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1 Introduction

As we have said before, a set S ⊆ V is a dominating set of a graph G = (V ,E)

if every vertex v ∈ V is either an element of S or is adjacent to an element of S.
In this chapter, we will take a look at dominating sets from a variety of different
perspectives. Each perspective suggests a variation in the domination theme and
different types or aspects of dominating sets.

We will not attempt to be comprehensive here, only to provide a sufficient
number of different models to reveal domination in a much broader view. Chapter 11
in the book Fundamentals of Domination in Graphs [5] presents ten logical
structures or frameworks where the concept of domination naturally arises. The
suggested frameworks range from integer programming to hypergraphs. We repeat
a few of these frameworks in this chapter.
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In the most general sense, we are interested in sets of vertices in a graph having
some property P , called P-sets. We are interested in finding P-sets of minimum and
maximum cardinalities, using a notational system of the form a(G) for the minimum
cardinality of a P-set, and upper case A(G) for the maximum cardinality of a P-set.
These parameters are sometimes referred to as lower and upper parameters.

But we will make a further distinction. As an example, recall that a set S ⊆
V is independent if no two vertices in S are adjacent. Since independence is
an hereditary property (henceforth denoted H), meaning that every subset of an
independent set is also independent, it would not make any sense to seek a minimum
cardinality independent set, and so instead we seek a minimum cardinality maximal
independent set (denoted minimax). Similarly, the property of being a dominating
set is superhereditary (henceforth denoted SH), meaning that any superset of a
dominating set is also a dominating set. Thus, it would not make any sense to
seek a maximum cardinality dominating set, since the entire vertex set of any graph
is a dominating set. So, instead, we seek the maximum cardinality of a minimal
dominating set (denoted maximin). For concepts that are neither hereditary nor
superhereditary, we generally seek a minimum cardinality P-set, denoted min, and
sometimes a maximum cardinality P-set, denoted max.

To illustrate these examples, consider the double star S(r, s) for 1 ≤ r ≤ s with
two adjacent vertices u and v, where u is adjacent to r leaves and v is adjacent to s

leaves. Let L(u) and L(v) denote the set of leaves adjacent to u and v, respectively.
We note that S(r, s) has exactly four minimal dominating sets, namely S1 = {u, v},
S2 = L(u) ∪ {v}, S3 = L(v) ∪ {u}, and S4 = L(u) ∪ L(v). It follows that S1 is a
minimum dominating set and S4 is a maximin dominating set. Thus, the domination
number γ (S(r, s)) = |S1| = 2 and the upper domination number �(S(r, s)) =
|S4| = r + s. Further, the maximal independent sets of S(r, s) are precisely the
sets S2, S3, and S4. Hence, S4 is a maximum independent set and S2 is a minimax
independent set, and so the independent domination number i(S(r, s)) = |S2| =
r + 1 and the independence number α(S(r, s)) = |S4| = r + s.

In the remaining sections of this chapter, we will use the following notation,
where recall for a vertex v in G, the set NG(v) denotes the set of neighbors of v in
G, and the degree of v in G is denoted by dG(v) = |NG(v)|. Further recall that for
a subset of vertices S ⊆ V , the degree of v in S, denoted dS(v), is the number of
vertices in S adjacent to the vertex v; that is, dS(v) = |NG(v) ∩ S|. In particular, if
S = V , then dS(v) = dG(v). If the graph G is clear from context, we simply write
N(v) and d(v) rather than NG(v) and dG(v), respectively. For k ≥ 1 an integer, we
use the standard notation [k] = {1, . . . , k} and [k]0 = [k] ∪ {0} = {0, 1, . . . , k}. At
a glance,

S = V \ S, that is, S denotes the vertices in V but not in S, called the complement
of S in G.

dS(v) = |N(v) ∩ S|.
dS[v] = |N [v] ∩ S|.
dS(v) = |N(v) ∩ S|.
dS[v] = |N [v] ∩ S|.
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G[S], the subgraph of G induced by S.
δ(G) = min{d(v) | v ∈ V }.
�(G) = max{d(v) | v ∈ V }.

Also, to avoid excessive repetition, we will frequently list domination parameters
in the following abbreviated format:

parameter name: concept definition; designation of being hereditary H, or super-
hereditary SH; if neither hereditary nor superhereditary no designation is given;
notation for lower parameter and type of P-set (min or minimax), notation for
upper parameter and type P-set (max or maximin).

For example, domination, where γ (G) is the domination number and �(G) is the
upper domination number, is listed as:

domination: N [S] = V , that is, for every v ∈ S, dS(v) ≥ 1; SH; γ (G) (min),
�(G) (maximin).

2 Fundamental Domination Parameters

In this section, we present what are arguably the most basic of all parameters related
to domination in graphs. From these basic parameters all others are derived in one
way or another. We begin with a list of five fundamental domination parameters.
Thereafter, we list seven related parameters. The designations H hereditary and SH

superhereditary are given whenever they apply. Unless otherwise stated, S always
denotes a subset of V and F always denotes a subset of E.

