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Preface

These volumes contain the papers presented at the 10th International Joint Conference
on Automated Reasoning (IJCAR 2020) initially planned to be held in Paris, but – due
to the COVID-19 pandemic – held by remote conferencing during July 1-4, 2020.

IJCAR is the premier international joint conference on all aspects of automated
reasoning, including foundations, implementations, and applications, comprising sev-
eral leading conferences and workshops. IJCAR 2020 united CADE, the Conference on
Automated Deduction, TABLEAUX, the International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, FroCoS, the International
Symposium on Frontiers of Combining Systems, and ITP, the International Conference
on Interactive Theorem Proving. Previous IJCAR conferences were held in Siena
(Italy) in 2001, Cork (Ireland) in 2004, Seattle (USA) in 2006, Sydney (Australia) in
2008, Edinburgh (UK) in 2010, Manchester (UK) in 2012, Vienna (Austria) in 2014,
Coimbra (Portugal) in 2016, and Oxford (UK) in 2018.

150 papers were submitted to IJCAR: 105 regular papers, 21 system description,
and 24 short papers, describing interesting work in progress. Each submission was
assigned to three Program Committee (PC) members; in a few cases, a fourth additional
review was requested. A rebuttal phase was added for the authors to respond to the
reviews before the final deliberation. The PC accepted 62 papers, resulting in an
acceptance rate of about 41%: 46 regular papers (43%), 11 system descriptions (52%),
and 5 short papers (20%).

In addition, the program included three invited talks, by Clark Barrett, Elaine
Pimentel, and Ruzica Piskac, plus two additional invited talks shared with the con-
ference on Formal Structures for Computation and Deduction (FSCD), by John
Harrison and René Thiemann (the abstract of the invited talk by René Thiemann is
available in the proceedings of FSCD 2020).

The Best Paper Award was shared this year by two papers: “Politeness for The
Theory of Algebraic Datatypes” by Ying Sheng, Yoni Zohar, Christophe Ringeissen,
Jane Lange, Pascal Fontaine, and Clark Barrett, and “The Resolution of Keller’s
Conjecture” by Joshua Brakensiek, Marijn Heule, John Mackey, and David Narvaez.

IJCAR acknowledges the generous sponsorship of the CNRS (French National
Centre for Scientific Research), Inria (French Institute for Research in Computer
Science and Automation), the Northern Paris Computer Science (LIPN: Laboratoire
d’Informatique de Paris Nord) at the University of Paris North (Université Sorbonne
Paris Nord), and of the Computer Science Laboratory of Ecole Polytechnique (LIX:
Laboratoire d’Informatique de l’École Polytechnique) in the École Polytechnique.

The EasyChair system was extremely useful for the reviewing and selection of
papers, the organization of the program, and the creation of this proceedings volume.
The PC chairs also want to thank Springer for their support of this publication.



We would like to thank the organizers of IJCAR, the members of the IJCAR PC,
and the additional reviewers, who provided high-quality reviews, as well as all authors,
speakers, and attendees.

The COVID-19 pandemic had a strong impact on the organization of IJCAR
and significantly weighted the burden on authors, reviewers, and organizers. We are
very grateful to all of them for their hard work under such difficult and unusual
circumstances.

April 2020 Nicolas Peltier
Viorica Sofronie-Stokkermans
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Competing Inheritance Paths
in Dependent Type Theory:

A Case Study in Functional Analysis

Reynald Affeldt1(B), Cyril Cohen2, Marie Kerjean3, Assia Mahboubi3,
Damien Rouhling4, and Kazuhiko Sakaguchi5

1 National Institute of Advanced Industrial Science and Technology (AIST),
Tsukuba, Japan

reynald.affeldt@aist.go.jp
2 Université Côte d’Azur, Inria, Sophia Antipolis, France

3 Inria, Rennes-Bretagne Atlantique, Rennes, France
4 Inria & Université de Strasbourg, CNRS, ICube, Nancy-Grand Est,

Villers-lès-Nancy, France
5 University of Tsukuba, Tsukuba, Japan

Abstract. This paper discusses the design of a hierarchy of structures
which combine linear algebra with concepts related to limits, like topol-
ogy and norms, in dependent type theory. This hierarchy is the backbone
of a new library of formalized classical analysis, for the Coq proof assis-
tant. It extends the Mathematical Components library, geared towards
algebra, with topics in analysis. Issues of a more general nature related
to the inheritance of poorer structures from richer ones arise due to this
combination. We present and discuss a solution, coined forgetful inheri-
tance, based on packed classes and unification hints.

Keywords: Formalization of mathematics · Dependent type theory ·
Packed classes · Coq

1 Introduction

Mathematical structures are the backbone of the axiomatic method advocated
by Bourbaki [8,9] to spell out mathematically relevant abstractions and estab-
lish the corresponding vocabulary and notations. They are instrumental in mak-
ing the mathematical literature more precise, concise, and intelligible. Mod-
ern libraries of formalized mathematics also rely on hierarchies of mathematical
structures to achieve modularity, akin to interfaces in generic programming. By
analogy, we call instance a witness of a mathematical structure on a given car-
rier. Mathematical structures, as interfaces, are essential to factor out the shared
vocabulary attached to their instances. This vocabulary comes in the form of for-
mal definitions and generic theorems, but also parsable and printable notations,
and sometimes delimited automation. Some mathematical structures are richer
than others in the sense that they extend them. Like in generic programming,
c© Springer Nature Switzerland AG 2020
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rich structures inherit the vocabulary attached to poorer structures. Working out
the precise meaning of symbols of this shared vocabulary is usually performed
by enhanced type inference, which is implemented using type classes [5,27,28]
or unification hints [3,17,20,24]. In particular, these mechanisms must automat-
ically identify inheritance relations between structures.

This paper discusses the design of a hierarchy of mathematical structures
supporting a Coq [30] formal library for functional analysis, i.e., the study of
spaces of functions, and of structure-preserving transformations on them. The
algebraic vocabulary of linear algebra is complemented with a suitable notion
of “closeness” (e.g., topology, distance, norm), so as to formalize convergence,
limits, size, etc. This hierarchy is based on the packed classes methodology [17,
20], which represents structures using dependent records. The library strives to
provide notations and theories that are as generic as they would be on paper.
It is an extension of the “Mathematical Components” library [32] (hereafter
MathComp), which is geared towards algebra. This extension is inspired by the
Coquelicot real analysis library [7], which has its own hierarchy.

Fusing these two hierarchies, respectively from the MathComp and Coqueli-
cot libraries, happens to trigger several interesting issues, related to inheritance
relations. Indeed, when several constructions compete to infer an instance of
the poorer structure, the proof assistant displays indiscernible notations, or key-
words, for constructions that are actually different. This issue is not at all spe-
cific to the formalization of functional analysis: actually, the literature reports
examples of this exact problem but in different contexts, e.g., in Lean’s math-
lib [11,33]. It is however more likely to happen when organizing different flavors
of mathematics in a same coherent corpus, as this favors the presence of problem-
atic competing constructions. Up to our knowledge, the problem of competing
inheritance paths in hierarchies of dependent records was never discussed per se,
beyond some isolated reports of failure, and of ad hoc solutions. We thus present
and discuss a general methodology to overcome this issue, coined forgetful inher-
itance, based on packed classes and unification hints.

The paper is organized as follows: in Sect. 2, we recall the packed classes
methodology, using a running example. Section 3 provides two concrete examples
of the typical issues raised by the presence of competing inheritance paths, before
describing the general issue, drawing its solution, and comparing with other
type-class-like mechanisms. Finally, Sect. 4 describes the design of our hierarchy
of structures for functional analysis, and its features, before Sect. 5 concludes.

2 Structures, Inheritance, Packed Classes

We recall some background on the representation of mathematical structures
in dependent type theory, and on the construction of hierarchies using packed
classes. For that purpose, we use a toy running example (see the accompanying
file packed_classes.v [1]), loosely based on the case study presented in Sect. 4.

2.1 Dependent Records

In essence, a mathematical structure attaches to a carrier set some data (e.g.,
operators of the structure, collections of subsets of the carrier) and prescribed
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properties about these data, called the axioms of the structure. The Calculus
of Inductive Constructions [16], as implemented, e.g., by Coq [30], Agda [29], or
Lean [21,22], provides a dependent record construct, which allows to represent
a given mathematical structure as a type, and its instances as terms of that
type. A dependent record is an inductive type with a single constructor, which
generalizes dependent pairs to dependent tuples. The elements of such a tuple
are the arguments of the single constructor. They form a telescope [10], i.e.,
collection of terms, whose types can depend on the previous items in the tuple.

For example, the flatNormModule record type formalizes a structure with two
operators, fminus and fnorm, and one axiom fnormP. This structure is a toy
generalisation for the mathematical notion of normed module. Its purpose is
to simulate one basic axiom of norms via a minimal amount of constructors.
Thus, the flatNormModule has a single constructor named FlatNormModule, and
four projections (also called fields) carrier, fminus, fnorm, and fnormP, onto the
respective components of the tuple:

Structure flatNormModule := FlatNormModule {

carrier : Type ;

fminus : carrier → carrier → carrier;

fnorm : carrier → nat;

fnormP : ∀ x : carrier, fnorm (fminus x x) = 0 }.

The fnormP axioms makes use of fminus x x to avoid the introduction of a 0

of carrier type. Fields have a dependent type, parameterized by the one of the
structure:

fminus : ∀ f : flatNormModule, carrier f → carrier f → carrier f

fnormP : ∀ (f : flatNormModule) (x : carrier f), fnorm f (fminus f x x) = 0.

In this case, declaring an instance of this structure amounts to defining a term
of type flatNormModule, which packages the corresponding instances of carrier,
data, and proofs. For example, here is an instance on carrier Z (using the Z.sub

and Z.abs_nat functions from the standard library resp. as the fminus and the
fnorm operators):

Lemma Z_normP (n : Z) : Z.abs_nat (Z.sub n n) = 0. Proof. ... Qed.

Definition Z_flatNormModule := FlatNormModule Z Z.sub Z.abs_nat Z_normP.

2.2 Inference of Mathematical Structures

Hierarchies of mathematical structures are formalized by nesting dependent
records but naive approaches quickly incur scalability issues. Packed classes [17,
20] provide a robust and systematic approach to the organization of structures
into hierarchies. In this approach, a structure is a two-field record, which asso-
ciates a carrier with a class. A class encodes the inheritance relations of the
structure and packages various mixins. Mixins in turn provide the data, and
their properties. In Coq, Record and Structure are synonyms, but we reserve
the latter for record types that represent actual structures. Let us explain the
basics of inference of mathematical structures with packed classes by replacing
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the structure of Sect. 2.1 with two structures represented as packed classes. The
first one provides just a binary operator:

1 Record isModule T := IsModule { minus_op : T → T → T }.

2 Structure module := Module {

3 module_carrier : Type;

4 module_isModule : isModule module_carrier }.

Since the module structure is expected to be the bottom of the hierarchy, we
are in the special class where the class is the same as the mixin (here, the class
would be equal to isModule). To endow the operator minus_op with a generic
infix notation, we introduce a definition minus, parameterized by an instance
of module. In the definition of the corresponding notation, the wildcard _ is a
placeholder for the instance of module to be inferred from the context.

Definition minus (M : module) :

module_carrier M → module_carrier M → module_carrier M :=

minus_op _ (module_isModule M).

Notation "x - y" := (minus _ x y).

We can build an instance of the module structure with the type of integers as the
carrier and the subtraction of integers for the operator:

Definition Z_isModule : isModule Z := IsModule Z Z.sub.

Definition Z_module := Module Z Z_isModule.

But defining an instance is not enough to make the _ - _ notation available:

Fail Check ∀ x y : Z, x - y = x - y.

To type-check the expression just above, Coq needs to fill the wildcard in the
_ - _ notation, which amounts to solving the equation module_carrier ?M ≡ Z,
where _ ≡ _ is the definitional equality (i.e., equality up to the conversion rules
of Coq type theory [30, Section “Conversion Rules” in Chapter “Calculus of
Constructions”]). One can indicate that the instance Z_module is a canonical
solution by declaring it as a canonical instance:

Canonical Z_module.

Check ∀ x y : Z, x - y = x - y.

This way, Coq fills the wildcard in minus _ x y with Z_module and retrieves as
expected the subtraction for integers.

2.3 Inheritance and Packed Classes

We introduce a second structure class to illustrate how inheritance is imple-
mented. This structure extends the module structure of Sect. 2.2 with a norm
operator and a property (the fact that x - x is 0 for any x):

1 Record naiveNormMixin (T : module) := NaiveNormMixin {

2 naive_norm_op : T → nat ;

3 naive_norm_opP : ∀ x : T, naive_norm_op (x - x) = 0 }.

4 Record isNaiveNormModule (T : Type) := IsNaiveNormModule {
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5 nbase : isModule T ;

6 nmix : naiveNormMixin (Module _ nbase) }.

7 Structure naiveNormModule := NaiveNormModule {

8 naive_norm_carrier :> Type;

9 naive_normModule_isNormModule : isNaiveNormModule naive_norm_carrier

}.

10 Definition naive_norm (N : naiveNormModule) :=

11 naive_norm_op _ (nmix _ (naive_normModule_isNormModule N)).

12 Notation "| x |" := (naive_norm _ x).

The new mixin for the norm appears at line 1 (it takes a module structure as
parameter), the new class appears at line 4, and the structure1 at line 7. It is the
class that defines the inheritance relation between module and naiveNormModule

(at line 6 precisely). The definitions above are however not enough to achieve
proper inheritance. For example, naiveNormModule does not yet enjoy the _ - _

notation coming with the module structure:

Fail Check ∀ (N : naiveNormModule) (x y : N), x - y = x - y.

Here, Coq tries to solve the following equation2:

module_carrier ?M ≡ naive_norm_carrier N

The solution consists in declaring a canonical way to build a module structure
out of a naiveNormModule structure in the form of a function that Coq can use to
solve the equation above (using naiveNorm_isModule N in this particular case):

Canonical naiveNorm_isModule (N : naiveNormModule) :=

Module N (nbase _ (naive_normModule_isNormModule N)).

Check ∀ (N : naiveNormModule) (x y : N), x - y = x - y.

3 Inheritance with Packed Classes and type classes

When several inheritance paths compete to establish that one structure extend
the other, the proof assistant may display misleading information to the user
and prevent proofs.

3.1 Competing Inheritance Paths

We extend the running example of Sect. 2 with a third and last structure. Our
objective is to implement a toy generalisation of the mathematical notion of
pseudometric space. This is done by introducing a reflexive relation mimicking
the belonging of one of the argument to a unit ball around the other argument.
The hasReflRel structure below provides a binary relation (line 2) together with
a property of reflexivity (line 3):
1 The notation :> in the structure declares the carrier as a coercion [30, Chapter

“Implicit Coercions”], which means that Coq has the possibility to use the function
naive_norm_carrier to fix type-mismatches, transparently for the user.

2 The application of naive_norm_carrier is not necessary in our case thanks to the
coercion explained in footnote (see footnote 1).
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1 Record isReflRel T := IsReflRel {

2 ball_op : T → T → Prop ;

3 ball_opP : ∀ x : T, ball_op x x }.

4 Structure hasReflRel := HasReflRel {

5 hasReflRel_carrier :> Type;

6 hasReflRel_isReflRel : isReflRel hasReflRel_carrier}.

7 Definition ball {N : hasReflRel} := ball_op _ (hasReflRel_isReflRel N).

8 Notation "x y" := (ball x y).

For the sake of the example, we furthermore declare a canonical way of build-
ing a hasReflRel structure out of a naiveNormModule structure:

Variable (N : naiveNormModule).

Definition norm_ball (x : N) := fun y : N => |x - y| ≤ 1.

(* details about naiveNormModule_isReflRel omitted *)

Canonical nnorm_hasReflRel := HasReflRel N naiveNormModule_isReflRel.

We first illustrate the issue using a construction (here the Cartesian product)
that preserves structures, and that is used to build canonical instances. First,
we define the product of module structures, and tag it as canonical:

Variables (M M’ : module).

Definition prod_minus (x y : M * M’) := (fst x - fst y, snd x - snd y).

Definition prod_isModule := IsModule (M * M’) prod_minus.

Canonical prod_Module := Module (M * M’) prod_isModule.

Similarly, we define canonical products of hasReflRel and naiveNormModule:

1 Variables (B B’ : hasReflRel) (N N’ : naiveNormModule).

2 Definition prod_ball (x y : B * B’) := fst x fst y ∧ snd x snd y.

3 (* definition of prod_isReflRel omitted from the paper *)

4 Canonical prod_hasReflRel := HasReflRel (B * B’) prod_isReflRel.

5

6 Definition prod_nnorm (x : N * N’) := max (|fst x|) (|snd x|).

7 (* definition of prod_isNNModule omitted from the paper *)

8 Canonical prod_naiveNormModule := NaiveNormModule (N * N’)

prod_isNNModule.

The problem is that our setting leads Coq’s type-checker to fail in unexpected
ways, as illustrated by the following example:

Variable P : ∀ {T}, (T → Prop) → Prop.

Example failure (Pball : ∀ V : naiveNormModule, ∀ v : V, P (ball v))

(W : naiveNormModule) (w : W * W): P (ball w).

Proof. Fail apply Pball. Abort.

The hypothesis Pball applies to any goal P (ball v) where the type of v is of
type naiveNormModule, so that one may be led to think that it should also apply
in the case of a product of naiveNormModules, since there is a canonical way to
build one. What happens is that the type-checker is looking for an instance of a
normed module that satisfies the following equation:

nnorm_hasReflRel ?N ≡
prod_hasReflRel (nnorm_hasReflRel W) (nnorm_hasReflRel W)
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while the canonical instance Coq infers is ?N := prod_naiveNormModule

W W, which does not satisfy the equation. In particular, (ball_op x

y) is definitionally equal to |x - y| ≤ 1 on the left-hand side and
(fst x fst y ∧ snd x snd y) on the right-hand side: the two are not
definitionally equal. One can describe the problem as the fact that the diagram
in Fig. 1 does not commute definitionally.

naiveNormModule * naiveNormModule naiveNormModule

hasReflRel * hasReflRel hasReflRel

prod_naiveNormModule

nnorm_hasReflRel nnorm_hasReflRel

prod_hasReflRel

Fig. 1. Diagrammatic explanation for the failure of the first example of Sect. 3.1

This is of course not specific to Cartesian products and similar problems
would also occur when lifting dependent products, free algebras, closure, com-
pletions, etc., on metric spaces, topological groups, etc. as well as in simpler
settings without generic constructions as illustrated by our last example.

As a consequence of the definition of nnorm_hasReflRel, the following lemma
about balls is always true for any naiveNormModule:

Lemma ball_nball (N : nNormModule) (x y : N) : x y ↔ |x - y| ≤ 1.

Proof. reflexivity. Qed.

For the sake of the example, we define canonical instances of the hasReflRel

and naiveNormModule structures with integers:

Definition Z_ball (m n : Z) := (m = n ∨ m = n + 1 ∨ m = n - 1)%Z.

(* definition of Z_isReflRel omitted *)

Canonical Z_hasReflRel := HasReflRel Z Z_isReflRel.

Definition Z_naiveNormMixin := NaiveNormMixin Z_module Z.abs_nat Z_normP.

Canonical Z_naiveNormModule :=

NaiveNormModule Z (IsNaiveNormModule Z_naiveNormMixin).

Since the generic lemma ball_nball holds, the user might expect to use it
to prove a version specialized to integers. This is however not the case as the
following script shows:

Example failure (x y : Z) : x y ↔ |x - y| ≤ 1.

rewrite -ball_nball. (* the goal is: x y ↔ x y *)

Fail reflexivity. (* !!! *)

The problem is that on the left-hand side Coq infers the instance Z_hasReflRel

with the Z_ball relation, while on the right-hand side it infers the instance
nnorm_hasReflRel Z_naiveNormModule whose ball x y is definitionally equal to
|x - y| ≤ 1, which is not definitionally equal to the newly defined Z_ball.



10 R. Affeldt et al.

Type

naiveNormModule

hasReflRel

nnorm_hasReflRel

naiv
e_no

rm_c
arri

er

hasReflRel_carrier

Fig. 2. Diagrammatic explanation for the
type-checking failure of the second exam-
ple of Sect. 3.1: the dashed arrows represent
the inference of an instance from the carrier
type; the outer diagrams commutes, while
the inner one does not

In other words, the problem is the
multiple ways to construct a “canon-
ical instance” of hasReflRel with car-
rier Z, as in Fig. 2.

The solution to the problems
explained in this section is to ensure
definitional equality by including
poorer structures into richer ones; this
way, “deducing” one structure from
the other always amounts to erasure
of data, and this guarantees there is
a unique and canonical way of get-
ting it. We call this technique forget-
ful inheritance, as it is reminiscent of
forgetful functors in category theory.

3.2 Forgetful Inheritance with Packed Classes

When applied to the first problem exposed in Sect. 3.1, forgetful inheritance
makes the diagram of Fig. 1 commute definitionally. Indeed, the only way to
achieve commutation is to have nnorm_hasReflRel be a mere erasure. This
means that one needs to include inside each instance of normModule a canonical
hasReflRel (line 7 below). Furthermore the normMixin must record the compati-
bility between the operators ball_op and norm_op (line 4 below):

1 Record normMixin (T : module) (m : isReflRel T) := NormMixin {

2 norm_op : T → nat;

3 norm_opP : ∀ x, norm_op (x - x) = 0;

4 norm_ball_opP : ∀ x y, ball_op _ m x y ↔ norm_op (x - y) ≤ 1 }.

5 Record isNormModule (T : Type) := IsNormModule {

6 base : isModule T;

7 bmix : isReflRel T;

8 mix : normMixin (Module _ base) bmix }.

9 Structure normModule := NormModule {

10 norm_carrier :> Type;

11 normModule_isNormModule : isNormModule norm_carrier }.

12 Definition norm (N : normModule) :=

13 norm_op _ _ (mix _ (normModule_isNormModule N)).

Since every normModule includes a canonical hasReflRel, the construction of the
canonical hasReflRel given a normModule is exactly a projection:

Canonical norm_hasReflRel (N : normModule) :=

HasReflRel N (bmix _ (normModule_isNormModule N)).

As a consequence, the equation

norm_hasReflRel ?N ≡
prod_hasReflRel (norm_hasReflRel W) (norm_hasReflRel W)
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holds with prod_normModule W W and the diagram in Fig. 1 (properly updated
with the new normModule structure) commutes definitionally, and so does the
diagram in Fig. 2, for the same reasons.

Factories. Because of the compatibility axioms required by forgetful inheritance,
the formal definition of a structure can depart from the expected presentation. In
fact, with forgetful inheritance, the very definition of a mathematical structure
should be read in factories, i.e., functions that construct the mixins starting
from only the expected axioms. And Structure records are rather interfaces,
in a software engineering terminology. Note that just like there can be several
equivalent presentations of a same mathematical stuctures, several mixins can
be associated with a same target Structure.

In our running example, one can actually derive, from the previously defined
naiveNormMixin, two mixins for both hasReflRel:

Variable (T : module) (m : naiveNormMixin T).

Definition fact_ball (x y : T) := naive_norm_op T m (x - y) ≤ 1.

Lemma fact_ballP (x : T) : fact_ball x x. Proof. (* omitted *). Qed.

Definition nNormMixin_isReflRel := IsReflRel T fact_ball fact_ballP.

(where the ball relation is the one induced by the norm, by construction) and
normModule:

(* details for fact_normP and fact_norm_ballP omitted from the paper *)

Definition nNormMixin_normMixin :=

NormMixin T nNormMixin_isReflRel (naive_norm_op T m)

fact_normP fact_norm_ballP.

These two mixins make naiveNormMixin the source of two factories we mark as
coercions, in order to help building two structures:

Coercion nNormMixin_isReflRel : naiveNormMixin � isReflRel.

Coercion nNormMixin_normMixin : naiveNormMixin � normMixin.

Canonical alt_Z_hasReflRel := HasReflRel Z Z_naiveNormMixin.

Canonical alt_Z_normModule :=

NormModule Z (IsNormModule Z_naiveNormMixin).

The second part of this paper provides concrete examples of factories for our
hierarchy for functional analysis.

3.3 Forgetful Inheritance with type classes

Type class mechanisms [5,27,28] propose an alternative implementation of hier-
archies. Inference relations are coded using parameters rather than projections,
and proof search happens by enhancing the resolution of implicit arguments.
But the issue of competing inheritance paths does not pertain to the inference
mechanism at stake, nor to the prover which implements them. Its essence rather
lies in the non definitionally commutative diagrams as in Fig. 1 and Fig. 2.
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We illustrate this with a type classes version of our examples, in both Coq and
Lean, using a semi-bundled approach (see the accompanying files type_classes.v

and type_classes.lean [1]). Compared to the packed class approach, hierarchies
implemented using type classes remove the structure layer, which packages the
carrier and the class. Hence our example keeps only the records whose name
starts with is, declares them as type classes, and substitutes Canonical declara-
tions with appropriate Instance declarations.

The choice on the level of bundling in the resulting classes, i.e., what are
parameters of the record, and what are its fields, is not unique. For example,
one may choose to formalize rings as groups extended with additional operations
and axioms, or as a class on a type which is also a group.

Class isGroup T := IsGroup { ... };

Class isRing_choice1 T := IsRing { ring_isGroup : isGroup T; ... }.

Class isRing_choice2 T ‘{isGroup T} := IsRing { ... }.

By contrast, a structure in the packed class approach must always package with
its carrier every mixins and classes that characterize the structure. The transpo-
sition of forgetful inheritance to type class would apply to fully bundled classes
(where all the operations and axioms are bundled but not the carrier).

Because it triggers no “backtracking search”, the use of packed classes and
unification hints described in this paper avoids some issues encountered in math-
lib [33, Sect. 4.3], which are more explicitly detailed in the report on the imple-
mentation of type classes in Lean 4 [26]. We do not know either how a type
class version of forgetful inheritance would interact with the performance issues
described in the latter paper, or whether tabling helps. Moreover, with the cur-
rent implementations of type classes in both Coq and Lean, different choices
on bundling may have dramatic consequences on resolution feasibility and per-
formance. For example, former experiments in rewriting MathComp with type
classes in Coq did not scale up to modules on a ring. Incidentally, our com-
panion file type_classes.v illustrates some predictability issues of the current
implementation of Coq type classes.

