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 Introduction

The two most common clinicopathologic sub-
types of frontotemporal lobar degeneration 
(FTLD) are characterized by TDP-43 or tau 
pathology [1]. Tau is a microtubule-associated 
protein important for stability and functional 
properties of microtubules. The gene that encodes 
tau protein (MAPT) is located on chromosome 
17, and it undergoes alternative splicing of exons 
2, 3, and 10 to generate six isoforms of tau [2]. 
Alternative splicing of exon 10 generates two 
major classes of tau protein that contain either 
three (3R) or four (4R) ≈30-amino acid repeats in 
the microtubule-binding domain of tau. 
Neurodegenerative tauopathies can be subclassi-
fied based upon the predominant type of tau that 
accumulates in cellular lesions [3]. Pick’s dis-

ease, a rare frontotemporal dementia with lobar 
cortical atrophy and neuronal Pick bodies, is 
characterized by tau composed predominantly of 
3R tau, while neurofibrillary tangles that charac-
terize the pathology in Alzheimer’s disease and 
chronic traumatic encephalopathy are composed 
of a mixture of 3R and 4R tau with distinct ultra-
structural properties [4, 5]. Disorders associated 
with 4R tau are clinically and pathologically het-
erogeneous and include aging-related disorders, 
such as aging-related tau astrogliopathy (ARTAG) 
[6] and argyrophilic grain disease (AGD) [3, 7]. 
The most common of the neurodegenerative 4R 
tauopathies are progressive supranuclear palsy 
(PSP) and corticobasal degeneration (CBD), 
which is the focus of this chapter.

 Progressive Supranuclear Palsy

PSP was described by Steele, Richardson, and 
Olszewski in a small autopsy series of patients 
with postural instability, vertical supranuclear 
gaze palsy, facial and cervical dystonia, as well 
as dementia. Despite some clinical variability, 
they shared distinctive pathologic features, 
including argyrophilic neurofibrillary tangles in 
select subcortical and brainstem nuclei. [8]. With 
the advent of tau biochemistry and molecular 
biology, the pathologic features of PSP have been 
expanded to include not only neuronal lesions but 
also glial lesions [3, 9]. The clinical syndromes 
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associated with the characteristic tau pathology 
of PSP have also expanded from the original 
descriptions and is described later in the chapter.

 Epidemiology of Progressive 
Supranuclear Palsy

The prevalence of PSP is thought to be approxi-
mately 6/100,000 patients [10–13]; however, 
there is a growing understanding that PSP pathol-
ogy is associated with multiple clinical pheno-
types, suggesting that the above figure may 
require revision. Increased awareness of this fact 
led to increased age-adjusted prevalence esti-
mates in Europe (8.8–10.8/100,000 patients) [11, 
14]. Of note, age-adjusted prevalence estimates 
from the same city in Japan (Yonogo) adjusted to 
the census of the earlier study increased from 
5.8/100,000 patients in 1999 to 17/100,000 
patients in 2010 [15, 16]. This is, in part, due to 
identification of more phenotypes, since the pre-
vious studies used the National Institute of 
Neurologic Disease and Stroke and Society for 
PSP (NINDS-SPSP) criteria that only identified 
the classical PSP phenotype (also named PSP- 
Richardson syndrome [PSP-RS]).

 Clinical Features of Progressive 
Supranuclear Palsy

In addition to the typical presentation described 
by Richardson and colleagues (PSP-RS), other 
phenotypes associated with PSP pathology have 
been described, including an extrapyramidal dis-
order mimicking Parkinson’s disease (PSP-P), 
corticobasal syndrome (PSP-CBS), dementia 
with predominantly frontal characteristics (PSP- 
F), dementia with speech and language distur-
bances (PSP-SL), and others. Consequently, the 
newest clinical criteria for PSP, supported by the 
International Parkinson and Movement Disorder 
Society (MDS-PSP criteria), include a wider 
clinical spectrum [17]. Typical age of onset of 
PSP is in the seventh decade of life [17–19], and 
average survival is 5–6 years; however, certain 

phenotypes are associated with much longer dis-
ease durations [19, 20].

Several criteria for PSP were proposed based 
upon clinical case series [21–24], but the first 
widely used criteria that were based on autopsy- 
confirmed cases was reported by Litvan et  al. 
[18] and supported by the NINDS-SPSP.  The 
NINDS-SPSP criteria outlined several core fea-
tures of PSP-RS. Mandatory features included a 
gradually progressive disorder with age of onset 
40  years of age or later, presence of vertical 
supranuclear gaze palsy, and/or postural instabil-
ity with falls within the first year of disease. Both 
features had to be present for a diagnosis of 
“probable PSP,” and only vertical supranuclear 
gaze palsy or slowing of saccades and postural 
instability with falls within the first year of dis-
ease was consistent with a diagnosis of “possible 
PSP.”

Regarding vertical supranuclear gaze palsy, 
restricted downward gaze has been considered 
most specific for PSP because restricted upward 
gaze can be seen to a lesser degree in aging [25], 
Parkinson’s disease [26], and other conditions 
[27–31] like severely restricted upward gaze and 
slowing of vertical saccades. At more advanced 
stages, horizontal supranuclear gaze palsy may 
develop, as well [32]. Vertical supranuclear gaze 
palsy may be preceded by subtle ocular motor 
abnormalities, including loss of vertical optoki-
netic nystagmus [33], “stair casing,” and the 
“round the house sign” [34], where horizontal 
saccadic excursions interrupt vertical eye move-
ments. Other ocular motor movement abnormali-
ties include hypometric saccades, breakdown of 
smooth pursuit, and square wave jerks [35]. Loss 
of vergence is observed early and may contribute 
to frequent complaints of diplopia [36]. Other 
eye findings include blepharospasm and eyelid- 
opening apraxia [37], although these are not usu-
ally early features.

Early loss of postural reflexes and falls are 
common and often an early complaint in PSP-RS, 
usually occurring within the first year of illness. 
Falls tend to be backwards, but it can occur in any 
direction and may be compounded by freezing of 
gait. Falls can result in significant morbidity due 
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to lacerations, fractures, or intracerebral bleeding 
[32, 38].