2.1 Domination Parameters

(a) domination: N [S] = V , that is, for every v ∈ S, dS(v) ≥ 1; SH; γ (G) (min),
�(G) (maximin).

(b) independent domination: N [S] = V and S is independent; i(G) (min), α(G)

(max).
(c) total domination: N(S) = V , that is, for every v ∈ V , dS(v) ≥ 1; γt (G) (min),

SH; �t(G) (maximin);
(d) paired domination: N [S] = V and G[S] has a perfect matching, that is, an

independent set of edges of cardinality 1
2 |S|; γpr(G) (min), �pr(G) (maximin).

(e) connected domination: N [S] = V and G[S] is connected; γc(G) (min), SH;
�c(G) (maximin).

It is perhaps worth commenting why total domination and connected domination
are both superhereditary properties (SH). Whereas a superset S∗ of a connected set
S might not be a connected set, if S is also a dominating set, then every vertex in
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S is adjacent to a vertex in S implying that S∗ is also a connected dominating set.
Similarly, total domination is superhereditary.

2.2 Related Parameters

(a) vertex covering: every edge e ∈ E is incident to a vertex in S; SH; β(G) (min),
β+(G) (maximin). Note that for any graph G of order n = |V |,

α(G) + β(G) = n

and

i(G) + β+(G) = n.

(b) irredundance: for every vertex v ∈ S, N [v] \ N [S \ {v}] 	= ∅; H; ir(G)

(minimax), IR(G) (max).
(c) enclaveless: S does not contain an enclave, that is, a vertex v ∈ S, such that

N [v] ⊆ S; H; ψ(G) (minimax), 	(G) (max). Note that for every graph G of
order n,

γ (G) + 	(G) = n

and

�(G) + ψ(G) = n.

(d) packing: for every u, v ∈ S, d(u, v) > 2; H; p2(G) (minimax), P2(G) (max).
The packing number P2(G) is also denoted ρ(G) in the literature. Note that the
packing number is a standard lower bound on the domination number for any
graph G, that is, P2(G) ≤ γ (G).

(e) edge domination: F ⊆ E and every edge not in F is adjacent to some edge in
F ; SH; γ ′(G) (min), �′(G) (maximin).

(f) matching: F ⊆ E and F is an independent set of edges; H; α′−(G) (minimax),
α′(G) (max).

(g) edge covering: every vertex v ∈ V is incident to an edge in F ⊆ E; SH; β ′(G)

(min), β ′+(G) (maximin). Note, it has been shown in [4] and [6], respectively,
that for every graph G of order n,

α′(G) + β ′(G) = n,

and

α′−(G) + β ′+(G) = n.
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3 Conditions on the Dominating Set

Many domination parameters are formed by combining domination with another
graph theoretical property P . In this section, we consider the parameters defined by
imposing an additional constraint on the dominating set. In the next section, we will
see that a condition may also be placed on the dominated set or on the method of
dominating.

We list samples of types of dominating sets S defined either by imposing a
condition on the subgraph G[S] induced by S or requiring that every vertex in S

satisfy some added condition. Clearly, some of the basic types are defined within
this framework. For example, if G[S] has no edges, then the set S is an independent
dominating set, if G[S] has no isolated vertices, then S is a total dominating set, and
if G[S] is connected, then S is a connected dominating set. Since all of the pairs of
parameters in this section consist of the smaller as a minimum and the larger as a
maximum of minimal, the designations (min) and (maximin) are omitted.

(a) acyclic domination: N [S] = V and G[S] is acyclic (contains no cycles); γa(G),
�a(G).

(b) bipartite domination: N [S] = V and G[S] is bipartite; γbip(G), �bip(G).
(c) clique domination: N [S] = V and G[S] is a complete graph: γcl(G), �cl(G).
(d) private domination: N [S] = V and for every u ∈ S there exists a vertex v ∈ S

such that N(v) ∩ S = {u}; γpvt(G), �pvt(G). Note that a well-known theorem
of Bollobás and Cockayne [1] shows that for every graph G with no isolated
vertices, γ (G) = γpvt(G), that is, G has a γ -set S such that for each vertex
u ∈ S, there is a vertex v ∈ S with N(v) ∩ S = {u}.

(e) semitotal domination: N [S] = V and for every vertex u ∈ S, there exists a
vertex v ∈ S with d(u, v) ≤ 2; SH; γt2(G), �t2(G).

(f) weakly connected domination: N [S] = V and G′ = (V ,ES) is connected,
where ES is the set of edges of G incident to at least one vertex of S; SH;
γw(G), �w(G).

(g) semipaired domination: N [S] = V and the vertices in S can be partitioned into
|S|/2 pairs {u, v} such that d(u, v) ≤ 2; γpr2(G), �pr2(G).

(h) convex domination: N [S] = V and for any two vertices u, v ∈ S, the vertices
contained in all shortest paths between u and v, called u − v geodesics, belong
to S; γconv(G), �conv(G).