4 The Mathematical Components Analysis Library

The Coquelicot library comes with its own hierarchy of mathematical struc-
tures and the intent of the MathComp-Analysis library is to improve it with
the algebraic constructs of the MathComp library, for the analysis of multivari-
ate functions for example. This section explains three applications of forgetful
inheritance that solve three design issues of a different nature raised by merging
MathComp and Coquelicot, as highlighted in Fig. 3.

We begin by an overview of the mathematical notions we deal with in this
section. A topological space is a set endowed with a topology, i.e., a total collec-
tion of open sets closed under finite intersection and arbitrary unions. Equiva-
lently, a topology can be described by the neighborhood filter of each point. A
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MathComp-Analysis Algebraic structures

POrder

Lattice

Total

Zmodule

Lmodule (Com)(Unit)Ring

NormedZmodule IntegralDomain

Field NumDomain

NumField RealDomain

RealField

RealClosedField ArchimedeanField

Real

Filtered

Topological

PseudoMetric

Complete PseudoMetricNormedZmodule

NormedModule

CompleteNormedModule

Fig. 3. Excerpt of MathComp and MathComp-Analysis hierarchies. Each rounded box
corresponds to a mathematical structure except for (Com)(Unit)Ring that corresponds
to several structures [17]. Dotted boxes correspond to mathematical structures intro-
duced in Sect. 4.2 and Sect. 4.3. Thick, red arrows correspond to forgetful inheritance.

neighborhood of a point x is a set containing an open set around x; the neigh-
borhood filter of a point x is the set of all neighborhoods of x. In MathComp-
Analysis, neighborhood filters are the primary component of topological spaces.
Pseudometric spaces are intermediate between topological and metric spaces.
They were introduced as the minimal setting to handle Cauchy sequences. In
Coquelicot, pseudometric spaces are called “uniform spaces” and are formalized
as spaces endowed with a suitable ball predicate. This is the topic of Sect. 4.1.
Coquelicot also provides normed spaces, i.e., K-vector spaces E endowed with
a suitable norm. On the other hand, in MathComp, the minimal structure with
a norm operator corresponds to numerical domains [12, Chap. 4][13, Sect. 3.1],
i.e., integral domains with order and absolute value. This situation led to a gen-
eralization of MathComp described in Sect. 4.2. Finally, in Sect. 4.3, we explain
how to do forgetful inheritance across the two distinct libraries MathComp and
MathComp-Analysis.

4.1 Forgetful Inheritance from Pseudometric to Topological Spaces

When formalizing topology, we run into a problem akin to Sect. 3.1 because
we face several competing notions of neighborhoods; we solve this issue with
forgetful inheritance as explained in Sect. 3.

A neighborhood of a point p can be defined at the level of topological spaces
using the notion of open as a set A that contains an open set containing p:

∃B. B is open, p ∈ B and B ⊆ A. (1)
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or at the level of pseudometric spaces as a set A that contains a ball containing p:

∃ε > 0. Bε(p) ⊆ A. (2)

We ensure these two definitions of neighborhoods coincide by adding to mixins
compatibility axioms that constrain a shared function. The function in question
maps a point to a set of neighborhoods (hereafter locally), it is shared between
the mixins for topological and pseudometric spaces, and constrained by the defi-
nitions of open set and ball as in Formulas (1) and (2). More precisely, the mixin
for topological spaces introduces the set of open sets (see line 3 below) and
defines neighborhoods as in Formula (1) (at line 5). We complete the definition
by specifying with a specific axiom (not explained in detail here) that neighbor-
hoods are proper filters (line 4) and with an alternative characterization of open
set (namely that an open set is a neighborhood of all of its points, line 6).

1 (* Module Topological. *)

2 Record mixin_of (T : Type) (locally : T → set (set T)) := Mixin {

3 open : set (set T) ;

4 ax1 : ∀ p : T, ProperFilter (locally p) ;

5 ax2 : ∀ p : T, locally p = [set A | ∃ B, open B ∧ B p ∧ B ⊆ A] ;

6 ax3 : open = [set A : set T | A ⊆ (fun x => locally x A) ] }.

The mixin for pseudometric spaces introduces the notion of balls (line 10) and
defines neighborhoods as in Formula (2) (at line 12, locally_ ball corresponds
to the set of supersets of balls). The rest of the definition (line 11) are axioms
about ball which are omitted for lack of space.

7 (* Module PseudoMetric. *)

8 Record mixin_of (R : numDomainType) (M : Type)

9 (locally : M → set (set M)) := Mixin {

10 ball : M → R → M → Prop ;

11 ax1 : ... ; ax2 : ... ; ax3 : ... ;

12 ax4 : locally = locally_ ball }.

Here, our definition of topological space departs from the standard defini-
tion as a space endowed with a family of subsets containing the full set and
the empty set and closed under union and by finite intersection. However, the
latter definition can be recovered from the former. Factories (see Sect. 3.2) are
provided for users who want to give only open and to infer locally (using [31,
file topology.v, definition topologyOfOpenMixin]), or the other way around.

4.2 Forgetful Inheritance from Numerical Domain to Normed
Abelian Group

The second problem we faced when developing the MathComp-Analysis library
is the competing formal definitions of norms and absolute values. The setting is
more complicated than Sect. 4.1 as it involves amending the hierarchy of math-
ematical structures of the MathComp library.

While the codomain of a norm is always the set of (non-negative) reals,
an absolute value on a numDomainType is always an endofunction norm of type



Competing Inheritance Paths in Dependent Type Theory 15

∀ (R : numDomainType), R → R. Thanks to this design choice, the absolute value
preserves some information about its input, e.g., the integrality of an integer.
On the other hand, the Coquelicot library also had several notions of norms: the
absolute value of the real numbers (from the Coq standard library), the absolute
value of a structure for rings equipped with an absolute value, and the norm
operator of normed modules (the latter two are Coquelicot-specific).

We hence generalize the norm provided by the MathComp library to encom-
pass both absolute values on numerical domains and norms on vector spaces,
and share notation and lemmas. This is done by introducing a new structure
in MathComp called normedZmodType, for normed Abelian groups, since Abelian
groups are called Z-modules in MathComp. This structure is now the poorest
structure with a norm, which every subsequent normed type will inherit from.

The definition of the normedZmodType structure requires to solve a mutual
dependency problem. Indeed, to state the fundamental properties of norms, such
as the triangle inequality, the codomain of the norm function should be at least
an ordered and normed Abelian group, requiring normedZmodType to be param-
eterized by such a structure. However the codomain should also inherit from
normedZmodType to share the notations for norm and absolute value.

Our solution is to dispatch the order and the norm originally contained in
numDomainType between normed Abelian groups normedZmodType and partially
ordered types porderType as depicted in Fig. 3. We define the two following mix-
ins for normedZmodType and numDomainType.

Record normed_mixin_of (R T : zmodType) (Rorder : lePOrderMixin R) :=

NormedMixin { norm_op : T → R ; (* properties of the norm omitted *) }.

Record num_mixin_of (R : ringType) (Rorder : lePOrderMixin R)

(normed : @normed_mixin_of R R Rorder) := Mixin { (* omitted *) }.

Now we define numDomainType (which is an abbreviation for NumDomain.type) using
these two mixins but without declaring inheritance from normedZmodType (yet to
be defined). More precisely, the class of numDomainType includes the mixin for
normedZmodType (at line 5 below), which will allow for forgetful inheritance:

1 (* Module NumDomain. *)

2 Record class_of T := Class {

3 base : GRing.IntegralDomain.class_of T ;

4 order_mixin : lePOrderMixin (ring_for T base) ;

5 normed_mixin : normed_mixin_of (ring_for T base) order_mixin ;

6 num_mixin : num_mixin_of normed_mixin }.

7 Structure type := Pack { sort :> Type; class : class_of sort }.

Finally, we define the class of normedZmodType, parameterized by a numDomainType:

(* Module NormedZmodule. *)

Record class_of (R : numDomainType) (T : Type) := Class {

base : GRing.Zmodule.class_of T ;

normed_mixin : @normed_mixin_of R (@GRing.Zmodule.Pack T base)

(NumDomain.class R) }.
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It is only then that we declare inheritance from the normedZmodType structure to
numDomainType, effectively implementing forgetful inheritance. We finally end up
with a norm of the general type

norm : ∀ (R : numDomainType) (V : normedZmodType R), V → R.

Illustration: sharing of norm notation and lemmas. As an example, we explain
the construction of two norms and show how they share notation and lemmas. In
MathComp, the type of matrices is ’M[K]_(m,n) where K is the type of coefficients.
The norm mx_norm takes the maximum of the absolute values of the coefficients:

Variables (K : numDomainType) (m n : nat).

Definition mx_norm (x : ’M[K]_(m, n)) : K := \big[maxr/0]_i ‘|x i.1 i.2|.

This definition uses the generic big operator [6] to define a “big max” operation
out of the binary operation maxr. Similarly, we define a norm for pairs of elements
by taking the maximum of the absolute value of the two projections3:

Variables (R : numDomainType) (U V : normedZmodType R).

Definition pair_norm (x : U * V) : R := maxr ‘|x.1| ‘|x.2|.

We then go on proving that these definitions satisfy the properties of the norm
and declare canonical instances of normedZmodType for matrices and pairs (see [31]
for details). All this setting is of course carried out in advance and the user
only sees one notation and one set of lemmas (for example ler_norm_add for the
triangle inequality), so that (s)he can mix various norms transparently in the
same development, as in the following two examples:

Variable (K : numDomainType).

Example mx_triangle m n (M N : ’M[K]_(m, n)) : ‘|M + N| ≤ ‘|M| + ‘|N|.

Proof. apply ler_norm_add. Qed.

Example pair_triangle (x y : K * K) : ‘|x + y| ≤ ‘|x| + ‘|y|.

Proof. apply ler_norm_add. Qed.

One could fear that the newly introduced structures make the library harder
to use since that, to declare a canonical numDomainType instance, a user also
needs now to declare canonical porderType and normedZmodType instances of the
same type. Here, the idea of factories (Sect. 3.2) comes in handy for the original
numDomainType mixin has been re-designed as a factory producing porderType,
normedZmodType, and numDomainType mixins in order to facilitate their declaration.

4.3 Forgetful Inheritance from Normed Modules to Pseudometric
Spaces

The combination of the MathComp library with topological structures ultimately
materializes as a mathematical structure for normed modules. It is made possible
by introducing an intermediate structure that combines norm (from algebra)

3 The actual code of mx_norm and pair_norm is slightly more complicated because it
uses a type for non-negative numeric values, see [31, file normedtype.v].
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with pseudometric (from topology) into normed Abelian groups. The precise
justification for this first step is as follows.

Since normed Abelian groups have topological and pseudometric space struc-
tures induced by the norm, NormedZmodType should inherit from PseudoMetricType.
To do so, we can (1) insert a new structure above NormedZmodType, or (2) create
a common extension of PseudoMetricType and NormedZmodType. We choose (2) to
avoid amending the MathComp library. This makes both NormedZmodType and its
extension PseudoMetricNormedZmodType normed Abelian groups, where the former
is inadequate for topological purposes.

The only axiom of this extension is the compatibility between the pseudo-
metric and the norm, as expressed line 5 below, where PseudoMetric.ball has
been seen in Sect. 4.1 and the right-hand side represents all the ternary relations
λx, ε, y. |x − y| < ε:

1 (* Module PseudoMetricNormedZmodule. *)

2 Variable R : numDomainType.

3 Record mixin_of (T : normedZmodType R) (locally : T → set (set T))

4 (m : PseudoMetric.mixin_of R locally) :=

5 Mixin { _ : PseudoMetric.ball m = ball_ (fun x => ‘|x|) }.

The extension is effectively performed by using this mixin in the following class
definition at line 12 (see also Fig. 3):

6 Record class_of (T : Type) := Class {

7 base : Num.NormedZmodule.class_of R T ; ... ;

8 locally_mixin : Filtered.locally_of T T ;

9 topological_mixin : @Topological.mixin_of T locally_mixin ;

10 pseudometric_mixin : @PseudoMetric.mixin_of R T locally_mixin ;

11 mixin :

12 @mixin_of (Num.NormedZmodule.Pack _ base) _ pseudometric_mixin }.

Finally, the bridge between algebraic and topological structures is completed by
a common extension of a normed Abelian group (PseudoMetricNormedZmodType)
with a left-module (lmodType from the MathComp library, which provides scalar
multiplication), extended with the axiom of linearity of the norm for the scalar
product (line 5 below).

1 (* Module NormedModule. *)

2 Variable (K : numDomainType).

3 Record mixin_of

4 (V : pseudoMetricNormedZmodType K) (scale : K → V → V) :=

5 Mixin { _ : ∀ (l : K) (x : V), ‘|scale l x| = ‘|l| * ‘|x| }.

One can again observe here the overloaded notation for norms explained in
Sect. 4.2. The accompanying file scalar_notations.v [1] provides an overview of
MathComp-Analysis operations regarding norms and scalar notations.

We ensured that the structure of normed modules indeed serves its intended
purpose of enabling multivariate functional analysis by generalizing existing the-
ories of Bachmann-Landau notations and of differentiation [2, Sect. 4].
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5 Conclusion and Related Work

This paper has two main contributions: forgetful inheritance using packed
classes, and the hierarchy of the MathComp-Analysis library. The latter library is
still in its infancy and covers far less real and complex analysis than the libraries
available in HOL Light and Isabelle/HOL [19,23]. However, differences in founda-
tions matter here, and the use of dependent types in type-class-like mechanisms
is instrumental in the genericity of notations illustrated in this paper. Up to our
knowledge, no other existing formal library in analysis has comparable sharing
features.

The methodology presented in this paper to tame competing inheritance
paths in hierarchies of dependent records is actually not new. The original
description of packed classes [17, end of Sect. 3.1] already mentions that a choice
operator (in fact, a mixin) should be included in the definition of a structure for
countable types, even if choice operators can be defined for countable types in
Coq without axiom. Yet, although the MathComp library uses forgetful inher-
itance at several places in its hierarchy, this solution was never described in
earlier publications, nor was the issue precisely described. Proper descriptions,
as well as the comparison with other inference techniques, are contributions of
the present paper.

As explained in Sect. 3.3, type classes based on augmented inference of
implicit arguments also allow for a variant of forgetful inheritance. For instance,
Buzzard et al. mention that this pattern is used for defining metric spaces both
in Lean and Isabelle/HOL’s libraries [11, Sect. 3]. In the same paper, the authors
describe another formalization issue, about completing abelian groups and rings,
pertaining to the same problem [11, Sect. 5.3], and which can be solved as well
using forgetful inheritance.

Extensional flavors of dependent type theory could make the problematic
diagram in Fig. 1 commute judgmentally. However, to the best of our knowledge,
the related tools [4,15] available at the time of writing do not implement any of
the type class mechanisms discussed here.

Packed classes, and forgetful inheritance, already proved robust and efficient
enough to formalize and populate large hierarchies [18], where “large” applies
both to the number of structures and to the number of instances. Arguably,
this approach also has drawbacks: defining deep hierarchies becomes quite ver-
bose, and inserting new structures is tedious and error-prone. We argue that,
compared to their obvious benefits in control and efficiency of the proof search,
this is not a fundamental issue. As packed classes are governed by systematic
patterns and invariants, this rather calls for more inspection [25] and automated
generation [14] tooling, which is work in progress.

Acknowledgments. The authors are grateful to Georges Gonthier for the many
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library. We also thank Arthur Charguéraud and all the anonymous reviewers for their
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Ph.D. thesis, Ecole Polytechnique X (2012). https://pastel.archives-ouvertes.fr/
pastel-00780446

13. Cohen, C., Mahboubi, A.: Formal proofs in real algebraic geometry: from ordered
fields to quantifier elimination. Logic. Methods Comput. Sci. 8(1) (2012). https://
doi.org/10.2168/LMCS-8(1:2)2012

14. Cohen, C., Sakaguchi, K., Tassi, E.: Hierarchy Builder: algebraic hierarchies made
easy in Coq with Elpi (2020). Accepted in the proceedings of FSCD 2020. https://
hal.inria.fr/hal-02478907

15. Constable, R.L., et al.: Implementing Mathematics with the NuPRL Proof Devel-
opment System. Prentice-Hall, Upper Saddle River (1986)

https://math-comp.github.io/competing-inheritance-paths-in-dependent-type-theory
https://math-comp.github.io/competing-inheritance-paths-in-dependent-type-theory
https://doi.org/10.1007/978-3-642-03359-9_8
https://doi.org/10.1007/978-3-642-03359-9_8
http://arxiv.org/abs/1802.06217
https://doi.org/10.1007/978-3-540-71067-7_11
https://doi.org/10.1007/978-3-540-71067-7_11
http://www.jstor.org/stable/2305937
https://pastel.archives-ouvertes.fr/pastel-00780446
https://pastel.archives-ouvertes.fr/pastel-00780446
https://doi.org/10.2168/LMCS-8(1:2)2012
https://doi.org/10.2168/LMCS-8(1:2)2012
https://hal.inria.fr/hal-02478907
https://hal.inria.fr/hal-02478907


20 R. Affeldt et al.

16. Coquand, T., Paulin, C.: Inductively defined types. In: Martin-Löf, P., Mints,
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Abstract. This paper describes the design of the normalising tactic
ring exp for the Lean prover. This tactic improves on existing tactics
by extending commutative rings with a binary exponent operator. An
inductive family of types represents the normal form, enforcing various
invariants. The design can also be extended with more operators.

1 Introduction

In interactive theorem proving, normalising tactics are powerful tools to prove
equalities. Given an expression a, these tactics return an expression a′ in normal
form together with a proof that a = a′. For instance, in mathlib [10], the
mathematical library for the Lean theorem prover [7], the ring tactic normalises
expressions in a commutative (semi)ring. Analogous tactics or conversions exist
in many theorem provers [5,8,9]. The ring tactic in Lean can be directly invoked
by the user and is called by the decision procedure linarith. The utility of ring
is evident from the fact that it is invoked over 300 times in mathlib.

The ring tactic in Lean, and the tactic in Coq it is based on, use a Horner
normal form representation of polynomials [4]. The Horner form represents a
polynomial f(x) with one of two cases: either it is constant (f(x) = c) or it is
of the form f(x) = c + x ∗ g(x). This representation allows ring to uniquely
and efficiently represent any polynomial, i.e. any expression consisting of the
operators + and ∗, numerals and variables. Problems arise when expressions
include other operators than + and ∗, such as the exponentiation operator ∧.
The Horner form fundamentally assumes the degree of a term is a constant
integer, so it cannot be simply modified to represent variable exponents, or
more generally to represent ∧ applied to compound expressions. The analogous
procedures in other theorem provers have the same restriction. Adding rewrite
rules such as xn+1 �→ x∗xn is not a universal solution. This rule would unfold the
expression x100 into a large term composed of repeated multiplications, reducing
the performance of the procedure significantly. The result is that ring cannot
prove that 2n+1 − 1 = 2 ∗ 2n − 1 for a free variable n : N.

The ring exp tactic uses a new extensible normal form, currently supporting
the operators +, ∗ and ∧, numerals and variables. Its domain is a strict superset
c© Springer Nature Switzerland AG 2020
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of the domain of previous semiring tactics, without sacrificing too much of the
efficiency of ring. This paper describes the design and engineering challenges
encountered in implementing ring exp.

The version of ring exp discussed in this paper was merged into mathlib
in commit 5c09372658.1 Additional code and setup instructions are available
online.2

2 Design Overview

The ring exp tactic uses a normalisation scheme similar to the original ring
tactic. The input from the tactic system is an abstract syntax tree representing
the expression to normalise. An eval function maps inputs to a type ex of
normalised expressions. The normal form should be designed in such a way that
values of type ex are equal if and only if the input expressions can be proved
equal using the axioms of commutative semirings. From the ex representation,
the normalised output expression is constructed by a function simple. Both
eval and simple additionally return a proof showing that the input and output
expressions are equal.

The ring exp tactic does not use reflection but directly constructs proof
terms to be type checked by Lean’s kernel, as is typical for tactics in mathlib [10].
Reflective tactics avoid the construction and checking of a large proof term by
performing most computation during proof checking, running a verified pro-
gram [2]. If the proof checker performs efficient reduction, this results in a sig-
nificant speed-up of the tactic, at the same time as providing more correctness
guarantees. Unfortunately, the advantages of reflection do not translate directly
to Lean. Tactic execution in Lean occurs within a fast interpreter, while the
kernel used in proof checking is designed for simplicity instead of efficient reduc-
tion [3]. Achieving an acceptable speed for ring exp requires other approaches
to the benefits that reflection brings automatically.

The language of semirings implemented by ring, with binary operators +, ∗
and optionally − and /, is extended in ring exp with a binary exponentiation
operator ∧. The input expression can consist of these operators applied to other
expressions, with two base cases: natural numerals such as 0 and 37, and atoms.
An atom is any expression which is not of the above form, e.g. a variable name
x or a function application sin(y − z). It is treated as an opaque variable in the
expression. Two such expressions are considered equal if in every commutative
semiring they evaluate to equal values, for any assignment to the atoms.

Using a suitable representation of the normal form is crucial to easily guar-
antee correctness of the normaliser. Since there is no clear way to generalise
the Horner form, ring exp instead represents its normal form ex as a tree
with operators at the nodes and atoms at the leaves. Certain classes of non-
normalised expressions are prohibited by restricting which sub-node can occur
for each node. The ex type captures these restrictions through a parameter in
1 https://github.com/leanprover-community/mathlib/tree/5c09372658.
2 https://github.com/lean-forward/ring exp.

https://github.com/leanprover-community/mathlib/tree/5c09372658
https://github.com/lean-forward/ring_exp
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Fig. 1. Definition of ex type and ex

the enum ex type, creating an inductive family of types. Each constructor allows
specific members of the ex family in its arguments and returns a specific type of
ex. The full definition is given in Fig. 1. The additional ex info record passed
to the constructors contains auxiliary information used to construct correctness
proofs. The sum b constructor allows sums as the base of a power, analogously
to the parentheses in (a + b)c.

For readability, we will write the ex representation in symbols instead of
the constructors of ex. Thus, the term sum (prod (exp (var n) (coeff 1))
(coeff 1)) zero (with ex info fields omitted) is written as n1 ∗ 1+0, and the
normalised form of 2n − 1 is written (2 + 0)n

1∗1 ∗ 1 + (−1) + 0.

Table 1. Associativity and distributivity properties of the +, ∗ and ∧ operators

+ ∗ ∧

+ (a + b) + c = a + (b + c) — —

∗ (a + b) ∗ c = a ∗ c + b ∗ c;

a ∗ (b + c) = a ∗ b + a ∗ c
(a ∗ b) ∗ c = a ∗ (b ∗ c) —

∧ ab+c = ab ∗ ac (a ∗ b)c = ac ∗ bc
(
ab

)c
= ab∗c

The types of the arguments to each constructor are determined by the asso-
ciativity and distributivity properties of the operators involved, summarised in
Table 1. Since addition does not distribute over either other operator (as seen
from the empty entries on the + row), an expression with a sum as outermost
operator cannot be rewritten so that another operator is outermost. Thus, the
set of all expressions should be represented by ex sum. Since ∗ distributes over
+ but not over ∧, the next outermost operator after + will be ∗. By associativity
(the diagonal entries of the table) the left argument to + should have ∗ as outer-
most operator; otherwise we can apply the rewrite rule (a+ b)+ c �→ a+(b+ c).
Analogously, the left argument to the prod constructor is not an ex prod but
an ex exp, and the left argument to exp is an ex base.
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The eval function interprets each operator in the input expression as a corre-
sponding operation on ex, building a normal form for the whole expression out of
normalised subexpressions. The operations on ex build the correctness proof of
normalisation out of the proofs for subexpressions using a correctness lemma: for
example, the lemma is
used on the input expression ps + qs when ps normalises to 0.

Adding support for a new operator would take relatively little work: after
extending the table of associativity and distributivity relations, one can insert
the constructor in ex using the table to determine the relevant ex type, and add
an operation on ex that interprets the operator.

3 Intricacies

The ex type enforces that distributivity and associativity rules are always
applied, but commutative semirings have more equations. In a normal form,
arguments to commutative operators should be sorted according to some linear
order ≺: if a ≺ b, then a + (b + 0) is normalised and b + (a + 0) is not. Defining
a linear order on ex requires an order on atoms; definitional equality of atoms
is tested (with user control over the amount of definitional unfolding) in the
tactic monad [3], so a well-defined order on atoms cannot be easily expressed
on the type level. Additionally, the recursive structure of expressions means any
expression a can also be represented as (a)1 ∗ 1 + 0; if the left argument to ∧ is
0 or a ∗ b + 0, the expression is not in normal form. Although these invariants
can also be encoded in a more complicated ex type, they are instead maintained
by careful programming. A mistake in maintaining these invariants is not fatal:
invariants only protect completeness, not soundness, of ring exp.

Efficient handling of numerals in expressions, using the coeff constructor, is
required for acceptable running time without sacrificing completeness. The tactic
should not unfold expressions like x ∗ 1000 as 1000 additions of the variable x.
Representing numerals with the coeff constructor requires an extra step to
implement addition. When terms overlap, differing only in the coefficients as for
a∗b2∗1+a∗b2∗2, their sum is given by adding their coefficients: a∗b2∗3. Moreover,
when the coefficients add up to 0, the correct representation is not a ∗ b2 ∗ 0 :
ex prod but 0 : ex sum. Coefficients must be treated similarly in exponents:
xa∗b2∗1 ∗ xa∗b2∗2 = xa∗b2∗3. Both cases are handled by a function add overlap
which returns the correct sum if there is overlap, or indicates that there is no
such overlap. By choosing the order on expressions such that overlapping terms
will appear adjacent in a sum, add overlap can be applied in one linear scan.

