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Preface

While concepts related to domination in graphs can be traced back to the mid-1800s
in connection with various chessboard problems, domination was first defined
as a graph-theoretical concept in 1958. Domination in graphs experienced rapid
growth since its introduction resulting in over 1200 papers published on domination
in graphs by the late 1990s. Noting the need for a comprehensive survey of
the literature on domination in graphs, in 1998 Haynes, Hedetniemi, and Slater
published the first two books on domination, Fundamentals of Domination in
Graphs and Domination in Graphs: Advanced Topics. We refer to these as Books I
and II.

The explosive growth has continued and today more than 4000 papers have been
published on domination in graphs, and the material in Books I and II is more than
20 years old. Thus, the authors think it is time for an update on the developments
in domination theory since 1998. We also want to give a comprehensive treatment
of the major topics in domination. This coverage of domination including both the
fundamental major results and updates will be in the form of three books, which we
shall call Books III, IV, and V.

Book III, Domination in Graphs: Core Concepts, is written by the authors
and concentrates, as the title suggests, on the three main types of domination
in graphs: domination, independent domination, and total domination. It contains
major results on these basic domination numbers, including proofs of selected
results that illustrate many of the proof techniques that are used in domination
theory. For the companion books, Books IV and V, we invited leading researchers
in domination to contribute chapters.

Book V has three parts, the first of which focuses on several domination-
related concepts. The second part focuses on domination in (i) hypergraphs, (ii)
chessboards, and (iii) digraphs and tournaments. The third part focuses on the
development of algorithms and complexity of domination parameters.

The present volume, Book IV, concentrates on major domination parameters that
were not covered in Book III. Although well over 70 types of dominating sets
have been defined, Book IV focuses on the primary ones that have received the
most attention in the literature. In particular, the chapters include such parameters
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vi Preface

as paired domination, connected domination, restrained domination, domination
functions, Roman domination, and power domination.

The authors of Book IV provide a survey of known results with a sampling of
proof techniques for each parameter. To avoid excessive repetition of definitions and
notations, Chapter 1 provides a glossary of commonly used terms and Chapter gives
an overview of models of domination from which the parameters are defined.

This book is intended as a reference resource for researchers and is written
to reach the following audience: First, the audience includes the established
researchers in the field of domination who want an updated comprehensive coverage
on domination. Second are the researchers in graph theory and graduate students
who wish to become acquainted with topics in domination including major accom-
plishments in the field and proof techniques used. We anticipate that it could also be
used in a seminar course on domination in graphs.

We wish to thank the authors who contributed chapters to this book as well as the
reviewers of the chapters.

Johnson City, TN, USA Teresa W. Haynes
Clemson, SC, USA Stephen T. Hedetniemi
Johannesburg, South Africa Michael A. Henning
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Glossary of Common Terms

Teresa W. Haynes, Stephen T. Hedetniemi, and Michael A. Henning

1 Introduction

It is difficult to say when the study of domination in graphs began, but for the sake of
this glossary let us say that it began in 1962 with the publication by Oystein Ore’s
book Theory of Graphs [15]. In Chapter 13 Dominating Sets, Covering Sets and
Independent Sets of [15], we see for the first time the name dominating set, defined
as follows: “A subset D of V is a dominating set for G when every vertex not in D
is the endpoint of some edge from a vertex in D.” Ore then defines the domination
number, denoted δ(G), of a graph G, as “the smallest number of vertices in any
minimal dominating set.” So, at this point, and for the first time, domination has a
“name” and a “number.”

Of course, prior to this Claude Berge [3], in his book Theory of Graphs and
its Applications, which was first published in France in 1958 by Dunod, Paris,
had previously defined the same concept, but had, in Chapter 4 The Fundamental
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2 T. W. Haynes et al.

Numbers of the Theory of Graphs of [3], given it the name “the coefficient of
external stability.”

Before Berge, Dénes König, in his 1936 book Theorie der Endlichen und
Unendlichen Graphen [13], had defined essentially the same concept, but in VII
Kapitel, Basisproblem für gerichtete Graphen, König gave it the name “punktbasis,”
which we would today say is an independent dominating set.

And even before König, in the books by Dudeney in 1908 [8] and W. W. Rouse
Ball in 1905 [2], one can find the concepts of domination, independent domination,
and total domination discussed in connection with various chessboard problems.
And it was Ball who, in turn, credited such people as W. Ahrens in 1910 [1], C. F.
de Jaenisch in 1862 [7], Franz Nauck in 1850 [14], and Max Bezzel in 1848 [4]
for their contributions to these types of chessboard problems involving dominating
sets of chess pieces.

But it was Ore who gave the name domination and this name took root. Not long
thereafter, Cockayne and Hedetniemi [6] gave the notation γ (G) for the domination
number of a graph, and this also took root and is the notation adopted here.

Since the subsequent chapters in this book will deal with domination parameters,
there will be much overlap in the terminology and notation used. One purpose of
this chapter is to present definitions common to many of the chapters in order to
prevent terms being defined repeatedly and to avoid other redundancy. Also, since
graph theory terminology and notation sometimes vary, in this glossary we clarify
the terminology that will be adopted in subsequent chapters.

We proceed as follows. In Section 2.1, we present basic graph theory defi-
nitions. We discuss common types of graphs in Section 2.2. Some fundamental
graph constructions are given in Section 2.3. In Section 3.1 and Section 3.2, we
present parameters related to connectivity and distance in graphs, respectively. The
covering, packing, independence, and matching numbers are defined in Section 3.3.
Finally in Section 3.4, we define selected domination-type parameters that will
occur frequently throughout the book.

For more details and terminology, the reader is referred to the two books
Fundamentals of Domination in Graphs [10] and Domination in Graphs, Advanced
Topics [11] written and edited by Haynes, Hedetniemi, and Slater, and the book
Total Domination in Graphs by Henning and Yeo [12]. An annotated glossary, from
which many of the definitions in this chapter are taken, was produced by Gera,
Haynes, Hedetniemi, and Henning in 2018 [9].

2 Basic Terminology

In this section, we give basic definitions, common types of graphs, and fundamental
graph constructions.
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2.1 Basic Graph Theory Definitions

Before we proceed with our glossary of parameters, we need to define a few basic
terms, which are used in the definitions in the following subsections. For k ≥ 1
an integer, we use the standard notation [k] = {1, . . . , k} and [k]0 = [k] ∪ {0} =
{0, 1, . . . , k}.

A (finite, undirected) graph G = (V ,E) consists of a finite nonempty set of
vertices V = V (G) together with a set E = E(G) of unordered pairs of distinct
vertices called edges. Each edge e = {u, v} in E is denoted with any of e, uv, vu,
and {u, v}. We say that a graph G has order n = |V | and size m = |E|.

Two vertices u and v in G are adjacent if they are joined by an edge e, that is, u
and v are adjacent if e = uv ∈ E(G). In this case, we say that each of u and v is
incident with the edge e. Further, we say that the edge e joins the vertices u and v.
Two edges are adjacent if they share a common vertex. Two vertices in a graph G
are independent if they are not adjacent. A set of pairwise independent vertices in
G is an independent set of G. Similarly, two edges are independent if they are not
adjacent.

A neighbor of a vertex v in G is a vertex u that is adjacent to v. The open
neighborhood of a vertex v in G is the set of neighbors of v, denoted NG(v). Thus,
NG(v) = {u ∈ V | uv ∈ E(G)}. The closed neighborhood of v is the set NG[v] =
{v} ∪ NG(v). For a set of vertices S ⊆ V , the open neighborhood of S is the set
NG(S) =⋃

v∈S NG(v) and its closed neighborhood is the set NG[S] = NG(S)∪S.
If the graph G is clear from the context, we omit it in the above expressions. For
example, we write N(v), N [v], N(S), and N [S] rather than NG(v), NG[v], NG(S),
and NG[S], respectively.

For a set of vertices S ⊆ V and a vertex v belonging to the set S, the S-private
neighborhood of v is defined by pn[v, S] = {w ∈ V | NG[w] ∩ S = {v}}, while its
open S-private neighborhood is defined by pn(v, S) = {w ∈ V | NG(w)∩S = {v}}.
As remarked in [12], the sets pn[v, S] \ S and pn(v, S) \ S are equivalent and
we define the S-external private neighborhood of v to be this set, abbreviated
epn[v, S] or epn(v, S). The S-internal private neighborhood of v is defined by
ipn[v, S] = pn[v, S] ∩ S and its open S-internal private neighborhood is defined
by ipn(v, S) = pn(v, S) ∩ S. We define an S-external private neighbor of v to
be a vertex in epn(v, S) and an S-internal private neighbor of v to be a vertex in
ipn(v, S).

The degree dG(v) of a vertex v is the number of neighbors v has in G, that is,
dG(v) = |NG(v)|. Again if the graphG is clear from the context, we use d(v) rather
than dG(v). We remark that some books use deg(v) and deg v to denote the degree
of v. We leave it to the authors to choose which of these notations to adopt in their
chapters. For a subset of vertices S ⊆ V , the degree of v in S, denoted dS(v), is the
number of vertices in S adjacent to the vertex v; that is, dS(v) = |NG(v) ∩ S|. In
particular, if S = V , then dS(v) = dG(v). The degree sequence of a graph G with
vertex set V = {v1, v2, . . . , vn} is the sequence d1, d2, . . . , dn, where di = d(vi)



4 T. W. Haynes et al.

for i ∈ [n]. Often the degree sequence, d1, d2, . . . , dn, is written in non-increasing
order, and so d1 ≥ d2 ≥ . . . ≥ dn.

An isolated vertex is a vertex of degree 0 in G. A graph is isolate-free if it does
not contain an isolated vertex. The minimum degree among the vertices of G is
denoted by δ(G), and the maximum degree by�(G). A leaf is a vertex of degree 1,
while its neighbor is a support vertex. A strong support vertex is a (support) vertex
with at least two leaf neighbors.

For subsetsX and Y of vertices ofG, we denote the set of edges that join a vertex
of X and a vertex of Y in G by [X, Y ].

Two graphs G and H are isomorphic, denoted G ∼= H , if there exists a bijection
φ : V (G) → V (H) such that two vertices u and v are adjacent in G if and only
if the two vertices φ(u) and φ(v) are adjacent in H . A parameter of a graph G
is a numerical value (usually a non-negative integer) that can be associated with a
graph such that whenever two graphs are isomorphic, they have the same associated
numerical value.

By a partition of the vertex set V of a graph G, we mean a family π =
{V1, V2, . . . , Vk} of nonempty pairwise disjoint sets whose union equals V , that is,
for all 1 ≤ i < j ≤ k, Vi ∩ Vj = ∅ and

k⋃

i=1

Vi = V.

For such a partition π , we will say that π has order k.
A walk in a graphG from a vertex u to a vertex v is a finite, alternating sequence

of vertices and edges, starting with the vertex u and ending with the vertex v, in
which each edge of the sequence joins the vertex that precedes it in the sequence to
the vertex that follows it in the sequence. A trail is a walk containing no repeated
edges, and a path is a walk containing no repeated vertices. We will mainly be
concerned with paths. A path joining two vertices u and v is called a (u, v)-path or
a u-v path or a u, v-path in the literature. The length of a walk equals the number
of edges in the walk. A graph G is connected if there is a path between every pair
of vertices of G.

A cycle is a path in which the first and last vertices are the same and all other
vertices are distinct. A chord of a cycle C is an edge between two nonconsecutive
vertices of C.

The distance d(u, v) between two vertices u and v, in a connected graph G,
equals the minimum length of a (u, v)-path in G. A shortest, or minimum length,
path between two vertices u and v is called a (u, v)-geodesic; a v-geodesic is any
shortest path from v to another vertex; a geodesic is any shortest path in a graph.

A graph G′ = (V ′, E′) is a subgraph of a graph G = (V ,E) if V ′ ⊆ V and
E′ ⊆ E. A subgraphG′ of a graphG is called a spanning subgraph ofG if V ′ = V .
If G = (V ,E) and S ⊆ V , then the subgraph of G induced by S is the graph G[S],
whose vertex set is S and whose edges are all the edges in E both of whose vertices
are in S.
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Let F be an arbitrary graph. A graphG is said to be F -free ifG does not contain
F as an induced subgraph.

IfG = (V ,E) and S ⊆ V , the subgraph obtained fromG by deleting all vertices
in S and all edges incident with one or two vertices in S is denoted byG−S; that is,
G−S = G[V \S]. If S = {v}, we simply denoteG−{v} byG−v. The contraction
of an edge e = xy in a graphG is the graph obtained fromG by deleting the vertices
x and y and adding a new vertex and edges joining this new vertex to all vertices
that were adjacent to x or y in G.

A component of a graph is a maximal connected subgraph. An odd (even)
component is a component of odd (even) order. Let oc(G) equal the number of
odd components of G. A vertex v ∈ V is a cut vertex if the graph G − v has more
components than G. An edge e = uv is a bridge if the graph G − e obtained by
deleting e from G has more components than G.

2.2 Common Types of Graphs

A graph of order n = 1 is called a trivial graph, while a graph with at least two
vertices is called a nontrivial graph. A graph of size m = 0 is an empty graph,
while a graph with at least one edge is a nonempty graph. Recall that a connected
graph is a graph for which there is a path between every pair of its vertices.

A k-regular graph is a graph in which every vertex has degree k. A regular graph
is a graph that is k-regular for some k ≥ 0. A 3-regular graph is also called a cubic
graph.

A graph of order n that is a cycle is denoted by Cn and a graph that is a path is
denoted by Pn. Note that a cycle is a 2-regular graph.

A graph is acyclic if it does not contain a cycle. A tree is a connected acyclic
graph. Equivalently, a tree is a connected graph having size one less than its order.
Thus, if T is a tree of order n and size m, then T is connected and m = n − 1. A
forest is an acyclic graph. Thus, a forest is a disjoint union of trees. A linear forest
is a forest in which every component is a path.

If G is a vertex-disjoint union of k copies of a graph F , we write G = kF .
A complete graph is a graph in which every two vertices are adjacent. A complete

graph of order n is denoted byKn. A triangle is a subgraph isomorphic toK3 or C3,
since K3 ∼= C3.

A graph G is bipartite if its vertex set can be partitioned into two independent
setsX and Y . The setsX and Y are called the partite sets ofG. A complete bipartite
graph, denoted Kr,s , is a bipartite graph with partite sets X and Y , where |X| = r ,
|Y | = s, and every vertex in X is adjacent to every vertex in Y . The graph Kr,s has
order r + s, size rs, δ(Kr,s) = min{r, s}, and �(Kr,s) = max{r, s}.

A star is a nontrivial tree with at most one vertex that is not a leaf. Thus, a star
is a complete bipartite graph K1,k for some k ≥ 1. A claw is an induced copy of the
graph K1,3. Thus, a claw-free graph is a K1,3-free graph.
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For r, s ≥ 1, a double star S(r, s) is a tree with exactly two (adjacent) vertices
that are not leaves, one of which has r leaf neighbors and the other s leaf neighbors.

A diamond is an induced copy of the graph K4 − e, which is obtained from a
copy of the complete graph of order 4 by deleting an edge e.

A graph G can be embedded on a surface S if its vertices can be placed on S
and all of its edges can be drawn between the vertices on S in such a way that no
two edges intersect. A graphG is planar if it can be embedded in the plane; a plane
graph is a graph that has been embedded in the plane.

A rooted tree T is a tree having a distinguished vertex labeled r , called the root.
Let T be a rooted tree with root r . For each vertex v, let P(v) be the unique (r, v)-
path in T . The parent of a vertex v is its neighbor on P(v), while the other neighbors
of v are called its children. The set of children of v is denoted by C(v). Note that the
root r is the only vertex of T with no parent. A descendant of v is any vertex u �= v
such that the P(u) contains v, while an ancestor of v is a vertex u �= v that belongs
P(v) in T . In particular, every child of v is a descendant of v, while the parent of
v is an ancestor of v. A grandchild of v is a descendant of v at distance 2 from v.
We let D(v) denote the set of descendants of v, and we define D[v] = D(v) ∪ {v}.
The maximal subtree at v, denoted Tv , is the subtree of T induced by D[v]. The
depth of a vertex v in T equals d(r, v), and the height of v, denoted ht(v), is the
maximum distance from v to a descendant of v. Thus, ht(v) = max{d(v,w) : w is
a descendant of v}.

For classes of graphs not defined here, we refer the reader to the definitive
encyclopedia on graph classes, Graph Classes: A Survey [5] by Brandstädt, Le,
and Spinrad.

2.3 Graph Constructions

Given a graph G = (V ,E), the complement of G is the graph G = (V ,E), where
uv ∈ E if and only if uv /∈ E. Thus the complement, G, of G, is formed by taking
the vertex set ofG and joining two vertices by an edge whenever they are not joined
in G.

By a graph product G⊗H on graphs G and H , we mean a graph whose vertex
set is the Cartesian product of the vertex sets of G and H (that is, V (G ⊗ H) =
V (G)×V (H)) and whose edge set is determined entirely by the adjacency relations
of G and H . Exactly how it is determined depends on what kind of graph product
we are considering.

The Cartesian product G�H of two graphs G and H is the graph with vertex
set V (G)× V (H) where two vertices (u1, v1) and (u2, v2) are adjacent if and only
if either u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G).

The direct product (also known as the cross product, tensor product, categorical
product, and conjunction) G × H of two graphs G and H is the graph with vertex
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set V (G) × V (H) where two vertices (u1, v1) and (u2, v2) are adjacent in G × H
if and only if u1u2 ∈ E(G) and v1v2 ∈ E(H).

Given a graph G = (V ,E) and an edge uv ∈ E, the subdivision of edge uv
consists of (i) deleting the edge uv from E, (ii) adding a new vertex w to V , and
(iii) adding the new edges uw and wv to E. In this case we say that the edge uv
has been subdivided. The subdivision graph S(G) is the graph obtained from G by
subdividing every edge of G exactly once.

Given a graph G = (V ,E), the line graph L(G) = (E,E(L(G))) is the graph
whose vertices correspond 1-to-1 with the edges in E, and two vertices are adjacent
in L(G) if and only if the corresponding edges in G have a vertex in common, that
is, if and only if the corresponding two edges are adjacent.

The corona G ◦ K1 of a graph G, also denoted cor(G) in the literature, is the
graph obtained from G by adding for each vertex v ∈ V a new vertex v′ and the
edge vv′. The edge vv′ is called a pendant edge. The k-corona G ◦ Pk of G is the
graph of order (k + 1)|V (G)| obtained from G by attaching a path of length k to
each vertex of G so that the resulting paths are vertex-disjoint. In particular, the 2-
corona G ◦ P2 of G is the graph of order 3|V (G)| obtained from G by attaching a
path of length 2 to each vertex of G so that the resulting paths are vertex-disjoint.
The generalized coronaG◦H is the graph obtained by adding a copy ofH for each
vertex v ofG and joining v to every vertex ofH . Thus, a generalized coronaG◦H ,
where H = K1, is the ordinary corona G ◦ K1. We note that whether G ◦ Pk is
intended to denote a k-corona or a generalized corona will be clear from context or
specifically stated by the author.

3 Graph Parameters

In this section, we present common graph parameters that may appear in this book.

3.1 Connectivity and Subgraph Numbers

In this subsection, we present parameters related to connectivity in graphs.

(a) blocks bl(G), number of blocks in G. A block of a graph G is a maximal
nonseparable subgraph ofG, that is, a maximal subgraph having no cut vertices.

(b) bridges br(G), number of bridges in G.
(c) circumference cir(G), maximum length or order of a cycle in G.
(d) clique number ω(G), maximum order of a complete subgraph of G.
(e) components c(G), number of maximal connected subgraphs of G.
(f) A vertex cut of a connected graphG is a subset S of the vertex set ofG with the

property that G − S is disconnected (has more than one component). A vertex
cut S is a k-vertex cut if |S| = k.
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(g) vertex connectivity κ(G), minimum cardinality of a vertex cut of G if G is not
the complete graph and κ(G) = n − 1 if G is a complete graph Kn on n ≥ 2
vertices. A graph G is k-vertex-connected (or k-connected) if κ(G) ≥ k for
some integer k ≥ 0. Thus, κ(G) is the smallest number of vertices whose
deletion from G produces a disconnected graph or the trivial graph K1. A
nontrivial graph has connectivity 0 if and only if it is disconnected.

(h) An edge cut of a nontrivial connected graph G is a nonempty subset F of the
edge set of G with the property that G − F is disconnected (has more than
one component). Thus, the deletion of an edge cut from the connected graph G
results in a disconnected graph. An edge cut F is a k-edge cut if |F | = k.

(i) edge connectivity λ(G), minimum cardinality of an edge cut of G if G is
nontrivial, while λ(K1) = 0. A graph G is k-edge-connected if λ(G) ≥ k

for some integer k ≥ 0. Thus, λ(G) is the smallest number of edges whose
deletion from G produces a disconnected graph or the trivial graph K1. Hence,
λ(G) = 0 if and only if G is disconnected or trivial.

(j) girth of G, denoted girth(G) or g(G) in the literature, the minimum length of a
cycle in G.

3.2 Distance Numbers

This subsection contains the definitions of parameters which are defined in terms of
the distances d(u, v) between vertices u and v in a graph.

(a) eccentricity ecc(v), of a vertex v in a connected graph G, is the maximum of
the distances from v to the other vertices of G.

(b) diameter diam(G), maximum distance among all pairs of vertices of G.
Equivalently, the diameter of G is the maximum length of a geodesic in G.
Thus, the diameter of G is the maximum eccentricity taken over all vertices of
G. Two vertices u and v inG for which d(u, v) = diam(G) are called antipodal
or peripheral vertices of G. A diametral path in G is a geodesic whose length
equals the diameter of G.

(c) The periphery of a graph G is the subgraph of G induced by its peripheral
vertices.

(d) radius rad(G), minimum eccentricity taken over all vertices of G.
(e) The center of a graph G, denoted C(G), is the subgraph of G induced by the

vertices in G whose eccentricity equals the radius of G. A vertex v ∈ C(G) is
called a central vertex of G.
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3.3 Covering, Packing, Independence, and Matching Numbers

As previously defined, a set of pairwise independent vertices inG is an independent
set of G. An independent set S is maximal if no superset of S is independent.

A set of pairwise independent edges of G is called a matching in G, while
a matching of maximum cardinality is a maximum matching. Given a matching
M , we denote by V [M] the set of vertices in G incident with an edge in M . A
perfect matching is a matching in which every vertex is incident with an edge of the
matching. Thus, if G has a perfect matching M , then G has even order n = 2k for
some k ≥ 1 and |M| = k.

A vertex and an edge are said to cover each other in a graphG if they are incident
in G. A vertex cover in G is a set of vertices that covers all the edges of G, while
an edge cover in G is a set of edges that covers all the vertices of G. Thus, a vertex
cover in G is a set of vertices that contains at least one vertex of every edge in G.

A subset S of vertices in G is a packing if the closed neighborhoods of vertices
in S are pairwise disjoint. Equivalently, S is a packing in G if the vertices in S
are pairwise at distance at least 3 apart in G. Thus, if S is a packing in G, then
|NG[v] ∩ S| ≤ 1 for every vertex v ∈ V (G). A packing is also called a 2-packing in
the literature. More generally, for k ≥ 2, a k-packing in G is a set of vertices in G
that are pairwise at distance at least k+ 1 apart inG. Thus, if S is a k-packing inG,
then dG(u, v) > k for every two distinct vertices u and v that belong to S.

A subset S of vertices in G is an open packing if the open neighborhoods of
vertices in S are pairwise disjoint. Thus, if S is an open packing inG, then |NG(v)∩
S| ≤ 1 for every vertex v ∈ V (G).

All of the parameters in this subsection have to do with sets that are independent
or cover other sets. These include some of the most basic of all parameters in graph
theory.

(a) vertex independence numbers i(G) and α(G), minimum and maximum car-
dinality of a maximal independent set in G. The lower vertex independence
number, i(G), is also called the independent domination number of G, while
the upper vertex independence number, α(G), is also called the independence
number of G. (While the notation i(G) is fairly standard for the independent
domination number, we remark that the independence number is also denoted
by β0(G) in the literature.)

(b) vertex covering numbers β(G) and β+(G), minimum and maximum cardinality
of a minimal vertex cover in G. (We remark that the vertex covering number is
also denoted by τ(G) or by α(G) in the literature.)

(c) edge covering numbers β ′(G) and β ′+(G), minimum and maximum cardinality
of a minimal edge cover in G.

(d) k-packing number ρk(G), maximum cardinality of a k-packing in G for k ≥ 2.
When k = 2, the k-packing number ρk(G) is called the packing number of G,
denoted by ρ(G). Thus, ρ(G) is the maximum cardinality of a packing in G.

(e) open packing number ρo(G), maximum cardinality of an open packing in G.
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(f) matching numbers α′−(G) and α′(G), minimum and maximum cardinality of a
maximal matching in G. The upper matching number, α′(G), is also called the
matching number of G. Recall that a perfect matching is a matching in which
every vertex is incident with an edge of the matching. Thus, if a graph G of
order n has a perfect matching, then α′(G) = 1

2n. It should be noted that by a
well-known theorem of Gallai, that if G is a graph of order n with no isolated
vertices, then α(G) + β(G) = n = α′(G) + β ′(G). (The matching number is
also denoted by β1(G) in the literature.)

3.4 Domination Numbers

A dominating set in a graph G = (V ,E) is a set S of vertices of G such that
every vertex in V \ S has a neighbor in S. Thus, if S is a dominating set of G, then
NG[S] = V and every vertex in V \ S is therefore adjacent to at least one vertex in
S. For subsets X and Y of vertices of G, if Y ⊆ NG[X], then the set X dominates
the set Y in G. In particular, if X dominates V (G), then X is a dominating set of
G. If no proper subset of a dominating set S is a dominating set of G, then S is a
minimal dominating set of G.

The many variations of dominating sets in a graph G are based on (i) conditions
which are placed on the subgraph G[S] induced by a dominating set S, (ii)
conditions which are placed on the vertices in V \ S, or (iii) conditions which are
placed on the edges between vertices in S and vertices in V \ S. We mention only
the major domination numbers here.

A total dominating set, abbreviated TD-set, in a graphGwith no isolated vertices
is a set S of vertices ofG such that every vertex in V is adjacent to at least one vertex
in S. Thus, a subset S ⊆ V is a TD-set in G if NG(S) = V . If no proper subset of
S is a TD-set of G, then S is a minimal TD-set of G. Every graph without isolated
vertices has a TD-set, since S = V is such a set. If X and Y are subsets of vertices
inG, then the set X totally dominates the set Y inG if Y ⊆ NG(X). In particular, if
X totally dominates V (G), then X is a TD-set in G.

A paired dominating set, abbreviated PD-set, ofG is a set S of vertices ofG such
that every vertex is adjacent to some vertex in S and the subgraph G[S] induced by
S contains a perfect matching M . Two vertices joined by an edge of M are said to
be paired with respect to a perfect matchingM and are also called partners in S. A
PD-set S in a graph G is minimal if no proper subset of S is a PD-set of G.

A connected dominating set, abbreviated CD-set, in a graph G is a dominating
set S of vertices of G such that G[S] is connected. A CD-set S in a graph G is
minimal if no proper subset of S is a CD-set of G.

(a) domination numbers γ (G) and �(G), minimum and maximum cardinalities of
a minimal dominating set in G. The parameters γ (G) and �(G) are called
the domination number and upper domination number of G, respectively. A
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dominating set ofG of cardinality γ (G) is called a γ -set ofG, while a minimal
dominating set of cardinality �(G) is called a �-set of G.

(b) independent domination i(G), minimum cardinality of a dominating set in G
that is also independent. An independent dominating set of G of cardinality
i(G) is called an i-set of G. We note that the maximum order of a minimal
independent dominating set equals the vertex independence number α(G).

(c) total domination numbers γt (G) and �t(G), minimum and maximum cardinal-
ities of a minimal total dominating set of G. The parameters γt (G) and �t(G)
are called the total domination number and upper total domination number of
G, respectively. A TD-set ofG of cardinality γt (G) is called a γt -set ofG, while
a minimal TD-set of cardinality �t(G) is called a �t -set of G.

(d) paired domination numbers γpr(G) and �pr(G), minimum and maximum
cardinalities of a minimal PD-set of G. The parameters γpr(G) and �pr(G) are
called the paired domination number and upper paired domination number of
G, respectively. A PD-set of G of cardinality γpr(G) is called a γpr-set of G,
while a minimal PD-set of cardinality �pr(G) is called a �pr-set of G.

(e) connected domination numbers γc(G) and �c(G), minimum and maximum
cardinalities of a minimal CD-set of G. The parameters γc(G) and �c(G)
are called the connected domination number and upper connected domination
number ofG, respectively. A CD-set ofG of cardinality γc(G) is called a γc-set
of G, while a minimal CD-set of cardinality �c(G) is called a �c-set of G.
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1 Introduction

As we have said before, a set S ⊆ V is a dominating set of a graph G = (V ,E)
if every vertex v ∈ V is either an element of S or is adjacent to an element of S.
In this chapter, we will take a look at dominating sets from a variety of different
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number of different models to reveal domination in a much broader view. Chapter 11
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In the most general sense, we are interested in sets of vertices in a graph having
some property P , called P-sets. We are interested in finding P-sets of minimum and
maximum cardinalities, using a notational system of the form a(G) for the minimum
cardinality of a P-set, and upper case A(G) for the maximum cardinality of a P-set.
These parameters are sometimes referred to as lower and upper parameters.

But we will make a further distinction. As an example, recall that a set S ⊆
V is independent if no two vertices in S are adjacent. Since independence is
an hereditary property (henceforth denoted H), meaning that every subset of an
independent set is also independent, it would not make any sense to seek a minimum
cardinality independent set, and so instead we seek a minimum cardinality maximal
independent set (denoted minimax). Similarly, the property of being a dominating
set is superhereditary (henceforth denoted SH), meaning that any superset of a
dominating set is also a dominating set. Thus, it would not make any sense to
seek a maximum cardinality dominating set, since the entire vertex set of any graph
is a dominating set. So, instead, we seek the maximum cardinality of a minimal
dominating set (denoted maximin). For concepts that are neither hereditary nor
superhereditary, we generally seek a minimum cardinality P-set, denoted min, and
sometimes a maximum cardinality P-set, denoted max.

To illustrate these examples, consider the double star S(r, s) for 1 ≤ r ≤ s with
two adjacent vertices u and v, where u is adjacent to r leaves and v is adjacent to s
leaves. Let L(u) and L(v) denote the set of leaves adjacent to u and v, respectively.
We note that S(r, s) has exactly four minimal dominating sets, namely S1 = {u, v},
S2 = L(u) ∪ {v}, S3 = L(v) ∪ {u}, and S4 = L(u) ∪ L(v). It follows that S1 is a
minimum dominating set and S4 is a maximin dominating set. Thus, the domination
number γ (S(r, s)) = |S1| = 2 and the upper domination number �(S(r, s)) =
|S4| = r + s. Further, the maximal independent sets of S(r, s) are precisely the
sets S2, S3, and S4. Hence, S4 is a maximum independent set and S2 is a minimax
independent set, and so the independent domination number i(S(r, s)) = |S2| =
r + 1 and the independence number α(S(r, s)) = |S4| = r + s.

In the remaining sections of this chapter, we will use the following notation,
where recall for a vertex v in G, the set NG(v) denotes the set of neighbors of v in
G, and the degree of v in G is denoted by dG(v) = |NG(v)|. Further recall that for
a subset of vertices S ⊆ V , the degree of v in S, denoted dS(v), is the number of
vertices in S adjacent to the vertex v; that is, dS(v) = |NG(v) ∩ S|. In particular, if
S = V , then dS(v) = dG(v). If the graph G is clear from context, we simply write
N(v) and d(v) rather than NG(v) and dG(v), respectively. For k ≥ 1 an integer, we
use the standard notation [k] = {1, . . . , k} and [k]0 = [k] ∪ {0} = {0, 1, . . . , k}. At
a glance,

S = V \ S, that is, S denotes the vertices in V but not in S, called the complement
of S in G.

dS(v) = |N(v) ∩ S|.
dS[v] = |N [v] ∩ S|.
dS(v) = |N(v) ∩ S|.
dS[v] = |N [v] ∩ S|.
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G[S], the subgraph of G induced by S.
δ(G) = min{d(v) | v ∈ V }.
�(G) = max{d(v) | v ∈ V }.

Also, to avoid excessive repetition, we will frequently list domination parameters
in the following abbreviated format:

parameter name: concept definition; designation of being hereditary H, or super-
hereditary SH; if neither hereditary nor superhereditary no designation is given;
notation for lower parameter and type of P-set (min or minimax), notation for
upper parameter and type P-set (max or maximin).

For example, domination, where γ (G) is the domination number and �(G) is the
upper domination number, is listed as:

domination: N [S] = V , that is, for every v ∈ S, dS(v) ≥ 1; SH; γ (G) (min),
�(G) (maximin).

2 Fundamental Domination Parameters

In this section, we present what are arguably the most basic of all parameters related
to domination in graphs. From these basic parameters all others are derived in one
way or another. We begin with a list of five fundamental domination parameters.
Thereafter, we list seven related parameters. The designationsH hereditary and SH
superhereditary are given whenever they apply. Unless otherwise stated, S always
denotes a subset of V and F always denotes a subset of E.

2.1 Domination Parameters

(a) domination: N [S] = V , that is, for every v ∈ S, dS(v) ≥ 1; SH; γ (G) (min),
�(G) (maximin).

(b) independent domination: N [S] = V and S is independent; i(G) (min), α(G)
(max).

(c) total domination: N(S) = V , that is, for every v ∈ V , dS(v) ≥ 1; γt (G) (min),
SH; �t(G) (maximin);

(d) paired domination: N [S] = V and G[S] has a perfect matching, that is, an
independent set of edges of cardinality 1

2 |S|; γpr(G) (min), �pr(G) (maximin).
(e) connected domination: N [S] = V and G[S] is connected; γc(G) (min), SH;

�c(G) (maximin).

It is perhaps worth commenting why total domination and connected domination
are both superhereditary properties (SH). Whereas a superset S∗ of a connected set
S might not be a connected set, if S is also a dominating set, then every vertex in
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S is adjacent to a vertex in S implying that S∗ is also a connected dominating set.
Similarly, total domination is superhereditary.

2.2 Related Parameters

(a) vertex covering: every edge e ∈ E is incident to a vertex in S; SH; β(G) (min),
β+(G) (maximin). Note that for any graph G of order n = |V |,

α(G)+ β(G) = n

and

i(G)+ β+(G) = n.

(b) irredundance: for every vertex v ∈ S, N [v] \ N [S \ {v}] �= ∅; H; ir(G)
(minimax), IR(G) (max).

(c) enclaveless: S does not contain an enclave, that is, a vertex v ∈ S, such that
N [v] ⊆ S; H; ψ(G) (minimax), �(G) (max). Note that for every graph G of
order n,

γ (G)+�(G) = n

and

�(G)+ ψ(G) = n.

(d) packing: for every u, v ∈ S, d(u, v) > 2; H; p2(G) (minimax), P2(G) (max).
The packing number P2(G) is also denoted ρ(G) in the literature. Note that the
packing number is a standard lower bound on the domination number for any
graph G, that is, P2(G) ≤ γ (G).

(e) edge domination: F ⊆ E and every edge not in F is adjacent to some edge in
F ; SH; γ ′(G) (min), �′(G) (maximin).

(f) matching: F ⊆ E and F is an independent set of edges; H; α′−(G) (minimax),
α′(G) (max).

(g) edge covering: every vertex v ∈ V is incident to an edge in F ⊆ E; SH; β ′(G)
(min), β ′+(G) (maximin). Note, it has been shown in [4] and [6], respectively,
that for every graph G of order n,

α′(G)+ β ′(G) = n,

and

α′−(G)+ β ′+(G) = n.
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3 Conditions on the Dominating Set

Many domination parameters are formed by combining domination with another
graph theoretical property P . In this section, we consider the parameters defined by
imposing an additional constraint on the dominating set. In the next section, we will
see that a condition may also be placed on the dominated set or on the method of
dominating.

We list samples of types of dominating sets S defined either by imposing a
condition on the subgraph G[S] induced by S or requiring that every vertex in S
satisfy some added condition. Clearly, some of the basic types are defined within
this framework. For example, ifG[S] has no edges, then the set S is an independent
dominating set, ifG[S] has no isolated vertices, then S is a total dominating set, and
if G[S] is connected, then S is a connected dominating set. Since all of the pairs of
parameters in this section consist of the smaller as a minimum and the larger as a
maximum of minimal, the designations (min) and (maximin) are omitted.

(a) acyclic domination:N [S] = V andG[S] is acyclic (contains no cycles); γa(G),
�a(G).

(b) bipartite domination: N [S] = V and G[S] is bipartite; γbip(G), �bip(G).
(c) clique domination: N [S] = V and G[S] is a complete graph: γcl(G), �cl(G).
(d) private domination: N [S] = V and for every u ∈ S there exists a vertex v ∈ S

such that N(v) ∩ S = {u}; γpvt(G), �pvt(G). Note that a well-known theorem
of Bollobás and Cockayne [1] shows that for every graph G with no isolated
vertices, γ (G) = γpvt(G), that is, G has a γ -set S such that for each vertex
u ∈ S, there is a vertex v ∈ S with N(v) ∩ S = {u}.

(e) semitotal domination: N [S] = V and for every vertex u ∈ S, there exists a
vertex v ∈ S with d(u, v) ≤ 2; SH; γt2(G), �t2(G).

(f) weakly connected domination: N [S] = V and G′ = (V ,ES) is connected,
where ES is the set of edges of G incident to at least one vertex of S; SH;
γw(G), �w(G).

(g) semipaired domination: N [S] = V and the vertices in S can be partitioned into
|S|/2 pairs {u, v} such that d(u, v) ≤ 2; γpr2(G), �pr2(G).

(h) convex domination: N [S] = V and for any two vertices u, v ∈ S, the vertices
contained in all shortest paths between u and v, called u− v geodesics, belong
to S; γconv(G), �conv(G).

(i) weakly convex domination: N [S] = V and for any two vertices u, v ∈ S, there
exists at least one u− v geodesic, all of whose vertices belong to S; γwconv(G),
�wconv(G).

(j) cycle domination: N [S] = V and G[S] has a Hamilton cycle; γcy(G), �cy(G).
(k) equivalence domination: N [S] = V and G[S] is disjoint union of complete

subgraphs; γe(G), �e(G).
(l) k-dependent domination: N [S] = V and �(G[S]) ≤ k; γ[k](G), �[k](G).
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4 Conditions on S = V \ S

The framework considered in this section encompasses dominating sets S for which
some condition is imposed on the vertices in the set S or the subgraphG[S] induced
by S. As before, we list a sampling of types of dominating sets in this framework.
In many of them, we do not mention the upper parameters, which indicates that in
general they have not been studied. As before, the designations H hereditary and
SH superhereditary are given whenever they apply.

(a) distance k-domination: for every v ∈ S, there exists a vertex u ∈ S with
d(u, v) ≤ k; SH; γ≤k(G), �≤k(G).

(b) k-step domination: for every v ∈ S, there exists a vertex u ∈ S and a (u, v)-path
of length equal to k; SH; γ=k(G).

(c) k-domination: for every vertex v ∈ S, dS(v) ≥ k; SH; γk(G).
(d) restrained domination: N [S] = V and for every v ∈ S, dS(v) ≥ 1; γr(G).
(e) geodetic domination: every vertex in S lies on a shortest path between two

vertices in S; SH; γg(G).
(f) locating domination:N [S] = V and for every v,w ∈ S,N(v)∩S �= N(w)∩S;

SH; γL(G).
(g) secondary domination: every vertex w ∈ S is adjacent to at least one vertex

u ∈ S and is distance at most k to a second vertex in S; SH; γ(1,k)(G). Note
that for any nontrivial graph without isolated vertices, γ (G) = γ(1,4)(G) and
γ2(G) = γ(1,1)(G).

(h) downhill domination: for every vertex v ∈ S, there exists a vertex u ∈ S and a
(downhill) path u = v1, v2, . . . vk = v from u to v, such that d(vi) ≥ d(vi+1)

for all i ∈ [k − 1]; SH; γdown(G).
(i) uphill domination: for every vertex v ∈ S, there exists a vertex u ∈ S and an

(uphill) path u = v1, v2, . . . vk = v from u to v, such that d(vi) ≤ d(vi+1) for
all i ∈ [k − 1]; SH; γup(G).

(j) exponential domination: for every vertex v ∈ S, ws(v) ≥ 1, where

ws(v) =
∑

u∈S

1

2d(u,v)−1
,

and d(u, v) equals the length of a shortest (u, v)-path in V \ (S \ {u}) if such a
path exists, and ∞ otherwise; SH; γexp(G).

(k) fair domination: N [S] = V and every two vertices u, v ∈ S have the same
number of neighbors in S; fdom(G).

(l) H -forming domination: every vertex v ∈ S is contained in a copy of a graph H
(not necessarily induced) with a subset of vertices in S; SH; γH (G).

(m) outer-connected domination: N [S] = V and G[S] is connected; γc(G).
(n) b-disjunctive domination: for every v ∈ S, either v is adjacent to a vertex u ∈ S

or there exist at least b vertices in S at distance 2 from v; SH; γ db (G).
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(o) secure domination: N [S] = V and for every vertex u ∈ S, there is an adjacent
vertex v ∈ S such that the set (S \ {v}) ∪ {u} is a dominating set; SH; γs(G).

5 Conditions on V

In this section, we consider a framework where the dominating set is defined by an
added condition that is imposed on every vertex of G.

(a) total domination: N(S) = V , that is, for every vertex v ∈ V , N(v) ∩ S �= ∅;
SH; γt (G), �t(G).

(b) odd domination: N [S] = V , and for every v ∈ V , |N [v] ∩ S| is odd; γodd(G).
It is noteworthy that Sutner [7] was the first to observe that every graph G has
an odd dominating set.

(c) even domination: N [S] = V , and for every v ∈ V , |N [v]∩S| is even; γeven(G).
(d) identifying code number: N [S] = V , and for every v ∈ V , N [v] ∩ S is unique;

SH; γid(G).
(e) total distance k-dominating: for every vertex v ∈ V , there exists a vertex u ∈ S,

u �= v, such that d(u, v) ≤ k; SH; γ kt (G).
(f) k-tuple domination: for every v ∈ V , |N [v] ∩ S| ≥ k; SH; γ×k(G).

6 Conditions on Vertex Degrees

As we will see in this section, many types of dominating sets can be defined in terms
of how many neighbors a vertex must have in either S or S. These constraints are
often perceived as requirements of access to the resources provided by members of
a dominating set.

6.1 Degree Conditions on S and S

Degree conditions as a framework of domination was first suggested by Telle [8].
We present a slightly different form of his framework here. There are four possible
values under consideration, namely, dS(v) and dS(v) for v ∈ S, and dS(v) and dS(v)
for v ∈ S. Table 1 illustrates how with using combinations of these four values,
different domination parameters are defined. We only include a few of the many
parameters which can be defined by various combinations of the four degree values.
A blank entry in Table 1 implies that this condition is not relevant to the definition.
Let D-set, TD-set, ID-set, and RD-set denote dominating set, total dominating set,
independent dominating set and restrained dominating set, respectively.
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Table 1 Degree Conditions

S is v ∈ S, dS(v) v ∈ S, dS(v) v ∈ S, dS(v) v ∈ S, dS(v)

a D-set ≥ 1

an ID-set = 0 ≥ 1

a TD-set ≥ 1 ≥ 1

a perfect dominating set = 1

an RD-set ≥ 1 ≥ 1

a k-dominating set ≥ k
a D-set and S is a D-set ≥ 1 ≥ 1

a [1, k]-dominating set ≥ 1 and ≤ k
an odd D-set even odd

an open odd D-set odd odd

an efficient D-set =0 = 1

a 1-dependent D-set ≤ 1 ≥ 1

6.2 Degree Conditions Per Vertex

As in the previous section, the framework here is defined in terms of the minimum
cardinality of a nonempty set S satisfying the stated conditions based on degree. The
difference is that the constraints now depend on comparative comparative values of
degrees. Recall that the boundary of a set S is ∂(S) = N [S] \ S.

(a) alpha domination: for every v ∈ S, dS(v)/d(v) ≥ α where 0 < α ≤ 1; SH;
γα(G).

(b) defensive alliance: for every v ∈ S, dS[v] ≥ dS(v); a(G).
(c) defensive k-alliance: for every v ∈ S, dS(v) ≥ dS(v) + k; ak(G). Note that

for k = −1, a defensive k-alliance is the standard defensive alliance, that is,
a−1(G) = a(G).

(d) global defensive alliance: N [S] = V and for every v ∈ S, dS[v] ≥ dS(v);
γa(G).

(e) offensive alliance: for every v ∈ ∂(S), dS(v) ≥ dS[v]; ao(G).
(f) offensive k-alliance: for every v ∈ ∂(S), dS(v) ≥ dS(v)+ k; aok(G). Note that

for k = 1, a k-offensive alliance is the normal offensive alliance.
(g) global offensive alliance: for every v ∈ S, dS(v) ≥ dS[v]; γao(G).
(h) powerful alliance: for every u ∈ S, dS[u] ≥ dS(u) and for every v ∈ ∂(S),

dS(v) ≥ dS[v]; ap(G).
(i) (static) monopoly: for every vertex v ∈ S, dS(v) ≥ dS(v), that is, every vertex

not in S has at least �d(v)/2� neighbors in S, or equivalently, every vertex in S
has at least as many neighbors in S as it has in S; SH; m(G).

(j) open, or total, monopoly: for every vertex v ∈ V , dS(v) ≥ dS(v), that is, every
vertex in V has at least as many neighbors in S as it has in S; SH; mt(G).

(k) weak domination: for every v ∈ S, there exists a neighbor u ∈ S, d(u) ≤ d(v);
SH; γw(G).
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(l) strong domination: for every v ∈ S, there exists a neighbor u ∈ S, d(u) ≥ d(v);
SH; γs(G).

(m) cost effective domination: N [S] = V and for every v ∈ S, dS(v) ≤ dS(v);
γce(G).

(n) very cost effective domination: N [S] = V and for every v ∈ S, dS(v) < dS(v);
γvce(G).

(o) 1-equitable domination: N [S] = V and for all u, v ∈ S, |dS(u) − dS(v)| ≤ 1;
γ1eq(G).

(p) 2-equitable domination: N [S] = V and for all u, v ∈ S, |dS(u) − dS(v)| ≤ 1;
γ2eq(G)

(q) equitable domination: N [S] = V and for all u, v ∈ S, |dS(u)− dS(v)| ≤ 1, and
for all u, v ∈ S, |dS(u)− dS(v)| ≤ 1; γeq(G).

(r) global distribution center: N [S] = V and for all v ∈ S, there exists a vertex
u ∈ S such that dS[u] ≥ dS[v]; SH; gdc(G).

7 Functions f : V → N

For every set S ⊆ V , there is a corresponding characteristic function fS : V →
{0, 1}, such that f (v) = 1 if v ∈ S, and f (v) = 0 if v ∈ S. This suggests a variety
of options for the range N of a function f : V → N, in terms of domination. In
this section, we present a sample of the functions that have been considered under
this framework. The value of each of the following parameters equals the minimum
weight of a function of the given type, where the weight w(f ) of such a function f
is the sum of all assigned values,

w(f ) =
∑

v∈V
f (v).

7.1 Dominating Functions

(a) domination: f : V → {0, 1}, for every vertex v ∈ V , f (N [v]) ≥ 1; γ (G).
(b) fractional domination: f : V → [0, 1], for every vertex v ∈ V , f (N[v]) ≥ 1;

γf (G).
(c) signed domination: f : V → {−1, 1}, for every vertex v ∈ V , f (N [v]) ≥ 1;

γs(G).
(d) minus domination: f : V → {−1, 0, 1}, for every vertex v ∈ V , f (N [v]) ≥ 1;

γm(G).
(e) {k}-domination: f : V → {0, 1, . . . , k}, for every vertex v ∈ V , f (N [v]) ≥ k;

γ{k}(G).
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(f) k-rainbow domination: f : V → P{1, 2, . . . , k}, every vertex v ∈ V is
assigned a subset of {1, 2, . . . , k} such that for every vertex v ∈ V with
f (v) = ∅, the union of the sets assigned to the closed neighborhood N [v]
equals {1, 2, . . . , k}; γrk(G).

7.2 Roman Dominating Functions

The types of domination in this section are models of a military defense strategy
instituted by Emperor Constantine, between 306 and 337 AD, in which the regions
in the Roman Empire were defended by armies stationed at key locations. A region
was secured by armies stationed there, and a region without an army was protected
by sending mobile armies from neighboring regions. But Constantine decreed that
a mobile field army could not be sent to defend a region, if doing so left its
original region unsecured. This defense strategy gave rise to what is called Roman
domination, given below. As in the previous section, the value of each of the
following domination parameters equals the minimum weight of a function of the
given type.

Definition 1 Roman domination: f : V → {0, 1, 2}, for every vertex v with f (v) =
0, there is a vertex u ∈ N(v) with f (u) = 2; γR(G).

It is easy to see, for example, that for every graph G, γ (G) ≤ γR(G) ≤ 2γ (G).
From the initial definition of Roman domination as a framework, many varieties of
domination can clearly be defined, and indeed, many have been defined. We only
provide a sample here.

(a) weak Roman domination: f : V → {0, 1, 2}, for every v with f (v) = 0, there
is a vertex u ∈ N(v) with f (u) > 0 such that the function f ′ with f ′(v) = 1,
f ′(u) = f (u) − 1, and f ′(w) = f (w) otherwise, has no undefended vertex,
meaning a vertex with f ′(N [w]) = 0; γr(G).

(b) double Roman domination: f : V → {0, 1, 2, 3}, every vertexw with f (w) = 0
either has a neighbor u with f (u) = 3 or two neighbors u, v with f (u) =
f (v) = 2, and if f (w) = 1, then w has at least one neighbor u with 2 ≤
f (u) ≤ 3; γdR(G).

(c) Roman {2}-domination, also called Italian domination: f : V → {0, 1, 2},
every vertex v with f (v) = 0 has f (N(v)) ≥ 2; γR2(G) (also γI (G)).

(d) Roman k-domination: f : V → {0, 1, 2}, every vertex v with f (v) = 0 is
adjacent to at least k vertices u with f (u) = 2; γkR(G).

(e) independent Roman domination: f : V → {0, 1, 2}, every vertex v with f (v) =
0 has at least one neighbor u with f (u) = 2 and the set of vertices w with
f (w) > 0 is an independent set; iR(G).

(f) signed Roman domination: f : V → {−1, 1, 2}, for every vertex v ∈ V ,
f (N [v]) ≥ 1, and every vertex v with f (v) = −1 has at least one neighbor
u with f (u) = 2; γsR(G).
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(g) total Roman domination: f : V → {0, 1, 2}, every vertex w with f (w) = 0 has
at least one neighbor u with f (u) = 2 and every vertex u with f (u) > 0 has at
least one neighbor v with f (v) > 0; γtR(G).

8 Stratified Domination

A graph G together with a fixed partition of its vertex set V into nonempty subsets
is called a stratified graph. If the partition is V = {V1, V2}, then G is a 2-stratified
graph and the sets V1 and V2 are called the strata or sometimes the color classes
of G. A framework for domination based on coloring the vertices of a graph was
defined in [2] as follows. Let F be a 2-stratified graph with one fixed blue vertex v
specified; F is said to be rooted at the blue vertex v. An F -coloring of a graph G is
defined to be a red-blue coloring of the vertices of G such that every blue vertex v
is a root of a copy of F (not necessarily induced) in G. The F -domination number
γF (G) of G is the minimum number of red vertices in an F -coloring of G.

We note that if F is a 2-stratified K2 rooted at a blue vertex that is adjacent to a
red vertex, then the set of red vertices in an F -coloring of G is a dominating set of
G and γF (G) = γ (G).

This extends to other 2-stratified graphs F and encapsulates many types of dom-
ination related parameters, including the domination, total domination, restrained,
total restrained, and k-domination numbers. For example, let F be a 2-stratified P3
rooted at a blue vertex v. The five possible choices for the graph F are shown in
Figure 1.

Let G be a connected graph of order at least 3. It is shown in [2] that if F = F1,
then the set of red vertices of an F -coloring of G is a total dominating set and
γF (G) = γt (G), while if F = F2, then the set of red vertices is a dominating set
of G and γF (G) = γ (G). Furthermore, if F = F4, then the set of red vertices
of an F -coloring of G is a restrained dominating set and γF (G) = γr(G), and if
F = F5, then the set of red vertices of an F -coloring ofG is a 2-dominating set and
γF (G) = γ2(G).

On the other hand, the parameter γF3(G) defined a new domination parameter
that had not been studied prior to considering domination from this framework.

Fig. 1 The five 2-stratified graphs P3
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Stratified domination encompasses many known domination parameters and sug-
gests new avenues for study.

9 Domination Chain

The domination chain expresses relationships that exist among dominating sets,
independent sets, and irredundant sets in graphs. Irredundance is the concept that
describes the minimality of a dominating set. If a dominating set S is minimal, then
for every vertex u ∈ S the set S \ {u} is no longer a dominating set. This means that
the vertex u dominates some vertex, which could be itself, that no other vertex in S
dominates. Given a vertex set S ⊆ V and a vertex v ∈ S, we make the following
definitions.

(a) The vertex v is a self-private neighbor if v has no neighbors in S, that is,N [v]∩
S = {v}.

(b) The vertex v has an S-external private neighbor if there exists a vertex w ∈ S
such that N(w) ∩ S = {v}.

(c) The vertex v has an S-internal private neighbor if there exists a vertex w ∈ S
such that N(w) ∩ S = {v}.

A nonempty set S is irredundant if and only if every vertex v ∈ S either is a self-
private neighbor or has an S-external private neighbor. The irredundance numbers,
ir(G) and IR(G), are the minimum and maximum cardinalities, respectively, of a
maximal irredundant set.

The following two properties of a minimal and maximal dominating set yield the
domination chain:

Observation 1 The following hold in a graph G.

(a) Every minimal dominating set in G is a maximal irredundant set of G.
(b) Every maximal independent set in G is a minimal dominating set of G.

Theorem 2 (The Domination Chain) For every graph G,

ir(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ �(G) ≤ IR(G).

Since its introduction by Cockayne, Hedetniemi, and Miller [3] in 1978, the
domination chain of Theorem 2 has become one of the major focal points in the
study of domination in graphs, inspiring several hundred papers. As a framework, it
is possible to obtain inequality chains similar to the domination chain starting from
a suitable seed property. Thus, almost any property of subsets could be considered,
for example, the seed property that S is a vertex cover.
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10 Conditions Relating to Perfection

The concept of being dominated exactly once by the vertices in a set S is generally
referred to as perfect or efficient domination. In this section, we list a few parameters
related to this model of domination.

Given a set S ⊆ V , a vertex v ∈ V is perfect (with respect to S) if |N [v]∩S| = 1,
and is almost perfect if it is either perfect or is adjacent to a perfect vertex. A vertex
v ∈ V is open perfect (with respect to S) if |N(v) ∩ S| = 1, and is almost open
perfect if it is either open perfect or adjacent to an open perfect vertex. A set S is a
perfect neighborhood set if every vertex v ∈ V is either perfect or almost perfect,
with respect to S. A set S is called internally perfect if every vertex v ∈ S is perfect,
with respect to S, that is, if S is an independent set. And S is called externally perfect
if every vertex w ∈ S is perfect, that is, every vertex w is adjacent to exactly one
vertex in S. Externally perfect sets are also called perfect dominating sets. A set
that is both internally and externally perfect is an efficient dominating set. A set S is
called nearly perfect if for every vertex v ∈ S, |N(v) ∩ S| ≤ 1, that is, every vertex
in S is dominated at most once by the vertices in S, or every vertex in S has at most
one neighbor in S.

(a) perfect domination: for every vertex v ∈ S, dS(v) = 1; γp(G).
(b) efficient domination: for every v ∈ V , dS[v] = 1; γ (G). Note, it can

be shown that all efficient dominating sets have the same cardinality,
namely, γ (G). Efficient dominating sets are also called perfect codes. This
means that if S = {v1, v2, . . . , vk} is an efficient dominating set, then
π = {N [v1], N[v2], . . . , N [vk]} is a partition of V .

(c) efficiency: ε(S) = |{v ∈ S : dS(v) = 1}|; ε(G) = maxS⊆V {ε(S)}.
(d) total efficiency: εt (S) = |{v ∈ V : dS(v) = 1}|; εt (G) = maxS⊆V {εt (S)}.

11 Criticality Parameters

For any parameter, such as α(G) or γ (G), it is natural to consider how the
value changes when a small change is made in the graph G, for example, by the
deletion of a vertex or edge, the addition of an edge, the subdivision of an edge,
the identification of two non-adjacent vertices (an elementary homomorphism), or
the identification of two adjacent vertices (an elementary contraction). Most of
the study along these lines involves families of graphs whose domination number
changes whenever the given modification is made arbitrarily in the graph. For
example, domination edge critical graphs G have the property that the domination
number decreases whenever any arbitrary edge is added, that is, γ (G+ e) < γ (G)
for any e ∈ E(G).

On the other hand, parameters that in some sense measure the degree of criticality
have also been studied. Here we describe selected criticality parameters of this type
that have been studied for domination. We note that this perspective deviates from



26 T. W. Haynes et al.

our other frameworks in that it does not encompass dominating sets, but instead
considers effects of a graph modification on the domination number.

(a) reinforcement number, r(G): minimum number of edges that must be added to
G in order to decrease the domination number.

(b) bondage number, b(G): minimum number of edges that must be deleted from
G in order to increase the domination number.

(c) domination sensitivity, γ±(G): minimum number of vertices that must be
deleted to either increase or decrease the domination number.

(d) domination subdivision number, sdγ (G): minimum number of edges that must
be subdivided in order to increase the domination number.

(e) total domination subdivision number, sdγt (G): minimum number of edges that
must be subdivided in order to increase the total domination number.

(f) paired domination subdivision number, sdpr(G): minimum number of edges
that must be subdivided in order to increase the paired domination number.

(g) forcing domination number, Fγ (G). A subset T of a minimum dominating set
S is a forcing subset for S if S is the unique minimum dominating set containing
T . The forcing domination number Fγ (S) of a minimum dominating set S
is the minimum cardinality among the forcing subsets of S, and the forcing
domination number Fγ (G) of G is the minimum forcing domination number
among the minimum dominating sets S of G. It follows from the definition that
Fγ (G) ≤ γ (G).

12 Partitions

For any property P of interest, it is natural to consider partitions of the vertex set
V = {V1, V2, . . . , Vk} such that every set Vi , where i ∈ [k], is a P-set; these are
generally referred to as P-colorings. The most often studied partitions of this type
are called proper colorings, in which each set Vi is an independent set.

In this section, we describe a variety of P-colorings which have been studied,
in which the property P is related to domination. As in the previous section, this
perspective deviates from our other frameworks in that it does not encompass dom-
inating sets, but instead considers parameters based on graph partitions involving
dominating sets.

(a) domatic number, d(G): maximum order of a vertex partition into dominating
sets.

(b) idomatic number, id(G): maximum order of a vertex partition into independent
dominating sets, or the maximum number of vertex disjoint independent
dominating sets.

(c) capacitated domination, γcapk (G): minimum order of a vertex partition into sets
Vi such that G[Vi] has a spanning star of order at most k + 1.
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(d) iterated independence numbers, i∗(G) and α∗(G): minimum and maximum
orders of partitions resulting from repeated removals of maximal independent
sets.

(e) iterated domination numbers, γ ∗(G), �∗(G): minimum and maximum orders
of partitions resulting from repeated removals of minimal dominating sets.

(f) iterated irredundance numbers, ir∗(G), IR∗(G): minimum and maximum
orders of partitions resulting from repeated removals of maximal irredundant
sets.

(g) dominator coloring number, χd(G): minimum order of a vertex partition, such
that every vertex v ∈ V dominates at least one set Vi .

(h) gamma-gamma domination, γ γ (G), ��(G): minimum and maximum of |S1|+
|S2| for two disjoint (minimal) dominating sets in G.

(i) gamma-i domination, γ i(G): minimum of |S1| + |S2| for two disjoint dominat-
ing sets in G, one of which is an independent dominating set.

(j) defensive alliance partition number, �a(G): maximum order of a vertex
partition into defensive alliances.

13 Summary

In the preceding sections we have seen a wide variety of contexts in which aspects
of dominating sets in graphs can be expressed and studied.

If a condition can be imposed on the vertices only in S or only in S, it can also
be imposed to hold on all vertices in V . In this way we move from domination to
total domination. If a condition can be imposed on the closed neighborhoods N [v]
of vertices, it can then be relaxed to hold only for open neighborhoods N(v). All
parameters involving sets S ⊆ V can also be studied from the point of view of
subsets of edges F ⊆ E.

One can consider the minimum cardinality of a set S having some property, and
also consider the maximum cardinality of a minimal set having the same property.
One can consider the maximum cardinality of a set S having some property, and
also consider the minimum cardinality of a maximal set having the same property.
Consider any hereditary property P of a set of vertices S, such as being an
independent set. You can ask: what condition must exist for a set S to be a maximal
P-set? This condition is a property P ′ in its own right, and every maximal set having
property P must then also have property P ′. In the same way you can consider any
superhereditary property Q of a set of vertices, such as being a dominating set. You
can then ask: what condition must exist for a set S to be a minimal Q-set? This will
then give rise to another property Q′, which can be studied in its own right.

Among all subsets S having some property P , one can impose an additional
condition, often that the set S also be independent, but that the induced subgraph
G[S] have some common graph property, like having no isolated vertices, or being
a connected subgraph. You can, of course impose an added condition on the set
S. In this way, for example, we get restrained domination and outer-connected
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domination. We have seen many examples where a condition is imposed on either
NS(u) or NS[u], and likewise on NS(v) or NS[v], for vertices in either S or S.

For every set S ⊆ V , there is a corresponding characteristic function fS : V →
{0, 1}, such that f (v) = 1 if v ∈ S, and f (v) = 0 if v ∈ S. This suggests a
variety of options for the range of a function f , such as the closed unit interval,
f : V → [0, 1], from which we get fractional domination, or f : V → {0, 1, 2},
from which we get Roman domination, or f : V → {−1, 1} from which we get
signed domination.

It is natural to consider partitions π = {V1, V2, . . . , Vk} such that every set Vi
where i ∈ [k] has some property P , the most studied is that every set Vi is an
independent set. Such partitions are sometimes called P-colorings of graphs, and
one seeks either the minimum order of such a partition or the maximum order,
usually depending on whether the property P is hereditary (minimum order, e.g.
chromatic number) or superhereditary (maximum order, e.g. domatic number).

Real-world applications of dominating sets often suggest new and interesting
models of domination. This was the case with Roman domination, in which a vertex
v with f (v) = 2 represents a location at which two armies are stationed, one of
which can be used to defend a neighboring location by traveling along a single edge.
This one application alone has suggested numerous other models for defending the
vertices of a graph with different types of dominating sets.

In computer networks, a dominating set is viewed as a set of vertices, or nodes,
each of which supplies, “in one hop” a needed resource to all neighboring vertices.
But if one of these vertices becomes inoperative, or faulty, it might be helpful to
have some sort of backup arrangement. One such arrangement could be to have a
neighbor of the faulty node, also in the dominating set, so that a service could be
provided in at most two hops while the fault can be fixed; this corresponds to a total
dominating set, and is closely related to the model of a (1, k)-dominating set, in
which every node either has one-hop service or secondary service at most k-hops
away. Another arrangement might be to have a neighboring node to the faulty node
serve temporarily as a backup in such a way that the resulting set of nodes is another
dominating set. This leads to the model of secure dominating sets.

What models of domination have not we discussed? At the outset of this chapter,
we said that space limitations would not permit us to be comprehensive in reviewing
the many different models of domination that are being considered in the current
literature. Some compensation for the limitations of this chapter, however, are
provided by chapters in this volume and other books on domination. We list some
of them here along with selected sources of information. Of course, there are many
other application driven frameworks of domination, ranging from social networks
to mathematical chemistry, that are beyond the scope of these sources.

(a) Domination in hypergraphs
Chapter 11 Domination in Hypergraphs, by M. A. Henning and A. Yeo, in

Structures of Domination in Graphs, Springer, 2020.
(b) Domination in linear and integer programming
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Chapter 1 LP-Duality, Complementarity, and Generality of Graphical Subset
Parameters, by P. J. Slater, in Domination in Graphs, Advanced Topics, Marcel
Dekker, 1998.

(c) Domination in directed graphs and tournaments
Chapter 15 Topics on Domination in Directed Graphs, by J. Ghoshal, R. C.

Laskar, and D. Pillone, in Domination in Graphs, Advanced Topics, Marcel
Dekker, 1998.

Chapter 13 Domination in Digraphs and Tournaments, by T. W. Haynes, S.
T. Hedetniemi, and M. A. Henning, in Structures of Domination in Graphs,
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1 Introduction

Applications of dominating sets include security models where each vertex in the
dominating set represents the location of a guard or an officer capable of protecting
every vertex it dominates. Paired domination in graphs was introduced by Haynes
and Slater [41, 42] as a model for assigning backups to police officers. To ensure
the safety of each officer, it is common practice that officers are dispatched in pairs,
that is, they are assigned partners so each can back up the other. This practice is
modeled by paired domination, where each officer’s location must be adjacent to
his/her partner’s location and they are “designated as backups” for each other.

Formally, a paired dominating set, abbreviated PD-set, of a graph G = (V ,E)
is a set S ⊆ V such that every vertex of V is adjacent to some vertex in S
and the induced subgraph G[S] contains a perfect matching M (not necessarily
induced). Two vertices joined by an edge of M are said to be paired and are also
called partners in S. The paired domination number of G, denoted by γpr(G), is
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the minimum cardinality of a PD-set of G, and a PD-set of G having cardinality
γpr(G) is called a γpr-set of G. Every graph without isolated vertices has a paired
dominating set, and hence a paired domination number.

A PD-set S in a graph G is minimal if no proper subset of S is a PD-set of G.
The upper paired domination number of G, denoted by �pr(G), is the maximum
cardinality of a minimal PD-set of G. A minimal PD-set of G of cardinality �pr(G)

is called a �pr-set of G.
Recall that a dominating set of a graph G = (V ,E) is a set S ⊆ V such that

every vertex in V \ S is adjacent to some vertex in S. In addition, if every vertex in
V is adjacent to some vertex in S, then S is a total dominating set, abbreviated TD-
set, of G. The domination number, denoted by γ (G), is the minimum cardinality
of a dominating set, while the total domination number, denoted by γt (G), is the
minimum cardinality of a TD-set of G. A dominating set of G having cardinality
γ (G) is called a γ -set of G. Two vertices are neighbors if they are adjacent.

Total domination and paired domination are defined only for graphs with no
isolated vertices. By definition every PD-set is a TD-set, and every TD-set is
a dominating set. Hence, we have the following observation relating these three
parameters.

Observation 1 ([42]) If G is a graph with no isolated vertex, then

γ (G) ≤ γt (G) ≤ γpr(G).

Necessarily, the paired domination number of a graph is an even integer. We also
note that every support vertex (vertex adjacent to an end vertex) ofG is contained in
every PD-set of G. For example, for k ≥ 2 the subdivided star G = S(K1,k), which
is obtained from a starK1,k by subdividing every edge exactly once, has domination
number γ (G) = k, total domination number γt (G) = k+ 1, and paired domination
number γpr(G) = 2k. On the other hand, the double starG = S(r, s), which is a tree
with exactly two (adjacent) non-leaf vertices one of which has r ≥ 1 leaf neighbors
and the other s ≥ 1 leaf neighbors, has γ (G) = γt (G) = γpr(G) = 2.

Bollobás and Cockayne [3] showed that every graph without isolated vertices has
a γ -set S in which every vertex v ∈ S dominates a vertex v′ ∈ V \ S whose only
neighbor in S is v. Such a vertex v′ is called an S-external private neighbor of v
and is not necessarily unique. For each vertex v ∈ S, select one such vertex external
private neighbor v′. Then the set ∪v∈S{v, v′} is a PD-set of G, where the vertex v
is paired with the vertex v′. Thus, we have the following result first observed by
Haynes and Slater [42].

Theorem 2 ([42]) If G is a graph with no isolated vertices, then γpr(G) ≤ 2γ (G).

Also given in [42] is the following interesting necessary condition for equality in
the bound of Theorem 2.

Theorem 3 ([42]) If γpr(G) = 2γ (G), then every γ -set ofG is an independent set.
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Additional relationships between the paired domination number and other
domination parameters will be presented in Section 9. The remainder of this
chapter is organized as follows. Bounds on the paired domination are presented
in Section 2. Section 3 covers graphs having maximum size with a given paired
domination number, and Section 4 contains Nordhaus–Gaddum type results for
paired domination. We discuss paired domination in Cartesian products in Section 5
and paired domination in other graph families including trees, claw-free graphs,
and planar graphs in Section 6. For additional graph families, we refer the reader
to [5, 6, 15, 67, 69, 71]. Criticality concepts for paired domination are presented in
Section 7, and the upper paired domination number is covered in Section 8. Perfect
concepts involving paired domination are presented in Section 10, while complexity
issues are in Section 11. Conjectures and open questions are stated throughout the
text where appropriate.

We note that this chapter gives an overview of paired domination, while focusing
mainly on bounds. For variations and topics involving paired domination not
covered here, we refer the reader to the survey [22]. Also, see [38] for a paired
domination version of the domination game. Any terminology not defined herein
can be found in the glossary of chapter “Glossary of Common Terms”.

2 Bounds on the Paired Domination Number

As we shall see in Section 11, the decision problem associated with paired
domination is NP-complete, so it is of interest to determine bounds on the paired
domination number of a graph. In this section, we present major known bounds.

2.1 Bounds Involving Order and Degree

Since the paired domination number is not defined for graphs with isolated vertices,
we consider only graphs with minimum degree δ(G) ≥ 1. Haynes and Slater [42]
established the following lower bound on the paired domination number of a graph
in terms of its order and maximum degree.

Theorem 4 ([42]) IfG is a graph of order nwith no isolated vertices and maximum
degree �(G) = �, then γpr(G) ≥ n

�
, and this bound is sharp.

Sharpness of the bound of Theorem 4 can be seen with the graph G = mK2.
This graph also shows that the paired domination number may equal the order of
the graph. However, this is the unique such graph with this property as the following
result shows.

Theorem 5 ([42]) If G is a graph of order n with no isolated vertices, then
γpr(G) = n if and only if G = mK2.
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The trivial upper bound of Theorem 5 can be improved slightly if we forbid
K2-components. Haynes and Slater [42] obtained the following upper bound on the
paired domination number of a connected graph of order at least 3.

Theorem 6 ([42]) If G is a connected graph of order n ≥ 3, then γpr(G) ≤ n − 1
with equality if and only if G is the cycle C3, the cycle C5, or a subdivided star
S(K1,k) for k ≥ 1.

If G is a connected graph of order n ≥ 3 and G is none of the graphs listed in
Theorem 6, then it follows that γpr(G) ≤ n − 2. The connected graphs G of order
n ≥ 4 for which γpr(G) = n− 2 are characterized by Ulatowski in [78].

Chellali and Haynes [9] obtained the following upper bound on the paired
domination number of a graph in terms of its order and minimum degree.

Theorem 7 ([9]) IfG is a graph of order n with no isolated vertices, then γpr(G) ≤
n− δ(G)+ 1.

2.1.1 Minimum Degree at Least 2

For graphs of order n ≥ 6 having minimum degree at least 2, the upper bound in
Theorem 6 on the paired domination number of a graph can be improved from one
less than its order to two-thirds its order. This result was first presented in [42], but
the proof contained an error. Huang and Shan [56] provided a corrected proof, a
slightly modified version of which we present here.

Theorem 8 ([42, 56]) If G is a connected graph of order n ≥ 6 with minimum
degree δ(G) ≥ 2, then γpr(G) ≤ 2

3n.

Proof. LetG be a connected graph with δ(G) ≥ 2. For a subset S ⊆ V , let λ(S) be
the number of edges in the subgraph induced by V \ S. Among all γpr-sets of G, let
S be chosen so that λ(S) is minimized, and letM be a matching of G[S]. Label the
vertices of S as ui, vi for 1 ≤ i ≤ γpr(G)/2 such that {ui, vi} ∈ M . We now define
a weak partition of the set S (where some sets in the partition may be empty) given
by S = (A,B,C,D) as follows:

• A = {ui, vi ∈ S | epn(ui, S) �= ∅ and epn(vi, S) �= ∅}.
• B = {ui, vi ∈ S | epn(ui, S) �= ∅ and epn(vi, S) = ∅}.
• C = {ui, vi ∈ S | epn(ui, S) = ∅ and epn(vi, S) �= ∅}.
• D = {ui, vi ∈ S | epn(ui, S) = ∅ and epn(vi, S) = ∅}.

Let A′, B ′, and C′ be the S-external private neighbors of the vertices in sets A,
B, and C, respectively. By definition, the S-private neighbors are in V \ S, and so

n− |S| = |V \ S| ≥ |A′| + |B ′| + |C′| ≥ |A| + 1

2
|B| + 1

2
|C|. (1)

If D = ∅, then |S| = |A| + |B| + |C|. By Inequality (1), we have n − |S| ≥
|A| + 1

2 |B| + 1
2 |C| ≥ 1

2 |S|, and so γpr(G) = |S| ≤ 2
3n. We may, therefore, assume
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that D �= ∅, for otherwise the desired result holds. Relabeling the vertices of S if
necessary, we may assume that D = {ui, vi | i ∈ [�]} for some � ≥ 1. We proceed
further with the following claim. �

Claim 1 There exists a subset X = {x1, . . . , x�} ⊆ V \ S such that xi is adjacent
to ui or vi for each i ∈ [�].
Proof. We consider the pair ui ,vi , where i ∈ [�]. Recall that ui and vi are adjacent
and {ui, vi} ⊆ D, and so epn(ui, S) = epn(vi, S) = ∅. Furthermore, for each
pair ui ,vi , there exists some vertex xi ∈ V \ S such that xi is adjacent to ui or vi .
Otherwise, since δ(G) ≥ 2, S \ {ui, vi} is a PD-set of G with cardinality less than
γpr(G), a contradiction.

We now use induction to prove Claim 1. When � = 1, the result holds. This
establishes the base case. Assume that there exists a subset X = {x1, . . . , xk} ⊆
V \ S such that xi is adjacent to vi or ui for some k, where 1 ≤ k < �. Without loss
of generality, we assume that xi is adjacent to vi for i ∈ [k].

We now consider the pair uk+1 and vk+1. As observed earlier, there exists a vertex
xk+1 ∈ V \ S such that xk+1 is adjacent to uk+1 or vk+1. Renaming uk+1 and vk+1,
if necessary, we may assume that xk+1 is adjacent to vk+1. If xk+1 /∈ X, then the
results hold for k+ 1. Hence, we may assume that xk+1 cannot be chosen to belong
to V \ (S ∪ X). Thus, N(vk+1) ⊆ S ∪ X and N(uk+1) ⊆ S ∪ X. In particular,
xk+1 ∈ X, and so xk+1 = xj for some j ∈ [k]. By our earlier assumptions, xj is
adjacent to vj . If there is a vertex x′j ∈ V \ (S ∪X) that is adjacent to uj or vj , then
we can replace xj in X with the vertex x′j and add the vertex xk+1 (where recall that
xk+1 = xj ) to the resulting set X, and the result holds for k + 1. Hence, we may
assume that N(uj ) ⊆ S ∪X and N(vj ) ⊆ S ∪X.

Suppose that uk+1 has a neighbor in X, say xi . If xi = xj , then (S \
{uj , uk+1, vk+1})∪{xj } (with vj and xj paired) is a PD-set ofGwith order less than
γpr(G), contrary to the minimality of S. If xi �= xj , then (S \ {ui, uj , uk+1, vk+1})∪
{xi, xj } (with vj and xj paired, vi and xi paired) is a PD-set of G with order less
than γpr(G), again contradicting the minimality of S. Hence, uk+1 has no neighbor
in X, implying by our earlier observations that all neighbors of uk+1 belong to the
set S.

Recall that δ(G) ≥ 2. Letw be an arbitrary neighbor of uk+1 different from vk+1.
As observed earlier, w ∈ S. If w �= uj , then (S \ {uj , uk+1, vk+1}) ∪ {xj } (with vj
and xj paired) is a PD-set of G of cardinality less than γpr(G), a contradiction.
Hence, w = uj . Since w is an arbitrary neighbor of uk+1 different from vk+1, this
implies that d(uk+1) = 2 and N(uk+1) = {uj , vk+1}. A similar argument holds for
uj ; that is, d(uj ) = 2 and N(uj ) = {vj , uk+1}.

We show next that d(vj ) = 2. Suppose, to the contrary, that d(vj ) ≥ 3. Let
y ∈ N(vj ) \ {uj , xj }. Since uj has a neighbor in S different from vj , by our
earlier assumptions the vertex vj has no neighbor in S except for its partner uj .
In particular, y /∈ S. By our earlier observations, N(vj ) ⊆ S ∪ X, implying that
y ∈ X. Thus, y = xi for some i ∈ [k] \ {j}. Recall that xi is adjacent to vi .
Arguments analogous to those for the pairs {uk+1, vk+1} and {uj , vj } show that by
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considering the pairs {uj , vj } and {ui, vi}, we deduce that ui is adjacent to uj , which
contradicts the fact that d(uj ) = 2. Hence, d(vj ) = 2, and so N(vj ) = {uj , xj }.
Similarly, d(vk+1) = 2 and N(vk+1) = {xj , uk+1}.

Finally, we show that d(xj ) = 2. If this is not the case, then there exists a vertex
y ∈ N(xj ) \ {vj , vk+1}. If y ∈ S, then S \ {vj , vk+1} (with uj and uk+1 paired) is
a PD-set of G with cardinality less than γpr(G), contradicting the minimality of the
γpr-set S. If y /∈ S, then S′ = S \ {vk+1} ∪ {xj } (with uj and uk+1 paired and vj and
xj paired) is a γpr-set of G having |E(G[V \ S′])| < |E(G[V \ S])|, contradicting
our choice of S. Hence, d(xj ) = 2. SinceG is connected, the graphG is determined
and G ∼= C5, contradicting the supposition that G has order n ≥ 6. This completes
the proof of Claim 1. �

By Claim 1, there exists a subset X = {x1, . . . , x�} ⊆ V \ S such that xi is
adjacent to ui or vi for each i ∈ [�]. We note that |X| = � = 1

2 |D|. Thus,

n− |S| = |V \ S|
≥ |A′| + |B ′| + |C′| + |X|
≥ |A| + 1

2 |B| + 1
2 |C| + 1

2 |D|
≥ 1

2 (|A| + |B| + |C| + |D|)
= 1

2 |S|,

implying that γpr(G) = |S| ≤ 2
3n. This completes the proof of Theorem 8. �

It was remarked in [42] that the cycle C6 attains the bound of Theorem 8, but
no families of graphs were given to illustrate sharpness. However, they showed that
the bound of Theorem 8 is asymptotically sharp for an infinite family of graphs as
follows. If Gk is any graph obtained from k ≥ 2 vertex disjoint copies of K3 by
adding a new vertex and joining it to one vertex from each copy ofK3 (as illustrated
in Figure 1), then the graphGk has order n = 3k+1 and γpr(Gk) = 2k = 2

3 (n−1).
For k sufficiently large, γpr(Gk) can be made arbitrarily close to 2

3n.
The graphs achieving equality in Theorem 8 were subsequently characterized

by Henning [44]. This characterization showed that no infinite family attains the
bound of Theorem 8. In fact, the only graphs attaining the bound are the ten graphs
F1, F2, . . . , F10 shown in Figure 2. Let F = {F1, F2, . . . , F10}.
Theorem 9 ([44]) If G is a connected graph of order n ≥ 6 with δ(G) ≥ 2, then
γpr(G) ≤ 2

3n, with equality if and only if G ∈ F .

· · ·

Fig. 1 γpr(G) approaching 2
3n for large n
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F1 F2 F3 F4

F5 F6 F7

F8 F9 F10

Fig. 2 The ten graphs in F
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Fig. 3 The thirteen units Ui , where i ∈ [13]

We remark that the maximum order of the graphs in F is 9. If the order is
restricted to at least 10, then the upper bound in Theorem 9 can only be improved
slightly as shown in [44]. To state this result, let U1, U2, . . . , U13 be the thirteen
graphs shown in Figure 3. We define a unit to be a graph that is isomorphic to the
graph Ui for some i ∈ [13]. The vertex named v in each unit in Figure 3 is called
the link vertex of the unit. A unit is called a type-i unit for i ∈ [13] if it isomorphic
to the graph Ui .

LetH be any graph obtained from the disjoint union of t ≥ 2 units by identifying
the t link vertices, one from each unit, into one new vertex. Let H denote the family
of all such graphs H . A graph H ∈ H with seven units and with identified vertex v
is shown in Figure 4.
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v

Fig. 4 A graph H in the family H

F H

Fig. 5 Graphs F and H

We are now in a position to state the main result in [44].

Theorem 10 ([44]) IfG is a connected graph of order n ≥ 10 with δ(G) ≥ 2, then

γpr(G) ≤ 2

3
(n− 1).

Furthermore, for n ≥ 14, γpr(G) = 2
3 (n− 1) if and only if G ∈ H.

2.1.2 Minimum Degree at Least 3

Surprisingly, it remains an open problem to determine a tight upper bound on the
paired domination number of a connected graph with minimum degree at least 3
in terms of the order of the graph. Chen, Sun, and Xing [14] posed the following
conjecture.

Conjecture 1 ([14]) If G is a connected graph of order n ≥ 11 with δ(G) ≥ 3,
then γpr(G) ≤ 4

7n.

A slightly stronger conjecture than Conjecture 1 is posed by Goddard and
Henning [37]. Recall that the Petersen graph, which we shall denote by G10, is
the graph shown in Figure 7.

Conjecture 2 ([37]) If G �= G10 is a connected graph of order n with δ(G) ≥ 3,
then γpr(G) ≤ 4

7n.

If Conjecture 2 is true, then the bound is achieved, for example, by the graph F
shown in Figure 5.

We remark that although there is no known infinite family of graphs that achieve
the upper bound of Conjecture 2, there is an infinite family of connected graphs of
order n with δ(G) ≥ 3 and with γpr(G) approaching 4n/7 for large n. For example,
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Fig. 6 A graph G in the family G

let G be the family of all graphs G that can be obtained from k ≥ 3 disjoint copies
of the graphH shown in Figure 5 by adding a new vertex and joining it to the vertex
of degree 2 in each of the k copies of H . A graph G in the family G is illustrated in
Figure 6. Such a graph G has order n = 7k + 1 and γpr(G) = 4k = 4(n− 1)/7.

Clark, Shekhtman, Suen, and Fisher [17] established the following upper bound
on the paired domination number of a graph in terms of its minimum degree and
order.

Theorem 11 ([17]) If G is a connected graph of order n with minimum degree δ,
then

γ (G) ≤
(

1 −
δ+1∏

k=1

kδ

kδ + 1

)

n.

Since

f (δ) =
δ+1∏

k=1

kδ

kδ + 1

is an increasing function and f (9) ≥ 5
7 , Theorem 11 implies that Conjecture 2 holds

for graphs having minimum degree δ ≥ 9, as noted by Lu, Wang, and Wang in [64].

Theorem 12 ([64]) If G is a connected graph of order n with δ(G) ≥ 9, then
γpr(G) ≤ 4

7n.

Lu, Wang, and Wang [64] also showed that Conjecture 2 holds for r-regular
graphs with r ≥ 4.

Theorem 13 ([64]) IfG is a connected r-regular graph of order n with r ≥ 4, then
γpr(G) ≤ 4

7n.
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Fig. 7 The Petersen graph G10

2.1.3 Cubic Graphs

Chen, Sun, and Xing [14] established the following upper bound on the paired
domination number of a cubic graph.

Theorem 14 ([14]) If G is a cubic graph of order n, then γpr(G) ≤ 3
5n.

Goddard and Henning [37] characterized the cubic graphs that achieve equality
in the bound of Theorem 14.

Theorem 15 ([37]) If G is a connected cubic graph of order n, then γpr(G) ≤ 3
5n

with equality if and only if G is the Petersen graph G10 (see Figure 7).

We remark that Conjecture 2 has yet to be settled even in the special case of the
class of cubic graphs.

Conjecture 3 ([37]) If G �= G10 is a connected cubic graph of order n, then
γpr(G) ≤ 4

7n.

The following conjecture and open problem were posed by Desormeaux and
Henning in [22].

Conjecture 4 If G is a bipartite cubic graph of order n, then γpr(G) ≤ 1
2n.

Problem 1 Determine a tight upper bound on the paired domination number of a
cubic graph that contains no 5-cycle. In particular, is it true that if G is a cubic
graph of order n that contains no 5-cycle, then γpr(G) ≤ 1

2n?

2.2 Bounds in Terms of Radius and Diameter

Lower bounds on the total domination number in a connected graph in terms of
its radius or diameter are established by DeLaViña, Liu, Pepper, Waller, and West
[20]. Since the paired domination number is at least the total domination number,
the bounds stated below are an immediate consequence of results in [20].

Theorem 16 ([20]) IfG is a connected graph of order at least 2, then the following
hold.

(a) γpr(G) ≥ rad(G).
(b) γpr(G) ≥ 1

2 (diam(G)+ 1).
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We note that if G is a path Pn of order n, where n is congruent to 0 modulo 4,
then rad(G) = γpr(G) = n

2 and diam(G) = n − 1, implying that the lower bounds
in Theorem 16 are sharp.

2.3 Bounds in Terms of Girth

Chen, Shiu, and Chan [13] gave upper bounds on the paired domination number of
a graph in terms of its order, minimum degree, maximum degree, and girth.

Theorem 17 ([13]) If G is a connected graph of order n with δ(G) ≥ 2 and girth
g(G) ≥ 6, then γpr(G) ≤ 1

3 (2n− (δ(G)− 1)(δ(G)− 2)).

As observed in [13], the requirement that g(G) ≥ 6 is necessary. For example,
if G = C5, then δ(G) = 2, g(G) = 5, and γpr(G) = 4 > 1

3 (2n − (δ(G) −
1)(δ(G) − 2)). If we impose a minimum degree at least 3 requirement, then we
have the following upper bound on the paired domination number in terms of the
maximum degree and order.

Theorem 18 ([13]) If G is a connected graph of order n with maximum degree
�(G), minimum degree δ(G) ≥ 3, and girth g(G) ≥ 6, then γpr(G) ≤ 2

3 (n + 1 −
�(G)).

As before, the girth requirement of at least 6 is necessary. For example, as
observed in [13], if G is the Petersen graph, then �(G) = 3, g(G) = 5, and
γpr(G) = 6 > 2

3 (n+ 1 −�(G)).
The following result provides an upper bound on the paired domination number

of a graph with minimum degree at least 3 in terms of its order and girth.

Theorem 19 ([13]) If G is a connected graph of order n with δ(G) ≥ 3, then
γpr(G) ≤ 2n

3 − g(G)
6 + 5

6 .

2.4 Bounds in Terms of Size

Henning [45] characterized the connected graphs with minimum degree at least 2
and size at least 18 that have maximum possible paired domination number. Before
we state this result, we define a family of graphs.

A type-1 unit is a graph that is isomorphic to the graph shown in Figure 8(a) and
a type-2 unit is a graph that is isomorphic to the graph shown in Figure 8(b). We
define a unit to be a type-1 unit or a type-2 unit. The vertex named v in each unit in
Figure 8 is called the link vertex of the unit.

For n1+n2 ≥ 2, let F = F(n1, n2) be the graph obtained from the disjoint union
of n1 units of type-1 and n2 units of type-2 by identifying the n1 + n2 link vertices,
one from each unit, into one new vertex which we call the identified vertex ofG. Let
F denote the family of all such graphs F . The graph F(2, 2) with four units, two of
type-1 and two of type-2, and with identified vertex v is shown in Figure 9.



42 W. J. Desormeaux et al.

(a) Type-1 unit

v

(b) Type-2 unit

v

Fig. 8 A type-1 unit and a type-2 unit

v

Fig. 9 A graph F in the family F

Theorem 20 ([45]) Let G be a connected graph of size m ≥ 18 with δ(G) ≥ 2.
Then, γpr(G) ≤ 4

7m with equality if and only if G is the cycle C21 or if G ∈ F .

3 Graphs with Maximum Size and Given Paired Domination
Number

A classical result of Vizing [80] relates the size and the ordinary domination number
of a graph of given order. Henning, McCoy, and Southey [47] determined a Vizing-
like relation between the size and the paired domination number of a connected
graph by determining the maximum possible number of edges in a graph with given
order and given paired domination number. Furthermore, they characterized the
infinite family of graphs that achieve this maximum possible size. Since complete
graphs have the maximum number of edges of any graph having paired domination
number equal to 2, it is only of interest to restrict our attention to graphs with paired
domination number at least 4.

The following families of graphs were defined in [47]. For two sets X and Y of
vertices, we say thatE[X, Y ] is full if every vertex inX is adjacent to every vertex in
Y . Let C5(n1, n2, n3, n4, n5) denote the graph that can be obtained from a 5-cycle
x1x2x3x4x5 by replacing each vertex xi for i ∈ [5] with a nonempty clique Xi ,
where |Xi | = ni ≥ 1, and adding all edges between Xi and Xi+1, where addition
is taken modulo 5. For n ≥ 5, let Fn = {C5(n1, n2, n3, n4, n5) | n1 = n2 =
n3 = 1 and n = n4 + n5 + 3}. A graph in the family Fn is illustrated in Figure 10,
where in this diagram both A and B represent cliques, E[A,B] is full, the vertex x1
dominates A ∪ {x2}, the vertex x3 dominates B ∪ {x2}, and n = |A| + |B| + 3.

For n ≥ 7, let Gn be the family of graphs constructed as follows: Take a complete
graph on n−4 vertices with vertex set S and partition the set S into three (nonempty)
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x1

x2

x3

A B

G1 ∈ Fn

v

a

b c

A

BC

G2 ∈ Gn

Fig. 10 Graphs in the family Fn and Gn

k

Kn−2k

Fig. 11 The graph Rn,k

sets A, B, and C. Add three new vertices a, b, and c, and join a to every vertex in
S \ A, join b to every vertex in S \ B, and join c to every vertex in S \ C. Finally,
add a new vertex v and join v to a, b, and c. A graph in the family Gn is illustrated
in Figure 10. In this diagram, A, B, and C represent cliques and E[A,B], E[A,C],
and E[B,C] are full. The vertex a dominates B ∪ C ∪ {v}, the vertex b dominates
A ∪ C ∪ {v}, and the vertex c dominates A ∪ B ∪ {v}.

If k ≥ 3 and n = 2k, let Rn,k be the graph kP2 consisting of k disjoint copies of
P2. For k ≥ 3 and n ≥ 2k+1, let Rn,k be the graph obtained from the disjoint union
of k copies of P2 and a copy of the complete graph on n − 2k vertices by joining
one vertex from each copy of P2 to every vertex in the complete graph. For k ≥ 3,
we note that γpr(Rn,k) = 2k and that Rn,k has size

(
n
2

) − k(n − 2). The graph Rn,k
is illustrated in Figure 11.

We are now in a position to state the results in [47].

Theorem 21 ([47, 51]) Let G be a graph of order n ≥ 4 and size m satisfying
γpr(G) = 4. Then m ≤ (

n
2

)− 2(n− 2)+ 1, with equality if and only ifG ∈ Fn ∪ Gn
or if G is the complement of the Petersen graph.

Theorem 22 ([47]) For k ≥ 3, let G be a graph of order n ≥ 2k and size m
satisfying γpr(G) = 2k. Then m ≤ (

n
2

) − k(n − 2), with equality if and only if
G = Rn,k or G = C5 ∪ P2.
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4 Nordhaus–Gaddum Type Results

The following Nordhaus–Gaddum result was determined in the introductory paper
on paired domination.

Theorem 23 ([42]) If G is a graph of order n and neither G nor G has isolated
vertices, then

γpr(G)+ γpr(G) ≤
{
n+ 3 if n is odd

n+ 2 otherwise.

As observed in [42], the cycle C5 and the graph consisting of m ≥ 2 disjoint
copies of K2 achieve the bounds of Theorem 23. Further, the following is noted
in [42].

Observation 24 ([42]) For any graph G with no isolated vertices, the following
hold.

(a) If diam(G) ≥ 3, then γpr(G) = 2.
(b) γpr(G) ≥ 4 if and only if diam(G) = 2.

Favaron, Karami, and Sheikholeslami [34] showed that if both γpr(G) > 4 and
γpr(G) > 4, then the bound of Theorem 23 can be improved.

Theorem 25 ([34]) For any graphG of order n ≥ 6 with γpr(G) > 4 and γpr(G) >

4,

γpr(G)+ γpr(G) ≤ 3 + min{δ(G), δ(G)}.

Proof. LetG be a graph of order n ≥ 6 with γpr(G) > 4 and γpr(G) > 4. Since the
paired domination number is always even, γpr(G) ≥ 6 and γpr(G) ≥ 6. Let x be a
vertex of degree δ(G), and let X = V \N [x]. If N(x)∩N(y) = ∅ for some y ∈ X,
then in G, the vertex x dominates X and the vertex y dominates N [x]. Thus, {x, y}
is a PD-set of G, and so γpr(G) = 2, a contradiction. Therefore, N(x) ∩ N(y) �= ∅
for all y ∈ X. Hence, N(x) dominates X. Since γpr(G) ≥ 6, no vertex of N(x)
dominatesX, for otherwise, γpr(G) = 2. As an immediate consequence of γpr(G) ≥
6, we have the following claim.

Claim 2 If A is a subset of N(x) that dominates the set X and B is a maximum
subset of A not dominating X, then |A| ≥ 3 and |B| ≥ 2.

Let S be a maximum subset of N(x) that does not dominate all vertices in X
and let T = N(x) \ S. By the maximality of S, every vertex in the set T dominates
X \N(S), and by Claim 2, we have |S| ≥ 2.

Claim 3 The set T dominates X.
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Proof. Suppose, to the contrary, that y ∈ X and y is not dominated by T . By the
definition of S, there exists a vertex z ∈ X not dominated by S. Since y ∈ N(S) and
z ∈ X \ N(S), we note that y �= z. Now {x, z, y,w} is a PD-set of G, where w is
an arbitrary vertex in T (where x is paired with z and y is paired with w), and so
γpr(G) ≤ 4, a contradiction. �

Claim 4 The set T has no isolated vertex.

Proof. Suppose, to the contrary, that y is an isolated vertex in T . As observed
earlier, every vertex in T dominates X \N(S). In particular, the vertex y dominates
X \ N(S). By Claim 2, the vertex y does not dominate X. Thus, there is a vertex
z ∈ N(S) that is not adjacent to y. Letw be a vertex inX\N(S), and sowy ∈ E(G)
and w �= z. Now {x,w, y, z} is a PD-set of G (where x is paired with w and y is
paired with z), and so γpr(G) ≤ 4, a contradiction. �

Let M = {x1y1, . . . , xsys} be a maximum matching of G[T ], and let U = T \
V (M). By Claim 4, we note that s ≥ 1. By the maximality of M , the set U is an
independent set of G.

Claim 5 If V (M) does not dominate X and u ∈ U , then V (M)∪ {u} dominates X.

Proof. Suppose that V (M) does not dominate X. By Claim 3, this implies that
U �= ∅. Let u ∈ U and suppose, to the contrary, that V (M)∪ {u} does not dominate
X. Let w1 ∈ X be a vertex not dominated by V (M)∪ {u}, The vertex w1 dominates
V (M) in G and the vertex u dominates U in G since U is independent in G. If
w1 ∈ X \ N(S), then let w2 be an arbitrary vertex in X different from w1, while if
w1 ∈ N(S), then let w2 be a vertex in X \ N(S). It follows that {x,w2, u,w1} is a
PD-set ofG (where x is paired withw2 and u is paired withw1), and so γpr(G) ≤ 4,
a contradiction. �

LetM ′ be a maximal submatching ofM such that V (M ′) does not dominate X,
and let W be a maximum subset of T containing V (M ′) and not dominating X. By
Claims 2 and 3 and the definition of S, we note thatM ′ �= ∅,W �= T , and |S| ≥ |W |.
However, it is possible thatM ′ = M , in which caseW = V (M) by Claim 5, or that
V (M ′) ⊆ W �= V (M).
Claim 6 If V (M ′) ∪ {y} dominates X for some y ∈ N(x) \ V (M ′), then γpr(G) ≤
|V (M ′)| + 2 and |V (M ′)| ≥ 4.

Proof. If V (M ′) ∪ {y} dominates X, then V (M ′) ∪ {x, y} is a PD-set of G (with x
and y paired), implying that γpr(G) ≤ |V (M ′)| + 2. Since γpr(G) ≥ 6, this in turn
implies that |V (M ′)| ≥ 4. �

Claim 7 γpr(G) ≤ |V (M ′)| + 4.

Proof. Suppose that M ′ = M . By Claim 5 if y ∈ U , then V (M ′) ∪ {y} dominates
X, implying by Claim 6 that γpr(G) ≤ |V (M ′)| + 2. If M ′ �= M , then let xsys ∈
M\M ′. By the maximality ofM ′, the set V (M ′)∪{xs, ys} dominatesX and V (M ′)∪
{xs, ys, x, x′}, where x′ is an arbitrary vertex of S, is a PD-set of G (where the
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vertices of M ′ are paired as in the matching while x and x′ are paired), implying
that γpr(G) ≤ |V (M ′)| + 4. �

Let T0 = T and let S0 = W . Let T1 = T \ W . If T1 dominates X, let S1 be a
maximal subset of T1 not dominating X and let T2 = T1 \ S1. If T2 dominates X, let
S2 be a maximal subset of T2 not dominating X and let T3 = T2 \ S2. We continue
the process until a subset Tk of T not dominating X is obtained. Thus, we construct
a finite chain T = T0 ⊃ T1 ⊃ · · · ⊃ Tk , where k ≥ 1 such that

(a) the set Ti dominates X for i ∈ {0} ∪ [k − 1].
(b) the set Si = Ti \ Ti+1 does not dominate X, but Si ∪ {y} dominates X for each

y ∈ Ti+1 for i ∈ {0} ∪ [k − 1].
(c) the set Tk does not dominate X.

We note that if k ≥ 2, then |Si | ≥ 2 for i ∈ [k − 1] by Claim 2. For all i ∈
{0} ∪ [k − 1], let xi be a vertex of X not dominated by Si , and let yi ∈ Si . Let xk be
a vertex of X not dominated by Tk and yk ∈ Tk . By (b), the vertex xi is adjacent to
every vertex in Ti+1. Hence, all the vertices xi are distinct. Similarly, all the vertices
yi are distinct since S0, S1, . . . , Sk−1, Tk are disjoint. We now let y ∈ X \ N(S).
We note that in the graph G, the vertex y dominates S and the vertex x dominates
X in G. Further, we note that xiyi is an edge in G, and that the vertex xi dominates
the set Si in G for i ∈ {0} ∪ [k]. Thus, the set {x0, y0, x1, y1, . . . , xk, yk, x, y} is a
PD-set ofG (with x and y paired and with xi and yi paired for i ∈ {0}∪[k]). Hence,

γpr(G) ≤ 2k + 4. (2)

By the choice of x and our earlier observations, we have

δ(G) = |N(x)|
= |S| + |T |
= |S| +

k−1∑

i=0

|Si | + |Tk|
≥ |S| + |W | + 2(k − 1)+ 1
≥ 2|W | + 2k − 1

or, equivalently, 2k ≤ δ(G)− 2|W | + 1. Thus, by Inequality (2), we have

γpr(G) ≤ δ(G)− 2|W | + 5. (3)

If |W | ≥ |V (M ′)| + 2, then by Inequality (3), we have γpr(G) ≤ δ(G) −
2|V (M ′)| + 1, implying by Claim 7 that γpr(G) + γpr(G) ≤ (|V (M ′)| + 4) +
(δ(G)− 2|V (M ′)| + 1) = δ(G)− |V (M ′)| + 5 ≤ δ(G)+ 3.

If |W | = |V (M ′)| + 1 and V (M ′) ∪ {y} dominates X for some y ∈ T \ V (M ′),
then by Claim 6, γpr(G) ≤ |V (M ′)| + 2 and |V (M ′)| ≥ 4. Thus, in this case,
γpr(G) ≤ |W | + 1 and |W | ≥ 5. Hence by Inequality (3), γpr(G) + γpr(G) ≤
(|W | + 1)+ (δ(G)− 2|W | + 5) = δ(G)− |W | + 6 ≤ δ(G)+ 1.
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If W = V (M ′), then by Claim 6, γpr(G) ≤ |V (M ′)| + 2 and |V (M ′)| ≥ 4.
Thus, in this case, γpr(G) ≤ |W | + 2 and |W | ≥ 4. Hence, by Inequality (3),
γpr(G)+ γpr(G) ≤ (|W | + 2)+ (δ(G)− 2|W | + 5) = δ(G)− |W | + 7 ≤ δ(G)+ 3.

Hence, we may assume that |W | = |V (M ′)| + 1 and V (M ′) ∪ {y} does not
dominate X for any y ∈ T \ V (M ′), for otherwise the desired result follows. In this
case by Claim 5, we note that M ′ �= M . Let w1w2 ∈ M \M ′. By the definition of
M ′, the set V (M ′) ∪ {w1, w2} dominates X. In this case, we may assume that W is
chosen to contain the vertex w1; that is,W = V (M ′) ∪ {w1}.

If V (M ′) ∪ {w1, w2} dominates N(x), then γpr(G) ≤ |V (M ′)| + 2 = |W | + 1.
Since γpr(G) ≥ 6, this implies that |W | ≥ 5. By Inequality (3), γpr(G)+ γpr(G) ≤
(|W |+1)+(δ(G)−2|W |+5) = δ(G)−|W |+6 ≤ δ(G)+1. Hence, we may assume
that there exists a vertex z ∈ N(x) that is not dominated by V (M ′) ∪ {w1, w2} ⊆
V (M). We note that

z ∈ S ∪ (
k−1⋃

i=1

Si) ∪ Tk.

We now consider the vertices y, xi , and yi as defined above (in the paragraph pre-
ceding Inequality (2)) with the supplementary property that if z ∈ Si (respectively,
z ∈ Tk), then yi = z (respectively, yk = z). If z �∈ S, then {x1, y1, . . . , xk, yk, x, y}
is a PD-set of G (with x and y paired, and with xi and yi paired for i ∈ [k]),
and if z ∈ S, then {x2, y2, . . . , xk, yk, y, z, x1, x} is a PD-set of G (with matching
{xiyi, yz, x1x | 2 ≤ i ≤ k}). In both cases, Inequality (2) can be improved to

γpr(G) ≤ 2k + 2 (4)

and Inequality (3) can be improved to

γpr(G) ≤ δ(G)− 2|W | + 3 = δ(G)− 2|V (M ′)| + 1. (5)

By Claim 7 and Inequality (5), we have

γpr(G)+ γpr(G) ≤ (|V (M ′)| + 4)+ (δ(G)− 2|V (M ′)| + 1)
= δ(G)− |V (M ′)| + 5
≤ δ(G)+ 3.

By the symmetry between G and G, analogous arguments show that γpr(G) +
γpr(G) ≤ δ(G)+3. Thus, γpr(G)+γpr(G) ≤ min{δ(G), δ(G)}+3. This completes
the proof of Theorem 25. �

As a consequence of Theorem 25, we have the following result.
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Corollary 26 IfG is a graph of order n ≥ 6 with γpr(G) > 4 and γpr(G) > 4, then

γpr(G)+ γpr(G) ≤ 1

2
(n+ 5) ≤ 2

3
(n− 1).

Proof. Since the paired domination is an even integer, we note that γpr(G) ≥ 6 and
γpr(G) ≥ 6. Since δ(G) ≤ �(G) = n− 1 − δ(G), we note that

min{δ(G), δ(G)} ≤ 1

2
(δ(G)+ δ(G)) ≤ 1

2
(n− 1).

Thus, by Theorem 25, we have 12 ≤ γpr(G)+ γpr(G) ≤ 1
2 (n− 1)+ 3 = 1

2 (n+ 5).
Moreover, 1

2 (n + 5) ≥ 12 implies that n ≥ 19, and therefore that 1
2 (n + 5) ≤

2
3 (n− 1). �

For graphs of sufficiently large order, the bounds of Theorem 23 can be improved.

Theorem 27 ([34]) IfG is a graph of order n ≥ 6 such that δ(G) ≥ 2 and δ(G) ≥
2, then

γpr(G)+ γpr(G) ≤ 2

3
n+ 4,

and the graphs F1 and F5 shown in Figure 2 are the only extremal graphs. Moreover,
if n ≥ 14, then

γpr(G)+ γpr(G) ≤
{ 2n+8

3 if n ∈ {14, 17, 20}
2
3n+ 2 otherwise.

For n ≥ 25, equality γpr(G)+γpr(G) = 2
3n+2 occurs if and only if each component

ofG orG belongs to F\{F1, F5}, where F is the family of graphs shown in Figure 2.

5 Paired Domination in Cartesian Products

The Cartesian product G�H of graphs G and H is the graph whose vertex set is
V (G)× V (H), and where two vertices (g1, h1) and (g2, h2) are adjacent in G�H

if either g1 = g2 and h1h2 is an edge in H , or h1 = h2 and g1g2 is an edge in G.
The most famous open problem involving domination in graphs is the conjecture
of Vizing [81] posed in 1968, which states the domination number of the Cartesian
product of any two graphs is at least as large as the product of their domination
numbers.

Vizing’s Conjecture For any graphs G and H , γ (G)γ (H) ≤ γ (G�H).
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Vizing’s conjecture has yet to be settled, though it has been shown to be true
for certain classes of graphs. A survey of what is known about Vizing’s conjecture
can be found in [4]. The best general upper bound to date on the product of the
domination numbers of two graphs in terms of their Cartesian product is due to
Clark and Suen [18].

Theorem 28 ([18]) For any graphs G and H , γ (G)γ (H) ≤ 2γ (G�H).

Here we discuss the analogous problem for the paired domination number. As an
immediate consequence of Theorems 2 and 28, we have the following result.

Corollary 29 For any graphs G and H without isolated vertices, γpr(G)γpr(H) ≤
8γpr(G�H).

Hou and Jiang [55] improved the bound of Corollary 29 as follows.

Theorem 30 ([55]) For any graphs G and H without isolated vertices,
γpr(G)γpr(H) ≤ 7γpr(G�H).

Choudhary, Margulies, and Hicks [16] considered the product of more than
two graphs, and their result for this generalized product improved the bound of
Theorem 30 for the Cartesian product of two graphs.

Theorem 31 ([16]) For any graphs G and H without isolated vertices,
γpr(G)γpr(H) ≤ 6γpr(G�H).

Bres̆ar, Henning, and Rall [6] improved the upper bound of Theorem 30 when
one of the graphs is a tree. To present their upper bound, we first give a definition
and a couple of relevant results.

A 3-packing in G is a set of vertices of G that are pairwise at a distance of
greater than 3 apart in G. The maximum cardinality of a 3-packing in G is called
the 3-packing number ρ3(G) of G. The following relationship between the paired
domination number and the 3-packing number was first observed in [6].

Observation 32 ([6]) If G is a graph without isolated vertices, then γpr(G) ≥
2ρ3(G).

Bres̆ar et al. [6] showed that the class of trees achieves equality in the lower
bound of Observation 32.

Theorem 33 ([6]) For every nontrivial tree T , γpr(T ) = 2ρ3(T ).

Theorem 34 ([6]) For any graphs G and H without isolated vertices,

γpr(G�H) ≥ max{γpr(G)ρ3(H), γpr(H)ρ3(G)}.

As a consequence of Theorem 34, we have the following result.

Theorem 35 ([6]) For any graphs G and H without isolated vertices, if 2ρ3(G) =
γpr(G) or if 2ρ3(H) = γpr(H), then γpr(G)γpr(H) ≤ 2γpr(G�H) and this bound
is sharp.
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As an immediate consequence of Theorems 33 and 35, we have the following
result.

Corollary 36 ([6]) If T is a nontrivial tree and H is any graph without isolated
vertices, then γpr(T )γpr(H) ≤ 2γpr(T �H) and this bound is sharp.

As shown in [6], sharpness in Corollary 36 is achieved when T is a tree satisfying
γpr(T ) = 2γ (T ) and H consists of the union of disjoint copies of K2.

As remarked in [6], it is not true in general that for isolate-free graphs G and
H , γpr(G�H) ≥ 2ρ(G)ρ(H). For example, if G = H = P4, then γpr(G) =
γpr(H) = 2 and γpr(G�H) = 6, and so γpr(G�H) < 2ρ(G)ρ(H). However,
as a consequence of Observation 32 and Theorem 34, we have the following lower
bound on γpr(G�H) in terms of the 3-packing number of both graphs.

Theorem 37 ([6]) For any graphs G and H without isolated vertices,

γpr(G�H) ≥ 2ρ3(G)ρ3(H).

6 Special Classes of Graphs

In this section, we investigate the paired domination number for various classes of
graphs, including trees, claw-free graphs, and net-free graphs. Among the standard
classes of graphs, we have γpr(Kn) = γpr(Kr,s) = γpr(Wn) = 2 and γpr(Pn) =
γpr(Cn) = 2�n4 �. For the coronaG◦K1, γpr(G◦K1) = |V (G)| ifG has even order,
while γpr(G ◦K1) = |V (G)| + 1 if G has odd order.

6.1 Trees

In this section, we investigate paired domination in trees.

6.1.1 Bounds

Chellali and Haynes [8] presented the following bounds on the paired domination
number of a tree.

Theorem 38 ([8]) If T is a tree of order n ≥ 3 with s support vertices, then the
following hold.

(a) γt (T ) ≤ γpr(T ) ≤ γt (T )+ s − 1.
(b) γpr(T ) ≤ 1

2 (n+ 2s − 1), and this bound is sharp.
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Sharpness of the bound of Theorem 38(b) is achieved, for example, with those
trees obtained from a star K1,k by subdividing each edge exactly five times. In this
case, n = 6k + 1, s = k, and γpr(T ) = 4k = (n + 2s − 1)/2. As remarked
in [8], in some cases the upper bound in Theorem 38(b) is better than the upper
bound in Theorem 2. For example, let Hk be the graph obtained from P2 ∪ kP14
by adding a new vertex v and adding k + 1 edges joining v to a leaf from each of
the paths. In this case, γ (Hk) = 5k + 1, s = k + 1, and γpr(Hk) = 8k + 2 =
(14k+ 3+ 2k+ 2− 1)/2 = (n+ 2s − 1)/2. For sufficiently large k, the difference
between 2γ (T ) and (n+ 2s − 1)/2 can, therefore, be made arbitrarily large.

Raczek [73] obtained a lower bound on the paired domination number of a tree in
terms of its order and number of leaves and characterized trees for which this bound
is obtained. If T1 and T2 are vertex disjoint trees, define T1 ⊕ T2 to be the operation
of adding an edge joining a leaf of T1 to a leaf of T2. Let R denote the family of
trees that contains every double star, and if T1 ∈ R and T2 ∈ R, then T1 ⊕ T2 ∈ R.

Theorem 39 ([73]) If T is a tree of order n ≥ 2 with n1 leaves, then γpr(T ) ≥
1
2 (n+ 2 − n1) with equality if and only if T ∈ R.

The annihilation number a(G) is the largest integer k such that the sum of the
first k terms of the non-decreasing degree sequence of G is at most the number of
edges in G. Dehgardi, Sheikholeslami, and Khodkar [21] gave an upper bound on
the paired domination number of trees in terms of their annihilation numbers.

Theorem 40 ([21]) If T is a tree of order n ≥ 2, then γpr(T ) ≤ 1
3 (4a(T )+ 2) with

equality if and only if T is the path P2 or the subdivided star S(K1,k), where k ≥ 3
is odd.

6.1.2 Equal Domination and Paired Domination Numbers

Recall that by Observation 1 and Theorem 2, we have that if G is a graph with no
isolated vertices, then γ (G) ≤ γpr(G) ≤ 2γ (G). Qiao, Kang, Cardel, and Du [72]
gave a characterization of trees T for which γ (T ) = γpr(T ).

Subsequently, Haynes, Henning, and Slater [40] gave a simpler characterization
using labelings. In order to state the characterization, a ρ-γpr-labeling of a tree T =
(V ,E) is defined in [40] as a weak partition S = {SA, SB, SC, SD} of V such that
(i) SA ∪ SD is a γpr(T )-set, (ii) SC ∪ SD is a ρ(T )-set, and (iii) |SA| = |SC |. We
refer to the pair (T , S) as a ρ-γpr-tree. The label or status of a vertex v is the letter
x ∈ {A,B,C,D} such that v ∈ Sx . By a labeled P4, we mean a P4 with the two
leaves of status C and the two support vertices of status A.

Let Ftree be the family of labeled trees that (i) contains a labeled P4 and (ii) is
closed under the four operations Fj , 1 ≤ j ≤ 4, listed below, which extend the tree
T by attaching a tree to the vertex v ∈ V (T ).
• Operation F1. Attach a vertex of status B to vertex v, where v has status A.
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F1:
A B

F2:
B∗ C A A C

F3:
A/B A A C

C

F4:
B/C B A A C

C

Fig. 12 The four operations F1, F2, F3, and F4

• Operation F2. Add a labeled P4 and join a leaf of the P4 to vertex v, where v
has status B and no neighbor of status C.

• Operation F3. Add a labeled P4 and join a support vertex of the P4 to vertex v,
where v has status A or B.

• Operation F4. Add a labeled P4 and a vertex, say y, of status B and join y to a
support vertex of the P4 and to vertex v, where v has status B or C.

The four operations F1, F2, F3, and F4 are illustrated in Figure 12, where by
status B∗ we mean a status B vertex that has no neighbor of status C.

We are now in a position to present the characterization using labelings in [40]
of trees T for which γ (T ) = γpr(T ).

Lemma 41 ([40]) For a tree T , γpr(T ) = γt (T ) = γ (T ) if and only if T has a
ρ-γpr-labeling.

Theorem 42 ([40]) A labeled tree (T , S) is a ρ-γpr-tree if and only (T , S) ∈ Ftree.

As a consequence of Lemma 41 and Theorem 42, we have the following result.

Corollary 43 ([40]) For any tree T , γpr(T ) = γ (T ) if and only if (T , S) ∈ Ftree
for some labeling S of V (T ).

6.1.3 Paired Domination Number Twice the Domination Number

As observed earlier, ifG is a graph with no isolated vertices, then γpr(G) ≤ 2γ (G).
Haynes and Henning [39] characterized trees that achieve equality in this bound. For
this purpose, they define an almost paired dominating set ofG relative to a vertex v
as a set S ⊆ V (G) such that either (i) v /∈ S and S is a PD-set ofG−v or (ii) v ∈ S,
S dominates V (G), andG[S] orG[S \ {v}] contains a perfect matching. The almost
paired domination number of G relative to v, denoted γpr(G; v), is the minimum
cardinality of an almost paired dominating set of G relative to v.
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Let Ttree be the family of trees obtained from P2 by a finite sequence of operations
T1, T2, and T3 listed below.

• Operation T1. Attach a vertex to a vertex v of T , where v is in every γpr-set of
T .

• Operation T2. Attach a leaf of a path P2 to a vertex v of T , where γpr(T ; v) =
γpr(T ).

• Operation T3. Attach a leaf of a path P3 to a vertex v of T , where γpr(T − v) =
γpr(T ).

We now give the characterization of trees T for which γpr(T ) = 2γ (T ).

Theorem 44 ([39]) For every nontrivial tree T , γpr(T ) = 2γ (T ) if and only if
T ∈ Ttree.

It is of interest to note that trees with paired domination number equal to twice
their domination number were also independently characterized by Hou in [53] and
by Henning and Vestergaard using a different method in [52].

6.1.4 Paired Domination Number Equal to Other Parameters

Recall that by Observation 1, for every isolate-free graph G, γt (G) ≤ γpr(G).
Henning [43] gave a constructive characterization of the trees T for which γt (T ) =
γpr(T ). Using a different approach, Shan, Kang, and Henning [76] also gave a
constructive characterization of these trees.

6.1.5 Vertices in Every or in No γpr-Set

Note that the support vertices of every tree T must be contained in every γpr-set of
T . For many trees, however, there exist vertices that are contained in no γpr-set or
vertices that belong to every γpr-set. For instance in a double star the two non-leaves
form the unique γpr-set. For a graph G, let Apr(G) and Npr(G) be the sets defined
as follows:

• Apr(G) = {v ∈ V (G) | v is in all γpr-sets}, and
• Npr(G) = {v ∈ V (G) | v is in no γpr-set}.

Using a technique of tree pruning, Henning and Plummer [49] characterized
the sets Apr(T ) and Npr(T ). Such a characterization is useful, for example, in
constructive characterizations of those trees with equal total domination and paired
domination numbers and of those trees for which the paired domination number is
twice the matching number.
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Fig. 13 The unique connected cubic (K1,3,K4 − e, C4)-free graph G with γpr(G) = 3
8n

6.2 Claw-Free Cubic Graphs

A graph is claw-free if it contains no induced K1,3. In this section, we investigate
paired domination in claw-free cubic graphs. The upper bound on the paired
domination number of a cubic graph in Theorem 15 can be improved if we
restrict our attention to cubic graphs with certain forbidden subgraphs. Recall that
a diamond is the graph K4 − e, where e denotes an arbitrary edge of the complete
graph.

Theorem 45 ([32]) IfG is a connected (K1,3,K4−e, C4)-free cubic graph of order
n ≥ 6, then there exists a PD-set of G of cardinality at most 3n/8 that contains at
least one vertex from each triangle of G. Furthermore, γpr(G) = 3

8n if and only if
G is the graph shown in Figure 13.

Theorem 46 ([32]) If G is a connected claw-free cubic graph of order n ≥ 6 that
contains k ≥ 0 diamonds, then there exists a PD-set of G of cardinality at most
2
5 (n + 2k) that contains at least one vertex from each triangle of G. Furthermore,

γpr(G) = 2
5 (n + 2k) if and only if G ∈ {G0,G1,G2,G3}, where G0, G1, G2, and

G3 are the four graphs shown in Figure 14.

Theorem 47 ([32]) If G is a connected claw-free and diamond-free cubic graph
of order n ≥ 6, then there exists a PD-set of G of cardinality at most 2n/5 that
contains at least one vertex from each triangle of G. Furthermore, γpr(G) = 2

5n if
and only if G = G0, where G0 can be seen in Figure 14.

Theorem 48 ([32]) If G is a connected claw-free cubic graph of order n, then
γpr(G) ≤ 1

2n with equality if and only if G ∈ {K4,H1,H2,H3,G3}, where H1,H2,
and H3 are the graphs seen in Figure 15 and G3 is the graph shown in Figure 14.

The upper bound on the paired domination number of a claw-free cubic graph
presented in Theorem 48 can be improved if we add the restriction that the graph is
2-connected.
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(a) The graph G0 (b) The graph G1

(c) The graph G2 (d) The graph G3

Fig. 14 The four connected cubic claw-free graph Gk , 0 ≤ k ≤ 3, with k copies of K4 − e and
with γpr(Gk) = 2

5 (n+ 2k)

(a) The graph H1 (b) The graph H2

(c) The graph H3

Fig. 15 Three connected cubic claw-free graphs H1, H2, and H3

Theorem 49 ([32]) If G is a 2-connected claw-free cubic graph of order n ≥ 6,
that contains k ≥ 0 diamonds, then γpr(G) ≤ 1

3 (n+ 2k).

As an immediate consequence of Theorem 49, we have the following result.

Theorem 50 ([32]) If G is a 2-connected claw-free and diamond-free cubic graph
of order n ≥ 6, then γpr(G) ≤ 1

3n.
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In [31, 33], it is noted that the bound of Theorem 45 can be improved for graphs
of sufficiently large order.

Theorem 51 ([31]) If G is a cubic graph of order n ≥ 48 such that G is
(C4,K1,3,K4 − e)-free, then γpr(G) ≤ (10n+ 6)/27.

6.3 Claw-Free Graphs

Inspired by the work on cubic graphs, Huang, Kang, and Shan [58] studied paired
domination in claw-free graphs with minimum degree at least 3. They obtained a
slightly better bound on the paired domination number for claw-free graphs than
that for cubic graphs.

Theorem 52 ([58]) If G is a connected claw-free graph of order n with δ(G) ≥ 3,
then γpr(G) ≤ 1

5 (3n− 1), and this bound is sharp.

The graph F in Figure 5 has order n = 7 and γpr(F ) = 4 = 1
5 (3n− 1), attaining

the bound of Theorem 52.
In 2019 Lu, Wang, Wang, and Wu [63] improved the result of Theorem 52.

Theorem 53 ([63]) If G is a connected claw-free graph of order n with δ(G) ≥ 3,
then γpr(G) ≤ 4

7n.

We note that if n ≥ 8, then the bound of Theorem 53 is an improvement of the
result of Theorem 52. Increasing the minimum degree by only 1, in 2018 Lu, Mao,
and Wang [62] improved the 4

7 -bound in Theorem 53 to a 1
2 -bound.

Theorem 54 ([62]) If G is a connected claw-free graph of order n with δ(G) ≥ 4,
then γpr(G) ≤ 1

2n, and this bound is sharp.

6.4 Generalized Claw-Free Graphs

A graph is generalized claw-free if it contains no induced K1,a+2, where a ≥ 1.
In this section, we investigate paired domination in generalized claw-free graphs.
Dorbec, Gravier, and Henning [25] obtained the following upper bound.

Theorem 55 ([25]) For a ≥ 0 an integer, if G is a connected K1,a+2-free graph of
order n ≥ 2, then γpr(G) ≤ 2(an+1)

2a+1 and this bound is sharp.

That the bound of Theorem 55 is sharp may be seen by considering the graphs
Ga , a ≥ 0, constructed in [25] as follows. Let p ≥ 2 be an arbitrary integer. If
a = 0, let Ga = Kp. For a ≥ 1, form Ga from the disjoint union of p copies of the
subdivided star S(K1,a) and one copy of the star K1,1 = P2, by taking the p central
vertices of the subdivided stars and one vertex of the star K1,1 and forming a clique
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K4

Fig. 16 The graph G3 when p = 3

on these p + 1 vertices. In this case, Ga is a connected K1,a+2-free graph of order
n = (2a + 1)p + 2. Since every PD-set in a graph contains all its support vertices
and since the set of ap + 1 support vertices in Ga dominate V (Ga) and form an
independent set in Ga , the graph Ga satisfies γpr(Ga) = 2(ap + 1) = 2(an+1)

2a+1 . By
taking p = 3, for example, the graph G3 is illustrated in Figure 16.

Dorbec and Gravier [23] continued the study on a topic closely related to
generalized claw-free graphs. In contrast to looking at graphs that had no induced
K1,a+2 for a ≥ 1, they studied bounds on the paired domination number of
graphs that contained no induced subdivided star S(K1,a+2) for a ≥ 1. Dorbec
and Gravier [23] established the following upper bound on the paired domination
number of such graphs.

Theorem 56 ([23]) For an integer a ≥ 1, ifG is a connected graph of order n ≥ 3
that contains no induced S(K1,a+2), then

γpr(G) ≤ 2(an+ 1)

2a + 1
,

and this bound is sharp.

That the bound of Theorem 56 is sharp may once again be seen by considering
the graphsGa , a ≥ 1, constructed earlier since we note thatGa contains no induced
S(K1,a+2) and γpr(Ga) = 2(ap + 1) = 2(an+1)

2a+1 . Dorbec and Gravier [24] also
determined an upper bound on the paired domination number of graphs with no
induced P5 as follows.

Theorem 57 ([24]) Let G be a connected graph of order n ≥ 2. If G �= C5 and G
contains no induced P5, then γpr(G) ≤ 1

2n+ 1 and this bound is sharp.

As described in [24], sharpness of the bound of Theorem 57 can be seen by the
corona G = Kk ◦ K1, where k is an odd integer. Then G has n = 2k vertices, no
induced P5, and any PD-set ofGmust contain all k vertices of the clique and at least
one leaf. In particular, γpr(G) ≥ k + 1. However, the vertices of the clique and one
leaf form a PD-set of G, and so γpr(G) ≤ k + 1. Consequently, γpr(G) = k + 1 =
1
2n+ 1, and therefore the bound of Theorem 57 is sharp.



58 W. J. Desormeaux et al.

(a) The E graph (b) The net graph

Fig. 17 The E graph and the net graph

6.5 E-Free and Net-Free Graphs

The E graph is the corona P3 ◦ K1 and the net graph is the corona K3 ◦ K1. Both
graphs are illustrated in Figure 17.

A graph is E-free if it does not contain the E graph as an induced subgraph,
while a graph is net-free if it does not contain the net graph as an induced subgraph.
Schaudt [74] studied paired domination of graphs that are both E-free and net-free.

Theorem 58 ([74]) If G is a connected (E, net)-free graph of order n ≥ 2, then
γpr(G) ≤ 2�n4 � and this bound is sharp.

As remarked in [74], nontrivial paths Pn attain the bound of Theorem 58.

6.6 Planar Graphs with Diameter 2

MacGillivray and Seyffarth [65] proved that planar graphs with diameter 2 have
bounded domination numbers. In particular, this implies that the domination number
of such a graph can be determined in polynomial time. On the other hand, they
observed that in general graphs with diameter 2 have unbounded domination
number, and hence the paired domination number is also unbounded. Specifically,
MacGillivray and Seyffarth [65] established the following result.

Theorem 59 ([65]) If G is a planar graph with diam(G) = 2, then γ (G) ≤ 3.

The bound of Theorem 59 is sharp as may be seen by considering the graph
G9 of Figure 18 constructed by MacGillivray and Seyffarth [65]. The graph G9 of
Figure 18 is in fact the unique planar graph of diameter 2 with domination number 3
as shown by Goddard and Henning in [36].

Theorem 60 ([36]) If G is a planar graph with diam(G) = 2, then γ (G) ≤ 2 or
G = G9, where G9 is the graph of Figure 18.

As an immediate consequence of Theorem 60, we have the following result.

Theorem 61 ([36]) If G is a planar graph with diam(G) = 2, then γpr(G) ≤ 4.

A characterization of planar graphs with diameter 2 and paired domination
number 4 seems to be difficult to obtain since there are infinitely many such graphs.
If we restrict our attention to planar graphs with certain structural properties, then
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Fig. 18 A planar graph G9 of diameter 2 with domination number 3

a characterization of such planar graphs is possible. Henning and McCoy [46] say
that a graph G satisfies the domination-cycle property if there is some γ -set not
contained in any induced 5-cycle ofG. Further, they define a family which they call
Fplanar consisting of thirty four graphs of small orders (at most 11) and characterize
the planar graphs with diameter 2 and paired domination number 4 that satisfy the
domination-cycle property as follows.

Theorem 62 ([46]) If G is a planar graph of diameter 2 that satisfies the
domination-cycle property, then γpr(G) = 4 if and only if G ∈ Fplanar.

7 Criticality Concepts for Paired Domination

In this section, we discuss criticality concepts for paired domination.

7.1 Paired Domination Edge-Critical Graphs

Edwards, Gibson, Henning, and Mynhardt [30] introduced the concept of paired
domination edge-critical graphs. They define a graphG as paired domination edge-
critical, denoted γprEC, if for every e ∈ E(G) �= ∅, γpr(G+ e) < γpr(G). Further,
ifG is a γprEC graph and γpr(G) = k, we say thatG is kprEC. As observed in [30],
ifG is a γprEC graph, then γpr(G+e) = γpr(G)−2 for every e ∈ E(G). The family
of γprEC trees consist precisely of subdivided stars with at least three leaves.

Theorem 63 ([30]) A tree T is γprEC if and only if T = S(K1,t ), where t ≥ 3.

The maximum diameter of a kprEC graph is at least k − 2. To see this, let
G�, for � ≥ 1, be the graph constructed as follows. For each i ∈ [�], let
Hi ∼= P4 be the path xiuiviyi . We now construct G� recursively as follows. Let
G0 = K2 with V (G0) = {u0, v0} and once Gi−1 has been constructed, let Gi be
the graph with V (Gi) = V (Gi−1) ∪ V (Hi) and E(Gi) = E(Gi−1) ∪ E(Hi) ∪
{ui−1xi, ui−1yi, vi−1xi, vi−1yi}. We are now in a position to state the result in [30].

Proposition 64 ([30]) For every � ≥ 1, G� is a (2� + 2)pr-EC graph with
diameter 2�.
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If G is connected and γpr(G) = k, then as shown in [30], we have diam(G) ≤
2k − 1. This bound can be improved for kprEC graphs.

Theorem 65 ([30]) For k ≥ 6, if G is a connected kprEC graph, then diam(G) ≤
2k − 6.

As remarked in [30], it is not yet known if the bound of Theorem 65 is the best
possible if G is 6prEC. It remains an open problem to find a 6prEC graph with
diameter 5 or 6 or to improve the bound of Theorem 65. For k ≥ 10, the bound of
Theorem 65 can be improved.

Theorem 66 ([30]) For k ≥ 10, ifG is a connected kprEC graph, then diam(G) ≤
3k
2 + 3.

Let dk denote the maximum value of the diameter for any kprEC graph. It
remains an open problem to determine sharp upper bounds on dk . We remark that
there exist kprEC graphs of diameter 2 for all k ≥ 4 even.

Proposition 67 ([30]) For every even k ≥ 4, there exists a kprEC graph of
diameter 2.

The existence of graphs in Proposition 67 is evident by taking the Cartesian
product of the complete graph Kk with itself. The authors in [30] ask the question:
What is the spectrum of diameters for kprEC graphs? In particular, is it true that
there exists a kprEC graph of diameter � for every 2 ≤ � ≤ dk?

7.2 Paired Domination Vertex Critical Graphs

In 2006 in her master’s thesis, Edwards [29] studied paired domination vertex
critical graphs. A graph G is paired domination vertex critical, abbreviated γpr-
vertex critical, if for every v ∈ V (G) \SG, γpr(G− v) < γpr(G), where SG denotes
the set of support vertices of G. The restriction of the removal of vertices to those
that are not support vertices is necessary to avoid creating isolated vertices. If G is
a γpr-vertex critical graph and γpr(G) = k, then G is called k-γpr-vertex critical.
As observed by Henning and Mynhardt [48], ifG is a γpr-vertex critical graph, then
γpr(G − v) = γpr(G) − 2 for every v ∈ V (G) \ SG. Furthermore, a γpr-set G − v
contains no neighbor of v.

Bounds on the diameter of γpr-vertex critical graphs are studied in [48]. The
connected graphs with minimum degree 1 that are paired domination vertex critical
are characterized and sharp bounds on their maximum diameter obtained. Recall
that α′(G) denotes the edge independence number of G.

Theorem 68 ([48]) Let G be a connected graph of order at least 3 with at least
one leaf. Then G is a γpr-vertex critical graph if and only ifG is the corona H ◦K1
for some connected graph H for which α′(H) = α′(H − v) for every v ∈ V (H).
Further, if G is γpr-vertex critical graph, then diam(G) ≤ 1

2 (γpr(G) + 2), and this
bound is sharp.
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Tightness of the diameter bound in Theorem 68 can be seen with the graph
H = Ck−1. As observed in [48], there are infinite families of connected graphs
H satisfying α′(H) = α′(H − v) for every v ∈ V (H). For example, let H be
any Hamiltonian graph of odd order. As shown in [48], if H is a connected graph
satisfying α′(H) = α′(H − v) for every v ∈ V (H), then H is a 2-edge-connected
graph. In particular, this implies the following result.

Theorem 69 ([48]) No tree is γpr-vertex critical.

The following lower bound on the maximum diameter of a k-γpr-vertex critical
graph is established in [48].

Theorem 70 ([48]) For every even integer k ≥ 4, there exists a connected k-γpr-
vertex critical graph of diameter 3

2 (k − 2).

As an immediate consequence of Theorem 70, we have the following result.

Corollary 71 The maximum diameter of a connected k-γpr-vertex critical graph is
at least 3

2 (k − 2).

For small k, we have the following result.

Theorem 72 ([48]) For k ≤ 8, the diameter of a connected k-γpr-vertex critical
graph is at most 3

2 (k − 2).

The following question is posed in [48].

Question 1 ([48]) If G is a connected γpr-vertex critical graph, then is it true that
diam(G) ≤ 3

2 (γpr(G)− 2)?

Note that by Theorem 72, Question 1 is true for γpr(G) ≤ 8. By Corollary 71,
if Question 1 is true, then this bound is sharp. Hou and Edwards [54] answered
Question 1 in the affirmative. Their result, together with Theorem 70, establishes
the following maximum diameter of a connected k-γpr-vertex critical graph.

Theorem 73 ([54]) The maximum diameter of a connected k-γpr-vertex critical
graph is 3

2 (k − 2).

Utilizing a construction technique due to Brigham, Chinn, and Dutton [7],
Hou and Edwards [54] presented the following method for constructing γpr-vertex
critical graphs from two smaller γpr-vertex critical graphs. Suppose that F and H
are nonempty graphs. Let u andw be non-isolated vertices of F andH , respectively.
Then (F ·H)(u,w : v) denotes the graph obtained from F and H by identifying u
and w in a vertex labeled v. We call (F ·H)(u,w : v) the coalescence of F and H
via u and w.

Theorem 74 ([54]) Let F and H be two graphs with no isolated vertex and let
G = (F · H)(u,w : v). If u �∈ S(F ) and w �∈ S(H), then G is γpr-vertex critical
if and only if both F and H are γpr-vertex critical. Furthermore, if G is γpr-vertex
critical, then γpr(G) = γpr(F )+ γpr(H)− 2.
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A graph G is vertex diameter k-critical if diam(G) = k and diam(G − v) > k
for any v ∈ V (G). Hou and Edwards [54] gave the following characterization of
4-γpr-vertex critical graphs.

Theorem 75 ([54]) A connected graph G is 4-γpr-critical if and only if G is vertex
diameter 2-critical or G = K3 ◦K1.

Further results on 4-γpr-vertex critical and 6-γpr-vertex critical graphs can be
found, for example, in Huang, Shan, and Kang [57], who study properties of K1,5-
free, 4-γpr-vertex critical graphs, as well as K1,4-free, 6-γpr-vertex critical graphs.

8 The Upper Paired Domination Number

To determine the upper paired domination number of even relatively simple classes
of graphs is more challenging than determining the paired domination number. The
upper paired domination number of a path is given in the following result by Dorbec,
Henning, and McCoy [28].

Theorem 76 ([28]) For n ≥ 2 an integer,

�pr(Pn) = 8

⌊
n+ 1

11

⌋

+ 2

⌊
(n+ 1)(mod 11)

3

⌋

.

Recall that a PD-set S in a graphG is minimal if no proper subset in S is a PD-set
of G. The following elementary property of a minimal PD-set of a graph is often
useful in determining results on the upper paired domination number.

Proposition 77 ([28]) If S is a PD-set in a graph G with no isolated vertex, then S
is a minimal PD-set of G if and only if for every pair {u, v} ⊆ S, the set S \ {u, v}
is not a PD-set.

The upper paired domination number of a graph is very sensitive to the removal
of a vertex from the graph as the following result indicates.

Proposition 78 ([28]) For every even integer k ≥ 2, there exists a graph G such
that �pr(G− v)− �pr(G) = k for every vertex v in V (G).

The graph used to show existence in Proposition 78 was formed by taking two
disjoint copies of a complete graph Kk+5, where k ≥ 2 is an even integer, and then
adding the edges of a perfect matching between these two copies of Kk+5. Thus,
G is the Cartesian product Kk+5 �K2 of a complete graph Kk+5 and a K2, and
�pr(G) = 4. However, �pr(G− v) = k + 4 for every vertex v ∈ V (G).
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8.1 Upper Total Domination Versus Upper Paired Domination

Dorbec et al. [28] investigated the relationship between the upper total domination
and upper paired domination numbers of a graph. They observed that it is not always
the case that every minimal PD-set of a graph is a minimal TD-set of the graph and
is not always the case that every minimal TD-set of a graph is a minimal PD-set of
the graph.

Theorem 79 ([28]) For every integer k ≥ 1, there exist connected graphs G and
H such that �pr(G)− �t(G) ≥ k and �t(H)− �pr(H) ≥ k.

The following result shows that the upper total domination is bounded below by
some constant multiple of the upper paired domination number.

Theorem 80 ([28]) For every graph G with no isolated vertices, �t(G) ≥
1
2�pr(G)+ 1.

The trees achieving equality in the bound of Theorem 80 are characterized
in [28].

Theorem 81 ([28]) If T is a tree on at least two vertices satisfying �t(T ) =
1
2�pr(T ) + 1, then T is obtained from a star (possibly trivial) by attaching any
number of pendant edges, but at least one, to every vertex of the star.

When restricted to the class of trees, the upper total domination is bounded above
by the upper paired domination number.

Theorem 82 ([28]) For every nontrivial tree T , �t(T ) ≤ �pr(T ).

8.2 Upper Paired Domination in Claw-Free Graphs

Even if the minimum degree is large, the upper paired domination number can be
made arbitrarily close to the order of the graph.

Theorem 83 ([27]) IfG is a connected graph of order n ≥ 3, then �pr(G) ≤ n−1.
Furthermore, if G has minimum degree δ ≥ 2, then �pr(G) ≤ n − δ + 1, and this
bound is sharp.

Corollary 84 ([27]) IfG is a connected graph of order n, then �pr(G) ≤ n−O(1)
and this bound is best possible even for arbitrarily large, but fixed (with respect to
n), minimum degree.

That the bound of Theorem 83 is sharp, may be seen as follows [27]. For x ≥ 1
and δ ≥ 2, let G be obtained from a complete bipartite graph K2x,δ−1 with partite
sets X and Y , where |X| = 2x by adding a perfect matching between the vertices of
X and forming a clique on the vertices of Y . We note thatG[X] = xK2 andG[Y ] =
Kδ−1. Then, G is a connected graph of order n with minimum degree δ. Since X is
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Kk

Fig. 19 A graph G ∈ G1

Kk

Fig. 20 A graph G ∈ G2

a minimal PD-set of G, �pr(G) ≥ n − δ + 1. Consequently, �pr(G) = n − δ + 1.
Note that for x arbitrarily large, we have �pr(G) = n− O(1).

Dorbec and Henning [27] showed that the upper bound of Theorem 83 can be
improved if we restrict our attention to claw-free graphs. In order to state their result,
they constructed four families of connected claw-free graphs as follows. Recall that
the k-corona of a graph G is the graph of order (k + 1)|V (G)| obtained from G by
attaching a path of length k to each vertex ofG so that the resulting paths are vertex
disjoint.

The Family G1 Let G1 be the family of connected claw-free graphs of order n = 5k
obtained from the 4-corona of a complete graph Kk on k ≥ 1 vertices. A graph G
in the family G1 is shown in Figure 19. The darkened vertices in G form a minimal
PD-set in G, and so �pr(G) ≥ 4k = 4

5n.

The Family G2 Let G2 be the family of connected claw-free graphs of order n = 8k
obtained from a 7-corona of complete graph Kk on k ≥ 2 vertices as follows: For
every attached path vv1v2 . . . v7, where v is a vertex of the complete graph Kk , add
the edge v5v7 or add the edges v3v5 and v5v7 or add the edges v2v7 and v3v7. A
graph G in the family G2 is shown in Figure 20. The darkened vertices in G form a
minimal PD-set in G, and so �pr(G) ≥ 6k = 3

4n.
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K2k

Fig. 21 A graph G ∈ F3

Fig. 22 A graph G ∈ G3

The Family F3 Let F3 be the family of connected claw-free graphs obtained from
the disjoint union of k ≥ 2 copies of K4 − e by attaching a pendant edge to each
vertex of degree 2 and then forming a clique K2k on the resulting 2k vertices of
degree 1. A graph F in the family F3 is shown in Figure 21. The darkened vertices
in F form a minimal PD-set in F , and so �pr(F ) ≥ 4k = 2

3 |V (F )|.

The Family G3 Let G3 be the family of connected claw-free graphs G = (V ,E)
that admit a vertex partition V = X ∪ C such that (i) G[X] = kK2, (ii) each vertex
of C is adjacent to vertices ofX from exactly twoK2s and possibly to other vertices
of C, (iii) |X| = 2|C|, and (iv) δ(G) ≥ 3. A graph G in the family G3 is shown in
Figure 22, where the darkened vertices form the set X and the white vertices the set
C. The set X is a minimal PD-set in G, and so �pr(G) ≥ 2k = 2

3 |V (G)|.
We are now in a position to present the main result in [27] that shows that the

upper bound of Theorem 83 can be improved if we restrict our attention to claw-free
graphs.

Theorem 85 ([27]) If G is a connected claw-free graph of order n and minimum
degree δ, then

�pr(G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

4
5n if δ = 1 and n ≥ 3
3
4n if δ = 2 and n ≥ 6
2
3n if δ ≥ 3.
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Furthermore, if n ≥ 3 and �pr(G) = 4
5n, then G ∈ G1. If δ = 2, n ≥ 9, and

�pr(G) = 3
4n, then G ∈ G2.

As remarked earlier, if G3 ∈ G3 ∪ F3 is a graph of order n, then δ(G3) ≥ 3 and
�pr(G3) ≥ 2

3n. However by Theorem 85, �pr(G3) ≤ 2
3n. Consequently, �pr(G3) =

2
3n, implying that the bound of Theorem 85 for the case when δ ≥ 3 is sharp.

The claw-free graphs given to establish that the upper bounds of Theorem 85
are tight have small minimum degree δ ∈ {1, 2, 3}. It remains an open problem to
determine tight upper bounds on the upper paired domination in claw-free graphs
for δ ≥ 4. The following conjecture is posed in [22].

Conjecture 5 ([22]) If G is a connected claw-free graph of order n and minimum
degree δ ≥ 4, then

�pr(G) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
δ

2δ − 1

)

n if δ is even

(
δ + 1

2δ + 1

)

n if δ is odd.