(i) weakly convex domination: N [S] = V and for any two vertices u, v ∈ S, there
exists at least one u − v geodesic, all of whose vertices belong to S; γwconv(G),
�wconv(G).

(j) cycle domination: N [S] = V and G[S] has a Hamilton cycle; γcy(G), �cy(G).
(k) equivalence domination: N [S] = V and G[S] is disjoint union of complete

subgraphs; γe(G), �e(G).
(l) k-dependent domination: N [S] = V and �(G[S]) ≤ k; γ[k](G), �[k](G).
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4 Conditions on S = V \ S

The framework considered in this section encompasses dominating sets S for which
some condition is imposed on the vertices in the set S or the subgraph G[S] induced
by S. As before, we list a sampling of types of dominating sets in this framework.
In many of them, we do not mention the upper parameters, which indicates that in
general they have not been studied. As before, the designations H hereditary and
SH superhereditary are given whenever they apply.

(a) distance k-domination: for every v ∈ S, there exists a vertex u ∈ S with
d(u, v) ≤ k; SH; γ≤k(G), �≤k(G).

(b) k-step domination: for every v ∈ S, there exists a vertex u ∈ S and a (u, v)-path
of length equal to k; SH; γ=k(G).

(c) k-domination: for every vertex v ∈ S, dS(v) ≥ k; SH; γk(G).
(d) restrained domination: N [S] = V and for every v ∈ S, dS(v) ≥ 1; γr(G).
(e) geodetic domination: every vertex in S lies on a shortest path between two

vertices in S; SH; γg(G).
(f) locating domination: N [S] = V and for every v,w ∈ S, N(v)∩S 	= N(w)∩S;

SH; γL(G).
(g) secondary domination: every vertex w ∈ S is adjacent to at least one vertex

u ∈ S and is distance at most k to a second vertex in S; SH; γ(1,k)(G). Note
that for any nontrivial graph without isolated vertices, γ (G) = γ(1,4)(G) and
γ2(G) = γ(1,1)(G).

(h) downhill domination: for every vertex v ∈ S, there exists a vertex u ∈ S and a
(downhill) path u = v1, v2, . . . vk = v from u to v, such that d(vi) ≥ d(vi+1)

for all i ∈ [k − 1]; SH; γdown(G).
(i) uphill domination: for every vertex v ∈ S, there exists a vertex u ∈ S and an

(uphill) path u = v1, v2, . . . vk = v from u to v, such that d(vi) ≤ d(vi+1) for
all i ∈ [k − 1]; SH; γup(G).

(j) exponential domination: for every vertex v ∈ S, ws(v) ≥ 1, where

ws(v) =
∑

u∈S

1

2d(u,v)−1
,

and d(u, v) equals the length of a shortest (u, v)-path in V \ (S \ {u}) if such a
path exists, and ∞ otherwise; SH; γexp(G).

(k) fair domination: N [S] = V and every two vertices u, v ∈ S have the same
number of neighbors in S; fdom(G).

(l) H -forming domination: every vertex v ∈ S is contained in a copy of a graph H

(not necessarily induced) with a subset of vertices in S; SH; γH (G).
(m) outer-connected domination: N [S] = V and G[S] is connected; γc(G).
(n) b-disjunctive domination: for every v ∈ S, either v is adjacent to a vertex u ∈ S

or there exist at least b vertices in S at distance 2 from v; SH; γ d
b (G).



Models of Domination in Graphs 19

(o) secure domination: N [S] = V and for every vertex u ∈ S, there is an adjacent
vertex v ∈ S such that the set (S \ {v}) ∪ {u} is a dominating set; SH; γs(G).

5 Conditions on V

In this section, we consider a framework where the dominating set is defined by an
added condition that is imposed on every vertex of G.

(a) total domination: N(S) = V , that is, for every vertex v ∈ V , N(v) ∩ S 	= ∅;
SH; γt (G), �t(G).

(b) odd domination: N [S] = V , and for every v ∈ V , |N [v] ∩ S| is odd; γodd(G).
It is noteworthy that Sutner [7] was the first to observe that every graph G has
an odd dominating set.

(c) even domination: N [S] = V , and for every v ∈ V , |N [v]∩S| is even; γeven(G).
(d) identifying code number: N [S] = V , and for every v ∈ V , N [v] ∩ S is unique;

SH; γid(G).
(e) total distance k-dominating: for every vertex v ∈ V , there exists a vertex u ∈ S,

u 	= v, such that d(u, v) ≤ k; SH; γ k
t (G).

(f) k-tuple domination: for every v ∈ V , |N [v] ∩ S| ≥ k; SH; γ×k(G).

6 Conditions on Vertex Degrees

As we will see in this section, many types of dominating sets can be defined in terms
of how many neighbors a vertex must have in either S or S. These constraints are
often perceived as requirements of access to the resources provided by members of
a dominating set.