A subtle complication arises when normalising in the exponent of an expres-
sion a ∧ b: the type of a is an arbitrary commutative semiring, but b must be a
natural number. To correctly compute a normalised expression for b, the tactic
needs to keep track of the type of b. The calculations of the eval function are
thus done in an extension of the tactic monad, called the ring exp m monad.
Using a reader monad transformer [6], ring exp m stores the type of the cur-
rent expression as a variable which can be replaced locally when operating on
exponents.
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Implementing subtraction and division also requires more work, since
semirings in general do not have well-defined − or / operators. The tactic uses
typeclass inference to determine whether the required extra structure exists on
the type. When this is the case, the operators can be rewritten: a − b becomes
a+(−1)∗b in a ring and a/b becomes a∗b−1 in a field. Otherwise, the subtraction
or division is treated as an atom. Conditionally rewriting avoids the need for an
almost-ring concept to treat semirings and rings uniformly [4]. Cancellation of
multiplication and division, such as a ∗ b/a = b, is not supported by the tactic,
since such lemmas require an a �= 0 side condition. In future work, extending
the ex type with a negation or multiplicative inverse constructor could allow for
handling of these operators in more general cases.

For completeness, atoms should be considered up to definitional equality:
(λ x, x) a and (λ x y, x) a b reduce to the same value a, so they should be
treated as the same atom. The ring exp m monad contains a state monad trans-
former to keep track of which atoms are definitionally equal. The state consists
of a list of all distinct atoms encountered in the whole input expression, and
any comparisons between atoms are instead made by comparing their indices in
the list. As an additional benefit, the indices induce an order on atoms, which
is used to sort arguments to commutative operators. Within atoms, there may
be subexpressions that can be normalised as well. Instead of running the nor-
maliser directly, ring exp calls the built-in tactic simp with the normaliser as
an argument. The simp tactic calls a given normaliser on each subexpression,
rewriting it when the normaliser succeeds.

4 Optimisations

An important practical consideration in implementing ring exp is its efficiency,
especially running time. Among the approximately 300 calls to ring in mathlib,
about half are invocations on linear expressions by the tactic linarith. Since
ring exp is intended to work as a drop-in replacement for ring, its performance
characteristics, especially for linear expressions, should be comparable.

Optimising the code was a notable part of the implementation of ring exp.
Profiling revealed that up to 90% of running time could be spent on inferring
implicit arguments and typeclass instances. The solution was to pass all argu-
ments explicitly and maintain a cache of typeclass instances, also caching the
expressions for the constants 0 and 1. It was possible to apply this solution with-
out large changes to the codebase, because the required extra fields were hidden
behind the ring exp m and ex info types.

The result of these optimisations can be quantified by comparing the running
time of ring and ring exp on randomly generated expressions3. The perfor-
mance measure is the tactic execution time reported by the Lean profiler, run-
ning on a 3 GHz Intel R© CoreTM i5-8500 CPU with 16 GB of RAM. On arbitrary
expressions, the benchmark indicates that ring exp is a factor of approximately
3 The benchmark program and analysis scripts are available at https://github.com/

lean-forward/ring exp.

https://github.com/lean-forward/ring_exp
https://github.com/lean-forward/ring_exp
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3.9 times slower than ring; on linear expressions such as are passed by linarith,
ring exp is 1.7 times slower than ring.

Compared to a constant factor difference in the average cases, ring exp has
an advantage on problems requiring efficient handling of numeric exponents. The
ring exp tactic is a factor 20 faster than ring when showing x50 ∗x50 = x100 in
an arbitrary ring. A similar speedup for ring exp was found in practice, for the
goal (1+x2 +x4 +x6)∗ (1+x) = 1+x+x2 +x3 +x4 +x5 +x6 +x7. The Horner
normal form used by ring is optimal for representing expressions with additions
and multiplications, so a constant-factor slowdown compared to ring on simpler
goals is traded off for faster and more powerful handling of more complicated
goals.

5 Discussion

The ring tactic for Coq and Lean can efficiently convert expressions in commu-
tative semirings to normal form. A normalizing procedure for polynomials is also
included with the Agda standard library [9], HOL Light [5] and Isabelle/HOL [8],
and decision procedures exist that support exponential functions [1]; there is no
single normalisation procedure supporting compound expressions in exponents.

Compared with the ring tactic, the ring exp tactic can deal with a strict
superset of expressions, and can do so without sacrificing too much speed. The
extensible nature of the ex type should make it simple to add support for more
operators to ring exp. Independently, it should be possible to adapt the ex
type to other algebraic structures such as lattices or vector spaces. Although
more optimisations are needed to fully equal ring in average case efficiency,
the ring exp tactic already achieves its goal of being a useful, more general
normalisation tactic. These results are as much a consequence of engineering
effort as of theoretical work.
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Abstract. We present a practical proof search procedure for Coq based
on a direct search for type inhabitants in an appropriate normal form.
The procedure is more general than any of the automation tactics
natively available in Coq. It aims to handle as large a part of the Calcu-
lus of Inductive Constructions as practically feasible.

For efficiency, our procedure is not complete for the entire Calculus
of Inductive Constructions, but we prove completeness for a first-order
fragment. Even in pure intuitionistic first-order logic, our procedure per-
forms competitively.

We implemented the procedure in a Coq plugin and evaluated it on
a collection of Coq libraries, on CompCert, and on the ILTP library of
first-order intuitionistic problems. The results are promising and indicate
the viablility of our approach to general automated proof search for the
Calculus of Inductive Constructions.

Keywords: Proof search · Inhabitation · Coq · Proof automation ·
Intuitionistic logic · Dependent type theory

1 Introduction

The Curry-Howard isomorphism [39] is a correspondence between systems of for-
mal logic and computational lambda-calculi, interpreting propositions as types
and proofs as programs (typed lambda-terms). Coq [10] is an interactive proof
assistant based on this correspondence. Its underlying logic is the Calculus of
Inductive Constructions [10,33,46] – an intuitionistic dependent type theory
with inductive types.

Because of the complexity and constructivity of the logic, research on auto-
mated reasoning for Coq has been sparse so far, limited mostly to specialised
tactics for restricted fragments or decidable theories. The automation currently
available in Coq is weaker than in proof assistants based on simpler classical
foundations, like Isabelle/HOL [29].

We present a practical general fully automated proof search procedure for
Coq based on a direct search for type inhabitants. We synthesise Coq terms in an
appropriate normal form, using backward-chaining goal-directed search. To make
this approach practical, we introduce various heuristics including hypothesis
c© Springer Nature Switzerland AG 2020
N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12167, pp. 28–57, 2020.
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simplification, limited forward reasoning, ordered rewriting and loop checking.
For efficiency, we sacrifice completeness for the entire logic of Coq, though we
give a completeness proof for a first-order fragment.

We evaluated our procedure on a collection of Coq libraries (40.9% success
rate), on CompCert [27] (17.1%) and on the ILTP library [36] (29.5%) of first-
order intuitionistic problems. The percentages in brackets denote how many
problems were solved fully automatically by the standalone tactic combined
with heuristic induction. These results indicate the viability of our approach.

The procedure can be used as a standalone Coq tactic or as a reconstruction
backend for CoqHammer [14] – a hammer tool [7] which invokes external auto-
mated theorem provers (ATPs) on translations of Coq problems and then recon-
structs the found proofs in Coq using the information obtained from successful
ATP runs. With our procedure used for reconstruction, CoqHammer achieves a
39.1% success rate on a collection of Coq libraries and 25.6% on CompCert. The
reconstruction success rates (i.e. the percentage of problems solved by the ATPs
that can be re-proved in Coq) are 87–97%.

1.1 Related Work

A preliminary version of a proof search procedure partly based on similar ideas
was described in [14]. That procedure is less complete (not complete for the
first-order fragment), slower, much more heuristic, and it performs visibly worse
as a standalone tactic (see Sect. 5). It partially includes only some of the actions,
restrictions and heuristic improvements described here. In particular, the con-
struction and the unfolding actions are absent, and only special cases of the
elimination and the rewriting actions are performed. See Sect. 3.

From a theoretical perspective, a complete proof search procedure for the
Cube of Type Systems, which includes the pure Calculus of Constructions with-
out inductive types, is presented in [15]. It is also based on an exhaustive search
for type inhabitants. Sequent calculi suitable for proof search in Pure Type Sys-
tems are described in [22,26].

In practice, Chlipala’s crush tactic [9] can solve many commonly occurring
Coq goals. However, it is not a general proof search procedure, but an entirely
heuristic tactic. In the evaluations we performed, the crush tactic performed
much worse than our procedure. For Agda [30] there exists an automated prover
Agsy [28] which is, however, not much stronger than Coq’s auto.

Proof search in intuitionistic first-order logic has received more attention
than inhabitation in complex constructive dependent type theories. We do not
attempt here to provide an overview, but only point the reader to [36] for a com-
parison of intuitionistic first-order ATP systems. The most promising approaches
to proof search in intuitionistic first-order logic seem to be connection-based
methods [6,24,32,45]. Indeed, the connection-based ileanCoP [31] prover out-
performs other intuitionistic ATPs by a wide margin [36].

An automated intuitionistic first-order prover is available in Coq via the
firstorder tactic [11], which is based on a contraction-free sequent calculus
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extending the LJT system of Dyckhoff for intuitionistic propositional logic [17–
19]. There also exists a Coq plugin for the connection-based JProver [37]. How-
ever, the plugin is not maintained and not compatible with new versions of Coq.

Coq’s type theory may be viewed as an extension of intuitionistic higher-order
logic. There exist several automated provers for classical higher-order logic, like
Leo [40] or Satallax [8]. Satallax can produce Coq proof terms which use the
excluded middle axiom.

The approach to proof search in intuitionistic logic via inhabitation in the
corresponding lambda-calculus has a long tradition. It is often an easy way to
establish complexity bounds [23,38,42]. This approach can be traced back to
Ben-Yelles [5,23] and Wajsberg [43,44].

One of the motivations for this work is the need for a general automated
reasoning procedure in a CoqHammer [14] reconstruction backend. CoqHammer
links Coq with general classical first-order ATPs, but tries to find intuitionistic
proofs with no additional assumptions and to handle as much of Coq’s logic as
possible. A consequence is that the reconstruction mechanism of CoqHammer
cannot rely on a direct translation of proofs found by classical ATPs, in contrast
to e.g. SMTCoq [2,21] which integrates external SAT and SMT solvers into Coq.

2 Calculus of Inductive Constructions

In this section, we briefly and informally describe the Calculus of Inductive
Constructions (CIC) [10,33,46]. For precise definitions and more background, the
reader is referred to the literature. Essentially, CIC is a typed lambda calculus
with dependent products ∀x : τ.σ and inductive types.

An inductive type is given by its constructors, presented as, e.g.,

Inductive List (A : Type) : Type :=
nil : List A | cons : A -> List A -> List A

This declares listA to be a type of sort Type for any parameter A of sort Type.
Above A is a parameter and Type → Type is the arity of list. The types of
constructors implicitly quantify over the parameters, i.e., the type of cons above
is ∀A : Type.A → listA → listA. In the presentation we sometimes leave the
parameter A implicit.

Propositions (logical formulas) are represented by dependent types. Induc-
tive predicates are represented by dependent inductive types, e.g., the inductive
type

Inductive Forall (A : Type) (P : A -> Prop) : List A -> Prop :=
| fnil : Forall P nil
| fcons : forall (x : A) (l : List A),

P x -> Forall P l -> Forall P (cons x l)

defines a predicate Forall on lists, parameterised by a type A and a predi-
cate P : A → Prop. Then ForallAP l states that Px holds for every element x
of l.
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All intuitionistic connectives may be represented using inductive types:

Inductive � : Prop := I : �.
Inductive ⊥ : Prop := .
Inductive ∧ (A : Prop) (B : Prop) : Prop := conj : A -> B -> A ∧ B
Inductive ∨ (A : Prop) (B : Prop) : Prop :=

inl : A -> A ∨ B | inr : B -> A ∨ B.
Inductive ∃ (A : Type) (P : A -> Prop) : Prop :=

exi : forall x : A, P x -> A P.

where ∧ and ∨ are used in infix notation. All the usual introduction and elimi-
nation rules are derivable. Equality can also be defined inductively.

Below by t, u, w, τ , σ, etc., we denote terms, by c, c′, etc., we denote con-
structors, and by x, y, z, etc., we denote variables. We use �t for a sequence
of terms t1 . . . tn of an unspecified length n, and analogously for a sequence of
variables �x. For instance, t�y stands for ty1 . . . yn, where n is not important or
implicit. Analogously, we use λ�x : �τ .t for λx1 : τ1.λx2 : τ2. . . . λxn : τn.t, with n
implicit or unspecified. We write t[�u/�x] for t[u1/x1] . . . [un/xn].

The logic of Coq includes over a dozen term formers. The ones recognised by
our procedure are: a sort s (e.g. Type, Set or Prop), a variable x, a constant, a
constructor c, an inductive type I, an application t1t2, an abstraction λx : t1.t2,
a dependent product ∀x : t1.t2 (written t1 → t2 if x /∈ FV(t2)), and a case
expression case(t;λ�a : �α.λx : I�q�a.τ ; �x1 : �σ1 ⇒ t1 | . . . | �xk : �σk ⇒ tk).

In a case expression: t is the term matched on; I is an inductive type with
constructors c1, . . . , ck; the type of ci is ∀�p : �ρ.∀�xi : �τi.I�p�ui where �p are the
parameters of I; the type of t has the form I�q�u where �q are the values of the
parameters; the type τ [�u/�a, t/x] is the return type, i.e., the type of the whole
case expression; ti has type τ [ �wi/�a, ci�q �xi/x] in �xi : �σi where �σi = �τi[�q/�p] and
�wi = �ui[�q/�p]; ti[�v/�x] is the value of the case expression if the value of t is ci�q�v.

Note that some equality information is “forgotten” when typing the branches
of a case expression. We require ti to have type τ [ �wi/�a, ci�q �xi/x] in context �xi : �σi.
We know that “inside” the ith branch t = ci�q �xi and �u = �wi, but this information
cannot be used when checking the type of ti. A consequence is that permutative
conversions [41, Chapter 6] are not sound for CIC and this is one reason for the
incompleteness of our procedure outside the restricted first-order fragment.

Coq’s notation for case expressions is

match t as x in I �a return τ
with c1 �x1 => t1 | ... | ck �xk => tk end

where c1, . . . , ck are all constructors of I, and are the wildcard patterns
matching the inductive type parameters �q. For readability, we often use
Coq match notation. When x (resp. �a) does not occur in τ then we omit
as x (resp. in I �a) from the match. If τ does not on either x or �a, we
also omit the return τ .

A typing judgement has the form E;Γ � t : τ where E is an environment
consisting of declarations of inductive types and constant definitions, Γ is a
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context - a list of variable type declarations x : σ, and t, τ are terms. We refer
to the Coq manual [10] for a precise definition of the typing rules.

Coq’s definitional equality (conversion rule) includes β- and ι-reduction:

(λx : τ.t1)t2 →β t1[t2/x]
case(ci�p�v;λ�a : �α.λx : I�p�a.τ ; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk) →ι ti[�v/�xi]

An inductive type I is non-recursive if the types of constructors of I do not
contain I except as the target. We assume the well-foundedness of the relation 	
defined by: I1 	 I2 iff I2 
= I1 occurs in the arity of I1 or the type of a constructor
of I1. We write I 	 t if I 	 I ′ for every inductive type I ′ occurring in the term t.

3 The Proof Search Procedure

In this section, we describe our proof search procedure. Our approach is based
on a direct search for type inhabitants in appropriate normal form [42]. For
the sake of efficiency, the normal forms we consider are only a subset of possible
CIC normal forms. This leads to incompleteness outside the restricted first-order
fragment (see Sects. 3.6 and 4).

More precisely, the inhabitation problem is: given an environment E, a con-
text Γ and a Γ -type τ (i.e. Γ � τ : s for a sort s), find a term t such that
E;Γ � t : τ . The environment E will be kept fixed throughout the search, so we
omit it from the notation.

A goal is a pair (Γ, τ) with τ a Γ -type, denoted Γ �? : τ , where Γ is the
context and τ is the conjecture. A solution of the goal Γ �? : τ is any term t
such that Γ � t : τ .

3.1 Basic Procedure

The basic inhabitation procedure is to nondeterministically perform one of the
following actions, possibly generating new subgoals to be solved recursively. If
the procedure fails on one of the subgoals then the action fails. If each possible
action fails then the procedure fails. The choices in the actions (e.g. of specific
subgoal solutions) are nondeterministic, i.e., we consider all possible choices,
each leading to a potentially different solution.

The actions implicitly determine an and-or proof search tree. We leave the
exact order in which this tree is traversed unspecified, but a complete search
order is to be used, e.g., breadth-first or iterative deepening depth-first.

The procedure supports five term formers in synthesised solutions: variables,
constructors, applications, lambda-abstractions, case expressions. These are built
with the four actions below.

1. Introduction. If Γ �? : ∀x : α.β then:
– recursively search for a solution t of the subgoal Γ, x : α �? : β;
– return λx : α.t as the solution.
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2. Application. If Γ �? : τ and x : ∀�y : �σ.ρ is in Γ then:
– for i = 1, . . . , n, recursively search for a solution ti of the subgoal Γ �? :

σi[t1/y1] . . . [ti−1/yi−1];
– if ρ[�t/�y] =βι τ then return x�t as the solution.

3. Construction. If Γ �? : I�q �w with �q the parameters and c : ∀�p : �ρ.∀�y : �σ.I�p�u
is a constructor of I then:

– for i = 1, . . . , n, recursively search for a solution ti of the subgoal Γ �? :
σi[�q/�p][t1/y1] . . . [ti−1/yi−1];

– if �u[�q/�p][�t/�y] =βι �w then return c�q�t as the solution.
4. Elimination. If Γ �? : τ , and x : ∀�y : �σ.I�q�u is in Γ , and I : ∀�p : �ρ.∀�a : �α.s is

in E with �p the parameters, and cj : ∀�p : �ρ.∀�zj : �γj .I�p �uj for j = 1, . . . ,m are
all constructors of I, then:

– for i = 1, . . . , n, recursively search for a solution ti of the subgoal Γ �? :
σi[t1/y1] . . . [ti−1/yi−1];

– let �v = �u[�t/�y] and �r = �q[�t/�y];
– choose τ ′ such that τ ′[�v/�a, x�t/z] =βι τ ;
– for j = 1, . . . , m, recursively search for a solution bj of Γ, �zj : �δj �? :

τ ′[ �wj/�a, cj�r�zj/z] where �δj = �γj [�r/�p] and �wj = �uj [�r/�p];
– return case(x�t;λ�a : �α.λz : I�r�a.τ ′; �z1 : �γ1 ⇒ b1 | . . . | �zm : �γm ⇒ bm) as

the solution.

The intuition is that we search for normal inhabitants of a type. For instance,
if Γ � (λx : α.t)u : τ then also Γ � t[u/x] : τ , so it suffices to consider solutions
without β-redexes. Assuming τ is not a sort, it suffices to consider only variables
and constructors at the head of the solution term, because I : ∀�x : �σ.s with s
a sort for any inductive type I. This of course causes incompleteness because it
may be necessary to search for inhabitants of a sort s in a subgoal.

It is straightforward to check (by inspecting the typing rules of CIC) that
the described procedure is sound, i.e., any term obtained using the procedure is
indeed a solution.

3.2 Search Restrictions

We now introduce some restrictions on the search procedure, i.e., on when each
action may be applied. Note that this may compromise completeness, but not
soundness. For a first-order fragment completeness is in fact preserved (Sect. 4).

– Eager introduction. Perform introduction eagerly, i.e., if Γ �? : ∀x : α.β
then immediately perform introduction without backtracking.
This is justified by observing that we may restrict the search to solutions in
η-long normal form. However, in general η-long normal forms may not exist.

– Elimination restriction. Perform elimination only immediately after intro-
duction or another elimination.
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The intuitive justification is that in a term of the form

u (match t as x in I �a return τ
with c1 1 => t1 | ... | ck k => tk end)�x �x

we may usually move u inside the match while preserving the type:

match t as x in I �a return τ
with c1 1 => u t1 | ... | ck�x �xk => u tk end

However, this is not always possible in CIC (see Sect. 2).
– Eager simple elimination. Immediately after adding x : I�q�u with param-

eters �q into the context Γ (by the introduction or the elimination action), if
I is a non-recursive inductive type and I 	 �q, then perform elimination of x
eagerly and remove the declaration of x from the context.
If Γ � (λx : I�q.t) : τ then usually Γ � (λx : I�q.t′) : τ where t′ is

match x with c1 1 => t[c1 1/x] | ... | ck k => t[ck�x �x �x �xk/x] end

However, in general replacing a subterm u′ of a term u with u′′ may change
the type of u, even if u′, u′′ have the same type. See Sect. 4.

– Loop checking. If the same conjecture is encountered for the second time
on the same proof search tree branch without performing the introduction
action in the meantime, then fail.
This is justified by observing that if Γ � t[u/x] : τ and Γ � u : τ , then we can
just use u instead of t as the solution. In general, this restriction also causes
incompleteness, for the same reason as the previous one.

It is instructive to observe how the elimination restrictions specialise to induc-
tive definitions of logical connectives. For example, the eager simple elimination
restriction for conjunction is that a goal Γ, x : α∧β �? : τ should be immediately
replaced by Γ, x1 : α, x2 : β �? : τ .

3.3 Heuristic Improvements

The above presentation of the proof search procedure does not yet directly lead
to a practical implementation. We thus introduce “heuristic” improvements. All
of them preserve soundness, but some may further compromise completeness.
In fact, we believe several of the “heuristics” (e.g. most context simplifications
and forward reasoning) actually do preserve completeness (under certain restric-
tions), but we did not attempt to rigorously prove it1.

– In the application action, instead of checking ρ[�t/�y] =βι τ a posteriori, use
unification modulo simple heuristic equational reasoning to choose an appro-
priate (x : τ) ∈ Γ , possibly introducing existential metavariables to be instan-
tiated later (like with Coq’s eapply tactic). Analogously, we use unification
in the construction action.

1 It is actually clear that limited forward reasoning (4th point) preserves completeness
in general, because it corresponds to performing β-expansions on the proof term.
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– In the elimination action, the choice of τ ′ is done heuristically without back-
tracking. In practice, we use either Coq’s destruct or inversion tactic,
depending on the form of the inductive type I.

– Immediately after the introduction action, simplify the context:
• replace h : ∀�x : �σ.τ1 ∧ τ2 with h1 : ∀�x : �σ.τ1 and h2 : ∀�x : �σ.τ2;
• replace h : ∀�x : �σ.τ1∨τ2 → ρ with h1 : ∀�x : �σ.τ1 → ρ and h2 : ∀�x : �σ.τ2 → ρ;
• replace h : ∀�x : �σ.τ1 ∧ τ2 → ρ with h′ : ∀�x : �σ.τ1 → τ2 → ρ;
• replace h : ∃x : σ.τ with h′ : τ (assuming x fresh);
• remove some intuitionistic tautologies;
• perform invertible forward reasoning, i.e., if h : σ and h′ : σ → τ are in Γ

then we replace h′ with h′′ : τ .
• use Coq’s subst tactic to rewrite with equations on variables;
• perform rewriting with some predefined lemmas from a hint database.

– Immediately after simplifying the context as above, perform some limited
forward reasoning. For instance, if h : Pa and h′ : ∀x.Px → ϕ are in Γ , then
add h′′ : Pa → ϕ[a/x] to Γ . To avoid looping, we do not use newly derived
facts for further forward reasoning.

– Elimination on terms matched in case expressions is done eagerly. In other
words, if match t with ... end occurs in the conjecture or the context,
with t closed, then we immediately perform the elimination action on t.

– After performing each action, simplify the conjecture by reducing it to (weak)
normal form (using Coq’s cbn tactic) and rewriting with some predefined
lemmas from a hint database.

– We use a custom leaf solver at the leaves of the search tree. The leaf solver
eagerly splits the disjunctions in the context (including quantified ones), uses
Coq’s eauto with depth 2, and tries the Coq tactics congruence (congruence
closure) and lia (linear arithmetic).

– We extend the search procedure with two more actions (performed non-
eagerly with backtracking):

1. Unfolding. Unfold a Coq constant definition, provided some heuristic
conditions on the resulting unfolding are satisfied.

2. Rewriting. The order > on constants is defined to be the transitive closure
of {(c1, c2) | c2 occurs in the definition of c1}. By lpo> we denote the lift-
ing of > to the lexicographic path order (LPO) on terms [3, Section 5.4.2].
For the LPO lifting, we consider only terms which have obvious first-order
counterparts, e.g., fxyz with f a constant corresponds to a first-order term
f(x, y, z). The action is then as follows. Assume h : ∀�x : �σ.t1 = t2 is in Γ .

• If lpo>(t1, t2) then rewrite with h from left to right, in the conjecture
and the hypotheses, generating new subgoals and introducing existential
metavariables for �x as necessary.

• If lpo>(t2, t1) then rewrite with h from right to left.
• If t1, t2 are incomparable with lpo>, then rewrite heuristically from left

to right, or right to left if that fails.
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For heuristic rewriting in the last point, we use the leaf solver to discharge the
subgoals and we track the hypotheses to avoid unordered heuristic rewriting
with the same hypothesis twice.

– Immediately after forward reasoning, eagerly perform rewriting with those
hypotheses which satisfy: (1) the target can be ordered with the lexicographic
path order described above, and (2) the generated subgoals can be solved with
the leaf solver.

3.4 Search Strategy

The proof search strategy is based on (bounded or iterative deepening) depth-
first search. We put a bound on the cost of proof search according to one of the
following two cost models.

– Depth cost model. The depth of the search tree is bounded, with the leaf
solver tactic tried at the leaves.

– Tree cost model. The size of the entire search tree is bounded, but not
the depth directly. The advantages of this approach are that (1) it allows to
find deep proofs with small branching, and (2) it is easier to choose a single
cost bound which performs well in many circumstances. However, this model
performs slightly worse on pure first-order problems (see Sect. 5).

