central role in 
many studies. Rightfully so, as regulation of gene 
expression underlies most cellular processes, it is 
aberrant in many diseases and depicts the closest 
readout for effects from genetic and epigenetic 
variation. While multiple technologies exist that 
can measure gene expression, RNA-seq is the 
most common one nowadays. Because of this, 
and because of the importance of the transcrip-
tome, excellent tools exist that help to analyse 
RNA-seq data. Usually analysis of transcriptomic 
starts with identifying differentially expressed 
genes (DEGs) between different groups of sam-
ples. Several software packages for this purpose, 
called differential expression (DE) analysis, 
exist, such as DESeq [11] or edgeR [12], which 
allow to apply carefully developed statistical 
models to calculate fold-changes and p-values for 
every gene. Although DE analysis is a very stan-
dard approach and the above-mentioned software 
packages are easy to use, care must be taken by 
the user to specify the design matrix correctly 
and to account for confounding variables such as 

age, gender or experiment batches. The results of 
DE analysis constitute the basics of many down-
stream methods and help the experimenter to 
identify pathways that are most affected by a 
condition. Along with raw RNA-seq data, the 
RiMod-FTD resource contains pre-calculated 
fold-changes and p-values for the most important 
comparisons of the contained transcriptomic 
datasets. This makes it easy to quickly check the 
status of a specific gene in multiple FTD sub-
groups or model systems, without the need to 
first process and analyse the data.

The entire set of DEGs defined by DE analysis 
can be used in combination with public databases 
of pathways and gene sets that have been curated 
by experts to test for enrichment of DEGs in 
some of these pathways. Results from such anal-
yses can be of great value, as they, if done cor-
rectly, immediately highlight the cellular 
processes different between conditions. In a 
recent study, Dickson et al. [13] performed RNA-
sequencing on human brain samples of patients 
with C9orf72 repeat expansion, patients without 
this mutation and control subjects. Using path-
way analysis in combination with weighted gene 
co-expression network analysis (WGCNA), they 
found that vesicular transport pathways are espe-
cially affected by C9orf72 repeat expansions. 
Using only transcriptomic data, the authors could 
highlight several affected pathways in C9orf72 
mutation carriers and identified biomarker candi-
date genes by applying LASSO regression. 
Importantly, RiMod-FTD contains datasets from 
patients not only with C9orf72 but also with  
GRN and MAPT mutations, and it thus allows 
to  test for commonalities between the disease 
subgroups in terms of affected pathways or 
WGCNA modules. For example, analysing the 
RNA-seq data from the RiMod-FTD resource, 
we have found that oxidative phosphorylation 
is  impaired in both FTD-GRN and FTD-MAPT. 
However, membrane-trafficking-associated path-
ways appear to be strongly down-regulated in 
FTD-MAPT, while FTD-GRN shows a stronger 
enrichment for immune system–related path-
ways. Moreover, as lists of affected pathways are 
available in the resource, a scientist with an inter-
est in a specific pathway can quickly investigate 
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whether this pathway is affected in some FTD 
subtype or model system.

Complex tissue, like post-mortem brain tis-
sue, consists of several transcriptionally different 
cell types. When interpreting RNA-seq experi-
ments on such tissues, it is important to keep in 
mind that systematic differences in cell-type 
compositions between sample groups can lead to 
false-positive DEGs in the analysis. To account 
for this problem, several cell deconvolution 
methods have been developed that allow to esti-
mate the cellular composition of each sample 
from RNA-seq data. Not only does this help to 
control for false positives, but it can also uncover 
unknown cellular composition changes in a dis-
ease. Examples for cell deconvolution algorithms 
are MuSiC [14] and Scaden [15]. The latter has 
been developed for the analysis of data from the 
RiMod-FTD project and showed best perfor-
mance on post-mortem brain tissue when com-
pared to other algorithms.