While these features define the core clinical 
features of PSP-RS, a number of other clinical 
features are often observed. Parkinsonism mani-
fested by symmetric akinesia and rigidity with an 
axial predominance is common. Neck stiffness 
with retrocollis has been described in early 
descriptions of PSP, but it is rare [8]. Facial dys-
tonia produces the so-called PSP stare, with 
decreased blink rate, furrowed and raised eye-
brows, and a look of surprise. Inappropriate 
laughter and crying episodes are often observed 
(pseudobulbar affect). Early hypokinetic and 
spastic dysarthria is a secondary feature, which 
can progress to anarthria in severe cases [39]. 
Dysphagia occurs relatively early, and it is fre-
quently implicated as a cause of death due to 
aspiration pneumonia [40, 41]. Cognitive mani-
festations associated with PSP overlap with corti-
cobasal syndrome and frontotemporal dementia 
(FTD). The clinical course of PSP is relentless 
and nearly always is associated with a frontal- 
subcortical- type dementia.

PSP-RS phenotype is the clinical syndrome 
most likely to have PSP pathology at autopsy. 
Because of this, the NINDS-SPSP criteria proved 
to be specific for PSP pathology [42, 43], but to 
have relatively low sensitivity [43–45]. This is 
because PSP pathology can present with other 
clinical syndromes, and eye movement abnor-
malities seen in PSP often occur later in the 
course of the disease and sometimes not at all 
[19, 20, 46–57]. In one autopsy series, 76% of 
pathologically confirmed PSP had a clinical syn-
drome other than PSP-RS [58].

The most common clinical PSP variant mim-
ics idiopathic Parkinson’s disease (PSP-P) and 
makes up about one-third of pathologically con-
firmed cases [46, 59–62]. These patients have 
asymmetric resting tremor and asymmetric 
appendicular bradykinesia and rigidity, making 
the distinction between PSP-P and Parkinson’s 
disease challenging [46, 59, 60, 62, 63]. As many 
as one-third of these patients will respond to 
levodopa and show greater than 30% reduction in 
the Unified Parkinson’s Disease Rating Scale 
[46, 64–67]. Some also develop levodopa- 

induced dyskinesias [46]. Most PSP patients 
have minimal or no response to levodopa therapy, 
and if a response occurs, it is typically mild and 
not sustained [20, 24, 68]. Robust and prolonged 
response to levodopa therapy is an exclusionary 
criterion for PSP and makes Parkinson’s disease 
a more likely diagnosis [17]. It can be 3–4 years 
into the disease course before supranuclear gaze 
palsy is present to aid in refining the diagnosis in 
PSP-P [19, 62]. PSP-P patients also have a longer 
disease duration than PSP-RS, with an average 
survival of 10–15 years [19, 46, 62].

Other syndromes have been described in 
autopsy-confirmed PSP.  Some present with 
impulsivity and behavioral changes, including 
apathy, impulsivity, and social inappropriateness 
akin to behavioral-variant frontotemporal demen-
tia (PSP-F) [53, 69, 70]. Others present with pro-
gressive non-fluent aphasia or apraxia of speech 
(PSP-SL) [48, 52, 70, 71]. About 10% have a cor-
ticobasal syndrome with asymmetrical dystonia, 
myoclonus, apraxia, and cortical sensory loss 
(PSP-CBS) [55, 56, 70, 72]. Another rare presen-
tation, but one that is highly predictive of PSP 
pathology, is pure akinesia with gait freezing 
(PSP-PAGF) [47, 73, 74]. Early presentations 
currently considered to be “suggestive” of PSP in 
MDS-PSP criteria are isolated postural instability 
(PSP-PI) [19, 75] and isolated oculomotor dys-
function (PSP-OM) [19, 20]. The most uncom-
mon presentations are progressive cerebellar 
ataxia (PSP-C) [51, 76, 77] and primary lateral 
sclerosis (PSP-PLS) [50, 57]. It is important to 
note that while some patients present with dis-
crete syndromes, it is common for considerable 
overlap, and patients also acquire new signs and 
symptoms as the disease progresses. Regardless 
of the initial syndrome, most patients develop 
vertical supranuclear gaze palsy and postural 
instability, which are core features of PSP-RS, 
that make diagnosis obvious, but these may occur 
only later in the disease course in some of the 
PSP clinical variants [19].

Recognition of the spectrum of clinical het-
erogeneity in PSP, led the MDS-PSP criteria to 
incorporate a broader set of symptoms and signs, 
as well as levels of certainty that would be associ-
ated with PSP pathology [17]. These criteria are 
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more sensitive, but they are less specific than the 
NINDS-SPSP criteria [78, 79]. The implementa-
tion of “multiple allocation extinction” rules 
(MAX rules) have been necessary to help disen-
tangle patients who may be classified into more 
than one clinical MDS-PSP category [79]. Even 
so, these MAX rules may fail to separate up to 
40% of patients with PSP-P and PSP-RS overlap 
syndromes [80]. These issues highlight the ongo-
ing need for specific biomarkers to improve diag-
nostic accuracy of PSP during life.

 Neuropathology of Progressive 
Supranuclear Palsy

The external appearance of PSP at postmortem 
evaluation depends upon the clinical syndrome. 
PSP-RS may have no significant cortical atrophy 
or mild atrophy affecting the dorsolateral frontal 
lobe. PSP-F and PSP-CBS usually have more 
marked frontal atrophy, especially affecting the 
superior frontal gyrus, while PSP-SL may have 
more significant frontal atrophy, especially 
affecting the peri-Sylvian inferior frontal gyrus. 
Asymmetry, which is not often assessed with 
research protocols that evaluate only one side of 
the brain for histology, can be notable in PSP-SL 
and PSP-CBS. PSP-PLS has focal atrophy affect-
ing the precentral gyrus; it can be asymmetrical 
as well. The most striking macroscopic finding in 
PSP-RS (and PSP-P) is midbrain atrophy 
(Fig. 1a) with loss of neuromelanin pigment on 
transverse sections of the brainstem (Fig.  1d). 
The subthalamic nucleus invariably has atrophy 
(Fig. 1b), and there is also atrophy of the superior 
cerebellar peduncle (Fig. 1e) and atrophy of the 
hilus of the cerebellar dentate nucleus (Fig. 1c). 
Atrophy of subthalamic nucleus and midbrain is 
usually less severe in PSP-F and PSP-CBS, and 
often very severe in PSP-PAGF. In the latter, atro-
phy is frequently accompanied by similar changes 
in the globus pallidus and with reddish-brown 
discoloration due to deposition of iron pigment 
(pallido-nigro-luysial “pigment-spheroid degen-
eration” [81]).