3.5 Soundness

Our proof search procedure, including all heuristic improvements, is sound. For
the basic procedure (Sects. 3.1 and 3.2) this can be shown by straightforward
induction, noting that the actions essentially directly implement CIC typing
rules. For the heuristic improvements (Sect. 3.3), one could show soundness by
considering the shapes of the proof terms. This is straightforward but tedious.
The implementation in the Coq tactic monad guarantees soundness as only well-
typed proof terms can be produced by standard Coq tactics.

3.6 Incompleteness

The inhabitation procedure presented above is not complete for the full logic of
Coq. The reasons for incompleteness are as follows.

1. Higher-order unification in the application action is not sufficient for com-
pleteness in the presence of impredicativity. A counterexample (from [15]) is

Q : ∗ → ∗, u : ∀P : ∗.QP → P, v : Q(A → B), w : A �? : B.

The solution is u(A → B)vw. The target P of u unifies with B, but this does
not provide the right instantiation (which is A → B) and leaves an unsolvable
subgoal ? : QB. It is worth noting, however, that this particular example can
be solved thanks to limited forward reasoning (see Sect. 3.3).
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2. For efficiency, most variants of our tactics do not perform backtracking on
instantiations of existential metavariables.

3. The normal forms we implicitly search for do not suffice for completeness.
One reason is that permutative conversions [41, Chapter 6] are not sound for
dependent case expressions case in CIC if the return type τ depends on �a
or x. We elaborate on this in the next section.

4. The full logic of Coq contains more term formers than the five supported by
our procedure: fix, cofix, let, . . . In particular, our inhabitation procedure
never performs induction over recursive inductive types, which requires fix.
It does reasoning by cases, however, via the elimination action.

We believe the compromises on completeness are in practice not very severe
and our procedure may reasonably be considered a general automated proof
search method for CIC without fixpoints. In fact, many of the transformations
on proof terms corresponding to the “restrictions” and “heuristics” above would
preserve completeness in the presence of definitional proof irrelevance.

4 Normal Forms and Partial Completeness

The basic inhabitation procedure (Sects. 3.1 and 3.2) with restricted looping
check is complete for a first-order fragment of CIC. We conjecture that a variant
of our procedure is also complete for CIC with definitional proof irrelevance,
with only non-dependent elimination, and without fixpoints. First, we describe
the subset of normal forms our procedure searches for.

Permutative conversions are the two reductions below. They “move around”
case expressions to expose blocked redexes.

case(u;λ�a : �α.λx : I�q�a.∀z : σ.τ ; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk)w →ρ1

case(u;λ�a : �α.λx : I�q�a.τ [w/z]; �x1 : �τ1 ⇒ t1w | . . . | �xk : �τk ⇒ tkw)

case(case(u;Q; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk);R;P ) →ρ2

case(u;R′; �x1 : �τ1 ⇒ case(t1;R′′;P ) | . . . | �xk : �τk ⇒ case(tk;R′′;P ))

In the second reduction rule, P stands for a list of case patterns �y1 : �σ1 ⇒ w1 |
. . . | �ym : �σm ⇒ wm. We assume �xi do not occur in P . Similarly, Q,R,R′, R′′

stand for the specifications of the return types, where Q = λ�a : �α.λx : I1 �q1�a.I�v,
R = λ�b : �β.λx : I2 �q2�b.τ , R′ = λ�a : �α.λx : I1 �q1�a.τ , R′′ = λ�a : �α.λx : I1 �q1�a.τ .

We write →ρ for the union of →ρ1 and →ρ2 . Note that ρ1-reduction may
create β-redexes, and ρ2-reduction may create ι-redexes.

The right-hand sides of the ρ-rules may be ill-typed if σ, τ above depend on
any of �a,�b, x, i.e., if the return type varies across the case expression branches.
Moreover, even if the type of a ρ-redex subterm is preserved by a ρ-contraction,
the type of the entire term might not be. For example, assume the following are
provable in context Γ : P : A → s, F : ∀x : A.Px, t : A, t′ : A and p : Pt. Then
Γ � Ft : Pt but in general Γ 
� Ft′ : Pt unless t =βι t′.

An analogous problem occurs when attempting to define η-long normal forms
– normal forms η-expanded as much as possible without creating β-redexes. The
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η-expansion of a term t of type ∀x : α.β is λx : α.tx where x /∈ FV(t). We
do not consider η-expansions for inductive types. If the conversion rule does
not include η (Coq’s does since v8.4), then η-expanding a subterm may change
the type of the entire term. Even assuming the conversion rule does include η,
defining η-long forms in the presence of dependent types is not trivial if we
consider η-expansions inside variable type annotations [16]. However, for our
purposes a simpler definition by mutual induction on term structure is sufficient.

A term t is a long normal form in Γ (Γ -lnf ) if:

– t = λx : α.t′, and Γ � t : ∀x : α.β, and t′ is a Γ -(x : α)-lnf (defined below);
– t = x�u, and Γ � t : τ with τ not a product, and each ui is a Γ -lnf and not a

case expression;
– t = c�q�v, and Γ � t : I�q �w with �q the parameters, and c is a constructor of I,

and each vi is a Γ -lnf and not a case expression;
– t = case(x�u;λ�a : �α.λx : I�q�a.σ; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk), and Γ � t : τ

with τ not a product, and each ui is a Γ -lnf and not a case expression, and
each ti is a Γ -(�xi : �τi)-lnf.

A term t is a Γ -Δ-lnf if:

– Δ = 〈〉 and t is a Γ -lnf;
– Δ = x : α,Δ′, and α is not I�q�u for I non-recursive with I 	 �q, and t is a

Γ, x : α-Δ′-lnf;
– Δ = x : I�q�u,Δ′, and I is non-recursive with I 	 �q, and �q are the parameter

values, and t = case(x;λ�a : �α.λx : I�q�a.τ ; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk),
and Γ,Δ � t : τ [�u/�a], and each ti is a Γ -Δ′, �xi : �τi-lnf (then x /∈ FV(ti)).

For the supported term formers (variables, constructors, applications, lambda-
abstractions, case expressions), this definition essentially describes η-long βιρ-
normal forms transformed to satisfy the additional restrictions corresponding to
the elimination and the eager simple elimination restrictions from Sect. 3.2.

Given an inhabitation problem Γ �? : τ , our procedure searches for a minimal
solution in Γ -lnf. Solutions in Γ -lnf might not exist for some solvable problems.
As outlined above, there are essentially two reasons: (1) with dependent elimi-
nation the return type may vary across case branches, which in particular makes
permutative conversions unsound; (2) replacing a proof with a different proof
of the same proposition is not sound if proofs occur in types. Point (1) may be
dealt with by disallowing dependent elimination, and (2) by assuming defini-
tional proof irrelevance. Hence, we conjecture completeness (of an appropriate
variant of the procedure) for CIC with definitional proof irrelevance, with only
non-dependent elimination, and without fixpoints.

Here we only prove that in a first-order fragment for every inhabited type
there exists an inhabitant in Γ -lnf. The precise definition of the considered first-
order fragment may be found in the appendix. It is essentially intuitionistic first-
order logic with two predicative sorts Prop and Set, non-dependent inductive
types in Prop, non-dependent pattern-matching, and terms of a type in Set
restricted to applicative form. We use �fo for the typing judgement of the first-
order fragment.
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For the theorem below, we consider a basic variant of our procedure (Sects. 3.1
and 3.2) which does not perform the looping check for conjectures of sort Set.

Theorem 1 (Completeness for a first-order fragment). If the inhabitation
problem Γ �fo? : τ has a solution, then the inhabitation procedure will find one.

Proof (sketch). Assume Γ �fo t : τ . It suffices to show that t may be converted
into a Γ -lnf with the same type.

First, one shows that βιρ-reduction enjoys subject reduction and weak nor-
malisation. The weak normalisation proof is analogous to [41, Theorem 6.1.8].

Next, one shows that βιρ-normal forms may be expanded to η-long βιρ-
normal forms. Some care needs to be taken to avoid creating a ρ-redex when
expanding a case expression.

Finally, one performs transformations corresponding to the elimination and
the eager simple elimination restrictions. See the appendix for details.

5 Evaluation

We performed several empirical evaluations of our proof search procedure. First,
on a collection of a few Coq libraries and separately on CompCert [27], we
measured the effectiveness of the procedure as a standalone proof search tactic,
as well as its effectiveness as a reconstruction backend for CoqHammer. We also
measured the effectiveness of our procedure on pure intuitionistic first-order logic
by evaluating it on the ILTP library [36] of first-order intuitionistic problems.

Our proof search procedure intends to provide general push-button automa-
tion for CIC without fixpoints, based on sound theoretical foundations. As such,
it is in a category of its own, as far we know. Our evaluations in several different
scenarios indicate the practical viability of our approach despite its generality.
It should be noted that the tactics we compare against are not intended for full
automation, but target specific small fragments of CIC or require hand-crafted
hints for effective automation.

Detailed evaluation results, complete logs, Coq problem files and conversion
programs are available in the online supplementary material [12]. The collection
of Coq libraries and developments on which we evaluated our procedure includes:
coq-ext-lib library, Hahn library, int-map (a library of maps indexed by binary
integers), Coq files accompanying the first three volumes of the Software Foun-
dations book series [1,34,35], a general topology library, several other projects
from coq-contribs. The full list is available at [12].

The results of the standalone (left) and CoqHammer backend (right) evalu-
ation on 4494 problems from a collection of Coq developments, and seperately
the results on CompCert are presented below.
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Coq libraries collection
standalone+i (4494 problems, 30s)
tactic proved proved %

sauto+i 1840 40.9%
yelles+i 1552 34.5%
coq+i 1229 27.3%

crush+i 1134 25.2%

Coq libraries collection
CoqHammer (4494 problems, 30s+30s)
tactic proved proved % re-proved %

sauto-12 1756 39.1% 93.9-96.7%
coq-4 1243 27.7% 79.1-87.5%

CompCert
standalone+i (5495 problems, 30s)
tactic proved proved %

sauto+i 941 17.1%
yelles+i 875 15.9%
coq+i 372 6.8%

crush+i 355 6.5%

CompCert
CoqHammer (5353 problems, 30s+30s)
tactic proved proved % re-proved %

sauto-12 1373 25.6% 87.0-95.4%
coq-4 616 11.5% 42.0-78.9%

For the evaluation on CompCert, the number of problems for the CoqHam-
mer backend evaluation is smaller because the CoqHammer translation cannot
handle some Coq goals (e.g. with existential metavariables) and these were not
included.

For the standalone evaluation, we first try to apply our procedure, and if it
fails then we try heuristic unfolding and then try to do induction on each avail-
able hypothesis followed by the tactic. This gives a better idea of the usefulness
of our procedure because the core tactic itself cannot succeed on any problems
that require non-trivial induction. For comparison, an analogous combination of
standard Coq tactics (or crush) with unfolding and induction is used.

For the standalone evaluation, by “sauto+i” we denote our proof search
procedure, by “yelles+i” the preliminary procedure form [14], by “crush+i” a
slightly improved version of the crush tactic from [9], by “coq+i” a mix of stan-
dard Coq automation tactics (including eauto, lia, congruence, firstorder).
All these are combined with induction, etc., as described above.

We also performed a standalone evaluation without combining the tactics
with induction or unfolding. The results are presented below. For the standalone
evaluation without induction, by “coq-no-fo” we denote the same mix of standard
Coq automation tactics as “coq” but not including the firstorder tactic.

Coq libraries collection
standalone (4494 problems, 5s)

tactic proved proved %
coq 978 21.8%

sauto 888 19.6%
crush 663 14.8%

coq-no-fo 607 13.5%
yelles 602 13.4%

CompCert
standalone (5495 problems, 5s)

tactic proved proved %
sauto 420 7.6%
yelles 407 7.4%
coq 286 5.2%

coq-no-fo 237 4.3%
crush 210 3.8%
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The results of the standalone evaluations indicate that our procedure is useful
as a standalone Coq tactic in a push-button automated proof search scenario,
performing comparably or better than other tactics available for Coq.

For the evaluation of our procedure as a CoqHammer backend, we use 12
variants of our tactics (including 3 variants based on the incomplete prelimi-
nary procedure from [14]) run in parallel (i.e. a separate core assigned to each
variant) for 30s (“sauto-12” row). We included the variants of the preliminary
procedure form [14] to increase the diversity of the solved problems. The proce-
dure from [14], while much more ad-hoc and heuristic, is essentially a less general
version of the present one. The point of this evaluation is to show that our app-
roach may be engineered into an effective CoqHammer reconstruction backend,
and not to compare the present procedure with its limited ad-hoc variant. For
comparison, we used 4 variants of combinations of standard Coq automation tac-
tics (“coq-4” row). We show the total number and the percentage of problems
solved with any of the external provers and premise selection methods employed
by CoqHammer. The external provers were run for 30s each. The reconstruction
success rates (“re-proved” column) are calculated separately for each prover and
a range is presented.

A common property of the chosen libraries is that they use the advanced
features of Coq sparingly and are written in a style where proofs are broken up
into many small lemmas. Some do not use much automation, and the Software
Foundations files contain many exercises with relatively simple proofs. Moreover,
some of the developments modify the core hints database which is then used by
the tactics. The resulting problem set is suitable for comparing proof search
procedures on a restricted subset of Coq logic, but does not necessarily reflect
Coq usage in modern developments. This explains the high success rate compared
to CompCert. Also, CompCert uses classical logic, while our procedure tries to
find only intuitionistic proofs. Hence, a lower success rate is to be expected since
it is harder or impossible to re-prove some of the lemmas constructively.

The results of the evaluation on the ILTP library v1.1.2 [36] follow.

ILTP (2574 problems, 600s)

tactic proved proved % 0.00 0.25 0.50 0.75 1.00

hprover 662 25.7% 96.3% 52.1% 72.7% 43.9% 12.9%

tprover 636 24.7% 96.3% 52.1% 52.7% 44.6% 11.8%

yelles 602 23.4% 79.4% 40.1% 52.7% 47% 12.2%

sauto-3 760 29.5%

hprove10 565 22.0% 90.8% 40.8% 50.9% 38.7% 10.3%

firstorder 467 18.1% 95.4% 56.3% 58.2% 20% 6.7%

ileanCoP 934 36.3% 97.7% 95.8% 96.4% 95.8% 16.8%
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We compared our procedure with firstorder [11] and with ileanCoP 1.2 [31]
– a leading connection-based first-order intuitionistic theorem prover. We con-
verted the library files to appropriate formats (Coq or ileanCoP). For ileanCoP
and firstorder, the converted problem files include equality axioms (reflexiv-
ity, symmetry, transitivity, congruence). These axioms were not added for our
procedure because it can already perform limited equality reasoning. We used
exhaustive variants of our tactics which perform backtracking on instantiations
of existential metavariables and do not perform eager simple elimination, eager
or unordered rewriting. The proof search procedure is run in an iterative deep-
ening fashion, increasing the depth or cost bound on failure. The “hprover” row
shows the result for the depth cost model, “tprover” for the tree cost model,
“yelles” for the preliminary procedure from [14], and “sauto-3” the combination
of the results for the above three. The columns labeled with a number R show
the percentage of problems with difficulty rating R for which proofs were found.
The graph below the table shows how many problems were solved within a given
time limit.

The firstorder tactic is generally faster than our procedure, but it finds
much fewer proofs for the problems with high difficulty rating. For firstorder
we did not implement iterative deepening, because the depth limit is a global
parameter not changeable at the tactic language level. We set the limit to 10.
To provide a fair comparison, we also evaluated our proof search procedure with
the depth cost model and the depth bound fixed at 10 (“hprove10”).

In combination, the three iterative deepening variants of our procedure man-
aged to find proofs for 80 theorems that were not proven by ileanCoP. Overall,
the performance of ileanCoP is much better, but it does not produce proof terms
and is restricted to pure intuitionistic first-order logic.

6 Examples

In this section, we give some examples of the use of our proof search procedure
as a standalone Coq tactic. The core inhabitation procedure is implemented in
the sauto tactic which uses the tree cost model and bounds the proof search
by default. There are several other tactics which invoke different variants of the
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proof search procedure. The ssimpl tactic performs the simplifications, forward
reasoning and eager actions described in Sects. 3.2 and 3.3. The implementation
is available as part of a recent version of the CoqHammer tool [13,14], and it is
used as the basis of its reconstruction tactics.

Our first example is a statement about natural numbers. It can be proven by
sauto without any lemmas because the natural numbers, disjunction, existential
quantification and equality are all inductive types.

Lemma lem_simple_nat : forall n, n = 0 \/ exists m, n = S m.

Note that because the proof requires inversion on nat, it cannot possibly be
created by any of the standard Coq automation tactics.

Because < is defined in terms of ≤ which is an inductive type, sauto can
prove the following lemma about lists.

Lemma lem {A} (l : list A) : l <> nil -> length (tl l) < length l.

The next example concerns big-step operational semantics of simple imper-
ative programs. The commands of an imperative program are defined with an
inductive type cmd. The big-step operational semantics is represented with a
dependent inductive type ==> : cmd * state -> state -> Prop , and com-
mand equivalence ~~ : cmd -> cmd -> Prop is defined in terms of ==> . We
skip the details of these definitions.

Then sauto can fully automatically prove the following two lemmas. The first
one states the associativity of command sequencing. The second establishes the
equivalence of the while command with its one-step unfolding. On a computer
with a 2.5 GHz processor, in both cases sauto finds a proof in less than 0.5 s.

Lemma lem_seq_assoc : forall c1 c2 c3 s s',
(Seq c1 (Seq c2 c3), s) ==> s' <-> (Seq (Seq c1 c2) c3, s) ==> s'.

Lemma lem_unfold_loop : forall b c,
While b c ~~ If b (Seq c (While b c)) Skip.

Note again that both proofs require multiple inversions, and thus it is not
possible to obtain them with standard Coq automation tactics.

According to Kunze [25], the following set-theoretical statement cannot be
proven in reasonable time by either firstorder or JProver. The sauto tactic
finds a proof in less than 0.3s. Below Seteq, Subset and In are variables of type
U → U → Prop; Sum of type U → U → U ; and U : Type.

(forall A B X, In X (Sum A B) <-> In X A \/ In X B) /\
(forall A B, Seteq A B <-> Subset A B /\ Subset B A) /\
(forall A B, Subset A B <-> forall X, In X A -> In X B) ->
(forall A, Seteq (Sum A A) A).
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7 Conclusions and Future Work

We presented a practical general proof search procedure for Coq based on type
inhabitation. This increases the power of out-of-the-box automation available
for Coq and provides an effective reconstruction backend for CoqHammer. The
empirical evaluations indicate that our approach to fully automated proof search
in the Calculus of Inductive Constructions is practically viable.

For efficency reasons, the inhabitation procedure is not complete in general,
but it is complete for a first-order fragment of the Calculus of Inductive Construc-
tions. We conjecture that a variant of our procedure could be shown complete
for the Calculus of Inductive Constructions with definitional proof irrelevance,
with only non-dependent elimination, and without fixpoints.

We implemented the proof search procedure in OCaml and Ltac as a Coq
plugin. The plugin generates values in the Coq’s tactic monad which contain
callbacks to the plugin. Better efficiency would probably be achieved by directly
generating Coq proof terms or sequences of basic tactics. This would, however,
require much engineering work. Another disadvantage of the monadic implemen-
tation is that it limits the proof search strategy to depth-first order and precludes
global caching. In the artificial intelligence literature, there are many approaches
to graph and tree search [20] which might turn out to be better suited for an
inhabitation procedure than the depth-first tree search.

Acknowledgements. The author thanks Ping Hou for feedback on the operation of
the tactics and for pointing out some bugs.

A Completeness Proof for the First-Order Fragment

In this appendix we prove completeness of our proof search procedure for a first-
order fragment of the Calculus of Inductive Constructions. First, we precisely
define the first-order fragment.

A.1 The First-Order Fragment

The system is essentially an extension of λPRED from [4, Definition 5.4.5] with
inductive types and higher-order functions.

A preterm is a sort s ∈ S = {∗s, ∗p,�s,�p}, a variable x, a constructor c,
an inductive type I, an application t1t2, an abstraction λx : τ.t, a dependent
product ∀x : α.β, or a case expression caseI�q

τ (u; �x1 : �σ1 ⇒ t1 | . . . | �xk : �σk ⇒ tk).
In a case expression, u is the term matched on, the type of u is I�q where �q are
the values of the parameters, τ is the type of the case expression and of each
of the branches ti, and ti[�v/�x] is the value of the case expression if the value
of u is ci�q�v. In comparison to the full CIC, we allow only non-dependent case



Practical Proof Search for Coq by Type Inhabitation 45

expressions, i.e., the return type τ does not vary across branches. We omit the
sub- and/or the superscript when clear or irrelevant.

The intuitive interpretation of the sorts is as follows. The sort ∗p (also written
as Prop) is for propositions. First-order formulas are elements of ∗p. The sort ∗s

(also written as Set) is for sets – these form a simple type structure over a
collection of first-order universes. For example, when U : ∗s then also (U →
U) : ∗s. The sort �s is the sort of ∗s. The presence of �s allows to declare set
variables (i.e. of sort ∗s) in the context. The sort �p is the sort of predicate
types. We have (τ1 → . . . → τn → ∗p) : �p when τi : ∗s for i = 1, . . . , n.

An inductive declaration

I(�p : �ρ) : ∗p := c1 : σ1 | . . . | cn : σn

declares an inductive type I with parameters �p and arity ∀�p : �ρ.∗p, with n con-
structors c1, . . . , cn having types σ1, . . . , σn respectively (in the context extended
with �p : �ρ). We require:

– σi = ∀x1
i : τ1

i . . . . ∀xki
i : τki

i .I�p,
– I does not occur in any τ j

i .

We could allow strictly positive occurrences of I in σi, non-parameter arguments
to I or inductive types in ∗s as well as ∗p. These modifications, however, would
introduce some tedious technical complications. With the above definition, all
inductive types are non-recursive.

The arity of a constructor ci is ∀�p : �ρ.σi, denoted ci(�p : �ρ) : σi. We assume
the well-foundedness of the relation 	 defined by: I1 	 I2 iff I2 occurs in the
arity of I1 or the arity of a constructor of I1.

An environment is a list of inductive declarations. We write I ∈ E if a
declaration of an inductive type I occurs in the environment E. Analogously,
we write (I(�p : �ρ) : ∗p) ∈ E and (c(�p : �ρ) : τ) ∈ E, if a declaration of I with
arity ∀�p : �ρ.∗p occurs in E, or a constructor c(�p : �ρ) : τ with arity ∀�p : �ρ.τ
occurs in a declaration in E, respectively. A context Γ is a list of pairs x : τ
with x a variable and τ a term. A typing judgement has the form E;Γ � t : τ
with t, τ preterms. A term t is well-typed and has type τ in the context Γ and
environment E if E;Γ � t : τ may be derived using the rules from Fig. 1. We
denote the empty list by 〈〉.
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Fig. 1. Typing rules

The set R = {(∗p, ∗p), (∗s, ∗p), (∗s,�p), (∗s, ∗s)} in Fig. 1 is the set of rules
which determine the allowed dependent products.

The rule (∗p, ∗p) allows the formation of implication of two formulas:

φ : ∗p, ψ : ∗p � (φ → ψ) : ∗p.

The rule (∗s, ∗p) allows quantification over sets:

A : ∗s, φ : ∗p � (∀x : A.φ) : ∗p.

The rule (∗s,�p) allows the formation of predicates:

A : ∗s � (A → ∗p) : �p,

hence
A : ∗s, P : A → ∗s, x : A � Px : ∗p,

so P is a predicate on A.
The rule (∗s, ∗s) allows the formation of function spaces between sets:

A : ∗s, B : ∗s � (A → B) : ∗s.

Note that we permit quantification over higher-order functions but the formation
of lambda-abstractions is allowed only for proofs (i.e. elements of propositions)
and for predicates. Elements of sets are effectively restricted to applicative form.

Note that case expressions can occur only in proofs. Hence, including ι in the
conversion rule is in fact superfluous.

In Fig. 1 we assume that the environment E is well-formed, which is defined
inductively: an empty environment is well-formed, and an environment E, I(�p :
�ρ) : ∗p := c1 : τ1 | . . . | cn : τn (denoted E, I) is well-formed if E is and:

– the constructors c1, . . . , cn are pairwise distinct and distinct from any con-
structors occurring in the declarations in E;
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– E; p1 : ρ1, . . . , pj−1 : ρj−1 � ρj : � with � ∈ {�s,�p}, for each j;
– E; �p : �ρ, i : ∗p � τ ′

j : ∗p for j = 1, . . . , n, where τ ′
j is τj with all occurrences of

I�p replaced by i.

When E,Γ are clear or irrelevant, we write Γ � t : τ or t : τ instead of E;Γ �
t : τ . In what follows, we assume a fixed a well-formed environment E and omit
it from the notation. We write Γ � t : τ : s if Γ � t : τ and Γ � τ : s.

Standard meta-theoretical properties hold for our system, including the sub-
stitution, thinning and generation lemmas, subject reduction for βι-reduction
and uniqueness of types. We will use these properties implicitly. The proofs are
analogous to [4, Section 5.2] and we omit them.

The available forms of inductive types and case expressions suffice to define
all intuitionistic logical connectives with their introduction and elimination rules
(see Sect. 2). They do not allow for an inductive definition of equality, however.

Definition 1. 1. A Γ -proposition is a term τ with Γ � τ : ∗p.
2. A Γ -proof is a term t such that Γ � t : τ : ∗p for some τ .
3. A Γ -set is a term τ with Γ � τ : ∗s.
4. A Γ -element is a term t such that Γ � t : τ : ∗s for some τ .

We often omit Γ and talk about propositions, proofs, sets and set elements.

A.2 Completeness Proof

The β-, ι-, and ρ-reductions for our first-order system are:

(λx : τ.t1)t2 →β t1[t2/x]

caseI�q
τ (ci�q�v; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk) →ι ti[�v/�xi]

caseI�q
∀x:α.τ (u; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk)w →ρ1

caseI�q
τ [w/x](u; �x1 : �τ1 ⇒ t1w | . . . | �xk : �τk ⇒ tkw)

caseI�q
τ (caseJ�p

I�q (u; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk);P ) →ρ2

caseJ�p
τ (u; �x1 : �τ1 ⇒ caseI�q

τ (t1;P ) | . . . | �xk : �τk ⇒ caseI�q
τ (tk;P ))

In the ρ2-reduction rule, P stands for a list of case patterns �y1 : �σ1 ⇒ w1 | . . . |
�ym : �σm ⇒ wm. We assume �xi do not occur in P .