6.1 Degree Conditions on S and S

Degree conditions as a framework of domination was first suggested by Telle [8].
We present a slightly different form of his framework here. There are four possible
values under consideration, namely, dS(v) and dS(v) for v ∈ S, and dS(v) and dS(v)

for v ∈ S. Table 1 illustrates how with using combinations of these four values,
different domination parameters are defined. We only include a few of the many
parameters which can be defined by various combinations of the four degree values.
A blank entry in Table 1 implies that this condition is not relevant to the definition.
Let D-set, TD-set, ID-set, and RD-set denote dominating set, total dominating set,
independent dominating set and restrained dominating set, respectively.
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Table 1 Degree Conditions

S is v ∈ S, dS(v) v ∈ S, dS(v) v ∈ S, dS(v) v ∈ S, dS(v)

a D-set ≥ 1

an ID-set = 0 ≥ 1

a TD-set ≥ 1 ≥ 1

a perfect dominating set = 1

an RD-set ≥ 1 ≥ 1

a k-dominating set ≥ k

a D-set and S is a D-set ≥ 1 ≥ 1

a [1, k]-dominating set ≥ 1 and ≤ k

an odd D-set even odd

an open odd D-set odd odd

an efficient D-set =0 = 1

a 1-dependent D-set ≤ 1 ≥ 1

6.2 Degree Conditions Per Vertex

As in the previous section, the framework here is defined in terms of the minimum
cardinality of a nonempty set S satisfying the stated conditions based on degree. The
difference is that the constraints now depend on comparative comparative values of
degrees. Recall that the boundary of a set S is ∂(S) = N [S] \ S.

(a) alpha domination: for every v ∈ S, dS(v)/d(v) ≥ α where 0 < α ≤ 1; SH;
γα(G).

(b) defensive alliance: for every v ∈ S, dS[v] ≥ dS(v); a(G).
(c) defensive k-alliance: for every v ∈ S, dS(v) ≥ dS(v) + k; ak(G). Note that

for k = −1, a defensive k-alliance is the standard defensive alliance, that is,
a−1(G) = a(G).

(d) global defensive alliance: N [S] = V and for every v ∈ S, dS[v] ≥ dS(v);
γa(G).

(e) offensive alliance: for every v ∈ ∂(S), dS(v) ≥ dS[v]; ao(G).
(f) offensive k-alliance: for every v ∈ ∂(S), dS(v) ≥ dS(v) + k; aok(G). Note that

for k = 1, a k-offensive alliance is the normal offensive alliance.
(g) global offensive alliance: for every v ∈ S, dS(v) ≥ dS[v]; γao(G).
(h) powerful alliance: for every u ∈ S, dS[u] ≥ dS(u) and for every v ∈ ∂(S),

dS(v) ≥ dS[v]; ap(G).
(i) (static) monopoly: for every vertex v ∈ S, dS(v) ≥ dS(v), that is, every vertex

not in S has at least d(v)/2� neighbors in S, or equivalently, every vertex in S

has at least as many neighbors in S as it has in S; SH; m(G).
(j) open, or total, monopoly: for every vertex v ∈ V , dS(v) ≥ dS(v), that is, every

vertex in V has at least as many neighbors in S as it has in S; SH; mt(G).
(k) weak domination: for every v ∈ S, there exists a neighbor u ∈ S, d(u) ≤ d(v);

SH; γw(G).
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(l) strong domination: for every v ∈ S, there exists a neighbor u ∈ S, d(u) ≥ d(v);
SH; γs(G).

(m) cost effective domination: N [S] = V and for every v ∈ S, dS(v) ≤ dS(v);
γce(G).

(n) very cost effective domination: N [S] = V and for every v ∈ S, dS(v) < dS(v);
γvce(G).

(o) 1-equitable domination: N [S] = V and for all u, v ∈ S, |dS(u) − dS(v)| ≤ 1;
γ1eq(G).

(p) 2-equitable domination: N [S] = V and for all u, v ∈ S, |dS(u) − dS(v)| ≤ 1;
γ2eq(G)

(q) equitable domination: N [S] = V and for all u, v ∈ S, |dS(u)− dS(v)| ≤ 1, and
for all u, v ∈ S, |dS(u) − dS(v)| ≤ 1; γeq(G).

(r) global distribution center: N [S] = V and for all v ∈ S, there exists a vertex
u ∈ S such that dS[u] ≥ dS[v]; SH; gdc(G).

7 Functions f : V → N

For every set S ⊆ V , there is a corresponding characteristic function fS : V →
{0, 1}, such that f (v) = 1 if v ∈ S, and f (v) = 0 if v ∈ S. This suggests a variety
of options for the range N of a function f : V → N, in terms of domination. In
this section, we present a sample of the functions that have been considered under
this framework. The value of each of the following parameters equals the minimum
weight of a function of the given type, where the weight w(f ) of such a function f

is the sum of all assigned values,

w(f ) =
∑

v∈V

f (v).