�Co-expression Analysis
If an expression dataset is sufficiently large, gene 
co-expression analysis can be used to obtain 
dataset-specific expression modules that are rel-
evant to the disease. WGCNA, which was men-
tioned earlier, is the most popular algorithm for 
this task [16]. Briefly, WGCNA calculates co-
expression values of genes across a dataset, 
which can then be used to cluster genes into co-
expression modules. The underlying assumption 
is that genes with similar expression patterns tend 
to have similar functions or are involved in over-
lapping regulatory mechanisms. A module eigen-
gene, which is the first principal component of 
the expression matrix, can be used to associate 
traits with modules—which allows to identify 
disease-associated modules. Other, module-
internal metrics calculated by WGCNA help to 
identify module hub-genes that might be of spe-
cial importance. In the study mentioned earlier 
by Dickson et al., WGCNA was used to identify 
co-expression modules that are associated with 
the C9orf72 repeat expansion. Through module 
analysis, they identified a module that contained 
the gene C9orf72 and was enriched for metabolic 
pathways, indicating that C9orf72 might have a 

similar function or affect these pathways. Another 
study from Swarup and colleagues [17] per-
formed WGCNA on RNA-seq data from brain 
tissue of mouse models for MAPT and GRN 
mutations. The authors identified two modules 
that are significantly correlated with tau hyper-
phosphorylation, a marker of disease progression 
in FTD and Alzheimer’s disease (AD) [18]. By 
further analysing these modules, they were able 
to highlight multiple genes with potentially 
important roles in the pathways represented by 
the modules. These studies show how valuable 
information can be extracted from transcriptomic 
data alone using pathway- and module-based 
approaches. A great advantage of RiMod-FTD is 
the availability of transcriptomics datasets from 
several tissues and model systems. This allows us 
to evaluate the robustness of co-expression mod-
ules—which are often to some extent dataset-
specific—longitudinally and across different 
model systems. Furthermore, modules or path-
ways that a researcher has identified in their own 
dataset can be tested for reproducibility in the 
various FTD-related datasets of RiMod-FTD. We 
believe that lacking reproducibility of results 
generated with genomics technologies is a major 
hurdle to the scientific progress, and public 
resources with easily accessible datasets like 
RiMod-FTD are one way of addressing this 
problem.

�Alternative Splicing of Transcripts
While it is common to perform most analyses 
with RNA-seq data on the gene level, it is possi-
ble to infer transcript-level information from this 
data as well. However, estimating transcript 
abundances from RNA-seq data is substantially 
more challenging, as the sequence of isoforms 
overlaps to a large part, and, consequently, most 
reads could be assigned to multiple transcripts. 
Furthermore, the downstream analysis options 
are currently not as rich for transcripts as for 
genes, since many tools (e.g. pathway databases) 
operate mainly on the gene level. Nevertheless, 
various tools for the quantification of transcripts 
and the detection of alternative splicing have 
been developed. For instance, Leafcutter and 
MAJIQ are two modern examples of algorithms 
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that can identify alternative splicing events from 
RNA-seq data [19, 20]. Both tools circumvent 
the problem of transcript quantification by focus-
ing on exon splice junctions, and thus the exclu-
sion of introns, instead of the inclusion of exons 
[19]. Although differential splicing analysis is 
still not routinely done with RNA-seq data, it has 
long been known that aberrant splicing can have 
devastating effects and lead to disease. For 
instance, the authors of MAJIQ reported differ-
ential splicing of the CAM2K gene in Alzheimer’s 
disease (AD) [20]. The gene MAPT is another 
prominent example. Mutations in MAPT lead to a 
ratio change of tau isoforms, the protein product 
of the gene. The isoforms have different chemical 
properties, and the disrupted balance between 
them can cause disease [21]. Mutations in the 
genes for TDP-43 and FUS have been associated 
with alternative splicing in amyotrophic lateral 
sclerosis (ALS) [22, 23], and a mutation in the 
gene PINK1 was shown to activate a cryptic 
splice-site in Parkinson’s disease [24]. Many 
other mutations can cause alterations in splicing 
and cause disease, showing that the interrogation 
of differential splicing represents an important 
aspect of RNA-seq data analysis. The RNA-seq 
datasets in the RiMod-FTD resource have been 
analysed for alternative splicing and can be easily 
queried for evidence of alternative splicing of a 
gene of interest in a specific FTD subgroup. 
Transcriptomic regulation via alternative splicing 
is a complex mechanism that certainly has not 
been fully interrogated, and we hope that the 
diverse RNA-seq data available in RiMod-FTD 
can help to elucidate the role of gene isoforms in 
FTD.