If Conjecture 5 is true, then the bound is sharp. To see this, we construct a family
Gδ of graphs G for even δ ≥ 4 satisfying �pr(G) = δn/(2δ − 1), and a family Gδ of
graphs G for odd δ ≥ 5 satisfying �pr(G) = (δ + 1)n/(2δ + 1).

Let δ ≥ 4 be an even integer. Let Fδ be the graph obtained from two disjoint
copies of a complete graph Kδ−1 by adding a perfect matching between them, and
then adding a new vertex, called a link vertex, and joining it to every vertex in one
of the two copies of Kδ−1. For k ≥ 2, let Gδ be the graph obtained from the disjoint
union of k copies of Fδ by forming a clique Kk on the k link vertices, and then in
the resulting graph forming a cliqueKk(δ−1) on the k(δ−1) vertices of degree δ−1.
Then, Gδ is a connected claw-free graph of order n = k(2δ − 1) with δ(Gδ) = δ. A
graph G in the family Gδ is shown in Figure 23. The darkened vertices in G form a
minimal PD-set in G, and so �pr(G) ≥ kδ = δn/(2δ − 1).

Kk(δ−1)

Kδ−1 Kδ−1 Kδ−1

Kk

Fig. 23 A graph G ∈ Gδ for even δ ≥ 4
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Kδ KδKδ

Kδ Kδ Kδ

Kk

Fig. 24 A graph G ∈ Gδ for odd δ ≥ 5

Let δ ≥ 5 be an odd integer. Let Hδ be the graph obtained from two disjoint
copies of a complete graph Kδ by adding a perfect matching between them, and
then adding a new vertex and joining it to every vertex in one of the two copies of
Kδ . For k ≥ 1, let Gδ be the graph obtained from the disjoint union of k copies ofHδ
by forming a clique Kk on the k added vertices of degree δ. Then, Gδ is a connected
claw-free graph of order n = k(2δ+ 1) with δ(Gδ) = δ. A graphG in the family Gδ
is shown in Figure 24. The darkened vertices inG form a minimal PD-set inG, and
so �pr(G) ≥ k(δ + 1) = (δ + 1)n/(2δ + 1).

9 Relating Paired Domination to Other Parameters

In this section, we discuss how the paired domination number is related to other
parameters, including the domination number, the total domination number, and the
upper total domination number.

9.1 Total Domination Versus Paired Domination

By Observation 1, if G is a graph with no isolated vertex, then γt (G) ≤ γpr(G).
However, the difference γpr(G)−γt (G) can be made arbitrarily large. For example,
ifG is a subdivided star S(K1,r−1) for r ≥ 3, then γt (G) = r and γpr(G) = 2(r−1),
and so γpr(G)− γt (G) = r − 2 ≥ 1. Even for arbitrarily large minimum degree, the
difference γpr(G)−γt (G) can be made arbitrarily large. Hence, it is more profitable
to study ratios of the two parameters. Let G be a graph with no isolated vertex. By
Observation 1, γ (G) ≤ γt (G), while by Theorem 2, γpr(G) ≤ 2γ (G), implying the
following ratio of the paired domination and total domination numbers observed by
Schaudt [75] and elsewhere.

Observation 86 ([75]) If G is a graph with no isolated vertex, then
γpr(G)

γt (G)
≤ 2.



68 W. J. Desormeaux et al.

Schaudt [75] showed that the bound of Observation 86 can be improved by
restricting our attention to graphs with certain forbidden subgraphs. In particular,
Schaudt examines graphs with combinations of no inducedC5, starK1,r , subdivided
star S(K1,r ), corona K3 ◦K1, and corona P3 ◦K1.

Theorem 87 ([75]) If G be a K1,r -free graph for some r ≥ 3, then

γpr(G)

γt (G)
≤ 2 − 2

r
and

�pr(G)

�t (G)
≤ 2 − 2

r
.

The bound on γpr(G)/γt (G) is sharp for each r ≥ 3.

As observed earlier, if G is a subdivided star S(K1,r−1) for r ≥ 3, then
γpr(G)/γt (G) = 2 − 2

r
, implying that the bound on γpr(G)/γt (G) in Theorem 87

is sharp. However, Schaudt [75] remarks that it is not known whether the bound
on �pr(G)/�t (G) in Theorem 87 is sharp. As observed by Schaudt [75], if we
restrict our attention to graphs which are (C5, S(K1,r ))-free, then both bounds in
Theorem 87 are sharp, as may be seen by considering the corona G = K1,r−1 ◦K1
for which γpr(G) = �pr(G) = 2r − 2 and γt (G) = �t(G) = r .

Schaudt [75] established the following upper bound on the ratio of the paired
domination number versus the total domination number, and the upper paired
domination number versus the upper total domination number.

Theorem 88 ([75]) IfG is a graph with no isolated vertex and maximum degree�,
then

γpr(G) ≤
(

2�

�+ 1

)

γt (G) and �pr(G) ≤
(

2�

�+ 1

)

�t(G).

As remarked by Schaudt [75], the upper bound on γpr(G)/γt (G) given in
Theorem 88 is tight for all � ≥ 2, as may be seen by taking G to be the subdivided
star S(K1,�). Such a graph G satisfies γpr(G) = 2� and γt (G) = � + 1. Cyman,
Dettlaff, Henning, Lemanska, and Raczek [19] presented a slightly stronger result
and a different proof of Schaudt’s bound in order to characterize the regular graphs
that achieve equality in this upper bound.

Theorem 89 ([19]) IfG is a graph with no isolated vertex and maximum degree�,
then

γpr(G) ≤
(

2�

�+ 1

)

γt (G).

Further, if γpr(G) =
(

2�
�+1

)
γt (G), then every minimum total dominating set in G

induces a graph whose components are isomorphic to K1,�.
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We observe that for the extremal family of graphs provided by Schaudt [75], the
difference between the maximum and minimum degrees is large. The connected,
k-regular graphs that achieve equality in Theorem 88 were characterized in [19].

Theorem 90 ([19]) For k ≥ 2 and k �= 57, if G is a connected, k-regular graph of
girth at least 5, then

γpr(G)

γt (G)
≤ 2k

k + 1

with equality if and only if

(a) k = 2 and G ∼= C5, or
(b) k = 3 and G is the Petersen graph.

The authors in [19] conjectured that the girth condition can be dropped in
Theorem 90.

The following result of Schaudt [75] establishes a relationship between the paired
domination number and the upper total domination number of a graph. A PD-set S
of a graph G with the additional property that G[S] is a union of disjoint copies of
K2 is called an induced paired dominating set. Induced paired dominating sets were
introduced by Studer, Haynes, and Lawson in [77].

Theorem 91 ([75]) The following statements are equivalent in a graph G.

(a) Every induced subgraph H of G contains an induced paired dominating set.

(b) max
H≺G

{
γpr(H)

�t (H)

}

= 1.

(c) G is {C5,K3 ◦K1, P3 ◦K1}-free.

The maximum value of the ratio γpr(H)/�t (H), taken over all induced sub-
graphs H of a graph G, is determined in the following result.

Theorem 92 ([75]) If G is a graph and λ = max{2,min{r | G is K1,r ◦K1-free}},
then

max
H≺G

γpr(H)

�t (H)
=

{
2 − 2

λ
if G is (C5,K3 ◦K1)-free

max{ 4
3 , 2 − 2

λ
} otherwise.

As a consequence of Theorem 92, we have the following two corollaries.

Corollary 93 ([75]) If G is a K1,r ◦K1-free graph for some r ≥ 3, then

γpr(G)

�t (G)
≤ 2 − 2

r
,

and this bound is sharp for each r ≥ 3.
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Corollary 94 ([75]) IfG is a connected graph with maximum degree� ≥ 2 that is
not isomorphic to C5, then

γpr(G)

�t (G)
≤ 2 − 2

�
,

and this bound is sharp for each � ≥ 2.

Sharpness in the bound in Corollary 93 is attained, for example, by the corona
K1,r−1 ◦K1, while sharpness in the bound in Corollary 94 is attained by the corona
K1,�−1 ◦K1.

9.2 Double Domination Versus Paired Domination

In [9], Chellali and Haynes investigated relationships between the paired and double
domination numbers of a graph. They obtained the following bound for graphs
having minimum degree at least 2.

Theorem 95 ([9]) If G is a graph of order n with δ(G) ≥ 2, then

γ×2(G) ≤ 1

2
(n+ γpr(G)).

A bound on the paired domination number of claw-free graphs is also given
in [9].

Theorem 96 ([9]) If G is a claw-free graph with no isolated vertices, then
γpr(G) ≤ γ×2(G).

The result of Theorem 96 was extended by Dorbec, Hartnell, and Henning [26].

Theorem 97 ([26]) For r ≥ 2, if G is a K1,r -free graph with no isolated vertices,
then

γpr(G) ≤
(

2r2 − 6r + 6

r(r − 1)

)

γ×2(G),

and this bound is asymptotically best possible.

We note that when r ∈ {2, 3}, the upper bound in Theorem 97 simplifies to
γpr(G) ≤ γ×2(G). When r = 2, every K1,r -free graph G with no isolated vertex
is a disjoint union of complete graphs, each on at least two vertices, and γpr(G) =
γ×2(G) for such graphs G.

To show tightness of the bound in Theorem 97 when r = 3, the authors in [26]
provide the following construction. For r = 3, let Gk be the graph obtained from
a complete graph Kk , where k ≥ 1, as follows: for each vertex v of the complete
graph, add a 3-cycle and join v to two vertices of this cycle. The resulting graph Gk
satisfies γpr(Gk) = 2k = γ×2(Gk). Hence, the bound in Theorem 97 is tight for
r ∈ {2, 3}.
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v

Fig. 25 The graph F5

To show that the bound in Theorem 97 is asymptotically best possible when
r ≥ 4, the following construction is given in [26]. For r ≥ 4, let Fr be the graph
obtained from a complete graph Kr as follows: select an arbitrary vertex v and
subdivide all edges not incident with v. The resulting graph Fr is a K1,r -free graph
with no isolated vertex of order r + (

r−1
2

)
. The graph F5, for example, is illustrated

in Figure 25.

Proposition 98 ([26]) For all r ≥ 4, the graph Fr is a K1,r -free graph with no
isolated vertex satisfying

γpr(Fr) =
(

2r2 − 6r + 4

r(r − 1)

)

γ×2(Fr).

By Proposition 98, the upper bound of Theorem 97 is asymptotically best
possible for all r ≥ 4.

Chellali and Haynes made the following conjecture.

Conjecture 6 ([9]) For any nontrivial tree T , γpr(T ) ≤ γ×2(T ).

In [2], Blidia, Chellali, and Haynes showed that not only is Conjecture 6
true, but they also provided both constructive and descriptive characterizations
of trees having equal paired and double domination numbers. Their descriptive
characterization is as follows.

Theorem 99 ([2]) For any nontrivial tree T , γpr(T ) = γ×2(T ) if and only if T =
P2 or every support vertex of T is adjacent to exactly one leaf, the support vertices
of T form an independent set, and T has a unique γ×2-set consisting of the support
vertices and leaves of T .

10 Perfect Graphs Involving Paired Domination

Given two graph parameters μ and ψ related by a simple inequality μ(G) ≤ ψ(G)
for every graph G having no isolated vertices, a graph is (μ,ψ)-perfect if every
induced subgraph H with no isolated vertices satisfies μ(H) = ψ(H). Alvarado,
Dantas, and Rautenbach [1] consider classes of (μ,ψ)-perfect graphs, where μ
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and ψ are domination parameters including γ , γt , and γpr . In this section, we
discuss such results involving the paired domination number. If μ and ψ are graph
parameters related by μ(G) ≤ ψ(G) for every graph G having no isolated vertices,
then let

G(μ,ψ) = {G isolate-free graph | ∀H ⊆ind G : δ(H) ≥ 1 ⇒ μ(H) = ψ(H)},
whereH ⊆ind G indicates thatH is an induced subgraph ofG. Thus, G(μ,ψ) is the
family of (μ,ψ)-perfect graphs. Since the parameters γt and γpr are defined only
for graphs with no isolated vertices, it makes sense to restrict the induced subgraph
H of the graph G in the definition of G(μ,ψ) to satisfy δ(H) ≥ 1. Further, for a
positive integer k, let

Gk(μ,ψ)
= {G isolate-free graph | ∀H ⊆ind G : (δ(H) ≥ 1 and γ (H) ≥ k)⇒ μ(H) = ψ(H)}.

Recall that the net graph N is the corona K3 ◦K1, as illustrated in Figure 17.
The following results on (γt , 2γ )-perfect graphs, (γpr, 2γ )-perfect graphs, and

(γ, γpr)-perfect graphs were proven by Alvarado et al. [1], where 2K2 denotes the
disjoint union of two copies of K2.

Theorem 100 ([1]) A graph G belongs to G(γt , 2γ ) if and only if G belongs to
G(γpr, 2γ ) if and only if G is {C4, P4}-free.

Theorem 101 ([1]) A graphG belongs to G(γt , γpr) if and only ifG is {C5, P5, N}-
free.

Theorem 102 ([1]) A graph G belongs to G2(γ, γpr) if and only if G is
{C5, 2K2, N}-free.

11 Complexity and Algorithmic Results

The well-known decision problem for the domination number is NP-complete
(see [35]).

Minimum Dominating Set (Min-DS)

Instance A graph G = (V ,E) and a positive integer k ≤ |V |.
Question Does G have a dominating set of cardinality at most k?

The basic complexity question concerning the decision problem for the paired
domination number is stated as follows.
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Table 1 Complexity results for computing the paired domination number for specific families

Graph Family Complexity Authors, Citation

Trees O(n) Qiao, Kang, Cardel, and Du [72]

Weighted Trees O(n) Chen, Lu, and Zeng [12]

Inflated Trees O(n) Kang, Sohn, and Cheng [59]

Strongly Chordal Graphs O(n+m) Chen, Lu, and Zeng [11]

Permutation Graphs O(n) Lappas, Nikolopoulous, and Palios [60]

Convex Bipartite Graphs O(n+m) Panda and Pradhan [68]

Block Graphs O(n+m) Chen, Lu, and Zeng [10]

Interval Graphs O(n+m) Chen, Lu, and Zeng [10]

Circular-arc Graphs O(n+m) Lin and Tu [61]

Strongly Orderable Graphs O(n+m) Pradhan and Panda [70]

Minimum Paired Dominating Set (Min-PD-set)

Instance A graph G = (V ,E) and a positive (even) integer k ≤ |V |.
Question Does G have a PD-set of cardinality at most k?

It was first shown in [42] that Min-PD-set is NP-complete. The proof of this
complexity result shows that for any integer k, γ (G) ≤ k if and only if γpr(G) ≤ 2k,
and then relies on the fact that Min-DS is known to be NP-complete.

Recall that a graph is chordal if every cycle of length greater than 3 has a chord
(i.e., an edge joining two non-consecutive vertices in the cycle). A graph G is a
split graph if the vertex set ofG can be partitioned into a clique and an independent
set. Chen, Lu, and Zeng [10] proved that Min-PD-set remains NP-complete when
restricted to bipartite graphs, chordal graphs, or split graphs.

Theorem 103 ([10]) Min-PD-set is NP-complete for bipartite, chordal, and split
graphs.

On the other hand, polynomial time algorithms for calculating the paired
domination number of several specific families of graphs have been developed. We
summarize the best known results for selected families of graphs with order n and
size m in Table 1. We note that some of these algorithms require a given ordering
as input. The reader is referred to the referenced literature for definitions of these
families of graphs.

We note that the polynomial time algorithm for Min-PD-set of strongly orderable
graphs [70] shows that the class of strongly orderable graphs is a class for which
Min-PD-set is solvable in polynomial time, whereas Min-DS is NP-hard [66]. For
algorithms and complexity issues involving the upper paired domination number,
see [27, 28, 50, 79].
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Connected Domination

Mustapha Chellali and Odile Favaron

1 Introduction and Terminology

For a simple undirected graph G = (V ,E), we denote by n(G) = |V | its order, by
m(G) = |E| its size, by δ(G) and �(G) its minimum and maximum degrees, and
by N(v) the neighborhood of the vertex v. More generally, we use the definitions
and notation given in the glossary and we refer the reader to it. In particular, κ , κ ′,
α′, β, diam, g, respectively, denote the connectivity, edge connectivity, matching
number, vertex covering number, diameter, and girth. Concerning the domination
parameters, i(G) and α(G) denote the minimum and maximum cardinalities of a
maximal independent set of G, while γ (G) and �(G) (γt (G) and �t(G), γpr(G)
and �pr(G), respectively) denote the minimum and maximum cardinalities of a
minimal dominating set (minimal total, or paired, dominating set) of G. Clearly
γ (G) ≤ γt (G). A subset X of V is irredundant if N [x] − N [X − x] �= ∅ for every
vertex x of X. The minimum and maximum cardinalities of a maximal irredundant
set of G are denoted ir(G) and IR(G). We recall the well known inequalities chain
ir(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ �(G) ≤ IR(G), which are valid for all graphs.

A cycle (path) on n vertices is denoted Cn (Pn). A star is a complete bipartite
graph K1,k and a subdivided star S(K1,k) is obtained from a star by inserting a new
vertex on each edge. A double star is a tree that has exactly two vertices that are not
leaves. The supports of a tree are the neighbors of the leaves. The corona G ◦ H
of two graphs G and H is obtained from one copy of G and n(G) copies of H by
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joining by an edge the ith vertex ofG to every vertex of the ith copy of H for every
vertex i.

In 1979, on a suggestion of S.T. Hedetniemi, Sampathkumar and Walikar [133]
introduced the concept of connected domination. A connected dominating set of a
connected graph G is a dominating set of G whose induced subgraph is connected.
The minimum (resp. maximum) cardinality of a minimal connected dominating set
is the connected dominating number (resp. upper connected dominating number)
and is denoted by γc(G) (resp. �c(G)). If n > 1 and G has a universal vertex, i.e.,
if � = n − 1, then γ (G) = γc(G) = 1 and γt (G) = 2. Otherwise, 2 ≤ γ (G) ≤
γt (G) ≤ γc(G).

The connected domatic number dc(G) is the maximum order of a partition of
V (G) into connected dominating sets of G. Clearly, dc(G) ≤ δ if G �= Kn,
and dc(G)γc(G) ≤ n. Baogen et al. [20] observed that the last inequality implies
γc(G) + dc(G) ≤ �n2 � + 2 as soon as γc(G) ≥ 2 and dc(G) ≥ 2 (consider the
product (γc(G)− 2)(dc(G)− 2)). Otherwise, γc(G)+ dc(G) ≤ n+ 1 with equality
if and only if G = Kn [79].

In a Wireless Sensor Network (WSN) server nodes send data through multi-hops
involving intermediate relay nodes. The use of a virtual backbone (VB) subset D of
sensors such that every sensor not in D can directly communicate with a sensor in
D and two sensors inD can communicate only through sensors inD, can reduce the
energy depletion and the risk of transmission of redundant information. This leads to
model a WSN by a graph G and a VB by a connected dominating set of G. Finding
a small VB is interesting to simplify the transmission and save energy. Unit Disk
Graphs (Unit Ball Graphs), which are the intersection graphs of equal-sized circles
in the plane (spheres in R3), are particularly interesting models. A large literature is
devoted to this domain, especially the research of efficient algorithms.

In their book, Du and Wan [58] give the following application of the connected
domatic number in order to maximize the lifetime of a WSN. When a very large
number of sensors are randomly deployed in target field, the addition of redundant
sensors can create disjoint connecting dominating sets. By properly scheduling the
activation and sleep times of sensors, the disjoint connected dominating sets can be
organized to work in different times periods as VBs, thereby increasing the lifetime
of the sensor networks by the factor of the number of connected dominating sets.

Hedetniemi and Laskar [79] proved that a subset S of vertices of G is a minimal
connected dominating set if and only if S is the set of the non-leaf vertices of a
spanning tree of G (the part “if” was previously observed by Sampathkumar and
Walikar in [133]). Hence γc(G) = n− εT (G), where εT (G) denotes the maximum
number of leaves of a spanning tree T of G (this relation is similar to γ (G) =
n − εF (G) where εF (G) is the maximum number of leaves in a spanning forest F
ofG). Many papers on connected domination take the point of view of the maximum
number of leaves of a spanning tree. We express here all results in terms of γc rather
than in terms of εT .

The remainder of this chapter is structured as follows: Section 2 provides
various upper and lower bounds on the connected domination parameters as well
as their relationships with some graph parameters. Section 3 reviews some results
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on the connected domination number when the structure of the graph is modified
by elementary operations on vertices or edges (addition, deletion, contraction).
Section 4 presents seven of the most important variants of the connected domination
number. Section 5 reviews the complexity and algorithmic aspects of the connected
domination problem, and Section 6 presents some conjectures about the connected
domination number.

2 Properties of the Connected Domination Parameters

The purpose of this section is to study the relationships between γc, �c, dc, and other
graph parameters.

2.1 Order n, size m, and Maximum Degree �

In general connected graphs, γc(G) ≤ n − 2 with equality if and only if G is a
path or a cycle. Smaller bounds are known under additional conditions on G. For
instance, Desormeaux et al. [53] showed that if G has diameter 2, then γc(G) ≤
1
2 (1 + 3

√
nlnn), and γc(G) ≤ 3 if moreover G is planar, γc(G) ≤ 4 if moreover

G is planar. Kleitman and West [98] proved that if every edge of G belongs to a
triangle, then γc(G) ≤ 2n−5

3 . A chain obtained from p K4 − e with vertices of
degree 2 denoted xi and yi by letting yi = xi+1 for 1 ≤ i ≤ p − 1 shows that this
bound is tight. An example of a chain of K4 − e is illustrated in Figure 1.

Concerning the connected domatic number dc, Hartnell and Rall [75] showed
that if the connected graph G is planar, then dc(G) ≤ 4 with equality if and only if
G is the cliqueK4. Moreover, if dc(G) = 3, then each class of a 3-domatic partition
induces a path in G.

The bounds on γc in terms of the size m or the maximum degree � convey the
intuitive idea that γc andm or� cannot be simultaneously large. The first ones were
established by Sampathkumar and Walikar in [133] and completed by Hedetniemi
and Laskar in [79].

Theorem 1 Let G be a connected graph of order n, size m, and maximum degree
� ≥ 2. Then

Fig. 1 A graph G with
γc(G) = (2n− 5)/3
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n

�+ 1
≤ γ (G) ≤ γc(G) = n− εT (G) ≤ n−� ≤ n− 2 ≤ 2m− n.

Moreover, γc(G) = n
�+1 if and only if � = n− 1, i.e.,G has a universal vertex.

Also γc(G) = 2m − n if and only if G is a tree (since m = n − 1) with � = 2,
i.e., a path. For a tree T , γc(T ) = n−� if and only if T is a subdivided star. When
� ≤ 3, a better lower bound on γc is given in Theorem 14.

We observe that the inequalities 2m ≤ n� ≤ n(n − γc(G)) imply γc(G) ≤
n2−2m
n

or, equivalently, m ≤ n(n−γc(G))
2 . Arumugam and Velammal [14] showed

that m = �n(n−γc(G))2 � if and only if G is a clique or a clique minus a minimum
edge cover, or a cycle. For these graphs, γc(G) = 1, 2 and n− 2, respectively.

For graphs G with γc(G) ≥ 3, Sanchis improved the previous bound B1 =
n(n−γc(G))

2 on m.

Theorem 2 ([131]) LetG be a connected graph of order n, sizem, and γc(G) ≥ 3.
Then m ≤ B2 =

(
n−γc(G)+1

2

)+ γc(G)− 1, and the bound is best possible.

When γc(G) > 3, m = B2 if and only if G is the union of a clique Kn−d
and a path Pd, where each vertex in the clique is adjacent to exactly one of the
endpoints of the path, and each endpoint has at least one clique vertex adjacent to
it. When γc(G) = 3, m = B2 if and only if G has the previous form or G has
a particular structure described in [131]. The reader can check that 2(B2 − B1) =
(γc(G)− (n− 2))(γc(G)− 1) ≤ 0 for every graph.

Another relationship between γc and m was given by Ding et al. [56]. They
proved that if m ≥ n + t (t−1)

2 and n �= t + 2, then γc(G) < n − t and this is
best possible.

In triangle-free graphs, Mukwembi lowered the bound of Theorem 2.

Theorem 3 ([122]) Let G be a connected triangle-free graph of order n. Then

m(G) ≤ (n−γc(G))2
4 + n− 1 and thus γc(G) ≤ n− 4m

n
+ 2.

The first bound is sharp as shown by joining the endvertices of a path Pp, respec-
tively, to all vertices of different classes of a complete bipartite graph Kn−p

2 ,
n−p

2
.

Conjecture 2 of Written on the Wall II [52] states that γc(G) ≤ n−2�vα(G[N(v)])
n

+2
in every connected graph G, where α(G[N(v)]) is the independence number of
the subgraph induced by the neighbors of v. Since �vα(G[N(v)]) = 2m in every
triangle-free graph, Theorem 3 proves this conjecture in the particular case of
triangle-free graphs.

Hartnell and Rall gave an upper bound, attained, for instance, byKn/2,n/2, on the
size of G in terms of the connected domatic number.

Theorem 4 ([75]) Let G be a connected graph of order n and size m. Then m ≤
1+dc(G)

2 n− dc(G).
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2.2 Minimum Degree δ and Degree Sequence

Let l(n, k) be the maximum number of leaves of a spanning tree of a connected
graph G of order n and minimum degree δ ≥ k, and let γc(n, k) = n − l(n, k). In
1988, Linial conjectured that l(n, k) ≥ k−2

k+1n+ ck , i.e., γc(n, k) ≤ 3n
k+1 − ck, where

ck is a constant depending on k (unpublished, cited by many authors). The family
of graphs described below shows that Linial’s bound would be sharp if correct.

Example 1 A necklace Lk(q) is a k-regular graph consisting of q graphsHi , where
Hi is a clique Kk+1 minus one edge xiyi , together with q edges of the form yixi+1
(mod q). For this graph, n = q(k + 1) and γc(Lk(q)) = 3q − 2 = 3n

k+1 − 2. For
example, the graph L3(4) is illustrated in Figure 2.

Linial’s Conjecture fails for large values of n and k. Thomassé and Yeo [140]
proved that for each value of k there exists a k-uniform hypergraphH with n vertices
and n edges such that β(H) ≥ (1−ε) lnk

k
n, where β(H) is the minimum cardinality

of a vertex cover of H . Consider a k-regular graph G with V (G) = V (H) and such
that {N(v); v ∈ V (G)} = E(H). The vertex covers of H are the total dominating
sets of G and thus γc(G) ≥ γt (G) ≥ (1 − ε) lnk

k
n (cf [80]).

Kleitman and West [98] proved that if k is sufficiently large, there is an algorithm
that constructs a spanning tree with at least (1 − b lnk

k
)n leaves in any graph with

minimum degree k, where b is any constant exceeding 2.5. This shows that the
previous lower bound on γc(G) is asymptotically its good value. Caro et al. [33]
lowered the constant b and gave two proofs of an upper bound on γc(G). The first
one is probabilistic. The second one is a polynomial-time algorithm constructing a
spanning tree with many leaves.

Theorem 5 ([33]) Let G be a connected graph of order n and minimum degree
δ ≥ k. Then

1. γc(G) ≤ n 145+0.5
√

ln(k+1)+ln(k+1)
k+1 . Hence γc(G) ≤ (1 + ok(1)) ln(k+1)

k+1 n.

2. Given ε > 0 and k sufficiently large in terms of ε, γc(G) ≤ (1 + ε) lnk
k
n.

Fig. 2 The necklace L3(4)



84 M. Chellali and O. Favaron

For small values of δ, Linial’s type bounds have been established until δ = 5. We
give below the main known results.

Theorem 6 ([98]) Every connected graphG of order n and minimum degree δ ≥ 3
satisfies γc(G) ≤ 3n

4 − 2.

The result is sharp as shown by the necklace L3(q) described in Example 1. It
was already proved for cubic graphs by Storer [137], Payan et al. [126], and Griggs
et al. [69].

Griggs et al. [69], Bonsma [23], and Mafuta et al. [116] lowered the bound of
Theorem 6 by forbidding some induced subgraphs. A claw is the graph K1,3, a
diamond is the graphK4− e, and a paw is the graphK1,3+ e of order 4. A diamond
of a graph G is a cubic diamond if its four vertices have degree 3 in G.

Theorem 7 ([69]) Every connected diamond-free cubic graph G of order n satis-
fies γc(G) ≤ 2n−4

3 .

Theorem 8 ([23]) Let G be a connected graph of order n and minimum degree
δ ≥ 3.

1. If G contains D ≥ 0 cubic diamonds, then γc(G) ≤ 5n+D−12
7 .

2. If G is triangle-free, then γc(G) ≤ 2n−4
3 .

Theorem 9 ([116]) Let G be a connected graph of order n and minimum degree
δ ≥ 3.

1. If G is paw-free, then γc(G) ≤ 2n−4
3 .

2. If G is paw-free and claw-free, then γc(G) ≤ n−1
2 .

For p ≡ 0 (mod 3), the necklaceG constructed from p cyclesC6 = xi1xi2 · · · xi6xi1
by adding the edges xi2x

i
5, xi3x

i
6, xi4x

i+1
1 for 1 ≤ i ≤ p (mod p) satisfies γc(G) =

2n
3 − 2 = � 2n−4

3 � and shows that the common bound of Theorems 7, 8-2, and 9-1 is
tight. This example contains cycles C4. By also forbidding C4, Mafuta et al. [117]
slightly lowered the bound of Theorem 8-2 by showing that if G is (C3, C4)-free,
then γc(G) ≤ 2n−5

3 .

In a necklace L3(q) defined in Example 1 with q = D + �, replace each of
the first � diamonds K4 − e by a subgraph of vertices x, a, b, z, c, d, y and edges
xa, xb, ab, za, zb, zc, zd, cd, yc, yd. In this graph, δ = 3, n = 7� + 4D, and
γc = 5� + 3D − 2 = � 5n+D−12

7 �. This proves that the bound of Theorem 8-1 is
tight.

Linial’s bound was established by Kleitman and West for δ = 4 and by Griggs
and Wu for δ = 4 and δ = 5.

Theorem 10 ([70, 98]) LetG be a connected graph of order n and minimum degree
δ ≥ 4. Then γc(G) ≤ 3n−8

5 .

The squares C2
6 and C2

8 of the cycles C6 and C8 satisfy γc(G) = � 3n−8
5 �. Griggs

and Wu [70] showed that if other graphs satisfy this equality, they are necessarily
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4-regular and each edge belongs to a triangle. This leads Mafuta et al. to forbid
triangles.

Theorem 11 ([117]) Let G be a connected triangle-free graph of order n and
minimum degree δ ≥ 4. Then γc(G) ≤ 4n−12

7 . If moreover G is C4-free, then

γc(G) ≤ 4n
7 − 3.

Theorem 12 ([70]) Let G be a connected graph of order n and minimum degree
δ ≥ 5. Then γc(G) ≤ n

2 − 2.

The 5-regular necklaces L5(q) of Example 1 show that the bound of Theorem 12
is tight. The authors of Theorem 11 gave an example of a 4-regular graphG of order
n = 10 with γc(G) = 4 = 4n−12

7 and constructed a 5-regular triangle-free graph G
of order n = 12 with γc(G) = n

2 − 2.

Theorem 13 ([116]) LetG be a connected claw-free paw-free graph of order n and
minimum degree δ ≥ 5. Then γc(G) ≤ 3n−6

7 .

Stronger results can be obtained by considering the degree sequence of G rather
than its minimum degree. Let ni (n≥i) be the number of vertices of G of degree
i (at least i). Payan et al. [126] established the following framework on γc(G) for
subcubic graphs G.

Theorem 14 ([126]) Let G be a connected graph such that n≥4 = 0, i.e., � ≤ 3.
Then n

2 − 1 ≤ γc(G) ≤ n− n3
4 − 2.

The lower bound is tight as shown by the graph constructed from a cycle C2p by
adding the chords xix2p−i+2, 2 ≤ i ≤ p, and x1xp+1. For cubic graphs, the upper
bound is the same as in Theorem 6.

Let G be a connected graph of order n ≥ 3 with n2 vertices of degree 2.

Theorem 15 1. Bankevich and Karpov [19] γc ≤ 3n+n2−6
4 .

2. Bankevich [18] If G is triangle-free, then γc ≤ 2n+n2−4
3 .

Paths show that the previous two bounds are sharp. Another limit example
for Theorem 15.1 can be constructed from p triangles xiyizi and p + 2 vertices
y0, xp+1, ti , 1 ≤ i ≤ p by adding the edges yixi+1 for 0 ≤ i ≤ p − 1 and zi ti for
1 ≤ i ≤ p. Then n2 = 0 and γc(G) = 3p = 3(n−2)

4 .

A tight upper bound on γc in terms of the maximum length of a path ofG formed
by vertices of degree 2 can also be found in [19]. Zhuang [154] proved that if G is

maximal outerplanar, then γc(G) ≤ min
{⌊
n+n2

2

⌋− 2,
⌊

2(n−n2)
3

⌋}
.

In the following theorems due to Karpov, the graph H is obtained from
a cycle C6 = x1x2 . . . x6x1 and two vertices y and z by adding the edges
yx2, yx3, yx5, yx6, zx1, zx4, zx5, zx6, x1x3, x2x4.
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Fig. 3 Graph Q3

Theorem 16 Let G be a connected graph of order n.

1. Karpov [95] γc(G) ≤ n− n1+n3
4 − n≥4

3 − 3
2 .

2. Karpov [94] γc(G) ≤ n − n3+2n≥4
5 − c, where c = 8/5 if G = C2

6 , c = 9/5 if
G = C2

8 or G = H , c = 2 otherwise.

The chain constructed from k cycles C6 = xiaiyibizicixi and k + 2 vertices
z0, xk+1, ti , 1 ≤ i ≤ k, by adding the edges zixi+1, aibi, bici , ciai, zi ti , 1 ≤ i ≤
k, is an example showing the tightness of Theorem 16-1. The cycle constructed
from k cliques K4 of vertex sets {xi, yi, zi , ti} and 2k vertices ai, bi by adding the
edges aixi ,aiyi , bizi , biti , biai+1 (mod k) is an example showing the tightness of
Theorem 16-2.

Before giving the main results of Theorem 17 due to Bonsma and Zickfeld [26],
we need some new definitions of forbidden structures. A 2-blossom of endvertices
c1 and c2 is formed by a cycle C6 = c1xyc2ztc1, a vertex u and the edges
ux, uy, uz, ut . A diamond chain (called 2-necklace in [26]) of endvertices u1 and
vk is formed by any number k of diamonds consisting in a C4 = uiaivibiui plus the
chord aibi by letting vi = ui+1 for 1 ≤ i ≤ k − 1. A 2-blossom H or a diamond
chain H is said to be contained in a graph G if dG(v) = dH (v) for every vertex v
different from an endvertex and dG(v) = 3 for each endvertex. Note that a cubic-
diamond of G is a diamond chain of G containing one diamond. The graph G7 of
Theorem 17-1 is obtained from a 2-blossom by adding the two edges c1c2 and yz.
LetQ3 be the 3-dimensional cube illustrated in Figure 3.

Theorem 17 ([26]) Let G be a connected graph of order n ≥ 3.

1. If G contains no 2-blossom nor diamond chain, then γc(G) ≤ n− n≥3
3 − c with

c = 4/3 if G = Q3, c = 5
3 if G is cubic different fromQ3 or G = G7 and c = 2

otherwise.
2. If G contains no cubic diamond and G is different from K4 and from Q3, then
γc(G) ≤ n− 2n≥3

7 − 2.

3. If G contains no diamond chain, then γc(G) ≤ n − 4n≥3
13 − c with c = 20/13 if

G is cubic and c = 24/13 otherwise.

Theorem 17-1 generalizes Theorem 7. Hence the limit examples for Theorem 7
still work for Theorem 17-1. Non-cubic graphs attaining the bound of Theorem 17-
1 are also given in [26]. Theorem 17-2 generalizes Theorem 8-1 with D = 0.
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Hence the tight limit example given after Theorem 8 still works for Theorem 17-
2. For cubic graphs, the conditions of Theorems 17-2 and 17-3 are the same and
the smallest bound of Theorem 17-3 is the good one. This explains why the graphs
attaining the bound in Theorem 8-1 cannot be cubic. The graphs attaining the bound
in Theorem 17-3 are described in [26] under the name of flower trees.

A stronger result taking into account the number of special 2-blossoms and
diamond chains is also proved in [26].

Desormeaux et al. [53] considered the non-increasing degree sequence d1 = � ≥
d2 ≥ · · · ≥ dn = δ of G and defined ordc(G) as the smallest integer k such that
�ki=1di ≥ n+ k − 2.

Theorem 18 ([53]) For every connected graph G of order n ≥ 3 with � ≤ n− 2,
γc(G) ≥ ordc(G). If moreover G is a tree T , then γc(T ) = ordc(T ).

Concerning the connected domatic number, Zelinka [153] observed that dc(G) ≤
n+nn−1

2 .

2.3 Other Domination Parameters

Recall that if �(G) ≤ n − 2, then γ (G) ≤ γt (G) ≤ γc(G), otherwise γ (G) =
γc(G) = 1 and γt (G) = 2. Moreover, if some cliques dominate G, then γcli(G) is
the minimum cardinality of such a clique and γc(G) ≤ γcli(G).

The first results concern the equality γ = γc are due to Arumugam and Paulraj
Joseph [13]. Let G1 (resp. G2) be the graph obtained from a cycle x1x2 · · · x8x1 by
adding the edges x1x6, x2x5, x3x7, x4x8 (resp. x1x4, x2x5, x3x7, x6x8).

Theorem 19 ([13]) Let G be a connected graph of order n ≥ 3.

1. If G is cubic, then γc(G) = γ (G) if and only if G ∈ {K4, C6,K3,3,G1,G2}.
2. If G is a tree, then γc(G) = γ (G) if and only if every non-leaf vertex of G is a

support.

The authors of [13] also characterized unicyclic graphs satisfying γc = γ . In
[41], Chen et al. generalized to block graphs and to cacti the characterization of
trees and unicyclic graphs with this property. A block of a graph is a maximal
induced subgraph without cutvertex. A block graph is a graph all blocks of which
are complete. An endcutvertex v of a block graph is such that at least one component
of G− v is a block. A cactus is a graph all blocks of which are cycles or P2. Trees
are particular block graphs and unicyclic graphs are particular cacti.

Theorem 20 ([41]) Let G be a connected block graph of order n ≥ 3. Then
γc(G) = γ (G) if and only if every cutvertex of G is an endcutvertex.

The description of connected unicyclic graphs or cacti such that γc(G) = γ (G)
is rather complicated. We refer the reader, respectively, to [13] and [41]. It is worth
noting that Alvarado, Dantas, and Rautenbach [2] showed that it is NP-hard to
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decide that γc(G) = γ (G) for a given graph G, which leads to the conclusion
that these graphs do not have a simple structure.

Chen [38] characterized the trees and the unicyclic graphs for which γc = γt .
Theorem 21 ([38]) Let T be a tree different from a star. Then γc(T ) = γt (T ) if and
only if for every internal vertex v different from a support, at least one component
of T − v exactly contains one internal vertex of T .

The cycles C4, C5 or the unicyclic graph obtained by attaching at least one leaf
at two vertices at distance 2 on a C6 are examples of graphs for which γc = γt .
However, the complete description of all these graphs is long and can be found in
[38].

Igor Zverovich [155] characterized the perfect (γ−γc)-graphs, i.e., the connected
graphs G such that γc(H) = γ (H) for every induced subgraph H of G.

Theorem 22 ([155]) For a connected graph G, the following properties are equiv-
alent :

1. G is {P5, C5}-free.
2. γc(H) = γ (H) for every connected induced subgraph H of G.

From Theorem 22, every {P5, C5}-free graph G has a minimum dominating set
which is connected. Bacsó and Tuza, and independently Goddard and Henning,
observed that the {P5, C5}-freeness implies that this connected dominating set is
actually a clique. This shows the equivalence between the γ − γc perfection and the
γ − γcli perfection.

Theorem 23 ([17, 68]) For a connected graph G, the following properties are
equivalent:

1. G is {P5, C5}-free;
2. every connected induced subgraph of G has a dominating clique;
3. γ (H) = γcli(H) for every connected induced subgraph H of G.

As noticed in [68], the previous condition is also equivalent to γ (H) = γt (H)
for every connected induced subgraph H of G such that γ (H) ≥ 2. Because of the
problem of the graphs G with γc(G) = 1 and γt (G) = 2, it is not possible to ask
for γc(H) = γt (H) for every connected induced subgraph H of G in the definition
of the γt − γc perfection. So Schaudt studied the condition γc(H) ≤ γt (H). In
Theorem 24, G1 is obtained from a triangle abc by attaching a path auv at a; G2
is obtained from two triangles aibici , 1 ≤ i ≤ 2, by letting a1 = a2; F1 (resp.
F2) is obtained from G1 (resp. G2) by attaching a pendant vertex at b, c, v (resp.
b1, c1, b2, c2). The leaf graph of a graphG is obtained by attaching a pendant vertex
at each non-cutvertex of G. Hence Fi is the leaf graph of Gi for i = 1, 2.

Theorem 24 ([134]) For a connected graph G the following are equivalent.

1. γc(H) ≤ γt (H) for every nontrivial connected subgraph H ;
2. G is {P7, C7, F1, F2}-free;
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3. Any connected induced subgraph H of G has a connected dominating set X
which is {P5,G1,G2}-free.

Moreover, since γt (H) ≤ min{�t(H), γpr(H), �pr(H)} for all graphs H and
since �t(H) = γpr(H) = �pr(H) = 4 < γc(H) = 5 for all H ∈ {P7, C7, F1, F2},
the previous conditions are also equivalent to γc(H) ≤ �t(H) or γc(H) ≤ γpr(H)

or γc(H) ≤ �pr(H) for every nontrivial connected subgraph H of G. The
equivalence between the two last conditions of Theorem 24 is due to a structural
result independently obtained by Bacsó [16] and Tuza [142]. Let D be a class of
connected graphs closed under taking connected induced subgraphs. Dom(D) is
the class of connected graphs G such that each connected induced subgraph of
G contains a dominating subgraph belonging to D. Bacsó and Tuza proved that
the minimum induced subgraphs of Dom(D) are the cycle Ct+2 if Pt−1 ∈ D but
Pt /∈ D and the leaf graphs of the minimal forbidden subgraphs of D. Here D is
the set of connected {P5,G1,G2}-free graphs and Dom(D) is the set of connected
{C7, P7, F1, F2}-free graphs.

The first upper bound on γc in terms of γ and other domination parameters was
given by Duchet and Meyniel in [59].

Theorem 25 ([59]) In every connected graph G, γc(G) ≤ min{3γ (G) −
2, 2α(G)− 1}.

The paths and cycles show that the bounds of Theorem 25 are asymptotically
sharp.

Camby and Schaudt lowered the upper bound 3γ − 2 on γc of Theorem 25 in
some hereditary classes of graphs.

Theorem 26 ([32]) Let G be a connected graph.

1. G is {P6, C6}-free if and only if γc(H) ≤ γ (H)+ 1 for every connected induced
subgraph H of G.

2. If G is {P8, C8}-free, then γc(G) ≤ 2γ (G).

The graph obtained from K1,k by subdividing each edge exactly once shows that
the bound of Theorem 26-1 is tight. Let Fk (resp. Gk) be the {P7, C7}-free (resp.
{P9, C9}-free) graph obtained by attaching a path of length 2 (resp. 3) at each vertex
of a clique Kk . Then γ (Fk) = k, γc(Fk) = 2k, γ (Gk) = k + 1, γc(Gk) = 3k. This
shows that the bound 2 on γ /γc in Theorem 26-2 is attained even in the class of
{P7, C7}-free graphs and that the coefficient 3 of the bound on γ /γc in Theorem 25
remains sharp in the class of {P9, C9}-free graphs.

In different articles due to Favaron and Kratsch, Wang, Bo and Liu, Sun, the
bound γc ≤ 3γ − 2 of Theorem 25 was improved by replacing γ by ir and bounds
relating γc to γt or to i were found.

Theorem 27 Let G be a connected graph of order n ≥ 3.

1. Favaron and Kratsch [64], Wang [147], and Bo and Liu [22] γc(G)≤ 3ir(G)−2.
2. Favaron and Kratsch [64] γc(G) ≤ 2γt (G)− 2.
3. Sun [138] γc(G)+ i(G) ≤ � 4n

3 � − 2.
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The bounds of Theorem 27 are tight as shown by paths P3k , P4k , and Pn,
respectively. Restricted to graphs with diameter two, Desormeaux et al. [53] proved
the following.

Theorem 28 ([53]) Let G be a diameter-2 graph of order n. Then γc(G) ≤
3γt (G)/2 − 1, implying γc(G) ≤ (1 + 3

√
nlnn)/2.

In Unit Disk Graphs, Wu et al. [150] proved that α(G) ≤ 3.8γc(G)+ 1.2.
The following bound involves the cardinality γk(G) of a minimum k-dominating

set of G, i.e., a minimum dominating set S of G such that every vertex not in S has
at least k neighbors in S. Chellali et al. [36] showed that every tree T with maximum
degree�(T ) ≥ k ≥ 3 satisfies γc(T ) ≤ γp(T )−k+1 with equality if and only ifG
is a subdivided star, or �(T ) = 3 and the vertices of degree 3 form an independent
set.

The study of the upper connected domination parameter �c is more complicated
since a minimal connected dominating set is not necessarily a minimal (resp.
minimal total) dominating set. The ratios �/�c and �t/�c are not bounded above.
This can be seen from two adjacent vertices x and y by joining x to every vertex of a
path Pk(x) and y to every vertex of a path Pk(y). Theorem 29 gives upper bounds on
�c/�t and on �c/�, respectively, obtained by Favaron and Kratsch and by Ghoshal
et al.

Theorem 29 Let G be a connected graph.

1. Favaron and Kratsch [64] �c(G) ≤ 2�t(G)− 2.
2. Ghoshal [67] �c(G) ≤ 2�(G)− 1.

The first bound of Theorem 29 is tight as shown by attaching a pendant edge
at each vertex xi with i ≡ 2, 3 (mod 4) of a path x1x2 . . . x4k . The second bound,
which was conjectured in [64], is attained, for instance, by cycles C4k+3.

The class C of connected graphsG for which γc(G) = �c(G) is difficult to study.
Arseneau et al. [12] studied the subclass D of connected graphs whose all spanning
trees have the same number of leaves. Clearly D ⊆ C but the inclusion is strict as
shown, for instance, by the graph H consisting of a C4 = xyztx plus a pendant
edge xu. The graph H admits spanning trees with two leaves, {y, u} or {t, u}, and
spanning trees with three leaves, {y, z, u} or {t, z, u}. But only the sets V \ {y, z, u}
and V \{t, z, u} are minimal connected dominating sets and γc(H) = �c(H).Hence
H ∈ C \D.
Theorem 30 ([12]) A connected graph G has the property that all spanning trees
have the same number of leaves if and only if and only if both of the following
conditions hold.

1. About each cycle in the graph G, the vertices are either all cutvertices, all non-
cutvertices or alternating cut and non-cutvertices.

2. Every vertex of degree 3 or more is a cutvertex.
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2.4 Other Classical Graph Parameters

Since any path joining two diametral vertices has at least diam(G) − 1 internal
vertices, it is clear that γc(G) ≥ diam(G)− 1 for every graph.

Let κ be the connectivity of a graph G �= Kn and let A be a minimum cutset of
G. Then every γc(G)-set contains at least one vertex of A. Thus dc(G) ≤ κ(G) as
noticed by Zelinka [153] and Sun [138]. Clearly γc(G) ≤ n −�(G) ≤ n − κ(G).
The extremal graphs were characterized by Joseph and Arumugam [83] as follows.

Theorem 31 ([83]) LetG be a connected graph of order n. Then γc(G) ≤ n−κ(G)
with equality if and only if G = Cn,Kn, or Kn −M with n even and M a perfect
matching in Kn.

Hedetniemi and Laskar [79] showed that every connected graph admits a
maximum matching M inducing a connected subgraph. Let T be a spanning tree
of G admitting V (M) as a connected dominating set and let C be a maximal M-
alternating chain of T . As observed by Fajtlowicz (cf [52]), at least one endvertex
x of C belongs to V (M) and has degree 1 in T sinceM is a maximum matching of
the tree. Hence V (M) − {x} is a connected dominating set of G. This implies the
following bound on γc, attained, for instance, by odd cycles.

Theorem 32 ([52]) Let G be a connected graph with maximum matching number
α′(G). Then γc(G) ≤ 2α′(G)− 1.

About the girth g(G), the family Fk of graphs is defined by Desormeaux et al.
[53] as follows. F3 is the family of graphs with� = n− 1 and at least one triangle.
F4 is the family of graphs obtained from a double star with central vertices x and
y by adding at least one edge joining a leaf-neighbor of x and a leaf-neighbor of y.
For k ≥ 5, Fk is the family of graphs constructed from a k-cycle x1x2 . . . xkx1 by
adding zero or more pendant edges incident to each xi , i ≥ 3; moreover, for k = 5
and 6, add zero or more edges joining x3 and xk and subdivide each such added edge
twice. Examples of graphs in the families Fk are illustrated in Figure 4.

Theorem 33 ([53]) Let G be a connected graph with finite girth g.

1. γc(G) ≥ g − 2 with equality if and only if G ∈ Fk .
2. If � ≤ n− 2 and g ≥ 5, then γc(G) ≥ δ + 1.

The eccentricity ecc(v) of a vertex v of G is the distance from v to a vertex
furthest away from v. The eccentricity of G is ecc(G) = �v∈V ecc(v). Dankelmann
and Mukwembi established the following upper bound on ecc(G) in terms of the
order and connected domination number.

Theorem 34 ([47]) Every connected graph G satisfies ecc(G) ≤ n(γc(G) + 1) −
(γc(G))

2

4 − γc(G)
2 .

The tree obtained by adding n − k − 1 pending edges at an endpoint of a path
Pk+1 shows that this bound is sharp.
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Fig. 4 Graphs in the families Fk

DeLaViña, Fajtlovicz, and Waller studied some properties of γc in relation with
Graffiti conjectures. The bipartite number b(G) of G is the maximum order of an
induced bipartite subgraph of G (clearly b(G) ≤ 2α(G)). The local independence
number maxvα(N(v)) is the maximum value of the independence number of the
neighborhood N(v) taken on all the vertices v ∈ V (G).
Theorem 35 Let G be a connected graph of order n.

1. DeLaViña et al. [51] γc(G) ≤ 2α−maxvα(N(v))+ 1.
2. DeLaViña and Waller [50] γc(G) ≤ b − �maxvα(N(v))

2 � and γc(G) ≤ n − 2α +
b − 1.

The previous inequalities are tight, for instance, for odd cycles for the first two
ones, for odd paths for the third one. The first one improves the bound γc ≤ 2α −
1 of Theorem 25. The two last ones constitute advances towards the solution of
Conjectures 174 and 177 of graffiti.pc [52] (cf Conjectures 3 and 4 in Section 6).

2.5 Traceability and Hamiltonicity

A graph G of order n is Hamiltonian (resp. traceable) if it contains a cycle (resp.
path) on n vertices. The study of these problems in relation to the maximum number
of leaves of a spanning tree was motivated by Graffiti.pc Conjectures 190 and 190a
given in Section 6. The hypotheses of these conjectures are in terms of δ′(G), the
second minimum smallest degree ofG in the non-decreasing degree sequence ofG.
However, the numerous papers written on the subject since 2013 replace δ′ by δ.
Hence the results are similar to, but weaker than, Conjecture 190. We only cite the
last ones, due to Mafuta et al., which give the strongest results.
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Theorem 36 Let G be a connected graph of order n, minimum degree δ and
connected dominating set γc.

1. Mafuta et al. [115] If δ ≥ n−γc+1
2 , then G is traceable.

2. Mafuta [118] If δ ≥ n−γc+2
2 , then G is Hamiltonian.

3. Mafuta [114] If G is 2-connected, C4-free, δ ≥ 4 and δ ≥ n−γc
2 , then G is

Hamiltonian.

The complete bipartite graphs Kp,p+2 and Kp,p+1, p ≥ 2, respectively, show
that the first two bounds of Theorem 36 are sharp. Note that for these graphs, δ′ = δ,
showing the sharpness of Graffiti.pc 190, if true.

2.6 Connected Domination in G and in Its Complement G

For any parameter λ, we denote λ(G) by λ and min{λ, λ} by λ∗. We only consider

nontrivial graphs. InG, δ = n−�−1 and� = n− δ−1. Hence δ∗ ≤ δ+δ
2 ≤ n−1

2 .

When both G and G are connected, then n ≥ 4, δ∗ ≥ 1, � ≤ n − 2, and for
H ∈ {G,G}, γc(H) ≥ 2 and diam(H) ≥ 2. Moreover, γc(H) = 2 if and only if
diam(H) ≥ 3. This explains the interest of considering graphs G with diam(G) =
diam(G) = 2.

We first present some results on γc and dc in G due to Desormeaux et al. [54],
Sun [138], and Yu and Wang [152].

Theorem 37 ([54]) Let G be a graph of order n.

1. If γ < γ , then γc ≤ γ + 1, implying γc ≤ (1 +
√

4n+ 1)/2.
2. If both G and G are connected and γ ≤ γ + 1, then γc ≤ γ + 1 or γ c ≤ γ + 1.

Theorem 38 ([138]) If G and G are both connected, then γ c ≤ κ + 1 where κ is
the connectivity of G.

Equality is attained, for instance, with G = Pn.
The following result, sharp for C5, was conjectured in [79].

Theorem 39 ([152]) If G and G are both connected, then γc ≤ 3dc.

A good survey on Nordhaus–Gaddum results on γc until 2012 can be found in
[10]. From γc(G) ≤ n − �, dc(G) ≤ δ and δ + � = n − 1, it is clear that
γc + γ c ≤ n−�+ δ + 1 ≤ n+ 1 and dc + dc ≤ n−�+ δ − 1 ≤ n− 1. These
bounds, given in [79], were improved by Laskar and Peters for γc, Paulraj Joseph
and Arumugam for dc.

Theorem 40 ([101]) Let G and G be connected graphs of order n ≥ 4. Then γc +
γ c = n + 1 if G = C5, γc + γ c = n if G = Pn, G = Cn for n ≥ 6 or G is
obtained by adding the two edges x1x3 and x2x4 to a cycle C6 = x1x2 · · · x6x1,
γc + γ c ≤ n− 1 otherwise.
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Theorem 41 ([124]) LetG andG be connected graphs of order n. Then dc+ dc ≤
n− 2.

All extremal graphs for Theorem 41 have order at most 8. Their list can be found
in Theorem 3.25 of [10].

Karami et al. obtained smaller upper bounds on γc + γ c by adding some
conditions on δ∗ or on γ ∗c , and an upper bound on the product γcγ c.

Theorem 42 ([93]) Let G be a graph of order n such that G and G are connected.
Then

1. γc + γ c ≤ δ∗ + 4 − (γc − 3)(γ c − 3).
2. γc + γ c ≤ 3n/4 when δ∗ ≥ 3 and n ≥ 14.
3. γc + γ c ≤ δ∗ + 2 when γ ∗ ≥ 4.
4. If n ≥ 7, then γcγ c ≤ 2n − 4 with equality if and only if G or G is a path or a

cycle.

Let H be constructed from two complete graphs H1 = H2 = Kr with V (H2) =
{v1, · · · , vr } and a star K1,r with leaves xi by adding an edge between xi and all
vertices of the Cartesian product H1�H2 with second coordinate vi for 1 ≤ i ≤
r . For H , δ∗ = r , γ c = 3, and γc = r + 1. This family shows that the bound
of Theorem 42-1 is attained for each value of δ∗ ≥ 2. The cubic necklace L3(q)

described in Example 1 for which n = 4q, γc = 3q − 2, and γ c = 2 shows that the
bound of Theorem 42-2 is sharp. For the part 3, the authors showed that the equality
can occur only if δ∗ = 6 and {γc, γ c} = {4, 4} or {4, 5}, and constructed such a
graph attaining the bound with about 15,000 vertices.

Desormeaux et al. showed that if both G and G are connected with diameter 2,
then γc ≤ 1 + � δ

γ c−2� and γ c ≤ � δ
γc−2�, which lead to the following results.

Theorem 43 ([53]) Let G and G be connected graphs of order n ≥ 2.

1. (γc − 2)(γ c − 2) < δ∗.
2. If γ ∗c ≥ 4, then γcγ c < 3(n− 1)/2.

3 Connected Domination in Modified Graphs

Many studies have been done on graph parameters when the structure of the graph
is slightly modified by the addition of edges/vertices, the deletion of edges/vertices
and the contraction of edges or the identification of vertices. Thus, the notions
of criticality and stability were introduced according to whether the parameter
increases, decreases or remains unchanged.

For domination number, Walikar and Acharya [145] were the first to study those
graphs for which the domination number changes upon the deletion of any edge,
while Dutton and Brigham [61] were the first to study those graphs for which the
domination number remains unchanged upon the deletion of any edge. Bauer et al.
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[21] began the study of those graphs where the domination number increases on the
removal of any vertex, while Brigham et al. [28] began the study of graphs for which
the domination number decreases on the removal of any vertex. In 2006, Burton
and Sumner [31] initiated the study of graphs for which the domination number
decreases upon the identification of the vertices comprising any edge. The study of
these types of problems was extended later to other domination parameters such as
the total domination and connected domination numbers.

In this section we focus primarily on the effects of various edge and vertex
operations on the connected domination number of a graph.

3.1 Edge Addition

We start by noting that adding an edge to a graph cannot increase its connected
domination number. So, a graph G is called γc-critical (γc-stable, respectively) if
the addition of any edge to G decreases (does not change, respectively) γc(G). The
study of γc-critical graphs was introduced in 2004 by Chen, Sun, and Ma [40], while
the study of γc-stable graphs was initiated in 2015 by Desormeaux, Haynes, and van
der Merwe [55]. We will also refer to γ -critical and γt -criticalgraphs that are defined
similarly to γc-critical graphs.

3.1.1 γc-critical Graphs

In the sequel, a graphG is said to be k− γc-critical if γc(G) = k but γc(G+ e) < k
for each edge e belonging to the complement graphG ofG. It was observed in [40]
that adding an edge to a connected graph G can decrease the connected domination
number by at most 2. Moreover, if γc(G+e) = γc(G)−2 for some edge e ∈ E(G),
then every γc(G+ e)-set contains the endvertices of e. Obviously, the only 1 − γc-
critical graph is the complete graph Kn. Chen et al. [40] showed that no tree of
order at least three is γc-critical, and established that a connected graphG is 2− γc-
critical if and only if G is a forest with at least two components, each one is a
nontrivial star. Ananchuen [3] was the first to observe that a connected graph is
3 − γc-critical if and only if it is 3 − γt -critical. In [89], Kaemawichanurat et al.
showed that connected 4 − γc-critical graphs and 4 − γt -critical graphs are also the
same, but for k ≥ 5, they have shown that there are k − γc-vertex critical graphs
which are not k − γt -vertex critical. So far, characterizing k − γc-critical graphs
remains an open problem for k ≥ 3. Therefore, to better understand the structure of
k − γc-critical graphs, researchers focused on studying these graphs with respect to
some properties such as number of cutvertices, matching, and hamiltonicity. Some
results in this framework will be given later. We first give some basic properties
of k − γc-critical graphs. For a set S ⊆ V, let ω(G − S) denote the number of
components of a graph G− S.
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Theorem 44 ([40]) Let G be a 3 − γc-critical graph. Then

(i) If S is a cutset of G, then ω(G− S) ≤ |S| + 1.
(ii) If G has even order, then G contains a perfect matching.

(iii) diam(G) ≤ 3.

Bounds on the number of cutvertices were given by Ananchuen [3] and by
Kaemawichanurat and Ananchuen [85] who, respectively, showed that it is at most
one for 3 − γc-critical graph and at most two for 4 − γc-critical graphs. These two
results were generalized by Kaemawichanurat and Ananchuen in [86] as follows.

Theorem 45 ([95]) For k ≥ 3, let G be a k − γc-critical graph with ζ(G)
cutvertices. Then ζ(G) ≤ k − 2.

It should be noted that unlike 3−γc-critical graphs, Ananchuen and Plummer [8]
showed that connected 3 − γ -critical graphs may contain more than one cutvertex.
The first problem that can arise by looking at Theorem 45 is the characterization of
k− γc-critical graphs with k− 2 cutvertices. This problem was treated for k = 3 by
Ananchuen in [3], and for k = 4 and k ≥ 5 by Kaemawichanurat and Ananchuen in
[85] and [86], respectively.

For k− γc-critical graphs with exactly one cutvertex, Ananchuen [3] established
the following properties.

Theorem 46 ([3]) For k ≥ 3, let G be a k − γc-critical graph with exactly one
cutvertex x. Then

(i) x belongs to every γc(G)-set.
(ii) G− x contains exactly two components, say C1 and C2.

(iii) For each i ∈ {1, 2}, γc(Ci) ≤ k − 1 and G[N(x) ∩ V (Ci)] is complete.
(iv) If Ci is a non-singleton component of G − x with γc(Ci) = k − 1, then Ci is

(k − 1)− γc-critical.

Theorem 47 ([3]) For k ≥ 3, let G be a k − γc-critical graph with exactly one
cutvertex x. Suppose C1 and C2 are the components ofG− x. Let A = G[V (C1)∪
{x}] and B = G[V (C2) ∪ {x}]. Then

(i) k − 1 ≤ γc(A)+ γc(B) ≤ k.
(ii) γc(A)+ γc(B) = k if and only if exactly one of C1 and C2 is a singleton.

Taylor et al. [139] and Kaemawichanurat et al. [86] independently established
the maximum number of leaves of k − γc-critical graphs G with γc(G) ≥ 3.

Theorem 48 ([86, 139]) For k ≥ 3, every k − γc-critical graph has at most one
leaf.

Item (iii) of Theorem 44 has also been generalized independently in [85] and
[42] as follows.

Proposition 49 ([42, 85]) Let G be a k − γc-critical graph. Then diam(G) ≤ k.
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The following example given in [42] shows that the upper bound of Proposi-
tion 49 is sharp. For k ≥ 3, Gk−2 is the connected graph obtained from a path
of order k − 1 in which one leaf is labelled x, and a cycle C4 whose vertices are
labelled in order a, b, c, d by adding the edges xa and xd. Moreover, Chengye
and Feilong [42] asked the question if every k − γc-critical graph with diameter
k has the graph Gk−2 as an induced subgraph. This question was answered by
Taylor and van der Merwe [139] who provided for k ≥ 4 a class of k − γc-
critical graphs Hk with diameter k which is Gk−2-free, where Hk is defined by
V (Hk) = {vi, x, y : 0 ≤ i ≤ k} and E(Hk) = {vivi+1, xvk−3, xvk−2, xy, yvk}.

In [91], Kaemawichanurat and Jiarasuksakun focused on providing an upper
bound on the sum of the independence number and the clique number ω of k − γc-
critical graphs. In particular, they proved the following.

Theorem 50 ([91]) For 1 ≤ k ≤ 3, let G be a k − γc-critical graph of order n.
Then α + ω ≤ n− ⌊

k
2

⌋+ 1.

The authors [91] characterized all 3 − γc-critical graphs achieving the upper
bound of Theorem 50, and showed for k ≥ 4 that there are infinitely many k − γc-
critical graphs such that α + ω = n − ⌊

k
2

⌋ + 1. Hence the following question was
posed: Does every k−γc-critical graph with k ≥ 4 satisfy α+ω ≤ n−⌊

k
2

⌋+1.We
now turn our attention to matching and hamiltonicity properties of k − γc-critical
graphs.

Matching Properties: Matching properties of k − γc-vertex-critical graphs have
been mainly investigated in [5] for k = 3. We recall that a matching in a graph G is
perfect if it covers all of the vertices of G and it is near-perfect if it covers all but
one of the vertices of G. A graph G is t−factor-critical if for every set S ⊆ V (G)
with |S| = t , the graph induced by V (G)− S contains a perfect matching.

We start by reminding that Theorem 44-(ii) states that a 3− γc-critical graphs of
even order contain a perfect matching. Ananchuen et al. [5] focused on 3−γc-critical
graphs. They showed that those with odd order contain a near-perfect matching.
Furthermore, they established interesting properties summarized in the following
results.

Theorem 51 ([5]) Suppose n ≥ 4 and G is a 3-connected 3 − γc-critical graph of
order 2n. Then

(i) If δ(G) ≥ n− 1, then G is 2−factor-critical.
(ii) If G is claw-free, then G is 2−factor-critical.

It is worth noting that the authors provided an infinite family of graphs satisfying
the hypotheses of Theorem 51 by constructing the following graph Hk,s,r,t for
integers k, r, t ≥ 1 and s ≥ 2. Let V (Hk,s,r,t ) formed by four sets X, Y,Z,W such
thatX = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , ys}. Form complete graphs onX, Y,Z,
andW. Also join each vertex of Z to each vertex of X∪{y1} and join each vertex of
W to every each vertex ofX∪(Y −{y1}). Then graphsHn−2,n−1,1,2 andH2n−6,2,2,2
satisfy, respectively, the hypotheses of Theorem 51 and both are 2−factor-critical.
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On the other hand, the authors [5] constructed a 2-connected 3 − γc-critical claw-
free graph of order 2n (that could satisfy in addition δ(G) ≥ n − 1) that is not
2−factor-critical which shows that the bound on connectivity in Theorem 51 is best
possible.

Theorem 52 ([5]) Suppose G is a 3 − γc-critical graph of odd order n.

(i) If n ≥ 5 and δ(G) ≥ 2, then G is 1−factor-critical.
(ii) If G is 4-connected and K1,4-free, then G is 3−factor-critical.

The family {H1,2n−2,1,1 : n ≥ 2} is an infinite family of graphs satisfying
the hypotheses of Theorem 52-(i). Also, the graph Hn−2,n−1,1,3 satisfies the
assumptions of Theorem 52-(ii) and hence is 3−factor-critical.

We close this part by mentioning that Kaemawichanurat and Ananchuen [85]
showed the existence of a perfect matching for 4 − γc-critical graphs of even order
having connectivity one.

Hamiltonian Properties: Hamiltonian properties of k − γc-critical graphs were
mainly invested by Kaemawichanurat and Caccetta in [87, 88]. The study seems to
be motivated by the fact that this property has already been considered for γ -critical
graphs and γt -critical graphs, where interesting results have been obtained but also
where conjectures remained open. For k = 3, the following result has been shown
in [87].

Theorem 53 ([87]) Every 2-connected 3 − γc-critical graph is Hamiltonian.

Since connected 3 − γc-critical graphs and 3 − γt -critical graphs are the same,
Theorem 53 implies that 2-connected 3− γt -critical graphs are Hamiltonian, which
improves previous results obtained on the hamiltonicity of 3 − γt -critical graphs in
particular cases according to the diameter of the graph (see [136]). Furthermore, for
k ≥ 4 and l ≥ 2, Kaemawichanurat and Caccetta constructed a class of l-connected
k − γc-critical non-Hamiltonian graphs of order n ≥ (k − 1)l + 3. The authors
mentioned that such a class of graphs contains a claw as an induced subgraph and
wondered if every connected k − γc-critical claw-free graph for k ≥ 4 contains a
Hamiltonian cycle. This issue was addressed in [88], where the authors showed the
following.

Theorem 54 ([88]) Every 2-connected 4− γc-critical claw-free graph is Hamilto-
nian.

For k ≥ 5, the authors [88] constructed a class of k − γc-critical claw-free
non-Hamiltonian graphs of connectivity two. Moreover, for 3-connected graphs,
Kaemawichanurat and Caccetta obtained the following result.

Theorem 55 ([88]) Let G be a 3-connected k − γc-critical claw-free graph. If k ∈
{3, 4, 5, 6}, then G is Hamiltonian.

Very recently, Henning, Ananchuen, and Kaemawichanurat [81] determined a
connection between the traceability of a k − γc-critical graph and the number of
cutvertices in the graph by proving the following result.
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Theorem 56 ([81]) For k ≥ 4 and 0 ≤ ζ ≤ k− 2, every k− γc-critical graph with
ζ cutvertices is traceable if and only if k − 3 ≤ ζ ≤ k − 2.

3.1.2 (γc, r)-critical Graphs

Ananchuen [4] extended the concept of k−γc-criticality to k−(γc, r)-criticality. For
positive integers k and r ≥ 2, a graph G is said to be k− (γc, r)-critical if γc(G) =
k, but γc(G + xy) < k for each pair of non-adjacent vertices x and y that are at
distance at most r apart. Clearly, every k−γc-critical graph is k−(γc, r)-critical but
the converse is not true. The path P4 is the simplest example of 2 − (γc, 2)-critical
graphs which is not 2− γc-critical. Moreover, it is also clear that k− (γc, r)-critical
graphs with diameter at most r are k−γc-critical. The diameter of k−(γc, r)-critical
graphs is given by the following result shown in [4].

Theorem 57 ([4]) For integers k and r ≥ 2, if G is a k − (γc, r)-critical graph,
then

diam(G) ≤
{
k + 1, for 2 ≤ r ≤ k
k, for r ≥ k + 1.

Moreover, a characterization of k− (γc, r)-critical graphs having diameter k+ 1
for 2 ≤ r ≤ k was given as follows. Recall that the joinG∨H of two graphsG and
H is the graph obtained from G ∪ H by joining each vertex of G to each vertex of
H.

Theorem 58 ([4]) For any integers k, r with 2 ≤ r ≤ k, G is a k − (γc, r)-critical
graph with diameter k+ 1 if and only ifG ∼= K1 ∨Kn1 ∨Kn2 ∨ . . .∨Knk ∨K1 for
some positive integers ni, 1 ≤ i ≤ k.

For the case k = 2, Ananchuen [4] showed that for r ≥ 3, G is a 2 − (γc, r)-
critical graph if and only if G is 2 − γc-critical, while for r = 2, G is a 2 −
(γc, 2)-critical graph if and only if G is 2− γc-critical or G is a double star. For the
case k = 3, the following characterization of 3 − (γc, r)-critical graphs for r ≥ 3
has also been established in [4].

Theorem 59 ([4]) Let r be a positive integer. ThenG is 3−(γc, r)-critical for r ≥ 4
or G is 3 − (γc, 3)-critical of diameter at most 3 if and only if G is 3 − γc-critical.

The only class of graphs not considered by Theorems 58 and 59 is the class of
3− (γc, 2)-critical graphs of diameter 3. For this purpose, Ananchuen, Ananchuen,
and Caccetta [9] provided a characterization of 3− (γc, 2)-critical claw-free graphs
which are not 3 − γc-critical, and concluded that 3 − (γc, 2)-critical graphs of
diameter 3 which are not 3 − γc-critical and contain claws do exist.
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3.1.3 γc-stable Graphs

Obviously, every graph G with γc(G) = 1 is γc-stable. Desormeaux et al. [55]
mentioned that there exists no forbidden subgraph characterization of γc-stable
graphs by showing that for every integer k ≥ 2 and any graph H , there exists a
γc-stable G such that γc(G) = k and H is an induced subgraph of G. However, the
authors gave a descriptive characterization of γc-stable graphs as follows. For a set
of vertices S ⊆ V and a vertex v ∈ S, let epn(v, S) = {u ∈ V \S | N(u)∩S = {v}}.
Theorem 60 ([55]) A connected graph G is γc-stable with γc(G) ≥ 2 if and only
if for any γc(G)-set S and vertex v ∈ S, the following three conditions hold:

(i) If v is not a cutvertex of G[S], then |epn(v, S)| ≥ 2.
(ii) If G[S\{v}] has exactly two components, then |epn(v, S)| ≥ 1.

(iii) G has no dominating set D of cardinality at most γc(G) − 1, where G[D]
has exactly two components and the distance inG between any two vertices in
different components of G[D] is at least three.

Note that if G is a graph of diameter two, then Condition (iii) in Theorem 60
is trivially satisfied. Also, applying Theorem 60, the authors obtained a simple
characterization of γc-stable trees. In particular, a tree of order at least 4 does not
have a degree two vertex, otherwise adding an edge between these two vertices
decreases the connected domination number of the tree.

Theorem 61 ([55]) A tree T is γc-stable if and only if γc(T ) = 1 or T has no
degree two vertices.

The next result gives an upper bound on the connected domination number of
γc-stable graphs in terms of their order.

Theorem 62 ([55]) If G is a γc-stable graph of order n, then γc(G) ≤ (n− 2)/2.

We note that the bound of Theorem 62 is sharp as shown in [55].

3.2 Edge Removal

The first thing to note is that the study of the behavior of the connected domination
parameters with respect to the deletion of edges remains little explored. Our
literature search resulted in only two papers, one is due to Zelinka [153] and the
other to Lemańska [103].

In [153], Zelinka was interested in graphs whose connected domatic number
decreases by deleting an arbitrary edge, after showing the following result. Recall
that the connected domatic number dc(G) of a connected graph G is the maximum
number of pairwise disjoint, connected dominating sets in V (G). It is easy to see
that the connected domatic number of a connected graph cannot increase by the
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deletion of any edge which is not a bridge. But it can be decreased by at most two
as shown by Zelinka.

Theorem 63 ([153]) Let G be a connected graph with at least three vertices, and
let e be an edge of G which is not a bridge. If e joins two vertices of maximum
degree, then dc(G− e) ≥ dc(G)− 2, otherwise dc(G− e) ≥ dc(G)− 1.

Note that for the complete graph of order at least three, dc(G− e) = dc(G)− 2.
Zelinka defined a graph G to be connectively domatically critical if for any edge
e ∈ E(G) different from a bridge, dc(G−e) < dc(G). Moreover, the following two
results have been established.

Theorem 64 ([153]) Let G be a connectively domatically critical graph and let
dc(G) = d. Then V (G) is the union of pairwise disjoint sets D1,D2, . . . , Dd such
that:

(i) the subgraph Gi of G induced by Di is a tree for each i ∈ {1, . . . , d}.
(ii) the subgraph Gij of G with the vertex set Di ∪ Dj and with the edge set

consisting of all edges joining a vertex of Di with a vertex of Dj is a forest,
each of whose connected components is a star or a complete graph with two
vertices for any i, j from the set {1, . . . , d}, i �= j.

Any Cartesian product of a complete graph with a tree is an example of a graph
fulfilling the assumptions of Theorem 64.

Theorem 65 ([153]) Let G be a connectively domatically critical graph with
dc(G) = d. If G is regular of degree d − 1, then G ∼= Kd. If G is regular of
degree d, then Gi = K2 for each i ∈ {1, . . . , d} and Gij consists of two connected
components isomorphic to K2 for any i, j from the set {1, . . . , d}, i �= j.

In [103], Lemańska studied the effect on the connected domination number of a
connected graph of the deletion of a set of edges. Her main result is the following.

Theorem 66 ([103]) Let Hp be a connected subgraph of order p in G, let Ep be
the edge set ofHp and letG−Ep be the graph obtained fromG by deleting edges of
Ep. IfG andG−Ep are connected, then γc(G) ≤ γc(G−Ep) ≤ γc(G)+ 2p− 2.

As consequence, the next result follows immediately.

Corollary 67 If e is an edge ofG and ifG andG− e are connected, then γc(G) ≤
γc(G− e) ≤ γc(G)+ 2.

3.3 Vertex Removal

The study of the effect of the deletion of any vertex on the connected domination
number was initiated by Ananchuen, Ananchuen, and Plummer in [6]. A graph G
is said to be k connected domination vertex critical, or k − γc-vertex critical, if
γc(G) = k and γc(G−v) < γc(G) for any vertex v ofG. Clearly, since disconnected
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graphs do not have a connected dominating set, only the 2-connected graphs are
concerned with the study of k − γc-vertex critical graphs. Moreover, we note that
the only k − γc-vertex critical graphs for k ∈ {1, 2} are, respectively, the trivial
graph K1 and the complete graph K2p, for p ≥ 2, minus a perfect matching. We
will also refer to k − γ -vertex-critical and k − γt -vertex-critical graphs that are
defined similarly to k − γc-vertex-critical graphs.

It was shown in [7] that a 2-connected graph G is 3 − γc-vertex critical if and
only if it is 3 − γt -vertex critical. This remains true when γc(G) = 4 as proved by
Kaemawichanurat, Caccetta, and Ananchuen [89] who have shown in addition that
for k ≥ 5, the classes of 2-connected k − γc-vertex critical graphs and 2-connected
k − γt -vertex critical graphs do not need to be the same.

It should be noted that for k ≥ 3, there is no complete characterization of k−γc-
vertex critical graphs. For the case k = 3, it has been shown in [6] that if G is a
3 − γc-vertex critical graph, then either G is a cycle C5 or G is 3-connected. In
addition, if S is a vertex cutset of size 3 in a 3− γc-vertex critical graph G, then the
subgraph induced by S contains at most one edge and G − S consists of precisely
two components.

Kaemawichanurat, Caccetta, and Ananchuen [90] established upper and lower
bounds of the order of k − γc-vertex critical graphs in terms of k and the maximum
degree given by the following result.

Theorem 68 ([90]) Let G be a k − γc-vertex critical graph of order n with k ≥ 2.
Then

�+ k ≤ n ≤ (�− 1)(k − 1)+ 3,

and the upper bound is sharp for all k ≥ 2 when � is even.

Similar upper bounds on the order of k − γ -vertex-critical and k − γt -vertex-
critical graphs have been obtained and in both cases, these upper bounds are attained
only if the graph is�-regular (see Fulman et al. [66], Wang et al. [146], and Mojdeh
et al. [120]). This is not the case for the upper bound of Theorem 68. It is shown
in [90] that if k ∈ {2, 3, 4}, then the only graphs achieving the upper bound are �-
regular but they do not need to be�-regular when k ∈ {5, 6} and� = 3.Concerning
the lower bound of Theorem 68, Kaemawichanurat et al. [90] proved that for k ≥ 5,
a graph G is k − γc-vertex critical of order �+ k if and only if G = Ck+2.

In [7], Ananchuen, Ananchuen, and Plummer specifically studied the case of
3− γc-vertex-critical graphs. It has been shown that with the exception of the cycle
C5 these graphs must be 3-connected. Moreover, matching properties of 3 − γc-
vertex-critical graphs were also explored. We begin by the following properties of
3 − γc-vertex-critical graphs with connectivity three.

Theorem 69 ([7]) Let G be a 3− γc-vertex-critical graph and S be a vertex cutset
S with |S| = 3. Then

(i) the subgraph induced by S contains at most one edge.
(ii) G− S consists in two components.
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(iii) G is 1−factor-critical.
(iv) G contains a vertex of degree 3.

Theorem 70 ([7]) Let G be a K1,7-free 3 − γc-vertex-critical graph of order n.
Then

(i) If n is even, then G contains a perfect matching.
(ii) If n is odd, then G contains a near-perfect matching.

Theorem 71 ([7]) Let G be a 3 − γc-vertex-critical graph of even order. If G is
either K1,4-free or K1,5-free and 5-connected, then G is 2−factor-critical.

Theorem 72 ([7]) Let G be a K1,6-free 3 − γc-vertex-critical graph of odd order.
Then G is 1−factor-critical.

Theorem 73 ([7]) Let G be a K1,3-free 3 − γc-vertex-critical graph of odd order
and minimum degree at least four. Then G is 3-factor-critical.

It should be noted that the authors [7] constructed several examples of graphs
showing that the hypotheses of the previous theorems are the best possible.

In a very recent work, Kaemawichanurat [84] studied the 2-connected graphs
that are both k−γc-edge critical and k−γc-vertex critical, and called them maximal
k − γc-vertex critical. He proved that every maximal 3 − γc-vertex critical graph
G satisfies α(G) ≤ κ(G). Moreover if α(G) = κ(G), then κ(G) = δ(G) and
if κ(G) < δ(G), then every two vertices of G are joined by a Hamiltonian path.
Finally, α(G) + ω(G) ≤ n − 1, and the graphs achieving this upper bound are
characterized.

3.4 Identifying Vertices

The study of the effect that identifying two vertices has on the connected domi-
nation number was investigated by Chellali, Maffray, and Tablennehas [37]. The
identification of two vertices u, v (not necessarily adjacent) in a graph G is the
graph Guv obtained from G by deleting u and v and adding a new vertex adjacent
to every vertex of G \ {u, v} that is adjacent to u or v. It was mentioned in [37]
that identifying two vertices u and v in a connected graph G cannot increase
its connected domination number. But it can decrease the connected domination
number by at most one if uv ∈ E(G) or by at most three if uv /∈ E(G). The
authors [37] define a graph G to be connected domination dot-critical, abbreviated
cdd-critical, if identifying any two adjacent vertices decreases γc(G); and G is
totally connected domination dot-critical, abbreviated tcdd-critical, if identifying
any two vertices decreases γc(G). We present characterizations of tcdd-critical
graphs obtained in [37] for the classes of block graphs, split graphs, and unicyclic
graphs as well as a characterization of cdd-critical cacti.
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Theorem 74 ([37]) Let G be a connected block graph. The following statements
are equivalent:

(a) G is a tcdd-critical graph.
(b) G is a cdd-critical graph.
(c) Every block H of G satisfies:

– If H is an end block, then H = P2.
– If H is not an end block, then every vertex of H is a cutvertex.
– Every support vertex belongs to exactly two blocks.

For the class of trees, Theorem 74 leads to the following corollary.

Corollary 75 Let T be a tree of order n ≥ 4. The following statements are
equivalent:

(a) T is tcdd-critical.
(b) T is cdd-critical.
(c) Every support vertex of T has degree two.

Theorem 76 ([37]) Let G be a connected split graph. Then the following state-
ments are equivalent:

(a) G is tcdd-critical.
(b) G is cdd-critical.
(c) G is a corona Kk ◦K1 with k ≥ 2.

Theorem 77 ([37]) Let G be a connected unicyclic graph with cycle C, and let
AC = {x ∈ C : dG(x) = 2}. Then G is a tcdd-critical graph if and only if the
following holds:

(a) Every support vertex in C has degree three and every support vertex not in C
has degree two.

(b) If C contains a support vertex, then:

– AC is an independent set of size different from 1 and 2.
– If AC �= ∅, then every support vertex of C is adjacent to a vertex of AC .

(c) If C does not contain any support vertex, then the subgraph induced by AC has
either zero or at least two edges. Moreover ifAC is independent, then |AC | ≥ 3.

Theorem 78 ([37]) Let G be a connected cactus. Then G is a cdd-critical graph if
and only if the following holds:

(i) Every support vertex that belongs to a cycle of G has degree three, and every
support vertex that does not belong to any cycle has degree two.

(ii) For every cycle C of G, the set AC = {x ∈ C : dG(x) = 2} has size different
from 1 and:

(ii.a) If C contains a support vertex, then AC is an independent set and if
moreover |AC | ≥ 2, then every support vertex of C is adjacent to a vertex
of AC .
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(ii.b) If C does not contain any support vertex, then the subgraph induced by
AC has either zero or at least two edges.

3.5 Subdividing Edges

The study of the connected domination subdivision number was initiated in 2008 by
Favaron, Karami, and Sheikholeslami [63]. The subdivision of an edge e = uv is the
replacement of e with a new vertexw and two new edges uw andwv. The connected
domination subdivision number sdγc (G) of a graph G is the minimum number
of edges that must be subdivided in order to increase the connected domination
number. The motivation for introducing this kind of concept comes from the
domination subdivision number first introduced in Velammal’s PhD thesis [143].
Clearly, since the connected domination number of the graph K2 does not change
when its only edge is subdivided, the graph is supposed to be of order at least 3.

The connected domination subdivision number of a graph can be arbitrarily large
as shown in [63] by giving for every integer k ≥ 2 a connected graph Gk for which
sdγc (Gk) = k. The graph Gk is obtained from a complete graph K3(k−1), where for
every k elements subset S of the vertices of V (K3(k−1)) a new vertex xS is added as
well as all the edges xSu for all u ∈ S. For example, the graph G2 is illustrated in
Figure 5.

Moreover, Favaron et al. [63] have established some upper bounds relating
the connected domination subdivision number to the edge connectivity number
of a graph, the order and the connected domination number. Recall that the edge
connectivity number κ ′(G) of G is the minimum number of edges whose removal
results in a disconnected graph. It is well known that for every graph, κ ′(G) ≤ δ.
Theorem 79 ([63]) Let G be a connected simple graph G of order n ≥ 3. Then

(i) sdγc (G) ≤ κ ′(G) ≤ δ.
(ii) sdγc (G) ≤ �n/2� .

(iii) sdγc (G) ≤ γc(G)+ 1.

Under some conditions on γc(G), the bound in Theorem 79-(iii) was slightly
improved as follows.

Fig. 5 Graph G2
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Theorem 80 ([63]) LetG be a graph of order n ≥ 3. If γc(G) ≥ δ or γc(G) ≥ �n2 �
or if there exists a γc-set S ofG such that each vertex of S has an S-private neighbor,
then sdγc (G) ≤ γc(G).

Moreover, the authors [63] established an upper bound on the sum sdγc (G) +
γc(G) in terms of the order of G and characterized the extremal graphs attaining
this bound.

Theorem 81 ([63]) Every connected graph G of order n ≥ 3 satisfies γc(G) +
sdγc (G) ≤ n− 1, with equality if and only if G is a path or a cycle.

We finish by mentioning that the exact value of the connected domination
subdivision number was determined for grids by showing that sdγc (Pn�Pm) = 1
for each two positive integers m, n with m+ n ≥ 4.

4 Variants of Connected Domination

The purpose of this section is to present some variants of connected domination.
Although quite a few variants have been considered in the literature, we only discuss
seven which we feel are the most significant.

4.1 Connected k-domination

In 1985, Fink and Jacobson [65] gave a generalization of dominating sets in graphs
as follows. For a positive integer k, a subset S of vertices in a graph G = (V ,E)
is k-dominating if every vertex of V − S is adjacent to at least k vertices in
S. In 2009, Volkmann [144] initiated the study of connected k-dominating sets,
that are k-dominating sets whose induced subgraphs are connected. The connected
k-domination number γ ck (G) is the minimum cardinality among the connected
k-dominating sets of G, and the k-domination number γk(G) is the minimum
cardinality of a k-dominating set of G. Clearly, it is interesting to study γ ck (G)
only for graphs G with k ≤ �, otherwise γ ck (G) trivially equals the order of G.
Connected k-domination has been studied in [15, 72, 144] and elsewhere.

Obviously, for every connected graph G of order n, γ ck (G) ≤ n. Volkmann
[144] showed that the equality is attained if and only if all vertices of G are either
cutvertices or vertices of degree less than k. Restricted to graphs with minimum
degree at least k, a characterization of all connected graphs G of order n with
γ ck (G) = n− 1 was given in [144].
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Theorem 82 ([144]) Let k ≥ 2 be an integer, and let G be a connected graph of
order n and minimum degree δ.

1. If δ ≥ 2, then γ c2 (G) = n− 1 if and only if G is a cycle.
2. If δ ≥ k ≥ 3, then γ ck (G) = n− 1 if and only if G is isomorphic to the complete

graph Kk+1.

Attalah and Chellali [15] were interested in graphs G of order n with γ ck (G) =
n− 2, and proved the following results.

Proposition 83 ([15]) Let k ≥ 2 be an integer and G a connected graph such that
γ ck (G) = n− 2 . Then

1. δ ≤ k + 1.
2. If δ ≥ k, then for every independent set S of cardinality at least three, G − S is

a disconnected graph.
3. If δ = k + 1, then G contains no bridge.
4. If δ = k + 1, then for every pair of adjacent vertices x, y, V (G) − {x, y} is a

minimum connected k-dominating set of G.

For k ∈ {2, 3}, the authors [15] provided a complete characterization of
connected cubic graphs G with γ c2 (G) = n − 2 and connected 4-regular claw-free
graphs with γ c3 (G) = n− 2.

Theorem 84 ([15]) Let G be a connected cubic graph of order n. Then γ c2 (G) =
n− 2 if and only if G = K4,K3,3 or G is the complement graph of C6.

Theorem 85 ([15]) Let G be a connected 4-regular claw-free graph of order n.
Then γ c3 (G) = n− 2 if and only if G is isomorphic to K5 or K2,2,2.

Hansberg [72] established a relation between the connected k-domination and
the connected domination numbers.

Theorem 86 ([72]) Let G be a connected graph and k an integer with 1 ≤ k ≤
δ(G). Then γ ck (G) ≥ γc(G)+ k − 2.

In [144], families of graphs are given showing that Theorem 86 is sharp for k ≥ 4.
Moreover, for k ∈ {2, 3} an improvement of Theorem 86 was given by Volkmann
[144] as follows.

Theorem 87 ([144]) If G is a connected graph of order n ≥ 3, then γ c2 (G) ≥
γc(G)+ 1 and γ c3 (G) ≥ γc(G)+ 2.

Additional lower bounds relating the connected k-domination and connected
domination numbers have been obtained in [72]. For any graph G, let κmax(G)

denote the maximum number of components ofG−x among all vertices x ∈ V (G).
Theorem 88 ([72]) Let G be a connected graph and k an integer with 2 ≤ k ≤
δ(G). Then γ ck (G) ≥ γc(G)+ (k − 2)κmax(G).

For k = 2 the following slightly better bound is given.
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Theorem 89 ([72]) Let G be a connected graph on n ≥ 2 vertices. Then

γ c2 (G) ≥ γc(G)+ κmax(G).

Volkmann [144] established two lower bounds on the connected k-domination
number of a graph G in terms of the order, size, and maximum degree of G.

Theorem 90 ([144]) Let k ≥ 2 be an integer, and let G be a connected graph of
order n, size m, and maximum degree �. Then

1. γ ck (G) ≥ n+ n−m−1
k−1 .

2. If γ ck (G) ≤ n− 1, then γ ck (G) ≥
⌈
kn−2
�+k−2

⌉
.

Upper bounds for the connected k-domination number were also obtained,
among which we present one due to Hansberg relating the connected k-domination
number to the k-domination number. Additional upper bounds on the connected k-
domination number in terms of some other domination parameters can be found in
[74] and [72].

Theorem 91 ([72]) Let G be a connected graph and k an integer with 2 ≤ k ≤
�(G). Then

γ ck (G) ≤ 2γk(G)− k + 1.

4.2 Connected Distance k-domination

In this subsection, we survey some results on a generalization of connected
dominating sets using the concept of distances between vertices. Let us first give
some useful definitions. For any integer k ≥ 1, the closed k-neighborhood of a
vertex v ∈ V is the set Nk[v] = {w ∈ V : d(v,w) ≤ k}, and the open k-
neighborhood of v is the set Nk(v) = Nk[v] − {v}. If S is a subset of V, then
open (closed) k-neighborhood of S, denoted by Nk(S) (Nk[S]) is the union of open
(closed) k-neighborhoods of vertices of S. A vertex x ∈ X ⊆ V is said to be
distance k-redundant in X if Nk[x] −Nk[X − {x}] = ∅.

In 1975, Meir and Moon [119] introduced the concept of distance k-domination,
while the concept of distance k-irredundance was introduced by Hattingh and
Henning [77] in 1995. For a positive integer k, a set D ⊆ V is a distance k-
dominating set in G if every vertex of V (G) − D is within distance k from some
vertex ofD. The distance k-domination number γ≤k(G) is the minimum cardinality
of a distance k-dominating set inG. A setX ⊆ V is called distance k-irredundant if
it has no distance k-redundant vertex. The distance k-irredundance number ir≤k(G)
is the minimum cardinality taken over all maximal distance k-irredundant sets ofG.
A connected distance k-dominating set (resp. total distance k-dominating set) is a
distance k-dominating set of G whose induced subgraph is connected (resp. has no
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isolated vertices). The connected distance k-domination number of G, denoted by
γ c≤k(G), is the minimum cardinality of a connected distance k-dominating set and
the total distance k-domination number γ t≤k(G) is the minimum cardinality of a
total distance k-dominating set of G. Note that the distance 1-irredundance number
ir≤1(G) and the total distance 1-domination number γ t≤1(G) are the classical
irredundance and total domination numbers ir(G) and γt (G), respectively.

We begin by the following results of Hansberg et al. [73] bounding γ c≤k(G) in
terms of γ≤k(G) and γ t≤k(G) for any connected graphG,which generalize for k > 1
the results of Theorems 25 and 27-2.

Theorem 92 ([73]) Let G be a connected graph. Then

(i) γ c≤k(G) ≤ (2k + 1)γ≤k(G)− 2k.

(ii) γ c≤k(G) ≤ (3k+1)
2 γ t≤k(G)− 2k.

The next result due to Xu et al. [151] establishes a relationship between γ c≤k(G)
and ir≤k(G) for any graph G and integer k ≥ 2. Note that if ir≤k(G) = 1, then
obviously γ c≤k(G) = 1.

Theorem 93 ([151]) If a graph G is connected, k ≥ 2 and ir≤k(G) ≥ 2, then

(i) γ c≤k(G) ≤ 5
2 ir≤k(G)k − 3k + 2 if ir≤k(G) is even.

(ii) γ c≤k(G) ≤ max{(2k+ 1)ir≤k(G)− 2k, 5
2 ir≤k(G)k− 7

2k+ 2} if ir≤k(G) is odd.

For the class of trees, a better bound was obtained by Hansberg, Meierling, and
Volkmann [73], which exactly generalizes the bound of Theorem 27-1.

Theorem 94 ([73]) If T is a tree, then γ c≤k(T ) ≤ (2k + 1)ir≤k(T )− 2k.

Let dc≤k(G) denotes the connected distance k-domatic number of a graph G
defined as the maximum number of classes in a partition of V into connected
distance k-dominating sets. Note that for k = 1, dc≤1(G) = dc(G).We recall that it

was shown in [152] that γc(G) ≤ 3dc(G) (see Theorem 39). In [108], Li gives an
extension of this result for all k.

Theorem 95 ([108]) Let k ≥ 2 and both G and G be connected. Then γ c≤k(G) ≤
(2k + 1)dc≤k(G).

In [141], Tian and Xu first observed that for every nontrivial connected graph G
and positive integer k, γ c≤k(G) = min γ c≤k(T ), where the minimum is taken over
all spanning trees T of G. It was also observed that for every connected graph G of
order n, γ c≤k(G) ≤ max{1, 2n− 2k−�+ 2}.Moreover, Tian and Xu provided two
upper bounds on γ c≤k(G) that generalize those given by Caro et al. [33] for k = 1
(see Theorem 5). The first upper bound we present is obtained by using probabilistic
methods.

Theorem 96 ([141]) Let G be a nontrivial connected graph of order n with
minimum degree δ. Then
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γ c≤k(G) ≤ n
72k + 20km2 + 17 + 0.5

√
ln q + ln q

q
,

where q = m(δ + 1)+ 2 − t, m = ⌈
k
3

⌉
and t = 3

⌈
k
3

⌉− k.
Note that for k = 1, Theorem 96 yields γc(G) ≤ n 109+0.5

√
ln(δ+1)+ln(δ+1)
δ+1 which

slightly improves the bound γc(G) ≤ n 145+0.5
√

ln(δ+1)+ln(δ+1)
δ+1 given in [33].

Theorem 97 ([141]) Let G be a nontrivial connected graph of order n with
minimum degree δ. Then

γ c≤k(G) ≤ (1 + oδ(1))n
ln q

q
,

where q = m(δ + 1)+ 2 − t, m = ⌈
k
3

⌉
and t = 3

⌈
k
3

⌉− k.
Note that for k = 1, Theorem 97 yields γc(G) ≤ (1 + oδ(1))n ln(δ+1)

δ+1 , already
obtained in [33].

The following upper bound on the eccentricity of G, due to Dankelmann and
Osaye [48], is a generalization of Theorem 34.

Theorem 98 ([48]) LetG be a connected graph of order n and eccentricity ecc(G).

Then ecc(G) ≤ n(γ c≤k(G)+ 2k − 1)− k(γ c≤k(G)+ k − 1)+ γ c≤k(G)
2 − (γ c≤k(G))

2

4 .

4.3 k-connected Domination

To avoid the breakdown of a computer network due to the failure of a single node
or edge, it may be interesting to increase the connectivity of its virtual backbone.
For a k-connected (resp. k-edge-connected) graph G, let γkc(G) (resp. γkec(G))
be the minimum cardinality of a minimum k-connected (resp. k-edge-connected)
dominating set of G. Clearly, γkec(G) ≤ γkc(G), γ(k−1)c(G) ≤ γkc(G), and
γ1c(G) = γ1ec(G) = γc(G).

For big values of δ, Caro and Yuster established an asymptotical upper bound on
γ2c similar as the bound on γc given in Theorem 5.

Theorem 99 ([34]) If G is a 2-connected graph with n vertices and minimum
degree δ, then γ2c(G) ≤ n(ln δ/δ)(1 + oδ(1)).

The authors conjecture that this result can be generalized and that if G is r-
connected, then γrc(G) ≤ n(ln δ/δ)(1 + oδ(1)). They also observed that, contrary
to the ratio γc(G)/γ (G) which is bounded above by 3 in any connected graph by
Theorem 25, γ2c(G)/γ (G)may be arbitrarily large in 2-connected graphs. This can
be seen, for instance, by a cycle Cn = x1x2 · · · xn plus the edges x1xi for i �=
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3, n − 1. To get an upper bound on this ratio, Li et al. added the hypothesis that G
is triangle-free. They also established an upper bound on the ratio γ2ec(G)/γ (G).

Theorem 100 ([110]) Let G be a graph such that γ (G) ≥ 2 and let S be a
dominating set of G.

1. If G is 2-connected and triangle-free, there exists a set X ∈ V (G) such that
|X| ≤ 10|S| − 13 and G[S ∪X] is 2-connected. Hence γ2c(G) ≤ 11γ (G)− 13.

2. If G is 2-edge-connected, there exists a set X ∈ V (G) such that |X| ≤ 4|S| − 4
and G[S ∪X] is 2-edge-connected. Hence γ2ec(G) ≤ 5γ (G)− 4.

The chain obtained from k cycles C6 = xi1xi2 · · · xi6 by identifying xi4 and xi+1
1

for 1 ≤ i ≤ k−1 satisfies γ2ec(G) = 5k+1 = 5γ −4 which shows the sharpness of
Item 2. However, the authors think that the upper bound for γ2c(G) in Theorem 100-
1 can be improved and conjecture that under the same conditions, γ2c(G) ≤ 6γ (G).

Considering the independence number, Li, Yang, and Wu also extended the
second bound γc(G) ≤ 2α(G)− 1 of Theorem 25.

Theorem 101 ([111]) Let G be a graph with independence number α.

1. If G is 2-connected, then γ2c(G) ≤ 6α − 3.
More precisely, ifG contains an induced cycle Ck , γ2c(G) ≤ 6α−2k if k is even,
γ2c(G) ≤ 6α − 2k + 3 if k is odd.

2. If G is 2-connected and triangle-free, then γ2c(G) ≤ 5α − 5.
More precisely, if G contains an induced cycle Ck , γ2c(G) ≤ 5α − 3k/2 if c is
even, γ2c(G) ≤ 5α − (3k − 1)/2 + 2 if c is odd.

3. If G is 2-edge-connected, then γ2ec ≤ 4α − 1.
More precisely, ifG contains an induced cycle Ck , γ2ec(G) ≤ 4α−k if k is even,
γ2ec(G) ≤ 4α − k + 2 if k is odd.

The previous bounds are attained by cycles Cn, and by cliquesKn for items 1 and
3. The authors of [111] also proposed the following problems: Let S be a maximal
independent set of a graph G. Is it true that if G is 2-connected, there exists a set S′
in V − S such that |S′| ≤ 6|S| and G[S ∪ S′] is 2-connected, and if G is 2-edge-
connected, there exists a set S′ in V − S such that |S′| ≤ 4|S| and G[S ∪ S′] is
2-edge-connected?

In not necessarily 2-connected graphs, Paulraj Joseph and Arumugam [125] had
previously given some properties of two variants of the 2-connected dominating
sets, namely the dominating sets without cutvertex and the block dominating sets.

4.4 Doubly Connected Domination

Cyman, Lemańska, and Raczek [46] defined a doubly connected dominating set of
a connected graph G of order n ≥ 2 as a connected dominating set D such that
the induced subgraph G[V \ D] is connected. The doubly connected domination
number γcc(G) is the minimum cardinality of a doubly connected dominating set of
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G. Clearly, γc(G) ≤ γcc(G). The differences γcc(G) − γc(G) and γcc(G) − α(G)
where α is the independence number can be arbitrarily large as shown, for instance,
by the corona Kn/2 ◦ K1. For any triple a, b, c of positive integers such that 4 ≤
a ≤ b ≤ c and b ≤ 2a − 3 if a is odd, b ≤ 2a − 2 if a is even, Arriola and Canoy
[11] constructed a graph G such that γt (G) = a, γc(G) = b, γcc(G) = c. They
also determined the doubly connected dominating number of the corona and of the
lexicographic product of two graphs.

In [46] it is proved that, given a connected graph G and a positive integer k,
the problem of knowing whether γcc(G) ≤ k is NP-complete even in the class of
bipartite graphs.

We gather below the principal bounds on γcc(G) in terms of the order, size,
maximum degree, and connectivity of G. A graph G belongs to Family U if it is
obtained from two disjoint trees T1 and T2 by adding n(T2) edges, one edge joining
each vertex of T2 to one arbitrarily chosen vertex of T1.

Theorem 102 ([46]) Let G be a connected graph with n ≥ 2.

1. γcc(G) ≤ min{n− 1, 2m− n+ 1}.
γcc(G) = 2m− n+ 1 if and only if G is a tree.
γcc(G) = n− 1 if and only if n = 2 or G− {u, v} is disconnected for each pair
u, v of adjacent non-cutvertices.

2. γcc(G) ≥ 2n − m − 2 and if γcc(G) > 1, then γcc(G) ≥ n/�. Moreover
γcc(G) = 2n−m− 2 if and only if G belongs to Family U .

3. γcc(G) ≤ n− κ + 1.

Cyman et al. also studied the effect of an edge subdivision and of a vertex deletion
on γcc(G). We denote by G � wuv the graph obtained from G by subdividing the
edge uv by a new vertex w.

Theorem 103 ([46]) Let G be a connected graph of order n ≥ 2 and x a non-
cutvertex of G.

1. γcc(G) ≤ γcc(G�wuv) for any edge subdivision ofG and γcc(G�wuv)−γcc(G)
can be arbitrarily large.

2. γcc(G)− γcc(G− x) and γcc(G− x)− γcc(G) can be arbitrarily large.

In view of Theorem 103-1, Karami et al. [92] studied the doubly connected
domination subdivision number sdγcc (G) which is the minimum number of edges
that must be subdivided in order to increase the doubly connected domination
number. They gave a new upper bound on γcc(G) and bounds on sdγcc (G) in terms
of the order, the minimum degree, the edge connectivity κ ′, the maximum matching
number α′ or the doubly connected dominating number.

Theorem 104 ([92]) Let G be a connected graph of order n ≥ 3.

1. γcc(G) ≤ n− δ.
2. sdγcc (G) ≤ max{1, δ − 1}.
3. sdγcc (G) ≤ min{�n−1

2 �, n− δ, κ ′, α′, γcc + 1}.
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4. sdγcc (G) ≤ min{� | Gcontains an odd cycle of length �}.
5. sdγcc (G) ≤ n− γcc(G) with equality if and only ifG−{u, v} is disconnected for

all pairs u, v of adjacent non-cutvertices of G.

They also proved that for a special graph Hk with order
(3(k−1)

k

)+ 3(k − 1) and
sdγc(Hk) = k [63], sdγcc (Hk) = 3. This shows that sdγc(G)−sdγcc(G) can be
arbitrarily large. From Items 2 and 4 of Theorem 104, sdγcc (G) ≤ 3 if G is planar.
The authors of [92] conjecture that the good bound is 2.

Akhbari et al. established a Nordhaus–Gaddum type inequality for the doubly
connected dominating number. For n ≥ 4, let Ln be the graph of order n consisting
of a clique Kn−2 plus two pendant edges attached at two different vertices of the
clique. Note that the complement Ln is connected.

Theorem 105 ([1]) LetG be a connected graph of order n ≥ 4 whose complement
G is connected. Then γcc(G) + γcc(G) ≤ n + 3 with equality if and only if G ∈
{Ln,Ln} for n ≥ 5.

4.5 Weakly Connected Domination

The concept of weakly connected domination was introduced by Dunbar et al. in
[60]. A dominating set S of vertices of G = (V ,E) is weakly connected if the
subgraph generated by the edges ofG with at least one endvertex in S is connected.
The weakly connected domination number γw(G) of G is the minimum cardinality
of a weakly connected dominating set of G. Clearly, every connected dominating
set is weakly connected, thus implying γ (G) ≤ γw(G) ≤ γc(G). In [57], Domke
et al. defined a graph G to be (γ, γw)-perfect (resp. (γw, γc)-perfect) if γ (H) =
γw(H) (resp. γw(H) = γc(H)) for every induced subgraph H of G. Domke et
al. characterized the graphs which are (γ, γw)-perfect or (γw, γc)-perfect. A kite is
obtained from a cycle C4 and a path P2 by joining one vertex of the path and one
vertex of the cycle with an edge.

Theorem 106 ([57]) Let G be a connected graph. Then

1. G is (γ, γw)-perfect if and only if G is (P6, C6, kite)-free.
2. G is (γw, γc)-perfect if and only if G is (P5, C5)-free.

Since γw(P5) = γw(C5) = 2 and γc(P5) = γc(C5) = 3, Item 2 of Theorem 106
is a consequence of Theorem 22. The following theorems give inequalities between
γw and γc, γ or other graph parameters.

Theorem 107 ([60]) Let G be a connected graph of order n.

1. γc(G) ≤ 2γw(G)− 1. Hence γw(G) ≥ � diam
2 �.

2. γw(G) ≤ 2γ (G)− 1.
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Moreover, given two integers b, r with 0 ≤ r ≤ b− 1, there exists a tree T1 with
γw(T1) = b and γc(T1) = b + r and a tree T2 with γ (T2) = b and γw(T2) = b + r .
This proves that the two bounds are attained.

Hattingh and Henning [78] related γw to γt and to the matching number α′, Chen
and Shiu [39] to the irredundance number ir(G), and Sanchis [132] to the size m.

Theorem 108 ([78]) Let G be a connected graph of order n ≥ 2.

1. If � < n− 1, γw(G) ≥ γt (G)+1
2 .

2. γw(G) ≤ 3γt (G)−2
2 .

The description of two families of extremal graphs for the first bound and a
constructive characterization of the extremal trees for the second bound are given in
[78].

Theorem 109 ([39]) Let G be a connected graph with irredundance number
ir(G). Then γw(G) ≤ 5

2 ir(G)− 2 and if γw(G) = 5
2 ir(G)− 2, then ir(G) = 2.

Theorem 110 ([132]) Let G be a connected graph of order n, size m, and weakly
connected domination number γw ≥ 3. Then m ≤ (

n−γw+1
2

)
. The extremal graphs

are described.

Theorem 111 ([78]) Let G be a connected graph of order n ≥ 2 and matching
number α′(G). Then γw(G) ≤ α′(G).

Clearly, every vertex cover of a connected graph G is a weakly connected
dominating set and thus γw(G) ≤ β(G) = n − α(G), where β is the vertex
covering number of G. This bound on γw(G) is improved by Theorem 111 since
α′(G) ≤ β(G) for every graph.

When the graph is a tree T , every weakly connected dominating set is a vertex
cover and thus γw(T ) = β(T ) = n − α(T ). This remark leads to the equality
γw(G) = n−max{α(T )|T is a spanning tree ofG} and to its corollary γw(G) ≤ n/2
for every connected graph G of order n [60]. Some results on γw are specific for
trees. Recall that γw(G) ≤ γc(G) ≤ n −� for any connected graph. Dunbar et al.
[60] showed that a tree T satisfies γw(T ) = n−� if and only if T is obtained from
a star K1,k by subdividing at most k − 1 of its edges. Lemańska [104] proved that
γw(T ) ≥ (n − n1 + 1)/2 in every tree of order n with n1 leaves and described the
family of trees attaining the bound. Domke et al. [57] studied the γw-excellent trees
(every vertex of T belongs to a γw(T )-set) and the trees such that γw(T ) is equal to
γc(T ) or to γ (T ).

Theorem 112 ([57])

1. A tree is T is γw-excellent if and only if α(T ) = n/2.
2. For a tree T , both conditions γw(T ) = γc(T ) and γ (T ) = γc(T ) are equivalent

to the property that every vertex of T is a leaf or a support.
3. There exists a constructive characterization of the trees satisfying γw(T ) =
γ (T ).
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Clearly, the deletion of a non cut-edge e of a connected graphG cannot decrease
γw(G). Lemańska showed that γw(G) does not increase by more than 1. More
generally

Theorem 113 ([103]) Let G be a connected graph and Ep the edge set of a
connected subgraph of order p ofG such thatG−Ep is connected. Then γw(G) ≤
γw(G− Ep) ≤ γw(G)+ p − 1.

In the other direction, an edge addition cannot increase γw(G) and by Theo-
rem 113, γw(G + e) ≥ γw(G) − 1 for all e ∈ E(G). A connected graph G is
weakly connected domination critical, or γw-critical, if γw(G + e) < γw(G) for
all e ∈ E(G). The graph G is k-γw-critical if it is γw-critical and γw(G) = k.

Lemańska and Patyk proved that a cycle Cn is k-γw-critical if and only if n is even,
and that no tree is k-γw-critical. They observed that G is 2-γw-critical if and only
if it is 2-γc-critical or, equivalently, 2-γ -critical (cf Section 3.1.1) and studied the
k-γw-criticality for k = 3.

Theorem 114 ([105]) There exist 3-γw-critical graphs of any order n ≥ 6, and
every 3-γw-critical graph has diameter at most 4.

A connected graph G is γw-stable if γw(G + e) = γw(G) for all e ∈ E(G).
Lemańska and Raczek [106] showed that a tree is γw-stable if and only if it admits
a unique minimum weakly connected dominating set, and described the family of
stable trees.

Dunbar et al. [60] proved that the problem of determining whether the weakly
connected dominating number of a connected graph G is at most a given integer k
is NP-complete even if G is chordal or bipartite.

4.6 Connected Domination Game

Very recently, Borowiecki, Fiedorowicz and Sidorowicz [27] introduced the con-
nected domination game defined on a nontrivial connected graph G as follows. The
game is played by two players, D (called Dominator) and S (called Staller) who
alternate taking turns choosing a vertex of G. A move of a player by choosing a
vertex v is legal, if (1) the vertex v dominates at least one additional vertex that was
not dominated by the set of previously chosen vertices, and (2) the set of all chosen
vertices induces a connected subgraph of G. Player D starts the game and the game
ends when none of the players has a legal move, that is all vertices are dominated.
The aim of D is to finish as soon as possible, while the Staller S tries to delay the
end of the game as much as possible. IfX is the set of played vertices obtained at the
end of the connected domination game, then connected game domination number
γcg(G) is the minimum cardinality of X, when both players played optimally onG.

It was first noticed that for every connected graph G, γc(G) ≤ γcg(G) ≤
2γc(G) − 1. Moreover, for all nontrivial trees T , γcg(T ) = γc(T ). The authors
extended their study to the class of 2-trees, where the following upper bound has
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been shown. Recall that a graph G is a k-tree if either G is the complete graph on
k vertices, or G has a vertex u whose neighborhood is a clique of order k and the
graph obtained by deleting u from G is also a k-tree.

Theorem 115 ([27]) If G is a 2-tree of order n ≥ 4, then

γcg(G) ≤
⌈

2(n− 4)

3

⌉

+ 1.

Exact values of the connected domination game have been established for the
special 2-trees, called 2-paths, defined inductively as follows [27]: the unique 2-
path of order 4 is K4 − e. If G is a 2-path and x and y are adjacent vertices of G
such that dG(x) = 2 and dG(y) = 3, then add a new vertex by joining it to x and y.

Proposition 116 ([27]) IfG is a 2-path of order n ≥ 5, then γcg(G) =
⌈

2(n−4)
3

⌉
+1

if n ≡ 1(mod3 ) and γcg(G) =
⌈

2(n−4)
3

⌉
otherwise.

The connected domination game has been particularly studied on the Cartesian
product, first in [27] and then in [30]. General upper and lower bounds have been
established in [30]. In particular, the upper bound generalizes the one obtained in
[27] when one of the factors is a complete graph.

Theorem 117 ([30]) Let G and H be connected graphs. Then

1. γcg(G�H) ≤ min{2γc(G)n(H), 2γc(H)n(G)} − 1.

2. If min{n(G), n(H)} ≥ 2, then γcg(G�H) ≥
{

2γc(G) if n(H) = 2
2γc(G)+ 1 if n(H) ≥ 3.

Moreover, Bujtás et al. showed that for the productKk�G with sufficiently large
k, the upper bound of Theorem 117 can be attained for a large class of graphs.

Theorem 118 ([30]) If G is a connected graph and k ≥ min{4�(G) +
α(G), 2n(G)− 1}, then

γcg(Kk�G) = 2n(G)− 1.

Exact values of the connected game domination number are also obtained in
special graph products.

Theorem 119 ([27]) Let G = Kn�K1,m−1 for n ≥ 2 and m ≥ 4. Then

1. If m �= n, then γcg(G) = min{2n− 1, 2m− 1} = 2γc(G)− 1.
2. If m = n, then γcg(G) = 2n− 3.

Theorem 120 ([30]) Let G = K1,n with n ≥ 3, and H ∈ {Pm,Cm}. Then

γcg(K1,n�H) = 2m− 1.
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Theorem 121 ([27]) For m ≥ 4, γcg(K2�Pm) = 2m − 4; γcg(K3�Pm) =
2m − 3; γcg(Kn�Pm) = 2m − 1 for n ≥ 4. Moreover, for short paths, we have
γcg(K2�P2) = 2; γcg(Kn�P2) = 3 for n ≥ 3; γcg(K2�P3) = γcg(K3�P3) = 3
and γcg(Kn�P3) = 5 for n ≥ 4.

Theorem 122 ([30]) If m ≥ 4, then γcg(P3�Pm) = γcg(K3�Cm) = 2m− 2.

The authors of [30] gave a list of open problems, in particular the determination
of the exact value of the connected game domination number for Pn�Pm, Pn�Cm,
and Cn�Cm for every m and n.

4.7 Dominating Sets with at Most k Components

The connected dominating sets with at most k components were studied by Hartnell
and Vestergaard [76] and by Kouider and Vestergaard [99]. For a graph G with at
most k components and a positive integer k, γ kc (G) is the minimum cardinality of a
dominating set ofG with at most k components. Clearly γ (G) ≤ γ kc (G) and ifG is
connected, γ kc (G) ≤ γ k−1

c (G) ≤ γc(G). The main results concern general graphs
and trees.

Theorem 123 Let G be a connected graph of order n and k a positive integer.

1. Hartnell and Vestergaard [76] γ kc (G) ≥ γc(G)− 2(k − 1).
2. Kouider and Vestergaard [99] γ kc (G) ≤ n − (diam(G) − 1)(δ − 2)/3 − 2k if
δ ≥ 3 and diam(G) ≥ 3k − 1.

3. Kouider and Vestergaard [99] γ kc (G) ≤ n − maxx∈V {d(x) + 2 min{k −
1, (ecc(x)− 2)/3}}.

4. Kouider and Vestergaard [99] γ kc (G) ≤ n−2(�−1)−2 min{k−1, (d�−2)/3},
where d� is the maximum distance between two vertices of degree � if such a
pair exists.

Theorem 124 Let T be a tree of order n and k a positive integer.

1. Hartnell and Vestergaard [76] If k ≥ 2 and if d(x) ≥ d ≥ 3 for every vertex x
different from a leaf or a support, then γ kc (T ) ≥ γc(T )− k−2

d−2 .

2. Hartnell and Vestergaard [76] If k ≤ (n − 1)/2, then γ kc (T ) ≤ n − k − 1. For
k = 1, the bound is attained by paths.

3. Kouider and Vestergaard [99] If 2 ≤ k ≤ (n− 1)/2, γ kc (T ) = n − k − 1 if and
only if (n− 3)/2 ≤ k ≤ (n− 1)/2 and γ (T ) = �n2 �.
The trees satisfying γ (T ) = �n2 � belong to two families described in [128] and

in [20].
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5 Complexity and Algorithmic Aspects

Given a connected graphG = (V ,E) and a positive integer k ≤ |V | , the connected
domination problem, to which we shall refer as C-DOM problem, asks whether there
exists a connected dominating set of G of cardinality at most k. C-DOM problem
has been shown to be NP-complete for several classes of graphs. As mentioned
in Section 1, Hedetniemi and Laskar [79] have shown that finding a minimum
connected dominating set in a graph G is equivalent to the problem of finding a
spanning tree in G that maximizes the number of leaves over all spanning trees, to
which we shall refer as MLST problem. Based on this Gallai-type result, C-DOM
problem is NP-hard for any class of graphs for which the MLST problem is NP-
hard. The first result on the NP-completeness of C-DOM problem was obtained in
1983 and is due to Pfaff, Laskar, and Hedetniemi [127] who showed it for bipartite
graphs. In a technical report [107], Lemke showed in 1988 the NP-hardness of the
MLST problem for cubic graphs. Polynomial-time algorithms for computing the
connected domination number have been designed for specific families of graphs.
The first one was due to Corneil and Perl [45] in 1984 for cographs. We summarize
in Table 1 some complexity results concerning some classes of graphs, where the
containment relations between some of them are given below. Also, we will write
NP-c (resp. P) instead of NP-complete (resp. polynomial-time solvable).

Colbourn and Stewart [44] showed in 1990 that for permutation graphs, C-
DOM can be solved in polynomial time. We also note that Chang [35] was the
first to propose in 1998 an O(n + m) time algorithm for computing the connected
domination number for circular-arc graphs but this was improved to an O(n)
algorithm in 2004 by Hung and Chang [82].

Since the C-DOM problem is NP-hard, several researchers explored approxima-
tion algorithms for it. It should be noted that even if C-DOM and MLST problems
are equivalent from the point of view of the optimization, this is not the case
in terms of approximation algorithms. For instance, Lu and Ravi [113] gave a
polynomial-time 3-approximation algorithm for the MLST problem while Guha
and Khuller [71] showed that a polynomial-time constant-approximation algorithm
cannot exist for the C-DOM problem. More precisely, they showed that the C-DOM
problem has no polynomial-time ε ln |V |-approximation for 0 < ε < 1 unless
NP⊆DTIME(|V |O(log log |V |)). However, they proposed an algorithm with a ln�+3
approximation factor, which has been improved to ln� + 2 by Ruan et al. [130].
Restricted to special classes of graphs, this approximation has been much improved.
For example, for cubic graphs a 4/3-approximation algorithm is given in [25]. But
Bonsma [24] proved that in this class, there exists ε > 0 such that no polynomial
(1 + ε)-approximation algorithm is possible unless P=NP. This proves that the C-
DOM problem is APX-hard in the class of cubic graphs.

In [135], Schaudt and Schrader studied the algorithmic complexity of the
problem to decide whether a given graph has a connected dominating set whose
induced subgraph belongs to a given class of graphs. By considering a wide variety
of graph classes (including, for example: perfect graphs, planar bipartite graphs,
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Table 1 Complexity results
for the connected domination
number.

Graph class Complexity Citation, year

Bipartite graphs NP-c [127], 1983

Split graphs NP-c [102], 1983

Planar bipartite graphs NP-c [149], 1985

Chordal bipartite graphs NP-c [123], 1987

Cubic graphs NP-c [107], 1988

Circle graphs NP-c [96], 1993

Undirected path graphs NP-c [97], 1994

Planar cubic graphs NP-c [129], 2016

Grid graphs NP-c [43], 1990

Cographs P [45], 1984

Series-parallel graphs P [149], 1985

Strongly chordal graphs P [149], 1985

2-trees P [149], 1985

Distance-hereditary graphs P [49], 1988

k-polygon graphs P [62], 1990

Doubly chordal P [121], 1993

Cocomparability graphs P [29, 100], 1993

Trapezoid graphs P [112], 1995

Circular-arc graphs P [82], 2004

chordal bipartite ⊂ bipartite ⊂ comparability,
split ⊂ chordal,
cograph ⊂ distance-hereditary graphs,
interval ⊂ strongly chordal ⊂ chordal,
permutation ⊂ k-polygon ⊂ circle,
permutation ⊂ cocomparability,
interval ⊂ trapezoid,
grid graphs (induced subgraphs of grids) ⊂ Unit disk graphs.

distance-hereditary graphs, cacti, . . . ), they showed that this problem is NP-hard
even when the instances are restricted to be K1,5-free graphs.

We close this section by mentioning that the decision problem corresponding
to the problem of computing the connected domatic number dc(G) is NP-hard. A
complete proof of this result can be found in the book of Du and Wan [58].

6 Conjectures and Open Problems

We first list some conjectures about connected domination collected from published
papers or produced by computer programs.

1. [Griggs, Kleitman, Shastri] [69] If G is a connected cubic {C3, C4}-free graph,
then γc(G) ≤ 3n/5 − c for some constant c.
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2. [Comby, Schaudt] [32] Let H be obtained from a triangle abc by adding a
pendant edge at a and a pendant path of length 3 at each of b, c. If G is connected
{P9, C9,H }-free, then γc(G) ≤ 2γ (G).

3. [Conjecture Graffiti 174] [52] (see Theorem 35) In every connected graph,
γc(G) ≤ b−maxvα(N(v))+1, where b, the bipartite number equals the maximum
order of an induced bipartite subgraph of G.

4. [Graffiti 177] [52] (see Theorem 35) In every connected graph of order n,
γc(G) ≤ n − 2α + b − δ′, where δ′ is the second smallest minimum degree of
G.

5. [Graffiti 179] [52] In every connected graph of order n, γc(G) ≤ n − � + b −
maxvα(N(v))− γ.
6. [Graffiti 2] [52] (see Theorem 3 for triangle-free graphs). In every connected
graph of order n, γc(G) ≤ n− 2�vα(N(v))

n
+ 2.

7. [Graffiti 190] [52] (see Theorem 36) Let G be a connected graph. If δ′ ≥ (n −
γc + 1)/2, then G is traceable.

A weaker conjecture 190a was also proposed saying: if δ′ ≥ n− γc − 1, then G
is traceable [148].

8. [Kaemawichanurat] [84] (see Section 3.3). Let G be a maximal 3 − γc-vertex
critical graph with α = κ = δ. Then G is either C5 or any two vertices of G are
joined by a Hamiltonian path.

9. [Li, Wu, Yang] [110] (see Theorem 100). Let G be a 2-connected triangle-free
graph and let S be a dominating set of G with |S| ≥ 2. There exists a subset T of
vertices such that |T | ≤ 5|S| and G[S ∪ T ] is 2-connected.

10. [Caro, Yuster] [34] (see Theorem 99). Let k be a fixed integer and let G be a
k-connected graph of minimum degree δ. Then γkc(G) ≤ n lnδ

δ
(1 + oδ).

11. [Karami, Khoeilar, Sheikholeslami] [92] (see Section 4.4). The doubly con-
nected domination subdivision number of a connected planar graph is at most 2.

We now give some open problems unaddressed by the various studies. Prob-
lems 14 and 15 have been noticed by S.T. Hedetniemi in a private communication.

12. How many edges should be added to G without changing γc(G)?

13. How many edges should be added to G to decrease γc(G)?

14. Determine γc(Pn�Pm) for every m and n. Note that in [109], the exact values
of εT (Pn�Pm) are given when m = 2, 3, 4, 6.

15. Determine the 2-connected domination number of Pn�Pm for every m and n.

16. [Bujtás, Dokyeesun, Iršič, Klavžar] [30] (see Section 4.6). Determine
γcg(Pn�Pm), γcg(Pn�Cm), and γcg(Cn�Cm) for every m and n.
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Restrained and Total Restrained
Domination in Graphs

Johannes H. Hattingh and Ernst J. Joubert

1 Introduction and Terminology

For a simple undirected graph G = (V ,E), we denote by n(G) = |V | its order, by
m(G) = |E| its size, by δ(G) (�(G), respectively) its minimum degree (maximum
degree, respectively), and by N(v) the neighborhood of the vertex v. We refer the
reader to the glossary for any definitions not given here. For a set S ⊆ V , the
subgraph induced by S in G is denoted by G[S]. If H is a subgraph of G, then
G − H will denote the induced graph G[V (G) − V (H)]. A one regular spanning
subgraph of a graph G is called a one factor of G. A leaf in a graph is a vertex of
degree one, while a support vertex is a vertex adjacent to a leaf. A strong support
vertex is a support vertex which is adjacent to two or more leaves. A graph G is
said to be claw-free if for any vertex u of degree at least three we have that if
v,w, x ∈ N(u), then G[{v,w, x, u}] is not isomorphic to K1,3.

A set S ⊆ V is a dominating set of G, denoted by DS, if every vertex not in
S is adjacent to a vertex in S. The domination number of G, denoted by γ (G), is
the minimum cardinality of a DS. A total dominating set, denoted by TDS, of a
graph G without isolated vertices is a set S of vertices of G such that every vertex
in G is adjacent to a vertex in S (other than itself). The total domination number of
G, denoted by γt (G), is the minimum cardinality of a TDS of G. The concept of
domination in graphs, with its many variations, is now well studied in graph theory.

J. H. Hattingh (�)
Department of Mathematics and Statistics, University of North Carolina at Wilmington,
Wilmington, NC, USA
e-mail: hattinghj@uncw.edu

E. J. Joubert
Department of Mathematics, University of Johannesburg, Auckland Park 2006, South Africa

© Springer Nature Switzerland AG 2020
T. W. Haynes et al. (eds.), Topics in Domination in Graphs, Developments in
Mathematics 64, https://doi.org/10.1007/978-3-030-51117-3_5

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51117-3_5&domain=pdf
mailto:hattinghj@uncw.edu
https://doi.org/10.1007/978-3-030-51117-3_5


130 J. H. Hattingh and E. J. Joubert

A DS S ⊆ V is a restrained dominating set, denoted by RDS, if every vertex in
V − S is adjacent to a vertex in V − S. Every graph has a restrained dominating
set, since S = V is such a set. The restrained domination number of G, denoted
by γr(G), is the minimum cardinality of an RDS of G. Restrained domination
was introduced by Telle and Proskurowski in 1997 [44], albeit indirectly, as a
vertex partitioning problem (see also [45], [46], [47], [48], and [49]). However,
the parameter was formally defined by Domke, Hattingh, Hedetniemi, Laskar, and
Markus in their 1999 paper [11] on restrained domination in graphs, and also studied
by Henning in his 1999 paper [26]. Subsequently over the past twenty or so years,
the restrained domination number and its variations have been extensively studied
in the literature.

As explained in the introductory 1999 paper [11], the definition of restrained
domination is application driven. One application given is that of prisoners and
guards. In this situation, each vertex in a graph G = (V ,E) represents either a
guard (a vertex in an RDS S) or a prisoner (a vertex in V − S); every prisoner
must be observed by at least one guard (be adjacent to at least one vertex in S) and
every prisoner must be able to see at least one other prisoner (be adjacent to at least
one vertex in V − S). The associated optimal placement of guards corresponds to
an RDS of minimum cardinality. Since every RDS of a graph G is a DS of G, it
follows that γ (G) ≤ γr(G).

A total restrained dominating set, denoted by TRDS, of a graph G without
isolated vertices is a TDS S such that every vertex of V − S is adjacent to a vertex
in V − S. The total restrained domination number of G, denoted by γtr (G), is the
smallest cardinality of a TRDS of G. In our application of prisoners and guards,
each guard must now be observed by another guard. The concept of total restrained
domination was introduced by Chen, Ma, and Sun in 2005 [2]. Since every TRDS
of a graph G is an RDS (TDS, respectively) of G, it follows that γr(G) ≤ γtr (G)
(γt (G) ≤ γtr (G), respectively).

Let G = (V ,E) be a graph and let {S, V − S} be a partition of V into two
non-empty sets. Consider vertices u in S and v in V − S. One can specify a
variety of conditions on the number of neighbors that u must have in S, denoted
by degS(u), and in V −S, denoted by degV−S(u), and the number of neighbors that
a vertex v in V − S must have in S, denoted by degS(v), and in V − S, denoted
by degV−S(v). Many dominating concepts, including restrained and total restrained
domination, can be defined in terms of various combinations of these four values.
In what follows, X will denote that the particular value does not matter.
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∀u ∈ S ∀v ∈ V − S
degS(u) degV−S(u) degS(v) degV−S(v) Type of domination

= 0 X X X S is an independent set

X X ≥ 1 X S is a dominating set

X X ≥ 1 ≥ 1 S is a restrained dominating set

≥ 1 X ≥ 1 X S is a total dominating set

≥ 1 X ≥ 1 ≥ 1 S is a total restrained dominating set

= 0 X ≥ 1 X S is an independent dominating set

= 0 X ≥ 1 ≥ 1 S is an independent restrained dominating set

= 0 X = 1 X S is an efficient dominating set

X X = 1 X S is a perfect dominating set

X ≥ 1 ≥ 1 X two disjoint dominating sets

≥ 1 ≥ 1 ≥ 1 ≥ 1 two disjoint restrained dominating sets

or two disjoint total dominating sets

In this chapter, we will survey results on restrained and total restrained dom-
ination in graphs. We begin by surveying results in the literature on restrained
domination in graphs.

2 Restrained Domination

2.1 Exact Results

LetKn, Cn, and Pn denote, respectively, the complete graph, the cycle, and the path
of order n ≥ 1. Also, let Kn1,...,nt denote the complete multipartite graph where
ni ≥ 1 for 1 ≤ i ≤ t . We call K1,n−1 a star. Domke, Hattingh, Hedetniemi, Laskar,
and Markus determined the exact value for the restrained domination number for
several simple graph families.

Proposition 1 ([11]) If n �= 2 is a positive integer, then γr(Kn) = 1.

Proposition 2 ([11]) If n1 and n2 are integers such that min{n1, n2} ≥ 2, then
γr(Kn1,n2) = 2.

Proposition 3 ([11]) If t ≥ 3 is an integer, then

γr(Kn1,...,nt ) =
{

1 if min{n1, . . . , nt } = 1
2 otherwise

.

Proposition 4 ([11]) If n ≥ 1 is an integer, then γr(Pn) = n− 2�n−1
3 �.

Proposition 5 ([11]) If n ≥ 3, then γr(Cn) = n− 2�n3 �.
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2.2 Lower Bounds

The following result is due to Hattingh, Joubert, Loizeaux, Plummer, and Van der
Merwe.

Theorem 6 ([24]) If G is a connected graph of order n and size m, then γr(G) ≥
n− 2m

3 .

As an immediate consequence we obtain the following result due to Domke,
Hattingh, Henning, and Markus.

Corollary 7 ([12]) If T be a tree of order n, then γr(T ) ≥ �n+2
3 �.

Moreover, these authors also characterized the extremal trees T of order n
achieving this lower bound. A simpler constructive characterization of the extremal
trees T of order n achieving this lower bound was found by Hattingh and Plummer
in [25].

We denote the set of leaves of a tree T by L(T ). For v ∈ V (T ) and � ∈ L(T ),
the path v, x1, . . . , xk, � is called a v − L endpath if deg xi = 2 for each i.

In order to state the characterization, we define three simple operations on a tree
T .

• O1. Join a leaf or a remote vertex, or a vertex v or x of T on an endpath v, x, y, z
to a vertex of K1, where n(T ) ≡ 1 mod 3.

• O2. Join a remote vertex, or a vertex v of T which lies on an endpath v, x, z to a
leaf of P2, where n(T ) ≡ 0 mod 3 or n(T ) ≡ 1 mod 3.

• O3. Join a leaf of T to � disjoint copies of P3 for some � ≥ 1.

Let T be the family of all trees obtained from P2 or P4 by a finite sequence of
Operations O1–O3.

Theorem 8 ([25]) A tree T of order n has γr(T ) = �(n + 2)/3� if and only if
T ∈ T .

Let C1, . . . , C� be pairwise disjoint cycles such that
∑�
i=1 n(Ci) ≡ nC ≡ 0 mod

3. Let G be the cubic graph obtained from the disjoint union of nC3 isolated vertices
and the cycles C1, . . . , C� by joining each isolated vertex to exactly three vertices
of the disjoint union of C1, . . . , C�. As G is cubic, the added edges partition the
vertices of the cycles. Note that n(G) = 4nC/3. All graphs of order n constructed
in this way will be denoted by Gn.

The following result is due to Hattingh and Joubert.

Theorem 9 ([20]) If G is a cubic graph of order n, then γr(G) ≥ n/4. Moreover,
γr(G) = n/4 if and only if G ∈ Gn.
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2.3 Upper Bounds

Domke, Hattingh, Hedetniemi, Laskar, and Markus established the following upper
bounds on the restrained domination of a connected graph.

Proposition 10 ([11]) Let G be a connected graph of order n. Then γr(G) = n if
and only if G is a star.

Proposition 11 ([11]) IfG is a connected graph of order n andG is not a star, then
γr(G) ≤ n− 2.

Theorem 12 ([11]) If T is a tree of order n ≥ 3, then γr(T ) = n − 2 if and only
if T is obtained from P4, P5 or P6 by adding zero or more leaves to the support
vertices of the path.

Theorem 13 ([11]) LetG be a connected graph of order n containing a cycle. Then
γr(G) = n−2 if and only ifG is C4, C5 orG can be obtained from C3 by attaching
n− 3 leaves to at most two of the vertices of the cycle.

The following two results are due to Ulatowski.

Theorem 14 ([50]) If T is a tree of order n ≥ 4, then γr(T ) = n−3 if and only if T
is obtained from P5 (P6, respectively) by adding zero or more leaves to the support
vertices of P5 (P6, respectively) and adding either at least one leaf or exactly one
support vertex to exactly one vertex of the center of P5 (P6, respectively).

Let G be the family of graphs as depicted in Figure 1 of [50].

Theorem 15 ([50]) Let G be a connected graph of order n ≥ 4 containing a cycle.
Then γr(G) = n− 3 if and only if G ∈ G.

Let B be the family of graphs depicted in Figure 1. The following result is due to
Domke, Hattingh, Henning, and Markus.

Theorem 16 ([12]) Let G be a connected graph of order n with δ ≥ 2. If G /∈ B =
{B1, . . . , B8}, then γr(G) ≤ n−1

2 .

A graph G of order n is an (n − 1)/2-minimal graph if G is edge-minimal with
respect to satisfying the following three conditions:

1. δ(G) ≥ 2
2. G is connected, and
3. γr(G) ≥ (n− 1)/2.

Let B∗ = {B1, . . . , B5}, let F = {F1, . . . , F22} be the collection of graphs shown
in Figure 2. Construct a collection H of graphs as follows: Let H1,m be constructed
fromm disjoint 5-cycles by identifying a set ofm vertices, one from each cycle, into
one vertex. Let H1 = {H1,m |m ≥ 2}. For i = 2, 3, . . . , 7, let Hi = {Hi,m |m ≥ 1}
where Hi,m is the graph in Figure 3. For i = 8, 9, 10, let Hi = {Hi,m,� |m ≥ � ≥ 1}
where Hi,m,� is the graph shown in Figure 3. Let H = ∪10

i=1Hi .
Henning characterized the (n− 1)/2-minimal graphs as follows:
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Fig. 1 The collection B of graphs.

Theorem 17 ([26]) A graph G of order n is (n − 1)/2-minimal if and only if G ∈
B∗ ∪ F ∪H.

Let K be the set of all even order complete graphs of order at least six with a one
factor removed.

Hattingh and Joubert generalized Theorem 16 as follows:

Theorem 18 ([18]) G be a connected graph of order n with δ ≥ 2. If G /∈
{B1, . . . , B8} ∪K, then γr(G) ≤ n−δ+1

2 .

Hattingh and Joubert established the following upper bound on the restrained
domination number of a connected claw-free graph:

Theorem 19 ([19]) Let G be a connected claw-free graph of order n with δ ≥ 2. If
G /∈ {C4, C7} ∪ {C5, C8, . . . , C17}, then γr(G) ≤ 2n

5 . Moreover, this bound is best
possible.

To see that this bound is best possible, construct the graph G by joining vertices
u and v to each vertex of the disjoint union ofK2 and an isolated vertex. ThenG is a
claw-free connected graph with minimum degree two and γr(G) = 2 = 2×5

5 = 2n
5 .

Other examples include C10 and C20.
Using probabilistic methods, Cockayne established the following upper bound

on the restrained domination number of a graph.
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Fig. 2 The collection F of
graphs.
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Fig. 3 The collection H of graphs.

Theorem 20 ([5]) If G has order n and minimum degree δ, then

γr(G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

n

(

1 − 2δ

(2δ+2)1+
1
δ

)

if δ ≥ 4

.895n if δ = 2

.668n if δ = 3

.

Dankelmann, Day, Hattingh, Henning, Markus, and Swart established an upper
bound for the restrained domination in terms of order and maximum degree.

Theorem 21 ([8]) IfG is a graph of order n with maximum degree� and minimum
degree δ ≥ 2, then γr(G) ≤ n−�.
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Fig. 4 From top left to bottom right: The graphs H2 to H8.

Moreover, in the same paper,

• the connected triangle-free graphs of order n with minimum degree δ ≥ 2 for
which γr(G) = n−� are characterized; and

• for connected graphs G that are both triangle-free and C5-free, a particularly
simple characterization is obtained.

Let K = {Kn | n ≥ 4}. Let Kr,s be the complete bipartite graph where r ≥ 3 and
2 ≤ s ≤ 3, and suppose {V1, V2} is the bipartition of Kr,s . Let Br,s be the graph
obtained fromKr,s by joining vertices in V1 so that δ(Br,s) ≥ r . Let B = {Br,s | r ≥
3 and 2 ≤ s ≤ 3}. Let K1,r be the star where r ≥ 3. Let Dr be the graph obtained
from K1,r ∪ K2 by joining vertices so that δ(Dr) ≥ r . Let D = {Dr | r ≥ 3}. Let
H1 ∼= C4 ×K2 and for 2 ≤ i ≤ 8, let Hi be the graphs depicted in Figure 4. Let H
= ∪8

i=1{Hi} ∪K ∪ B ∪D.
The following result is due to Hattingh, Jonck, and Joubert.

Theorem 22 ([14]) Let G be a connected graph of order n with δ ≥ 3. If G /∈ H,
then γtr (G) ≤ n− δ − 2.

As γr(G) ≤ γtr (G) for a graph G, we have the following result.

Corollary 23 Let G be a connected graph of order n with δ ≥ 3. If G /∈ H, then
γr(G) ≤ n− δ − 2.

The restrained domination number of a cubic graph in terms of its order was
established by Hattingh and Joubert.

Theorem 24 ([20]) If G is a cubic graph of order n, then γr(G) ≤ 5n
11 .

An upper bound on the size of a graph when the restrained domination number
is fixed was bounded by Joubert [33] as follows:
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Theorem 25 ([33] ) If G is a graph order n ≥ 5 with γr(G) = k ∈ {3, . . . , n− 2},
then

m(G) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n(n−2)−1
2 if 2 = k ≤ n and n ≥ 5 is odd,

(
n−k

2

)+ n+ n−k
2 − 3 if 3 ≤ k ≤ n− 3 and n− k is even,

(
n−k

2

)+ n+ n−k+1
2 − 3 if 3 ≤ k ≤ n− 3 and n− k is odd,

n if 3 ≤ k = n− 2.

In [22], Hattingh and Joubert extended Theorem 25 to include the cases k =
1, 2, n, and characterized graphs G of order n ≥ 2 and restrained domination
number k ∈ {1, . . . , n − 2, n} for which m(G) achieves the upper bound of
Theorem 25.

Consider a bipartite graph G of order n ≥ 4 and let k ∈ {2, . . . , n − 2}. In [34],
Joubert showed that if γr(G) = k, then m(G) ≤ ((n− k)(n− k + 6)+ 4k − 8)/4.
Moreover, this bound was shown to be best possible.

2.4 (γ, γr)-graphs

A graph G is called γ -excellent if every vertex of G belongs to some dominating
set of cardinality γ (G). A subset S ⊆ V is a packing in G if the vertices of S
are pairwise at distance at least three apart in G. The packing number ρ(G) is the
maximum cardinality of a packing in G. It is immediately obvious that γ (G) ≤
γr(G) for a graph G. A graph G such that γ (G) = γr(G) is called a (γ, γr)-
graph. Dankelmann, Hattingh, Henning, and Swart characterized the trees with
equal domination and restrained domination numbers in [9]. In order to state the
characterization we introduce two graph operations and a family of trees generated
by these operations.

A labeling of a tree T is a function S : V (T )→ {A,B}. The label of a vertex v
is also called its status, denoted sta(v). By a labeled K1 we shall mean a K1 whose
vertex is labeled with status B. Next we define two operations:

• Operation O1. Attach to a vertex v of status A a path v, x, y where sta(x) = A
and sta(y) = B.
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• Operation O2. Attach to a vertex v of status B a path v, x, y, z where sta(x) =
sta(y) = A and sta(z) = B.

Let T be the family of trees that can be labeled so that the resulting family of
labeled trees contains a labeled K1 and is closed under the two operations O1 and
O2 listed above, which extend the tree T by attaching a tree to the vertex v ∈ V (T ).
Theorem 26 ([9]) T be a tree. Then the following statements are equivalent:

1. T ∈ T ;
2. T has a unique ρ(T )-set and this set is a dominating set of T ;
3. T is a (γ, γr)-tree;
4. T is γ -excellent and T �= K2.

Let F be the family of self-complementary graphs G such that G is the cycle
C5 or G can be constructed from the disjoint union of a path P4 and a self-
complementary graph H , by adding all possible edges between the two support
vertices of the path P4 and the vertices of H .

Desormeaux, Haynes, and Henning characterized the self-complementary
(γ, γr )-graphs as follows.

Theorem 27 ([10]) G be a self-complementary graph. ThenG is a (γ, γr )-graph if
and only if G �∈ F .

2.5 Nordhaus-Gaddum Results

Nordhaus and Gaddum [41] presented best possible bounds on the sum and product
of the chromatic number of a graph and its complement. The corresponding results
for the domination number were presented by Jaeger and Payan in [30].