7.1 Dominating Functions

(a) domination: f : V → {0, 1}, for every vertex v ∈ V , f (N [v]) ≥ 1; γ (G).
(b) fractional domination: f : V → [0, 1], for every vertex v ∈ V , f (N[v]) ≥ 1;

γf (G).
(c) signed domination: f : V → {−1, 1}, for every vertex v ∈ V , f (N [v]) ≥ 1;

γs(G).
(d) minus domination: f : V → {−1, 0, 1}, for every vertex v ∈ V , f (N [v]) ≥ 1;

γm(G).
(e) {k}-domination: f : V → {0, 1, . . . , k}, for every vertex v ∈ V , f (N [v]) ≥ k;

γ{k}(G).
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(f) k-rainbow domination: f : V → P{1, 2, . . . , k}, every vertex v ∈ V is
assigned a subset of {1, 2, . . . , k} such that for every vertex v ∈ V with
f (v) = ∅, the union of the sets assigned to the closed neighborhood N [v]
equals {1, 2, . . . , k}; γrk(G).

7.2 Roman Dominating Functions

The types of domination in this section are models of a military defense strategy
instituted by Emperor Constantine, between 306 and 337 AD, in which the regions
in the Roman Empire were defended by armies stationed at key locations. A region
was secured by armies stationed there, and a region without an army was protected
by sending mobile armies from neighboring regions. But Constantine decreed that
a mobile field army could not be sent to defend a region, if doing so left its
original region unsecured. This defense strategy gave rise to what is called Roman
domination, given below. As in the previous section, the value of each of the
following domination parameters equals the minimum weight of a function of the
given type.

Definition 1 Roman domination: f : V → {0, 1, 2}, for every vertex v with f (v) =
0, there is a vertex u ∈ N(v) with f (u) = 2; γR(G).

It is easy to see, for example, that for every graph G, γ (G) ≤ γR(G) ≤ 2γ (G).
From the initial definition of Roman domination as a framework, many varieties of
domination can clearly be defined, and indeed, many have been defined. We only
provide a sample here.

(a) weak Roman domination: f : V → {0, 1, 2}, for every v with f (v) = 0, there
is a vertex u ∈ N(v) with f (u) > 0 such that the function f ′ with f ′(v) = 1,
f ′(u) = f (u) − 1, and f ′(w) = f (w) otherwise, has no undefended vertex,
meaning a vertex with f ′(N [w]) = 0; γr(G).

(b) double Roman domination: f : V → {0, 1, 2, 3}, every vertex w with f (w) = 0
either has a neighbor u with f (u) = 3 or two neighbors u, v with f (u) =
f (v) = 2, and if f (w) = 1, then w has at least one neighbor u with 2 ≤
f (u) ≤ 3; γdR(G).

(c) Roman {2}-domination, also called Italian domination: f : V → {0, 1, 2},
every vertex v with f (v) = 0 has f (N(v)) ≥ 2; γR2(G) (also γI (G)).

(d) Roman k-domination: f : V → {0, 1, 2}, every vertex v with f (v) = 0 is
adjacent to at least k vertices u with f (u) = 2; γkR(G).

(e) independent Roman domination: f : V → {0, 1, 2}, every vertex v with f (v) =
0 has at least one neighbor u with f (u) = 2 and the set of vertices w with
f (w) > 0 is an independent set; iR(G).

(f) signed Roman domination: f : V → {−1, 1, 2}, for every vertex v ∈ V ,
f (N [v]) ≥ 1, and every vertex v with f (v) = −1 has at least one neighbor
u with f (u) = 2; γsR(G).



Models of Domination in Graphs 23

(g) total Roman domination: f : V → {0, 1, 2}, every vertex w with f (w) = 0 has
at least one neighbor u with f (u) = 2 and every vertex u with f (u) > 0 has at
least one neighbor v with f (v) > 0; γtR(G).

8 Stratified Domination

A graph G together with a fixed partition of its vertex set V into nonempty subsets
is called a stratified graph. If the partition is V = {V1, V2}, then G is a 2-stratified
graph and the sets V1 and V2 are called the strata or sometimes the color classes
of G. A framework for domination based on coloring the vertices of a graph was
defined in [2] as follows. Let F be a 2-stratified graph with one fixed blue vertex v

specified; F is said to be rooted at the blue vertex v. An F -coloring of a graph G is
defined to be a red-blue coloring of the vertices of G such that every blue vertex v

is a root of a copy of F (not necessarily induced) in G. The F -domination number
γF (G) of G is the minimum number of red vertices in an F -coloring of G.

We note that if F is a 2-stratified K2 rooted at a blue vertex that is adjacent to a
red vertex, then the set of red vertices in an F -coloring of G is a dominating set of
G and γF (G) = γ (G).

This extends to other 2-stratified graphs F and encapsulates many types of dom-
ination related parameters, including the domination, total domination, restrained,
total restrained, and k-domination numbers. For example, let F be a 2-stratified P3
rooted at a blue vertex v. The five possible choices for the graph F are shown in
Figure 1.

Let G be a connected graph of order at least 3. It is shown in [2] that if F = F1,
then the set of red vertices of an F -coloring of G is a total dominating set and
γF (G) = γt (G), while if F = F2, then the set of red vertices is a dominating set
of G and γF (G) = γ (G). Furthermore, if F = F4, then the set of red vertices
of an F -coloring of G is a restrained dominating set and γF (G) = γr(G), and if
F = F5, then the set of red vertices of an F -coloring of G is a 2-dominating set and
γF (G) = γ2(G).