�Detecting Regulatory Mechanisms
Once deregulated cellular pathways in a disease 
have been identified using methods such as DE 
analysis, pathway enrichment or WGCNA, it is 
often of great interest to identify the regulatory 
mechanisms that drive these changes. Indeed, 
this depicts the major goal of many studies. 
Understanding the regulatory mechanisms that 
underlie a disease greatly helps to identify drug-
gable targets that can be further interrogated and 
potentially help to develop treatments. However, 

the regulation of the transcriptome involves 
numerous players that work with and against 
each other, and no single assay can capture all of 
them. Therefore, a multi-omics approach is 
essential. The great advantage of RiMod-FTD is 
that it contains multi-omics datasets from match-
ing samples, which measure different aspects of 
transcriptomic regulation. This makes it possible 
to identify potential regulatory mechanisms or 
confirm or deny hypotheses about transcriptomic 
regulation. In the following, we cover different 
modes of regulation, assays available in RiMod-
FTD that can be used to understand them and 
bioinformatics algorithms that help to extract the 
desired information.

Regulation by Transcription Factors
The most well-known players in the regulation of 
gene expression are transcription factors (TFs), 
which bind to promoters and can increase or 
repress the expression of one or several genes. 
Multiple bioinformatics tools have been devel-
oped to identify candidate TFs responsible for 
observed expression patterns. They differ in the 
data that they require as input and the informa-
tion they use to generate TF rankings. One 
method to identify active TFs is to look for 
enrichment of transcription factor binding sites 
(TFBS) in the promotor region of a set of genes 
compared to a background. CAGEd-oPOSSUM 
[25] uses user-provided CAGE-seq data to gener-
ate promoter-proximal regions, which are then 
scanned for TFBS enrichment. Promoters, which 
are often in the vicinity of the TSS, are thus fre-
quently enriched in the region around CAGE-
peaks. A different approach is taken by ChEA3, 
which only needs a list of genes as input [26]. 
The algorithm then integrates information gath-
ered from various sources to rank TFs according 
to consistent evidence across information 
sources. As this approach only relies on a list of, 
for example, up-regulated genes, which can be 
readily inferred from RNA-seq data, it is widely 
applicable. Because RiMod-FTD contains both 
CAGE-seq and RNA-seq data, both above-
discussed methods can be applied, in comple-
mentary fashion, to the data. Chromatin 
Immunoprecipitation sequencing (ChIP-seq) is 
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another technology that can be used to study reg-
ulation by TFs [27]. With ChIP-seq, the experi-
menter can identify DNA elements to which a 
protein of interest binds. As TFs bind to DNA, a 
ChIP-seq experiment for a particular TF will 
identify promoters and enhancers that are bound 
by the TF of interest, which can be used to iden-
tify genes regulated by these promoters. The 
analysis of ChIP-seq data requires specialized 
algorithms that discriminate between real bind-
ing sites and background signal. A very popular 
tool for this purpose is MACS2 [28]. Although 
RiMod-FTD currently does not contain ChIP-seq 
data for specific transcription factors, it contains 
H3K4me3 ChIP-seq data. H3K4me3 is associ-
ated with active promoters and can thus be used 
to identify active genes and TFs that potentially 
drive the expression (similar to CAGE-seq). In 
addition to RNA-seq, CAGE-seq and ChIP-seq, 
RiMod-FTD also contains proteomic data that 
can be assessed for TF quantities, which give a 
more direct readout than using mRNA levels as 
proxy. However, on a more cautious note, we 
want to mention that TFs are usually of low abun-
dance in the cell and are thus not always caught 
by proteomics experiments [29]. It is thus impor-
tant to use all available datasets for inferring rel-
evant TFs.