Domke, Hattingh, Hedetniemi, Laskar, and Markus obtained bounds on the sum
of the restrained domination numbers of a graph and its complement.

Theorem 28 ([11]) Let G be a graph of order n ≥ 2 such that G /∈ {P3, P 3}. Then
4 ≤ γr(G)+ γr(G) ≤ n+ 2.

The extremal graphs achieving the lower and upper bounds in Theorem 28 were
characterized by Hattingh, Jonck, Joubert, and Plummer.

Let H be the family of graphsG of order n whereG orG is one of the following
four types:
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Type 1. V (G) = {x, y, z} ∪X. Moreover:

• x is adjacent to each vertex of {y, z} ∪X,
• each vertex of {y, z} ∪X is adjacent to some vertex of {y, z} ∪X, and
• each vertex of X is non-adjacent to some vertex of {y, z} and non-adjacent to

some vertex in X.

Type 2. V (G) = {x, y} ∪X. Moreover:

• each vertex of X is adjacent to exactly one vertex of {x, y} and also non-
adjacent to exactly one vertex of {x, y},

• each vertex of X is non-adjacent to some vertex of X, and
• each vertex of X is adjacent to some vertex of X.

Type 3. V (G) = {u, v, y} ∪X. Moreover:

• each vertex of X ∪ {y} is adjacent to some vertex of {u, v},
• each vertex of X ∪ {u} is non-adjacent to some vertex of {v, y},
• each vertex of X ∪ {y} is adjacent to some vertex of X ∪ {y}, and
• each vertex of X ∪ {u} is non-adjacent to some vertex of X ∪ {u}.

Type 4. V (G) = {x, y, u, v} ∪X. Moreover:

• each vertex in {x, y} ∪X is adjacent to some vertex of {u, v},
• each vertex in {u, v} ∪X is non-adjacent to some vertex of {x, y},
• each vertex in {x, y} ∪X is adjacent to some vertex of {x, y} ∪X, and
• each vertex in {u, v} ∪X is non-adjacent to some vertex of {u, v} ∪X.

Theorem 29 ([17]) IfG be a graph of order n ≥ 2, then γr(G)+ γr(G) = 4 if and
only if G or G ∈ H.

Let G = {G |G or G is a disjoint union of non-trivial stars with |V (G)| �= 3},
S = {G |G or G ∼= K1 ∪ S where S is a star of order at least three}. Lastly, let
E = G ∪ S .

Theorem 30 ([17]) Let G be a graph of order n = 2 or n ≥ 4. Then γr(G) +
γr(G) = n+ 2 if and only if G ∈ E .

In [21], Hattingh and Joubert obtained bounds on the product of the restrained
domination numbers of a graph and its complement. Let E ′ = E− {K2}.
Theorem 31 ([21]) LetG be a graph such that n ≥ 4. Then γr(G)γr(G) ≤ 2n with
equality holding if and only if G ∈ E ′.
Sketch of Proof: Using Theorems 16, 18, 21, and an idea which appeared in a paper
by Karami, Khodkar, Sheikholeslami, and West [37] one can show:

Lemma 32 ([21]) If n ≥ 4 and diam(G) = diam(G) = 2, then γr(G)γr(G) < 2n.

Lemma 33 ([21]) LetG be a graph of order n ≥ 4. IfG orG is disconnected, then
γr(G)γr(G) ≤ 2n with equality if and only if G ∈ E ′.
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Lemma 34 ([21]) Let G be a graph of order n ≥ 4 such that G and G are both
connected. If δ(G) = 1 or δ(G) = 1, then γr(G)γr(G) < 2n.

Lemma 35 ([21]) Let G be a graph of order n ≥ 4 with min{δ(G), δ(G)} ≥ 2.
Moreover, suppose G and G are connected. Then γr(G)γr(G) ≤ 3

2n.

The last three Lemmas establish Theorem 31.

3 Total Restrained Domination

Next we survey results in the literature on total restrained domination in graphs.

3.1 Exact Results

Chen, Ma, and Sun [2] determined the exact value for the total restrained domination
number for several simple graph families.

Proposition 36 ([2]) If n ≥ 2 is an integer, then

γtr (Kn) =
{
n if n = 2, 3,
2 if n ≥ 4.

Proposition 37 ([2]) If n ≥ 2 is an integer, then γtr (K1,n−1) = n.

Proposition 38 ([2]) If n1 and n2 are integers such that min{n1, n2} ≥ 2, then
γtr (Kn1,n2) = 2.

Proposition 39 ([2]) If t ≥ 3 is an integer, then

γtr (Kn1,...,nt ) =
{

3 for t = 3 and n1 = n2 = n3 = 1,
2 otherwise.

.

Proposition 40 ([2]) If n ≥ 3 is an integer, then γtr (Cn) = n− 2�n4 �.
Proposition 41 ([2]) If n ≥ 2 is an integer, then γtr (Pn) = n− 2�n−2

4 �.

3.2 Lower Bounds

We now turn our attention to lower bounds on the total restrained domination
number of a graph.

The following result is due to Cyman and Raczek.
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Theorem 42 ([6]) Let G be a connected graph of order n and size m. Then
γtr (G) ≥ 3n

2 −m.

As an immediate consequence we obtain the following result due to Hattingh,
Jonck, and Joubert.

Theorem 43 ([16]) If T is a tree of order n ≥ 2, then γtr (T ) ≥ �(n+ 2)/2�.
A constructive characterization of trees attaining the bound of Theorem 43 was

also obtained in [16]. Let T be the family of all trees T of order n such that γtr (T ) =
�n+2

2 �. In order to state the characterization, define four simple operations on a tree
T .

O1. Join a leaf or a remote vertex of T to a vertex of K1, where n(T ) is even.
O2. Join a vertex v of T which lies on an endpath v, x, z to a leaf of P3, where

n(T ) is even.
O3. Join a vertex v which lies on an endpath v, x1, x2, z to a leaf of P3, where n(T )

is even.
O4. Join a remote vertex or a leaf of T to � disjoint copies of P4 for some � ≥ 1.

Let C be the family of all trees obtained from P2 by a finite sequence of
Operations O1–O4.

Theorem 44 ([16]) T ∈ C if and only if T ∈ T .

As observed in [16], the bound of Theorem 43 can be improved if the order of a
tree is a multiple of 4.

Theorem 45 ([17]) Let T be a tree of order n. If n ≡ 0 mod 4, then γtr (T ) ≥
�n+2

2 � + 1.

A characterization of trees attaining this improved bound was also given in [16].
Let T ∗ = {T | T is a tree of order n ≡ 0 mod 4 such that γtr (T ) = �n+2

2 � + 1}.
In order to state a constructive characterization of trees in T ∗, define the following
operations on a tree T :

O5. Join a leaf or a remote vertex v to a vertex of K1, where n(T ) ≡ 3 mod 4.
O6. Join a vertex v which lies on an endpath v, x, z to a vertex ofK2, where n(T ) ≡

2 mod 4.
O7. Join a vertex v which lies on an endpath v, x1, x2, z to a vertex of K2, where

n(T ) ≡ 2 mod 4.
O8. Join a vertex v which lies on an endpath v, x, z to a leaf of P3, where n(T ) ≡ 1

mod 4.
O9. Join a vertex v which lies on an endpath v, x1, x2, z to a leaf of P3, where

n(T ) ≡ 1 mod 4.

Let I = {T | T is a tree obtained by applying one of the Operations O5–O9 to a
tree T ′ ∈ C exactly once}. Let C∗ = {T | T is a tree obtained from a tree T ′ ∈ I by
applying the Operation O4 to T ′ zero or more times}.
Theorem 46 ([16]) T ∗ = C∗.
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The following result is due to Cyman and Raczek. Let �(T ) denote the number
of leaves of T .

Theorem 47 ([7]) If T is a tree of order n ≥ 3, then 3γtr (T ) ≥ n+ 2 + 2�(T ).

Cyman and Raczek also provided a constructive characterization of the trees T
of order n for which 3γtr (T ) = n + 2 + 2�(T ). To state the characterization, we
introduce some additional notation. If T1 and T2 are vertex disjoint trees and u and
v are strong support vertices in T1 and T2, respectively, then T1 ⊕uv T2 will denote
a tree obtained from T1 and T2 by adding an edge incident with a leaf adjacent to u
and incident with a leaf adjacent to v. Let R denote the family of trees such that:

1. Every star K1,n belongs to R where n ≥ 2;
2. T1 ⊕uv T2 belongs to R if only T1 and T2 belong to R, where u and v are strong

support vertices in T1 and T2, respectively.

Theorem 48 ([7]) If T is a tree of order n ≥ 3, then 3γtr (T ) = n + 2 + 2�(T ) if
and only if T belongs to the family R.

3.3 Upper Bounds

Let S be the set of leaves and support vertices of G. The following result of Chen,
Liu, and Meng characterized the graphs G of order n for which γtr (G) = n.

Theorem 49 ([4]) Let G be a connected graph of order n ≥ 4. Then γtr (G) = n if
and only if G− S is an empty graph.

The following result is due to Chen, Liu, and Meng. Let B constructed from two
copies of K2 and joining a new vertex to each of the vertices of the two copies of
K2.

Theorem 50 ([4]) LetG be a connected graph of order n ≥ 4. Then γtr (G) = n−2
if and only if one of the following holds:

1. G ∼= K4 or G ∼= K4 − e or G ∼= B or G ∼= Ci where i ∈ {4, 5, 6, 7}.
2. G− S is the disjoint union of C4 and isolated vertices. Furthermore, either one

vertex or two adjacent vertices of C4 have neighbors in S.
3. G − S is the disjoint union of K4 − e and isolated vertices. Moreover, only one

vertex of K4 − e whose degree is two has neighbors in S.
4. G−S is the disjoint union of C3 and isolated vertices. Furthermore, at most two

vertices of C3 have neighbors in S.
5. G − S is the disjoint union of a C3 with an edge attached to one vertex of C3

and isolated vertices. Furthermore, either both ends of the edge or one end of the
edge which does not coincide with the vertex of C3 has neighbors in S.

6. G − S is the disjoint union of a C3 with a path P3 attached to one vertex of
C3 and isolated vertices. Furthermore, only the end vertex of P3 which does not
coincide with the vertex of C3 has neighbors in S.
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7. G − S is the disjoint union of B and isolated vertices. Furthermore, only one
vertex whose degree is two in B has neighbors in S.

8. G − S is the disjoint union of a path of order at most 5 and isolated vertices.
Furthermore, only the ends of path are adjacent to vertices of S.

In [15], Hattingh, Jonck, and Joubert obtained an upper bound on the total
restrained domination number of a tree, and constructively characterized the trees
attaining this bound. For a tree T , let s(T ) and �(T ) denote the number of support
vertices and leaves, respectively.

Theorem 51 ([15]) If T is a tree of order n ≥ 3, then γtr (T ) ≤
⌊
n+2s(T )+�(T )−1

2

⌋
.

Let T be the family of all trees T of order n ≥ 3 such that γtr (T ) =⌊
n+2s(T )+�(T )−1

2

⌋
. For a tree T , let k(T ) = n(T ) + 2s(T ) + �(T ) − 1. In order

to state the characterization, define five simple operations on a tree T .

O1. If k(T ) is even, and T has a remote vertex adjacent to at least two leaves, join
one of these leaves to a vertex of K1.

O2. If T has a remote vertex adjacent to at least two leaves, join one of these leaves
to a leaf of a K2.

O3. Join a remote vertex of T to a vertex of K1.
O4. Suppose k(T ) is even. Join a leaf of K2 to w, where w is a vertex such that

deg(w) ≥ 2 and adjacent to a vertex u which is either a leaf or a remote vertex
whose other neighbors only consist of leaves.

O5. Join the vertex v of T which lies on an endpath u,w, v, where deg(u) ≥ 2, to
a leaf of P4.

Let C be the family of all trees obtained from P3 by a finite sequence of
Operations O1–O5.

Theorem 52 ([15]) T ∈ T if and only if T ∈ C.

Theorem 22, above, of Hattingh, Jonck, and Joubert provides an upper bound on
the total restrained domination number of a graph in terms of its order and minimum
degree.

Hattingh, Jonck, and Joubert showed that:

Theorem 53 ([14]) Let G be an r-regular graph of order n, where 4 ≤ r ≤ n− 3.
Then γtr (G) ≤ n− diam(G)− r + 1, and this bound is best possible.

The following two results are due to Henning and Maritz.

Theorem 54 ([28]) If G is a connected graph of order n ≥ 4 with δ ≥ 2 and
� ≤ n− 2, then γtr (G) ≤ n−�/2 − 1. Moreover, this bound is best possible.

Theorem 55 ([28]) If G is a connected bipartite graph of order n ≥ 5, maximum
degree� where 3 ≤ � ≤ n−2 and δ ≥ 2, then γtr (G) ≤ n− 2

3�− 2
9

√
3�− 8− 7

9 .
Moreover, this bound is best possible.

There are several results involving upper bounds on the total restrained dom-
ination number in terms of the order of a graph. Let B be a graph obtained
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by attaching the two vertices of a K2 to exactly one vertex of a C3. Let K =
{B,C3, C5, C6, C7, C10, C11, C15, C19}. Joubert showed that:

Theorem 56 ([32]) IfG is a claw-free graph with δ ≥ 2 andG /∈ K, then γtr (G) ≤
4n/7.

Koh, Maleki, and Omoomi used probabilistic methods to establish the following
bound on the total restrained domination number.

Theorem 57 ([39]) Let G be a graph such that n ≥ 4 and δ ≥ 2. Then γtr (G) ≤
n− 3

√
n
4 .

Koh, Maleki, and Omoomi also conjectured the following.

Conjecture 58 ([39]) Let G be a graph such that n ≥ 4 and δ ≥ 2. Then γtr (G) ≤
n− θ(√n).

This conjecture was settled by Joubert.

Theorem 59 ([35]) Let G be a graph without any C3 components. Then γtr (G) ≤
n−

√
n
2 .

The total restrained domination number of a cubic graph in terms of its order was
established by Jiang, Kang, and Shan.

Theorem 60 ([31]) If G is a cubic graph of order n, then γtr (G) ≤ 13n
19 .

In the same paper, Jiang, Kang, and Shan also showed that if adding the
restriction that G is claw-free, then γtr (G) = γt (G), and thus some results on total
domination in claw-free cubic graphs are valid for total restrained domination.

Henning and Southey [29] established the following improved upper bound on
the total restrained domination number of a cubic graph.

Theorem 61 ([29]) If G is a cubic graph of order n, then γtr (G) ≤ (n+ 4)/2.

They also provided two infinite families of connected cubic graphs G with
γtr (G) = n/2 showing that the upper bound of Theorem 61 is essentially best
possible.

3.4 (γt, γtr)-graphs and (γr, γtr)-graphs

A graphG such that γt (G) = γtr (G) is called a (γt , γtr )-graph. Cyman and Raczek
characterized the trees with equal total domination and total restrained domination
numbers in [7].

Let T be the family of trees T that can be obtained from the sequence
T1, . . . , Tj (j ≥ 1) of trees such that T1 is the path P2 and T = Tj , and, if j > 1,
then Ti+1 can be obtained recursively from Ti by one of the two operations O1 and
O2 below.
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• Operation O1. The tree Ti+1 is obtained from Ti by adding a path
y, x1, x2, x3, x4 where y ∈ V (Ti) belongs to some γtr (Ti)-set.

• Operation O2. The tree Ti+1 is obtained from Ti by adding a path y, x1, x2, x3
where y ∈ V (Ti) belongs to none of the γtr (Ti)-sets.

Theorem 62 ([7]) A tree T is (γt , γtr )-graph if and only if T belongs to the family
T .

Let K1,r,4 be the graph obtained by subdividing each edge of the star K1,r twice.
The vertex of degree r is called the central vertex of K1,r,4. Let K = {K1,r,4 | r is a
positive integer}.

Consider the following two operations on a tree T :

• Operation O1. Let x be a vertex of T which is either a leaf or support vertex of
T . Join x to the central vertex of one or more of the trees in K.

• Operation O2. Let x be a non-leaf of T which is adjacent to a support vertex of
T . Join x to one leaf of one or more copies of P3.

Let T ′ = {T | T is obtained from P6 by a finite sequence of operations O1 or
O2} ∪ {P2, P6}.

We are now ready to state an alternative constructive characterization of trees
with equal total domination and total restrained domination numbers, which was
obtained by Chen, Shui, and Chen.

Theorem 63 ([3]) A tree T is (γt , γtr )-graph if and only if T belongs to the family
T ′.

A graph G such that γr(G) = γtr (G) is called a (γr , γtr )-graph. Raczek char-
acterized the trees with equal restrained domination and total restrained domination
numbers in [43].

Consider the following two operations on a tree T :

• Operation O1. Let x be a support vertex of T . Join x to a new vertex y.
• Operation O2. Let x be a support vertex of T . Add a path y1, y2, y3, y4 and join
x to y1.

Let T ′′ = {T | T is obtained from P3 by a finite sequence of operations O1 or
O2} ∪ {P2, P6}.
Theorem 64 ([43]) A tree T is (γr , γtr )-graph if and only if T belongs to the family
T ′′.

3.5 Nordhaus-Gaddum Results

In [17], Hattingh, Jonck, and Joubert obtained bounds on the sum of the total
restrained domination of a graph and its complement, and characterized the graphs
attaining these bounds.
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Construct the graph K by matching the vertices of K2 to distinct vertices of K3.

Theorem 65 ([17]) If G is a graph of order n ≥ 2 such that neither G nor G
contains isolated vertices or is isomorphic toK , then 4 ≤ γtr (G)+γtr (G) ≤ n+4.

Let n ≥ 5 be an integer and suppose {x, y, u, v} andX are disjoint sets of vertices
such that |X| = n − 4. Let L be the family of graphs G of order n where V (G) =
{x, y, u, v} ∪X and with the following properties:

P1: x and y are non-adjacent, while u and v are adjacent,
P2: each vertex in {x, y} ∪X is adjacent to some vertex of {u, v},
P3: each vertex in {u, v} ∪X is non-adjacent to some vertex of {x, y},
P4: each vertex in {x, y} ∪X is adjacent to some vertex of {x, y} ∪X,
P5: each vertex in {u, v} ∪X is non-adjacent to some vertex of {u, v} ∪X.

Theorem 66 ([17]) If G be a graph of order n ≥ 2 such that neither G nor G
contains isolated vertices, then γtr (G)+ γtr (G) = 4 if and only if G ∈ L.

Let U = {G |G is a graph of order n which can be obtained from a P4 with
consecutive vertices labeled u, v1, v2, v by joining vertices v1 and v2 to each vertex
of Kn−4 where n ≥ 6}.
Theorem 67 ([17]) If G is a graph of order n ≥ 2 such that neither G nor G
contains isolated vertices or is isomorphic to K , then γtr (G) + γtr (G) = n + 4 if
and only if G ∈ U or G ∈ U or G ∼= P4.

In [23], Hattingh and Joubert obtained bounds on the the product of the total
restrained domination of a graph and its complement, and characterized the graphs
attaining these bounds.

Let L be the family of all graphs constructed in the following way: Let u and v
be two distinct isolates and consider the complete graph Kn, where n = 2 or n ≥ 4.
Let u′ and v′ be two distinct vertices of Kn. Join u to u′, and join v to v′. Let K be
the graph as defined earlier.

Theorem 68 ([23]) Let G be a graph of order n ≥ 4, and suppose neither G nor
G contains isolated vertices or is isomorphic to K . Then γtr (G)γtr (G) ≤ 4n with
equality holding if and only if either G ∈ L or G ∈ L.

3.6 Partitions

A classical result in domination theory is that if S is a minimal dominating set of
a graph G = (V ,E) without isolates, then V − S is also a dominating set of G.
Thus, the vertex set of every graph without any isolates can be partitioned into two
dominating sets. However, it is not the case that the vertex set of every graph can be
partitioned into two total restrained dominating sets. For example, the vertex set of
C5 cannot be partitioned into two total restrained dominating sets.
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A partition of the vertex set can also be thought of as a coloring. In particular,
a partition into two total restrained dominating sets is a 2-coloring of the graph
such that no vertex has a monochromatic neighborhood. As an example of such a
2-coloring in Kn with n ≥ 4, take any 2-coloring with at least two vertices of each
color, while in Km,n with m, n ≥ 2 take any 2-coloring where neither partite set is
monochromatic.

We now consider the question of how many edges must be added to G to ensure
that there is a partition of V into two total restrained dominating sets. We denote
this minimum number by rd(G).

The following result is due to Broere, Dorfling, Goddard, Hattingh, Henning, and
Ungerer.

Theorem 69 ([1]). If T is a tree with � leaves, then �/2 ≤ rd(T ) ≤ �/2 + 1.

The following result is due to Goddard, Hattingh, and Henning.

Theorem 70 ([13]) If G is a graph of order n ≥ 4 and minimum degree at least 2,
then rd(G) ≤ (n− 2

√
n )/4 +O(log n), and this bound is best possible.

4 Open Problems

1. Is it true that if G is a cubic graph of order n, then γtr (G) ≤ n/2?
2. Characterize the trees T with � leaves for which rd(T ) = �/2.
3. Is it true that if G is a graph of order n ≥ 2 and δ ≥ 2, then rd(G) ≤ �(n −
γt (G))/2�?

5 Concluding Remarks

Many variations of restrained domination have been introduced in the past 20
years. We discussed one such variation in this survey paper, namely total restrained
domination in graphs. Other variations of restrained domination in graphs include:
secure restrained domination [42], k-tuple restrained domination [27], k-tuple
total restrained domination [38], restrained double domination [36], and inverse
restrained domination [40]. Restrained domination and its variations continue to be
a fruitful area to explore in graph theory, and a quick survey of the literature reveals
at least a hundred papers on restrained domination and its variations.
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Multiple Domination

Adriana Hansberg and Lutz Volkmann

1 Introduction

1.1 Main Concepts

Throughout this chapter, we will assume k to be a positive integer. In 1985, Fink and
Jacobson [63, 64] generalized the concept of dominating sets. We say that a subset
D of V (G) is k-dominating if every vertex of V (G) \D has at least k neighbors in
D. A k-dominating setD is minimal if, for every vertex v ∈ D, the setD \{v} is not
k-dominating in G. The k-domination number γk(G) and the upper k-domination
number �k(G) are, respectively, the minimum cardinality of a k-dominating set and
the maximum cardinality of a minimal k-dominating set of G. When k = 1, we set
γ (G) and �(G) instead of γ1(G) and �1(G).

Similarly, Harary and Haynes [83, 84] introduced, in two papers published in
1996 and 2000, the concept of double domination and, more generally, of k-tuple
domination. A subset D ⊆ V (G) is said to be k-tuple dominating if the closed
neighborhood of every vertex v ∈ V (G) intersects with D in at least k elements.
Of course, this definition requires that the graph in question has minimum degree at
least k−1. A k-tuple dominating setD is minimal if, for every v ∈ D, the setD\{v}
is not k-tuple dominating. The minimum and, respectively, maximum cardinality of
a minimal k-tuple dominating set of G is called the k-tuple domination number
γ×k(G) and the upper k-tuple domination number �×k(G).
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Clearly, the 1-dominating sets and the 1-tuple dominating sets are the same as
the classical dominating sets. Hence, γ1(G) = γ×1(G) = γ (G) and �1(G) =
�×1(G) = �(G).

We have the following general properties that follow directly from the definitions.
Observe that, when we talk about a k-tuple dominating set of a graph G, we are
assuming implicitly that δ(G) ≥ k − 1.

• Every k-dominating set contains all vertices of degree less than k, and every k-
tuple dominating set contains all vertices of degree equal to k − 1.

• Every k-tuple dominating set is a k-dominating set and thus γk(G) ≤ γ×k(G).
• Every maximum minimal k-tuple dominating set is also a maximum minimal
k-dominating set, so �k(G) ≤ �×k(G).

• Every k-dominating set and every k-tuple dominating set of a graph G with
n(G) ≥ k contain at least k vertices and so γ×k(G) ≥ γk(G) ≥ k.

• Clearly, γk(G) ≤ �k(G) and γ×k(G) ≤ �×k(G).
• Every (k + 1)-dominating set is also a k-dominating set and every (k + 1)-tuple

dominating set is also a k-tuple dominating set. Hence, γk(G) ≤ γk+1(G) and
γ×k(G) ≤ γ×(k+1)(G).

• The vertex set V of a graph G is the only (� + 1)-dominating set and the only
(� + 1)-tuple dominating set, but it is not a minimal �-dominating set nor a
minimal �-tuple dominating set. Thus,

��(G) < n, and �×�(G) < n.

• The vertex set V of a graph G is the only (� + 1)-dominating set and the only
(�+ 1)-tuple dominating set. Hence,

γ (G) = γ1(G) ≤ γ2(G) ≤ . . . . ≤ γ�(G) < γ�+1(G) = n, and

γ (G) = γ×1(G) ≤ γ×2(G) ≤ . . . . ≤ γ×�(G) < γ×(�+1)(G) = n.

• The properties for a subset of V to be k-dominating or k-tuple dominating are
both superhereditary.

Necessary and sufficient conditions for a set to be a minimal k-dominating or
a minimal k-tuple dominating are given below and are straightforward from the
definitions.

Proposition 1.1 ([64]) Let G be a graph and D ⊆ V (G) a k-dominating set of G.
Then D is minimal if and only if, for every vertex v ∈ D,

(i) |N(v) ∩D| ≤ k − 1, or
(ii) there exists a vertex u ∈ N(v) \D such that |N(u) ∩D| = k.
Proposition 1.2 Let G be a graph and D ⊆ V (G) a k-tuple dominating set of G.
Then D is minimal if and only if, for every vertex v ∈ D,
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(i) |N(v) ∩D| = k − 1, or
(ii) there exists a vertex u ∈ N(v) \D such that |N(u) ∩D| = k, or

(iii) there exists a vertex u ∈ N(v) ∩D such that |N(u) ∩D| = k − 1.

A very similar concept to k-tuple domination is the so-called total k-domination.
In this case, the vertices inside the set are required to have at least k neighbors
inside the set, not only k − 1 as with k-tuple domination. To be precise, a subset
D ⊆ V (G) is total k-dominating if |N(v)∩D| ≥ k for all v ∈ V (G) and we denote
with γ tk (G) the cardinality of a minimum total k-dominating set ofG. Clearly, a total
1-dominating set is the same as a total dominating set and γ 1

t (G) = γt (G). Total
k-dominating sets were introduced by Caro [29] in 1990 and by Kulli [111] in 1991
under the name of k-total dominating sets. They were reintroduced later, in 2006,
under the term of total k-tuple dominating sets by Dorbec, Gravier, Klavžar, and
Spacapan [51] who denoted γ tk (G) by γ (×k)t (G). Clearly, every total k-dominating
set is a k-tuple dominating set, and so

γ×k(G) ≤ γ tk (G).
Since k-tuple domination and total k-domination differ only in one unit with

respect of the number of neighbors of vertices inside the corresponding dominating
set, the results concerning these parameters are very similar and, because of that,
we will talk about the two parameters in the same section, giving the results that we
think are the most representative of the state of the art in the topic. Of course, there is
a characterization of a minimal total k-dominating set analogous to Proposition 1.2
(see [105] for an analogous formulation).

Proposition 1.3 Let G be a graph and D ⊆ V (G) a total k-dominating set of G.
Then D is minimal if and only if, for every vertex v ∈ D, there exists a vertex
u ∈ N(v) such that |N(u) ∩D| = k.

Observe that, in this case, there is no condition on the neighbors of v insideD as
it is necessary in Proposition 1.2 because, in this case, every vertex inside D has at
least k neighbors there.

We note at this point that there are many other different multiple domination
parameters. However, most research has been done precisely on k-domination, k-
tuple domination, and total k-domination. For this reason, and because we also
think that these three parameters are the best representatives in the area, we will
not include results concerning other types of multiple domination. For the interested
reader, we refer to [3, 4, 18, 38, 40, 44, 55, 67, 129, 130, 135, 151, 153].

1.2 First Observations and Global Results

Recall that, if n(G) ≥ k, then k ≤ γk(G) ≤ n(G). Also we know that γ×k(G)
exists if and only if δ ≥ k − 1 and, similarly, γ tk (G) exists if and only if δ ≥ k.
Moreover, in each such case, k ≤ γ×k(G) ≤ n(G) and k + 1 ≤ γ tk (G) ≤ n(G).



154 A. Hansberg and L. Volkmann

The following propositions give a characterization of the extremal graphs in these
inequalities. For this purpose, we define, for a non-negative integer q, a q-join of a
graph G to a graph H of order at least q to be the graph obtained from the disjoint
union of G and H by joining, with edges, each vertex of G to at least q vertices of
H . We denote a q-join of G to H by G ◦q H .

Proposition 1.4 Let G be a graph of order n ≥ k.
(i) G satisfies γk(G) = k if and only if n = k or G = F ◦k H , for any graphs
F,H with n(H) = k and n(F ) = n− k.

(ii) Let δ(G) ≥ k − 1. Then γ×k(G) = k if and only if G = Kk or G = F ◦k Kk
for some graph F . ([84] for k = 2, [35] in general.)

(iii) Let δ(G) ≥ k. Then γ tk (G) = k+1 if and only ifG = Kk+1 orG = F ◦k Kk+1
for some graph F . ([89])

Proof.

(i) IfG is such that n(G) = k orG = F ◦k H for graphs F,H with n(H) = k and
n(F ) = n − k > 0, it clearly holds that γk(G) = k. Conversely, suppose that
G satisfies γk(G) = k and let D be a minimum k-dominating set of G. Then
|D| = k. If V (G) = D, we are done. Otherwise, every vertex v ∈ V (G) \ D
is adjacent to every vertex in D, implying that G = F ◦k H with H = G[D].

(ii) That γ×k(Kk) = k, γ×k(F ◦kKk) = k, γ kt (Kk+1) = k+1 and γ kt (F ◦kKk+1) =
k+ 1, for some arbitrary graph F , is easy to check. Now letG be a graph such
that γ×k(G) = k and let S be a minimum k-tuple dominating set. Then |S| = k
and every vertex v ∈ S has at least k − 1 neighbors in S. This implies that
G[S] = Kk . If V (G) \ S = ∅, then G = Kk and we are done. Otherwise let
F = G[V (G) \ S]. Since S is k-tuple dominating, every vertex u ∈ V (F ) has
at least k neighbors in S. Hence, we conclude that G = F ◦k Kk .

(iii) To show that γ tk (G) = k + 1 holds only if G = Kk+1 or G = F ◦k Kk+1 for
some graph F is completely analogous to the previous case. �

On the other hand, we will characterize the graphs G attaining the upper bound
n(G) for each of the three parameters.

Proposition 1.5 Let G be a graph of order n and minimum degree δ.

(i) G satisfies γk(G) = n if and only if δ ≤ k − 1.
(ii) Let δ ≥ k − 1. Then γ×k(G) = n if and only if every vertex of G has either

degree k − 1 or has a neighbor of degree k − 1.
(iii) Let δ ≥ k. Then γ tk (G) = n if and only if every vertex of G has a neighbor of

degree k.

Proof.

(i) If G has δ ≤ k − 1, then clearly γk(G) = n. Conversely, if γk(G) = n,
then V (G) is the only minimum k-dominating set, and, by Proposition 1.1, it
follows that d(v) ≤ k − 1 for all v ∈ V (G) and we are done.
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(ii) Suppose that G is such that γ×k(G) = n. Then V (G) is the only minimum
k-tuple dominating set, and Proposition 1.2 yields that every vertex of G has
either degree k − 1 or has a neighbor of degree k − 1. On the other hand, the
converse can be easily seen.

(iii) This is straightforward from Proposition 1.3. �
The most known result about the domination number is due to Ore [121].

Theorem 1.6 ([121]) If G is a graph of order n without isolates, then γ (G) ≤ n
2 .

An also very well-known result on the domination number, which was proved
independently by Arnautov [5] in 1974 and, in 1975, by Lovász [117] and by Payan
[122], is the following.

Theorem 1.7 ([5, 117, 122]) Let G be a graph on n vertices and minimum degree
δ ≥ 1. Then

γ (G) ≤ ln(δ + 1)+ 1

δ + 1
n.

In 1990, Alon [2] showed that this result is asymptotically optimal forG ranging
among all graphs on n vertices and minimum degree δ, where δ tends to infinity.
In [29], Caro derived a bound with the same characteristics for the k-domination
number (see Theorem 2.17), and showed that the growing rate for γk with δ tending
to infinity is (1 + oδ(1)) ln δ

δ
n, solving an open problem stated in [139]. Using the

concept of (F,k)-cores, Caro and Yuster [31] generalized all these results. If F =
{G1,G2, . . . ,Gt } is a family of graphs on the same vertex set V , a subset D ⊆ V
is called an (F, k)-core if D is a total k-dominating set of each graph in F , i.e., if
|NGi (x) ∩ D| ≥ k for every vertex in V , 1 ≤ i ≤ t . We denote with c(k, F ) the
minimum cardinality of an (F, k)-core. Evidently, if F = {G}, an (F, k)-core is
precisely a total k-dominating set in G and vice versa.

Theorem 1.8 ([31]) Let k, t , and δ be positive integers satisfying k <
√

ln δ and
t < ln ln δ. Let F be a family of graphs on the same n-vertex set. Assume that every
graph in F has minimum degree at least δ. Then:

c(k, F ) ≤ ln δ

δ
n(1 + oδ(1)).

Note that, from the definition of an (F, k)-core, Theorem 1.8 yields the following
bound for the k-domination, the k-tuple, and the total k-domination numbers for
graphs with large minimum degree δ.

γk(G) ≤ γ×k(G) ≤ γ tk (G) ≤
ln δ

δ
n(1 + oδ(1)).
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Caro and Yuster’s result [31] is stronger since they prove the bound actually
for connected (F, k)-cores, where, given F = {G1,G2, . . . ,Gt }, the underlying
induced graphs Gi[D] are connected for 1 ≤ i ≤ t .

1.3 Complexity

In 1989, Jacobson and Peters [97] showed that the decision problem to determine
if a graph has a k-dominating set of size at most K for some fixed integer K
is NP-complete in general. However, for trees and series-parallel graphs, they
were able to provide linear time algorithms to compute the k-domination number
[97]. In 1994, Bean, Henning, and Swart [8] proved that the problem remains
NP-complete in bipartite or chordal graphs. Lan and Chang [112] showed the NP-
completeness in split graphs, which is a subfamily of chordal graphs. In 2004,
Klasing and Laforest [108] showed that the k-tuple domination problem is even
hard to approximate. Later, in 2013, Cicalese, Milanič, and Vaccaro [44] proved the
same result for the k-domination number. More precisely, they showed that, unless
NP ⊆ DTIME(nO(log logn)), for any ε > 0, there is neither a polynomial time
algorithm approximating the k-domination problem [44] nor the k-tuple domination
problem [108] within a factor of (1 − ε) ln n, where n is the order of the input
graph. On the other hand, they also demonstrated that the k-domination and the k-
tuple domination numbers can be approximated in polynomial time by a factor of
ln(2�) + 1 [44] and ln(� + 1) + 1 [108], respectively, where � is the maximum
degree of the input graph. Analogous results for the total k-domination number
are obtained in [44], together with the proof of its NP-completeness. In fact, the
results provided in [44] deal actually with more complex domination variants,
namely vector domination (also called f-domination in [151] or threshold ordinary
domination in [67]) and α-domination, among others. In [115] Liao and Chang
proved that the k-tuple domination problem is NP-Complete even for bipartite and
split graphs. They also gave a linear time algorithm to compute γ×k , and with some
adaptation γ tk , in strongly chordal graphs. In [108], Klasing and Laforest gave an
(ln n + 1)-approximation algorithm for computing γ×k(G) in general graphs. For
more information on domination complexity, we refer the reader to Part 3.3 of [85]
and to the references [3, 4, 7, 43, 50, 113, 114].



Multiple Domination 157

2 k-Domination

2.1 Relations Between k-Domination Numbers for Different
k’s

We saw in the introduction that the sequence (γk) is nondecreasing. In [63, 64],
Fink and Jacobson raised the question of the rate at which the k-domination number
increases with k. They proved that γ3(G) > γ (G) for graphs with � ≥ 3 (by
Theorem 2.4 below) and their first conjecture in [63] was γ2k+1(G) > γk(G) if
δ ≥ k. This strict inequality was proved for the case k = 2 by Chen and Jacobson:

Theorem 2.1 ([41]) For every graph G with minimum degree δ ≥ 2, γ2(G) <

γ5(G).

Theorem 2.1 is best possible in the sense that there exist infinitely many graphs
G with minimum degree at least 2 having γ2(G) = γ4(G) [41]. However, Schelp
(unpublished) disproved Fink and Jacobson’s conjecture exhibiting the graph G =
Kk+1 + (k + 1)Kk , which has minimum degree 2k, and γ2k(G) = γk(k+1)(G) =
k(k+1). The problem of the rate of growth of the sequence (γk) remains open under
the following form.

Problem 2.2 ([64]) Find a function f such that

γk(G) < γf (k)(G)

for every graph G with δ(G) ≥ k.
By Schelp’s counterexample, if f exists, then f (k) > k2/4. We give below some

particular classes of graphs for which a function f has been determined.

Theorem 2.3 Let k be a positive integer and letG be a graph with maximum degree
� ≥ k.

(i) If k ≥ 2 and G is claw-free, then γk(G) < γ2k(G) [64].
(ii) If G is {K1,3,K1,3 + e}-free, then γk(G) < γk+2(G) [58].

(iii) If k ≥ 2 andG is {K1,3,K1,3 + e, C4 +K2}-free, then γk(G) < γk+1(G) [58].

LetG be a graph such that 2 ≤ k ≤ �(G) and letD be a minimum k-dominating
set of G. Then V (G) \ D is not empty and we can take a vertex x ∈ V (G) \ D.
Consider a set X ⊆ NG(x) ∩ D such that |X| = k − 1. We can easily see that
(D \X) ∪ {x} is a dominating set of G. This implies the following theorem of Fink
and Jacobson, which establishes a relation between the usual domination number
γ (G) and the k-domination number γk(G).

Theorem 2.4 ([63]) If G is a graph with �(G) ≥ k ≥ 2, then γk(G) ≥ γ (G) +
k − 2.
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Several authors have studied when this inequality is sharp and for which graph
classes it can be improved. For the general case, we can cite the following result
given by Hansberg.

Theorem 2.5 ([69]) Let G be a connected graph and k an integer with �(G) ≥
k ≥ 2. If γk(G) = γ (G)+ k − 2, then the following statements hold.

(i) Every vertex of G lies on an induced cycle of length 4.
(ii) G contains at least (γ (G)− 1)(k − 1) induced cycles of length 4.

Let r and k be two positive integers, where k ≥ 2. LetG be a graph consisting of
a complete graph H on k − 1 vertices and of vertices ui , vi , wi , for 1 ≤ i ≤ r , such
that every ui and wi is adjacent to every vertex of H and to vi , see Figure 1. Then it
is easy to see that γk(G) = k−1+r , γ (G) = r+1 and thus γk(G) = γ (G)+k−2.
SinceG contains exactly r(k− 1) = (γ (G)− 1)(k− 1) induced cycles of length 4,
it follows that the bound on the number of induced C4’s given in Theorem 2.5 (ii)
can be attained.

Theorem 2.5 improves or extends previous results by Chellali, Favaron, Hans-
berg, and Volkmann [34]. In particular, it implies that γk(T ) ≥ γ (T ) + k − 1 for
any tree T . In the same paper [34], the authors characterize, for k ≥ 3, the trees
attaining equality in this bound, extending a previous result of Volkmann for the
case k = 2 [143]. We state these results together in the following theorem, where,
by a subdivided star SSt , we mean a graph arising from the starK1,t by subdividing
each of its edges, while by a subdivided double star SSs,t we mean a graph formed
by means of two stars K1,s−1 and K1,t−1, where their centers are joined by an edge
and then every edge is subdivided.

Theorem 2.6 Let T be a tree such that �(T ) ≥ k ≥ 2 for an integer k.

(i) γ2(T ) = γ (T )+1 if and only if T is a subdivided star SSt or a subdivided star
SSt minus a leaf or a subdivided double star SSs,t [143].

(ii) Let k ≥ 3. Then γk(T ) = γ (T ) + k − 1 if and only if T is isomorphic to a
subdivided star SSk minus p leaves for an integer 1 ≤ p ≤ k [34].

Hansberg and Volkmann considered the case k = 2 [74–76]. They proved that for
nontrivial connected graphs, γ2(G) ≥ γ (G)+ 1 ifG is a block graph or a unicyclic
graph different fromC4 and characterized the graphs of these two families satisfying

Fig. 1 Example of a graph G
with γk(G) = γ (G)+ k − 2
and exactly
(γ (G)− 1)(k − 1) induced
cycles of length 4. A double
line connecting a vertex ui or
wi to the complete graph
Kk−1 in the middle means
that it is adjacent to all
vertices of Kk−1.
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γ2(G) = γ (G) + 1 (comprising thus Theorem 2.6). In [76] they proved that any
graph G with γ2(G) = γ (G) cannot have leaves and characterized the block-
cactus graphs fulfilling this equality. In [73], Hansberg, Randerath, and Volkmann
considered claw-free graphs and were able to characterize all claw-free graphs and
all line-graphs (which are also claw-free) with equal domination and 2-domination
numbers.

In a recent paper [19], Gülnaz Borunzanı, and Bujtás proved that, in general,
it is NP-hard to decide whether a graph has equal domination and 2-domination
numbers and that there is no forbidden subgraph characterization for such graphs.
They consider also a large class of graphs in which those with equal domination and
2-domination numbers can be characterized via a family of forbidden subgraphs.
Although the family of such forbidden subgraphs is infinite, they prove that the
recognition problem is solvable in polynomial time. Moreover, they study the so-
called (γ, γ2)-perfect graphs, which are those for which all induced subgraphs
with minimum degree at least 2 have equal domination and 2-domination numbers.
Observe that the condition on the minimum degree is natural because it has been
noted that graphs G with γ (G) = γ2(G) cannot have vertices of degree 1 [76]. The
following characterization of (γ, γ2)-perfect graphs was obtained in [19].

Theorem 2.7 LetG be a connected graph with minimum degree at least 2. ThenG
is a (γ, γ2)-perfect graph if and only if G contains no subgraph isomorphic to any
K2 ◦ 2K1, P8 or Cn for any n �= 4.

In [34], the authors showed that the inequality in Theorem 2.6(ii) can be
improved to γk(G) ≥ γt (G) + k − 2 for block graphs. Moreover, for k ≥ 3, they
showed that γk(T ) ≥ γt (T )+ k− 1 and that γk(T ) ≥ γc(T )+ k − 1 for any tree T
with �(T ) ≥ k and characterized both equalities.

That γk+1(G) cannot be too large with respect to γk(G) is nevertheless shown by
the following two theorems. The first one was proved by Favaron [59] and Volkmann
[142] independently, the second by Favaron, Hansberg, and Volkmann [60].

Theorem 2.8 ([59], [142] p. 195) Let k be a positive integer. If G is a graph of
order n and δ(G) ≥ k + 1, then γk+1(G) ≤ n+γk(G)

2 and the bound is sharp.

Proof. Let S be a minimum k-dominating set ofG. Consider the set A ⊆ V (G) \ S
of vertices v with |N(v) ∩ S| = k. If A = ∅, then γk(G) = γk+1(G) and the
inequality follows easily. If A �= ∅, then |N(x) ∩ S| ≥ k + 1 for all vertices x
in V (G) \ (A ∪ S). Consider now the graph H = G[N [A] ∩ (V (G) \ S)] and
let D be a minimum dominating set of H . Clearly, δ(H) ≥ 1 and Ore’s Theorem
(Theorem 1.6) implies that

|D| ≤ 1

2
|N [A] ∩ (V (G) \ S)| ≤ 1

2
|V (G) \ S| = 1

2
(n− γk(G)).
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It is straightforward to check that D ∪ S is a (k + 1)-dominating set of G. Hence,

γk+1(G) ≤ |D ∪ S| ≤ 1

2
(n− γk(G))+ γk(G) = n+ γk(G)

2
.

That the bound is sharp may be seen by the graph G obtained from a clique B with
|B| = k and q ≥ k cliques Ai each of order two by adding all edges between B
and all Ai’s. Then n = k + 2q, δ = k + 1, γk(G) = k and γk+1(G) = k + q =
(n+ γk(G))/2. �

The special case k = 2 of Theorem 2.8 can be found in [15]. In [146], Volkmann
characterized the connected P4-free graphs G with the property that G is (K4 − e)-
free, which attain equality in Theorem 2.8.

Theorem 2.9 ([60]) Every graph of order n and minimum degree δ satisfies

γk(G)+ (k
′ − k + 1)

2k′ − k γk′(G) ≤ n

for all integers k and k′ with 1 ≤ k ≤ k′ ≤ δ.

2.2 Bounds in Terms of Order and Degrees

We begin by the lower bounds on the k-domination number given by Fink and
Jacobson in their paper introducing k-domination [63]. Note that a bipartite graph
is called k-semiregular if every vertex in one of the two partite sets has degree k.

Theorem 2.10 ([63]) Let G be a graph G of order n with maximum degree � and
m edges and let k ≤ � be a positive integer.

(i) γk(G) ≥ kn

k +�.
(ii) γk(G) ≥ n− m

k
. Furthermore, if m �= 0, then γk(G) = n− m

k
if and only if G

is a bipartite k-semiregular graph.

Proof. Let D be a minimum k-dominating set of G. Since |N(u) ∩ D| ≥ k for all
u ∈ V \D and |N(v) ∩ (V \D)| ≤ � for all v ∈ D, we derive

k(n− γk(G)) ≤ m(D,V \D) ≤ �γk(G).

Hence, rearranging the terms on both sides of the inequality chain, (i) follows easily.
For the bound in (ii), the left inequality combined with m(D,V \ D) ≤ m yields
the result. To have equality in (ii), D and V \ D have to be independent sets and
each vertex in V \ D has to have exactly k neighbors in D, hence G is a bipartite
k-semiregular graph. On the other side, letG be a k-semiregular bipartite graph with
bipartition (S, V \ S) such that every vertex in S has degree k. Let m be the edge
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number of G and n its order. Clearly, V \ S is a k-dominating set and m = |S|k.
Hence, γk(G) ≤ |V \ S| = n − m(G)

k
and, with the inequality in (ii), we obtain

γk(G) = n− m
k

. �
In [77], Hansberg and Volkmann extended the result in Theorem 2.10(ii)

introducing a parameter μ0(G) that denotes the minimum number of edges that
can be removed from a graph G such that the remaining graph is bipartite.

Theorem 2.11 ([77]) If G is a graph of order n and edge number m and μ0 =
μ0(G), then

γk(G) ≥ n− m− μ0

k
.

Additionally, if m �= 0, then γk(G) = �n − m−μ0
k

� if and only if G contains a
bipartite k-semiregular factor H with m(H) = m − μ0 − r , where r is an integer
such that 0 ≤ r ≤ k − 1 and m− μ0 − r ≡ 0 (mod k).

Since a tree T of order n has n − 1 edges, it follows from Theorem 2.10.2 that

γk(T ) ≥ (k − 1)n+ 1

k
. In [143], Volkmann provided a characterization of the trees

achieving equality in this bound. Related results involving the number of leaves and
support vertices were given by Lu, Hou, and Xu in [118] for trees and by Chellali
[33] for graphs with at most one cycle.

We consider now upper bounds on γk(G). The first upper bound on the
k-domination number generalizing Ore’s upper bound (Theorem 1.6) for the
domination number was given by Cockayne, Gamble, and Shepherd in 1985 [46].

Theorem 2.12 ([46]) If G is a graph of order n and minimum degree δ ≥ k, then
γk(G) ≤ k

k+1n.

Observe that, with k = k′ in Theorem 2.9, we immediately obtain Theorem 2.12.
Using Theorem 2.9, Favaron, Hansberg, and Volkmann [60] characterized the
extremal graphs attaining equality in Theorem 2.12. This characterization general-
izes the one of graphs G without isolated vertices realizing γ (G) = n/2 [62, 123].
To state the result, we need to give the following definition. The corona of two
graphs G1 and G2 is the graph G1 ◦G2 formed from one copy of G1 and |V (G1)|
copies of G2 where the ith vertex of G1 is adjacent to every vertex in the ith copy
of G2.

Theorem 2.13 ([60]) Let G be a connected graph of order n and minimum degree
δ. Then G satisfies γk(G) = k

k+1n for some integer k with 1 ≤ k ≤ δ if and only if
G is the corona J ◦Kk , when k ≥ 2, and J ◦K1 or G ∼= C4, when k = 1, where J
is any connected graph.

The upper bound in Theorem 2.12 has been extended later by different authors,
among them (given in chronological order) Caro and Roditty [28], Stracke and
Volkmann [135], Chen and Zhou [40] and Favaron, Hansberg, and Volkmann [60].
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Since the bounds given in [40, 135] are comprised by the other bounds, we only
state those in [28, 60].

Theorem 2.14 ([28]) Let r, k be positive integers and G a graph of order n and
minimum degree δ ≥ r+1

r
k − 1. Then γk(G) ≤ r

r+1n.

Proof. Let V1, V2, . . . , Vr be a partition of V (G) such that the number of edges in
E′ = ∪ri=1Ei is minimum, where Ei = E(G[Vi]). By a classical Erdős argument

[53], the graph H = G− E′ has minimum degree at least
⌈
rδ
r+1

⌉
. Hence,

δ(H) ≥
⌈
rδ

r + 1

⌉

≥
⌈
r

r + 1

(
r + 1

r
k − 1

)⌉

= k.

Assume, without loss of generality, that |V1| ≥ |V2| ≥ . . . ≥ |Vr |. Then the set
D = ∪ri=2Vi is a k-dominating set since every vertex in V1 has at least k neighbors
in D. It follows that

γk(G) ≤ |D| = n− |V1| ≤ n− n
r
= r + 1

r
n.

�
Observe that the condition δ ≥ r+1

r
k − 1 is equivalent to r ≥ k

δ+1−k . Hence, the
smallest r we can take in Theorem 2.14 is �k/(δ + 1 − k)�. Hence, the bound of
Theorem 2.14 can be stated in the following equivalent but more explicit form.

Theorem 2.15 ([60]) If G is a graph of order n and minimum degree δ, then, for
every positive integer k ≤ δ,

γk(G) ≤ �k/(δ + 1 − k)�
�k/(δ + 1 − k)� + 1

n .

Using the fact that � k
δ+1−k � ≤ δ

δ+1−k and that the function x
x+1 is monotonically

increasing for positive x, the following simple bound follows from Theorem 2.15.

Corollary 2.16 ([60]) If G is a graph of order n and minimum degree δ and k ≤ δ
is a positive integer, then

γk(G) ≤ δ

2δ + 1 − k n.

As mentioned in the introduction in the general setting of (F, k)-cores, when
the minimum degree is large, one can expect better bounds on the corresponding
domination parameter. Ten years before Caro and Yuster [31] provided the general
bound for (F, k)-cores, Caro [29] proved, in 1990, the corresponding result for k-
dominating sets, hence generalizing the bound on the usual domination number by
Arnautov [5], Lovázs [117], and Payan [122] that we stated in Theorem 1.7. We will
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state Caro’s theorem together with its proof, since it contains the essence of all these
results that use probabilistic arguments.

Theorem 2.17 ([29]) Let k and δ be positive integers satisfying k <
√

ln δ and let
G be a graph on n vertices with minimum degree at least δ. Then

γk(G) ≤ n ln δ

δ
(1 + oδ(1)).

Proof. Fix 0 < ε < 1
2 and p = (

1 + ε
2

) ln δ
δ

. Let X ⊆ V (G) be a random subset of
vertices, where each vertex is selected independently with probability p. Let Y ⊆
V (G) be the set of vertices v with |N(v) ∩ X| ≤ k − 1. Clearly, X ∪ Y is a k-
dominating set and E[|X|] = pn. We will calculate now E[|Y |]. Observe that,
since k <

√
ln δ, for each 0 ≤ i ≤ k − 1 and t ≥ δ, we have

i

t
≤ k − 1

δ
≤

(
1 + ε

2

) ln δ

δ
= p,

and thus
(
t

i

)

(1 − p)t−i ≤
(
t − 1

i

)

(1 − p)t−1−i . (1)

Hence,

P(v ∈ Y ) =
k−1∑

i=1

(
d(v)

i

)

pi(1 − p)d(v)−i ≤
k−1∑

i=1

(
δ

i

)

pi(1 − p)δ−i . (2)

Considering the terms inside the sum, we see that, for 0 ≤ i ≤ k − 1,

(
δ

i

)

pi(1 − p)δ−i ≤ (δp)ie−p(δ−i)

=
(

1 + ε
2

)i
(ln δ)iδ−(1+

ε
2 )(1− i

δ
)

<
(

1 + ε
2

)k−1
(ln δ)k−1δ−(1+

ε
2 )(1− kδ )

= O(2k(ln δ)kδ−(1+ ε2 )).

Hence, P(v ∈ Y ) = O
(
k2k(ln δ)kδ−(1+ ε2 )

)
, which is at most O

(
δ−(1+ ε4 )

)
for

k <
√

ln δ, and thus

E[|Y |] = O
(
nδ−(1+

ε
4 )
)
= o

(n

δ

)
.



164 A. Hansberg and L. Volkmann

By the linearity of expectation, we have E[|X ∪ Y |] ≤ E[|X| + |Y |] = E[|X|] +
E[|Y |] and we conclude that

E[|X ∪ Y |] ≤ np + o
(n

δ

)

= n
(

1 + ε
2

) ln δ

δ
+ o

(n

δ

)

= n ln δ

δ

(
1 + ε

2
+ o(1)

)
,

implying that there is a k-dominating set of size at most n ln δ
δ

(
1 + ε

2 + o(1)
)
.

Therefore, for sufficiently large δ, γk(G) ≤ n ln δ
δ
(1 + ε) and the result follows. �

Observe that previous theorem is useful when we are dealing with large graphs
and large minimum degree. For example, if k = 2, the assumption 2 <

√
ln δ forces

us to take graphs with minimum degree at least 55. Theorem 2.17 tells us that a
graph on n vertices and minimum degree at least 55 will have a 2-dominating set of
cardinality at most ln 55

55 n. Hence, if n = 100, the graph will have a 2-dominating
set of at most 7 vertices. If we increase the minimum degree, say to 80, and keep
n = 100, then we could find a 2-dominating set on at most 5 vertices.

Caro [29] showed that the bound in Theorem 2.17 is asymptotically sharp by
means of the construction of a graph derived from a certain d-uniform hypergraph
H with transversal number at least (n+m)(1+ o(1)) ln d

d
, where n is the order of H

and m its edge number, which was given by Alon in [2].
Weakening considerably the condition on the minimum degree, Rautenbach and

Volkmann [128] gave, using similar probabilistic arguments, another upper bound
on the k-domination number γk . Hansberg and Volkmann [78] improved later their
technique to obtain the following bound. Due to the weaker conditions, these bounds
are, as expected, not as strong as Caro’s bound.

Theorem 2.18 ([78]) Let G be a graph on n vertices with minimum degree δ ≥ 1
and let k ∈ N. If δ+1

ln(δ+1) ≥ 2k, then

γk(G) ≤ n

δ + 1

(

k ln(δ + 1)+
k−1∑

i=0

δi

i! (δ + 1)k−1

)

.

The proof of this theorem uses similar probabilistic arguments as Caro’s proof
of Theorem 2.17. Since

∑k−1
i=0 δ

i ≤ (δ + 1)k−1, it is easy to see that Theorem 2.18
implies that, for δ+1

ln(δ+1) ≥ 2k, γk(G) ≤ n
δ+1 (k ln(δ + 1) + 1). Observe that this

statement generalizes the bound for the domination number given in Theorem 1.7.
With a less strong assumption on the minimum degree (by a factor of 2), Przybyło
obtained the same bound for the k-domination number.
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Theorem 2.19 ([126]) LetG be a graph on n vertices with minimum degree δ ≥ 1.
If δ+1

ln(δ+1) ≥ k, then

γk(G) ≤ n

δ + 1
(k ln(δ + 1)+ 1).

For the case k = 1, these theorems (and also Rautenbach and Volkmann’s bound
in [128]) yield directly the well-known bound for the usual domination number γ ,
see Theorem 1.7. Weakening a bit more the assumption on the minimum degree,
other similar results were obtained in [78].

We would like to finish this subsection mentioning some results concerning upper
bounds on the 2-domination number in terms of the order of the graph and where
the minimum degree is small. First note that the bounds in Theorems 2.14 and 2.15
give that γ2(G) ≤ 2

3n for δ ≥ 2 and γ2(G) ≤ 1
2n for δ ≥ 3 and this is the best one

can get, even if the minimum degree is increased. On the other hand, the bounds in
Theorems 2.18 and 2.19 yield a bound of less than 1

2n only if δ ≥ 11. Hence, better
bounds for small δ are desirable to find. This was achieved by Bujtás and Jaskó
[23] for 6 ≤ δ ≤ 21. Their result relies on an algorithmic method to construct a
2-dominating set, where weights are assigned to the vertices, which in turn change
according to some rules during the greedy 2-domination procedure. In particular,
the following bounds are obtained.

Theorem 2.20 Let G be a graph of order n and minimum degree δ.

(i) If δ = 6, then γ2(G) < 0.498n.
(ii) If δ = 7, then γ2(G) < 0.467n.

(iii) If δ = 8, then γ2(G) < 0.441n.
(iv) If δ ≥ 9, then γ2(G) < 0.418n.

2.3 Relationship to Other Graph Parameters

One of the graph parameters most studied in connection with the multiple dom-
ination number is the k-independence number. We say that a subset S of V is
k-independent if the maximum degree of the subgraph induced by the vertices of
S is less than k. The cardinality of a k-independent set of maximum cardinality in
a graph G is denoted with αk(G). Clearly, a 1-independent set is an independent
set and α1(G) = α(G). Note that a k-independent set is sometimes called (k − 1)-
independent [30, 109], (k−1)-dependent [63, 64], k-dependent [98], or (k−1)-small
[96]. The property for a subset of V to be k-independent is hereditary. A k-
independent set S of G is maximal if for every vertex v ∈ V − S, S ∪ {v} is not
k-independent. We denote with i(G) the minimum cardinality of an independent
dominating set, i.e., a set that is both independent and dominating.

It is well-known that an independent set is maximal if and only if it is also dom-
inating. So we can say that domination, which is defined even for non-independent
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sets, is the property which makes an independent set maximal. Moreover, every set
which is both independent and dominating is a minimal dominating set of G. This
observation leads to the well-known inequality chain:

γ (G) ≤ i(G) ≤ α(G) ≤ �(G) for all graphs G. (3)

In [63], Fink and Jacobson proved that γ2(G) ≤ α2(G) and conjectured that
for every graph G and any positive integer k, γk(G) ≤ αk(G). This inequality is
not obvious because for k ≥ 2, a maximal k-independent set is not necessarily k-
dominating as it is for k = 1. The conjecture proved to be true by means of the
following result due to Favaron [57].

Theorem 2.21 ([57]) For any graphG, every k-independent setD such that k|D|−
m(G[D]) is maximum is a k-dominating set of G.

Proof. Let D be a k-independent set such that k|D| − m(G[D]) is maximum. If
D = V (G), then �(G) ≤ k − 1 and D = V (G) is a k-dominating set and we
are done. Hence, we may assume that V (G) \ D �= ∅. Suppose now that D is not
k-dominating. Then there is a vertex v ∈ V (G) \D with |N(v) ∩D| ≤ k − 1. Let
B = N(v) ∩ D, A = {a ∈ B : |N(a) ∩ D| = k − 1} and let S be a maximal
independent set of G[A]. Then S ⊆ A ⊆ B ⊆ D and |B| < k (see Figure 2).
Observe also that A, and hence S, may be empty, but, if A is not empty, then neither
S. Also note that, because of the maximality of S, the vertices in A, if any, have one
or more neighbors in S. We will show thatC = (D\S)∪{v} is again a k-independent
set. This is indeed true, as

|N(v) ∩ C| ≤ |B| < k,
|N(x) ∩ C| ≤ |N(x) ∩D| < k, for all x ∈ D \ B
|N(b) ∩ C| ≤ |N(b) ∩D| + 1 < k, for all b ∈ B \ A
|N(a) ∩ C| ≤ |N(a) ∩D| < k, for all a ∈ A \ S.

However,

k|C| −m(G[C]) = k|C| − (m(G[D])− |S|(k − 1)+ |B| − |S|))
= k(|C| + |S|)−m(G[D])− |B|
= k(|D| + 1)−m(G[D])− |B|
= k|D| −m(G[D])+ k − |B|
> k|D| −m(G[D]),

which is a contradiction to the choice of D. Hence, D is a k-dominating set. �
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Fig. 2 Sketch of the proof of
Theorem 2.21: The set
C = (D \ S) ∪ {v} is marked
with grey color.

The proof of Theorem 2.21 allows one to construct a k-independent k-dominating
set from a k-independent one, and thus also from any independent set (which is
trivially k-independent). However, the algorithmic aspect is not developed in [57].

By Theorem 2.21, any graph G admits a set S that is both k-independent and
k-dominating. Since such a set is a minimal k-dominating set and a maximal k-
independent set, γk(G) ≤ |S| ≤ �k(G) and ik(G) ≤ |S| ≤ αk(G). Therefore we
have the following corollary.

Corollary 2.22 ([57]) For any graph G and positive integer k,

γk(G) ≤ αk(G) and ik(G) ≤ �k(G).

Chellali and Meddah [39] provided a constructive characterization of trees with
equal 2-domination and 2-independence numbers. Their characterization is in terms
of global properties of a tree, and involves properties of minimum 2-dominating and
maximum 2-independent sets in the tree at each stage of the construction. Brause,
Henning, and Krzywkowski [20] provided later a constructive characterization that
relies only on local properties of the tree at each stage of the construction.

The inequality chain (3) is now partially generalized. We can wonder whether a
complete generalization of (3) is possible for every positive integer k. The answer
is negative as noticed in [58]. The following examples show that each of the four
inequalities γk(G) > ik(G), ik(G) > γk(G), �k(G) > αk(G), and αk(G) > �k(G)
are possible.

For a double star Sk−1,k−1 (k ≥ 2)we have γk(G) = n−1 > ik(G) = n−2 while
for the graph G constructed from three subdivided stars SSp, p ≥ 2, with centers
x, y, and z by adding edges xy and xz, i2(G) = 4p + 2 and γ2(G) = 3p + 3.

Now let us consider the graph Hk obtained from k ≥ 2 disjoint stars Fi � K1,k
with centers ci and leaves ui,1, ui,2, · · · , ui,k by adding a new vertex x and the k
edges xci , 1 ≤ i ≤ k (see Figure 3). Then n = k2 + k + 1 and, since k < �,
�k(Hk) < n follows. Moreover,

⋃k
i=1 V (Fi) is a minimal k-dominating set of Hk .

Therefore �k(Hk) = k2 + k. On the other hand, let S be a k-independent set of Hk .
Clearly, every maximal k-independent set has at most k vertices in each star Fi and
αk(Hk) ≤ k2 + 1. Since V (Hk)− {c1, c2, · · · , ck} is a maximal k-independent set,
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Fig. 3 The graph Hk .

αk(Hk) = k2+1 follows. Thus �k(Hk) > αk(G). The same graphHk also provides
an example for the opposite inequality since �k+1(Hk) = k2 + 1 < k2 + k =
αk+1(Hk).

However, some inequalities can be proved in particular situations as shown by
Theorems 2.23 and 2.24.

Theorem 2.23 ([98]) If γk+1(G) = γk(G) for some positive integer k, then
γk(G) ≥ ik(G).
Theorem 2.24 ([35]) Every graph G satisfies α�(G) ≥ ��(G).
Proof. Let S be a minimal �-dominating set of G with maximum order. Then the
maximum degree inG[S] is at most�−1 for otherwise a vertex v ∈ S of degree�
has all its neighbors in S and then S − {v} is a �-dominating set, contradicting
the minimality of S. Thus S is a �-independent set of G and α�(G) ≥ |S|
= ��(G). �

In [12], Blidia, Chellali, and Favaron show that, if a graph G is claw-free, then
γ2(G) ≥ α(G). This result can be extended to K1,k+1-free graphs.

Theorem 2.25 Let G be a K1,k+1-free graph. Then γk(G) ≥ α(G).
Proof. Let D be a minimum k-dominating set and S a maximum independent set
of G. If S ⊆ D, we are done. So we may assume that S \D �= ∅. Now every vertex
in S \D has at least k neighbors in D \ S. Moreover, since G is K1,k+1-free, every
vertex in D \ S has at most k neighbors in S \D. We obtain

k(|S| − |S ∩D|) = k|S \D| ≤ m(S \D,D \ S) ≤ k|D \ S| = k(|D| − |S ∩D|),

which yields γk(G) ≥ α(G). �
Theorem 2.26 ([79]) If G is a connected nontrivial block-cactus graph, then
γ2(G) ≥ i(G). Moreover γ2(G) = i(G) if and only if G is a C4-cactus.

Since trees are contained in the class of block-cactus graphs, clearly γ2(T ) ≥
i(T ) + 1 for any nontrivial tree T . Using the characterization of trees T such
that γ2(T ) = γ (T ) + 1 given in Theorem 2.6 (i), Hansberg and Volkmann [79]
characterized all trees T with γ2(T ) = i(T )+ 1.
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Theorem 2.27 ([79]) Let T be a nontrivial tree. Then γ2(T ) = i(T )+1 if and only
if T is a subdivided star SSt or a subdivided star SSt minus a leaf or a subdivided
double star SSs,t or T is isomorphic to the tree of order 6 with two adjacent vertices
of order 3 and 4 leaves.

Jacobson, Peters, and Rall [98] observed that if S is a k-independent set of a
graph G with minimum degree δ ≥ k, then V − S is a (δ − k + 1)-dominating
set. Similarly, Favaron [59] showed that if S is a k-dominating set of a graph G of
maximum degree � ≥ k, then V − S is a (� − k + 1)-independent set. Therefore
we have the following.

Theorem 2.28 Let G be a graph with minimum degree δ and maximum degree
�.

(i) If δ ≥ k, then αk(G)+ γδ−k+1(G) ≤ n. [98]
(ii) If � ≥ k, then αk(G)+ γ�−k+1(G) ≥ n. [59]

These theorems were extended by Pepper [124] and Hansberg and Pepper [72]
to the following shape.

Theorem 2.29 Let G be a graph of order n, let k, j,m be positive integers such
that m = k + j − 1, and let G≥m and G≤m denote, respectively, the subgraphs
induced by the vertices of degree at least m and by the vertices of degree at most m.
Then

(i) γk(G)+ αj (G≥m) ≤ n, [124]
(ii) γk(G≤m)+ αj (G) ≥ n(G≤m). [72]

Proof. Let I be a maximum j -independent set of G≥m and D a minimum k-
dominating set of G≤m. We will show that V (G) − I is a k-dominating set of G
and that V (G≤m)−D is a j -independent set of G.

Let u ∈ I . Then d(u) ≥ m and |N(u) ∩ I | ≤ j − 1. This implies

|N(u) ∩ (V (G)− I )| = |N(u)| − |N(u) ∩ I | ≥ m− (j − 1) = k

and hence V (G) − I is a k-dominating set of G. If V (G≤m) − D is empty, then
n(G≤m)−|D| = n(G≤m)−γk(G≤m) = 0 and the statement is trivial. Thus suppose
there is a vertex v ∈ V (G≤m) − D. Then deg(v) ≤ m and |N(v) ∩ D| ≥ k. This
implies

|N(v) ∩ (V (G≤m)−D)| = |N(v) ∩ V (G≤m)| − |N(v) ∩D| ≤ m− k = j − 1,

and hence V (G≤m)−D is a j -independent set of G.
Altogether we obtain

γk(G) ≤ |V (G)− I | = n− αj (G≥m)

and
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αj (G) ≥ |V (G≤m)−D| = n(G≤m)− γk(G≤m),

which completes the proof. �
Favaron[59] noted that regular graphs attain the bound in Theorem 2.28.1.

Similarly, the inequalities in Theorem 2.29 take the following form for regular
graphs.

Corollary 2.30 ([72]) Let G be an r-regular graph and k and j two positive
integers. Then

γk(G)+ αj (G) ≥ n, if r ≤ k + j − 1 and

γk(G)+ αj (G) ≤ n, if r ≥ k + j − 1.

In particular, γk(G)+ αj (G) = n when r = k + j − 1.

Proof. It is evident that Hm = G for m ≤ r and Gm = G for m ≥ r . Thus with
Theorem 2.29, we obtain γk(G)+αj (G) ≤ n for r ≥ k+j−1 and γk(G)+αj (G) ≥
n for r ≤ k + j − 1, which implies the desired result. �

It was also noted in [72] that if γk(G)+αj (G) = n for every pair of integers k, j
such that k + j − 1 = δ and γk′(G) + αj ′(G) = n for every pair of integers k′, j ′
such that k′ + j ′ − 1 = �, then, in fact, G is regular.

Clearly, Theorem 2.29 is useful when details about the graph are known like,
for instance, the degree sequence or facts about the number of vertices with large
degree (≥ m) or small degree (≤ m). In this line, combining upper bounds on
the independence number given in [22, 56, 87, 134] and the inequality γδ(G) ≤
n− α(G), the authors in [72] concluded the following.

Corollary 2.31 ([72]) LetG be a graph on n vertices with maximum degree� and
minimum degree δ. Then the following hold:

(i) IfG is r-regular and different from the complete graph or a cycle of odd length,
then γr(G) ≤ r−1

r
n.

(ii) If G is triangle-free and planar with � = 3, then γδ(G) ≤ 5
8n.

(iii) If G is Kq -free, then γδ(G) ≤ �+q−2
�+q n.

(iv) If G is cubic and triangle-free, then γ3(G) ≤ 9
14n.

Moreover, all bounds are sharp.

Considering the independence number α(G) and the chromatic number χ(G),
we can cite the following results of Hansberg, Meierling, and Volkmann [71] and
Fujisawa, Hansberg, Kubo, Saito, Sugita, and Volkmann [65].

Theorem 2.32 ([71]) Let G be a graph of order n. Then

γk(G) ≤ (χ(G)− 1)n+ n(G≤k−1)

χ(G)
.
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Proof. Let S = V (G≤k−1) and r = χ(G). Clearly, S is contained in every γk(G)-
set. In the case that |S| = |V (G)| = n, we are done. In the remaining case that
|S| < |V (G)|, let V1, V2, . . . , Vr be a partition of V (G) \ S derived from a partition
of V (G) into χ(G) chromatic classes and such that |V1| ≥ |V2| ≥ . . . ≥ |Vr |.
Observe that Vi = ∅ is possible for any i ≥ 2. Then every vertex of V1 has degree
at least k and all its neighbors are in V (G) \ V1. Thus V (G) \ V1 is a k-dominating
set of G such that

|V1| ≥ |V1| + |V2| + . . .+ |Vr |
r

= n− |S|
r

and thus

γk(G) ≤ n− |V1| ≤ n− n− |S|
r

= (r − 1)n+ n(G≤k−1)

r
.

�
Clearly, if we assume that G is a graph with δ(G) ≥ k, then Theorem 2.32

gives γk(G) ≤ χ(G)−1
χ(G)

n. This is interesting when considering graphs with chromatic
number at most k and minimum degree at least k, since then this gives a better bound
than the inequality γk(G) ≤ k

k+1n of Theorem 2.12. In particular, we mention the
following corollary for bipartite graphs.

Corollary 2.33 If G is a bipartite graph of order n and δ(G) ≥ k, then γk(G) ≤
1
2n.

On the other hand, Brooks’ theorem [22] states that any connected graph G
different from the complete graph and from a cycle of odd length has χ(G) ≤ �(G).
Moreover, if we also assume that δ(G) ≥ k, then Theorem 2.32 together with
Brooks’ Theorem and the fact that α(G) ≥ n(G)

�(G)
yield

γk(G)≤ (χ(G)−1)n+n(G≤k−1)

χ(G)
≤ (χ(G)−1)n

χ(G)
≤ (�(G)−1)n

�(G)
≤(�(G)−1)α(G).

This is the statement of the following theorem, where the authors also characterize
the non-regular graphs attaining equality.

Theorem 2.34 ([71]) LetG be a connected nontrivial graph with maximum degree
� and minimum degree δ(G) ≥ k. If G is neither isomorphic to a cycle of odd
length when k = 2 nor to the complete graph Kk+1, then

γk(G) ≤ (�− 1)α(G).

Moreover, ifG is non-regular, then γk(G) = (�−1)α(G) if and only ifG ∼= K2◦Kk .
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The next theorem, stated also in [71], establishes a relation between the k-
domination number γk(G), the independence number α(G), and the chromatic
number χ(G) of a graph G.

Theorem 2.35 ([71]) Let G graph be a graph with �(G) ≥ k. Then

γk(G) ≤ α(G)
(

χ(G)− 1 + k − 1

χ(G)

)

.

Proof. For k = 1, use the fact that the complement of a maximum independent
set is dominating, which yields γ (G) ≤ n − α(G), together with the inequality
α(G) ≥ n

χ(G)
. Now suppose that k ≥ 2. Let S = V (G≤k−1). Since G is connected

and V (G)− S is not empty, every component Q of G[S] fulfills δ(Q) ≤ k − 2 and
�(Q) ≤ k− 1. From Brook’s Theorem, it follows that α(Q) ≥ n(Q)

χ(Q)
≥ n(Q)

k−1 . Thus,
ifQ1,Q2, . . . ,Qs are the components of G[S], then we obtain

α(G) ≥ α(G[S]) ≥
s∑

i=1

α(Qi) ≥ n(G[S])
k − 1

= |S|
k − 1

.

Hence, together with n(G) ≤ χ(G)α(G) = rα(G), we have, with Theorem 2.32,

γk(G) ≤ (r − 1)n(G)+ |S|
r

≤ (r − 1)rα(G)+ (k − 1)α(G)

r

= α(G)
(

χ(G)− 1 + k − 1

χ(G)

)

.

�
IfG is a graph of order n and�(G) ≥ k with χ(G) ≤ k− 1, then the right-hand

side of the inequality of previous theorem would give, by means of α(G)χ(G) ≥ n,

α(G)

(

χ(G)− 1 + k − 1

χ(G)

)

= α(G)χ(G)+ α(G)
(
k − 1

χ(G)
− 1

)

≥ n.

Hence, the equality is only meaningful for k ≤ χ(G). In particular, this implies that,
for bipartite graphs, the only case worth of studying is k = 2. This is precisely what
was done previously by Fujisawa, Hansberg, Kubo, Saito, Sugita, and Volkmann
[65], who showed that γ2(G) ≤ 3

2α(G) for bipartite graphsGwith maximum degree
at least 2 and who characterized the equality. This inequality had been previously
shown for trees by Blidia, Chellali, and Favaron [11]. We recall here that, in [62,
123], the graphs G satisfying equality in Ore’s bound (Theorem 1.6), i.e., such that
γ (G) = 1

2n(G), were shown to be those isomorphic to a corona graph H ◦K1 or to
the cycle of length 4.
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Fig. 4 Sketch of the proof of
Theorem 2.36: The set
A1 ∪ L is a 2-dominating set.

Theorem 2.36 ([65]) If G is a connected bipartite graph of order at least 3, then
γ2(G) ≤ 3

2α(G) and equality holds if and only if G ∼= (J ◦ K1) ◦ K1 for some
connected bipartite graph J or G ∼= C4 ◦K1.

Proof. Let G be a connected bipartite graph with n(G) ≥ 3. Let L be the set of
leaves in G, and let I be a maximum independent set of G. Since n(G) ≥ 3, we
can assume, without loss of generality, that L ⊆ I and thus |L| ≤ α(G). Since G is
bipartite, we have 2α(G) ≥ n(G).

Let A and B be the partition sets of G. Define A1 := A \ L and B1 := B \ L
and assume, without loss of generality, that |A1| ≤ |B1| (see Figure 4). Then |A1| ≤
1
2 (n(G)− |L|). Since every vertex in B1 has at least two neighbors in A1 ∪ L,

γ2(G) ≤ |A1 ∪ L| ≤ 1

2
(n(G)− |L|)+ |L| = 1

2
(n(G)+ |L|).

Combining this inequality with |L| ≤ α(G) and n(G) ≤ 2α(G), we obtain the
desired bound

γ2(G) ≤ 1

2
(n(G)+ |L|) ≤ 2α(G)+ α(G)

2
= 3

2
α(G).

Moreover, if γ2(G) = 3
2α(G) holds, we necessarily have n(G) = 2α(G), |L| =

α(G), and γ2(G) = 1
2 (n(G)+ |L|). Hence, G is such that |L| = α(G) and n(G) =

2α(G) = 2|L|, implying that G ∼= H ◦ K1. Furthermore, the identities γ2(G) =
1
2 (n(G) + |L|) and n(G) = 2|L| yield γ2(G) = 3

4n(G). Consider now a minimum
dominating set D of H = G − L. Since G ∼= H ◦ K1, D ∪ L is a minimum
2-dominating set of G and we obtain, with Ore’s inequality (Theorem 1.6),

γ2(G) = γ (H)+ |L| ≤ 1

2
n(G− L)+ |L| = 3

4
n(G).

In view of the characterization of the graphs attaining Ore’s bound mentioned before
this theorem, equality holds if and only if H ∼= J ◦K1 for some connected bipartite
graph J or if H ∼= C4.
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Conversely, if G ∼= (J ◦ K1) ◦ K1 for some connected bipartite graph J or
G ∼= C4 ◦K1, then it is straightforward to check that γ2(G) = 3

2α(G). �
The following results give a lower bound on the k-domination number in terms

of the (k − 1)-independent number for special classes of graphs. The case k = 2 of
Theorem 2.37 was given in [11] previously.

Theorem 2.37 ([17]) If T is a tree, then γk(T ) ≥ αk−1(T ) for every integer k ≥ 2.

Proof. If �(T ) ≤ k − 1, then γk(T ) = n = αk−1(T ). So suppose that �(T ) ≥ k.
Let B = V (T≥k). Observe that the condition on the maximum degree lets us assume
that B �= ∅. We will proceed by induction on |B|. If |B| = 1, then clearly γk(T ) =
n − 1 = αk−1(T ). Let now |B| ≥ 2 and assume that γk(T ′) ≥ αk−1(T

′) for every
tree T ′ with |V (T ′≥k)| < |B|. Root T at a vertex r of maximum eccentricity and let
w be a vertex of degree at least k of maximum distance from r . Since r is a leaf,
r �= w. Let Tw be the subtree of T consisting of w and all its descendants, and let
T ′ = T − Tw. Let v be the unique neighbor of w in V (T ′). If S is a maximum
(k − 1)-independent set of T ′, then S ∪ (V (Tw) \ {w}) is a (k − 1)-independent set
of T ′. It follows that

αk−1(T ) ≥ |S ∪ (V (Tw) \ {w})| = αk−1(T
′)+ n(Tw)− 1.

On the other hand, ifD is a minimum k-dominating set of T , then (D\V (Tw))∪{v}
is a k-dominating set in T ′. Hence, we have

γk(G) ≤ |(D \ V (Tw)) ∪ {v}| ≤ γk(T )− n(Tw)+ 1.

Since by the induction hypothesis we have γk(T ′) ≥ αk−1(T
′), we obtain, together

with both inequalities above, that γk(T ) ≥ αk−1(T ). �
Equivalent conditions for trees to satisfy γk(T ) = αk−1(T ) are also given in [17],

among them an explicit construction of the family via two different operations. For
k = 2, the authors of Theorem 2.37 extended their result to block graphs showing
that γ2(G) ≥ α(G) for any block graph G and established the bound γ2(G) ≥
α(G) − c(G) + 1 for connected cactus graphs with c(G) ≥ 1 cycles [16]. In [35]
this last inequality was refined to γ2(G) ≥ �(G)− c(G)+ 1.

2.4 Nordhaus–Gaddum Bounds

Using Ore’s upper bound (Theorem 1.6), Theorems 2.12, 2.14, and two further
results in the paper by Stracke and Volkmann [135], Volkmann [144] derived the
following Nordhaus–Gaddum bound for the 2-domination number.
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Theorem 2.38 ([144]) If G is a graph of order n, then

γ2(G)+ γ2(G) ≤ n+ 2.

In 2008, Prince [125] extended the above theorem in the case where k ≥ 2.
However, the bound in Theorem 2.38 is one unit below the bound in Theorem 2.39
for k = 2. In [125], a lower bound for the sum as well as lower and upper bounds
for the bounds are given, too.

Theorem 2.39 ([125]) If G is a graph of order n ≥ n0(k). Then

(i) 8
3k ≤ γk(G)+ γk(G) ≤ n+ 2k − 1, and

(ii) 16
9 k

2 ≤ γk(G)γk(G) ≤ (2k − 1)(n− k + 2).

Note that, in order to prove the above bounds, Prince [125] proved first a series
of lemmas, some of which are themselves inequalities of Nordhaus–Gaddum-type
under certain conditions. The function n0(k) appearing in Theorem 2.39 is small for
three of the inequalities. Indeed, the lower bounds hold already for n ≥ 25

9 k, and the
upper bound for γk(G) + γk(G) is valid for all n. However, the argument used to
prove the upper bound for γk(G)γk(G) requires n to be at least exp(�(k log k)).
This requirement comes from a probabilistic upper bound on the k-domination
number in which the number of vertices with low degree plays a particular role (also
given in [125]). We also point out that many of the results in [125] are proven via the
interpretation of k-dominating sets of a graph in the neighborhood hypergraph. In
this context, the so-called�-systems (also called sunflowers) play an important role
(see also [54, 138]). As to the sharpness, all inequalities in Theorem 2.39 are proved
to be sharp. However, the sharpness of the inequality γk(G)+ γk(G) ≤ n+ 2k − 1
is given only for small n’s.

In [120], Mojdeh, Samadi, and Volkmann gave the following Nordhaus–
Gaddum-type result involving the connectivity κ(G) of the graph, i.e., the minimum
size of a vertex cut.

Theorem 2.40 ([120]) If G is a graph with γ (G), γ (G) ≥ k + 2, then

γk(G)+ γk(G) ≤ κ(G)+ κ(G)− (γ (G)+ γ (G))+ 2k + 4.

Observe that, since the connectivity of a graph is upper-bounded by the minimum
degree of the graph and since we are assuming γ (G), γ (G) ≥ k + 2, the bound of
Theorem 2.40 implies that

γk(G)+ γk(G) ≤ δ(G)+ δ(G)− (γ (G)+ γ (G))+ 2k + 4 ≤ δ(G)+ δ(G).
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3 k-Tuple Domination and Total k-Domination

3.1 Bounds in Terms of Order and Degrees

3.1.1 The General Case

In their paper introducing the k-tuple domination and analogous to the bounds
of Fink and Jacobson for the k-domination number (Theorem 2.10), Harary and
Haynes [84] gave two lower bounds on γ×k(G) in terms of the order, the edge
number, and the maximum degree of the graph G.

Theorem 3.1 ([84]) LetG be a graph of order n, edge numberm, maximum degree
�, and minimum degree at least k − 1. Then

γ×k(G) ≥ kn

�+ 1
and γ×k(G) ≥ 2kn− 2m

k + 1

and the two bounds are sharp.

The proofs of these bounds are analogous to those of Theorem 2.10. Similarly,
one can see that

γ tk (G) ≥
kn

�
and γ tk (G) ≥

2kn− 2m

k
.

Some variations of these bounds for the total k-domination number were given in
[10]. Also in [10], Bermudo, Hernández, and Sigarreta gave the following upper
bound on the total k-domination number.

Theorem 3.2 ([10]) Let G be a graph of order n, with maximum degree � and
minimum degree δ ≥ k + 1. Then

γ tk (G) ≤
�(k + 1)

�(k + 1)+ 1
n.

Proof. Let D be a minimum total k-dominating set. Let X = {x ∈ D | N(x) ⊆ D}
be the set of vertices in D having all neighbors inside D. Then V (G) \ D is a
dominating set of G−X. By Theorem 2.10 with k = 1, we deduce

n− |D| = |V (G) \D| ≥ n− |D|
�(G−X)+ 1

≥ n− |D|
�+ 1

,

which yields |X| ≥ |D|(�+ 1)− n�.
Let S = {v ∈ D | |N(v) ∩D| = k}. Since δ ≥ k + 1, S ∩X = ∅. Moreover, by

the minimality ofD, we know by Proposition 1.3 that, for all x ∈ X, S ∩N(x) �= ∅.
Hence,
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|X| ≤ m(X, S) ≤ k|S| ≤ k|D \X|,

which gives |X| ≤ k
k+1 |D|.

Combining both obtained inequalities, it follows that

|D|(�+ 1)− n� ≤ |X| ≤ k

k + 1
|D|,

which gives γ tk (G) = |D| ≤ �(k+1)
�(k+1)+1n. �

Recall Caro and Yuster’s result (Theorem 1.8) stating that, for large minimum
degree δ, more precisely for k <

√
ln δ,

γ×k(G) ≤ γ tk (G) ≤
ln δ

δ
n(1 + oδ(1)).

As for the k-domination number, there has been made much effort in upper bounding
the k-tuple domination and the total k-domination numbers in terms of the order
and the degrees of the graph by means of less strong conditions on the minimum
degree as those assumed in Caro and Yuster’s bound. Similar bounds for the k-tuple
number and for the total k-domination number are given in [47] and, respectively,
[89]. Building up on results by Harant and Henning [80] (case k = 2), Rautenbach
and Volkmann [128] (case k = 3) and Gagarin and Zverovich [66], Chang [32],
Xu, Kang, Shan, and Yan [149], and Zverovich [152] proved, independently, the
following upper bound of the k-tuple domination number in terms of the order and
the degree sequence of the graph. This bound was stated in [128] as a conjecture.
Observe that the condition on the minimum degree is the weakest reasonable
assumption.

Theorem 3.3 ([32, 149, 152]) For a graph G with minimum degree δ ≥ k − 1,

γ×k(G) ≤ n

δ − k + 2

(

ln(δ − k + 2)+ ln

(
1

n

∑

v∈V

(
d(v)+ 1

k − 1

))

+ 1

)

.

As it can be expected, if we set a stronger assumption on the minimum degree,
one can obtain better bounds on the k-tuple domination and the total k-domination
numbers. Along this line, we can cite the following results.

Theorem 3.4 ([128]) Let G be an n-order graph of minimum degree δ. If
δ+1

2 ln(δ+1) ≥ k, then

γ×k(G) ≤ n

δ + 1

(

k ln(δ + 1)+
k−1∑

i=0

k − i
i!(δ + 1)k−1−i

)

.
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The following upper bound on γ×k was obtained by Przybyło [126] using a
probabilistic approach, in which the construction of the k-tuple dominating set is
made by selecting its elements randomly in k rounds, in contrast to the one round
that is usually performed.

Theorem 3.5 ([126]) For a graph G with minimum degree δ ≥ k − 1 such that
k ≤ δ+2−k

ln(δ+2−k)+1 ,

γ×k(G) ≤
(
k∑

i−1

ln(δ + 2 − i)+ 1

(δ + 2 − i)

)

n.

Considering the function g(x) = ln(δ+2−x)+1
(δ+2−x) , which is convex and increasing

for x ≤ δ + 1, it is not difficult to prove the following facts:

g(1 + j)+ g(k − j)
2

≤ g(1)+ g(k)
2

, for 0 ≤ j ≤
⌊
k

2

⌋

, and

k∑

i=1

g(i) ≤
∫ k+1

1
g(x)dx = ln

(
δ + 1

δ + 1 − k
)

(1 + ln(
√
(δ + 1)(δ + 1 − k))).

Having this, the following corollary is immediate.

Corollary 3.6 ([126]) Let G be a graph with minimum degree δ ≥ k − 1 such that
k ≤ δ+2−k

ln(δ+2−k)+1 . Then we have the following bounds.

(i) γ×k(G) ≤ k
2

(
ln(δ+1)+1
(δ+1) + ln(δ+2−k)+1

(δ+2−k)
)
n.

(ii) γ×k(G) ≤ ln
(
δ+1
δ+1−k

) (
1 + ln

(√
(δ + 1)(δ + 1 − k))) n.

Analogous results for the total k-domination number were also obtained in
[126]. Other probabilistic bounds for both the k-tuple domination and the total k-
domination numbers can be found in [99].

3.1.2 The Case k = 2

Much research on k-tuple and total k-domination deals with the case k = 2. In this
case, the 2-tuple domination is called double domination and instead of γ×2(G),
many authors use the parameter dd(G), which was as Harary and Haynes denoted it
originally in their seminal paper [84].

Following ideas from [82], Harant and Henning [80] show that, for a graphG on
the vertex set {1, 2, . . . , n},

γ×2(G) = min f (p),
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where the minimum is taken within all points p of the n-dimensional cube

Cn = {p = (p1, p2, . . . , pn) | pi ∈ [0, 1], 1 ≤ i ≤ n}

and the function f is the following:

f (p) =
n∑

i=1

pi +
⎛

⎝
n∑

i=1

pi
∏

j∈N(i)
(1 − pj )

⎞

⎠+
⎛

⎝2
n∑

i=1

(1 − pi)
∏

j∈N(i)
(1 − pj )

⎞

⎠

+
n∑

i=1

(1 − pi)
⎛

⎝
∑

j∈N(i)
pj

∏

�∈N(i)\{j}
(1 − p�)

⎞

⎠ .

With this approach, they also obtain the bound γ×2(G) ≤
(

ln(1+d)+ln δ+1
δ

)
n for

a graph G of order n, minimum degree δ ≥ 1, and average degree d, result that
was later generalized for general k (Theorem 3.3). A few years later, Harant and
Henning [81] presented an efficient algorithm that yields, for a given p ∈ Cn,
a double dominating set of cardinality at most f (p). We observe in passing that
analogous results were obtained for k = 3 in [82], too.

There are some interesting results on the double domination and the total 2-
domination numbers in terms of the order of the graph. Henning gave in [88] a
3
4n-bound for the double domination number of connected n-vertex graphs with
minimum degree δ ≥ 2, with C5 being the only exception. A characterization of the
extremal family was also achieved. Let F8 be the graph consisting of a C8 together
with an extra edge joining two of its vertices at distance 4. Let H be the family of
graphs of order n ≥ 4 divisible by 4 and consisting of an arbitrary connected graph
H with V (H) = {v1, v2, . . . , vn/4} and n

4 disjoint C4’s, say C1, C2, . . . , Cn/4, such
that each vertex vi is identified with one vertex of Ci , 1 ≤ i ≤ n

4 . See Figure 5 for
a drawing of the family H and the graph F8.

Theorem 3.7 ([88]) Let G be a connected graph of order n and minimum degree
δ ≥ 2. IfG �= C5, then γ×2(G) ≤ 3

4n with equality if and only ifG ∈ {C8, F8} ∪H.

The proof of this theorem is interesting but a bit long to be displayed here. It
makes a careful analysis of the structure of the minimal connected graphs (in terms
of edges) of minimum degree δ ≥ 2 and such that its double domination number

Fig. 5 Family H and the
graph F8.
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is at least 3
4 its order, which yields finally the bound and the characterization of the

desired extremal family of Theorem 3.7.
Concerning the total 2-domination number and building up on ideas that

involve the total domination number (see [92, 93, 137]), an interesting relation
to transversals in hypergraphs has been established in [94]. This relation can be
extended to the total k-domination number. Given a hypergraph H with all edges of
size at least k + 1, we say that a subset S of the vertex set is a k-transversal if, for
every hyperedge e ∈ E(H), |e∩S| ≥ k. The minimum cardinality of a k-transversal
in H is called the k-transversal number of H and denoted by τk(H). Consider now
the neighborhood hypergraph HG of a graph G on minimum degree δ ≥ k, which
has vertex set V (HG) = V (G) and edge set consisting of all open neighborhoods
N(x) of G, x ∈ V (G). It is now easy to see that S is a k-transversal in HG if and
only if S is a total k-dominating set of G, and so we have

γ tk (G) = τk(HG).

Henning and Yeo showed in [94] that, if H is a connected hypergraph on n vertices
with only 2-edges and 3-edges, and not belonging to a certain family of “bad”
hypergraphs, then

12τ2(H) ≤ 6n+ 4e3(H)+ 2e2(H), (4)

where ej (H) is the number of edges of size j in H . For the neighborhood
hypergraph of a given connected graph G, the following useful facts have been
established.

Theorem 3.8 ([92]) Let G be a connected graph.

(i) If G is non-bipartite, then HG is connected.
(ii) If G is bipartite, then HG consists of exactly two connected components which

are induced by the partite sets of G.

Observe that the neighborhood hypergraph HG of a graph G on n vertices has at
most n hyperedges, since sometimes it happens that different vertices have the same
neighborhood in G. Consider, for instance, the graph K3,3 whose neighborhood
hypergraph HK3,3 has only 2 disjoint hyperedges of size 3. By this reason we also
have dHG(x) ≤ dG(x) and �(HG) ≤ �(G). (We remark at this point that in [94] it
was erroneously assumed that�(HG) = �(G) and so the proof of Theorem 3.10 in
that paper contains a flaw.) However, if, for certain graph G, a component C of HG
(out of at most 2) is isomorphic to the hypergraph F7 depicted in Figure 6, then G
cannot have vertices with equal neighborhoods that represent a hyperedge inC. This
is due to the fact that any two hyperedges in F7 have exactly one vertex in common.
Indeed, if there were vertices x, y ∈ V (G) such that NG(x) = NG(y) = e ∈ E(C),
then {x, y} ∈ N(u) ∩ N(v) for every pair u, v ∈ e. This is not possible, since
we know that |N(u) ∩ N(v)| = 1. In fact, if F7 is a component of HG, then G
is necessarily the Heawood graph, which we call here G14, see Figure 6. This is
because of the following reasoning. First, we can assume that HG consists of two
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Fig. 6 Hypergraphs H3 and
F7 (the Fano-plane) and the
Heawood graph G14.

components. If not, then the unique component would be isomorphic to F7 and
G would be a cubic graph on 7 vertices, which is impossible. Now, each of the 7
hyperedges of the F7-component represents the neighborhood of a vertex from the
second component (and vice versa). Then, G is precisely the incidence graph of the
Fano-plane, which it is well-known to be the Heawood graph G14.

When dealing with cubic graphs, it is straightforward to see that the only possible
“bad” components (as defined in [94]) of the neighborhood hypergraph are the
hypergraphs H3 and F7 depicted in Figure 6, where F7 is the Fano-plane.

Having this, the inequality (4) can be stated for the special case that the
hypergraph in question is a component of the neighborhood graph HG of a
connected cubic graph G.

Theorem 3.9 (see [94] for the general case) Let G be a connected cubic graph. If
C is a component of HG such that C �= H3, F7, then

τ2(C) ≤ 1

2
n(C)+ 1

3
e3(C).

Now we have enough elements to prove the following theorem.

Theorem 3.10 ([94]) Let G be a connected cubic graph of order n such that G is
not the Heawood graph. Then

γ t2(G) ≤
5

6
n.

Proof. Let HG be the neighborhood hypergraph of G. If G is non-bipartite, then
HG has only one component by Theorem 3.8. Clearly,H3 cannot be a neighborhood
graph and soHG �= H3. From what we discussed previous to this theorem, we know
that HG cannot be isomorphic to F7. Now Theorem 3.9 yields

γ t2(G) = τ2(HG) ≤
1

2
n(HG)+ 1

3
e3(C) ≤ 1

2
n+ 1

3
n = 5

6
n.

Hence, we can assume thatG is bipartite. By Theorem 3.8,HG has two components,
say C1 and C2, induced by the partite sets ofG. Since G is cubic, we have n(C1) =
n(C2) = n

2 . If C1, C2 �= H3, F7, then we have with Theorem 3.9
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γ t2(G) = τ2(G) = τ2(C1)+ τ2(C2)

≤ 1

2
(n(C1)+ n(C2))+ 1

3
(e3(C1)+ e3(C2))

≤ 1

2
n+ 1

3
n = 5

6
n,

and we are done. Hence we may assume that C1 = H3 or C1 = F7. If C1 = H3,
thenC2 = H3 and we haveG = K3,3, which has γ t2(G) = 4 < 5 = 5

6n. IfC1 = F7,
then C2 = F7 and G = G14 since the latter is the incidence graph of F7. This is a
contradiction since G was assumed not to be the Heawood graph G14. �

Henning and Yeo also considered more generally graphs of minimum degree
δ ≥ 3 and, with a much more involved proof, they were able to give the following
theorem.

Theorem 3.11 ([94]) Let G be a connected graph of order n and minimum degree
δ ≥ 3 such that G is not the Heawood graph. Then

γ t2(G) ≤
11

13
n.

In [89], some results on the k-total domination number for certain bipartite graphs
are presented. Among them one can find the following one, which bounds the total
2-domination number of cubic bipartite graphs. We mention in passing that the
sharpness is not discussed in [89].

Theorem 3.12 ([89]) If G is a cubic bipartite graph of order n, then γ t2(G) ≤ 8
9n.

We finish this section mentioning that results about special graph classes for
which either the precise multiple domination number or bounds in terms of its order
are given, may be found in [9, 10, 25, 89, 90, 101–103, 105, 119].

3.2 Relationship to Other Graph Parameters

Klasing and Laforest [108] gave a lower bound on γ×k in terms of the independence
number in graphs which are K1,r -free.

Theorem 3.13 ([108]) If G is a K1,r -free graph with minimum degree δ ≥ k − 1,
then

γ×k(G) ≥ k

r − 1
α(G).

Other lower bounds on the k-tuple domination number in terms of the indepen-
dence number and maximum degree were found by Harant and Henning [81].
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For the case k = 2, Blidia, Chellali, and Favaron proved the following relation
between the double domination number, the independent domination number i(G),
and the independence number α(G).

Theorem 3.14 ([12]) Let G be a graph without isolates. Then

γ×2(G) ≤ i(G)+ α(G).

Proof. Let S be a minimum independent set of G and S′ a maximum independent
set of G[V (G) \ S]. Let B be the set of isolated vertices of G[S ∪ S′]. Since S
is dominating, clearly B ⊆ S and S′ ∪ B is an independent set, so that we have
|S′ ∪ B| ≤ α(G). Since G has no isolates, each vertex x ∈ B has at least one
neighbor in V (G)\ (S∪S′). Let A ⊆ V (G)\ (S∪S′) be a selection of one neighbor
for each x ∈ B. Then |A| ≤ |B|. Observe that the set D = S ∪ S′ ∪ A is a double
dominating set. Indeed, G[D] has no isolates and every vertex in V (G) \ D has at
least a neighbor in S and a neighbor in S′. Now we have

γ×2(G) ≤ |S ∪ S′ ∪ A| = |S| + |S′| + |A| ≤ |S| + |S′| + |B| = i(G)+ α(G).

�
Observe that, if G is claw-free, Theorem 2.25 yields γ×2(G) ≥ γ2(G) ≥ α(G),

as was also noted in [12].
In [10], Bermudo, Hernández, and Sigarreta considered relations between the

total k-domination number and the chromatic number, the diameter and the girth of
the graph.

Theorem 3.15 ([10]) Let G be a graph of minimum degree δ ≥ k. Then

γ tk (G) ≥
kχ(G)

χ(G)− 1
.

Proof. Let χ = χ(G) and let V1, V2, . . . , Vχ be a partition of V (G) into χ
chromatic classes. Let D be a minimum total k-dominating set of G and define
Di = D ∩ Vi . Then, for each i = 1, 2, . . . , χ and each vertex x ∈ Di , |D \Di | ≥
|N(x)| ≥ k. Hence,

kχ ≤
χ∑

i=1

|D \Di | = |D|(χ − 1) = γ tk (G)(χ − 1),

and the bound follows. �
The sharpness of previous theorem can be seen with a complete χ -partite graph

H = Kn1,n2,...,nχ such that ni ≥ k
χ−1 , provided that k is divisible by χ − 1. In

such a graph, a total k-dominating set can be formed by taking k
χ−1 vertices from
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each partition set, and so γ tk (H) ≤ kχ(G)
χ(G)−1 , which by previous theorem has to be an

equality.

Theorem 3.16 ([10]) Let G be a graph of order n and minimum degree δ ≥ k + 1.
Then we have the following bounds.

(i) γ tk (G) ≤ n−
⌈

diam(G)
3

⌉
;

(ii) If G has finite girth g and k ≥ 2, then γ tk (G) ≤ (g − 2)(k − 1)+ 2;

When k = 2, the following results have been established.

Theorem 3.17 ([107]) Let G be a connected graph with minimum degree δ and
maximum degree �.

(i) If diam(G) = 2, then γ×2(G) ≤ δ +�.
(ii) γ×2(G) ≥ 2� 2diam(G)+1

3 �.
The bounds (i) and (ii) in Theorem 3.17 are proved to be sharp [107]. The same

authors also considered graphs with finite girth and obtained the following results.1

Theorem 3.18 ([107]) Let G be a connected graph with finite girth g, minimum
degree δ and maximum degree �.

(i) If g = 4, then γ×2(G) ≥ 3 with equality if and only if G ∼= K2,n−2.
(ii) If g ∈ {5, 6}, then γ×2(G) ≥ 2δ; if g ≥ 7, then γ×2(G) ≥ 2δ + 1.

(iii) If g ≥ 5, then γ×2(G) ≥ �+ � 2g−7
3 �.

(iv) If g ≥ 7 and δ ≥ 2, then γ×2(G) ≥ 2�+ 1.

3.3 Nordhaus–Gaddum Bounds

Clearly, γ×k(G) ≥ k, and it is easy to verify that γ×k(G) = k if and only if G
contains a clique Kk , each vertex of which has degree n − 1. To study Nordhaus–
Gaddum-type bounds on γ×k , we assume δ(G) ≥ k − 1 and δ(G) ≥ k − 1.
Therefore, �(G),�(G) ≤ n − k ≤ n − 2 when k ≥ 2 and by the observation
above γ×k(G), γ×k(G) ≥ k + 1. Hence

2k + 2 ≤ γ×k(G)+ γ×k(G) ≤ 2n and 4(k + 1)2 ≤ γ×k(G)γ×k(G) ≤ n2

for k ≥ 2. The previous bounds were given in [83] for k = 2, with the determination
of P4 as the unique extremal graph for the upper bounds.

Other Nordhaus–Gaddum bounds can of course be obtained by using known
bounds on γ×k(G). For instance, the inequality γ×k(G) ≤ n − δ(G) + k − 1 =
�(G)+ k of Corollary 4.4 gives

1The results here are altered from their original shape to display them cleaner.
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γ×k(G)+ γ×k(G) ≤ �(G)+�(G)+ 2k

(observed in [37] for k = 2). When k is odd, let G be a (k − 1)-regular graph of
order 2k−1. When k is even, letG be obtained from a (k−1)-regular graph of order
2k by adding a matching of n/2 edges. These graphs are extremal for the two upper
bounds 2n and �(G) + �(G) + 2k on γ×k(G) + γ×k(G). The following theorem
gives a clear improvement on this bound (note that, in [132], the k-tuple domination
number γ×k is denoted γk). The same statement was conjectured in [83] for k = 2
after proving a slightly weaker result, namely that γ×2(G)+γ×2(G) ≤ δ(G)+δ(G)
for any graph G with γ (G), γ (G) ≥ 5.

Theorem 3.19 ([132]) For any integer k ≥ 1, if a graph G has γ (G), γ (G) ≥
k + 2, then

γ×k(G)+ γ×k(G) ≤ δ(G)+ δ(G).

The next result by Mojdeh, Samadi, and Volkmann [120] improves the upper
bound in Theorem 3.19.

Theorem 3.20 ([120]) For any integer k ≥ 1, if a graph G has γ (G), γ (G) ≥
k + 2, then

γ×k(G)+ γ×k(G) ≤ δ(G)+ δ(G)− (γ (G)+ γ (G))+ 2k + 4.

For the particular case k = 2, Chen and Sun proved the following Nordhaus–
Gaddum bound involving conditions on the diameter.

Theorem 3.21 ([42]) If G is a graph with δ(G) ≥ 1, δ(Ḡ) ≥ 1 and diam(G) > 2
or diam(G) > 2, then γ×2(G)+ γ×2(G) ≤ n+ 4.

It is also known that, if diam(G) ≥ 4, then γ×2(G) ≤ 4, and if moreover G is
triangle-free or diam(G) ≥ 6, then γ×2(G) = 3 [107].

3.4 Cartesian Products of Graphs

The cartesian product of two graphs G and H is the graph G�H with vertex set
V (G) × V (H) and vertices (u1, u2) and (v1, v2) are adjacent if and only if either
u1 = v1 and u2v2 ∈ E(H) or u2 = v2 and u1v1 ∈ E(G). Arguably the most
important conjecture in domination theory is Vizing’s Conjecture [140] that claims
that, for any two graphs G and H

γ (G�H) ≤ γ (G)γ (H).
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This conjecture has been subject of study for over 50 years, and has been
confirmed for several graph classes, and many partial results have been obtained,
see [21] for a comprehensive survey on the subject. A significant breakthrough was
obtained in [45], where it was shown that γ (G�H) ≤ 2γ (G)γ (H), which led
to the discovery of analogous inequalities for several other domination parameters,
including γt (G�H) ≤ 2γt (G)γt (H) [91, 95]. There are some results on k-tuple
and total k-domination concerning cartesian products of graphs, including some
Vizing-type inequalities. The following inequalities, in which the packing number
is involved, were both proven independently in [9] and [106]. Recall that a packing
of a graph G is a set of vertices in G that are pairwise at distance more than two,
while the packing number ρ(G) of G is the size of a largest packing in G.

Theorem 3.22 ([9, 106]) LetG andH be two graphs such that k ≤ δ(G). Then we
have

γ tk (G)ρ(H) ≤ γ tk (G�H) ≤ γ tk (G)n(H).

It was shown in [10] that, if H is a graph with minimum degree δ(H) ≥ k, then
kρ(H) ≤ γ tk (H). However, it is not clear how good this inequality is, since only
one particular example for k = 3 is given in [10]. Let f (k) ≥ k be a function such
that γ tk (H) ≤ f (k)ρ(H). Then

γ tk (G)γ
t
k (H) ≤ f (k)γ tk (G�H).

If f (k) = 2k, this would imply that γ tk (G)γ
t
k (H) ≤ 2kγ tk (G�H) [106], while if

f (k) = k, then γ tk (G)γ
t
k (H) ≤ kγ tk (G�H) would follow [9]. Neither of these two

conditions is shown to be realizable for a k different from 1 in [9, 106].
We remark also that in [106] the total 2-domination of Kn�Km for any n,m ≥

1 is determined, while in [24] the k-tuple domination of Kn�Kn, i.e., the rook’s
graph, is obtained. Other results related to k-tuple or total k-domination in cartesian
products of graphs (including grid graphs) can be found in [9, 10, 48, 106, 131].
Finally, results on cross products or tensor products of graphs are given in [48, 90].

4 Relations Involving Multiple Domination and Other
Domination Parameters

4.1 The General Case

Favaron, Henning, Puech, and Rautenbach defined in 2001 the following domination
parameter which generalizes both k-domination, k-tuple domination, and total k-
domination.
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Definition 4.1 ([61]) For two integers l ≥ 0 and k > 0, the subset S of vertices
of G is l-total k-dominating if every vertex x has at least l neighbors in S if x ∈ S
and k neighbors in S if x ∈ V − S. The l-total k-dominating number γl,k(G) is the
minimum cardinality of an l-total k-dominating set of G.

Clearly, γ0,k(G) = γk(G), γk−1,k(G) = γ×k(G) and γk,k(G) = γ tk (G). The
first question raised by this definition is that of the existence of l-total k-dominating
sets. If such a set S exists, every vertex of degree δ belongs to S or to V − S,
thus implying δ ≥ min {l, k}. Conversely, if δ ≥ l, then V itself is a l-total k-
dominating set. Therefore if l ≤ k, then l-total k-dominating sets exist if and only
if δ ≥ l. In particular, γk−1,k(G) (= γ×k(G)) is defined if and only if k ≤ δ + 1
and γk,k(G) (= γ tk (G)) is defined if and only if k ≤ δ. But if k ≤ δ < l, l-
total k-dominating sets may or not exist. Another generalization of these domination
parameters, which also contemplates restrained domination, is given in [130].

In the following theorem, the lower bound on γl,k(G) is an immediate conse-
quence of the definition.

Theorem 4.2 ([61]) If δ ≥ max{l, k − 1}, then

max{l + 1, k} ≤ γl,k(G) ≤ max{n− δ + l, n− δ + k − 1}.

Let S be a minimum l-total k-dominating set and let 0 ≤ l′ ≤ l and 1 ≤ k′ ≤ k.
If Y ⊆ S with |Y | = min {l− l′, k− k′}, then S − Y is an l′-total k′-dominating set.
Therefore

Theorem 4.3 ([61]) If γl,k(G) exists, then γl′,k′(G) exists for every l′, k′ with 0 ≤
l′ ≤ l, 1 ≤ k′ ≤ k and

γl′,k′(G) ≤ γl,k(G)− min {l − l′, k − k′}.

The following bounds on the k-tuple domination number are immediate from
Theorems 4.2 and 4.3.

Corollary 4.4 Let 1 ≤ k′ ≤ k. IfG is a graph of order n and with minimum degree
δ ≥ k, then

(i) γk′(G) ≤ γ×k(G)− k + k′,
(ii) γ×k′(G) ≤ γ×k(G)− k + k′,

(iii) γ t
k′(G) ≤ γ×k(G)− k + k′ + 1, if k′ �= k,

(iv) γ t
k′(G) ≤ γ tk (G)− k + k′,

(v) k ≤ γk(G) ≤ γ×k(G) ≤ n− δ + k − 1 ≤ n,
(vi) k + 1 ≤ γ tk (G) ≤ n− δ + 1 ≤ n− k + 2.

The following theorem, whose proof is very similar to the one of Theorem 2.8,
was given by Kazemi in [104] and later again in [10]. The case k = 2 was given
previously in [37].
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Theorem 4.5 ([10, 104]) Let G be a graph of order n and minimum degree δ ≥
k + 1. Then

γ×(k+1)(G) ≤ 1

2
(γ tk (G)+ n).

A characterization of the graphs achieving equality was also given in [104]. The
latter depends, however, on having determined, in certain cases, a minimum total
k-dominating set with some particular structure.

We have also the following relations between the three different multiple
domination parameters, all considered with the same multiplicity k.

Theorem 4.6 ([10]) Let G be a graph with minimum degree δ ≥ k + 1. Then we
have the following upper bounds for the total k-domination number.

(i) γ tk (G) ≤ (k + 1)γk(G)− k(k − 1);
(ii) γ tk (G) ≤ 2γ×k(G)− k + 1.

The inequalities given in previous theorem were also proved in [18] for the case
k = 2.

The following lemma is helpful in proving inequalities between the domination
number of a graph and other domination parameters in claw-free graphs.

Lemma 4.7 ([61]) Let X be a k-dominating set of a claw-free graph G and let D′
be a dominating set of G[X]. Then there is a dominating set D of G with

D′ ⊆ D and |D| ≤ |X| + (k − 1)|D′|
k

.

Proof. Let A be a maximum independent set in G[V (G) \ (X ∪N(D′))]. Observe
that, since G is claw-free, the vertices in X \ D′ have at most one neighbor in A:
indeed, if x ∈ X\D′, x has at least one neighbor inD′, which by construction is not
adjacent to any vertex in A, and so it is easily seen that x cannot have more than one
neighbor in A. Together with the fact that every vertex in A has at least k neighbors
in X \D′, it follows that

k|A| ≤ m(A,X \D′) ≤ |X \D′|.

Hence, |A| ≤ 1
k
|X \ D′|. Now we see that D = A ∪ D′ is a dominating set of G

with

|D| = |A ∪D′| ≤ 1

k
|X \D′| + |D′| = |X| + (k − 1)|D′|

k
.

�
Corollary 4.8 Suppose that, for all graphs H of minimum degree δ(H) ≥ l, there
is a bound γ (H) ≤ c · n for some constant c = c(l) depending on l. Then, given a
claw-free graph G of minimum degree δ ≥ l, we have
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γ (G) ≤ 1 + c · (k − 1)

k
γl,k(G).

Proof. Take a minimum l-total k-dominating set X of G, a minimum dominating
setD′ ofH = G[X] and apply Lemma 4.7 together with the bound |D′| = γ (H) ≤
c · |X| = c · γl,k(G). �

4.2 The Case k = 2

As usual, there are many more results for k-tuple and total k-domination concerning
the special case k = 2.

In [18], Bonomo, Brešar, Grippo, Milanič, and Safe compared many different
kinds of double domination numbers that include the 2-domination, the double
domination, and the total 2-domination. Among many other results, they gave the
following relation between the double domination and the 2-domination numbers.
The corresponding inequalities between total 2-domination and 2-domination and
between total 2-domination and double domination were also given in [18] and are
special cases of Theorem 4.6.

Theorem 4.9 ([18]) If G is a graph with minimum degree δ ≥ 1, then γ×2(G) ≤
2γ2(G)− 1.

Observe that the inequality of the above theorem was proved previously for trees
in [36]. Harary and Haynes [84] gave bounds on the double domination related to
the domination number. They showed that if a graph has no isolates, then γ×2(G) ≥
γ (G)+ 1. We will refine this result by considering the set of vertices of degree one.
To see this, consider a connected graph G of order n ≥ 3 and with l vertices of
degree 1. Let L be the set of vertices of degree 1 and let D be a minimum double
dominating set ofG. Then, clearly, L∪N(L) ⊆ D. SinceG is connected and n ≥ 3,
we have that N(L) ∩ L = ∅, and we deduce that D \ L is a dominating set. Hence,
γ (G) ≤ γ×2(G)− l. To see that this bound is sharp, take any corona graph J ◦K1.
Observe that we are forced to assume that the graph is connected, because if there
are K2-components, we cannot distinguish between vertices of degree 1 and their
neighbors as two disjoint sets. We state this fact, together with an upper and a lower
bound for the double domination number of graphs of minimum degree at least 2 in
terms of their domination number, which was also found in [84].

Theorem 4.10 Let G be a graph on n ≥ 3 vertices and minimum degree δ ≥ 1.

(i) If G is connected and has l vertices of degree 1, then γ×2(G) ≥ γ (G)+ l.
(ii) If δ ≥ 2, then γ (G)+ 1 ≤ γ×2(G) ≤

{ �n2 � + γ (G), if n = 3, 5
�n2 � + γ (G)− 1, otherwise.

([84])

Furthermore, all the bounds are sharp.
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Observe that the lower bound in Theorem 4.10 (ii) can be also obtained from
Corollary 4.4 (i).

Harant and Henning [81] gave also probabilistic upper bounds for the double
domination number that involve the domination and the total domination numbers.

Recall that the paired domination number γpr(G) is the minimum cardinality of a
dominating set whose induced subgraph admits a perfect matching. Clearly, a paired
dominating set is also a total dominating set and thus the inequality γt (G) ≤ γpr(G)
follows trivially. Similarly, we have the inequality γt (G) ≤ γ×2(G). In [37], the
double domination number is compared to the total domination number as well as
to the paired domination number.

Theorem 4.11 ([37]) LetG be a graph of order n and minimum degree δ. Then we
have the following bounds.

(i) If γ×2(G) �= 2, then γ×2(G) ≥ 1
2 (γpr(G)+ 4) ≥ 1

2 (γt (G)+ 4).
(ii) If δ ≥ 2, then γ×2(G) ≤ 1

2 (n+ γt (G)) ≤ 1
2 (n+ γpr(G)).

Moreover, all inequalities are sharp.

Clearly, the second inequality from item (i) and the second inequality from item
(ii) follow from the trivial inequality γt (G) ≤ γpr(G). Observe also that the first
inequality in item (ii) is the special case of Theorem 4.5 where k = 2.

The class of claw-free graphs has particularly interesting properties in domina-
tion theory. For these graphs it is known that

γ (G) = i(G)[1] and α(G) ≤ 2i(G).[136] (5)

This, combined with Theorem 3.14, gives γ×2(G) ≤ 3γ (G) for claw-free graphs
without isolates.

In the following theorem, we will state this together with other known relations
between the double domination number and the domination the total domination
and the paired domination numbers in claw-free graphs.

Theorem 4.12 Let G be a claw-free graph without isolates. Then we have the
following inequalities.

(i) 1
3γ×2(G) ≤ γ (G) ≤ 3

4γ×2(G) (second inequality in [61]).
(ii) 1

2γ×2(G) ≤ γt (G) ≤ γpr(G) ≤ γ×2(G) (first inequality in [12], third
inequality in [37]).

Proof. (i) The first inequality was mentioned before stating this theorem. The
second inequality follows from Corollary 4.8 using l = 1, k = 2, and Ore’s
inequality γ (H) ≤ 1

2n(H) for graphs H without isolates (Theorem 1.6).
(ii) Let S be a minimum total dominating set of G. Let X be the set of vertices

in V (G) \ S with exactly one neighbor in S. Let S ∩ N(X) = {s1, s1, . . . , sr}
and let Xi = N(si) ∩ X. Clearly, X1 ∪ X2 . . . ∪ Xr is a partition of X. Since
G is claw-free and every vertex si has at least a neighbor in S, which by the
definition of X cannot have neighbors in S, it follows that Xi is a clique, for
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1 ≤ i ≤ r . Select a vertex xi ∈ Xi for each i. Then S ∪ {x1, x2, . . . , xr } is a
double dominating set of G and we have

γ×2(G) ≤ |S ∪ {x1, x2, . . . , xr }| ≤ 2|S| = 2γt (G),

so the bound follows.

To show that γpr(G) ≤ γ×2(G), we consider a minimum double dominating set
D of G. Let M be a maximum matching in G[D] and let S = D \ V (M). Clearly,
S is an independent set. Let Q1 be the set of vertices in x ∈ V (G) \ D with at
least one neighbor in V (M) and let Q2 = V \ (D ∪Q1). Now consider a maximal
independent set I in G[Q2]. Since D is a double dominating set, every vertex in S
has a neighbor in V (M) and every vertex in I has two neighbors in S. Suppose there
is a vertex s ∈ S having two neighbors x1, x2 in I . Let y ∈ V (M) ∩ N(s). But we
know that, since x1, x2 ∈ I ⊆ Q2, neither x1 nor x2 can be adjacent to y. It follows
that the set {s, x1, x2, y} induces a claw, a contradiction. Hence, every vertex in S
has at most one neighbor in I . For each x ∈ I , select one neighbor sx ∈ S. Then we
have

|I | = |{sx | x ∈ I }| ≤ 1

2
|S|. (6)

We define the set D′ = V (M) ∪ {sx | x ∈ I } ∪ I . We will show that D′ is a
paired dominating set of G. By construction, G[D′] has a perfect matching. Let
v ∈ V (G) \ D′. If v ∈ Q1 ∪ (S \ D′), then v has a neighbor in V (M) ⊆ D′. If
v ∈ Q2 \ I , then v has a neighbor in I because I is maximal independent inG[Q2].
Hence, D′ is a paired dominating set and, using inequality (6), we obtain

γpr(G) ≤ |D′| = |V (M)|+|{sx | x ∈ I }|+|I | ≤ |D\S|+1

2
|S|+1

2
|S| = |D| = γ×2(G).

�
Concerning the inequality γ (G) ≤ 3

4γ×2(G), the authors of [61] prove it actually
for a wider family of graphs, namely the family of graphs whose blocks are all
claw-free. For the inequality γpr(G) ≤ γ×2(G) in claw-free graphs there is also the
following extension to K1,r -free graphs.

Theorem 4.13 ([52]) Let r ≥ 2 be an integer. If G is a connected K1,r -free graph
of order at least 2, then

γpr(G) ≤ 2r2 − 6r + 6

r(r − 1)
γ×2(G).

There are also many special results concerning trees. It has been shown that,
like for claw-free graphs, the double domination number is at least as large as the
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paired domination number in trees [13]. In the following theorem, we gather such
comparisons between different domination parameters in trees.

Theorem 4.14 Let T be a tree on n ≥ 2 vertices, within � leaves and s support
vertices. The following inequalities hold.

(i) γ (T )+ � ≤ γ×2(T ) ≤ 2γ (T )+ �− 1. [14]
(ii) γt (T ) ≤ γ2(T ). [86]

(iii) γpr(T ) ≤ γ×2(T ). [13]
(iv) 2i(T ) ≤ γ×2(T ). [14]
(v) If n ≥ 4, then γ×2(T ) ≤ 2γ2(T )− 2. [36]

(vi) If n ≥ 3, then γt (T ) ≤ γ×2(T )− 1. [110]

From the obvious γ (T ) ≤ i(T ), (iii) implies γ×2(T ) ≤ 2γ (T ). It was shown in
[14] that γ×2(T ) = 2i(T ) if and only if T has two disjoint minimum independent
dominating sets and that γ×2(T ) = 2γ (T ) if and only if T has two disjoint
minimum dominating sets. In [110], the trees T with γ×2(T ) = γt (T ) + 1 are
characterized.

5 Open Problems and Final Remarks

In this final section, we discuss the state of the art of several problems concerning
k-domination, k-tuple domination, and total k-domination, and gather some open
problems as well as ideas for future research.

5.1 Bounds on Order and Degree

One of the most interesting questions concerning domination parameters is to find
bounds in terms of the order of the graph, say n. With the weakest reasonable
condition on the minimum degree, namely that δ ≥ k, the bound γk(G) ≤ k

k+1n

was given by Cockayne, Gamble, and Shepherd [46] (Theorem 2.12) and an infinite
family attains the equality (Theorem 2.13). It would be interesting to find similar
bounds on the k-tuple domination and the total k-domination numbers.

Problem 5.1 Find functions f (k), g(k) such that γ×k(G) ≤ f (k)n and γ tk (G) ≤
g(k)n for any graph G of order n and minimum degree δ ≥ k.

As we have mentioned, letting grow the minimum degree has the effect of
obtaining better upper bounds on these domination parameters. A testimony of this
fact is all the probabilistic bounds that we have cited in this work, from which
Theorem 1.8 is the one representative for all three parameters γk , γ×k , and γ tk .
Although these probabilistic bounds give a good shade of the behavior of these
domination parameters for graphs of large order and large minimum degree, they do



Multiple Domination 193

not give light on the proportion of vertices that is needed for a k-dominating set, a
k-tuple dominating set or a total k-dominating set when dealing with smaller but yet
growing minimum degrees or when general structural constraints of the graph may
be taken into account. Results in this direction are those on k-domination given in
Corollary 4.4 (that are consequences of known lower bounds for the independence
number) and Theorem 2.20, the 3

4n-bound on the double domination number given
for graphs G �= C5 with minimum degree at least 2 (Theorem 3.7) and the bounds
on the total 2-domination number giving a 5

6n-upper bound for cubic graphs G
different from the Heawood graph (Theorem 3.10), and a 11

13n-upper bound for
connected graphsGwith minimum degree at least 3 and which are different from the
Heawood graph (3.11). However, there are still interesting research paths to pursue.
Most intriguing could be to find sharp upper bounds for the 2-domination number
in terms of the order of the graph when the minimum degree is quite small, which
for strange reasons has not been studied yet.

Problem 5.2 Find constants c1, c2 such that

(i) γ2(G) ≤ c1n for any graph G on n vertices and minimum degree δ ≥ 3, and
(ii) γ2(G) ≤ c2n for any cubic graph G on n vertices.

Of course, the problem given above can be extended to graphs of minimum
degree at least 4 or 5 (for 6 ≤ δ ≤ 21, we have already the result in Theorem 2.20,
although this may be improved, too), regular graphs and other graph families like
claw-free graphs, triangle-free graphs and others. The family of bipartite graphs
has also shown to have nice properties. In this context, Corollary 2.33, stating that
γk(G) ≤ 1

2n for any bipartite graph G of order n and δ(G) ≥ k, seems to be a good
candidate for the study of the extremal family.

Problem 5.3 Characterize all bipartite graphs G of order n and δ(G) ≥ k with
γk(G) = 1

2n.

Also very interesting are the following two conjectures stated in [94].

Conjecture 5.4 ([94]) LetG be a connected graph of order n and minimum degree
δ ≥ 3 such that G is not the Heawood graph. Then γ t2(G) ≤ 5

6n.

Conjecture 5.5 ([94]) LetG be a connected graph of order n and minimum degree
δ ≥ 3. If n is sufficiently large, then γ t2(G) ≤ 3

4n.

5.2 Multiple Domination Numbers for Different k’s

We started Section 2 on k-domination talking about the problem of finding a
function f such that γk(G) < γf (k)(G) for every graph G with δ(G) ≥ k (see
Problem 2.2), and some partial results have been found (see Theorems 2.1 and 2.3).
The same question can be stated for γ tk (G) and γ×k(G).
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Problem 5.6 Find functions f, g, h such that

(i) γk(G) < γf (k)(G) for every graph G with δ(G) ≥ k;
(ii) γ tk (G) < γg(k)(G) for every graph G with δ(G) ≥ k − 1;

(iii) γ×k(G) < γ×h(k)(G) for every graph G with δ(G) ≥ k;
In Section 2.1, we proved the inequality γk(G) ≥ γ (G) + k − 2 (Theorem 2.4)

and gave a series of different results discussing when equality is attained. From
Corollary 4.4, we can deduce the corresponding inequalities for k-tuple and total
k-domination by setting k′ = 1, which are γ×k(G) ≥ γ (G) + k − 1 and γ tk (G) ≥
γt (G)+k−1, from which nothing is known concerning conditions for their equality.
The special case k = 2 for double domination was already discussed in [84],
where it is shown that the inequality is attained for the complete bipartite graph
K2,t . However, there is no characterization provided, which could be an interesting
problem to settle. We gather these questions below.

Problem 5.7

(i) Find further families of graphs G with γ2(G) = γ (G) (for instance,
outerplanar graphs, diamond-free graphs, etc.). [73]

(ii) Characterize the {K1,4,K1,3 + e}-free graphsG with γ3(G) = γ (G)+ 1. [73]
(iii) Characterize the families of graphs G such that γ×2(G) = γ (G) + 1 or such

that γ t2(G) = γt (G)+ 1.
(iv) Find necessary and/or sufficient conditions for a graph G having γk(G) =

γ (G)+ k − 2 [73], γ×k(G) = γ (G)+ k − 1, or γ tk (G) = γt (G)+ k − 1.

5.3 Relations Between Parameters of Different Kind

There are some results that have been given for the case that k = 2 that may
be generalized to arbitrary k. An intriguing relation between double domination
and independence was the one given in Theorem 3.14, stating that γ×2(G) ≤
i(G)+ α(G) for any graphG without isolates. Also, the Nordhaus–Gaddum bound
γ×2(G) + γ×2(G) ≤ n + 4 given in Theorem 3.21, for graphs G with δ(G) ≥ 1,
δ(Ḡ) ≥ 1 and diam(G) > 2 or diam(G) > 2, could have an extension for any
k, or could have its analogon for γk . Finally, a generalization to arbitrary k of
Theorem 4.9 that states that γ×2(G) ≤ 2γ2(G) − 1 for graphs G with no isolates
could be interesting, too.

Problem 5.8 Give an upper bound for γ×k(G) in terms of γk(G) for any graph G
of minimum degree δ ≥ k − 1.

Recall Theorem 2.25 stating that γk(G) ≥ α(G) for a K1,k+1-free graph G, and,
on the other hand, look at Theorem 3.13 that gives the bound γ×k(G) ≥ k

r−1α(G)

for a K1,r -free graph G with δ(G) ≥ k − 1. So one can naturally ask if the first
inequality can be extended for K1,r -free graphs, too.
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Problem 5.9 Find a function f (k, r) such that γk(G) ≥ f (k, r)α(G) for anyK1,r -
free graph G.

Another inequality that involves k-domination and independence is γk(G) ≤
(� − 1)α(G) for a connected nontrivial graph G with maximum degree � and
δ(G) ≥ k, where G is neither isomorphic to a cycle of odd length when k = 2
nor to the complete graph Kk+1, that was given in Theorem 2.34. It is somehow
peculiar that the proof of this result can be only used to show that the non-regular
graphs attaining equality are isomorphic to K2 ◦ Kk , while for the regular graphs
nothing is concluded. However, it is easy to see that even cycles attain equality for
k = 2 as well as the complete graph Kk+2 for every k ≥ 2. It would be interesting
to know if there are other r-regular graphsG with γk(G) = (r−1)α(G). Moreover,
the bound does not seem to be very good since it appears to be attained only by a
finite family of graphs for each k. Hence, an improvement of this bound would be
desirable.

Finally, we would like to say a word about vertex covers. A vertex cover S in a
graphG is a set of vertices such that every edge ofG is incident to at least one vertex
of S. The minimum cardinality of a vertex cover inG is denoted β(G) and is called
the covering number of G. If G has no isolates, then it is straightforward to see that
γ (G) ≤ β(G), since the complement of a vertex cover is an independent set. The
graphs G with γ (G) ≤ β(G) have been characterized in [141] and studied again in
[116]. If, moreover, δ ≥ k, then any minimum vertex cover is a k-tuple dominating
set, and we have γ×k(G) ≤ β(G). On the other hand, if δ ≥ k+1, then any minimum
vertex cover is a total k-dominating set, implying that γ tk (G) ≤ β(G).The following
problems arise naturally.

Problem 5.10

(i) Characterize the family of graphsG with minimum degree δ ≥ k and γ×k(G) =
β(G).

(ii) Characterize the family of graphs G with minimum degree δ ≥ k + 1 and
γ tk (G) = β(G).

5.4 Cartesian Products of Graphs

We discussed in Section 3.4 results on k-tuple and total k-domination of cartesian
products of graphs. The upper bounds in Theorem 3.22 are interesting but should
be subject to further study. In particular, it would be interesting to know if there is
a function f (k) ≥ k and an infinite family of graphs H of minimum degree δ ≥ k
with γ tk (H) ≤ f (k)ρ(H), since, as mentioned in the discussion after Theorem 3.22,
this would give an upper bound γ tk (G)γ

t
k (H) ≤ f (k)γ tk (G�H).

As to k-domination on cartesian products, not many results can be cited up to
now. In [127], the 2-domination number of grid graphs is determined, while in
[26] the k-domination number of the rook’s graph Kn�Kn is determined. Further
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development on the theory of k-domination of cartesian products of graphs would be
desirable to pursue. In particular, 2-domination would be of considerable interest in
all manner of chessboard problems, where the basic objective is to not only dominate
squares of the board, but dominate them more than once. Thus, for example, queens
2-domination would be a very interesting problem to consider.

5.5 Miscellaneous

There are many other variants of multiple domination that we do not mention
in this chapter like connected k-(tuple/total) domination [68, 70, 145], dynamical
k-domination [55], (total) {k}-domination [3, 4, 18], f -domination [135, 151],
(k, l)-domination and [r, s]-domination [153]. As it is extensively studied for
standard domination, one could consider multiple independent domination, as well
as multiple distance domination parameters, too.

A greedy coloring is defined by repeatedly removing from a graph maximal
independent set. This produces a proper coloring into, say, c classes, V1, V2, . . . , Vc.
The Grundy number �(G) of a graph G is the largest c such that G has a greedy
c-coloring (see, for instance, [6, 27]). Now, observe that V1 ∪ V2 ∪ . . . ∪ Vk is a k-
dominating set. Hence, there surely are nice relations between the Grundy number
and the k-domination number of a graph G.

A domatic partition of a graphG is a partition of its vertices into dominating sets.
The maximum number of sets in a domatic partition of G is its domatic number,
denoted by d(G) (see, for instance, [49, 150]). Domatic partitions could also have
interesting relations with k-domination, since any domatic partition of a graph G
provides

(
d(G)
k

)
k-dominating sets for any k < d(G). Also note that k-domatic

partitions, i.e., such that every set on the partition is k-dominating, together with
other variants, have been studied in [100, 133, 147], to cite some.

Finally, we would like to mention that there is still little research done on multiple
domination and random graphs. In [148], Wang and Xiang were able to prove that
the 2-tuple domination number of the random graph G(n, p) with fixed p ∈ (0, 1)
has a.a.s. a two-point concentration. It would be interesting to delve deeper into the
matter with respect to k-domination, k-tuple, or total k-domination.
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1 Introduction

The notion of distance domination in graphs has been studied a great deal; a
rough estimate says that it occurs in more than 100 papers to date. In this chapter,
we survey selected results on distance domination in graphs. First we recall the
fundamental concepts of a dominating set in a graph and of distance in a graph.
Thereafter, we combine the concepts of both distance and domination in graphs to
define distance domination in graphs.

A dominating set of a graph G is a set S of vertices of G such that every vertex
not in S has a neighbor in S. The domination number of G, denoted γ (G), is the
minimum cardinality of a dominating set.

The distance between two vertices u and v in a connected graph G, denoted
dG(u, v) or simply d(u, v) if the graph G is clear from context, is the minimum
length of a (u, v)-path in G. The eccentricity eccG(v) of a vertex v in G is the
distance between v and a vertex farthest from v in G. The minimum eccentricity
among all vertices of G is the radius of G, denoted by rad(G), while the maximum
eccentricity among all vertices of G is the diameter of G, denoted by diam(G).
Thus, the diameter of G is the maximum distance among all pairs of vertices of G.
The distance from a vertex v to the set S inG, denoted by dG(v, S), is the minimum
distance from v to a vertex of S; that is, dG(v, S) = min{d(u, v) | u ∈ S}. In
particular, if v ∈ S, then d(v, S) = 0. The eccentricity of the set S in G is the
maximum distance of a vertex from S; that is, eccG(S) = max{d(v, S) | v ∈ V (G)}.
If S = {v}, we simply write eccG(v) rather than eccG({v}).
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A neighbor of a vertex v in G is a vertex adjacent to v. The open neighborhood
of a vertex v in G, denoted NG(v), is the set of all neighbors of v in G, while
the closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}. If the graph G
is clear from the context, we write N(v) and N [v] rather than NG(v) and NG[v],
respectively. We denote the degree of a vertex v in G by dG(v) = |NG(v)|. The
minimum and maximum degrees among all vertices of G are denoted by δ(G) and
�(G), respectively.

For k ≥ 1 an integer, the closed k-neighborhood of v in G, denoted Nk[v;G],
is the set of all vertices within distance k from v; that is, Nk[v;G] = {u |
dG(u, v) ≤ k}. The open k-neighborhood of v, denoted Nk(v;G), is the set
of all vertices different from v and at distance at most k from v in G; that is,
Nk(v;G) = Nk[v;G] \ {v}. The k-degree of a vertex v in G, denoted dk(v;G),
is the number of vertices different from v within distance k from v in G. Thus,
dk(v;G) = |Nk(v;G)|. The minimum and maximum k-degrees among all vertices
of G are denoted by δk(G) and �k(G), respectively.

If the graph G is clear from context, we omit the subscript G from the above
notational definitions. For example, we simply write N(v), N [v], Nk(v), and Nk[v]
rather than NG(v), NG[v], Nk(v;G), and Nk[v;G], respectively. When k = 1, the
set Nk[v] = N [v] and the set Nk(v) = N(v). In what follows, for k ≥ 1 an integer,
we use the standard notation [k] = {1, . . . , k} and [k]0 = [k] ∪ {0} = {0, 1, . . . , k}.

Let k ≥ 1 be an integer andG be a graph. In 1975 Meir and Moon [62] combined
the concepts of distance and domination in graphs, and introduced the concept of
distance domination (also called a “k-covering” in [62]) in a graph. A set S is
a distance k-dominating set of G if every vertex is within distance k from some
vertex of S; that is, for every vertex v of G, we have d(v, S) ≤ k. The distance k-
domination number of G, denoted γk(G) (and also γ≤k(G) in the literature), is the
minimum cardinality of a distance k-dominating set of G. The upper k-domination
number �k(G) of G is the maximum cardinality taken over all minimal distance
k-dominating sets of G. A distance k-dominating set of G of cardinality γk(G)
(respectively, �k(G)) is called a γk-set of G (respectively, �k-set of G). When k = 1,
we note that a dominating set is a distance k-dominating set and γ (G) = γk(G). If
X and Y are subsets of vertices of G, then the set X distance k-dominates the set Y
if every vertex of Y is within distance k from some vertex of X. In particular, if X
distance k-dominates the set V (G), then X is a distance k-dominating set of G.

For example, if G is the graph shown in Figure 1, then γ (G) = γ1(G) = 4
and the four darkened vertices of G illustrated in Figure 1(a) form a γ -set of G.
Moreover, γ2(G) = γ3(G) = 2 and the two darkened vertices of G illustrated
in Figure 1(b) form a γ2-set and a γ3-set of G. Furthermore, γ4(G) = 1 and the
darkened vertex of G illustrated in Figure 1(c) forms a γ4-set of G.

Throughout the remainder of this survey chapter, for notational simplicity we
write “k-dominating set” and “k-domination number” rather than the more accurate
terminology “distance k-dominating set” and “distance k-domination number,”
respectively. We emphasize that in this chapter a k-dominating set is therefore
different from multiple domination introduced in 1984 by Fink and Jacobson [31],
where they define a k-dominating set of a graph G as a set S of vertices of G
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Fig. 1 A graph G

such that every vertex in V (G) \ S is dominated by at least k vertices of S; that
is, |NG(v) ∩ S| ≥ k for every vertex v ∈ V (G) \ S. By a k-dominating set in this
chapter we will always mean a distance k-dominating set, and by the k-domination
number of a graph we will always mean the distance k-domination number of the
graph.

2 Applications of Distance Domination

This concept of distance domination in graphs finds applications in many situations
and structures which give rise to graphs, including communication networks,
geometric problems, and facility location problems in operations research.

In 1976 Slater [68] continued the study of distance domination in graphs. He
referred to a k-dominating set of minimum cardinality in a graph as a “k-basis”
of the graph. Slater’s study was application driven and related to communication
networks. More precisely, he considered a graph associated with a collection of
cities where the vertices correspond to the cities and where two vertices are joined
by an edge if there is a communication link between the corresponding cities.
Slater considered the problem of selecting a minimum number of cities as sites
for transmitting stations so that every city either contains a transmitter or can
receive messages from at least one of the transmitting stations through the links.
If communication over paths of k links (but not of k+1 links) is adequate in quality
and speed, then as remarked by Slater [68] the problem becomes that of determining
a minimum k-dominating set in the associated graph. Slater [68] introduced a more
general problem in which each vertex vi has an associated value ai , where he
required that there be a transmitting station within distance ai of vi .

In 1998, the author in [45] gave a discussion on the concept of distance
domination in graphs. Consider, for instance, the following illustration given in [45].
Let G be the graph associated with the road grid of a city where the vertices of G
correspond to the street intersections and where two vertices are adjacent if and only
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if the corresponding street intersections are a block apart. A minimum k-dominating
set in G may be used to locate a minimum number of facilities (such as utilities,
police stations, waste disposal dumps, hospitals, blood banks, transmission towers)
such that every intersection is within k city blocks of a facility.

In 1977 Lichtenstein [60] considered the following geometric problem: For a
given (finite) subset P of points in Z×Z and a positive integer k, what is the smallest
cardinality of a subset P ′ of P such that every point of P \ P ′ is within Euclidean
distance k of some point in P ′ given that the graph with vertex set P ′ in which two
points of P ′ are adjacent if and only if they are within Euclidean distance k of each
other is connected? As noted in [60], this problem is defined only if the graph with
vertex set P and such that two points of P are joined by an edge if and only if
they are within distance k of each other is itself connected. It was shown [60] that
this optimization problem appears to be computationally difficult by showing that a
corresponding decision problem is NP -complete. This geometric problem suggests
several related graph problems, including the concept of distance domination, which
have since then been introduced and studied.

3 Properties of Minimal k-Dominating Sets

In this section, we present various properties of k-dominating sets in graphs. We
begin with properties of minimal k-dominating sets. The following proposition
from [47] generalizes a classical result of Ore [65] concerning dominating sets.

Proposition 1 ([47]) For k ≥ 1, let D be a k-dominating set of a graph G. Then
D is a minimal k-dominating set of G if and only if every vertex v ∈ D has at least
one of the following two properties.

P1: There exists a vertex u ∈ V (G) \D such that Nk(u) ∩D = {v};
P2: The vertex v is at distance at least k + 1 from every other vertex of D in G.

The k-th power of the graph G, denoted Gk , is the graph with the same vertex
set as G and where there is an edge between two vertices in Gk if and only if the
distance between them is at most k in G; that is, V (Gk) = V (G) and E(Gk) =
{uv | u, v ∈ V (G) and dG(u, v) ≤ k}. We state next a useful observation, where
Gk denotes the k-th power of the graph G.

Observation 2 If G is a connected graph, then γk(G) = γ (Gk).
Bollobás and Cockayne [13] established the following result. By a nontrivial

graph we mean a graph on at least two vertices.

Theorem 3 ([13]) IfG is a connected nontrivial graph, then there exists a γ -setD
of G such that for every vertex v ∈ D, there exists a vertex w ∈ V (G) \ D with
N(v) ∩D = {v}.
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An immediate consequence of Observation 2 and Theorem 3, ifG is a connected
nontrivial graph, then there exists a γk-set D of G such that for every vertex v ∈ D,
there exists a vertex w ∈ V (G) \D with Nk(v) ∩D = {v}. The following stronger
result is proved in [49].

Theorem 4 ([49]) For k ≥ 1, if G is a connected graph of order at least k + 1
with diam(G) ≥ k, then there exists a γk-set D of G such that for every vertex
v ∈ D, there is a vertex w ∈ V (G) \ D at distance exactly k from v in G with
Nk(v) ∩D = {v}.

We next present a proof of Theorem 4 given in [49]. For this purpose, we
introduce some additional notation. Let S be a set of vertices of a connected graph
G. We will call a nondecreasing sequence �1, �2, . . . , �|S| of integers the distance
sequence of S in G if the vertices of S can be labeled v1, v2, . . . , v|S| so that
�i = dG(vi, S \ {vi}) for all i ∈ [|S|]. For example, if k ≥ 1 is an arbitrary
integer and G is the graph obtained from a connected graph H by attaching a path
of length k to each vertex of H so that the resulting paths are vertex disjoint, then
the set S = V (H) is a γk-set of G and has distance sequence 1, 1, . . . , 1 of length
|S| in G.