On the other hand, the parameter γF3(G) defined a new domination parameter
that had not been studied prior to considering domination from this framework.

Fig. 1 The five 2-stratified graphs P3
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Stratified domination encompasses many known domination parameters and sug-
gests new avenues for study.

9 Domination Chain

The domination chain expresses relationships that exist among dominating sets,
independent sets, and irredundant sets in graphs. Irredundance is the concept that
describes the minimality of a dominating set. If a dominating set S is minimal, then
for every vertex u ∈ S the set S \ {u} is no longer a dominating set. This means that
the vertex u dominates some vertex, which could be itself, that no other vertex in S

dominates. Given a vertex set S ⊆ V and a vertex v ∈ S, we make the following
definitions.

(a) The vertex v is a self-private neighbor if v has no neighbors in S, that is, N [v]∩
S = {v}.

(b) The vertex v has an S-external private neighbor if there exists a vertex w ∈ S

such that N(w) ∩ S = {v}.
(c) The vertex v has an S-internal private neighbor if there exists a vertex w ∈ S

such that N(w) ∩ S = {v}.
A nonempty set S is irredundant if and only if every vertex v ∈ S either is a self-

private neighbor or has an S-external private neighbor. The irredundance numbers,
ir(G) and IR(G), are the minimum and maximum cardinalities, respectively, of a
maximal irredundant set.

The following two properties of a minimal and maximal dominating set yield the
domination chain:

Observation 1 The following hold in a graph G.

(a) Every minimal dominating set in G is a maximal irredundant set of G.
(b) Every maximal independent set in G is a minimal dominating set of G.

Theorem 2 (The Domination Chain) For every graph G,

ir(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ �(G) ≤ IR(G).

Since its introduction by Cockayne, Hedetniemi, and Miller [3] in 1978, the
domination chain of Theorem 2 has become one of the major focal points in the
study of domination in graphs, inspiring several hundred papers. As a framework, it
is possible to obtain inequality chains similar to the domination chain starting from
a suitable seed property. Thus, almost any property of subsets could be considered,
for example, the seed property that S is a vertex cover.
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10 Conditions Relating to Perfection

The concept of being dominated exactly once by the vertices in a set S is generally
referred to as perfect or efficient domination. In this section, we list a few parameters
related to this model of domination.

Given a set S ⊆ V , a vertex v ∈ V is perfect (with respect to S) if |N [v]∩S| = 1,
and is almost perfect if it is either perfect or is adjacent to a perfect vertex. A vertex
v ∈ V is open perfect (with respect to S) if |N(v) ∩ S| = 1, and is almost open
perfect if it is either open perfect or adjacent to an open perfect vertex. A set S is a
perfect neighborhood set if every vertex v ∈ V is either perfect or almost perfect,
with respect to S. A set S is called internally perfect if every vertex v ∈ S is perfect,
with respect to S, that is, if S is an independent set. And S is called externally perfect
if every vertex w ∈ S is perfect, that is, every vertex w is adjacent to exactly one
vertex in S. Externally perfect sets are also called perfect dominating sets. A set
that is both internally and externally perfect is an efficient dominating set. A set S is
called nearly perfect if for every vertex v ∈ S, |N(v) ∩ S| ≤ 1, that is, every vertex
in S is dominated at most once by the vertices in S, or every vertex in S has at most
one neighbor in S.

(a) perfect domination: for every vertex v ∈ S, dS(v) = 1; γp(G).
(b) efficient domination: for every v ∈ V , dS[v] = 1; γ (G). Note, it can

be shown that all efficient dominating sets have the same cardinality,
namely, γ (G). Efficient dominating sets are also called perfect codes. This
means that if S = {v1, v2, . . . , vk} is an efficient dominating set, then
π = {N [v1], N[v2], . . . , N [vk]} is a partition of V .

(c) efficiency: ε(S) = |{v ∈ S : dS(v) = 1}|; ε(G) = maxS⊆V {ε(S)}.
(d) total efficiency: εt (S) = |{v ∈ V : dS(v) = 1}|; εt (G) = maxS⊆V {εt (S)}.

11 Criticality Parameters

For any parameter, such as α(G) or γ (G), it is natural to consider how the
value changes when a small change is made in the graph G, for example, by the
deletion of a vertex or edge, the addition of an edge, the subdivision of an edge,
the identification of two non-adjacent vertices (an elementary homomorphism), or
the identification of two adjacent vertices (an elementary contraction). Most of
the study along these lines involves families of graphs whose domination number
changes whenever the given modification is made arbitrarily in the graph. For
example, domination edge critical graphs G have the property that the domination
number decreases whenever any arbitrary edge is added, that is, γ (G + e) < γ (G)

for any e ∈ E(G).
On the other hand, parameters that in some sense measure the degree of criticality

have also been studied. Here we describe selected criticality parameters of this type
that have been studied for domination. We note that this perspective deviates from
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our other frameworks in that it does not encompass dominating sets, but instead
considers effects of a graph modification on the domination number.