Regulation by Micro-RNAs
Micro-RNAs (miRNAs) are another type of 
important transcriptional regulator that mainly 
works by binding to the 3′-end of messenger 
RNAs (mRNAs) to decrease the mRNA stability 
or to repress the rate of translation [30]. Hence, 
they affect both the abundance of mRNA and the 
rate of protein production. Because miRNAs are 
very short (21–25 nucleotides), specialized pro-
tocols must be used for miRNA expression pro-
filing, which is why their activity cannot reliably 
be inferred from a typical RNA-seq experiment, 
which measures mRNA or total RNA expression. 
RiMod-FTD contains smRNA-seq and RNA-seq 
data from matched samples. This is of great 
value, as it allows to identify potential miRNA-
target pairings with greater confidence. First, 
candidate targets for each miRNA are predicted, 
a task for which several computational tools have 

been developed. These algorithms incorporate 
knowledge about miRNA-biology, such as the 
seed sequence of miRNAs—which must be com-
plementary to a region in the target gene—or 
evolutionary information. However, as the seed 
regions used for binding to targets are very small, 
computationally predicted targets contain high 
numbers of false positives [31]. Paired informa-
tion of gene and miRNA expression can be used 
to perform correlation analysis of miRNA-target 
pairs [32]. The assumption here is that a negative 
correlation should be observed when the miRNA 
regulates a target candidate. If no negative corre-
lation is observed, then either the target predic-
tion is wrong or the regulation by the miRNA is 
overshadowed by other regulatory effects.

As an example for this approach, we want to 
highlight a study by Swarup and colleagues, 
where the authors used protein coding gene and 
miRNA expression data to identify the miRNA—
miR-203—as a potential regulator for a disease-
associated co-expression module in mouse 
models of FTD [17]. After highlighting this 
miRNA as a potential regulator, the authors went 
further and overexpressed this miRNA in mouse 
neuronal cell cultures, where they could observe 
down-regulation of the predicted targets along 
with increased apoptosis, thus validating their 
findings from the transcriptomic data. Replication 
of such candidate miRNAs in other datasets is 
important. The RiMod-FTD resource contains 
several datasets of matched gene- and miRNA-
expression, which can be used to infer potentially 
important regulator miRNAs or to validate find-
ings from other studies, such as those from 
Swarup et al.

Regulation by Deoxyribonucleic Acid 
Methylation
The methylation of DNA residues can have 
strong regulatory effects on gene expression. 
Cytosine residues can be methylated at their fifth 
carbon molecule, usually in the context of CpG 
dinucleotides [9]. CpG methylation at the pro-
moter of genes causes transcriptional repression 
of that gene. Aberrant methylation can therefore 
directly affect the transcriptome, and many 
human diseases have now been associated with 
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methylation [33]. Many technologies for measur-
ing DNA methylation exist, of which methylation 
array chips are a popular method that nowadays 
cover over 850,000 different CpG sites across the 
genome. Specialized software packages have 
been developed to analyse this data. Like DE 
analysis, differentially methylated CpG sites 
between two conditions can be inferred. RiMod-
FTD contains methylation data of the newest 
technology, covering over 850,000 different CpG 
sites. These data serve as an additional resource 
for identifying underlying regulatory mecha-
nisms and can help to elucidate disease-related 
changes in the epigenome. As an example for the 
relevance of DNA methylation in FTD, repeat 
expansions in the C9orf72 gene—a common 
cause of FTD and ALS—are associated with 
hypermethylation of the repeat itself and 
C9orf72-flanking CpG island [34]. Gijselinck 
and colleagues reported that the repeat size cor-
relates with the degree of hypermethylation, with 
longer repeats leading to more methylation of the 
flanking CpG island [35]. Repeat size and meth-
ylation state are also correlated with age at onset, 
and the authors suggested that the increased 
methylation might be a factor explaining the dif-
ferences in age at onset of the disease.

