®

Check for
updates

Logic-Independent Proof Search
in Logical Frameworks
(Short Paper)

Michael Kohlhase!, Florian Rabe!, Claudio Sacerdoti Coen?,
and Jan Frederik Schaefer! (™)

1 Computer Science, FAU Erlangen-Niirnberg, Erlangen, Germany
jan.frederik.schaefer@fau.de
2 Department of Computer Science and Engineering,
Universita di Bologna, Bologna, Italy

Abstract. Logical frameworks like LF allow to specify the syntax and
(natural deduction) inference rules for syntax/proof-checking a wide vari-
ety of logical systems. A crucial feature that is missing for prototyping
logics is a way to specify basic proof automation. We try to alleviate this
problem by generating AProlog (ELPI) inference predicates from logic
specifications and controlling them by logic-independent helper predi-
cates that encapsulate the prover characteristics. We show the feasibility
of the approach with three experiments: We directly automate ND cal-
culi, we generate tableau theorem provers and model generators.

1 Introduction and Related Work

Logical frameworks like LF [HHP93] and AProlog [Mil] enable prototyping and
analyzing logical systems, using high-level declarative logic definitions based
on higher-order abstract syntax. Building theorem provers automatically from
declarative logic definitions has been a long-standing research goal. But cur-
rently, logical framework-induced fully logic-independent proof support is gen-
erally limited to proof checking and simple search.

Competitive proof support, on the other hand, is either highly optimized for
very specific logics, most importantly propositional logics or untyped first-order
logic. Generic approaches have so far been successful for logics without bind-
ing (and thus quantifiers) such as the tableaux prover generation in MetTeL2
[TSK]. Logical frameworks shine when applied to logics with binding, for which
specifying syntax and calculus is substantially more difficult. However, while the
Isabelle framework was designed as such a generic prover [Pau93], it is nowadays
primarily used for one specific logic (Isabelle/HOL). On the other hand, there
has been an explosion of logical systems, often domain-specific, experimental, or

The authors gratefully acknowledge project support by German Research Council
(DFG) grants KO 2428/13-1 and RA-1872/3-1 OAF as well as EU Horizon 2020 grant
ERI 676541 OpenDreamKit.

© Springer Nature Switzerland AG 2020

N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12166, pp. 395-401, 2020.
https://doi.org/10.1007/978-3-030-51074-9_22


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51074-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-51074-9_22

396 M. Kohlhase et al.

otherwise restricted to small user communities that cannot sustain the develop-
ment of a practical theorem prover. To gain theorem proving support for such
logics, proof obligations can be shipped to existing provers via one of the TPTP
languages, or the logics may be defined as DSLs inside existing provers as is com-
monly done using Coq [Coql5], Isabelle [Pau94], or Leo [Ben+08]. If applicable,
these approaches are very successful. But they are also limited by the language
and proof strategy of the host system, which can preclude fully exploring the
design space for logics and prover.

We investigate this question by combining the advantages of two logi-
cal frameworks: To define logics, we use the implementation of LF in MwMT
[Rab17,Rab18]. MMT is optimized for specifying and prototyping logics, provid-
ing in particular type reconstruction, module system, and graphical user inter-
face. Then we generate ELPI theorem provers from these logic definitions. ELPI
[SCT15] is an extension of AProlog with constraint programming via user-defined
rules, macros, type abbreviations, optional polymorphic typing and more. ELPI is
optimized for fast execution of logical algorithms such as type inference, unifica-
tion, or proof search, and it allows prototyping such systems much more rapidly
than traditional imperative or functional languages. Both MMT and ELPI were
designed to be flexible and easy to integrate with other systems. Our approach is
logic-independent and applicable to any logic defined in LF. Concretely, we eval-
uate our systems by generating provers for the highly modular suite of logic def-
initions in the LATIN atlas [Cod+11], which includes e.g. first- and higher-order
and modal logics and various dependent type theories. These logic definitions
can be found at [LATIN] and the generated ELPI provers in [GEP].

We follow the approach proposed by Miller et al. in the ProofCert project
[CMR13] but generalize it to non-focused logics. The key idea is to translate each
rule R of the deduction system to an ELPI clause for the provability predicate,
whose premises correspond to the premises of R. The provability predicate has
an additional argument that represents a proof certificate and each clause has a
new premise that is a predicate, called its helper predicate, that relates the proof
certificates of the premises to the one of the conclusion. Following [CMR13], the
definitions of the certificates and the helper predicates are initially left open, and
by providing different instances we can implement different theorem provers. In
the simplest case, the additional premise acts as a guard that determines if and
when the theorem prover should use a rule. It can also suggest which formulas to
use during proof search when the rule is not analytic. This allows implementing
strategies such as iterative deepening or backchaining. Alternatively, the helper
predicates can be used to track information in order to return information such
as the found proof. These can be combined modularly with minimal additional
work, e.g., to return the proof term found by a backchaining prover or to run a
second prover on a branch where the first one failed.