(a) reinforcement number, r(G): minimum number of edges that must be added to
G in order to decrease the domination number.

(b) bondage number, b(G): minimum number of edges that must be deleted from
G in order to increase the domination number.

(c) domination sensitivity, γ±(G): minimum number of vertices that must be
deleted to either increase or decrease the domination number.

(d) domination subdivision number, sdγ (G): minimum number of edges that must
be subdivided in order to increase the domination number.

(e) total domination subdivision number, sdγt (G): minimum number of edges that
must be subdivided in order to increase the total domination number.

(f) paired domination subdivision number, sdpr(G): minimum number of edges
that must be subdivided in order to increase the paired domination number.

(g) forcing domination number, Fγ (G). A subset T of a minimum dominating set
S is a forcing subset for S if S is the unique minimum dominating set containing
T . The forcing domination number Fγ (S) of a minimum dominating set S

is the minimum cardinality among the forcing subsets of S, and the forcing
domination number Fγ (G) of G is the minimum forcing domination number
among the minimum dominating sets S of G. It follows from the definition that
Fγ (G) ≤ γ (G).

12 Partitions

For any property P of interest, it is natural to consider partitions of the vertex set
V = {V1, V2, . . . , Vk} such that every set Vi , where i ∈ [k], is a P-set; these are
generally referred to as P-colorings. The most often studied partitions of this type
are called proper colorings, in which each set Vi is an independent set.

In this section, we describe a variety of P-colorings which have been studied,
in which the property P is related to domination. As in the previous section, this
perspective deviates from our other frameworks in that it does not encompass dom-
inating sets, but instead considers parameters based on graph partitions involving
dominating sets.

(a) domatic number, d(G): maximum order of a vertex partition into dominating
sets.

(b) idomatic number, id(G): maximum order of a vertex partition into independent
dominating sets, or the maximum number of vertex disjoint independent
dominating sets.

(c) capacitated domination, γcapk
(G): minimum order of a vertex partition into sets

Vi such that G[Vi] has a spanning star of order at most k + 1.
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(d) iterated independence numbers, i∗(G) and α∗(G): minimum and maximum
orders of partitions resulting from repeated removals of maximal independent
sets.

(e) iterated domination numbers, γ ∗(G), �∗(G): minimum and maximum orders
of partitions resulting from repeated removals of minimal dominating sets.

(f) iterated irredundance numbers, ir∗(G), IR∗(G): minimum and maximum
orders of partitions resulting from repeated removals of maximal irredundant
sets.

(g) dominator coloring number, χd(G): minimum order of a vertex partition, such
that every vertex v ∈ V dominates at least one set Vi .

(h) gamma-gamma domination, γ γ (G), ��(G): minimum and maximum of |S1|+
|S2| for two disjoint (minimal) dominating sets in G.

(i) gamma-i domination, γ i(G): minimum of |S1| + |S2| for two disjoint dominat-
ing sets in G, one of which is an independent dominating set.

(j) defensive alliance partition number, 	a(G): maximum order of a vertex
partition into defensive alliances.

13 Summary

In the preceding sections we have seen a wide variety of contexts in which aspects
of dominating sets in graphs can be expressed and studied.

If a condition can be imposed on the vertices only in S or only in S, it can also
be imposed to hold on all vertices in V . In this way we move from domination to
total domination. If a condition can be imposed on the closed neighborhoods N [v]
of vertices, it can then be relaxed to hold only for open neighborhoods N(v). All
parameters involving sets S ⊆ V can also be studied from the point of view of
subsets of edges F ⊆ E.

One can consider the minimum cardinality of a set S having some property, and
also consider the maximum cardinality of a minimal set having the same property.
One can consider the maximum cardinality of a set S having some property, and
also consider the minimum cardinality of a maximal set having the same property.
Consider any hereditary property P of a set of vertices S, such as being an
independent set. You can ask: what condition must exist for a set S to be a maximal
P-set? This condition is a property P ′ in its own right, and every maximal set having
property P must then also have property P ′. In the same way you can consider any
superhereditary property Q of a set of vertices, such as being a dominating set. You
can then ask: what condition must exist for a set S to be a minimal Q-set? This will
then give rise to another property Q′, which can be studied in its own right.

Among all subsets S having some property P , one can impose an additional
condition, often that the set S also be independent, but that the induced subgraph
G[S] have some common graph property, like having no isolated vertices, or being
a connected subgraph. You can, of course impose an added condition on the set
S. In this way, for example, we get restrained domination and outer-connected
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domination. We have seen many examples where a condition is imposed on either
NS(u) or NS[u], and likewise on NS(v) or NS[v], for vertices in either S or S.