�Proteomics
Being the end-product of gene expression, splic-
ing and translation, proteins constitute the major 
functional molecules in the cell. Although higher 
gene expression generally leads to higher quanti-
ties of the protein product, the correlation of 
these two quantities varies significantly [36]. 
Measuring mRNA concentration is hence not 
enough to infer protein concentrations [37]. It is 
obvious that the interrogation of the proteome is 
a fundamentally important step on the path to 
understanding cellular pathways and diseases 
that complement transcriptomic and epigenomic 
profiling. While the mature RNA-seq technology 
can be readily used to measure the expression of 
the entire transcriptome, quantification of the 
proteome depicts a more difficult challenge. The 
current technology works by digesting proteins 
into smaller peptides, which are subsequently 
measured by lipid chromatography (LC) and 

mass spectrography (MS). Bioinformatic algo-
rithms are then employed, in combination with 
databases, to translate the quantified peptides into 
protein-level information [38]. Like gene expres-
sion, differences of protein quantities between 
conditions can then be assessed. In addition to 
the transcriptomic and regulatory assays, RiMod-
FTD contains several proteomics datasets from 
diverse resources, such as multiple brain tissues, 
patients with different causal mutations or differ-
ent mouse models. While these datasets cannot 
cover the entire transcriptome, they represent 
valuable complementary measurements that help 
to examine how transcriptional aberrances trans-
late into the proteome. As proteomics experi-
ments are less often conducted than RNA-seq 
experiments, we believe that the proteomics data-
sets of RiMod-FTD will be of especially high 
value for scientists working in the field.

�Advantages of Multi-Model 
Approaches

As shown earlier, the use of multiple omics tech-
nologies to profile a biological system and to 
understand a disease is of great value. It allows us 
to study several, albeit not all, parts of the highly 
interconnected regulatory machine that is the cell 
and is therefore indispensable for widening the 
systems-level understanding. However, most dis-
eases, especially neurodegenerative diseases such 
as FTD, arise through complex mechanisms that 
lead from disease onset to the final disease stages. 
Understanding these temporal pathway activity 
patterns and interactions is essential for a com-
plete understanding of a disease, and most proba-
bly necessary to eventually develop remedies. To 
study neurodegeneration, brain tissue is often 
used—which is only available post-mortem (with 
some exceptions) and therefore represents the 
very end stage of the disease. Especially for dis-
eases that develop over many years, only examin-
ing the end stage will not allow us to fully 
understand how the disease develops. It is there-
fore crucial to use a multi-model approach to 
study a complex disease like FTD. For instance, 
mouse models of neurodegeneration allow to  
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profile the disease development over different tem-
poral stages [39]. Of course, other ramifications 
exist for these models, as findings in mice rarely 
entirely translate to humans, and a mouse disease 
model never completely recapitulates the actual 
disease [40]. Nevertheless, they depict a valuable 
complementary model to human post-mortem 
brain tissue. To increase the value of using mouse 
models, modern machine learning–based 
approaches have been developed that help to trans-
late the findings from mice to humans [41].

A further level of complexity arises when con-
sidering the complex multicellular nature of both 
human and mouse brain tissue. While many cell 
types are typically affected in neurodegenerative 
diseases, the dysregulated pathways likely differ 
from type to type. This has been increasingly rec-
ognized in recent years. As an example, microg-
lia have been identified as being a major factor in 
the development of AD [42]. In addition to tissue-
level models, studying specific cell types is there-
fore necessary to understand the causal 
mechanisms behind the development of neurode-
generative diseases. In the past decade, several 
methods have been developed that made it pos-
sible to differentiate patient-derived induced plu-
ripotent stem cells (iPSCs) into all the major cell 
types found in the brain [43]. This makes it pos-
sible to study the effects of the patient-specific 
genetic background on specific cell types, for 
instance, neurons. IPSC-derived neurons thus 
represent a valuable approach to study cell type–
specific effects under controlled conditions that 
cannot be examined in complex tissues. Zhang 
and colleagues differentiated iPSCs derived from 
a patient with a mutation in the FTD-causing 
CHMP2B gene into cortical neurons, which 
allowed them to study neuronal-specific effects 
of this mutation [44]. The authors identified 
abnormalities in endosomes and mitochondria as 
the most significant alterations caused by this 
mutation, providing insights into the causal 
mechanisms of CHMP2B mutations in neurons. 
The authors of a different study used iPSC-
derived neurons from a patient with MAPT muta-
tion and identified transcriptional changes of 
GABA receptor genes, which they verified in 
other data from mouse modes and human brain 