Histopathologic findings in PSP are similar in 
the various subtypes. The clinicopathologic sub-

types differ in the relative distribution of the neu-
ronal loss and gliosis, and in the density of tau 
pathology [82]. There are no distinctive cellular 
pathologies in PSP clinicopathologic variants. 
The major histopathologic lesions in PSP are 
neurofibrillary tangles, which often have a glo-
bose shape in vulnerable subcortical nuclei, such 
as the subthalamic nucleus (Fig. 2a) and substan-
tia nigra (Fig. 2b). The morphology and distribu-
tion of tangles in PSP is different from the most 
common disorder with neurofibrillary tangles, 
Alzheimer’s disease (AD), in that subcortical and 
brainstem nuclei are preferentially affected. The 
tangles are positive for phospho-tau (Fig.  2d). 
Using antibodies specific to tau isoforms, the 
tangles in PSP preferentially accumulate 4R tau 
(not shown). Tau immunohistochemistry also 
shows distinctive glial pathology in PSP, includ-
ing tufted astrocytes (Figs. 2d and 3e) and oligo-
dendroglial coiled bodies (Fig.  2f). Tufted 
astrocytes are most frequent in neocortex, neo-
striatum, and midbrain tectum. Coiled bodies are 
widespread in affected cerebral white matter and 
vulnerable subcortical fiber tracts in the basal tel-
encephalon, diencephalon, brain stem, and cere-
bellum. A common neurodegenerative change in 
the cerebellar dentate nucleus that is not associ-
ated with tau pathology is the presence of irregu-
larly swollen cell processes around apical 
dendrites and cell bodies of cerebellar dentate 
nucleus neurons (Fig. 2c), a process referred to as 
grumose degeneration [83]. Glial pathology is 
increasingly recognized to play a significant role 
in pathogenesis of neurodegenerative disease, 
and in PSP microgliosis and astrogliosis parallels 
the systems affected by neurodegeneration [84], 
with little evidence to suggest that it precedes tau 
pathology.

 Corticobasal Degeneration

The term corticobasal degeneration was coined 
by Gibb, Luthert and Marsden [85] to describe 
the pathology of a rare disorder associated 
with cognitive and motor features affecting the 
neocortex and basal ganglia. The clinically 
defined corticobasal syndrome (CBS) is char-

D. G. Coughlin et al.



155

acterized by progressive cognitive decline 
associated with asymmetrical rigidity, dysto-
nia, myoclonus, and alien-limb phenomenon. 
Early autopsy studies reported focal cortical 
atrophy and swollen achromatic neurons (“bal-
looned neurons” [86]), as well as neuronal 
loss in the substantia nigra and cerebellar den-
tate nucleus—“corticodentatonigral degenera-
tion with neuronal achromasia” [87]. These 
descriptions did not recognize the tau pathol-

ogy in CBD because neuronal lesions in CBD 
are weakly positive or negative with tradi-
tional silver impregnation methods. It was not 
until the early 1990s that widespread tau 
pathology in CBD was shown to be distinct 
from Alzheimer’s disease, using immunohis-
tochemistry and ultrastructural methods [88–
90]. The pathognomonic astrocytic lesion of 
CBD (“astrocytic plaques”) was described in 
1995 [91].

Fig. 1 Macroscopic findings in PSP. (a) A sagittal sec-
tion of the brainstem shows marked atrophy of the mid-
brain (arrows). (b) A coronal section of the diencephalon 
shows marked atrophy of the subthalamic nucleus (arrow-
heads). (c) A section of the cerebellum at the level of the 
middle cerebellar peduncle shows marked atrophy and 

discoloration of the dentate nucleus of the cerebellum 
(arrow). (d) A transverse section of the midbrain shows 
atrophy and marked neuromelanin pigment loss in the 
substantia nigra (asterisk). (e) A transverse section of the 
pons shows marked atrophy of the superior cerebellar 
peduncle (arrowheads)

Progressive Supranuclear Palsy and Corticobasal Degeneration
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 Epidemiology of Corticobasal 
Degeneration

Like PSP, pathologically confirmed CBD has a 
range of clinical presentations, and CBS may not 
be the most common. Moreover, the pathologic 
substrate of CBS is mixed, with PSP being as 
common as CBD [56, 92], but other disorders, 
particularly atypical presentations of Alzheimer’s 
disease, can also present with CBS [56, 85, 93–
98]. Estimates of prevalence of CBD are inher-
ently flawed. For these reasons, the term 
corticobasal syndrome (CBS) is now preferred to 
refer to the clinical presentation described earlier, 
whereas corticobasal degeneration (CBD) is 
reserved for the neuropathological diagnosis. The 
incidence of CBD is estimated to be 0.62–
0.92/100,000 [93, 99–101].