For every set S ⊆ V , there is a corresponding characteristic function fS : V →
{0, 1}, such that f (v) = 1 if v ∈ S, and f (v) = 0 if v ∈ S. This suggests a
variety of options for the range of a function f , such as the closed unit interval,
f : V → [0, 1], from which we get fractional domination, or f : V → {0, 1, 2},
from which we get Roman domination, or f : V → {−1, 1} from which we get
signed domination.

It is natural to consider partitions π = {V1, V2, . . . , Vk} such that every set Vi

where i ∈ [k] has some property P , the most studied is that every set Vi is an
independent set. Such partitions are sometimes called P-colorings of graphs, and
one seeks either the minimum order of such a partition or the maximum order,
usually depending on whether the property P is hereditary (minimum order, e.g.
chromatic number) or superhereditary (maximum order, e.g. domatic number).

Real-world applications of dominating sets often suggest new and interesting
models of domination. This was the case with Roman domination, in which a vertex
v with f (v) = 2 represents a location at which two armies are stationed, one of
which can be used to defend a neighboring location by traveling along a single edge.
This one application alone has suggested numerous other models for defending the
vertices of a graph with different types of dominating sets.

In computer networks, a dominating set is viewed as a set of vertices, or nodes,
each of which supplies, “in one hop” a needed resource to all neighboring vertices.
But if one of these vertices becomes inoperative, or faulty, it might be helpful to
have some sort of backup arrangement. One such arrangement could be to have a
neighbor of the faulty node, also in the dominating set, so that a service could be
provided in at most two hops while the fault can be fixed; this corresponds to a total
dominating set, and is closely related to the model of a (1, k)-dominating set, in
which every node either has one-hop service or secondary service at most k-hops
away. Another arrangement might be to have a neighboring node to the faulty node
serve temporarily as a backup in such a way that the resulting set of nodes is another
dominating set. This leads to the model of secure dominating sets.

What models of domination have not we discussed? At the outset of this chapter,
we said that space limitations would not permit us to be comprehensive in reviewing
the many different models of domination that are being considered in the current
literature. Some compensation for the limitations of this chapter, however, are
provided by chapters in this volume and other books on domination. We list some
of them here along with selected sources of information. Of course, there are many
other application driven frameworks of domination, ranging from social networks
to mathematical chemistry, that are beyond the scope of these sources.

(a) Domination in hypergraphs
Chapter 11 Domination in Hypergraphs, by M. A. Henning and A. Yeo, in

Structures of Domination in Graphs, Springer, 2020.
(b) Domination in linear and integer programming
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Chapter 1 LP-Duality, Complementarity, and Generality of Graphical Subset
Parameters, by P. J. Slater, in Domination in Graphs, Advanced Topics, Marcel
Dekker, 1998.

(c) Domination in directed graphs and tournaments
Chapter 15 Topics on Domination in Directed Graphs, by J. Ghoshal, R. C.

Laskar, and D. Pillone, in Domination in Graphs, Advanced Topics, Marcel
Dekker, 1998.

Chapter 13 Domination in Digraphs and Tournaments, by T. W. Haynes, S.
T. Hedetniemi, and M. A. Henning, in Structures of Domination in Graphs,
Springer, 2020.

(d) Domination in chessboards
Chapter 6 Combinatorial Problems on Chessboards: II, by S. M. Hedetniemi,

S. T. Hedetniemi, and R. Reynolds, in Domination in Graphs, Advanced Topics,
Marcel Dekker, 1998.

J.J. Watkins, Across the Board: The Mathematics of Chessboard Problems,
Princeton University Press, 2004.

Chapter 12 Domination in Chessboards, by J. T. Hedetniemi and S. T.
Hedetniemi, in Structures of Domination in Graphs, Springer, 2020.

(e) Algorithms and complexity of domination in graphs
Chapter 12 Domination Complexity and Algorithms, in Fundamentals of

Domination in Graphs, Marcel Dekker, 1998.
Chapter 8 Algorithms, by D. Kratsch, in Domination in Graphs, Advanced

Topics, Marcel Dekker, 1998.
Chapter 9 Complexity Results, by S. T. Hedetniemi, A. A. McRae, and D. A.

Parks, in Domination in Graphs, Advanced Topics, Marcel Dekker, 1998.
Chapter 14 Algorithms and Complexity - Signed and Minus Domination, by

S. T. Hedetniemi, A. A. McRae, and R. Mohan, in Structures of Domination in
Graphs, Springer, 2020.

Chapter 15 Algorithms and Complexity - Power Domination, by S. T.
Hedetniemi, A. A. McRae, and R. Mohan, in Structures of Domination in
Graphs, Springer, 2020.

Chapter 16 Self-Stabilizing Domination Algorithms, by S. T. Hedetniemi, in
Structures of Domination in Graphs, Springer, 2020.

(f) Domination games on graphs
Chapter 8 An Introduction to Game Domination in Graphs, by M. A.

Henning, in Structures of Domination in Graphs, Springer, 2020.
(g) Domination and eigenvalues in graph theory

Chapter 9 Domination and Spectral Graph Theory, by C. Hoppen, D. Jacobs,
and V. Trevisan, in Structures of Domination in Graphs, Springer, 2020.
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