Because case expressions can occur only in proofs, subject reduction holds
for ρ-reduction.

Lemma 1. If Γ � t : τ : ∗s then t does not contain case expressions or lambda-
abstractions.

Proof. Induction on t, using the generation lemma.

Lemma 2. If Γ � τ : ∀�x : �α.s with s ∈ S then:

1. no Γ -proofs occur in τ ,
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2. no case expressions occur in τ .

Proof. By induction on τ .

Corollary 1. If Γ � t : τ and t contains a case expression, then Γ � τ : ∗p.

Corollary 2. If Γ � t : ϕ : ∗p and Γ, x : ϕ � u : τ then Γ � u[t/x] : τ .

Lemma 3. (Subject reduction for ρ). If Γ � t : τ and t →ρ t′ then Γ � t′ : τ .

Proof. By Corollary 1, t must be a Γ -proof if it contains a ρ-redex.
The lemma is shown by induction on the typing derivation, analogously to [4,

Theorem 5.2.15] except that where the conversion rule is used we instead appeal
to Corollary 2.

Implicitly, the following theorems, lemmas and definitions depend on the
typing context Γ , which changes in the expected way when going under binders.
We also implicitly consider types up to βι-equality.

Theorem 2. The βιρ-reduction is weakly normalising on typable terms.

Proof. The proof is an adaptation of the proof of an analogous result for first-
order intuitionistic natural deduction. See [41, Theorem 6.1.8].

Note that when the context is fixed, the type of each subterm is uniquely
determined up to β-equality (the type does not contain proofs, so ι-equality is
redundant).

Set elements are in βιρ-normal form, because they don’t contain case expres-
sions or lambda-abstractions. Hence, the only redexes which are not proofs must
occur in types and have the form (λx : α.τ)t where α : ∗s. Since each contraction
of a β-redex of this form strictly decreases the number of lambda-abstractions (t
is a set element not containing lambda-abstractions), β-reduction in types ter-
minates. Moreover, redexes in types cannot be created by reducing βιρ-redexes
which are proofs, because abstraction over predicates (i.e. elements of �p) is not
allowed. We may thus consider only the case when all types are in βιρ-normal
form and all redexes are proofs.

The degree δ(α) of a set α is 0. The degree δ(τ) of a proposition τ in β-normal
form is defined inductively.

– If τ = ∀x : τ1.τ2 then δ(τ) = δ(τ1) + δ(τ2) + 1.
– If τ = I�q with I(�p : �ρ) : ∗p := c1 : ∀ �x1 : �τ1.I�p | . . . | ck : ∀ �xk : �τk.I�p then

δ(τ) = δ( �σ1)+ . . .+δ( �σk)+1 where �σi = �τi[�q/�p] and δ(�σi) = δ(σ1
i , . . . , σmi

i ) =
δ(σ1

i ) + . . . + δ(σmi
i ).

– Otherwise δ(τ) = 0.

Formally, this definition is by induction on the lexicographic product of the
multiset extension of the well-founded order 	 on inductive types (we compare
the multisets of inductive types occurring in τ) and the size of τ .

Note that δ(τ [t/x]) = δ(τ) if t : ∗s or t : ∗p. This is because set elements are
not counted towards the degree and proofs do not occur in types.

The degree δ(t) of a redex t is defined as follows.
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– β- or ρ1-redex: t = t1t2 with t1 : ∀x : α.τ . Then δ(t) = δ(∀x : α.τ).
– ι- or ρ2-redex: t = caseI�q

τ (u; . . .). Then δ(t) = δ(I�q).

Note that if t : ∗p is a redex and u : ∗s or u : ∗p then δ(t[u/x]) = δ(t).
The case-size cs(t) of a term t is defined inductively.

– If t is not a case expression then cs(t) = 1.
– If t = case(u; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk) then cs(t) = cs(t1) + . . . +

cs(tk) + 1.

The redex-size rs(t) of a redex t is defined as follows.

– If t = t1t2 (a β- or ρ1-redex) then rs(t) = cs(t1).
– If t = case(u; . . .) (a ι- or ρ2-redex) then rs(t) = cs(u).

The argument and the targets of an application or a case expression t are
defined as follows.

– If t = t1t2 then t1 is the target and t2 the argument.
– If t = case(a�u; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk) with a a constructor or a

variable, then a�u is the argument and t1, . . . , tk are the targets.
– If t = case(u; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk) with u a case expression, then

u is the target and t1, . . . , tk are the arguments.

A subterm occurrence r is to the right of a subterm occurrence r′ (and r′ to
the left of r) if r′ occurs to the right of r in the in-order traversal of the term
tree where we first traverse the targets of a subterm, then visit the subterm, and
then traverse its arguments. With this definition, a subterm is to the right of its
targets and to the left of its arguments.

Note that the rightmost redex r of maximum degree does not occur in a
target of a redex r′ of maximum degree and no redex r′′ of maximum degree
occurs in its argument (otherwise r′, r′′ would be to the right of r).

For a β- or ρ-redex, the redex-size is the case-size of the target. For a ι-redex,
the redex-size is 1. Let r be the rightmost redex of maximum degree in t. Note
that changing r to a case expression r′ cannot increase the redex-size of a redex
of maximum degree r′′ in t containing r. Indeed, otherwise r′′ would be a β-
or ρ-redex and r would occur in its target, so r′′ would be to the right of r.
This implies that contracting the rightmost redex r of maximum degree to r′

cannot increase the redex-size of another redex of maximum degree by exposing
a case expression in r′. Note we have not (yet) ruled out the possibility of the
contraction increasing the redex-size of a redex of maximum degree occurring
inside r.

Let n be the maximum degree of a redex in t and m the sum of redex-
sizes of redexes of maximum degree in t. By induction on pairs (n,m) ordered
lexicographically, we show that t is weakly βιρ-normalising.

Choose the rightmost redex r of maximum degree and contract it. This either
decreases n or leaves n unchanged and decreases m.
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– If r = (λx : α.r1)r2 →β r1[r2/x] then no redexes of maximum degree occur
in r2 (because r2 is the argument of a rightmost redex r of maximum degree).
So no redexes of maximum degree get duplicated.
All redexes created by this contraction (either by exposing a possible λ-
abstraction or case expression in r1, or by substituting r2 for x) are of smaller
degree. Indeed, if e.g. r2 = caseI�q(u; . . .) is substituted for x in caseI�q(x; . . .),
then α = I�q and the degree of the created ρ2-redex is δ(I�q) = δ(α) < δ(r).
Other cases are similar: one notices that the degree of each redex created by
substituting r2 for x is δ(α) < δ(r), and the degree of a redex created by
exposing r1[r2/x] is δ(τ) < δ(r) where r1 : τ .
We also need to show that the β-contraction does not increase the redex-size
of another redex of maximum degree. The contraction may increase the redex-
size of a redex r′ in r1 by substituting r2 for x. But then δ(r′) = δ(α) < δ(r).
As discussed before, the contraction cannot increase the redex-size of another
redex of maximum degree by exposing r1[r2/x].
Therefore, either n decreases if r was the only redex of maximum degree,
or m decreases and n does not change.

– If r = caseI�q
τ (ci�q�v; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk) →ι ti[�v/�xi] then no

redexes of maximum degree occur in �v.
Let vj : σj . Because δ(σj) < δ(I�q), all redexes created by substituting �v for �xi

have smaller degree. If a redex is created by exposing ti[�v/�xi] then r occurs in t
as ru or case(r; . . .). The created redex is then ti[�v/�xi]u or case(ti[�v/�xi]; . . .)
and has degree δ(τ). But ru or case(r; . . .) was a redex of degree δ(τ) which
occurred to the right of r. This is only possible when δ(τ) < δ(I�q).
By a similar argument, the ι-contraction may increase the redex-size only of
redexes of smaller degree.

– If
r = caseI�q

∀x:α.τ (u; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk)w →ρ1

caseI�q
τ [w/x](u; �x1 : �τ1 ⇒ t1w | . . . | �xk : �τk ⇒ tkw) = r′

then no redexes of maximum degree occur in w.
New redexes of maximum degree may be created: t1w, . . . , tkw. However, the
sum of the redex-sizes of these redexes is smaller than the redex-size of the
contracted redex r, so m decreases.
A redex may be created by exposing r′, but then the degree of this redex is
δ(τ) < δ(r).

– If

r = caseI�q
τ (caseJ�p

I�q (u; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk);P ) →ρ2

caseJ�p
τ (u; �x1 : �τ1 ⇒ caseI�q

τ (t1;P ) | . . . | �xk : �τk ⇒ caseI�q
τ (tk;P )) = r′

then no redexes of maximum degree occur in P .
New redexes of maximum degree may be created: caseI�q

τ (ti;P ). The sum of
the redex-sizes of these redexes is at most cs(t1)+ . . .+cs(tk) < cs(t1)+ . . .+
cs(tk) + 1 = rs(r).
A redex may be created by exposing r′ if r occurs in ru or case(r; . . .). But
then ru or case(r; . . .) was a redex to the right of r with the same degree δ(τ)
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as the created redex r′u or case(r′; . . .), so the degree of the new redex must
be smaller than δ(I�q).
As discussed before, the redex-size of another redex of maximum degree can-
not be increased by exposing r′.

Lemma 4. If t is a proof in βιρ-normal form then one of the following holds.

– t = λx : α.t′ and t′ is a proof in βιρ-normal form.
– t = xu1 . . . un and each ui is a proof or a set element in βιρ-normal form.
– t = c�qu1 . . . un with �q the parameter values, and each ui is a proof or a set

element in βιρ-normal form.
– t = case(xu1 . . . un; �y1 : �σ1 ⇒ w1 | . . . | �ym : �σm ⇒ wm), and each ui

is a proof or a set element in βιρ-normal form, and each wi is a proof in
βιρ-normal form.

Note that well-typed constructor applications c�qt1 . . . tn must by definition
(Fig. 1) always include all parameter values �q. In other words, partial application
of a constructor to only some of the parameter values is not allowed.

A set element cannot contain lambda-abstractions or case-expressions, so it
is always in βιρ-normal form.

Definition 2. The η-long form of a set element t is t.
The η-long form of a proof variable x is defined by induction on the type τ : ∗p

of x in normal form: if τ = ∀�y : �α.β with β not a product, then λ�y : �α.xy′
1 . . . y′

n

where y′
i is the η-long form of yi. Note that the η-long form of x is well-defined

and its type is still τ because each yi is either a set element (then y′
i = yi) or a

proof variable (then yi does not occur in �α, β).
The η-long form of a proof t in βιρ-normal form is defined by induction on t.

– If t = λx : α.u and u′ is the η-long form of u, then λx : α.u′ is the η-long
form of t.

– If t = xt1 . . . tk, and ∀�y : α.τ is the type of t with τ not a product, and
t′i is the η-long form of ti, and y′

i is the η-long form of (a proof variable or
a set element) yi, then λ�y : �α.xt′1 . . . t′ky′

1 . . . y′
n is the η-long form of t. For

k = 0 this definition coincides with the definition of the η-long form of a proof
variable.

– If t = c�qt1 . . . tk, and ∀�y : α.τ is the type of t with τ not a product, and �q
are the parameters, and t′i is the η-long form of ti, and y′

i is the η-long form
of (a proof variable or a set element) yi, then λ�y : �α.c�qt′1 . . . t′ky′

1 . . . y′
n is the

η-long form of t.
– If t = case(u; �y1 : �σ1 ⇒ w1 | . . . | �ym : �σm ⇒ wm) then let u′ be the η-long

form of u and w′
i of wi. Let τ = ∀�z : �α.β be the type of t in normal form,

with β not a product. Then also w′
i : τ . Thus w′

i = λ�z : �α.w′′
i because w′

i is
η-long. We may assume none of �z occur in u′. We take λ�z : �α.case(u′; �y1 :
�σ1 ⇒ w′′

1 | . . . | �ym : �σm ⇒ w′′
m) as the η-long form of t.

A proof or set element t in βιρ-normal form is η-long if the η-long form of t is t.



52 �L. Czajka

Note that we do not η-expand inductive type parameters or variable type
annotations. A subterm of t is genuine if it does not occur inside an inductive
type parameter or a variable type annotation in t.

Lemma 5. A proof t in βιρ-normal form is η-long iff for every genuine sub-
term u of t such that u : ∀�x : �α.τ with τ not a product we have u = λ�x : �α.u′.

Proof. Induction on t.

Lemma 6. The η-long form of a βιρ-normal proof is βιρ-normal and has the
same type.

Proof. Induction on the definition of η-long form.

Definition 3. The Δ-case-expansion of a proof t is defined inductively.

– The 〈〉-case-expansion of t is t.
– If Δ = x : α,Δ′ with α not an inductive type I�q with I 	 �q, then the

Δ′-case-expansion of t is the Δ-case-expansion of t.
– If Δ = x : I�q,Δ′ with I 	 �q, and c1, . . . , cn are all constructors of I, and

ci�q : ∀�xi : �τi.I�q, and t′ is the Δ′, �xi : �τi-case-expansion of t, and ti is the
ι-normal form of t′[ci�q �xi/x], then case(x; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk) is
the Δ-case-expansion of t.

The induction is on the multiset extension 	mul of the bottom-extension 	⊥ of
the well-founded order 	 on inductive types. We compare the multisets M(Δ)
of inductive types of variables from Δ, using ⊥ for non-inductive types, e.g.,

M(x : I1, y : I2�q, z : I1, x
′ : α, y′ : β) = {⊥,⊥, I1, I1, I2}

if α, β are not inductive types. In the last point of the definition, the requirement
I 	 �q guarantees I 	 �τi, and thus M(Δ) 	mul M(Δ′, �xi : �τi).

Lemma 7. The Δ-case-expansion of a proof in βιρ-normal form is βιρ-normal
and has the same type.

Proof. By induction on the definition of Δ-case-expansion, using Corollary 2.
Note that in the last point of the definition, taking the ι-normal form requires
reducing only the redexes created directly by substituting x with ci�q �xi. But then
because the constructor arguments are variables �xi, the ι-contraction will result
in one of the branches with some variables renamed, which cannot create new
redexes if the original term was βιρ-normal.

Definition 4. A case-context C[t1, . . . , tn] with branches t1, . . . , tn is defined
inductively.

– If t is not a case expression then it is an empty case-context with a single
branch t.

– If C1[�t1], . . . , Cn[�tn] are case-contexts with branches �t1,. . . ,�tn respectively,
then case(t; �x1 ⇒ C1[�t1] | . . . | Cn[�tn]) is a case-context with branches
�t1, . . . , �tn (i.e. the concatenation of the branch lists for C1, . . . , Cn).
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We write C[ti]i for a case-context with branches t1, . . . , tn with n unspecified.

Note that for every term there exists a unique decomposition into a case-context
C[ti]i with branches ti. We write t = C[ti]i if C[ti]i is the case-context decompo-
sition of t. By definition, the branches of a case-context are not case expressions.

If t = C[ti]i is a case-context, then by C[t′i]i we denote the term t with
branch ti replaced by t′i (which may now have a different case-context decom-
position if t′i is a case expression). If C1[ti]i and C2[uj ]j are case-contexts, then
C[wi,j ]i,j = C1[C2[wi,j ]j ]i is a case-context with branches wi,j if wi,j are not
case expressions (and the result is well-typed).

Definition 5. The ε-normal form of a set element t is t.
Theε- normal form of a βιρ-normal proof t is defined by induction on t.

– If t = λx : α.u, and u′ is the (x : α)-case-expansion of the ε-normal form of u,
then λx : α.u′ is the ε-normal form of t.

– If t = x�u, and u′
i is the ε-normal form of ui, and u′

i = Ci[wji ]ji , then
C1[C2[. . . Cn[xwj1 . . . wjn ]jn . . .]j2 ]j1 is the ε-normal form of t.

– If t = c�q�u then the ε-normal form of t is defined analogously to the previous
point (not modifying �q).

– If t = case(x�u; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk), and u′
i is the ε-normal form

of ui, and t′i is the (�xi : �τi)-case-expansion of the ε-normal form of ti, and
u′

i = Ci[wji ]ji , then

C1[C2[. . . Cn[case(xwj1 . . . wjn ; �x1 : �τ1 ⇒ t′1 | . . . | �xk : �τk ⇒ t′k]jn . . .]j2 ]j1

is the ε-normal form of t.

Lemma 8. The ε-normal form of a βιρ-normal proof is βιρ-normal and has the
same type.

Proof. Induction on the definition of ε-normal form. We use Lemma 7 to handle
case-expansions of ε-normal forms in the first and the last point of the definition.

For the second point, note that if u′
i = Ci[wji ]ji with the case-context Ci non-

empty, then each wji must be a proof because it is a branch of a case expression.
Hence, wji cannot occur in the type of xwj1 . . . wji . If the case-context Ci is
empty, then wji = u′

i and either u′
i is a proof and it does not occur in the type

of xwj1 . . . wji , or it is a set element and u′
i = ui. Thus each xwj1 . . . wjn has the

same type as x�u. It follows that C1[C2[. . . Cn[xwj1 . . . wjn ]jn . . .]j2 ]j1 has the same
type as x�u. An analogous observation applies to the case-context manipulations
in the last point.

We restate the definition of long normal forms from Sect. 4 specialised to the
first-order fragment.

Definition 6. Any set element is in long normal form. A proof t is in long
normal form (lnf ) if:

– t = λx : α.t′, and t′ is in (x : α)-ce-lnf (see below);
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– t = x�u, and t : τ with τ not a product, and each ui is in lnf and not a case
expression;

– t = c�q �w, and t : I�q, and each wi is in lnf and not a case expression;
– t = case(x�u; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk), and t : τ with τ not a product,

and each ui is in lnf and not a case expression, and each ti is in (�xi : �τi)-ce-lnf.

A proof t is in Δ-case-expanded long normal form (Δ-ce-lnf ) if:

– Δ = 〈〉 and t is in lnf;
– Δ = x : α,Δ′, and α is not an inductive type I�q with I 	 �q, and t is in

Δ′-ce-lnf;
– Δ = x : I�q,Δ′ with I 	 �q, and t = case(x; �x1 : �τ1 ⇒ t1 | . . . | �xk : �τk ⇒ tk),

and each ti is in Δ′, �xi : �τi-ce-lnf and x /∈ FV(ti).

Formally, the definition is by mutual induction on pairs (size of t, length of Δ)
ordered lexicographically (with Δ = 〈〉 for lnf).

Lemma 9. If t is in Δ-ce-lnf and the type of t is not a product, then t is in lnf.

Proof. Induction on the definition of Δ-ce-lnf.

Lemma 10. If t is in Δ-ce-lnf, x /∈ Δ and x : I�q, then the ι-normal form
of t[ci�q�y/x] is in Δ-ce-lnf.

Proof. Induction on the definition of lnf and Δ-ce-lnf.

Lemma 11. If t is a proof in lnf and the type of t is not a product, then the
Δ-case-expansion of t is in Δ-ce-lnf.

Proof. By induction on the definition of Δ-case-expansion, using Lemma 10.

Lemma 12. If t = C[ti]i is in lnf, then so is each ti.

Proof. Induction on the case-context C, using Lemma 9.

Lemma 13. If u = C[ui]i is in Δ-ce-lnf and all u′
i are in lnf, then C[u′

i]i is in
Δ-ce-lnf (assuming it is well-typed).

Proof. Induction on the case-context C.

Lemma 14. The ε-normal form of an η-long βιρ-normal proof is in long normal
form.

Proof. Induction on the definition of ε-normal form, using the previous three
lemmas.

Finally, we are ready to prove the completeness theorem. We consider a basic
variant of our procedure (Sects. 3.1 and 3.2) which does not perform the looping
check for conjectures of sort ∗s. With first-order restrictions on term formation,
it is to be understood that the procedure performs corresponding actions only
when the resulting term is well-typed, e.g., the introduction and elimination
actions are not performed for conjectures of sort ∗s.
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Theorem 3 (Completeness for the first-order fragment). If the conjec-
ture is a proposition or a set and the inhabitation problem has a solution, then
our procedure will find one.

Proof. One checks that the procedure with the restrictions outlined above per-
forms an exhaustive search for (minimal) inhabitants in long normal form. Note
that if the conjecture is a proposition or a set, then in any subgoal the conjecture
is still a proposition or a set.

By Theorem 2, Lemma 6, Lemma 8 and Lemma 14, for any solution t : τ
there exists a solution t′ : τ in long normal form. This implies completeness
of our procedure without the looping check. By Corollary 2, loop checking for
propositional conjectures does not compromise completeness.

References

1. Appel, A.: Verified Functional Algorithms. Software Foundations series, volume 3.
Electronic textbook (2018)
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Abstract. The functorial structure of type constructors is the founda-
tion for many definition and proof principles in higher-order logic (HOL).
For example, inductive and coinductive datatypes can be built modularly
from bounded natural functors (BNFs), a class of well-behaved type
constructors. Composition, fixpoints, and—under certain conditions—
subtypes are known to preserve the BNF structure. In this paper, we
tackle the preservation question for quotients, the last important princi-
ple for introducing new types in HOL. We identify sufficient conditions
under which a quotient inherits the BNF structure from its underlying
type. We extend the Isabelle proof assistant with a command that auto-
mates the registration of a quotient type as a BNF by lifting the under-
lying type’s BNF structure. We demonstrate the command’s usefulness
through several case studies.

1 Introduction

The functorial structure of type constructors forms the basis for many defini-
tion and proof principles in proof assistants. Examples include datatype and
codatatype definitions [3,9,37], program synthesis [13,19,24], generalized term
rewriting [36], and reasoning based on representation independence [6,19,23] and
about effects [26,27].

A type constructor becomes a functor through a mapper operation that lifts
functions on the type arguments to the constructed type. The mapper must
be functorial, i.e., preserve identity functions (id) and distribute over function
composition (◦). For example, the list type constructor list 1 has the well-known
mapper map :: (α → β) → α list → β list, which applies the given function to
every element in the given list. It is functorial:

map id = id map g ◦ map f = map (g ◦ f)

Most applications of functors can benefit from even richer structures. In this
paper, we focus on bounded natural functors (BNFs) [37] (Sect. 2.1). A BNF
1 Type constructors are written postfix in this paper.
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comes with additional setter operators that return sets of occurring elements,
called atoms, for each type argument. The setters must be natural transforma-
tions, i.e., commute with the mapper, and bounded, i.e., have a fixed cardinality
bound on the sets they return. For example, set ::α list → α set returns the set
of elements in a list. It satisfies set ◦ map f = f〈 〉 ◦ set, where f〈 〉 denotes the
function that maps a set X to f〈X〉 = {f x | x ∈ X}, i.e., the image of X under
f . Moreover, since lists are finite sequences, set xs is always a finite set.

Originally, BNFs were introduced for modularly constructing datatypes and
codatatypes [9] in the Isabelle/HOL proof assistant. Although (co)datatypes
are still the most important use case, the BNF structure is used nowadays in
other contexts such as reasoning via free theorems [29] and transferring theorems
between types [22,28].

Several type definition principles in HOL preserve the BNF structure: com-
position (e.g., (α list) list), datatypes and codatatypes [37], and—under certain
conditions—subtypes [7,28]. Subtypes include records and type copies. Accord-
ingly, when a new type constructor is defined via one of these principles from
an existing BNF, then the new type automatically comes with a mapper and
setters and with theorems for the BNF properties.

One important type definition principle is missing above: quotients [18,19,
21,34,35] (Sect. 2.2). A quotient type identifies elements of an underlying type
according to a (partial) equivalence relation ∼. That is, the quotient type is
isomorphic to the equivalence classes of ∼. For example, unordered pairs α upair
are the quotient of ordered pairs α × α and the equivalence relation ∼upair

generated by (x, y) ∼upair (y, x). Similarly, finite sets, bags, and cyclic lists are
quotients of lists where the equivalence relation permutes or duplicates the list
elements as needed.

In this paper, we answer the question when and how a quotient type inherits
its underlying type’s BNF structure. It is well known that a quotient preserves
the functorial properties if the underlying type’s mapper preserves ∼; then the
quotient type’s mapper is simply the lifting of the underlying type’s mapper
to equivalence classes [3]. For setters, the situation is more complicated. We
discovered that if the setters are defined as one would expect, the resulting
structure may not preserve empty intersections, i.e., it is unsound in Adámek
et al.’s [2] terminology. All BNFs, however, are sound. To repair the situation,
we characterize the setters in terms of the mapper and identify a definition
scheme for the setters that results in sound functors. We then derive sufficient
conditions on the equivalence relation ∼ for the BNF properties to be preserved
for these definitions (Sect. 3). With few exceptions, we omit proofs and refer to
our technical report [15], which contains them.

Moreover, we have implemented an Isabelle/HOL command that automates
the registration of a quotient type as a BNF (Sect. 4); the user merely needs to
discharge the conditions on ∼. One of the conditions, subdistributivity, often
requires considerable proof effort, though. We therefore developed a novel suffi-
cient criterion using confluent relations that simplifies the proofs in our case stud-
ies (Sect. 3.4). Our implementation is distributed with the Isabelle2020 release.
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Contributions. The main contributions of this paper are the following:

1. We identify sufficient criteria for when a quotient type preserves the BNF
properties of the underlying type. Registering a quotient as a BNFs allows
(co)datatypes to nest recursion through it. Consider for example node-labeled
unordered binary trees

datatype ubtree = Leaf | Node nat (ubtree upair)

BNF use cases beyond datatypes benefit equally.
2. In particular, we show that the straightforward definitions would cause the

functor to be unsound, and find better definitions that avoid unsoundness.
This problem is not limited to BNFs. The lifting operations for Lean’s QPFs
[3] also suffer from unsoundness and our repair applies to them as well
(Sect. 5.2).

3. We propose a sufficient criterion on ∼ for subdistributivity, which is typically
the most difficult BNF property to show. We show with several examples that
the criterion is applicable in practice and yields relatively simple proofs.