 Clinical Features of Corticobasal 
Degeneration Presenting 
as Corticobasal Syndrome

The onset of CBS is typically in the sixth or sev-
enth decade of life, with a mean survival of about 
7 years from diagnosis [93, 99–101]. The motor 
manifestations of CBS include an asymmetric 
parkinsonism manifested predominantly by 
rigidity and bradykinesia [93]. While asymmetry 
in parkinsonian features is common in Parkinson’s 
disease, the asymmetry in CBS can be striking. 
There is frequently additional dystonic posturing 
of the limb. Superimposed may be ideomotor and 
limb-kinetic apraxia [55, 99, 102]. Alien-limb 
phenomenon affecting the arm or leg has been 
described and often results in an unawareness of 
a levitating hand or leg due to feeling the limb 

Fig. 2 Microscopic findings in PSP. (a) An H&E stained 
section of the subthalamic nucleus shows severe neuronal 
loss and astrocytosis, with neurofibrillary tangles (arrow) 
in residual neurons. (b) An H&E stained section of the 
substantia nigra shows neuronal loss and gliosis with 
extraneuronal neuromelanin pigment and globose neurofi-
brillary tangles (arrowheads). (c) An H&E stained section 
of the cerebellar dentate nucleus shows granular eosino-
philic swollen cell processes (arrowhead), obscuring the 
outlines of the neuron, findings characteristic of grumose 

degeneration (arrow). (d) Phospho-tau immunohisto-
chemistry of the caudate nucleus shows a globose neuro-
fibrillary tangle (arrowhead) and a tufted astrocyte 
(arrow). (e) Phospho-tau immunohistochemistry of the 
caudate nucleus shows several tufted astrocytes (arrows) 
with morphologic heterogeneity. (f) Phospho-tau immu-
nohistochemistry of the internal capsule shows oligoden-
droglial coiled bodies (arrowhead). All images are of 
same magnification, bar in (f) is 20 μm
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alien, and more rarely, intermanual conflict [103]. 
Myoclonus is often present, and it may affect 
limbs or, rarely, the face [99, 104]. Myoclonus is 
worsened by action, posture, or stimuli [55, 99, 
104]. At times, myoclonus can be difficult to dif-
ferentiate from tremor, although the quality of 
myoclonic tremor is jerky rather than the smooth 
oscillatory tremor observed in Parkinson’s dis-
ease and other parkinsonian disorders [105]. 
Postural instability and falls are common, but 
usually later in the disease course than in PSP, 
unless the symptoms start in lower extremities 
[93]. Parkinsonism associated with CBS may 
benefit from levodopa therapy, but improvement 
in symptoms is rare and levodopa-induced dyski-
nesias are also rare [55]. Sustained and robust 
levodopa responsiveness is an exclusionary crite-
rion to the diagnosis of CBS [93, 106].

Several cognitive features and other signs 
referable to higher-order cortical function are 
common in CBS. As previously mentioned, 
apraxia is a core feature. Ideomotor apraxia is 
usually one of the first disease features. Some 
patients develop orobuccal apraxia or apraxia of 
eyelid opening [99, 104, 107]. Cortical sensory 
loss with astereognosis and agraphesthesia are 
frequently observed [108, 109]. Visual neglect 
may be seen, and it is related to parietal lobe 
dysfunction [95, 107, 110]. A progressive non-
fluent aphasia is also described in CBS, with 
occasional overlay of apraxia of speech from 
frontal lobe dysfunction [95, 104, 107, 111]. 
Other features of frontal lobe dysfunction, such 
as apathy and disinhibition, are common and 
early [55, 93].

The clinical presentation of autopsy- confirmed 
CBD is varied, with some presenting with a cog-
nitive syndrome, and some primarily with a 
motor phenotype. Other neurodegenerative disor-
ders, PSP and Alzheimer’s disease in particular, 
can present with CBS. Unlike PSP, these initial 
presentations may not necessarily coalesce into a 
common phenotype over time, making diagnos-
tics even more challenging. Concomitantly, the 
clinical diagnosis of CBS has relatively poor pre-
dictive value for CBD pathology at autopsy com-
pared to other neurodegenerative disorders. The 

sensitivity of clinical findings predicting CBD at 
autopsy is between 26% and56%. The majority 
of these studies were performed using older crite-
ria; recently, more specific criteria have not been 
fully vetted [55, 59, 70, 95]. Current clinical cri-
teria for CBD define a gradual progressive disor-
der with insidious onset and several possible 
phenotypes, including CBS, a frontal behavioral- 
spatial syndrome, a variant of primary non-fluent 
aphasia, and a PSP syndrome. The clinical syn-
drome of probable CBS is defined as having two 
of the following signs: limbs with asymmetric 
rigidity and akinesia, limb dystonia or limb 
myoclonus, and two of the following signs and 
symptoms: orobuccal or limb apraxia, cortical 
sensory deficits, or alien-limb phenomena. 
Possible clinical CBS involves having one limb 
with rigidity or akinesia, limb dystonia, or limb 
myoclonus with one of the above supportive fea-
tures. A frontal behavioral spatial syndrome is 
described with the attendant cognitive features. 
Non-fluent primary progressive aphasia and a 
PSP phenotype are recognized but considered as 
possible CBD. Patients with a PSP clinical syn-
drome must have at least one additional symptom 
or sign (limb rigidity/akinesia, limb dystonia or 
myoclonus, apraxia, and cortical sensory loss) 
[93].

There are multiple exclusion criteria that, if 
present, make CBD a less likely cause of the clin-
ical presentation. The most important are the 
presence of genetic mutations in GRN, FUS, 
TARDBP, PSEN1/2, and APP genes. Another 
exclusionary criterion is a cerebrospinal fluid 
(CSF) Aβ42/tau ratio consistent with Alzheimer’s 
disease [112]. Classic 4–6 Hz parkinsonian rest-
ing tremor, hallucinations, dysautonomia, cere-
bellar signs, the presence of both upper and motor 
neuron signs, or the semantic or logopenic vari-
ants of primary progressive aphasia are also con-
sidered exclusionary; they are more likely to 
indicate Parkinson’s disease, dementia with 
Lewy bodies, multiple systems atrophy, ALS, or 
FTLD. Lastly, because there are occasional 
reports of fulminant presentations of CBD [113, 
114], imaging consistent with Creutzfeldt-Jakob 
disease is also exclusionary.
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 Neuropathology of Corticobasal 
Degeneration