Suppose s1 : a1, a2, . . . , ap and s2 : b1, b2, . . . , bq are two nondecreasing
sequences of positive integers. We say that the sequence s1 precedes the sequence
s2 in dictionary order if either p ≤ q and ai = bi for i ∈ [p] or if there exists
an integer i where i ∈ [min{p, q}] such that ai < bi and aj = bj for j < i.
For example, for the tree T given in Figure 2, the set {v2, v5, v8} has distance
sequence s1 : 3, 3, 3 in T , while the distance sequence of the set {u1, v5, u4} in G is
s2 : 5, 5, 5. Although both sets {v2, v5, v8} and {u1, v5, u4} are 2-dominating sets of
T , the distance sequence s1 of the set {v2, v5, v8} precedes the distance sequence s2
of the set {u1, v5, u4} in dictionary order.

We are now in a position to present a proof of Theorem 4.

Proof of Theorem 4 Among all γk-sets of G, let D be one that has the smallest
distance sequence in dictionary order. Let s = γk(G) and let the distance sequence
of D be given by �1, �2, . . . , �s , where D = {v1, v2, . . . , vs} and �i = dG(vi,D \
{vi}) for i ∈ [s].

We show first that each vertex of D has property P1. If this is not the case, then
let i be the smallest integer such that the vertex vi does not have property P1. By
Proposition 1, the vertex vi has property P2, and so �i ≥ k+1. Now let v′i ∈ Nk(vi)
and consider the set D′ = (D \ {vi}) ∪ {v′i}. Necessarily, the set D′ is a γk-set of

Fig. 2 A tree T
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G. Furthermore, the vertex v′i is within distance k from some vertex of D \ {vi}.
Consequently, �′i = dG(v

′
i , D

′ \ {v′i}) < �i . Now let j be the largest integer for
which �j < �i , and consider the value �′t = dG(vt ,D′ \ {vt }) for each t with t ∈ [j ].
Since �t < �i , a shortest path from the vertex vt to a vertex of D \ {vi} does not
contain vi . It follows, therefore, that �′t ≤ �t for all t ∈ [j ]. This, together with the
observation that �′i < �r for all r > j , implies that the distance sequence of D′
precedes that of D in dictionary order. This produces a contradiction. Hence every
vertex of D has property P1.

For each vertex vi of D, let wi be a vertex of V (G) \ D at maximum distance
from vi in G satisfying Nk(wi) ∩D = {vi} for i ∈ [s]. We show that d(vi, wi) = k
for all i ∈ [s]. If this is not the case, then let i be the smallest integer for which
d(vi, wi) < k. Observe that every vertex of V (G) \D at distance greater than k− 1
from vi is within distance k from some vertex of D \ {vi}. Consider a shortest path
from the vertex vi to a vertex of D \ {vi} in G. Let v∗i denote the vertex adjacent
to vi on such a path. Further, let D∗ = (D \ {vi}) ∪ {v∗i }. Necessarily, the set D∗
is a γk-set of G. Now let j be the largest integer for which �j < �i , and consider
the value �∗t = dG(vt ,D

∗ \ {vt }) for each t ∈ [j ]. Necessarily, �∗t ≤ �t for all
t ∈ [j ]. Furthermore, dG(v∗i , D∗ \ {v∗i }) = �i − 1 < �r for all r > j . It follows,
therefore, that the distance sequence of D∗ precedes that of D in dictionary order,
a contradiction. Hence, d(vi, wi) = k for all i ∈ [s]. This completes the proof of
Theorem 4. � 

4 Algorithmic and Complexity Results

From a computational point of view the problem of finding γk(G) for a general
graph G appears to be difficult. To date there is no known efficient algorithm
for solving this problem and the corresponding decision problem is NP-complete
(see [16]). Even if we restrict the graph G to belong to certain special classes
of graphs, including bipartite or chordal graphs of diameter 2k + 1, the problem
remains NP -hard (see [16]). Algorithmic and complexity results to compute γk(G)
are given, for example, in [14, 16, 27, 68].

In 2012 Datta, Larmore, Devismes, Heurtefeux, and Rivierre [23] present a
distributed self-stabilizing algorithm to compute a k-dominating set. They show
that for unit disk graphs the size of the resulting k-dominating set is at most
7.2552k + O(1) times the minimum possible size. Turau and Köhler [74] present
a distributed algorithm to compute a minimum k-dominating set of a tree T . Their
algorithm terminates in O(height (T )) rounds and requires O(log k) storage in their
distributed model.

In 2018 Jaffke, Kwon, Strømme, and Telle [52] studied the complexity of
generalized distance domination problems on graphs of bounded mim-width. We
do not define the maximum induced matching width, or mim-width for short, in this
survey chapter suffice it to say that it is a structural graph parameter described over
decomposition trees (also called branch decompositions in the literature), similar
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to graph parameters such as rank-width and module-width. The concept of mim-
width was introduced in the 2012 Ph.D. thesis of Vatshelle [76], and used implicitly
by Belmonte and Vatshelle [9]. Subsequently, it has been used of late in several
important algorithmic and complexity papers (see, for example, [12, 32, 38, 53–
55, 79]).

Jaffke et al. [52] raise the problem to a higher level and study distance domination
in a more general setting of distance-k (σ, ρ)-domination problems, which they
define as follows. Let σ and ρ be finite or co-finite subsets of the natural numbers N,
and so σ, ρ ⊆ N where N = {0, 1, . . .}. For k ≥ 1 an integer, a set S is a distance-k
(σ, ρ)-dominating set in a graph G if the following holds.

(a) |Nk(v) ∩ S| ∈ σ for each vertex v ∈ S.
(b) |Nk(v) ∩ S| ∈ ρ for each vertex v ∈ V (G) \ S.

For instance, when σ = N and ρ = N
+ = {1, 2 . . .}, then a distance-k (σ, ρ)-

dominating set is a k-dominating set since in this case each vertex in V (G) \ S has
at least one vertex in its open k-neighborhood that belongs to the set S; that is, each
vertex in V (G) \ S is within distance k from at least one vertex in S.

The main result of Jaffke et al. [52] is that for any positive integer k the mim-
width of the k-th power Gk of a graph G is at most twice the mim-width of G. This
key structural result implies that we can reduce the distance-k (σ, ρ)-domination
problem to the standard version by taking the graph power Gk , while preserving
small mim-width. In particular, this implies that the k-domination problem is XP
parameterized by min-width if a decomposition tree is given. As explained in [52],
the k-domination problem “is therefore solvable in polynomial time for many
interesting graph classes where mim-width is bounded and quickly computable,
such as k-trapezoid graphs, Dilworth k-graphs, (circular) permutation graphs,
interval graphs and their complements, convex graphs and their complements, k-
polygon graphs, circular arc graphs, complements of d-degenerate graphs, and
H -graphs if given anH -representation.” Thus for the above classes of graphs, Jaffke
et al. [52] obtain the first polynomial-time algorithms to compute the k-domination
number. This is a significant breakthrough on the algorithmic and complexity results
for k-domination in graphs.

Having said that, we remark that the meta-algorithms due to Jaffke et al. [52]
have runtimes which are most likely not optimal on a particular graph class. For
instance, as pointed out by Jaffke et al. [52], applying their results to solve the k-
domination problem on permutation graphs of order n yields an algorithm that runs
in time O(n8). However, there is an algorithm presented in a 2016 paper due to Rana,
Pal, and Pal [66] that solves the k-domination problem in time O(n2); a much faster
runtime. This example illustrates that the meta-algorithms due to Jaffke et al. [52]
will have runtimes which can likely be improved significantly for particular graph
class.

Jaffke et al. [52] comment that the downside to showing results using the param-
eter mim-width, is that it is not yet known if there is an XP approximation algorithm
for computing mim-width. As remarked in [52], “computing a decomposition tree
with optimal mim-width is NP-complete in general and W[1]-hard parameterized by
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itself. Determining the optimal mim-width is not in APX unless NP=ZPP, making
it unlikely to have a polynomial-time constant-factor approximation algorithm [67],
but saying nothing about an XP algorithm.”

5 A Duality Lemma

In this section, we present a relationship between the concept of distance domination
in graphs and the p-center problem studied in operations research. For an integer
p ≥ 1, the p-radius of a connected graph G is minimum eccentricity among all
p-element subsets of G; that is,

radp(G) = min{ecc(S) : S ⊆ V (G) and |S| = p}.

We note that if p = 1, then rad(G) = rad1(G). If S is a subset of V (G) such
that |S| = p and eccG(S) = radp(G), then S is the p-center of G. An excellent
survey paper on network location problems with an emphasis on the p-center, p-
median, and p-radius of a graph is given in the 1983 paper by Tansel, Francis,
and Lowe [70]. Motivated by applications to location problems, p-centers in graphs
have been extensively studied in the literature. Recent studies on algorithms to find
a p-center of a graph can be found, for example, in [3, 17, 26, 78].

To illustrate the concept of the p-radius of a graph, consider again the graph
G shown in Figure 1. We note that rad4(G) = 1 and the set S of four darkened
vertices of G illustrated in Figure 1(a) satisfies rad4(G) = ecc(S) = 1. Moreover,
rad3(G) = 2 and the set S of three darkened vertices of G illustrated in Figure 3
satisfies rad3(G) = ecc(S) = 2. We also note that rad2(G) = 2 and the set S of two
darkened vertices of G illustrated in Figure 1(b) satisfies rad2(G) = ecc(S) = 2.
Furthermore, rad1(G) = 4 and the set S consisting of an arbitrary vertex of G
satisfies rad1(G) = 4. For example, the set S consisting of the singleton darkened
vertex illustrated in Figure 1(c) satisfies rad1(G) = ecc(S) = 4.

The problem of determining the p-radius of a graph is in a sense a dual problem
to that of determining the k-domination number of a graph as observed by Tansel,
Francis, and Lowe [70] and others.

Fig. 3 A graph G with
rad3(G) = 2
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Lemma 5 (Duality Lemma) For a connected graphG and positive integers k and
p, we have

radp(G) ≤ k if and only if γk(G) ≤ p.

Proof. Suppose that radp(G) ≤ k. Let S be a p-center of G, and so S is a subset of
V (G) satisfying |S| = p and eccG(S) = radp(G) ≤ k. The set S is a k-dominating
set of G, and so γk(G) ≤ p. Conversely, suppose that γk(G) ≤ p. Let S be γk-set
of G, and so S is a k-dominating set of G and |S| = γk(G) ≤ p. Adding vertices to
the set S if necessary, there therefore exists a subset S′ of V (G) such that S ⊆ S′,
|S′| = p, and radp(G) ≤ eccG(S′) ≤ k. � 

6 Lower Bounds on the Distance Domination Number

In this section, we discuss some lower bounds on the k-domination number of a
graph for k ≥ 1 an integer. For this purpose, we first present a property of k-
dominating sets in spanning subgraphs of a graph. Since every k-dominating set of
a spanning subgraph of a graphG is a k-dominating set ofG, we have the following
observation due to Zelinka [80].

Observation 6 ([80]) For k ≥ 1, if H is a spanning subgraph of a graph G, then
γk(G) ≤ γk(H).

Tian and Xu [72] showed next that every connected graph has a spanning tree
with equal k-domination number. The proof we present is from [24].

Theorem 7 ([24]) For k ≥ 1, every connected graphG has a spanning tree T such
that γk(T ) = γk(G).
Proof. Let S be a γk-set of G. Thus, |S| = γk(G). For i ∈ [k]0, let Di(S) = {v ∈
V (G) \ S | dG(v, S) = i}. Since S is a k-dominating set of G, every vertex v in
V (G)\S is within distance k from some vertex of S for some i ∈ [k]0, and therefore
the sets D0(S),D1(S), . . . , Dk(S) form a weak partition of V (G) \ S (where in a
weak partition some of the sets may be empty). Furthermore for i ∈ [k], every vertex
v ∈ Di(S) is adjacent to at least one vertex of Di−1(S), and possibly to vertices in
Di(S) and Di+1(S). For all i ∈ [k] and for each vertex v ∈ Di(S), we delete all but
one edge that joins v to a vertex of Di−1(S). Further, for all i ∈ [k]0 we delete all
edges, if any, that join v to vertices in Di(S). Let F denote the resulting spanning
subgraph of the graph G.

We claim that F is a forest. Suppose, to the contrary, that F contains a cycle C.
Let v be a vertex in such a cycle C at maximum distance from a vertex of S in G,
and let v1 and v2 be the two neighbors of v on C. Suppose that v ∈ Dp(S) for some
p ∈ [k]. Thus, dG(v, S) = p and dG(w, S) ≤ p for every vertex w of C different
from v. If v1 or v2 belongs to Dp(S), then this contradicts the way in which F was
constructed, noting that no edge in F joins two vertices in the same setDi(S). Thus,
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both v1 and v2 belong to Dp−1(S). Once again, this contradicts the way in which
F was constructed, noting that exactly one edge in F joins a vertex in Di(S) to a
vertex in Di−1(S). Therefore, F is a forest.

If F is a tree, then we let T = F ; otherwise, if the forest F has � ≥ 2 components,
then we let T be obtained from F by adding to it � − 1 edges in such a way that
the resulting subgraph is connected. We note that T is a tree. By construction, if
v ∈ Di(S) for some i ∈ [k], then there is a path from v to S of length i in T ,
and so dT (v, S) ≤ dG(v, S). Since T is a spanning tree of G, dG(v, S) ≤ dT (v, S)
for every vertex v ∈ V (G). Consequently, the spanning tree T of G is distance-
preserving from the set S in the sense that dG(v, S) = dT (v, S) for every vertex
v ∈ V (G). Since S is a k-dominating set ofG, the set S is therefore a k-dominating
set of T , and so γk(T ) ≤ |S| = γk(G). However, by Observation 6, γk(G) ≤ γk(T ).
Consequently, γk(T ) = γk(G). � 

Davila, Fast, Henning, and Kenter [24] established the following lower bound on
the k-domination number of a graph in terms of its diameter.

Theorem 8 ([24]) For k ≥ 1, if G is a connected graph with diameter d, then

γk(G) ≥ d + 1

2k + 1
.

That the lower bound of Theorem 8 is tight may be seen by taking G to be a
path, v1v2 . . . vn, of order n = �(2k + 1) for some � ≥ 1. Let d = diam(G), and so
d = n− 1 = �(2k+ 1)− 1. By Theorem 8, γk(G) ≥ (d + 1)/(2k+ 1) = �. The set

S =
�−1⋃

i=0

{vk+1+i(2k+1)}

is a k-dominating set of G, and so γk(G) ≤ |S| = �. Consequently, γk(G) = � =
(d + 1)/(2k + 1). We state this formally as follows.

Observation 9 ([24]) If G = Pn where n ≡ 0 mod (2k + 1), then

γk(G) = diam(G)+ 1

2k + 1
.

More generally, by applying Theorem 8, the k-domination number of a path Pn
on n ≥ 3 vertices is easy to compute.

Observation 10 ([24]) For k ≥ 1 and n ≥ 3, γk(Pn) = � n
2k+1�.

For k ≥ 1 and n ≥ 3, every vertex of a cycle Cn k-dominates exactly 2k + 1
vertices. Thus, if S is a minimum k-dominating set ofG, then the set S k-dominates
at most |S|(2k + 1) vertices of P , implying that |S|(2k + 1) ≥ n, or, equivalently,
γk(Cn) = |S| ≥ n/(2k + 1). Conversely, by Observation 6 and Proposition 10,
γk(Cn) ≤ γk(Pn) = � n

2k+1�. Consequently, the k-domination number of a cycle is
determined by the following result.
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Observation 11 ([24]) For k ≥ 1 and n ≥ 3, γk(Cn) = � n
2k+1�.

For k ≥ 1 and n ≥ 3, where n ≡ 0 mod (2k+1), consider a path P : v1v2 . . . vn.
By replacing each vertex vi , for 2 ≤ i ≤ n − 1, on the path P with a clique Vi of
size at least δ ≥ 1, and adding all edges between v1 and vertices in V2, adding all
edges between vn and vertices in Vn−1, and adding all edges between vertices in Vi
and Vi+1 for 2 ≤ i ≤ n − 2, we obtain a graph with minimum degree at least δ
achieving the lower bound of Theorem 8.

From Theorem 8, we have the following lower bound on the k-domination
number of a graph in terms of its radius.

Corollary 12 ([24]) For k ≥ 1, if G is a connected graph with radius r , then

γk(G) ≥ 2r

2k + 1
.

Proof. By Theorem 7, the graphG has a spanning tree T such that γk(T ) = γk(G).
Since adding edges to a graph cannot increase its radius, rad(G) ≤ rad(T ). Since T
is a tree, we note that diam(T ) ≥ 2rad(T ) − 1. Applying Theorem 8 to the tree T ,
we have that

γk(G) = γk(T ) ≥ diam(T )+ 1

2k + 1
≥ 2rad(T )

2k + 1
≥ 2rad(G)

2k + 1
.

� 
That the lower bound of Corollary 12 is tight, may be seen by taking G to be a

path, Pn, of order n = 2�(2k + 1) for some integer � ≥ 1. Let d = diam(G) and let
r = rad(G), and so d = 2�(2k + 1) − 1 and r = �(2k + 1). In particular, we note
that d = 2r−1. By Observation 10, γk(G) = d+1

2k+1 = 2r
2k+1 . As before, by replacing

each internal vertex on the path with a clique of size at least δ ≥ 1, we can obtain a
graph with minimum degree at least δ achieving the lower bound of Corollary 12.

In 2005 Meierling and Volkmann [61] and in 2006 Cyman, Lemańska, and
Raczek [21] studied lower bounds for the distance k-domination number of a tree.
The lower bound presented in [21] is in terms of the order and number of leaves of
the tree.

Theorem 13 ([21]) For k ≥ 1, if T is a tree of order n with � leaves, then

γk(G) ≥ n+ 2k − k�
2k + 1

.

The following lower bound on the k-domination number of a graph in terms of
its girth is established in [24], where the girth of a graph is the length of a shortest
cycle in the graph.

Theorem 14 ([24]) For k ≥ 1, if G is a connected graph with girth g <∞, then

γk(G) ≥ g

2k + 1
.
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The lower bound of Theorem 14 is tight, as may be seen by taking G to be a
cycle Cn, where n ≡ 0 mod (2k + 1). We note that G has girth g = n and, by
Observation 11, γk(G) = n

2k+1 = g
2k+1 .

7 Upper Bounds on the Distance Domination Number

In this section, we discuss several upper bounds on the k-domination number of a
graph for k ≥ 1 an integer. In 1975 Meir and Moon [62] established the following
upper bound for the k-domination number of a graph in terms of its order. The proof
we provide follows readily from Theorem 4.

Theorem 15 ([62]) For k ≥ 1, if G is a connected graph of order n ≥ k + 1, then

γk(G) ≤ n

k + 1
.

Proof. Let D = {v1, . . . , vr } be a γk-set of G satisfying the statement of
Theorem 4. For each i ∈ [r], let wi be a vertex in V (G) \ D at distance exactly k
from vi in G and at distance greater than k from every vertex of D \ {vi}; that is,
dG(wi, vi) = k and dG(wi,D \ {vi}) > k. Further, let Qi be a shortest (vi, wi)-
path in G from vi to wi for i ∈ [r], and so Qi ∼= Pk+1. We note that the paths
Q1, . . . ,Qr are vertex disjoint, implying that

γk(G) · (k + 1) = r · (k + 1) =
r∑

i=1

|V (Qi)| = |
r⋃

i=1

V (Qi)| ≤ |V (G)| = n,

or, equivalently, γk(G) ≤ n/(k + 1). � 
We remark that in the original proof of Theorem 15, Meir and Moon [62] first

proved that for k ≥ 1, if T is a tree of order n ≥ k + 1, then γk(T ) ≤ n/(k + 1).
From this result, they immediately deduced the result of Theorem 15 noting that if
G is a connected graph of order n ≥ k + 1 and T is an arbitrary spanning tree of
G, then since adding edges to a graph cannot increase its k-domination number, we
have γk(G) ≤ γk(T ) ≤ n/(k + 1).

The proof of Theorem 15 given in [47] suggests an algorithm that finds, for a
connected graph G of order n, a k-dominating set of cardinality at most n/(k + 1).
If G is a connected graph of order n ≤ k + 1, then any vertex of G forms a k-
dominating set of G, and in this case γk(G) = 1 ≤ n/(k + 1). For n ≥ k + 2, we
have the following algorithm from [47].

Algorithm 16 ([47]) For k ≥ 1 an integer and G a connected graph of order n ≥
k + 1, perform the following steps.

(a) Find a spanning tree T of G. Set Dk ← ∅.
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Fig. 4 The 4-corona C4 ◦ P5
of a 4-cycle

(b) If rad(T ) ≤ k, then let v be a central vertex of T , output Dk ∪ {v}, and stop.
Otherwise continue.

(c) Let d = diam(T ) and find a path u0, u1, . . . , ud of length d in T . Let Tk be
the component of T − ukuk+1 that contains the vertex uk+1. Set T ← Tk and
Dk ← Dk ∪ {uk}, and return to Step 2.

For k ≥ 1 an integer, the k-corona H ◦ Pk of a graph H is the graph of order
(k+ 1)|V (H)| obtained from H by attaching a path of length k to each vertex of H
so that the resulting paths are vertex disjoint. For example, if H ∼= C4 and k = 4,
then the k-corona H ◦ Pk of H is illustrated in Figure 4. We note in this example,
the four darkened vertices (that induce the cycle C4 ∼= H ) form a γ5-set of C4 ◦ P4.

If G = H ◦ Pk and H is a connected graph of order at least 2, then the set
V (H) is a k-dominating set of G, and so γk(G) ≤ |V (H)|. However in order to
distance k-dominate the set of |V (H)| leaves of G, every k-dominating set of G
contains at least one vertex from each of the added |V (H)| paths, and so γk(G) ≥
|V (H)|. Consequently, γk(G) = |V (H)| = n/(k + 1), showing that the upper
bound of Theorem 15 is tight. In 1991, Topp and Volkmann [73] gave a complete
characterization of the graphs achieving equality in the upper bound of Theorem 15.

Theorem 17 ([73]) For k ≥ 1, if G is a connected graph of order n ≥ k + 1
satisfying γk(G) ≤ n

k+1 , then one of the following holds.

(a) n = k + 1.
(b) G = C2k+2.
(c) G = H ◦ Pk for some connected graph H of order at least 2.

For positive integers k and �, if G is the graph of order n = �(k + 1) obtained
from an arbitrary connected graph H of order � by attaching a path of length k
(equivalently, of order k + 1) to each vertex of H so that the resulting paths are
vertex disjoint, then the set V (H) is a k-dominating set of G, and so γk(G) ≤
|V (H)| = �. However in order to distance k-dominate the set of � leaves of G,
every k-dominating set of G contains at least one vertex from each of the added �
paths, and so γk(G) ≥ �. Consequently, γk(G) = � = n/(k + 1), showing that the
upper bound of Theorem 15 is tight.

In 2009 Tian and Xu [71] established the following upper bound for the k-
domination number of a graph in terms of its order and maximum degree.
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Theorem 18 ([71]) For k ≥ 1, if G is a connected graph of order n ≥ k + 1 with
maximum degree �, then

γk(G) ≤ n−�+ k − 1

k
.

In 2009 Tian and Xu [71] also established the following upper bound on the
k-domination number of a graph in terms of its minimum degree.

Theorem 19 ([71]) For k ≥ 1, if G is a connected graph of order n with minimum
degree δ, then

γk(G) ≤
(

1 + ln(m(δ + 1)+ 2 − t)
m(δ + 1)+ 2 − t

)

n,

where m = ⌈
k
3

⌉
and t = 3

⌈
k
3

⌉− k.
In 2017 Henning and Lichiardopol [46] proved the following stronger results.

Theorem 20 ([46]) For k ≥ 2, ifG is a connected graph with minimum degree δ ≥
2 and maximum degree � and of order n ≥ �+ k − 1, then

γk(G) ≤ n+ δ −�
δ + k − 1

.

We remark that for k ≥ 2, ifG is a connected graph with minimum degree δ ≥ 2,
maximum degree � and of order n < �+ k − 1, then (n+ δ −�)/(δ + k − 1) ≤
(δ+ k− 2)/(δ+ k− 1) < 1. However, in this case a vertex of maximum degree,�,
in G is a k-dominating set, which implies that γk(G) = 1. Hence, the requirement
that n ≥ �+ k − 1 in the statement of Theorem 20 is essential.

As an immediate consequence of Theorem 20, we have the following general
upper bound on the distance domination number of a graph in terms of its order and
minimum degree.

Theorem 21 ([46]) For k ≥ 2, ifG is a connected graph with minimum degree δ ≥
2 and of order n ≥ δ + k − 1, then

γk(G) ≤ n

δ + k − 1
.

If δ = 2 and � > 2, then Theorem 20 implies strict inequality in the bound of
Theorem 21. If δ ≥ 3, then Theorem 20 is a significant improvement on the bound
of Theorem 15. As shown in [46], the result in Theorem 20 is also a stronger result
than that of Theorem 18. If δ ≥ 1

m

(
em−1 −m+ i − 2

)
, then as shown in [46], the

inequality

1

δ + k − 1
<

1 + ln(m(δ + 1)+ 2 − t)
m(δ + 1)+ 2 − t (1)
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holds, implying that in this case the upper bound in Theorem 20 is an improvement
on the upper bound of Theorem 19. In particular, if k ≤ 9, then Inequality (1)
holds (recalling that δ ≥ 2), and therefore the upper bound in Theorem 20 is an
improvement on the upper bound of Theorem 19 for any value of δ ≥ 2. Further, as
shown in [46] for any given δ ≥ 2 and for sufficiently large k, the upper bound in
Theorem 20 is an improvement on the upper bound of Theorem 19.

However, none of the bounds in Theorem 18 to Theorem 21 is sharp or close
to being sharp. In 2019 Dankelmann and Erwin [22] presented the following upper
bound on the p-radius of a graph.

Theorem 22 ([22]) If G is a connected graph of order n with minimum degree δ
and maximum degree �, and p is an integer satisfying 1 ≤ p ≤ n− 1, then

radp(G) ≤ 3(n+ δ −�− 1)

(p + 1)(δ + 1)
+ 2.

As an immediate consequence of Theorem 22, we have the following upper
bound on the p-radius of a graph in terms of its order and minimum degree.

Theorem 23 ([22]) If G is a connected graph of order n with minimum degree δ
and p is an integer satisfying 1 ≤ p ≤ n− 1, then

radp(G) ≤ 3(n− 1)

(p + 1)(δ + 1)
+ 2.

As a consequence of the Duality Lemma 5 and Theorem 23, Dankelmann and
Erwin [22] obtained the following asymptotically sharp upper bound on the k-
domination number of a graph in terms of its order and minimum degree, which
significantly improves the earlier bounds.

Theorem 24 ([22]) For 3 ≤ k ≤ n − 1, if G is a connected graph of order n,
minimum degree δ, and maximum degree �, then

γk(G) ≤
⌈

3(n+ δ −�− 1)

(k − 2)(δ + 1)

⌉

− 1.

Proof. Let

p =
⌈

3(n+ δ −�− 1

(k − 2)(δ + 1)

⌉

− 1.

By Theorem 22, we have

radp(G) ≤ 3(n+ δ −�− 1)

(p + 1)(δ + 1)
+ 2 ≤ k.

The desired result now follows immediately from the Duality Lemma 5. � 
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As an immediate consequence of Theorem 24, we have the following upper
bound on the distance domination number of a graph in terms of its order and
minimum degree.

Theorem 25 ([22]) For k ≥ 3 an integer, if G is a connected graph of order n and
minimum degree δ where k ≤ n− 1, then

γk(G) ≤
⌈

3(n− 1)

(k − 2)(δ + 1)

⌉

− 1.

To show that the upper bound of Theorem 25 is asymptotically sharp, Dankel-
mann and Erwin [22] construct the following family of graphs. Let k, p, and δ be
fixed positive integers where k ≡ 2 (mod 3) and k ≥ 5, and where δ ≥ 2. LetGk,p,δ
be the graph constructed as follows. Let

V (Gk,p,δ) =
p⋃

i=1

k⋃

j=0

Vij ,

where

|Vij | =
⎧
⎨

⎩

δ if j = k − 1
δ − 1 if j ≡ 1 (mod 3) and j �= k − 1
1 otherwise.

If |Vij | = 1, then we let Vij = {vij } for i ∈ [p] and j ∈ [k]0. The edge set of
Gk,p,δ is defined as follows. The subgraph induced by {v1,0, . . . , vp,0} is the path
P : v1,0v2,0 . . . vp,0 on p vertices. For i ∈ [p] and j ≡ 1 (mod 3), the set Vij is an
independent set and every vertex in Vij is adjacent to both vertices vi,j−1 and vi,j+1.
To complete the construction ofGk,p,δ we add the edge vij vi,j+1 for all i ∈ [p] and
j ≡ 2 (mod 3). When k = 8 and p = 4, the graph Gk,p,δ is illustrated in Figure 5.

The graph Gk,p,δ satisfies

γk(Gk,p,δ) = p = 3n

3 + (k + 1)(δ + 1)
≥ 3(n− 1)

(k + 2)(δ + 1)

since δ ≥ 2. Hence, the upper bound of Theorem 25 is asymptotically sharp. For
fixed positive integers k, p, δ, and � where k ≡ 2 (mod 3) and k ≥ 5, and where
2 ≤ δ < �, let Hk,p,δ,� be the graph constructed in the same way as the graph
Gk,p,δ except that |V1,k−1| = �. The resulting graph Hk,p,δ,� has minimum degree
δ, maximum degree �, and satisfies

γk(Hk,p,δ,�) = p = 3(n+ δ −�)
3 + (k + 1)(δ + 1)

≥ 3(n+ δ −�− 1)

(k + 2)(δ + 1)
,

implying that the bound given in Theorem 24 is asymptotically sharp. We close this
section on upper bounds on the k-domination number of a graph with small girth.
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Fig. 5 The graph G8,4,δ

Theorem 26 ([22]) IfG is a triangle-free connected graph of order n and minimum
degree δ and k is an integer satisfying 5 ≤ k ≤ n− 1, then

γk(G) ≤
⌈

2(n− 1)

δ(k − 4)

⌉

− 1.

Theorem 27 ([22]) If G is a C4-free connected graph of order n and minimum
degree δ and k is an integer satisfying 5 ≤ k ≤ n− 1, then

γk(G) ≤
⌈

5(n− 1)

(k − 4)(1 + δ2 − 2�δ/2�
⌉

− 1.

Both bounds in Theorems 26 and 27 are shown to be asymptotically sharp in [22].

Theorem 28 ([46]) For k ≥ 2, if G is a graph of girth at least 5, minimum degree
δ, maximum degree �, and order n where n ≥ �(G2)+ k − 1, then

γ2k(G) ≤ n+ δ
2 − δ�

δ2 + k − 1
.

8 Distance Domination in Graph Products

The direct product graph, G × H , of graphs G and H is the graph with vertex set
V (G) × V (H) and with edges (g1, h1)(g2, h2), where g1g2 ∈ E(G) and h1h2 ∈
E(H). Davila et al. [24] proved the following result on the k-domination number of
the direct product graph of two graphs.
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Theorem 29 ([24]) If G and H are connected graphs, then

γk(G×H) ≥ γk(G)+ γk(H)− 1.

The Cartesian product G �H of graphs G and H is the graph whose vertex set
is V (G)×V (H). Two vertices (g1, h1) and (g2, h2) are adjacent inG�H if either
g1 = g2 and h1h2 is an edge in H , or h1 = h2 and g1g2 is an edge in G.

For k ≥ 2, the k-domination number of the Cartesian product of graphs does
not appear to have been studied much in the literature in comparison with the
domination number of the Cartesian product of graphs. We present here some results
on distance domination in m × n grids, or equivalently in the Cartesian product
Pm � Pn of Pm and Pn (also denoted by Gm,n in the literature). By Observation 10,
we have the following result.

Observation 30 For k ≥ 1 and n ≥ 2,

γk(P1 � Pn) = γk(Pn) =
⌈

n

2k + 1

⌉

.

In 2005 Klobučar [59] determined the k-domination of a 2 × m grid and 3 × m
grid.

Theorem 31 ([59]) For k ≥ 1 and n ≥ 2,

γk(P2 � Pn) =
{
n
2k + 1 if n ≡ 0 (mod 2k)
� n2k � otherwise.

To illustrate Theorem 31, Figure 6 shows an optimal solution for a 2-by-n grid
in the case when n = 17 and k = 3. In this case, γ3(P2 � P17) = � 17

6 � = 3.

Theorem 32 ([59]) For k ≥ 2 and n ≥ 2,

γk(P3 � Pn) =
⌈

n

2k − 1

⌉

.

To illustrate Theorem 57, Figure 7 shows an optimal solution for a 3-by-n grid

in the case when n = 15 and k = 3. In this case, γ3(P3 � P15) =
⌈

15
5

⌉
= 3.

It remains an open problem to determine the exact value of the k-domination
of the m × n grid for all k ≥ 2 and for n ≥ m ≥ 3. Klobučar [59] determined

Fig. 6 γ3(P2 � P17) = 3



Distance Domination in Graphs 223

Fig. 7 γ3(P3 � P15) = 3

the exact value of γ2(Pm � Pn) when m ∈ {4, 5, 6, 7}. An upper bound on the 2-
domination number γ2(Pn � Pn) of a (balanced) n × n grid is given by Hemalatha
and Jeyanthi [44].

In 2013, Fata, Smith, and Sundaram [29] gave a polynomial-time construction
of a k-distance dominating set (using what they called k-diagonalization and k-
projection arguments) in an m × n grid. As a consequence of their distributed
algorithm, they obtained the following upper bound on the k-distance domination
number of an m× n grid.

Theorem 33 ([29], Theorem V.10) For k ≥ 1 and n ≥ m ≥ 2,

γk(Pm � Pn) ≤
⌈
(m+ 2k)(n+ 2k)

2k2 + 2k + 1
+ 2k2 + 2k + 1

4

⌉

.

When k = 2, the bound for the 2-domination number given in Theorem 33 is

γ2(Pm � Pn) ≤
⌈
(m+ 4)(n+ 4)

13
+ 13

4

⌉

.

In 2014, Blessing, Insko, Johnson, and Mauretour [10] improved this upper
bound slightly for sufficiently large m and n.

Theorem 34 ([10], Theorem 3.8) For sufficiently large m and n.

γ2(Pm � Pn) ≤
⌈
(m+ 4)(n+ 4)

13

⌉

− 4.

Using algebraic and geometric arguments, in 2016 Farina and Grez [28]
improved the upper bounds established in Theorem 33 by proving the following
result.

Theorem 35 ([28], Theorem 1.1) For k ≥ 1 and n ≥ m ≥ 2(2k2 + 2k + 1),

γk(Pm � Pn) ≤
⌈
(m+ 2k)(n+ 2k)

2k2 + 2k + 1

⌉

− 4.

Klobučar [59] established the following result for m × n grids as m and n
approach infinity. We note that one vertex can k-dominate at most 2k2 + 2k + 1
vertices. Therefore, every γ -set of Pm � Pn must contain at least mn

2k2+2k+1
vertices.
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Klobučar [59] constructed a k-dominating set that contains at most � mn
2k2+2k+1

� +
2m+ 2n vertices. From these observations, we have the following result.

Theorem 36 ([59]) For integers m and n,

lim
m,n→∞

γk(Pm � Pn)

mn
= 1

2k2 + 2k + 1
.

Vizing’s conjecture [77] from 1968 asserts that the domination number of the
Cartesian product of two graphs is at least as large as the product of their domination
numbers. We state next a distance version of Vizing’s conjecture.

Conjecture 1 For k ≥ 1 an integer and for every pair of finite graphs G and H ,

γk(G�H) ≥ γk(G) γk(H).

When k = 1, Conjecture 1 is Vizing’s Conjecture on the domination number
of Cartesian product of graphs stating that for every pair of finite graphs G and
H , γ (G � H) ≥ γ (G) γ (H). This 50+ year old conjecture has yet to be settled
and remains one of the outstanding unsolved problems in graph theory. If k ≥
max{rad(G), rad(H)}, then by Observation 2 we have γk(G) = γ (Gk) = 1 and
γk(H) = γ (Hk) = 1, and so in this case γk(G � H) ≥ 1 = γk(G) γk(H). Also if
k ≥ rad(G�H), then by Observation 2 we note that

γk(G�H) = γ ((G�H)k) = 1 = γk(G) γk(H).

The distance version of Vizing’s conjecture, namely Conjecture 1, therefore
trivially holds for sufficiently large k. However it would be interesting to find the
smallest value of k for which Conjecture 1 holds. Vizing’s Conjecture is that k = 1
suffices.

9 Nordhaus–Gaddum Type Results

In 1956 Nordhaus and Gaddum [63] established sharp bounds on the sum and
product of the chromatic numbers of a graph G and its complement G. Since then
such results have been given for many parameters, as discussed in the 81-page
survey by Aouchiche and Hansen [2] on Nordhaus–Gaddum type relations. They
include a 1972 result by Jaeger and Payan [64] on the domination number that if G
is a graph of order n ≥ 2, then 2 ≤ γ (G)+ γ (G) ≤ n+ 1 and 1 ≤ γ (G)γ (G) ≤ n,
and these bounds are sharp. This result was generalized to the distance domination
number in 1991 by Henning, Oellermann, and Swart [47].

Theorem 37 ([47]) For k ≥ 2, if G is a graph of order n ≥ k + 1, then
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2 ≤ γk(G)+ γk(G) ≤ n+ 1 and 1 ≤ γk(G)γk(G) ≤ n,

and these bounds are sharp.

The lower bounds of Theorem 37 are reached for any graph G such that
diam(G) ≤ 2 and diam(G) ≤ 2. For example, one could take G to be a self-
complementary graph of diameter 2 and order n (mod 4) ∈ {0, 1}. For such graphs
G, we have γk(G) = γk(G) = 1. The upper bounds of Theorem 37 are achieved
if G or G is the complete graph Kn. We remark that the k-domination number of
a disconnected graph is by linearity the sum of the k-domination numbers of its
components. If we restrict both G and G to be connected, then the upper bounds of
Theorem 37 can be improved, as shown in [47].

Theorem 38 ([47]) For k ≥ 2, if both G and G are connected graphs of order
n ≥ k + 1, then

2 ≤ γk(G)+ γk(G) ≤
⌊
n

k + 1

⌋

+ 1 and 1 ≤ γk(G)γk(G) ≤
⌊
n

k + 1

⌋

,

and these bounds are sharp.

That the upper bounds in Theorem 38 are sharp may be seen by taking the k-
corona G = H ◦ Pk of a graph connected H for k ≥ 2 as defined in Section 7. In
this case, recall thatG has order n = (k+1)|V (H)| and satisfies γk(G) = n/(k+1)
and γk(G) = 1. Thus, the graph G achieves the upper bounds in Theorem 38.

10 Distance Domination Versus Iterated Domination

In 2012 Bacsó and Tuza [7] studied the structure of k-dominating subgraphs,
and looked for conditions under which a graph surely admits a k-dominating set
that induces a subgraph belonging to a prescribed graph class D. Among the
requirements, they show that connectivity plays a central role both for dominating
subgraphs and for the graphs to be dominated. In this section, we present selected
results from their paper [7].

Given a class D of finite simple graphs closed under connected induced
subgraphs, they completely characterize those graphs G in which every connected
induced subgraph has a connected k-dominating subgraph isomorphic to some
D ∈ D. They apply this result to prove that the class of graphs hereditarily D-
dominated within distance k is the same as the one obtained by iteratively taking the
class of graphs hereditarily dominated by the previous class in the iteration chain.

In order to precisely state their results, we shall need the following notation. The
class D is compact if it is closed under taking connected induced subgraphs, and the
class D is concise if it is compact and contains connected graphs only. A graph G
is defined as minimal not-in-D if it is connected, G /∈ D, and all proper connected
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induced subgraphs of G are in the class D. Moreover, a graph G is D-dominated
if there exists a dominating connected induced subgraph D ∈ D in G. A graph G
is hereditarily dominated by D if each of its connected induced subgraphs is D-
dominated. Further, a connected graphG is defined as minimal non-D-dominated if
it is not D-dominated but all of its proper connected induced subgraphs are.

The class Domk D is defined to consists of the graphs G for which every
connected induced subgraph H of G is k-dominated by some connected graph
D ∈ D. We remark thatDomk is an operator acting on graph classes. For simplicity,
they omit the subscript “1” and write Dom1D = DomD.

For any operator φ, operating on a set X and having its values in X, for an
arbitrary element x ∈ X and integer k ≥ 1, the notation φk(x) is defined to mean
the element obtained from x by applying the operation φ k times. They also write
φ0(x) = x, and denote by MkD the set of minimal connected forbidden induced
subgraphs for the class of graphs Domk(D). We remark that MkD is well-defined
because membership in Domk(D) is an additive induced hereditary property for all
D and all k ≥ 1.

The leaf -graph of a connected graph H , denoted F(H), is defined as the graph
obtained from H by attaching a leaf (or, equivalently, a pendant edge) to each non-
cut vertex of H . Let

Fk := {Fk(M) : M minimal not-in-D}.

For a class C of graphs, they denote by �(C) the minimum element of the set
{j : Pj /∈ C}, where Pj denotes an induced path on j vertices, also referred to as
a chordless path on j vertices. Further, the classes are grouped into two types of
classes, namely,

Type 1. All chordless paths are elements of D.
Type 2. Some paths are not in D.

We are now in a position to state the main results of Bacsó and Tuza [7].

Theorem 39 ([7]) If D is a compact class of graphs, then for all integers k ≥ 1 we
have

DomkD = Domk(D).

We remark that the equation in the statement of Theorem 39 is not true in general,
and they show that for any k ≥ 2, there exists some class D of graphs for which the
equation DomkD = Domk(D) is not valid.

In order to prove Theorem 39, they first prove the following lemma, which they
call the Legged Cycle Lemma, which characterizes the class MkD of minimal
connected forbidden induced subgraphs of Domk(D). Recall that Cn denotes a
(chordless) cycle on n vertices.

Lemma 40 ([7]) If D is a compact class of graphs, then the following holds.
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(a) If D is of Type 1, then MkD = Fk .
(b) If D is of Type 2 and θ := �(G) where G is the class of connected graphs in

Domk−1(D), then

MkD = Fk ∪ {F i(Cθ+2−2i ) : i ∈ [k − 1]0}.

11 Distance Domination and Average Distance

In 2009, Tian and Xu [71] studied tight upper bounds on the average distance of a
graph in terms of its order and distance domination number. The average (or mean)
distance μ(G) of a graphG is the average value of distance over all pairs of vertices
of G; that is, if G has order n, then

μ(G) = 1

n(n− 1)

∑

u,v∈V (G)
dG(u, v).

For k ≥ 1, Tian and Xu [71] provide sharp upper bounds on the average distance
of a graph G with given order n and k-domination number γk(G). Recall that by
Theorem 15, for k ≥ 1 if G is a connected graph of order n ≥ k + 1, then γk(G) ≤
n/(k+ 1). The result of Tian and Xu [71] on the average distance differs depending
on whether γk(G) ≤ �n/(2k + 1)� or γk(G) > �n/(2k + 1)�.

We first consider the case when γk(G) ≤ �n/(2k+ 1)�. Recall that a double star
is a tree with exactly two (adjacent) non-leaf vertices. Further if one of these vertices
is adjacent to �1 leaves and the other to �2 leaves, then we denote the double star by
S(�1, �2). For example, the double star S(1, 1) is the path P4. For positive integers
n and γk , let Gn,γk,k be the graph obtained as follows. If γk = �n/(2k + 1)�, let
Gn,γk,k consist of a path Pn. If γk ≤ n/(2k + 1), let Gn,γk,k be the graph obtained
from a double star

S

(⌊
1

2
(n− (2k + 1)γk + 2)

⌋

,

⌈
1

2
(n− (2k + 1)γk + 2)

⌉)

by subdividing the edge joining the two central vertices of the star exactly (2k +
1)γk − 4 times. For example, when n = 20, γ2 = 3 and k = 2, the graph G20,3,2
is shown in Figure 8. We note if G = G20,3,2, then γ2(G) = 3, and the darkened
vertices in Figure 8 form a γ2-set of G.

Fig. 8 The graph G20,3,2
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For positive integers n and γk where γk ≤ � n
2k+1�, let

�(n, k) = (n− (2k + 1)γk)(n− (2k + 1)γk + 2)(2n+ (2k + 1)γk − 7).

We are now in a position to state the result due to Tian and Xu [71] in the case
when γk(G) ≤ � n

2k+1�.
Theorem 41 ([71]) IfG is a connected graph of order n with k-domination number
γk ≤ � n

2k+1�, then

μ(G) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+ 1

3
− �(n, k)

6n(n− 1)
if γk ≤ n

2k + 1
and n− γk is even

n+ 1

3
− �(n, k)− 3((2k + 1)γk − 3)

6n(n− 1)
if γk ≤ n

2k + 1
and n− γk is odd

n+ 1

3
if γk =

⌈
n

2k + 1

⌉

.

Further, equality holds if and only if G = Gn,γk,k .
We consider next the second case when � n

2k+1� < γk(G) ≤ n
k+1 .

Let s and t be the quotient and the reminder of the division of (2k+ 1)γk − n by
k; that is, (2k + 1)γk − n = sk + t where s ≥ 0 and t ∈ [k − 1]0. Further, let

�1(n, k) = n− s(k + 1)− t
�2(n, k) = s(k + 1)
�3(n, k) = 3n− s(k + 1)
�4(n, k) = 2n− s(k + 1)− 2t.

Let Hn,γk,k be the graph obtained from a path P2n−(2k+1)γk given by
v1v2 . . . v2n−(2k+1)γk by applying the following:

• Attaching a path of length k to each vertex vi for 1 ≤ i ≤ �s/2�.
• Attaching a path of length k to each vertex v2n−(2k+1)γk+1−j for 1 ≤ j ≤ �s/2�.
• Attaching a path of length t to the vertex v�s/2�+�1(n,k)+t−k .

For example, when n = 25 and k = 3 the graph H25,3 is shown in Figure 9 (here
s = 5, t = 2, and �1(n, k) = 3). We note if G = H25,6,3, then γ3(G) = 6.

For positive integers n and γk where γk > � n
2k+1�, let

�1(n, k) = ((2k + 1)γk − n− t − 2k)(�3(n, k)− 2(k + 1))+ 3t (�4(n, k)− 2)
�2(n, k) = 1

n(n−1) (�1(n, k)+ t − k − 1)

�3(n, k) = ((2k + 1)γk − n− t − 3k)(�3(n, k)− (k + 1))+ 3t (�4(n, k)+ 2k)
+3(k�4(n, k)+ (k − 1)t − k(k + 1))

�4(n, k) = 1
n(n−1) (�1(n, k)+ t).
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Fig. 9 The graph H25,6,3

We are now in a position to state the result due to Tian and Xu [71] in the case
when γk(G) > � n

2k+1�.
Theorem 42 ([71]) IfG is a connected graph of order n with k-domination number
γk > � n

2k+1�, then

μ(G) ≤

⎧
⎪⎨

⎪⎩

n+ 1

3
− �2(n, k)�1(n, k)

6n(n− 1)
− 2t (k − t)�2(n, k) if

γk − n− t
k

is even

n+ 1

3
− (�2(n, k)− k − 1)�3(n, k)

6n(n− 1)
− 2t (k − t)�4(n, k) if

γk − n− t
k

is odd.

Further, equality holds if and only if G = Hn,γk,k .

12 Well-k-Dominated Graphs

Finbow, Hartnell, and Nowakowski [30] introduced the concept of a well-dominated
graph. In [30], a graph is defined to be well-dominated if every minimal dominating
set has the same cardinality. We extend here the definition of well-dominated graphs
to distance well-dominated. Let k ≥ 1 be an integer, and let G be a graph. Recall
that the upper k-domination number �k(G) of a graphG is the maximum cardinality
taken over all minimal k-dominating sets of G. In 1993 Hattingh and Henning [41]
defined a graph to be well-k-dominated if every minimal k-dominating set of the
graph has the same cardinality. Hence,G is well-k-dominated if and only if γk(G) =
�k(G).

A parameter of interest here is the k-packing number defined by Meir and
Moon [62]. A set S of vertices of a graph G is a k-packing of G if dG(x, y) > k
for all pairs of distinct vertices x and y in S. The k-packing number ρk(G) of G
is the maximum cardinality of a k-packing set in G. In 1988 Domke, Hedetniemi,
and Laskar [25] established the following important relationship between the 2k-
packing number and the k-domination number of a connected block graph, where
we recall that a block graph is a graph in which each block is complete. We note
that a tree is a block graph where each block is K2.
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Proposition 43 ([25]) For k ≥ 1 an integer, if G is a connected block graph, then
ρ2k(G) = γk(G).

In 1993 Hattingh and Henning [41] characterized block graphs that are well-k-
dominated. Since a graph is well-k-dominated if and only if each of its components
is well-k-dominated, we restrict ourselves to connected graphs. The following result
of [41] extends a 1991 result due to Topp and Volkmann [73] from trees to connected
block graphs.

Theorem 44 ([41]) If G is a connected block graph, then the following statements
are equivalent.

(1) γk(G) = ρ2k(G) = r .
(2) One of the following statements hold.

(a) diam(G) ≤ k and r = 1.
(b) There exists a decomposition of G into r subgraphs G1, . . . ,Gr in such a

way that the following hold.

(i) The graph Gi is a connected block graph and diam(Gi) = k for i ∈
[r].

(ii) For each i ∈ [r], there exists a vertex ui ∈ V (Gi) \ V (G0) such that
dG(ui, V (G0)) = k, where G0 is the subgraph of G induced by those
edges that do not belong to any of the subgraphs G1, . . . ,Gr .

(iii) There is at most one edge with one end in V (Gi) and the other end in
V (Gj ) for 1 ≤ i < j ≤ r .

(3) The graph G is well-k-dominated.

If G is any connected graph, then the conditions given in Theorem 44(b) are
easily seen to be sufficient for G to be well-k-dominated. That the conditions are
not necessary for any connected graphG, may be seen by considering the graph Hk
constructed as follows. Let T be a complete binary tree of height k in which every
leaf is at level k (and so T has order 2k+1−1). Let T1 and T2 be two (disjoint) copies
of T . Finally, let Hk be obtained from T1 and T2 by inserting a 1-factor between the
corresponding leaves of T1 and T2. The graphsH1 andH2, for example, are shown in
Figure 10(a) and 10(b), respectively. The resulting graphs Hk is well-2k-dominated
with γ2k(Hk) = 2, but Hk does not satisfy the conditions given in Theorem 44(b).

Fig. 10 The graphs H1 and
H2
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Corollary 45 ([41]) If G is a connected block graph, then γ2k(G) = ρk(G) if and
only if well-2k-dominated.

13 Distance Domination Critical Graphs

As remarked by Sumner [69], “graphs which are minimal or critical with respect
to a given property frequently play an important role in the investigation of that
property. Not only are such graphs of considerable interest in their own right, but
also a knowledge of their structure often aids in the development of the general
theory.” In this subsection we consider graphs which are critical with respect to
their k-domination number. We examine the effects on γk(G) when G is modified
by deleting a vertex. Unless otherwise stated, the results of this subsection are
from [51].

Brigham, Chinn, and Dutton [15] define a vertex v of a graph G to be critical if
γ (G− v) < γ (G). The graphG is vertex domination-critical (or γ -critical) if each
vertex is critical. For k ≥ 1 an integer, a vertex v of a graph G is defined in [51] to
be k-critical if γk(G− v) < γk(G). The graphG is vertex k-domination-critical (or
γk-critical) if each vertex ofG is k-critical. IfG is γk-critical and γk(G) = �, we say
G is (γk, �)-critical. For example, the graphs G2 and G3 of Figure 11 are (γ2, 2)-
critical and (γ3, 2)-critical, respectively. Further, for integers k ≥ 1 and � ≥ 2,
the cycle C(�−2)(2k+1)+1 is (γk, �)-critical. Note that γ1-critical graphs are vertex
domination-critical graphs.

As pointed out in [15], vertex domination-critical graphs can be used to model
multiprocessor networks. Similarly, γk-critical graphs can serve as models for
multiprocessor networks in which a subset of processors (represented by an k-
dominating set) can transmit messages to all remaining processors in at most k time
units (where a time unit is the time it takes for a message to be sent between adjacent
processors). These γk-critical networks have the desirable characteristics that any
processor can be in a minimum set of “k-dominating” processors and the failure of
any processor leaves a network which requires one fewer “dominating” processors.

Fig. 11 The graphs G2 and
G3
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We present next some basic properties of γk-critical graphs.

Lemma 46 ([51]) If G is a connected γk-critical graph of order n ≥ 2, then the
following hold.

(a) Nk[u] �⊆ Nk[v] for every pair of distinct vertices u and v of G.
(b) δk(G) ≥ 2k.
(c) n ≤ (�k(G)+ 1)(γk(G)− 1)+ 1.

We remark that the upper bound on the order of a graphG given in Lemma 46(c)
in fact holds ifG contains at least one k-critical vertex. That this upper bound on the
order of a connected γk-critical graph is best possible may be seen by considering
the infinite class of γk-critical graphs Gs,r , where r ≥ 2, s = 2� for some positive
integer � and Gs,r ∼= Ck�(r−1)(sk+1)+1 (that is, the k�th power of the cycle on (r −
1)(sk + 1)+ 1 vertices). Then γk(Gs,r ) = r while γk(Gs,r − v) = r − 1 for every
vertex v of Gs,r . This example serves to illustrate the existence of (γk, r)-critical
graphs of connectivity s for every integer s ≥ 2.

Lemma 47 ([51]) For k ≥ 2, if G is a (γk, 2)-critical graph of order n, then the
following hold.

(a) δk(G) = �k(G).
(b) n = δk(G)+ 2 ≥ 2k + 2.

The following question is posed in [51]: “For integers k ≥ 2 and � ≥ 2, is it true
that ifG is a (γk, �)-critical graph of order n, then n ≥ (δk(G)+1)(γk(G)−1)+1?”
If this question can be answered in the affirmative, then this result and Lemma 46(b),
imply that n ≥ (2k + 1)(�− 1)+ 1 for every connected (γk, �)-critical graph G of
order n ≥ 2. Moreover, the cycle C(�−1)(2k+1)+1 shows that this bound is attainable.
Lemma 47(b) solves this problem in the special case of (γk, 2)-critical graphs.

Lemma 48 ([51]) For integers k ≥ 2 and � ≥ 2, a graphG is (γk, �)-critical graph
if and only if Gk is a (γ, �)-critical graph.

We next describe a construction technique which can be employed to produce
large classes of γk-critical graphs. We note that a graph is γk-critical if and only if
each of its components is γk-critical. A similar statement holds for the blocks of G.
Suppose H and G are nonempty graphs. Let u and w be two non-isolated vertices
of H and G, respectively. By (H · G)(u,w : v) we mean the graph obtained from
H and G by identifying the vertices u and w in a vertex labeled v.

Theorem 49 ([51]) If u and w are two non-isolated vertices of two nonempty
graphs H and G, respectively, then

γk(H)+ γk(G)− 1 ≤ γk((H ·G)(u,w : v)) ≤ γk(H)+ γk(G).

Furthermore, the following hold.

(a) If v is a critical vertex of (H · G)(u,w : v), then γk((H · G)(u,w : v)) =
γk(H)+ γk(G)− 1 and u and w are critical vertices of H and G, respectively.



Distance Domination in Graphs 233

(b) If u and w are critical vertices ofH andG, respectively, then γk((H ·G)(u,w :
v)) = γk(H)+ γk(G)− 1 and v is a critical vertex of (H ·G)(u,w : v).

Theorem 50 ([51]) If u and w are two non-isolated vertices of two nonempty
graphs H and G, respectively, then (H · G)(u,w : v) is γk-critical if and only
if H and G are both γk-critical.

The following result establishes a relationship between the k-domination number
of a graph and the k-domination number of its blocks.

Theorem 51 ([51]) A graph G is γk-critical if and only if each block of G is γk-
critical. Further, if G is γk-critical with blocks G1, . . . ,Gb, then

γk(G) =
b∑

i=1

γk(Gi) − (b − 1).

As an illustration of Theorem 51, let B1, B2, . . . , B2k+3 be (2k + 2)-cycles. For
each i ∈ [2k+ 2], let ui be a vertex of Bi and let w1, w2, . . . , w2k+2 be the vertices
of B2k+3. Let G be obtained by identifying ui and wi for all i ∈ [2k + 2]. Then,
B1, B2, . . . , B2k+3 are the blocks of G. Since each Bi is (γk, 2)-critical, the graph
G is γk-critical by Theorem 51. Furthermore,

γk(G) =
2k+3∑

i=1

γk(Bi) − (2k + 2) = 2k + 4.

This example serves to illustrate the existence of γk-critical graphs that contain
cut-vertices. We remark that attempts to date to characterize γk-critical graphs have
been unsuccessful. The following result shows that it is not possible to do so in
terms of forbidden subgraphs.

Proposition 52 ([51]) For k ≥ 1 and for any graph G there is a (γk, �)-critical
graph H containing G as an induced subgraph.

14 The Distance Domatic Number of a Graph

For k ≥ 1, the distance k-domatic number of a graph G, denoted domk(G), is the
maximum order of a partition on the vertex set V (G) into classes each of which is a
distance k-dominating set ofG. The concept of distance domatic number of a graph
was introduced and first studied in 1983 by Zelinka [80], and further studied, for
example, by Kämmerling and Volkmann [56]. In this introductory paper, he made
the following observations.

Observation 53 ([80]) For positive integers k and �, if G is a graph of order n,
then the following hold.
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(a) If diam(G) ≤ k, then domk(G) = n.
(b) If k ≥ � ≥ 1, then dom�(G) ≤ domk(G).
(c) domk(G) ≤ n

γk(G)
.

We present here some selected results on the distance 2-domatic number.
The total domatic number of a graph G, denoted by tdom(G) and first defined
by Cockayne, Dawes, and Hedetniemi [19], is the maximum number of total
dominating sets into which the vertex set of G can be partitioned. The parameter
tdom(G) is equivalent to the maximum number of colors in a (not necessarily
proper) coloring of the vertices of a graph where every color appears in every open
neighborhood. Chen, Kim, Tait, and Verstraete [18] called this the coupon coloring
problem. Kiser [57] shows that the distance 2-domatic number of a graph is at least
twice its total domatic number.

Theorem 54 ([57]) If G is a graph with no isolated vertex, then dom2(G) ≥
2tdom(G).

As a consequence of Theorem 54, we have the following result on the distance
2-domatic number of a regular graph.

Theorem 55 ([18]) If G is a d-regular graph, then for d sufficiently large we have

dom2(G) ≥ 2(1 − o(1))d

log d
.

Theorem 56 ([40]) There exist planar graphs G with dom2(G) ≥ 8, and there
exist toroidal graphs G with dom2(G) ≥ 10.

Kiser and Haynes [58] studied distance-2 domatic numbers of grid graphs.

Theorem 57 ([58]) For n ≥ m ≥ 2, the following holds.

(a) dom2(P2 � Pn) = 5 for n ≥ 5.
(b) For m ∈ {3, 4, 5} and n ≥ 6, we have dom2(Pm � Pn) = 6.
(c) For the infinite grid when m, n→∞, we have dom2(Pm � Pn) = 13.

The distance k-domatic number problem was studied from a slightly different
angle by Alon et al. [1] who consider factor distance k-domatic coloring in graph.
For r ≥ 2, an r-factorization of a graph G = (V ,E) is a collection S1, S2, . . . , Sr
of connected (not necessarily edge-disjoint) spanning subgraphs (the factors) of G,
whose union is G. A k-domatic coloring of G is a coloring of V such that each
color class is a distance k-dominating set of G. The coloring is an all-factor k-
domatic coloring of G with respect to S1, S2, . . . , Sr if each color class is a k-
dominating set of every factor. Given integers t and r , α(t, r) is the minimum k

such that every r-factorization of every graph on at least t vertices has an all-factor
k-domatic coloring with t colors. Alon et al. [1] determine upper and lower bounds
on α(t, r). Surprisingly, they show that the upper bound is finite and does not depend
on the order of the graph.
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Theorem 58 ([1]) The following holds.

(a) For r ≥ 2 and t ≥ r , we have α(t, r) ≤ � 3
2 (rt − 1)�.

(b) For t ≥ 2 and r ≥ 4, we have α(t, r) ≥ �(t log r).

Theorem 59 ([1]) For every r ≥ 1 and t ≥ 1, α(t, r) ≤ O(t log(rt)).

For a survey on distance k-domatic number we refer the reader to Chapter 13.3.3
of Zelinka [81] on the domatic number of graphs and their variants.

15 Fractional Distance Domination

In 1993 Hattingh, Henning, and Walters [42] introduced and first studied the concept
of fractional distance domination. For a graph G = (V ,E) with vertex set V and
edge set E and for a real-valued function f : V → [0, 1], the weight of f is w(f ) =∑
v∈V f (v). Further, for S ⊆ V we define f (S) = ∑

v∈S f (v). In particular, we
note that w(f ) = f (V ). A real-valued function f : V → [0, 1] is a fractional
dominating function of G if f (N [v]) ≥ 1 for each v ∈ V . The minimum weight
of a fractional dominating function of graph G is the fractional domination number
γf (G) of G. Thus,

γf (G) = min {w(f ) | f is a fractional dominating function for G}.

Fractional domination in graphs was formally defined in 1987 by Stephen
Hedetniemi reporting on results in [43] at the Eighteenth Southeastern Conference,
and in 1988 by Domke, Hedetniemi, and Laskar [25] and in 1990 by Grinstead
and Slater [37]. For k ≥ 1 an integer, a real-valued function f : V → [0, 1] is
a fractional k-dominating function of G if f (Nk[v]) ≥ 1 for each v ∈ V . The
minimum weight of a fractional k-dominating function of graph G is the fractional
k-domination number γg(G) of G. Thus,

γkf (G) = min {w(f ) | f is a fractional k-dominating function for G}.

A fractional k-dominating function f of a graph G is minimal if there does not
exist a fractional k-dominating function g of G, f �= g, for which g(v) ≤ f (v) for
every v ∈ V . The following property of a minimal fractional k-dominating function
is established in [42].

Lemma 60 ([42]) Let f be a fractional k-dominating function of a graphG. Then,
f is a minimal fractional k-dominating function of G if and only if whenever
f (v) > 0 for some vertex v ∈ V , there exists some vertex u ∈ Nk[v] such that
f (Nk[u]) = 1.
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The fractional k-domination number is readily viewed as a linear program.
Thus we can talk of minimum, rather than infimum. The dual of the fractional
k-domination number is the fractional k-packing number. This is the linear pro-
gramming relaxation of the packing number.

A real-valued function f : V → [0, 1] is called a fractional k-packing function of
G if f (Nk[v]) ≤ 1 for every v ∈ V . A fractional k-packing function f is maximal
if there does not exist a fractional k-packing function g : V → [0, 1], f �= g, for
which g(v) ≥ f (v) for every v ∈ V . This is equivalent to saying that a fractional
k-packing function f is maximal if for every vertex v with f (v) < 1, there exists
a vertex u ∈ Nk[v] such that f (Nk[u]) = 1. The maximum weight of a fractional
k-packing function of graphG is the fractional k-packing number ρkf (G) ofG. We
have:

Fractional k-domination γkf

minimize w(f ) =
∑

v∈V
f (v)

subject to:

⎧
⎪⎨

⎪⎩

∑

u∈Nk [v]
f (u) ≥ 1

0 ≤ f (v) ≤ 1 for all v ∈ V

Fractional k-packing ρkf

maximize w(f ) =
∑

v∈V
f (v)

subject to:

⎧
⎪⎨

⎪⎩

∑

u∈Nk [v]
f (u) ≤ 1

0 ≤ f (v) ≤ 1 for all v ∈ V

Thus, by the fundamental theorem of linear programming, it follows that:

Theorem 61 For k ≥ 1 an integer and any graph G, it holds that

γkf (G) = ρkf (G).

Hence by Theorem 61 if there exists a minimal fractional k-dominating function
f of a graph G and a maximal fractional k-packing function g of G with w(f ) =
w(g), then γkf (G) = w(f ) = w(g) = ρkf (G).

We note that if k ≥ rad(G), then γkf (G) = γk(G) = 1. Hence, it is only
of interest to consider graphs G for which k < rad(G). Further we note that
γkf (G) ≥ 1 for every graph G. If f is the characteristic function of a γk-set S
of G, and so f (v) = 1 if v ∈ S and f (v) = 0 otherwise, then f is a fractional k-
dominating function of G, and so γkf (G) ≤ w(f ) = γk(G). Thus, as an immediate
consequence of Theorem 15, we have the following upper bound on the fractional
k-domination number.

Theorem 62 ([62]) For k ≥ 1, if G is a connected graph of order n ≥ k + 1, then

γf k(G) ≤ n

k + 1
.

Recall that Gk denotes the k-th power of a graph G.
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Observation 63 For k ≥ 1, if G is a connected graph, then γkf (G) = γf (Gk).
Recall that the minimum and maximum k-degrees among all vertices of G are

denoted by δk(G) and �k(G), respectively. Assigning the value of 1/(�k(G) + 1)
on every vertex ofG is a fractional k-packing function ofG and assigning the value
of 1/(δk(G) + 1) on every vertex is a fractional k-dominating function of G. Thus
for all graphs, we have the following bounds involving the minimum and maximum
k-degrees.

Observation 64 For k ≥ 1, if G is a graph of order n with minimum k-degree
δk(G) = δk and maximum k-degree �k(G) = �k , then

n

�k + 1
≤ ρkf (G) = γkf (G) ≤ n

δk + 1
.

As a consequence of Observation 64, we immediately determine the fractional
k-domination number of a graph in which every vertex has the same k-degree.

Theorem 65 For k ≥ 1, if G is a graph of order n in which every vertex has k-
degree equal to r , then γkf (G) = n

r+1 .

As an application of Theorem 65, we have the following result first observed in
2012 Arumugam, Mathew, and Karuppasamy [6].

Proposition 66 ([6]) For k ≥ 1 and for a hypercubeQn, we have

γkf (G) = 2n
(
n
0

)+ (
n
0

)+ · · · + (
n
k

) .

Proof. For any two vertices x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Qn,
d(x, y) ≤ k if and only if x and y differ in at most k coordinates. This implies that
every vertex of Qn has the same k-degree, namely r = (

n
0

) + (
n
0

) + · · · + (
n
k

)
. The

desired result now follows from Theorem 65 noting that |V (Qn)| = 2n. � 
In 2012 Arumugam, Mathew, and Karuppasamy [6] determined the fractional

k-domination number of a 2 × n grid and the fractional 2-domination number of a
3 × n grid.

Theorem 67 ([6]) For k ≥ 1 and n ≥ 2,

γkf (P2 � Pn) =
{
n(n+2k)
2k(n+k) if n ≡ 0 (mod 2k)

� n2k � otherwise.

Theorem 68 ([6]) For n ≥ 2, γ2f (P3 � Pn) = γ2(P3 � Pn) = �n3 �.
We say a function f : V → [0, 1] is an efficient fractional k-dominating function

if for every vertex v it holds that f (Nk[v]) = 1. Such a function f is also a fractional
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k-packing function of G, implying by Theorem 61 that γkf (G) = ρkf (G). We state
this formally as follows.

Theorem 69 For k ≥ 1, if a graph G has an efficient fractional k-dominating
function f , then γkf (G) = ρkf (G) = w(f ).

To illustrate Theorem 69, if G is a cycle Cn where n ≥ 2k + 1 and k ≥ 1, then
the function f that assigns a weight of 1

2k+1 to every vertex of G is an efficient
fractional k-dominating function of G, implying by Theorem 69 that γkf (G) =
ρkf (G) = w(f ) = n

2k+1 .
For k ≥ 1, an efficient k-dominating set of a graph G is a k-dominating set S

of G such that |Nk[v] ∩ S| = 1 for every vertex v ∈ V (G). If a graph G has
an efficient k-dominating set S, then the characteristic function of S is an efficient
fractional k-dominating function ofG. However, the converse is not true: having an
efficient fractional k-dominating function does not imply an efficient k-dominating
set. Consider, for example, a cycle Cn where n > 2k + 1 and n �≡ 0 (mod 2k + 1).
As observed earlier, the function f that assigns a weight of 1

2k+1 to every vertex of
G is an efficient fractional k-dominating function of G. However, G does not have
an efficient k-dominating set S.

More generally, if G is a graph of order n in which every vertex has the same k-
degree, say r , and n > r+1 and n �≡ 0 (mod r+1), then the function f that assigns
a weight of 1

r+1 to every vertex ofG is an efficient fractional k-dominating function
ofG. However,G does not have an efficient k-dominating set S. As an example, the
5-prism, C5 �K2, which is the Cartesian product of a 5-cycle with a copy of K2, is
a graph of order n = 10 in which every vertex has the same 2-degree, namely 7. The
function f that assigns a weight of 1

8 to every vertex of G is an efficient fractional
2-dominating function of G, as illustrated in Figure 12. However, G does not have
an efficient 2-dominating set.

Fig. 12 An efficient
fractional 2-dominating
function of C5 �K2.
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16 Distance Independent Domination in Graphs

Recall that an independent dominating set of a graph G is a set S of vertices of G
that is both independent and dominating. Equivalently, S is a dominating set and
no two vertices of S are adjacent. The independent domination number i(G) of G
is the minimum cardinality of an independent dominating set of G. In this section,
we consider two extensions of the definition of independent domination in graphs
to distance independent domination.

16.1 Independent k-Domination in Graphs

The first extension we present is that due to Beineke and Henning [8] in 1994. For
k ≥ 1 an integer, an independent k-dominating set of a graph G is defined in [8]
as a k-dominating set of G that has the additional property of being independent.
The independent k-domination number id(k,G) of G is the minimum cardinality
among all independent k-dominating sets of G. In particular, we note that an
independent 1-dominating set of G is precisely an independent dominating set of
G, and id(1,G) = i(G).

In [8], it is shown that the decision problem corresponding to the problem of
computing id(k,G) is NP -complete, even when restricted to bipartite graphs, by
demonstrating a polynomial-time reduction from the decision problem Indepen-
dent Dominating Set (IDOM). The decision problem IDOM for the independent
domination number of a graph is known to be NP-complete (see Garey and
Johnson [36]), and remains NP-complete for the class of bipartite graphs, as shown
by Corneil and Perl [20]. Since the problem of computing id(k,G) appears to be a
difficult one, it is desirable to find good upper bounds on this parameter. For k ≥ 2,
Beineke and Henning [8] established the following upper bound on id(k,G) for a
connected graph G.

Theorem 70 ([8]) For k ≥ 2, if G is a connected graph of order n ≥ k + 1, then
id(k,G) ≤ n

k
, and this bound is asymptotically best possible.

That the bound given in Theorem 70 is in a sense best possible, may be seen by
considering the connected graph G constructed as follows: For positive integers �
and b, let G be obtained from a complete graph on b vertices by attaching to each
of its vertices � disjoint paths of length k. The graph G is illustrated in Figure 13.
Then, id(k,G) = (b − 1)�+ 1 and n = |V (G)| = b(k�+ 1), and so

id(k,G)

n
= b�− �+ 1

bk�+ b = 1 − 1
b
+ 1
b�

k + 1
�

b,�→∞−→ 1

k
.

If we restrict our attention to trees, then the upper bound on the independent k-
domination number given in Theorem 70 can be improved. In this case, the upper
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Fig. 13 A graph G.

bound on the k-domination number established by Meir and Moon [62] also holds
for the independent k-domination number. We state this formally as follows.

Theorem 71 ([62]) For k ≥ 1, if G is a tree of order n ≥ k + 1, then id(k,G) ≤
n
k+1 .

The upper bound in Theorem 71 is tight, may be seen by taking T to be the tree
obtained from a path Pb on b ≥ 1 vertices by attaching a path of length k to each
vertex of the path. The resulting tree T satisfies id(k, Tk) = b = n

k+1 .
In 1996 Gimbel and Henning [39] improved the upper bound in Theorem 71.

Their proof is constructive in that it presents an algorithm that constructs an
independent k-dominating set of sufficiently small cardinality.

Theorem 72 ([39]) For k ≥ 1, if G = (V ,E) is a connected graph of order n ≥
k + 1, then

id(k,G) ≤ n+ k + 1 − 2
√
n

k

and this bound is sharp.

16.2 k-Independent k-Domination in Graphs

The second extension we present is that due to Henning, Oellermann, and Swart [47]
in 1991. For k ≥ 1 an integer, a set S of vertices of a graph G is defined in [47]
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to be k-independent in G if every vertex of S is at distance at least k + 1 from
every other vertex of S in G. Further, a k-independent k-dominating set of G is
defined in [47] as a set that is both k-independent and k-dominating set. The k-
independent k-domination number ik(G) ofG is the minimum cardinality among all
k-independent k-dominating sets ofG. In particular, we note that a 1-independent 1-
dominating set of G is precisely an independent dominating set of G, and i1(G) =
i(G). For the tree T shown in Figure 2, the set S = {v3, v7} is a 3-independent
3-dominating set of T of minimum cardinality 2, and so i3(T ) = 4.

This concept of independent distance domination in graphs finds applications in
many situations and structures which give rise to graphs. Consider, for example,
the facility location problem discussed in Section 2. To avoid interference and
contamination, it may be required that no two facilities be within k blocks of each
other, and facilities should then be sited at points corresponding to vertices in a
minimum k-independent k-dominating set.

With this extension of the independent domination number, we have the follow-
ing observation, where as before Gk denotes the k-th power of the graph G.

Observation 73 If G is a connected graph, then ik(G) = i(Gk).
We present next a series of results from Fricke, Hedetniemi, and Henning [33] in

1995.

Lemma 74 ([33]) For each positive integer k, there exists a connected graph G so
that every spanning tree T of G satisfies ik(T ) < ik(G).

Lemma 75 ([33]) The tree T ′ obtained from a tree T by joining a new vertex to
some vertex of T satisfies ik(T ′) ≥ ik(T ) for k ∈ [2].

It is somewhat surprising that Lemma 75 is not true for k ≥ 3 as shown in
[33]. In [33] it is shown that the decision problem corresponding to the problem
of computing ik(G) is NP-complete, even when restricted to bipartite graphs, by
describing a polynomial transformation from the known NP-complete decision
problem One-In-Three 3SAT (see [36]). Since the problem of computing ik(G)
appears to be a difficult one, it is desirable to find good bounds on this parameter.
The following lower and upper bounds on ik(G) in terms of the maximum k-degree
�k(G) are presented in [33].

Theorem 76 ([33]) For k ≥ 1, if G is a graph of order n and maximum k-degree
�k ≥ 2k, then

ik(G) ≥ n

(k+1
k
)�k − 1

.

Furthermore, we have equality if and only if all components of G are either paths
or cycles on � ≡ 0 (mod 2k + 1) vertices, or have order exactly 2k + 1.

Theorem 77 ([33]) For k ≥ 1, if G is a graph of order n and maximum k-degree
�k ≥ 2k, then ik(G) ≤ n−�k(G), and this bound is sharp.
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To see that the bound in Theorem 77 is sharp, consider the graphG obtained from
a star K1,�, � ≥ 2, by subdividing � − 1 of the edges k times and one edge k − 1
times. Then ik(G) = �, n = |V (G)| = �(k + 1) and �k(G) = k�; consequently,
ik(G) = n −�k(G). The following upper bound on ik(G) in terms of the order of
the graph is given in [35].

Theorem 78 ([35]) For k ≥ 1, if G is a connected graph of order n > � 1
2 (k + 1)�,

then

ik(G) <
n

� 1
2 (k + 1)� .

The bound given in Theorem 78 is shown in [35] to be asymptotically best
possible. One such construction is the following. For k ≥ 2 an even integer and
for � ≥ 1 an integer, let T ′k,� be a complete �-ary tree of height �(k+ 1)/2� in which
every leaf is at level �(k + 2)/2�. Further, let Tk,� be the tree obtained from T ′k,� by
attaching a path of length �(k+1)/2� to every leaf of T ′k,�. For k ≥ 3 an odd integer
and for � ≥ 1 an integer, let T ′k,� be a complete �-ary tree of height (k + 1)/2 in
which every leaf is at level (k+1)/2. Further, let Tk,� be the tree of order n obtained
from T ′k,� by attaching a path of length (k+ 1)/2 to every leaf of T ′k,�. In both cases,
the resulting tree Tk,� of order n is such that

ik(Tk,�)→ n

� 1
2 (k + 1)� as �→∞.

Theorem 79 ([35]) For k ≥ 1, if ik(n) = max{ ik(G) |G is a connected graph of
order n}, then

ik(n)

n
→ 1

� 1
2 (k + 1)� as n→∞.

The result of Theorem 78 is extended to �-connected graphs in [35].

Theorem 80 ([35]) For k ≥ 1, if G is an �-connected graph of order n > � 1
2k��+

1, then

ik(G) <
n

� k2��+ 1
,

and this bound is asymptotically best possible.

We next present results on bounds relating ik and γk . Since every k-independent
k-dominating set of a graph G is a k-dominating set of G, we have the following
relation.
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Observation 81 For k ≥ 1 an integer and for every graph G, γk(G) ≤ ik(G).
We note that strict inequality may occur in Observation 81. For example, for

integers �1, �2 ≥ 1, let G be the graph obtained from a double star S(�1, �2) by
subdividing each edge k − 1 times. The resulting graph G satisfies γk(G) = 2 and
ik(G) = 3.

In order to present the next two results, we first define a generalization of K1,r
for r ≥ 3. Let G be a graph that contains a k-independent set Ir of r vertices and
a vertex v of G that is within distance k from every vertex of Ir . We refer to a
connected subgraph of G of minimum size that contains all the vertices in Ir ∪ {v}
as a k-generalized K1,r in G. We note that if k = 1 and r = 3, then a k-generalized
K1,r is an induced copy of K1,3, also called a claw in the literature. The following
result established a sufficient condition for the k-independent k-domination number
of a graph to equal its k-domination number. We remark that this result generalizes
that of Allan and Laskar [4].

Theorem 82 ([49]) For k ≥ 1, if a graph G contains no k-generalized K1,3, then
γk(G) = ik(G).

The following result generalizes a result due to Bollobás and Cockayne [11].

Theorem 83 ([49]) For integers k ≥ 1 and r ≥ 2, if a graph G contains no k-
generalized K1,r+1, then ik(G) ≤ (r − 1)γk(G)− (r − 2).

The following relation between ik and γk is established in [49].

Theorem 84 ([49]) For k ≥ 1, if G is a connected graph of order n ≥ k + 1, then
ik(G)+ kγk(G) ≤ n.

That the bound given in Theorem 88 is best possible, may be seen by considering
a graph G of order n obtained from a connected graph H by attaching a path of
length k to each vertex of H . The resulting graph G satisfies ik(G) = γk(G) =
|V (H)| and ik(G)+ kγk(G) = (k + 1)|V (H)| = n.

17 Distance Total Domination in Graphs

Let k ≥ 1 be an integer and let G = (V ,E) be a graph. Henning, Oellermann, and
Swart [47] defined a set S of vertices of G to be a distance total k-dominating set
of G if every vertex is within distance k from some vertex of S other than itself;
that is, for every vertex v ∈ V , we have dG(v, S \ {v}) ≤ k. The distance total k-
domination number of G, denoted, γ tk (G), is the minimum cardinality of a distance
total k-dominating set of G. Throughout this section, for notational simplicity we
write “total k-dominating set” and “total k-domination number” rather than the
more accurate terminology “distance total k-dominating set” and “distance total k-
domination number,” respectively.
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A total k-dominating set of G of cardinality γ tk (G) is called a γ tk -set of G. We
note that the parameter γ tk (G) is defined only for graphs with no isolated vertex.
When k = 1, we note that a total dominating set is a distance total 1-dominating set
and γt (G) = γ tk (G), where recall that γt (G) denotes the total domination number
of G. For the tree T shown in Figure 2, the set S = {v2, v3, v7, v8}, for example, is
a distance total 2-dominating set of T of minimum cardinality 4, and so γ t2(T ) = 4.

As remarked in [45, 47], the concept of distance total domination in graphs finds
applications in many situations and structures which give rise to graphs. Consider,
for example, the facility location problem discussed in Section 2. For practical
reasons it may be desirable that each facility be sited within k blocks of some other
facility (for instance, to cope with emergencies and breakdowns), in which case the
use of a total k-dominating set of minimum cardinality is indicated. Corresponding
applications to the design of computer networks and defense systems exist. For
example, the problem of finding total k-dominating sets has potential applications to
storage location problems in a computer network. SupposeG is a graph that models
a multiprocessor computer network where the vertices of G represent processors
and an edge of G indicates that the processors corresponding to its end vertices can
communicate directly. The same data are to be stored at each member of a subset S
of these processors so that any processor in the rest of the network can be sent this
information in at most k time units (where a time unit is the time it takes for the data
to be sent between adjacent processors). Furthermore, we wish to select S in such a
way so that if a processor should lose its data due to failure, then it can obtain the
data from another element of S in at most k time units. (We assume here that at most
one of the elements of S will fail at any one time.) The problem of finding such a
set S corresponds to the problem of finding a total k-dominating set of vertices of
G, and an optimal solution to the problem has cardinality γ tk (G).

As is the case for the k-domination number of a graph, it appears to be a
computationally difficult problem to determine the total k-domination number of
a graph. There is no known efficient algorithm for this purpose. The following
result in [47] provides a tight upper bound on the total k-domination number of
a connected graph.

Theorem 85 ([47]) For an integer k ≥ 1, ifG is a connected graph of order n ≥ 2,
then γ tk (G) = 2 if n ≤ 2k and

γ tk (G) ≤
2n

2k + 1

if n ≥ 2k + 1.

If 2 ≤ n ≤ 2k, then any central vertex of G together with any other vertex of G
forms a total k-dominating set ofG. For n ≥ 2k+1, an algorithm for finding a total
k-dominating setDk of vertices of a connected graphG of order n such that |Dk| ≤

2n
2k+1 is given in [50]. This algorithm is based on the proof of Theorem 85 given in
[47]. That the bound of Theorem 85 is tight may be seen as follows. For integers
k ≥ 1 and � ≥ 1, let G be obtained from an arbitrary connected graph H of order �
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by attaching a path of length 2k to each vertex ofH so that the added paths of vertex
disjoint. The resulting graph G has order n = (2k + 1)� and γ tk (G) = 2� = 2n

2k+1 .
We close this section with the following Nordhaus-Gaddum type results with

respect to the total k-domination number obtained in [47].

Theorem 86 ([47]) For integers n ≥ k + 1 ≥ 2, if G and G are connected graphs
of order n, then the following holds.

(a) γ tk (G)+ γ tk (G) = 4 and γ tk (G) · γ tk (G) = 4 if n ≤ 2k + 1.

(b) 4 ≤ γ tk (G)+ γ tk (G) ≤ 2n
2k−1 + 2 and 4 ≤ γ tk (G) · γ tk (G) ≤ 4n

2k+1 if n ≥ 2k+ 2.

Theorem 87 ([47]) For integers n ≥ k + 1 ≥ 2, if G and G are graphs of order n
with no isolated vertices, then

γ tk (G)+ γ tk (G) ≤ n+ 2 and γ tk (G)γ
t
k (G) ≤ 2n.

The bounds given in Theorem 86 are best possible in the following sense. For
integers n, k, and � where 2 ≤ � ≤ 2n

2k+1 , let G = J (n, k, �) be the graph obtained
from a complete graphKn−2k(�−1) by selecting one vertex, v say, from the complete
graph and attaching to it �−1 paths of length 2k−1 so that the resulting paths have
only the vertex v in common. We note that the resulting G has order n and has a
unique γ tk -set that consists of the vertex v and the �− 1 vertices at distance k from
v that belong to the �− 1 paths attached to v. In particular, γ tk (G) = �. Further, we
note that γ tk (G) = 2. Thus, γ tk (G) + γ tk (G) = � + 2 and γ tk (G) · γ tk (G) = 2�. We
note that if � = 2n

2k+1 , then γ tk (G) · γ tk (G) = 4n
2k+1 .

We next discuss bounds relating γ tk and ik . In 1996 Fricke, Henning, Oeller-
mann, and Swart [34] established the following relationship between the total
k-domination number and k-independent k-domination number of a graph. We
remark that in the special case when k = 1, this result was first proven by Allan,
Laskar, and Hedetniemi [5] and simplifies to the following statement: If G is a
connected graph of order n ≥ 3, then i(G)+ γt (G) ≤ n.

Theorem 88 ([34]) For k ≥ 1 if G is a connected graph of order n ≥ 2k + 1, then

ik(G)+ k γ tk (G) ≤ n.

We remark that the proof of Theorem 88 presented in [34] is algorithmic in
nature. That the bound in Theorem 88 is best possible may be seen by letting G
be the graph obtained from a star K1,r where r ≥ 1, by subdividing each edge 2k
times. The resulting graphG has order n = (2k+ 1)r + 1 and satisfies γ tk (G) = 2r
and ik(G) = r + 1, whence ik(G)+ k γ tk (G) = n.

We discuss next bounds relating γk and γ tk . Since γk(G) ≤ ik(G) for all graphs
G, as an immediate consequence of Theorem 88 we have the following result.
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Corollary 89 ([34]) For k ≥ 1 ifG is a connected graph of order n ≥ 2k+ 1, then

γk(G)+ k γ tk (G) ≤ n.

We remark that Tuza [75] provided an elegant proof of Corollary 89. That the
bound given in Corollary 89 is best possible, may be seen by considering the graph
G obtained from a connected graphH by attaching a path of length k to each vertex
of H . The resulting graph G satisfies γk(G) = γ tk (G) = |V (H)| and γk(G) +
kγ tk (G) = (k + 1)|V (H)| = |V (G)|. However, as pointed out by Tuza [75], the
bound is best possible in a much stronger sense as well; namely, its left-hand side
cannot be replaced by (1− ε)γk(G)+ (k+ ε)γ tk (G), for any ε > 0. To see this, take
r − 1 (where r ≥ 1) vertex-disjoint paths T1, . . . , Tr−1 of length k and one path of
length 2k−1. Joining a new vertex v with one end-vertex of each path Ti , we obtain
a tree T of order n = (r+ 1)(k+ 1)− 1, with γk(G) = r and γ tk (G) = r+ 1, hence
γk(T )+ k γ tk (T ) = n while (1 − ε)γk(T )+ (k + ε)γ tk (T ) = n+ ε.

As a consequence of Corollary 89, we have the following result which was first
established in [48].

Theorem 90 ([48]) For k ≥ 1 if G is a connected graph of order n ≥ 2k + 1, then

γk(G)+ γ tk (G) ≤
2n

k + 1
,

and this bound is best possible.

18 Concluding Remarks

In this chapter, we combine the concepts of both distance and domination in
graphs to define distance domination in graphs. Since the inception of this concept
of distance domination in graphs in 1975 by Meir and Moon [62], it has been
extensively studied in the literature. We describe a relationship between the concept
of distance domination in graphs and the p-center problem studied in operations
research. Among other results we provide best known lower and upper bounds on
the distance domination number, present algorithmic and complexity results, discuss
distance domination in graph products, study the structure of distance dominating
subgraphs, examine well-k-dominated graphs, explore the concept of distance
domination critical graphs, present results on fractional distance domination, and
study distance independent domination and distance total domination in graphs. The
selected results we present in this chapter are by no means exhaustive and serve to
provide numerous interesting theoretical and computational questions.
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pp. Art. No. 72, 15.

79. K. Yamazaki, Inapproximability of rank, clique, Boolean, and maximum induced matching-
widths under small set expansion hypothesis. Algorithms (Basel) 11 (2018), no. 11, paper No.
173, 10 pp.

80. B. Zelinka, On the k-domatic numbers of graphs. Czech. Math. J. 33(2) (1983), 309–313.
81. B. Zelinka, Domatic numbers of graphs and their variants: a survey. Domination in graphs,

351–377. Monogr. Textbooks Pure Appl. Math. 209, Dekker, New York, 1998.



Locating-Domination and Identification

Antoine Lobstein, Olivier Hudry, and Irène Charon

1 Introduction

Locating-dominating codes were introduced by Slater in 1983 [168], but for
more easily accessible sources, see Rall & Slater [155], or Colbourn, Slater, &
Stewart [60]. The term “identifying code” is used in the 1998 paper [134] by
Karpovsky, Chakrabarty, & Levitin, which certainly marks the starting point for
the blossoming of works on this topic, but the concept is already contained in [158]
(Rao, 1993). For both locating-dominating and identifying codes, see the ongoing
bibliography at [142].

The graphs G = (V ,E) that we shall consider will usually be finite, undirected,
and connected. Before we proceed, and since we consider domination at distance r ,
we extend the notion of neighborhood: for any integer r � 1, the open r-
neighborhood of a vertex v ∈ V is the set Nr(v) = {u : 0 < d(u, v) � r}.
The set Nr [v] = Nr(v) ∪ {v} is called the closed r-neighborhood of v. A code is
simply a set of vertices, whose elements are called codewords.

Formally, an r-locating-dominating code C ⊆ V , abbreviated r-LD code, is a
distance-r dominating code such that

∀ v1 ∈ V \ C, ∀ v2 ∈ V \ C, v1 �= v2 : Nr(v1) ∩ C �= Nr(v2) ∩ C.
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An r-locating-dominating code always exists (e.g., C = V , or |C| = |V | − 1 > 0
whenever |E| > 0).

An r-identifying code C ⊆ V , abbreviated r-Id code, is a distance-r dominating
code such that

∀ v1 ∈ V, ∀ v2 ∈ V, v1 �= v2 : Nr [v1] ∩ C �= Nr [v2] ∩ C.

Identifying codes are sometimes called differentiating, mostly when r = 1. We can
see that it is possible to retrieve a vertex v simply by knowing which codewords r-
dominate v. Thus, if each codeword sends an alarm to a central controller whenever
there is a malfunctioning vertex in its closed neighborhood, then, only knowing
which codewords gave the alarm, the controller can unambiguously retrieve that
vertex (if there is at most one). The same is true for a non-codeword in the case of
r-LD codes. See also [149] for an illustration with smoke detectors.

Two distinct vertices v1 ∈ V , v2 ∈ V , are said to be r-twins if Nr [v1] = Nr [v2].
It is easy to see that a graph G admits an r-identifying code if and only if it has no
r-twins, i.e.,

∀v1 ∈ V, ∀v2 ∈ V, v1 �= v2 : Nr [v1] �= Nr [v2]. (1)

A graph satisfying (1) is usually called r-identifiable, r-twin-free or r-
distinguishable, or also point-distinguishing ([175], for r = 1). If three vertices
x, y, z are such that z ∈ Nr [x] and z /∈ Nr [y], we say that z r-separates x and y
inG (note that z = x is possible). A set of vertices r-separates x and y if at least one
of its elements does. So we can rephrase the definitions: an r-LD code (respectively,
an r-Id code) r-dominates every vertex and r-separates every pair of non-codewords
(respectively, of vertices).

Usually, one is interested in finding the smallest possible size of a code, LD
or Id, in a given graph. Such codes are called optimal. Several notations exist; in
this chapter, we denote by LDr(G) (respectively, Idr(G)) the smallest possible
cardinality of an r-locating-dominating code (respectively, an r-identifying code
when G is r-twin-free), and we call these numbers the r-locating-domination
number (respectively, the r-identification number) of G. They are abbreviated as
r-LD and r-Id numbers, respectively. We may drop r when r = 1 or when it is
irrelevant.

Example See Figure 1.

r = 1: (a) {v1, v4} is locating-dominating, not identifying. (b) {v1, v3} is neither
locating-dominating nor identifying. (c) {v1, v2, v4} is both locating-
dominating and identifying. We have: LD(G1) = 2, Id(G1) = 3. (d) v1
and v3 are twins; {v1, v4} is locating-dominating, and LD(G2) = 2.

r = 4: (e) v4 and v5 are 4-twins; {v1, v3, v5, v7} is 4-locating-dominating, and
LD4(G3) = 4.
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Fig. 1 Different graphs and codes. Black vertices represent codewords. (a)–(d) r = 1; (e) r = 4.

The decision problems classically associated with the search of optimal r-LD and r-
Id codes are NP-complete for all r � 1, see Section 8 on complexity. The following
inequalities hold for any r � 1:

γr(G) � LDr(G) � Idr(G). (2)

Almost all of this chapter is devoted to undirected graphs, but the above definitions
can be extended to digraphs, by considering, e.g., insets instead of neighborhoods;
see [39, 88], or [59] for an illustration.

The following three theorems are probably as old as the definitions of r-
dominating, r-locating-dominating or r-identifying codes.

Theorem 1 Let r � 2 be any integer and G be any graph. A code is 1-dominating
(respectively, 1-locating-dominating, 1-identifying) in Gr , the r-th power of G, if
and only if it is r-dominating (respectively, r-locating-dominating, r-identifying)
in G.

Theorem 2 Let r � 1 be any integer. Any connected r-twin-free graph has order
n = 1 or n � 2r + 1. The only connected r-twin-free graph with order n = 2r + 1
is the path P2r+1.

Any cycle with order n � 2r + 2 is r-twin-free.

Theorem 3 Let r � 1 be any integer. Every r-dominating code is (r +
1)-dominating. If C is r-dominating (respectively, r-locating-dominating, r-
identifying), then so is any superset C∗ ⊇ C.

2 Possible Values for LD and Id Numbers

Almost everyone’s first results on LD and Id numbers are the following two
theorems, which give three easy bounds, whereas Theorem 6 is more difficult.

Theorem 4

(a) For any integer r � 1 and any graph G = (V ,E) of order n, we have

LDr(G) � �log2(n− LDr(G)+ 1)�. (3)
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(b) For any integer r � 1 and any r-twin-free graph G = (V ,E) of order n, we
have

Idr(G) � �log2(n+ 1)�.

Proof. (a) Let C be any r-LD code in G. All the n − |C| non-codewords v ∈
V \ C must be given nonempty and distinct sets Nr(v) ∩ C, constructed with the
|C| codewords, so 2|C| − 1 � n − |C|, from which (3) follows when C is optimal;
(b) the argument is the same, but we have to consider all the n vertices v ∈ V , so
2|C| − 1 � n. � 
Theorem 5 For any r � 1 and connected graph G of order n � 2, we have
LDr(G) � n− 1.

Theorem 6 ([15]) For any r � 1 and connected r-twin-free graph G of order n �=
1, we have Idr(G) � n− 1.

Proof. We give the short elegant proof by Gravier & Moncel [98] in 2007, six years
after the first proof in [15]. Using Theorem 1, we can see that it is sufficient to prove
the case r = 1. We assume that G = (V ,E) is a connected 1-twin-free graph, of
order n � 3. Let C1 = V \ {a} for a ∈ V with maximum degree in G. If C1 is
identifying, we are done, so we assume that it is not. Because G is connected, C1 is
a dominating code. If u and v belong to N [a] and because N [u] �= N [v], we have
N [u] \ {a} �= N [v] \ {a}, so C1 separates u and v, and the same is true for u /∈ N [a]
and v /∈ N [a]. Therefore, there must be u ∈ N [a] and v /∈ N [a] which are not
separated by C1, i.e., N [u] ∩ C1 = N [v] ∩ C1, or N [u] \ {a} = N [v].

We claim that C2 = V \ {v} is an identifying code. By the previous discussion
with a, which did not use the maximum degree assumption yet, it is sufficient to
check that every vertex in N [v] is separated from every vertex not in N [v]. And
indeed: (i) since N [u] = N [v] ∪ {a}, each vertex in V \ (N [v] ∪ {a}) is separated
from each vertex inN [v] by u; (ii) the vertex a is separated from v by itself; (iii) the
vertex a is separated from each vertex a′ ∈ N [v] \ {v}, for otherwise, N [a′] =
N [a] ∪ {v}, i.e., a′ has degree greater than a, a contradiction. � 

The previous result actually holds for all graphs, finite or infinite, with bounded
degree. There exist (infinite) graphs (with unbounded degree) such that the only 1-
identifying code is the whole vertex set [15]: take two copies, G1 and G2, of the
infinite complete graph with vertex set Z, and link i ∈ V (G1) to j ∈ V (G2) if and
only if i � j .

2.1 Reaching the Bounds

Graphs exist that meet the lower and upper bounds given previously. Theorem 9(a)
even characterizes the graphs G of order n such that LD(G) = n − 1, as will
Theorem 12 for 1-identifying codes.
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Theorem 7 ([43]) Let r � 1 and n be integers such that n � 22r+1 + 2r + 1.
There exists a connected graph of order n admitting an r-locating-dominating code
achieving the lower bound (3).

Theorem 8 ([134, for r=1]), ([64]), ([43]) Let r � 1 and n be integers such that
n � 22r . There exists a connected graph of order n admitting an r-identifying code
of size �log2(n+ 1)�.
For r = 1, Theorem 8 holds for all n � 3; for r = 2, it holds if and only if n � 6.

Theorem 9

(a) ([169]), ([170]) A connected graph G of order n � 2 is such that LD(G) =
n− 1 if and only if G is the star K1,n−1 or the complete graph Kn.

(b) For all r � 1 and n � 2, we have LDr(Kn) = n− 1.

Theorem 10 For all n � 3, there exists a connected graph G of order n such that
Id(G) achieves the upper bound n− 1.

An easy example of such a graph is the star, see Figure 2(a). We give two more
examples, which will be used for the construction of graphs G such that Idr(G) =
n− 1 for all r .

In the following, a vertex is r-universal if it r-dominates all the vertices in the
graph. Let p � 2.

(a) Take G∗
2p = (V ∗2p,E∗2p), with V ∗2p = {v0, v1, . . . , v2p−1}, E∗2p = {vivj : vi ∈

V ∗2p, vj ∈ V ∗2p, i �= j, i �= j + p mod 2p}: the graph G∗
2p has even order and is

the complete graph K2p minus the edges of a perfect matching.
(b) Take G∗

2p+1, obtained from G∗
2p simply by adding one 1-universal vertex; its

order is odd.

In view of Section 3, the following theorem gives the domination, locating-
domination, and identification numbers of these two classes of graphs, as well as
for the star.

Theorem 11 Let p � 2 and n � 3. Then

(a) γ (G∗
2p) = 2, LD(G∗

2p) = p, and Id(G∗
2p) = 2p − 1;

(b) γ (G∗
2p+1) = 1, LD(G∗

2p+1) = p, and Id(G∗
2p+1) = 2p;

(c) γ (K1,n−1) = 1, LD(K1,n−1) = n− 1, and Id(K1,n−1) = n− 1.

Fig. 2 (a) The star K1,8, with an optimal identifying code (of size 8), which is also an optimal
locating-dominating code. (b) The graph Ak .
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It is an interesting fact, published in 2010 [82], that it is possible to characterize the
graphs G with Id(G) = n− 1. For two graphs G = (V ,E) and G′ = (V ′, E′), let
G $% G′ = (V ∪V ′, E ∪E′ ∪ {vv′ : v ∈ V, v′ ∈ V ′}) be their join graph. Let Ak =
(Vk, Ek), with Vk = {x1, . . . , x2k} andEk = {xixj : |i−j | � k−1}, see Figure 2(b).
Note that A1 consists of two isolated vertices, and for k � 2, Ak is the (k − 1)-th
power of the path P2k . Finally, let A be the closure of all the graphs Ai for $%.

Theorem 12 (Foucaud et al. [82]), (Foucaud et al. [83]) A connected graph G of
order n � 3 is such that Id(G) = n− 1 if and only ifG is the star or belongs to the
set of graphs A ∪ {A $% K1 : A ∈ A}.
Note that G∗

4 � A1 $% A1, G∗
6 � G∗

4 $% A1, . . ., G∗
2p � G∗

2p−2 $% A1, and that
G∗

2p+1 � G∗
2p $% K1. We now turn to the case r � 2: are there graphs G such that

Idr(G) = n − 1? (as we have already seen, complete graphs give a trivial positive
answer for r-LD codes). A crucial fact is that the two graphs G∗

2p and G∗
2p+1 admit

r-th roots for any r , if p is sufficiently large. More precisely:

Theorem 13 ([43]) Let r � 2 and p � 2 be integers.

(a) If 2p � 3r2, then there exists a graphG2p of order 2p such that (G2p)
r = G∗

2p.

(b) If 2p � 3r2, then there exists a graph G2p+1 of order 2p + 1 such that
(G2p+1)

r = G∗
2p+1.

Corollary 1

(a) For n � 3r2, there exists a graph Gn of even order n such that γr(Gn) = 2,
LDr(Gn) = n

2 and Idr(Gn) = n− 1.
(b) For n � 3r2 + 1, there exists a graph Gn of odd order n such that γr(Gn) = 1,

LDr(Gn) = n−1
2 and Idr(Gn) = n− 1.

Proof. Use Theorems 11(a)–(b), 13 and 1. � 

2.2 Reaching All Intermediate Values

As for the lower and upper bounds, constructions show how to achieve all
intermediate values.

Theorem 14 ([42]) Let r � 1 and c � 5r2 + 5r + 1. For n between c + 1 and
2c + c − 1, there exists a connected graph G of order n such that LDr(G) = c.
For Id codes, the case r = 1 is easy and one can even address the special case of
bipartite graphs.

Theorem 15 ([41]) For n � 3 and for any integer c between �log2(n + 1)�
and n− 1, there exists a connected bipartite graph G with n vertices such that
Id(G) = c.

Theorem 16 ([41]) Let r � 1 and c � 5r2 + 5r + 1. For n between c + 1 and
2c − 1, there exists a connected graph G of order n such that Idr(G) = c.
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3 The Cost of Locating-Domination and Identification

The inequalities γr(G) � LDr(G) � Idr(G) in (2) express that locating-
domination is more “expensive” than domination, and identification is more expen-
sive than locating-domination. In this section, we compare the respective “costs” for
these three notions. More precisely, denoting, for graphs of order n,

Gr,n = {G : r-twin-free, connected, n � 2r + 1} and

Gtwr,n = {G : with r-twins, connected, n � 2},

we study the following maximum and minimum differences:

• FId,LD(r, n)=maxG∈Gr,n{Idr(G)−LDr(G)},
fId,LD(r, n)=minG∈Gr,n{Idr(G)− LDr(G)},

• FId,γ (r, n) = maxG∈Gr,n{Idr(G)− γr(G)},
fId,γ (r, n) = minG∈Gr,n{Idr(G)− γr(G)}.
In order to see the influence of the twin-free property on locating-domination and

domination, we distinguish, for dominating and locating-dominating codes, between
two cases, and study the following functions:

• FLD,γ (r, n) = maxG∈Gr,n{LDr(G)− γr(G)},
fLD,γ (r, n) = minG∈Gr,n{LDr(G)− γr(G)};

these two functions are considered on the same set of graphs (the twin-free graphs)
as the four functions involving identification, unlike the two functions below:

• F twLD,γ (r, n) = maxG∈Gtwr,n{LDr(G)− γr(G)},
f twLD,γ (r, n) = minG∈Gtwr,n{LDr(G)− γr(G)}.

Finally, if we want to consider all the connected graphs of order n, twin-free or
not, the result is obviously obtained by taking max{FLD,γ (r, n), F twLD,γ (r, n)} and
min{fLD,γ (r, n), f twLD,γ (r, n)}.

Note that [20] characterizes the trees T such that LD1(T ) = γ1(T ) or Id1(T ) =
γ1(T ). Most results in this section on cost (namely, Theorems 19–26) are due to
Hudry & Lobstein [124] in 2020.

3.1 Preliminary Results

Theorem 17 ([147]), ([102, p. 41]) If G has order n and no isolated vertices, then
γ (G) � n

2 .

Theorem 18 ([96]) If G is 1-twin-free, then Id(G) � 2LD(G).

Thanks to Theorem 1 on the powers of graphs, the previous two results are true also
for γr(G), Idr(G) (for r-twin-free graphs) and LDr(G), for any r � 2.
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3.2 Identification vs Domination

First, we construct an infinite family of graphs G∗
n of order n satisfying Idr(G∗

n) =
γr(G

∗
n). These graphs have order n = k(r+1), k � 2r+2, and are informally given

by Figure 3(a).

Theorem 19

(a) For all r � 1, k � 2r + 2 and n = k(r + 1), we have γr(G∗
n) = Idr(G∗

n) = k.
(b) For all r � 1 and n � (2r + 2)(r + 1), we have fId,γ (r, n) = 0, and obviously

fId,LD(r, n) = fLD,γ (r, n) = 0.

Proof.

(a) The k vertices vi,r must be r-dominated by at least one codeword, and no vertex
can r-dominate two such vertices, so γr(G∗

n) � k. On the other hand, the code
C = V0 represented by the black vertices on Figure 3(a) has cardinality k, and it
is straightforward to check that it is r-identifying. Note in particular that vertices
in {v1,0, v2,0, . . . , vk,0} are r-dominated by exactly 2r + 1 codewords (this is
where the assumption k � 2r+2 is crucial), and more generally, vertices vi,j ∈
{vi,1, vi,2, . . . , vi,r } are r-dominated by an odd number, namely 2r − 2j + 1, of
codewords, for all i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , r}. So k � γr(G

∗
n) �

Idr(G
∗
n) � k.

(b) Then it is easy to see that we can reach all intermediate values between k(r+1)
and (k + 1)(r + 1) − 1. Figure 3(b) illustrates the case k(r + 1) + 1, with one
additional vertex, w1, which is r-dominated by an even number of codewords
in Gn+1. � 

For r = 1, Theorem 19 starts at n = 8, for k = 4, but we can fill in the
holes: fId,γ (1, n) = 1 for n ∈ {3, 4, 5}, and for n ∈ {6, 7}, fId,γ (1, n) = 0 =
fId,LD(1, n) = fLD,γ (1, n).

Now how large can the difference Idr(G)−γr(G) be? We know that it is at most
n− 2, obtained by graphs G with Idr(G) = n− 1 and γr(G) = 1.

Theorem 20

(a) For all n � 3, we have FId,γ (1, n) = n− 2.
(b) For all r � 2 and even n � 3r2, we have FId,γ (r, n) = n− 3.
(c) For all r � 2 and odd n � 3r2 + 1, we have FId,γ (r, n) = n− 2.

Fig. 3 The k black vertices represent codewords. (a) The graph G∗
n. (b) The graph Gn+1.
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Proof. Use the star for (a), Corollary 1(b) for (c). For (b), observe that, among all
the graphs G of even order n such that Id(G) = n − 1 (see Theorem 12), none of
them, except the star, contains a 1-universal vertex, i.e., is such that γ (G) = 1. But
the star cannot be the power of any graph. Therefore, for r � 2, there can exist no
graph G with even order n such that Idr(G) = n − 1 and γr(G) = 1, since the
r-th power of this graph would contradict our previous observation; consequently
the difference Idr(G) − γr(G) is at most n − 3. On the other hand, Corollary 1(a)
gives an example achieving n− 3. � 

3.3 Identification vs Locating-Domination

Theorem 21

(a) (= Theorem 19(b)) For all r � 1 and n � (2r + 2)(r + 1), we have
fId,LD(r, n) = 0.

(b) For all n � 3, we have fId,LD(1, n) = 0.

Theorem 22

(a) For all r � 1 and n � 3r2 + 1, we have FId,LD(r, n) = �n2 � − 1.
(b) We have FId,LD(1, 3) = 0.

Proof. We know (cf. Theorem 18) that any (connected) r-twin-free graphG is such
that Idr(G) � 2LDr(G). Therefore, Idr(G)−LDr(G) � Idr(G)− Idr (G)

2 � n−1
2 ,

leading to Idr(G) − LDr(G) � �n2 � − 1. On the other hand, Corollary 1(a)–(b)
provides graphs reaching �n2 � − 1. � 

3.4 Domination vs Locating-Domination

The two cases, without and with twins, show quite a difference between FLD,γ and
F twLD,γ .

3.4.1 Domination vs Locating-Domination in Twin-Free Graphs

Using Theorem 19(b), the sentence following its proof, and the paths P4 and P5, we
obtain the following.

Theorem 23

(a) For all n � 4, we have fLD,γ (1, n) = 0; fLD,γ (1, 3) = 1.
(b) For all r � 2 and n � (2r + 2)(r + 1), we have fLD,γ (r, n) = 0.
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Theorem 24

(a) For all n � 3, we have FLD,γ (1, n) = n− 2.
(b) For all r � 2 and n � 3r2 + 1, we have FLD,γ (r, n) � n

2 − 2.
(c) For all r � 2 and n � 2r + 1, we have FLD,γ (r, n) � n− 3.

Proof. (a) The star shows that FLD,γ (1, n) = n− 2. (b) For any r , Corollary 1(a)–
(b) immediately gives examples proving that FLD,γ (r, n) � n

2 − 2. (c) The
characterization of the graphs G of order n such that Id(G) = n− 1 (Theorem 12)
gives graphs which, apart from the star which is not the power of any graph, are
such that LD(G) � n− 2. This allows to conclude that FLD,γ (r, n) � n− 3, using
the powers of graphs as in the proof of Theorem 20. � 

Improvements are possible on Theorem 24(b) when r = 2.

Theorem 25

(a) Let n = 8t � 24. Then FLD,γ (2, n) � 5t − 3.
(b) Let n = 8t + i � 24, with 1 � i � 7. Then FLD,γ (2, n) � 5t + i − 6.

3.4.2 Domination vs Locating-Domination in Graphs with Twins

Theorem 26

(a) For r � 1 and n � 2, we have F twLD,γ (r, n) = n− 2.
(b) For n ∈ {2, 5} or n � 7, we have f twLD,γ (1, n) = 0; for n ∈ {3, 4, 6}, we have

f twLD,γ (1, n) = 1.

(c) For all r � 2 and n � (2r + 2)(r + 1)+ 1, we have f twLD,γ (r, n) = 0.

To conclude this section on compared costs, we can see that for r = 1, we have exact
values for all n and functions f and F . For r � 2, most results are exact but valid for
n large. One open problem is to establish results for all n, another to reduce the gap
between lower and upper bounds for FLD,γ (r, n), cf. Theorems 24(b)–(c) and 25.
Note that all open problems and conjectures mentioned throughout this chapter are
gathered at its end.

4 Specific Families of Graphs

We survey some well-known and some not so well-known families of graphs.

4.1 Infinite Grids and Strips

The four infinite 2-dimensional grids GS (square), GT (triangular), GK (king), and
GH (hexagonal), partially represented in Figure 4, have been much studied in the
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Fig. 4 Partial representations of the four grids: (a) the square grid; (b) the triangular grid: black
vertices are codewords (cf. Theorem 32); (c) the king grid; (d) the hexagonal grid (with two
possible representations).

Fig. 5 A periodic
5-identifying code in the
square grid GS , of density
2/25. Codewords are in
black.

literature, especially with respect to identifying codes, and the densities ∂LDr (Gπ)

and ∂Idr (Gπ) of optimal r-LD and r-Id codes investigated for π ∈ {S, T ,K,H }.
One can also consider the infinite strips G[k]

π of height k � 1 (the case k = 1 gives
the infinite path, see also below, Section 4.2). We remind that the density of a code
C in G[k]

π can be defined for every k � 1 by ∂(C,G[k]
π ) = lim supn→∞

|C∩Nn[v]||Nn[v]| ,
where v is an arbitrary vertex.

Some constructions of codes are obtained by heuristics searching for small
subcodes inside tiles that will be repeated periodically [38], see Figure 5 for a first
example.

We give, as far as we know, the best lower and upper bounds, for grids and strips.
Note how few results there are for r-LD codes when r �= 1.

4.1.1 The Square Grid

The square grid, GS , has vertex set VS = Z × Z and edge set ES = {uv : u −
v ∈ {(1, 0), (0, 1)}}. Figure 6 will give constructions proving the upper bounds for
Theorems 27(a) and 28, Figure 7 for Theorems 27(c) and 30(b).

• Locating-dominating codes

Theorem 27 ([171]), ([172])

(a) We have ∂LD1 (GS) = 3
10 .

(b) We have ∂LD1 (G
[1]
S ) = 2

5 .

(c) We have ∂LD1 (G
[2]
S ) = 3

8 = 0.375, ∂LD1 (G
[3]
S ) = 1

3 .
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Fig. 6 Black vertices are the elements of a periodic code inGS , which is (a) 1-LD with density 3
10 ,

(b) 1-Id with density 7
20 .

Fig. 7 Black vertices are the elements of a periodic code which is (a) 1-LD with density 3
8 inG[2]

S ,

(b) 1-LD with density 1
3 in G[3]

S , (c) 1-Id with density 3
7 in G[2]

S .

• Identifying codes

The following upper bound ∂Id1 (GS) �
7

20 is from [54] in 1999, the lower bound
∂Id1 (GS) � 7

20 by Ben-Haim & Litsyn [13] in 2005.

Theorem 28 We have ∂Id1 (GS) = 7
20 .

The following general lower bounds come from [33], the lower bound in (b)
from [128], and all the upper bounds from [117].

Theorem 29

(a) For every r � 1, we have 3
8r+4 � ∂Idr (GS) �

{
2
5r : r even

2r
5r2−2r+1

: r odd
. When r

increases, these bounds are close to 3
8r = 0.375

r
and 2

5r .

(b) We have 6
35 ≈ 0.17143 � ∂Id2 (GS) �

5
29 ≈ 0.17241.

The previous upper bounds have been improved in [38], using heuristics, for r ∈
{3, 4, 5, 6}. The strips of all heights have also been studied, for r = 1; in (d) below,
the upper bound is from [22], the lower bound from [126].

Theorem 30

(a) ([94]) We have ∂Id1 (G
[1]
S ) = 1

2 .

(b) ([64]), ([65]) We have ∂Id1 (G
[2]
S ) = 3

7 ≈ 0.42857.

(c) ([22]) We have ∂Id1 (G
[3]
S ) = 7

18 ≈ 0.38889.

(d) We have ∂Id1 (G
[4]
S ) = 11

28 ≈ 0.39286.

(e) ([126]) We have ∂Id1 (G
[5]
S ) = 19

50 = 0.38.

(f) ([23]) For k � 6, we have 7
20 + 1

20k � ∂
Id
1 (G

[k]
S ) � 7

20 + 3
10k .
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4.1.2 The Triangular Grid

The triangular grid, or square grid with one diagonal,GT , has vertex set VT = Z×Z

and edge set ET = {uv : u − v ∈ {(1, 0), (0, 1), (1,−1)}}. Figure 8 will give
constructions proving the upper bounds in G[3]

T for Theorems 31(b) and 34(a).

• Locating-dominating codes

Theorem 31

(a) ([107]) We have ∂LD1 (GT ) = 13
57 ≈ 0.22807.

(b) ([22]) We have ∂LD1 (G
[2]
T ) = 1

3 , ∂LD1 (G
[3]
T ) = 3

10 .

• Identifying codes

Theorem 32 (Karpovsky, Chakrabarty & Levitin [134]) We have ∂Id1 (GT ) = 1
4 .

Proof. The upper bound is proved by the construction given in Figure 4(b), which
has the property (P) that every codeword is dominated by exactly one codeword
(itself) and every non-codeword is dominated by exactly two codewords (either
horizontally or vertically or diagonally). This proves that the code is indeed 1-
identifying, and moreover that it is best possible. � 

Property (P) is at the root of Theorem 70 when r = 1. Another example of a
graph and a code having this property is the cycle of length 2p � 6, with p pairwise
nonadjacent vertices forming the code, see Theorem 44. Property (P) cannot be true
for r > 1 [57].

Theorem 33

(a) ([33]) For every r � 1, we have 2
6r+3 � ∂Idr (GT )�

{
1

2r+2 : r ∈ {1, 2, 3} mod 4
1

2r+4 : r = 0 mod 4
.

When r increases, these bounds are close to 1
3r and 1

2r .

(b) ([38]) We have ∂Id3 (GT ) � 2
17 ≈ 0.11765 and ∂Id5 (GT ) � 1

13 ≈ 0.07692.

Results on the different triangular strips are available when r = 1.

Fig. 8 Black vertices are the elements of a periodic code inG[3]
T which is (a) 1-LD with density 3

10 ,

(b) 1-Id with density 1
3 .
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Theorem 34 ([66])

(a) We have ∂Id1 (G
[2]
T ) = 1

2 , ∂Id1 (G
[3]
T ) = ∂Id1 (G

[4]
T ) = 1

3 , ∂Id1 (G
[5]
T ) = 3

10 , and

∂Id1 (G
[6]
T ) = 1

3 .

(b) For odd k � 7, we have ∂Id1 (G
[k]
T ) = 1

4 + 1
4k .

(c) For even k � 8, we have 1
4 + 1

4k � ∂
Id
1 (G

[k]
T ) � 1

4 + 1
2k .

4.1.3 The King Grid

The king grid, or square grid with two diagonals, GK , has vertex set VK = Z × Z

and edge set EK = {uv : u − v ∈ {(1, 0), (0, 1), (1,−1), (1, 1)}}. Its name comes
from the fact that, on an infinite chessboard, the r-neighborhood of a vertex v is the
set of vertices that a king, starting from v, can reach in at most r moves. Figure 9
will give constructions proving the upper bounds for Theorems 35, 37 and 38(b).

• Locating-dominating codes

Theorem 35 ([113]) We have ∂LD1 (GK) = 1
5 .

For r > 1, there are good bounds on ∂LDr (GK), and the first two strips are solved
for r = 1.

Theorem 36 ([152]) For every r � 1, we have 1
4r+2 � ∂LDr (GK) �

{
1
4r : r even
r+1

4r(r+1)+2 : r odd
. When r increases, these bounds are all equivalent to 1

4r .

Theorem 37 ([22]) We have ∂LD1 (G
[2]
K ) = 1

2 , ∂LD1 (G
[3]
K ) = 4

15 ≈ 0.26667.

• Identifying codes

It is remarkable that the best density is known for all r � 1 for identification [34]
(2004). In the following theorem, the lower bound on ∂Id1 (GK) comes from [58],
the upper bound from [38].

Fig. 9 Black vertices are the elements of a periodic code which is (a) 1-LD with density 1
5 inGK ,

(b) 1-LD with density 1
2 in G[2]

K , (c) 1-LD with density 4
15 in G[3]

K , (d) 1-Id with density 2
9 in GK .
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Theorem 38

(a) (Charon et al. [34]) For every r > 1, we have ∂Idr (GK) = 1
4r .

(b) We have ∂Id1 (GK) = 2
9 ≈ 0.22222.

For r = 1, the strips have been investigated. Note that G[2]
K is not 1-twin-free.

Theorem 39 ([67])

(a) We have ∂Id1 (G
[3]
K ) = 1

3 ; ∂Id1 (G
[4]
K ) = 5

16 = 0.3125; ∂Id1 (G
[5]
K ) = 4

15 ≈
0.26667; ∂Id1 (G

[6]
K ) = 5

18 ≈ 0.27778.

(b) For k � 7, we have 2
9 + 8

81k � ∂
Id
1 (G

[k]
K ) �

⎧
⎪⎨

⎪⎩

2
9 + 6

18k : k = 0 mod 3
2
9 + 8

18k : k = 1 mod 3
2
9 + 7

18k : k = 2 mod 3

.

4.1.4 The Hexagonal Grid

The hexagonal grid, GH , has vertex set VH = Z × Z and edge set EH = {uv :
u = (i, j) and u − v ∈ {(0, (−1)i+j+1), (1, 0)}}. It is the grid for which one has
the sparsest and weakest results. Figure 10 will give constructions proving the upper
bounds for Theorems 40 and 41.

• Locating-dominating codes

Theorem 40 ([113]) We have ∂LD1 (GH ) = 1
3 .

• Identifying codes

The following upper bound is from [56], the lower bound from [61].

Theorem 41 We have 5
12 ≈ 0.41667 � ∂Id1 (GH ) �

3
7 ≈ 0.42857.

In the following theorem, the lower bounds in (a) and (b) come from [131]
and [144], respectively, and both upper bounds from [38]; the general lower bounds
in (c) come from [33], and the upper bounds from [174].

Fig. 10 Black vertices are the elements of a periodic code in GH , which is (a) 1-LD with
density 1

3 , (b) 1-Id with density 3
7 .
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Theorem 42

(a) We have ∂Id2 (GH ) = 4
19 ≈ 0.21053.

(b) We have 3
25 = 0.12 � ∂Id3 (GH ) � 1

6 ≈ 0.16667.

(c) For r � 8, we have
2

5r+3 : r even
2

5r+2 : r odd

}

� ∂Idr (GH ) �
{

5r+3
6r(r+1) : r even
5r2+10r−3
(6r−2)(r+1)2

: r odd
.

When r increases, these bounds are close to 2
5r and 5

6r ≈ 0.83333
r

.

There are many better upper bounds, obtained by the use of heuristics, in [38] for
r � 30.

4.2 Paths and Cycles

For r = 1, the values of LD(Pn), LD(Cn), Id(Pn), and Id(Cn) have been
completely determined.

Theorem 43 ([169]), ([170]) For every path or cycle Gn of order n � 1, we have

LD(Gn) =
⌈

2n
5

⌉
.

Proof. For the lower bound, we give an alternative by Bertrand et al. [16] in 2004
to the 1988 proof by Slater. This proof uses the following counting argument, which
can be applied to graphs other than paths or cycles, and can be adapted to Id codes,
cf. proof of Theorem 32. Let C be a 1-LD code inGn. Now n− |C| non-codewords
must be dominated by C, at most |C| of these are dominated by one codeword, and
the remaining are dominated by at least two codewords. Therefore,

1 × |C| + 2 × (n− 2|C|) �
∑

c∈C
|N(c)|.

For paths and cycles, |N(c)| � 2, which leads to |C| � �2n/5�. This lower bound
is met with equality, see Figure 11(a) for paths; for cycles, simply link the leftmost
and rightmost vertices in the same figure. � 

Theorem 44 ([94]) For every path Pn of order n � 3, we have Id(Pn) = �n+1
2 �.

For every cycle Cn of length n � 6, we have Id(Cn) = 3�n2 � − n, and Id(C4) =
Id(C5) = 3.

Fig. 11 Black vertices in the path with n vertices are codewords. (a) n = 5k + s, 0 � s < 5:
repeat the pattern between brackets k−1 times to the left and paste the appropriate tail to the right,
to obtain a 1-LD code. (b) n = 6k + s, 0 < s � 6: repeat the pattern k − 1 times to the left, then
paste appropriate tails, not given here, to the left and to the right, to obtain a 2-LD code.
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It is then immediate that the best density in an infinite path is 2/5 for 1-LD codes
and 1/2 for 1-Id codes (cf. Theorems 27(b) and 30(a), respectively). For r > 1,
it is not difficult to establish that these densities do not depend on r and are 1/3
and 1/2, respectively [16]. But the general case r > 1 for finite paths and cycles is
surprisingly difficult and the problem is not settled yet for LD codes.

4.2.1 Paths with r > 1

• Locating-dominating codes

Theorem 45 ([16]) Let r � 2. For all n � 1, we have n+1
3 � LDr(Pn); for all

n � 2r + 1, we have LDr(Pn) � �n+7r+6
3 �.

For infinitely many values of n, the above upper bound can be improved to n+r+2
3 ,

see [16] and [108]; the latter also completely solves the case r = 2. Figure 11(b)
gives the pattern for the upper bound in the following result.

Theorem 46 ([108]) For all n � 1, we have LD2(Pn) = �n+1
3 �.

In [71], the exact values of LD3(Pn) and LD4(Pn) are given for n � 1, the exact
value of LDr(Pn) is given for r � 5, 1 � n � 7r + 3, and the following is proved.

Theorem 47 ([71]) For r � 5 and n � 3r + 2+ 6r((r − 3)(2r + 1)+ r), we have
LDr(Pn) = �n+1

3 �.
• Identifying codes

Theorem 48 ([16]) Let r � 2. For all n � 2r + 1, we have n+1
2 � Idr(Pn), and

this bound can be achieved for infinitely many values of n.

The case r = 2 is completely settled in [160]. And in 2011–12, the complete
results were given independently by Chen, Lu, & Miao [52] and by Junnila &
Laihonen [130].

Theorem 49 ([52]), ([130]) Let r � 2 and n = (2r + 1)p + q, p � 1, 0 � q <
2r + 1.

(a) If q = 0, then Idr(Pn) = (2r+1)p
2 + 1 if p is even; Idr(Pn) = (2r+1)(p−1)

2 + 2r
if p is odd.

(b) If 1 � q � r + 1, then Idr(Pn) = (2r+1)p
2 + q if p is even; Idr(Pn) =

(2r+1)(p−1)
2 + 2r + 1 if p is odd.

(c) If r + 2 � q � 2r , then Idr(Pn) = (2r+1)p
2 + q − 1 if p is even; Idr(Pn) =

(2r+1)(p−1)
2 + 2r + 1 if p is odd.

This means that Idr(Pn) lies between n+1
2 and n

2 + r , according to the values of p
and q.
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4.2.2 Cycles with r > 1

• Locating-dominating codes

Theorem 50 ([16]) Let r � 2. For all n � 1, we have n
3 � LDr(Cn), and this

bound can be achieved for infinitely many values of n.

In [52], the exact value of LD2(Cn) is given for n � 1, and in [72], the same is done
for LD3(Cn) and LD4(Cn); furthermore, the exact values of LDr(Cn) are given for
r � 5, n ∈ [3, 2r + 3] ∪ {3r, 3r + 3}, and the following is proved.

Theorem 51 ([72]) Let r � 5 and n � 12r+5+6r((r−3)(2r+1)+ r−1). Then
we have LDr(Cn) = �n3 � if n �= 3 mod 6, and n

3 � LDr(Cn) � n
3 + 1 otherwise.

The previous result is improved in [70]: the bound on n becomes a polynomial in r2

instead of r3.

• Identifying codes

The crucial following lower bound is from [64] and solves the case n even.

Theorem 52 ([64]), ([65]) For all r � 2 and n � 2r + 2, we have Idr(Cn) �
gcd(2r + 1, n) × � n

2gcd(2r+1,n)�. If n � 2r + 4 is even, then Idr(Cn) = n
2 , and

Idr(C2r+2) = 2r + 1.

Then [99] provides cases when the exact value of Idr(Cn) is known. The case r = 2
is completely settled in [160]. More cases giving the exact value for Idr(Cn) are
given in [178], further results of this type are given in [52], and finally in 2012,
Junnila & Laihonen [130] closed the case: for all r � 2 and n � 2r + 2, Idr(Cn) is
known; but the many cases do not allow to give the results in a compact way. Let us
simply mention here that Idr(Cn) lies between n+1

2 and n
2 + r .

4.3 Trees

The following upper bound comes from [20], the lower bound from [166].

Theorem 53 Let T be a tree of order n with � leaves and s support vertices.

(a) We have n+2(�−s)+1
3 � LD1(T ) � n+�−s

2 .

(b) ([153]) We have LD1(T ) � 2n+3�−2
5 .

Moreover, the trees achieving the above bounds can be characterized. When � = s,
the lower bound reads LD1(T ) > n/3. The star K1,n−1 has s = 1, � = n − 1 and
LD1(K1,n−1) = n − 1. All the intermediate values between �n+1

3 � and n − 1 can
be reached [166].
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Theorem 54 ([26]) For any tree T of order n, we have LD2(T ) >
n
4 , and

LD3(T ) >
n
5 .

From this it is conjectured that for any tree T of order n, LDr(T ) > n
r+2 ; if true,

the conjecture is sharp [26]. The following upper bound comes from [94], the lower
bound from [20].

Theorem 55 For any tree T of order n with � leaves and s support vertices, we
have

(a) n+2�−2
2 � Id1(T ) � 3(n+�−s+1)

7 . Both bounds are sharp.

(b) ([154]) 3n+2�−1
5 � Id1(T ) � 2n−s+3

4 .

The trees achieving the above bounds in (b) can be characterized. All the interme-
diate values between � 3(n+1)

7 � and n− 1 can be reached [41].
The following result corrects and completes the study of complete (or balanced)

q-ary trees for 1-Id codes in [134], and also settles the case of 1-LD codes. It is
illustrated by Figure 12.

Theorem 56 ([17]) Let h � 1, q � 2, CT qh be the complete q-ary tree of depth h,

and ξqh = qh−1
q−1 be its order.

(a) We have LD(CT qh ) =
⌈

q2ξ
q
h

q2+q+1

⌉

.

(b) We have Id(CT 2
h ) =

⌈
20ξqh

31

⌉

; if q > 2, then Id(CT qh ) =
⌈

q2ξ
q
h

q2+q+1

⌉

.

Comparing (a) and (b) above, one can see that the complete nonbinary trees give yet
another example of graphs in which 1-identification costs the same as 1-locating-
domination—see Theorem 21(b).
Although the computing problems of finding optimal r-LD and r-Id codes are
generally NP-hard, even for some restricted classes of graphs (see Section 8 below),
trees (and forests) form a class for which polynomial and even linear algorithms
exist that output an optimal 1-LD or 1-Id code: see [169] for LD codes, [4] for Id
codes, and [32] for Id codes in oriented trees.

Fig. 12 Codewords are in black. (a) The complete binary tree of depth 4, with an optimal 1-LD
code (of size 9) which is not 1-Id. (b) The complete ternary tree of depth 3, with an optimal 1-Id
code (of size 9). This code is also an optimal 1-LD code.



270 A. Lobstein et al.

4.4 The q-ary n-Cube

Here, the standard notation n is not for the order of the cube, but for its dimension:
the q-ary n-cube is denoted F

n
q , where Fq = {0, 1, . . . , q − 1}; it has qn q-ary

vectors v1v2 . . . vn, and the distance is usually the Hamming distance dH defined
by dH (u, v) = |{i : ui �= vi, 1 � i � n}|. In this setting, r-dominating codes
are rather called r-covering codes, and constitute an important topic inside coding
theory. Their strong algebraic structure makes them very particular: for instance, a
code may be a vector subspace of dimension k in F

n
q , in which case it has size qk

and is said to be linear. Since a generator matrix with k rows suffices to describe
the code, this affects the size of an instance when considering complexity issues,
see, e.g., [91, 118, 119, 143]. See also [55] for an overview of covering codes, with
tables giving bounds on the sizes of optimal codes, linear or not, for the first values
of r and n. We shall restrict ourselves to the case q = 2, although there are some
works on the nonbinary cube, and denote Fn2 simply F

n. Almost all the results given
below concern identification. There are strong links between Id codes and μ-fold
coverings (where each vertex is dominated by at least μ codewords), but we do
not have enough space to discuss them here; see, e.g., [76]. The following theorem
connects the 1-LD number in F

n and the 2-domination number in F
n−1.

Theorem 57 ([116]) For all n � 5, we have n22n+1

n3+2n2+3n−2
� LD1(F

n) � (2n −
3)γ2(F

n−1).

The exact values of LD1(F
n) are known for 1 � n � 6; for instance, {u ∈ F

5 :
dH (u, 00000) = 1 or 4} is an optimal 1-LD code (of size 10) [116]. See also [73,
133]. The following result gives the complete answer for linear codes.

Theorem 58 ([116]) Let n = 3 × 2k − 5 + s, for k � 1 and 0 � s < 3 × 2k . Then
the size of an optimal 1-LD linear code in F

n is 2n−k .

We now turn to Id codes. The following theorem links the r-Id and (2r)-domination
numbers.

Theorem 59 ([134]) For n � 3, we have n 2n+1

n(n+1)+2 � Id(Fn) and 2n+1/(1 +
∑r
j=0

(
n
j

)
) � Idr(Fn). If r < n/2, then Idr(Fn) �

(
n
r

)
γ2r (F

n).

The above lower bound on Idr(Fn) is improved in [77] (but both bounds coincide
for r fixed and n large enough), then in [75]. The next result uses the direct sum
construction (DSC) C ⊕ F

s = {c|u : c ∈ C ⊆ F
n, u ∈ F

s}, where | stands for
concatenation. This is a classical tool, often used in coding theory, allowing to go
from F

n to F
n+s , s � 1.

Theorem 60 ([18]) For n � 2, we have Id(Fn+2) � 4Id(Fn). If C is an optimal
1-Id code in F

n such that dH (c, C \ {c}) = 1 for every c ∈ C, then Id(Fn+1) �
2Id(Fn).
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Since F
s is a 0-Id code of size 2s , a generalization of the previous result would

be the following conjecture: Idr1+r2(Fn1+n2) � Idr1(F
n1) × Idr2(Fn2). The case

r1 = r2 = 1 is proved in [76], which by iteration leads to

Idr(F
∑r
i=1 ni ) �

r∏

i=1

Id1(F
ni ).

Also, by refining the condition on C in Theorem 60, one can widen the possibilities
of the DSC, see, e.g., [31, 74, 76]. But Id(Fn+1) � 2Id(Fn) remains a conjecture;
to our knowledge, the closest result obtained so far is the following.

Theorem 61 ([74]) For n � 2, we have Id(Fn+1) �
(

2 + 1
n+1

)
Id(Fn).

There are also asymptotic results (with n going to infinity) in [74, 118, 134],
or [125].

In 2010, Charon et al. [31] gave tables with bounds on Idr(Fn), 1 � r � 5,
n � 21; the same was done for r ∈ {2, 3} and n � 30 by Exoo et al. [75] in the
same year; all sources are given. The lower bounds stem from the bounds discussed
above, and from more ad hoc methods using the topology of the cube and studying
local situations, possibly with the help of a computer. The upper bounds use widely
the DSC, often enhanced by computer, or heuristics such as simulated annealing or
the noising method.

In the linear case, the complete answer is known for r = 1 (see [157] for r > 1),
and is very similar to Theorem 58 for 1-LD codes. In particular, it uses the second
part of Theorem 60, which always works with linear codes and allows to go from
F
n to F

n+1 by doubling the size of the code.

Theorem 62 ([156]) Let n = 3 × 2k − 3 + s, for k � 1 and 0 � s < 3 × 2k . Then
the size of an optimal 1-Id linear code in F

n is 2n−k .

In conclusion, we offer an open problem about the monotonicity of Idr(Fn). It is
true that for all n � 2, we have Id1(F

n) � Id1(F
n+1) (Moncel [145] in 2006),

but this is not the case for all r . For instance, Id5(F
6) = 63, Id5(F

7) ∈ {31, 32},
Id5(F

8) ∈ [19, 21], Id5(F
9) ∈ [12, 17]. We conjecture however that for a fixed r >

1, there exists n(r) such that for all n � n(r), we have Idr(Fn) � Idr(Fn+1).

4.5 Bipartite Graphs and Discriminating Codes

There are scattered results regarding bipartite graphs (see Theorems 15 and 100(c),
Section 6.2.3, and the second sentence after Theorem 107), but these graphs are
also of interest to us because they lend themselves to the natural definition of
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discriminating codes: consider a bipartite graphG = (I ∪A,E) where I represents
individuals and A their attributes (hair color, age, glasses, . . .). A code C ⊆ A

is discriminating if every individual has at least one attribute in C, and no two
individuals have the same set of attributes in C [30].

Theorem 63 ([28]) If C is an optimal discriminating code in G, then �log2(|I | +
1)� � |C| � |I |. Both bounds are sharp.

Discriminating codes may be seen as a generalization of 1-Id codes, since a 1-Id
code in a graph G = (V ,E) is clearly a discriminating code in the bipartite graph
consisting of V on the one hand, and vertices representing the closed neighborhoods
inG on the other hand, with edges linking each closed neighborhood to its members.

The definition can be extended to any odd r � 1, by asking that for i ∈ I , i1 ∈ I ,
i2 ∈ I , i1 �= i2, we haveNr(i)∩C �= ∅ andNr(i1)∩C �= Nr(i2)∩C. The associated
decision problem is NP-complete for any fixed r � 1 [28], but for r = 1 there is a
linear algorithm in the case of trees [30].

Special cases of bipartite graphs have been investigated: the infinite square and
hexagonal grids [28], bipartite planar graphs [30], and the binary n-cube, for which
it can be proved that for any odd r , there is a bijection between the set of r-Id codes
in F

n and the set of r-discriminating codes in F
n+1 [29].

4.6 Line Graphs and Edge Identification

We can identify an edge with edges in a graph G = (V ,E): for e ∈ E, we denote
N(e) the set of edges which are adjacent to e, and N [e] = N(e) ∪ {e}. A code
CE ⊆ E is edge-identifying if for every e ∈ E, we have N [e] ∩ CE �= ∅, and for
every e1 ∈ E, e2 ∈ E, e1 �= e2, we have N [e1] ∩ CE �= N [e2] ∩ CE . Clearly,
CE is edge-identifying in G if and only if, in the line graph L(G), the vertices
corresponding to the edges in CE form a 1-Id code. This motivates the study of Id
codes in the class of line graphs. For instance, one has the following results.

Theorem 64 ([81])

(a) If G is a 1-twin-free line graph of order n, then Id(G) > 3
√

2
4

√
n ≈

1.06066
√
n.

(b) For n � 4, the minimum size of an edge-identifying code in the binary cube F
n

is 2n−1.

The decision problem associated with edge identification is NP-complete [148].
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4.7 Miscellaneous

• Planar and outerplanar graphs

Theorem 65 ([155]) For any planar graph G of order n � 18, we have LD(G) �
n+10

7 ; for any outerplanar graph G of order n, we have LD(G) � 2n+3
7 . Both

bounds are sharp.

• Split graphs

Split graphs have been studied in several works; in particular, complete suns have
been intensively investigated, both for 1-LD and 1-Id codes: see, e.g., [2, 122].

• In the context of LD and Id codes, attention has been given in the existing
literature to the following families: graph products (mostly Cartesian, but also
corona, lexicographic, Kronecker, or direct), cubic graphs, rotagraphs and fasci-
agraphs, finite rectangles extracted from the infinite grids (k1 rows, k2 columns),
n-dimensional infinite grids, Kneser graphs, circulant networks, complementary
prisms, the n-cube endowed with the Lee metric, triangle-free graphs, cographs,
Sierpiński graphs, interval graphs, permutation graphs, triangular graphs, vertex-
transitive graphs, fractal graphs, block graphs, chordal graphs, series parallel
graphs, and others. Random graphs have also been studied.

See also Tables 1.3–1.5 in [79] for a survey of the different lower and upper
bounds, and their tightness, for different classes of graphs.

5 Relationships with Other Parameters

We study the different relationships linking the LD and Id numbers of a graph to
different parameters such as maximum and minimum degree, girth, domination
number, independent domination numbers, or diameter, mostly for r = 1.

5.1 Locating-Dominating Codes

Theorem 66 ([170]) For any graph G of order n � 2 and maximum degree Δ, we
have n � LD1(G)+∑Δ

i=1

(
LD1(G)
i

)
.

For Δ = 2 (paths and cycles), this can be improved to n � 5
2LD1(G), see

Theorem 43.
Theorem 67 below gives upper bounds onLD1(G), with conditions on minimum

degree and girth, then the best known constructions, for n small or arbitrarily large.
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Fig. 13 Black vertices form optimal codes. (a) The Heawood graph H14; (b) The graph G12.

Theorem 67 Let G be a graph of order n, minimum degree δ, and girth g � 5.

(a1) ([50]) If δ � 2, then LD1(G) � n
2 .

(a2) ([10]) If δ = 3, then LD1(G) � 22n
45 ≈ 0.4889 n.

(b) ([10]) The cycle C6 has n = 6, δ = 2, g = 6, and LD1(C6) = 3 = n
2 ; there

are infinitely many connected graphs G of order n with δ = 2, g = 5, and
LD1(G) = n−1

2 .

The Heawood graph H14 (see Figure 13(a)) has n = 14, δ = 3, g = 6, and
LD1(H14) = 6 = 3n

7 ≈ 0.4286 n; there are infinitely many connected graphs G of

order n with δ = 3, g = 5, and LD1(G) = 4(n−1)
11 ≈ 0.3636 n.

We recall that i(G) (respectively, β(G)) denotes the minimum (respectively,
maximum) cardinality of an independent dominating set in a graph G.

Theorem 68 ([50])

(a) If T is a nontrivial tree, then i(T ) � LD1(T ) � β(T ).
(b) For every nontrivial tree T , we have LD1(T )+ γ1(T ) � n, with equality if and

only if T is a tree consisting only of leaves and support vertices.

Theorem 69 ([25]) Let G be a graph of order n and diameter D � 3. Then
LD1(G) � n − � 3D−1

5 �, and the bound is tight. Consequently, if LD1(G) ∈
{n− 2, n− 1}, then G has diameter at most 3.

5.2 Identifying Codes

We first give a lower bound involving the maximum degree, then discuss different
upper bounds, first in terms of maximum degree, then of minimum degree and girth.

Theorem 70 ([134]) Let r � 1. If G is an r-twin-free graph of order n and
maximum degree Δ, then Idr(G) � 2n

Δ+2 .

For r = 1, [79] gives a full characterization of the graphs reaching the previous
lower bound.
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Theorem 71 ([83]) Let r � 1 and G be a connected r-twin-free graph of order n
and maximum degree Δ. Then Idr(G) � n− n(Δ−2)

Δ(Δ−1)5r−2
= n− n

Θ(Δ5r )
.

It is conjectured in [84] that there exists a constant c such that, for every nontrivial
connected 1-twin-free graph G, we have Id1(G) � n − n

Δ
+ c. Graphs such that

Id1(G) = n − n
Δ

exist (e.g., KΔ,Δ with Δ � 3). The complete q-ary trees T
have Δ = q + 1 and, by Theorem 56(b), we have Id1(T ) = �n − n

Δ−1+1/Δ�. The
conjecture holds for graphs with very high Δ, and for Δ = 2, and the following
results are intended to further substantiate it.

Theorem 72 ([84]) Let G be a connected, 1-twin-free, triangle-free graph with
order n and maximum degree Δ � 3.

(a) We have Id1(G) � n− n

Δ+ 3Δ
lnΔ−1

= n− n
Δ+o(Δ) .

(b) If moreoverG is a nontrivial planar or bipartite graph, then Id1(G) � n− n
Δ+9 .

Other graphs can be exhibited, with Id1(G) � n− n
o(Δ)

. In the following theorem,
a vertex z is said to be forced if there are two vertices u and v with symmetric
difference N [u]ΔN [v] equal to {z}, which implies that z belongs to any 1-Id code
in G.

Theorem 73 ([89])

(a) Let G be a connected, 1-twin-free graph, with order n and maximum degree

Δ � 3. Then Id1(G) � n− nf 2

103Δ , where f is the ratio over n of the number of
non-forced vertices. In particular, ifG isΔ-regular, then Id1(G) � n− n

103Δ =
n− n

Θ(Δ)
.