[CMR13] and later works by the authors use focusing as a preliminary require-
ment. While focusing was the source of inspiration of the whole technique and
brings great benefits by reduction of search space, we show here that focusing
is not really a requirement and that we can achieve comparable reductions in
search space by designing certificates that impose the two phases of proof search



Logic-Independent Proof Search in Logical Frameworks 397

in focused calculi a posteriori. By not using focusing, our work makes the app-
roach much more accessible as focusing is largely unknown in many communities
(e.g., in linguistics). Moreover, [CMR13] was motivated by applications to one
specific logic: classical/intuitionist focused first-order logic. While it is clear in
theory that the same methodology can be applied to other logics, in practice we
need to build tools to test and benchmark the approach in those logics. Here
the possibility of generating many different provers for LF-defined logics in a
completely uniform way is an important novelty of our work.

This paper is a short version of [Koh+20] which contains additional details.

2 Natural Deduction Provers

Logic Definitions in MMT/LF. While our approach is motivated by and appli-
cable to very complex logics, including e.g. dependent type theories, it is easier
to present our ideas by using a very simple running example. Concretely, we will
use the language features of conjunction and untyped universal quantification.
Their formalized syntax is shown below relative to base theories for propositions
and terms.

Props = {prop : type} Terms = {term: type}
Conj = {includeProps, and : prop — prop — prop}
Univ = {includeProps, include Terms, univ : (term — prop) — prop}

Below we extend these with the respective natural deduction rules relative
to a theory ND that introduces a judgment to map a proposition F': prop to the
type ded F of proofs of F":

ND = {include Props, judgded : prop — type}
ConjND = {include {ND,Conj}, andEl : IT4 p.propded (AA B) — ded A4, ...}

For brevity, we only give some of the rules and use the usual notations for
the constants and and univ. Note that judg tags ded as a judgment: while this
is irrelevant for LF type checking, it allows our theorem provers to distinguish
the data from the judgment level. Concretely, type declarations are divided into
data types (such as prop and term) and judgments (such as ded). And term
declarations are divided, by looking at their return type, into data constructors
(such as and and univ) and rules (such as andEl and univE).

Generating ELPI Provers. Our LF-based formalizations of logics define the well-
formed proofs, but implementations of LF usually do not offer proof search
control that would allow for automation. Therefore, we systematically translate
every LF theory into an ELPI file. ELPI is similarly expressive as LF so that a
naive approach could simply translate the andE1 rule to the ELPI statement

ded A :— ded (and A B)

Note how the IT-bound variables of the LF rule (which correspond to implicit
arguments that LF implementations reconstruct) simply become free variables



398 M. Kohlhase et al.

for ELPI’s Prolog engine to instantiate. However, this would not yield a use-
ful theorem prover at all — instead, the depth-first search behavior of Prolog
would easily lead to divergence. Therefore, to control proof search, we introduce
additional arguments as follows:

— An n-ary judgment like ded becomes a (1+n)-ary predicate in ELPI. The new
argument, called a proof certificate, can record information about the choice
of rules and arguments to be used during proof search.

— A rule r with n premises (i.e., with n arguments remaining after discarding
the implicit ones) becomes an ELPI statement with 1 4 n premises.

The additional premise is a predicate named 7, i-€., we introduce one helper
predicate for each rule; it receives all certificates and formulas of the rule as
input. A typical use for rje, is to disable or enable 7 according to the certificate
provided in the input and, if enabled, extract from this certificate those for the
recursive calls. An alternative use is to synthesize a certificate in output from
the output certificates of the recursive calls, which allows recording a successful
proof search attempt. This is possible because AProlog is based on relations,
and it is not fixed a priori which arguments are to be used as input and which
as output. The two uses can even be combined by providing half-instantiated
certificates in input that become fully instantiated in output.

For our running example, the following ELPI rule is generated along with a
number of helper predicates:

ded Xy F :— help/andEl X5 F' G X1, ded X; (and F G).

Iterative Deepening. Iterative deepening is a very simple mechanism to control
the proof search and avoid divergence. Here the certificate simply contains an
integer indicating the remaining search depth. A top-level loop (not shown here)
just repeats proof search with increasing initial depth. Due to its simplicity, we
can easily generate the necessary helper predicate automatically:

help/andEl (idcert X3) F' G (idcert X3) :— X3>0, Xyis X3 — 1.