4. We have implemented an Isabelle/HOL command to register the quotient as
a BNF, once the user has discharged the conditions on ∼. The command
also generates proof rules for transferring theorems about the BNF opera-
tions from the underlying type to the quotient (Sect. 4.2). Several case stud-
ies demonstrate the command’s usefulness. Some examples reformulate well-
known BNFs as quotients (e.g., unordered pairs, distinct lists, finite sets).
Others formally prove the BNF properties for the first time, e.g., cyclic lists,
the free idempotent monoid, and regular expressions modulo ACI. These
examples become part of the collection of formalized BNFs and can thus
be used in datatype definitions and other BNF applications.

Example 1. To illustrate our contribution’s usefulness, we consider linear
dynamic logic (LDL) [14], an extension of linear temporal logic with regular
expressions. LDL’s syntax is usually given as two mutually recursive datatypes
of formulas and regular expressions [5,14]. Here, we opt for nested recursion,
which has the modularity benefit of being able to formalize regular expressions
separately. We define regular expressions α re:

datatype α re = Atom α | Alt (α re) (α re) | Conc (α re) (α re) | Star (α re)

Often, it is useful to consider regular expressions modulo some syntactic
equivalences. For example, identifying expressions modulo the associativity, com-
mutativity, and idempotence (ACI) of the alternation constructor Alt results
in a straightforward construction of deterministic finite automata from regular
expressions via Brzozowski derivatives [32]. We define the ACI-equivalence ∼aci

as the least congruence relation satisfying:

Alt (Alt r s) t ∼aci Alt r (Alt s t) Alt r s ∼aci Alt s r Alt r r ∼aci r

Next, we define the quotient type of regular expressions modulo ACI α reaci
and the datatype of LDL formulas ldl, which uses nested recursion through
α reaci.
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quotient type α reaci = α re/∼aci

datatype ldl = Prop string | Neg ldl | Conj ldl ldl | Match (ldl reaci)

For the last declaration to succeed, Isabelle must know that α reaci is a BNF.
We will show in Sect. 3.4 how our work allows us to lift α re’s BNF structure to
α reaci. ♦

2 Background

We work in Isabelle/HOL, Isabelle’s variant of classical higher-order logic—a
simply typed theory with Hilbert choice and rank-1 polymorphism. We refer to
a textbook for a detailed introduction to Isabelle/HOL [31] and only summarize
relevant notation here.

Types are built from type variables α, β, . . . via type constructors. A type
constructor can be nullary (nat) or have some type arguments (α list, α set,
(α, β) upair). Type constructor application is written postfix. Exceptions are
the binary type constructors for sums (+), products (×), and functions (→), all
written infix. Terms are built from variables x, y, . . . and constants c, d, . . . via
lambda-abstractions λx. t and applications t u. The sum type’s embeddings are
Inl and Inr and the product type’s projections are fst and snd.

The primitive way of introducing new types in HOL is to take a non-empty
subset of an existing type. For example, the type of lists could be defined as the
set of pairs (n :: nat, f :: nat → α) where n is the list’s length and f i is the list’s
ith element for i < n and some fixed unspecified element of type α for i ≥ n. To
spare the users from such low-level encodings, Isabelle/HOL offers more high-
level mechanisms for introducing new types, which are internally reduced to
primitive subtyping. In fact, lists are defined as an inductive datatype α list =
[] | α # α list, where [] is the empty list and # is the infix list constructor.
Recursion in datatypes and their coinductive counterparts may take place only
under well-behaved type constructors, the bounded natural functors (Sect. 2.1).
Quotient types (Sect. 2.2) are another high-level mechanism for introducing new
types.

For n-ary definitions, we use the vector notation x that denotes x1, . . . , xn

where n is clear from the context. Vectors spanning several variables indicate
repetition with synchronized indices. For example, mapF (g ◦ f) abbreviates
mapF (g1 ◦ f1) . . . (gn ◦ fn). Abusing notation slightly, we write α → β for
the n-ary function type α1 → · · · → αn → β.

To simplify notation, we identify the type of binary predicates α → β →
B and sets of pairs (α × β) set, and write α ⊗ β for both. These types are
different in Isabelle/HOL and the BNF ecosystem works with binary predicates.
The identification allows us to use set operations, e.g., the subset relation ⊆ or
relation composition • (both written infix).
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2.1 Bounded Natural Functors

A bounded natural functor (BNF) [37] is an n-ary type constructor α F equipped
with the following polymorphic constants. Here and elsewhere, i implicitly ranges
over {1, . . . , n}:

mapF :: (α → β) → α F → β F bdF :: bd type ⊗ bd type
setF,i :: α F → αi set for all i relF :: (α ⊗ β) → α F ⊗ β F

The shape and content intuition [37] is a useful way of thinking about ele-
ments of α F . The mapper mapF leaves the shape unchanged but modifies the
contents by applying its function arguments. The n setters setF,i extract the
contents (and dispose of the shape). For example, the shape of a list is given
by its length, which map preserves. The cardinal bound bdF is a fixed bound
on the number of elements returned by setF,i. Cardinal numbers are represented
in HOL using particular well-ordered relations [10]. Finally, the relator relF lifts
relations on the type arguments to a relation on α F and β F . Thereby, it only
relates elements of α F and β F that have the same shape.

The BNF constants must satisfy the following properties:

map id mapF id = id

map comp mapF g ◦ mapF f = mapF (g ◦ f)
set map setF,i ◦ mapF f = fi〈 〉 ◦ setF,i

map cong (∀i. ∀z ∈ setF,i x. fi z = gi z) =⇒ mapF f x = mapF g x
set bd |setF,i x| ≤o bdF

bd infinite card bdF
in rel relF R x y = ∃z. (∀i. setF,i z ⊆ Ri) ∧ map fst z = x ∧ map snd z = y

rel comp relF R • relF S ⊆ relF (R • S)

Properties map id and map comp capture the mapper’s functoriality; set map
the setters’ naturality. Moreover, the mapper and the setters must agree on
what they identify as content (map cong). Any set returned by setF,i must
be bounded (set bd); the operator ≤o compares cardinal numbers [10]. The
bound is required to be infinite (bd), which simplifies arithmetics. The rela-
tor can be expressed in terms of the mapper and the setter (in rel) and must
distribute over relation composition (rel comp). The other inclusion, namely
relF (R • S) ⊆ relF R • relF S, follows from these properties. We refer to
rel comp as subdistributivity because it only requires one inclusion.

A useful derived operator is the action on sets F :: α set → α F set, which
generalizes the type constructor’s action on its type arguments. Formally, F A =
{x | ∀i. setF,i x ⊆ Ai}. Note that we can write z ∈ F R to replace the equivalent
∀i. setF,i z ⊆ Ri in in rel.

Most basic types are BNFs, notably, sum and product types. BNFs
are closed under composition, e.g., 1 + α × β is a BNF with the mapper
λf g. map1+ (map× f g), where 1 is the unit type (consisting of the single ele-
ment �) and map1+ h = map+ id h. Moreover, BNFs support fixpoint operations,
which correspond to (co)datatypes, and are closed under them [37]. For instance,
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the datatype command internally computes a least solution for the fixpoint type
equation β = 1 + α × β to define the α list type. Closure means that the result-
ing datatype, here α list, is equipped with the BNF structure, e.g., the mapper
map. Also subtypes inherit the BNF structure under certain conditions [7]. For
example, the subtype α nelist of non-empty lists {xs :: α list | xs �= []} is a BNF.

2.2 Quotient Types

An equivalence relation ∼ on a type T partitions the type into equivalence
classes. Isabelle/HOL supports the definition of the quotient type Q = T/∼,
which yields a new type Q isomorphic to the set of equivalence classes [21].
For example, consider ∼fset that relates two lists if they have the same set of
elements, i.e., xs ∼fset ys iff set xs = set ys. The following command defines the
type α fset of finite sets as a quotient of lists:

quotient type α fset = α list/∼fset

This command requires a proof that ∼fset is, in fact, an equivalence relation.
The Lifting and Transfer tools [19,22] automate the lifting of definitions

and theorems from the raw type T to the quotient Q. For example, the image
operation on finite sets can be obtained by lifting the list mapper map using the
command

lift definition fimage :: (α → β) → α fset → β fset is map

Lifting is only possible for terms that respect the quotient. For fimage, respect-
fulness states that map f xs ∼fset map f ys whenever xs ∼fset ys.

Lifting and Transfer are based on transfer rules that relate two terms of
possibly different types. The lift definition command automatically proves
the transfer rule

(map, fimage) ∈ ((=) �⇒ crfset �⇒ crfset)

where A �⇒ B (right-associative) relates two functions iff they map A-related
arguments to B-related results. The correspondence relation crfset relates a list
with the finite set that it represents, i.e., the set whose corresponding equivalence
class contains the list. Every quotient is equipped with such a correspondence
relation. The meaning of the above rule is that applying map f to a list rep-
resenting the finite set X results in a list that represents fimage f X, for all
f . The transfer rule’s relation (=) �⇒ crfset �⇒ crfset is constructed according to
the types of the related terms. This enables the composition of transfer rules to
relate larger terms. For instance, the Transfer tool automatically derives

(∀x. set (map id x) = set x) ←→ (∀X. fimage id X = X)

such that the equation ∀X. fimage id X = X can be proved by reasoning about
lists.
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3 Quotients of Bounded Natural Functors

We develop the theory for when a quotient type inherits the underlying type’s
BNF structure. We consider the quotient α Q = α F/∼ of an n-ary BNF α F
over an equivalence relation ∼ on α F . The first idea is to define mapQ and
setQ,i in terms of F ’s operations:

quotient type α Q = α F/∼
lift definition mapQ :: (α → β) → α Q → β Q is mapF
lift definition setQ,i :: α Q → αi set is setF,i

These three commands require the user to discharge the following proof obliga-
tions:

equivp ∼ (1) x ∼ y =⇒ mapF f x ∼ mapF f y (2)
x ∼ y =⇒ setF,i x = setF,i y (3)

The first two conditions are as expected: ∼ must be an equivalence relation, by
(1), and compatible with F ’s mapper, by (2), i.e., mapF preserves ∼. The third
condition, however, demands that equivalent values contain the same atoms.
This rules out many practical examples including the following simplified (and
therefore slightly artificial) one.

Example 2. Consider α FP = α + α with the equivalence relation ∼P generated
by Inl x ∼P Inl y, where Inl is the sum type’s left embedding. That is, ∼P

identifies all values of the form Inl z and thus α QP = α FP /∼P is isomorphic
to the type 1 + α. However, Inl x and Inl y have different sets of atoms {x} and
{y}, assuming x �= y. ♦

We derive better definitions for the setters and conditions under which they
preserve the BNF properties. To that end, we characterize setters in terms of
the mapper (Sect. 3.1). Using this characterization, we derive the relationship
between setQ,i and setF,i and identify the conditions on ∼ (Sect. 3.2). Next, we
do the same for the relator (Sect. 3.3). We thus obtain the conditions under
which α Q preserves F ’s BNF properties. One of the conditions, the relator’s
subdistributivity over relation composition, is often difficult to show directly in
practice. We therefore present an easier-to-establish criterion for the special case
where a confluent rewrite relation � over-approximates ∼ (Sect. 3.4).

3.1 Characterization of the BNF Setter

We now characterize setF,i in terms of mapF for an arbitrary BNF α F . Observe
that F ’s action F A on sets contains all values that can be built with atoms
from A. Hence, setF,i x is the smallest set Ai such that x can be built from
atoms in Ai. Formally:

setF,i x =
⋂

{Ai | x ∈ F UNIV Ai UNIV} (4)
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Only atoms of type αi are restricted; all other atoms αj may come from UNIV,
the set of all elements of type αj . Moreover, F can be defined without setF,i,
namely by trying to distinguish values using the mapper. Informally, x contains
atoms not from A iff mapF f x differs from mapF g x for some functions f and
g that agree on A. Hence, we obtain:

F A = {x | ∀f g. (∀i. ∀a ∈ Ai. fi a = gi a) −→ mapF f x = mapF g x} (5)

Proof. From left to right is trivial with map cong. So let x be such that
mapF f x = mapF g x whenever fi a = gi a for all a ∈ Ai and all i. By
the definition of F , it suffices to show that setF,i x ⊆ Ai. Set fi a = (a ∈ Ai)
and gi a = True. Then,

fi〈setF,i x〉 = setF,i (mapF f x) by set map

= setF,i (mapF g x) by choice of x as f and g agree on A
= (λ .True)〈setF,i x〉 by set map
⊆ {True}

Therefore, ∀a ∈ setF,i x. fi a, i.e., setF,i x ⊆ Ai. ��
Equations 4 and 5 reduce the setters setF,i of a BNF to its mapper mapF . In the
next section, we will use this characterization to derive a definition of setQ,i in
terms of setF,i. Yet, this definition does not give us naturality out of the box.

Example 3 ([2, Example 4.2, part iii]) Consider the functor α Fae = nat → α
of infinite sequences with x ∼ae y whenever {n | x n �= y n} is finite. That
is, two sequences are equivalent iff they are equal almost everywhere. Condi-
tions (1) and (2) hold, but not the naturality for the corresponding mapQ and
setQ. ♦

Gumm [16] showed that setF as defined in terms of (4) and (5) is a natural
transformation iff F preserves wide intersections and preimages, i.e.,

F (
⋂

A ) =
⋂

{ F A | ∀i. Ai ∈ Ai} (6)

F (f−1〈A〉) = (mapF f)−1〈 F A〉 (7)

where f−1〈A〉 = {x | f x ∈ A} denotes the preimage of A under f . Then,
F A = {x | ∀i. setF,i x ⊆ Ai} holds. The quotient in Example 3 does not
preserve wide intersections.

In theory, we have now everything we need to define the BNF operations on
the quotient α Q = α F/∼: Define mapQ as the lifting of mapF . Define Q and
setQ,i using (5) and (4) in terms of mapQ, and the relator via in rel. Prove
that Q preserves preimages and wide intersections. Prove that relQ satisfies
subdistributivity (rel comp).

Unfortunately, the definitions and the preservation conditions are phrased in
terms of Q, not in terms of F and ∼. It is therefore unclear how setQ,i and relQ
relate to setF,i and relF . In practice, understanding this relationship is important:
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we want to express the BNF operations and discharge the proof obligations in
terms of F ’s operations and later use the connection to transfer properties from
setF and relF to setQ and relQ. We will work out the precise relationships for
the setters in Sect. 3.2 and for the relator in Sect. 3.3.

3.2 The Quotient’s Setter

We relate Q’s setters to F ’s operations and ∼. We first look at Q , which char-
acterizes setQ,i via (4). Let [x]∼ = {y | x ∼ y} denote the equivalence class that
x :: α F belongs to, and [A]∼ = {[x]∼ | x ∈ A} denote the equivalence classes
of elements in A. We identify the values of α Q with α F ’s equivalence classes.
Then, it follows using (1), (2), and (5) that Q A = [ F A]∼ where

F A = {x | ∀f g. (∀i. ∀a ∈ Ai. fi a = gi a) −→ mapF f x ∼ mapF g x} (8)

Equation 8 differs from (5) only in that the equality in mapF f x = mapF g x
is replaced by ∼. Clearly [ F A]∼ ⊆ [ F A]∼. The converse does not hold in
general, as shown next.

Example 2 (continued). For the example viewing 1+ α as a quotient of α FP =
α + α via ∼P , we have [Inl x]∼ ∈ [ FP {}]∼P

because mapFP
f (Inl x) =

Inl (f x) ∼P Inl (g x) = mapFP
g (Inl x) for all f and g. Yet, FP {} is

empty, and so is [ FP {}]∼P
. ♦

This problematic behavior occurs only for empty sets Ai. To avoid it, we
change types: Instead of α F/∼, we consider the quotient (1 + α) F/∼, where
1+αi adds a new atom � = Inl � to the atoms of type αi. We write e :: α → 1+α
for the embedding of α into 1 + α (i.e., e = Inr). Then, we have the following
equivalence:

Lemma 1. F A = {x | [mapF e x]∼ ∈ [ F ({�} ∪ e〈A〉)]∼}.
Proof. From left to right: Let x ∈ F A and set fi y = e y for y ∈ Ai and
fi y = � for y /∈ Ai. Then, setF,i (mapF f x) = fi〈setF,i x〉 by the naturality of
setF,i and fi〈B〉 ⊆ {�} ∪ e〈Ai〉 by fi’s definition for any B. Hence map f x ∈
F ({�} ∪ e〈A〉) as F A = {x | ∀i. setF,i x ⊆ Ai} by the BNF properties. So,
[mapF e x]∼ ∈ [ F ({�} ∪ e〈A〉)]∼ because mapF e x ∼ map f x by (8) and
x ∈ F A.

From right to left: Let x such that mapF e x ∼ y for some y ∈
F ({�} ∪ e〈A〉). Let f and g such that fi a = gi a for all a ∈ Ai and all
i. Then, mapF f x ∼ mapF g x holds by the following reasoning, where e−1

denotes the left-inverse of e and map1+ h satisfies map1+ h (e a) = e (h a) and
map1+ h � = � :

mapF f x = mapF e−1 (mapF (map1+ f) (mapF e x)) as fi = e−1 ◦ map1+ fi ◦ e

∼ mapF e−1 (mapF (map1+ f) y) by mapF e x ∼ y and (2)

= mapF e−1 (mapF (map1+ g) y) by choice of y and (5)

∼ mapF e−1 (mapF (map1+ g) (mapF e x)) by y ∼ mapF e x and (2)
= mapF g x as e−1 ◦ map1+ gi ◦ e = gi ��
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Lemma 1 allows us to express the conditions (6) and (7) on Q in terms of
∼ and F . For wide intersections, the condition is as follows (the other inclusion
holds trivially):

∀i. Ai �= {}∧(
⋂

Ai �= {}) =⇒
⋂

{[ F A]∼ | ∀i. Ai ∈ Ai} ⊆
[⋂

{ F A | ∀i. Ai ∈ Ai}
]

∼
(9)

The conclusion is as expected: for sets of the form F A, taking equivalence
classes preserves wide intersections. The assumption is the interesting part:
preservation is needed only for non-empty intersections. Non-emptiness suffices
because Lemma 1 relates F A to F ({�} ∪ e〈A〉) and all intersections of inter-
est therefore contain � . (The condition does not explicitly mention � because
Lemma 1 holds for any element that is not in A.)

Condition 9 is satisfied trivially for equivalence relations that preserve setF,i,
i.e., satisfy (3). Examples include permutative structures like finite sets and
cyclic lists.

Lemma 2. Suppose that ∼ satisfies (3). Then, [ F A]∼ = F A and condition
(9) holds.

In contrast, the non-emptiness assumption is crucial for quotients that identify
values with different sets of atoms, such as Example 2. In general, such quotients
do not preserve empty intersections (Sect. 5).

We can factor condition (9) into a separate property for each type argument i:

Ai �= {} ∧ (
⋂

Ai �= {}) =⇒
⋂

A∈A i

[{x | setF,i x ⊆ A}]∼ ⊆
[
{x | setF,i x ⊆

⋂
Ai}

]

∼
(10)

This form is used in our implementation (Sect. 4). It is arguably more natural to
prove for a concrete functor F because each property focuses on a single setter.

Lemma 3. Suppose that ∼ satisfies (1) and (2). Then, (9) holds iff (10) holds
for all i.

Preservation of preimages amounts to the following unsurprising condition:

∀i. f−1
i 〈Ai〉 �= {} =⇒ (mapF f)−1

〈⋃
[ F A]∼

〉
⊆

⋃ [
(mapF f)−1〈 F A〉]∼ (11)

As for wide intersections, taking equivalence classes must preserve non-empty
preimages (the inclusion from right to left holds trivially). Again, non-emptiness
comes from � being contained in all sets of interest. We do not elaborate on
preimage preservation any further as it follows from subdistributivity, which we
will look at in the next subsection.

Under conditions (9) and (11), we obtain the following characterization for
setQ:

Theorem 1 (Setter characterization). setQ,i [x]∼ =
⋂

y∈[mapF e x]∼ {a |
e a∈ setF,i y}.
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3.3 The Quotient’s Relator

In the previous section, we have shown that it is not a good idea to naively lift
the setter and a more general construction is needed. We now show that the
same holds for the relator. The following straightforward definition

lift definition relQ :: (α ⊗ β) → α Q ⊗ β Q is relF

relates two equivalence classes [x]∼ and [y]∼ iff there are representatives x′ ∈ [x]∼
and y′ ∼ [y]∼ such that (x′, y′) ∈ relF R. This relator does not satisfy in rel.

Example 2 (continued). By the lifted definition, ([Inl x]∼P
, [Inl y]∼P

) /∈ relQP
{}

because there are no (x′, y′) in the empty relation {} that could be used to
relate using relFP

the representatives Inl x′ and Inl y′. However, the witness
z = [Inl (x, y)]∼P

satisfies the right-hand side of in rel as Q {} = {[Inl ]∼P
}. ♦

So what is the relationship between relQ and relF and under what condi-
tions does the subdistributivity property rel comp hold? Like for the setter,
we avoid the problematic case of empty relations by switching to 1 + α. The
relator rel1+ adds the pair (�, �) to every relation R and thereby ensures that
all relations and their compositions are non-empty. Accordingly, we obtain the
following characterization:

Theorem 2 (Relator characterization).

([x]∼, [y]∼) ∈ relQ R ←→ (mapF e x,mapF e y) ∈ (∼ • relF (rel1+ R) • ∼)

Moreover, the following condition on ∼ characterizes when relQ satisfies
rel comp. Again, the non-emptiness assumptions for Ri • Si come from rel1+
extending any relation R with the pair (�, �).

(∀i. Ri • Si �= {}) =⇒ relF R • ∼ • relF S ⊆ ∼ • relF (R • S) • ∼ (12)

It turns out that this condition implies the respectfulness of the mapper
(2). Intuitively, the relator is a generalization of the mapper. Furthermore, it is
well known that subdistributivity implies preimage preservation [17]. Since our
conditions on ∼ characterize these preservation properties, it is no surprise that
the latter implication carries over.

Lemma 4. Condition (12) implies respectfulness (2) and preimage preserva-
tion (11).

In summary, we obtain the following main preservation theorem:

Theorem 3. The quotient α Q = α F/∼ inherits the structure from the BNF
α F with the mapper mapQ f [x]∼ = [mapF f x]∼ if ∼ satisfies the condi-
tions (1), (9), and (12). The setters and relator are given by Theorems 1 and 2,
respectively.
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Example 4. A terminated coinductive list (α, β) tllist is either a finite list of
α values terminated by a single β value, or an infinite list of α values. They
can be seen as a quotient of pairs α llist × β, where the first component stores
the possibly infinite list given by a codatatype llist and the second component
stores the terminator. The equivalence relation identifies all pairs with the same
infinite list in the first component, effectively removing the terminator from
infinite lists.2 Let (xs, b) ∼tllist (ys, c) iff xs = ys and, if xs is finite, b = c. Like
∼P from Example 2, ∼tllist does not satisfy the naive condition (3).

codatatype α llist = LNil | LCons α (α llist)
quotient type (α, β) tllist = (α llist × β)/∼tllist

Our goal is the construction of (co)datatypes with recursion through quo-
tients such as (α, β) tllist. As a realistic example, consider an inductive model
of a finite interactive system that produces a possibly unbounded sequence of
outputs out for every input in:

datatype system = Step (in → (out, system) tllist)

This datatype declaration is only possible if tllist is a BNF in β. Previously, this
had to be shown by manually defining the mapper and setters and proving the
BNF properties. Theorem 3 identifies the conditions under which tllist inherits
the BNF structure of its underlying type, and it allows us to automate these
definitions and proofs. For tlllist, the conditions can be discharged easily using
automatic proof methods and a simple lemma about llist’s relator (stating that
related lists are either both finite or infinite). ♦

3.4 Subdistributivity via Confluent Relations

Among the BNF properties, subdistributivity (rel comp) is typically the hard-
est to show. For example, distinct lists, type α dlist, have been shown to be a
BNF. The manual proof requires 126 lines. Of these, the subdistributivity proof
takes about 100 lines. Yet, with the theory developed so far, essentially the same
argument is needed for the subdistributivity condition (12). We now present a
sufficient criterion for subdistributivity that simplifies such proofs. For dlist, this
shortens the subdistributivity proof to 58 lines. With our lift bnf command
(Sect. 4), the whole proof is now 64 lines, half of the manual proof.

Equivalence relations are often (or can be) expressed as the equivalence
closure of a rewrite relation �. For example, the subdistributivity proof for
distinct lists views α dlist as the quotient α list/∼dlist with xs ∼dlist ys iff
remdups xs = remdups ys, where remdups xs keeps only the last occurrence of
every element in xs. So, ∼dlist is the equivalence closure of the following relation
�dlist, where · concatenates two lists:

xs · [x] · ys �dlist xs · ys if x ∈ set ys
2 Clearly, tllist could be defined directly as a codatatype. When Isabelle had no

codatatype command, one of the authors formalized tllist via this quotient [25, ver-
sion for Isabelle2013].
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Fig. 1. Proof diagram for Theorem 4

We use the following notation: �denotes the reverse relation, i.e., x �y iff
y � x. Further, ∗� denotes the reflexive and transitive closure, and ∗� the
equivalence closure. A relation � is confluent iff whenever x

∗� y and x
∗� z,

then there exists a u such that y
∗� u and z

∗� u—or, equivalently in pointfree
style, if ( ∗ �• ∗�) ⊆ ( ∗� • ∗ �).

Theorem 4 (Subdistributivity via confluent relations). Let an equiva-
lence relation ∼ satisfy (2) and (3). Then, it also satisfies (9) and (12) if there
is a confluent relation � with the following properties:

(i) The equivalence relation is contained in �’s equivalence closure: (∼) ⊆ ( ∗�).
(ii) The relation factors through projections: If mapF fst x � y then there exists

a y′ such that y = mapF fst y′ and x ∼ y′, and similarly for snd.