tissue [45]. These results show how iPSC-derived 
neurons can be used to study neuron-specific dis-
ease mechanisms that are directly caused by a 
genetic alteration.

The consideration of the above-mentioned 
advantages and disadvantages of different model 
systems and tissues led to the decision to make 
RiMod-FTD a disease-specific data resource that 
contains datasets from multiple model systems. 
Having these multi-model datasets facilitates the 
discovery of mechanisms that translate from 
model to model, or tissue to model and enables to 
derive much more robust hypotheses.

�Genetics Analysis

Even though almost 40% of patients with FTD 
have a positive family history, there exists a large 
gap of missing heritability to explain close to half 
of these cases, with the rest carrying mutations in 
known FTD genes such as MAPT, GRN and 
C9orf72 [2]. With a massive influx of advance-
ment in genetic methodologies in the past two 
decades, the scope to identify and study disease-
causing mutations has amplified and goes beyond 
linkage analysis and candidate gene studies. The 
human genome has 100 million single-nucleotide 
polymorphisms (SNPs) identified to date, which 
can quickly and cost-effectively be genotyped 
using arrays. Genome-wide association studies 
(GWAS) are a classic example of using geno-
typed data to compare SNPs between healthy and 
diseased individuals. Strides in next-generation 
sequencing have also helped identify novel 
genetic factors and rare damaging variants impli-
cated in FTD.

�Genome-Wide Association Studies
A GWAS is based on the concept of linkage dis-
equilibrium, which allows for a subset of SNPs to 
be used as proxies to genotype the entire genome. 
It relies on the ‘common variants’ theory to iden-
tify risk factors with modest effect and, in turn, 
risk loci in the genome that may be used to iden-
tify genes that can be clumped together to con-
firm pathways and processes relevant to that 
disease [46]. In the largest FTD-GWAS cohort, to 
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date, alterations in the immune system, lyso-
somal and autophagic pathways were identified 
as associated to FTD risk [47]. Since GWASs 
rely on finding SNPs with moderate effects, it is 
important to have large cohorts to be able to 
achieve enough statistical power to see a true bio-
logical effect. This study included a two-stage 
GWAS (discovery phase and replication phase) 
for clinical FTD, utilizing samples from 44 inter-
national research groups. The most widely used 
tool for GWAS is PLINK [48, 49].

As a follow-up, they performed expression 
and methylation quantitative loci analysis to 
study their effect on the associated SNPs. These 
types of analyses are frequently clubbed together 
to help discriminate causation from association 
as it is an important point of note that while proxy 
SNPs are associated with traits, they are seldom 
causative. The RiMod-FTD resource of multi-
omic data from different brain regions of FTD 
patients can be useful in mining the hits found in 
such large-scale GWAS studies and understand 
the biology lying underneath the association.

For example, a recent GWAS study, shows 
that the rs72824905-G allele in the gene PLCG2 
is associated with decreased risk in FTD as well 
as increased changes of longevity [50]. Following 
up on this finding using the RiMod-FTD RNA-
seq data, we found that PLCG2 is up-regulated in 
patients carrying a GRN mutation. Loss of GRN 
function has been associated with elevated 
microglial neuroinflammation [51]; this finding 
may lend evidence to the protective effect of 
PLCG2 in brain immune function.

To verify this link between genes involved in 
brain immune function analysis and FTD and the 
mechanism by which they act, integrative analy-
sis involving the results from the different omics 
data under the RiMod-FTD resource can help uti-
lize the plethora of information that all of these 
different techniques shed a light on.