Backchaining. Here, the idea is to be more cautious when trying to use non-
analytic elimination rules like andE1, whose premises contain a sub-formula not
present in the conclusion. To avoid wrongly guessing these, Miller [CMR13]
employs a focused logic where forward and backward search steps are alternated.
We reproduce a similar behavior for our simpler unfocused logic by programming
the helper to trigger forward reasoning search and by automatically generating
forward reasoning clauses for some of our rules:

help/andEl (bccert X3) F G (becert (be/fwdLocked X3))
:— bec/val X3 Xy, X4 >0, Xois Xy —1, bc/fwdable (and F G).
bc/fwdable :— ded/hyp - T, bc/aux T A.

Here we use two predicates that are defined once and for all, i.e., logic-
independently: bc/fwdable (and F G) asks for a forward reasoning proof of
(and F' G); and ded/hyp - T recovers an available hypothesis T'.



Logic-Independent Proof Search in Logical Frameworks 399

Finally, bc/aux T' A proves A from T using forward reasoning steps. Its
definition picks up on annotations in LF that mark forward rules, and if andE1
is annotated accordingly, we automatically generate the forward-reasoning clause
below, which says that X5 is provable from (and F' G) if it is provable from F:

bc/aux (and F G) X5 :— bc/aux F Xs.

3 Tableau Provers

Logic Definitions in MMT/LF. The formalizations of the tableau rules for our
running example are given below. The general idea is to represent each branch
of a tableau as an LF context; the unary judgments 1 A and 0 A represent the
presence of the signed formula A on the branch, and the judgment L represents
its closability. Thus, the type 0 A — L represents that A can be proved. For
example, the rule and0 below states: if 0(A A B) is on a branch, then that
branch can be closed if the two branches extending it with 0 A resp. 0 B can.

Tab = {includeProps, judg1 : prop — type, judgO : prop — type,
judg L : type, close : M apropl A —0A — 1}
ConjTab = {include Tab, include Conj,
and0 : T4 Biprop 0(AANB) - (0A— 1) —(0B—1)—1, ...}
UnivTab = {..., foralll : Iplx.term 1(VP) — (1(PX) — 1) — L}

Generating ELPI Provers. We use the same principle to generate ELPI state-
ments, i.e., every LF-judgment receives an additional argument and every LF-
rule an additional premise.

To generate a tableau prover, we use the additional arguments to track the
current branch. This allows recording how often a rule has been applied in order
to prioritize rule applications. For first-order logic, this is only needed to allow
applying the relevant quantifier rules more than once.

For theorem proving, branches that are abandoned when the depth-limit is
reached represent failed proof attempts. But we can just as well use the prover
as a model generator: here we modify the helper predicates in such a way
that abandoning an unclosed branch returns that branch. Thus, the overall run
returns the list of open branches, i.e., the potential models.

Note that the ND theorem prover from Sect. 2 is strong enough to prove the
tableau rules admissible for the logics we experimented with. If this holds up, it
makes prototyping proof support for logic experiments much more convenient.

Application to Natural Language Understanding. Part of the motivation for the
work reported here was to add an inference component — a tableau machine for
natural language pragmatics — to our Grammatical /Logical Framework [KS19],
which combines syntactic processing via the LF-based GF [Ran04] with MMT
to obtain an NL interpretation pipeline that is parametric in the target logic.
A variant of the model generator discussed above—where we extend the helper



400 M. Kohlhase et al.

predicate to choose a currently preferred branch when a resource bound in satu-
ration is reached—yields an NL understanding framework that combines anaphor
resolution, world-knowledge, and belief revision as in [KKO03] with support for
changing and experimenting with the target logic. A demo of the envisioned
system can be found at [GD].

4 Conclusion and Future Work

We have revisited the question of generating theorem provers from declara-
tive logic definitions in logical frameworks. We believe that, after studying such
frameworks for the last few decades, the community has now understood them
well enough and implemented them maturely enough to have a serious chance
at succeeding. The resulting provers will never be competitive with existing
state-of-the-art provers optimized for a particular logic, but the expressivity and
flexibility of these frameworks allows building practically relevant proof support
for logics that would otherwise have no support at all.

Our infrastructure already scales well to large collections of logics and multi-
ple prover strategies, and we have already used it successfully to rapidly proto-
type a theorem prover in a concrete natural language understanding application.
In the future, we will develop stronger proof strategies, in particular better sup-
port for equational reasoning and advanced type systems. We will also integrate
the ELPI-based theorem provers as a backend for MMT/LF in order to provide
both automated and interactive proof support directly in the graphical user
interface. A key question will be how the customization of the theorem prover
can be integrated with the logic definitions (as we already did by annotating
forward rules) without losing the declarative flavor of LF.