Proof. The wide intersection condition (9) follows from (3) by Lemma 2. The
proof for the subdistributivity condition (12) is illustrated in Fig. 1. The proof
starts at the top with (x, z) ∈ (relF R • ∼ • relF S), i.e., there are y and y′

such that (x, y) ∈ relF R and y ∼ y′ and (y′, z) ∈ relF S. We show (x, z) ∈
(∼ • relF (R • S) • ∼) by establishing the path from x to z via x′ and z′ along
the three other borders of the diagram.

First 1 , by in rel, there is a u ∈ F R such that x = mapF fst u and
y = mapF snd u. Similarly, relF S y′ z yields a v with the corresponding proper-
ties 2 .

Second, by (i), y ∼ y′ implies y
∗� y′. Since � is confluent, there exists a w

such that y
∗� w and y′ ∗� w 3 . By induction on ∗� using (ii), y

∗� w factors
through the projection y = mapF snd u and we obtain a u′ such that u ∼ u′

and w = mapF snd u′ 4 . Analogously, we obtain v′ corresponding to y′ and v
5 . Set x′ = mapF fst u′ and z′ = mapF snd v′. As mapF preserves ∼ by (2), we
have x ∼ x′ and z ∼ z′ 6 .
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Next, we focus on the two triangles at the bottom 7 . By Lemma 2 and (3),
u ∼ u′ and u ∈ F R imply u′ ∈ F R; similarly v′ ∈ F S. Now, u′ and v′ are the
witnesses to the existential in in rel for x′ and w, and w and z′, respectively.
So (x′, w) ∈ relF R and (w, z′) ∈ relF S, i.e., (x′, z′) ∈ (relF R • relF S). Finally,
as F is a BNF, (x′, z′) ∈ relF (R • S) follows with subdistributivity rel comp
8 . ��
Example 5. For distinct lists, we have (∼dlist) = ( ∗�dlist) and �dlist is confluent.
Yet, condition (ii) of Theorem 4 does not hold. For example, for x = [(1, a), (1, b)],
we have maplist fst x = [1, 1] �dlist [1]. However, there is no y such that x ∼dlist y
and maplist fst y = [1]. The problem is that the projection maplist fst makes
different atoms of x equal and �dlist removes equal atoms, but the removal
cannot be mimicked on x itself. Fortunately, we can also add equal atoms instead
of removing them. Define �′

dlist by

xs · ys �′
dlist xs · [x] · ys if x ∈ set ys

Then, �′
dlist is confluent and factors through projections. So distinct lists inherit

the BNF structure from lists by Theorem 4. ♦
Example 6. The free monoid over atoms α consists of all finite lists α list. The
free idempotent monoid α fim is then the quotient α list/∼fim where ∼fim is the
equivalence closure of the idempotence law for list concatenation

xs · ys · zs �fim xs · ys · ys · zs

We have oriented the rule such that it introduces rather than removes the dupli-
cation. In term rewriting, the rule is typically oriented in the other direction [20]
such that the resulting rewriting system terminates; however, this classical rela-
tion �fim is not confluent: ababcbabc has two normal forms ababcbabc �fim
ababc �fim abc and ababcbabc �fim abcbabc (redexes are underlined). In con-
trast, our orientation yields a confluent relation �fim, although the formal proof
requires some effort. The relation also factors through projections. So by Theo-
rem 4, the free idempotent monoid α fim is also a BNF. ♦
Example 7. A cyclic list is a finite list where the two ends are glued together.
Abbot et al. [1] define the type of cyclic lists as the quotient that identifies lists
whose elements have been shifted. Let �rotate denote the one-step rotation of a
list, i.e.,

[] �rotate [] [x] · xs �rotate xs · [x]

The quotient α cyclist = α list/ ∗�rotate is a BNF as �rotate satisfies the condi-
tions of Theorem 4. ♦
Example 1 (continued). We prove the fact that α reaci is a BNF using Theo-
rem 4. The confluent rewrite relation �aci that satisfies the conditions of The-
orem 4 and whose equivalence closure is ∼aci is defined inductively as follows.
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Alt (Alt r s) t �aci Alt r (Alt s t) Alt r (Alt s t) �aci Alt (Alt r s) t
Alt r s �aci Alt s r r �aci Alt r r
r �aci r
r �aci r′ =⇒ s �aci s′ =⇒ Alt r s �aci Alt r′ s′

r �aci r′ =⇒ s �aci s′ =⇒ Conc r s �aci Conc r′ s′

r �aci r′ =⇒ Star r �aci Star r′ ♦

4 Implementation

We provide an Isabelle/HOL command that automatically lifts the BNF struc-
ture to quotient types. The command was implemented in 1590 lines of Isa-
belle/ML. It requires the user to discharge our conditions on the equivalence
relation. Upon success, it defines the mapper, setters, and the relator, and proves
the BNF axioms and transfer rules. All automated proofs are checked by Isa-
belle’s kernel. Eventually, the command registers the quotient type with the BNF
infrastructure for use in future (co)datatype definitions.

4.1 The lift bnf command

Our implementation extends the interface of the existing lift bnf command for
subtypes [7]. Given a quotient type α Q = α F/∼,

lift bnf α Q

asks the user to prove the conditions (9) and (12) of Theorem 3, where (9) is
expressed in terms of (10) according to Lemma 3. Since the quotient construction
already requires that ∼ be an equivalence relation, the remaining condition (1)
holds trivially.

After the assumptions have been proved by the user, the command defines the
BNF constants. Their definitions use an abstraction function absQ :: α F → α Q
and a representation function repQ :: α Q → α F , as in HOL Q is distinct
from (but isomorphic to) the set of equivalence classes. Concretely, we define
the quotient’s mapper by

mapQ f = absQ ◦ mapF f ◦ repQ

The quotient’s setters use the function set1+, which maps e a to {a} and � to {}:

setQ,i =
(

λx.
⋂

y∈[mapF e x]∼

⋃
set1+〈setF,i y〉

)
◦ repQ (13)

This definition is equivalent to the characterization in Theorem 1. The relator
(Theorem 2) is lifted similarly using repQ.
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4.2 Transfer Rule Generation

The relationship of a quotient’s BNF structure to its underlying type allows us to
prove additional properties about the former. This is achieved by transfer rules,
which drive Isabelle’s Transfer tool [19] (Sect. 2.2). Our command automatically
proves parametrized transfer rules for the lifted mapper, setters, and relator.
Parametrized transfer rules are more powerful because they allow the refinement
of nested types [22, Section 4.3]. They involve a parametrized correspondence
relation pcrQ A = relF A•crQ, where the parameters A relate the type arguments
of F and Q.

Since mapQ is lifted canonically, its transfer rule is unsurprising:

(mapF ,mapQ) ∈
(
(A �⇒ B) �⇒ pcrQ A �⇒ pcrQ B

)

Setters are not transferred to setF but to the more complex function from (13):
(

λx.
⋂

y∈[mapF e x]∼

⋃
set1+〈setF,i y〉, setQ,i

)
∈ (pcrQ A �⇒ relset Ai)

where (X,Y ) ∈ relset A ←→ (∀x∈X. ∃y ∈Y. (x, y) ∈A) ∧ (∀y ∈Y. ∃x∈X. (x, y) ∈A).

Similarly, the rule for Q’s relator follows its definition in Theorem 2.

Example 4 (continued). Recall that terminated coinductive lists satisfy the con-
ditions for lifting the BNF structure. Thus, we obtain the setter settllist,2 ::
(α, β) tllist → β set among the other BNF operations. We want to prove that
settllist,2 x is empty for all infinite lists x. To make this precise, let the predicate
lfinite :: α llist → bool characterize finite coinductive lists. We lift it to (α, β) tllist
by projecting away the terminator:

lift definition tlfinite :: (α, β) tllist → bool is (λx. lfinite (fst x))

Therefore, we have to show that ∀x. ¬ tlfinite x =⇒ settllist,2 x = {}. Using the
transfer rules for the setter and the lifted predicate tlfinite, the transfer proof
method reduces the proof obligation to

∀x′. ¬ lfinite (fst x′) =⇒
⋂

y∈[mapF e x′]∼tllist

⋃
set1+〈setF,2 y〉 = {}

where x′ :: (α, β) F , and (α, β) F = (α llist×β) is the underlying functor of tllist.
The rest of the proof, which need not refer to tllist anymore, is automatic. ♦
We have also extended lift bnf to generate transfer rules for subtypes. There,
the setters and the relator do not change: if T is a subtype of F , e.g., then setT,i

is transferred to setF,i.

5 Related Work

Quotient constructions have been formalized and implemented, e.g., in Isa-
belle/HOL [19,21,34,35], HOL4 [18], Agda [40,41], Cedille [30], Coq [11,12],
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Lean [3], and Nuprl [33]. None of these works look at the preservation of functor
properties except for Avigad et al. [3] (discussed in Sect. 5.2) and Veltri [41]. Vel-
tri studies the special case of when the delay monad is preserved by a quotient of
weak bisimilarity, focusing on the challenges that quotients pose in intensional
type theory.

Abbot et al. [1] introduce quotient containers as a model of datatypes with
permutative structure, such as unordered pairs, cyclic lists, and multisets. The
map function of quotient containers does not change the shape of the container.
Quotient containers therefore cannot deal with quotients where the equivalence
relation takes the identity of elements into account, such as distinct lists, finite
sets, and the free idempotent monoid. Overall our construction strictly subsumes
quotient containers.

5.1 Quotients in the Category of Sets

BNFs are accessible functors in the category of Sets. We therefore relate to the
literature on when quotients preserve functors and their properties in Set.

Trnková [38] showed that all Set functors preserve non-empty intersections:
in our notation F A ∩ F B = F (A ∩ B) whenever A ∩ B �= {}. Empty
intersections need not be preserved though. Functors that do are called regular
[39] or sound [2]. All BNFs are sound as F A = {x | setF x ⊆ A}. As shown in
Example 2, the naive quotient construction can lead to unsound functors.

Every unsound functor can be “repaired” by setting F {} to the distinguished
points dpF . We write F ′ for the repaired action.

F ′ A =

{
dpF if A = {}
F A otherwise

(14)

Trnková characterizes the distinguished points dpF as the natural transforma-
tions from C1,0 to F where C1,0 {} = {} and C1,0 A = {�} for A �= {}. Barr [4]
and Gumm [16] use equalizers instead of natural transformations to define the
distinguished points of univariate functors:

dpF = {x | mapF (λ . True) x = mapF (λ . False) x} (15)

The case distinction in (14) makes it hard to work with repaired functors, espe-
cially as the case distinctions proliferate for multivariate functors. Instead, we
repair the unsoundness by avoiding empty sets altogether: Our characterization
F A in Lemma 1 effectively derives the quotient from (1+ α) F instead of α F .
Moreover, our characterization of F A generalizes Barr and Gumm’s definition
of distinguished points: for A = {}, (5) simplifies to (15). The resulting quotient
is the same because [ F A]∼ = [ F A]∼ if Ai �= {} for all i.

Given the other BNF properties, subdistributivity is equivalent to the func-
tor preserving weak pullbacks. Adámek et al. [2] showed that an accessible
Set functor preserves weak pullbacks iff it has a so-called dominated presen-
tation in terms of flat equations E over a signature Σ. This characterization
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does not immediately help with proving subdistributivity, though. For exam-
ple, the finite set quotient α fset = α list/∼fset comes with the signature
Σ = {σn | n ∈ N} and the equations σn(x1, . . . xn) = σm(y1, . . . , ym) when-
ever {x1, . . . , xn} = {y1, . . . , ym}. Proving domination for this presentation boils
down to proving subdistributivity directly. Our criterion using a confluent rela-
tion (Theorem 4) is only sufficient, not necessary, but it greatly simplifies the
actual proof effort.

5.2 Comparison with Lean’s Quotients of Polynomial Functors

Avigad et al. [3] proposed quotients of polynomial functors (QPF) as a model
for datatypes. QPFs generalize BNFs in that they require less structure: there
is no setter and the relator need not satisfy subdistributivity. Nevertheless, the
quotient construction is similar to ours. Without loss of generality, we consider
in our comparison only the univariate case α Q = α F/∼.

The main difference lies in the definition of the liftings liftF of predicates
P :: α → B and relations R :: α ⊗ β. In our notation, liftF P corresponds to
λx. x ∈ F {a | P a} and liftF R to relF R. QPF defines these liftings for the
quotient Q as follows:

liftQ P [x]∼ = (∃x′ ∈ [x]∼. P x′) liftQ R [x]∼ [y]∼ = (∃x′ ∈ [x]∼. ∃y′ ∈ [y]∼. R x′ y′)

That is, these definitions correspond to the naive construction Q A = [ F A]∼
and relQ R = [relF R]∼ where [(x, y)]∼ = ([x]∼, [y]∼). As discussed above, the
resulting quotient may be an unsound functor. Consequently, lifting of predicates
does not preserve empty intersections in general. This hinders modular proofs.
For example, suppose that a user has already shown liftQ P1 x and liftQ P2 x for
some value x and two properties P1 and P2. Then, to deduce liftF (λa. P1 a ∧
P2 a) x, they would have to prove that the two properties do not contradict each
other, i.e., ∃a. P1 a∧P2 a. Obviously, this makes modular proofs harder as extra
work is needed to combine properties.

QPF uses liftF P in the induction theorem for datatypes. So when a datatype
recurses through tllist, this spreads to proofs by induction: splitting a compli-
cated inductive statement into smaller lemmas is not for free. Moreover, liftQ
holds for fewer values, as the next example shows. Analogous problems arise in
QPF for relation lifting, which appears in the coinduction theorem.

Example 4 (continued). Consider the infinite repetition repeat a :: (α, β) tllist of
the atom a as a terminated lazy list. As repeat a contains only as, one would
expect that lifttllist (λa′. a′ = a) (λ . False) (repeat a) holds. Yet, this property
is provably false. ♦

These issues would go away if liftQ was defined following our approach for
Q A = [ F A]∼ and relQ as in Theorem 2. These definitions do not rely on the
additional BNF structure; only mapQ is needed and QPF defines mapQ like we
do. The repair should therefore work for the general QPF case, as well.
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6 Conclusion

We have described a sufficient criterion for quotient types to be able to inherit the
BNF structure from the underlying type. We have demonstrated the effectiveness
of the criterion by automating the BNF “inheritance” in the form of the lift bnf
command in Isabelle/HOL and used it (which amounts to proving the criterion)
for several realistic quotient types. We have also argued that our treatment of the
quotient’s setter and relator to avoid unsoundness carries over to more general
structures, such as Lean’s QPFs.

As future work, we plan to investigate quotients of existing generalizations
of BNFs to co- and contravariant functors [28] and functors operating on small-
support endomorphisms and bijections [8]. Furthermore, we would like to provide
better automation for proving subdistributivity via confluent rewrite systems as
part of lift bnf.
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Abstract. We study finite first-order satisfiability (FSAT) in the con-
structive setting of dependent type theory. Employing synthetic accounts
of enumerability and decidability, we give a full classification of FSAT
depending on the first-order signature of non-logical symbols. On the
one hand, our development focuses on Trakhtenbrot’s theorem, stating
that FSAT is undecidable as soon as the signature contains an at least
binary relation symbol. Our proof proceeds by a many-one reduction
chain starting from the Post correspondence problem. On the other hand,
we establish the decidability of FSAT for monadic first-order logic, i.e.
where the signature only contains at most unary function and relation
symbols, as well as the enumerability of FSAT for arbitrary enumerable
signatures. All our results are mechanised in the framework of a growing
Coq library of synthetic undecidability proofs.

1 Introduction

In the wake of the seminal discoveries concerning the undecidability of first-
order logic by Turing and Church in the 1930s, a broad line of work has been
pursued to characterise the border between decidable and undecidable fragments
of the original decision problem. These fragments can be grouped either by
syntactic restrictions controlling the allowed function and relation symbols or
the quantifier prefix, or by semantic restrictions on the admitted models (see [1]
for a comprehensive description).

Concerning signature restrictions, already predating the undecidability
results, Löwenheim had shown in 1915 that monadic first-order logic, admitting
only signatures with at most unary symbols, is decidable [15]. Therefore, the
successive negative results usually presuppose non-trivial signatures containing
an at least binary symbol.

Turning to semantic restrictions, Trakhtenbrot proved in 1950 that, if only
admitting finite models, the satisfiability problem over non-trivial signatures is
still undecidable [21]. Moreover, the situation is somewhat dual to the unrestricted
case, since finite satisfiability (FSAT) is still enumerable while, in the unrestricted
case, validity is enumerable. As a consequence, finite validity cannot be charac-
terised by a complete finitary deduction system and, resting on finite model the-
ory, various natural problems in database theory are undecidable.
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Conventionally, Trakhtenbrot’s theorem is proved by (many-one) reduction
from the halting problem for Turing machines (see e.g. [1,14]). An encoding of a
given Turing machine M can be given as a formula ϕM such that the models of
ϕM correspond to the runs of M . Specifically, the finite models of ϕM correspond
to terminating runs of M and so a decision procedure for finite satisfiability of ϕM

would be enough to decide whether M terminates or not.
Although this proof strategy is in principle explainable on paper, already the

formal definition of Turing machines, not to mention their encoding in first-order
logic, is not ideal for mechanisation in a proof assistant. So for our Coq mechani-
sation of Trakhtenbrot’s theorem, we follow a different strategy by starting from
the Post correspondence problem (PCP), a simple matching problem on strings.
Similar to the conventional proof, we proceed by encoding every instance R of
PCP as a formula ϕR such that R admits a solution iff ϕR has a finite model.
Employing the framework of synthetic undecidability [8,11], the computability of
ϕR from R is guaranteed since all functions definable in constructive type theory
are computable without reference to a concrete model of computation.

Both the conventional proof relying on Turing machines and our elaboration
starting from PCP actually produce formulas in a custom signature well-suited
for the encoding of the seed decision problems. The sharper version of Trakhten-
brot’s theorem, stating that a signature with at least one binary relation (or one
binary function and one unary relation) is enough to turn FSAT undecidable, is in
fact left as an exercise in e.g. Libkin’s book [14]. However, at least in a construc-
tive setting, this generalisation is non-trivial and led us to mechanising a chain
of signature transformations eliminating and compressing function and relation
symbols step by step.

Complementing the undecidability result, we further formalise that FSAT
is enumerable for enumerable signatures and decidable for monadic signatures.
Again, both of these standard results come with their subtleties when explored in
a constructive approach of finite model theory.

In summary, the main contributions of this paper are threefold:

– we provide an axiom-free Coq mechanisation comprising a full classification
of finite satisfiability with regards to the signatures allowed;1

– we present a streamlined proof strategy for Trakhtenbrot’s theorem well-
suited for mechanisation and simple to explain informally, basing on PCP;

– we give a constructive account of signature transformations and the treatment
of interpreted equality typically neglected in a classical development.

The rest of the paper is structured as follows. We first describe the type-
theoretical framework for undecidability proofs and the representation of first-
order logic in Sect. 2. We then outline our variant of Trakhtenbrot’s theorem
for a custom signature in Sect. 3. This is followed by a development of enough
constructive finite model theory (Sect. 4) to conclude some decidability results
(Sect. 5) as well as the final classification (Sect. 6). We end with a brief discussion
of the Coq development and future work in Sect. 7.
1 Downloadable from http://www.ps.uni-saarland.de/extras/fol-trakh/ and system-

atically hyperlinked with the definitions and theorems in this PDF.

http://www.ps.uni-saarland.de/extras/fol-trakh/
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2 First-Order Satisfiability in Constructive Type Theory

In order to make this paper accessible to readers unfamiliar with constructive
type theory, we outline the required features of Coq’s underlying type theory,
the synthetic treatment of computability available in constructive mathematics,
some properties of finite types, as well as our representation of first-order logic.

2.1 Basics of Constructive Type Theory

We work in the framework of a constructive type theory such as the one imple-
mented in Coq, providing a predicative hierarchy of type universes T above a
single impredicative universe P of propositions. On type level, we have the unit
type 1 with a single element ∗ : 1, the void type 0, function spaces X → Y ,
products X × Y , sums X + Y , dependent products ∀x : X.F x, and dependent
sums {x : X | F x}. On propositional level, these types are denoted using the
usual logical notation (�, ⊥, →, ∧, ∨, ∀, and ∃).

We employ the basic inductive types of Booleans (B ::= tt | ff), of Peano
natural numbers (n : N ::= 0 | Sn), the option type (OX ::= �x� | ∅), and lists
(l : LX ::=[ ] | x::l). We write |l| for the length of a list, l++m for the concatenation
of l and m, x ∈ l for membership, and simply f [x1; . . . ;xn] := [f x1; . . . ; f xn] for
the map function. We denote by Xn the type of vectors of length n : N and by Fn

the finite types understood as indices {0, . . . , n − 1}. The definitions/notations
for lists are shared with vectors v : Xn. Moreover, when i : Fn and x : X,
we denote by vi the i-th component of v and by v[x/i] the vector v with i-th
component updated to value x.

2.2 Synthetic (Un-)decidability

We review the main ingredients of our synthetic approach to decidability and
undecidability [7,8,10,11,13,19], based on the computability of all functions
definable in constructive type theory.2 We first introduce standard notions of
computability theory without referring to a formal model of computation, e.g.
Turing machines.

Definition 1. A problem or predicate p : X → P is

– decidable if there is f : X → B with ∀x. p x ↔ f x = tt.
– enumerable if there is f : N → OX with ∀x. p x ↔ ∃n. f n = �x�.

These notions generalise to predicates of higher arity. Moreover, a type X is

– enumerable if there is f : N → OX with ∀x.∃n. f n = �x�.
– discrete if equality on X (i.e. λxy : X.x = y) is decidable.
– a data type if it is both enumerable and discrete.

2 A result shown and applied for many variants of constructive type theory and which
Coq designers are committed to maintain as Coq evolves.

https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.decidable.html#decidable_bool_eq
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.enumerable.html#opt_enum_t
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.enumerable.html#type_enum_t
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.decidable.html#discrete
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Using the expressiveness of dependent types, we equivalently tend to establish
the decidability of a predicate p : X → P by giving a function ∀x : X. p x + ¬p x.
Note that it is common to mechanise decidability results in this synthetic sense
(e.g. [2,16,17]). Next, decidability and enumerability transport along reductions:

Definition 2. A problem p : X → P (many-one) reduces to q : Y → P, written
p 
 q, if there is a function f : X → Y such that p x ↔ q (f x) for all x : X.3

Fact 3. Assume p : X → P, q : Y → P and p 
 q: (1) if q is decidable, then so
is p and (2) if X and Y are data types and q is enumerable, then so is p.

Item (1) implies that we can justify the undecidability of a target problem
by reduction from a seed problem known to be undecidable, such as the halting
problem for Turing machines. This is in fact the closest rendering of undecidabil-
ity available in a synthetic setting, since the underlying type theory is consistent
with the assumption that every problem is decidable.4 Nevertheless, we believe
that in the intended effective interpretation for synthetic computability, a typ-
ical seed problem is indeed undecidable and so are the problems reached by
verified reductions.5 More specifically, since the usual seed problems are not co-
enumerable, (2) implies that the reached problems are not co-enumerable either.

Given its simple inductive characterisation involving only basic types of lists
and Booleans, the (binary) Post correspondence problem (BPCP) is a well-suited
seed problem for compact encoding into first-order logic.

Definition 4. Given a list R : L(LB × LB) of pairs s/t of Boolean strings,6

we define derivability of a pair s/t from R (denoted by R � s/t) and solvability
(denoted by BPCP R) by the following rules:

s/t ∈ R

R � s/t

s/t ∈ R R � u/v

R � (s ++ u)/(t ++ v)

R � s/s

BPCP R

Fact 5. Given a list R : L(LB × LB), the derivability predicate λs t.R � s/t is
decidable. However, the halting problem for Turing machines reduces to BPCP.

Proof. We give of proof of the decidability of R � s/t by induction on |s| + |t|.
We also provide a trivial proof of the equivalence of two definitions of BPCP.
See [7,10] for details on the reduction from the halting problem to BPCP. ��

It might at first appear surprising that derivability λs t.R � s/t is decidable
while BPCP is reducible from the halting problem (and hence undecidable). This
simply illustrates that undecidability is caused by the unbounded existential
quantifier in the equivalence BPCP R ↔ ∃s.R � s/s.
3 Or equivalently, the dependent characterisation. ∀x : X. {y : Y | p x ↔ q y}.
4 As witnessed by classical set-theoretic models satisfying ∀p : P. p + ¬p (cf. [23]).
5 This synthetic treatment of undecidability is discussed in more detail in [8] and [11].
6 Notice that the list R is viewed as a (finite) set of pairs s/t ∈ R (hence ignoring the

order or duplicates), while s and t, which are also lists, are viewed a strings (hence
repetitions and ordering matter for s and t).

https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.decidable.html#decidable
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Problems.Reduction.html#reduces
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Problems.Reduction.html#reduces
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.bpcp.html#pcp_hand
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.bpcp.html#BPCP_problem
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.bpcp.html#bpcp_hand_dec
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_utils.html#BPCP_BPCP_problem_eq
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Problems.Reduction.html#reduction_dependent
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2.3 Finiteness

Definition 6. A type X is finite if there is a list lX with x ∈ lX for all x : X
and a predicate p : X → P is finite if there is a list lp with ∀x. p x ↔ x ∈ lp.

Note that in constructive settings there are various alternative characterisa-
tions of finiteness7 (bijection with Fn for some n; negated infinitude for some
definition of infiniteness; etc.) and we opted for the above since it is easy to work
with while transparently capturing the expected meaning. One can distinguish
strong finiteness in T (i.e. {lX : LX | ∀x. x ∈ lX}) from weak finiteness in P (i.e.
∃lX : LX.∀x. x ∈ lX), the list lX being required computable in the strong case.

We present three important tools for manipulating finite types: the finite
pigeon hole principle (PHP) here established without assuming discreteness, the
well-foundedness of strict orders over finite types, and quotients over strongly
decidable equivalences that map onto Fn. The proofs are given in Appendix A
of the extended version of this paper [12].

For the finite PHP, the typical classical proof requires the discreteness of X
to design transpositions/permutations. Here we avoid discreteness completely,
the existence of a duplicate being established without actually computing one.