(b) There exists an integerΔ0 such that for every connected, 1-twin-free graph with
order n and maximum degree Δ � Δ0, we have Id1(G) � n − n

103Δ(Δ+1)2
=

n− n
Θ(Δ3)

.

The following result can be compared to Theorem 67.

Theorem 74 ([10]) Let G be a twin-free graph of order n, minimum degree δ, and
girth g � 5.

(a1) If δ � 2, then Id1(G) � 5n
7 ≈ 0.7143 n.

(a2) If δ = 3, then Id1(G) � 31n
45 ≈ 0.6889 n.

(b) The cycle C7 has n = 7, δ = 2, g = 7, and Id1(C7) = 5 = 5n
7 ; there

are infinitely many connected graphs G of order n with δ = 2, g = 5, and
Id1(G) = 3(n−1)

5 .

The graphG12 with vertex set {xi : 0 � i � 11} and the edges of the Hamiltonian
cycle x0x1 . . . x11x0 plus the six edges x0x4, x1x8, x2x6, x3x10, x5x9, and x7x11 (see
Figure 13(b)) has n = 12, δ = 3, g = 5, and Id1(G12) = 6 = n

2 ; there are infinitely

many connected graphs G of order n with δ = 3, g = 5, and Id1(G) = 5(n−1)
11 ≈

0.4545 n.
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5.3 Twin-Free Graphs and Parameters

From now on and until the end of this section, we investigate the extremal values
that the following parameters: size, order, maximum and minimum degree, size
of a maximum clique, radius, diameter, size of a maximum independent set, and
identification number can achieve in a connected r-twin-free graph. If π stands for
such a parameter, we fix r and search for the smallest value fr(π) that π can reach,
or we fix r and n and search for the smallest and largest values fr,n(π) and Fr,n(π).
Therefore, fr(π) = min{π(G) : G connected, r-twin-free with at least 2r + 1
vertices}, fr,n(π) = min{π(G) : G connected, r-twin-free with n � 2r + 1}, and
Fr,n(π) is defined similarly. The first case, when π = ε is the size of the graph, will
help understand easily these notions.

• Number of edges ε

For any connected graph of order n, the size is between n − 1 (trees) and n(n−1)
2

(the complete graph). The size of a connected r-twin-free graph of order at least
2r + 1 is at least 2r , and if the order is n � 2r + 1, then this number is at least
n − 1; moreover, the paths P2r+1 and Pn meet these bounds. So fr(ε) = 2r and
fr,n(ε) = n− 1. The maximum number of edges possible for r-twin-free graphs of
order n is known for r = 1, and can be achieved only by the complete graphs minus
a maximum matching [64]. For r > 1, we are close to the exact value.

Theorem 75 ([64]) For all n � 3, we have F1,n(ε) = n(n−1)
2 − �n2 �.

Theorem 76 ([5])

(a) For n large enough, we have n
2

2 − 2n log2 n � F2,n(ε) � n2

2 − 1
2n log2 n.

(b) For r > 2 and n large enough with respect to r , we have n2

2 − rn log2 n �
Fr,n(ε) � n2

2 − 0.63(r − 0.915)n log2 n.

For r > 2, the gap between the above lower and upper bounds is about (0.37r +
0.58)n log2 n. For r = 10 and n around 60000, it represents 0.2%.

• Number of vertices n

Obviously, fr,n(n) = Fr,n(n) = n for all r � 1, n � 2r + 1, and the following
comes from Theorem 2.

Theorem 77 For all r � 1, we have fr(n) = 2r + 1.

• Maximum degree Δ

In any connected graph of order n, the maximum degree is between 1 (if n = 2) or
2 (the path, the cycle, n � 3), and n−1 (the complete graph, the star, every graphG
with γ1(G) = 1).
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Theorem 78 ([45])

(a) For all r � 1, we have fr(Δ) = 2; for all r � 1 and n � 2r + 1, we have
fr,n(Δ) = 2.

(b) For all n � 3, we have F1,n(Δ) = n− 1.
(c) For all p � 2 and n � 5, if 2p−1 + p − 1 < n � 2p + p, then F2,n(Δ) =

n− p − 1.
(d) For all r � 3 and n � 2r + 1, we have Fr,n(Δ) � k, where k is the largest

integer such that k + (r − 2)�log3(k + 1)� + �log2(k + 1)� � n− 1.

When r > 2, there are too many cases for the lower bounds on Fr,n(Δ) to be given
here. Let us only mention that: (i) we have the exact value of Fr,n(Δ) for infinitely
many values of n and r—for instance, if r = 100 and 60 050 � n � 60 143, then
F100,n(Δ) = 59 048; (ii) if n is large with respect to r , the lower bound on Fr,n(Δ)
approximately behaves like n− r log3 n, whereas the upper bound in Case (d) above
behaves like n − (r − 2 + log2 3) log3 n, which gives a gap between the bounds
roughly equal to 0.415 × log3 n (independent of r).

• Minimum degree δ

In any connected graph of order n, the minimum degree is between 1 and n− 1 (the
complete graph). The first part of Case (b) below relies on the fact that Kn minus a
maximum matching is 1-twin-free, cf. Theorem 75.

Theorem 79 ([5])

(a) For all r � 1, we have fr(δ) = 1; for all r � 1 and n � 2r + 1, we have
fr,n(δ) = 1.

(b) For all n � 3, we have F1,n(δ) = n−2; for all n � 5, we have F2,n(δ) = �n−2
2 �.

(c) For all r � 3, we have Fr,2r+1(δ) = 1.
(d) Let r � 3, n � 2r + 2 and k = �n−2

r
�.

(d1) We have k − 1 � Fr,n(δ) if k is odd, and k � Fr,n(δ) if k is even.
(d2) For r ∈ {3, 4, 5, . . . , 24}, we have Fr,n(δ) � n

� r2 �+1 − 1.

(d3) For r � 25, we have Fr,n(δ) � min
{

n
� r2 �+1 − 1, 3n−r+2

2(r−5)

}
.

We conjecture that Fr,n(δ) is close, possibly equal, to �n−2
r
�.

• Size ω of a maximum clique

In any connected graph of order n, a maximum clique has size between 2 and n. The
clique Kn is far from being r-twin-free; actually any graph whose r-th power is the
clique has r-twins. However, a twin-free graph may contain quite a large clique, and
it is remarkable that we can exactly determine its size. Case (b) below is connected
to Theorem 95. Case (c) depends on some conditions on k and n that we do not give
here.
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Theorem 80 (Charon, Hudry & Lobstein 2011 [44])

(a) For all r � 1, we have fr(ω) = 2; for all r � 1 and n � 2r + 1, we have
fr,n(ω) = 2.

(b) For all n � 3, we have F1,n(ω) = k, where k is the largest integer such that
k + �log2 k� � n.

(c) For all r � 2 and n � 2r + 1, let k be the largest integer such that k +
r�log2 k� � n−1. Then, according to conditions on n and k, we have Fr,n(ω) =
k or k + 1.

If n is large with respect to r , then Fr,n(ω) behaves like n − r log2 n. If r is a
fraction of n, then Fr,n(ω) is bounded by above by a constant; the extremal case is
when r = n−1

2 and Fr,n(ω) = 2 (path P2r+1).

• Radius ρ

In any connected graph of order n, the radius is between 1 (the complete graph, the
star) and �n2 � (the path, the cycle). The study of the radius in twin-free graphs is
easy, the results are complete.

Theorem 81 ([5])

(a) For all r � 1, we have fr(ρ) = r; for all r � 1 and n � 2r + 1, we have
fr,n(ρ) = r .

(b) For all r � 1 and n � 2r + 1, we have Fr,n(ρ) = �n2 �.
• Diameter D

In any connected graph of order n, the diameter is between 1 (the complete graph)
and n − 1 (the path). The results on the diameter in twin-free graphs are complete.
Figure 14 illustrates Case (c).

Theorem 82 ([5])

(a) For all r � 1, we have fr(D) = r + 1.
(b) For all r � 1, we have fr,2r+1(D) = 2r .
(c) For all r � 1 and n � 2r + 2, we have fr,n(D) = r + 1.
(d) For all r � 1 and n � 2r + 1, we have Fr,n(D) = n− 1.

• Size α of a maximum independent set

In any connected graph of order n, α lies between 1 (the complete graph) and n− 1
(the star). Theorem 89 contributes to Case (a) in the following theorem.

Fig. 14 The case n = 15,
r = 3: the graph is
3-twin-free and has
diameter r + 1 = 4.
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Theorem 83 ([5])

(a) For all r � 1, we have fr(α) = r + 1.
(b) For all n � 3, we have f1,n(α) = 2.
(c) For all r � 2, we have fr,2r+1(α) = r + 1.
(d) Let r � 2, n � 2r + 2 and k = �n−2

r
�. We have r + 1 � fr,n(α) �

{
2n
k+2 : k even
2n
k+1 : k odd

.

The star gives Case (a) in the following theorem.

Theorem 84 ([5])

(a) For all n � 3, we have F1,n(α) = n− 1.
(b) For all r � 2 and n � 2r + 1, we have max

{�n2 �, k + �log2 k�� r2�
}

�
Fr,n(α) � n− r , where k is the largest integer such that k+ r�log2 k� � n− 1.

If n is large with respect to r , then k + �log2 k�� r2� behaves approximately like
n− r

2 log2 n.

• Identification number Idr

We start with Fr,n(Idr ) and fr,n(Idr ), and conclude with fr(Idr), the most
interesting of the three functions. From Section 2.1, in particular Theorems 8 and 13,
we derive the following results.

Theorem 85

(a) For all r � 1, if n = 2r + 1, or if n � 3r2 is even, or if n � 3r2 + 1 is odd, we
have Fr,n(Idr) = n−1. In particular, for all n � 3, we have F1,n(Id1) = n−1.

(b) For all r � 1 and n � 22r , we have fr,n(Idr) = �log2(n+ 1)�.
Theorem 86 ([44])

(a) We have f1(Id1) � 2 and for all r � 2, fr(Idr) � �log2(2r + 4)�.
(b) For all r � 1, we have fr(Idr) � r + 1.

The constructive upper bound is illustrated by Figure 15.
The lower and upper bounds in Theorem 86 coincide for r ∈ {1, 2, 3}. For r = 4,

ad hoc arguments show that no graph admits a 4-Id code of size 4. Therefore,

Theorem 87 ([44]) For r ∈ {1, 2, 3, 4}, we have fr(Idr) = r + 1.

Open problem: for r � 5, find the exact value of fr(Idr), knowing that it lies
between �log2(2r + 4)� and r + 1.

Fig. 15 Different graphs with optimal r-Id codes of size r+ 1. Codewords are in black. For r � 3
odd, there is a cycle C2r+2 and n = (2r + 2) + r + 1. For r even, there is a cycle Cr+2 and
n = (r + 2)+ r

2 (r + 1).
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6 Structural Issues

This section is mostly devoted to identifying codes, either because identifying codes
lead to the problem of their very existence, i.e., to the important issue of when
a graph is twin-free, or simply because in the literature, more attention has been
devoted to these topics for identifying codes, compared to locating-dominating
codes.

We shall study problems such as the existence of a chordless path in twin-
free graphs, whether a twin-free graph deprived of a vertex remains twin-free, the
consequence of adding or deleting an edge or a vertex on the identification number,
or graphs that are critical, in some sense, with respect to locating-domination or
identification.

Locating-dominating and identifying codes do not lend themselves well to
Nordhaus–Gaddum-type bounds, and there are very few results. We give two
examples.

Theorem 88 ([106]) For any graph G of order n � 1, we have |LD1(G) −
LD1(G)| � 1.

Also, because P4 = P 4 and Id1(P4) = 3, the trivial bounds 2�log2(n + 1)� �
Id1(G)+ Id1(G) � 2(n− 1) and �log2(n+ 1)�2 � Id1(G)× Id1(G) � (n− 1)2

are tight.

6.1 Structural Properties of Twin-Free Graphs

The first part of Theorem 2 is an obvious consequence of the following result, due
to Auger in 2008 [3], which is not obvious.

Theorem 89 Let r � 1 and G be a connected r-twin-free graph. Then G admits
P2r+1, the path on 2r + 1 vertices, as an induced subgraph, i.e., there is a chordless
path of length 2r in G.

6.1.1 Deletion of a Vertex in a Twin-Free Graph

Theorems 90–94, due to Charon et al. [35] in 2007, give results which vary widely
with r . If G = (V ,E) is r-twin-free, we say that G is r-terminal if for all v ∈ V ,
G − v is not r-twin-free (so G is not r-terminal if there exists v ∈ V such that
G− v is also r-twin-free). An alternative would be r-twin-free critical, see also the
discussion before Theorem 96.

If n = 2r + 1, the only connected r-twin-free graph is the path P2r+1 for r � 1,
and the only r-terminal graph is P2r+1 for r > 1 (the case of P3 is particular, because
removing the middle vertex yields two isolated vertices, constituting a 1-twin-free
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graph). We address the following questions: (a) are there 1-terminal graphs? (b) For
r > 1, are there r-terminal graphs other than P2r+1?

The answer to (a) is negative, and the answer to (b) is multifold: it is negative if
we restrict ourselves to trees; it is positive if r � 3. The case r = 2 remains open.

• The case r = 1

Theorem 90 ([35]) Let n � 3 andG = (V ,E) be any connected 1-twin-free graph
of order n. Then G is not 1-terminal.

Proof. If n = 3, then G = P3 is not 1-terminal, as already seen; so we can assume
that n � 4. By Theorem 6, there is a 1-Id code C of size n−1 inG. ConsiderG−v,
where {v} = V \C (G− v may be connected or not); then C is still 1-identifying in
G − v, because removing v did not cut connexions of length r(= 1) between pairs
of vertices not containing v itself—this explains why the cases r = 1 and r > 1 are
different. Therefore, G− v is 1-twin-free. � 
The following theorem sharpens the previous one with respect to connectivity.

Theorem 91 ([35]) Let n � 4 andG = (V ,E) be any connected 1-twin-free graph
of order n. Then there exists v ∈ V such that G− v is 1-twin-free and connected.

• The case of trees

Theorem 92 ([35]) Let r � 1, n � 2r + 2 and T = (V ,E) be any (connected)
r-twin-free tree of order n. Then there exists a leaf v ∈ V such that T − v is r-twin-
free (and connected). Consequently, the only r-terminal trees are the paths P2r+1,
for r > 1.

• The case r � 3

We now consider general graphs, for r � 3.

Theorem 93 ([35]) For each integer r � 3, there is a graph G, G �= P2r+1, which
is r-terminal.

Sketch of Proof. We search for a connected r-twin-free graph G = (V ,E), with
|V | � 2r + 2, r � 3, such that for all v ∈ V , G − v is not r-twin-free. One
possible construction is the following: take a cycle of length 2r with vertices ci
(i ∈ {0, 1, . . . , 2r − 1}), and add one vertex si together with the edge cisi for every
value of i but one. � 
• Other values of r and open problems

The construction of Theorem 93 does not work for r = 2. Other constructions have
been tried and failed, and the problem remains open: Apart from P5, do 2-terminal
graphs exist?

Theorem 94 ([35]) For each integer r � 6, there are infinitely many r-terminal
graphs.
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Now, another open problem is the situation for r ∈ {3, 4, 5}: there exist r-terminal
graphs, but are they in finite or infinite number? Conversely, there is a bound on the
number of vertices that need to be added in order to obtain a 1-twin-free graph.

Theorem 95 ([94]) If G has order n, then G embeds as an induced subgraph in a
1-twin-free graph with order at most n+ �log2 n�. The bound is tight.

6.1.2 Deletion of an Edge in a Twin-Free Graph

The graphs that we have called terminal in the previous section might as well have
been called vertex-terminal, and the r-twin-free graphs G = (V ,E) such that for
all e ∈ E, G − e is not r-twin-free could then have been called r-edge-terminal.
Back to 1974 however, the expression “line-critical point distinguishing graph” was
coined in [68] (for r = 1 only) and the following result was proved.

Theorem 96 ([68]) A nontrivial connected graph G is line-critical point distin-
guishing [or 1-edge-terminal] if and only if G = P3.

A nonempty graph is line-critical point distinguishing if and only if it is the
disjoint union of paths of length two and isolated vertices.

To our knowledge, everything remains to be done for r > 1.

6.2 Adding or Deleting Edges or Vertices Can Save Codewords

The question is to determine how the identification or locating-domination numbers
change when we add or delete edges or vertices. We first deal with identifying codes.

6.2.1 Identifying Codes: Adding or Deleting an Edge

The problem is the following: given an r-twin-free graph G = (V ,E) and an edge
e ∈ E, and assuming that the graphG− e is r-twin-free, what can be said about the
relationship between Idr(G) and Idr(G− e)? The answer widely depends on r , as
show the following two theorems by Charon et al. [37] in 2014.

• The case r = 1

Theorem 97 If G and G − e are 1-twin-free, then Id(G) − Id(G − e) ∈
{−2,−1, 0, 1, 2}. Moreover, pairs of connected graphs G and G − e such that
Id(G)− Id(G− e) = 0, Id(G)− Id(G− e) = ±1 or Id(G)− Id(G− e) = ±2
exist.

• The case r � 2

Now the differences Idr(G)− Idr(G− e) and Idr(G− e)− Idr(G) can be large,
and we obtain results which slightly vary with r .
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Theorem 98 Let k � 2 be an arbitrary integer.

(a1) Let r � 2. There exist two r-twin-free graphs, G and G − e, with (r + 1)k +
r�log2(k + 2)� + 2r vertices, such that Idr(G) � k and Idr(G − e) �
r�log2(k + 2)� + r + 3.

(a2) Let r � 5. There exist two r-twin-free graphs, G and G− e, with (2r − 2)k +
r�log2(k + 2)� + r + 3 vertices, such that Idr(G) � k and Idr(G − e) �
r�log2(k + 2)� + r + 1.

(b1) There exist two 2-twin-free graphs,G andG−e, with 3k+2�log2(k+2)�+5
vertices, such that Id2(G− e) � k and Id2(G) � 2�log2(k + 2)� + 5.

(b2) Let r � 3. There exist two r-twin-free graphs, G and G− e, with (2r − 2)k +
r�log2(k + 2)� + r + 2 vertices, such that Idr(G − e) � k and Idr(G) �
r�log2(k + 2)� + r + 1.

Very close results can be obtained with pairs of connected graphs. Whether these
inequalities can be substantially improved is an open problem.

Note that k can be taken arbitrarily and is linked to the order n ofG andG−e by
the relation n = (c1r+c2)k+r�log2(k+2)�+(c3r+c4)where the integer quadruple
(c1, c2, c3, c4) takes different values in (a1), (a2), (b1), and (b2) above. This means,
roughly speaking, that k is a fraction, depending on r , of n; therefore, Theorem 98
implies that, given r � 2, there is an infinite sequence of graphs G of order n and
two positive constants α and β such that Idr(G) � αn and, after deletion of a
suitable edge e, Idr(G− e) � β log2 n (or the other way round: Idr(G) � β log2 n

and Idr(G − e) � αn). We can see that adding or deleting one edge can lead to
quite a drastic difference for the identification numbers. On this topic, see also [90]
for a probabilistic approach.

6.2.2 Identifying Codes: Adding or Deleting One Vertex or More

• The case r = 1

If S ⊂ V , we denote by G − S the graph obtained from G by deleting the vertices
of S.

Theorem 99 ([83]) IfG andG−S are 1-twin-free, then Id(G)−Id(G−S) � |S|.
In particular, if v ∈ V , we have Id(G) − Id(G − v) � 1; moreover, the two
inequalities are tight.

Theorem 100 ([151]) Let n be the order of G, S ⊂ V and v ∈ V .

(a) If n � 2|S|−1, then Id(G− S)− Id(G) � n− 2|S| − �n−|S|
2|S| �; the inequality is

tight for n sufficiently large with respect to |S|.
(b) We have Id(G− v)− Id(G) � n

2 − ε, with ε = 2 if n ∈ {2, 4, 5, 6, 8}, ε = 1
otherwise; the inequality is tight.

(c) IfG is bipartite, then Id(G− v)− Id(G) � n−log2(n−log2 n)

2 −1; the inequality
is tight.
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So, if one deletes a vertex, the identification number cannot drop by more than one,
and can increase by a quantity close to n/2.

• The case r � 2

Now both Idr(G−v)−Idr(G) and Idr(G)−Idr(G−v) can be large: the difference
Idr(G− v)− Idr(G) can increase to approximately n

4 (for even r) and n(3r−1)
12r (for

odd r), or n(2r−2)
2r+1 , according to whether we want the graphs to be connected or not,

and Idr(G)− Idr(G− v) to approximately n(r−1)
r

.

Theorem 101 ([36]) Let n be the order of G and v ∈ V .

(a) Let r � 2 be even. There exist two connected graphs, G and G − v, such that
Idr(G− v)− Idr(G) � n

4 − (r + 1).
(b) Let r � 3 be odd. There exist two connected graphs, G and G − v, such that

Idr(G− v)− Idr(G) � n(3r−1)
12r − r .

(c) Let r � 2. There exist two graphs, G and G − v, such that Idr(G − v) −
Idr(G) � (n−1)(2r−2)

2r+1 − 2r .

Theorem 102 ([36]) Let n be the order of G and v ∈ V . Then there exist two
connected graphs,G andG−v, such that Idr(G)−Idr (G−v) � (n−3r−1)(r−1)+1

r
.

Whether all these inequalities can be substantially improved is an open problem.
Figure 16 illustrates Theorem 102 for n = 17, r = 3.

6.2.3 Criticality Concepts

In this section, r = 1. Let π stand for LD = LD1 or Id = Id1. A graph G =
(V ,E) is said to be π+-edge removal critical, or π+-ER-critical, if π(G − e) >
π(G) for all e ∈ E, and π−-ER-critical if π(G − e) < π(G) for all e ∈ E.
Similarly, one can define π+-vertex removal critical graphs and π−-vertex removal
critical graphs.

For instance, it is possible to characterize all graphs that are LD+-ER-critical.
Let H = (V1 ∪ V2, E) be a connected bipartite graph such that: for every w ∈ V2
and for every nonempty subset V ′1 ⊆ N(w) there exists a unique w′ ∈ V2 such that
N(w′) = V ′1. Let H be the set of all such graphs, see Figure 17 for an example.

Theorem 103 ([21]) A nontrivial connected graph G is LD+-ER-critical if and
only if G ∈ H.

Fig. 16 In each graph, the black vertices form an optimal 3-Id code, and Id3(G)− Id3(G− v) =
13 − 8 = 5.
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Fig. 17 Two graphs
belonging to H [21].

A nonempty graph is LD+-ER-critical if and only if it is the disjoint union of
independent sets and of graphs in H.

For more results, see, e.g., [92] for graphs which are critical for identification, or
[62] and [63] for locating-domination.

In Section 6.1, we mostly showed what a twin-free graph can become when we
delete vertices; so far, in Section 6.2 we studied what the identification and locating-
domination numbers can become when adding or deleting vertices or edges; but we
can also be interested in what an existing (optimal) code becomes when edges or
vertices are deleted or added—this leads naturally to the notion of robustness: an
r-Id code C is t-edge-robust [111] in G if C remains r-Id in all the graphs obtained
from G by adding or deleting edges, with a total amount of additions and deletions
at most t ; see also, among others, [114, 139]. Different definitions exist for t-vertex-
robust codes, see [111, 159].

7 Number of Optimal Codes

In this section, we are interested in graphs with many optimal codes—or only one.
In order to obtain a large number of optimal 1-Id codes, Honkala, Hudry, &

Lobstein [110] considered in 2015 the binary 3-cube and used it to build a graph
with 8k + 1 vertices, k � 1, admitting at least 56k + 32k × 56k−1 optimal 1-Id
codes, of size 4k, then they built graphs of higher orders and numbers of optimal
codes, until they obtained the following result.

Theorem 104 ([110]) There exist infinitely many connected graphs of order n
admitting approximately 20.770×n different optimal 1-identifying codes.

For r > 1, they used trees admitting many optimal codes, and combined them.

Theorem 105 ([110]) Let r � 1 be an integer and ε > 0 be a real. There

exist infinitely many connected graphs of order n admitting 2

(
1+log2 5

2 −ε
)
n

different
optimal r-identifying codes.

Note that 1+log2 5
2 ≈ 0.664. An obvious upper bound is

(
n
� n2 �

)
, which, using Stirling’s

formula, can be approximated above by 2n− 1
2 log2 n; to reduce the gap between these

lower and upper bounds remains an open problem.
In [95] there is the description of graphs G where every k-set of vertices is a

1-Id code, but the codes are not necessarily optimal, that is, k may be different from
Id1(G). See a small example in Figure 18(a).
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Fig. 18 (a) A graph where all sets with 7 vertices are 1-identifying codes (not optimal). (b)
Codewords are in black. Each code inside T1, T2, T3, T4, T1 ∪ T2, T2 ∪ T3, T2 ∪ T4, T1 ∪ T2 ∪ T3,
T1 ∪ T2 ∪ T4, T2 ∪ T3 ∪ T4, T1 ∪ T2 ∪ T3 ∪ T4 is a unique optimal 1-locating-dominating code.

Fig. 19 Black vertices will be part of a LD code. (a) The graph Gx . (b) The graph Hi .

On the other hand, a characterization of trees admitting a unique optimal 1-LD
code is given in [19], see examples of such trees in Figure 18(b).

For complexity issues related to the uniqueness of optimal codes, see Section 8.2.

8 Complexity

8.1 How Hard Is It to Find Optimal Codes?

For any integer r � 1, we consider the following two decision problems.

r-LD CODE
Instance: A graph G = (V ,E) and an
integer k � |V |.
Question: Does G admit an r-locating-
dominating code of size at most k?

r-Id CODE
Instance: A graphG = (V ,E) and
an integer k � |V |.
Question: Does G admit an r-
identifying code of size at most k?

Theorem 106 ([60]) The problem 1-LD CODE is NP-complete.

Proof. We simplify the 1987 proof by Colbourn, Slater, & Stewart in [60]. We take
an arbitrary instance of 3-SAT, that is, a set X = {x1, . . . , xn} of variables and a
set C = {c1, . . . , cm} of clauses of size 3. For each variable x, we construct the 5-
vertex graph Gx = (Vx, Ex) given in Figure 19(a), in which additional edges may
be incident only with x or x.

For each clause ci = {�i,1, �i,2, �i,3}, we construct the 3-vertex graph Hi =
(Wi, Fi) given by Figure 19(b), where the 3 edges incident with ei and not with fi ,
are incident with �i,1, �i,2, and �i,3. We claim that the resulting graphG, whose order
5n + 3m is polynomial with respect to the size of the instance of 3-SAT, admits a
LD code of size k = 2n+m if and only if the set of clauses C is satisfiable.
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(a) If C is satisfiable, take as codewords the n vertices bx , the m vertices fi , 1 �
i � m, then for each variable x ∈ X, whichever of x and x is true. This code, of
size k, is locating-dominating, in particular because ei and gi are separated by at
least one vertex corresponding to a true literal, i.e., are separated by a codeword.

(b) Let C be a LD code inG, of size k. Obviously, |C ∩Vx | � 2 and |C ∩Wi | � 1;
therefore, thanks to the choice of k, we have |C ∩ Vx | = 2 and |C ∩Wi | = 1.
Also, because gi must be dominated by C, we have |C ∩ {gi, fi}| = 1 and
none of the vertices ei is in C. This implies that |C ∩ {x, x}| = 1, because if
C ∩ {x, x} = ∅, then the non-codewords x and x are not separated by C (the
vertex dx cannot do it), and if |C∩{x, x}| = 2, then bx and ax are not dominated
by C. So we can define a valid truth assignment of the variables by setting x true
if and only if x ∈ C.

(i) If C ∩ {gi, fi} = {gi}, then ei must be dominated by a codeword of type
x or x; (ii) the same is true if C ∩ {gi, fi} = {fi}, because gi and ei must
be separated by the code. This shows that every clause ci is satisfied by this
assignment.

� 
The same result for r � 2 was stated in [26] in 1995. We indicate the 2003
reference [40], which gives a proof.

Theorem 107

(a) ([26]), ([40]) For any r > 1, the problem r-LD CODE is NP-complete.
(b) ([57] for r = 1), ([40]) For any r � 1, the problem r-Id CODE is NP-complete.

This means that, given G and r , determining LDr(G) or Idr(G), or finding an
optimal r-LD or r-Id code, is NP-hard.

Note that Theorem 107 holds even if the instances are restricted to bipartite
graphs; it also exists for bipartite oriented graphs [39]. For more on complexity, see
[4, 6] for identification in planar graphs with arbitrarily high girth or low maximal
degree, or [87] for interval and permutation graphs; Table 1 in [80] extends Table 1.8
in [79] and summarizes what was known around 2015 about the complexity of
certain classes of graphs, for LD and Id codes, as well as dominating codes, for
comparison.

See [118, 119] for identification in the binary n-cube, and [121] for problems
closely related, such as the search for an r-Id code containing a prescribed vertex
subset. For concepts close to locating-domination and identification that will be
surveyed in Section 9: complexity results on (r,� �)-identifying codes are given
in [6], on watching systems in [7], on open neighborhood locating-dominating codes
in [164], on metric bases in [93, p. 204]; usually, the decision problems are NP-
complete, even for some restricted classes of graphs, but linear for trees (when r =
1). The problem 1-LD CODE is also linear for series parallel graphs [60], and so is
1-Id CODE for block graphs [1].

For approximability issues, see, e.g., [80] (where Table 2 gives a state of play)
or [87].
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Complexity can bring what may look like surprises [79]: there are classes of
graphs in which 1-LD CODE is polynomial and 1-Id CODE is NP-complete, and,
if we define the decision problem 1-DOM CODE similarly to 1-LD CODE or 1-Id
CODE, there are even classes of graphs in which 1-LD CODE and 1-Id CODE are
polynomial, whereas 1- DOM CODE is NP-complete.

8.2 Uniqueness of Optimal Codes

We consider the following decision problems, stated for fixed r � 1.

UNIQUE OPTIMAL r-LD CODE
Instance: A graph G = (V ,E).
Question: DoesG admit a unique opti-
mal r-locating-dominating code?

UNIQUE OPTIMAL r-Id CODE
Instance: A graph G = (V ,E).
Question: DoesG admit a unique opti-
mal r-identifying code?

In [123], it is proved, among other results, that for every r � 1, these two problems
are NP-hard and belong to the class LNP (also denoted by PNP [O(log n)] or Θ2),
which contains the decision problems which can be solved by applying, with a
number of calls which is logarithmic with respect to the size of the instance, a
subprogram able to solve an appropriate problem in NP.

9 Related Concepts, Generalizations

• One of the first possible generalizations is to consider that more than one vertex
may need to be retrieved by the code, and usually one puts a limit � on the number
of these vertices. Therefore, an (r,� �)-locating-dominating code C in a graph
G = (V ,E) is an r-dominating code such that for all X ⊆ V \ C, Y ⊆ V \ C,
such that X �= Y , |X| � �, |Y | � �, we have

⋃

u∈X
Nr(u) ∩ C �=

⋃

v∈Y
Nr(v) ∩ C.

One can similarly define (r,� �)-identifying codes. Both generalizations, and
other similar ones, have been studied mostly in the n-cube and in the grids; we
refer to, e.g., [70, 73, 86, 97, 112, 116, 134, 137, 150].

• Next, considering that using r-LD or r-Id codes amounts to using r-
neighborhoods centered at the codewords, one can think of changing the pattern
surrounding a codeword.

One choice of pattern is, given G = (V ,E) and r � 1, to consider that every
codeword c ∈ C can check a connected subset of Nr [c], instead of the whole set
Nr [c] for an r-identifying code, and that several codewords can be on the same
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vertex. This leads to the notion of watching systems [7], which are more complex
but can be very efficient: consider, for instance, the star K1,n−1, which requires as
many as n − 1 codewords for 1-identification and even for 1-locating-domination,
and as few as �log2(n + 1)� if one puts suitable watchers at the center of the star.
See also [8, 9]. When a watching system has at most one codeword on each vertex,
we talk of choice identification [27].

Other patterns for different graphs can be thought of: cycles, paths (including
paths of even order in the infinite path, as opposed to odd paths which are closed
neighborhoods around their centers), squares of even side in Z × Z, as opposed
to odd squares, which are closed neighborhoods in the king grid, etc. See, e.g.,
[85, 120, 162].

• A slight modification in the definition of a 1-identifying code leads to open
neighborhood locating-dominating codes (OLD codes): an OLD code C is such
that for every two vertices u, v of V (G), the sets N(u) ∩ C and N(v) ∩ C
are nonempty and different. This was introduced in [115] (for r � 1 and for
identification of sets of vertices) in the binary n-cube, then extended to all graphs
in [164] (for r = 1). This describes a situation where an intruder at a vertex v can
prevent the detection device at v from signaling the intrusion, that is, v can only
check N(v). In most of our models, we assumed that a codeword correctly sent
a 1 if it detected something in its neighborhood, a 0 otherwise. The definition
of OLD codes is one of several definitions for the so-called fault-tolerant codes,
where different scenarios are considered for the alarms given by the codewords.

If OLD(G) denotes the minimum size of an OLD code in G, the only graphs
with OLD(G) = |V (G)| are the three graphs given by Figure 20 and the only
graphs with OLD(G) = 2 are the complete graphs K2 and K3 [51]. Another
representative result is that the minimum density of an OLD code in the triangular
grid is 4/13 ≈ 0.3077 [136], to be compared with 0.25 for a 1-identifying code, see
Theorem 32. For more on this topic, see also, e.g., [163, 165, 176].
One can also mention here the liar’s problem, when the vertices of C can tell
precisely where the malfunctioning vertex v is if it belongs to their closed neighbor-
hoods, so a dominating code would be enough, except that any one codeword in the
closed neighborhood of v can lie, that is, either misidentify any vertex in its closed
neighborhood as v, or fail to report any vertex. For instance, three codewords are
necessary and sufficient in the complete graph Kn with n � 3. See [173] or [161].

• Another related definition is the following: a code C is strongly r-
identifying [115] if for all v1 ∈ V , v2 ∈ V , v1 �= v2, the sets {Nr [v1] ∩
C,Nr(v1) ∩ C} and {Nr [v2] ∩ C,Nr(v2) ∩ C} are disjoint; this can be extended

Fig. 20 The three graphs G = (V ,E) with OLD(G) = |V |.
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to codes identifying more than one vertex. See [109], where the best density for
a strongly 1-Id code in the triangular grid is proved to be 6/19 ≈ 0.3158, or
[138, 141].

• Using identifying codes in search of one defective vertex can be seen as asking
to the codewords, all at one time: “Is there a defective vertex in your closed
neighborhood?” Adaptive identification consists in asking the queries one by
one, taking into account the previous answers. So, after the first yes answer is
obtained in one neighborhood, we dichotomize this neighborhood with other
neighborhoods (= new queries) so as to minimize the maximum number of
queries [12, 127, 135].

• The notions of 1-LD and 1-Id codes can be modified by adding the condition
that the code, instead of being dominating, must be total dominating: a total
dominating code C of a graph G = (V ,E) is a locating-total dominating code
if for every pair of distinct vertices u and v in V \ C, one has N(u) ∩ C �=
N(v) ∩ C, and C is a differentiating-total dominating code, or an identifying-
total dominating code, if for every pair of distinct vertices u and v in V ,
N [u] ∩ C �= N [v] ∩ C. See, e.g., [22, 49, 53, 103, 105, 129, 146].

• An older way of locating vertices is the following: given a graph G = (V ,E)

and a code C = {c1, c2, . . . , ck}, the C-location of a vertex v ∈ V is the distance
vector (d(v, c1), d(v, c2), . . . , d(v, ck)). If no two vertices have the same C-
location, then C is said to be resolving, as introduced in [101], or locating,
as introduced independently in [167], around 1975. An optimal resolving code
is called a metric basis and its size is the metric dimension of the graph. For
example, the only graphs with metric dimension 1 are the paths, for which each
endvertex constitutes a resolving code. See also [24, 87], or [100]; see [104]
for metric-locating-domination (where the code must also be 1-dominating),
and [48] for the related concepts of distance-location and external distance-
location.

Moreover, if we have a proper vertex coloring c with k colors, and if Π =
(C1, C2, . . . , Ck) is the resulting partition of V , we can define, for every v ∈ V ,
the color code of v, that is, the distance vector (d(v, C1), d(v, C2), . . . , d(v, Ck)).
If distinct vertices have distinct color codes, then c is called a locating-coloring.
The locating-chromatic number of G is the minimum number of colors in a
locating-coloring. See, e.g., [11, 46, 47]. Other more or less distant concepts using
colorings exist, such as locally identifying colorings [69], and many more, see, e.g.,
[148, 180, 181].

• For the model of information retrieval in associative memories, see, e.g., [132,
140, 179].

• The d-identifying codes [177] generalize Id codes by endowing every vertex with
a positive integer cost, which will give a global cost to the code that may be
different from its size, and with a positive integer weight which, together with d,
allows and measures a degree of uncertainty in the identification.

• Another parameter, the propagation time, can be considered; in this model, a
fault at one vertex v in a weighted digraph spreads along the arcs and reaches
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any out-neighbor w in a time equal to the weight of the arc vw, then spreads
from w, and so on. See, e.g., [14, 158].

• Other definitions: paired-LD or Id codes (the code must be paired-dominating),
co-isolated LD or Id codes (the code C is such that there exists at least one
isolated vertex in 〈V −C〉), independent LD or Id codes, connected codes, weak
r-codes and light r-codes, self -LD or Id codes, solid-LD codes.

It is also possible to generalize these concepts to hypergraphs, and of course,
some of these definitions can be combined, e.g., connected vertex-robust identifying
codes [78].

10 Concluding Remarks, Open Problems, Conjectures

We have tried to give an overview of the major results on locating-domination and on
identification. We apologize in advance if your favorite variation or result is omitted.
We simply refer people interested to know more about these concepts to [142] for
more literature on the topic; they can search for keywords there, or on the web for
even more references.

We conclude with two seemingly paradoxical remarks partly collected
from [160]:

(a) For some graphs, increasing r , i.e., increasing the power of the codewords, can
require more codewords; this was first noticed in [26], where a tree T is given,
such that LD2(T ) = LD3(T ) = 6 and LD4(T ) = 5, while LD7(T ) > 6.
Paths provide similar cases for identification; for instance, if k � 1, then by
Theorem 44 we have Id1(P10k+5) = 5k+3, whereas by Theorem 49(a) we have
Id2(P10k+5) = 5k+4. In the case of the binary n-cube, we have Id1(F

6) = 19,
Id2(F

6) = 8, Id3(F
6) = 7, Id4(F

6) = 18, Id5(F
6) = 63.

This paradox can be understood when r becomes relatively large with respect
to the graph: if the r-neighborhoods grow too much, they cannot separate
anything anymore; the extremal case is when r reaches the diameter of the
graph, where n − 1 codewords are needed for an r-LD code, and no r-Id code
exists. But this is not the case for the example of the path P10k+5 above.

(b) If we take a path or a cycle and make it longer, it may need fewer codewords;
for instance, for k � 1, one has Id2(C10k+6) = Id2(C10k+5)− 2.

The discussion following Theorem 62 gives another example, which however
can be explained by the fact that increasing the dimension n of the cube makes
r not too large with respect to n anymore.

Finally, we recapitulate the open problems and conjectures given throughout the
text.

Open Problem 1 [2020] (see End of Section 3) For r � 2, most results on
the costs of locating-domination vs domination are exact but valid for n large.
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(a) Establish results for all n. (b) Reduce the gap between lower and upper bounds
for FLD,γ (r, n).

Open Problem 2 [2011] (see Theorem 87) For r � 5, find the exact value of
fr(Idr), knowing that it lies between �log2(2r + 4)� and r + 1.

Open Problem 3 [2007] (see End of Section 6.1.1) (a) Apart from P5, do 2-
terminal graphs exist? (b) There exist r-terminal graphs for r ∈ {3, 4, 5}, but are
they in finite or infinite number?

Open Problem 4 [2013] Improve the bounds in Theorems 98, 101 and 102.

Open Problem 5 [2015] (see Theorems 104 and 105) Reduce the gap between the
lower and upper bounds on the number of different optimal identifying codes.

Conjecture 1 [1995] (see Theorem 54) For any tree T of order n, we have
LDr(T ) >

n
r+2 .

Conjecture 2 [1999] (see the discussion following Theorem 60) (a) We have
Idr1+r2(Fn1+n2) � Idr1(Fn1)× Idr2(Fn2). (b) We have Id(Fn+1) � 2Id(Fn).

Conjecture 3 [2010] (see the discussion after Theorem 62) For a fixed r > 1, there
exists n(r) such that for all n � n(r), we have Idr(Fn) � Idr(Fn+1).

Conjecture 4 [2012] (see the discussion following Theorem 71) There exists a
constant c such that, for every nontrivial connected 1-twin-free graph G, with
maximum degree Δ, we have Id1(G) � n− n

Δ
+ c.

Conjecture 5 [2009] (see Theorem 79) The value Fr,n(δ) is close, possibly equal,
to �n−2

r
�.

References

1. G. R. Argiroffo, S. M. Bianchi, Y. P. Lucarini and A. K. Wagler, A linear-time algorithm
for the identifying code problem on block graphs. Electron. Notes Discrete Math. 62 (2017),
249–254.

2. G. R. Argiroffo, S. M. Bianchi, Y. P. Lucarini and A. K. Wagler, Polyhedra associated with
identifying codes in graphs. Discrete Appl. Math. 245 (2018), 16–27.

3. D. Auger, Induced paths in twin-free graphs. Electron. J. Combin. 15(1) (2008), N17.
4. D. Auger, Minimal identifying codes in trees and planar graphs with large girth. European J.

Combin. 31 (2010), 1372–1384.
5. D. Auger, I. Charon, I. Honkala, O. Hudry and A. Lobstein, Edge number, minimum degree,

maximum independent set, radius and diameter in twin-free graphs. Adv. Math. Commun. 3(1)
(2009), 97–114. Erratum 3(4) (2009), 429–430.

6. D. Auger, I. Charon, O. Hudry and A. Lobstein, Complexity results for identifying codes in
planar graphs. Int. Trans. Oper. Res. 17 (2010), 691–710.

7. D. Auger, I. Charon, O. Hudry and A. Lobstein, Watching systems in graphs: an extension of
identifying codes. Discrete Appl. Math. 161 (2013), 1674–1685.

8. D. Auger, I. Charon, O. Hudry and A. Lobstein, Maximum size of a minimum watching
system and the graphs achieving the bound. Discrete Appl. Math. 164 (2014), 20–33.



Locating-Domination and Identification 293

9. D. Auger and I. Honkala, Watching systems in the king grid. Graphs Combin. 29 (2013),
333–347.

10. C. Balbuena, F. Foucaud and A. Hansberg, Locating-dominating sets and identifying codes in
graphs of girth at least 5. Electron. J. Combin. 22(2), (2015) P2.15.

11. A. Behtoei and M. Anbarloei, A bound for the locating chromatic number of trees.
Transactions on Combinatorics 4(1) (2015), 31–41.

12. Y. Ben-Haim, S. Gravier, A. Lobstein and J. Moncel, Adaptive identification in torii in the
king lattice. Electron. J. Combin. 18(1) (2011), P116.

13. Y. Ben-Haim and S. Litsyn, Exact minimum density of codes identifying vertices in the square
grid. SIAM J. Discrete Math. 19 (2005), 69–82.

14. T. Y. Berger-Wolf, W. E. Hart and J. Saia, Discrete sensor placement problems in distribution
networks. Math. Comput. Modelling 42 (2005), 1385–1396.

15. N. Bertrand, Codes identifiants et codes localisateurs-dominateurs sur certains graphes.
Mémoire de stage de maîtrise. ENST, Paris, France, (2001), 28 pages.

16. N. Bertrand, I. Charon, O. Hudry and A. Lobstein, Identifying and locating-dominating codes
on chains and cycles. European J. Combin. 25 (2004), 969–987.

17. N. Bertrand, I. Charon, O. Hudry and A. Lobstein, 1-identifying codes on trees. Australas. J.
Combin. 31 (2005), 21–35.

18. U. Blass, I. Honkala and S. Litsyn, On the size of identifying codes. Lecture Notes in Comput.
Sci. 1719 (1999), 142–147.

19. M. Blidia, M. Chellali, R. Lounes and F. Maffray, Characterizations of trees with unique
minimum locating-dominating sets. JCMCC 76 (2011), 225–232.

20. M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and
identifying codes in trees. Australas. J. Combin. 39 (2007), 219–232.

21. M. Blidia and W. Dali, A characterization of locating-domination edge critical graphs.
Australas. J. Combin. 44 (2009), 297–300.

22. M. Bouznif, Algorithmes génériques en temps constant pour la résolution de problèmes
combinatoires dans la classe des rotagraphes et fasciagraphes. Application aux codes identi-
fiants, dominant-localisateurs et total-dominant-localisateurs. Thèse de Doctorat. Université
de Grenoble, France, (2012), 131 pages.

23. M. Bouznif, F. Havet, M. Preissmann, Minimum-density identifying codes in square grids.
Lecture Notes in Comput. Sci. 9778 (2016), 77–88.

24. J. Cáceres, D. Garijo, M. L. Puertas and C. Seara, On the determining number and the metric
dimension of graphs. Electron. J. Combin. 17(1) (2010), R63.

25. J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo and M. L. Puertas, Locating-dominating
codes: bounds and extremal cardinalities. Appl. Math. Comput. 220 (2013), 38–45.

26. D. I. Carson, On generalized location-domination. In Graph Theory, Combinatorics, and
Applications: Proceedings of the 7th Quadrennial International Conference on the Theory
and Applications of Graphs, Wiley, 1 (1995), 161–179.

27. T. P. Chang and L. D. Tong, Choice identification of a graph. Discrete Appl. Math. 167 (2014),
61–71.

28. E. Charbit, I. Charon, G. Cohen, O. Hudry and A. Lobstein, Discriminating codes in bipartite
graphs: bounds, extremal cardinalities, complexity. Adv. Math. Commun. 4(2) (2008), 403–
420.

29. I. Charon, G. Cohen, O. Hudry and A. Lobstein, Links between discriminating and identifying
codes in the binary Hamming space. Lecture Notes in Comput. Sci. 4851 (2007), 267–270.

30. I. Charon, G. Cohen, O. Hudry and A. Lobstein, Discriminating codes in (bipartite) planar
graphs. European J. Combin. 29 (2008), 1353–1364.

31. I. Charon, G. Cohen, O. Hudry and A. Lobstein, New identifying codes in the binary
Hamming space. European J. Combin. 31 (2010), 491–501.
See also: perso.telecom-paristech.fr/∼hudry/newIdentifyingNcube.html

32. I. Charon, S. Gravier, O. Hudry, A. Lobstein, M. Mollard and J. Moncel, A linear algorithm
for minimum 1-identifying codes in oriented trees. Discrete Appl. Math. 154 (2006), 1246–
1253.



294 A. Lobstein et al.

33. I. Charon, I. Honkala, O. Hudry and A. Lobstein, General bounds for identifying codes in
some infinite regular graphs. Electron. J. Combin. 8(1) (2001), R39.

34. I. Charon, I. Honkala, O. Hudry and A. Lobstein, The minimum density of an identifying
code in the king lattice. Discrete Math. 276 (2004), 95–109.

35. I. Charon, I. Honkala, O. Hudry and A. Lobstein, Structural properties of twin-free graphs.
Electron. J. Combin. 14(1) (2007), R16.

36. I. Charon, I. Honkala, O. Hudry and A. Lobstein, Minimum sizes of identifying codes in
graphs differing by one vertex. Cryptogr. Commun. 5 (2013), 119–136.

37. I. Charon, I. Honkala, O. Hudry and A. Lobstein, Minimum sizes of identifying codes in
graphs differing by one edge. Cryptogr. Commun. 6 (2014), 157–170.

38. I. Charon, O. Hudry and A. Lobstein, Identifying codes with small radius in some infinite
regular graphs. Electron. J. Combin. 9(1) (2002), R11.

39. I. Charon, O. Hudry and A. Lobstein, Identifying and locating-dominating codes: NP-
completeness results for directed graphs. IEEE Trans. Inform. Theory IT-48 (2002), 2192–
2200.

40. I. Charon, O. Hudry and A. Lobstein, Minimizing the size of an identifying or locating-
dominating code in a graph is NP-hard. Theoret. Comput. Sci. 290 (2003), 2109–2120.

41. I. Charon, O. Hudry and A. Lobstein, Possible cardinalities for identifying codes in graphs.
Australas. J. Combin. 32 (2005), 177–195.

42. I. Charon, O. Hudry and A. Lobstein, Possible cardinalities for locating-dominating codes in
graphs. Australas. J. Combin. 34 (2006), 23–32.

43. I. Charon, O. Hudry and A. Lobstein, Extremal cardinalities for identifying and locating-
dominating codes. Discrete Math., 307 (2007), 356–366.

44. I. Charon, O. Hudry and A. Lobstein, Extremal values for identification, domination and
maximum cliques in twin-free graphs. Ars Combin. 101 (2011), 161–185.

45. I. Charon, O. Hudry and A. Lobstein, Extremal values for the maximum degree in a twin-free
graph. Ars Combin. 107 (2012), 257–274.

46. G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, The locating-chromatic
number of a graph. Bull. Inst. Combin. Appl. 36 (2002), 89–101.

47. G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, Graphs of order n with
locating-chromatic number n− 1. Discrete Math. 269 (2003), 65–79.

48. G. Chartrand, D. Erwin, P. J. Slater and P. Zhang, Distance-location numbers of graphs. Util.
Math. 63 (2003), 65–79.

49. M. Chellali, On locating and differentiating-total domination in trees. Discuss. Math. Graph
Theory 28 (2008), 383–392.

50. M. Chellali, M. Mimouni and P. J. Slater, On locating-domination in graphs. Discuss. Math.
Graph Theory 30 (2010), 223–235.

51. M. Chellali, N. J. Rad, S. J. Seo and P. J. Slater, On open neighborhood locating-dominating
in graphs. Electron. J. Graph Theory and Applications 2(2) (2014), 87–98.

52. C. Chen, C. Lu and Z. Miao, Identifying codes and locating-dominating sets on paths and
cycles. Discrete Appl. Math. 159 (2011), 1540–1547.

53. X. Chen and M. Y. Sohn, Bounds on the locating-total domination number of a tree. Discrete
Appl. Math. 159 (2011), 769–773.

54. G. Cohen, S. Gravier, I. Honkala, A. Lobstein, M. Mollard, Ch. Payan and G. Zémor,
Improved identifying codes for the grid. Electron. J. Combin. 6(1) (1999), Comments to R19.

55. G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, Elsevier, Amsterdam,
1997.

56. G. Cohen, I. Honkala, A. Lobstein and G. Zémor, Bounds for codes identifying vertices in the
hexagonal grid. SIAM J. Discrete Math. 13 (2000), 492–504.

57. G. Cohen, I. Honkala, A. Lobstein and G. Zémor, On identifying codes. In Proceedings of
DIMACS Workshop on Codes and Association Schemes ’99, Piscataway, USA, Barg A. and
Litsyn S. (eds), American Mathematical Society, 2001, 56 97–109.

58. G. Cohen, I. Honkala, A. Lobstein and G. Zémor, On codes identifying vertices in the two-
dimensional square lattice with diagonals. IEEE Trans. Comput. 50 (2001), 174–176.



Locating-Domination and Identification 295

59. N. Cohen and F. Havet, On the minimum size of an identifying code over all orientations of a
graph. Electron. J. Combin. 25(1) (2018), P1.49.

60. C. J. Colbourn, P. J. Slater and L. K. Stewart, Locating dominating sets in series parallel
networks. Congr. Numer. 56 (1987), 135–162.

61. A. Cukierman and G. Yu, New bounds on the minimum density of an identifying code for the
infinite hexagonal grid. Discrete Appl. Math. 161 (2013), 2910–2924.

62. W. Dali and M. Blidia, Criticality indices of locating-domination of paths and cycles. Util.
Math. 94 (2014), 199–219.

63. W. Dali and M. Blidia, On locating and locating-total domination edge addition critical
graphs. Util. Math. 94 (2014), 303–313.

64. M. Daniel, Codes identifiants. Mémoire pour le DEA ROCO. Université Joseph Fourier,
Grenoble, France, (2003), 46 pages.

65. M. Daniel, S. Gravier and J. Moncel, Identifying codes in some subgraphs of the square
lattice. Theoret. Comput. Sci. 319 (2004), 411–421.

66. R. Dantas, F. Havet and R. M. Sampaio, Identifying codes for infinite triangular grids with a
finite number of rows. Discrete Math. 340 (2017), 1584–1597.

67. R. Dantas, F. Havet and R. M. Sampaio, Minimum density of identifying codes of king grids.
Discrete Math. 341 (2018), 2708–2719.

68. R. C. Entringer and L. D. Gassman, Line-critical point determining and point distinguishing
graphs. Discrete Math., 10 (1974), 43–55.

69. L. Esperet, S. Gravier, M. Montassier, P. Ochem and A. Parreau, Locally identifying coloring
of graphs. Electron. J. Combin. 19(2) (2012), P40.

70. G. Exoo, V. Junnila and T. Laihonen, On location-domination of set of vertices in cycles and
paths. Congr. Numer. 202 (2010), 97–112.

71. G. Exoo, V. Junnila and T. Laihonen, Locating-dominating codes in paths. Discrete Math. 311
(2011), 1863–1873.

72. G. Exoo, V. Junnila and T. Laihonen, Locating-dominating codes in cycles. Australas. J.
Combin. 49 (2011), 177–194.

73. G. Exoo, V. Junnila, T. Laihonen and S. Ranto, Locating vertices using codes. Congr. Numer.
191 (2008), 143–159.

74. G. Exoo, V. Junnila, T. Laihonen and S. Ranto, Upper bounds for binary identifying codes.
Adv. in Appl. Math. 42 (2009), 277–289.

75. G. Exoo, V. Junnila, T. Laihonen and S. Ranto, Improved bounds on identifying codes in
binary Hamming spaces. European J. Combin. 31 (2010), 813–827.

76. G. Exoo, T. Laihonen and S. Ranto, Improved upper bounds on binary identifying codes.
IEEE Trans. Inform. Theory IT-53 (2007), 4255–4260.

77. G. Exoo, T. Laihonen and S. Ranto, New bounds on binary identifying codes. Discrete Appl.
Math. 156 (2008), 2250–2263.

78. N. Fazlollahi, D. Starobinski and A. Trachtenberg, Connecting identifying codes and funda-
mental bounds. Proceedings of Information Theory and Applications Workshop ITA 2011, La
Jolla, USA (2011), 403–409.

79. F. Foucaud, Aspects combinatoires et algorithmiques des codes identifiants dans les graphes.
Thèse de Doctorat, Université Bordeaux 1, France, (2012), 194 pages (in English).

80. F. Foucaud, Decision and approximation complexity for identifying codes and locating-
dominating sets in restricted graph classes. J. Discrete Alg. 31 (2015), 48–68.

81. F. Foucaud, S. Gravier, R. Naserasr, A. Parreau, and P. Valicov, Identifying codes in line
graphs. J. Graph Theory 73 (2013), pp. 425–448.

82. F. Foucaud, E. Guerrini, M. Kovše, R. Naserasr, A. Parreau and P. Valicov, Classifying graphs
with minimum identifying codes of size n − 1, Abstracts of the 8th French Combinatorial
Conference, Orsay, France, 151 (2010).

83. F. Foucaud, E. Guerrini, M. Kovše, R. Naserasr, A. Parreau and P. Valicov, Extremal graphs
for the identifying code problem. European J. Combin. 32 (2011), 628–638.

84. F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud, On the size of identifying codes in
triangle-free graphs. Discrete Appl. Math. 160 (2012), 1532–1546.



296 A. Lobstein et al.

85. F. Foucaud and M. Kovše, Identifying path covers in graphs, J. Discrete Alg. 23 (2013), 21–
34.

86. F. Foucaud, T. Laihonen and A. Parreau, An improved lower bound for (1,� 2)-identifying
codes in the king grid. Adv. Math. Commun. 8 (2014), 35–52.

87. F. Foucaud, G. B. Mertzios, R. Naserasr, A. Parreau and P. Valicov, Identification, location-
domination and metric dimension on interval and permutation graphs: II. Algorithms and
complexity, Algorithmica 78 (2017), 914–944.

88. F. Foucaud, R. Naserasr and A. Parreau, Characterizing extremal digraphs for identifying
codes and extremal cases of Bondy’s theorem on induced subsets. Graphs Combin. 29 (2013),
463–473.

89. F. Foucaud and G. Perarnau, Bounds for identifying codes in terms of degree parameters.
Electron. J. Combin. 19(1) (2012), P32.

90. F. Foucaud, G. Perarnau and O. Serra, Random subgraphs make identification affordable. J.
Comb. 8 (2017), 57–77.

91. M. Frances and A. Litman, On covering problems of codes. Theory Comput. Syst. 30(2)
(1997), 113–119.

92. M. Frick, G. H. Fricke, C. M. Mynhardt and R. D. Skaggs, Critical graphs with respect to
vertex identification. Util. Math. 76 (2008), 213–227.

93. M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to the Theory of NP-
Completeness, Freeman, New York, 1979.

94. J. Gimbel, B. D. Van Gorden, M. Nicolescu, C. Umstead and N. Vaiana, Location with
dominating sets. Congr. Numer. 151 (2001), 129–144.

95. S. Gravier, S. Janson, T. Laihonen and S. Ranto, Graphs where every k-subset of vertices is
an identifying set. Discrete Math. Theor. Comput. Sci. 16 (2014), 73–88.

96. S. Gravier, R. Klasing and J. Moncel, Hardness results and approximation algorithms for
identifying codes and locating-dominating codes in graphs. Algorithmic Oper. Res. 3 (2008),
43–50.

97. S. Gravier and J. Moncel, Construction of codes identifying sets of vertices. Electron. J.
Combin. 12(1) (2005), R13.

98. S. Gravier and J. Moncel, On graphs having a V \ {x} set as an identifying code. Discrete
Math. 307 (2007), 432–434.

99. S. Gravier, J. Moncel and A. Semri, Identifying codes of cycles. European J. Combin. 27
(2006), 767–776.

100. A. Hakanen and T. Laihonen, On {�}-metric dimensions in graphs. Fund. Inform. 162 (2018),
143–160.

101. F. Harary and R. A. Melter, On the metric dimension of a graph. Ars Combin. 2 (1976), 191–
195. Addendum 4 (1977), 318.

102. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs,
Marcel Dekker, New York, 1998.

103. T. W. Haynes, M. A. Henning and J. Howard, Locating and total dominating sets in trees.
Discrete Appl. Math. 154 (2006), 1293–1300

104. M. A. Henning and O. R. Oellermann, Metric-locating-dominating sets in graphs. Ars
Combin. 73 (2004), 129–141.

105. M. A. Henning and N. J. Rad, Locating-total domination in graphs. Discrete Appl. Math. 160
(2012), 1986–1993.

106. C. Hernando, M. Mora and I. M. Pelayo, Nordhaus-Gaddum bounds for locating domination.
European J. Combin. 36 (2014), 1–6.

107. I. Honkala, An optimal locating-dominating set in the infinite triangular grid. Discrete Math.
306 (2006), 2670–2681.

108. I. Honkala, On r-locating-dominating sets in paths. European J. Combin. 30 (2009), 1022–
1025.

109. I. Honkala, An optimal strongly identifying code in the infinite triangular grid. Electron. J.
Combin. 17(1) (2010), R91.



Locating-Domination and Identification 297

110. I. Honkala, O. Hudry and A. Lobstein, On the number of optimal identifying codes in a twin-
free graph. Discrete Appl. Math. 180 (2015), 111–119.

111. I. Honkala, M. G. Karpovsky and L. B. Levitin, On robust and dynamic identifying codes.
IEEE Trans. Inform. Theory IT-52 (2006), 599–612.

112. I. Honkala and T. Laihonen, On identifying codes in the triangular and square grids. SIAM J.
Comput. 33 (2004), 304–312.

113. I. Honkala and T. Laihonen, On locating-dominating sets in infinite grids. European J.
Combin. 27 (2006), 218–227.

114. I. Honkala and T. Laihonen, On identifying codes that are robust against edge changes.
Inform. and Comput. 205 (2007), 1078–1095.

115. I. Honkala, T. Laihonen and S. Ranto, On strongly identifying codes. Discrete Math. 254
(2002), 191–205.

116. I. Honkala, T. Laihonen and S. Ranto, On locating-dominating codes in binary Hamming
spaces. Discrete Math. Theor. Comput. Sci. 6 (2004), 265–282.

117. I. Honkala and A. Lobstein, On the density of identifying codes in the square lattice. J.
Combin. Theory, Ser. B 85 (2002), 297–306.

118. I. Honkala and A. Lobstein, On identifying codes in binary Hamming spaces. J. Combin.
Theory, Ser. A 99 (2002), 232–243.

119. I. Honkala and A. Lobstein, On the complexity of the identification problem in Hamming
spaces. Acta Inform. 38 (2002), 839–845.

120. I. Honkala and A. Lobstein, On identification in Z2 using translates of given patterns. J. UCS
9(10) (2003), 1204–1219.

121. O. Hudry and A. Lobstein, More results on the complexity of identifying problems in graphs.
Theoret. Comput. Sci. 626 (2016), 1–12.

122. O. Hudry and A. Lobstein, Some results about a conjecture on identifying codes in complete
suns. Int. Trans. Oper. Res. 26 (2019), 732–746.

123. O. Hudry and A. Lobstein, Unique (optimal) solutions: Complexity results for identifying and
locating-dominating codes. Theoret. Comput. Sci. 767 (2019), 83–102.

124. O. Hudry and A. Lobstein, The compared costs of domination, location-domination and
identification. Discuss. Math. Graph Theory 40(1) (2020), 127–147.

125. S. Janson and T. Laihonen, On the size of identifying codes in binary hypercubes. J. Combin.
Theory, Ser. A 116 (2009), 1087–1096.

126. M. Jiang, Periodicity of identifying codes in strips. Inform. Process. Lett. 135 (2018), 77–84.
127. V. Junnila, Adaptive identification of sets of vertices in graphs. Discrete Math. Theor. Comput.

Sci. 14 (2012), 69–86.
128. V. Junnila, New lower bound for 2-identifying code in the square grid. Discrete Appl. Math.

161 (2013), 2042–2051.
129. V. Junnila, Optimal locating-total dominating sets in strips of height 3. Discuss. Math. Graph

Theory 35 (2015), 447–462.
130. V. Junnila and T. Laihonen, Optimal identifying codes in cycles and paths. Graphs Combin.

28 (2012), 469–481.
131. V. Junnila and T. Laihonen, Optimal lower bound for 2-identifying codes in the hexagonal

grid. Electron. J. Combin. 19(2) (2012), P38.
132. V. Junnila and T. Laihonen, Codes for information retrieval with small uncertainty. IEEE

Trans. Inform. Theory IT-60 (2014), 976–985.
133. V. Junnila, T. Laihonen and T. Lehtilä, On regular and new types of codes for location-

domination. Discrete Appl. Math. 247 (2018), 225–241.
134. M. G. Karpovsky, K. Chakrabarty and L. B. Levitin, On a new class of codes for identifying

vertices in graphs, IEEE Trans. Inform. Theory IT-44 (1998), 599–611.
135. Y. Kim, M. Kumbhat, Z. L. Nagy, B. Patkós, A. Pokrovskiy and M. Vizer, Identifying codes

and searching with balls in graphs. Discrete Appl. Math. 193 (2015), 39–47.
136. R. Kincaid, A. Oldham and G. Yu, Optimal open-locating-dominating sets in infinite

triangular grids. Discrete Appl. Math. 193 (2015), 139–144.



298 A. Lobstein et al.

137. T. Laihonen, Sequences of optimal identifying codes. IEEE Trans. Inform. Theory IT-48
(2002), 774–776.

138. T. Laihonen, Optimal codes for strong identification, European J. Combin. 23 (2002), 307–
313.

139. T. Laihonen, Optimal t-edge-robust r-identifying codes in the king lattice. Graphs Combin.
22 (2006), 487–496.

140. T. Laihonen, Information retrieval and the average number of input clues. Adv. Math.
Commun. 11 (2017), 203–223.

141. T. Laihonen and S. Ranto, Families of optimal codes for strong identification. Discrete Appl.
Math. 121 (2002), 203–213.

142. A. Lobstein, Watching systems, identifying, locating-dominating and discriminating codes in
graphs, a bibliography. https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf

143. A. McLoughlin, The complexity of computing the covering radius of a code. IEEE Trans.
Inform. Theory IT-30 (1984), 800–804.

144. R. Martin and B. Stanton, Lower bounds for identifying codes in some infinite grids. Electron.
J. Combin. 17(1) (2010), R122.

145. J. Moncel, Monotonicity of the minimum cardinality of an identifying code in the hypercube.
Discrete Appl. Math. 154 (2006), 898–899.

146. B. N. Omamalin, S. R. Canoy, Jr., and H. M. Rara, Differentiating total domination in graphs:
revisited. Internat. J. Math. Analysis 8 (2014), 2789–2798.

147. O. Ore, Theory of Graphs, American Mathematical Society, Providence, 1962.
148. A. Parreau, Problèmes d’identification dans les graphes. Thèse de Doctorat, Université de

Grenoble, France, (2012), 214 pages.
149. M. Pastori, Les codes identifiants ou comment sauver le Palais des flammes ? Découverte 369

(2010), 56–59.
150. M. Pelto, New bounds for (r,� 2)-identifying codes in the infinite king grid. Cryptogr.

Commun. 2 (2010), 41–47.
151. M. Pelto, Maximum difference about the size of optimal identifying codes in graphs differing

by one vertex. Discrete Math. Theor. Comput. Sci. 17(1) (2015), 339–356.
152. M. Pelto, On locating-dominating codes in the infinite king grid. Ars Combin. 124 (2016),

353–363.
153. N. J. Rad and H. Rahbani, Bounds on the locating-domination number and differentiating-

total domination number in trees. Discuss. Math. Graph Theory 38 (2018), 455–462.
154. H. Rahbani, N. J. Rad and S. M. MirRezaei, Bounds on the identifying codes in trees. Graphs

Combin. 35 (2019), 599–609.
155. D. F. Rall and P. J. Slater, On location-domination numbers for certain classes of graphs.

Congr. Numer. 45 (1984), 97–106.
156. S. Ranto, Optimal linear identifying codes. IEEE Trans. Inform. Theory IT-49 (2003), 1544–

1547.
157. S. Ranto, On binary linear r-identifying codes. Des. Codes Cryptogr. 60 (2011), 81–89.
158. N. S. V. Rao, Computational complexity issues in operative diagnosis of graph-based systems.

IEEE Trans. Comput. 42 (1993), 447–457.
159. S. Ray, R. Ungrangsi, F. De Pellegrini, A. Trachtenberg and D. Starobinski, Robust location

detection in emergency sensor networks. Proceedings of INFOCOM 2003, San Francisco,
USA, (2003), 1044–1053.

160. D. L. Roberts and F. S. Roberts, Locating sensors in paths and cycles: the case of 2-identifying
codes. European J. Combin. 29 (2008), 72–82.

161. M. L. Roden and P. J. Slater, Liar’s domination in graphs. Discrete Math. 309 (2009), 5884–
5890.

162. P. Rosendahl, On the identification of vertices using cycles. Electron. J. Combin. 10(1) (2003),
R7.

163. S. J. Seo, Open-locating-dominating sets in the infinite king grid. JCMCC 104 (2018), 31–47.
164. S. J. Seo and P. J. Slater, Open neighborhood locating-dominating sets. Australas. J. Combin.

46 (2010), 109–119.

https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf


Locating-Domination and Identification 299

165. S. J. Seo and P. J. Slater, OLD trees with maximum degree three. Util. Math. 94 (2014),
361–380.

166. J. L. Sewell and P. J. Slater, A sharp lower bound for locating-dominating sets in trees.
Australas. J. Combin. 60 (2014), 136–149.

167. P. J. Slater, Leaves of trees. Congr. Numer. 14 (1975), 549–559.
168. P. J. Slater, Domination and location in graphs. Research Report No. 93. National University

of Singapore, (1983).
169. P. J. Slater, Domination and location in acyclic graphs. Networks 17 (1987), 55–64.
170. P. J. Slater, Dominating and reference sets in a graph. J. Math. Phys. Sci. 22 (1988), 445–455.
171. P. J. Slater, Locating dominating sets and locating-dominating sets. In Graph Theory, Combi-

natorics, and Applications: Proceedings of the 7th Quadrennial International Conference on
the Theory and Applications of Graphs, Wiley, 2 (1995), 1073–1079.

172. P. J. Slater, Fault-tolerant locating-dominating sets. Discrete Math. 249 (2002), 179–189.
173. P. J. Slater, Liar’s domination. Networks 54 (2009), 70–74.
174. B. Stanton, Improved bounds for r-identifying codes of the hex grid. SIAM J. Discrete Math.

25 (2011), 159–169.
175. D. P. Sumner, Point determination in graphs. Discrete Math. 5 (1973), 179–187.
176. D. B. Sweigart, J. Presnell and R. Kincaid, An integer program for open locating dominating

sets and its results on the hexagon-triangle infinite grid and other graphs. Proceedings of
2014 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, USA
(2014), 29–32.

177. Y. Xiao, C. Hadjicostis and K. Thulasiraman, The d-identifying codes problem for vertex
identification in graphs: probabilistic analysis and an approximation algorithm. Proceedings
of COCOON 2006, 12th Annual International Computing and Combinatorics Conference,
Taipei, Taiwan (2006), 284–298.

178. M. Xu, K. Thulasiraman and X. D. Hu, Identifying codes of cycles with odd orders. European
J. Combin. 29 (2008), 1717–1720.

179. E. Yaakobi and J. Bruck, On the uncertainty of information retrieval in associative memories.
Proceedings of the 2012 IEEE International Symposium on Information Theory (2014), 106–
110.

180. J. Yao, X. Yu, G. Wang and C. Xu, Neighbor sum distinguishing total coloring of 2-degenerate
graphs. J. Combin. Optim. 34 (2017), 64–70.

181. Z. Zhang, X. Chen, J. Li, B. Yao, X. Lu and J. Wang, On adjacent-vertex-distinguishing total
coloring of graphs. Sci. China, Ser. A 48 (2005), 289–299.



Signed and Minus Dominating Functions
in Graphs

Liying Kang and Erfang Shan

1 Introduction

Dominating functions in domination theory have received much attention. A purely
graph-theoretic motivation is that the dominating function problem can be regarded
as a proper generalization of the classical domination problem. The study of
dominating functions was formally initiated in [2, 13, 16]. The literature on the
topic has been surveyed and detailed in [33, 45].

For a graph G = (V ,E) and for any real-valued function f : V → R, we define
f (S) = ∑

u∈S f (u). The weight of f is defined as f (V ). For a vertex v ∈ V ,
we denote f (N [v]) by f [v] for notational convenience, where N [v] = {u : uv ∈
E} ∪ {v}.

For an arbitrary set Y of the integers, a Y -dominating function of G is defined
as an integer-valued function f : V → Y such that f [v] ≥ 1 for every
v ∈ V . The notion of Y -dominating functions can be extended in a more general
situation. Let k be positive integer such that 1 ≤ k ≤ |V |. A (Y, k)-subdominating
function of G is defined as an integer-valued function f : V → Y such that
f [v] ≥ 1 for at least k vertices v ∈ V . We can obtain the definitions of
total Y -dominating function and total (Y, k)-subdominating function by simply
changing “closed” neighborhood N [v] in the definitions of Y -dominating function
and (Y, k)-subdominating function to “open” neighborhood N(v), respectively.
Obviously, when k = |V |, the (Y, k)-subdominating function and total (Y, k)-
subdominating function are the Y -dominating function and total Y -dominating

L. Kang
Department of Mathematics, Shanghai University, Shanghai, 200444, P.R. China
e-mail: lykang@shu.edu.cn

E. Shan (�)
School of Management, Shanghai University, Shanghai, 200444, P.R. China
e-mail: efshan@i.shu.edu.cn

© Springer Nature Switzerland AG 2020
T. W. Haynes et al. (eds.), Topics in Domination in Graphs, Developments in
Mathematics 64, https://doi.org/10.1007/978-3-030-51117-3_9

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51117-3_9&domain=pdf
mailto:lykang@shu.edu.cn
mailto:efshan@i.shu.edu.cn
https://doi.org/10.1007/978-3-030-51117-3_9


302 L. Kang and E. Shan

function, respectively. We say f is a minimal (Y, k)-subdominating function if there
does not exist a (Y, k)-subdominating function g : V → Y , f �= g, for which
g(v) ≤ f (v) for every v ∈ V .

Variations of domination are defined by taking the different weight subsets Y
of integers in the definition of a Y -dominating function or a (Y, k)-subdominating
function.

When Y = {0, 1}, we obtain the standard domination number. In this case, a Y -
dominating function of G is called a dominating function of a graph G and the set
of vertices assigned weight 1 is a dominating set ofG (see [57]). The corresponding
domination parameters are, respectively, called the domination number γ (G) and
upper domination number Γ (G) of G, which are now well studied in graph theory
[31].

In this chapter we survey main results concerning minus and signed domination
of graphs. Also, we list some conjectures and open problems which have yet to
be settled or solved on this subject. For more variations on signed and minus
domination, including studying these functions in digraphs, we refer the reader to
the survey paper [63].

1.1 Terminology and Notation

In general, we consider a simple graph G = (V ,E) with vertex set V and edge set
E. Let v be a vertex in V . The (open) neighborhood of v, NG(v), is defined as the
set of vertices adjacent to v, i.e., NG(v) = {u : uv ∈ E}. The closed neighborhood
of v is NG[v] = NG(v) ∪ {v}. We write dG(v) for the degree of v in G, and Δ(G)
and δ(G) denote the maximum degree and the minimum degree of G, respectively.
If the graph G is clear from the context, we simply write N(v),N[v], d(v),Δ, and
δ for NG(v),NG[v], dG(v),Δ(G), and δ(G).

As usual, Pn, Cn, and Kn denote a path, a cycle, and a complete graph on n
vertices, respectively. A clique ofG is a complete subgraph ofG. The clique number
of G, denoted by ω(G), is the cardinality of a maximum clique of G. For S ⊆ V ,
denote byG[S] the subgraph induced by S and by dS(v) the number of vertices in S
adjacent to v. Let F be a graph. we call G F -free if G contains no F as an induced
subgraph. A triangle-free graph is a graph containing no cycles of length three. For
A,B ⊆ V (G), A ∩ B = ∅, let e(A,B) be the number of edges between A and B.

A k-regular graph is a graph whose each vertex has degree k. If d(v) = k − 1
or k for all v ∈ V , then we call G = (V ,E) a nearly k-regular graph. A graph is
called an Eulerian graph if the degree of each vertex in the graph is even.

Let k ≥ 2 be an integer. A graph G = (V ,E) is called k-partite if V admits a
partition into k classes such that every edge has its ends in different classes: vertices
in the same partition class must not be adjacent. Instead of “2-partite” one usually
says bipartite. The complement G of a graph G = (V ,E) is defined by taking
V (G) = V (G) and making two vertices u and v adjacent in G if and only if they
are nonadjacent in G.
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Let G1 and G2 be two graphs with vertex sets V (G1) and V (G2) and edge sets
E(G1) and E(G2), respectively. The join G1 + G2 of two disjoint graphs G1 and
G2 is the graph obtained from the union of G1 and G2 by adding all possible edges
between V (G1) and V (G2). The Cartesian product G = G1�G2 has vertex set
V (G) = V (G1)× V (G2), and two vertices (u1, u2) and (v1, v2) of G are adjacent
if and only if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1). The
Cartesian product Pr�Ps of two paths is called a (r×s)-grid. The Cartesian product
graphs Pr�Cs and Cr�Cs are called a (r × s)-stacked prism and a (r × s)-torus
grid, respectively. A n-cube (also called a hypercube) Qn is given by the Cartesian
product P2�P2� . . .�P2 of n paths P2.

A graph G = (V ,E) is an interval graph, if the vertex set V can be put into
one-to-one correspondence with a set of intervals I on the real line R such that two
vertices are adjacent in G if and only if their corresponding intervals have a non-
empty intersection. IfG is an interval graph, then it contains no induced cycles with
more than three edges.

2 Signed Domination and Its Generalizations in Graphs

2.1 Signed Domination

The signed dominating function for a graph G = (V ,E) is defined in Dunbar et al.
[16] as a two-valued function f : V → {−1, 1} such that f [v] ≥ 1 for every vertex
v in G. The sum f (V ) is called the weight w(f ) of f . A signed dominating set of
G (associated with the signed dominating function f ) is the set of vertices inG that
are assigned value+1 by the function f . The minimum of weightsw(f ), taken over
all signed dominating functions f on G, is called the signed domination number of
G, denoted by γs(G). A signed dominating function f : V → {−1, 1} is minimal
if every signed dominating function g satisfies f (v) ≤ g(v) for every v ∈ V . The
upper signed domination number Γs(G) is the maximum weigh w(f ) of a minimal
signed dominating function of G. Clearly, γs(G) ≤ Γs(G).

There are a variety of applications for signed dominating sets in graph theory.
Assigning values −1 or +1 to the vertices of a graph can be modeled as networks
of positive and negative electrical charges, networks of positive and negative spins
of electrons, and networks of people or organizations in which global decisions
must be made (e.g., yes–no, agree–disagree, like–dislike, etc.). In such a context,
for example, the minimum number of vertices assigned value +1 by a signed
dominating function represents the minimum number of people whose positive
votes can dominate all local groups (represented by vertex neighborhoods in the
graph), even though the entire network may have many negative voters. Hence
this variation of domination studies situations in which, in spite of the presence
of negative vertices, the neighborhoods of all vertices are required to maintain a
positive sum.
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The concept of signed domination in graphs was introduced by Dunbar et al. [16]
and has been studied in [19, 22, 26, 32, 33, 36, 52, 58, 62, 78, 81–83]. The decision
version of the problem of computing the signed domination number of a graph is
NP-complete, even when the graphs are restricted to being chordal or bipartite [26],
doubly chordal, chordal bipartite, or bipartite planar [47]. For a fixed k, the problem
of determining if a graph has a signed dominating function of weight at most k is
also NP-complete [26]. However, they showed that there is a linear-time algorithm
for finding a minimum signed dominating function on a tree. Much research on
signed domination has been focused on deriving better upper and lower bounds on
the signed domination numbers γs of graphs.

2.2 Lower Bounds on the Signed Domination Number

In this subsection, we focus on lower bounds on the signed domination number γs
of a graph.

The following basic property of signed domination functions is frequently used
when studying signed domination.

Proposition 1. A signed dominating function f on a graph G is minimal if and
only if for every vertex v such that f (v) = 1, there exists a vertex u ∈ N [v] for
which f [u] ∈ {1, 2}.

For trees, a sharp lower bound for γs has been obtained as follows.

Proposition 2 (Kang and Shan [43]). For any tree T of order n ≥ 2,

γs(T ) ≥ n+ 2 + no
3

,

where no is the number of vertices of odd-degree in T , and this bound is sharp.

Another sharp lower bound for the signed domination number of a tree can be
stated in terms of the independence domination number i.

Proposition 3 (Dunbar et al. [16]). For a tree T of order n ≥ 2, γs(T ) ≥ i(T )+1.

That the bounds given in Propositions 2 and 3 are sharp may be seen by
considering the path P3k+2, k ≥ 0, on 3k + 2 vertices.

A lower bound on γs in terms of the degree sequence of the graph can be given.

Proposition 4 (Dunbar et al. [16]). LetG be a graph of order n with degrees d1 ≤
d2 ≤ . . . ≤ dn. If k is the smallest integer for which

k−1∑

i=0

dn−i ≥ 2(n− k)+
n−k∑

i=0

di,

then γs(G) ≥ 2k − n.
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For cubic graphs, the following result is known.

Proposition 5 (Henning and Slater [36]). If G is a cubic graph of order n, then
γs(G) ≥ n/2 ≥ IR(G), where IR(G) is the upper irredundance number of G.

Proposition 6 (Henning and Slater [36]). If G is a cubic graph, then γs(G) ≥
i(G)+1 and this bound is sharp, where i(G) is the independent domination number
of G.

For a k-regular graph G of order n, Dunbar et al. [16] showed that γs(G) ≥
n/(k + 1) if n is even and Henning and Slater [36] further showed that γs(G) ≥
2n/(k + 1) if n is odd. For general graphs G, Zhang et al. [82] obtained several
sharp lower bounds in terms of order n and size m. Chen and Song [7] proved the
following strengthening of the above results.

To state the result, we need more notation. For a graph G, let C(G) = {v |
dG(v) > 1 and v is not adjacent to 1-degree vertices}. If C(G) = ∅, then clearly
γs(G) = |V (G)|. Otherwise, we let δ∗ =min{dG(v) : v ∈ C(G)}. Then δ∗ ≥ 2.
Further, let Δ(G) = Δ and δ(G) = δ.
Theorem 1 (Chen and Song [7]). Let G be a graph of order n and size m, and no
is the number of odd vertices of G. Then

γs(G) ≥ max
{ (
(δ∗+2−Δ)n+2no

)
/(δ∗+2+Δ), (2(m+ n)+no)/(Δ+ 1)− n,

n− (2m− no)/(δ∗ + 1), 2

⌈(

−δ∗+
√

δ∗2+8(δ∗+2)n+8no

)

/4

⌉

−n,

2
⌈(

1 +√
1 + 8(m+ n)+ 4no

)
/4
⌉
− 4

}
,

and these bounds are sharp.

Zhang et al. [82] established the lower bound on γs of a graph in terms of its
maximum degree Δ and minimum degree δ.

Theorem 2 (Zhang et al. [82]). If G is a graph of order n with minimum degree δ
and maximum degree Δ, then

γs(G) ≥ δ −Δ+ 2

δ +Δ+ 2
n.

Haas and Wexler [22] improved this lower bound on γs given in Theorem 2, they
obtained the following sharp bound on γs of a graph, which also generalized the
result for regular graphs.
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Theorem 3 (Haas and Wexler [22]). If G = (V ,E) is a graph of order n with
minimum degree δ ≥ 2 and maximum degree Δ, then

γs(G) ≥ �δ/2� − �Δ/2� + 1

�δ/2� + �Δ/2� + 1
n,

and this bound is sharp.

The following example illustrates that the lower bound given in Theorem 3 is
sharp for δ(G) ≥ 2. Take the disjoint union of 2�Δ/δ� copies of the complete
bipartite graphK�δ/2�+1,�Δ/2� to get a bipartite graph with partite sets P andM such
that each vertex in P is of degree �Δ/2�, and each vertex inM is of degree �δ/2�+1.
The desired graph G will be obtained from this bipartite graph by adding some
edges in the subgraphs G[P ] and G[M] induced by P and M , respectively. Since
P is a set of 2�Δ/δ� (�δ/2� + 1) ≥ 2�Δ/2� vertices, by the Erdös–Gallai graphic
criterion (see, [17]), we can construct a �Δ/2�-regular graph on the vertices of P .
Similarly, M is a set of 2�Δ/δ��Δ/2� ≥ 2 (�δ/2� − 1) vertices, so we construct a
(�δ/2� − 1)-regular graph on the vertices of M . By our construction, every vertex
of P has exactly degree Δ, every vertex ofM has exactly degree δ, andG has order
n = 2�Δ/δ� (�δ/2� + �Δ/2� + 1).

Now let f : V → {−1, 1} be a function by assigning +1 to each vertex of P and
−1 to each vertex of M . It is easy to check that f is a signed dominating function
of G with weight f (V ) = 2�Δ/δ� (�δ/2� − �Δ/2� + 1) . So

γs(G) ≤ 2

⌈
Δ

δ

⌉(⌈
δ

2

⌉

−
⌊
Δ

2

⌋

+ 1

)

=
(�δ/2� − �Δ/2� + 1

�δ/2� + �Δ/2� + 1

)

n.

By Theorem 3, the equality holds in the above inequality.
In 2010, Poghosyan and Zverovich [58] provided a lower bound on the signed

domination number of a graph G depending on its order and a parameter λ, which
is determined on the basis of the degree sequence of G (note that λ may be equal to
0, in this case we put

∑λ
i=1 = 0).

Theorem 4 (Poghosyan and Zverovich [58]). LetG = (V ,E) be a graph of order
n with degrees d1 ≤ d2 ≤ · · · ≤ dn. Then γs(G) ≥ n − 2λ, where λ ≥ 0 is the
largest integer such that

λ∑

i=1

(⌈
di

2

⌉

+ 1

)

≤
n∑

i=λ+1

⌊
di

2

⌋

.

Proof. Let f be a signed domination function of minimum weight of the graph G.
Let us denote

P = {v ∈ V : f (v) = 1} and M = {v ∈ V : f (v) = −1}.
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Then γs(G) = f (V ) = |P |− |M| = n−2|M|. By definition, for any vertex v ∈ V ,
f [v] =∑

u∈N [v] f (u) ≥ 1. Therefore, for all v ∈ V , |N [v]∩P |− |N [v]∩M| ≥ 1.
This implies that

|N [v]| = dG(v)+ 1 = |N [v] ∩ P | + |N [v] ∩M| ≤ 2|N [v] ∩ P | − 1.

Hence |N [v]∩P | ≥ dG(v)/2+1. We deduce that |N [v]∩P | ≥ �dG(v)/2�+1 and
|N [v] ∩M| = dG(v) + 1 − |N [v] ∩ P | ≤ �dG(v)/2�. Let us estimate the number
of edges between P andM in two ways.

e(P,M) =
∑

v∈M
|N [v] ∩ P | ≥

∑

v∈M

(⌈
dG(v)

2

⌉

+ 1

)

≥
|M|∑

i=1

(⌈
di

2

⌉

+ 1

)

.

Note that ifM = ∅, then we put
∑0
i=1 g(i) = 0. On the other hand,

e(P,M) =
∑

v∈P
|N [v] ∩M| ≤

∑

v∈P

⌊
dG(v)

2

⌋

≤
n∑

i=n−|P |+1

⌊
di

2

⌋

=
n∑

i=|M|+1

⌊
di

2

⌋

.

Therefore, the following inequality holds:

|M|∑

i=1

(⌈
di

2

⌉

+ 1

)

≤
n∑

i=|M|+1

⌊
di

2

⌋

.

Since λ ≥ 0 is the largest integer such that

λ∑

i=1

(⌈
di

2

⌉

+ 1

)

≤
n∑

i=λ+1

⌊
di

2

⌋

,

|M| ≤ λ. Thus γs(G) = n− 2|M| ≥ n− 2λ. This completes the proof. � 
This result improves the bound given in Proposition 4 and immediately implies

the result in Theorem 3. In some cases, it provides a much better lower bound. For
example, let us consider a graph G consisting of two vertices of degree 5 and n− 2
vertices of degree 3. It is easy to see that k = (5n− 4)/8 is the smallest integer for
which

∑k−1
i=0 dn−i ≥ 2(n−k)+∑n−k

i=0 di . Then, by Proposition 4, γs(G) ≥ 0.25n−1.
However, since λ = (n + 2)/4 is the largest integer satisfying the inequality in
Theorem 4, Theorem 4 can yield γs(G) ≥ 0.5n− 1.

Problem 1. Let λ be as defined in Theorem 4. Characterize the graphs G with
equality γs(G) = n− 2λ.

Xu [76] gave lower bounds on γs for planar graphs and triangle-free graphs. The
result on triangle-free graphs can be generalized. Indeed, applying a well-known
theorem of Turán, Shan, Cheng and Kang [62] established a sharp lower bound on
γs for a Kr+1-free graph.
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If F is a simple graph, we denote by ex(n, F ) the maximum number of edges in
a graph G of order n which does not contain an induced copy of F . Such a graph G
is called an extremal graph. The unique complete k-partite graphs on n ≥ k vertices
whose partition sets differ in size by at most 1 are called Turán graphs; we denote
them by T k(n) and their number of edges by tk(n). Clearly, T k(n) = Kn for all
n ≤ k. The following theorem of Turán from extremal theory is well-known, we
will make use of it in our proof.

Theorem 5 (Turán’s theorem [67]). For any integer k ≥ 1, if G = (V ,E) is a
graph on n vertices and ex(n,Kk+1) edges containing no (k+ 1)-cliques, thenG is
a T k(n) and

|E| = tk(n) ≤ k − 1

2k
n2

with equality if and only if k divides n.

By applying Turán’s theorem, a sharp lower bound on γs(G) for graphs G
containing no (k + 1) cliques can be obtained.

Theorem 6 (Shan et al. [62]). For any integer k ≥ 2, let G = (V ,E) be a graph
of order n with no (k + 1)-cliques and c = �δ∗/2� + 1, where δ∗ = max{2, δ(G)}.
Then

γs(G) ≥ k

k − 1

(

−c +
√

c2 + 4
k − 1

k
nc

)

− n

and this bound is sharp.

Proof. Let f : V → {+1,−1} be a signed dominating function on G with
f (V (G)) = γs(G) and let P and M be the sets of vertices in V that are assigned
the value +1 and −1, respectively, under f . Then n = |P | + |M|. For convenience,
let |P | = p and |M| = m. For each vertex v ∈ M , v is adjacent to at least c (≥ 2)
vertices in P since f [v] ≥ 1, i.e., |NG(v) ∩ P | ≥ c. Hence,

e(P,M) =
∑

v∈M
|NG(v) ∩ P | ≥ c|M| = cm = c(n− p). (1)

On the other hand, for each vertex v ∈ P , |NG(v) ∩M| ≤ |NG(v) ∩ P |, and so

e(M,P ) =
∑

v∈P
|NG(v) ∩M| ≤

∑

v∈P
|NG(v) ∩ P | =

∑

v∈P
dG[P ](v). (2)

Since G contains no (k + 1)-cliques, so does G[P ]. Applying Turán’s theorem,
together with inequalities (1) and (2), we have

c(n− p) ≤ e(P,M) ≤ k − 1

k
p2, (3)
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or equivalently,

k − 1

k
p2 + cp − cn ≥ 0.

Hence,

p ≥
(

−c +
√

c2 + 4
k − 1

k
cn

)
/

2

(
k − 1

k

)

.

Therefore,

γs(G) = 2p − n ≥ k

k − 1

(

−c +
√

c2 + 4
k − 1

k
cn

)

− n.

That the bound is sharp may be seen as follows: For positive integers k, s ≥ 2, let
F1 be the Turán graph T k(ks), that is, F1 is a complete k-partite graph of order ks
with equal partition sets V1, V2, . . . , Vk and |Vi | = s for i = 1, . . . , k. Let F2 be a
(s−2)- or (s−3) (≥ 0)-regular k-partite graph of order k(k−1)s with equal partition
sets U1, U2, . . . , Uk and |Ui | = (k − 1)s for i = 1, . . . , k. Let F(k, s) be a family
of graphs obtained from the disjoint union of F1 and F2 by joining each vertex of Vi
with all the vertices of Ui for each i = 1, . . . , k. Let Xi = Vi ∪ Ui+1, where i + 1
(mod k). Then every one of F(k, s) be a k-partite graph of order n = k2s with equal
partition sets. Note that for all i, each vertex of Ui in F(k, s) has minimum degree
2(s − 1) or 2(s − 1) − 1. For each graph H ∈ F(k, s), we assign to each vertex
of F1 the value +1 and to each vertex of F2 the value −1. It is easy to check that
f [v] = 1 for each vertex v ∈ V (F1) and f [v] = 1 or 2 for each vertex v ∈ V (F2),
so we produce a signed dominating function f of H with weight

w(f ) = f (V (H)) = p −m = V (F1)− V (F2)

= ks − k(k − 1)s = ks(2 − k)

= k

k − 1

(

−s +
√

s2 + 4
k − 1

k
ns

)

− n.

Note that s ≥ 2. If s = 2, then δ∗ = 2, and thus c = s; if s ≥ 3, then δ∗ = δ(G) =
2(s − 1) or 2(s − 1)− 1, and thus c = s. Consequently,

γs(G) = k

k − 1

(

−c +
√

c2 + 4
k − 1

k
nc

)

− n.

This completes the proof. � 
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As a somewhat weak version of Theorem 6, Shan, Cheng, and Kang [62]
extended a result on γs(G) for bipartite graphs, due to Wang [71], to graphs
containing no (k + 1)-cliques and characterized the extremal graphs achieving this
bound. For this purpose, we define a family H (k, s) of graphs as follows.

Let p,m, k, and s be positive integers satisfying the following conditions:

(1) p = ks, s is even if k = 2; s ≥ 1 if k ≥ 3.
(2) m = (k − 1)p2/2k = 1

2k(k − 1)s2.

Let F1 be the Turán graph T k(ks) and F3 be an independent set onm vertices. Let
H(k, s) be the family of graphs in which each graph is obtained from the disjoint
union of F1 and F3 by adding edges as follows: if k ≥ 3, we join each vertex of
F1 with exactly (k − 1)s vertices of F3 and join each vertex of F3 with exactly 2
vertices of F1 (since 2m = (k − 1)p2/k = k(k − 1)s2, such an addition of edges
is possible); if k = 2, we can partition V (F3) into two subsets U1 and U2 with
|U1| = |U2| = s2/2, then join each vertex of Vi with exactly s vertices of Ui and
join each vertex of Ui with exactly 2 vertices of Vi for i = 1, 2. By our construction,
every one of H(k, s) contains no (k + 1)-cliques, and each vertex of F1 in H(k, s)
has degree 2(k−1)s, while each vertex of F3 inH(k, s) has degree 2. An example of
the graphs H(3, 2) is shown in Figure 1. Let H (k, s) = ∪H(k, s), where p,m, k,
and s take over all integers satisfying conditions (1) and (2).

Theorem 7 (Shan et al. [62]). For any integer k ≥ 2, if G = (V ,E) be a graph of
order n with no (k + 1)-cliques, then

γs(G) ≥ 2k

k − 1

(

−1 +
√

1 + 2(k − 1)

k
n

)

− n,

where equality holds if and only if G ∈H (k, s).

Proof. We define

g(x) = k

k − 1

(

−x +
√

x2 + 4
k − 1

k
nx

)

− n.

Fig. 1 An example of the
graphs H(3, 2).
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It is easy to check that g′(x) > 0 when x, n ≥ 1, so g(x) is a strictly monotone
increasing function when x ≥ 1. Note that c ≥ 2, hence

γs(G) ≥ g(c) ≥ g(2) = 2k

k − 1

(

−1 +
√

1 + 2(k − 1)

k
n

)

− n.

The first part of the assertion follows.
Next we characterize the extremal graphs achieving this lower bound. First,

suppose that γs(G) = 2k/(k−1)
(−1 +√

1 + 2(k − 1)n/k
)−n holds. Then c = 2

and all the equalities hold in (1), (2), and (3). Hence, we obtain

2|M|=e(P,M)=
∑

v∈P
|NG(v) ∩M|=

∑

v∈P
|NG(v) ∩ P |=

∑

v∈P
dG[P ](v)=k−1

k
p2.(4)

The equality chain implies that

|E(G[P ])| = k − 1

2k
p2 and m = |M| = k − 1

2k
p2.

Note the fact that G[P ] contains no (k + 1)-cliques. Applying Turán’s theorem,
G[P ] is a complete k-partite graph with equal partition classes, and so k divides p.
Let p = ks. Then G[P ] is isomorphic to some F1. The equality

∑
v∈P |NG(v) ∩

M| = ∑
v∈P |NG(v) ∩ P | implies that each vertex v of P has exactly (k − 1)s

neighbors inM . Hence dG(v) = 2(k− 1)s ≥ 2 as k ≥ 2. By definition, each vertex
of M has degree at least 2. Then δ(G) ≥ 2. However, since c = �δ∗/2� + 1 =
�δ(G)/2� + 1 = 2, it follows that δ(G) = 2. The equality chain (4) implies that
each vertex of M in G is exactly adjacent to two vertices of P and has minimum
degree 2. HenceM is an independent set of vertices inG, and soM is isomorphic to
some empty graph F3 of order m. SoG is isomorphic to one of the families H(k, s)
of graphs. It follows that G ∈H (k, s).

On the other hand, supposeG ∈H (k, s). Thus, there exist integers k and s such
that G ∈ H(k, s). Assigning to each vertex of F1 the value +1 and to each vertex
of F3 the value −1, we produce a signed dominating function f of G with weight

w(f ) = f (V (G)) = p −m = V (F1)− V (F3) = p − (k − 1)p2/2k

= 2k

k − 1

(

−1 +
√

1 + 2(k − 1)

k
n

)

− n.

Consequently,

γs(G) = 2k

k − 1

(

−1 +
√

1 + 2(k − 1)

k
n

)

− n.

This completes the proof. � 
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Let f be a signed dominating function on a graph G and D be its signed
dominating set. We define E(G[D])+ |D| to be the kernel of f . In 2013, Zheng et
al. [83] developed kernelization algorithms that produce small kernels for the signed
dominating set problem on some graph classes, such as general graphs, planar
graphs, grid graphs, k-partite graphs, bipartite graphs, bounded-degree graphs, and
r-regular graphs. The kernelization results lead to tight lower bounds on the signed
domination number of these graph classes, including some known results. The
following result is not found in the literature.

Theorem 8 (Zheng et al. [83]).

(1) For a planar graph G of order n, γs(G) ≥ (6 − n)/2, and this bound is tight.
(2) For a graph G with maximum degree Δ,

γs(G) ≥

⎧
⎪⎪⎨

⎪⎪⎩

4 −Δ
4 +Δn if Δ is even

5 −Δ
3 +Δn if Δ is odd,

and these bounds are tight.

Haas and Wexler [22] are the first to investigate signed domination of graph
products, they provided bounds and some exact formulas for signed domination
of the grids Pr�Ps , stacked prisms Pr�Cs , and torus grids Cr�Cs .

Theorem 9 (Haas and Wexler [22]). For the ladder P2�Ps , we have

γs(P2�Ps) =
{
s s is even,
s + 1 s is odd.

For s ≥ 3, we have

γs(P2�Cs) =
⎧
⎨

⎩

s s ≡ 0 (mod 4),
s + 2 s ≡ 2 (mod 4),
s + 1 s is odd.

γs(C3�Ps) = s + 2, γs(C3�Cs) = s.
(7s − 8)/5 ≤ γs(P3�Ps) ≤ (7s + 10 − 2c)/5, where c ≡ s (mod 5),

7s/5γs(P3�Cs ≤ (7s + 8)/5.

In general, when r, s ≥ 4, let n = rs,

(n+ 4r + 4s − 24)/5 ≤ γs(Pr�Ps) ≤ (n+ 8r + 4s)/5,

(n+ 4r)/5 ≤ γs(Cr�Ps) ≤ (n+ 4r + 4s + 8)/5,

n/5 ≤ γs(Cr�Cs) ≤ (n+ 4r + 4s − 4)/5.
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However, signed domination of grids has not yet been settled, we close this
section with the following open problem.

Problem 2. Determine the values or sharp bounds of γs(G) for a grid graph G =
Pr�Ps, Cr�Ps , and Cr�Cs for all r, s.

2.3 Upper Bounds on the Signed Domination Number

This subsection is devoted to determining upper bounds on the signed domination
number γs and upper signed domination number Γs of graphs.

Zelinka [78] showed that for every cubic graph G of order n, γs(G) ≤ 4n/5.
Favaron [19] improved Zelinka’s result. She showed that every cubic graph of order
n different from the Petersen graph has a signed domination number at most 3n/4.
An upper bound on the signed domination number of regular graphs was given by
both Favaron [19] and Henning [32] at just about the same time and the graphs
attaining the bound are described.

Theorem 10 (Favaron [19] and Henning [32]). IfG is a k-regular graph of order
n, then

Γs(G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

(k + 1)2

k2 + 4k − 1
n if k is odd

k + 1

k + 3
n if k is even,

and these bounds are sharp.

Wang and Mao established sharp bounds on Γs for nearly regular graphs.

Theorem 11 (Wang and Mao [70]). IfG is a nearly (k+1)-regular graph of order
n, then

Γs(G) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k2 + 3k + 4

k2 + 5k + 2
n if k is odd

(k + 2)2

k2 + 6k + 4
n if k is even,

and these bounds are sharp.

However, the characterization of the extremal graphs attaining the upper bounds
in Theorem 11 remains open.

In 2008, Tang and Chen [66] generalized these results in Theorems 10 and 11
to an arbitrary graph. They found a sharp upper bound on Γs for a graph in terms
of maximum degree Δ and minimum degree δ and constructed a class of extremal
graphs achieving the upper bound.
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In order to prove Theorem 12, we need the following lemma.

Lemma 1 (Favaron [19]). Let G be a graph and f a minimal signed dominating
function on G such that w(f ) = Γs(G). Let

M = {x1, x2, . . . , xm}
P = {xm+1, xm+2, . . . , xn}

be the sets of vertices that are assigned the value −1 and 1 under f , respectively.
Write �Δ/2� = l. Define Ai = {v ∈ P : dM(v) = i} for 0 ≤ i ≤ l and set
|Ai | = ai . If δ ≥ 2, then

(1) n = m+∑l
i=0 ai and

(2) e(M,P ) =∑l
i=1 iai ≤ mΔ.

Theorem 12 (Tang and Chen [66]). If G is a graph of order n with minimum
degree δ and maximum degree Δ, then

Γs(G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

Δ(δ + 3)− (δ − 1)

Δ(δ + 3)+ (δ − 1)
n for δ odd,

Δ(δ + 4)− δ
Δ(δ + 4)+ δ n for δ even.

In particular, if G is an Eulerian graph, then

Γs(G) ≤ Δ(δ + 2)− δ
Δ(δ + 2)+ δ n.

Furthermore, these bounds are sharp.

Proof. Let f be a minimal signed dominating function on G such that w(f ) =
Γs(G) and letM,P, l, and Ai be as defined in Lemma 1. Write �δ/2� = k.

If δ = 1, then the result is trivial. Thus we may assume δ ≥ 2.
If A0 = ∅, then by Lemma 1, we have n = m +∑l

i=1 ai ≤ m +∑l
i=1 iai ≤

(Δ + 1)m, which implies that m ≥ n/(Δ + 1), and so Γs(G) = n − 2m ≤ (Δ −
1)n/(Δ+ 1). Noting that (Δ− 1)n/(Δ+ 1) < min

{
(δΔ+ 4Δ− δ)n/(δΔ+ 4Δ+

δ), (δΔ + 3Δ − δ + 1)n/(δΔ + 3Δ + δ − 1)
}
, we see the conclusion holds. Thus

we may assume that A0 �= ∅.
For any v ∈ A0, since f [v] = d(v) + 1 ≥ δ + 1 ≥ 3 and f is minimal, by

Proposition 1, there exists a vertex u ∈ N(v) such that u /∈ A0 and f [u] = 1 or 2.
LetQ = {v ∈ N(A0) : f [v] = 1 or 2}. Noting that f [v] ≥ 3 for any v ∈⋃k−1

i=0 Ai ,
we see thatQ ⊆⋃l

i=k Ai . Obviously, each u ∈ Q∩Ai has at most i + 1 neighbors
in A0 . ThusQ∩Ai has at most (i+ 1)|Q∩Ai | neighbors in A0. By the arguments
above, we have A0 ⊆⋃l

i=k N(Q ∩ Ai). This implies that
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a0 = |A0| ≤
l∑

i=k
|N(Q ∩ Ai)| ≤

l∑

i=k
(i + 1)ai . (5)

By (5) and Lemma 1 (1), we have

n ≤ m+
l∑

i=k
(i + 1)ai +

l∑

i=1

ai. (6)

If k = 1, then by (6), we have

n ≤ m+
l∑

i=1

(i + 2)ai, (7)

and if k ≥ 2, then by (6), we have

n ≤ m+
l−1∑

i=1

ai +
l∑

i=k
(i + 2)ai . (8)

If δ is odd, then since (δ + 3)i/(δ − 1) ≥ i + 2 for i ≥ k = (δ − 1)/2, by (7)
and (8), we have n ≤ m + [(δ + 3)/(δ − 1)]∑l

i=1 iai . By Lemma 1 (2), n ≤
m+mΔ(δ+ 3)/(δ− 1), which implies that m ≥ n(δ− 1)/(δΔ+ 3Δ+ δ− 1), and
hence

Γs(G) = n− 2m ≤ Δ(δ + 3)− (δ − 1)

Δ(δ + 3)+ (δ − 1)
n.

If δ is even, then since (δ + 4)i/δ ≥ i + 2 for i ≥ k = δ/2, by (7) and (8), we
have n ≤ m+[(δ+4)/δ]∑l

i=1 iai . By Lemma 1 (2), n ≤ m+mΔ(δ+4)/δ, which
implies that m ≥ nδ/(δΔ+ 4Δ+ δ), and hence

Γs(G) = n− 2m ≤ Δ(δ + 4)− δ
Δ(δ + 4)+ δ n.

Finally, if G is an Eulerian graph, then every vertex of G has even degree. This
implies that each u ∈ Q∩Ai has at most i neighbors in A0. Thus the inequality (6)
can be improved as follows:

n ≤ m+
l∑

i=k
iai +

l∑

i=1

ai.
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From the similar proof, it follows that n ≥ m+mΔ(δ + 2)/δ. This implies that

Γs(G) ≤ Δ(δ + 2)− δ
Δ(δ + 2)+ δ n.

This completes the proof. � 
The bounds on Γs(G) given in Theorem 12 are sharp. Note that Theorem 10

is a special case of Theorem 12. Thus the sharpness of the bounds in Theorem 10
implies that the bounds in Theorem 12 are also sharp when Δ = δ. The following
example illustrates that the bounds in Theorem 12 are still sharp in the case when
Δ− δ ≥ 1. For r = �(s + 2)/2�, s ≥ 2, let K∗

2r be a graph obtained from complete
graph K2r by deleting a perfect matching if s is odd and the edges of a Hamiltonian
cycle if s is even andK∗

r,r,r a graph obtained from complete 3-partite graphKr,r,r by
deleting the edges of a Hamiltonian cycle if s is odd and the edges of a Hamiltonian
cycle together with any other edge if s is even. Let t ≥ s + 1. Now let G be the
graph, as shown in Figure 2, with vertex set V (G) = X ∪ Y ∪ Z, where |X| =
�s/2�, |Y | = t , and |Z| = rt , G[X ∪ Y ] is a complete bipartite graph, G[Z] =
(t/2)K∗

2r if t is even and G[Z] = [(t − 3)/2]K∗
2r ∪ K∗

r,r,r if t is odd, dZ(y) = r
for any y ∈ Y , and

⋃
y∈Y NZ(y) = Z, and there are no edges between X and

Z. Obviously, the order of G is t + �(s + 2)/2�t + �s/2�, δ = s and Δ = t .
We define a function f on G by assigning −1 to every vertex of X and +1 to all
other vertices. It is easy to check that f is a signed dominating function. Since
f [y] = 2 for each y ∈ Y and Y is a dominating set of G, by Proposition 1, f is
minimal. Clearly, w(f ) = |V (G)| − 2|X| = t + �(s + 2)/2�t − �s/2�. It is easy
to see that w(f ) = [(δ + 3)Δ− (δ − 1)]n/[(δ + 3)Δ+ (δ − 1)] if s is odd, and
w(f ) = [(δ + 4)Δ− δ]n/[(δ + 4)Δ+ δ)] if s is even.

Let k ≥ 1 be an integer, and let G = (V ,E) be a graph with minimum degree
δ ≥ k. A signed k-dominating function of G is defined by Wang [12] as a function
f : V → {−1, 1} such that f [v] ≥ k for every v ∈ V . The minimum of the values

Fig. 2 An extremal graph G achieving the bounds in Theorem 12.
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of f (V ), taken over all signed k-domination functions f , is called the signed k-
domination number of G and is denoted by γ ks (G). The maximum of the values of
f (V ), taken over all minimal signed k-dominating function f , is called the upper
signed k-domination number, denoted by Γ ks (G). In the special case k = 1, the
signed k-domination is the ordinary signed domination in graphs.

In 2010, Delić and Wang generalized the two results to the signed k-domination
number of graphs, which is based on the same ideas as described in the proof of
Theorem 12.

Theorem 13 (Delić and Wang [12]). If G = (V ,E) is a graph of order n with
minimum degree δ ≥ k + 1 and maximum degree Δ, then

Γ sk (G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

Δ(δ + k + 2)− (δ − k)
Δ(δ + k + 2)+ (δ − k)n for δ − k ≡ 0 (mod 2),

Δ(δ + k + 3)− (δ − (k − 1))

Δ(δ + k + 3)+ (δ − (k − 1))
n for δ − k ≡ 1 (mod 2).

If G is Eulerian, then

Γ sk (G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

Δ(δ + k + 2)− (δ − k)
Δ(δ + k + 2)+ (δ − k)n for k ≡ 0 (mod 2),

Δ(δ + k + 1)− (δ − (k − 1))

Δ(δ + k + 1)+ (δ − (k − 1))
n for k ≡ 1 (mod 2).

Furthermore, these bounds are sharp.

A signed domination function of a graph G can be regarded as a two-coloring of
the vertices of G with colors 1 and −1 such that the closed neighborhood of every
vertex contains more 1’s than −1’s. This concept is closely related to combinatorial
discrepancy theory discussed by Füredi and Mubayi in their fundamental paper [21].

A function f : V → {1,−1} is called a signed domination function (SDF) of the
hypergraph H = (V ,E) if f (e) =∑

v∈e f (v) ≥ 1 for every hyperedge e ∈ E, i.e.,
each hyperedge has a positive imbalance. The signed discrepancy of H , denoted
by SD(H), is defined as SD(H) = minSDFf f (V ) where the minimum is taken
over all signed domination functions of H . Thus, in this version of discrepancy, the
success is measured by minimizing the imbalance of the vertex set V while keeping
the imbalance of every hyperedge e ∈ E positive.

Füredi and Mubayi [21] first obtained an upper bound on the signed discrepancy
of a hypergraph.

Theorem 14 (Füredi and Mubayi [21]). Let H = (V ,E) be a hypergraph of
order n with every hyperedge containing at least k vertices, where k ≥ 100. Then

SD(H) ≤ 4

√
ln k

k
n+ 1

k
|E|.
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This result can be easily reformulated in terms of the signed domination of graphs
by considering the neighborhood hypergraph of a given graph.

Theorem 15 (Füredi and Mubayi [21]). If G is a graph of order n with minimum
degree δ ≥ 99, then

γs(G) ≤
(

4

√
ln(δ + 1)

δ + 1
+ 1

δ + 1

)

n.

Furthermore, Füredi and Mubayi [21] also found a good upper bound on γs for
small minimum degree δ. Using Hadamard matrices, they constructed a δ-regular
graphG of order 4δ with γs(G) ≥ 0.5δ−O(1). This means that the upper bound in
Theorem 15 is off from optimal by at most the factor of

√
ln δ. For this reason, they

posed an interesting conjecture: there exists some constant C such that γs(G) ≤
Cn/

√
δ. If the discrepancy conjecture is true, then, by the above construction, this

is asymptotically tight. In 2000, Matoušek [52] proved the conjecture. The proof
uses the partial coloring method from combinatorial discrepancy theory. However,
the constant C in his proof is big making the result of rather theoretical interest.

In 2010, Poghosyan and Zverovich [58] provided an upper bound on the signed
domination number, which is better than the bound of Theorem 15 for “relatively
small” values of δ. For example, if δ = 99, then, by Theorem 15, γs(G) ≤ 0.869n,
while Theorem 16 yields γs(G) ≤ 0.537n.

Theorem 16 (Poghosyan and Zverovich [58]). For any graph G of order n with
minimum degree δ ≥ 1,

γs(G) ≤
(

1 − 2�δ/2�
(1 + �δ/2�)1+1/�δ/2�d̃1/�δ/2�

0.5

)

n.

For larger values of minimum degree δ, the result can be further improved.
Poghosyan and Zverovich [58] believed that Füredi–Mubayi’s conjecture is true
for some small constant C. However, as the Peterson graph shows, C > 1, i.e., the
behavior of the conjecture is not good for relatively small values of minimum degree
δ. For this reason, they proposed the following refined conjecture, which consists of
two functions for “small” and “large” values of δ.

Conjecture 1 (Poghosyan and Zverovich [58]). For some C ≤ 10 and α, 0.18 ≤
α ≤ 0.21, if G is a graph of order n with minimum degree δ, then

γs(G) ≤ min

{
n

δα
,
Cn√
δ

}

.

Let A(G) be the adjacency matrix of G and D(G) = diag(d(v1),

d(v2), . . . , d(vn)) be the diagonal matrix of vertex degrees. The Laplacian
matrix of G is L(G) = D(G) − A(G). Clearly, L(G) is a real symmetric
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matrix. From this fact and Gers̆gorin’s theorem, it follows that its eigenvalues
are nonnegative real numbers. The eigenvalues of an n×nmatrixM are denoted by
λ1(M), λ2(M), . . . , λn(M), while for a graph G, we will use λi(G) = λi to denote
λi(L(G)), i = 1, 2, . . . , n and assume that λ1(G) ≥ λ2(G) ≥ · · · ≥ λn−1(G) ≥
λn(G). It is well-known that λn(G) = 0 and the algebraic multiplicity of zero as
an eigenvalue of L(G) is exactly the number of connected components of G (see,
[54]). In particular, the second smallest eigenvalue λn−1(G) > 0 if and only if G
is connected. This leads Fiedler [20] to define it as the algebraic connectivity of G.
The eigenvalue λ1(G) is called Laplacian spectral radius of G. We have known
that λ1(G) = maxλ1(Gi), i = 1, 2, . . . , n ifG1,G2, . . . ,Gn are all components of
G [20]. In recent years, the eigenvalues λ1(G) and λn−1(G) have received a great
deal of attention (see, for example, [54, 56]).

The following result is motivated by the results on graph eigenvalues involving
domination of graphs [56]. Shi et al. [65] gave an upper bound on the algebraic
connectivity λn−1(G) and lower bounds on the Laplacian spectral radius λ1(G) for
a connected graph G in terms of γs .

Theorem 17 (Shi et al. [65]). If G is a connected graph of order n ≥ 2, then

λn−1(G) ≤ n(γs(G)+ n− 2)

n− γs(G) ,

and this bound is sharp.

Theorem 18 (Shi et al. [65]). If G = (V ,E) is a connected graph of order n ≥ 2,
then

λ1(G) ≥ 4n

γs(G)+ n,

with equality if and only if G = K3.

Theorem 19 (Shi et al. [65]). If G is a k-regular graph of order n, then

λ1(G) ≥

⎧
⎪⎪⎨

⎪⎪⎩

n(k + 3)

γs(G)+ n for k odd,

n(k + 2)

γs(G)+ n for k even

with equality if and only if G = Kn.
Although many bounds on the (upper) signed domination number have been

found, no one has yet discovered what are bounds of the difference Γs − γs . We
propose the following open problems.

Problem 3. Let G be a graph of order n. How large can the difference Γs(G) −
γs(G) be? If G is a cubic graph, how large can the difference Γs(G)− γs(G) be?
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Problem 4. Is it true that if T is a tree of order n, then Γs(T )− γs(T ) ≤ 4n/7?

Problem 5. Characterize the cubic graphs for which Γs(G) = γs(G).

2.4 Signed Total Domination in Graphs

A signed total dominating function of a graph G is defined in [79] as a function
f : V → {+1,−1} such that for every vertex v, f (N(v)) ≥ 1, and the minimum
cardinality of the weight w(f ) = ∑

v∈V f (v) over all such functions is called the
signed total domination number of G, denoted by γst (G). The upper signed total
domination number of G, denoted by Γst (G), is the maximum weight of a minimal
signed total dominating function ofG. A signed total dominating function of weight
Γst (G) is called a Γst (G)-function.

The motivation for considering signed total domination of graphs comes from
the fact observed by Henning [34] that signed total domination differs significantly
from signed domination. For example, for a path Pn on n vertices, γst (Pn) = n

and γs(Pn) = n − 2�(n − 2)/3� (see [16]), while for a star K1,n−1 on n vertices,
γst (K1,n−1) = 2 if n is even and 3 if n is odd and γs(K1,n−1) = n.

The decision problem for the total domination number of a graph has been known
to be NP-complete, even when restricted to bipartite graphs [31]. By demonstrating
a polynomial time reduction of the known NP-complete decision problem Total
Dominating Set to the signed total dominating function problem, Henning [34]
showed that the decision problem for the signed total domination number of a graph
is NP-complete, even when restricted to bipartite graphs or chordal graphs.

Concerning the extremal behavior of the difference Γst (G)− γst (G) for a graph
G, many interesting questions can be raised. We first ask how large the difference
Γst (G)− γst (G) is, when n is given or n→∞.

Problem 6. For k-regular graph G, what is the upper bound of the difference
Γst (G)− γst (G)? Characterize the regular graphs for which Γst (G) = γst (G).

Now we turn our attention to bounds of the signed total domination number of
graphs. First, we give some sharp lower bounds on the signed total domination
number of a graph. The proofs of the results rely on the following basic property
of a minimal signed total dominating function.

Proposition 7. A signed total dominating function f on G = (V ,E) is minimal
if and only if for v ∈ V with f (v) = 1, there exists a vertex u ∈ N(v) with
f (N(u)) ≤ 2, where f (N(u)) = 1 if dG(u) is odd and f (N(u)) = 2 otherwise.

Theorem 20 (Henning [34]). If G is a graph of order n and size m, then

γst (G) ≥ max{2(n−m),√4n+ 1 + 1 − n},

and these bounds are sharp.
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The next result gives a lower bound on γst in terms of the degree sequence of a
graph.

Theorem 21 (Henning [34]). LetG be a graph of order n with degrees d1 ≤ d2 ≤
. . . ≤ dn. If G has ne vertices of even degree, and if k is the smallest integer for
which

dn−k+1 + dn−k+2 + . . .+ dn − (d1 + . . .+ dn−k) ≥ n+ ne,

then γst (G) ≥ 2k − n.

Zelinka [79] presented a sharp lower bound on γst for a regular graph. Henning
generalized the result to a general graph in terms of its minimum degree, maximum
degree and its order.

Theorem 22 (Henning [34]). If G is a graph of order n with minimum degree δ ≥
2 and maximum degree Δ, then

γst (G) ≥
(�(δ − 1)/2� − �(Δ− 1)/2� + 1

�(δ − 1)/2� + �(Δ− 1)/2� + 1

)

n,

and this bound is sharp.

Chen and Song [7] gave several lower bounds on γst for a general graph in terms
of order, size, minimum degree, maximum degree, and the number of vertices of
odd-degree in graphs, whose proofs are similar to those of Theorem 1.

Henning [34] showed that for a bipartite graphG, γst (G) ≥ 2
√

2n−n. Shan and
Cheng [61] extended this result to k-partite graphs and characterized the extremal
graphs. In fact, we can continue to generalize the result to Kr+1-free graphs where
r ≥ 2 by applying Theorem 5 (Turán’s theorem).

Theorem 23 (Shan and Cheng [61]). IfG = (V ,E) is aKr+1-free graph of order
n with δ(G) ≥ 1 and c = �(δ(G)+ 1)/2�, then

γst (G) ≥ r

r − 1

(

−(c − 1)+
√

(c − 1)2 + 4
r − 1

r
cn

)

− n

and this bound is sharp.

That the bound is sharp may be seen as follows: For integers k ≥ 2, let Hi
be a complete bipartite graph with vertex classes Vi and Ui , where |Vi | = k and
|Ui | = k2 − k − 1, for i = 1, 2, . . . , k. We let H(k) be the graph obtained from the
disjoint union of H1,H2, . . . , Hk by joining each vertex of Vi with all the vertices
of

⋃k
j=1,j �=i Vj and adding (k−1)(k2−k−1) edges between Ui with

⋃k
j=1,j �=i Uj

so that each vertex of Ui has exactly k − 1 neighbors in
⋃k
j=1,j �=i Uj , while each

vertex of
⋃k
j=1,j �=i Uj has exactly one neighbor in Ui for all i = 1, 2, . . . , k. Let

Yi = Vi ∪ Ui+1, where i + 1 (mod k). Then H(k) is a k-partite graph of order
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Fig. 3 The graph H(3).

n = k(k2 − 1) with vertex classes Y1, Y2, . . . , Yk and |Yi | = k2 − 1. The graph
H(3) is shown in Figure 3. Note that each vertex of Ui has minimum degree 2k−1.
Assigning to each vertex of

⋃k
i=1 Vi the value +1 and to each vertex of

⋃k
i=1 Ui

the value −1, we produce a signed total dominating function f of H with weight

f (V (H(k)) = k2 − k(k2 − k − 1)

= k(−k2 + 2k + 1)

= k

k − 1

(

−(c − 1)+
√

(c − 1)2 + 4
k − 1

k
cn

)

− n.

Consequently,

γst (H(k)) = k

k − 1

(

−(c − 1)+
√

(c − 1)2 + 4
k − 1

k
cn

)

− n.

From Theorem 23, one can easily extend the result to k-partite graphs and
characterize the extremal graphs achieving this bound. For this purpose, we recall a
family T of graphs due to Kang et al. [46] as follows.

For integers r ≥ 1, k ≥ 2, let Hi (i = 1, 2, . . . , k) be the graph obtained from
the disjoint union of r stars K1,(k−1)r−1 (the graph K1,0 is regarded as K1 when
r = 1 and k = 2) with centers Vi = {xi,j | j = 1, 2, . . . , r}. Furthermore, let
Ui denote the set of vertices of degree 1 in Hi that are not central vertices of stars
and write Xi = Vi ∪ Ui+1, where i + 1 (mod k). We let Gk,r be the k-partite
graph obtained from the disjoint union of H1,H2, . . . , Hk by joining each center
of Hi (i = 1, 2, . . . , k) with all the centers of

⋃k
j=1,j �=i Hj . By construction, we

know that Gk,r is a k-partite graph of order n = k(k − 1)r2 with vertex classes
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Fig. 4 The graph G3,2.

X1, X2, . . . , Xk , and |Xi | = (k − 1)r2. Let T = {Gk,r | r ≥ 1, k ≥ 2}. An
example G3,2 is shown in Figure 4.

Theorem 24 (Shan and Cheng [61]). If G = (V ,E) is a k-partite graph of order
n with no isolated vertex, then

γst (G) ≥ 2

√
k

k − 1
n− n,

where equality holds if and only if G ∈ T .

Let k ≥ 1 be an integer, and letG = (V ,E) be a graph with minimum degree δ ≥
k. A signed total k-dominating function of G is defined by Wang [69] as a function
f : V → {−1, 1} such that f (N(v)) ≥ k for every v ∈ V . The minimum of the
values of f (V ), taken over all signed total k-domination functions f , is called the
signed total k-domination number ofG and is denoted by γ kst (G). By definition, the
condition δ ≥ k is clearly necessary. When k = 1, the signed total k-domination is
the ordinary signed total domination in graphs. The upper signed total k-domination
number Γ kst (G) can be defined similarly.

By using an argument similar to the one used to prove in Theorem 6, Volkmann
[68] (2016) generalized the result in Theorem 23 to the signed total k-domination
number of graphs.

Theorem 25 (Volkmann [68]). Let k ≥ 1 and r ≥ 2 be integers, and let G be a
Kr+1-free graph of order n. If c = �(δ + k)/2�, then
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γst (G) ≥ r

r − 1

(

−(c − k)+
√

(c − k)2 + 4
r − 1

r
cn

)

− n,

and this bound is sharp.

We now turn to the upper bounds on the (upper) signed total domination number
Γst in graphs. For regular and nearly regular graphs, best possible upper bounds
have been obtained.

Theorem 26 (Henning [34]). If G is a k-regular graph of order n, then

Γst (G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

k2 + 1

k2 + 2k − 1
n for k odd

k2 + k + 2

k2 + 3k − 2
n for k even,

and these bounds are sharp.

Theorem 27 (Kang and Shan [44]). IfG is a nearly (k+1)-regular graph of order
n, then

Γst (G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

k2 + 3k + 4

k2 + 5k + 2
n for k odd

(k + 1)2 + 3

k(k + 4)
n for k even,

and these bounds are sharp.

Later, Shan and Cheng [60] generalized the two results above to an arbitrary
graph and obtained the result similar to Theorem 12.

Theorem 28 (Shan and Cheng [60]). If G = (V ,E) is a graph of order n with
minimum degree δ and maximum degree Δ, then

Γst (G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

Δ(δ + 3)− (δ − 1)

Δ(δ + 3)+ (δ − 1)
n for δ odd,

Δ(δ + 2)− (δ − 2)

Δ(δ + 2)+ (δ − 2)
n for δ even.

In particular, if G is an odd-degree graph, then

Γst (G) ≤ Δ(δ + 1)− (δ − 1)

Δ(δ + 1)+ (δ − 1)
n.

Furthermore, these bounds are sharp.
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2.5 Signed k-Subdomination and Majority Domination

Signed k-subdomination, a generalization of signed domination in a different
direction, was initially studied in [9]. We now begin to survey the main results on
this topic.

For a positive integer k, a signed k-subdominating function of G = (V ,E) is
defined in [9] as a function f : V → {−1, 1} such that f [v] ≥ 1 for at least k
vertices v of G. The signed k-subdomination number of G is

γks(G) = min{f (V ) : f is a signed k-subdominating function on G}.

A signed k-subdominating function f of G = (V ,E) is minimal if there does not
exist a signed k-subdominating h : V → {−1, 1} such that h �= f and h(v) ≤ f (v)
for every v ∈ V . The upper k-subdomination number of G is defined as

Γks(G) = min{f (V ) : f is a minimal signed k-subdominating function on G}.

In the special cases where k = |V |, k = �|V |/2�, and �(|V | + 1)/2�, γks(G)
is, respectively, the signed domination number γs(G) defined in [16], (weak)
majority domination number γmaj (G) defined in [5], and strict majority domination
number γsmaj (G) defined in [35]. For Γks , we have, respectively, the upper signed
domination number Γs , upper (weak) majority number Γmaj , and upper strict
majority number Γsmaj .

Proposition 8. For every graph G, γks(G) ≤ γs(G).
Note that γks(Kn) = γs(Kn) for a complete graph Kn of order n.
The comet Cs,t , where s and t are positive integers, denotes the tree obtained by

identifying the center of the star K1,s with an end-vertex of Pt , the path of order t .
So Cs,1 ∼= K1,s and C1,p−1 ∼= Pp. Beineke and Henning [3] computed the value of
γks(Cs,t ) for k = s + t and for k = �(s + t)/2� + 1. In [29] the value γks(Cs,t ) for
all possible values of k where 1 ≤ k ≤ s + t was provided.

Chang et al. [6] established a lower bound on γks in terms of the degree sequence.

Theorem 29 (Chang et al. [6]). If G = (V ,E) is a graph of order n with degree
sequence d1 ≤ d2 ≤ . . . ≤ dn, then

γks(G) ≥ −n+ 2

dn + 1

k∑

j=1

⌈
dj + 2

2

⌉

.

Proof. Let g be an optimal k-subdominating function of G, say, g(NG[v]) ≥ 1 for
k distinct vertices v in {vj1 , vj2 , . . . , vjk }. Let f (x) = (g(x) + 1)/2 for all vertices
x ∈ V . Then f is a 0-1 valued function. First, note that
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k∑

i=1

f (NG[vji ])=
k∑

i=1

⌈
g(NG[vji )+d(vji )+1

2

⌉

≥
k∑

i=1

⌈
d(vji )+2

2

⌉

≥
k∑

i=1

⌈
di+2

2

⌉

.

On the other hand, we have

k∑

i=1

f (NG[vji ]) ≤
n∑

i=1

f (NG[vi]) =
n∑

i=1

(di + 1)f (vi) ≤ (dn + 1)f (V ).

Therefore, f (V ) ≥ 1/(dn + 1)
∑k
i=1 �(di + 2)/2� and so

γks(G) = g(V ) = 2f (V )− n ≥ −n+ 2

dn + 1

k∑

j=1

⌈
dj + 2

2

⌉

.

� 
Corollary 1 (Chang et al. [6]). If G = (V ,E) is a graph of order n and size m
with maximum degree Δ, then

γks(G) ≥ k − 2n+ 2m+ n+ k
Δ+ 1

.

The lower bounds on γks and γmaj for a general graph were, respectively,
obtained in Kang et al. [42] and Kang and Shan [43] in terms of its minimum degree,
maximum degree, order, and size.

Theorem 30 (Kang et al. [42]). If G = (V ,E) is a graph of order n and size m
with minimum degree δ and maximum degree Δ, then

γks(G) ≥ n− 2m+ (n− k)(Δ+ 2)

δ + 1
.

Theorem 31 (Kang and Shan [43]). If G is a graph of order n and size m with
minimum degree δ and maximum degree Δ, then

γmaj (G) ≥ n(2δ −Δ)− 4m

2(δ + 1)
.

For the graphs in which each vertex is odd-vertex, the lower bound on γks in
Theorem 30 can be slightly improved [42]. In 2008, Chen and Song [7] improved
these results in Theorems 29 and 30 again.

Theorem 32 (Chen and Song [7]). LetG = (V ,E) be a graph of order n and size
m with degree sequence d1 ≤ d2 ≤ . . . ≤ dn and let fk =∑k

j=1�(dj + 2)/2�, then
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γks(G) ≥ max

{
2fk
Δ+ 1

− n, n− 2(n+ 2m)− 2fk
δ + 1

}

,

and these bounds are all sharp.

Theorem 32 generalized some previous results on γks , γmaj , and γs for regular
graphs. By setting d1 = d2 = · · · = dn = r in Theorem 32, we immediately have

Corollary 2 (Hattingh et al. [30]). For every r-regular (r ≥ 2) graph G of order
n,

γks(G) ≥

⎧
⎪⎪⎨

⎪⎪⎩

−n+ r + 3

r + 1
k if Δ is odd

−n+ r + 2

r + 1
k if Δ is even.

In the special case where k = �|V |/2�, the following result follows directly from
Theorem 32.

Corollary 3 (Henning [32]). For every r-regular (r ≥ 2) graph G of order n,

γmaj (G) ≥

⎧
⎪⎪⎨

⎪⎪⎩

(1 − r)
2(r + 1)

n if Δ is odd

−r
2(r + 1)

n if Δ is even.

Next we consider upper bounds on γks of a graph. Cockayne and Mynhardt
[9] proved that for any tree T of order n, γks(T ) ≤ 2(k + 1) − n. This bound is
clearly sharp when k ≤ n/2 as shown by the exampleK1,n−1. They then proposed a
conjecture: for a tree of order n with n/2 < k ≤ n, γks(T ) ≤ 2k−n. The conjecture
was completely settled by the following result, which was independently obtained
by Kang et al. [40] and Chang et al. [6] by different techniques.

Theorem 33 (Kang et al. [40] and Chang et al. [6]). If T is a tree of order n and
n/2 < k ≤ n, then γks(T ) ≤ 2k − n, and this bound is sharp.

Note that γks(K1,n−1) = 2k − n if k > n/2, so the bound established in
Theorem 33 is sharp.

Problem 7. For n/2 < k ≤ n, characterize the trees of order n with equality
γks(T ) = 2k − n.

Cockayne and Mynhardt [9] also posed another conjecture: for any connected
graph G of order n and any k with n/2 < k ≤ n, γks(G) ≤ 2k − n. Zelinka [80]
disproved the conjecture by a simple counterexample Q3 of the three-dimensional
cube and k = 5, for which γks(Q3) = 4.

However, Kang et al. [40] gave the following approximate result.
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Theorem 34 (Kang et al. [40]). For any connected graph G of order n and any k
with n/2 < k ≤ n,

γks(G) ≤ 2

⌈
k

n− k + 1

⌉

(n− k + 1)− n.

By describing a polynomial transformation from known NP-complete decision
problem, i.e., dominating set problem, Broere et al. [5] showed that the decision
problem corresponding to the problem of computing the majority domination
number γmaj is NP-complete. They also computed the (weak) majority domination
number for various classes of graphs such asKn,K1,n,Km,n, Pn, Cn, andKm∪Km.
Beineke and Henning [3] gave bounds on γmaj (T ) for any tree T and determined
the exact value of γmaj for the class Cs,t of trees called comets.

In 2001, Holm [37] further showed that the decision problem corresponding to
computing γmaj of an arbitrary disjoint union of complete graphs is NP-complete
and determined the values of γmaj for certain families of graphs, such asK+G, the
complete multipartite graph Kn,n,...,n, and some special union graphs.

The following result was proved by Alon (see, [5]). It is the most elegant result
on the weak majority domination number.

Theorem 35 (Alon [5]). The (weak) majority domination number γmaj of a con-
nected graph is at most 2.

Proof. Let G = (V ,E) be a connected graph of order n. If n = 2k + 1 is odd, then
we partition V into two sets V1 and V2 with |V1| = k and |V2| = k + 1 such that
the sum of the number of edges induced by V1 and V2 is as large as possible. Then
each vertex v in V2 is adjacent to at least as many vertices in V2 as in V1; otherwise,
we may remove v from the set V2 and add it to the set V1 to produce a new partition
of V in which the sum of the number of edges induced by the resulting partite sets
exceeds that of the original partition of V . Hence assigning to each vertex of V2 the
value 1 and to each vertex of V1 the value −1, we produce a majority dominating
function of weight 1. Hence if G has odd order, then γmaj (G) ≤ 1. On the other
hand, if n = 2k is even, then let v be any vertex in G and consider the graph G− v
of odd order. As above, we may produce a majority dominating function of G − v
of weight 1. We now extend this function to a majority dominating function ofG of
weight 2 by assigning to the vertex v the value 1. Hence if G has even order, then
γmaj (G) ≤ 2. � 

For the strict majority domination number, Henning and Hind [35] obtained
some interesting results. They determined the values of γsmaj for certain families
of graphs such as Kn, K1,n, and Km,n. In particular, γsmaj (Kn,n) = 2 for equitable
complete bipartite graphs Kn,n. However, the situation is somewhat different for
complete bipartite graphs Km,n which are not equitable.

Proposition 9 (Henning and Hind [35]). For n > m ≥ 2 integers,
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γsmaj (Km,n) =
{

2 − n for n is even

3 − n for n is odd.

For the weak majority number, the formula of Proposition 9 also holds when
n = m ≥ 2 (see Proposition 4 in [5]). This implies the following corollary, which
serves to illustrate that the strict majority number and the weak majority number of
a graph may differ by an arbitrarily large amount.

Proposition 10 (Henning and Hind [35]). For n > m ≥ 2 integers,

γsmaj (Kn,n)− γmaj (Kn,n) =
{
n if n is even

n− 1 if n is odd.

By somewhat improving Alon’s method described in Theorem 35, Henning and
Hind [35] showed that every graph with odd order has the strict majority domination
number γsmaj at most 1.

Theorem 36 (Henning and Hind [35]). For a graph G of odd order, γsmaj (G) ≤
1.

Suppose thatG = (V ,E) has even order 2k and V is partitioned into two sets,W1
andW2, each of cardinality k (such a partition is an equipartition ofG). Given such
a partition, we define a function to measure the excess of a vertex’s neighbors in its
own set over the opposite set; for v ∈ Wi , define δ(v) = |N(v)∩Wi |−|N(v)∩W3−i |.
An equipartition is strong if δ(v) > 0 for all v ∈ V .

Theorem 37 (Henning and Hind [35]). If G is a graph, then γsmaj (G) ≤ 4.

Proof. By Theorem 36, we may assume thatG has even order 2k. IfG has no strong
equipartition, then we claim that γsmaj (G) ≤ 2. Let {W1,W2} be an equipartition for
G such that the total number of edges induced within these two sets is maximized.
By this choice, δ(u) + δ(v) ≥ 0 whenever u ∈ W1 and v ∈ W2 (otherwise we
move u toW2 and v toW1 to improve the partition). Since {W1,W2} is not a strong
equipartition, we have δ(u) ≤ 0 for some vertex u , say u ∈ Wi . Thus we have
δ(v) ≥ 0 for all v ∈ W3−i . Giving a positive opinion +1 to u and to all ofW3−i now
yields a strict majority function of weight 2. We next assume that G has a strong
equipartition {W1,W2}.

Over all vertices ofG, choosew to minimize δ(w). Without loss of the generality,
we may assume that w ∈ W2. Let l = �(δ(w) − 1)/2�. Note that l ≥ 0. Since
δ(w) ≥ 2l + 1 and |W1| = |W2|, there exists a set S of l vertices inW1 that are not
adjacent tow. Let T be a set of l+1 neighbors ofw inW2. Assign positive opinions
+1 to (W1 − S)∪ (T ∪ {w}) and negative opinions −1 to S ∪ (W2 − T −{w}). This
opinion function, say f , has weight 4. We claim that it is a strict majority function,
with all of W1 ∪ {w} voting aye, i.e., f [x] ≥ 1 for all x ∈ W1 ∪ {w}. Since every
vertex of W1 has at least 2l + 1 more neighbors in W1 than in W2, f [x] ≥ l for
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all x ∈ W1. Because δ(w) ≤ 2l + 2, the switch of l + 1 opinions from negative to
positive in N [w] ∩W2 yields f [w] ≥ 1. � 
Theorem 38 (Henning and Hind [35]). If T is a tree, then γsmaj (T ) ≤ 2.

Problem 8 (Broere et al. [5]). Characterize those graphs G for which γs(G) =
γmaj (G).

Problem 9 (Holm [37]). What is the relationship between the majority domination
number of a graph and that of its complement?

The concept of a signed total k-subdominating function in graphs was initially
developed by Harris et al. [24]. A signed total k-subdominating function of a graph
G = (V ,E) is a function f : V → {−1, 1} for which at least k vertices v of G
satisfy f (N(v)) ≥ 1. The signed total k-subdomination number of G, denoted by
γstk(G), is the minimum weight of a signed total k-subdominating function of G.
In the special case where k = |V |, the signed total k-subdomination number is the
signed total domination number γst which is discussed in Section 2.4. Similarly,
we can define the upper signed total k-subdomination number Γstk(G), the signed
majority total domination number γ tmaj [74, 75], and the strict signed majority total

domination number γ tsmaj . Let Cf (G) = {v ∈ V : f (N(v)) ≥ 1 :}. A signed total
k-subdominating function of G of weight γstk(G) is called a γstk(G)-function. By
the definition, we easily obtain the following proposition.

Proposition 11. Let f be a signed total k-subdominating function of G and v ∈
Cf (G). If dG(v) is even, then f (N(v)) ≥ 2 while if dG(v) is odd, then f (N(v)) ≥
1.

Harris et al. [24] determined the values of γstk for a cycle Cn and a path Pn. They
also established some lower bounds on γstk of graphs and an upper bound on γstk
for trees.

Theorem 39 (Harris et al. [24]). LetG be a graph of order nwith minimum degree
δ and maximum degree Δ, f a γstk(G)-function, and l the number of vertices with
even degree in Cf (G). Then

γstk(G) ≥ 2k(1 +Δ)+ (δ − 3Δ)n+ 2l

Δ+ δ .

The next result gave a lower bound on the signed total k-subdominating function
of a graph in terms of its degree sequence.

Theorem 40 (Harris et al. [24]). Let G be a graph of order n with degrees d1 ≤
d2 ≤ . . . ≤ dn, and let f be a γstk(G)-function and l the number of vertices with
even degree in Cf (G). Then

γstk(G) ≥ l + k +
∑k
i=1 di

dn
− n.
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As an immediate consequence of Theorem 39 or Theorem 40, we have the
following results.

Corollary 4 (Harris et al. [24]). If G is an r-regular graph of order n (r ≥ 1),
then

γstk(G) ≥

⎧
⎪⎪⎨

⎪⎪⎩

(
r + 1

r

)

k − n if r is odd
(
r + 2

r

)

k − n if r is even.

Corollary 5 (Harris et al. [24]). If G is a graph of order n with maximum degree
Δ, then

γstk(G) ≥ k − 2n+ k + 2m

Δ
.

Harris et al. [24] observed that γstk(K1,n−1) = 2− n for n ≥ 3, 1 ≤ k < n. This
implies that the signed total k-subdomination number of a tree can be arbitrarily
large negative if k is less than the order of the tree.

Next they gave upper bounds on signed total k-subdomination number of a tree.

Theorem 41 (Harris et al. [24]). For a tree T of order n ≥ 2,

γstk(T ) ≤
{−1 if k = (n+ 1)/2

2k − n otherwise,

and these bounds are sharp.

When T is nontrivial tree of even order n, and k = n/2 + i for some integer i
with 0 ≤ i ≤ 3, Theorem 41 can be improved slightly.

Theorem 42 (Harris et al. [24]). For a tree T of order n ≥ 2, and any integer k
with n/2 ≤ k ≤ n and k = n/2 + i, where 0 ≤ i ≤ 3,

γstk(T ) ≤ 2(k − 1)− n,

unless T is a path, in which case γstk(T ) = 2k − n.

Trees of even order n achieving the maximum possible total k-subdomination
number (namely, 2k − n) when n/2 ≤ k ≤ n/2 + 3 were characterized in [24]. In
2018, they [25] further characterized those trees of order n achieving the maximum
possible total k-subdomination number (namely, 2k − n) when n is odd and (n +
3)/2 ≤ k ≤ (n+ 5)/2.

Xing et al. [74, 75] computed the exact value of γ tmaj for some special graphs,
such as path Pn, cycle Cn, and complete bipartite Km,n and gave a lower bound on
γ tmaj for a graph.
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Theorem 43 (Xing et al. [74]). If G is a graph of order n with minimum degree δ
and maximum degree Δ, then

γ tmaj (G) ≥
δ − 2Δ+ 1

δ +Δ n.

Motivated by the results in Theorems 37 and 38, we propose the following
problem.

Problem 10. Determine the sharp upper bounds on γ tmaj and γ tsmaj for trees and
graphs, respectively.

As far as we know there is only little literature available on the upper signed
k-subdomination of graphs. In 2017, Muthuselvi and Arumugam [55] determined
the upper signed k-subdomination number Γmaj of special graphs Kn, K1,n−1, and
Km,n.