References

[Ben+08] Benzmiiller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - A Cooper-
ative Automatic Theorem Prover for Classical Higher-Order Logic (System
Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 162-170. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71070-7_14

[CMR13] Chihani, Z., Miller, D., Renaud, F.: Checking foundational proof certificates
for first-order logic. In: Blanchette, J., Urban, J. (eds.) Proof Exchange for
Theorem Proving. EasyChair, pp. 58-66 (2013)

[Cod+11] Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.: Project
Abstract: Logic Atlas and Integrator (LATIN). In: Davenport, J.H., Farmer,
W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS (LNAI), vol. 6824, pp.
289-291. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22673-1.24

[Coql5] Coq Development Team: The Coq proof assistant: reference manual. Tech-
nical report INRIA (2015)
[GD] GLIF Demo. https://gl.kwarc.info/ COMMA /glif-demo-ijcar-2020. Acces-
sed 27 Jan 2020


https://doi.org/10.1007/978-3-540-71070-7_14
https://doi.org/10.1007/978-3-642-22673-1_24
https://doi.org/10.1007/978-3-642-22673-1_24
https://gl.kwarc.info/COMMA/glif-demo-ijcar-2020

[GEP]
[HHP93]

[KK03]

[Koh+20]

[KS19]

[LATIN]
[Mil]
[Pau93]
[Pau94]
[Rab17]
[Rab18]
[Ran04]
[SCT15]

[TSK]

Logic-Independent Proof Search in Logical Frameworks 401

Generated ELPI Provers. https://gl.mathhub.info/MMT /LATIN2/tree/
devel/elpi. Accessed 26 Jan 2020

Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J.
Assoc. Comput. Mach. 40(1), 143-184 (1993)

Kohlhase, M., Koller, A.: Resource-adaptive model generation as a per-
formance model. Log. J. IGPL 11(4), 435456 (2003). http://jigpal.
oxfordjournals.org/cgi/content /abstract/11/4/435

Kohlhase, M., et al.: Logic-independent proof search in logical frame-
works (extended report). Extended Report of Conference Submission (2020).
https://kwarc.info/kohlhase /submit /mmtelpi.pdf

Kohlhase, M., Schaefer, J.F.: GF + MMT = GLF - from language to seman-
tics through LF. In: Miller, D., Scagnetto, I., (eds.) Proceedings of the
Fourteenth Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice (LFMTP 2019). Electronic Proceedings in Theoretical Com-
puter Science (EPTCS), vol. 307, pp. 24-39 (2019). https://doi.org/10.4204/
EPTCS.307.4

LATIN2 - Logic Atlas Version 2. https://gl.mathhub.info/MMT /LATIN2.
Accessed 02 June 2017

Miller, D: AProlog. http://www.lix.polytechnique.fr/Labo/Dale.Miller/
1Prolog/

Paulson, L.C.: Isabelle: The Next 700 Theorem Provers. In: arXiv CoRR
¢s.1LO/9301106 (1993). https://arxiv.org/abs/cs/9301106

Paulson, L.C. (ed.): Isabelle: A Generic Theorem Prover. LNCS, vol. 828.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0030541

Rabe, F.: How to identify, translate, and combine logics? J. Log. Comput.
27(6), 1753-1798 (2017)

Rabe, F.: A modular type reconstruction algorithm. ACM Trans. Comput.
Log. 19(4), 1-43 (2018)

Ranta, A.: Grammatical framework, a type-theoretical grammar formalism.
J. Funct. Programm. 14(2), 145-189 (2004)

Coen, C.S., Tassi, E.: The ELPI system (2015). https://github.com/LPC
IC/elpi

Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: MetTeL2: towards a tableau
prover generation platform. In: Proceedings of the Third Workshop on Prac-
tical As- pects of Automated Reasoning (PAAR-2012), p. 149 (2012)


https://gl.mathhub.info/MMT/LATIN2/tree/devel/elpi
https://gl.mathhub.info/MMT/LATIN2/tree/devel/elpi
http://jigpal.oxfordjournals.org/cgi/content/abstract/11/4/435
http://jigpal.oxfordjournals.org/cgi/content/abstract/11/4/435
https://kwarc.info/kohlhase/submit/mmtelpi.pdf
https://doi.org/10.4204/EPTCS.307.4
https://doi.org/10.4204/EPTCS.307.4
https://gl.mathhub.info/MMT/LATIN2
http://www.lix.polytechnique.fr/Labo/ Dale. Miller/lProlog/
http://www.lix.polytechnique.fr/Labo/ Dale. Miller/lProlog/
https://arxiv.org/abs/cs/9301106
https://doi.org/10.1007/BFb0030541
https://github.com/LPCIC/elpi
https://github.com/LPCIC/elpi

	Logic-Independent Proof Search in Logical Frameworks
	1 Introduction and Related Work
	2 Natural Deduction Provers
	3 Tableau Provers
	4 Conclusion and Future Work
	References