�Next-Generation Sequencing
Identification of rare variants that play a role in 
disease progression cannot be accomplished with 
GWA studies that rely on the ‘common variants 
theory’. Association of rare variants with patient 
status can be assessed using burden tests using 

the SNP-set (Sequence) Kernel Association Test 
(SKAT) [52]. Such tests collapse variants into 
genetic scores and are extremely powerful at 
detecting high-impact variants that are causal in 
the same direction. Other tests that have been 
used are variance tests and combined variance 
tests that combine burden and variance tests. 
These tests rely on estimating the variance of 
genetic effects to uncover the missing heritabil-
ity. PLINK can be used to perform all of these 
different types of tests to elucidate the effects of 
rare variants in FTD, which are often of higher 
impact than common variants.

In the FTLD-TDP whole-genome sequencing 
consortium [53], WGS data from 517 unrelated 
patients and 838 controls were used as a discov-
ery cohort to perform a gene-level analysis of 
rare variants. The authors used gene-burden anal-
yses to prioritize 61 genes in which LOF variants 
were observed in at least three patients. TBK1 
showed the most LOF mutation carriers, along 
with genes involved in the TBK1-immunity path-
way. TBK1 LOF mutations are also third most 
frequent in the Belgian FTD cohort from the 
BELNEU Consortium [54], after C9orf72 and 
GRN. While this association has been confirmed 
by multiple studies, the mechanisms are yet to be 
confirmed. Using RNA-seq and CAGE-seq data 
from the RiMod-FTD resource, pathway and 
gene-set enrichment analysis can be performed to 
explain the mechanism in which TBK1 mutations 
implicate patient status for FTD. Interestingly, 
TBK1, unlike PLCG2 was down-regulated in 
patients carrying a GRN mutation in the RiMod-
FTD RNA-seq data. These findings offer an 
opportunity at a deeper understanding at the 
mechanism behind these correlations and the 
potential to uncover therapeutic targets.

�Public Resource

The primary goal of RiMod-FTD is to generate a 
versatile data resource that can help to accelerate 
and support the field of FTD research. To this 
end, all datasets generated during the project, 
accompanied by useful analysis results, are made 
available at the European Genome-phenome 
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Archive (EGA) [55]. Additional to making the 
data available in the central and well-known data-
base EGA, it is our plan to develop a graphical 
user interface that facilitates to visually inspect 
the data directly in the browser, without any need 
to download it or analyse it. This will make 
RiMod-FTD further accessible, especially for 
scientists or clinicians who only want to check 
the expression of a single gene or pathway.

�Concluding Remarks and Outlook

An ongoing effort of RiMod-FTD is to increase 
the number of diverse and useful datasets over 
time. In addition to completing the set of cur-
rently used multi-omics experiments for all tis-
sues and model systems available, other 
experiments are planned as well. We aim to 
extend human post-mortem brain samples and 
mouse models to additional mutations, sporadic 
cases and spectrum disorders such as progressive 
supranuclear palsy (PSP) and amyotrophic lateral 
sclerosis (ALS). We also aim to extend over 
brain  regions to be able to compare strongly 
affected regions with relatively preserved regions. 
The development of single-cell approaches 
and  spatial transcriptomics has enabled us to 
examine changes at single-cell resolution, which 
is necessary to disentangle the cell-type-specific 
transcriptomic changes. Adding single-cell 
experiments to RiMod-FTD will therefore 
increase the value of the resource. Complementary 
to single-cell RNA-sequencing (scRNA-seq) 
approaches, we aim to differentiate patient-
derived iPSCs into different relevant cell types, 
such as microglia and co-cultures. This will be 
done for additional mutations as well.

With these planned efforts and the already 
existing data, we hope to further untangle the cel-
lular mechanisms behind the complex disease 
FTD and believe that the RiMod-FTD resource 
constitutes a significant contribution to the field 
of FTD research that will help to accelerate the 
scientific progress towards better disease under-
standing, diagnosis and eventually treatment.
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