The external appearance of the CBD brain at 
postmortem evaluation depends upon the clinical 
syndrome. For patients presenting with CBS or 
frontotemporal dementia syndromes, there is 
usually focal atrophy, especially affecting the 
medial superior frontal gyrus (Fig. 3a). Language- 
predominant syndromes often have inferior fron-
tal gyrus (peri-Sylvian) atrophy. There is often 
atrophy of the corpus callosum (Fig. 3a), which 
tends to parallel the distribution and severity of 
the focal cortical pathology. Atrophy can be 
asymmetrical, but this is often difficult to assess 
at autopsy, given that half the brain is usually fro-
zen for research purposes. Some cases, particu-
larly patients with long tract signs, may have 
atrophy that extends to the motor cortex. Coronal 
sections frequently show enlargement of the 
frontal horn of the lateral ventricle (Fig. 3b). The 
most common finding in the basal ganglia is atro-

phy and reddish-brown discoloration of the glo-
bus pallidus (Fig. 2b). Unlike PSP, there is usually 
no significant atrophy of the subthalamic nucleus 
(Fig.  3c). Similarly, the hilus of the cerebellar 
dentate nucleus (Fig. 3d) and the superior cere-
bellar peduncle (Fig.  3e) do not have atrophy. 
Similar to PSP, there is usually loss of neuromela-
nin pigment in the substantia nigra (Fig. 3f).

Microscopic examination of atrophic cortical 
sections shows neuronal loss with superficial 
spongiosis, gliosis, and usually achromatic or 
ballooned neurons, which are readily detected 
with routine histology stains, such as 
hematoxylin- and-eosin (Fig. 4a). Ballooned neu-
rons are found in middle and lower cortical layers 
of affected neocortices and have diffuse phospho- 
tau immunoreactivity (Fig. 4d), as well as intense 
immunoreactivity with antibodies to alpha-B- 
crystallin, a small heat-shock protein (not shown), 
and for neurofilament.

In addition to ballooned neurons, the neocor-
tex and neostriatum in CBD have widespread 

Fig. 3 Macroscopic findings in CBD. (a) The medial sur-
face of left hemibrain shows atrophy of the superior fron-
tal gyrus (asterisk indicates area of greatest pathology) 
and focal atrophy of the corpus callosum (arrows). (b) A 
coronal section of the brain at the level of the fornix shows 
marked enlargement of the frontal horn of the lateral ven-
tricle (large asterisk). There is also atrophy and discolor-
ation of the globus pallidus (small asterisk). (c) A coronal 
section of the diencephalon and anterior medial temporal 

lobe shows no hippocampal atrophy and minimal-to-no 
atrophy of the subthalamic nucleus (arrowheads). (d) A 
section of the cerebellum at the level of the middle cere-
bellar peduncle shows no atrophy and normal myelin in 
the hilus of the dentate nucleus (arrow). (e) A transverse 
section of the pons shows no atrophy of the superior cer-
ebellar peduncle (arrowheads). (f) A transverse section of 
the midbrain shows mild atrophy and marked neuromela-
nin pigment loss in the substantia nigra (asterisk)
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deposition of tau in both neurons and glia  
[3, 9]. Glial inclusions are found in both oligo-
dendroglia and astrocytes. The astrocytic lesions 
have a characteristic plaque-like morphology 
 (“astrocytic plaques” [91]) (Fig. 4e) that is mor-
phologically distinct from tufted astrocytes of 
PSP.  The pathologic feature that best discrimi-
nates PSP from CBD is pervasive thread-like cell 
processes in affected gray and white matter in 
CBD, to the extent that the difference can be seen 
by examining the slide with the naked eye 
(Fig. 5).

The subthalamic nucleus often has at least 
mild neuronal loss and gliosis (Fig. 4b), but it is 
rarely as severe as in PSP. Similarly, the substan-
tia nigra has neuronal loss in CBD, but it can be 
mild (Fig.  4c). Neurons in the substantia nigra 
may have so-called corticobasal bodies [85] 
(Fig. 4c). Cortical neurons in atrophic areas have 
pleomorphic tau-immunoreactive lesions. In 
some neurons, tau is densely packed into small 
irregular inclusion bodies. In other neurons, the 

inclusions are more diffuse (“pre-tangles”). 
Neurofibrillary lesions in subcortical nuclei, such 
as the subthalamic nucleus, also typically have 
marked morphologic heterogeneity (Fig.  4f), 
while those in the locus ceruleus and substantia 
nigra can resemble globose neurofibrillary tan-
gles (Fig. 4c).

 Pathogenesis of Progressive 
Supranuclear Palsy 
and Corticobasal Degeneration

There is no single cause of PSP or CBD, but sev-
eral environmental and genetic factors have been 
investigated. The Environmental Genetic PSP 
(ENGENE-PSP) study found that lower educa-
tional attainment, exposure to well water and 
industrial wastes, and firearm use were related to 
higher risk of developing PSP [115, 116]. These 
findings are also supported by a cluster of PSPs 
that emerged in northern France in an area of 

Fig. 4 Microscopic findings in CBD. (a) An H&E stained 
section of superior frontal gyrus shows ballooned neurons 
(arrow). (b) An H&E stained section of the subthalamic 
nucleus shows mild neuronal loss, but more marked glio-
sis. (c) An H&E stained section of the substantia nigra 
shows focal neuronal loss (extraneuronal neuromelanin—
asterisk) and several neurons with so-called corticobasal 
bodies (arrowheads). (d) Phospho-tau immunohistochem-
istry of the superior frontal gyrus shows many neuropil 

threads and a ballooned neuron with diffuse cytoplasmic 
tau immunoreactivity (arrow). (e) Phospho-tau immuno-
histochemistry of the caudate nucleus shows an astrocytic 
plaque (asterisk). (f) Phospho-tau immunohistochemistry 
of the subthalamic nucleus shows morphologic heteroge-
neity of neuronal inclusions (arrowheads). Panels a and 
c–f are of same magnification, bar in (f) is 20 μm. Panel 
(b) is a lower magnification, bar is 50 μm
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high industrial waste contamination [117]. 
Consumption of high levels of annonacin, a mito-
chondrial complex I inhibitor, found in the paw- 
paw fruit was associated with developing PSP or 
other atypical parkinsonian syndromes in studies 
in the Caribbean island of Guadeloupe [118, 
119]. There may be a slight male predominance 
within PSP patients [22, 46], and one study docu-
mented that increased estrogen exposure in 
women may be protective against developing 
PSP [120]. Environmental exposures have not 
been evaluated in CBD to date.