3 Minus Domination in Graphs

The minus domination problem is a proper generalization of the classical dom-
ination problem in a sense. A “sociological” motivation has been suggested by
[15]. Let our graph be the model of a network of people. An edge means that
the joined vertices are somehow closely related (acquaintances, neighbors, or the
like). The label −1, 0,+1 indicates the opinion of every “vertex” about some
controversial question (i.e., negative, undecided, or positive, respectively). Then it
may be interesting to know for a given network whether, e.g., the negative opinions
can abound, although every “vertex” observes a majority of positive opinions in his
own neighborhood. Other motivations may come from facility location problems.
In this section we will survey main results on minus domination, minus total
domination, and minus k-subdomination of a graph.

3.1 Minus Domination in Graphs

A minus dominating function of a graph G = (V ,E) is a function of the form f :
V → {−1, 0, 1} such that f [v] ≥ 1 for all v ∈ V . The minus domination number
for a graph G is γ−(G) = min{w(f ) : f is a minus dominating function on G}.
Likewise, the upper minus domination number for a graph G is Γ −(G) =
max{w(f ) : f is a minimal minus dominating function on G}. Minus domination
is similar in many ways to ordinary domination, but has different properties. In [15]
various properties of the minus domination number are presented.

The problem to determine the value of γ−(G) is NP-complete, even when
restricted to bipartite graphs, chordal graphs, planar graphs with maximum degree
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four [10, 13], chordal bipartite graphs, and bipartite planar graphs [47]. Damaschke
proved that, unless P = NP , the value of γ− cannot be approximated in polynomial
time within a factor 1+ε for some ε > 0, not even for graphs with maximum degree
four [10]. Faria et al. [18] further showed that the minus domination problem is NP-
complete for split graphs and they showed that there are polynomial-time algorithms
for solving the minus domination problem in the classes of graphs including
cographs, distance-hereditary graphs, and strongly chordal graphs. Moreover, there
are linear-time algorithms for solving the minus domination problem on trees [13]
and interval graphs [18].

By definition, we see that every signed dominating function is also a minus
dominating function, so γ−(G) ≤ γs(G). Let D be a minimum dominating set
in a graph G = (V ,E). Assigning to each vertex of D the value 1 and to all other
vertices the value 0, we produce a special minus dominating function of G and so
γ−(G) ≤ γ (G). Does there exist a cubic graph for which γ− < γ ? Henning and
Slater [36] constructed a cubic graph G of order 52 satisfying γ−(G) ≤ 14 and
γ (G) = 15. Chen et al. [8] constructed an infinite family of cubic graphs of order
n in which the difference γ − γ− can be arbitrarily large when n → ∞. Let G
be a graph of order n. It is well-known that γ (G) ≤ n/2. Reed [59] proved that
γ (G) ≤ 3n/8 if δ(G) ≥ 3 and conjectured that γ (G) ≤ �n/3� ifG is cubic. For the
difference γ (G) − γ−(G), it was known in [15] that γ (G) − γ−(G) ≤ (n − 4)/5
if G is a tree and the upper bound is sharp. Dunbar et al. [14] and Zelinka [78]
independently showed that γ−(G) ≥ n/4 for a cubic graph of order n. This
means that if G is cubic, then by Reed’s result, we have γ (G) − γ−(G) ≤ n/8.
Furthermore, if Reed’s conjecture is true, then γ (G) − γ−(G) ≤ n/12. Finally,
they proposed the following problem.

Problem 11 (Chen et al. [8]). For a cubic graph G of order n, what is the best
possible upper bound for γ (G)− γ−(G)?

Dunbar et al. [15] showed that α(G) ≤ Γ −(G) for every graphG, where α(G) is
the independence number of G. Hence we have the following chain of inequalities.

Proposition 12 (Henning and Slater [36]). For any graph G, we have

γ−(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ Γ −(G).

In this special case when G is a cubic graph, Henning and Slater obtained the
following chain of inequalities.

Proposition 13 (Henning and Slater [36]). For every cubic graph G, we have

γ−(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ Γ (G) ≤ IR(G) ≤ γs(G) ≤ Γs(G),

where i(G) and IR(G) are, respectively, the independent domination number and
upper irredundance number of G.
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Up to now, some basic relationships among the above parameters are not very
clear for general graphs, even for cubic graphs. For example, we do not know yet
whether there exists a cubic G such that Γ −(G) < Γ (G). Essentially no progress
has been made on the following problem.

Problem 12 (Henning and Slater [36]). For a cubic graphG of order n, how large
is the ratio (Γ (G)− Γ −(G))/n or (Γ −(G)− Γ (G))/n?

Kang and Cai [38] constructed an infinite family of 3-connected cubic graphs
such that the difference Γ − − γs can be arbitrarily large, which disproved an open
problem posed by Henning et al. [36].

We shall focus on lower bounds for the minus domination number of a graph. It
is easily seen that a minus dominating function is minimal if and only if for every
vertex v ∈ V with f (v) ≥ 0, there exists a vertex u ∈ N [v] with f [u] = 1. This
observation plays an important role in the aspect of establishing bounds on γ− or
Γ −.

Theorem 44 (Damaschke [10]). Let G be a graph with maximum degree Δ. If
Δ ≤ 3, then γ− ≥ n/5, while if Δ ≤ 4 and d2 = 0, where d2 is the number of
2-degree vertices in G, then γ− ≥ n/7, and these bounds are tight.

Zelinka [81] showed that for complete bipartite graphs Kp,q (q ≤ p),
γ−(Kp,q) = 1 if q = 1 and γ−(Kp,q) = 2 otherwise. In [78] he established
a sharp lower bound on γ−(G) for a cubic graph G. Dunbar et al. [14] generalized
this result to k-regular graphs. They showed that γ−(G) ≥ n/(k+1) for a k-regular
graph G of order n. Kang and Shan [43] further generalized this result to a general
graph.

Theorem 45 (Kang and Shan [43]). If G is a graph of order n and size m with
minimum degree δ, then γ−(G) ≥ n− 2m/(δ + 1).

Theorem 46 (Kang and Shan [43]). For every tree T of order n, γ−(T ) ≥ (n +
2 − s)/3, where s is the number of vertices of degree 1, and this bound is sharp.

As observed by Füredi and Mubayi [21] a well-known probabilistic bound for
the size of a transversal of a set system implied that γ−(G) = O((n/δ) log δ)
for a graph G = (V ,E) of order n with minimum degree δ. Indeed, consider
the set system with V as the ground set and with the n closed neighborhoods
N [v], v ∈ V , as sets. By a simple and well-known probabilistic argument, it is
possible to pick a transversal of size O((n/r) log r) for such a set system (see, e.g.,
[1] for arguments of this type). The vertices of the transversal are assigned +1’s and
the other vertices get 0’s, which defines a minus dominating function of G. Füredi
and Mubayi [21] conjectured that this bound is asymptotically the best possible.
Matoušek [53] partially confirmed their conjecture.

Theorem 47 (Matoušek [53]). There are constants C and c > 0 such that for
all integers r ≥ C and for all n’s that are multiples of 4r , there exists a bipartite
r-regular multigraph G of order n, in which each vertex has at least r/2 distinct
neighbors and such that γ−(G) ≥ c(n/r) log r .
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In 1999, Dunbar et al. [15] conjectured that γ−(G) ≥ 4(
√
n+ 1 − 1) − n for

a bipartite graph G order n. Later, this conjecture was proved by several separate
subsets of the authors [42, 51, 71, 76]. Kang et al. [41] further extended the result to
k-partite graphs for k ≥ 2.

Theorem 48 (Kang et al. [41]). IfG = (V ,E) is a k-partite graph of order n with
k ≥ 2, then

γ−(G) ≥ 2k

k − 1

(

−1 +
√

1 + 2(k − 1)

k
n

)

− n

and this bound is sharp.

Kang et al. also obtained another sharp lower bound on γ− for bipartite graphs.

Theorem 49 (Kang et al. [41]). Let G(X, Y ) be a bipartite graph of order n and
size m and let δX =min{d(v) | v ∈ X} and δY =min{d(v) | v ∈ Y }, then

γ−(G) ≥ �n− (m/δ +m/(1 +max(δX, δY )))� ,

and this bound is sharp.

In 2008, by exploiting Turán’s theorem, Shan et al. [62] continue to extend the
result in Theorem 48 to Kk+1-free graphs and characterize the extremal graphs.

Theorem 50 (Shan et al. [62]). For any integer k ≥ 2, let G = (V ,E) be a Kk+1-
free graph of order n, then

γ−(G) ≥ 2k

k − 1

(

−1 +
√

1 + 2(k − 1)

k
n

)

− n

with equality if and only ifG ∈H (k, s), where H (k, s) is defined as in Theorem 7.

Proof. Let f : V → {+1, 0,−1} be a minus dominating function on G with
f (V (G)) = γ−(G) and letQ be the set of vertices in V that are assigned the value
0. Further, let G′ = G − Q and n′ = |V (G′)|. Then G′ is still a graph without
(k + 1)-cliques and n′ ≤ n. Clearly, f ′ = f |G′ is a signed dominating function on
G′, so γs(G′) ≤ f ′(V (G′)) = f (V (G)). By Theorem 7, we have

γ−(G) ≥ γs(G′) ≥ 2k

k − 1

(

−1 +
√

1 + 2(k − 1)

k
n′
)

− n′.

We define

h(x) = 2k

k − 1

(

−1 +
√

1 + 2(k − 1)

k
x

)

− x.
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It is easy to check that h′(x) ≤ 0 when x ≥ 3, so h(x) is a strictly monotone
decreasing function on the variable x ≥ 3. This implies that

γ−(G) ≥ γs(G′) ≥ 2k

k − 1

(

−1 +
√

1 + 2(k − 1)

k
n

)

− n

if n′ ≥ 3. If n′ ≤ 2, then each vertex in G′ is assigned the value +1, so no vertices
in G are assigned the value −1, and thus γ−(G) = f (V (G′)) ≥ 1. Note that
1 ≥ 2k/(k − 1)

(−1 +√
1 + 2(k − 1)n/k

)− n for k ≥ 2, so the results follow.
We further characterize the extremal graphs attaining this bound. If the equality

holds, i.e.,

γ−(G) = 2k/(k − 1)
(
−1 +√

1 + 2(k − 1)n/k
)
− n,

then h(n′) = h(n). Observing the fact that h(x) is a strictly monotone function on
variable x when x ≥ 3, we have n′ = n. Hence Q = ∅. Thus f is also a minimum
signed dominating function, i.e., γs(G) = 2k/(k−1)

(−1 +√
1 + 2(k − 1)n/k

)−
n. The characterization follows from Theorem 7. � 

As an immediate consequence of Theorems 7 and 50, we obtain the following
extremal result on the minus domination and signed domination of a graph
containing no (k + 1)-cliques.

Theorem 51 (Shan et al. [62]). For any integer k ≥ 2, let G = (V ,E) be a graph
of order n with no (k + 1)-cliques, then the following statements are equivalent:

(1) γs(G) = 2k

k − 1

(

−1 +
√

1 + 2(k − 1)

k
n

)

− n.

(2) γ−(G) = 2k

k − 1

(

−1 +
√

1 + 2(k − 1)

k
n

)

− n.

(3) G ∈H (k, s), where H (k, s) is defined as in Theorem 7.

Minus dominating functions can also be extended to minus k-dominating func-
tions. For any integer k ≥ 1, a minus k-dominating function of a graph G = (V ,E)
is a function f : V → {−1, 0, 1} satisfying f [v] ≥ k for every v ∈ V . The
minimum of the values of f (V ), taken over all minus k-dominating functions f , is
the minus k-domination number of G, denoted by γ−k (G). In 2016, Dehgardi [11]
presents lower bounds on the minus k-domination number for regular graphs and
t-partite graphs. For a general graph G, the author obtained the following lower
bound.

Theorem 52 (Dehgardi [11]). If G is a connected graph of order n and minimum
degree δ ≥ k − 1, then γ−k (G) ≥

√
1 + 4(k + 1)n− n− 1.

Whether these results in Theorems 48-51 are true for the minus k-domination
number is an open question.
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We now turn to upper bounds on the minus domination number of a graph. So far,
no nontrivial upper bound on γ− for an arbitrary graph is known. In [36] Henning
and Slater asked for the upper bounds on Γ − for a cubic graph. Kang and Cai [38]
answered this problem by giving a sharp upper bound of Γ −(G) ≤ 5n/8 for cubic
graphs G of order n. In 2000, Kang and Cai [39] further generalized this result to
k-regular graphs.

Theorem 53 (Kang and Cai [39]). If G is a k-regular graph of order n, k ≥ 1,
then

Γ −(G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

k2 + 1

(k + 1)2
n for k odd,

k + 1

k + 3
n for k even

and these bounds are sharp.

So far, we only obtain the bounds on γ−(G) and Γ −(G) for some special classes
of graphs. It should be possible to find sharp bounds on the two parameters of
general graphs in terms of maximum degree and minimum degree.

Problem 13. Find sharp lower bounds on γ−(G) and sharp upper bounds on
Γ −(G) for general graphs G.

In general, we know that Γ − and Γs are not comparable. However, when every
vertex in a graph has even degree, every minimal signed dominating function is also
a minimal minus dominating function, we have the following:

Theorem 54 (Kang and Cai [39]). For every Eulerian graphG, Γs(G) ≤ Γ −(G).

Meanwhile, they also proposed the following conjecture.

Conjecture 2 (Kang and Cai [39]). For any cubic graph G, Γ −(G) ≤ Γs(G).
In 2006, Shang and Yuan [64] partly settled this conjecture.

Theorem 55 (Shang and Yuan [64]). For any claw-free cubic graph G on n
vertices, Γ −(G) ≤ n/2.

We recall that for every k-regular graph G of order n, γs(G) ≥ 2n/(k + 1) if k
is odd. So n/2 ≤ γs(G) ≤ Γs(G) for a cubic graph G of order n. As an immediate
consequence of Theorem 55, the following result follows.

Theorem 56 (Shang and Yuan [64]). For claw-free cubic graphs G, Γ −(G) ≤
Γs(G).

Problem 14. Let k is an odd positive integer k ≥ 5. For k-regular graphs or claw-
free k-regular graphs G, are Γ −(G) and Γs(G) comparable? If so, how do they
compare?
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Dunbar et al. [15] observed that there exist an outerplanar graph, a chordal graph,
and a bipartite graph G such that γ−(G) ≤ −k. They further posed the following
question: For every positive integer k and positive integerm, does there exist a graph
G with girthm and γ−(G) ≥ −k? In 1999, Lee et al. [48] gave a positive answer to
this open problem.

The Cartesian product of graphs is the most basic of graph products. As
mentioned before, the study of signed domination of Cartesian product graphs was
initiated by Haas and Wexler [22].

For signed and minus domination of graph products, we propose the following
open problems.

Problem 15. What is the relationship between γs(G�H) (resp. γ−(G�H)) and
each of min{γs(G), γs(H)} (resp. min{γ−(G), γ−(H)}), max{γs(G), γs(H)} (resp.
max{γ−(G), γ−(H)}) and γs(G)× γs(H) (resp. γ−(G)× γ−(H))?
Problem 16. For a grid graph Pr�Ps (r, s ≥ 1), what are sharp bounds on
γ−(Pr�Ps)? Further, determine the exact value of γ−(Pr�Ps).

Problem 17. For a n-cubeQn, what is the precise value of γs(Qn) (resp. γ−(Qn))?

3.2 Minus Total Domination in Graphs

Harris and Hattingh [23] developed an analogous theory for minus total domination
that arises when we simply change “closed” neighborhood in the definition of minus
domination to “open” neighborhood. The minus total domination number γ−t and
upper minus total domination number Γ −

t can be defined similarly. They showed
that the decision problem for the minus total domination number of a graph is NP-
complete, even when restricted to bipartite graphs or chordal graphs. However, there
exists a linear-time algorithm for computing γ−t (T ) of a tree T .

It is easy to see that a minus total dominating function f on a graphG = (V ,E)
is minimal if and only if for every vertex v ∈ V with f (v) ≥ 0, there exists a vertex
u ∈ N(v) with f (N(u)) = 1.

In [46] the authors obtained a sharp lower bound on the minus total domination
number of k-partite graphs.

Theorem 57 (Kang et al. [46]). IfG = (V ,E) is a k-partite graph of order n with
no isolated vertex, then

γ−t (G) ≥ 2

√
k

k − 1
n− n,

and this bound is sharp.
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Note that γ−t (G) ≤ γst (G) for any graph G. Hence

γst (G) ≥ 2

√
k

k − 1
n− n

for a k-partite graph of order n with no isolated vertex. Shan and Cheng [61]
characterized the extremal graphs with equality by reproving the inequality.

Theorem 58 (Shan and Cheng [61]). If G = (V ,E) is a k-partite graph of order
n with no isolated vertex, then the following statements are equivalent:

(1) γst (G) = 2
√

k
k−1n− n.

(2) γ−t (G) = 2
√

k
k−1n− n.

(3) G ∈ T , where T is defined as in Theorem 24.

In [61] the authors also obtained two other results involving in lower bounds for
the minus total domination number γ−t .

Theorem 59 (Shan and Cheng [61]). Let G = (V ,E) be a k-partite graph of
order n with δ(G) ≥ 1 and let c = �(δ(G)+ 1)/2�. Then

γst (G) ≥ k

k − 1

(

−(c − 1)+
√

(c − 1)2 + 4
k − 1

k
cn

)

− n

and this bound is sharp.

The class of graphs F = {G2,r | r ≥ 1} is a subclass of T . Clearly, eachG2,r of
F is a bipartite graph of order n = 2r2 with vertex classes X1, X2 and |Xi | = r2.

Theorem 60 (Shan and Cheng [61]). If G is a triangle-free graph of order n with
δ(G) ≥ 1, then

γ−t (G) ≥ 2
√

2n− n,

where equality holds if and only if G ∈ F .

Combining the observation that γ ts (G) ≥ γ−t (G) for a graphGwith Theorem 61,
we have the following equivalent formulations.

Theorem 61 (Shan and Cheng [61]). If G is a triangle-free graph of order n with
δ(G) ≥ 1, then the following statements are equivalent:

(1) γst (G) = 2
√

2n− n.
(2) γ−t (G) = 2

√
2n− n.

(3) G ∈ F .

Remark 1. By using Turán’s theorem and a similar approach as described in the
proof of Theorem 7, the above results can be extended to Kk+1-free graphs.
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In [77] the authors established upper bounds on Γ −
t for small-degree regular

graphs and characterized the extremal graphs by defining a family of cubic graphs
F1 = {Gk,l | k ≥ 1, l ≥ 0} and a family of 4-regular graphs F2 = {Hk,l | k ≥
1, 0 ≤ l ≤ k}.

The family of cubic graphs F1 = {Gk,l | k ≥ 1, l ≥ 0} is defined as follows.
For two integers k ≥ 1, l ≥ 0, let Gk,l be a cubic graph with vertex set ∪5

i=1Ai
with |Ai | = ai, i = 1, 2, . . . , 5 where all ais are integers satisfying a1 = 2k, a2 =
2l, a3 = 3a1 = 6k, a4 = 2a2 = 4l, and a5 = a3 + 2a4 = 6k + 8l, and A1 and A4
are two independent sets. The edge set of Gk,l is constructed as follows:

Add 3a1 edges between A1 and A3 so that each vertex in A1 has degree 3, while
each vertex in A3 has degree 1. Add 3k edges joining vertices of A3 so that A3
induces a 1-regular graph. Add l edges joining vertices ofA2 so thatA2 also induces
a 1-regular graph. Add 2a2 edges between A2 and A4 so that each vertex in A2 has
degree 3, while each vertex in A4 has degree 1. Add a5(= a3 + 2a4) edges between
A3∪A4 andA5 in such a way that each vertex ofA5 is adjacent to precisely a vertex
of A3 ∪ A4, and each vertex in A3 is adjacent to precisely one vertex of A5, while
each vertex of A4 is adjacent to precisely two vertices of A5. Finally, add a5 edges
joining vertices ofA5 so thatA5 induces a 2-regular graph. By our construction,Gk,l
is a cubic graph of order n = 14(k + l). The graph G1,1 is exhibited in Figure 5.

Theorem 62 (Yan et al. [77]). If G is a cubic graph of order n, then

Γ −
t (G) ≤

5

7
n

with equality if and only if G ∈ F1.

Let Gk,l ∈ F1 with k ≥ 1, l ≥ 0. Clearly, the function f that assigns −1 to each
vertex of A1 ∪ A2 and +1 to all other vertices is a minimal minus total dominating
function on Gk,l with w(f ) = 10(k + l) = 5n/7. Therefore, Γ −

t (Gk,l) = 5n/7.

Fig. 5 The graph G1,1.
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A family F2 of 4-regular graphs is defined as follows. For two integers k ≥ 1,
0 ≤ l ≤ k, let Hk,l be a graph with vertex set ∪8

i=1Ai with |Ai | = ai , for 1 ≤ i ≤ 8,
where all ais are integers satisfying a1 = a3 = 2l, a2 = a4 = k, a5 = a6 =
4l, a7 = 4(k−l), and a8 = 4(k+3l), and whereA2, A4, A5, andA6 are independent
sets. The edge set of Hk,l is constructed as follows:

Add l edges joining vertices of A1 (resp. A3) so that A1 (resp. A3) induces a
1-regular graph. Add 2(k − l) edges joining vertices of A7 so that A7 induces a
1-regular graph also. Add 6(k + 3l) edges joining vertices of A8 so that A8 induces
a 3-regular graph. Add 2l edges between A1 and A3 so that each vertex in A1 is
adjacent to precisely one vertex of A3 and each vertex in A3 is also adjacent to
precisely one vertex of A1, so each vertex of A1 ∪ A3 has degree 2. Add 4l edges
between A1 (resp. A3) and A5 (resp. A6) so that each vertex in A1 (resp. A3) is
adjacent to two vertices ofA5 (resp.A6) and each vertex ofA5 (resp.A6) is adjacent
to one vertex of A1 (resp. A3), so each vertex in A1 ∪ A3 has degree 4, while each
vertex in A5 ∪ A6 has degree 1. Add 4k edges between A2 (resp. A4) and A6 ∪ A7
(resp. A5 ∪ A7) so that each vertex of A2 ∪ A4 has degree 4, while each vertex
of A6 (resp. A5) is adjacent to a vertex of A2 (resp. A4) and each vertex of A7 is,
respectively, adjacent to a vertex of A2 and A4. Then each vertex in A5 ∪ A6 has
degree 2, while each vertex inA7 has degree 3. Finally, add 4(k+3l) edges between
A5∪A6∪A7 and A8 in such a way that each vertex A5∪A6 is adjacent to precisely
two vertices of A8, and each vertex of A7 is adjacent to precisely one vertex of A8,
while each vertex of A8 is adjacent to precisely one vertex of A5 ∪ A6 ∪ A7.

By the construction, each vertex inHk,l has degree 4. SoHk,l is a 4-regular graph
with order n =∑8

i=1 ai = 10(k + 2l). Figure 6 shows the graph H1,1.

Fig. 6 The graph H1,1.
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Theorem 63 (Yan et al. [77]). If G is a 4-regular graph of order n, then

Γ −
t (G) ≤

7

10
n

with equality if and only if G ∈ F2.

Let Hk,l ∈ F2 be a 4-regular graph of order 10(k + 2l). Let f be a function on
Hk,l which assigns to every vertex of A1 ∪ A2 and A3 ∪ A4 the value −1 and 0,
respectively, and to all vertices of ∪8

i=5Ai the value +1. It is easy to see that f is

a minimal minus total dominating function with weight w(f ) = ∑8
i=5 ai − (a1 +

a2) = 8(k+2l)− (k+2l) = 7(k+ l) = 7n/10. Consequently, Γ −
t (Hk,l) = 7n/10.

Wang and Shan [72] gave an upper bound on Γ −
t (G) for 5-regular graphs and

characterized the extremal graphs by defining a class of 5-regular graphs F3. They
also showed that the difference Γ −

t − γst can be made arbitrary large.

Theorem 64 (Wang and Shan [72]). If G is a 5-regular graph of order n, then

Γ −
t (G) ≤

13

17
n,

with equality if and only if G ∈ F3.

In general, we do not know whether the parameters Γ −
t and Γst are comparable.

However, note the fact that every minimal signed total dominating function is also a
minimal minus total dominating function, we immediately have the following result.

Theorem 65 (Yan et al. [77]). IfG is a graph of odd order, then Γst (G) ≤ Γ −
t (G).

Theorem 66 (Yan et al. [77]). Let G be a cubic graph of order n. Then the
following statements are equivalent:

(1) Γst (G) = 5
7n.

(2) Γ −
t (G) = 5

7n.
(3) G ∈ F1.

Theorem 67 (Wang and Shan [72]). Let G be a 5-regular graph of order n. Then
the following statements are equivalent:

(1) Γst (G) = 13
17n.

(2) Γ −
t (G) = 13

17n.
(3) G ∈ F3.

Li and Lu [49] further gave a sharp bound on Γ −
t for 6-regular graphs. Wu et al.

[73] presented a sharp bound on Γ −
t for k-regular graphs, when k is odd. In 2017,

Li and Lu [50] finally gave a sharp upper bound on Γ −
t for k-regular graphs, when

k is even.
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Theorem 68 (Wu et al. [73], Li and Lu [50]). For a k-regular graph G of order
n,

Γ −
t (G) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k2 + 1

k2 + 2k − 1
n for k odd,

k2 − k + 2

k2 + k n for k even

and these bounds are sharp.

However, the authors did not characterize the regular graphs with equalities. We
propose the following open problems.

Problem 18. Characterize the graphs attaining the bounds in Theorem 68. Further-
more, for extremal graphs G with equalities, does the quality Γ −

t (G) = Γst (G)

hold?

Problem 19. For a 2r-regular graph, are Γ −
t and Γst comparable? If so, how do

they compare?

Problem 20. Find sharp bounds on γ−t (G) and Γ −
t (G) for general graphs G.

3.3 Minus k-Subdomination in Graphs

Minus k-subdomination was first introduced and studied by Broere et al. [4]. A
minus k-subdominating function for a graph G = (V ,E) is defined as a function
f : V → {−1, 0, 1} such that f [v] ≥ 1 for at least k vertices of G. The
minus k-subdomination number of G, denoted by γ−k (G), is equal to minf (V ):
f is a minus k-subdominating function of G. In this special case where k = |V |,
γ−k (G) is the minus domination number. Similarly, we can define the upper minus
k-subdomination number Γ −

k (G) of G.
Alon (see, [5]) proved that γmaj (G) ≤ 2 for a connected graph G. Let k be

an integer such that 1 ≤ k ≤ �|V |/2�. Since every (weak) majority domination
function is a signed k-subdominating function, it follows that γks(G) ≤ γmaj (G).
This implies that if G is connected, then γ−k (G) ≤ 2.

Minimal minus k-subdominating functions have been characterized in [4]. Let f
be a minus k-subdominating function for the graphG. We use three sets for such an
f : Bf = {v ∈ V | f (N [v]) = 1}, Pf = {v ∈ V | f (v) ≥ 0}, and Cf = {v ∈ V |
f (N [v]) ≥ 1}. For A,B ⊆ V we say that A dominates B, denoted by A ) B, if for
each b ∈ B, N [b] ∩ A �= ∅.

Theorem 69 (Broere et al. [4]). A minus k-subdominating function f on G is
minimal if and only if for each k-subset K of Cf , we have Bf ∩K ) Pf .
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Proof. If Bf ∩ K ) Pf for each k-subset K of Cf , then clearly f is minimal.
Conversely, suppose that f is a minimal minus k-subdominating function onG. Let
K ⊆ Cf and |K| = k. For any v ∈ Pf , if N [v] ∩ (Bf ∩ K) = ∅, then we can
replace f (v) by f (v) − 1 as f (v) ≥ 0, the resulting function is still a minus k-
subdominating function on G, a contradiction. Hence N [v] ∩ (Bf ∩ K) �= ∅, i.e.,
Bf ∩K ) Pf . � 
Theorem 70 (Broere et al. [4]). If Pn is a path on n ≥ 2 vertices and 1 ≤ k ≤
n− 1, then γ−k (Pn) = �k/3� + k − n+ 1.

We illustrate Theorem 70 with an example P6 = v1v2 . . . v6. If k = 3, then let
f (v1) = f (v2) = f (v3) = −1, f (v4) = f (v5) = 1, and f (v6) = 0. It is easy to
see that f is a minimal minus k-subdominating function on P6 with w(f ) = −1 =
�k/3� + k − n + 1. If k = 4, then let f (v1) = f (v2) = −1, f (v3) = f (v4) =
f (v6) = 1, and f (v5) = 0 and clearly f is a minimal minus k-subdominating
function on P6 with w(f ) = 1 = �k/3� + k − n+ 1.

Theorem 71 (Hattingh and Ungerer [28]). If T is a tree of order n ≥ 2 and
1 ≤ k ≤ n− 1, then γ−k (T ) ≥ k − n+ 2.

In [27] the extremal graphs achieved this lower bound in Theorem 71 were
characterized. In fact, Theorem 71 supplements the following earlier result due to
[15].

Theorem 72 (Dunbar et al. [15]). If T is a tree, then γ−(T ) ≥ 1 with equality
holds if and only if T is a star K1,n.

Computing the exact value of γ−k may in general be difficult. The following result
provides the value on γ−k of a cycle Cn and a comet Cs,t (see Section 2.5).

Theorem 73 (Hattingh and Ungerer [28]). If Cn is a cycle on n ≥ 3 vertices and
1 ≤ k ≤ n− 1, then

γ−k (Cn) =
{
�(n− 2)/3� if k = n− 1 and k ≡ 0 or k ≡ 1 (mod3),

2�(2k + 4)/3� − n otherwise.

Theorem 74 (Hattingh and Ungerer [29]). Let p, s, and t be positive integers
such that p = s+ t and let k be an integer such that 1 ≤ k ≤ p−1. If s, t ≥ 2, then

γ−k (Cs,t ) =
{
k − p + 2 if 1 ≤ k ≤ s,
�(k − s + 1)/3� + k − p + 1 if s + 1 ≤ k ≤ p.

By simply changing the “closed neighborhood” in the definition of the minus k-
subdominating function to the “open neighborhood,” we can define the minus total
k-subdominating function. The minus total k-subdomination number γ−tk (G) and
the upper minus total k-subdomination number Γ −

tk (G) can be defined similarly.



Signed and Minus Dominating Functions in Graphs 345

The motivation for studying the total k-subdomination number is rich and varied
from a modeling perspective (see, e.g., [25]).

Harris, Hattingh, and Henning [25] showed that the decision problem of the
minus total k-subdomination number is NP-complete for bipartite graphs and also
present cubic time algorithms to compute the minus total k-subdomination and
minus k-subdomination numbers of a tree. However, there has been no progress
on bounds of the minus total k-subdomination number of graphs.
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Fractional Dominating Parameters

Wayne Goddard and Michael A. Henning

1 Introduction

For a graph G = (V ,E) with vertex set V and edge set E and for a real-valued
function f : V → R, the weight of f is w(f ) = ∑

v∈V f (v). Further, for S ⊆ V
we define f (S) = ∑

v∈S f (v); in particular, this means that w(f ) = f (V ). For a
vertex v in V , the open neighborhood N(v) of v consists of all neighbors of v; that
is, N(v) = {u ∈ V | uv ∈ E}. The closed neighborhood N [v] of v consists of v
and all neighbors of v; that is, N [v] = N(v) ∪ {v}. For notational convenience, we
denote f (N [v]) by f [v].

Let f : V → {0, 1} be a function which assigns to each vertex of a graph an
element of the set {0, 1}. We say f is a dominating function if for every v ∈ V ,
f [v] ≥ 1. The function f is a minimal dominating function if there does not exist a
dominating function g : V → {0, 1}, f �= g, for which g(v) ≤ f (v) for every v ∈
V . This is equivalent to saying that a dominating function f is minimal if for every
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vertex v such that f (v) > 0, there exists a vertex u ∈ N [v] for which f [u] = 1. The
domination number and upper domination number of a graph G can be defined as
γ (G) = min{w(f ) | f is a dominating function on G} and �(G) = max{w(f ) | f
is a minimal dominating function on G}, respectively.

2 Fractional Domination

We consider here the generalization of domination where vertices have fractional
weights in the range [0, 1]. A real-valued function f : V → [0, 1] is called a
fractional dominating function of G if f [v] ≥ 1 for each v ∈ V . The minimum
weight of a fractional dominating function of graph G is the fractional domination
number γf (G) of G. Thus, γf (G) = min {w(f ) | f is a fractional dominating
function for G}. While ideas about fractional domination are found in Farber [15]
and others, the parameter was formally defined in 1987 by S. T. Hedetniemi
reporting on results in [25] at the Eighteenth Southeastern Conference, and in 1988
by Domke, Hedetniemi, and Laskar [12] and in 1990 by Grinstead and Slater [22].
For general information about fractional graph parameters, see [32].

The fractional domination number is readily viewed as a linear program. Thus
we can talk of minimum, rather than infimum. The dual of the fractional domination
number is the fractional packing number. This is the linear programming relaxation
of the packing number.

A real-valued function f : V → [0, 1] is called a fractional packing function
of G if f [v] ≤ 1 for each v ∈ V . A fractional packing function f is maximal
if there does not exist a fractional packing function g : V → {0, 1}, f �= g, for
which g(v) ≥ f (v) for every v ∈ V . This is equivalent to saying that a fractional
packing function f is maximal if for every vertex v with f (v) < 1, there exists a
vertex u ∈ N [v] such that f [u] = 1. The maximum weight of a fractional packing
function of graph G is the fractional packing number ρf (G) of G.

Define N as the (closed) neighborhood matrix (that is, the adjacency matrix with
the 0’s on the diagonal replaced by 1’s). We have:

Fractional domination γf

minimize *1t *x =∑n
i=1 xi

subject to:

{
N *x ≥ *1
xi ≥ 0

Fractional packing ρf

maximize *1t *y =∑n
i=1 yi

subject to:

{
N *y ≤ *1
yi unrestricted

Thus, by the fundamental theorem of linear programming, it follows that:
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Fig. 1 A fractional
weighting in a prism P4 �K2

Theorem 1 For any graph G, it holds that γf (G) = ρf (G).
For example, the function f that assigns the weights to the vertices of the prism

G = P4 �K2 as illustrated in Figure 1 is a fractional dominating function and
a fractional packing function of G of weight w(f ) = 12

5 . Thus by Theorem 1,
γf (G) = ρf (G) = 12

5 .
There are immediate bounds involving the minimum and maximum degrees. In

particular, weight 1/(�(G) + 1) on every vertex is a packing function of G and
weight 1/(δ(G) + 1) on every vertex is a domination function of G. Thus for all
graphs, we have the following result first observed by Grinstead and Slater [22] and
Domke et al. [12].

Observation 1 ([12, 22]) IfG is a graph of order n with minimum degree δ(G) = δ
and maximum degree �(G) = �, then

n

�+ 1
≤ ρf (G) = γf (G) ≤ n

δ + 1
.

As a consequence of Observation 1 follows the value for a regular graph:

Theorem 3 ([12, 22]) If G is r-regular graph of order n, then γf (G) = n
r+1 .

Like the ordinary domination number, the parameter γf (G) ranges between 1
and the order of the graph. Domke et al. [12] showed that γf (G) = 1 if and only if
G has a dominating vertex. It is trivial that γf (G) equals the order if and only if the
graph G is empty. It is also trivial that γf (G − e) ≥ γf (G) where e is any edge in
the graph G.

Grinstead and Slater [22] observed an averaging argument: the mean of a
collection of dominating functions is itself a dominating function. One can use this
argument to “smooth” the function. Thus, for example, one may assume for each
orbit of the automorphism group that the weight is the same for all vertices in the
orbit. Results on complete bipartite (and complete multipartite graphs) given in [22]
and in Domke and Laskar [14] follow:

Theorem 4 ([14, 22]) For the complete bipartite graph Kr,s it holds that

γf (Kr,s) = r(s − 1)+ s(r − 1)

rs − 1
.
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The above formula also follows by linear programming duality, since one can
readily specify a fractional dominating function and a fractional packing function
of the same weight.

For k ≥ 1 an integer, a function f : V → {0, 1, . . . , k} is called a k-dominating
function of a graph G = (V ,E) if f [v] ≥ k for each v ∈ V . The k-domination
number, denoted γ{k}(G), ofG is the minimum weight of a {k}-dominating function
of G. We note that the characteristic function of a dominating set of G is a {1}-
dominating function, and so γ{1}(G) = γ (G). The lower bound with domination
can be trivially generalized to {k}-domination, namely, γf (G) ≤ γ{k}(G)/k. Indeed,
Domke et al. [13] showed that

Theorem 5 ([13]) For any graph G,

γf (G) = min
k∈N

{
γ{k}(G)
k

}

.

Domke et al. [11] observed that for a tree, one has equality between the fractional
and ordinary domination number. More generally, they proved that for a block
graph (a graph where every block is complete) equality also holds. This result also
follows from more general results proven by Domke et al. [13] involving the packing
number.

Theorem 6 ([11]) If G is a block graph, then γf (G) = γ (G).
A graph is chordal if it contains no cycle of length greater than three as

an induced subgraph. A strongly chordal graph is a chordal graph that also
contains no induced trampoline, where a trampoline (or sun) consists of a 2n-cycle
v1v2 . . . v2nv1 in which the vertices v2i of even subscript form a complete graph on
n vertices. Iijima and Shibata [27] and Farber [15] showed that for strongly chordal
graphs their fractional domination number equals their domination number.

Theorem 7 ([15, 27]) If G is a strongly chordal graph, then γf (G) = γ (G).
This result can be deduced from matrix properties. For, the neighborhood matrix

N of a graph is totally balanced if and only if the graph is strongly chordal, and linear
programs with totally balanced matrices are guaranteed to have integral solutions
(see for example [20]).

As was trivially observed, the ordinary domination number is at least the frac-
tional domination number. This suggests the question of how large the domination
number can be in terms of the fractional domination number. Chappell, Gimbel, and
Hartman [5] showed that the ratio can be at most logarithmic in the order:

Theorem 8 ([5]) If G is a graph, then γ (G) ≤ (1 + ln(1 +�(G)))γf (G).
This result is essentially best possible as there are r-regular graphs of order n

with domination number �(n log r
r
); see Alon [1].
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2.1 Efficient Domination

We say a function f : V → [0, 1] is an efficient fractional dominating function if for
every vertex v it holds that f [v] = 1. Equivalently, N *f = *1 where *1 denotes the all
1’s vector in R

n. For example, if G is a regular graph of degree r , then the function
f that assigns to each vertex the value 1/(r+1) is an efficient fractional dominating
function for G. If G is a complete bipartite graph Kr,s with partition (R, S), then
the function f that assigns to each vertex of R the value (s − 1)/(rs − 1) and to
each vertex of S the value (r − 1)/(rs − 1) is such a function.

Efficient fractional dominating functions were introduced and first studied in
1988 by Bange, Barkauskas, and Slater [3]. We call an efficient fractional dom-
inating an EFD-function (standing for Efficient Fractional Dominating function).
Grinstead and Slater [22] called a graph which has an EFD-function “fractionally
efficiently dominatable.” In 1996, Bange, Barkauskas, Host, and Slater [2] showed
that:

Theorem 9 ([2]) If a graph G is fractionally efficiently dominatable, then every
EFD-function of G has the same weight.

We remark that testing for efficiency is a linear program calculation.
If a graphG has an efficient dominating setD, then the characteristic function of

D represents a EFD-function. However, the converse is not true: having an efficient
fractional dominating function does not imply an efficient dominating set. Consider,
for example, any regular graph where n is not a multiple of r + 1. Another is the
graph formed from two 4-cycles by identifying a vertex of each (Figure 2).

The converse is true, however, in trees (see [21]), and indeed in block graphs
(see [26]):

Theorem 10 ([26]) If B is a block graph, then B has a EFD-function if and only if
it has an efficient dominating set.

Further, note that even if γf (G) = γ (G), it does not necessarily follow that there
is an efficient dominating set of G. For example, the graph G shown in Figure 3
satisfies γf (G) = γ (G) = 3 and has an EFD-function but does not possess an
efficient dominating set.

Fig. 2 An efficient fractional
dominating function in a
graph



354 W. Goddard and M. A. Henning

Fig. 3 A graph with an
EFD-function but no efficient
dominating set

2.2 Graph Operations

The fractional domination number of the disjoint union of two graphs is just the
sum of the individual fractional domination numbers. The result for the join was
determined by Fisher [17]: if graphs G and H are not complete, then the optimal
fractional dominating set is found by taking optimal fractional dominating sets of
both G and H and then scaling all weights of V (G) by some factor and all weights
of V (H) by some factor. Optimization yields the result for the join G + H of G
and H , which consists of the disjoint union plus edges joining every vertex of G to
every vertex of H .

Theorem 11 ([17]) The fractional domination number of the join of noncomplete
graphs G and H is given by

γf (G+H) = 2 − γf (G)+ γf (H)− 2

γf (G)γf (H)− 1
.

Earlier, Fisher, Ryan, Domke, and Majumdar [18] determined the formula for the
strong direct product G�H of G and H , which has vertex set V (G)× V (H) and
where distinct vertices (u, u′) and (v, v′) are adjacent inG�H if and only if u = v
and u′v′ ∈ E(H) or u′ = v′ and uv ∈ E(G) or uv ∈ E(G) and u′v′ ∈ E(H). Their
proof rests on the fact that the neighborhood matrix of G�H is the tensor product
of the neighborhood matrices of G and H .

Theorem 12 ([18]) For all graphs G and H ,

γf (G�H) = γf (G) γf (H).

From this they deduced the bounds for Cartesian product G�H of G and H ,
which has vertex set V (G)× V (H), and edges between vertices (g, h) and (g′, h′)
if either gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H).
Theorem 13 ([18]) For all graphs G and H ,

γf (G�H) ≥ γf (G) γf (H).

This established the fractional version of Vizing’s conjecture. Related results are
discussed in [16]. More on the strong product is given by John and Suen [28].
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Hare [23] and Stewart and Hare [33] considered the fractional domination
numbers of grids with fixed number of rows. Hare showed that the grid P2 �Pm
has an efficient dominating set whenever m is odd, and calculated the fractional
dominating number for the case that m is even:

Theorem 14 ([23]) For m ≥ 1,

γf (P2 �Pm) =
{

1
2 (m+ 1) if m is odd
m(m+2)
2(m+1) if m is even.

The case for m = 4 was illustrated in Figure 1. Also Rubalcaba and Walsh [31]
noted that every minimal dominating function of P2 �Pm is a packing function but
not every maximal packing function is a dominating function. Values for the product
Cn�Pm are given by Xu [34].

2.3 Upper Fractional Domination

A minimal fractional dominating function is a fractional dominating function where
no value can be lowered. This is equivalent to saying that every vertex u with
positive weight has a vertex v in its closed neighborhood such that f [v] = 1. The
upper fractional domination number ofG is defined as �f (G) = max {w(f ) | f is a
minimal fractional dominating function for G}. The upper parameter �f (G) can be
expressed as a maximum over a finite collection of linear programs. Hence we write
the maximum rather than the supremum. But it is NP-complete in general; see [7].
Upper fractional domination in graphs was introduced and studied by Cheston et
al. [7].

The domination and fractional domination parameters are related as follows.

Observation 2 For every graph G, we have γf (G) ≤ γ (G) ≤ �(G) ≤ �f (G).
Laskar et al. [30] provided the formula for the upper fractional domination

number of the join of two graphs:

Theorem 16 ([30]) For all graphs G and H ,

�f (G+H) = max{�f (G), �f (H)}.

Cheston and Fricke [6] established the following result.

Theorem 17 ([6]) Every (strongly) perfect graph G has �f (G) = �(G) = α(G).
The convex combination of dominating functions is again dominating functions.

Cockayne, Fricke, Hedetniemi, and Mynhardt [9] investigated when the convex
combination of minimal dominating functions is again a minimal dominating
function.
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2.4 Fractional Total Domination

Fractional total domination is defined similarly to fractional domination. A real-
valued function f : V → [0, 1] in a graph G = (V ,E) is called a fractional
total dominating function of G if the sum of the function values over any open
neighborhood is at least 1. That is, for every v ∈ V , f (N(v)) ≥ 1. The
minimum weight of a fractional total dominating function of G is the fractional
total domination number γf t (G) ofG. Thus, γf t (G) = min {w(f ) | f is a fractional
total dominating function for G}. The upper fractional total domination number of
G is defined as �f t (G) = max {w(f ) | f is a minimal fractional total dominating
function forG}, where a minimal fractional total dominating function is a fractional
total dominating function where no value can be lowered.

The characteristic function of a total dominating set is trivially a fractional
total dominating function; furthermore, the characteristic function of a minimal
total dominating set is a minimal fractional total dominating function. The total
domination and fractional total domination parameters are therefore related as
follows, where �t(G) is the upper total domination number of G.

Observation 3 For every graph G, γf t (G) ≤ γt (G) ≤ �t(G) ≤ �f t (G).
Fricke, Hare, Jacobs, and Majumdar [19] established some classes of graphs

where the upper total domination and upper fractional total domination numbers
are equal.

Theorem 19 ([19]) If G is a bipartite graph with no induced cycle of length
congruent to 2 modulo 4, then �f t (G) = �t(G).

As with the fractional domination number, the fractional total domination
number is readily viewed as a linear program, where here the linear program uses
the adjacency matrix A rather than the neighborhood matrix N .

Fractional total domination γf t
minimize *1t *x =∑n

i=1 xi

subject to:

{
A*x ≥ *1
xi ≥ 0

Fractional open packing ρfo
maximize *1t *y =∑n

i=1 yi

subject to:

{
A*y ≤ *1
yi unrestricted

Thus, by the fundamental theorem of linear programming, it follows that:

Theorem 20 For any graph G, it holds that γf t (G) = ρf o(G).
For example, if G is an r-regular graph of order n, then the function f that

assigns to each vertex the value 1/r is a fractional total dominating function and a
fractional open packing function ofG of weight w(f ) = n/r . Thus by Theorem 20,
γf t (G) = ρf o(G) = n/r .

Fisher [17] showed that the fractional domination number of a graph and the
fractional total domination number of its complement are related as follows.
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Theorem 21 ([17]) For any graph G it holds that

1

γf (G)
+ 1

γf t (G)
= 1.

Proof. If γf (G) = 1, then G has a dominating vertex and so G has an isolated
vertex. Since such a vertex can have arbitrarily large weight in an open packing, the
result follows if we interpret such a graph to have γf t = ∞ and 1/∞ = 0.

So assume γf (G) > 1. Consider a minimum fractional dominating function g
of G and a maximum fractional packing h of G. By above we know these both
have weight γf (G). Now for every vertex v, the total weight of g outside v’s closed
neighborhoodN [v] is at most γf (G)−1. It follows that the function g/(γf (G)−1)
is a fractional open packing of G. That is,

γf t ((G)) ≥ γf (G)

γf (G)− 1
.

Similarly, the total weight of h outside N [v] is at least γf (G) − 1, the function
h/(γf (G)− 1) is a fractional total dominating function of G, and

γf t ((G)) ≤ γf (G)

γf (G)− 1
.

The result follows. �

3 P-Domination

In the spirit of fractional domination, Bange, Barkauskas, Host, and Slater [2]
generalized domination to P-domination for an arbitrary subset P .

Given P ⊆ R, a function f : V → P is a P-dominating function of a graph
G = (V ,E) if the sum of the function values over any closed neighborhood is at
least 1. That is, for every v ∈ V , f [v] ≥ 1. The P-domination number, denoted
γP (G), of G is defined to be the infimum of f (V ) taken over all P-dominating
functions f .

This concept encompasses several common parameters. When P = {0, 1} we
obtain the standard domination number; when P = [0, 1], we obtain the fractional
domination number discussed above; when P = {−1, 0, 1} we obtain the minus
domination number, and when P = {−1, 1} we obtain the signed domination
number. We remark that discussion of the minus and signed domination numbers
can be found in the chapter by Shan and Kang in this book, while discussion of
algorithms and complexity of minus and signed domination can be found in the
chapter by Hedetniemi, McRae, and Mohan in the companion book [? ].
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Fig. 4 A double-star T with
γZ(T ) = −∞

One important consequence of allowing negative weights is that for a graph G
its P-domination number might be negative. For example, consider a double-star
T of order 6 with two vertices of degree 3. If P = Z and α is a positive integer,
then placing weight α on the two central vertices and weight 1 − α on every leaf
as illustrated in Figure 4 produced a P-dominating function of total weight 2 − 2α.
One can make α arbitrarily large, implying that γZ(T ) = −∞.

For a subset P ⊆ R and a graph G = (V ,E), a function f : V → P is an
efficient P-dominating function if for every vertex v it holds that f [v] = 1. Earlier,
Bange et al. [2] when they established Theorem 9 had actually shown:

Theorem 22 If P be a subset of the reals R and if f1 and f2 are two arbitrary
efficient P-dominating functions for a graph G, then w(f1) = w(f2).

A function is nonnegative if all the function values are nonnegative. A func-
tion which is both nonnegative and efficient P-dominating is called an NEPD-
function (standing for Nonnegative Efficient P-Dominating function). In particular,
a NE RD-function (standing for Nonnegative Efficient Real Dominating function)
inG is a nonnegative efficient real dominating function inG. For example, if P = R

and G is a regular graph of degree k, then the function f that assigns to each vertex
the value 1/(k + 1) is a NE RD-function for G noting that f (v) > 0 and f [v] = 1
for every vertex v in the graph G.

In [21], we showed that the question about unbounded weights is directly
connected to NE RD-functions.

Theorem 23 ([21]) For any graph G,

γR(G) =
{

w(f ) if G has an NE RD-function f,
−∞ otherwise.

The proof of Theorem 23 uses linear programming duality and complementary
slackness. The dual of real domination is efficient packing. If the dual is feasible,
that is, there is an efficient packing function, then that efficient packing function
is also an efficient dominating function, and the solution is the size of the efficient
dominating function. If the dual is not feasible, then the primal has an unbounded
solution.

It follows from Theorem 23 that, for any subset P of R, if a graph G has an
NEPD-function f , then γP (G) = γR(G) = w(f ), since f is an NE RD-function
of G, and so w(f ) ≥ γP (G) ≥ γR(G) = w(f ).
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Fig. 5 A graph G with no
efficient dominating set
satisfying γR(G) = γ (G)

Another consequence of Proposition 23 is that if {0, 1} ⊆ P ⊆ R, and graph
G has an efficient dominating set, then γP (G) = γ (G). This follows as the
characteristic function of the efficient dominating set is an NEPD-function for G.
The converse, however, is not true. For example, the graph G shown in Figure 5
has an NEPD-function f as illustrated, and so γf (G) = w(f ) = 3. Furthermore,
it is evident that γ (G) = 3. However, the graph G does not possess an efficient
dominating set. Hence, γR(G) = γ (G) does not necessarily imply that G has an
efficient dominating set.

If one takes a Q-dominating function f and multiplies all the weights by the
least common multiple of the weights’ dominators, one obtains a Z-dominating
function. Therefore if there is a Q-dominating function of arbitrarily negative
weight, then there is a Z-dominating function too of arbitrarily negative weight.
Thus, if γQ(G) = −∞, then γZ(G) = −∞.

3.1 Graph Classes

By the results of Iijima and Shibata [27] and Farber [15] mentioned earlier, it follows
from Theorem 23 that:

Theorem 24 ([15, 21]) For any strongly chordal graph G,

γR(G) =
{
γ (G) if G has an NE RD-function,
−∞ otherwise.

For real domination there is no result analogous to Vizing’s conjecture. For
example, the path P3 has an efficient dominating set, but the grid P3 �P3 does
not have an NE RD-function. Hence, γR(P3 �P3) = −∞ while γR(P3) = 1.

However, Theorem 12 on the strong direct product G � H of graphs G and H
does generalize. The reason is that, if g and h are dominating functions, then the
function f : V (G) × V (H) → R defined by (a, b) ,→ g(a)h(b) (and denoted by
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f = g ⊗ h) is a dominating function of G � H , and if g and h are both efficient
then so is f . Furthermore, w(f ) = w(g)× w(h). That is,

Theorem 25 For all graph G and H , for the

γR(G�H) =
{
γR(G) · γR(H), if γR(G) and γR(H) both positive,
−∞, otherwise.

Brešar, Henning, and Klavzar [4] studied the {k}-domination number in the
Cartesian products of graphs, mostly related to Vizing’s conjecture.

Theorem 26 ([4]) For any graphs G and H ,

γ{k}(G)γ{k}(H) ≤ k(k + 1)γ{k}(G�H).

Theorem 26 simplifies to γ (G)γ (H) ≤ 2γ (G�H) in the special case when
k = 1, which is the result of Clark and Suen [8].

3.2 Hardness Results

If P = R or Q, then the determination of γP (G) can be formulated in terms of
solving a linear programming problem, and so can be computed in polynomial-time
(see [24] and [29]). On the other hand, the determination of the domination, signed
domination and minus domination numbers has been shown to be NP-complete.
We [21] showed that the problem is NP-hard provided P contains 0 and 1 and is
bounded from above. On the other hand, there is a linear-time algorithm for finding
a minimum P-dominating function in a tree T in many cases.

However, it remains an open problem to determine the complexity of Z-
domination. A graph-theoretic proof that shows that Z-domination is a member of
NP is not known. This is, however, a consequence of the general result that integer
programming is in NP.

4 Other P-Parameters

One can define P-analogues of other graphical parameters. In some cases, such
as independence number and total domination, one obtains the analogue of The-
orem 23; in other cases, such as upper domination, there is an even simpler
characterization of the real version. We discuss here only the independence and
upper domination numbers.

LetG = (V ,E) be a graph where |V | = n and |E| = m. Let I denote the n×m
incidence matrix of G. We say a function f : V → P is a P-independence function
ofG if for every edge e the sum of the values (weights) assigned under f to the two
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ends of e is at most 1. The P-independence number αP (G) ofG is defined to be the
supremum of w(f ) taken over all P-independence functions f . If P = {0, 1}, then
one obtains the ordinary independence number.

An obvious lower bound on αR is n/2 attained by assigning to every vertex a
weight of 1/2. We say a function g : E → P is an efficient P-matching function of
a graph G = (V ,E) if for every vertex v the sum of the values assigned under g to
the edges incident with v is 1. One can obtain a result similar to Proposition 23:

Theorem 27 For any graph G on n vertices,

αR(G) =
{ 1

2n, if G has a nonnegative efficient R-matching function,
+∞, otherwise.

The upper domination number is defined as the cardinality of the largest minimal
dominating set of G (see for example, [10]). We say a P-dominating function f is
a minimal P-dominating function if there does not exist a P-dominating function h,
h �= f , such that h(v) ≤ f (v) for every v ∈ V . The upper P-domination number
for G is �P (G) = sup{ f (V ) | f : V → P is a minimal P-dominating function on
G }.
Theorem 28 Let P = Z, Q or R. Then for any connected graph G = (V ,E),

�P (G) =
{

1, if G is complete,
+∞, otherwise.

5 Conclusion

In this chapter, we have surveyed some results concerning dominating functions in
which negative weights are allowed. We have focused our attention on fractional,
integer, or real dominating functions in graphs, and discussed the idea of P-
dominating functions in graphs, which provides numerous interesting theoretical
and computational questions.
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Roman Domination in Graphs

Mustapha Chellali, Nader Jafari Rad, Seyed Mahmoud Sheikholeslami,
and Lutz Volkmann

This chapter is concerned with the concept Roman domination in graphs, which was
introduced in 2004 by Cockayne, Dreyer, S.M. Hedetniemi and S.T. Hedetniemi
based on the strategies for defending the Roman Empire presented by Stewart in
[80] and ReVelle and Rosing [71]. Since then, more than 180 papers have been
published on this topic, where several new variations were defined and that will
be exposed in another chapter. In this chapter we will only survey the results on
the Roman domination number as well as those when the structure of the graph is
modified by the addition of edges/vertices or removing edges/vertices.

1 The Roman Domination Problem

For a graph G = (V ,E), let f : V → {0, 1, 2} be a function, and let (V0, V1, V2)

be the ordered partition of V induced by f , where Vi = {v ∈ V : f (v) = i} for
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i = 0, 1, 2. There is a 1−1 correspondence between the functions f : V → {0, 1, 2}
and the ordered partitions (V0, V1, V2) of V . So we will write f = (V0, V1, V2).

As defined in [25], a function f : V → {0, 1, 2} is a Roman dominating function
(or just RDF) if every vertex u for which f (u) = 0 is adjacent to at least one vertex
v for which f (v) = 2. The weight w(f ) of a Roman dominating function f is the
value f (V ) = ∑

u∈V f (u). The Roman domination number of a graph G, denoted
by γR(G), is the minimum weight of an RDF on G. A function f = (V0, V1, V2)

is called a γR-function (or γR(G)-function when we want to refer f to G), if it is a
Roman dominating function and f (V ) = γR(G).

In the fourth century, the Roman Empire which dominated large areas of three
continents (Europe, North Africa, and part of the Near East) began to lose its power
and it was very difficult to secure all the conquered regions. Figure 1 provides a
graph region corresponding to the Roman Empire with its eight provinces, where
each vertex represents a region connected to specific vertices (neighboring regions).
A region is secured by an army stationed there, and a region having no army can be
protected by an army sent from a neighboring region.

With only four field armies (each consisting of six mobile legions), Emperor
Constantine the Great chose to place two field armies in Rome and two others
in Constantinople. Moreover, he decreed that a field army cannot be sent to a
neighboring region if it leaves its original region unprotected. In other words, every
region with no field army must be adjacent to a region that has at least two legions.
It should be noted the deployment of armies adopted by Constantine the Great did

Fig. 1 Map of the Roman Empire with its eight provinces ([71]).
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not secure the region of Britain. However, placing two armies in Rome and an army
in each of Britain and Asia Minor could have protected all of the regions of the
Roman Empire. This defense strategy prompted the definition of Roman dominating
function given in [25].

1.1 Properties of Roman Dominating Functions

We begin with the following results, presented in [25] which give basic properties
of Roman dominating functions.

Proposition 1.1 ([25]) Let f = (V0, V1, V2) be any γR(G)-function of a graph G.
Then

(a) The subgraph G[V1] induced by V1 has maximum degree 1.
(b) No edge of G joins V1 and V2.

(c) Each vertex of V0 is adjacent to at most two vertices of V1.
(d) V2 is a minimum dominating set of G[V0 ∪ V2].
(e) LetH = G[V0∪V2]. Then each vertex v ∈ V2 has at least two private neighbors

relative to V2 in H.
(f) If v is isolated in G[V2] and has precisely one private neighbor, say w ∈ V0,

then N(w) ∩ V1 = ∅.
(g) Let k1 equal the number of non-isolated vertices in G[V2], and let C = {v ∈

V0 : |N(v) ∩ V2| ≥ 2}. Then |V0| ≥ |V2| + k1 + |C| .
Proposition 1.2 ([25]) Let f = (V0, V1, V2) be a γR(G)-function of an isolate-free
graph G such that |V1| is a minimum. Then

(a) V1 is independent, and V0 ∪ V2 is a vertex cover.
(b) V0 dominates V1.

(c) Each vertex of V0 is adjacent to at most one vertex of V1.

(d) Let v ∈ V2 have exactly two private neighbors w1 and w2 ∈ V0, relative to V2.
Then there do not exist vertices y1, y2 ∈ V1 such that (y1, w1, v, w2, y2) is the
vertex sequence of a path P5.

(e) |V0| ≥ 3 |V | /7, and this bound is sharp even for trees.

The two previous propositions allowed Cockayne et al. to establish the following
result.

Corollary 1.3 For any nontrivial connected graph G,

γR(G) = min{2γ (G− S)+ |S| : S is a packing}.

Favaron et al. [35] were interested in the minimum and maximum values of
|V0| , |V1|, and |V2| for a γR(G)-function f = (V0, V1, V2). Let R be the family of
graphsG obtained from a connected graphH such that each vertex ofH is identified
with the central vertex of a P5. Let R′ be the family of graphs of R constructed from
a graph H having a vertex of degree |V (H)| − 1.
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Theorem 1.4 ([35]) Let f = (V0, V1, V2) be a γR(G)-function of a connected
graph G of order n ≥ 3. Then

(1) 1 ≤ |V2| ≤ 2n
5 and a graph G admits a γR(G)-function such that |V2| = 2n

5 if
and only if G belongs to R ∪ {C5}.

(2) 0 ≤ |V1| ≤ 4n
5 − 2 and a graph G admits a γR(G)-function such that |V1| =

4n
5 − 2 if and only if G belongs to R′ ∪ {C5}.

(3) n
5 + 1 ≤ |V0| ≤ n − 1 and a graph G admits a γR(G)-function such that
|V0| = n

5 + 1 if and only if G belongs to R′ ∪ {C5}.

1.2 Bounds on γR

Let f = (V0, V1, V2) be a γR(G)-function of a graph G of order n. Since every
vertex in V2 has at least one private neighbor in V0, we havew(f ) = |V1|+2 |V2| ≤
|V1|+|V2|+|V0| = n, and so γR(G) ≤ n. Clearly the equality is attained if and only
if�(G) ≤ 1. This trivial upper bound has been improved by Chambers, Kinnersley,
Prince, and West [17] as follows.

Proposition 1.5 ([17]) If G is a graph of order n with maximum degree �, then
γR(G) ≤ n−�+ 1.

It is noteworthy that although the upper bound of the Proposition 1.5 is easy
to prove, the problem of characterizing the graphs achieving this bound seems to
be quite difficult. Indeed, Bouchou, Blidia, and Chellali [15] have proved that the
problem of deciding whether γR(G) = n−�+1 is co-NP-complete. However, they
gave characterizations of trees, regular and semiregular graphs attaining the upper
bound of Proposition 1.5, which we now present. Recall that a graph G is called
semiregular if�(G)− δ(G) = 1.We give first a necessary condition for connected
graphs G of order n with γR(G) = n−�+ 1. For any vertex v ∈ V (G), we write
N(v) = V (G)−N [v].
Proposition 1.6 ([15]) Let G be a graph of order n with maximum degree �. If
γR(G) = n−�+ 1, then for every vertex v of maximum degree we have:

(1) Every vertex of N(v) is adjacent to at most two vertices in N(v).
(2) Each component of G

[
N(v)

]
is either K1 or K2.

Let T be a tree with a unique vertex of maximum degree � ≥ 3, say x, where
each leaf of T is at distance at most three from x and such that all components
in T − x are paths of order at most 5 (for example, see Figure 2). Let Hi be a
component of T − x of order i, where i ∈ {1, 2, . . . , 5}. Note that since T is a tree,
Hi contains exactly one vertex of N(x). Let n1 be the number of components H1,

n2 the number of components H2, n3 the number of components H3 having a leaf
belonging to N(x), n4 the number of components H3 whose center vertices belong
to N(x), n5 the number of components H4 having a support vertex belonging to
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Fig. 2 Example of a tree T ,
where each component of
T − x is a path of order at
most 5.

N(x), and n6 be the number of components H5 whose center vertices belong to
N(x). Hence

∑6
i=1 ni = �(T ).

Let T be the family of trees T with only two adjacent vertices of maximum
degree three such that every leaf of T is at distance at most two from a vertex of
maximum degree. Note that any tree T ∈ T has order n ∈ {6, 7, 8, 9, 10}.
Theorem 1.7 ([15]) Let T be a nontrivial tree of order n and maximum degree �.
Then γR(T ) = n−�+ 1 if and only if T ∈ {P2, P3, P4, P5} or T ∈ T or T is one
of the trees defined above such that either n4 +n5 +n6 = 0 and (n1 ≥ 1 or n2 ≥ 2)
or n4 + n5 + n6 �= 0 and n1 + n2 ≥ 2.

For regular graphs, we have:

Theorem 1.8 ([15]) Let G be a �-regular graph of order n with � ≥ 1. Then
γR(G)+� = n+ 1 if and only if � ∈ {1, n− 3, n− 2, n− 1}.

For semiregular graphs, we have:

Theorem 1.9 ([15]) LetG be a semiregular graph of order n and maximum degree
�. Then γR(G)+� = n+ 1 if and only if G fulfills one of the following:

(a) � ≥ n− 3,
(b) G = pK1 ∪ qK2 with p ≥ 1, q ≥ 1 and p + 2q = n,
(c) G = qK2 ∪H with 2q + |V (H)| = n, where H ∈ {P3, P4, P5, C3, C4, C5} if

q �= 0 and H ∈ {P3, P4, P5} if q = 0,
(d) G is isomorphic to one of the nine graphs in Figure 3.

Chambers et al. [17] established an upper bound for the Roman domination
number in terms of the order and characterized the extremal graphs attaining the
bound.

Theorem 1.10 ([17]) If G is a connected graph of order n ≥ 3, then γR(G) ≤ 4n
5 ,

with equality if and only if G is C5 or is obtained from n
5P5 by adding a connected

subgraph on the set of centers of the components of n5P5.

Restricted to graphs with minimum degree at least two, Chambers et al. [17]
improved the upper bound of Theorem 1.10. Let B = {C4, C5, C8, F1, F2},
where F1 and F2 are the graphs illustrated in Figure 3. Let also F be the
connected graph obtained from two disjoint cycles C5, (x1, y1, z1, z2, y2, x1) and
(x2, y3, z3, z4, y4, x2), by adding a new vertex w and edges wx1 and wx2.
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Fig. 3 Connected semiregular extremal graphs of order n ∈ {7, 8, 9}

Theorem 1.11 ([17]) If G is a connected graph of order n with δ(G) ≥ 2 and
G /∈ B, then

γR(G) ≤ 8n/11.

Moreover, if n ≥ 9, then γR(G) = 8n/11 if and only if

(1) n = 11 andG is isomorphic to F plus a subset of one of {y1y3, y1y4, y2y3, y2y4},
{wz1, y1y3, y1y4}, or {wz1, wz3, y1y3} added as edges, or

(2) n > 11 and G consists of disjoint copies of the graphs F , F + wz1, and F +
wz1 + wz3 with additional edges connecting copies of w.

In [12], Bermudo gave an upper bound on the Roman domination number for
graphs G containing none of the two following induced subgraphs. Let B1 be the
graph obtained from a path P7 whose vertices are labeled in order v1, v2, . . . , v7 by
adding the edge v3v7. Let B2 be the graph obtained from B1 by adding the edge
v2v6.

Theorem 1.12 ([12]) Let G be a graph of order n ≥ 15, minimum degree δ ≥
2, which does not contain any induced subgraph isomorphic to B1 or B2. Then
γR(G) ≤ 12

17n.

For 2-connected graphs, Liu and Chang [63] obtained the following upper bound.

Theorem 1.13 ([63]) For any 2-connected graph G of order n, γR(G) ≤
max{�2n/3� , 23n/34}.
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Fig. 4 Replacement of an
edge e = xy by a 5-cycle Ce.

Fig. 5 Explosion graph of
K4

Liu and Chang [63] provided a characterization of 2-connected graphsG of order
n with Roman domination number 23n/34 when 23n/34 > 2n/3.

The explosion graph G′ of a multigraph G is the graph obtained by replacing
each edge e = xy of the original graph by a 5-cycle Ce = Cxy such that x and y
are adjacent to two non-adjacent vertices in the 5-cycle, respectively (see Figures 4
and 5).

A graph H ′ is an almost-explosion graph of a loopless multigraph H if H ′ can
be obtained from the explosion graph of H by adding some or none of the edges in
{yex, xey} for each e = xy ∈ E(H). Now, consider k graphsG1,G2, . . . ,Gk , each
of them isomorphic to an almost-explosion graph of K4, and let Fk be the family
of graphs obtained from a disjoint union of these almost-explosion graphs Gi’s by
adding suitable edges between vertices of the original K4’s.

Theorem 1.14 ([63]) If G is a 2-connected graph and 23n/34 > 2n/3, then
γR(G) = 23n/34 if and only if G ∈ Fk for some k.

Restricted to graphs with minimum degree at least three, Liu and Chang [64]
obtained the following sharp upper bound on the Roman domination number.

Theorem 1.15 ([64]) If G is a graph with n vertices and δ(G) ≥ 3, then γR(G) ≤
2n/3.

The sharpness of the previous bound is shown for a large family of cubic 3-
connected graphs described in [64] as follows. For any integer t ≥ 3, we construct
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Fig. 6 The big-claw and
big-net graphs

the graph Gt from the union of two disjoint 3t-cycles x1, x2, . . . , x3t , x1 and
y1, y2, . . . , y3t , y1 by adding edges xiyji for 1 ≤ i ≤ 3t , where ji = i if i ≡ 1
(mod 3), ji = i + 1 if i ≡ 2 (mod 3), and ji = i − 1 if i ≡ 0 (mod 3).

The next result is stated for graphs with no induced subgraph isomorphic to
neither a big-claw nor a big-net illustrated in Figure 6.

Theorem 1.16 ([64]) IfG is a connected big-claw-free and big-net-free graph with
n vertices, then γR(G) ≤ �2n/3� .

Using a probabilistic method, Cockayne et al. [25] proved the following upper
bound.

Theorem 1.17 ([25]) For a graph G of order n and minimum degree δ,

γR(G) ≤ 2 + ln(1 + δ)/2
1 + δ n.

Zverovich and Poghosyan [92] proved that the bound of Theorem 1.17 is
asymptotically best possible. They also presented another probabilistic upper bound
for the Roman domination number of a graph.

Theorem 1.18 ([92]) For any graph G with δ = δ(G) > 0,

γR(G) ≤ 2

(

1 − 2
1
δ δ

(1 + δ)1+ 1
δ

)

n.

We conclude this subsection by the following lower bound on the Roman
domination number in terms of the order and maximum degree that can be found in
[26].

Proposition 1.19 ([26]) For any graph G of order n and maximum degree � ≥ 1,

γR(G) ≥ 2n

�+ 1
.

In [79], the authors present the bound γR(G) ≥ � 2n
�+1�+ ε for graphsG of order

n and maximum degree � ≥ 1, with ε = 0 when n ≡ 0, 1 (mod (� + 1)) and
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ε = 1 when n �≡ 0, 1 (mod (�+1)). The following example shows that this bound
is not correct in general. Let H be the graph obtained from a path v1v2 . . . v12 by
adding a pendant edge at the vertices v2, v5, and v8. Then γR(H) = 8, but it follows
γR(H) ≥ 9 from the bound above.

1.3 Relationships with Some Domination Parameters

In this subsection we present various relations involving γR and some other
parameters including γ and γt . By Proposition 1.1, for every RDF f = (V0, V1, V2)

of G, V1 ∪ V2 is a dominating set inG.Moreover, assigning a 2 to every vertex in a
minimum dominating set D of G and a 0 to every vertex not in D yields a RDF of
G. Hence we have the following inequality.

Theorem 1.20 ([25]) For every graphG, γ (G) ≤ γR(G) ≤ 2γ (G).Moreover, the
lower bound is sharp if and only if G is the empty graph.

Graphs G such that γR(G) = 2γ (G) are called Roman graphs. As mentioned
in [25], the only Roman paths and cycles are P3k, P3k+2, C3k, and C3k+2. Henning
[42] gave a characterization of Roman trees. Notice that such a characterization is
called constructive since it applies recursively operations to build extremal trees.
Cockayne et al. gave the following equivalent conditions for Roman graphs whose
characterization remains an open problem.

Proposition 1.21 ([25]) Let G be a graph. Then the following conditions are
equivalent.

(i) G is a Roman graph.
(ii) G has a γR(G)-function f = (V0, V1, V2) such that |V1| = 0.

(iii) γ (G) ≤ γ (G− S)+ |S|/2, for every packing set S ⊆ V.
The graphsG such that γR(G) ∈ {γ (G)+ 1, γ (G)+ 2} have been characterized

in [25] as follows.

Theorem 1.22 ([25]) Let G be a connected graph of order n. Then

(i) γR(G) = γ (G)+ 1 if and only if there is a vertex v ∈ V of degree n− γ (G).
(ii) γR(G) = γ (G)+ 2 if and only if:

(a) G does not have a vertex of degree n− γ (G).
(b) either G has a vertex of degree n − γ (G) − 1 or G has two vertices v and w

such that |N [v] ∪N [w]| = n− γ (G)+ 2.

The class of trees T such that γR(T ) ∈ {γ (T ) + 1, γ (T ) + 2} has been
characterized in [25]. For a positive integer t , a wounded spider is a star K1,t with
at most t − 1 of its edges subdivided. Likewise, for an integer t ≥ 2, a healthy
spider is a star K1,t with all of its edges subdivided. In a wounded spider, a vertex
of degree t will be called the head vertex, and the vertices that are distance two from
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the head vertex will be the foot vertices. If the wounded spider is the path P2, then
both vertices of the path are head vertices, while in the case of P4, both end vertices
of P4 are foot vertices and both interior vertices are head vertices.

Proposition 1.23 ([25]) If T is a tree of order n ≥ 2, then:

(i) γR(T ) = γ (T )+ 1 if and only if T is a wounded spider.
(ii) γR(T ) = γ (T ) + 2 if and only if (i) T is a healthy spider or (ii) T is a pair

of wounded spiders T1 and T2, with a single edge joining v ∈ V (T1) and w ∈
V (T2), subject to the following conditions:

(a) if either tree is a P2, then neither vertex in P2 are joined to the head vertex of
the other tree.

(b) v and w are not both foot vertices.

In [87], Xing, Chen, and Chen completed the characterization of graphs G for
which γR(G) = γ (G) + k for any integer k such that 2 ≤ k ≤ γ (G) in response
to the open question posed in [25]. We note that the proof given in [87] contained a
logical mistake that was corrected by Wu and Xing in [86].

Theorem 1.24 ([87]) Let G be a connected graph of order n and the domination
number γ (G) ≥ 2. If k is an integer such that 2 ≤ k ≤ γ (G), then γR(G) =
γ (G)+ k if and only if:

(i) for any integer s with 1 ≤ s ≤ k− 1, G does not have a set Ut of t (1 ≤ t ≤ s)
vertices such that

∣
∣∪v∈UtN [v]

∣
∣ = n− γ (G)− s + 2t;

(ii) there exists an integer l with 1 ≤ l ≤ k, and G has a set Wl of l vertices such
that

∣
∣∪v∈WlN [v]

∣
∣ = n− γ (G)− k + 2l.

The lower bound γR(G) ≥ γ (G) has been improved by Chellali, Haynes, and
Hedetniemi [19] by providing a bound in terms of the domination number and the
maximum degree. Before presenting the new bound, let us recall that a dominating
set S for which |N [v]∩S| = 1 for all v ∈ V is an efficient dominating set (see Bange
et al. [10]). Thus, a set S is an efficient dominating set if S is both a dominating set
and a packing inG. We note that not every graph has an efficient dominating set, for
example, the cycle C5 does not. But paths Pn and cycles C3k admit such sets. Also,
one of the well-known bounds on the domination number is that due to Walikar et
al. [83] who proved that for every graph G, γ (G) ≥ n/(1 + �(G)). If G denotes
the family of connected graphs G of order n such that γ (G) = n/(1+�(G)), then
clearly all graphs of G admit an efficient dominating set in which every vertex has
maximum degree. Graphs other than those in G have efficient dominating sets. For
instance, the path P4 has a unique efficient dominating set but P4 /∈ G. Let F be the
family of graphsG such thatG is the cycle C4 or the corona of any connected graph
in G.

Theorem 1.25 ([19]) LetG be a nontrivial, connected graph with maximum degree
�. Then γR(G) ≥ �+1

�
γ (G), with equality if and only if G ∈ F .
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In [35], Favaron et al. gave a relation involving γR and γ for any connected graph
as follows. We recall that R is the family of graphs G obtained from a connected
graph H such that each vertex of H is identified with the central vertex of a P5.

Theorem 1.26 ([35]) For any connected graph G of order n ≥ 3, γR(G) +
1
2γ (G) ≤ n, with equality if and only if G is C4, C5, C4 ◦K1 or G ∈ R.

In [13], Bermudo, Fernau, and Sigarreta proved a very interesting relationship
between Roman domination and the differential of a graph. For a set S, let B(S) be
the set of vertices in V −S that have a neighbor in the set S. The differential of a set
S, as defined in [67], is ∂(S) = |B(S)|−|S|, and the maximum value of ∂(S) for any
subset S of V is the differential of G, denoted ∂(G). So, the following unexpected
result was shown in [13].

Theorem 1.27 ([13]) If G is a graph of order n, then γR(G) = n− ∂(G).
Proof. For every RDF f = (V0, V1, V2) we can consider f ′ = (V ′0, V ′1, V ′2),

where V ′2 = V2, V
′
0 = B(V2), and V ′1 = V − (V2 ∪ B(V2)) = C(V2), to obtain

f (V ) ≥ f ′(V ). Therefore

γR(G) = min{f (V ) : f = (V0, V1, V2) is an RDF and V0 = B(V2)}.

Finally, using that |V2| = |B(V2)| − ∂(V2), we have

γR(G) = min
V2⊆V

{2 |V2| + |C(V2)|} = min
V2⊆V

{|B(V2)| − ∂(V2)+ |V2| + |C(V2)|}

= min
V2⊆V

{n− ∂(V2)} = n− max
V2⊆V

{∂(V2)} = n− ∂(G).

�
Bermudo et al. derived various results on the Roman domination number of a

graph G from known bounds on ∂(G). In particular they obtained the following.

Theorem 1.28 ([13]) Let G be a connected graph G of order n. Then:

(i) If n ≥ 3 and δ(G) ≥ 1, then γR(G) ≤ 2
5n+ γ (G).

(ii) If n ≥ 9 and δ(G) ≥ 2, then γR(G) ≤ 4
11n+ γ (G).

In another paper, Bermudo [12] showed that if G is a graph of order n ≥ 9 with
minimum degree at least two, then ∂(G) ≥ 3

4γ (G). So the next result becomes
immediate from Theorem 1.27, which is an improvement of Theorem 1.26.

Theorem 1.29 ([12]) If G is a graph of order n ≥ 9 with minimum degree at least
two, then γR(G)+ 3

4γ (G) ≤ n.
Moreover, Bermudo [12] conjectured that γR(G) + γ (G) ≤ n for all graphs G

of order n and minimum degree at least three.
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We now turn our attention to another domination parameter, namely the total
domination number to which the Roman domination number is related. In [41],
Hedetniemi et al. established a relation involving these two parameters.

Theorem 1.30 ([41]) If G is a graph without isolated vertices, then γR(G) ≥
γt (G).

The authors [41] concluded their paper with the open problem on characterizing
the graphs G having γR(G) = γt (G). It is worth noting that from [25] and [41], we
now have that for any graph G without isolated vertices,

γ (G) ≤ γt (G) ≤ γR(G) ≤ 2γ (G) ≤ 2γt (G).

The problem of characterizing graphsG with equal Roman domination and total
domination numbers has been considered by Chellali, Haynes, and Hedetniemi [18],
where their main result was the following.

Theorem 1.31 ([18]) For every connected graph G of order n ≥ 2, γR(G) =
γt (G) if and only if γt (G) = 2γ (G).

According to Theorem 1.31, if G is a graph having γR(G) = γt (G), then
γR(G) = 2γ (G) and thus G is a Roman graph. However, not all Roman graphs
satisfy γR(G) = γt (G). To see this, consider the double star T , where each
support vertex is adjacent to at least three leaves. Then γR(T ) = 2γ (T ), but
4 = γR(T ) > γt (T ) = γ (T ) = 2.

The authors [18] also obtained the following result for graphs with diameter two.

Proposition 1.32 ([18]) For every graph G of diameter two, the following state-
ments are equivalent:

(a) γR(G) = γt (G).
(b) γt (G) = 2γ (G).
(c) γ (G) = 1.

Finally, we present some results relating Roman domination and 2-rainbow
domination in graphs. For a positive integer k, a k-rainbow dominating function
(kRDF) of a graph G is a function f : V (G) → P({1, . . . , k}) such that for
any vertex v ∈ V (G) with f (v) = ∅ the condition ∪u∈N(v)f (u) = {1, . . . , k}
is fulfilled. The weight of a kRDF f is defined as w(f ) = ∑

v∈V (G) |f (v)|, and
the minimum weight of a kRDF is called the k-rainbow domination number of G,
denoted by γrk(G). The concept of k-rainbow domination was introduced by Brešar,
Henning, and Rall in 2008 [16].

We start with a result that was obtained independently by Chellali and Jafari Rad
in [21], and Wu and Xing in [86].

Theorem 1.33 ([21, 86]) For every graph G,

γr2(G) ≤ γR(G) ≤ 3

2
γr2(G).
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Fujita and Furuya [37] proved an upper bound for the sum of γR(G) and γr2(G)
in terms of the order of G.

Theorem 1.34 ([37]) If G is a connected graph of order n ≥ 3, then

γR(G)+ γr2(G) ≤ 3

2
n.

Moreover, Fujita and Furuya conjectured that if G is a connected graph of
minimum degree at least 2 that is distinct from C5, then γR(G)+γr2(G) ≤ 4

3n. This
conjecture was settled in 2016 by Alvarado, Dantas, and Rautenbach [4] who gave in
addition a characterization of extremal graphs attaining the bound of Theorem 1.34.

For k ∈ N, let Tk be the set of all trees T that arise from k disjoint copies
a1b1c1d1, . . . , akbkckdk of the path P4 by adding some edges between vertices the
bi’s so that the resulting graph is a tree. Let T = ⋃

k∈N Tk . Let the class K of
connected graphs be such that a connected graph G belongs to K if and only if G
arises

• either from the unique tree in Tk by adding the edge c1c2,

• or from some tree in Tk by arbitrarily adding edges between vertices in
{b1, . . . , bk}.

Theorem 1.35 ([4]) Let G is a connected graph of order n ≥ 3. Then γR(G) +
γr2(G) = 3

2n if and only if G ∈ K.

1.4 Nordhaus–Gaddum Type Results

For a graph parameter μ, bounds on μ(G) + μ(G) and μ(G)μ(G) in terms of the
order of G are called results of “Nordhaus–Gaddum” type, to honor Nordhaus and
Gaddum [68] who gave bounds on the sum and product of the chromatic numbers
of a graph and its complement. Chambers et al. [17] were the first to investigate
Nordhaus–Gaddum type bounds for Roman domination.

Theorem 1.36 ([17]) If G is a connected graph of order n ≥ 3, then γR(G) +
γR(G) ≤ n+ 3, with equality if and only if G or G is C5 or n2K2.

By Theorem 1.36, if neitherG norG is C5 or n2K2, then γR(G)+γR(G) ≤ n+2.
Jafari Rad et al. [50] and Bouchou et al. [15] independently characterized graphs G
with γR(G)+ γR(G) = n+ 2. Consider the following families of graphs.

• H0 = {C6, C7, C8, Ci ∪ Cj , where i, j ∈ {3, 4, 5}},
• H1 = {pK1 ∪ qK2 : p ≥ 1, q ≥ 1 and p + 2q = n},
• H2 = {qK2 ∪H with 2q + |V (H)| = n, where H ∈ {P3, P4, P5, C3, C4, C5} if
q �= 0 and H ∈ {P3, P4, P5} if q = 0},

• H3 = {F1, F2,M1,M2}, (shown in Figure 3).
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Theorem 1.37 ([15, 50]) Let G be a graph of order n ≥ 3 such that G �∈
{C5,

n
2K2,

n
2K2}. Then γR(G) + γR(G) ≤ n + 2, with equality if and only if G

or G belongs to {Kn} ∪H0 ∪H1 ∪H2 ∪H3.

Theorem 1.38 ([17]) If G is a graph of order n ≥ 160, then γR(G)γR(G) ≤ 16n
5 ,

with equality if and only if G or G is n5C5.

Bouchou et al. [15] improved Theorem 1.36 for graphs of order n ≥ 160.

Theorem 1.39 ([15]) If G is a graph of order n ≥ 160 such that every component
of G or G is of order at least 3, then γR(G)+ γR(G) ≤ 4n

5 + 4, with equality only
when G or G is n5C5.

1.5 Algorithmic and Complexity Results

Cockayne et al. [25] stated that the Roman domination problem on trees can be
solved in linear time. However, this algorithm can be found in the 2000 PhD thesis
by Dreyer Jr. [31]. They also stated that Alice McRae (2000) in a private commu-
nication has constructed proofs showing that the decision problem corresponding
to the Roman domination number is NP-complete even when restricted to chordal
graphs, bipartite graphs, split graphs, or planar graphs. Since these results have never
been published, Schnupp [78] has shown the NP-completeness of this problem for
planar, split, and bipartite graphs. Moreover, linear-time algorithms for the problem
on block graphs and bounded treewidth graphs have been proposed in [44, 70]. The
complexity of the Roman domination problem for interval graphs was mentioned
as an open question in [25], and Liedloff et al. [62] answered this problem by
showing that there are linear-time algorithms to compute the Roman domination
number for interval graphs and cographs. In addition, they proved that the Roman
domination problem can be expressed as a LinEMSOL(τ1) optimization problem,
which therefore implies that the Roman domination problem can be solved in linear
time on graphs G with a bounded clique-width k, provided that a k-expression of
G is also a part of the input. Liedloff et al. [62] have also shown that there are
polynomial-time algorithms for computing the Roman domination numbers of AT-
free graphs and graphs with a d-octopus.

Liu et al. [65] continued the study of algorithmic aspect of Roman domination by
considering a slightly more general setting as follows. Given real numbers b ≥ a >
0, an (a, b)-Roman dominating function of a graph G = (V ,E) is a functionf :
V → {0, a, b} such that every vertex v with f (v) = 0 has a neighbor u with
f (u) = b. For b = a = 1, this is a dominating function; and for b = 2 and
a = 1, this is a Roman dominating function. The (a, b)-Roman domination number
γ
(a,b)
R (G) is the minimum weight of an (a, b)-Roman domination function ofG. An

independent (respectively, connected or total) (a, b)-Roman dominating function is
an (a, b)-Roman dominating function f such that {v ∈ V : f (v) �= 0} induces a
subgraph without edges (respectively, that is connected or without isolated vertices).
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For a weight function w on V , the weight of f is w(f ) = ∑
v∈V w(v)f (v). The

weighted (a, b)-Roman domination number γ (a,b)R (G,w) is the minimum weight
of an (a, b)-Roman dominating function of G. Similarly, the weighted independent
(respectively, connected or total) (a, b)-Roman domination number γ (a,b)iR (G,w)

(respectively, γ (a,b)cR (G,w) or γ (a,b)tR (G,w)) can be defined.

Theorem 1.40 ([65]) For any fixed (a, b) the (a, b)-Roman domination prob-
lem (the total/connected/independent (a, b)-Roman domination problems) is NP-
complete for bipartite graphs.

Theorem 1.41 ([65]) For any fixed (a, b) the (a, b)-Roman domination problem
(the total/connected/weighted independent (a,b)-Roman domination problems) is
NP-complete for chordal graphs.

Liu et al. [65] also used linear programming method of Farber [34], and gave
linear-time algorithms for the weighted (a, b)-Roman domination problem with b ≥
a > 0, and the weighted independent (a, b)-Roman domination problem with 2a ≥
b ≥ a > 0 on strongly chordal graphs with a strong elimination ordering provided.

1.6 Minimal Roman Dominating Functions

One of the problems posed by Dreyer Jr. [31] in his 2000 PhD thesis was about
developing other interesting definitions of minimal Roman dominating functions.
This problem was posed following some attempts to define the upper Roman
domination number �R(G). The first attempt was due to E. J. Cockayne who
suggested that a Roman dominating function was minimal if no value assigned to a
vertex can be reduced and still result in a Roman dominating function. Clearly, by
assigning a 1 to every vertex of a graph G provides a minimal Roman dominating
set and so �R(G) = |V (G)| . The second attempt was due by Laskar who suggested
that in addition to the Cockayne requirement that no value can be reduced, the
Roman dominating function must assign the value 2 to at least one vertex. It is
also clear in this case that ifG is a graph with a leaf, then assigning a 2 to every leaf
and a 0 to its support vertex provides a minimal Roman dominating function and
again �R(G) = |V (G)| . Therefore both definitions seem to be uninteresting. It was
not until twelve years after the introduction of Roman domination in 2004 to see an
“interesting” definition of �R(G) given in [20] which allowed to obtain the Roman
domination chain analogically to the well-known domination chain stated in 1978
by Cockayne, Hedetniemi, and Miller [27] relating the six parameters ir(G), γ (G),
i(G), α(G), �(G), and IR(G).

Theorem 1.42 ([27]) For any graph G,

ir(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ �(G) ≤ IR(G).
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Definition 1.43 ([20]) A function f = (V0, V1, V2) is called irredundant if (i) V1 is
an independent set, (ii) no vertex in V1 is adjacent to a vertex in V2, and (iii) every
vertex in V2 has a private neighbor in V0, with respect to the set V2. Moreover, an
irredundant function is said to be maximal if increasing the value assigned to any
vertex results in a function that is no longer irredundant.

Notice that every graph G has an irredundant γR(G)-function, and thus the
Roman domination number could equivalently be defined to equal the minimum
weight of an irredundant Roman dominating function. So therefore, the upper
Roman domination number, denoted by �R(G), has been defined as being equal
to the maximum weight of an irredundant Roman dominating function on G.

Independent Roman dominating functions were defined in [25] (without being
studied) as Roman dominating functions f = (V0, V1, V2) for which the set V1∪V2
is an independent set.

Definition 1.44 The independent Roman domination number iR(G) equals the
minimum weight of an independent Roman dominating function on G, and the
Roman independence number αR(G) equals the maximum weight of an irredundant,
independent Roman dominating function on G.

We note that a subsection will be devoted thereafter to the independent Roman
domination number iR(G) detailing the results obtained on it.

Chellali et al. [20] showed that every independent Roman dominating function on
G with weight iR(G) is irredundant. Thereby, iR(G) and αR(G) have been defined
in terms of irredundant, independent Roman dominating functions, while γR(G)
and �R(G) have been defined in terms of irredundant Roman dominating functions.
Therefore γR(G) ≤ iR(G) ≤ αR(G) ≤ �R(G) for all G.

Definition 1.45 The Roman irredundance number irR(G) equals the minimum
weight of a maximal irredundant function onG, and the upper Roman irredundance
number IRR(G) equals the maximum weight of an irredundant function on G.

According to the definitions of �R(G) and IRR(G), it is obvious that �R(G) ≤
IRR(G) for all G. Moreover, Chellali et al. [20] showed that every graph G has a
γR-function that is maximal irredundant, and thus irR(G) ≤ γR(G). It should be
noted that irredundant functions need not to be Roman dominating functions as can
seen by the graph of Figure 7.

Let h be a function onG that assigns the value 0 to each ai vertex and to vertices
c and d; the value 2 to vertex e, and the value 1 to each bi vertex. Then h is a
maximal irredundant function but not a Roman dominating function, since no ai
vertex, for 1 ≤ i ≤ 4, has a neighbor assigned a 2 under h. Also, for this example
irR(G) = 6 < γR(G) = 7.

Taking into account the above definitions, the following main result is obtained
by Chellali et al. in [20].

Theorem 1.46 ([20]) For any graph G,

irR(G) ≤ γR(G) ≤ iR(G) ≤ αR(G) ≤ �R(G) ≤ IRR(G).
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Fig. 7 The graph G with
irR(G) = 6 and γR(G) = 7

Several examples of trees have been presented in [20] showing that the differ-
ences γR− irR, �R−αR , and IRR−�R can be arbitrarily large. Additional results
obtained in [20] are gathered as follows.

Theorem 1.47 ([20]) Let G be a graph of order n. Then

(a) IRR(G) ≤ n, with equality if and only if �R(G) = n.
(b) If δ(G) ≥ 1, then �R(G) ≥ 2γ (G).
(c) α(G) ≤ αR(G) ≤ 2α(G).
(d) ir(G) ≤ irR(G).
(e) �(G) ≤ �R(G).
(f) IR(G) ≤ IRR(G).

It is worth noting that unlike γR(G) ≤ 2γ (G) for any graph G, it was shown
in [20] that none of the parameters irR, �R , and IRR can be bounded above by
2ir, 2�, and 2IR, respectively. We close this subsection by a characterization of
connected graphs G of order n such that αR(G) = n.

Theorem 1.48 ([20]) Let G = (V ,E) be a connected graph of order n ≥ 2.
Then αR(G) = n if and only if its vertex set V can be partitioned into three sets
{V0, V1, V2} such that (i) the set V1 ∪ V2 is an independent set, (ii) |V0| = |V2|, (iii)
V2 is a non-empty set of leaves, and (iv) no vertex in V0 is adjacent to two or more
vertices in V2.

1.7 Roman Domination in Special Graphs

This subsection will be devoted to presenting the exact values of the Roman
domination number as well as some bounds on it for several classes of graphs. We
begin by the following two results established in [25].

Proposition 1.49 For the classes of paths Pn and cycles Cn, γR(Pn) = γR(Cn) =
� 2n

3 �.
Proposition 1.50 Let G = Km1,...,mn be the complete n-partite graph with m1 ≤
m2 ≤ . . . ≤ mn.
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(a) If m1 ≥ 3, then γR(G) = 4.
(b) If m1 = 2, then γR(G) = 3.
(c) If m1 = 1, then γR(G) = 2.

1.7.1 Cartesian Product of Graphs

The Cartesian products of two paths and two cycles are known as grid graphs and
torus graphs, respectively, and the Cartesian product of any graph G with a path P2
is called the prism graph of G.

The Roman domination number of grid graphs was studied in [25, 28, 31, 69],
where the following results were given.

Proposition 1.51 ([25]) γR(P2�Pn) = n+ 1.

Proposition 1.52 ([31]) For k ≥ 0, γR(P3�P4k+i ) = 6k + i + 1 for i ∈
{0, 1}, γR(P3�P4k+j ) = 6k + 2j for j ∈ {2, 3}.

For all n ≥ 1, γR(P4�Pn) = 2n+ 1 if n ∈ {1, 2, 3, 5, 6}, and γR(P4�Pn) = 2n
otherwise.

Dreyer Jr. has also proposed in [31] an algorithm for computing γR(Pk�Pn) for
any fixed value of k inO(n)-time. Using an algebraic approach Pavlič and Žerovnik
in [69] presented an algorithm that runs in constant time for computing the Roman
domination number of special classes of graphs including some prisms, grids, and
torus.

Proposition 1.53 ([69]) For all n ≥ 1,

γR(P5�Pn) =
{

8 if n = 3
� 12n

5 � + 2 otherwise.

γR(P6�Pn) =
{ � 14n

5 � + 2 if n < 5 or n ∈ {5k, 5k + 3, 5k + 4 | k ∈ N}
� 14n

5 � + 3 otherwise.

γR(P7�Pn) =
{ � 16n

5 � + 2 if n ∈ {1, 2, 4, 7, 5k | k ∈ N}
� 16n

5 � + 3 otherwise.

γR(P8�Pn) =

⎧
⎪⎪⎨

⎪⎪⎩

9 if n = 2
16 if n = 4
� 18n

5 � + 4 if n ∈ {5k + 3 | k ∈ N}
� 18n

5 � + 3 otherwise.

The authors [69] also gave the Roman graphs among Pk�Pn for k ≤ 8. More
precisely, those graphs for which k = 1 and n ∈ {3l + 2, 3l + 3 : l ∈ N}; k =
2 and n odd; k = 3 and n ∈ {4l + j : j = 1, 2, 3 and l ∈ N}; k = 4 and
n /∈ {1, 2, 3, 5, 6, 9}; k = 5 and n ∈ {1, 2, 3, 7, 5l, 5l + 1 : l ∈ N}; k = 6 and
n ∈ {1, 3, 5, 7, 8, 12, 15, 22}; k = 7 and n ∈ {2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 16};
k = 8 and n ∈ {1, 4, 6, 7, 8}.

For the products Ck�Pn when k ∈ {3, 4, 5, 6, 7, 8} and Ck�Cn when k ∈
{3, 4, 5, 6}, Pavlič and Žerovnik in [69] obtained the following.
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Proposition 1.54 ([69]) For all n ≥ 1,
γR(C3�Pn) = � 3n

2 � + 1, γR(C5�Pn) = 2n+ 2 and γR(C6�Pn) = � 8n
3 � + 2.

γR(C4�Pn) =
{

3 if n = 1
2n otherwise,

γR(C7�Pn) =
{

3n+ 2 if n ∈ {1, 2, 4}
3n+ 3 otherwise,

γR(C8�Pn) =
⎧
⎨

⎩

8 if n = 2
� 7n

2 � + 2 if n ∈ {3, 4, 8}
� 7n

2 � + 3 otherwise.

Proposition 1.55 ([69]) For all n ≥ 3,
γR(C3�Cn) = � 3n

2 � and γR(C4�Cn) = 2n.

γR(C5�Cn) =
{

2n if n ∈ {5k | k ∈ N}
n+ 2 otherwise,

γR(C6�Cn) =
⎧
⎨

⎩

� 8n
3 � if n ∈ {6k | k ∈ N}

� 8n
3 � + 1 if n ∈ {6k + 5, 18k + j | j = 3, 8, 13, k ∈ N}

� 8n
3 � + 2 otherwise.

The Roman graphs among Ck�Pn for 3 ≤ k ≤ 8 are those for which: k = 3
and n ∈ {4l + 1, 4l + 2 : l ∈ N}; k = 4 and n ≥ 2; k = 5 and n ∈ {1, 2, 3};
k = 6 and n ∈ {1, 3, 4, 6, 6l + 1, 6l + 3, 6l + 4, 6l + 6 : l ∈ N}; k = 7 and
n ∈ {2, 4, 2l + 1 : l ∈ N

∗}; k = 8 and 1 ≤ n ≤ 6. The Roman graphs among
Ck�Cn for 3 ≤ k ≤ 6 are those for which: k = 3 and n ∈ {4l, 4l + 1 : l ∈ N};
k = 4 and n ∈ N; k = 5 and n ∈ {3, 4, 5l, 5l + 1, 5l+ 2, 5l+ 4 : l ∈ N}; k = 6 and
n ∈ {6l, 6l + 4, 18l + 1, 18l + 5, 18l + 7 : l ∈ N}.

In addition, Pavlič and Žerovnik [69] have also determined γR(Pk�Cn) for k ∈
{2, 3, 4, 5, 6}. In [28], Currò established the following lower and upper bounds for
the Roman domination number on grids.

Theorem 1.56 ([28]) For all m, n ≥ 3, γR(Pm�Pn) ≥ � 2mn+m+n−2
5 �.

Theorem 1.57 ([28]) For all m, n ≥ 5,

γR(Pm�Pn) ≤
{
� 2(mn+m+n)

5 � − 1 if m, n ≡ 0 (mod 5)
� 2(mn+m+n)

5 � otherwise.

Xueliang, Yuansheng, and Baoqi [89] have shown that γR(C5n�C5m) = 10mn.
For the Cartesian product of any graphsG andH,Wu [85] proved that γR(G�H) ≥
γ (G)γ (H). This result was improved by Yero and Rodríguez-Velázquez [90] when
one of G and H admits an efficient dominating set.

Theorem 1.58 ([90]) LetG and H be two graphs. IfG has an efficient dominating
set, then

γR(G�H) ≥ γ (G)γR(H).
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Additional results on the Cartesian product of two graphs obtained by Yero and
Rodríguez-Velázquez [90] are summarized as follows.

Theorem 1.59 ([90]) For any graphs G and H ,

(i) γR(G�H) ≥ 2γ (G)γR(H)

3
.

(ii) γR(G�H) ≥ γ (G)γR(H)+ γ (G�H)
2

.

(iii) γR(G�H) ≤ min{|V (G)| γR(H), |V (H)| γR(G)}.
(iv) γR(G�H) ≤ 2γ (G)γ (H)+ (|V (G)| − γ (G))(|V (H)| − γ (H)).
Theorem 1.60 ([90]) For any graphs G and H ,

(i) If G has at least one connected component of order greater than two, then

γR(G�H) ≤ (|V (G)| + 1)γR(H)− 2γ (H).

(ii) If G is a Roman graph, then

γR(G�H) ≤ 2 |V (G)| (γR(H)− γ (H))+ 2γ (G) (2γ (H)− γR(H)) .

Similar results are also obtained by Yero and Rodríguez-Velázquez [90] by
considering the strong product of graphs.

1.7.2 Circulant Graphs

A circulant graph C(n; Sc) is a graph with the vertex set V (C(n; Sc)) = {vi | 0 ≤
i ≤ n−1} and the edge setE(C(n; Sc)) = {vivj | 0 ≤ i, j ≤ n−1, (i−j) mod n ∈
Sc}, Sc ⊆ {1, 2, . . . , �n/2�, where subscripts are taken modulo n}. Let G be an
r-regular graph with order n (r ≥ 1), m = � n

r+1�, t = n (mod r + 1), then
n = (r + 1)m + t , where 0 ≤ t ≤ r . Xueliang et al. [89] established the Roman
domination number of the following circulant graph.

Proposition 1.61 ([89]) For n ≥ 7,

γR(C(n; {1, 3})) =
⎧
⎨

⎩

2�n5 � if n ≡ 0 (mod 5)
2�n5 � + 2 if n ≡ 1, 2, 3 (mod 5)
2�n5 � + 3 if n ≡ 4 (mod 5).

Proposition 1.62 ([89]) For n ≥ 5, 2 ≤ k ≤ �n2 �, n �= 2k

γR(C(n; {1, . . . , k})) =

⎧
⎪⎨

⎪⎩

2� n
2k+1� if n ≡ 0 (mod 2k + 1)

2� n
2k+1� + 1 if n ≡ 1 (mod 2k + 1)

2� n
2k+1� + 2 if n ≡ 2, . . . , 2k (mod 2k + 1).
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1.7.3 Generalized Petersen Graphs

The generalized Petersen graph P(n, k) is a graph of order 2n with V (P (n, k)) =
{vi, ui : 0 ≤ i ≤ n − 1} and E(P (n, k)) = {vivi+1, viui, uiui+k : 0 ≤ i ≤
n − 1, where subscripts are taken modulo n}. We note that generalized Petersen
graphs are 4-regular. The Roman domination number of generalized Petersen graphs
has been addressed in several papers, where exact values have been obtained when
k ∈ {1, 2, 3}.
Proposition 1.63 ([89]) For n ≥ 3,

γR(P (n, 1)) =
{
n if n ≡ 0 (mod 4)
4�n4 � + t + 1 if n ≡ t (mod 4) for t ∈ {1, 2, 3}.

Proposition 1.64 ([84]) For n ≥ 5, γR(P (n, 2)) = � 8n
7 �.

Proposition 1.65 ([91]) For n ≥ 5,

γR(P (n, 3)) =
⎧
⎨

⎩

n if n ≡ 0 (mod 4)
n+ 1 if n ≡ 1, 3 (mod 4)
n+ 2 if n ≡ 2 (mod 4).

For k = 4, the following upper bound on the Roman domination number of
P(n, 4) was given in [91] by using an integer programming formulation.

Proposition 1.66 ([91]) For n ≥ 13,

γR(P (n, 4)) ≤
{ � 14n

13 � + 1 if n ≡ 6, 8, 12 (mod 13)
� 14n

13 � otherwise.

1.7.4 Lexicographic Product of Graphs

The lexicographic product of two graphs G and H is defined as the graph G · H
with vertex set V (G)×V (H) and edge set E(G ·H) = {(u, v)(u′, v′)|uu′ ∈ E(G)
or ((u = u′ and vv′ ∈ E(H))}. The Roman domination number of lexicographic
product of graphs has been investigated by Šumenjak, Pavlič, and Tepeh in [81]. It
was shown in [81] that if G and H are nontrivial connected graphs, then γR(G ·
H) ≥ 2γ (G), with equality if and only if either γR(H) = 2 or γ (G) = γt (G) and
γR(H) ≥ 3.

For disjoint subsets A,B ⊆ V (G), an ordered couple (A,B) is said to be a
dominating couple of G if for every vertex x ∈ V (G) \ B there exists a vertex w ∈
A ∪ B such that x ∈ NG(w). The Roman domination number of the lexicographic
product of graphs G ·H is given as follows.

Theorem 1.67 ([81]) Let G and H be nontrivial connected graphs. Then

γR(G ·H) =
⎧
⎨

⎩

2γ (G) if γR(H) = 2,
ζ(G) if γR(H) = 3,
2γt (G) if γR(H) = 4,
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where ζ(G) = min{2|A| + 3|B| : (A,B) is a dominating couple of G}.
In addition, Šumenjak, Pavlič, and Tepeh characterized Roman graphs among the

lexicographic products of graphs.

Theorem 1.68 ([81]) Let G and H be nontrivial connected graphs. Then G ·H is
a Roman graph if and only if one of the following holds:

1. γR(H) = 2 or γR(H) ≥ 4
2. γR(H) = 3 and there exists a minimum dominating couple (A,B), such that
B = ∅.

1.7.5 Categorical Product of Graphs

The Roman domination number of categorical product of graphs has been investi-
gated by Klobučar and Puljič [60, 61]. We summarize below some of their main
results. We note that since �(G × H) = �(G) × �(H) and δ(G × H) =
δ(G) × δ(H), any bound on the Roman domination number in terms of the order,
maximum and minimum degrees yields a similar bound on γR(G×H).
Proposition 1.69 ([61]) For any graph G without odd cycles,

γR(P2 ×G) = 2γR(G).

Proposition 1.70 ([61]) For n ≥ 2, γR(P3×Pn) = 3n
2 if n ≡ 0 (mod 4); 6�n4 �+2

if n ≡ 1 (mod 4) and 6�n4 � + 2 + i if n ≡ i (mod 4), where i ∈ {2, 3}.
Proposition 1.71 ([61]) For n ≥ 2, γR(P4 × Pn) = 2n+ 2 if n = 5, and γR(P4 ×
Pn) = 2n otherwise.

Proposition 1.72 ([60]) For all m, n ≥ 2,
γR(Pm × Pn) ≤ 4

⌈
mn
10

⌉+ 8
⌈
m
10

⌉+ 8
⌈
n
10

⌉
, and

γR(Pm × Pn) > 4
⌊
mn−m−n+1

10

⌋
+ 4

⌊
m−1

10

⌋
+ 4

⌈
n−1
10

⌉
.

Moreover, Klobučar and Puljič [60] concluded their paper by showing that
limm,n→∞ γR(Pm×Pn)

mn
= 2

5 .

1.8 Roman Domatic Number

A set {f1, f2, . . . , fd} of distinct Roman dominating functions on G with the
property that

∑d
i=1 fi(v) ≤ 2 for each v ∈ V (G) is called a Roman dominating

family (of functions) on G. The maximum number of functions in a Roman
dominating family on G is the Roman domatic number of G, denoted by dR(G).
A graph with Roman domatic number three is illustrated in Figure 8. The Roman
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Fig. 8 A graph with Roman domatic number 3

domatic number was introduced in 2010 by Sheikholeslami and Volkmann in [79]
and has been studied in [82].

Upper bounds on the sum and product of γR and dR in terms of the order of the
graph have been established in [79].

Theorem 1.73 ([79]) If G is a graph of order n, then

γR(G) · dR(G) ≤ 2n.

Combining the bound γR(G) ≥ � 2n
�+1� (see Proposition 1.19) with Theo-

rem 1.73, we obtain the following corollary immediately.

Corollary 1.74 IfG is a graph with maximum degree� ≥ 1, then dR(G) ≤ �+1.

Proposition 1.75 ([79]) If G is a graph of order n ≥ 2, then

γR(G)+ dR(G) ≤ n+ 2

with equality if and only if �(G) = 1 or G is a complete graph.

Since γR(G) ≥ 2 for any graph G of order n ≥ 2, it follows from Theorem 1.73
that dR(G) ≤ n. It was shown in [79] that dR(G) = n if and only if G is the
complete graph on n vertices. Moreover, a sharp upper bound on the Roman domatic
number in terms of the minimum degree was also obtained in [79].

Theorem 1.76 ([79]) For every graph G, dR(G) ≤ δ(G)+ 2.

The authors [79] gave the following example of graphs to illustrate the sharp-
ness of Theorem 1.76. Let Gi be a copy of Kk+3 with vertex set V (Gi) =
{vi1, vi2, . . . , vik+3} for 1 ≤ i ≤ k and let G be the graph obtained from ∪ki=1Gi by
adding a new vertex v attached to each vi1. Then δ(G) = k and dR(G) = δ(G)+ 2.

The bound of Theorem 1.76 can be slightly improved for regular graphs as
follows.
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Theorem 1.77 If G is a δ-regular graph of order n, then

dR(G) ≤ δ + ε
with ε = 1 when n ≡ 0, δ+1

2 (mod δ + 1) and ε = 0 when n �≡ 0, δ+1
2 (mod δ +1).

Proof. If δ = 0, then clearly dR(G) = 1 and the result is immediate. Let now
δ ≥ 1, n = p(δ+1)+r with integers p ≥ 1 and 0 ≤ r ≤ δ, and let {f1, f2, . . . , fd}
be an RD family on G such that d = dR(G). It follows that

d∑

i=1

ω(fi) =
d∑

i=1

∑

v∈V
fi(v) =

∑

v∈V

d∑

i=1

fi(v) ≤
∑

v∈V
2 = 2n. (1)

If r = 0, then we deduce from Proposition 1.19 that ω(fi) ≥ γR(G) ≥ 2p for
each i ∈ {1, 2, . . . , d}. Suppose, to the contrary, that d ≥ δ + 2. Then we obtain

d∑

i=1

ω(fi) ≥ 2pd ≥ 2p(δ + 2) > 2n.

This is a contradiction to (1) and thus d ≤ δ + 1.
If 1 ≤ r < δ+1

2 , then Proposition 1.19 implies that ω(fi) ≥ γR(G) ≥ 2p+ 1 for
each i ∈ {1, 2, . . . , d} and δ ≥ 2. Suppose, to the contrary, that d ≥ δ+ 1. Then we
obtain the contradiction

d∑

i=1

ω(fi) ≥ d(2p + 1) ≥ (δ + 1)(2p + 1) > 2n.

Therefore d ≤ δ, and the result is proved in this case.
If r = δ+1

2 , then as above ω(fi) ≥ γR(G) ≥ 2p + 1 for each i ∈ {1, 2, . . . , d}.
Suppose, to the contrary, that d ≥ δ + 2. Then we obtain the contradiction

d∑

i=1

ω(fi) ≥ d(2p + 1) ≥ (δ + 2)(2p + 1) > 2n.

Therefore d ≤ δ + 1.
Finally assume that δ+1

2 < r ≤ δ. Then Proposition 1.19 yields to ω(fi) ≥
γR(G) ≥ 2p + 2 for each i ∈ {1, 2, . . . , d}. If we suppose to the contrary that
d ≥ δ + 1, then we obtain

d∑

i=1

ω(fi) ≥ d(2p + 2) ≥ (δ + 1)(2p + 2) > 2n.

This contradiction to (1) implies that d ≤ δ in this case, and the proof is
complete. �
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As an application of Theorems 1.76 and 1.77, the following Nordhaus–Gaddum
type results have thus been established.

Theorem 1.78 ([79]) For every graph G of order n,

dR(G)+ dR(G) ≤ n+ 2. (2)

Theorem 1.79 If G is a k-regular graph of order n, then

dR(G)+ dR(G) ≤ n+ 1, (3)

and equality in (3) implies n ≡ 0, k+1
2 (mod (k+1)) and n ≡ 0, n−k2 (mod (n−k)).

The complete graphs Kn (n ≥ 2) are simplest examples of graphs showing that
the bound of Theorem 1.79 is sharp. Exact values of the Roman domatic number
have been determined for some classes of graphs including trees, cycles, fans,
wheels, and complete bipartite graphs. In [79], it was shown that dR(T ) = 2 for
any nontrivial tree T , while for cycles it was shown that dR(Cn) = 3 if n ≡ 0
(mod 3) and dR(Cn) = 2 otherwise.

For n ≥ 3, the fan graph Fn is a graph obtained from a path Pn by adding a new
vertex attached to each vertex of Pn, and the wheel graph Wn is a graph obtained
from a cycle Cn by adding a new vertex attached to each vertex of Cn. Tan et al.
[82] have shown that for n ≥ 3, dR(Fn) = 3, dR(Wn) = 4 if n ≡ 0 (mod 3) and
dR(Wn) = 3 if n ≡ 1, 2 (mod 3), while for the complete bipartite graphs, they
proved that dR(Km,n) = max{2,min{m, n}}. Moreover, Tan et al. [82] have shown
that the decision problem corresponding to the problem of computing dR(G) is NP-
complete even when restricted to bipartite graphs. They also proved that there is a
(ln n+O(ln ln n))-approximation algorithm for Roman Domatic Number, where n
is the order of the input graph.

1.9 Summary and Open Problems

In this section, we have been interested in the problem of Roman domination
by developing various aspects in order to better understand it. So we gave some
properties on the Roman domination number as well as its relations with some
domination parameters. The complexity and algorithmic aspects of the Roman
domination problem have also been discussed. Many problems remain open, we
give below a brief list of them.

1. Is it true that ifG is a graph of order n with minimum degree at least three, then
γR(G)+ γ (G) ≤ n? (It is a conjecture stated in [12]).

2. For which graphs G is γR(G) = 2γ (G)?
3. Determine γR(Gm,n) for every m-by-n grid graph Gm,n.
4. Characterize the trees T with γR(T ) = γt (T )+ 1.
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5. Characterize graphs G (or at least trees) for which every irR-function is
dominating?

6. For which graphs G is IRR(G) = �R(G)?
7. For which graphs G is �R(G) = αR(G)?
8. Let G be a graph of order n. Determine Nordhaus–Gaddum type results for
IRR(G), �R(G), and αR(G).

9. Design an algorithm for computing the value of μR(T ) for any tree T , where
μR ∈ {irR, αR, �R, IRR}.

10. Study the NP-completeness of the decision problems corresponding to the
problem of computing μR(G), where μR ∈ {irR, αR, �R, IRR}.

2 Changing and Unchanging with Respect to the Roman
Domination

2.1 Introduction

It is of interest to know how the value of a graph parameter μ is affected when the
graph is subjected to a change. The addition of a set of edges, the removal of a set of
vertices/edges may increase or decrease μ, or leave μ unchanged. Much has already
been written when μ is the domination number or the total domination number (see,
for example, [40, 43]). In this section, we consider the case where μ is the Roman
domination number.

2.2 Terminology

Before going further, we need first to introduce some terminology that can be found
in Jafari Rad et al. [49, 55], Chellali et al. [23], or Samodivkin [75]. According to
the effects of vertex removal on the Roman domination number of a graph, we can
partition the vertex set of a graph G into three sets according to how their removal
affects γR(G). Let V (G) = V =R ∪ V +R ∪ V −R such that:

V =R = {v ∈ V (G) : γR(G− v) = γR(G)},

V +R = {v ∈ V (G) : γR(G− v) > γR(G)},

V −R = {v ∈ V (G) : γR(G− v) < γR(G)}.

Accordingly, we have the following definitions. A graph G of order at least two
is Roman domination vertex critical, or just γR-vertex critical, if removing any



Roman Domination in Graphs 391

vertex of G decreases the Roman domination number. A graph G of order at least
two is Roman domination vertex super-critical, or just γR-vertex super-critical, if
removing any vertex of G increases the Roman domination number. We will later
show that there is no γR-vertex super-critical graph. A graphG of order at least two
is Roman domination vertex stable, or just γR-stable, if removing any vertex of G
leaves the Roman domination number unchanged.

Since removing an edge from a graph cannot decrease the Roman domination
number, we have γR(G − e) ≥ γR(G) for any edge e ∈ E(G). Therefore the edge
set of G can be partitioned into E=R = {e ∈ E(G) : γR(G − e) = γR(G)} and
E+R = {e ∈ E(G) : γR(G − e) > γR(G)}. So, we say that a graph G of size at
least one is Roman domination critical upon edge removal, if for any e ∈ E(G),
γR(G − e) > γR(G), and is Roman domination stable upon edge removal, if for
any e ∈ E(G), γR(G− e) = γR(G). Likewise, γR(G+ e) ≤ γR(G) for every edge
e /∈ E(G). So, we say that a graph G is Roman domination edge critical, or just
γR-edge critical, if for every edge e ∈ E(G), γR(G+ e) < γR(G), where G is the
complement of G. A graph G is Roman domination stable upon edge addition, if
for any e ∈ E(G), γR(G+ e) = γR(G).

Now, with respect to “changing” or “unchanging” of the Roman domination
number upon the removal of a vertex or an edge or the addition of an edge, we
have the following six families of graphs. We use acronyms to denote the following
classes of graphs (C: changing; U: unchanging; V: vertex; E: edge; R: removal; A:
addition). In our notation CVR refers to “changing vertex removal,” CER refers to
“changing edge removal,” UVR refers to “unchanging vertex removal,” and UER
refers to “unchanging edge removal.”

• RCVR is the class of graphs G such that γR(G− v) �= γR(G) for all v ∈ V (G).
• RUVR is the class of graphs G such that γR(G− v) = γR(G) for all v ∈ V (G).
• RCER is the class of graphs G such that γR(G− e) �= γR(G) for all e ∈ E(G).
• RUER is the class of graphs G such that γR(G− e) = γR(G) for all e ∈ E(G).
• RCEA is the class of graphs G such that γR(G+ e) �= γR(G) for all e ∈ E(G).
• RUEA is the class of graphs G such that γR(G+ e) = γR(G) for all e ∈ E(G).

2.3 Changing

We will divide this subsection into three parts by focusing on “vertex removal,”
“edge removal,” and “edge addition.”

2.3.1 Vertex Removal

Proposition 2.1 ([55]) Let v be a vertex in a graph G such that v ∈ V +R , and let
f = (V0, V1, V2) be any γR(G)-function. Then
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(1) v ∈ V2,
(2) v has at least three private neighbors in V0.

As a consequence, no graph G has V +R = V (G), and thus no graph is γR-vertex
super-critical. The following is a keynote result in the study of γR-vertex critical
graphs.

Proposition 2.2 ([49]) Let v be a vertex in a graph G. Then v ∈ V −R if and only if
there is a γR(G)-function f with v ∈ V1. Moreover, if v ∈ V −R , then γR(G − v) =
γR(G)− 1.

Several families of γR-vertex critical graphs have been presented in [49]
summarized as follows.

Proposition 2.3 ([49])

(1) The ladder P2�Pn is γR-vertex critical if and only if n ≤ 2.
(2) The graph Kp�Kq is γR-vertex critical if and only if |p − q| ≤ 1.
(3) The circulant graph Cn({1, 2, . . . , r}) is γR-vertex critical if and only if n ≡

1 or 2 mod (2r + 1).
(4) The complete r-partite graph Kp1,p2,...,pr , with r ≥ 2, is γR-vertex critical if

and only if either p1 = p2 = · · · = pr ∈ {2, 3}, or r = 2 and p1 = p2 = 1,
i.e., Kp1,p2,...,pr

∼= K2.
(5) A cycle Cn is γR-vertex critical if and only if n ≡ 1 or 2 (mod 3).

For graphs with minimum degree one, it is shown that any support vertex of a
γR-critical graph is adjacent to exactly one leaf, and for block graphs, it was shown
thatK2 is the only one that is γR-vertex critical ([49]). Recall that the corona cor(G)
of a graph G is the graph obtained from G by adding for each vertex v ∈ V a new
vertex v′ and the edge vv′. In [39], Hansberg et al. have shown that a connected
unicyclic graph G is γR-vertex critical if and only if G =cor(Cm), where m ≡ 1
(mod 3) or G = Cn, where n �≡ 0 (mod 3).

For a given integer k ≥ 2, a graph G is called k-γR-vertex critical if G is a γR-
vertex critical graph and γR(G) = k. The k-γR-vertex critical graphs for some small
values of k have been studied in [55]. It can be seen that a graph G is 2-γR-vertex
critical if and only ifG = K2 orK2. It is proved in [55] that a graphG of order n ≥ 4
is 3-γR-vertex critical if and only if n is even, and G is an (n − 2)-regular graph.
Note that K2 ∪ K1 is a 3-γR-vertex critical graph which shows that the condition
n ≥ 4 is important in the previous result. The next result is a characterization of
4-γR-vertex critical graphs given in [55].

Theorem 2.4 ([55]) A graph G of order n ≥ 5 is 4-γR-vertex critical if and only if
for any vertex v there is a vertex u of degree n− 3 which is not adjacent to v.

The 4-γR-vertex critical graph consisting of 4 isolated vertices shows that the
condition n ≥ 5 is important in Theorem 2.4. The following provides an upper
bound for the order of a γR-vertex critical graph in terms of the Roman domination
number and maximum degree.
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Theorem 2.5 ([55]) Let G be a γR-vertex critical graph of order n ≥ 2 with
�(G) ≥ 1. If γR(G) is odd, then

n ≤ γR(G)− 1

2
(�(G)+ 1)+ 1, (4)

and if γR(G) is even, then

n ≤ γR(G)− 2

2
(�(G)+ 1)+ 2. (5)

Assume that equality holds in (4). If �(G) = 1, then G = sK2 ∪ tK1 with odd t ,
and if �(G) ≥ 2, then G is regular.

Assume that equality holds in (5). If �(G) = 1, then G = sK2 ∪ tK1 with even
t , and if �(G) ≥ 2, then there exists a γR-function f = (V0, V1, V2) such that
|V1| = 2.

The complete r-partite graph H = Kp1,p2,...,pr with r ≥ 2 and p1 = p2 =
. . . = pr = 2 is γR-vertex critical with n(H) = 2r , γR(H) = 3, �(H) = 2r − 2
and equality in (4). Hence there exist γR-vertex critical graphs of arbitrary high
maximum degree with equality in (4).

The complete r-partite graph H = Kp1,p2,...,pr with r ≥ 2 and p1 = p2 =
. . . = pr = 3 is γR-vertex critical with n(H) = 3r , γR(H) = 4, �(H) = 3r − 3
and equality in (5). Hence there exist γR-vertex critical graphs of arbitrary high
maximum degree with equality in (5).

If G is the disjoint union of a cycle of length 4 and an isolated vertex, then G
is γR-vertex critical with γR(G) = 4 with equality in (5). This example shows that
equality in (5) does not imply regularity.

Further results for 4-γR-vertex critical graphs have been given by Martinez–Perez
et al. [66]. The following provides an upper bound for the diameter of a γR-vertex
critical graph.

Theorem 2.6 ([55]) For any γR-vertex critical graph G,

diam(G) ≤
⌈

3γR(G)− 5

2

⌉

.

In addition, Jafari Rad and Volkmann [55] proposed the following conjecture.
We recall that a graph G is γ -vertex critical if the removal of each vertex decreases
the domination number (see [40]).

Conjecture 1 ([55]) Any γ -vertex critical graph is γR-vertex critical.

Note that a γR-vertex critical graph is not necessarily γ -vertex critical, as
mentioned in [55] who showed that for any even k ≥ 4 there is a k-γR-vertex critical
graph which is not γ -vertex critical. However, ifG is a γR-vertex critical graph and
|V1| = 1 for any γR(G)-function f = (V0, V1, V2), then G is γ -vertex critical.
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2.3.2 Edge Removal

It has already been mentioned that the removal of an edge from G cannot decrease
γR(G), however, it can increase it by at most one as shown in [55].

Proposition 2.7 If e = xy is an edge of a graph G, then γR(G− e) ≤ γR(G)+ 1.

According to Proposition 2.7, if G is a Roman domination critical graph upon
edge removal, then γR(G− e) = γR(G)+ 1 for each edge e ∈ E(G). Observe that
if G is Roman domination critical graph upon edge removal, then �(G) ≥ 2 (since
for�(G) ≤ 1, no edge satisfies γR(G−e) > γR(G)). A characterization of Roman
domination critical graphs upon edge removal was given in [55] as follows.

Theorem 2.8 ([55]) Let G be a graph with �(G) ≥ 2. Then G is Roman
domination critical upon edge removal if and only if G is a forest in which each
component is an isolated vertex or a star of order at least 3.

Since a star of order at least 3 is not Roman domination vertex critical,
Theorem 2.8 implies the next result.

Corollary 2.9 RCVR ∩RCER = ∅.

2.3.3 Edge Addition

It was shown in [49] that the addition of any edge to a graph G can decrease γR(G)
by at most one, and therefore if G is a γR-edge critical graph, then γR(G + e) =
γR(G) − 1 for any edge e ∈ E(G). A characterization of γR-edge critical graphs
has been given in [49].

Theorem 2.10 ([49]) A graph G is γR-edge critical if and only if for any two
non-adjacent vertices x, y, there is a γR(G)-function f = (V0, V1, V2) such that
{f (x), f (y)} = {1, 2}.

For some classes of graphs, we have the following result which provides a
characterization of those that are γR-edge critical graphs.

Proposition 2.11 ([49])

(1) The ladder P2�Pn is γR-edge critical if and only if n = 2.
(2) The graph Kp�Kq is γR-edge critical if and only if |p − q| ≤ 1.
(3) The circulant graph Cn({1, 2, . . . , r}) is γR-edge critical if and only if r = 1

and n ∈ {4, 5}, i.e., it is isomorphic to the cycle of length 4 or 5.
(4) The complete r-partite graph Kp1,p2,...,pr , where r ≥ 2, is γR-edge critical if

and only if p1 = p2 = . . . = pr ∈ {2, 3}.
The γR-edge critical trees and unicyclic graphs have been characterized in [49]

and [39], respectively. Let T1 be a tree obtained from two copies of P5 by adding
an edge between the central vertices, and let T2 be the tree obtained from T1 by
removing a leaf.
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Fig. 9 The graphsW ,W1,
andW2.

Theorem 2.12 ([49]) T1 and T2 are the only γR-edge critical trees.

Let W be the graph obtained from cor(C3) by subdividing two pendant edges.
For any vertex x of W with degW(x) = 3, we join x to a leaf of a path P2 to
obtain a graph W1. Note that W1 has six leaves and six support vertices. Let W2
be obtained from W1 by removing one leaf. Note that W,W1, and W2 are γR-edge
critical (Figure 9).

Theorem 2.13 ([39]) A connected unicyclic graphG is γR-edge critical if and only
if G ∈ {C4, C5,W,W1,W2}.

Moreover, γR-edge critical graphs with precisely two cycles have been charac-
terized in [48].

For an integer k ≥ 2, we call a graph G, k-γR-edge critical if G is γR-edge
critical and γR(G) = k. Chellali et al. [24] obtained some properties of γR-edge
critical graphs, and characterized those having a small Roman domination number.
Clearly a graphG of order n ≥ 2 is 2-γR-edge critical if and only ifG is a complete
graph. Let H be the class of all graphs G of order at least n ≥ 3 such that �(G) =
n − 2, and for any two non-adjacent vertices x, y of G, �(G) ∈ {deg(x), deg(y)}.
As shown in [24], a graph G is 3-γR-edge critical if and only if G ∈ H. For graphs
with large Roman domination number, the following was proved in [24].

Theorem 2.14 ([24]) A graph G of order n is n-γR-edge critical if and only if n is
even and G = n

2K2 or n is odd and G = n−1
2 K2 ∪K1.

Theorem 2.15 ([24]) A graph G of order n ≥ 3 is (n − 1)-γR-edge critical if and
only ifG = Ci∪m1K1∪m2K2, where i ∈ {3, 4, 5},m1 ≤ 1, andm1+2m2 = n−i.

A bound relating the diameter of γR-edge critical graphs to the Roman domina-
tion number was obtained by Chellali, et al. [24]. In addition, they have shown
that for every even integer n ≥ 6, there is an n-γR-edge critical graph G with
diam(G) = 5.

Theorem 2.16 ([24]) If G is a γR-edge critical connected graph with γR(G) > 3,

then diam(G) ≤ 3

⌈

(γR(G)− 3)/2

⌉

+ 2.

2.4 Unchanging

In this subsection we study the classes RUVR and RUER and RUEA.
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2.4.1 Vertex Removal

The fact that γR(Pn) = γR(Cn) =
⌈

2n
3

⌉
with a simple calculation shows that

Pn ∈ RUVR if and only if n ≡ 0 (mod 3) and Cn ∈ RUVR if and only if n ≡ 0
(mod 3). A characterization of graphs belonging to RUVR was given in [55].

Theorem 2.17 ([55]) For a graph G, G ∈ RUVR if and only if G has no isolated
vertices, and for each vertex v, either

(1) for any γR(G)-function f = (V0, V1, V2), v ∈ V2, and there is an RDF g on
G− v with w(g) = γR(G), or

(2) there is a γR(G)-function f = (V0, V1, V2) on G such that v �∈ V2, and for any
γR(G)-function g = (V ′0, V ′1, V ′2), v �∈ V ′1.

Chambers et al. [17] proved that if G is a graph with δ(G) ≥ 1, then γR(G) ≤
4n/5. This bound was lowered for graphs in RUVR.
Proposition 2.18 ([75]) Let G ∈ RUVR be a connected graph of order n. Then
2
3n ≥ γR(G). If the equality holds, then for any γR(G)-function f = (V0, V1, V2),

V2 is an efficient dominating set of G and each vertex of V2 has degree 2. If G has
an efficient dominating setD and each vertex ofD has degree 2, then 2

3n = γR(G).
The bound in Proposition 2.18 is tight at least for all cycles C3k , k ≥ 1.

Samodivkin [75] gave a constructive characterization of RUVR-trees who showed
in addition that any tree in RUVR has a unique Roman dominating function of
minimum weight. It should also be noted that trees with unique Roman dominating
functions have been characterized by Chellali and Jafari Rad [22].

A characterization of trees T ∈ RUVR attaining equality in the bound of
Proposition 2.18 was given by Samodivkin [75], while Hajian and Jafari Rad [38]
characterized those graphsG ∈ RUVR with minimum degree at least two achieving
equality in Proposition 2.18.

Theorem 2.19 ([38]) LetG ∈ RUVR be a connected graph of order n with δ(G) ≥
2. Then γR(G) = 2n

3 if and only if G is a cycle of order 3k for some integer k.

Corollary 2.20 If G ∈ RUVR is a connected graph of order n with 2 ≤ δ(G) <
�(G), then γR(G) ≤ 2n−2

3 . This bound is sharp.

Additional upper bounds on the Roman domination number of graphs in RUVR
were obtained by Hajian and Jafari Rad [38].

Theorem 2.21 ([38]) IfG ∈ RUVR is a claw-free graph of order n with δ(G) ≥ 3,
then γR(G) ≤ 4n−2

7 . This bound is sharp.

Theorem 2.22 ([38]) If G ∈ RUVR is a graph of order n with δ(G) ≥ 3, then

γR(G) ≤ 2n

3

(
1

1 + δ(G)−2)
3�(G)

)

.
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Corollary 2.23 If G ∈ RUVR is a cubic graph of order n, then γR(G) ≤ 3n
5 .

Theorem 2.22 has been improved for C5-free graphs G with δ(G) = 3 and
�(G) ≥ 4.

Theorem 2.24 ([38]) If G ∈ RUVR is a C5-free graph of order n with δ(G) = 3
and �(G) ≥ 4, then

γR(G) ≤ 2n

3

(
�(G)− 1/n

�(G)+ 1/3

)

.

Theorem 2.22 has also been improved for graphs with minimum degree at least
four as follows.

Theorem 2.25 ([38]) If G ∈ RUVR is graph of order n with �(G) > 3δ(G) − 6
and δ(G) ≥ 4, then

γR(G) ≤ 2n

3

(
�(G)− 1/n

�(G)+ (δ(G)− 2)/3

)

.

Since any planar graph has a vertex of degree at most five, we obtain the
following.

Corollary 2.26 ([38]) If G ∈ RUVR is a planar graph of order n with δ(G) ≥ 4
and �(G) ≥ 10, then γR(G) ≤ 2n

3 (
�(G)−1/n

�(G)+(δ(G)−2)/3 ).

Samodivkin [77] studied Roman excellent graphs as those graphs G in which
every vertex is assigned a non-zero value under some γR(G)-function f. A
characterization of Roman excellent trees was given by Samodivkin [77] who
proved in addition that every tree in RUVR is Roman domination excellent.

2.4.2 Edge Removal

Since γR(Pn) = γR(Cn), we haveCn ∈ RUER . Furthermore, it is straightforward to
verify that Pn ∈ RUER if and only if n ≡ 2 (mod 3). For graphs G of order n and
maximum degree�(G) = n−1, it is shown in [55] thatG ∈ RUER if and only ifG
contains at least three vertices of degree n− 1 or G ∼= K2. In particular, if G is the
complete r-partite graphKp1,p2,...,pr with r ≥ 2 and 1 ≤ p1 ≤ p2 ≤ . . . ≤ pr , then
G ∈ RUER if and only if r = 2 and p1 = p2 = 1 or r ≥ 3 and p1 = p2 = p3 = 1
or p1 ≥ 2.

Jafari Rad and Volkmann characterized the graphs G belonging to RUER as
follows.

Theorem 2.27 ([55]) For a graphG,G ∈ RUER if and only if for any edge e = xy
in G there is a γR(G)-function f which is also a γR(G− e)-function.
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2.4.3 Edge Addition

A graph G is called γR-EA-stable if G ∈ RUEA. Chellali and Jafari Rad [23] have
shown that there is no forbidden subgraph characterization of γR-EA-stable graphs,
since for every graph H they have provided a γR-EA-stable graph G such that H
is an induced subgraph of G. However, a necessary and sufficient condition for a
graph to be in RUEA was given in [23].

Theorem 2.28 ([23]) A graph G of order n ≥ 3 is γR-EA-stable if and only if for
every γR(G)-function f = (V0, V1, V2), V1 = ∅.

According to Theorem 2.28, if a graph G is γR-EA-stable, then γR(G) = 2 |V2|
and thus no graph with an odd Roman domination number is γR-EA-stable. We next
give a characterization of γR-EA-stable graphs with small even Roman domination
number. For an integer k, a graph G is called k-γR-EA-stable if G is γR-EA-stable
and γR(G) = k. Recall that γR(G) ≥ 2 for every nontrivial graph G.

Proposition 2.29 ([23]) A connected graph G of order n ≥ 2 is 2-γR-EA-stable if
and only if G has a vertex v with degG(v) = n− 1.

Proposition 2.30 ([23]) A connected graph G of order n is 4-γR-EA-stable if and
only if�(G) ≤ n−4 and there are two vertices x, y such thatN(x)∪N(y) = V (G).

For particular graphs, it was shown in [23] that the only γR-EA-stable paths
are P2 and Pn with n ≡ 0 (mod 3); the γR-EA-stable cycles are Cn with n ≡ 0
(mod 3). For m ≤ n, Km,n is γR-EA-stable if and only if m �= 2.

Chellali and Jafari Rad [23] have shown that any γR-EA-stable graph is Roman
(graphs G such that γR(G) = 2γ (G)). However, the converse is not true even for
trees. To see this, consider a double star T2,2 with two leaves attached at each support
vertex. Then T2,2 is a Roman tree but γR(T2,2+xy) = 3,where x is a support vertex
and y is a non-neighbor of x.

A graph G is said to be a strong Roman graph if V1 is empty for every γR(G)-
function f = (V0, V1, V2). Therefore, Theorem 2.28 can also be stated as follows.

Theorem 2.31 ([23]) A graph G is γR-EA-stable if and only if G is a path P2 or a
strong Roman graph.

It can be noted that a constructive characterization of strong Roman trees was
also given in [23].

Proposition 2.32 ([23]) Let G be a γR-EA-stable graph of order n ≥ 3. Then

(i) For every vertex v, γR(G− v) ≥ γR(G).
(ii) diam(G) ≤ 3γR(G)

2 − 1.

Theorem 2.33 ([23]) If G is a γR-EA-stable graph of order n ≥ 3, then n ≤
γR(G)

2 (1+�(G)). The equality holds if and only if γR(G) ≡ iR(G) and each vertex
of V2 has maximum degree for every γR-function (V0,∅, V2).
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Fig. 10 Classes of changing and unchanging graphs

Theorem 2.34 ([23]) If G is a γR-EA-stable graph of order n ≥ 3, then n ≥
3γR(G)

2 . Equality holds if and only if γR(G) ≡ iR(G), V2 is a packing set for every
γR(G)-function (V0,∅, V2) and each vertex of V2 has exactly two private neighbors.

2.5 Relations Between Families

Samodivkin [76] studied the relationship between the six classes RCVR , RUVR ,
RCER , RUER , RCEA, and RUEA which can be seen in the Venn diagram of
Figure 10 based on the results that follow.

Theorem 2.35 ([76]) Let a graph G be in RCEA. Then all the following hold.

(i) A vertex x ∈ V =(G) if and only if there are γR(G)-functions fx and gx with
{fx(x), gx(x)} = {0, 2}.

(ii) If V =(G) is not empty andG[V =(G)] is not a connected component ofG, then
each vertex in V =(G) has a neighbor in V −(G).

(iii) G is in RUER .

Theorem 2.36 ([76]) For an edge e = uv of a graph G is fulfilled γR(G − e) =
γR(G) if and only if there is a γR(G)-function fe such that at least one of the
following holds:

(i) fe(u) = fe(v),
(ii) at least one of u and v is in V fe1 ,

(iii) fe(u) = 2, fe(v) = 0 and v �∈ pn[u, V fe2 ],
(iv) fe(u) = 0, fe(v) = 2 and u �∈ pn[v, V fe2 ].
Corollary 2.37 Let G be a graph with edges. Then for each edge e incident to a
vertex in V −(G), γR(G− e) = γR(G). If V −(G) contains a vertex cover ofG, then
G is in RUER . In particular, if G is in RCVR , then G is in RUER .

It should be noted that for the establishment of the Venn diagram the cases that
were vacuously true have not been considered. For example, (a) complete graphs are
in both RCEA and RUEA, and (b) edgeless graphs are in both RCER and RUER .
Therefore we exclude edgeless graphs and complete graphs.
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Theorem 2.38 ([76]) Classes RCVR , RCEA, RCER , RUVR , RUER , and RUEA
are related as shown in the Venn diagram of Figure 10.

Samodivkin [76] continued the study of the Venn diagram of Figure 10 by
showing the following: a graph G is in RCER ∩RUVR if and only if G = nK1,2,
n ≥ 1; a graph G is in (RCER ∩ RUEA) − RUVR if and only if each component
of G is a star of order at least 4; and a graph G is in RCER −RUEA if and only if
δ(G) = 0 and each component ofG is an isolated vertex or a star of order at least 3.
He also showed that for trees of order n ≥ 3, RCER −RUEA = RUEA ∩RUER =
RCVR = ∅.

2.6 Other Modifications

Changing and unchanging in Roman domination number according to other mod-
ifications have been studied. In [52, 56], Jafari Rad and Volkmann studied graphs
for which contracting any edge decreases the Roman domination number. Jafari
Rad studied in [47] Roman domination critical graphs upon edge subdivision and
in [46] the graphs which he called Roman domination bicritical graphs, where
the removal of any pair of vertices decreases the Roman domination number.
Properties of Roman domination bicritical graphs are presented in [46] and Roman
domination bicritical trees and unicyclic graphs are characterized. On the other
hand, Amraee et al. [6] introduced the parameter Roman domination stability
number, defined as the minimum number of vertices whose removal changes the
Roman domination number. They presented various bounds and characterizations
for the Roman domination stability number, and showed that the decision problem
corresponding to the Roman domination stability number is NP-hard even when
restricted to bipartite graphs. Bouchou and Blidia [14] associated indices, namely
the removal criticality index and the adding criticality index, and computed these
indices for paths and cycles. The Roman domination subdivision number sdγR (G)
of a graph G was introduced by Atapour et al. [8] defined as the minimum number
of edges that must be subdivided (each edge in G can be subdivided at most once)
in order to increase the Roman domination number. Atapour et al. presented upper
bounds on sdγR (G) for arbitrary graphs G in terms of vertex degree. They also
showed that the Roman domination subdivision number of a graph can be arbitrarily
large, and presented several different conditions on G which are sufficient to imply
that 1 ≤ sdγR (G) ≤ 3. Further bounds on the Roman domination subdivision
number are presented by Khodkar et al. [58, 59]. A constructive characterization
of trees T such that sdγR (T ) = 2 was given by Atapour et al. [7]. Finally, Amjadi et
al. [5] introduced the Roman game domination subdivision number of a graph and
presented sharp bounds on the Roman game domination subdivision number of a
tree.
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3 Roman Bondage and Roman Reinforcement

3.1 Roman Bondage

In 1983, Bauer, Harary, Nieminen, and Suffel [11] introduced the bondage number
b(G) of a non-empty graphG defined as the minimum cardinality among all sets of
edges E′ ⊆ E(G) for which γ (G− E′) > γ (G). For more details on the bondage
number, the reader is referred to the surveys by Dunbar et al. [32] and Xu [88]. The
Roman bondage number bR(G) of a graph G has been introduced independently
by Ebadi and PushpaLatha [33] and Jafari Rad and Volkmann [53], defined as the
cardinality of a smallest set of edges E′ ⊆ E(G) for which γR(G− E′) > γR(G).
Observe that if �(G) = 1, then γR(G) = |V (G)| and γR(G − E′) = γR(G)

for any E′ ⊆ E(G). Therefore the Roman bondage number is only defined for a
graph G with maximum degree at least two. It has been shown by Bahremandpour
et al. [9] that the problem corresponding to the Roman bondage number is NP-hard
even for bipartite graphs. Hence it is interesting to look for bounds and exact values
for the Roman bondage number in some classes of graphs. Here are some results
obtained in [33, 53] giving the exact value of bR(G) for complete graphs, cycles,
paths, complete t-partite graphs for t ≥ 2, and Ladder graphs P2�Pn.

Theorem 3.1 ([33, 53]) If G is a graph of order n ≥ 3 with exactly k ≥ 1 vertices
of degree n− 1, then bR(G) = � k2�. In particular bR(Kn) = �n2 �.
Theorem 3.2 ([33, 53]) For all n ≥ 3,

(i) bR(Pn) =
{

2 if n ≡ 2 (mod 3),
1 otherwise.

(ii) bR(Cn) =
{

3 if n ≡ 2 (mod 3),
2 otherwise.

Theorem 3.3 ([45]) Let G = Km1,m2,...,mt be a complete t-partite graph with
m1 = · · · = mi < mi+1 ≤ · · · ≤ mt and n =∑t

j=1mj . Then

bR(G) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

� i2� if mi = 1 (and n ≥ 3),
2 if mi = 2 (and i = 1),
i if mi = 2 (and i ≥ 2),
4 if mi = 3 (and i = t = 2),
n− 1 if mi = 3 (and i = t ≥ 3),
n−mt if mi ≥ 3 (andmt ≥ 4).