MAPT mutations may lead to either PSP or 
CBD [121–124]. Mutations in this gene can also 
lead to frontotemporal dementia, FTLD with par-
kinsonism, or primary progressive aphasia [125]. 
The H1/H1 genotype elevates the risk for devel-
oping PSP and CBD [17, 126, 127]. One genome- 
wide association study in a large cohort of 
pathologically validated PSP patients addition-
ally identified genetic risk variants at the MOBP, 
STX6, and EIF2AK3 loci [128]. MOBP, which 
encodes for myelin oligodendrocyte-binding pro-
tein, is also implicated in CBD and highlights 
potential importance of white matter [121, 129]. 
STX6 encodes for a SNARE protein implicated in 
fusing vesicles in the Golgi network [130]. 
EIF2AK3 encodes for a protein responsible for 

inhibiting protein synthesis in the face of excess 
endoplasmic reticulum stress [131, 132]. These 
genes have been validated in a second genome- 
wide association study, which additionally iden-
tified SLCO1A2 and DUSP10 as other genomic 
loci of interest [133].

Oxidative stress and inflammation can also be 
demonstrated in PSP and CBD.  Mitochondrial 
enzymatic activity is decreased in both brain tis-
sue and also in skeletal muscle in PSP patients 
[134–140]. Higher IL-1β and other inflammatory 
cytokines are found in the brains and CSF of PSP 
patients and lead to microglial activation [141, 
142], which has been implicated in tau deposition 
[84]. Superoxide dismutase and glutathione, 
essential antioxidants, are often seen to be ele-
vated in PSP brain tissue, possibly as a defense 
mechanism [139, 143].

Recent data suggest that misfolded tau oligo-
mers are capable of acting as a template and 
induce further misfolding of normal monomeric 
tau leading to larger and larger aggregates, caus-
ing cellular damage and ultimately death and 
likely leading to spreading of disease in a ‘prion- 
like’ manner. In vivo animal studies using pre-
formed fibrils [144, 145], human diseased brain 
homogenates [146], and other techniques [147, 
148] have shown distal spread of tau pathology 

Fig. 5 Comparison of tau burden in PSP and 
CBD.  Sections of the neostriatum in PSP and CBD, 
immunostained under the same conditions with a sensitive 
phospho-tau antibody (CP13 from Peter Davies, Feinstein 

Institute, Long Island, NY), show a clear distinction 
between PSP and CBD, due to dense tau pathology, 
mostly thread-like processes (not visible at this magnifica-
tion), in CBD
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via trans-synaptic spread [149, 150]. There may 
be specific “strains” of tau capable of seeding 
unique tau pathologies [147, 151, 152].

 Biomarkers in Progressive 
Supranuclear Palsy 
and Corticobasal Degeneration

The clinicopathologic overlap between PSP and 
CBD and other neurodegenerative diseases 
makes the discovery of sensitive and specific bio-
markers for these diseases of paramount 
importance.

Magnetic Resonance Imaging PSP is well 
described to be associated with several features 
on structural magnetic resonance imaging (MRI). 
Most recognized is the presence of midbrain 
atrophy, resulting in the “hummingbird sign” best 
seen on the mid-sagittal section (Fig. 6) [153], as 
well as “morning glory sign [154]”, or “Mickey 
Mouse sign [155]”. In one study of an autopsy 
series of pathologically confirmed cases with 
PSP, multiple systems atrophy (MSA), or 
Parkinson’s disease (PD), 16/22 (72.7%) of PSP 
cases were able to be correctly identified by a 
radiologist reviewing conventional MRI that had 
been performed during life, and the presence of a 
hummingbird sign or morning glory sign was 

100% specific but was 68.4% sensitive [156]. 
One study, however, that included different clini-
cal variants of PSP found midbrain atrophy to be 
a feature of the Richardson syndrome variant, but 
midbrain atrophy was not found to be a bio-
marker of PSP pathology [157]. The superior cer-
ebellar peduncle is also frequently atrophied in 
PSP and, consequently, several different ratios 
comparing brain stem, pons, superior cerebellar 
peduncle, and middle cerebellar peduncle mea-
surements have been studied to differentiate PSP 
from other parkinsonian diseases and from 
healthy controls. A frequent problem with these 
measurements is that they are often insensitive, 
and the radiologic signs will only manifest at 
later stages of the disease after neurodegenera-
tion has progressed to the point of causing these 
recognizable patterns [158–163]. A more specific 
technique to assess the superior cerebellar pedun-
cle is with diffusion tensor imaging (DTI). One 
DTI study did find the superior cerebellar pedun-
cle to be able to accurately distinguish PSP from 
normal controls [164]. It is unclear whether atro-
phy of the superior cerebellar peduncle is a fea-
ture of PSP pathology or a feature of Richardson 
syndrome. Another technique that has also been 
studied in PSP is resting- state functional mag-
netic resonance imaging (fMRI). Resting-state 
fMRI studies have demonstrated disrupted thala-
mocortical connectivity in PSP [165, 166].

Fig. 6 MRI scan in autopsy-confirmed PSP and CBD. MRI scan in PSP shows the classic hummingbird sign on sagittal 
MRI, while asymmetric atrophy of the posterior frontal cortex is seen in CBD
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Fewer MRI studies have been performed in CBD, 
but the most frequently cited sign is asymmetric 
cortical atrophy, affecting the parietal and frontal 
lobes (Fig. 6) [167–171]. Corpus callosum atro-
phy is also cited occasionally. Regrettably, nei-
ther of these features are specific for CBD to 
fully differentiate it from other pathologies that 
cause CBS clinical phenotypes [70, 167, 172]. In 
addition, symmetric cortical atrophy has been 
described in autopsy-confirmed cases of CBD 
[173]. Research studies have utilized voxel-based 
morphometry to try to distinguish CBD from 
Alzheimer’s disease and other neurodegenerative 
diseases that present with CBS.  These studies 
have found distinguishing features at the group 
level [174, 175]. No biomarker exists to distin-
guish CBD from other neurodegenerative dis-
eases at the single subject level.