Theorem 3.4 ([9, 33]) For all n ≥ 2, bR(P2�Pn) = 2.

Independently, Ebadi et al. [33], and Jafari Rad and Volkmann [53], have shown
that for every tree T of order at least three, bR(T ) ≤ 3. Moreover, Jafari Rad and
Volkmann [53] showed that for unicyclic graphs G, bR(G) ≤ 4. Ebadi et al. [33]
conjectured that bR(G) ≤ n− 1 for any graph of order n ≥ 3. This conjecture was
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settled independently by Dehgardi et al. [30] and Akbari and Qajar [3]. Theorem 3.3
indicates that the equality bR(G) = n− 1 is possible. Upper bounds on the Roman
bondage number in terms of the degrees of the vertices are obtained in [53].

Theorem 3.5 ([53]) If G is a graph, and xyz a path of length 2 in G, then

bR(G) ≤ deg(x)+ deg(y)+ deg(z)− 3 − |N(x) ∩N(y)|. (6)

If x and z are adjacent, then

bR(G) ≤ deg(x)+ deg(y)+ deg(z)− 4 − |N(x) ∩N(y)|. (7)

Applying Theorem 3.5 on a path of length 2 xyz such that one of the vertices
x, y or z has minimum degree, we get the following.

Corollary 3.6 ([53]) If G is a connected graph of order n ≥ 3, then

bR(G) ≤ δ(G)+ 2�(G)− 3.

Recall that for any connected graph G, the average degree dega(G) represents
the value of the expression

∑
v∈V (G) deg(v)/|V (G)|. Dehgardi et al. [29] obtained

an upper bound on the Roman bondage number of graphs in terms of the average
degree and maximum degree, as well as a lower bound on |E(G)| in terms of the
order n of G, the maximum degree �, and bondage number bR(G).

Theorem 3.7 ([29]) Let G be a connected graph of order n ≥ 3, average degree
dega(G), and bondage number bR(G). Then

bR(G) ≤ 2 dega(G)+�(G)− 3 and |E(G)| ≥ (n/4)(bR(G)−�(G)+ 3).

We observe that the two bounds are sharp for the cycle Cn when n ≡ 2 (mod 3).
The next upper bound involves the edge-connectivity λ(G). Since λ(G) ≤ δ(G),

the next theorem is an improvement of Corollary 3.6.

Theorem 3.8 ([53]) If G is a connected graph of order n ≥ 3, then

bR(G) ≤ λ(G)+ 2�(G)− 3.

It is well known that for planar graphs G, δ(G) ≤ 5, and so Corollary 3.6 leads
to bR(G) ≤ 2�(G) + 2 for planar graphs. This bound was improved in [54] as
follows.

Theorem 3.9 ([54]) If G is a connected planar graph of order n ≥ 3, then
bR(G) ≤ min{2�(G),�(G)+ 6}.

Jafari Rad and Volkmann [54] then considered the girth of a connected planar
graph and obtained the following bounds that improve Theorem 3.9.
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Theorem 3.10 ([54]) Let G be a connected planar graph of order n ≥ 3.

(1) If g(G) ≥ r where r ∈ {4, 5, 6}, then bR(G) ≤ �(G)+ 8 − r .
(2) If g(G) ≥ 8, then bR(G) ≤ �(G)+ 1.

Since bR(Cn) = 3 for a cycle Cn of length n ≥ 8 with n ≡ 2 (mod 3),
Theorem 3.10-(2) is best possible, at least for � = 2. Moreover, Akbari et al.
[2] have shown that bR(G) ≤ 15 for every planar graph G. Although finding a
planar graph G with bR(G) = 15 remains open, Akbari et al. [2] constructed an
infinite family of planar graphs G with bR(G) = 7. Restricted to planar graphs G
with minimum degree five, Samodivkin [74] showed that bR(G) ≤ 14. He has also
studied the Roman domination number of graphs G belonging to RUVR (class of
graphs G such that γR(G− v) = γR(G) for all v ∈ V (G)).
Theorem 3.11 ([75]) If a graph G is in RUVR , then bR(G) ≤ δ(G).

The bound stated in Theorem 3.11 is tight. For example, when (a) G = C3k ,
k ≥ 1, and (b) δ(G) = 1. As an immediate consequence, if T is a tree in RUVR ,
then bR(T ) = 1. Bounds involving the Roman bondage number and the bondage
number of graphs under certain conditions were obtained by Bahremandpour et al.
[9]. Note that β(G) is the vertex covering number.

Theorem 3.12 ([9])

1) For any connected graph G of order n ≥ 3 and γR(G) = γ (G) + 1, bR(G) ≤
min{b(G), n�}, where n� is the number of vertices with maximum degree in G.

2) For any Roman graph G, bR(G) ≥ b(G), and this bound is sharp.
3) For any graph G, if γR(G) = 2β(G), then bR(G) ≥ δ(G).
4) If G ∈ RCVR and γR(G) = 2β(G), then bR(G) ≥ δ(G)+ 1.

If γR(G) = 2, then obviously bR(G) ≤ δ(G). In the case γR(G) ≥ 3, Dehgardi
et al. [30] proved that bR(G) ≤ (γR(G)− 2)�(G)+ 1. For graphsG with γR(G) ∈
{3, 4}, Bahremandpour et al. [9] proved the following.

Theorem 3.13 ([9]) For any connected graph G of order n ≥ 4,

bR(G) ≤
{
�(G) = n− 2 if γR(G) = 3,
�(G)+ δ(G)− 1 if γR(G) = 4.

Akbari et al. [3] obtained an upper bound on the Roman bondage number of
graphs in terms of the order and the Roman domination number.

Theorem 3.14 ([3]) For any connected graph G of order n ≥ 3, bR(G) ≤ n −
γR(G)+ 5.

Roman bondage number of graphs on surfaces was studied by Samodivkin [72,
73], where he obtained upper bounds on bR(G) in terms of (a) the average degree
and maximum degree, and (b) Euler characteristic, girth, and maximum degree.
Samodivkin then showed that the Roman bondage number of every graph which
admits a 2-cell embedding on a surface with non-negative Euler characteristic does
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not exceed 15. He also presented upper bounds for the Roman bondage number
of a graph on topological surfaces in terms of maximum degree and orientable/non-
orientable genus. Katagiri [57] presented a new upper bound for the Roman bondage
number of a graph on a closed surface. We close this subsection by mentioning that
Dehgardi et al. studied in [29] the fractional Roman bondage number defined as
the optimal value of the linear programming relaxation of the integer programming
formulation for Roman bondage. They determined the Roman fractional bondage
number of some classes of graphs and presented different bounds on this parameter.

3.2 Roman Reinforcement

The concept of Roman reinforcement in graphs was introduced independently by
Ebadi and PushpaLatha [33] and Jafari Rad and Sheikholeslami [51]. The Roman
reinforcement number rR(G) of a graph G is the minimum number of edges
that must be added to G in order to decrease the Roman domination number
of G. Obviously, if γR(G) ∈ {1, 2}, then adding edges to G will not decrease
the Roman domination number, and thus it was defined rR(G) = 0. Jafari Rad
and Sheikholeslami gave a necessary and sufficient condition for graphs G with
rR(G) = 1.

Theorem 3.15 ([51]) LetG be a connected graph of order n ≥ 3. Then rR(G) = 1
if and only if there is a γR(G)-function f = (V0, V1, V2) with V1 �= ∅.

According to Theorem 3.15, a connected graph G with γR(G) ≥ 3 satisfies
rR(G) ≥ 2 if and only if for each γR(G)-function f = (V0, V1, V2), V1 = ∅.
Various bounds on the Roman reinforcement number of a graph have been obtained
in [51], some of which are presented below.

Theorem 3.16 ([51]) For any graph G on n vertices, rR(G) ≤ � 2n
γR(G)

� − 1.

Theorem 3.17 ([51]) Let G be a connected graph of order n ≥ 3 and let f =
(V0, V1, V2) be a γR(G)-function. Then

rR(G) ≤ min{deg(u) | u ∈ V2}.

Moreover, if the subgraph induced by V2 is isolate-free, then

rR(G) ≤ min{deg(u) | u ∈ V2} − 1.

Using the Theorems 3.15, 3.16, and 3.17, the Roman reinforcement number for
the following families of graphs can be obtained. Note that rR(Pn) = rR(Cn) = 0
for n = 2, 3.

Theorem 3.18 ([33, 51])

1) For n ≥ 4,
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rR(Pn) = rR(Cn) =
{

2, if n ≡ 0 (mod 3)
1, if n �≡ 0 (mod 3).

2) For n ≥ 2, rR(P2�Pn) = 1.
3) Let G = Kn1,n2,...,nm be the complete m-partite graph with 2 ≤ n1 ≤ n2 ≤

· · · ≤ nm. Then

rR(G) =
{

1 if n1 = 2
n1 − 2 if n1 ≥ 3.

Some consequences of Theorem 3.17 are given in the following corollary.

Corollary 3.19 ([51])

1) For any graph G with no isolated vertex, rR(G) ≤ �(G). The bound is sharp
for cycles C3k (k ≥ 2).

2) If a connected graphG contains a path v1v2v3v4 or a cycle v1v2v3v4v1 in which
deg(vi) = 2 for i = 2, 3 and deg(v4) ≤ 2, then rR(G) ≤ 2. This bound is sharp
for paths P3k and cycles C3k (k ≥ 2).

3) For any tree T of order n ≥ 4, rR(T ) ≤ min{deg(v) : v ∈ S(T )}, where S(T ) is
the set of all support vertices of T .

3.3 Summary and Open Problems

In Sections 2 and 3, we were interested to know on changing and unchanging
the Roman domination number according to some graph modifications such as the
addition of a set of edges, the removal of a set of vertices/edges, contraction of edges
or subdivisions of edges. Many properties, characterizations, and bounds have been
given in these sections, but also many problems remain open, and which are given
briefly below.

1. Is it true that any γ -vertex critical graph is γR-vertex critical? (This is a
conjecture stated in [55]).

2. Give a characterization of every of the six classes of graphs shown in the Venn
diagram of Figure 10.

3. Characterize all graphs G ∈ RUVR of order n with γR(G) = 2n
3 and δ(G) = 1.

4. Can the bounds of Theorems 2.24 and 2.25 be improved?
5. Characterize the trees T with bR(T ) = 1, bR(T ) = 2, or bR(T ) = 3.
6. Is it true that the Roman bondage number of every planar graph is at most 7?

(This is a conjecture stated in [2]).
7. Let G be a connected graph of order n ≥ 4 with γR(G) ≥ 3. Is bR(G) ≤
(γR(G) − 2)�(G)? It can be noted that by Corollary 3.6 this is obvious for
graphs G with γR(G) ≥ 5.
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Rainbow Domination in Graphs

Boštjan Brešar

1 Introduction

Domination in graphs is often considered as a model for applications, where vertices
in a dominating set provide a service or a product that has to be accessible in the
neighborhood of every vertex of the network. In this sense, rainbow domination
presents a more complex version of domination, where each color represents a
different type of service, or product, and one seeks to distribute these service
providers or products to nodes in the network in such a way that for those
nodes that are not given any service, all types of services are available in their
neighborhoods. While it is not clear how often this situation appears in practice, a
stronger motivation for introducing rainbow domination lies in its immanent relation
with domination in Cartesian products of graphs and potential consequences for the
famous Vizing’s conjecture. Rainbow domination was introduced in 2008 by Brešar,
Henning, and Rall [13] and is formally defined as follows.

LetG be a graph and let f be a function that assigns to each vertex a set of colors
chosen from the set [k] = {1, . . . , k}; that is, f : V (G)→ 2[k]. In this context, the
elements of the set [k] are called colors or labels. If for each vertex v ∈ V (G) such
that f (v) = ∅ we have

⋃

x∈N(v)
f (x) = [k] (1)
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then f is a k-rainbow dominating function (kRDF) of G. The weight, w(f ), of a
function f is defined as w(f ) = ∑

v∈V (G) |f (v)|. Given a graph G, the minimum
weight of a kRDF is the k-rainbow domination number of G, and is denoted by
γrk(G). A k-rainbow dominating function of G with weight γrk(G) is a γrk(G)-
function.

The Cartesian product G�H of graphs G and H is the graph whose vertex set
is V (G) × V (H), and two vertices (g1, h1) and (g2, h2) are adjacent in G�H if
either g1 = g2 and h1h2 is an edge inH or h1 = h2 and g1g2 is an edge inG. There
is a bijective correspondence between the set of all k-rainbow dominating functions
of G and the set of all dominating sets of G�Kk , where Kk is the complete graph
on k vertices. Indeed, given a k-rainbow dominating function f of a graph G (and
letting V (Kk) = {h1, . . . , hk}), the set

Df =
⋃

g∈V (G)

( ⋃

i∈f (g)
{(g, hi)}

)

is a dominating set of G�Kk . The reverse correspondence is also clear, and, in
addition, w(f ) = |Df |. In particular, for every positive integer k ≥ 1 and every
graph G,

γrk(G) = γ (G�Kk). (2)

See Figure 1: the left figure shows a (minimum) dominating set of C4 �K3,
while the right figure presents the corresponding 3RDF in C4.

Since rainbow domination is closely related to domination in Cartesian products
of graphs, one of the motivations for its introduction was to make a progress in
resolving the following famous conjecture, which was posed more than half a
century ago.

Fig. 1 3-Rainbow domination of C4: the left figure presents C4 �K3 in which vertices of a
dominating set are enlarged; the right figure presents the corresponding 3RDF of C4.
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Conjecture 1 (Vizing [73, 74]) For all graphs G and H , γ (G�H) ≥ γ (G)γ (H).
The equivalence between domination numbers of Cartesian products of graphs

Gwith complete graphs and rainbow domination numbers ofG has raised a number
of questions that have led to various developments. In this survey, we present
studies of rainbow domination, which reflect the current state-of-the-art and suggest
problems of potential interest. To stay brief and focused, some of the topics are only
referenced and the interested reader is invited to consult the corresponding papers.

In the next section we give some preliminary results and bounds on the rainbow
domination numbers, and establish their values in some simple families of graphs.
Section 3 is devoted to (standard and paired) domination in Cartesian products
of graphs and connections with Vizing’s conjecture, all in relation with rainbow
domination. In Section 4, different bounds on the k-rainbow domination number
of a graph are presented. The main focus is given to various upper bounds with
respect to the order of a graph. In Section 5 this is further developed by an
investigation of different functions, defined with respect to the rainbow domination
number and some other parameters, such as minimum degree, order and radius
of a graph, giving some insight into the asymptotic behavior of γrk . Section 6
presents an overview of the bounds on the rainbow domination numbers with
respect to several other established domination invariants. In Section 7 we present
computational complexity aspects of determining the rainbow domination numbers
(NP-completeness results, efficient algorithms on some classes of graphs, and a
discussion on possible approximation algorithms). In Section 8 we give a short list
of additional topics that have been studied in relation with rainbow domination.
This includes results in special classes of graphs, and some new invariants that are
related to the rainbow domination numbers; we only mention the main concepts
and give the corresponding references. Section 9 contains concluding remarks with
some open problems.

2 Basic and Preliminary Observations

In this section, we present general bounds on the k-rainbow domination number in
terms of the domination number, and establish γrk(G) in some simple families of
graphs G, which will be used also later.

Initial results on rainbow domination were established by Hartnell and Rall [46],
who were using the language of domination in Cartesian products G�Kk . One of
their results, expressed in terms of rainbow domination, yields the following bounds
for γrk(G).

Theorem 1 ([46]) If G is a graph of order n, then for any k ≥ 2,

min{n, γ (G)+ k − 2} ≤ γrk(G) ≤ kγ (G) ,

and the bounds are sharp. In particular, γ (G) ≤ γr2(G) ≤ 2γ (G).
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Proof The proof of the upper bound for the k-rainbow domination number of a
graph G is straightforward. Given a γ (G)-set D, the function f : V (G) → 2[k]
defined by f (u) = [k] if u ∈ D, and f (u) = ∅ if u /∈ D, is a k-rainbow dominating
function of G with w(f ) = k|D|. This implies that γrk(G) ≤ kγ (G).

For the proof of the lower bound, assume that on the contrary there exists a kRDF
f of G with w(f ) < min{n, γ (G)+ k − 2}. Since w(f ) < n, there exists a vertex
x ∈ V (G) with f (x) = ∅. Hence, ∪u∈N(x)f (u) = [k], because f is a kRDF. Let
� = ∑

u∈N(x) |f (u)| and let B = {u ∈ N(x) | f (u) �= ∅}. Now, if �− k + 1 ≤ |B|,
then let C be an arbitrary subset of B with � − k + 1 vertices, otherwise, we let
C = B. Note that

∑
u∈B−C |f (u)| ≤ k − 1.

Sincew(f ) < γ (G)+k−2, we infer that the setA = {v ∈ V (G)−N [x] | f (v) �=
∅} has at most γ (G)+ k − �− 3 vertices. This implies |A∪C| ≤ γ (G)− 2, hence
A∪C∪{x} is not a dominating set. Let z ∈ be a vertex ofG, which is not dominated
by any vertex of A ∪ C ∪ {x}. Clearly, f (z) = ∅, and note that if z is adjacent to a
vertex v with f (v) �= ∅, then v ∈ B −C. However, since

∑
u∈B−C |f (u)| ≤ k − 1,

there exists a color i ∈ [k] such that i /∈ f (v) for all vertices v ∈ B − C. This
implies that f is not a kRDF, a contradiction. Thus, w(f ) ≥ min{n, γ (G)+ k − 2}
for any k-rainbow dominating function f .

The sharpness of the lower bound can be demonstrated by the so-called Dutch
windmill graphs Dp4 , p ≥ 1, which are obtained from p copies of the cycle C4 all
sharing a common vertex u. If p > (k − 2)/2, then γrk(D

p

4 ) = k + p − 1, where
a γrk(D

n
4 )-set f is obtained by letting f (u) = {1, . . . , k − 1}, f (xi) = {k} for all

vertices not adjacent to u, and ∅ to all other vertices. Since γ (Dp4 ) = p + 1, we
indeed have γrk(D

p

4 ) = γ (Dp4 )+ k − 2.
For the upper bound consider the corona G ◦ Kt of an arbitrary graph G and

complete graphKt . It is obtained fromG and n(G) copies ofKt by connecting each
vertex ofG with all the vertices of its own copy of Kt . If t ≥ k, then γrk(G ◦Kt) =
k · n(G), and γ (G ◦Kt) = n(G) implies the desired result. � 

We remark that upper bounds similar to the one in Theorem 1 are known
for several other domination invariants. In particular, γ{k}(G) ≤ kγ (G), where
the parameter on the left side of the inequality is known as the {k}-domination
number [32]. In addition, the Roman domination number, γ R(G), of a graph G,
is bounded from above by 2γ (G) [27, 70].

The inequality γ (G) ≤ γr2(G) in the above result can be generalized to the
following inequality:

γrk(G) ≤ γr(k+1)(G), (3)

which clearly holds for any graph G and any k ≥ 1.
Hartnell and Rall also characterized the graphs G, which attain the lower bound

in the inequality γ (G) ≤ γr2(G). (Clearly, by Theorem 1 there are no non-trivial
graphs attaining γrk(G) = γ (G) when k ≥ 3.) These graphs are interesting
also because they appear in several constructions, which attain the equality in the
conjectured bound of Vizing’s conjecture; see, e.g., Proposition 4.
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Theorem 2 ([46]) For a connected graphG, γr2(G) = γ (G) if and only ifG has a
γ (G)-setD that partitions into two non-empty subsetsD1 andD2 such that V (G)−
N [D1] = D2 and V (G)−N [D2] = D1.

Proof Suppose that a connected graph G has a γ (G)-set D that partitions into two
non-empty subsetsD1 andD2 such that V (G)−N [D1] = D2 and V (G)−N [D2] =
D1. Letting

f (u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{1} if u ∈ D1

{2} if u ∈ D2.

∅ otherwise,

it is easy to see that f is a 2RDF of weight γ (G), hence γr2(G) = γ (G).
Conversely, let γr2(G) = γ (G) for a connected graph G, and let f be a γr2(G)-

function. Since the set D = {v ∈ V (G) | f (v) �= ∅} is a dominating set of G,
we infer that |f (v)| = 1 for every v ∈ D. Thus, |D| = γ (G), and so D is a
γ (G)-set. Denote by Di = {v ∈ V (G) | f (v) = {i}} for i ∈ {1, 2}, and note that
{D1,D2} is a partition of D. Since f is a 2RDF, every x /∈ D must have a neighbor
in D1 (and a neighbor in D2), thus D1 dominates V (G)−D2. Clearly, no vertex of
D1 is adjacent to a vertex of D2, because D is a minimum dominating set, and so
D2 = V (G)−N [D1]. In the same way we establish thatD1 = V (G)−N [D2]. � 

For the simplest example that demonstrates Theorem 2 consider C4. Note that
two non-adjacent vertices v1 and v3 form a γ (C4)-set D, which can be partitioned
into the sets D1 = {v1} and D2 = {v3}.

We next present exact results for the 2-rainbow domination numbers in several
families of graphs. The following lemma gives some intuition for dealing with
rainbow domination, and will be used in the subsequent result. (Although similar
auxiliary results have been known, they may not have been presented in this form,
and so we also give a proof.)

Lemma 1 If G is a graph with �(G) ≤ k, then there exists a γrk(G)-function f
such that |f (v)| < k for every v ∈ V (G).
Proof Let g be a kRDF ofG of minimum weight, that is, g is a γrk(G)-function. We
claim that there exists a γrk(G)-function f with |f (v)| < k for every v ∈ V (G).
Suppose that |g(v)| = k for some v ∈ V (G). Since g is a kRDF with minimum
weight, we infer that there exists a vertex x1 ∈ N(v) such that g(x1) = ∅. Let
x1, . . . , xr be the neighbors of v having g(xi) = ∅. Note that r ≤ �(G) ≤ k. Now,
letting f (xi) = i for i ∈ {1, . . . , r − 1}, f (xr) = {r, r + 1, . . . , k}, f (v) = ∅, and
f (u) = g(u) for the remaining vertices u of G, we easily infer that f is a γrk(G)-
function. Since fewer vertices are mapped to the set of all k colors by f than there
are such vertices with respect to g, induction completes the proof. � 
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Proposition 1 ([14] and [13])

(i) For n ≥ 1, γr2(Pn) = �n+1
2 �.

(ii) For n ≥ 3, γr2(Cn) =
⎧
⎨

⎩

n
2 + 1 if n ≡ 2 (mod 4)

�n2 � otherwise.

Proof Note that �(G) = 2 when G is a path or a cycle. Let v1, v2, . . . , vn be the
vertices of G listed in the natural order. By Lemma 1, there exists a minimum 2-
rainbow dominating function f of G, in which |f (vi)| ≤ 1 for all vi ∈ V (G). If G
is the path Pn, this implies that |f (v1)| = 1 for the leaf v1; say f (v1) = 1. Observe
that we may assume without loss of generality that f (v2) = ∅ and f (v3) = 2.
Continuing this way, we infer that |f (vk)| = 1 for odd k, and f (vk) = ∅ for even k.
This yields (i).

The proof of (ii) is similar. Assuming without loss of generality that f (v1) = 1,
we may also assume that f (v2) = ∅ and |f (v3)| = 1. By the same reasoning,
we infer that as long as k < n, we have |f (vk)| = 1 for odd k, and f (vk) = ∅
for even k. Now, if n ≡ 0 (mod 4), f (vn) = ∅, and so w(f ) = n/2. If n is odd,
then |f (vn)| = 1, and so w(f ) = (n + 1)/2. Finally, if n ≡ 2 (mod 4), we get
f (v1) = f (vn−1) �= ∅, which implies that |f (vn)| = 1, and so w(f ) = n/2 + 1.

� 
Let t ≥ 2. For 1 ≤ r ≤ t , the graph St,r is obtained from the star K1,t by

subdividing r of its edges by a single vertex. These graphs are sometimes called
spiders. The center of the spider St,r is the center of the star K1,t from which it is
obtained. Note that only one of the vertices in P4(= S2,1) may be called the center.
The following result, which appeared implicitly in [77], establishes the 2-rainbow
domination numbers of spiders. We will use this result in Section 4.

Proposition 2 ([77]) For t ≥ 2 and 1 ≤ r ≤ t ,

γr2(St,r ) =
⎧
⎨

⎩

3 if t = 2
1 + r if t ≥ 3, r = t
2 + r if t ≥ 3, r < t

In particular, for every spider G on n vertices, γr2(G) ≤ 3
4n, where the equality

holds if and only if G is the path P4.

Proof The case t = 2 is covered by the graphs P4 and P5 and is clear.
Consider the graph St,t , for t ≥ 3, with center vertex c. If f is a 2RDF, then

letting f (x) = ∅ for a leaf x implies that its neighbor y has f (y) = {1, 2}. Hence,
if there exists a leaf x with f (x) = ∅, then w(f ) ≥ r + 1. Otherwise, for all leaves
x we have |f (x)| ≥ 1, and so |f (c)| = 1. This gives γr2(St,t ) ≥ r + 1. A function
f with f (c) = {1} for the center c, f (x) = {2} for the leaves x, and f (y) = ∅ for
all other vertices y, is a 2RDF of weight 1 + r , which is thus optimal.
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Since in St,r , where r < t , center c is adjacent to at least one leaf, we must
either have f (c) = {1, 2} or |f (x)| = 1 for all leaves x adjacent to c. If there
is more than one leaf adjacent to c, it is clear that an optimal 2RDF exists with
f (c) = {1, 2}. If there is just one leaf x adjacent to c, and |f (c)| ≤ 1, then we must
have |f (x)| = 1. However, if f (c) = ∅, then a non-leaf neighbor y of c must have
f (y) �= ∅. Hence also in this case one can quickly derive that there exists a γr2(St,r )-
function f such that f (c) = {1, 2}. As in the previous paragraph we note that in
an optimal 2RDF f , all leaves x at distance 2 from c should get |f (x)| = 1, which
implies γr2(St,r ) ≥ r+2. Clearly, there exists a γr2(St,r )-function with weight r+2.

Since n = t + r + 1, it is easy to verify that in each case, γr2(St,r ) ≤ 3
4n, and

that equality holds only when r = 1 and t = 2, since γr2(S2,1) = 3. � 
Like many other domination-type invariants, the rainbow domination number is

hereditary on spanning supergraphs. Indeed, if H is a spanning subgraph of G with
V = V (H) = V (G), and f : V → 2[k] is a kRDF of H , then f is clearly also a
kRDF of G. We state this basic observation in the following result.

Proposition 3 Let k be a positive integer. If G is a graph and H a spanning
subgraph of G, then γrk(G) ≤ γrk(H).

3 Domination in Cartesian Products of Graphs

In this section we focus on results in Cartesian products of graphs that are related
to rainbow domination. Some of the results consider domination and some others
consider paired domination of Cartesian products of graphs.

The inability to resolve Vizing’s conjecture motivated several authors to consider
different kinds of domination concepts in Cartesian products and/or to focus on
similar problems. A problem closely related to the conjecture is to characterize the
graphs that achieve equality in the conjectured bound. Hartnell and Rall [46] used
the graphs G with γ (G) = γr2(G) to construct several families of such graphs, one
of which we describe next.

Proposition 4 ([46]) If G is a graph with γ (G) = γr2(G) and H is the corona
H ′ ◦K1 over an arbitrary graph H ′, then γ (G�H) = γ (G)γ (H).
Proof For a corona H = H ′ ◦ K1, let {V ′, L} be the partition of V (H), where V ′
corresponds to the set V (H ′) and L is the set of leaves adjacent to vertices of V ′.
Note that γ (H) = |V ′| = |L|. Let G be a graph with γr2(G) = γ (G), and let
f be a 2RDF of G. Let Vi = {u ∈ V (G) | f (u) = {i}} for i ∈ {1, 2}, and let
V0 = {u ∈ V (G) | f (u) = ∅}. Note that {V0, V1, V2} is a partition of V (G), and for
every x ∈ V0 there exists a vertex y ∈ NG(x) ∩ V1 and a vertex z ∈ NG(x) ∩ V2.
We construct the set D in V (G�H) as follows:

D = (V1 × V ′) ∪ (V2 × L),
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and claim that D is a dominating set of G�H .
Let (g, h) ∈ V (G�H) be an arbitrary vertex, which is not in D. If (g, h) ∈

V1 × L, then there exists a vertex g′ ∈ V ′ such that gg′ ∈ E(G); hence (g′, h) ∈
D is a neighbor of (g, h) that dominates (g, h). In a similar way we check that
(g, h) ∈ V2 × V ′ is dominated by some (g′, h) ∈ V1 × L. Finally, if (g, h) is a
vertex in G�H such that g ∈ V0, then let y ∈ NG(g) ∩ V1 and z ∈ NG(g) ∩ V2.
Now, if h ∈ V ′, then (g, h) is dominated by (y, h) ∈ D, but if h ∈ L, then (g, h) is
dominated by (z, h) ∈ D. Since

|D| = |V1×V ′|+|V2×L| = |V1||V ′|+|V2||L| = (|V1|+|V2|)γ (H) = γ (G)γ (H),

we derive that γ (G�H) ≤ γ (G)γ (H).
For the reversed inequality, let h ∈ V ′ and let � be its unique neighbor in L.

Consider the subset S of V (G�H) consisting of the vertices that have the second
coordinate in {h, �}, that is, S = (V (G)×{h})∪(V (G)×{�}). Note that for a vertex
g ∈ V (G) either (g, h) ∈ D, or (g, �) ∈ D, or there exists a vertex g′ ∈ NG(g)
such that (g′, �) ∈ D. From this we easily derive that |S ∩ D| ≥ γ (G), and so
|D| ≥ |V ′|γ (G) = γ (H)γr2(G). Thus, γ (G�H) ≥ γ (G)γ (H). � 

There have been a number of different approaches to attack Vizing’s conjecture,
most of which have been described in the latest survey [12]. In particular, Clark and
Suen [25] made a breakthrough by answering the question of Hartnell and Rall [45],
whether there is a constant c > 0 such that the domination number of the Cartesian
product of G and H is bounded as follows: γ (G�H) ≥ cγ (G)γ (H). Clearly,
for c < 1 this inequality is weaker than the inequality in Vizing’s conjecture. For
c = 1/2, Clark and Suen provided a proof, which is based on a special partition
of the Cartesian product of two graphs and double counting of the vertices in a
minimum dominating set of G�H . (Rather than presenting an idea of the proof of
Theorem 3 we will give a full proof of Theorem 4, which states a similar inequality
related to rainbow domination, and uses the partition and double counting provided
by Clark and Suen in their proof.)

Theorem 3 ([25]) For all graphs G and H , γ (G�H) ≥ 1
2γ (G) γ (H).

Several small improvements of this bound have been proven by different authors,
and several variations involving other domination invariants have been presented;
see [12]. Brešar, Henning, and Rall asked [13], whether the bound of Clark and
Suen can be improved by employing the 2-rainbow domination number as follows:
is it true for all graphs G and H that

γr2(G�H) ≥ γ (G) γ (H) ? (4)

To see that this would indeed be an improvement (if correct) of the bound of Clark
and Suen, note that γr2(G�H) ≤ 2γ (G�H); hence the truth of the inequality (4)
implies 2γ (G�H) ≥ γr2(G�H) ≥ γ (G) γ (H), which is the Clark and Suen
inequality. Clearly, the inequality (4) is weaker than Vizing’s conjecture, because
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γr2(G�H) ≥ γ (G�H). However, even a (much) weaker version of the proposed
question in (4), where γr2 is replaced by γrk for k arbitrarily large, has not yet been
resolved. It was asked in [12], whether there is (an arbitrarily large) integer k, for
which the inequality

γrk(G�H) ≥ γ (G) γ (H) ? (5)

holds for all graphs G and H . A weaker inequality similar to (5) was proven by
Pilipczuk, Pilipczuk, and Škrekovski [56].

Theorem 4 ([56]) For all graphs G and H and every k ≥ 1,

γrk(G�H) ≥ k

k + 1
γ (G) γ (H).

Proof The framework of the proof is similar to the proof of Theorem 3 (cf. Clark
and Suen [25]). LetG be a graph and let {g1, . . . , gγ (G)} be a minimum dominating
set of G. Consider a partition {A1, . . . , Aγ (G)} of V (G) chosen so that gi ∈ Ai and
Ai ⊆ N [gi] for each i. LetHi = Ai×V (H). For a vertex h ofH , the set of vertices
Ai × {h} is called a cell, and is denoted by Chi .

Let f be a γrk(G�H)-function, and let Dt = {v ∈ V (G�H) | t ∈ f (v)} be
the set of vertices v ∈ V (G�H) for which f (v) contains the color t ∈ {1, . . . , k}.
Let D = ∪ki=1Di , and note that D consists of the vertices v ∈ V (G�H) for which

f (v) �= ∅. Clearly,D is a dominating set ofG�H , and |D| ≤∑k
i=1 |Di | = w(f ).

Given a color t ∈ [k], the cell Chi is said to be vertically t-undominated by f if
for all v ∈ Ai × NH [h], color t is not in f (v). Therefore, any vertex (u, h) in such
a cell Chi either has f (u, h) �= ∅ (that is, (u, h) ∈ D), or there exists a vertex z in
N(u)× {h} with t ∈ f (z) (clearly, such z does not belong to Chi , because the cell is
vertically t-undominated).

Let �ti be the number of vertically t-undominated cells Chi in Hi . Projecting the
vertices of Dt ∩ Hi onto H , note that they dominate all vertices of H except for
those that are projected from the vertically t-undominated cells Chi . We infer that
γ (H) ≤ |Dt ∩Hi | + �ti , and summing up all i ∈ [γ (G)], we get

γ (G)γ (H) ≤ |Dt | + �t , (6)

where �t is the number of all vertically t-undominated cells in G�H (that is, �t =
∑γ (G)

i=1 �
t
i).

Now, for h ∈ V (H) consider the subset V (G) × {h}, and denote by mth the
number of vertically t-undominated cells in V (G)× {h}. Note that vertices of D ∩
(V (G)×{h}) dominate all vertically t-undominated cells inD∩ (V (G)×{h}), and
since every other cell in V (G) × {h} can be dominated by just one vertex, namely
(gi, h), we infer

|D ∩ (V (G)× {h})| + (γ (G)−mth) ≥ γ (G),
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which yields |D ∩ (V (G)× {h})| ≥ mth. Summing up all h ∈ V (H) we get

mt ≤ |D|, (7)

wheremt =∑
h∈V (H) mth, which is the number of all vertically t undominated cells

in G�H . Using the fact that �t = mt , and combining the inequalities (6) and (7),
we infer

γ (G)γ (H) ≤ |Dt | + |D| . (8)

Note that t is still arbitrary, hence the above inequality holds for any chosen color in
[k]. Since

∑ |Dt | = w(f ), there exists a color t such that |Dt | ≤ 1
k
w(f ). Plugging

such color t to formula (8) and also using that |D| ≤ w(f ), we get

γ (G)γ (H) ≤ 1

k
w(f )+ w(f ),

which implies

γrk(G�H) = w(f ) ≥ k

k + 1
γ (G) γ (H).

� 
The following bounds on the domination number of the Cartesian product of

graphs are easy to prove and are part of folklore:

min{n(G), n(H)} ≤ γ (G�H) ≤ min{γ (G)n(H), n(G)γ (H)}. (9)

The pairs of graphs that attain the upper bound clearly enjoy the inequality of
Vizing’s conjecture, hence there has been some interest in the class of graphs,
for which the bound in the conjecture is trivially attained. Brešar and Rall [15]
characterized the graphs that attain the lower bound in (9), and gave some partial
results for the graphs attaining the upper bound. In particular, for any graph G
enjoying γrk(G) = kγ (G) it follows that γ (G�Kk) = kγ (G), but more can be
proved.

Proposition 5 ([15]) LetG be a graph such that γrk(G) = kγ (G), for some k ≥ 2.
If H is any graph of order k, then γ (G�H) = kγ (G).
The proof of Proposition 5 follows from the fact thatG�H is a spanning subgraph
of G�Kk , and so γ (G�H) ≥ γ (G�Kk). Since γ (G�Kk) = kγ (G), this
readily implies γ (G�H) = γ (G)n(H) = kγ (G).

To see that the converse of Proposition 5 does not hold, consider the graph G in
Figure 2. Let f : V (G) → 2[4] be defined by f (a1) = {1}, f (a2) = {2}, f (a3) =
{3}, f (b1) = {1}, f (b2) = {1}, f (b3) = {1}, f (b) = {4}, and f (a) = ∅. It is easy
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Fig. 2 Graph G with
γr4(G) < 4γ (G)

to see that f is a 4-rainbow dominating function, and thus γr4(G) ≤ 7 < 4γ (G).
Now, if H = P4, one can verify that γ (G�H) = 8 = 4γ (G).

In the seminal paper [13], rainbow domination was used for bounding the paired
domination number of the Cartesian product of graphs in which one of the factors is
arbitrary and the vertex set of the other can be partitioned into k sets, each of which
is a minimum paired dominating set.

Theorem 5 ([13]) For an arbitrary graphG and any graphH whose vertex set can
be partitioned into k γpr(H)-sets,

γpr(G�H) ≤ 1

k
|V (H)| γrk(G).

Proof Let f be a γrk(G)-function, and let π = {S1, S2, . . . , Sk} be a partition of
V (H) into γpr(H)-sets. Note that γpr(H) = |Si | = 1

k
|V (H)| for all i ∈ {1, . . . , k}.

We claim that the set

D =
⋃

x∈V (G)

( ⋃

i∈f (x)
({x} × Si)

)

is a paired dominating set of G�H .
Clearly, the induced subgraph (G�H)[D] contains a perfect matching. This is

because each vertex (x, y) ∈ D, which is in {x} × Si for some γpr-set Si in H , can
be paired with the vertex (x, z) in {x} × Si , where y and z are partners with respect
to the perfect matching that exists in H [Si].

To see that D is a dominating set of G�H we distinguish two cases. First, if
f (x) �= ∅ for x ∈ V (G), then all vertices of {x}×V (H) are dominated by {x}×Si ,
where i ∈ f (x). Second, consider the vertices in {x} × V (H), where f (x) = ∅.
Since f is a kRDF of G, we have

⋃
u∈N [x] f (u) = {1, . . . , k}. Now, for a vertex

(x, y) ∈ {x} × V (H), there exists i ∈ [k] and Si ∈ π such that y ∈ Si ; in addition,
there exists u ∈ NG(x) such that i ∈ f (u). Therefore, the vertex (u, y) ∈ D
dominates (x, y). We infer that D is indeed a paired dominating set of G�H . � 

Some interesting consequences of Theorem 5 can be derived for more specific
families of graphs. For instance, the vertex set of the cycle C4� can clearly be
partitioned into two γpr-sets, which by Theorem 5 implies that γpr(G�C4�) ≤
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1
2 |V (C4�)| γr2(G) = 2�γr2(G), where G is an arbitrary graph and � ≥ 1. When
plugging Kk �K2 for H in Theorem 5, and combining it with (2), the following
result follows.

Corollary 1 ([13]) For an arbitrary graph G, γpr(G� (Kk �K2)) ≤ 2γrk(G) =
2γ (G�Kk). In particular, γpr(G�C4) ≤ 2γr2(G).

Corollary 1 can be applied to derive the exact value of the paired domination
number of G�C4 when G is the cycle Cn for n ≥ 3:

γpr(Cn�C4) = 2γr2(Cn).

That is,

γpr(Cn�C4) =
⎧
⎨

⎩

n+ 2 if n ≡ 2 (mod 4)

2�n2 � otherwise.

The lower bound for γpr(Cn�C4) follows from the general lower bound γpr(G) ≥
2� n(G)2�(G)�, which holds for any graph G without isolated vertices. The upper
bound is obtained by combining Corollary 1 with Proposition 1(ii). (The case
n ≡ 2 (mod 4) needs a separate verification of the inequality γpr(Cn�C4) > n.)

4 Bounds on the Rainbow Domination Number

In Section 2, lower and upper bounds on the rainbow domination number with
respect to the domination number are presented. In Section 6, bounds on the rainbow
domination number involving several other established domination invariants are
given. This section is thus devoted to all other known types of bounds on the rainbow
domination numbers.

One of the fundamental problems in studying a domination-type invariant is to
find a general (sharp) upper bound for the invariant in terms of the order n of a graph;
more precisely, the desired bound is of the form c · n, where 0 < c ≤ 1. Classical
bounds of this type are γ (G) ≤ n/2 due to Ore [55], and γt (G) ≤ 2n/3 due to
Cockayne et al. [26], where G is a connected graph of order n ≥ 2, respectively,
n ≥ 3. Imposing additional conditions on the minimum degree δ(G), better upper
bounds are often obtained. For instance, McCuaig and Shepherd [53] proved that
γ (G) ≤ 2n/5 if G is a connected graph of order n ≥ 8 with δ(G) ≥ 2.

For the rainbow domination, the first result of this type is due to Wu and Rad [77],
and is dealing with the 2-rainbow domination number.
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Theorem 6 ([77]) For a connected graph G of order n ≥ 3,

γr2(G) ≤ 3

4
n.

Proof First note that it suffices to prove the inequality for trees. Indeed, if G is a
connected graph, and T is a spanning tree ofG, then, using Proposition 3, γr2(G) ≤
γr2(T ). The proof is by induction on the order n of a tree T . Base cases n ∈ {3, 4, 5}
can be easily checked. In addition, we check directly that the proof is correct for all
trees T with diam(T ) ≤ 3. If diam(T ) = 2, then T is a star K1,n−1, and γr2(T ) =
2 < 3n/4. If diam(T ) = 3, then T has a dominating set with two adjacent vertices,
hence γr2(T ) ≤ 4 ≤ 3n/4 (as we are assuming n ≥ 6).

Now, let diam(T ) ≥ 4. Let P be a longest path in T chosen in such a way that the
degree of a penultimate vertex v of P is maximized. Let u be the non-leaf neighbor
of v on T . We distinguish several cases.

Case 1. dT (v) > 2.
Let T ′ be obtained from T by deleting v and its leaf neighbors, and let
n′ = n(T ′). Since diam(T ) ≥ 4, we infer that n′ ≥ 3, hence by the
induction hypothesis, γr2(T

′) ≤ 3n′/4. Let f ′ be a γr2(T
′)-function. We

define a function f on V (T ) by letting f (x) = f ′(x) for x ∈ V (T ′),
f (v) = {1, 2}, and f (x) = ∅ for all leaf neighbors x of v. Clearly, f is a
2RDF of T , andw(f ) = w(f ′)+2 ≤ 3n′/4+2 ≤ 3(n−3)/4+2 < 3n/4.

Case 2. dT (v) = 2 = dT (u).
Let T ′ be obtained from T by deleting u, v and the leaf neighbor � of v.
If n′ = n(T ′) equals 2, then T is the path of order 5, and we are done
by the initial step (γr2(P5) = 3 < 3n/4). Hence, we may assume that
n′ ≥ 3, and by the induction hypothesis, γr2(T

′) ≤ 3n′/4. Let f ′ be a
γr2(T

′)-function. Let a function f on V (T ) be defined by f (x) = f ′(x)
for x ∈ V (T ′), f (v) = {1, 2}, and f (u) = f (�) = ∅. Again it is obvious
that f is a 2RDF of T , and by the same computation as in Case 1 we get
w(f ) < 3n/4.

Case 3. dT (v) = 2 and dT (u) > 2.
By the choice of P , every neighbor of u, which is not on P and is not
a support vertex, has degree 2. First, suppose that every neighbor of u
is either a leaf or a support vertex. In this case diam(T ) = 4, and T
is a spider. By Proposition 2, γr2(T ) < 3n/4 (the inequality is strict,
since T is not isomorphic to P4). Finally, suppose that u has a neighbor
t , which is not a support vertex nor a leaf. In this case, T − tu contains
two components T ′ and T ′′ such that T ′′ is a spider containing u. Now,
n(T ′) ≥ 3, hence by the induction hypothesis, γr2(T

′) ≤ 3n(T ′)/4. By
Proposition 2, we again infer γr2(T

′′) ≤ 3n(T ′′)/4. Therefore, γr2(T ) ≤
γr2(T

′)+ γr2(T
′′) ≤ 3n(T )/4.

� 
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For a small example, which shows the sharpness of the inequality γr2(G) ≤
3n(G)/4, we can again take P4. From the above proof it is clear that equality
γr2(T ) = 3n(T )/4 is possible only if in each inductive step, Case 3 is applied and
the component T ′′ is isomorphic to P4. This quickly yields the structure of the trees
T that achieve γr2(T ) = 3n(T )/4. Moreover, Wu and Rad in [77] characterized all
connected graphsG, which attain the equality in Theorem 6. Let H be the family of
graphs that can be obtained from an arbitrary connected graph H and n(H) copies
of P4 by identifying each vertex of H with a support vertex of its own copy of P4.

Theorem 7 ([77]) For a connected graph G of order n ≥ 3, the equality γr2(G) =
3
4n holds if and only if G is the corona C4 ◦K1 or G belongs to H .

Under the additional assumption for the minimum degree, δ(G) ≥ 2, Fujita and
Furuya [35] improved the bound of Theorem 6 as follows.

Theorem 8 ([35]) If G is a connected graph of order n and δ(G) ≥ 2,

γr2(G) ≤ 2

3
n,

and this bound is sharp.

The proof of Theorem 8 is too involved to be presented here. For the family of
graphs that attain the bound in the theorem, one can take the corona G ◦K2, where
G is an arbitrary graph of order n. Indeed, γr2(G◦K2) = 2n, while n(G◦K2) = 3n.

Bounds of similar flavor have also been obtained for the 3-rainbow domination
number. We start with a general bound for γr3 in connected graphs with no restriction
on the minimum degree. It was proved by Fujita, Furuya, and Magnant [38].

Theorem 9 ([38]) IfG is a connected graph of order n ≥ 4, different from P4, then

γr3(G) ≤ 8

9
n,

and this bound is sharp.

The bound in Theorem 9 is best possible in the strong sense, since the equality is
attained for graphs of every feasible order n. That is, for n = 9�, where � ≥ 1, we
define the graphs R� as follows. First, letQ be the graph obtained from the path P5
and the path P4, by adding an edge between a support vertex x of P5 and a support
vertex of P4. Note that x is the unique central vertex ofQ. Now, R� is obtained from
the path P� and � copies of the graph Q by identifying each vertex of the path with
the central vertex of its own copy ofQ.

Furuya, Koyanagi, and Yokota [41] provided the bound for γr3(G) when
δ(G)≥ 2.

Theorem 10 ([41]) If G is a connected graph of order n ≥ 8 and δ(G) ≥ 2, then

γr3(G) ≤ 5

6
n.
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The proof of Theorem 10 involves a large family of graphs G that satisfy the
equality γr3(G) = 5

6n, and are described as follows [41]. Let F be the graph 2K3+e,
obtained from two disjoint triangles by adding an edge. Denote by c(F ) one of the
central vertices of F , i.e., c(F ) is arbitrarily chosen among the two vertices with
degree 3 in F . Now, given a graph H construct a graph FH by taking n(H) copies
of F , and identifying each vertex of H with the vertex c(F ) of its own copy of
F . Let F = {FH |H is a tree}. A graph G is called 2-minimal if G is connected,
δ(G) ≥ 2, and for every e ∈ E(G), either G− e is disconnected or δ(G− e) = 1.
Furuya, Koyanagi, and Yokota [41] proved the following result.

Theorem 11 ([41]) Let G be a 2-minimal graph of order n. We have γr3(G) ≥ 5
6n

if and only if G ∈ {C3, C6, C7} ∪ F .

As proven in [41], every graph G in F satisfies γr3(G) = 5
6n. Note that every

connected graph G with δ(G) ≥ 2 contains a spanning subgraph H which is 2-
minimal. Therefore, by Theorem 11, we get γr3(G) ≤ γr3(H) ≤ 5

6n as soon as
n ≥ 8. This proves Theorem 10.

Next, we present some simple bounds on the rainbow domination numbers.
Sheikholeslami and Volkmann [65] provided an upper and a lower bound with
respect to the order and maximum degree of a graph.

Proposition 6 ([65]) If G is a graph of order n and maximum degree �, then
γrk(G) ≤ n−�+ k − 1 and this bound is sharp.

Proof Let v be a vertex of G with d(v) = �. Define a function f : V (G) → 2[k]
by letting f (v) = [k], f (x) = ∅ for all x ∈ N(v), and f (y) = {1} for every
y ∈ V (G) − N [x]. Clearly, f is a kRDF of G and w(f ) = n − � + k − 1. The
sharpness of the bound is ensured by any graph G with n > k and �(G) = n− 1.

� 
Proposition 7 ([65]) If G is a graph of order n and maximum degree �, then

γr2(G) ≥
⌈

2n
�+2

⌉
.

Complete bipartite graphs K2,s attain the bound in Proposition 7; indeed,
γr2(K2,s) = 2 = 2(s+2)

s+2 = 2n
�+2 , where n = s + 2 is the order of K2,s , and

� = s is the maximum degree of K2,s . Wu and Rad [77] gave an upper bound
for γr2 involving the diameter of a connected graph, which we slightly improve as
follows.

Proposition 8 If G is a connected graph of order n, then

γr2(G) ≤ n−
⌊

diam(G)

2

⌋

.

Proof Let d = diam(G), and let P be a path of length d in G. By Proposition 1(i),
there exists a 2RDF f of P with weight � d+2

2 �. Extend f from V (P ) to all vertices
of G, by letting f (v) = {1} if v /∈ V (P ). Clearly, f is a 2RDF of G with w(f ) =
n− (d + 1)+ � d+2

2 � = n− � d2 �. � 



426 B. Brešar

We end this section with a Nordhaus–Gaddum type result due to Wu and
Xing [79], which bounds the sum of the 2-rainbow domination numbers of a graph
G and its complement G.

Theorem 12 ([79]) If G is a graph with order n ≥ 3, then

5 ≤ γr2(G)+ γr2(G) ≤ n+ 2 ,

and the bounds are sharp.

5 Asymptotic Behavior

Fujita, Furuya, and Magnant further investigated the upper bounds on γrk(G) in
terms of the order [38]. First, they considered the function

t (k) = min{t | γrk(G) ≤ tn for a connected graph G of sufficiently large order n},

which is described in the table:

k 1 2 3 ≥ 4

t (k) 1/2 3/4 8/9 1

The first three entries in the table are the theorem of Ore [55], Theorem 6, and
Theorem 9, respectively. The last entry follows from γr4(Cn) = n for any n ≥ 4,
and by using also (3).

Since t (k) is fully described, another natural function was considered in [38]:

t ′(k, d) = min{t ′ | γrk(G) ≤ t ′n for any graph G of sufficiently large order n and δ(G) ≥ d}.

The status of t ′(1, d) is well understood, because it is about domination number
γ , which has been studied intensively; it is known that unless d = 6, we have
t ′(1, d) = d/(3d − 1). For k ≥ 2, results presented so far give t ′(2, 1) = 3/4,
t ′(2, 2) = 2/3, t ′(3, 1) = 8/9, t ′(3, 2) = 5/6, and t ′(4, 1) = t ′(4, 2) = 1. Fujita,
Furuya, and Magnant gave two general results about the behavior of t ′(k, d) [38].

Theorem 13 ([38]) Let k, d and n0 be positive integers such that d ≤ k− 4. There
exists a graph G of order n ≥ n0 satisfying δ(G) = d and γrk(G) = n.

Hence, t ′(d, k) = 1 if d ≤ k − 4. On the other hand, if d is sufficiently larger than
k − 4, then t ′(d, k) < 1 as shown in [38]. First, it was shown, by using (2) and
applying a well-known bound on the domination number by Caro and Roddity [17],
that for any graph G of order n and δ(G) ≥ d,
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γrk(G) ≤
(

1 − (d + k − 1)
( 1

d + k
) d+k
d+k−1

)

kn.

Furthermore, if d is an integer which is sufficiently large compared to k, then

(

1 − (d + k − 1)
( 1

d + k
) d+k
d+k−1

)

k < 1.

These two observations yield the following result.

Theorem 14 ([38]) Given a positive integer k there exists an integer d (sufficiently
large compared to k) and a number t ′ ∈ (0, 1) such that

γrk(G) ≤ t ′n

for every graph G of order n with δ(G) ≥ d.

A natural question appears: given a positive integer k, how large must an integer
d be so that for every graphG with δ(G) ≥ d and sufficiently large order n we have
γrk(G) ≤ t ′n, where t ′ < 1?

Fujita and Furuya gave a similar study of the asymptotic behavior of γrk(G)

in which graphs G with a given radius rad(G) are investigated [36]. Given
positive integers k, r, n, they define t∗(k, r; n) as the minimum value satisfying that
γrk(G) ≤ t∗(k, r; n) ·n for all connected graphG of order n and radius r; if no such
graph exists, then t∗(k, r; n) = ∞. For k ≥ 1 and r ≥ 1, let

t∗(k, r) = lim sup
n ,→∞

t∗(k, r; n).

The case r = 1 can be easily analyzed. Note that graphs with rad(G) = 1 have a
universal vertex, hence for n ≥ k, γrk(G) = k = (k/n)·n. This implies t∗(k, 1; n) ≤
k/n, which gives 0 ≤ t∗(k, 1) ≤ lim supn ,→∞ t∗(k, 1; n) ≤ lim supn ,→∞ k/n = 0.
Thus, t∗(k, 1) = 0.

It is clear that t∗(k, r) ≤ 1 holds for any r ≥ 1 and k ≥ 1. Moreover, it was
proved in [36] that

t∗(k, r) < 1 (10)

always holds. On the other hand, for r ≥ 2 and k ≥ 1 the following lower bound
was proved [36]:

t∗(k, r) ≥ k

k + 1
. (11)

The exact value is also known for t∗(k, 2); to give a flavor of this study we present
the proof of this value from [36].
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Theorem 15 ([36]) If k ≥ 2 is a integer and ε > 0 a real number, then there exists
an integer n0 such that γrk(G) < (

k
k+1 + ε)n for every connected graph G of order

n ≥ n0 and rad(G) = 2.

Proof Let n0 be an integer such that k < (k+1)ε
k
n0. Let G be a connected graph of

order n ≥ n0 with rad(G) = 2, and let x be a central vertex of G. Assume to the
contrary that γrk(G) ≥ ( kk+1 + ε)n.

Let Y = N(N(x)) − N [x] (that is, Y is the set of vertices at distance 2 from
x), X1 = N(x) ∩ N(Y ), and X2 = N(x) − X1. Let m1 = |X1|,m′1 = |X2|, and
m2 = |Y |. Let fi : V (G)→ 2[k], i ∈ [2], be defined as follows:

f1(u) =
⎧
⎨

⎩

[k] if u = x
∅ if u ∈ N(x).
1 otherwise.

and

f2(u) =
{ [k] if u ∈ {x} ∪X1

∅ otherwise.

It is clear that fi is a kRDF for both i. By definition of f1 we have

(
k

k + 1
+ ε)n ≤ γrk(G) ≤ w(f1) ≤ k +m2,

which gives

m2 ≥ ( k

k + 1
+ ε)n− k. (12)

By definition of f2 we have

(
k

k + 1
+ ε)n ≤ γrk(G) ≤ w(f2) ≤ k(1 +m1),

which gives

1 +m1 ≥ ( 1

k + 1
+ ε
k
)n. (13)

Since n = 1 +m1 +m′1 +m2, by inequalities (12) and (13) we get
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n−m′1 = 1 +m1 +m2 ≥ (1 + k + 1

k
ε)n− k.

This implies

k ≥ m′1 +
(k + 1)ε

k
n ≥ (k + 1)ε

k
n0 ,

a contradiction, by which the proof is complete. � 
Combining (11) with Theorem 15 we infer the following result.

Corollary 2 For an integer k ≥ 1, t∗(k, 2) = k
k+1 .

Another notion that falls under studies of asymptotic behavior of γrk was
presented by Chang, Wu, and Zhu [19] as an application of their algorithm for
computing γrk(T ) of an arbitrary tree T (the algorithm yields a γrk(T )-function;
see Section 7). They define the following natural function on the set of all graphs G
(we denote this function by mr, where index r refers to rainbow domination), and n
is the order of G:

mr(G) = min{k | γrk(G) = n}. (14)

Since γrk(G) = n for k ≥ n, the function mr is well-defined. Next, for any vertex x
of an arbitrary graph G and any non-empty set S ⊂ NG(x) let

d∗(x, S) = |S| + min{d(y) | y ∈ S}.

Let d∗(G) be the maximum of d∗(x, S), where x runs over all vertices of G and S
runs over all non-empty subsets of NG(x). The lower bound d∗(G) ≥ �(G) + 1
was proved to hold in any non-trivial graph G [19]. In addition, in any graph G,
d∗(G) can be determined in linear time; see [19].

In trees, the function mr can be squeezed between two values as follows.

Theorem 16 ([19]) For any tree T , d∗(T ) ≤ mr(T ) ≤ d∗(T )+ 1.

The exact value ofmr(T ), where T is a tree, can be obtained by first determining
γrk(T ) for k = d∗(T ), using the algorithm from [19]. If the value is n, thenmr(T ) =
d∗(T ), otherwisemr(T ) = d∗(T )+1. Since the algorithms to determine d∗(T ) and
γrk(T ) are linear, so is determining mr(T ) in trees.

6 Relations to Other Domination Invariants

A large majority of known results that relate rainbow domination with other
domination concepts involve the 2-rainbow domination number and some other
domination invariant(s) in which number 2 is an inherent part of the definition.
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In the seminal paper by Brešar, Henning, and Rall [13], a new graph invariant,
γw2, which can be viewed as the monochromatic version of γr2, was introduced. It
appeared naturally in designing the algorithm to find an optimal 2RDF of a tree.
(Unfortunately, the same invariant was introduced later by two different groups
using two additional names, which is presented at the end of this section.) We give
the definition of its generalized version, γwk , where k is an arbitrary positive integer.

Let G be a graph and let f : V (G)→ [k]. If for each vertex v ∈ V (G) such that
f (v) = 0 we have f (N(v)) ≥ k, then f is a weak k-dominating function of G. The
weight of a function f is defined as f (V (G)) = ∑

v∈V (G) f (v), and the minimum
weight of a weak k-dominating function of G is the weak k-domination number of
G, denoted by γwk(G). (Note that in [13] the invariant was considered for k = 2 and
was called the weak {2}-domination number.)

The following chain of inequalities follows from definitions of the involved
invariants, and holds for any positive integer k and any graph G:

γ (G) ≤ γwk(G) ≤ γrk(G) ≤ kγ (G) .

Almost all other known bounds involving γrk are for k = 2, that is, they are about
the 2-rainbow domination number.

Chellali, Haynes, and Hedetniemi conjectured [20] that in any graph G with
no isolated vertices, γt (G) ≤ γr2(G), and Furuya provided a proof of this
conjecture [40]. Shao et al. [63] presented a structural characterization of the trees T
in which γt (T ) = γr2(T ) by using 10 different operations for enlarging such trees.
The inequality γr2(G) ≤ 2γt (G), which holds for any graph G with no isolated
vertices is a direct consequence of the bounds γr2(G) ≤ 2γ (G) and γ (G) ≤ γt (G).

Much attention was given to relationships between 2-rainbow domination and
Roman domination. The latter is one of the most studied domination concepts;
see [27, 70] for seminal papers on Roman domination. Given a graph G a function
f : V → {0, 1, 2} such that for all v ∈ V (G), f (v) = 0 implies that there
exists w ∈ N(v) with f (w) = 2 is called a Roman dominating function of G. The
Roman domination number of G, denoted by γ R(G), equals the minimum weight
f (V (G)) =∑

v∈V (G) f (v) over all Roman dominating functions f of G. It is easy
to see that γr2(G) ≤ γ R(G) for any graph G, cf. [79]. Indeed, if f is a Roman
dominating function of a graph G with the minimum weight, then letting

g(u) =
⎧
⎨

⎩

∅ if f (u) = 0
{1} if f (u) = 1.
{1, 2} if f (u) = 2.

makes g : V (G) → 2{1,2} a 2RDF with weight f (V (G)). Thus, γr2(G) ≤
f (V (G)) = γ R(G). It was shown independently by Fujita and Furuya [35] and
by Chellali and Rad [22] that γR(G) ≤ 3

2γr2(G) for any graphG. In addition, it was
shown in [22] that the bound can be improved in forests T to read γR(T ) ≤ 4

3γr2(T ),
and it is sharp, since γR(kP5) = 4k and γr2(kP5) = 3k.
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Another six invariants that were compared to the 2-rainbow domination number
in Bonomo et al. [11] can be intuitively described in the following table, which
divides their defining properties into two criteria:

f : V (G)→ {0, 1, 2} f : V (G)→ {0, 1}
Outer Weak 2-domination (γw2) 2-domination (γ2)

Closed {2}-domination (γ{2}) Double domination (γ×2)

Open Total {2}-domination (γt{2}) Total double domination (γt×2)

The first criterion is the range of the corresponding function f , which can be either
{0, 1, 2} or just {0, 1}. The second criterion distinguishes three possibilities with
respect to which vertices need to be dominated and what kind of neighborhoods
(closed or open) are considered for vertices to which a positive weight is assigned.
There are three possibilities: (1) only vertices with zero weight need to be dominated
(“outer domination”), (2) all vertices need to be dominated and vertices with
positive weight dominate their closed neighborhoods (“closed domination”), and
(3) all vertices need to be dominated and only open neighborhoods are dominated
by vertices with positive weight (“open domination”) [11]. Definitions of the six
invariants are summarized in Table 1.
In each of the definitions, a function f that assigns weights to vertices of a graph
G is involved. Its weight is f (V (G)) = ∑

v∈V (G) f (v), and the invariant ζ(G) is
defined as the minimum weight of a function that enjoys the particular condition
for any ζ ∈ {γ w2, γ {2}, γ t{2}, γ2, γ ×2, γ t×2}. The concepts 2-domination, {2}-
domination, and double domination are well known and were considered in a
number of publications.

Table 2 summarizes the (lower and upper) bounds of 2-rainbow domination
number in terms of nine other domination invariants—beside the six invariants from
Table 1, there is also domination number, total domination number, and Roman
domination number. Note that total domination number, total {2}-domination
number, and double domination number are well-defined in graphs with no isolated
vertices, while total double domination number is well-defined in graphs with
minimum degree at least 2. Other invariants are well-defined in all graphs.

Table 1 Summary of definitions of studied invariants.

Name Notion Function Condition

Weak 2-domination γw2 f : V → {0, 1, 2} f (N(v)) ≥ 2 if f (v) = 0

{2}-domination γ {2} f : V → {0, 1, 2} f (N [v]) ≥ 2 ∀v
Total {2}-domination γt{2} f : V → {0, 1, 2} f (N(v)) ≥ 2 ∀v
2-domination γ2 f : V → {0, 1} f (N(v)) ≥ 2 if f (v) = 0

Double domination γ×2 f : V → {0, 1} f (N [v]) ≥ 2 ∀v
Total double domination γt×2 f : V → {0, 1} f (N(v)) ≥ 2 ∀v



432 B. Brešar

Theorem 17 The lower and upper bounds for γr2(G) in terms of nine other
invariants presented in Table 2 are correct and sharp; they hold for an arbitrary
graph G that is well-defined for the invariant involved in a particular inequality.

Some of the bounds in Theorem 17 have already been presented in this chapter. In
particular, L1 and U1 were presented in Theorem 1, and we mentioned above that L2
was proven by Furuya [40], while U2 and L3 are trivial. The bound U4 concerning
Roman domination was first observed in [79], while L4 was shown in [22, 35]. All
other bounds, namely U3, L5, L6, and U5-U9 were proven by Bonomo et al. [11]. In
addition, it was proven in [11] that there does not exist a non-zero function f such
that ζ(G) ≤ f (γr2(G)) would hold for all graphs G, where ζ ∈ {γ2, γ ×2, γ t×2}
(these results are presented as entries L7, L8, and L9 in Table 2).

To see that there is no non-zero function f such that ζ(G) ≤ f (γr2(G)) for any
ζ ∈ {γ2, γ ×2, γ t×2}, consider the following example. Let On, n ≥ 3, be the graph
obtained from the multigraphK(n)2 , which has two vertices that are connected with n
parallel edges, by subdividing each edge exactly twice (see Figure 3 with O4 as the
first graph from the left). Note that γr2(On) = 4, while γ2(On) = n+1, γ×2(On) =
n+ 3, and γt×2(On) = 2n+ 2.

The sharpness of the bounds in Theorem 17 can be verified with the following
examples (see also [11]). The bound L1 is attained by graphs kC4, where k ≥ 1,
which can also be used for the bounds L2, L3, and L4. Indeed, γ (kC4) = γt (kC4) =
γw2(kC4) = γr2(kC4) = 2k, while γ R(kC4) = 3k. In addition, Theorem 2
characterizes all connected graphs G attaining γr2(G) = γ (G). The bound U1 is
attained by graphs kK2 for any integer k ≥ 1, which can be also used as examples
attaining the bound U4, i.e., γ (kK2) = k, and γr2(kK2) = γ R(kK2) = 2k.
Moreover, γ t{2}(kK2) = 4k, hence kK2 can serve to prove the sharpness of the
bound L6. For the bound U2, let H be the tree on 6 vertices, where each of the
two non-leaves is adjacent to two leaves; note that γr2(kH) = 4k = 2γt (kH) (in
Figure 3 graph H is the second graph from the left). The bounds U3, U5, U6, U7,
U8, and U9 are attained by graphs K∗∗

n , defined as follows. For n ≥ 2, the graph
K∗∗
n is obtained from the complete graph of order n by gluing two new triangles

along each edge; that is, for each pair x, y of vertices in the complete graph Kn
two vertices are added, each of which is adjacent only to x and y. (The third graph
from the left in Figure 3 is K∗∗

3 .) Note that γr2(K
∗∗
n ) = 2n − 2, while ζ(K∗∗

n ) = n

Table 2 Sharp lower and upper bounds on γr2(G) with respect to 9 other domination invariants.
For an invariant ζ ∈ {γ2, γ×2, γ t×2} there is no function f such that ζ(G) ≤ f (γr2(G))would hold
for all graphs G. The entry with an asterisk, γr2(G) ≥ (γ {2}(G) + 1

)
/2, holds only in graphs G

with at least one edge.

1 2 3 4 5 6 7 8 9

L γr2 ≥ and
γr2 ≤

γ γt γw2
2
3γR

(
γ {2} + 1

)
/2∗ γt{2}/2 0γ2 0γ×2 0γt×2

U γr2 ≥ and
γr2 ≤

2γt 2γw2 − 2 γR 2γ {2} − 2 2γt{2} − 2 2γ2 − 2 2γ×2 − 2 2γt×2 − 2
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Fig. 3 Graphs O4, H , K∗∗
3 , and D3

4 .

for any invariant ζ ∈ {γw2, γ {2}, γ t{2}, γ2, γ ×2, γ t×2}, as soon as n ≥ 3. Finally,
to demonstrate the sharpness of the bound L5, which holds only for graphs with at
least one edge, we use the family Dn4 , which are the graphs obtained from n copies
of C4 by identifying n vertices, one of each copy of C4, to a single vertex; see
Figure 3 again, where the graph on the right is D3

4. One can prove that for n ≥ 3,
γr2(D

n
4 ) = n+ 1 and γ {2}(Dn4 ) = 2n+ 1.

Next, we present a couple of bounds that involve the 2-rainbow domination
number of a graph G, the order, and an additional invariant of G.

Theorem 18 ([79]) IfG is a connected graph of order n ≥ 3, then γr2(G)+ γ (G)
2 ≤

n with equality if and only if G is the corona C4 ◦K1 or G belongs to H .

Recall that the family H was defined in Section 4, and compare the above result
with Theorem 7.

Fujita and Furuya [35] studied the interplay between 2-rainbow domination and
Roman domination. They proved the following inequality, which was reproved by
Alvarado, Dantas, and Rautenbach [2] who also provided a characterization of the
extremal graphs.

Theorem 19 ([2, 35]) If G is a connected graph of order n ≥ 3, then γr2(G) +
γ R(G) ≤ 3

2n with equality if and only if G is the corona C4 ◦ K1 or G belongs to
H .

It was conjectured in [35] that the bound in Theorem 19 can be improved to 4
3n(G)

if a graph G has minimum degree at least 2 and G is not C5. Alvarado, Dantas, and
Rautenbach [2] proved this conjecture.

Theorem 20 ([2]) If G is a connected graph of order n ≥ 3, δ(G) ≥ 2 and G is
distinct from C5, then γr2(G)+ γR(G) ≤ 4

3n and this bound is sharp.

The sharpness of the bound in the above theorem is demonstrated by the graphs
G ◦K2, where G is an arbitrary connected graph.

For an integer k, 0 ≤ k ≤ γr2(G)/2, some kind of characterization of graphs G
with γ R(G) − γr2(G) = k was proven in [35]. On the other hand, it was shown
in [3] that given a connected K4-free graph G and a positive integer k, it is NP-
hard to decide whether γR(G) − γr2(G) = k. Alvarado et al. [3] provided also the
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following characterization of the graphs in which the equality of both invariants is
hereditary.

Theorem 21 ([3]) A graph G satisfies γr2(H) = γR(H) for every induced
subgraph of G if and only if G is {P5, C5, C4}-free.

The graphsG in which γR(H) = 3
2γr2(H) for every induced subgraphH ofGwere

also investigated in [3].
Chellali, Haynes, and Hedetniemi [20] considered relations between the 2-

rainbow domination number and two other invariants—the weak Roman domination
number and the secure domination number. We refer to [20] for definitions and
results.

In a similar way as 2-rainbow domination can be viewed as the rainbow version
of weak 2-domination, several other domination versions of known domination
invariants were introduced in [11]. Let us present the idea of rainbow versions
of domination invariants using the well-known example of 2-domination, which
was introduced by Fink and Jacobson in the 1980s [34]. Given a graph G, a set
D ⊆ V (G) is a 2-dominating set of G if every v ∈ V (G) − D has at least
two neighbors in D. The 2-domination number, γ2(G), of G is the minimum
cardinality of a 2-dominating set of G. Now, a rainbow 2-dominating function
of G is a function f : V (G) → {∅, {1}, {2}} such that every v ∈ V (G) with
f (v) = ∅ has in its neighborhood vertices u1 and u2 such that f (ui) = {i} for
i ∈ {1, 2}. The rainbow 2-domination number of G, γ̃2(G), is the minimum weight
w(f ) = |{v ∈ V (G) | f (v) �= ∅}| over all rainbow 2-dominating functions f
of G. Bonomo et al. [11] introduced five rainbow invariants, three of which give
new, interesting concepts. (Two of the rainbow invariants can be expressed through
known invariants; notably, the rainbow version of the {2}-domination number equals
2γ (G), and the rainbow version of the total {2}-domination number equals 2γt (G).)
These are the rainbow versions of 2-domination, double domination, and total
double domination. A comprehensive study of these invariants, which produced
sharp lower and upper bounds comparing 13 domination invariants to each other,
was given in [11].

As mentioned in the beginning of this section, weak 2-domination was studied
independently under two additional names. First, Chellali et al. [21] introduced and
studied a graph invariant, which they called Roman {2}-domination number, and
denoted it by γR2. The invariant coincides with the weak 2-domination number.
In particular, in any graph G, γw2(G) = γR2(G). Second, the same invariant was
studied in [47] under the name Italian domination number, and was denoted by γI .
The main focus of investigation in [47] was on γI (T )(=γw2(T )), where T is a tree.

7 Computational Aspects

The decision version of the k-rainbow domination number can be stated as the
following problem:
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k-RAINBOW DOMINATION PROBLEM

Instance: A connected graph G and positive integers k and t .
Question: Does G have a k-rainbow dominating function of weight at most
t?

The first result on this topic was given by Brešar and Kraner Šumenjak in [14],
proving the NP-completeness of the 2-RAINBOW DOMINATION PROBLEM even
when G is a bipartite or a chordal graph. An extension of this result to an arbitrary
positive integer k was given by Chang, Wu, and Zhu [19]. The reduction of the
problem is fairly simple and involves the DOMINATING SET PROBLEM. Let k
be fixed. Given a graph G of order n, the graph G′ is obtained from G by
attaching to each vertex of G a set of k − 1 leaves. Formally, V (G′) = V (G) ∪
{v2, v3, . . . , vk | v ∈ V (G)}, and E(G′) = E(G) ∪ {vvi | v ∈ V (G), 2 ≤ i ≤ k}.
One can prove that G has a dominating set of size at most s if and only if G′ has
a kRDF of weight at most s + n(k − 1). Later, Hon et al. [48] followed with NP-
completeness of the k-RAINBOW DOMINATION PROBLEM in split graphs, which
improves the same assertion about chordal graphs. We summarize these results in
the next theorem.

Theorem 22 ([19, 48]) For a graph G and a positive integer k, the k-RAINBOW

DOMINATION PROBLEM is NP-complete even when G is restricted to bipartite
graphs or split graphs.

A linear-time algorithm that gives a γr2(T )-function of an arbitrary tree T was
presented in the seminal paper [13]. In fact, the authors proved that γr2(T ) =
γw2(T ) for any tree T , and a linear-time algorithm to find a weak 2-dominating
function of T of minimum weight was given. Chang, Wu, and Zhu [19] extended
this result by presenting a linear-time algorithm that computes a γrk(T )-function
of an arbitrary tree T . A generalization of the rainbow dominating function was
invented for this purpose in [19], and its monochromatic version was later used
in [18] to establish γrk(G) in an arbitrary block graph G. The latter function is
defined as follows.

Let G be a graph together with a k-assignment, which is a mapping L that
assigns to each vertex v ∈ V (G) a label L(v) = (av, bv), where av, bv ∈ [k]0.
A function g : V (G) → [k]0 is a weak {k}-L-dominating function of G if for
every v ∈ V (G), g(v) ≥ av , and g(N(v)) ≥ bv whenever g(v) = 0. The weak
{k}-L-domination number of G, which is denoted by γwkL(G), is the minimum
weight of a weak {k}-L-dominating function of G (where the weight of g is the
sum of g(v) over all vertices v of G). Clearly, when L(v) = (0, k) for every
vertex v ∈ V (G), the weak k-domination and weak {k}-L-domination coincide
and we have γwkL(G) = γwk(G). Chang, Li, and Wu [18] found a linear-time
algorithm for determining a weak {k}-L-dominating function of weight γwkL(G)

for an arbitrary block graph, thus solving the problem of a weak k-domination
number in block graphs. Furthermore, they proved that in any strongly chordal graph
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γwk(G) = γrk(G). Since the class of strongly chordal graphs contains the class of
block graphs, the algorithm works also for establishing the k-rainbow domination
number in block graphs; see [18] for more details.

Hon, Kloks, Liu, and Wang investigated algorithmic issues of the rainbow
domination in several classes of perfect graphs [48]. Firstly, they observed that
for a fixed k, the k-rainbow domination problem can be formulated in monadic
second-order logic. By Courcelle’s theorem this implies an existence of a linear-
time algorithm for computing the invariant in graphs of bounded rankwidth (which
includes the graphs with bounded treewidth). Secondly, they followed with some
specific algorithms for determining γrk(G), and γwkL(G), in classes of cographs
and trivially perfect graphs, respectively. In addition, they presented a polynomial-
time algorithm to determine γr2(G) in interval graphsG, which resolves the problem
posed in [14].

We conclude this section with approximability issues concerning 2-rainbow
domination numbers. The invariants γr2 and γw2 were studied along with a number
of other domination parameters in [11]. In particular, the (in)approximability results
for the domination number were applied to obtain the following results for the
invariants of our interest.

Theorem 23 ([11]) There is a 2(ln(�(G) + 2) + 1)-approximation algorithm for
γr2 and there is an (ln(�(G)+ 2)+ 1)-approximation algorithm for γw2.

Theorem 24 ([11]) For every ε > 0, there is no polynomial-time algorithm
approximating γr2, resp. γw2, for n-vertex split graphs without isolated vertices
within a factor of (1/2 − ε) ln n, unless P = NP.

The question remains whether one can fill the gap between the bounds in
Theorems 23 and 24. More precisely, the following questions were posed in [11]:

1. Can the approximation ratios given by Theorem 23 be further improved (that is,
by a constant factor)?

2. Can the factors 1/2 − ε in the inapproximability bounds from Theorem 24 be
improved to 1 − ε?

8 Additional Related Topics

This section gives a very brief presentation of additional topics that were studied
in relation with rainbow domination. The main purpose is to give an idea in
which directions the studies have been pursued. We first list some references that
investigate rainbow domination in some specific classes of graphs, and then follow
by a short presentation of some of the new invariants that arose from rainbow
domination.

The class of generalized Petersen graphs has drawn a considerable attention
when studying rainbow domination. Quite a few papers investigated the 2-rainbow
domination number in this class of graphs [24, 61, 72, 75, 78, 80], while the 3-
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rainbow domination number of generalized Petersen graphs was studied in [62].
The 2-rainbow domination number was considered also in Cartesian products of two
cycles [67–69]. In particular, it was proved that γr2(Cn�C5) = γw2(Cn�C5) =
2n [67]. An almost complete description of γr2(G ◦ H), where G ◦ H is the
lexicographic product of graphs G and H was given in [49]. The 2-rainbow
domination number of Sierpiński graphs and some of its variations was established
in [52]. Recently, rainbow domination was studied in regular graphs [51]. In
particular, exact values of k-rainbow domination numbers were established for all
cubic Cayley graphs over abelian groups [51].

Several concepts that arise from k-rainbow dominating functions and the k-
rainbow domination number of a graph have been introduced in the last decade.
Most of them are generalizations of concepts that were studied with respect to
dominating sets and the domination number of a graph. Generalizing the concept
of domatic number as introduced in [28], Sheikholeslami and Volkmann introduced
the k-rainbow domatic number of a graph [65]. For a given positive integer k, it
is defined as the maximum number of k-rainbow dominating functions f1, . . . , fd
such that

∑d
i=1 |fi(v)| ≤ k for each v ∈ V (G). The k-rainbow domatic number was

studied further in [37, 54].
The k-rainbow bondage number of a graph G with �(G) ≥ 2 was introduced

in [29] as the minimum cardinality of a set F ⊆ E(G) such that γrk(G − F) =
γrk(G) + 1; see also [10, 58] for some further studies. In a sense dual to this
concept is the following invariant introduced by Amjadi et al. [4]. The k-rainbow
reinforcement number of a graph G is the minimum number of edges that must be
added to G in order to decrease the k-rainbow domination number [4], see [57] for
the complexity issues on reinforcement. Another related concept was introduced
in [30] (see also [31, 33]), and is concerned with the minimum number of edges that
must be subdivided (where each edge may be subdivided at most once) in order to
increase the (2-)rainbow domination number of a graph.

Rainbow domination can also be defined in a natural way in digraphs, where
the condition (1) from the definition of a kRDF is changed in such a way that
the neighborhood N(v) of a vertex v is replaced by the in-neighborhood N−(v).
The rainbow domination of a digraph was introduced by Amjadi et al. [5], and was
studied also in [43, 44]. For additional concepts related to rainbow domination in
digraphs cf. [9, 66].

Finally, we present a couple of variations of the rainbow domination number that
restrict a kRDF in two different ways, in one case generalizing the total domination
and in the other the independent domination, both to the context of rainbow
domination. As we will see, the different authors generalized these invariants in
(two) different ways.

Independent rainbow domination of graphs was first introduced by Chellali and
Rad [23] (and then generalized by Shao et al. [64] from independent 2-rainbow
domination to independent k-rainbow domination for arbitrary k) as follows. A
kRDF f is an independent k-rainbow dominating function if any two vertices in
G with non-empty value of f are non-adjacent. The minimum weight of such a
function is the independent k-rainbow domination number irk(G) of G. Several
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papers considered the independent 2-rainbow domination [6–8, 23, 59], while
bounds for the independent k-rainbow domination in bipartite and in general graphs
were studied in [39]. A different variation of rainbow independent domination was
introduced and studied by Kraner Šumenjak, Rall, and Tepeh [50]; see also [16]
(note that the names of the invariants are also different with two words swapped).
A kRDF function f on a graph G is a k-rainbow independent dominating function
of G if |f (v)| ≤ 1 for every v ∈ V (G) and from f (u) = f (v), it follows that
uv /∈ E(G). The minimum weight of such a function is the k-rainbow independent
domination number γrik(G) of G. In other words, rainbow independent domination
in a graph G coincides with independent domination in the Cartesian product of
G with Kk . In particular, γrik(G) = i(G�Kk) for any graph G, which makes this
invariant close to the original idea of rainbow domination (compare also with (2)).

Similarly, two different variations of rainbow domination, which generalize total
domination, have been introduced. A total k-rainbow dominating function f was
introduced in [1] as a kRDF for which the subgraph of a graph G induced by the
set {v ∈ V (G) | f (v) �= ∅} has no isolated vertices. The corresponding invariant
is called the total k-rainbow domination number of G. Alternatively, as introduced
in [71], the k-rainbow total domination number γkrt(G) of a graph G is defined as
the minimum weight of a kRDF f with the property that f (v) = {i} for v ∈ V (G)
implies that there exists u ∈ NG(v) such that i ∈ f (u). In other words, k-rainbow
total domination of G coincides with total domination of the Cartesian product of
G with Kk , and γkrt(G) = γt (G�Kk).

9 Concluding Remarks

A number of problems and directions for future research have been proposed in
many papers concerning rainbow domination. Since the study of these concepts
is still very vivid, one can expect some solutions and probably new questions in
the following years. In this section, we restrict to a short list of ideas that deserve
additional attention (the list is not exhaustive).

One the main motivations for introducing rainbow domination was to establish
some new insights on domination number in Cartesian products of graphs, and,
possibly, to approach Vizing’s conjecture. Several results of this type were presented
in Section 3. It would be very interesting to find new such connections. In particular,
we repeat the following question: Is it true that for all graphs G and H ,

γrk(G�H) ≥ γ (G) γ (H) ? (15)

for an arbitrary fixed k. The case k = 1 is Vizing’s conjecture, but also resolving
the case k = 2 would be important, since it strengthens Theorem 3 due to Clark
and Suen. We mention that a similar type of inequality was proved by Wu for the
Roman domination number [76]. He proved that γ R(G�H) ≥ γ (G)γ (H) holds
for all graphsG andH . This is weaker than the inequality in Vizing’s conjecture, yet
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it improves Theorem 3, since γ (G�H) ≤ γ R(G�H) ≤ 2γ (G�H). A number of
other domination invariants could be investigated in this context, where one should
determine whether the inequality (15) holds if γrk on the left side of the inequality is
replaced by a particular invariant. For instance, proving γ{2}(G�H) ≥ γ (G) γ (H)
would present an improvement of Theorem 3.

An interesting area of research is related to asymptotic behavior of γrk in relation
with various other graph parameters as presented in Section 5. We proposed a natural
problem in Section 5 concerning the function t ′(k, d) defined in [38]. Let us rephrase
this problem. Define the function md on the set of all positive integers k as follows:

md(k) = min{d | t ′(k, d) < 1}.

By Theorem 14, the functionmd is well-defined. In addition, by the results presented
in Sections 4 and 5, it is known that md(1) = md(2) = md(3) = 1 and md(4) > 2.
By Theorem 13 we also have md(k) > k − 4 for any k ≥ 5. It would be interesting
to better understand the function md and thus the behavior of the function t ′(k, d).

The functionmr, defined in (14), has a similar flavor asmd , since it also considers
some type of asymptotic behavior of γrk . In Section 5 we noted that mr can be
computed in linear time for trees, hence it is natural to ask what is the computational
complexity for determining mr(G) in other important classes of graphs G.

Concerning the function t∗(k, r), its values for r ∈ {1, 2} were established and
it was proven that k

k+1 ≤ t∗(k, r) < 1 for r ≥ 3 and k ≥ 1, cf. [36]. It would be
interesting to establish exact values of t∗(k, r) for more instances of k and r . Other
functions of similar flavor (involving other convenient parameters) might also be
interesting.

The following relation between weak k-domination number and k-rainbow
domination number is trivial: γrk(G) ≥ γwk(G). The question to determine known
classes of graphs G for which γrk(G) = γwk(G) was initiated in [14]. A simple
example where γr2(G) > γw2(G) are cycles C4k+2. Also, it is known that in dually
chordal graphs [14] and cographs [48], γrk(G) can be strictly larger than γwk(G). An
affirmative answer was presented in [18], where the equality was shown for strongly
chordal graphsG. The equality may have positive consequences for finding efficient
algorithms for establishing γrk(G) in such classes of graphs G, as demonstrated
in [14, 18, 48], but it is also of independent interest. In particular, it would be
interesting to better understand the graphs in which γr2(G) = γw2(G).

In [11], a dozen domination invariants in which number 2 is inherently involved
in their definition was systematically considered, giving sharp lower and upper
bounds between each pair of the invariants. In particular, 2-rainbow domination
number was included, and also several other rainbow versions of known domination
invariants were introduced. The definitions of the invariants involving number 2 can
be extended in a natural way to the invariants involving an arbitrary positive integer
k (for instance, the rainbow 2-domination number of a graph G, as presented in
Section 6, can be extended in a natural way to the rainbow k-domination number
of G). A natural problem is to establish sharp bounds between γrk(G) and other
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domination invariants in which a positive integer k (k ≥ 2) inherently appears, and,
moreover, to generalize the results from [11].

We conclude the chapter with the problem of determining the 2-rainbow
domination numbers of grid graphs, Pm�Pn, where m and n are positive integers.
In addition, the problem about the values in grid graphs is open for several other
domination invariants mentioned in the previous paragraph and studied in [11].
The domination numbers, γ (Pn�Pn), of grid graphs were completely determined
in [42]. Recently, the 2-domination numbers, γ2(Pm�Pn), of grid graphs were also
established [60], which could be useful for determining the 2-rainbow domination
numbers of grid graphs. Since γr2(Pm�Pn) = γ (Pm�Pn�P2), a solution to this
problem would be the first step in the investigation of domination in 3-dimensional
grid graphs.

Acknowledgments The author was in part supported by the Slovenian Research Agency (ARRS)
under the grants P1-0297 and J1-9109.
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Eternal and Secure Domination in
Graphs

William F. Klostermeyer and C. M. Mynhardt

1 Introduction

Dominating sets in graphs have long had a connection to facility-location problems
in which a limited number of resources need to be placed on some of the vertices of
a graph so as to be close to all other vertices of the graph, see, for example, [42, 43].
Viewing these limited resources as guards, we may think of a dominating set as
being able to “protect” a graph against a single attack, such as a robbery, at any
vertex, since each vertex either contains a guard or has a guard on a neighboring
vertex. We may then define the more general problem of graph protection as the
placement of mobile guards on the vertices of a graph to protect its vertices and
edges against either single or long sequences of attacks. The modern study of models
of graph protection was initiated in the late twentieth century by the appearance of
four publications in quick succession that referred to the military strategy of Roman
Emperor Constantine (Constantine The Great, 274–337 AD).

The seminal paper on the subject is Ian Stewart’s “Defend the Roman Empire!” in
Scientific American, December 1999 [82], which contains a reply to C. S. ReVelle’s
article “Can you protect the Roman Empire?”, Johns Hopkins Magazine, April 1997
[79], and which is based on ReVelle and K. E. Rosing’s “Defendens Imperium
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Romanum: A Classical Problem in Military Strategy” in American Mathematical
Monthly, August – September 2000 [80]. ReVelle’s work [79] in turn is a response to
the paper “‘Graphing’ an Optimal Grand Strategy” by J. Arquilla and H. Fredricksen
[5], which appeared in Military Operations Research in 1995 and which is the
oldest reference we could find that places the strategy of Emperor Constantine in
a mathematical setting.

According to Roman mythology, Rome was founded by Romulus and Remus
in 760 – 750 BC on the banks of the Tiber in central Italy. It started as a country
town whose power gradually grew until it was the center of a large empire. In the
third century AD Rome dominated not only Europe, but also North Africa and
the Near East. The Roman army at that time was strong enough to use a forward
defense strategy, deploying an adequate number of legions to secure on-site every
region throughout the empire. However, the Roman Empire’s power was greatly
reduced over the following hundred years. By the fourth century AD, only twenty-
five legions of the Roman army were available, which made a forward defense
strategy no longer feasible.

According to E. N. Luttwak, The Grand Strategy of the Roman Empire, as cited
in [80], to cope with the reducing power of the Empire, Constantine devised a
new strategy called a defense in depth strategy, which used local troops to disrupt
invasions. He deployed mobile Field Armies (FAs), units of forces consisting of
roughly six legions powerful enough to secure any one of the regions of the
Roman Empire, to stop the intruding enemy, or to suppress insurrection. By the
fourth century AD there were only four FAs available for deployment, whereas
there were eight regions to be defended (Britain, Gaul, Iberia, Rome, North
Africa, Constantinople, Egypt, and Asia Minor) in the empire. See Figure 1 for
an illustration showing this region as a graph.

An FA was considered capable of deploying to protect an adjacent region only if
it moved from a region where there was at least one other FA to help launch it. The
challenge that Constantine faced was to position four FAs in the eight regions of
the empire. Consider a region to be secured if it has one or more FAs stationed in it
already, and securable if an FA can reach it in one step. Constantine decided to place
two FAs in Rome and another two FAs in Constantinople, making all regions either
secured or securable – with the exception of Britain, which could only be secured
after at least four movements of FAs.

It is mentioned in [5, 80, 82] that Constantine’s “defense in depth” strategy was
adopted during World War II by General Douglas MacArthur. When conducting
military operations in the Pacific theater, he pursued a strategy of “island-hopping”
– moving troops from one island to a nearby one, but only when he could leave
behind a large enough garrison to keep the first island secure. The efficiency
of Constantine’s strategy under different criteria, and ways in which it can be
improved, were also discussed in these three articles.

Constantine’s strategy is now known in domination theory as Roman domina-
tion, a term that was coined by Cockayne, Dreyer, Hedetniemi and Hedetniemi
[28]. Formally, a Roman dominating function on a graph G = (V ,E) is a function
f : V → {0, 1, 2} satisfying the condition that every vertex u with f (u) = 0
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Fig. 1 Map of the Roman Empire, fourth century AD

is adjacent to at least one vertex v with f (v) = 2. Weak Roman domination,
an alternative defense strategy that can be used if defense units can move without
another unit being present, was introduced by Henning and Hedetniemi in [40].
A function f : V → {0, 1, 2} is a weak Roman dominating function of G if each
vertex uwith f (u) = 0 is adjacent to a vertex v with f (v) > 0 such that the function
f ′ = (f − {(v, f (v)), (u, 0)}) ∪ {(v, f (v) − 1), (u, 1)} also has the property that
each vertex labeled 0 is adjacent to a vertex with positive label. Secure domination,
introduced by Cockayne, Grobler, Gründlingh, Munganga and Van Vuuren in [30],
is a defense strategy that can be used when it is not possible or desirable to station
two defense units at the same location. A secure dominating function is a weak
Roman dominating function f such that {v ∈ V : f (v) = 2} = ∅. In this case
the set {v ∈ V : f (v) = 1} is a secure dominating set of G. Secure domination is
discussed in the second part of this chapter.

In the first part of the chapter, we focus on defending the vertices of graphs
against sequences of attacks, executed one at a time, by stationing guards at the
vertices of the graph. At most one guard is stationed at each vertex, and guards
that move in response to an attack do not return to their original positions before
facing another attack. We refer to such models as eternal if the sequence of attacks
is infinitely long, as they can be thought of as protecting a graph for eternity,
and as secure in the case of single attacks (and the configuration of guards is a
dominating set both before and after this single attack). These “dynamic” models
of domination were first defined and studied by Burger, Cockayne, Gründlingh,
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Mynhardt, Van Vuuren and Winterbach in an influential pair of papers from 2004
that defined the concept of eternal domination, then called infinite order domination,
see [14, 15].

We begin by giving some definitions in the next section. Section 3 introduces
the two main models of eternal domination. Results on eternal domination and
m-eternal domination are presented in Sections 4 and 5, respectively. Secure
domination is covered in Section 6. Open problems and conjectures are mentioned
throughout the text where appropriate. We conclude by stating additional open
problems in Section 7.

2 Definitions

Definitions pertaining to domination not given here can be found in the Glossary
in this volume, while other definitions can be found in standard graph theory texts
such as [25, 86]. For a graph G = (V ,E), a set X ⊆ V , and a vertex v ∈ X,
the private neighborhood pn(v,X) of v with respect to X is the set of all vertices
in N [v] that are not contained in the closed neighborhood of any other vertex in
X, i.e., pn(v,X) = N [v] − N [X − {v}]. The elements of pn(v,X) are the private
neighbors of v with respect to X. It is possible that v ∈ pn(v,X); in this case we
say that v is a self-private neighbor with respect to X. No other private neighbor
of v with respect to X belongs to X. The external private neighborhood of v with
respect to X is the set epn(v,X) = pn(v,X) − {v} = N(v) − N [X − {v}]. The
internal private neighborhood of v with respect to X is ipn(v,X) = {x ∈ X : x is
adjacent to v but not to any vertex in X − {v}}.

A vertex cover of G is a set C ⊆ V such that each edge of G is incident with a
vertex in C. The minimum cardinality of a vertex cover of G is the vertex covering
number τ(G) of G. It is clear that the independence number α(G) of G equals
the clique number ω(G) of the complement G of G. It is well known that α(G) +
τ(G) = n for all graphsG of order n (see, e.g., [25, p. 241]). The matching number
(also called the edge independence number) α′(G) is the maximum cardinality of
a matching of G. It is also well known that τ(G) ≥ α′(G) for all graphs, and that
equality holds for bipartite graphs. The latter result is known as König’s theorem
(see, e.g., [25, Theorem 9.13]).

The clique covering number θ(G) is the minimum number k of sets in a partition
V1, ..., Vk of V such that the subgraphG[Vi] induced by each Vi is a clique. Observe
that θ(G) equals the chromatic number χ(G) of the complement G of G. Since
χ(G) = ω(G) if G is perfect, and G is perfect if and only if G is perfect [25, p.
203], it follows that α(G) = θ(G) for all perfect graphs.

The circulant graph Cn[a1, . . . , ak], where 1 ≤ a1 ≤ · · · ≤ ak ≤
⌊
n
2

⌋
, is the

graph with vertex set {v0, . . . , vn−1} such that vi and vj are adjacent if and only if
i − j ≡ ±a� (mod n) for some � ∈ {1, . . . , k}.
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3 Eternal Domination Models

Let Dk be the collection of all dominating sets of G of fixed cardinality k. For a
set D ∈ Dk , there is a single guard located on each vertex of D and therefore we
think of D as a configuration of guards. A vertex v is occupied if there is a guard
on v, otherwise v is unoccupied. We say that a (not necessarily dominating) set X
protects a vertex v, or v is protected (by X), if v or one of its neighbors is occupied.

Each eternal domination problem can be modeled as a two-player game,
alternating between a defender and an attacker: the defender chooses D1 ∈ Dk
as well as each Di , i > 1, while the attacker chooses the locations r1, r2, . . . of
the attacks; we say the attacker attacks the vertices ri . Thus, the game starts with
the defender choosing D1. For i ≥ 1, the attacker attacks ri ∈ V − Di , and the
defender defends against the attack by choosing Di+1 ∈ Dk subject to constraints
(described below) that depend on the particular game. The defender wins the game
if they can successfully defend the graph against any sequence of attacks, including
sequences that are infinitely long, subject to the constraints of the game; the attacker
wins otherwise. In other words, the attacker’s goal is to force the defender into a
configuration of guards that is not dominating.

For the eternal domination problem,Di ∈ Dk for each i ≥ 1, ri ∈ V −Di , and
Di+1 ∈ Dk is obtained from Di by moving a guard to ri from an adjacent vertex
v ∈ Di . If the defender can win the game with the sets {Di} ⊆ Dk , then each such
Di is an eternal dominating set. The smallest integer k such that Dk contains eternal
dominating sets is the eternal domination number γ∞(G). This problem was first
studied by Burger et al. in [15] in 2004 and will sometimes be referred to as the
one-guard moves model. Shortly thereafter, Goddard, Hedetniemi and Hedetniemi
published a second paper on the topic where they called it eternal security [36].
Subsequently, the problem has most often been called eternal domination. An
illustrative example is C5, the cycle of order five. Whereas γ (C5) = α(C5) = 2,
γ∞(C5) = 3.

For the m-eternal dominating set problem, Di ∈ Dk for each i ≥ 1, ri ∈
V − Di , and Di+1 ∈ Dk is obtained from Di by moving guards to neighboring
vertices. That is, each guard in Di may pass or move to an adjacent vertex, as long
as one guard moves to ri . Thus ri ∈ Di+1. The smallest integer k such that Dk
contains m-eternal dominating sets (defined similar to eternal dominating sets) is
the m-eternal domination number γ∞m (G). This “multiple guards move” version of
the problem was introduced by Goddard et al. [36]. It is also called the “all-guards
move” model and sometimes denoted γ∞all .

We say an attack on an unoccupied vertex u is defended by a set D ∈ Dk or by
(a guard on) a vertex v ∈ D if both D and (D − {v}) ∪ {u} belong to the collection
{Di} ⊆ Dk of eternal or m-eternal dominating sets.

It is clear that γ (G) ≤ γ∞m (G) ≤ γ∞(G) for all graphs G. In contrast to
the example above, observe that γ∞m (C5) = 2 – with two guards on independent
vertices, each attack on an unoccupied vertex can be defended by either a clockwise
or a counterclockwise rotation of the guards.
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Variations on the two above-mentioned graph protection models are obtained
by imposing conditions on the induced subgraph G[Di]. Thus one may define
the eternal total (connected, respectively) domination number γ∞t (G) (γ∞c (G),
respectively) and the m-eternal total (connected, respectively) domination number
γ∞mt (G) (γ∞mc(G), respectively) in the obvious way. Eternal total domination and
eternal connected domination were introduced by Klostermeyer and Mynhardt [54].
Discussions of many other different types of eternal graph protection problems can
be found in the survey [59] by these authors. We briefly mention one such problem.

In the eviction model, each configuration Di , i ≥ 1, of guards is a dominating
set. An attack occurs at a vertex ri ∈ Di with at least one unoccupied neighbor.
The next guard configuration Di+1 is obtained from Di by moving the guard from
ri to an unoccupied neighbor (i.e., this is a “one-guard moves” model). The size of
a smallest eternal dominating set in the eviction model for G is denoted e∞(G).
This model was introduced by Klostermeyer, Lawrence, and MacGillivray [47] and
further studied in [53].

Question 3.18 [47] Is it true that e∞(G) ≤ γ∞(G) for all graphs G? (Note that
strict inequality is possible – consider C5, for example.)

4 Eternal Domination

Consider an eternal dominating set D of a graph G. A necessary condition for a
guard on a vertex of D to defend a neighboring vertex in a winning strategy for the
defender is given below. A proof can be found in [59, Proposition 1].

Proposition 4.1 Let D be an eternal dominating set of a graph G. For each v ∈
D, G[{v} ∪ epn(v,D)] is a clique, and if v ∈ D defends u ∈ V (G) − D, then
G[{u, v} ∪ epn(v,D)] is a clique.

The converse of Proposition 4.1 is not true. Consider the graph G in Figure 2.
The set D = {x, y, z} is an eternal dominating set of G in which the guard on x (y,
z) defends {x, u, r} ({y, v, s}, {z,w}). Also, pn(y,D) = {y, v} and G[{y, v, r}] is a
clique. Suppose, however, the guard on y moves to r . If the next attack is at s, then
only z has a guard adjacent to s. But moving this guard to s leaves w unprotected. In
the graph H in Figure 2, D = {x, y} is not an eternal dominating set, even though
pn(x,D) ∪ {r}, pn(x,D) ∪ {w}, pn(y,D) ∪ {w}, pn(y,D) ∪ {s} all induce cliques:
first attack r; without loss of generality, x defends r . Now attack s. If the guard on
y moves there, then w is not protected; if the guard on r moves there, then u is not
protected.

The example in Figure 2 raises an interesting question:

Question 4.2 If a dominating set D is not an eternal dominating set, how long
could it take, assuming each player plays optimally, to reach a non-dominating set
by a sequence of attacks?
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Fig. 2 In G, y does not defend r , and D is not an eternal dominating set of H

4.1 Bounds for the Eternal Domination Number

As first observed by Burger et al. [15], it is straightforward to see that γ∞ lies
between the independence and clique covering numbers.

Fact 4.3 For any graph G, γ (G) ≤ α(G) ≤ γ∞(G) ≤ θ(G).
Proof. To see the lower bound, consider a sequence of consecutive attacks at the
vertices of a maximum independent set. For the upper bound, observe that a single
guard can defend all vertices of a clique. �

As stated above, C5, and more generally C2n+1, n ≥ 2, are examples of graphs
with α(G) < γ∞(G).

The Lovász theta function [65] is another parameter that falls between α and θ .
An orthonormal representation of a graph G = (V ,E) is a family of unit vectors
{ui}i∈V such that ui · uj = 0 whenever i and j are distinct and nonadjacent. The
Lovász theta function ϑ(G) is defined by

ϑ(G) = min{θ : there exists an orthonormal representation {ui}i∈V of G and
a unit vector c such that (c · ui)2 ≥ 1

θ
for every i ∈ V }.

Doug West [personal communication] asked whether γ∞(G) is bounded from
above by the Lovász theta function and this question remains open.

Since α(G) = θ(G) for perfect graphs, the bounds in Fact 4.3 are tight for perfect
graphs. A topic that has received much attention is finding classes of non-perfect
graphs that satisfy one of the bounds in Fact 4.3. Before proceeding, we should point
out that the independence number, eternal domination number, and clique covering
number can vary widely, as shown by Klostermeyer and MacGillivray in [50].

Theorem 4.4 [50] For any positive integers c and d there exists a connected graph
G such that α(G)+ c ≤ γ∞(G) and γ∞(G)+ d ≤ θ(G).

Let Ckn denote the kth power (see [25, p. 105]) of the cycle of order n, where
2k + 1 < n.
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Theorem 4.5 If G is a graph in one of the following classes, then γ∞(G) =
θ(G).

(a) [15] Perfect graphs.
(b) [15] Any graph G such that θ(G) ≤ 3.
(c) [50] Ckn and Ckn , for all k ≥ 1, n ≥ 3.
(d) [78] Circular-arc graphs (intersection graphs of a family of arcs of a circle).
(e) [3] K4-minor-free graphs (a.k.a. series-parallel graphs, see, e.g., [86, p. 336]

for definition).
(f) [3] Cm�Cn; Pm�Cn.

4.1.1 Comparing γ ∞, α and θ

Goddard et al. [36] showed that

if α(G) = 2, then γ∞(G) ≤ 3. (1)

The Mycielski construction (see [25, p. 203]) yields triangle-free k-chromatic
graphs for arbitrary k. The complements of these graphs have α = 2, γ∞ = 3, and
θ = k, and hence are examples of graphs with small eternal domination numbers and
large clique covering numbers (see Theorem 4.8). The Grötzsch graph (which has
order 11 and is obtained from C5 via one application of the Mycielski construction)
is the smallest 4-chromatic triangle-free graph, and its complement is the smallest
known graph with γ∞ < θ and indeed with α < γ∞ < θ . Goddard et al. [36] also
gave another example of a graph G with α(G) < γ∞(G) < θ(G): the circulant
graph C18[1, 3, 8], which satisfies α = 6, γ∞ = 8 and θ = 9.

Virgile [84, Section 2.3.1] also used Mycielski’s construction (as part of a more
elaborate construction) to disprove a conjecture by Klostermeyer and Mynhardt
[57], namely that if G is a graph such that γ∞(G) = θ(G), then γ∞(G�K2) =
θ(G�K2) as well.

Theorem 4.6 [84] For each integer k ≥ 2 there exists a graph Gk such that
α(Gk) = γ∞(Gk) = θ(Gk) =

(
k+1

2

) + 1 and α(Gk�K2) = γ∞(Gk�K2) <

θ(Gk�K2).

We next discuss the effect that joining a new vertex to all vertices of a graph that
do not belong to a specific maximum independent set has on its eternal domination
number. Let G be any graph, let I be any maximum independent set of G, and
constructGα+1 by joining a new vertex v to all vertices ofG− I . Then α(Gα+1) =
α(G)+ 1. Moreover, if γ∞(G) = α(G), then γ∞(Gα+1) = α(Gα+1) = γ∞(G)+
1, because Gα+1 can be defended with a new guard on v which never needs to
move, while the guards on vertices of G defend attacks as in G. On the other hand,
if γ∞(G) > α(G), then γ∞(Gα+1) = γ∞(G), as shown below. The proof that
γ∞(Gα+1) ≥ γ∞(G) rests on the observation in [49] that if a graph H ′ is an
induced subgraph of a graph H and π is any of the parameters α, γ∞, θ , then
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π(H ′) ≤ π(H). This is trivially true for α and θ . To see that it is true for γ∞, note
that a sequence of attacks on H but restricted to H ′ requires γ∞(H ′) guards, hence
γ∞(H) ≥ γ∞(H ′).

Proposition 4.7 LetG be a graph such that γ∞(G) > α(G), let I be any maximum
independent set, and let Gα+1 be the graph obtained as described above. Then
γ∞(Gα+1) = γ∞(G).
Proof. As discussed above, γ∞(Gα+1) ≥ γ∞(G). Let v be the vertex added to G
to form Gα+1. Place a guard on each vertex of D′, a minimum eternal dominating
set of G. While vertices of G are attacked, the guards duplicate their moves in G.
Since γ∞(G) ≥ α(G) + 1 > |I | and v is adjacent to each vertex in G − I , v is
protected by any resulting configuration of guards. Suppose v is attacked while the
vertices of (say) the set D are occupied. Let DI = D ∩ I and I ′ = {u ∈ I − D :
u ∈ epn(w,D) for some w ∈ D}. Since |D| > |I | ≥ |DI | + |I ′|, there exists
a vertex x ∈ D that does not belong to I and also has no vertex in I as external
private neighbor. Therefore v is adjacent to x and to all vertices in epn(x,D), hence
D′′ = (D − {x}) ∪ {v} is a dominating set of Gα+1. Consider the next attack on a
vertex y:

• If y ∈ V (G)− I , the guard on v moves there and (D′′ − {v}) ∪ {y} is an eternal
dominating set of G of the same type as D and D′.

• If y ∈ I , then I � D′′, hence (by counting) D′′ − I − {v} �= ∅. Since D′′ is a
dominating set of Gα+1 (and neither v nor any other vertex in I dominates y),
y is dominated by vertices z1, ..., zt ∈ D′′ − I − {v}. Since v ∈ D′′, the only
possible external private neighbors of the zi are vertices of I , and a counting
argument similar to the case when v was attacked shows that a guard on some zi
can defend y. Thus D′′′ = (D′′ − {zi}) ∪ {y} is a dominating set of Gα+1 of the
same type as D′′.

Consequently, γ∞(G) guards suffice to defend any sequence of attacks on
Gα+1. �

Klostermeyer and MacGillivray [49] proved the existence of graphs with γ∞ =
α and whose clique covering number is either equal to two (if α = 2) or
arbitrary otherwise. Proposition 4.7, the complements G of Mycielski graphs and
the construction G → Gα+1 can be used to prove the latter result. Note that all
graphs thus constructed have triangles.

Theorem 4.8 [49]

(a) If α(G) = γ∞(G) = 2, then θ(G) = 2.
(b) For all integers k ≥ a ≥ 3 there exists a connected graph G such that α(G) =

γ∞(G) = a and θ(G) = k.
Goddard et al. [36] asked whether the eternal domination number can be bounded

by a constant times the independence number. That this is impossible in general
follows from the next two theorems. One of the main results on eternal domination
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is the following upper bound, due to Klostermeyer and MacGillivray [48]; also see
[59, Theorem 6].

Theorem 4.9 [48] For any graph G,

γ∞(G) ≤
(
α(G)+ 1

2

)

.

Goldwasser and Klostermeyer [37] showed that this bound is tight for certain
graphs. Specifically, let G(n, k) be the graph with vertex set consisting of the set
of all k-subsets of an n-set and where two vertices are adjacent if and only if their
intersection is nonempty (thus G(n, k) is the complement of a Kneser graph).

Theorem 4.10 [37] For each positive integer t , if k is sufficiently large, then the
graph G(kt + k − 1, k) has eternal domination number

(
t+1

2

)
.

Regan [78] found another graph for which the bound in Theorem 4.9 is tight:
the circulant graph C22[1, 2, 4, 5, 9, 11]. Theorems 4.9 and 4.10 show that it is
impossible to find a constant c such that γ∞(G) ≤ cα(G) for all graphs G. As
the graphs demonstrated by Theorem 4.10 are very large, it would be of interest to
find other (smaller) graphs and families of graphs where the bound is tight.

Klostermeyer and MacGillivray [48] showed that the graph G obtained by
joining a new vertex to m disjoint copies of C5 satisfies α(G) = 2m and γ∞(G) =
3m, that is, γ∞(G)/α(G) = 3

2 . This result and Theorem 4.8 can be placed in a more
general setting, as explained by the same authors in [50].

A triple (a, g, t) of positive integers is called realizable if there exists a connected
graph G with α(G) = a, γ∞(G) = g and θ(G) = t . Theorem 4.9 shows that no
triple with g >

(
a+1

2

)
is realizable. The following theorem, stated in [50], provides

a partial solution to the question of which triples are realizable.

Theorem 4.11 Let (a, g, t) be a triple of positive integers such that a ≤ g ≤ t .
(a) The only realizable triple with a = 1 is (1, 1, 1).
(b) [15, 36, 49] The only realizable triples with a = 2 are (2, 2, 2) and (2, 3, t),

t ≥ 3.
(c) [15, 49, 50] For all integers a, g and t with 3 ≤ a ≤ g ≤ 3

2a and g ≤ t , the
triple (a, g, t) is realizable.

The circulant C21[1, 3, 8], which satisfies γ∞/α = 10
6 (see [36]), shows that

Theorem 4.11 does not characterize realizable triples, and was generalized to
include all possible triples (up to the upper bound from Theorem 4.9) in [84, Section
2.2].
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4.2 The Gamma-Theta Conjecture

The following problem is motivated by an error discovered in [50], where it is
claimed that no such graph exists.

Question 4.12 Does there exist a graph G with γ (G) = γ∞(G) and γ (G) <
θ(G)?

We rephrase this question as a conjecture, called the γ − θ Conjecture.

Conjecture 4.13 (The γ − θ Conjecture) For every graph G, if γ (G) = γ∞(G),
then γ (G) = θ(G).

Conjecture 4.13 is known to be true for perfect graphs, triangle-free graphs and
graphs with maximum degree at most three [57], and for graphs without 4-cycles
[46]. We prove this result in Theorem 4.16 to illustrate the basic proof technique
used thus far for proving partial results on the γ − θ Conjecture. A definition and a
lemma are needed first.

For a dominating set D, a vertex x ∈ V −D is a shared vertex if u, v ∈ D and x
is adjacent to both u and v.

Lemma 4.14 [46] IfG is a graph without isolated vertices or 4-cycles, and γ (G) =
γ∞(G), then G has a minimum eternal dominating set D such that epn(v,D) �= ∅
for each v ∈ D.

Proof. LetD be a minimum eternal dominating set ofG that maximizes the number
of edges in G[D]. Suppose epn(u,D) = ∅ for some u ∈ D. Since D is a minimum
dominating set, u is isolated in G[D]. Since deg u ≥ 1, u is adjacent to a shared
vertex w, where w is also adjacent to v ∈ D − {u}. Since G has no C4, N(u) ∩
N(v) = {w} for each such vertex v. If u defends w, then D′ = (D − {u}) ∪
{w} is an eternal dominating set such that G[D′] has more edges than G[D], a
contradiction. Therefore w is defended by some x ∈ D such that epn(x,D) �= ∅.
By Proposition 4.1, w is adjacent to each external private neighbor of x, and as
shown above, N(u) ∩ N(x) = {w}. Therefore (D − {u, x}) ∪ {w} is a smaller
dominating set than D, a contradiction. �

It is well known (see [9]) that any graph without isolated vertices has a minimum
dominating setD such that epn(v,D) �= ∅ for each v ∈ D. Hence Lemma 4.14 will
be redundant if the following question has a positive answer.

Question 4.15 Let G be a graph such that γ (G) = γ∞(G). Is it true that each
γ -set is a γ∞-set?

Theorem 4.16 [46] For any graphG without 4-cycles, γ (G) = γ∞(G) if and only
if γ (G) = θ(G).
Proof. Assume without loss of generality that G has no isolated vertices. We only
need to prove sufficiency. Suppose γ (G) = γ∞(G) = k. Let D be a minimum
eternal dominating set of G such that epn(v,D) �= ∅ for each v ∈ D; such an
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eternal dominating set exists by Lemma 4.14. If γ (G) = 1, then G is complete and
the statement holds. Hence we assume γ (G) > 1.

If each vertex of G − D is an external private neighbor of a vertex in D, then,
by Proposition 4.1, {{x} ∪ epn(x,D) : x ∈ D} is a clique cover of G and the result
follows. Hence assume V − D has a shared vertex. For each x ∈ D, let Sx denote
the set of shared vertices defended by x (from the initial configuration of guards on
D). If |Sx | ≤ 1 for each x ∈ D, then Rx = {x} ∪ Sx ∪ epn(x,D) forms a clique
(Proposition 4.1). Then {Rx : x ∈ D} is a clique partition of G into γ (G) parts,
provided that any vertex that lies in more than one Rx is assigned to just one part in
the partition.

Therefore, suppose that w,w′ ∈ Su for some u ∈ D. Let v be an external private
neighbor of u, which we know exists. Then both w,w′ are adjacent to v and thus
uwvw′u is a 4-cycle, a contradiction. Therefore, |Sx | ≤ 1 for each x ∈ D, and the
result follows. �

It can also be shown that for any claw-free graphG in which each vertex belongs
to at most one triangle, γ (G) = γ∞(G) if and only if γ (G) = θ(G). (Beginning
with an independent minimum dominating set D, the claw-free condition ensures
that each vertex in V − D is adjacent to at most two elements of D. Then use the
triangle condition to analyze the shared neighbors of any u, v ∈ D; there are at most
two and each can be allocated to a (different) clique also containing u or v.)

We conclude this section by addressing a question related to the γ−θ Conjecture.
By Theorem 4.8(b), there exist connected graphs G such that α(G) = γ∞(G) = a
and θ(G) = k for any integers k ≥ a ≥ 3. All these graphs have triangles; hence
the following question is of interest.

Question 4.17 Does there exist a triangle-free graph G such that α(G) =
γ∞(G) < θ(G)?

4.3 The Fundamental Conjecture

Since eternal domination concerns the movement of guards, we may ask ourselves
when a guard may actually move. This leads to the following conjecture, which was
posed by Klostermeyer and MacGillivray [52], and which we term the Fundamental
Conjecture.

Conjecture 4.18 (The Fundamental Conjecture) Let G be a graph with δ(G) ≥
1 and minimum eternal dominating set D. For every vertex v ∈ D with an
unoccupied neighbor, there exists an eternal dominating set D′ such that D′ =
(D − {v}) ∪ {u}, where u ∈ N(v)−D.

In simple terms, we are asking whether any guard in an eternal dominating set
is able to move (to some attacked neighbor) at any time, while still maintaining
an eternal dominating set. That is, suppose a guard is on vertex v, where v is an
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arbitrary vertex in a minimum eternal dominating setD. Is there a vertex u adjacent
to v that can be attacked and then defended by the guard on v so that the resulting
configuration of guards is an eternal dominating set? The conjecture asserts that
there always is such a vertex u.

Conjecture 4.18 is known to hold for isolate-free graphs G with α(G) = 2 or
γ∞(G) = θ(G) [52]. The following weaker analog of Conjecture 4.18, which
shows that any guard is able to move eventually, was proved in [52].

Theorem 4.19 [52] Let G be a graph with no isolated vertices and D a minimum
eternal dominating set ofG. For every vertex u ∈ D, there exists a minimum eternal
dominating set D′ of G such that (i) u /∈ D′ and (ii) D′ reachable from D by a
sequence of guard moves.

5 m-Eternal Domination

As mentioned in Section 3, m-eternal dominating sets are defined similarly to eternal
dominating sets, except that when an attack occurs, each guard is allowed to move
to a neighboring vertex to either defend the attacked vertex or to better position
themselves for the future. This model was introduced by Goddard et al. [36]. As
stated above, we sometimes refer to this as the “all-guards move” model of eternal
domination.

Goddard et al. [36] determined γ∞m (G) exactly for complete graphs, paths,
cycles, and complete bipartite graphs. They also obtained the following fundamental
bound.

Theorem 5.1 [36] For all graphs G, γ (G) ≤ γ∞m (G) ≤ α(G).
Outline of proof. The left inequality is obvious. The right inequality is proved by
induction on the order of G, the result being easy to see for small graphs. If G
has a vertex v that is not contained in any maximum independent set, then v is
adjacent to at least two vertices of each maximum independent set of G. Therefore
α(G − N [v]) ≤ α(G) − 2. Hence (by induction) G − N [v] can be protected by
α(G)− 2 guards. Since K1,deg(v) is a spanning subgraph of G[N [v]], G[N [v]] can
be protected by two guards. It follows that γ∞m (G) ≤ α(G).

If each vertex ofG is contained in a maximum independent set, place a guard on
each vertex of a maximum independent set M . Defend an attack on v ∈ V (G) −
M by moving all guards to a maximum independent set Mv containing v. This is
possible since Hall’s Marriage Theorem ensures that there is a perfect matching
between the symmetric difference ofMv andM . �

Theorem 5.1 places γ∞m nicely in the inequality chain

γ (G) ≤ γ∞m (G) ≤ α(G) ≤ γ∞(G) ≤ θ(G).



458 W. F. Klostermeyer and C. M. Mynhardt

Goddard et al. also claimed that γ∞m (G) = γ (G) for all Cayley graphs G. This
claim, however, is false, as was shown in the paper [10] by Braga, de Souza, and Lee.
By computing γ (G) and γ∞m (G) for 7871 Cayley graphs of non-abelian groups,
they found 61 connected Cayley graphs G such that γ∞m (G) = γ (G) + 1. For all
other connected Cayley graphs they investigated, γ∞m (G) = γ (G).

The upper bound in Theorem 5.1 is not particularly good in general. For example,
K1,m has independence number m and can be defended with just two guards in
this model. But equality holds for many graphs, such as Kn, Cn, and P2�P3,
just to name a few. By a careful analysis of the clique structure, it was shown
in [11] that γ∞m (G) = α(G) for all proper interval graphs (a subclass of perfect
graphs). Characterizing graphs with m-eternal domination number equal to the
bounds in Theorem 5.1 remains open, as mentioned in Section 7.2. However, trees
for which equality holds in the upper bound α were characterized by Klostermeyer
and MacGillivray [51].

Define a neo-colonization to be a partition {V1, V2, . . . , Vt } of G such that each
Vi induces a connected graph. A part Vi is assigned weight one if it induces a clique,
and 1+γc(G[Vi]) otherwise, where γc(G[Vi]) is the connected domination number
of the subgraph induced by Vi . Then the neo-colonization number θc(G) is the
minimum weight of any neo-colonization of G.

Rinemberg and Soulignac [81] showed that all interval graphs satisfy γ∞m (G) =
θc(G). Goddard et al. [36] proved that γ∞m (G) ≤ θc(G) ≤ γc(G)+1. Klostermeyer
and MacGillivray [50] proved that equality holds in the first inequality for trees.

Theorem 5.2 [50] If T is a tree, then γ∞m (T ) = θc(T ).
Chambers, Kinnersly, and Prince [24] gave a different upper bound for γ∞m . A

proof is given below. A branch vertex of a tree is a vertex of degree at least three.

Theorem 5.3 [24] If G is a connected graph of order n, then γ∞m (G) ≤ �n2 �.
Proof. The proof is by induction on n, the result being easy to see for paths and
cycles. Let T be a spanning tree of G with r ≥ 1 branch vertices.

If T has no vertex of degree two, then the subgraph of T induced by the branch
vertices is connected and, by [25, Theorem 3.7], T has at least r + 2 leaves. Hence
n ≥ 2r + 2. Place a guard on each branch vertex and on one leaf. Whenever an
unoccupied leaf u is attacked, guards move so that u and all branch vertices have
guards. Hence γ∞m (T ) ≤ r + 1 ≤ �n2 �.

If T has a vertex v of degree two, and N(v) = {u1, u2}, then at least one of the
graphs T −{vui}, i = 1, 2, has a component of even order. Let T1 be this component
and let T2 be the other component. Say Ti has order ni . By the induction hypothesis,
γ∞m (T1) ≤ n1

2 and γ∞m (T2) ≤ �n2
2 �. It follows that γ∞m (T ) ≤ �n2 � and therefore

γ∞m (G) ≤ γ∞m (T ) ≤ �n2 �. �
The bound in Theorem 5.3 is exact for the corona of any graph because they

have domination and clique covering numbers equal to half their order. It is also
equal for odd length paths. It is not known which trees attain this bound [51], though
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partial results are given in [41]. The following small improvement was obtained by
Henning, Klostermeyer and MacGillivray [41].

Theorem 5.4 [41] If G is a connected graph with δ(G) ≥ 2 of order n �= 4, then

γ∞m (G) ≤
⌊
n−1

2

⌋
, and this bound is tight (e.g., for graphs obtained by joining a

new vertex to one vertex of each of k ≥ 2 disjoint copies of C4).

It is not hard to see that for many all-guards move models, the associated
parameter is bounded above by 2γ .

Proposition 5.5 For any connected graph G, γ∞m (G) ≤ 2γ (G), and the bound is
tight for all values of γ (G).

Outline of proof. The result is trivial for K1, so assume |V (G)| ≥ 2. As shown in
[9], every graph without isolated vertices has a minimum dominating set in which
each vertex has an external private neighbor. Let D be such a minimum dominating
set of G. For each v ∈ D, place a guard at v and at a private neighbor of v. This
configuration is an m-eternal dominating set.

To see that the bound is tight for γ = 1, consider any star with at least three
vertices. For γ = 2, consider the graph G formed by joining two vertices by four
internally disjoint paths of length three. It is routine to show that γ∞m (G) = 4.

For γ = k ≥ 3, consider the cycle C3k = u0, u1, ..., u3k−1, u0 and the γ -set
{u0, u3, ..., u3k−3} of C3k . For each i = 0, ..., k−1, add a new u3i −u3(i+1)(mod 3k)
path of length three to form G. Then γ (G) = k, and again it can be shown that
γ∞m (G) = 2k. �

Klostermeyer and MacGillivray [51] characterized trees for which equality holds
in the following bounds: γ∞m (T ) ≤ γc(T ) + 1, γ (T ) ≤ γ∞m (T ), γ∞m (T ) ≤ 2γ (T ),
and γ∞m (T ) ≤ α(T ).

We now compare the m-eternal domination number and the vertex covering
number. This may seem like an unusual pair of parameters to compare, but the
comparison turns out to be interesting.

Theorem 5.6

(a) [55] If G is connected, then γ∞m (G) ≤ 2τ(G).
(b) [55] If, in addition, δ(G) ≥ 2, then γ∞m (G) ≤ τ(G).
(c) [56] If, in addition to (a) and (b), G has girth seven or at least nine, then

γ∞m (G) < τ(G).
(d) [56] For any nontrivial tree T , τ(T ) ≤ γ∞m (T ) ≤ 2τ(T ).

It is not possible to relax the girth condition in Theorem 5.6(c) to girth less than
five. Examples of graphs with girth less than five for which γ∞m (G) = τ(G) are
given in [56]. The problem remains open for girths five, six, and eight, though it
is believed that γ∞m (G) < τ(G) for such graphs. The trees where the bounds in
Theorem 5.6(d) are tight are characterized in [56].

Braga, Reis, De Souza and Lee [12] proposed two heuristic methods suitable for
practical applications of the m-eternal dominating set problem. Their methods use
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integer and constraint programming techniques to compute bounds on γ∞m (G) for
an input graph G. Let Z = {V1, ..., Vk} be a neo-colonization of G. Consider an
ordered pair 〈Z, Y 〉, where Y is a set consisting of a connected dominating set Yi
of G[Vi] for each Vi ∈ Z that does not induce a clique. The pair 〈Z, Y 〉 is called a
neo-colonization setup of G. The weight w(〈Z, Y 〉) of 〈Z, Y 〉 is given by the sum
of 1 for every clique part of Z and of min{|Yi | + 1, |Vi |} for each non-clique part Vi
of Z. Notice that w(〈Z, Y 〉) is bounded below by the weight of Z and hence also by
θc(G).

Theorem 5.7 [12] Let 〈Z, Y 〉 be a neo-colonization setup of a graph G. There
exists an efficient m-eternal defense strategy (i.e., a strategy with polynomial-
time and polynomial-space requirements with respect to |V (G)|) of G using k =
w(〈Z, Y 〉) guards.

They showed that their programs (i) run in a reasonable time, (ii) produce a
good quality upper bound on γ∞m (G), and (iii) output a structure from which
one can derive an efficient strategy of defense of G with k guards, with the first
two features being validated through experimentation on a total of 750 randomly
generated graphs.

5.1 Multiple Guards on a Vertex

The results stated up until now in this chapter apply to the case when only one
guard is allowed to occupy each vertex, and indeed, there is no advantage allowing
multiple guards to occupy a single vertex in the “one guard moves” model [15]. A
question stated in [36] is whether there is any advantage in allowing two guards to
occupy the same vertex in the m-eternal domination problem. In response, Finbow,
Gaspers, Messinger, and Ottoway [33] showed that there exist graphs for which it
is an advantage in the all-guards move model to allow more than one guard on a
vertex at a time. We sketch a proof of the simplest case of this result, using γ ∗∞m (G)

to denote the number of guards needed if more than one guard is allowed on a vertex
at a time (and all guards are allowed to move in response to an attack). The graph
G5 in the proof is illustrated in Figure 3.

Theorem 5.8 [33] There exists a graph G such that γ ∗∞m (G) = 9 and γ∞m (G) =
10.

Outline of proof. Define a gadget to be the graph formed by taking two K4 − e’s
and combining one degree three vertex from each into a single vertex (so a gadget
has seven vertices and two vertices of degree three). Form graph G5 by taking five
gadgets along with an additional vertex x; add an edge between x and the vertices
of degree three in each gadget.

To see that γ∞m (G) = 10, one can observe that there must be two guards in a
gadget at some point in time: even though the domination number of a gadget is 1,
because the degree two vertices in a gadget are independent and not adjacent to x
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Fig. 3 The graphG5 in the proof of Theorem 5.8 is obtained by joining x to the vertices of degree
3 in five gadgets.

and the dominating vertex in a gadget is not adjacent to x, it follows that we need at
least two guards in each gadget at all times while there is no guard on x. If there is
a guard on x, then at most one gadget can contain one guard.

On the other hand, by maintaining at least one guard in each gadget at all times
and two guards on x, which move in and out of attacked gadgets, one can see that
nine guards suffice to protectG5. This is done by moving both guards from x to the
gadget where an attack occurs (i.e., that gadget contains three guards immediately
after an attack) and moving two guards from the previously attacked gadget to x,
while the remaining guard in the latter gadget moves to its degree six vertex. �

The proof in [33] is more general than the sketch given above and shows there
are graphs where γ ∗∞m (G) and γ∞m (G) can differ by any additive constant. The
following question remains open.

Question 5.9 Does there exist a constant c > 1 such that cγ ∗∞m (G) ≥ γ∞m (G) for
all graphs G?

If any number of guards per vertex are allowed, then the bound in Theorem 5.3
can be improved to �n2 � − 1 when δ(G) ≥ 2 (with four small exceptions) [24]. It is
not known whether their result holds if each vertex contains at most one guard.
Under these conditions Nordhaus–Gaddum results were also shown in [24], for
example, the following bound; they also characterize the graphs for which equality
holds.

Theorem 5.10 [24] γ∞m (G)+ γ∞m (G) ≤ n+ 1.
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5.2 Grids

Grid graphs, i.e., Pm�Pn, are a well-studied class of graphs in domination theory;
see, for example, [42]. We sometimes refer to Pm�Pn as the m× n grid graph. As
shown by Goldwasser, Klostermeyer and Mynhardt [38], γ∞m (P2�Pn) = � 2n

3 � for
any n ≥ 2, while γ∞m (P3�Pn) = n for 2 ≤ n ≤ 8. Based on these results, the next
two theorems may seem surprising.

Theorem 5.11 [38] For n ≥ 9, γ∞m (P3�Pn) ≤ � 8n
9 �.

In other words, the 3 × 9 grid graph can be defended by eight guards. It is then
easy, as described in Theorem 5.11, to see that larger 3×n grids can be defended by
at most 8n/9 guards by partitioning such a grid into 3 × 9 grids (with perhaps one
or two columns left over). Improving this bound has been the subject of a number
of papers, e.g., Finbow, Messinger and Van Bommel [34], Finbow and Van Bommel
[35], and Messinger and Delaney [69]. The first improved bounds were obtained in
[34].

Theorem 5.12 [34] For n ≥ 11,
⌈

4n+6
5

⌉
≤ γ∞m (P3�Pn) ≤

⌈
6n+2

7

⌉
.

Theorem 5.12 shows that the bound in Theorem 5.11 is not tight in general,
although it is tight for n = 9, 10, for example. Theorem 5.12 also disproved the

conjecture in [38] that γ∞m (P3�Pn) =
⌈

4n+5
5

⌉
for n ≥ 10. Messinger and Delaney

[69] developed a set of configurations for eternal dominating families which helped
to reduce the upper bound.

Theorem 5.13 [69] For n ≥ 12,

γ∞m (P3�Pn) ≤
⌈

4n+ 10

5

⌉

+
{

0 if n ≡ 2, 4 (mod 5)
1 otherwise.

Theorems 5.12 and 5.13 combined determined γ∞m (P3�Pn) to within 3 of the
exact value. Adapting configurations from [69], Finbow and Van Bommel [35]
finally completed the determination of γ∞m (P3�Pn). We summarize the results
below.

Theorem 5.14

(a) [34, 38] For n ≤ 11, γ∞m (P3�Pn) =
⌈

6n+2
7

⌉
.

(b) [35, 69] For 11 < n ≤ 22, γ∞m (P3�Pn) =
⌈

4n+6
5

⌉
.

(c) [35] For n > 22, γ∞m (P3�Pn) =
⌈

4n+7
5

⌉
.

Beaton, Finbow and MacDonald [7] continued the study of m-eternal domination
in grid graphs and obtained the following results.
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Theorem 5.15 [7] For any n ∈ Z
+,

(a) γ∞m (P4�Pn) = 2
⌈
n+1

2

⌉
, with the exceptions γ∞m (P4�P2) = 3 and

γ∞m (P4�P6) = 7;

(b)
⌊

10(n+1)
7

⌋
≤ γ∞m (P6�Pn) ≤

⌈
8n
5

⌉
+ 8.

(c) In addition, γ∞m (P5�P5) = 7, γ∞m (P6�P6) = 10, and 13 ≤ γ∞m (P7�P7) ≤ 14.

Van Bommel and Van Bommel [83] considered 5 × n grids, determining exact
values for n ≤ 12 and proving the following bounds.

Theorem 5.16 [83] � 6n+9
5 � ≤ γ∞m (P5�Pn) ≤ � 4n+3

3 �.
Problem 5.17 Determine the value of γ∞m (Pm�Pn). In particular, is γ∞m (Pn�Pn) ≤
γ (Pn�Pn)+ c, for some constant c?

The latter statement was conjectured to be true by Finbow and Klostermeyer
[59]. A significant result on this conjecture was proven by Lamprou, Martin and
Schewe [62]:

Theorem 5.18 [62] For any m, n ≥ 16, γ∞m (Pm�Pn) ≤ γ (Pm�Pn)+O(m+ n).
The proof of the preceding theorem utilizes an interesting guard movement

strategy, which involves partitioning a large grid into smaller grids and moving
(really rotating) the guards in each smaller grid upon each attack in a way that
defends the attack and preserves a dominating set of the entire grid. This strategy
requires γ (Pm�Pn) plus additional guards initially placed around the perimeter of
the grid.

Conjecture 5.19 [38] If γ∞m (P3�Pn) ≤ r , then γ∞m (P3�Pn+1) ≤ r + 1.

The strong grid Pm � Pn is obtained from Pm�Pn by joining vertices (vi, uj )
and (vk, u�) if and only if vivk ∈ E(Pm) and uju� ∈ E(Pn). McInerney, Nisse and
Perennes [67] considered the m-eternal domination number of strong grids. They
showed that when m ≥ n, γ∞m (Pm � Pn) =

⌈
m
3

⌉ ⌈
n
3

⌉ + O(m√n), noting that
γ (Pm � Pn) =

⌈
m
3

⌉ ⌈
n
3

⌉
.

5.3 Cubic Graphs

The study of domination in cubic graphs has long history, with the best known
upper bound currently being that of Kostochka and Stocker [60] which improved
the famous result of Reed [77]:

Theorem 5.20 [77] If G is a graph of order n with δ(G) ≥ 3, then γ (G) ≤ 3
8n.

Theorem 5.21 [60] If G is a connected cubic graph of order n ≥ 10, then γ (G) ≤
5
14n.
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Fig. 4 Graph with minimum
degree three and γ∞m (G) = 9.

Fig. 5 Two cubic graphs of
order eight, each with
γ∞m (G) = 3.

By Theorem 5.20, ifG is a cubic graph of order n, then γ (G) ≤ 3n/8. However,
there are cubic graphs G with γ∞m (G) > 3n/8. For example, if P is the Petersen
graph (of order n = 10), then as first observed in [49], γ∞m (P ) = 4 = 2n/5.
It would be of great interest to find graphs, or families of graphs, with minimum
degree three and γ∞m (G) > 3n/8. It does not appear to be easy to combine several
Petersen graphs in some way to obtain such a graph with γ∞m (G) > 3n/8. We show
an example in Figure 4 of one way of doing this to obtain a graph with γ∞m (G) =
3n/8. Two cubic graphs of order eight and γ∞m = 3 are exhibited in Figure 5.
Except for the examples mentioned here we do not know any other cubic graphs
with γ∞m (G) ≥ 3n/8.

v Henning et al. [41] obtained an upper bound for cubic bipartite graphs.

Theorem 5.22 [41] IfG is a cubic bipartite graph of order n, then γ∞m (G) ≤ 7
16n.

The complex proof of this theorem involves first removing a perfect matchingM
from G and considering the (even-length) cycles that remain. If all of these cycles
are long enough, the theorem follows. If however, there are 4-cycles, then analyzing
the edges from M comes into play in an effort to reduce the number of guards
needed, since γ∞m (C4) = 2. It remains open to improve this result, as the next
conjecture captures.

Conjecture 5.23 [41] IfG is a cubic bipartite graph of order n, then γ∞m (G) ≤ 3
8n.

Conjecture 5.24 [41] If G is a cubic graph of order n, then γ∞m (G) ≤ 2
5n.
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6 Secure Domination

The concept of secure domination was conceived by E. J. Cockayne and presented
in a keynote lecture during a workshop at the University of South Africa in Pretoria,
2002. The papers [14, 15, 29, 30, 70] all resulted directly from this workshop but,
due to the normal delays involved in the publication process, were not published in
chronological order. As mentioned in the introduction, secure domination was first
discussed by Cockayne et al. [30] and the other papers soon followed.

6.1 Terminology and Basic Results

A secure dominating set (SDS) of G is a set D ⊆ V with the property that for each
u ∈ V −D, there exists v ∈ D adjacent to u such that (D−{v})∪{u} is dominating.
The minimum cardinality among all SDSs is the secure domination number γs(G)
of G. Naturally, γs(G) ≥ γ (G) for all graphs G. The obvious connection between
secure domination and eternal domination can be seen in the pair of papers [14, 15].

We must point out an unfortunate instance of terminology confusion. The term
secure set and the notation γs(G) are also used for the problems discussed in, for
example, [13, 44]. We shall not consider this different problem here; it is the secure
domination version of the eviction problem mentioned in Section 3.

If u ∈ V −D is defended by v ∈ D and by no other vertex inD, then v uniquely
defends u; otherwise we also say that v jointly defends u. If v defends u ∈ V −D, it
is easy to see that pn(v,D) ⊆ N [u]. For v ∈ D and u ∈ epn(v,D), if v defends u,
then v uniquely defends u. This leads to the following result by Cockayne et al. [30].
Note the difference between Proposition 6.1 and Proposition 4.1 – the former gives
a necessary and sufficient condition for D to be an SDS, while, as mentioned in
Section 4, the converse of the latter is false.

Proposition 6.1 [30] LetD ⊆ V . The vertex v ∈ D defends u ∈ V −D if and only
if epn(v,D)∪{v} ⊆ N [u], andD is an SDS ofG if and only if for each u ∈ V −D,
there exists v ∈ D such that G[{u, v} ∪ epn(v,D)] is complete.

In contrast to the Fundamental Conjecture (Conjecture 4.18) for eternal domina-
tion, Burger and Van Vuuren showed that, for any graph G, any minimum secure
dominating set D ofG, and any vertex v ∈ D which has an unoccupied neighbor, v
is a defender.

Theorem 6.2 [21] Let G be any graph.

(a) For every minimum secure dominating setD ofG, every vertex v ∈ D such that
N(v) � D is a defender of at least one vertex in V −D.

(b) IfG has no isolated vertices, then there exists a minimum secure dominating set
D of G in which every vertex is a defender of at least one vertex in V −D.
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Graphs with secure domination numbers 1, 2 or 3, respectively, were char-
acterized in [21]. It is easily seen that γs(G) = 1 if and only if G = Kn.
In order to characterize graphs with secure domination number 2, the following
construction is required. Let i, j be positive integers and let k, � be nonnegative
integers. Let �(i, j, k, �) denote the graph of order i + j + k + � and size(
i
2

) + (
j
2

) + k(i + 1) + �(j + 1) containing two vertex-disjoint cliques Ki and Kj
of orders i and j , respectively, together with two further disjoint independent sets
Uk and W� of vertices of cardinalities k and �, respectively, to which the following
edges are added: (i) Each vertex in Ki is joined to all vertices of Uk (if k > 0).
(ii) Each vertex in Kj is joined to all vertices of W� (if � > 0). (iii) Some vertex
x ∈ V (Ki) is joined to all vertices in W�, and some vertex y ∈ V (Kj ) is joined
to all vertices in Uk . Note that �(1, 1, 0, 0) ∼= K2, �(1, 1, 1, 0) ∼= K2,1, and, in
general, �(1, 1, n− t, t) ∼= K2,n for t ∈ {0, ..., n}.
Proposition 6.3 [21] A graph has secure domination number 2 if and only if it
is not complete and contains �(i, j, k, �) as spanning subgraph for some integers
i, j ≥ 1 and k, � ≥ 0.

A similar, but more complicated, construction that generalizes K3, K3,1, and
K3,n was used to characterize graphs with secure domination number 3.

6.2 Bounds on the Secure Domination Number

Many authors have obtained bounds, or improved bounds obtained by others, on
the secure domination number for various graph classes. We first give bounds that
hold for general graphs and then state better bounds that hold only for certain graph
classes.

The double domination number γ×2(G) of a graphG is the minimum cardinality
of a set S ⊆ V (G) such that every vertex of V −S is adjacent to at least two vertices
in S. Let α′ denote the cardinality of a maximum matching of G.

6.2.1 Upper Bounds for General Graphs

It follows immediately from the definitions that γs(G) ≤ γ∞(G) for any graph G,
hence also that γs(G) ≤ θ(G). Since θ(G) ≤ n− ω(G)+ 1 for any n-vertex graph
G, the bound γs(G) ≤ n−ω(G)+1 also follows. We state a number of other upper
bounds and give an outline of the proofs of the first two.

Theorem 6.4 Let G be a connected graph of order n. Then

(a) [29] γs(G) ≤ n− α′ (the bound is tight, e.g., for K1,n−1);
(b) [58] γs(G) ≤ 2α(G);
(c) [68] γs(G) ≤ γ (G)+ α(G)− 1 (the bound is trivially tight for Kn);
(d) [26] γs(G) ≤ γ×2(G) (the bound is tight, e.g., for C5);
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(e) [6] γs(G) ≤ n − �(4 diam(G)+ 1)/7� (the bound is tight, e.g., for Pn and
K1,n−1).

Outline of proof.

(a) Let M = {{uivi} : 1 ≤ i ≤ α′} be a maximum matching of G. Observe that
D = V − {u1, . . . uα′ } is a dominating set of G. Then for each i ∈ {1, . . . , α′},
epn(vi,D) ⊆ {ui} and vi can defend an attack at ui .

(b) Let A be a maximum independent set of G. For each a ∈ A, the subgraph
induced by pn(a,A) is complete, otherwiseG has a larger independent set than
A. If epn(a,A) �= ∅, choose arbitrary xa ∈ epn(a,A). Define D = A ∪ {xa :
a ∈ A and epn(a,A) �= ∅}. Since A is a dominating set, epn(v,D) = ∅ for all
v ∈ D, and D is an SDS by Proposition 6.1. �

A proof similar to that of Theorem 6.4(e) shows that γs(G) ≤ n − �4c(G)/7�
for any graphG of order n and circumference c(G) ≥ 3; this bound is trivially tight
for cycles. Theorem 6.4(c) shows that the bound in part (b) is actually an inequality.
Merouane and Chellali [68] improved the bound in (b) to 3

2α(G) for triangle-free
(and thus bipartite) graphs (see Theorem 6.7(a)), and ask whether γs(G) ≤ 3

2α(G)

for every graph G. The same bound is obtained in [29] for claw-free graphs, as we
state in the next subsection.

6.2.2 Bounds for Specific Graph Classes

The original paper [30] on secure domination also contains a lower bound on γs(G)
in terms of order and maximum degree in the case where G is a triangle-free or
K4-free graph. Cockayne [27] showed that an improvement is possible for trees.

Theorem 6.5 Let G be a graph of order n and maximum degree �.

(a) [30] If G is triangle-free, then γs(G) ≥ n(2�− 1)/(�2 + 2�− 1).
(b) [30] If G is K4-free, then γs(G) ≥ n(2� − 3)/(�2 + 2� − 5). The bound is

attained for infinitely many n.
(c) [27] If G is a tree T and � ≥ 3, then γs(G) ≥ (�n+�− 1)/(3�− 1), and

the bound is tight (e.g., for the generalized spider S(3, ..., 3)1).

Part (a) of the next result follows from Theorem 6.4(a) and the fact that claw-free
graphs of even order have perfect matchings and claw-free graphs of odd order have
near-perfect matchings (see [66]).

Theorem 6.6 [29] Let G be a connected claw-free graph of order n. Then

(a) γs(G) ≤ �n2 �;
(b) γs(G) ≤ min{2γ (G), 3α(G)/2}.

If, in addition, G is C5-free, then
(c) γs(G) ≤ α(G).

1For � ≥ 3, S(3, ..., 3) is the tree obtained from K1,� by subdividing each edge twice).
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Thus, if G is both claw-free and C5-free, then γs(G) ≤ α(G). A similar result
holds if we simply require G to have girth at least six (without adding the claw-free
condition), as stated in Theorem 6.7(b); we include a proof. Theorem 6.7(c) gives a
lower bound on the secure domination number of a tree in terms of its independence
number.

Theorem 6.7 [68]

(a) For every triangle-free graph G, γs(G) ≤ 3
2α(G).

(b) For every graph G with girth at least six, γs(G) ≤ α(G).
(c) For every tree T , γs(T ) >

α(G
2 .

(d) For every tree T , γs(T ) ≥ i(T ) and this bound is tight (e.g., if T is the corona
of another tree).

Proof of (b). We may assume that G is connected. Let D be a maximum indepen-
dent set of G. Then pn(v,D) induces a clique for each v ∈ D, otherwise G has a
larger independent set. Since the girth of G is at least six, epn(v,D) is independent
and thus | epn(v,D)| ≤ 1. We claim thatD is a secure dominating set ofG. Suppose
this is not the case. Let u ∈ V − D be a vertex not defended by D and define
Du = N(u) ∩ D. If u ∈ epn(y,D) for some y ∈ Du, then (D − {y}) ∪ {u} is a
dominating set of G, which is not the case. Hence we may assume that |Du| ≥ 2.
If epn(z,D) = ∅ for some z ∈ Du, then (D − {z}) ∪ {u} is a dominating set of G.
Thus we may also assume that | epn(v,D)| = 1 for each v ∈ Du. Since the girth of
G is at least six, u is nonadjacent to the vertex in epn(v,D) for every v ∈ Du. Let
A = ⋃

v∈Du epn(v,D). Then |A| = |Du|, and A is independent, otherwise G has a
cycle of length five. Therefore A∪ {u} is independent. But now (D−Du)∪A∪ {u}
is an independent set of G larger than D, a contradiction. Hence D is a secure
dominating set of G, and it follows that γs(G) ≤ α(G). �

Trees for which equality holds in Theorem 6.7(d) were characterized in [64],
while Mynhardt, Swart and Ungerer [70] gave a constructive characterization of
trees with equal domination and secure domination numbers. The bound stated in
Theorem 6.6(a) was improved in [22] for (not necessarily claw-free) graphs without
endvertices.

Theorem 6.8 [22] If G � C5 is a connected graph of order n with δ(G) ≥ 2, then
γs(G) ≤ n/2 and this bound is tight.

Equality in the bound given in Theorem 6.8 is satisfied by the class of connected
graphs obtained from the disjoint union of 2-colored copies of C4 and C6 by joining
some or all vertices of (say) color 1.

Arumugam, Ebadi, and Manrique [6] and Li, Shao, and Xu [63] also obtained
bounds on γs for trees; the lower bounds are identical while the upper bound given
in the latter paper improves the bound given in the former. A characterization of
trees with γs(T ) = n+2

3 is given in [63].
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Theorem 6.9 Let T be a tree of order n ≥ 3 with � leaves and t support vertices.
Then

(a) [6]
⌈
n+2

3

⌉
≤ γs(T ) ≤

⌊
n+k−1

2

⌋
, and the bounds are tight;

(b) [63]
⌈
n+2

3

⌉
≤ γs(T ) ≤

⌊
2n+2�−t

4

⌋
, and the bounds are tight.

Araki and Yumoto [2] considered secure domination in maximal outerplanar
graphs. An inner face of a maximal outerplanar graph G is an internal triangle
if it is not adjacent to the outer face. A maximal outerplanar graph without internal
triangles is called stripped.

Theorem 6.10 [2] Let G be a maximal outerplanar graph of order n ≥ 3. Then

(a) γs(G) ≤
⌈

3n
7

⌉
and the bound is tight.

(b) If G is stripped, then n
4 < γs(G) ≤

⌈
n
3

⌉
and the upper bound is tight.

6.3 Secure Domination Critical and Stable Graphs

A graph G is secure domination critical with respect to edge removal, abbreviated
to γs-ER-critical, if γs(G − e) > γs(G) for each edge e of G (in which
case γs(G − e) = γs(G) + 1 for each edge e). Grobler and Mynhardt [39]
gave constructive characterizations of γs-ER-critical graphs, bipartite γs-ER-critical
graphs, and γs-ER-critical trees, respectively. Burger, De Villiers and Van Vuuren
[17, 19] generalized γs-ER-critical graphs to q-ER-critical graphs: a graph G is
q-ER-critical if the smallest arbitrary subset of edges whose removal from G

necessarily increases the secure domination number has cardinality q.
In contrast, a graph G is p-ER-stable if the largest arbitrary subset of edges

whose removal from G does not increase the secure domination number of the
resulting graph has cardinality p. Burger, De Villiers and Van Vuuren [20] studied
the problem of computing p-stable graphs for all admissible values of p and
determined the exact values of p for which members of various infinite classes of
graphs are p-stable. They also considered the problem of determining the largest
value ωn of p for which a graph of order n can be p-stable. In this regard, they
formulated the following conjecture, which is true for all n ∈ {2, ..., 9}.
Conjecture 6.11 [20] For all n ≥ 2, ωn = n− 2.

It is true that ωn ≥ n− 2 for all n ≥ 2, because one needs to remove n− 1 edges
from K1,n−1 to increase γs . They also mention classes of graphs of order n that are
n−2-stable, namelyK1,n−1 for all n,Kn−e if n ≡ 0 or 2 (mod 3),K4,4 andK3,3,3,
and conjecture that this class is complete, i.e., consists of all n− 2-stable graphs.
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6.4 Other Types of Secure Domination

By imposing additional conditions on secure dominating sets, one may obtain other
types of secure domination. For example, if the subgraph induced by each secure
dominating set has a perfect matching, we obtain several varieties of secure paired
domination [45].

The set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent
to a vertex in S and to a vertex in V − S. By requiring a secure dominating set to be
restrained, we create the concept of restrained secure domination [72, 73].

By considering the maximum cardinality of a minimal secure dominating set, we
obtain the upper secure domination number [76]. A dominating set S is a perfect
secure dominating set if for each v ∈ V − S there exists a unique u ∈ S such
that v is adjacent to u and (S − {u}) ∪ {v} is a dominating set [74]. If D is a
secure dominating set of G and of G, we get global secure domination [75]. We
refer interested readers to the original publication for further information on these
concepts, and only consider secure total domination in the next subsection.

6.4.1 Secure Total Domination

A secure total dominating set (STDS) of G is a set D ⊆ V with the properties that
for each u ∈ V−D, there exists v ∈ D adjacent to u such thatD′ = (D−{v})∪{u} is
dominating, and such that the subgraphs ofG induced byD andD′ have no isolated
vertices. In this case we say that v totally defends u. Evidently, G has secure total
dominating sets if and only if G has no isolated vertices. The minimum cardinality
among all STDSs is the secure total domination number γst(G) of G. Secure total
domination was introduced by Benecke, Cockayne and Mynhardt in [8], where an
analogue of Proposition 6.1 appears. We rephrase their results to correct an error in
the first part of the statement.

Proposition 6.12 [8] Let D ⊆ V such that G[D] has no isolated vertices. The
vertex v ∈ D totally defends u ∈ V −D if and only if ipn(v,D)∪epn(v,D)∪{v} ⊆
N(u).

The set D is an STDS of G if and only if epn(v,D) = ∅ for each v ∈ D, and for
each u ∈ V −D there exists v ∈ D such that ipn(v,D) ∪ {v} ⊆ N(u).

There exist graphs whose only STDS is the vertex set of the graph. These graphs
were characterized by Benecke et al. [8]. Denote the set of leaves of a graph G by
L(G), and the set of support vertices by S(G).

Proposition 6.13 [8] For any graph G of order n, γst(G) = n if and only if V −
(L(G) ∪ S(G)) is independent.

Secure total domination was also investigated by Klostermeyer and Mynhardt in
[58], where the following bounds can be found. For n ≥ 1, let J2,n be the graph
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obtained from K2,n by joining the two vertices of degree n (or two nonadjacent
vertices of C4 if n = 2).

Proposition 6.14 [58] Let G be a graph without isolated vertices.

(a) If δ(G) = 1, then γs(G) < γst(G).
(b) If δ(G) ≥ 2, γs(G) ≤ γst(G) ≤ 2γs(G), and both bounds are tight.
(c) γt (G) ≤ γst(G). If G is connected, then γst(G) = γt (G) if only if γst(G) = 2,

i.e., if and only if G = K2 or J2,n is a spanning subgraph of G for some n ≥ 1.
(d) γst(G) ≤ 2θ(G), and the bound is tight (e.g., for coronas of paths).
(e) γst(G) < 3α(G).

Duginov [32] improved the bound of Proposition 6.14(e).

Theorem 6.15 [32] For every graph G without isolated vertices, γst(G) ≤ 2α(G).
The bound is tight (trivially, for Kn, n ≥ 2).

Cabrera Martínez, Montejano and Rodríguez-Velázquez [23] in turn improved
Duginov’s bound as follows.

Theorem 6.16 [23] For every graphG without isolated vertices, γst(G) ≤ γ (G)+
α(G). The bound is tight, e.g., for graphsG obtained from an arbitrary graph H by
joining each vertex of H to k new endvertices.

In the light of Theorem 6.16, it is natural to ask whether the bound given in
Proposition 6.14(b) can be improved to γst(G) ≤ γ (G)+ γs(G). Cabrera Martínez
et al. [23] showed that this is impossible in general and described classes of
graphs for which it holds. Their paper appears in an open access journal and the
classes and counterexamples are omitted here. They extended the second part of
Theorem 6.14(c) to characterize graphs with γst(G) = 3. Let G be the family of
graphs of order n ≥ 3 obtained by joining a set S of n− 3 vertices to the vertices of
P3 in such a way that S is independent and each vertex in S has degree 2.

Theorem 6.17 [23] A graph G satisfies γst(G) = 3 if and only if G has at most
one universal vertex and contains a spanning subgraph H ∈ G.

Cabrera Martínez et al. [23] obtained a number of upper bounds for γst that
hold under different conditions. We mention three of them. Let IG denote the set
of isolated vertices of the subgraph of G induced by V − (L(G) ∪ S(G)).
Theorem 6.18 [23]

(a) For any graph G of order n, diameter 2 and minimum degree δ(G) ≥ 3,
γst(G) ≤ �(5n− 2)/6�. The bound is tight, e.g., for the wheel W5 of order 5
and for K2 + P3.

(b) For any graphG with minimum degree δ(G) = 1, γst(G) ≤ 2α′(G)+|L(G)|−
|S(G)| + |IG|. An example of a graph for which his bound is tight is exhibited.

(c) For any graphG with minimum degree δ(G) ≥ 2, γst(G) ≤ 2α′(G)−δ(G)+2.
The bound is tight for the graphs mentioned in (a).
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Finally, the lower bound γst(T ) ≥ γs(T ) ≥ (�n + � − 1)/(3� − 1) for
a tree T of order n and maximum degree � of Theorem 6.5(b) combined with
Proposition 6.14(b) was improved in [8]:

Theorem 6.19 [8] If T is an n-vertex tree of maximum degree� ≥ 3, then γst(T ) ≥
(4�n+ 4�− 3n− 4)/(6�− 5), and the bound is tight for all � ≥ 3.

6.5 Complexity Results for Secure (Total) Domination

6.5.1 Secure Domination

We conclude the section on secure domination with a summary of complexity
results. Merouane and Chellali [68] showed that the decision version of the secure
domination problem is NP-complete for bipartite graphs and split graphs (a subclass
of chordal graphs). Burger, De Villiers and Van Vuuren [18] gave a linear algorithm
for determining γs(T ) of an arbitrary tree. In [16] the same authors also presented
two algorithms (a branch-and reduce algorithm and a branch-and-bound algorithm)
for determining the secure domination number of a general graphG of order n. The
worst-case time complexities of both algorithms are O(2n).

Araki and Miyazaki [1] presented a linear-time algorithm for computing a
minimum secure dominating set in a proper interval graph, while Pradhan and Jha
[71] presented a linear-time algorithm to compute a minimum secure dominating
set in block graphs, and showed that the secure domination problem is NP-complete
for undirected path graphs2 and chordal bipartite graphs.

Wang, Zhao and Deng [85] showed that the decision version of the secure domi-
nation problem is NP-complete for star convex bipartite graphs3 and doubly chordal
graphs4. They also proved that the secure domination problem (for general graphs
and also for split graphs) cannot be approximated (by a polynomial time algorithm)
within a factor of (1−ε) ln |V | for any ε > 0 unless NP ⊆ DTIME(|V |O(log log |V |)),
and that the secure domination problem is APX-complete for graphs with maximum
degree 4. The secure domination problem in any graph with maximum degree �
and minimum degree δ ≥ 1 can be approximated within an approximation ratio of
2(ln(�+ 1)+ 1).

2A graph is an undirected path graph if it is the intersection graph of a family of paths of a tree.
3A bipartite graph with partite sets X, Y is star convex bipartite if there exists a vertex x ∈ X (say)
such that every vertex y ∈ Y with deg(y) ≥ 2 is adjacent to x.
4A chordal graph is doubly chordal if its vertex set has a maximum neighborhood ordering (in
addition to a perfect elimination ordering).
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6.5.2 Secure Total Domination

Lad, Reddy and Kumar [61] showed that the decision problem of finding a minimum
secure total dominating set is NP-complete for split graphs. In a paper published at
about the same time as [61], Duginov [32] showed that the secure total dominating
set problem is NP-complete for chordal bipartite graphs, planar bipartite graphs
with girth at least p (for any fixed p ≥ 4) and maximum degree 3, split graphs, and
graphs of separability5 at most 2, and that the optimization version of this problem
can be approximated in polynomial time within a factor of c ln |V | for some constant
c > 1, but cannot be approximated in polynomial time within a factor of c′ ln |V |
for some constant c′ > 1 (even for chordal graphs), unless P = NP.

7 Open Problems

We present a number of additional conjectures and open problems on some of the
models discussed above.

7.1 Eternal Domination

Problem 7.1 Study classes of graphs G such that (i) γ∞(G) = α(G), (ii)
γ∞(G) = θ(G).

As mentioned above, we know that γ∞(G) = θ(G) if G is a series-parallel
graph, so it makes sense to pose the following question.

Problem 7.2 Is it true that γ∞(G) = θ(G) if G is planar?

A Vizing-like question was asked in [57].

Problem 7.3 Is it true for all graphsG andH that γ∞(G�H) ≥ γ∞(G)γ∞(H)?
It is easy to show that γ∞(G�H) ≥ γ (G)γ (H), because of the facts that

γ∞(G) ≥ α(G), γ (G) ≤ α(G), and α(G�H) ≥ α(G)α(H). It has also been
shown that for all graphs G and H that γ∞(G � H) ≥ α(G)γ∞(H) [31],
where � denotes the strong product. In that same paper, it was also shown that
γ∞(G�P2n+1) > γ

∞(G)γ∞(P2n+1) for all graphs G without isolated vertices.

5A connected graph is a graph of separability at most 2 if it can be constructed from complete
graphs and cycles by an iterative application of pasting along a vertex or an edge, where pasting
along a vertex (respectively, an edge) is the graph operation that takes two vertex-disjoint graphs
G and H with fixed vertices u ∈ V (G), v ∈ V (H) (fixed edges {u1, u2} ∈ E(G) and {v1, v2} ∈
E(H)) and identifies the vertices u and v (respectively, identifies the vertex u1 with v1, and the
vertex u2 with v2).
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A special case of the last result is the following.

Theorem 7.4 [31] For any isolate-free graphG of order n such that γ∞(G) ≤ n/2,

γ∞(G�P3) > γ
∞(G)γ∞(P3) = 2γ∞(G).

Proof. Arrange G�P3 as three horizontal “layers” G1 ∼= G2 ∼= G3 ∼= G (each
vertex in G2 is adjacent to its corresponding vertices of G1 and G3). Suppose
G�P3 can be defended by 2γ∞(G) guards. Attack vertices in G�P3 so that all the
guards are only on vertices of G1 and G3. If γ∞(G) < n/2, then G2 contains an
unprotected vertex, and if γ∞(G) = n/2 (and each vertex of G2 is protected), then
any attack of an unoccupied vertex in G1 causes a vertex in G2 to be unprotected.
Both cases are impossible. �

Interestingly, such a Vizing-like condition as described in Problem 7.3 was shown
not to hold for all graphsG in the all-guards-move model of eternal domination, see
[57]. One can verify this by considering P3�P3.

The next question is most appropriately couched in the original model of eternal
domination defined in [15], in which the complete attack sequence is constructed by
the attacker in advance (rather than being constructed one attack at a time as the two
players alternate turns, in which case the attacker can choose their next move based
on the defender’s previous move).

Problem 7.5 Find a function fG(n), whose growth rate is as small as possible, such
that for any n-vertex graph G and any given dominating set D, if D can defend G
against all attack sequences of length at most f (n), thenD is an eternal dominating
set, i.e., D can defend G against all attack sequences.

It seems that likely fG(n) can be bounded from above by an exponential
function. That is, for example, after 2n + 1 attacks, some guard configuration must
be repeated. Determining whether a better solution to this problem exists seems
relevant to resolving the question of whether the decision problem “IsD is an eternal
dominating set for G?” lies in the complexity class PSPACE, as mentioned in [59].
This decision problem can be solved in exponential time, as one can construct and
evaluate the auxiliary graph whose vertex set consists of all possible dominating sets
of G of cardinality |D|. This algorithm is described in, for example, [47], though it
does not imply any solution to Problem 7.5. A related problem was considered in
[4].

7.2 m-Eternal Domination

Recall the inequality chain γ (G) ≤ γ∞m (G) ≤ α(G) ≤ γ∞(G) ≤ θ(G) from
Section 5.
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Problem 7.6 Describe classes of graphs having γ (G) = γ∞m (G), γ∞(G) =
γ∞m (G), γ∞m (G) = τ(G), or γ∞m (G) = α(G).

As shown by Braga et al. in [10], there exist connected Cayley graphs, necessarily
of non-Abelian groups, whose m-eternal domination numbers exceed their domina-
tion numbers by one. This implies that there exist disconnected Cayley graphs G
such that γ∞m (G)− γ (G) is an arbitrary positive integer. The picture for connected
Cayley graphs is not so clear.

Problem 7.7 Does there exist a connected Cayley graph G such that γ∞m (G) >
γ (G)+ 1?

Problem 7.8 Find conditions under which the bound γ∞m (G) ≤ �n2 � in Theo-
rem 5.3 can be improved, and conditions under which equality holds.

Problem 7.9 Find cubic graphs of order n such that γ∞m (G) ≥ 3n/8.

7.3 Secure Domination

Problem 7.10 [68] Is it true that γs(G) ≤ 3
2α(G) for every graph G?

Problem 7.11 [22] Characterize the connected graphs G of order n with δ(G) ≥
2 satisfying γs(G) = n/2.

Problem 7.12 Can the lower bounds given in Theorem 6.5(a) and (b) be general-
ized to Kr -free graphs?

It is shown in [30] that γs(Pm�Pn) ≤ mn
3 + 2, leading to the following question.

Problem 7.13 Can a tighter bound be found for γs(Pm�Pm)?

Problem 7.14 Characterize the graphs G satisfying γst(G) = 2α(G).
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Stratified Domination

Gary Chartrand and Ping Zhang

1 Introduction

A vertex coloring c of a graph G is an assignment of colors (elements of some set)
to the vertices of G, one color to each vertex. That is, c : V (G)→ S is a function,
where S is a set of colors. If the number of colors is large, then S is typically chosen
to be the set [k] = {1, 2, . . . , k} for some positive integer k. On the other hand, if
the number of colors is relatively small, then S is often chosen to be a set of actual
colors, such as red, blue, green, etc. A vertex coloring of a graph G then results in a
partition {V1, V2, . . . , Vk} of the vertex set ofG into k color classes, where for each
i ∈ [k], the set Vi consists of the vertices of G colored i. The best known and most
studied vertex colorings are proper colorings where adjacent vertices are assigned
different colors. In this case, each color class is an independent set of vertices, that
is, the subgraphG[Vi] induced by Vi has no edges. The study of vertex colorings of
graphs originated with the study of proper vertex colorings of planar graphs, which
resulted from attempts to solve the famous Four Color Problem. Over the years,
many other vertex colorings of graphs G have been introduced where the resulting
partition {V1, V2, . . . , Vk} of the vertex set of G required each induced subgraph
G[Vi] to satisfy some prescribed property.

In 1992 Naveed Sherwani proposed studying vertex colorings of graphs G
resulting in a partition {V1, V2, . . . , Vk} of the vertex set ofG into k ≥ 2 subsets in a
way that did not specifically depend on a property of each induced subgraphG[Vi],
i ∈ [k], but on some other requirement. A graph with such a k-coloring (or such a
partition of its vertex set into k subsets) was referred to as a k-stratified graph. This
topic was initially studied in the doctoral dissertation of Rashidi [15].
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Most of the interest in this subject has been centered around the case k = 2,
that is, with 2-stratified graphs F , where then there is a partition {V1, V2} of V (F )
into two subsets. In this case it is common to refer to the two colors as red and
blue, where V1 is the set of red vertices and V2 is the set of blue vertices. Since
{V1, V2} is a partition of V (F ), there is always at least one red vertex and at least
one blue vertex and so F has order at least 2. When drawing a 2-stratified graph,
the red vertices are typically represented by solid vertices and blue vertices by open
vertices. Therefore, the graph F of Figure 1 represents a 2-stratified graph of order 6
with four red vertices u,w, x, and y and two blue vertices v and z.

In 2003, Chartrand, Haynes, Henning, and Zhang [4] observed that stratified
graphs could be used to look at domination from another point of view. In order
to describe this, a red-blue coloring of a graph G here refers to an assignment of
the color red or blue to each vertex of G, where all vertices of G may be assigned
the same color. With each connected 2-stratified graph F , there are certain red-blue
colorings of a graph G that will be of special interest to us.

2 Domination Defined by Stratification

Let F be a connected 2-stratified graph. Therefore, F has at least one red vertex and
at least one blue vertex. One blue vertex of F is designated as the root of F and is
labeled v. Thus, F is a 2-stratified graph rooted at a blue vertex v. Now let G be a
graph. By an F -coloring ofG is meant a red-blue coloring ofG having the property
that every blue vertex v ofG belongs to a copy of F rooted at v. The F -domination
number γF (G) of G is the minimum number of red vertices among all F -colorings
of G. Since a red-blue coloring of G in which every vertex of G is colored red is
vacuously an F -coloring of G, the F -domination number of G is defined for every
2-stratified graph F , for every choice of a root of F , and for every graph G. The
set of red vertices in an F -coloring of a graph is called an F -dominating set. An
F -coloring of G that results in γF (G) red vertices is called a γF -coloring. Should
it occur for a given 2-stratified graph F that a graph G of order n contains a vertex
belonging to no copy of F , then this vertex must be colored red in every F -coloring
of G. In fact, if G contains no subgraph isomorphic to F , then the only F -coloring
of G is the one in which every vertex of G is colored red and so γF (G) = n.

Fig. 1 A 2-stratified graph



Stratified Domination 481

Since a 2-stratified graph must contain at least one red vertex and at least one blue
vertex, there is only one connected 2-stratified graph of order 2, namely F = K2,
where one vertex of F is colored red and the other vertex, necessarily the root, is
blue. This 2-stratified graph F is shown in Figure 2, along with a graph G and two
F -colorings of G.

In one F -coloring of the graph G of Figure 2, there are three red vertices and in
the other there are two red vertices. Therefore, γF (G) ≤ 2. For every vertex x ofG,
there are vertices of G whose distance from x is 2 or 3 and so if x is the only vertex
ofG colored red in a red-blue coloring ofG, this coloring is not an F -coloring ofG.
That is, γF (G) �= 1 and so γF (G) = 2.

One might notice for the 2-stratified graph F = K2 of Figure 2 that an F -
dominating set in an F -coloring of a graph G is also a dominating set and so
γ (G) ≤ γF (G). On the other hand, if we were to color the vertices in a minimum
dominating set ofG red and all remaining vertices ofG blue, then the resulting red-
blue coloring of G has the property that every blue vertex of G is adjacent to a red
vertex of G; that is, this is an F -coloring of G and so γF (G) ≤ γ (G). This results
in the following observation.

Observation 2.1 ([4]) If F is the 2-stratified graph K2, then γF (G) = γ (G) for
every graph G.

What we have seen illustrates the fact that with each connected 2-stratified graph
F rooted at some blue vertex, there is associated a certain type of domination and a
corresponding domination parameter. While there is only one choice of domination
and, thus, only one domination parameter when F = K2, there are five choices
when F = P3, the path of order 3. These are all shown in Figure 3, where the five
different 2-stratified graphs rooted at a blue vertex are denoted by Fi for 1 ≤ i ≤ 5.

The values of the five domination parameters γFi (1 ≤ i ≤ 5) are shown in
Figure 4 for the graph G = P4 � K2.

Fig. 2 Two F -colorings of a graph

Fig. 3 The five 2-stratified
graphs obtained from P3
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Fig. 4 Domination
parameters γFi (1 ≤ i ≤ 5)
for the graph G = P4 � K2

For the 2-stratified graph F1 (rooted at its only blue vertex), the parameter γF1

is a familiar one. Recall that a set S of vertices in a graph G containing no isolated
vertices is a total dominating set forG if every vertex ofG is adjacent to some vertex
of S. The minimum cardinality of a total dominating set forG is the total domination
number γt (G) ofG. A total dominating set of cardinality γt (G) is called a γt -set for
G. The domination number obtained from the 2-stratified graph F1 is, in fact, the
total domination number.

Theorem 2.2 ([4]) If G is a graph without isolated vertices, then

γF1(G) = γt (G).

Proof. Let S be a γt -set for G. By coloring each vertex of S red and each vertex of
V (G)− S blue, an F1-coloring of G results. Thus, γF1(G) ≤ γt (G). We now show
that γt (G) ≤ γF (G) as well.

Among all γF1 -colorings of G, let c be one for which the number of isolated
vertices in the subgraph induced by the red vertices is minimum. Since each blue
vertex in G is adjacent to a red vertex, a minimum F1-dominating set S of red
vertices is also a dominating set S in G. Not only is every blue vertex adjacent to
a red vertex but also every red vertex is adjacent to another red vertex, as we show
next.

Assume, to the contrary, that there is a red vertex u of G adjacent only to blue
vertices. That is, u is an isolated vertex in the subgraph of G induced by S. Let v
be a neighbor of u in G. Since v is a blue vertex and the red-blue coloring is a γF1 -
coloring of G, it follows that v belongs to a copy of F1 rooted at v. So, v must be
adjacent to another red vertexw, which itself is adjacent to another red vertex, which
in turn implies that u �= w. If we were to interchange the colors of u and v, a new
γF1 -coloring c′ of G is produced. However, the γF1 -coloring c′ has fewer isolated
vertices in the subgraph induced by its red vertices, which contradicts the defining
property of c. Therefore, every red vertex is adjacent to another red vertex, which
implies that S is a total dominating set of G and so γt (G) ≤ γF1(G). Consequently,
γF1(G) = γt (G).
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While the total domination number is only defined for graphs without isolated
vertices, the F1-domination number is defined for all graphs and, in this sense, is
more general. Therefore, if G is a graph without isolated vertices, then γF1(G) =
γt (G); while if G is a nonempty graph with k ≥ 1 isolated vertices and G =
H + kK1, then γF1(G) = γt (H)+ k.

As is illustrated for the graphG = P4 �K2 in Figure 4, every Fi-dominating set
of G is a dominating set of G except when i = 3. For this graph G, the domination
number γ (G) = 3, which is the same value as γF2(G) and γF4(G). That γF2(G) =
γ (G) for G = P4 � K2 is not a coincidence, as we show next.

Theorem 2.3 ([4]) If G is a connected graph of order 3 or more, then

γF2(G) = γ (G).

Proof. Since the red vertices in any F2-coloring of G form a dominating set
of G, it follows that γ (G) ≤ γF2(G). Consequently, we need only show that
γF2(G) ≤ γ (G). Among all γ -sets of G, let S be one so that the corresponding
red-blue coloring has the maximum number of blue vertices v that belong to a copy
of F rooted at v. We show that this red-blue coloring is, in fact, an F2-coloring ofG.
Suppose that this is not the case. Then there is a blue vertex v that does not belong
to a copy of F2 rooted at v.

Since S is a dominating set of G, the blue vertex v is adjacent to a (red) vertex
w ∈ S. Because v does not belong to a copy of F2 rooted at v, it follows that w
is adjacent to no blue vertex other than v. Should it occur that v is adjacent to a
blue vertex u, then interchanging the colors of v and w produces a γ -set whose
associated red-blue coloring contains more blue vertices v′ that belong to a copy of
F2 rooted at v′ than does the associated coloring of S, which is impossible. Hence,
v is not adjacent to any blue vertex in G. Suppose that v is adjacent to a red vertex
x different from w. Necessarily, x is not adjacent to any blue vertex different from
v. However, in this case, (S − {w, x})∪ {v} is a dominating set ofG with γ (G)− 1
vertices, which is impossible. Therefore, v is an end-vertex of G.

SinceG is a connected graph of order at least 3, it follows thatwmust be adjacent
to a vertex y different from v and, furthermore, y must be a red vertex. If y were an
end-vertex ofG, then S−{y} would be a dominating set ofG, which is impossible.
If y were adjacent only to red vertices, then here too S−{y} would be a dominating
set of G, again impossible. Therefore, y must be adjacent to a blue vertex z. By
interchanging the colors of v and w, a γ -set is produced whose associated red-blue
coloring contains more blue vertices v′ that belong to a copy of F2 rooted at v′ than
does the associated coloring of S, which cannot occur.

It therefore follows that every blue vertex v of G belongs to a copy of F2 rooted
at v, which implies that the red-blue coloring associated with S is an F2-coloring of
G and so γF2(G) ≤ γ (G). Therefore, γF2(G) = γ (G).

We will omit discussing the 2-stratified graph F3 for the present and turn to
the 2-stratified graph F4. First, we recall another well-known type of domination.
A set S of vertices in a graph G is called a restrained dominating set if every
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vertex of G not in S is adjacent to both a vertex in S and a vertex in V (G) − S.
Since S = V (G) is vacuously a restrained dominating set of G, every graph has a
restrained dominating set. The restrained domination number γr(G) of a graph G
is the minimum cardinality of a restrained dominating set for G. In an F4-coloring
of a graph, every blue vertex is adjacent to both a red vertex and a blue vertex. This
leads us to the following observation.

Observation 2.4 ([4]) For every graph G, γF4(G) = γr(G).
For a positive integer k, a set S of vertices in a graph G is a k-dominating set if

every vertex not in S is adjacent to at least k vertices in S. The k-domination number
γk(G) is the minimum cardinality of a k-dominating set for G. For k = 1, we see
that γ1(G) = γ (G); while for k = 2, we have the following observation.

Observation 2.5 ([4]) For every graph G, γF5(G) = γ2(G).

3 The Stratified Domination Number γF3

The table below summarizes the four stratified domination parameters described in
the preceding section and the well-known domination parameters that correspond to
these.

i 1 2 4 5

γFi γt γ γr γ2

While the stratified domination number γF3 does not correspond to any well-
known domination parameter, this parameter has become the object of study in
several papers. For example, Henning and Maritz [11] obtained the following three
results, the first of which gives the value of this parameter for paths.

Theorem 3.1 ([11]) For each positive integer n,

γF3(Pn) =
⌊
n+ 7

3

⌋

+
⌊n

3

⌋
−
⌈n

3

⌉
.

Proof. We proceed by the Strong Form of Induction on the order n of Pn. It
is straightforward to see that the formula for γF3(Pn) holds for n ∈ [5] =
{1, 2, 3, 4, 5}. This is the base of the induction. Assume for an integer n ≥ 6 that

γF3(Pi) =
⌊
i+7

3

⌋
+ ⌊

i
3

⌋ − ⌈
i
3

⌉
for every integer i with i ∈ [n − 1]. We show that

γF3(Pn) =
⌊
n+7

3

⌋
+ ⌊

n
3

⌋− ⌈
n
3

⌉
. Let P = Pn = (v1, v2, . . . , vn).

First, we claim that there exists a γF3 -coloring of P in which v1 and v4 are
colored red and v2 and v3 are colored blue. Let there be given a γF3 -coloring of
P . Suppose, in this coloring, that v1 is colored blue. Then v2 must be blue as well
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and v3 must be red. However, in this case, there is no copy of F3 rooted at v2, which
is impossible. So, v1 must be colored red. Consequently, vn must also be colored
red. Therefore, in any γF3 -coloring of P , the two end-vertices of P are red.

If v2 is colored blue, then v3 is blue and v4 is red, which verifies the claim. On
the other hand, suppose that v2 is colored red in the given γF3 -coloring of P . If v3
is blue, then v4 is blue and v5 is red. By interchanging the colors of v2 and v4, a
new γF3 -coloring of P is obtained in which v1 and v4 are red and v2 and v3 are
colored blue, as desired. Suppose, though, that v3 is red. Then v4 must be blue, for
otherwise v4 is red and the vertices v2 and v3 could be recolored blue to produce
an F3-coloring of P having two fewer red vertices, which is impossible. Thus, as
claimed, v4 is blue, which implies that v5 is blue and v6 is red. If we now recolor
v2 and v3 blue and recolor v4 and v5 red, a new γF3 -coloring of P is produced in
which v1 and v4 are red and v2 and v3 are blue. This then verifies our claim.

Let there be given a γF3 -coloring of P in which v1 and v4 are red and v2 and v3
are blue. Let P ′ = (v4, v5, . . . , vn) be the subpath of P of order n − 3, where the
colors of the vertices in P ′ are those in P . This coloring of P ′ is an F3-coloring of
P ′ with γF3(P )− 1 red vertices. Hence, γF3(P

′) ≤ γF3(P )− 1. On the other hand,
any γF3 -coloring of P ′ colors its end-vertices v4 and vn red and can therefore be
extended to an F3-coloring of P by coloring v1 red and v2 and v3 blue. Therefore,
γF3(P ) ≤ γF3(P

′)+ 1 and so γF3(P ) = γF3(P
′)+ 1. By the induction hypothesis,

γF3(P
′) =

⌊
(n− 3)+ 7

3

⌋

+
⌊
n− 3

3

⌋

−
⌈
n− 3

3

⌉

.

Thus,

γF3(Pn) =
(⌊
n+ 4

3

⌋

+ 1

)

+
(⌊
n− 3

3

⌋

+ 1

)

−
(⌈
n− 3

3

⌉

+ 1

)

=
⌊
n+ 7

3

⌋

+
⌊n

3

⌋
−
⌈n

3

⌉
.

Therefore, the formula for γF3(Pn) holds for each positive integer n.

Let H1 = P6 and for k ≥ 2, let Hk be the tree obtained from the disjoint union
of the star K1,k+1 and a subdivided star S(K1,k) by joining a leaf of the star to the
central vertex of the subdivided star. Figure 5 shows the trees H1,H2, and H3. Let
H = {Hk : k ≥ 1}.

Fig. 5 The trees H1, H2, and H3
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There is a sharp upper bound for the F3-domination number of a tree that is not
a star in terms of the order of the tree.

Theorem 3.2 ([11]) If T is a tree of order n with diam(T ) ≥ 3, then γF3(T ) ≤
2n/3 with equality if and only if T ∈ H.

For the tree H3 of order 12 in H, it follows by Theorem 3.2 that γF3(H3) = 8 =
2n/3. A γF3 -coloring of H3 is shown in Figure 6.

When the diameter of a tree T is at least 6, the upper bound for γF3(T ) given in
Theorem 3.2 is not sharp, but yet cannot be improved asymptotically.

Corollary 3.3 ([11]) If T is a tree of order n with diam(T ) ≥ 6, then γF3(T ) <

2n/3 and this bound is asymptotically best possible.

Proof. By Theorem 3.2, γF3(T ) < 2n/3. It remains therefore to show that the upper
bound 2n/3 is asymptotically best possible. Let � ≥ 3 be a fixed integer and let k be
a positive integer. Let T be the tree obtained fromHk by attaching a path of length �
at the central vertex w of the subdivided star inHk . (The tree T is shown in Figure 7
for the case where � = k = 3.) Let P be the resulting path of order �+ 1 emanating
from w. Then diam(T ) = �+ 3 ≥ 6 and n = |V (T )| = 3k + �+ 3.

If there is an F3-coloring of T in which w is red, then all vertices of the
subdivided star must be red as well. Furthermore, at least one end-vertex of T in
the star must be red and at least �/3 vertices of P must be red (in addition to w).
If there is an F3-coloring of T in which w is blue, then all end-vertices of T in
both the star and the subdivided star must be red, as well as the center of the star
must be red. In addition, at least (�+2)/3 additional vertices (including at least one
neighbor of w) are red. Consequently, there are at least 2k + (�+ 5)/3 red vertices
in T . Therefore,

lim
k→∞

γF3(G)

n
= lim
k→∞

2k + (�+ 5)/3

3k + �+ 3
= lim
k→∞

6k + �+ 5

9k + 3�+ 9
= 2

3

and so limk→∞ γF3(G) = 2n
3 .

Fig. 6 γF3 (H3) = 8 = 2n/3

Fig. 7 The tree T in the
proof of Corollary 3.3 when
� = k = 3
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The following realization result concerning Theorem 3.2 was presented in [10].

Theorem 3.4 ([10]) For every pair k, n of integers with 4 ≤ k ≤ 2n/3, there exists
a tree Tk of order n with γF3(Tk) = k.

As stated in Theorem 3.2 and Corollary 3.3, if T is a tree of order n and
diameter 3 or more, then γF3(T ) is bounded above by 2n/3. Of course, the minimum
degree of every tree is 1. If G is a connected graph of order n with δ(G) ≥ 2,
then Henning and Maritz [12] obtained an improved upper bound for γF3(G). To
describe this result, we refer to the two graphs H1 and H2 shown in Figure 8 and let
S = {C4, C5, C8,H1,H2}.
Theorem 3.5 ([12]) If G is a connected graph of order n with δ(G) ≥ 2, then
γF3(G) ≤ (n− 1)/2 unless G ∈ S, in which case γF3(G) = �n/2� for each G ∈ S.

Henning and Maritz [12] also characterized those graphs G of order n ≥ 9 with
δ(G) ≥ 2 for which γF3(G) = (n− 1)/2.

In [2], Chang, Kuo, Liaw, and Yan determined the F3−domination numbers of
Cartesian products of certain graphs, namely Pm � Pn and Cm � Pn for some
specific values ofm and n. In [1], Chang, Chang, Kuo, and Poon showed that the F3-
domination problem is NP-complete for bipartite planar graphs and chordal graphs,
They also described a linear-time algorithm for the F3-domination problem for trees.

4 On 2-Stratified Triangle Domination

The five 2-stratified graphs Fi (1 ≤ i ≤ 5) are all based on the path P3 of order 3.
The only other connected graph of order 3 is the 3-cycle C3. There are two 2-
stratified graphs based on this graph, both shown in Figure 9, which are denoted
by F6 and F7.

Necessarily, in any F6-coloring or F7-coloring of a graph, a vertex belonging
to no triangle must be colored red. Since F6 contains two red vertices while F7

Fig. 8 The graphs H1
and H2

Fig. 9 The two 2-stratified
K3
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Fig. 10 A graph H with γF7 (H) > γF6 (H).

contains one red vertex, this may suggest that γF7(G) ≤ γF6(G) for every graph G,
but this is not the case. For example, for the graph H of Figure 10, γF7(H) = 4
and γF6(H) = 3. Appropriate γF7 -colorings and γF6 -colorings of H are given in
Figure 10 as well.

In a γF6 -coloring of a graph in which every vertex lies on a triangle, every blue
vertex belongs to a triangle where two-thirds of the vertices are red. In fact, in every
γF6 -coloring of such a graph, at most two-thirds of the vertices of the graph are red.
In the following result, it is useful to recall the following fact.

Proposition 4.1 ([9]) If G is a graph of order n without isolated vertices, then

γ (G) ≤ n
2
.

Theorem 4.2 ([4]) IfG is a graph of order n in which every vertex is in a triangle,
then

γF6(G) ≤
2n

3
.

Proof. Suppose that the theorem is false. Then there exists a graph G of order n in
which every vertex lies on a triangle but γF6(G) > 2n/3. We may assume that every
edge of G also lies on a triangle for if G contains edges belonging to no triangle,
then the graph G′ obtained by deleting these edges from G has the property that
γF6(G

′) = γF6(G).
Among all γF6 -colorings of G, we choose one that maximizes the number of red

triangles (triangles all of whose vertices are red). For this γF6 -coloring, let B =
{b1, b2, . . . , bk} be the set of blue vertices and R the set of red vertices. Therefore,

γF6(G) = |R| = n− k > 2n/3

and so n > 3k. Thus, |R| = n− k > 2k.
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The set R is now partitioned into two sets R1 and R2 as follows. For each i ∈ [k],
there is a copy Ti of F6 rooted at the blue vertex bi . Therefore, Ti has two red vertices
and one blue vertex bi . The set R1 is now defined as

R1 =
(
k⋃

i=1

V (Ti)

)

− B;

that is, R1 consists of all red vertices lying on at least one triangle Ti (1 ≤ i ≤ k).
The set R2 = R − R1 consists of any remaining red vertices of G.

Since | ∪ki=1 V (Ti)| ≤ 3k and |B| = k, it follows that |R1| = 2k − � for some
integer � with 0 ≤ � ≤ 2(k − 1) as R1 consists of at least two red vertices. Since
|R1| + |R2| = |R| > 2k and |R1| ≤ 2k − �, it follows that |R2| > � and so
|R2| = �+ r for some positive integer r .

We claim that every triangle of G containing a red vertex of R2 has two blue
vertices. Suppose that this is not the case. Then there exists some vertex x of R2
that either belongs to a red triangle or to a triangle with exactly one blue vertex.
If x is in a red triangle, then x may be recolored blue to produce an F6-coloring
of G having fewer than γF6(G) red vertices, which is impossible. Suppose that x
belongs to a triangle T with exactly one blue vertex, say bi . Since x ∈ R2, the
triangle T containing x is not one of the triangles Tj (1 ≤ j ≤ k). On the other
hand of course, bi belongs to the triangle Ti whose other two vertices are red. If
we interchange the colors of x and bi (see Figure 11), a new γF6 -coloring of G is
produced that contains more red triangles than our original γF6 -coloring, which is
also impossible. Therefore, as claimed, every triangle containing a (red) vertex of
R2 contains two blue vertices.

Next, we claim that |B| ≥ |R2| + 1, for if, instead, |B| ≤ |R2|, then the colors
of the vertices in B ∪ R2 could be interchanged to produce an F6-coloring of G
containing no more than γF6(G) red vertices but with more red triangles than in the
original γF6 -coloring, which is not possible. Therefore, |B| ≥ |R2| + 1, as claimed.

For each i ∈ [k], let ei be the edge in the triangle Ti that is not incident with bi
and let

EB = {ei : i ∈ [k]}.

That is, EB consists of those k edges of G that join two red vertices in the
triangles Ti , where i ∈ [k]. Furthermore, let H = G[EB ]. Therefore, V (H) = R1

Fig. 11 A step in the proof
of Theorem 4.2
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andE(H) = EB . LetR′1 be a γ -set of the graphH . SinceH has no isolated vertices,
it follows by Proposition 4.1 that

|R′1| ≤ |V (H)|/2 = k − �/2.

We now interchange the colors of the vertices in B ∪ (R − R′1). We claim that
this new red-blue coloring of G is also an F6-coloring of G. Let v be a blue vertex
of G. Then v ∈ R − R′1, which implies that either (1) v ∈ R2 or (2) v ∈ R1 − R′1.
If v ∈ R2, then in the original red-blue coloring of G, v belongs to a triangle with
two blue vertices. Then, after the interchange of colors, v belongs to a copy of F6
rooted at v. Should it occur, however, that v ∈ R1−R′1, then v is adjacent to a vertex
u ∈ R′1. Thus, uv = ei for some i ∈ [k]. After the interchange of colors, the vertices
u and bi are red and so v belongs to a copy of F6 rooted at v. Therefore, as claimed,
this new red-blue coloring of G is an F6-coloring of G.

Since

|R′1| + |B| ≤ 2k − �/2 < 2k + r = |R| = γF6(G),

it follows that the number of red vertices in this F6-coloring is less than γF6(G),
which is impossible. Therefore, γF6(G) ≤ 2n/3.

The upper bound for γF6(G) given in Theorem 4.2 is sharp. For example, for the
graph G of order n = 12 shown in Figure 12, γF6(G) = 8 = 2n/3.

We now turn our attention to the domination parameter γF7 . We saw in
Theorem 4.2 that if G is a graph of order n in which every vertex is in a triangle,
then γF6(G) ≤ 2n/3. The corresponding result for the 2-stratified graph F7 is stated
below.

Theorem 4.3 ([4]) If G is a graph of order n in which every vertex lies on a
triangle, then

γF7(G) <
n

2

and this bound is asymptotically best possible.

Henning and Maritz [11] stated that there may be an improved upper bound
for γF7(G) for a graph G in which every vertex lies on a triangle.

Fig. 12 A graph G of order
n with γF6 (G) = 2n/3
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Conjecture 4.4 ([11]) If G is a graph of order n in which every vertex is in a
triangle, then

γF7(G) ≤
n

2
− 1

8

(√
8n+ 1 − 1

)
.

We now recall another well-known domination parameter. A dominating set of a
graph G that is independent is an independent dominating set for G. The minimum
cardinality of an independent dominating set for G is the independent domination
number i(G). It is known that for every graph, its independent domination number
is at least as large as its domination number. Whatever the values of these two
parameters may be, however, for a graph each of whose edges is on a triangle, the
F7-domination number lies between them.

Theorem 4.5 ([4]) If G is a graph in which every edge lies on a triangle, then

γ (G) ≤ γF7(G) ≤ i(G).

Proof. Since, in every F7-coloring of G, every blue vertex is adjacent to a red
vertex, the set of red vertices in G is a dominating set and so γ (G) ≤ γF7(G).
It therefore only remains to show that γF7(G) ≤ i(G).

Let S be a minimum independent dominating set of G. Thus, |S| = i(G). Let
each vertex of S be colored red with all remaining vertices of G colored blue.
Therefore, every blue vertex is adjacent to a red vertex. By assumption, every edge
of G lies on a triangle. Also, S is an independent set. Therefore, each blue vertex
of G is rooted in a copy of F7. Consequently, this red-blue coloring of G is an
F7-coloring of G, which implies that γF7(G) ≤ i(G).

The two inequalities in the statements of Theorem 4.5 can be strict. To see this,
we consider the graph H of Figure 13, where seven vertices of H are labeled as u,
v, w, w1, w2, w3, x. Since {u,w, x} is a γ -set of H , it follows that γ (H) = 3. The
red-blue coloring whose set of red vertices is {u, v,w, x} is a γF7 -coloring of H .
Hence, γF7(H) = 4. Furthermore, {u,w1, w2, w3, x} is an i-set and so i(H) = 5.
Therefore, γ (H) < γF7(H) < i(H) for the graphH . This is illustrated in Figure 13.

While Figure 13 shows a graph H with γ (H) = 3, γF7(H) = 4, and i(H) =
5, there are no restrictions on the possible values of these three parameters for a
graph G other than those given in Theorem 4.5 and that γ (G) ≥ 2.

Theorem 4.6 ([4]) For every three integers a, b, c with 2 ≤ a ≤ b ≤ c, there is
a connected graph G in which every edge lies on a triangle such that γ (G) = a,
γF7(G) = b, and i(G) = c.

In the statement of Theorem 4.5, it is required that every edge of G lies on a
triangle of G. If, however, we require only that every vertex of G lies on a triangle
ofG, then the conclusion does not follow. For example, for the graphG of Figure 14,
every vertex is on a triangle of G but yet γ (G) = i(G) = 3 while γF7(G) = 4.
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Fig. 13 A graph H with γ (H) = 3, γF7 (H) = 4, and i(H) = 5

Fig. 14 A graph G with
γ (G) = i(G) = 3 and
γF7 (G) = 4

5 Stratified Domination for Further Study

Much of the research on stratified domination has been done when the 2-stratified
graph F is either P3 or C3 (also described in [5, 8, 10]). This is quite natural in the
case of P3 since, as we saw, this includes standard domination, total domination,
restrained domination, and 2-domination. Also, these 2-stratified graphs are much
easier to investigate. On the other hand, when F = K1,3 (a claw) or F = C4,
stratified domination based on 2-stratifications of these two graphs has also been
investigated, especially for prisms, in [3] and [13]. Prisms were the object of study
as well in [6] and [7] when F = C5 and F = C6, respectively.

Another possibility deals with investigating alternative definitions of domina-
tion in terms of more than one 2-stratified graph. For an integer k ≥ 2, let
H1,H2, . . . , Hk be 2-stratified graphs, each rooted at a blue vertex and let H =
{H1,H2, . . . , Hk}. By an H-coloring of a graph G is meant a red-blue coloring of
the vertices of G such that every blue vertex of G is rooted at a copy of Hi for
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Fig. 15 Examples of
H-colorings

Fig. 16 The 2-stratified P4

every integer i with 1 ≤ i ≤ k. The H-domination number γH(G) is the minimum
number of red vertices in an H-coloring of G.

For example, let F1, F2, . . . , F5 be the five 2-stratified graphs of the path P3
of order 3 shown in Figure 3 and let F6, F7 be the two 2-stratified graphs of the
triangle K3 shown in Figure 9. If F = {F1, F2, . . . , F5}, then the red-blue coloring
of G1 in Figure 15 is an F-coloring of G1; while if F = {F1, F2, . . . , F7}, then the
red-blue coloring of G2 in Figure 15 is an F-coloring of G2.

When F = {F1, F4}, F-colorings of graphs have been investigated in [14]. Thus,
in such an F-coloring of a graphG, every blue vertex is rooted at both a copy of F1
and a copy of F4. Therefore, an F-coloring of a graph G is the same as an F8-
coloring of G, where F8 is the 2-stratified P4 rooted at the vertex v, as shown in
Figure 16.

In order to describe a result obtained on the F-domination number of graphs for
this set F of two 2-stratified graphs P3, we define another additional term. A set S
of vertices in a graph G is a total restrained dominating set of G if S is both a total
dominating set and a restrained dominating set. The total restrained domination
number of G is the minimum cardinality of a total restrained dominating set for G
and is denoted by γtr (G). The following results are due to Henning and Maritz [14].

Theorem 5.1 ([14]) Let F = {F1, F4}. If G is a graph without isolated vertices,
then

max{γt (G), γr(G)} ≤ γF (G) ≤ γtr (G).

Proof. By assigning the color red to those vertices belonging to a minimum total
restrained dominating set of a graph G and blue to the remaining vertices of G,
an F-coloring of G is achieved, which implies that γF (G) ≤ γtr (G). To verify the
lower bound for γF (G), we first observe that the set of red vertices in an F-coloring
of a graph G is a restrained dominating set of G and so γr(G) ≤ γF (G). Also,
observe that the set of red vertices in an F-coloring of a graph G without isolated
vertices need not be a total dominating set ofG as there could be isolated vertices in
the subgraph of G induced by the red vertices. However, every F-coloring of G is
also an F1-coloring of G. Therefore, there exists an F1-coloring of G with γF (G)
red vertices.

Among all F1-colorings of G with γF (G) red vertices, we select one having
the minimum number of isolated vertices in the subgraph of G induced by its
red vertices. Then, as shown in the proof of Theorem 2.2, every red vertex in
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such an F1-coloring is adjacent to another red vertex. Thus, the red vertices form
a total dominating set of G, which implies that γt (G) ≤ γF (G). Therefore,
max{γt (G), γr(G)} ≤ γF (G).

For F = {F1, F4}, the F-domination number has been determined for all cycles.

Theorem 5.2 ([14]) Let F = {F1, F4}. For integers n ≥ 3 and i = 0, 1, 2, 3,

γF (Cn) = n+ i2

when n ≡ i (mod 4).

An upper bound for γF (G) has also been determined in terms of the order and
maximum degree of a graph G.

Theorem 5.3 ([14]) Let F = {F1, F4}. If G is a connected graph of order n where
2 ≤ δ(G) ≤ �(G) ≤ n− 2, then

γF (G) ≤ n−�(G)+ 1.

Furthermore, this bound is sharp.

Theorem 5.4 ([14]) Let F = {F1, F4}. If G is a connected graph of order n ≥ 4
with δ(G) ≥ 2 where C �= C7, then

γF (G) ≤ 2n

3
.

For an integer k ≥ 2, let H1,H2, . . . , Hk be 2-stratified graphs, each rooted at a
blue vertex and let H = {H1,H2, . . . , Hk}. By an H̃-coloring of a graphG is meant
a red-blue coloring of the vertices of G such that every blue vertex of G is rooted
at a copy of exactly one Hi , 1 ≤ i ≤ k, and for each 2-stratified graph Hi , there is
at least one blue vertex v of G such that there is a copy of Hi rooted at v. The H̃-
domination number γH̃(G) is the minimum number of red vertices in an H̃-coloring
of G.

For example, let F1, F2, . . . , F5 be the five 2-stratified graphs of the path P3 of
order 3 shown in Figure 3. In Figure 17, an F̃-coloring of a graph is shown for each
of the ten different choices of F = {Fi, Fj } where 1 ≤ i < j ≤ 5 as well as an
F̃-coloring of a graph for F = {F1, F2, F3}. In each red-blue coloring of a graph in
Figure 17, we label a blue vertex v by an integer i ∈ [5] to indicate that v is rooted
at a copy of Fi .

1. The coloring of G1 is an F̃-coloring where F = {F1, F2}.
2. The coloring of G2 is an F̃-coloring where F is {F1, F3} or {F1, F4}.
3. The coloring of G3 is an F̃-coloring where F = {F1, F5}.
4. The coloring of G4 is an F̃-coloring where F = {F2, F3}.
5. The coloring of G5 is an F̃-coloring where F = {F2, F4}.
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Fig. 17 Examples of F̃-colorings

6. The coloring of G6 is an F̃-coloring where F = {F2, F5}.
7. The coloring of G7 is an F̃-coloring where F = {F3, F4}.
8. The coloring of G8 is an F̃-coloring where F = {F3, F5}.
9. The coloring of G9 is an F̃-coloring where F = {F4, F5}.

10. The coloring of G10 is an F̃-coloring where F = {F1, F2, F3}.
Among the possible topics for investigation in this area are the following.

1. Which graphs have an H̃-coloring for various sets H?
2. For a given set H, what is the minimum order of a graph possessing an H̃-

coloring?
3. For a given set H, what is the minimum size of a graph of a fixed order possessing

an H̃-coloring?
4. Determine γH̃(G) for graphsG belonging to some well-known classes of graphs.
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Global Domination

Robert C. Brigham, Julie R. Carrington, and Ronald D. Dutton

1 Introduction

The notion of a dominating set of a graph has been extended in a natural way to
a collection of vertices that simultaneously dominates two or more graphs having
the same vertex set. This concept was introduced independently by Sampathkumar
(1989) [41] (who coined the term global domination used here) and Brigham and
Dutton (1990) [8] (under the name factor domination). The following defines global
dominating sets and related concepts.

Definition 1 Let H = (V ,E) be a graph having spanning subgraphs Fi =
(V ,Ei), 1 ≤ i ≤ k, where E1, E2, . . . , Ek partition E. The Fi are called factors
of H . Then Dg ⊆ V is a global dominating set (GDS) if Dg is a dominating set
for each Fi , 1 ≤ i ≤ k. The cardinality of a smallest such set, designated by
γg(F1, F2, . . . , Fk), is the global domination number of the factoring. A dominating
set Di for a factor Fi is a local dominating set (LDS) and a minimum such set has
cardinality designated by γi , called the local domination number of Fi .

If the context makes the factors clear, the notation γg(F1, F2, . . . , Fk) is reduced
to γg or γg(H). An example of a factoring is shown in Figure 1. It is easy to see that
γ (H) = 1, γ (F1) = 2, and γ (F2) = γ (F3) = 3. Since vertex v5 is isolated in F2,
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it must be in any global dominating set. No set containing v5 and two other vertices
dominates every factor, but {v2, v3, v4, v5} does. Thus γg(H) = γg(F1, F2, F3) =
4.

Since both a global dominating set and ∪ki=1Di dominate all factors, we have

Observation 2 For any factoring of graph H ,

max{γ1, γ2, . . . , γk} ≤ γg ≤ γ1 + γ2 + · · · + γk.

The lower bound is achieved by K4 with factors F1 = C4 and F2 = 2P2 for
which γ (F1) = γ (F2) = γg(K4) = 2. For an example of the sharpness of the
upper bound, consider the graph H of Figure 2 with factors F1 and F2 partitioning
its edges. It can be seen that γ (F1) = γ (F2) = 2 and γg(H) = 4.

Both Sampathkumar [41] and Brigham and Dutton [8] concentrated on the
important case of when there are two factors of Kn: a graph G and its complement
G. In this special situation, we write γg(G,G) as γg(G), so then γg(G) = γg(G).
The value of γg(G) has been computed for several common families of graphs.

Fig. 1 Example of factoring of a graph

Fig. 2 Example where γg(H) = γg(F1, F2) = γ (F1)+ γ (F2)
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Theorem 3 For the path Pn on n ≥ 2 vertices we have

γg(Pn) =
{

2 if n = 2, 3
�n/3� if n ≥ 4

.

Proof: Let Pn have vertices v1, v2, . . . , vn in order. When n = 2, both v1 and v2
are isolated in P2 and thus both must be in a global dominating set. For n = 3, v2 is
isolated in P3 and hence must be in any global dominating set. Furthermore v1 and
v2 dominate both P3 and P3. For n ≥ 4, it is well known γ (Pn) = �n/3� (see [10]
page 85). If n = 4, v1 and v4 dominate both P4 and P4 and �4/3� = 2. For n ≥ 5, a
minimum dominating set can always include v2, and v5 which also dominate Pn. �

Values are given next for Kn, Cn, and Wn which are the complete graph,
cycle, and wheel, respectively, on n vertices and for the complete r-partite graph
Kn1,n2,...,nr .

γg(Kn) = n

γg(Cn) =
{

3 if n = 3, 5
�n/3� otherwise

γg(Wn) =
{

4 if n = 4
3 otherwise

γg(Kn1,n2,...,nr ) = r

Definition 1 makes no assumption that the union of the factors must be the
complete graph. Carrington (1992) [10] studied the general case extensively.

A modified definition of global domination, called simultaneous domination, has
been considered by Dankelmann, Henning, Goddard, and Laskar (2006) [15] and
Caro and Henning (2014) [9]. Here the definition is the same except the factors need
not be edge disjoint. The smallest size of a simultaneous domination set of graph H
with factors F1, F2, . . . , Fk is indicated by γsd(F1, F2, . . . , Fk) in all quoted results
from these papers.

A possible application is a communication network, modeled by H , with k edge
disjoint subnetworks, represented by the factors Fi . The subnetworks might be
required for reasons of security, redundancy, or limitation of recipients for different
classes of messages. The number γg(H) then represents the minimum number of
“master” stations required so that a message issued simultaneously from all masters
reaches all desired recipients after traveling over only one communication link, no
matter which subnetworks are active.

As another example, suppose there is a collection V of entities (people, countries,
etc.) where the two entities for each pair are either friends or foes. Let G be the graph
with vertex set V and edge vivj , vi, vj ∈ V , if and only if vi and vj are friends.
Then the edges of the complementG correspond to pairs of vertices which are foes.
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Then γg(G) is the smallest set Dg of entities such that any entity in V − Dg is
neither friends with all the entities ofDg nor foes with all of them. Such a set might
form an acceptable mediation panel for all parties.

Graph partitioning is important in the implementation of parallel algorithms.
In this light, communication networks and their underlying graphs are often
partitioned, either to impose a particular structure or to reflect routes taken by
messages as they proceed through a network. See Berry (1990) [6], Bouloutas and
Gopar (1989) [7], and Theimer and Lantz (1988) [45]. Carrington [10] discusses two
global domination applications in detail and supplies references where such a parti-
tioning is important. One of the applications involves binary constraint satisfaction
problems and the other multicast messages in a communication network.

Section 2 presents general results with no restrictions on the definition and
Section 3 deals with the special case of complementary factors. As with domination
itself, some global domination research has considered restriction to special classes
of graphs or branched to other forms of domination. Section 4 discusses several
of these variations. Two of these, global total domination and global Roman
domination, have received more interest than most and are covered in Sections 5
and 6, respectively. Finally Section 7 gives possible areas for further research that
are mentioned in the literature.

Notation, whenever possible, agrees with that listed in the chapter “Glossary of
Common Terms”. A consequence is that some results presented in this chapter may
not appear as presented in the original papers. This is certainly true with regard to
independence numbers, covering numbers, packing numbers, and matching num-
bers whose symbols receive special attention in the chapter “Glossary of Common
Terms”. For example, Section 3 gives the bound γg(G) ≤ min{α′(G)+1, α′(G)+1}
when neither G nor G has isolated vertices. Here α′(G) refers to the maximum
cardinality of a maximal matching in G. The paper [8] from which this is taken
actually presents the inequality as γf ≤ min{β1, β1} + 1 in which β1 = β1(G)

means the same thing. This example also illustrates other points to keep in mind
when turning to the original references. In general an invariant is shown here with
an argument illustrating the graph to which it applies, as in α′(G), whereas the
original paper may not. Furthermore, note that γf has been changed to γg(G),
again to maintain a uniformity of notation. One exception to the above is the use
of n throughout to indicate the number of vertices of a graph. If the graph under
consideration is clear, no argument is associated with n.

2 General Results

In this section we report results based on the definitions given in the introduction.
Most unattributed ones can be found in [41] or [8].
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2.1 Fundamental Facts

The global domination problem can be transformed into one of standard domination
by constructing a graph Ĥ beginning with disjoint copies of H , F1, F2, . . . , Fk and
joining vertex u of the copy of H to vertex u of the copy of Fi and to all vertices
of this Fi which are adjacent to u in Fi , for all u ∈ V (H) and i = 1, 2, . . . , k.
Thus u in Ĥ dominates itself and every vertex that is adjacent to u in every factor. It
follows that γ (Ĥ ) = γg(F1, F2, . . . , Fk). The ideas behind this result can be seen
in the simple example shown in Figure 3. A minimum global dominating set of H
with factors F1 and F2 is {v1, v2, v4} which also is a minimum dominating set of Ĥ .

The following decision problem clearly is in NP.

k-FACTOR DOMINATING SET
INSTANCE: Graph H = (V ,E); factors F1, F2, . . . , Fk with k ≥ 2; integer
M ′ ≤ |V |.
QUESTION: Is there a factor dominating set of sizeM ′ or less?

K-FACTOR DOMINATING SET can be shown to be NP-Complete by transforming
any instance of graph H and integer M of the NP-Complete problem DOMINAT-
ING SET (Garey and Johnson, 1979 [27]) to it by the polynomial transformation
producing the joinH + (k−1)K1, where the vertices not inH are v1, v2, . . . , vk−1,
factor Fi has only the edges incident to vi for 1 ≤ i ≤ k − 1, factor Fk =
H∪(k−1)K1, and positive integerM+(k−1). Then the instance of DOMINATING
SET is a yes if and only if the corresponding instance of k-FACTOR DOMINATING
SET is a yes. Carrington [10] and Carrington and Brigham (1992) [12] have shown
that the problem remains NP-complete even when the factors are greatly simplified,
namely, when each of the factors is a path; when there are four factors and each of
them is a caterpillar; or when there are four factors and each of them is a forest all
the components of which are K1 or K2.

A natural question following from Observation 2 is if, given any positive integers
a, a1, a2, . . . , ak satisfying max{a1, a2, . . . , ak} ≤ a ≤ a1 + a2 + · · · + ak , there
is a graph G with factors F1, F2, . . . , Fk such that γ (Fi) = ai for 1 ≤ i ≤ k and
γg(F1, F2, . . . , Fk) = a. This is discussed in Carrington and Brigham (1991) [11]
and in [10].

Theorem 4 (Carrington [10]) Consider a set of k + 1 integers γg, γ1, γ2, . . . , γk ,
such that 2 ≤ γ1 ≤ γ2 ≤ . . . ≤ γk ≤ γg ≤ γ1+γ2+ . . .+γk . Then there is a graph

Fig. 3 Example showing γ (Ĥ ) = γg(F1, F2)
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G which can be factored into k factors such that some γg vertices form a minimum
GDS for the factoring and, for 1 ≤ i ≤ k, some γi vertices form a minimum LDS
for Fi if

1. k ∈ {2, 3} or
2. k ∈ {4, 5, 6} in which cases the result holds if and only if

∑k
i=1[(k − 1)− (γi −

1)(γg − k + 1)] ≤ (k−1)k
2 .

The result is more complicated when k ≥ 7.
Given a graph H with k factors, let β

′′
g(H) be the minimum number of edges

such that all vertices are incident to at least one of the edges in all factors and
α
′′
g(H) be the maximum number of edges such that no two are adjacent in any factor.

Carrington [10] develops the following Gallai type relation.

Theorem 5 (Carrington [10]) Let H be a graph with factors F1, F2, . . . , Fk with
no factor having an isolated vertex. Then α

′′
g(H)+ β ′′g(H) = kn.

Proof: It is shown in [10] that β
′′
g(H) =

∑k
i=1 β

′
(Fi) and α

′′
g(H) =

∑k
i=1 α

′
(Fi).

Since no factor has an isolated vertex, Gallai’s theorem gives β
′
(Fi) + α′(Fi) = n

for 1 ≤ i ≤ n and the result follows. �

2.2 Bounds

Observation 2 provides basic lower and upper bounds on γg . Several others have
been developed and a representative sample is given here. Let H be the graph
containing the factors.

Some early results include the following. When k > �(H), γg(H) = n since
every vertex will be isolated in at least one factor. Otherwise, γg(H) ≥ γ (H) +
k − 2. Let Iso(H) be the collection of vertices isolated in at least one factor. Then
γg(H) ≤ β(H) + |Iso(H)| and γg(H) ≤ n − γ (H) + |Iso(H)|. Two results
involving standard domination generalize in a straightforward way. The relation γ ≥
n/(� + 1) generalizes to γg(H) ≥ nk/(�(H) + k). Another familiar result is
γ + ε = n, where ε is the maximum number of end edges in a spanning forest ofG
(Nieminen (1974) [35]). The parameter ε can be generalized to εg , the cardinality of
the largest set of vertices X such that, in each Fi , there is a spanning forest in which
X is independent and each vertex of X has degree one. Then the generalization is as
follows.

Theorem 6 For any graph H with factors F1, F2, . . . , Fk , γg(H)+ εg(H) = n.

Proof: We may assume k ≤ �(H) and γg(H) < n. Let D be a minimum global
dominating set ofH with the given factors. For each vertex of V (Fi)−D, 1 ≤ i ≤ k,
select one edge between it and D. The subgraph of Fi thus formed is a union of
stars centered on the vertices of D and is a spanning forest of Fi . Furthermore,
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the vertices of V (Fi) − D are independent and have degree one so it follows that
εg(H) ≥ n − γg(H). Now suppose X is a set of εg(H) vertices satisfying the
conditions given above. Then the vertices of V (H) − X form a global dominating
set and γg(H) ≤ n− εg(H). �

Dankelmann and Laskar (2003) [16] investigated the effect of minimum degree.
Let F1, F2, . . . , Fk , k ≥ 2, be factors of the complete graph Kn. If δ(Fi) ≥ 1 for
i = 1, 2, . . . , k, then

γg(F1, F2, . . . , Fk) ≤
{
(1 − 3−k/2)n if k is even
(1 − 1

2 3−(k−1)/2)n if k is odd.

When k = 2 this reduces to γg(F1, F2) ≤ 2
3n. The graph and factoring of Figure 2

show the bound is sharp.
Related results have been improved by Dankelmann et al. [15] (using simultane-

ous domination) to γsd(F1, F2, . . . , Fk) ≤ (2k − 3)n/(2k − 2) when k ≥ 3 and all
factors are isolate-free, a bound that is sharp. Let δ′ = min{δ(Fi)|i = 1, 2, . . . , k}.
If δ′ ≥ 2 and k ≤ eδ′+1/(δ′ + 1), then

γsd(F1, F2, . . . , Fk) ≤ ln(δ′ + 1)+ ln(k)+ 1

δ′ + 1
n.

If H is a graph with factors F1, F2, . . . , Fk; δ(Fi) ≥ δ(H) ≥ 1 for i = 1, 2, . . . , k;
and d(H) is the average degree of H , then Caro and Henning [9] show

γsd(F1, F2, . . . , Fk) ≤
( ⌈

d(H)
⌉

⌈
d(H)

⌉+ δ

)

n.

Furthermore, if each factor has minimum degree at least δ and k ≥ 2, then

γsd(F1, F2, . . . , Fk) ≤
(

1 −
(

δ

δ + 1

)(
1

k(δ + 1)

) 1
δ

)

n

and, if all factors are regular of the same positive degree, then

γsd(F1, F2, . . . , Fk) ≤
(

k

k + 1

)

n.

Caro and Henning [9] also present several results when the factors are restricted
to simple forms, illustrative examples of which are given here. When r is a positive
integer at most n, n ≡ 0 (mod r), k ≥ 2, and every factor consists of n/r vertex
disjoint copies of Kr then



504 R. C. Brigham et al.

γsd(F1, F2, . . . , Fk) ≤
⎧
⎨

⎩

(
k
2r

)
n if k is even

(
r(k+1)−2

2r2

)
n if k is odd.

If k ≥ 2, n is even, and every factor is a 1-factor of H , that is, n/2 disjoint copies of
K2 and hence a perfect matching of G, then

γsd(F1, F2, . . . , Fk) ≤
⎧
⎨

⎩

(
k−1
k

)
n if k is even

(
k
k+1

)
n if k is odd.

If k ≥ 2, n ≡ 0 (mod 6), and each factor is a Cn, then

γsd(F1, F2, . . . , Fk) ≤
(

1 − 1

2

(
2

3

)k−2
)

n.

If k ≥ 3, n ≡ 0 (mod 5) and each factor is n/5 vertex disjoint copies of C5, then

γsd(F1, F2, . . . , Fk) ≤
(

3

5
+ 2

5

(

1 −
(

3

5

)k−2
))

n.

3 The Special Case of Factors G and G

A wealth of bounds on the global domination number of complementary factors
exists, that is, when there are two factors G and G of Kn.

From Observation 2, we have γg(G) ≤ γ (G) + γ (G). Thus any Nordhaus–
Gaddum bound on this sum is also an upper bound on γg(G). Several such bounds
are given by Dunbar, Haynes, and Hedetniemi (2005) [20]. One is γg(G) ≤ γ (G)+
γ (G) ≤ � 2n

5 � + 3 if each of G and G is connected with minimum degree at least
two. Other simple bounds are

1. γg(G) < n if G is not complete or empty,
2. γg(G) ≤ γ (G)+ 1 for any graph with a pendant vertex,
3. if G or G is disconnected, then γg(G) = max{γ (G), γ (G)}, and
4. γ (G) ≤ γg(G) ≤ γ (G)+ 1 if G is triangle-free.

Some that depend on the minimum and maximum degrees are

1. γg(G) ≤ max{�(G)+ 1,�(G)+ 1} = max{n− δ(G), n− δ(G)} or this bound
minus one if G is not complete, empty, or an odd cycle,

2. if γg(G) > max{γ (G), γ (G)}, then γg(G) ≤ min{�(G)+ 1,�(G)+ 1}, and
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3. γg(G) ≤
{
δ(G)+ 2 if δ(G) = δ(G) ≤ 2
max{δ(G)+ 1, δ(G)+ 1} otherwise.

Desormeaux, Gibson, and Haynes (2015) [18] showed that, if γ (G) ≥ 2, then

γg(G) ≤ γ (G)+ 1 +
⌈
�(G)− γ (G)
γ (G)− 1

⌉

.

They also proved that if n ≥ [�(G)]2 + 2, then γg(G) = γ (G).
Zverovich and Poghosyan (2011) [47] showed that for δ′ = min{δ(G), δ(G)} >

0 that

γg(G) ≤
(

1 − δ′

21/δ′(1 + δ′)1+1/δ′

)

n and γg(G) ≤ ln(δ′ + 1)+ ln 2 + 1)

δ′ + 1
n.

Bounds in [8] involving the diameter when G and G are both connected are
improved in [18]:

1. if diam(G) ≥ 3, then γg(G) ≤ γ (G)+ 2,
2. if diam(G) = 4, then γg(G) ≤ max{4, γ (G)+ 1}, and
3. if diam(G) ≥ 5, then γg(G) = γ (G).

The preceding upper bound is sharp when diam(G) = 3. Furthermore, when
diam(G) = 3 or diam(G) = 4, there is no forbidden subgraph characterization for
graphs achieving the upper bound. WhenG andG both have diameter 2, [18] shows
that γg(G) ≤ 1 +√

n+√
n ln n.

Dutton (2011) [24] developed several bounds involving the packing number
ρ2(G) of graphG, that is, the maximum number of vertices in a subset of the vertices
of G such that any two vertices in the subset have distance at least three. Bounds
include

1. γg(G) ≤ min{max{γ (G) + 1, γ (G) + 1}, �n/2�} if rad(G) = rad(G) = 2, at
least one of G or G is triangle-free, and ρ2(G) �= ρ2(G),

2. γg(G) ≤ min{max{γ (G) + 2, γ (G) + 2}, �n/2�} if rad(G) = rad(G) = 2,
neither G nor G is triangle-free, and ρ2(G) �= ρ2(G),

3. γg(G) ≤ min{4, �n/2�} if ρ2(G) = ρ2(G) = 2 and G is not equal to a triangle
with a pendant edge on two of its vertices, and

4. γg(G) ≤ min{δ(G) + 1, δ(G) + 1, �n/2�} if ρ2(G) = ρ2(G) = 1 and G is not
K1 or C5.

Bounds have been developed dependent on several other invariants. For exam-
ple,

1. [2m− n(n− 3)]/2 ≤ γg(G) ≤ n− α(G)+ 1 if G has no isolated vertices,
2. if both G and G have no isolates, γg(G) ≤ min{α′(G)+ 1, α′(G)+ 1},
3. γg(G) ≤ max{χ(G), χ(G)},
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4. γg(G) ≤ min{ω(G)+ γ (G)− 1, ω(G)+ γ (G)− 1}, where ω(G) is the size of
a largest clique in G, and

5. γg(G) ≤ max{n− κ(G)− 1, n− κ(G)− 1}.

4 Variations

As with standard domination, investigations of global concepts have considered
special cases depending on the type of graph as well as alternate types of
domination. Section 4.1 discusses some of the investigations into special families of
graphs while Section 4.2 considers alternate forms of domination. Unless otherwise
stated, the factoring is of graph G and its complement.

4.1 Restrictions on Graphs

(Bipartite and Unicyclic Graphs) Arumugam and Kala (2009) [4] characterized
bipartite graphs G for which γg(G) = γ (G)+ 1 in the following theorem:

Theorem 7 Let G be a connected bipartite graph with bipartition X, Y and |X| ≤
|Y |. Then γg(G) = γ (G) + 1 if and only if either G is K2 or every vertex in X
is adjacent to at least two pendant vertices and there exists a vertex in Y which is
adjacent to all vertices in X.

The expression γg(G) = γ (G) + 1 can be replaced by γg(G) = β(G) + 1 in
the above theorem. The characterization of unicyclic graphs for which γg(G) =
β(G)+ 1 is also derived.

(Trees) Trees are, of course, a special class of bipartite graphs. Both Rall (1991)
[38] and Brigham and Dutton [8] have characterized those trees which achieve the
upper value of γg(G) = γ (G)+ 1.

Theorem 8 Let T be a tree. Then γg(T ) = γ (T )+ 1 if and only if T is a star with
at least two vertices or T has radius two and contains a vertex of degree at least
two, all of whose neighbors have degree at least three.

In a difficult multi-case argument based on the diameter, Mojdeh, Alishahi, and
Chellali (2016) [34] characterize those trees T for which γg(T ) = γg(T 2), where
T 2 is the square of T . The square of a graph G is the graph on the same vertex set
as G with two vertices adjacent in G2 if and only if their distance in G is at most 2.

(Planar Graphs) Enciso and Dutton (2008) [26] found several bounds on the
global domination number of planar graphs G, including γg(G) ≤ max{γ (G) +
1, 4}.
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(Interval Graphs) Maheswari, Lakshmi Naidu, Nagamuni Reddy, and Sudhakara-
iah (2011) [33] have developed a construction that determines γg(G) when G is a
connected interval graph based on the intervals Ii = [ai, bi] for 1 ≤ i ≤ r , r ≥ 2,
indexed in increasing order of their right endpoint. Letting interval Ii be represented
by its index i, nbd[i] is the set of intervals intersecting Ii , max(i) is the largest
interval in nbd[i], NI (i) = j , where j is the smallest index for which bi < aj or
null if there is no such j , and Next (i) = max{nbd[NI (i)]\nbd[max(i)]}. The set
of intervals is augmented by dummy intervals I0 = [a0, b0] and Ir+1 = [ar+1, br+1]
such that b0 < min1≤i≤r {ai} and ar+1 > br . A directed graph D̂ = (N,L)

is constructed from the intervals, including I0 and Ir+1, where N corresponds to
intervals that are not properly contained in other intervals. The directed edges are
formed as follows: from I0 to Ij if and only if there is no interval Ih such that
b0 < ah < bh < aj , from Ij to Ir+1 if and only if there is no interval Ih such that
bj < ah < bh < ar+1, and from Ii to Ij if and only if j = Next (i). The main
result shows that the vertices in a shortest directed path in D̂ between I0 and In+1
form a minimum global dominating set of G.

(Changing and Unchanging) Harary (1982) [29] defined changing and unchang-
ing of an invariant of a graphG as the study of how the value of the invariant changes
when an edge is removed fromG, an edge is added toG, or a vertex is removed from
G. Interest has concentrated on when a result is true for every possible edge or every
vertex of G. Let e refer to an arbitrary edge of a graph.

Dutton and Brigham (2009) [25] showed

1. γg(G)− 1 ≤ γg(G− e) ≤ γg(G)+ 1,
2. if γg(G − e) = γg(G) − 1 for some edge e of G, then γg(G − e) ≤ γg(G) for

every edge of G,
3. if γg(G − e) = γg(G) + 1 for some edge e of G, then γg(G − e) ≥ γg(G) for

every edge of G, and
4. γg(G− e) = γg(G)+ 1 for every edge of G if and only if G is a collection of at

least two stars.

Other changing and unchanging problems appear to be more difficult. A charac-
terization is given in [25] of graphsG for whichG is disconnected and γg(G−e) =
γg(G) − 1 for every edge of G. Desormeaux, Haynes, and van der Merwe (2017)
[19] studied graphs G for which removing an arbitrary edge from G and adding it
to G decreases the global domination number. They show for non-empty graphs G
such thatG is also non-empty and γ (G) = 3, that γg(G− e) = γg(G)−1 for every
edge of G if and only if G is one of the self-complementary graphs of order 5, that
is, G is either C5 or a triangle with a pendant edge on two of its vertices.

Still and Haynes (2013) [44] characterized trees of domination number 2 and 3
whose global domination number remains the same when one of the changes occurs.
A caterpillar is a tree which becomes a path (the spine) when all leaves are removed.
A caterpillar with spine (v1, v2, . . . , vr ) can be coded by an r-tuple (x1, x2, . . . , xr ),
where xi is the number of leaves adjacent to vi for 1 ≤ i ≤ r . In the following let T
be a tree.
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1. If γg(T ) = 2, then γg(T − e) = γg(T ) for every edge e of T if and only if T is
P4 or a non-trivial star,

2. if γg(T ) = 3, then γg(T − e) = γg(T ) for every edge e of T if and only if T is
P7 or the caterpillar (1, 1, 1),

3. if γg(T ) = 2, then γg(T − v) = γg(T ) for every vertex v of T if and only if T is
P3, P4, or P5,

4. if γg(T ) = 3, then γg(T − v) = γg(T ) for every vertex v of T if and only if T is
P8, the caterpillar (1, 0, 1, 0, 1), orK1,3 with each edge subdivided exactly once,

5. if γg(T ) = 2, then γg(T + e) = γg(T ) for every edge e of G if and only if T is
P4 or a non-trivial star, and

6. if γg(T ) = 3, then γg(T + e) = γg(T ) for every edge e of G if and only if T is
in one of seven infinite classes of caterpillars or T is the caterpillar (1, 1, 1) with
spine x, y, z adjacent to leaves x′, y′, z′, respectively, with new leaves adjacent
to x′, y′, and z′ with at least one adjacent to y′.

4.2 Other Types of Global Domination

(Global Connected Domination) Kulli, Janakiram, and Soner (2009) [32] and
Delić and Wang (2014) [17] have studied a global version of connected domination.
A subset D of the vertex set of a connected graph G is a global connected
dominating set of G if it is both a global dominating set and a connected subgraph
of G. However, the definitions differ in the following way. In [32] G must be
connected and the vertices ofD must induce a connected subgraph in it, while those
are not requirements in [17]. Let γgc(G) represent the minimum size of a global
connected dominating set that does not have to be connected in G and γgcb(G) be
the corresponding value when D induces connected subgraphs in both G and G.
Not surprisingly, the two definitions can lead to different results. Consider Figure 4
showing P4 with vertices v1, v2, v3, v4 in order. A minimum connected dominating
set is {v2, v3} and this also is a dominating set of P4. Thus γgc(P4) = 2. However,
{v2, v3} is not a connected dominating set of P4. In fact, the only connected
dominating set of P4 that is a connected dominating set of P4 is {v1, v2, v3, v4},
implying γgcb(P4) = 4.

Fig. 4 A graph with distinct
values for γgc(G) and
γgcb(G)
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Emphasizing the nonsymmetric aspect of the definition of γgc, [17] constructs
connected graphsG of order n ≥ 5 such thatG is connected and γgc(G) �= γgc(G).
It also shows that, for 2 ≤ k ≤ n, there is a connected graphG such that γgc(G) = k
and a characterization of such graphs of order n ≥ 5 is given when 3 ≤ k ≤
n − 2. Udayakumar and Sasireka (2010) [46] present results for γgc(G) when G is
a Cartesian product.

(Upper Global Domination) The upper global domination number Γg(G) is the
maximum number of vertices in a minimal global dominating set of G. Rall (1991)
[38] showed that Γg(G) = Γ (G) whenG is a tree of diameter three or four or when
G has diameter at least five. He also points out there are trees of diameter three
or four for which there are minimal global dominating sets that are not minimal
dominating sets.

(Double Global Domination) Soner, Chaluvaraju, and Janakiram (2003) [43]
discuss double global domination. A set D ⊆ V (G) is a double dominating set
if each vertex in G is dominated by at least two vertices of D, and the minimum
cardinality of such a set is denoted dd(G). Such a D is a double global dominating
set if it is also a double dominating set ofG, and the minimum cardinality of such a
set is designated gdd(G). Several inequalities are given including

1. γg(G)+ 1 ≤ gdd(G) with equality if G = C5,
2. 2m(G)−n(n−5)

3 ≤ gdd(G),
3. gdd(G) ≤ 2α′(G) if both G and G have minimum degree at least 2,
4. gdd(G) ≤ 2β(G) if G has minimum degree at least 2, and
5. gdd(G) = dd(G) if G has diameter at least 6.

(Global Set Domination) For connected graphs G, a subset D of vertex set V is a
set dominating set if, for every subset R of V −D, there is a non-empty subset S of
D such that the subgraph induced by S∪R is connected. D is a point-set dominating
set if S is a single vertex and a 2-point-set dominating set if |S| ≤ 2. Global versions
are possible if G is co-connected, that is, both G and G are connected. They have
been studied, respectively, by Sampathkumar and Pushpa Latha (1994) [42], Pushpa
Latha (1997) [36], and Gupta and Jain (2016) [28]. The associated domination and
global domination numbers of G are designated γset (G) and γgset (G), γ1set (G)

and γg1set (G), and γ2set (G) and γg2set (G), respectively. A representative sample of
results is given next, always assuming the graphs are co-connected.

1. For a tree T with n vertices and ε leaves that is not a star, γgset (T ) = n− ε,
2. if G has a cut vertex, then γgset (G) ≤ γset + 1, with a corresponding statement

for global point-set domination,
3. ifG has diameter at least five, thenD is a minimal set dominating set if and only

if D is a minimal global set dominating set and γgset (G) = γset (G),
4. if diam(G) ≥ 4, γg1set (G) = γ1set (G) and γg2set (G) = γ2set (G), and
5. if T is a tree, γg2set (T ) = γ2set (T )+1 if diam(G) = 2 and γg2set (T ) = γ2set (T )

otherwise.
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(Global Irredundance) A vertex x in a subset S of the vertices of a graph G
is irredundant if N [x] − N [S − {x}] �= ∅ and S is irredundant if each x ∈ S
is. Dunbar and Laskar (1992) [21] and Dunbar, Laskar, and Monroe (1991) [22]
discuss global versions of this concept. Set S ⊆ V is a global irredundant set if
each x ∈ S is irredundant in eitherG orG, and is a universal irredundant set if each
x ∈ S is irredundant in both G and G. The symbols irg(G) (iru(G)) and IRg(G)
(IRu(G)) represent the smallest and largest orders, respectively, of a maximal
global (universal) irredundant set. The inequality irg(G) ≤ γg(G) ≤ Γg(G) ≤
IRg(G) is a fundamental one relating four of the global invariants and parallels
a corresponding result for the nonglobal versions (see Cockayne and Hedetniemi
(1977) [13]). We also have

1. IRu(G) ≤ IR(G) ≤ IRg(G), where IR(G) is the maximum size of a maximal
irredundant set of G,

2. IRg(G) ≤ �(G)+ 1 if IR(G) < IRg(G), and
3. IRu(G) ≤ �(G)+ 1, with equality in the latter for connected graphs with more

than two vertices if and only if G is Kr,r minus a 1-factor.

As an example of the first of the above inequalities, consider C5 with vertices
labeled in order as v1, v2, v3, v4, and v5. Then IRu(C5) = IR(C5) = 2 where
{v1, v3} is both a maximum maximal irredundant set and a maximum maximal
universal irredundant set. Furthermore, {v1, v2, v3} is a maximum global irredun-
dant set so IRg(C5) = 3. Determining whether IRu(G) ≥ M , where M is a
positive integer, is an NP-complete problem. Nevertheless, the value of IRu(G)
is known for many graph classes including paths and complete bipartite graphs.
Furthermore, IRu(G) = 2 for all trees except K1,s for which it is 1. On the
other hand, IRu(G) ≥ 2 for any graph with diameter at least three. Graphs with
IRg(G) ≥ 3 are equivalent to those containing an induced subgraph isomorphic to
K3, K3, C6, C6, or C5.

(Global Domatic Number) Sampathkumar (1989) [41] studied the global domatic
number dg(G), that is, the maximum order of a partition of V (G) such that each
member of the partition is a global dominating set. For graph G, results include

1. dg(G) ≤ min{δ(G)+ 1, δ(G)+ 1},
2. dg(G) ≤ (n+ 1)/2,
3. γg(G)+ dg(G) ≤ n+ 1 with equality if and only ifG is complete or empty, and
4. if G is a tree T , dg(T ) ≤ 2.

(Global Dominating-χ -Coloring) Sahul Hamid and Rajeswari (2014, 2017) [37,
40] introduced the global dominating-χ -coloring number gdχ(G) of a graphG, that
is, the maximum number of color classes in a χ(G)-coloring of G that are global
dominating sets of G. They derive its value for paths, cycles, wheels, complete
graphs, complete multipartite graphs, and the Petersen graph. As an example
consider C7 illustrated in Figure 5 with a specific χ(G) = 3 coloring. The set
of vertices colored 1 and the set colored 2 both are global dominating sets of C7.
Thus gdχ(G) ≥ 2. Any 3-coloring of C7 has one color class with fewer than three



Global Domination 511

Fig. 5 gdχ (C7) = 2

vertices. Since γg(C7) = 3, at least one color class in any 3-coloring will not be a
global dominating set and gdχ(G) = 2.

Further results, if G is unicyclic with single cycle C, are

1. gdχ(G) = 2 if C has even length at least 6,
2. gdχ(G) = 1 if C has odd length and each of its vertices is a support vertex, and
3. gdχ(G) = 2 if C is of odd length at least 7 and not all its vertices are support

vertices.

For a tree T

1. gdχ(T ) = 0 if and only if T is a star or a double star and
2. gdχ(T ) = 1 if and only if T is obtained from a star by adding at least one pendant

edge to at least two leaves of the star.

Bounds include gdχ(G) ≤ δ(G)+ 1 and gdχ(G) ≤ n−χ(G)s(G)
γg(G)−s(G) , where s(G) is the

minimum cardinality of any color class in any χ -coloring ofG, and the latter bound
is sharp. For integers k > 1 and l with 0 ≤ l ≤ k, there is a uniquely k-colorable
connected graph G with χ(G) = k and gdχ(G) = l.

5 Global Total Domination

A total dominating set D of a graph H with factors F1, F2, . . . , Fk is a global
total dominating set if it is a total dominating set of every factor. Throughout
this section we assume no factor has an isolated vertex. The size of a smallest
global total dominating set is indicated by γgt (H) = γgt (F1, F2, . . . , Fk). Most
of the research, as with other forms of global domination, has concentrated on
the case when H is complete with two factors G and G and, as before, we write
γgt (G,G) = γgt (G) = γgt (G).

Dunbar, Laskar, and Wallis (1992) [23] show that a minimal global total
dominating set is not necessarily a minimal total dominating set and specify two
graphs that illustrate this, one of which is shown in Figure 6. Here γt (G) = 2,
γgt (G) = 5, and {v1, v2, v3, v4, v6} is a minimal (minimum in this case) global total
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Fig. 6 Example showing a
graph whose minimum global
total dominating set is not a
minimum total dominating
set

Fig. 7 Example showing a
graph G with
γt (G) = γgt (G)

dominating set. On the other hand, the graph of Figure 7 has γt (G) = γgt (G) = 4
and {v1, v2, v3, v4} is a minimal (again minimum) global total dominating set.

Values of the global total domination number are given by Kulli and Janakiram
(1996) [31] for paths, cycles, and complete bipartite graphs. The following theorem
also is shown.

Theorem 9 Given graph G,

1. if diam(G) = 3, then γgt (G) ≤ γt (G)+ 2,
2. if diam(G) = 4, then γgt (G) ≤ γt (G)+ 1, and
3. if diam(G) ≥ 5, then γgt (G) = γt (G).
Proof: Let D be a minimum total dominating set of G. If diam(G) = 3, let u and
v be vertices of distance 3 apart. No vertex of G is adjacent to both u and v, so
{u, v} is a total dominating set of G and D ∪ {u, v} is a global total dominating set
of G. When diam(G) = 4, let u and v be distance 4 apart. Let u1 ∈ D ∩ N [u]. No
vertex of G is adjacent to both u1 and v, so {u1, v} is a total dominating set of G
and D ∪ {v} is a global total dominating set of G. If diam(G) ≥ 5, then no vertex
of G is adjacent to every vertex of D, and so D is also a total dominating set of G.
�

Using this result, Akhbari, Eslahchi, Jafari Rad, and Hasni (2015) [2] show for a
tree T that

1. if diam(T ) = 3, then γgt (T ) = 4,
2. if diam(T ) = 4, then γgt (T ) = γt (T )+ 1, and
3. if diam(T ) ≥ 5, then γgt (T ) = γt (T ).
They also note that the following problem is NP-complete.

GLOBAL TOTAL DOMINATING SET
INSTANCE: Graph G, positive integer k.
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QUESTION: Does G have a global total dominating set of cardinality at most k?

The proof employs a polynomial transformation from the known NP-complete
problem TOTAL DOMINATING SET.

Dankelmann, Henning, Goddard, and Laskar (2006) [15] concentrate on the
general case in their discussion of simultaneous domination. The symbol γsdt
is employed for these results to emphasize the domination is simultaneous. The
following is shown.

Theorem 10 If there are at least two factors of Kn, all connected, then
γsdt (F1, F2, . . . , Fk) ≤ n and the bound is sharp.

Proof: Since the bound is obvious, only sharpness needs to be considered. Let n be
even and the vertices partitioned into V1 and V2 of equal size n/2. Let F1 be a Kn/2
on V1 along with a perfect matching between V1 and V2. Similarly F2 is a Kn/2 on
V2 along with a different perfect matching between V1 and V2. Then every vertex
of the graph is a leaf in one of the factors and thus it or a neighbor must be in any
global total dominating set, implying γsdt (F1, F2) = n. �

In contrast, when the factors areG andG, Kulli and Janakiram (1996) [31] prove
γgt (G) = n if and only if G is P4, mK2, or mK2, where m ≥ 2.

Other bounds found in [15], assuming factors are of Kn, are

1. if δ(Fi) ≥ 2 for 1 ≤ i ≤ k, then γsdt (F1, F2, . . . , Fk) ≤ 2kn
2k+1 and the bound is

sharp,
2. γsdt (F1, F2, . . . , Fk) ≤ (ln δ+ln k+1)n

δ
, where δ = min{δ(Fi)|i = 1, . . . , k},

3. if δ(Fi) ≥ 3 for i = 1, 2, then γsdt (F1, F2) ≤ n(1 − √
2/27) and the bound

becomes 13n/21 if δ(Fi) ≥ 4 for i = 1, 2, and
4. if F1 and F2 are n-cycles, n ≥ 3 and n �= 5, 10, then γsdt (F1, F2) ≤ 3n/4 and

the bound is sharp for infinitely many n.

Jafari Rad and Sharifi (2015) [30] present additional bounds when the factors
are G and G. They show a series of results depending on the value of δ′ =
min{δ(G), δ(G)}, including

1. if δ′ = 1, γgt (G) ≤ 2
3n+ 1,

2. if δ′ = 2, γgt (G) ≤ 22
27n,

3. if δ′ = 3, γgt (G) ≤ 0.683n, and

4. If δ′ > 3 there are the two bounds γgt (G) ≤
(

1 − δ′

3
1
δ′ (1+δ′)1+

1
δ′

)

n and γgt (G) ≤
(

ln(1+δ′)+ln 3+1
1+δ′

)
n.

Other upper bounds appearing in [31] are γgt (G) ≤ 2β(G) and, if min{diam(G),
diam(G)} ≥ 3, then γgt (G) ≤ min{n−�(G)+ 2 + ε, δ(G)+ 4 − ε}, where ε is
0 if G is connected and 1 otherwise.

Lower bounds are not as common, but a few are found in [10, 31], including

1. γgt (F1, F2, . . . , Fk) ≥ k + 1 if k is odd,
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2. γgt (F1, F2, . . . , Fk) ≥ k + 2 if k is even, and
3. γgt (G) ≥ 2m(G)− n(n− 3).

A few results concerning the structure of graphs with a given global total
domination number appear in [2]. One shows, for any r ≥ 4, there is a graphG such
that diam(G) = diam(G) = 2 and γgt (G) = r . Furthermore, characterizations are
given of graphs G for which γgt (G) = 4 and γgt (G) = n− 1.

Whereas γt (G) and γgt (G) are the smallest order of a minimal total dominating
set and minimal global dominating set of G, respectively, [23] defines Γt(G) and
Γgt (G) as the largest order of a minimal total dominating set and minimal global
total dominating set, respectively. Then, if diam(G) > 4, Γgt (G) = Γt (G),
paralleling a result for γt (G) and γgt (G).

6 Global Roman Domination

For graph G = (V ,E), a function f : V → {0, 1, 2} is a Roman dominating
function if every vertex u for which f (u) = 0 is adjacent to at least one vertex v for
which f (v) = 2. An introduction to Roman domination can be found in Cockayne,
Dreyer Jr., Hedetniemi, and Hedetniemi (2004) [14]. A Roman dominating function
is a global Roman dominating function if it also is a Roman dominating function
for G. The weight of such a function is

∑
u∈V f (u) and the minimum weight

of a Roman dominating function (global Roman dominating function) is denoted
γR(G)(γgR(G)). Such minimum functions are γR(γgR)-functions. The function
partitions V into {V0, V1, V2}, where Vi = {v ∈ G : f (v) = i} for i = 0, 1, 2.

Roushini Leely Pushpam and Padmapriea (2016) [39] present the following basic
inequality relating the global Roman domination number to the standard global
domination number.

Theorem 11 For any graph G, γg(G) ≤ γgR(G) ≤ 2γg(G).

Proof: For any γgR-function note that V1 ∪ V2 dominates G and G implying the
left inequality. Placing 2 on the vertices of any γg-set and 0’s elsewhere shows the
right inequality. �

The values of γgR(G) when G is a path, cycle, complete graph, complete bipartite
graph, or a wheel are given. A main result characterizes graphs for which γgR(G) =
n. This is the maximum possible value since assigning 1 to every vertex yields a
weight of n. The proof is a lengthy multi-case argument, but several intermediate
results are of interest in themselves, including

1. γgR(G) = n implies diam(G) ≤ 3,
2. if diam(G) = 3, then γgR(G) = n if and only if G is C3 with pendant edges

incident to two or three of its vertices or P4, and
3. if ω(G) = 2, then γgR(G) = n if and only if G is P3, C4, C5, or K1,3.
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Abdollahzadeh Ahangar (2016) [1] presents many additional characterizations
including several on the relationship between γg(G) and γgR(G). In particular those
graphs for which γgR(G) = γg(G)+ i for 0 ≤ i ≤ 3 are characterized. The results
for i = 0, 1, 2 are summarized next, where graph G is assumed connected.

1. γgR(G) = γg(G) if and only if G = Kn,
2. if n ≥ 5, then γgR(G) = γg(G)+ 1 if and only if G = Kn − e, and
3. if n ≥ 9 andG is notKn orKn− e, then γgR(G) = γg(G)+2 if and only ifG is

one of Kn−3 +K3, Kn−3 + (K2 ∪K1), Kn−4 + 2K2, Kn−4 +P4, Kn−4 +C4, or
G has two vertices u and v such that |((N(u)∪N(v))\(N(u)∩N(v)))\{u, v}| =
n− γg(G).

The result for i = 3 is somewhat more complicated. WhenG is unicyclic, [1] shows
γgR(G) = γg(G) + 2 if and only if G is a star of order at least five with an edge
added between two leaves or is a C4 with vertices x1, x2, x3, x4, in order, with at
least two pendant edges on each of x1 and x3.

Atapour, Sheikholeslami, and Volkmann (2015) [5] characterized trees with
specific relations between their global Roman and Roman domination numbers. As
a step they developed the inequality γgR(G) ≤ γR(G)+ δ(G)+ 1 for a graph G of
order at least 4, a bound that is sharp for stars K1,r with r ≥ 3. This shows, for tree
T with at least four vertices, that γgR(T ) ≤ γR(T ) + 2. Since γR(G) ≤ γgR(G),
it follows, for any tree, that γgR(T ) = γR(T ) + i, where i is 0, 1, or 2. The
characterization is given for trees when i is 1 or 2 and involves a set of graphs
derived from spiders. Recall a spider is a star whose edges have been subdivided
any number of times. If the underlying spider is formed from aK1,r , it is designated
Sr . The center of a spider is the vertex that is the center of the star from which
it is derived. The graphs required for the characterization theorems are defined as
follows:

1. β1 is the collection of spiders Sr , r ≥ 2, (except stars and P5),
2. β2 is the collection of trees obtained from spiders Sr1 , Sr2 , . . . , Srj (except P4 and
P5), j ≥ 2 and ri ≥ 2 for 1 ≤ i ≤ j , with centers y1, y2, . . . , yj , respectively,
by adding a new vertex x and edges xyi for 1 ≤ i ≤ j , and

3. β3 is the collection of trees obtained from a tree in β2, say T1, and adding a new
vertex z and edge xz, where x is the vertex added to construct T1.

The characterization for trees T of order at least 4 is

1. γgR(T ) = γR(T )+ 2 if and only if T is K1,r for r ≥ 3 and
2. γgR(T ) = γR(T )+ 1 if and only if T ∈ β1 ∪ β2 ∪ β3.

Some conditions are given for when γgR(T ) = γR(T ), including if diam(T ) ≥ 7
(a result that also holds for any connected graph) and if T has a γR(T )-function f
such that f (u) = f (v) = 2, where u and v are vertices for which d(u, v) �= 2.

Both [1] and [5] have several upper bounds, many of which are similar to those
developed for other types of global domination. Representative ones are

1. γgR(G) ≤ n−
⌈
g(G)

3

⌉
if δ(G) ≥ 2 and girth g(G) ≥ 6,
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2. γgR(G) ≤ n−
⌈
diam(G)+1

3

⌉
if n ≥ 5,

3. γgR(G) ≤ n− deg(u)− deg(v)+ 2|N(u) ∩N(v)| + 2, where n ≥ 4 and u and
v are nonadjacent vertices, and

4. γgR(G) ≤ 2n

(

1 − δ′

(1+δ′)1+
1
δ′

)

, where δ′ = min{δ(G), δ(G} ≥ 1.

As in other types of global domination, lower bounds are rare, but the following is

shown: if G is connected, then γgR(G) ≥
⌈
diam(G)+2

2

⌉
.

Amjadi, Nazari-Moghaddam, and Sheikholeslami (2017) [3] investigate a total
version of the global Roman domination number. Defined for graphs G with no
isolated vertices, a function f is a total Roman dominating function if it is a Roman
dominating function with the additional property that the subgraph of G induced
by the set of vertices of G having positive weight under f has no isolated vertex.
Such an f is a global total Roman dominating function if f also is a total Roman
dominating function of G. The minimum weights for total Roman domination
and global total Roman domination functions are γtR and γgtR , respectively. The
fundamental inequality γgt (G) ≤ γgtR(G) ≤ 2γgt (G) is shown, as well as
characterizations of graphs achieving the bounds, that is,

1. γgtR(G) = γgt (G) if and only if G is P4, mK2, or mK2, where m ≥ 2 and
2. γgtR(G) = 2γgt (G) if and only if there is a γgtR(G)-function f = (V0, V1, V2)

such that V1 = ∅.

Many results involving the global total Roman domination number of trees T are
shown including γgtR(T ) = γtR(T ) if diam(T ) ≥ 5. A characterization is given
of trees for which γgtR(T ) = γtR(T ). Further results relate γgtR(G) to γtR(G) and
γgR(G) including

1. γgtR(G) = γtR(G) if rad(G) ≥ 5 and G is connected,
2. γgtR(G) ≤ γtR(G)+ 1 if diam(G) ≥ 5, and
3. γgtR(G) ≤ 2(γgR(G)− 1) if n ≥ 4.

7 Open Problems

Some of the open problems presented in the literature are listed here.

1. [10] Given a graphG, determine ways to factor it to achieve a global dominating
set having defined characteristics.

2. [10] Given the global domination number of a graph and the domination number
of each factor, find a simpler characterization of when such a factoring is
possible.

3. [10] Investigate additional complexity results. For example, consider the case
of two factors, each a path on n vertices. Is determining whether their global
domination number is at mostM an NP-complete problem?
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4. [16] If F1 and F2 are edge-disjoint factors of Kn (not necessarily including all
the edges of Kn) and δ(Fi) ≥ 2 for i = 1, 2, is γg(F1, F2) ≤ 3

5n.
5. [9] For all n ≥ 4, determine the exact value of γsd(Cn, Cn) and γsd(Pn, Pn). An

upper bound of n/2 is shown in [9] for these numbers when n ≥ 4 is even and
of (n+ 1)/2 for γsd(Cn, Cn) when n ≥ 5 is odd.

6. [9] Characterize the connected factors F1 and F2 on n vertices that have a 1-
factor and satisfy γsd(F1, F2) = n/2.

7. [4] Characterize graphs G for which γg(G) = β(G)+ 1.
8. [25] Prove or disprove: If γg(G − e) = γg(G) − 1 for every edge e of G and
γg(G − e) = γg(G) − 1 for every edge e of G, then G is self-complementary.
That this is true when γg(G) = 3 is shown in [19].

9. [25] Prove or disprove: If γg(G − e) = γg(G) − 1 for every edge e of G and
γg(G − e) = γg(G) − 1 for every edge e of G, then γg(G − v) = γg(G) − 1
for every vertex v of G. This is true when γg(G) = 3 as is shown in [19].

10. [44] Characterize graphsG such that γg(G− e) = γg(G) for every edge e ofG
(or trees T for γg(T ) ≥ 4).

11. [44] Characterize graphs G such that γg(G− v) = γg(G) for every vertex v of
G (or trees T for γg(T ) ≥ 4).

12. [44] Characterize graphsG such that γg(G+ e) = γg(G) for every edge e ofG
(or trees T for γg(T ) ≥ 4).

13. [21] Determine the complexity of irg , iru, and IRg .
14. [21] Determine graphs G for which IRg(G) = IRu(G).
15. [37, 40] Characterize uniquely colorable graphs G with gdχ(G) = 0 for which

γ (G) = χ(G).
16. [37, 40] Given integers a and b with a ≤ b, does there exist a uniquely colorable

graph G with gdχ(G) = 0 for which γ (G) = a and χ(G) = b?
17. [37, 40] Given integer k ≥ 1, does there exist a uniquely colorable graphG with

γ (G) ≤ χ(G) for which gdχ(G) = k?
18. [37, 40] Characterize the graphs G for which gdχ(G) = 0, gdχ(G) = χ(G),

and gdχ(G) = δ(G)+ 1.
19. [2] Determine if every graph G with γgt (G) = r can be obtained from a graph

H with γgt (H) = r−1 by adding a new vertex and joining it to at least one and
at most |V (H)| − 1 vertices of H .

The following problems were posed by the referee.

1. Consider all k-factorings F1, F2, . . . , Fk of the edges of a graph. Which ones
give the minimum of the global domination number and which the maximum?

2. Consider all k-factorings F1, F2, . . . , Fk of the edges of a graph. Determine a
method for finding which ones minimize

∑k
i=1 γ (Fi) and which ones maximize

it.
3. Suppose graph G has a k-factoring and G has a leaf. This means most of

the factors will have an isolated vertex which will tend to increase the global
domination number. How does the problem change if it is not necessary to
dominate isolated vertices?
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Power Domination in Graphs

Paul Dorbec

1 Introduction

Power domination is a variation of the domination problem motivated by the
physical rules for monitoring electrical networks. It was first introduced as a graph
parameter by Haynes et al. in 2002 [20]. Before giving details on the initial
motivation and the physical background in Section 1.1, we give a general definition.
One of the key concepts of power domination is that of monitoring vertices, as
defined below.

Definition 1 (Power Dominating Set) Given a graphG = (V ,E) and a set S ⊆ V
of vertices, we define the set of vertices monitored by the set S as follows:

• Domination: All vertices in S and all neighbors of vertices in S are monitored,
• Propagation: Whenever a vertex v is monitored and all but one of its neighbors,

say w, are monitored, then vertex w is also monitored. In this case we say that
vertex v propagates to vertex w.

An initial set of vertices that eventually monitors the whole graph is called a power
dominating set. The power domination number is the minimum order of a power
dominating set, denoted γP (G).

The first step, the so-called domination step, exactly matches the definition of
a dominating set. Thus a dominating set is also a power dominating set, and we
observe that

∀G, γP (G) ≤ γ (G) .
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Fig. 1 A graph with a power
dominating set (in Cyan). The
arrows show the propagation
occurring, and their labels
give the ordering of these
propagation.

An example of a graph with a power dominating set is shown in Figure 1. The
difference between the usual domination and power domination is best illustrated by
the case of the path. Indeed, the power domination number of a path is equal to 1,
and any vertex is a minimum power dominating set of the path. This comes from the
fact that after the initial step of domination in the path, every monitored vertex has
at most one unmonitored neighbor, and thus can propagate. So the set of monitored
vertices increases until it covers the whole path.

Before continuing, we present a more formal definition that sometimes proves
convenient. We define the sets

(
Pi

)
i≥0 of monitored vertices at stage i, following

the definition introduced by Aazami in [1].

Definition 2 (Monitored Vertices) Let G be a graph, and S ⊆ V (G) a subset of
vertices. We define the sets

(
Pi (S)

)
i≥0 of vertices monitored by S at step i by the

following rules.

• Domination: P0(S) = N [S],
• Propagation: for i ≥ 0,

Pi+1(S) =
⋃{

N [v] | v ∈ Pi (S),
∣
∣N [v] \ Pi (S)∣∣ ≤ 1

}
.

Observe that the sequence of sets (Pi )i≥0 is a non-decreasing sequence. More-
over if at some stage Pi (S) = Pi+1(S), then the sequence reaches a fixed point,
which we denote P∞(S). Observe that the fixed point is necessarily reached for
some i < n, so for a graph on n vertices, P∞(S) = Pn(S). Matching the earlier
definition, we can now state that S is a power dominating set of a graph G if and
only if P∞(S) = V (G).

With this notation, for a vertex u in a path, Pi ({u}) = {v ∈ V | dist (u, v) ≤
i+ 1}. In the example from Figure 1, the label i on an arc shows that a vertex is first
added to Pi (S).
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1.1 Physical Motivation

In this section, we recall the history of the introduction of the parameter, with the
successive definitions.

Power domination was first introduced by Baldwin et al. in [3], then described as
a graph theoretical problem by Haynes et al. in [20]. The problem is motivated by
the requirement for constant monitoring of power systems by placing a minimum
number of phasor measurement units (PMU) in the network. A PMU placed at a
bus measures the voltage of the bus plus the current phasors at that bus. Using Ohm
and Kirchhoff current laws, it is then possible to infer from initial knowledge of the
status of some part of the network the status of new branches or buses.

In Baldwin et al. [3], the following definitions are proposed:

A measurement-assigned subgraph, called for short a measurement subgraph, is a subgraph
which has a current measurement assigned to each of its branches. These are either actual
measurement or calculated pseudo-measurement deduced from Kirchhoff’s and Ohm’s
laws. [. . . ] The coverage of a placement set of PMU’s is the maximal spanning measurement
subgraph that can be formed by this set, that is, the maximal observable sub-network that
can be built from them.

They introduced the following formal definition of the spanning measurement
subgraph:

Definition 3 (Baldwin et al. [3]) A spanning measurement subgraph is con-
structed throughout the network on the grounds of the following rules:

Rule 1: Assign a current phasor measurement to each branch incident to a bus
provided with a PMU;

Rule 2: Assign a pseudo-current measurement to each branch connecting two
buses with known voltage;

Rule 3: Assign a pseudo-current measurement to a branch whose current can be
inferred by using Kirchhoff’s current law.

In terms of graphs, where buses are vertices and connecting branches are edges,
we can describe the observability rules of a network with the following definition:

Definition 4 (Haynes et al. [20]) Initially, set as monitored any vertex with a PMU
and all edges incident to it. Then, expand iteratively the set of monitored edges and
vertices with the following rules :

1. set as monitored any vertex incident to a monitored edge whose other end is
monitored;

2. set as monitored any edge joining two monitored vertices;
3. if a vertex has all its incident edges monitored except one, set this one edge as

monitored.

It was noticed by Dorfling and Henning in [15] that the power domination
problem can be studied considering only vertices following the above definition.
The coverage of a placement set S of PMU is then simply the induced subgraph on
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the final set of monitored vertices. From this observation, we reach the definition
used here, presented in Definition 1.

1.2 Relation with Zero Forcing Sets

It should be noted that there is a close relationship between power domination in
graphs and zero forcing sets. Zero forcing sets were introduced in [2], together with
the corresponding parameter Z(G), which stands for the minimum size of a zero
forcing set. Using the earlier definition, we can define a zero forcing set as a set of
vertices S such that applying only the propagation rule, the whole graph eventually
gets monitored. In other words, it would follow Definition 2 where we define P0(S)

to be equal to S.
The motivation for the introduction of this parameter was that it is an upper bound

for another parameter, called maximum nullity of a graph. For a graph G of order
n, the maximum nullity of G corresponds to the maximum nullity (or corank) of a
matrix in the set of symmetric n× n matrices having nonzero coefficients precisely
where the adjacency matrix of the graph G has nonzero values.

From the above definition of zero forcing sets, we easily infer that Z(G) ≤
γP (G)�(G). Indeed, taking the vertices of a power dominating set plus all but one
neighbor of each of them, one gets a zero forcing set of size at most γP (G)�(G).
This was explicitly stated by Dean et al. in [9], where the first link between the two
parameters was probably made.

Various later studies considered or just mentioned the link between zero forcing
sets and power domination [5, 7, 16], or even between k-forcing sets and k-power
domination that we define in Section 5 [17]. However, there are not many results for
power domination that come from known results on zero forcing sets.

1.3 Algorithmic Aspects

We will not detail the algorithmic aspects here, since it is quite similar to the
domination algorithms, and it is surveyed in the chapter dedicated to algorithms. It
should just be remarked that power domination is NP-complete, with many possible
reductions from the dominating set problem. However, as for the domination prob-
lem, there are polynomial algorithms for bounded treewidth graphs, using dynamic
programming. The algorithms are slightly more involved than for domination, but
use similar strategies.
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2 Behavior by Small Graph Changes

As we explore in this section, one of the difficulties of power domination is that
the power domination number has no monotonicity for any of the classical graph
operations. For each of the usual unitary graph operations (vertex removal, edge
removal, edge contraction), we give some examples and arguments illustrating the
possible behavior of the power domination number. Detailed proofs of these results
were given by Dorbec, Varghese, and Vijayakumar in [14].

2.1 Vertex Removal

In a graph, the removal of a vertex can have a similar effect on the power domination
number than it can have on the domination number, that is, that it can slightly reduce
the power domination number, or it can much increase it.

Theorem 1 ([14]) For the graph G − v obtained by removing a vertex v from a
graph G, there is no upper bound to γP (G − v) in terms of γP (G). On the other
hand, we have γP (G− v) ≥ γP (G)− 1.

As in domination, adding v to a power dominating set ofG−v produces a power
dominating set ofG. On the other hand, removing the central vertex of a star greatly
increases the power domination number. Less trivial examples are given in [14].

2.2 Edge Removal

Interestingly, the situation for edge removal is not as similar to the situation for
the dominating sets. While removing an edge in a graph can only increase its
domination number, it may decrease its power domination number.

Theorem 2 ([14]) Removing an edge e from a graph G results in a graph G − e
whose power domination number is bounded by

γP (G)− 1 ≤ γP (G− e) ≤ γP (G)+ 1 .

That removing an edge may increase the power domination number is of no
surprise, as it is for domination. For a removed edge e = uv in a graph G with
a power dominating set S, if v is monitored no sooner than u in the graph G, then
S ∪ {v} is a power dominating set of G− e.

However, that removing an edge may also decrease the power domination
number is less expected. Actually, this phenomenon comes from the fact that
the removal may allow some propagation that was not possible before, as in the
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Fig. 2 The graph K3,3 has
power domination number 2,
removing any edge decrease
this to 1.

Fig. 3 A graph where
contracting the edge e makes
the power domination number
increase from 2 to 3.

example of the bipartite complete graphK3,3 (see Figure 2), but also for many other
examples.

2.3 Edge Contraction

Contracting an edge in a graph may easily result into the reduction of the domination
number by one, the same is true for the power domination number. This happens,
for example, when a minimum (power) dominating set contains both ends of the
contracted edge, as in a double star. What happens in power domination but not in
domination is that it may also increase the power domination number.

Theorem 3 ([14]) Let G be a graph and e be an edge in G. Then

γP (G)− 1 ≤ γP (G/e) ≤ γP (G)+ 1 .

An (original) example where the power domination number of a graph increases
when an edge is contracted is drawn in Figure 3. In this graph, the contraction of the
edge e merges two vertices with only one unmonitored neighbor, and thus prevents
propagation.

To show that the power domination number increases by no more than one, just
note that adding the newly formed vertex to a power dominating set ofG necessarily
forms a power dominating set of G/e, preventing the previous phenomenon.
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3 Bounds on General Families of Graphs

In this section, we present bounds on the power domination number of a graph under
some general restrictions.

3.1 General Graphs

Let us first recall the initial general bound due to Haynes et al. [20]. They noted
that the power domination number of a graph is always at least one, and that a
dominating set of a graph is always also power dominating. We thus get

1 ≤ γP (G) ≤ γ (G) .

Haynes et al. proved that there is no forbidden subgraph characterization of the
graphs reaching the upper bound. The proof is based on the following family of
graphs. For any graph G, take the graph family T (G) of the graphs obtained by
adding for each vertex v ∈ V (G) two new vertices, namely v0 and v1, with the
edges vv0 and vv1, and possibly or not the edge v0v1 (see Figure 4).

For all such graphs G′ ∈ T (G), γP (G′) = γ (G′) = |V (G)| = |V (G′)|
3 . Now,

observing that the initial graph G may be any graph proves the above statement.
Actually, Zhao, Kang, and Chang proved in [32] that this construction plays a

special role, while proving the following general bound. We denote by T the union
of T (G) over all graphs G .

Theorem 4 (Zhao, Kang, Chang [32]) For any connected graphG of order n ≥ 3,
γP (G) ≤ n/3 with equality if and only if G ∈ T ∪ {K3,3}.

Note that this bound is an improvement of the same bound proved only for trees
by Haynes et al. in [20].

Fig. 4 A graph from the
family T built on a six
vertices initial graph (on
black vertices).
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Fig. 5 A graph attaining the
bound of Conjecture 1. Black
vertices form a minimum
power dominating set.

To prove this result, they first recall (from [20]) that in any connected graph with
maximum degree at least 3, there exists a minimum power dominating set containing
only vertices of degree at least 3. Then, they show that the set S can be chosen so
that every vertex in S has at least two private neighbors (by minimizing the number
of edges in G[S]). The result follows.

This result can be seen as a generalization of the n
2 bound for domination, and

the constructions look similar. Interestingly, the relationship between these two
bounds is even more enlightened for generalized power domination, as observed
in Section 5.

In [3], Baldwin et al. conjectured an upper bound on the size of a power
dominating set. They considered the possibility of unknown power injections, which
in graphs could be seen as a single leaf attached to the corresponding vertex/bus.
That explains the unusual expression of the conjecture:

Conjecture 1 (Baldwin et al. [3]) Let G be a graph on n vertices of which k are
of degree one. If no vertex of G is adjacent to more than one leaf, then the power
domination number of G satisfies

γP (G) ≤
⌈

2n− k
6

⌉

.

To illustrate the conjecture and prove that this bound is tight if correct, they
present the graph depicted in Figure 5. Note that though the above theorem proves
it for graphs with no degree 1 vertex, the conjecture does not seem to have been
considered on its own elsewhere.

3.2 Regular Graphs

For regular graphs, it seems that better bounds can be proved. Zhao, Kang, Chang
[32] got the first results in that direction, using as an additional condition that
the graph is claw-free. A few years later, Dorbec et al. proved in [11] the same
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Fig. 6 An example of a
cubic graph reaching the
bound of Theorem 5.

bound, dropping the claw-free condition, but still excluding the only known counter-
example, which is K3,3.

Theorem 5 (Dorbec et al. [11]) Let G be a connected cubic graph on n vertices.
If G is not the complete bipartite graph K3,3, then γP (G) ≤ n

4 .

The bound is known to be tight thanks to the example of Zhao, Kang, Chang [32],
consisting in a set of K4 minus an edge, using the degree 2 vertices of K4 − e to
join them into a cycle (see Figure 6). A minimum power dominating set is obtained
by choosing one vertex of degree three from each of the six subgraphs K4 − e.

The proof of this result is quite technical, but the idea behind the proof may be re-
used. The strategy was, for a given initial set of vertices, to study what may happen
at the boundary of the set of monitored vertices (the peripheral vertices). That the
set does not continue to propagate gives quite some information (in particular in a
cubic graph). Then one is likely to find a vertex whose addition to the set of selected
vertices would greatly increase the number of monitored vertices, maintaining
the expected bound. Structures that would prevent this are very special, and are
retrospectively dealt with during the initial choice of the set S of vertices.

Recently, Kang and Wormald [21] studied the power domination number on
random cubic graphs. They proved that the power domination number of a random
cubic graph of order n is asymptotically almost surely between 0.033n and 0.068n.

3.3 Maximal Planar Graphs

Among the general bounds on the power domination number of a graph, there is a
recent result on maximal planar graphs, by Dorbec, Gonzales, and Pennarun [10].
Applying a technique similar to the one for cubic graphs, Dorbec, Gonzales, and
Pennarun [10] proved that maximal planar graphs satisfy the following inequality:
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Fig. 7 The
triakis-tetrahedron, a
maximal planar graph on 10
vertices with power
domination number 2.

Theorem 6 (Dorbec, Gonzales, Pennarun [10]) Every maximal planar graph G
on n vertices has a power domination number at most:

γP (G) ≤ n− 2

4
.

The known graphs for which this bound is tight have at most 10 vertices (see
Figure 7 for the largest known example). This leads one to think that a better bound
should exist. Until now, the maximal planar graphs having the largest known power
domination number are obtained from a disjoint set of octahedra between which
are added edges until reaching a maximal planar graph. A vertex specific to each
octahedron is required to dominate such a graph, and thus this graph has power
domination number n6 .

This is similar to the known bounds for the domination number of maximal
planar graphs, the worst known family being maximal planar graphs obtained by
adding edges between a set of disjoint K4, which implies a domination number n4 ,
for an upper bound on the domination number of maximal planar graphs being at
most n3 .

3.4 Bounded Diameter Graphs

Several attempts have been made to bound the power domination number in terms
of the diameter of a graph. It was noted by Zhao and Kang that planar graphs with
diameter at most 2 have a power domination number at most 2. However, they left
as an open question whether the power domination number of a graph of diameter
at most 2 could be large.

Soh and Koh proposed in [26] families of graphs with diameter at most 2 and
unbounded power domination number. One family is simply the Cartesian product
Kn�Km of two complete graphs:

Theorem 7 (Soh and Koh [26]) For any m ≥ n ≥ 2, γP (Kn�Km) = n− 1.



Power Domination 531

The other is an infinite graph, called the Rado graph, whose vertices are labelled
with integers. In this graph, two vertices x < y are adjacent if and only if the
xth digit in the binary representation of y is 1. Any x and y have as a common
neighbor (2x + 2y), which implies that the Rado graph has diameter 2. However,
no propagation is possible in that graph since every vertex has infinitely many
neighbors. Thus, the Rado graph has the same domination number and power
domination number, and no finite subset of this graph is a dominating set. Note
that the argument does not apply though to finite subgraphs of the Rado graph.

4 Recursively Defined Families

In this section, we consider the graph families for which explicit formulas are
known.

Generally, when searching for a power dominating set of a graph, it is not
too difficult to figure out what seems to be a good selection of vertices. This
usually gives a pretty good upper bound to the power domination number of the
graph. However, finding lower bounds turns out to be quite hard in general. In the
following, we thus get into quite some details when original techniques are used to
prove lower bounds.

To start with, a nice statement is that each vertex may be used for propagation
only once, when it has exactly one unmonitored neighbor. Let a peripheral vertex
be a monitored vertex with at least one unmonitored neighbor. What the earlier
remark enables one to infer is that during the process of propagation, the number
of peripheral vertices cannot increase. So we get as an invariant property that the
number of peripheral vertices in the graph is no more than the sum of the degrees
of the vertices in the initial set S. This was explicitly stated in [24], though it was
implicitly used before. Though this seems a good handle to provide lower bounds,
what makes this invariant not so easy to use is that at the end of the propagation
steps, there are no peripheral vertices left. However, some of the later proofs show
variants of this notion of peripheral vertices that are useful.

4.1 Products and Grids

In this section, we consider results on power domination in graph products, and
in particular on the Cartesian product. We also consider other lattices, such as
hexagonal and triangular grids.

It should be noted that a recent survey of results on graph products is given by
Soh and Koh in [27], which is more detailed than what we present here, and should
be referred to for having an exhaustive list of theorems on the topic. The same
authors also surveyed earlier the results on the Cartesian product in [22].
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4.1.1 Cartesian Product

Power domination in products of paths were among the first topics to be studied on
power domination. Dorfling and Henning [15] studied the Cartesian product of two
paths, i.e., grid graphs.

Theorem 8 (Dorfling, Henning [15]) The power domination number of the n×m
grid Pn�Pm for m ≥ n ≥ 1 is

γP (Pn�Pm) =
{ �n+1

4 � if n ≡ 4 (mod 8),
�n4 � otherwise.

In their proof, they explicitly describe the shape of the set of monitored vertices
by any initial subset of vertices in the grid. In addition, their proof also relies on a
study of the cylinder, using the number of “columns” as an invariant, though, the
use of an invariant is not explicit. The question on the cylinder (i.e., the product of
a path and a cycle) was also studied later by Barrera and Ferraro [4] as well as the
torus (product of two cycles).

The hypercube is also an interesting graph family for studying power domination.
Actually, in the graph G�K2, dominating one copy of G is enough to power
dominate the whole graph G�K2. Therefore, we get that γP (G�K2) ≤ γ (G) for
any graphG. For the hypercube, this was observed by Dean et al. in [9]. They further
conjectured that the domination number of Qn was equal to the power domination
number of Qn+1. But later on, Pai and Chiu [25] showed that γ (Q5) = 7 while
γP (Q6) = 6, disproving their conjecture.

More results are proved by Varghese and Vijayakumar in [28] and by Soh and
Koh in [27], in particular towards a characterization of graph products having power
domination number equal to one. We refer the reader to the survey [27] for more
details.

4.1.2 Strong Product

The study on the products of paths was continued by Dorbec, Mollard, Klavžar, and
Špacapan in [13] with the three other classical products.

For the strong product, they prove the following lower bound:

Theorem 9 (Dorbec et al. [13]) Let m ≥ n ≥ 2. Then

γP (Pm � Pn) ≥ max
{⌈m

3

⌉
,
⌈m+ n− 2

4

⌉}

Whenever 3n − m − 6 �≡ 4 (mod 8), one can construct an initial set S which
achieves this lower bound. For the remaining case, Soh and Koh claimed in [27]
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to have proved that the correct value is �m+n−2
4 � + 1 though their proof is missing

some details.
An interesting aspect of this lower bound is that it is proved by considering not

just the number of peripheral vertices, but the number of non-surrounded vertices,
that is of monitored vertices having at most seven monitored neighbors (recall that
the maximal number of neighbors in the strong product of two paths is eight). This
includes all peripheral vertices, but also the vertices from the border of the grid. The
first step of the proof is then that the same invariant property can be proved for non-
surrounded vertices, under some conditions (by proving that any propagation that
would start on a vertex from the border could have been made from another vertex
too). This invariant enables one to prove this lower bound, based on the number of
vertices on the border of the grid.

Again, Soh and Koh in [27] claim the same results for the product of cycle, based
on the same proof, but they do not explain how they adapt the invariant.

4.1.3 Direct Product

For the direct product of paths (which has two connected components), the first
bound obtained in [13] can be stated as follows:

Theorem 10 ([13]) The power domination number of the direct product Pn × Pm
for m ≥ n ≥ 1 is

γP (Pn × Pm) =
{

2�n4 � if n is even,
2�m4 � if n is odd and m even,

If both m and n are odd,

γP (Pn × Pm) ≤ max

{⌈m

4

⌉
+
⌈
m− 2

4

⌉

,

⌈
m+ n

6

⌉

+
⌈
m+ n− 2

6

⌉}

Actually, it is proved that one component has power domination number exactly
max

{⌈
m
4

⌉
,
⌈
m+n

6

⌉}
, whereas for the other component, the only lower bound proved

is n4 . The proof is very technical, using a connection with a percolation process on a
square grid as a reference.

The case of the product of two cycles was also considered in [27], who mentioned
some earlier communications in a workshop on the topic. They also use the notion
of peripheral vertices (called boundary vertices), with a nice trick. Their idea is to
take a minimum power dominating set S of the graph, remove one vertex v from it,
and then count the number of boundary vertices for P∞(S \ {v}).
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Fig. 8 The hexagonal grid
HM(3).

4.1.4 Lexicographic Product

The case of the lexicographic product is easier, since the role of the graphG is much
more important than the role of H inG ◦H . Actually, unless the power domination
number ofH is one, it is as good to totally dominateG◦H than to use propagation.

Theorem 11 ([13]) For any nontrivial graphs G and H , if G has no isolated
vertices, then

γP (G ◦H) =
{
γ (G); γP (H) = 1 ,
γt (G); γP (H) > 1 .

4.1.5 Hexagonal Grids and Triangular Grids

The first results on the hexagonal grid are given by Ferrero, Varghese1, and
Vijayakumar in [18]. They consider hexagonal grids with an hexagonal outer shape
(see Figure 8) and give the exact power domination number of those grids. The
method used is related to the method of Dorfling and Henning in [15] for the square
grid.

Theorem 12 (Ferrero, Varghese, Vijayakumar [18]) Let HM(n) be the hexago-
nal grid with an hexagonal outer shape whose side is made of n hexagons.

γP (HM(n)) =
⌈

2n

3

⌉

.

1Seema Varghese who is cited here is actually the elder sister of Seethu Varghese who was cited
elsewhere. Both of them were PhD students of Vijayakumar.
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Fig. 9 The triangular grid
T5.

When studying the triangular grid with hexagonal outer shape (see Figure 9),
Bose, Pennarun, and Verdonschot [6] noticed a connection with that earlier result.
They got a similar bound:

Theorem 13 (Bose, Pennarun, Verdonschot [6]) For k ≥ 1, let Tk be the
triangular grid with hexagonal shape, whose side is made of k vertices. We have

γP (Tk) =
⌈
k

3

⌉

.

However, to show the lower bound, they used a very different technique than
Ferrero, Varghese, and Vijayakumar. Their nice idea is to consider a projection of the
monitored set on one side, and then count the number of peripheral vertices of that
projection when about half the vertices are monitored. They prove that this second
number is a lower bound to the number of peripheral vertices before the projection.
This results in a very original way of using the peripheral vertices invariant.

4.2 Other Recursively Defined Families

In this section, we survey the main recursively defined families for which the power
domination number has been computed.

4.2.1 Generalized Petersen Graphs and Permutation Graphs

The case of generalized Petersen graphs was considered by both Barrera and Ferrero
in [4] and by Xu and Kang in [31]. In [4], they suggest a more general study on
Cayley graphs as a continuation of this study.
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Fig. 10 The Sierpiński graph
S4

3

Fig. 11 The WK-pyramidal
networkWKP(5,2).

Actually, the work was continued on permutation graphs which form a super-
family of generalized Petersen graphs. Those were considered by Wilson in [30]. In
his paper, Wilson mainly conjectured that in a permutation graph G on n vertices
(that is based on two cycles on n

2 vertices), γP (G) ≤
⌈
n
4

⌉
. He proved that the bound

in the conjecture is best possible. He also proposed a more detailed conjecture that
holds all the open cases in his main conjecture.

4.2.2 Sierpiński Graphs

The case of the well-known Sierpiński graphs (see Figure 10) is dealt with by
Dorbec and Klavžar in [12]. Exact values are given for all Sierpiński graphs, for
power domination or generalized power domination as described in Section 5.

Another related family called WK-pyramidal networks was studied by Varghese
and Vijayakumar in [28]. This family contains Sierpiński graphs as an induced
subgraph, with the addition of (pyramidal) extra vertices in each clique (see
Figure 11). Again, the generalized power domination number of almost all WK-
pyramidal networks is explicitly given.
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Fig. 12 The Knödel graph
W3,16

Fig. 13 The Hanoi graph
HP 2

4 .

4.2.3 Other Families

We here present the other families which were considered, without much details. For
De Bruijn graphs and Kautz graphs, upper bounds on the power domination number
were first given by Kuo and Wu in [23], then the exact values were characterized by
Grigorious, Kalinowski, and Stephen in [19].

The case of Knödel (see Figure 12) and Hanoi graphs (see Figure 13) was
considered by Varghese, Vijayakumar, and Hinz in [29], who gave close formulas
for the power domination number of subfamilies of these graphs.

5 Generalized Power Domination

A common generalization of domination and power domination was introduced by
Chang et al. in [8], called k-power domination. In this section, we give its definition
and state some of the main results on k-power domination.
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5.1 Definition

The idea is to denote by k the number of non-monitored neighbors of a vertex that a
monitored vertex may propagate to. This gives the following definition:

Definition 5 (Chang et al. [8]) LetG be a graph, S ⊆ V (G) and k a non-negative
integer. We define the sets

(
Pik(S)

)
i≥0 of vertices monitored by S at step i by the

following rules.

• P0
k(S) = N [S].

• Pi+1
k (S) =⋃

N [v], v ∈ Pik(S) such that
∣
∣N [v] \ Pik(S)

∣
∣ ≤ k.

Similarly as for power domination, a set S of vertices is a k-power dominating
set of a graph G if P∞k (S) = V (G).

Note that with this definition, γP,0(G) = γ (G) and γP,1(G) = γP (G), so we
have a common generalization of domination and power domination. This may
sound a bit artificial, though many results presented below tend to show that this
makes sense.

5.2 First Results

One first thing to observe about k-power domination is that in any graph, a k-power
dominating set is also by definition a (k+1)-power dominating set. We thus naturally
have

γ (G) ≥ γP (G) ≥ γP,2(G) ≥ γP,3(G) ≥ . . . (1)

It was noted in [8] that this inequality chain cannot be improved in a general
setting:

Remark 1 (Chang et al. [8]) For any finite non-increasing sequence of positive
integers (xk)0≤k≤n, there exists a graph G such that γP,k(G) = xk for 0 ≤ k ≤ n.

The construction to prove this statement is a generalization of the construction of
the family T that was used to show the n3 bound for domination. Start initially with
the corona of a complete graph Kx0 . This enforces γ (G) = x0. Then to x1 vertices
of the complete graph, attach a second leaf, and possibly link it with the previous
leaf. To x2 of these vertices, attach a third leaf and add any number of links between
the three leaves. Continue in such a way until xk = 1 or the sequence is finished.
See Figure 14 for an example.
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Fig. 14 An example of a
graph G with γ (G) = 5,
γP (G) = 3 = γP,2(G), and
γP,3(G) = 1. A minimum
(1-)power dominating set is
also drawn.

5.3 Bounds for Generalized Power Domination

Using this generalized setting, many results proved on power domination can be
extended. We now summarize some of the main bounds found. Most of them were
mentioned earlier, for the power domination number.

The first result is the following:

Theorem 14 (Chang et al. [8]) For any connected graphG on n ≥ k+ 1 vertices,
we have γP,k(G) ≤ n

k+2 , and this bound is best possible.

This result can be proved in the same way as the n
3 bound for (1-)power

domination, and the examples reaching the bound are basically the same, obtained
from any graph G, to which each vertex is attached k + 1 leaves.

Interestingly enough, the (1-)power domination bound for regular graphs also
extends well to generalized power domination, and this is actually how the result is
proved in [11].

Theorem 15 (Dorbec et al. [11]) Let k ≥ 1 and let G be a connected (k + 2)-
regular graph of order n. If G �= Kk+2,k+2, then γP,k(G) ≤ n

k+3 , and this bound is
tight.

It should be noted that the Sierpiński graphs in [12] and the WK-pyramidal
networks in [28] are studied in the generalized setting.

6 Propagation Radius

Another parameter closely related to power domination was introduced to indicate
the number of propagation steps required to monitor the whole graph from a
minimum power dominating set.

It was introduced independently first by Dorbec and Klavžar in [12], where
they called the parameter propagation radius (denoted radP,k(G) for k-power
domination), and later by Ferrero et al. [16], who called it power propagation time
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Fig. 15 In the above graph
with γP (G) = 1, rad(G) = 2
but radP,1(G) = 4

(denoted ppt(G)). We here stick to the earlier name and notation, namely the
propagation radius.

Definition 6 (Propagation Radius) The radius of a k-power dominating set S of a
graph G is defined by

radP,k(G, S) = 1 + min{i : Pik(S) = V (G)} .

The k-propagation radius of a graph G can be expressed as

radP,k(G) = min{radP,k(G, S), S is a k-PDS of G, |S| = γP,k(G)} .

Note that the power propagation time, denoted ppt(G), is defined so that it
exactly matches the propagation radius, and we have ppt(G) = radP,1(G). Note
though that things are made a little confusing due to a slight difference between the
notations of Aazami [1] and Chang et al. [8] for monitored sets at step i. In the first
paper, N [S] is the step 1 of monitoring (denoted N [S] = S[1] in [16]), while in the
second, N [S] = P0(S). Fortunately, the values coincide for the propagation radius.

The following early results are proved for the propagation radius:

Theorem 16 (Dorbec, Klavžar [12]) LetG be a graph and k a positive integer.

• We have γP (G) = γ (G) if and only if radP,1(G) = 1.
• If �(G) ≤ k + 1, then γP,k(G) = 1 and radP,k(G) = rad(G).

It should be noted that γP,k(G) = 1 implies radP,k(G) ≥ rad(G) but not the
equality, as is illustrated by the graph of Figure 15.

From the propagation radius, we can also infer a bound on the power domination
number with the number of peripheral vertices. Since the number of peripheral
vertices may not increase in 1-power domination, and these are the only vertices that
can propagate, the peripheral vertices invariant translates to the following result:

Theorem 17 (Liao [24]) For any graph G on n vertices with maximum degree �,
we have

γP (G) ≥ n

1 +� radP,1(G)
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Fig. 16 The peacock graph,
with 3-power domination
number 1, radius 2, but
3-propagation radius equal to
11.

This is easily verified by the fact that the number of peripheral vertices at all time
is at most �γP (G), so the total number of vertices monitored is at most

P∞(S) ≤ γP (G)+�γP (G) radP,1(G) .

On its own, this result is difficult to use since there is no general relationship
between the diameter or the radius of a graph and its power domination radius,
as observed by Dorbec and Klavžar [12] and independently by Ferrero et al. [16].
Similar examples were given of graphs with small power domination number, small
diameter, and very large propagation radius. One such example from [12] is depicted
in Figure 16. It illustrates the statement for 3-power domination.

The number of articles where the propagation radius has been studied is not yet
very large. In the initial paper [12], the propagation radius of Sierpiński graphs was
computed in the same time as their k-power domination number. In [14], in the
same time as the authors studied the changes on the generalized power domination
number by canonical graph changes, they considered the possible evolution of the
propagation radius (when the power domination number was modified). In [28],
Varghese and Vijayakumar considered the propagation radius for WK-pyramidal
networks, while in [29], Varghese, Vijayakumar, and Hinz studied the power
domination number and propagation radius in Knödel graphs and Hanoi graphs.

7 Open Problems and Perspectives

In this final section, we present some research directions and questions that arise
from the results surveyed here.
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7.1 About the Relationship Between k and �-Power
Domination

One first question is about the link between the k and �-power domination numbers
of a graph for k �= �. It was stated in Section 5 that when k increases, the k-
power domination number can only decrease. We have shown how these domination
numbers can vary quite freely, but these examples use articulation points (i.e.,
vertices whose removal disconnects the graph). The following questions come
naturally, with a special interest in 2-connected graphs to avoid all the cases using
articulation points.

Question 1

• Can we find a characterization of the 2-connected graphs such that γP,k(G) =
γP,�(G) for some k < �? And in particular for � = k + 1?

• Can we answer the same question in general?

7.2 About Regular Graphs

For regular graphs, a little is known already, and more could probably be proved.
Everything that is known for power domination extends nicely to generalized power
domination, and is summarized as follow. For a connected regular graph G of order
n and degree �, we have

• If � ≤ k + 1, γP,k(G) = 1.
• If� = k+2, γP,k(G) ≤ n

�+1 , with the single exception of the bipartite complete
graph Kk+2,k+2.

A conjecture was made in [11] that the bound n
�+1 could hold for larger

�, independently of k. Seemingly, some counter-examples were found to that
conjecture at a workshop in Balatonalmádi in 2017, though there is no written
evidence. The following question of an upper bound certainly is of interest, then.

Question 2

• What is the best possible upper bound on the power domination number of a
connected regular graph with degree at least four?

• More generally, what is the best possible upper bound on the k-power domination
number of a connected regular graph with degree at least k + 3?

7.3 Hypercubes and Products

Domination in graph products is a nice but difficult problem, as illustrated by
Vizing’s conjecture. However, power domination seems to behave quite differently
on products, as we have seen in Section 4.1.
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First, the question of the hypercube is still open. The intuition that γP (Qi+1)

would be equal to γ (Qi) for all i was disproved, with the smallest counterexample
being the pair Q5-Q6. The question remains open for generalized power domina-
tion, as mentioned below. We also present a general question for graph products.

Question 3

• Can more counterexamples be found to disprove that γP,k+1(Qi+1) = γP,k(Qi)
for k ≥ 1? Can we predict the smallest counter-example for a given k?

• For some product ⊗, can we find some nontrivial way to relate γP,k(G), γP,�(H)
and some γP,f (k,�)(G⊗H)? Can such relations be completed with relations also
on the propagation radii?

7.4 Maximal Planar Graphs

For planar graphs, we surveyed the known results in Section 3.3. The problems
sound interesting and promising, but the initial problem remains open, with the
following questions.

Question 4

• Is there an infinite maximal planar graph family that requires more than n6 vertices
to power dominate, as does the triakis-tetrahedron of Figure 7?

• More generally, what is the best α such that for all maximal planar graphs G,
γP (G) ≤ α|V | +O(1)?

• Finally, what is the best possible upper bound on the size of a minimum k-power
dominating set of a maximal planar graph?

Note that the second question is likely to be difficult, as the corresponding
question for domination remains open.

7.5 Propagation Radius

To conclude, there are many other questions to explore concerning graph classes, in
particular, the introduction of the propagation radius opens up many new questions.

Question 5

• For the main results proposed up to now on power domination, what can be said
about the propagation radius?
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