Given the prominent white matter degenera-
tion that is common to these conditions, diffusion 
tensor imaging and white matter volumetric mea-
surements may show more degeneration in PSP 
and CBD than atypical AD or FTLD TDP-43 that 
may have overlapping presentations [176–179].

DaTscan A DaTscan is used to detect dopamine 
transporters on dopamine neurons. DaTscans are 
typically utilized to differentiate Parkinson’s dis-
ease from essential tremor. However, DaTscans 
have been performed in PSP and CBS patients 
and show a reduction in dopamine transporter 
receptors. Unfortunately, this finding is nonspe-
cific and can also be seen in other parkinsonian 
disorders, for example, MSA.

Positron Emission Tomography The most 
common PET scan is the fluorodeoxyglucose 
(FDG)-PET scan, which utilizes radioactive glu-
cose to assess for functional integrity of neocorti-
cal regions. FDG-PET findings in PSP and CBS 
tend to mirror findings on MRI. In PSP, hypome-
tabolism is observed in the premotor cortex as 
well as the midbrain, the latter when present is 
known as the pimple sign of PSP [180] (Fig. 7). 
In CBS and CBD, the FDG-PET scan reveals 
asymmetric frontal and/or parietal hypometabo-
lism (Fig.  7). There are less than a handful of 

studies on FDG-PET in autopsy-confirmed PSP, 
CBD, and other 4R tauopathies. One such study 
found parietal hypometabolism in CBD and pre-
motor hypometabolism in PSP [181]. Several 
tracers are currently under investigation that 
bind  to the tau proteins, including 18F-5105, 
18F-FDDNP, 18F-THK523, 11C-PBB3, and others 
[182]. 18F-Flortaucipir (formerly AV-1451 and 
T807) is the most researched tau tracer to date 
and appears to bind avidly to paired helical fila-
ments in 3R/4R tauopathies, such as AD [183], 
and exhibits retention patterns in amnestic AD 
consistent with Braak tau staging [184, 185] 
and  in posterior cortical regions in posterior 
 cortical atrophy patients [186, 187]. However, 
18F-Flortaucipir retention appears to be less 
robust in 4R tauopathies [183, 188, 189]. 
Increased retention in the basal ganglia and mid-
brain can be demonstrated in PSP (Fig.  8), but 
there is off-site binding, which makes individual 
patient-level distinctions at early stage difficult 
[184, 190–193]. Similarly, in CBS, mild increases 
in retention in cortical regions can be demon-
strated (Fig.  8) that correlate with postmortem 
tau findings [194], although this has been reported 
to occur predominantly in CBS patients who pre-
sented with a motor speech disorder [195]. PET 
tracers targeting activated microglia (11C-(R) 
PK11195) may aid in assessing inflammation 
associated with neurodegeneration in PSP and 
CBD [196, 197].

Biofluid Biomarkers CSF tau species, includ-
ing measures of total tau (t-tau) and phosphory-
lated tau (p-tau) tend not to be elevated in PSP 
[198–200]. One study reported that a ratio of cer-
tain tau fragments may aid in distinguishing PSP 
from healthy controls and other conditions [201], 
but the findings could not be replicated [202]. 
CSF neurofilament light chain (NfL) is an inter-
mediate filament, which can be measured from 
CSF and is a nonspecific measure of neuronal 
injury [203], but it shows elevation in PSP, CBD, 
and other parkinsonian syndromes that can aid in 
differentiating PSP or CBD from Parkinson’s dis-
ease [200, 204–207]. The sensitivity of the next- 
generation single-molecule-array assays has 
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Fig. 7 FDG-PET in autopsy-confirmed PSP and 
CBD. FDG-PET in PSP shows the classic “pimple sign” 
(hypometabolism of the midbrain) on mid-sagittal sec-
tion. Also seen is mild hypometabolism of medial pre-

frontal and supplementary motor cortex. In CBD, 
asymmetric frontoparietal hypometabolism is observed 
on the lateral view

Fig. 8 Flortaucipir PET in autopsy-confirmed PSP and 
CBD. Flortaucipir PET (AV-1451) in PSP shows increased 
uptake in the midbrain (substantia nigra) and dentate 
nucleus of the cerebellum. In a case of CBD that pre-

sented with progressive speech apraxia, flortaucipir PET 
demonstrates asymmetric increased uptake in premotor 
neocortex
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made blood-based NfL measurements possible 
now as well [208, 209]. Real-time quaking- 
induced conversion (RT-QuIC) is an emerging 
assay that was originally developed to aid in 
diagnosis of Creutzfeldt-Jakob Disease (CJD), 
where a biologic sample is placed in wells 
 containing monomeric proteins and a fluorescent 
marker and through polymerization encouraged 
by sequential shaking steps, can show the pres-
ence or absence of a pathologic “seed” from the 
patient sample. This technique has been adapted 
to detect alpha-synuclein [210], 3R/4R tau spe-
cies [211], 3R tau species [212], and a 4R tauopa-
thy assay is under development as well [213], 
which may offer molecularly specific aid in diag-
nosis in the near future.

 Treatment of Progressive 
Supranuclear Palsy 
and Corticobasal Degeneration

Current treatment strategies for both PSP and 
CBS are supportive and symptomatic as no 
disease- modulating therapies are currently avail-
able for either condition.

Parkinsonism Levodopa preparation may still 
be trialed to treat the parkinsonism associated 
with PSP and CBS.  In one study of pathologi-
cally confirmed PSP patients, approximately 
one-third of PSP patients showed a significant 
improvement (> 30% improvement in the Unified 
Parkinson’s Disease Rating Scale) [46], which is 
a response rate that has been reported in other 
studies as well [64–67]. Doses of over 1 gm/day 
of levodopa for 1 month are proposed to elicit 
responses. Often, however, responses to levodopa 
are very mild in PSP and CBS, if present at all, 
and typically wane over time [20, 24, 55, 68, 99, 
214]. Dopamine agonists have been trialed in 
PSP but are generally less effective than levodopa 
and are more likely to cause side effects [65, 215, 
216]. Smaller studies documented improvement 
in parkinsonism using amantadine or amitripty-
line in PSP, but caution is warranted because of 
possible anticholinergic side effects, including 
cognitive and psychiatric disturbances, dry 

mouth, or difficulty with urination [65, 
217–219].

Ocular Symptoms Zolpidem showed mild 
improvements in saccadic speed in one small 
study of patients with PSP, but those findings 
have not been replicated [220–222]. Botulinum 
toxin may be used to treat blepharospasm and 
eyelid-opening apraxia, but high doses are often 
required to achieve benefits [223, 224]. Artificial 
tears and ophthalmic ointments may be used to 
treat dry eyes, and sunglasses may be of use to 
aid in photosensitivity symptoms. Alternating an 
eye patch is useful for double vision, and, occa-
sionally, prism lenses may be fashioned, if the 
deficits are fixed.

Spasticity, Dystonia, and Myoclonus Muscle 
relaxants such as baclofen, tizanadine, and cyclo-
benzaprine may be considered, but they must be 
carefully weighed against their possible side 
effects of somnolence [225]. Botulinum toxin 
may be used for the disabling focal dystonia of 
the limbs or neck that occurs in both conditions 
[223, 225, 226]. Clonazepam or levetiracetam 
can treat the myoclonus associated with CBS as 
can valproate [214, 227, 228].

Sialorrhea Again, botulinum toxin may be used 
to treat sialorrhea [229], as can medications 
including glycopyrrolate or 1% atropine drops 
placed sublingually, although the latter, if not 
carefully applied, can be absorbed systemically 
and cause anticholinergic side effects [230].

Memory Impairments Acetylcholinesterase 
inhibitors such as donepezil, rivastigmine, or 
galantamine may offer some mild improvement 
in memory function, but studies showed that it 
may worsen gait and dysphagia in PSP and 
worsen behavioral symptoms in FTD, so it should 
be used with caution [227, 231, 232]. No studies 
of memantine in autopsy-confirmed CBD have 
been performed, but multiple studies of meman-
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tine for memory dysfunction in FTD have failed 
to show benefits [233, 234].

Mood Changes Selective serotonin reuptake 
inhibitors or serotonin-norepinephrine reuptake 
inhibitors may be used to treat depression and 
anxiety, but they are not helpful for the apathy 
that can accompany PSP or CBS [227]. 
Dextromethorphan-quinidine is an effective 
treatment for pseudobulbar affect as are antide-
pressants [235].

Nonpharmacological Therapies PSP and CBS 
patients benefit from multidisciplinary care from 
providers knowledgeable about these conditions. 
Physical therapy decreases the likelihood of falls 
and improves global functioning [227, 236–238]. 
Weighted walkers are often recommended to aid 
in safer ambulation. Speech therapy may be 
employed to strengthen vocal muscles but to also 
provide strategies for more effective communica-
tion [239, 240]. Swallowing evaluations are 
essential if the patient complains of dysphagia or 
frequent coughing during meals as food consis-
tency or eating habits may be modified. Safety 
inspections of the home may be helpful and can 
often be done my occupational therapists who 
can suggest changes and modifications to pro-
mote safety. Social workers are often needed to 
aid in utilization of resources that may be avail-
able to these patients. Lastly, palliative care con-
sultants can help to manage transitions to less 
aggressive modalities of care and to promote 
symptom management and navigate end-of-life 
decision-making in a way that aids in both the 
patients and the families’ quality of life [241].

 Experimental Therapies 
for Progressive Supranuclear Palsy 
and Corticobasal Degeneration

Although there are no current disease- modulating 
treatment for PSP or CBD, several medications 
are under investigation, many of which target the 
tau protein by different mechanisms: by decreas-

ing production, stabilizing microtubules, promot-
ing immune system clearance, or modifying 
post-translational changes.

Tau in PSP and CBD commonly undergoes 
post-translational phosphorylation and acety-
lation [242]; unfortunately, trials of the 
GSK-3β kinase inhibitors lithium, valproate, 
and Tideglusib failed to show efficacy or were 
stopped due to poor tolerability [243]. 
Salsalate inhibits tau acetylation in animal 
models and is currently under early investiga-
tion (NCT02422485) [244]. O-Glc-NAC mod-
ification and caspase-mediated cleavage are 
other potential therapeutic targets [245, 246]

The microtubule-stabilizing agent davunetide 
failed to show efficacy in a phase IIb/III trial 
[247], and the taxane derivative TPI-287 inducted 
anaphylactic reactions, which necessitated trial 
stoppage [248]. Other compounds still under 
investigation that are thought to work through 
this mechanism include epothilone-D and methy-
lene blue [249, 250].

Anti-inflammatory medications have been tri-
aled in PSP, including rasagiline, CoQ10, and 
riluzole, but studies have failed to show efficacy 
[251–253], although there was significant benefit 
in a shorter trial using CoQ10 [254].

Tau immunotherapy is actively under inves-
tigation. Specifically, in PSP, the BIIB092 anti-
body product, directed against the N terminus 
of extracellular tau [255], showed promise in 
early trials [256, 257], but a phase II study 
failed to show efficacy (PASSPORT 
NCT03068468) [258]. Similarly, ABBV-8E12 
had favorable early safety results and good tar-
get engagement [259, 260] but failed to show 
efficacy in larger trials. While these results are 
discouraging, a number of questions remain 
regarding this strategy, namely if proper epit-
opes of tau were selected [261, 262], if oligo-
meric species or intracellular tau should be 
prioritized although it is technically more chal-
lenging [184, 262–267], or if alternative deliv-
ery systems may increase blood–brain barrier 
penetration of antibody products and improve 
efficacy [184].

Gene therapy through small interfering RNA 
(siRNA) or antisense oligonucleotides are cur-
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rently being investigated in animal models of 
tauopathies [268–270] and may be of future use 
in PSP and CBD.
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