Theorem 7 (Finite PHP). Let R : X → Y → P be a binary relation and
l : LX and m : LY be two lists where m is shorter than l (|m| < |l|). If R is
total from l to m (∀x. x ∈ l → ∃y. y ∈ m ∧ R xy) then the values at two distinct
positions in l are related to the same y in m, i.e. there exist x1, x2 ∈ l and
y ∈ m such that l has shape l = · · · ++ x1 :: · · · ++ x2 :: · · · and R x1 y and R x2 y.

Using the PHP, one can constructively show that, for a strict order over a
finite type X, any descending chain has length bounded by the size of X.8

Fact 8. Every strict order on a finite type is well-founded.

Coq’s type theory does not provide quotients in general (see e.g. [6]) but
one can build computable quotients in certain conditions, here for a decidable
equivalence relation of which representatives of equivalence classes are listable.

Theorem 9 (Finite decidable quotient). Let ∼ : X → X → P be a decidable
equivalence with {lr : LX | ∀x∃y. y ∈ lr ∧ x ∼ y}, i.e. finitely many equivalence
classes.9 Then one can compute the quotient X/∼ onto Fn for some n, i.e. n : N,
c : X → Fn and r : Fn → X s.t. ∀p. c (r p) = p and ∀x y. x ∼ y ↔ c x = c y.

Using Theorem 9 with identity over X as equivalence, we get bijections
between finite, discrete types and the type family (Fn)n:N.10

Corollary 10. If X is a finite and discrete type then one can compute n : N
and a bijection from X to Fn.
7 And these alternative characterisations are not necessarily constructively equivalent.
8 i.e. the length of the enumerating list of X.
9 Hence lr denotes a list of representatives of equivalence classes.

10 For a given X, the value n (usually called cardinal) is unique by the PHP.

https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Problems.Reduction.html#reduces
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Utils.fin_base.html#finite_t
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Utils.fin_base.html#fin_t
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Utils.php.html#PHP_rel
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Wf.wf_finite.html#wf_strict_order_finite
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Utils.fin_quotient.html#decidable_EQUIV_fin_quotient
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Utils.fin_bij.html#finite_t_discrete_bij_t_pos
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2.4 Representing First-Order Logic

We briefly outline our representation of the syntax and semantics of first-order
logic in constructive type theory (cf. [9]). Concerning the syntax, we describe
terms and formulas as dependent inductive types over a signature Σ = (FΣ ;PΣ)
of function symbols f : FΣ and relation symbols P : PΣ with arities |f | and |P |,
using binary connectives �̇ ∈ {→̇, ∧̇, ∨̇} and quantifiers ∇̇ ∈ {∀̇, ∃̇}:

t : TermΣ ::= x | f t (x : N, f : FΣ , t : Term
|f |
Σ )

ϕ,ψ : FormΣ ::= ⊥̇ | P t | ϕ �̇ ψ | ∇̇ϕ (P : PΣ , t : Term
|P |
Σ )

Negation is defined as the abbreviation ¬̇ϕ := ϕ →̇ ⊥̇.
In the chosen de Bruijn representation [4], a bound variable is encoded as

the number of quantifiers shadowing its binder, e.g. ∀x.∃y. P xu → P y v may
be represented by ∀̇ ∃̇P 1 4 →̇ P 0 5. The variables 2 = 4 − 2 and 3 = 5 − 2 in
this example are the free variables, and variables that do not occur freely are
called fresh, e.g. 0 and 1 are fresh. For the sake of legibility, we write concrete
formulas with named binders and defer de Bruijn representations to the Coq
development. For a formula ϕ over a signature Σ, we define the list FV(ϕ) : LN

of free variables, the list Fϕ : LFΣ of function symbols and the list Pϕ : LPΣ

of relation symbols that actually occur in ϕ, all by recursion on ϕ.
Turning to semantics, we employ the standard (Tarski-style) model-theoretic

semantics, evaluating terms in a given domain and embedding the logical con-
nectives into the constructive meta-logic (cf. [22]):

Definition 11. A model M over a domain D : T is described by a pair of
functions ∀f.D|f | → D and ∀P.D|P | → P denoted by fM and PM.

Given a variable assignment ρ : N → D, we recursively extend it to a
term evaluation ρ̂ : Term → D with ρ̂ x := ρ x and ρ̂ (f v) := fM (ρ̂v), and
to the satisfaction relation M �ρ ϕ by

M �ρ ⊥̇ := ⊥ M �ρ ϕ �̇ ψ := M �ρ ϕ � M �ρ ψ

M �ρ P t := PM (ρ̂ t ) M �ρ ∇̇ϕ := ∇a : D.M �a·ρ ϕ

where each logical connective �̇ /∇̇ is mapped to its meta-level counterpart
�/∇ and where we denote by a · ρ the de Bruijn extension of ρ by a, defined by
(a · ρ) 0 := a and (a · ρ) (1 + x) := ρ x.11

A Σ-model is thus a dependent triple (D,M, ρ) composed of a domain D, a
model M for Σ over D and an assignment ρ : N → D. It is finite if D is finite,
and decidable if PM : D|P | → P is decidable for all P : PΣ .

Fact 12. Satisfaction λϕ.M �ρ ϕ is decidable for finite, decidable Σ-models.

Proof. By induction on ϕ; finite quantification preserves decidability. ��
11 The notation a · ρ illustrates that a is pushed ahead of the sequence ρ0, ρ1, . . ..

https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_sig.html#fo_signature
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_terms.html#fo_term
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_form
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_vars
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_syms
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_rels
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Problems.Reduction.html#reduces
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_sig.html#fo_model
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_terms.html#fo_term_sem
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_sem
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.notations.html#de_bruijn_ext
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_sem_dec
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In this paper, we are mostly concerned with finite satisfiability of formulas.
However, since some of the compound reductions hold for more general or more
specific notions, we introduce the following variants:

Definition 13 (Satisfiability). For a formula ϕ over a signature Σ, we write

– SAT(Σ)ϕ if there is a Σ-model (D,M, ρ) such that M �ρ ϕ;
– FSAT(Σ)ϕ if additionally D is finite and M is decidable;
– FSATEQ(Σ;≡)ϕ if the signature contains a distinguished binary relation

symbol ≡ interpreted as equality, i.e. x ≡M y ↔ x = y for all x, y : D.

Notice that in a classical treatment of finite model theory, models are sup-
posed to be given in extension, i.e. understood as tables providing computational
access to functions and relations values. To enable this view in our constructive
setting, we restrict to decidable relations in the definition of FSAT, and from now
on, finite satisfiability is always meant to encompass a decidable model. One could
further require the domain D to be discrete to conform more closely with the
classical view; discreteness is in fact enforced by FSATEQ. However, we refrain
from this requirement and instead show in Sect. 4.1 that FSAT and FSAT over
discrete models are constructively equivalent.

3 Trakhtenbrot’s Theorem for a Custom Signature

In this section, we show that BPCP reduces to FSATEQ(ΣBPCP;≡) for the special
purpose signature ΣBPCP := ({�0, e0, f1

tt, f
1
ff}; {P 2,≺2,≡2}). To this end, we fix

an instance R : L (LB × LB) of BPCP (to be understood as a finite set of
pairs of Boolean strings) and we construct a formula ϕR such that ϕR is finitely
satisfiable if and only if R has a solution.

Informally, we axiomatise a family Bn of models over the domain of Boolean
strings of length bounded by n and let ϕR express that R has a solution in
Bn. The axioms express enough equations and inversions of the constructions
included in the definition of BPCP such that a solution for R can be recovered.

Formally, the symbols in ΣBPCP are used as follows: the functions fb and the
constant e represent b :: (·) and [ ] for the encoding of strings s as terms s:

[ ] +++ τ := τ b :: s +++ τ := fb (s +++ τ) s := s +++ e

The constant � represents an undefined value for strings too long to be encoded
in the finite model Bn. The relation P represents derivability from R (denoted
R � ·/· here) while ≺ and ≡ represent strict suffixes and equality, respectively.

Expected properties of the intended interpretation can be captured formally
as first-order formulas. First, we ensure that P is proper (only subject to defined
values) and that ≺ is a strict order (irreflexive and transitive):

ϕP := ∀̇xy. P x y →̇ x �≡ � ∧̇ y �≡ � (P proper)
ϕ≺ := (∀̇x. x �≺ x) ∧̇ (∀̇xyz. x ≺ y →̇ y ≺ z →̇ x ≺ z) (≺ strict order)

https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Problems.Reduction.html#reduces
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_sat.html#fo_form_fin_dec_SAT
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_sat.html#fo_form_fin_dec_eq_SAT
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Next, the image of fb is forced disjoint from e and injective as long as � is not
reached. We also ensure that the images of ftt and fff intersect only at �:

ϕf :=

⎛
⎝

ftt � ≡ � ∧̇ fff � ≡ �

∀̇x. ftt x �≡ e

∀̇x. fff x �≡ e

⎞
⎠ ∧̇

⎛
⎝

∀̇xy. ftt x �≡ � →̇ ftt x ≡ ftt y →̇ x ≡ y

∀̇xy. fff x �≡ � →̇ fff x ≡ fff y →̇ x ≡ y

∀̇xy. ftt x ≡ fff y →̇ ftt x ≡ � ∧̇ fff y ≡ �

⎞
⎠

Furthermore, we enforce that P simulates R�·/·, encoding its inversion principle

ϕ� := ∀̇xy. P x y →̇
.∨

s/t∈R

∨̇
{

x ≡ s ∧̇ y ≡ t

∃̇uv. P u v ∧̇ x ≡ s +++ u ∧̇ y ≡ t +++ v ∧̇ u/v ≺ x/y

where u/v ≺ x/y denotes (u ≺ x ∧̇ v ≡ y)∨̇(v ≺ y ∧̇ u ≡ x)∨̇(u ≺ x ∧̇ v ≺ y).
Finally, ϕR is the conjunction of all axioms plus the existence of a solution:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ� ∧̇ ∃̇x. P xx.

Theorem 14. BPCP 
 FSATEQ(ΣBPCP;≡).

Proof. The reduction λR.ϕR is proved correct by Lemmas 15 and 16. ��
Lemma 15. BPCP R → FSATEQ(ΣBPCP;≡)ϕR.

Proof. Assume R � s/s holds for a string s with |s| = n. We show that the
model Bn over Boolean strings bounded by n satisfies ϕR. To be more precise,
we choose Dn := O{s : LB | |s| ≤ n} as domain, i.e. values in Dn are either an
(overflow) value ∅ or a (defined) dependent pair �(s,Hs)� where Hs : |s| ≤ n.
We interpret the function and relation symbols of the chosen signature by

eBn := [ ] fBn

b ∅ := ∅ PBn s t := R � s/t

�Bn := ∅ fBn

b s := if |s| < n then b :: s else ∅ s ≺Bn t := s �= t ∧ ∃u. u ++ s = t

where we left out some explicit constructors and the excluded edge cases of the
relations for better readability. As required, Bn interprets ≡ by equality =Dn

.
Considering the desired properties of Bn, first note that Dn can be shown

finite by induction on n. This however crucially relies on the proof irrelevance
of the λx. x ≤ n predicate.12 The atoms s ≺Bn t and s ≡Bn t are decidable
by straightforward computations on Boolean strings. Decidability of PBns t (i.e.
R � s/t) was established in Fact 5. Finally, since ϕR is a closed formula, any
variable assignment ρ can be chosen to establish that Bn satisfies ϕR, for instance
ρ := λx.∅. Then showing Bn �ρ ϕR consists of verifying simple properties of the
chosen functions and relations, with mostly straightforward proofs. ��
Lemma 16. FSATEQ(ΣBPCP;≡)ϕR → BPCP R.

12 i.e. that for every x : N and H, H ′ : x ≤ n we have H = H ′. In general, it is not
always possible to establish finiteness of {x | P x} if P is not proof irrelevant.
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Proof. Suppose that M �ρ ϕR holds for some finite ΣBPCP-model (D,M, ρ)
interpreting ≡ as equality and providing operations fM

b , eM, �M, PM and ≺M.
Again, the concrete assignment ρ is irrelevant and M �ρ ϕR ensures that the
functions/relations behave as specified and that PM xx holds for some x : D.

Instead of trying to show that M is isomorphic to some Bn, we directly
reconstruct a solution for R, i.e. we find some s with R�s/s from the assumption
that M �ρ ϕR holds. To this end, we first observe that the relation u/v ≺M x/y
as defined above is a strict order and thus well-founded as an instance of Fact 8.

Now we can show that for all x/y with PM x y there are strings s and t with
x = s, y = t and R�s/t, by induction on the pair x/y using the well-foundedness
of ≺M. So let us assume PM x y. Since M satisfies ϕ� there are two cases:

– there is s/t ∈ R such that x = s and y = t. The claim follows by R � s/t;
– there are u, v : D with PM u v and s/t ∈ R such that x = s +++ u, y = t +++ v,

and u/v ≺M x/y. The latter makes the inductive hypothesis applicable for
PM u v, hence yielding R � s′/t′ for some strings s′ and t′ corresponding to
the encodings u and v. This is enough to conclude x = s ++ s′, y = t ++ t′ and
R � (s ++ s′)/(t ++ t′) as wished.

Applying this fact to the assumed match PM xx yields a solution R � s/s. ��

4 Constructive Finite Model Theory

Combined with Fact 5, Theorem 14 entails the undecidability (and non-co-
enumerability) of FSATEQ over a custom (both finite and discrete) signa-
ture ΣBPCP. By a series of signature reductions, we generalise these results to
any signature containing an at least binary relation symbol. In particular, we
explain how to reduce FSAT(Σ) to FSAT(0; {∈2}) for any discrete signature
Σ, hence including ΣBPCP. We also provide a reduction from FSAT(0; {∈2}) to
FSAT({fn}; {P 1}) for n ≥ 2, which entails the undecidability of FSAT for signa-
tures with one unary relation and an at least binary function. But first, let us
show that FSAT is unaltered when further assuming discreteness of the domain.

4.1 Removing Model Discreteness and Interpreted Equality

We consider the case of models over a discrete domain D. Of course, in the case
of FSATEQ(Σ;≡) the requirement that ≡ is interpreted as a decidable binary
relation which is equivalent to =D imposes the discreteness of D. But in the
case of FSAT(Σ) nothing imposes such a restriction on D. However, as we argue
here, we can always quotient D using a suitable decidable congruence, making
the quotient a discrete finite type while preserving first-order satisfaction.

Definition 17. We write FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model.

Let us consider a fixed signature Σ = (FΣ ;PΣ). In addition, let us fix a finite
type D and a (decidable) model M of Σ over D. We can conceive an equivalence
over D which is a congruence for all the interpretations of the symbols by M,

https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_sat.html#fo_form_fin_discr_dec_SAT


88 D. Kirst and D. Larchey-Wendling

namely first-order indistinguishability x =̇Σ y := ∀ϕρ.M �x·ρ ϕ ↔ M �y·ρ ϕ,
i.e. first-order semantics in M is not impacted when switching x with y.

The facts that =̇Σ is both an equivalence and a congruence are easy to prove
but, with this definition, there is little hope of establishing decidability of =̇Σ .
The main reason for this is that the signature may contain symbols of infinitely
many arities. So we fix two lists lF : LFΣ and lP : LPΣ of function and relation
symbols respectively and restrict the congruence requirement to these lists.

Definition 18 (Bounded first-order indistinguishability). We say that x
and y are first-order indistinguishable up to lF/lP , and we write x =̇ y, if for
any ρ : N → D and any first-order formula ϕ built from the symbols in lF and
lP only, we have M �x·ρ ϕ ↔ M �y·ρ ϕ.

Theorem 19. First-order indistinguishability =̇ up to lF/lP is a strongly decid-
able equivalence and a congruence for all the symbols in lF/lP .

Proof. The proof is quite involved, we only give its sketch here; see Appendix B
of the extended version of this paper [12] for more details. The real difficulty is
to show the decidability of =̇. To this end, we characterise =̇ as a bisimulation,
i.e. we show that =̇ is extensionally equivalent to Kleene’s greatest fixpoint
Fω(λuv.�) of some ω-continuous operator F : (D → D → P) → (D → D → P).
We then show that F preserves strong decidability. To be able to conclude, we
establish that F reaches its limit after l := 2d×d iterations where d := card D, the
length of a list enumerating the finite type D. To verify this upper bound, we
build the weak powerset, a list of length l which contains all the weakly decidable
binary predicates of type D → D → P, up to extensional equivalence. As all the
iterated values Fn(λuv.�) are strongly decidable, they all belong to the weak
powerset, so by Theorem 7, a duplicate is to be found in the first l + 1 steps,
ensuring that the sequence is stalled at l. ��

We use the strongly decidable congruence =̇ to quotient models onto discrete
ones (in fact Fn for some n) while preserving first-order satisfaction.

Theorem 20. For every first-order signature Σ and formula ϕ over Σ, we have
FSAT(Σ)ϕ iff FSAT′(Σ)ϕ, and as a consequence, both reductions FSAT(Σ) 

FSAT′(Σ) and FSAT′(Σ) 
 FSAT(Σ) hold.

Proof. FSAT(Σ)ϕ entails FSAT′(Σ)ϕ is the non-trivial implication. Hence we
consider a finite Σ-model (D,M, ρ) of ϕ and we build a new finite Σ-model of
ϕ which is furthermore discrete. We collect the symbols occurring in ϕ as the
lists lF := Fϕ (for functions) and lP := Pϕ (for relations). By Theorem 19, first-
order indistinguishability =̇ : D → D → P up to Fϕ/Pϕ is a strongly decidable
equivalence over D and a congruence for the semantics of the symbols occurring
in ϕ. Using Theorem 9, we build the quotient D/=̇ on a Fn for some n : N. We
transport the model M along this quotient and because =̇ is a congruence for
the symbols in ϕ, its semantics is preserved along the quotient. Hence, ϕ has a
finite model over the domain Fn which is both finite and discrete. ��
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Theorem 21. If ≡ is a binary relation symbol in the signature Σ, one has a
reduction FSATEQ(Σ;≡) 
 FSAT(Σ).

Proof. Given a list lF (resp. lP) of function (resp. relation) symbols, we construct
a formula ψ(lF , lP ,≡) over the function symbols in lF and relation symbols in
(≡ :: lP) expressing the requirement that ≡ is an equivalence and a congruence
for the symbols in lF/lP . Then we show that λϕ. ϕ ∧̇ ψ(Fϕ,≡ :: Pϕ,≡) is a
correct reduction, where Fϕ and Pϕ list the symbols occurring in ϕ. ��

4.2 From Discrete Signatures to Singleton Signatures

Let us start by converting a discrete signature to a finite and discrete signature.

Lemma 22. For any formula ϕ over a discrete signature Σ, one can compute
a signature Σn,m = (Fn;Fm), arity preserving maps Fn → FΣ and Fm → PΣ

and an equi-satisfiable formula ψ over Σn,m, i.e. FSAT(Σ)ϕ ↔ FSAT(Σn,m)ψ.

Proof. We use the discreteness of Σ and bijectively map the lists of symbols Fϕ

and Pϕ onto Fn and Fm respectively, using Corollary 10. We structurally map
ϕ to ψ over Σn,m along this bijection, which preserves finite satisfiability. ��

Notice that n and m in the signature Σn,m depend on ϕ, hence the above
statement cannot be presented as a reduction between (fixed) signatures.

We now erase all function symbols by encoding them with relation symbols.
To this end, let Σ = (FΣ ;PΣ) be a signature, we set Σ′ :=(0; {≡2}+F+1

Σ +PΣ)
where ≡ is a new interpreted relation symbol of arity two and in the conversion,
function symbols have arity lifted by one, hence the F+1

Σ notation.

Lemma 23. For any finite13 type of function symbols FΣ, one has a reduction
FSAT′(FΣ ;PΣ) 
 FSATEQ(0; {≡2} + F+1

Σ + PΣ ;≡2).

Proof. The idea is to recursively replace a term t over Σ by a formula which is
“equivalent” to x ≡ t (where x is a fresh variable not occurring in t) and then
an atomic formula like e.g. P [t1; t2] by ∃x1 x2. x1 ≡ t1 ∧̇x2 ≡ t2 ∧̇ P [x1;x2]. We
complete the encoding with a formula stating that every function symbol f : FΣ

is encoded into a total functional relation Pf : F+1
Σ of arity augmented by 1. ��

Next, assuming that the function symbols have already been erased, we ex-
plain how to merge the relation symbols in a signature Σ = (0;PΣ) into a single
relation symbol, provided that there is an upper bound for the arities in PΣ .

Lemma 24. The reduction FSAT(0;PΣ) 
 FSAT
(
0; {Q1+n})

holds when PΣ

is a finite and discrete type of relation symbols and |P | ≤ n holds for all P : PΣ.

Proof. This comprises three independent reductions, see Fact 25 below. ��

13 In the Coq code, we prove the theorem for finite or discrete types of function symbols.

https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_utils.html#FIN_DEC_EQ_SAT_FIN_DEC_SAT
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.Sig_Sig_fin.html#Sig_discrete_to_pos
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_undec.html#FIN_DISCR_DEC_SAT_FIN_DEC_EQ_NOSYMS_SAT
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_undec.html#FSAT_REL_BOUNDED_ONE_REL


90 D. Kirst and D. Larchey-Wendling

In the following, we denote by Fn
Σ (resp. Pn

Σ) the same type of function (resp.
relation) symbols but where the arity is uniformly converted to n.

Fact 25. Let Σ = (FΣ ;PΣ) be a signature:

1. FSAT(FΣ ;PΣ) 
 FSAT(FΣ ;Pn
Σ) if |P | ≤ n holds for all P : PΣ;

2. FSAT(0;Pn
Σ) 
 FSAT(P0

Σ ; {Q1+n}) if PΣ is finite;
3. FSAT(F0

Σ ;PΣ) 
 FSAT(0;PΣ) if FΣ is discrete.

Proof. For the first reduction, every atomic formula of the form P v with |v| =
|P | ≤ n is converted to P v′ with v′ := v ++ [x0; . . . ;x0] and |v′| = n for an
arbitrary term variable x0. The rest of the structure of formulas is unchanged.

For the second reduction, we convert every atomic formula P v with |v| = n
into Q(P :: v) where P now represents a constant symbol (Q is fixed).

For the last reduction, we replace every constant symbol by a corresponding
fresh variable chosen above all the free variables of the transformed formula. ��

4.3 Compressing n-ary Relations to Binary Membership

Let Σn = (0; {Pn}) be a singleton signature where P is of arity n. We now
show that P can be compressed to a binary relation modelling membership via
a construction using hereditarily finite sets [18] (useful only when n ≥ 3).

Theorem 26. FSAT′(0; {Pn}) 
 FSAT(0; {∈̇2}).

Technically, this reduction is one of the most involved in this work, although
in most presentations of Trakhtenbrot’s theorem, this is left as an “easy exercise,”
see e.g. [14]. Maybe it is perceived so because it relies on the encoding of tuples
in set theory, which is somehow natural for mathematicians,14 but properly
building the finite set model in constructive type theory was not that easy.

Here we only give an overview of the main tools. We encode an arbitrary
n-ary relation R : Xn → P over a finite type X in the theory of membership
over the signature Σ2 = (0; {∈̇2}). Membership is much weaker than set theory
because the only required set-theoretic axiom is extensionality. Two sets are
extensionally equal if their members are the same, and extensionality states
that two extensionally equal sets belong to the same sets:

∀̇xy. (∀̇z. z ∈̇ x ↔̇ z ∈̇ y) →̇ ∀̇z. x ∈̇ z →̇ y ∈̇ z (1)

As a consequence, no first-order formula over Σ2 can distinguish two extension-
ally equal sets. Notice that the language of membership theory (and set theory)
does not contain any function symbol, hence, contrary to usual mathematical
practices, there is no other way to handle a set than via its characterising formula
which makes it a very cumbersome language to work with formally. However,
this is how we have to proceed in the Coq development but here, we stick to
meta-level “terms” in the prose for simplicity.
14 In our case we use Kuratowski’s encoding.
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The ordered pair of two sets p and q is encoded as (p, q) :={{p}, {p, q}} while
the n-tuple (t1, . . . , tn) is encoded as (t1, (t2, . . . , tn)) recursively. The reduction
function which maps formulas over Σn to formulas over Σ2 proceeds as follows.
We reserve two first-order variables d (for the domain D) and r (for the relation
R). We describe the recursive part of the reduction Σr

n�2

Σr
n�2(P v) := “tuple v ∈̇ r” Σr

n�2(∀̇z. ϕ) := ∀̇z. z ∈̇ d →̇ Σr
n�2(ϕ)

Σr
n�2(ϕ �̇ ψ) := Σr

n�2(ϕ) �̇ Σr
n�2(ψ) Σr

n�2(∃̇z. ϕ) := ∃̇z. z ∈̇ d ∧̇ Σr
n�2(ϕ)

ignoring the de Bruijn syntax (which would imply adding d and r as parameters).
Notice that d and r should not occur freely in ϕ. In addition, we require that:

ϕ1 := ∈̇ is extensional see Eq. 1;
ϕ2 := ∃̇z. z ∈̇ d i.e. d is non-empty;
ϕ3 := x1 ∈̇ d ∧̇ · · · ∧̇ xk ∈̇ d where [x1; . . . ;xk] = FV(ϕ).

This gives us the reduction function Σn�2(ϕ) := ϕ1 ∧̇ ϕ2 ∧̇ϕ3 ∧̇Σr
n�2(ϕ).

The completeness of the reduction Σn�2 is the easy part. Given a finite
model of Σn�2(ϕ) over Σ2, we recover a model of ϕ over Σn by selecting as the
new domain the members of d and the interpretation of P v is given by testing
whether the encoding of v as a n-tuple is a member of r.

The soundness of the reduction Σn�2 is the formally involved part, with
Theorem 27 below containing the key construction.

Theorem 27. Given a decidable n-ary relation R : Xn → P over a finite,
discrete and inhabited type X, one can compute a finite and discrete type Y
equipped with a decidable relation ∈ : Y → Y → P, two distinguished elements
d, r : Y and a pair of maps i : X → Y and s : Y → X s.t.

1. ∈ is extensional; 4. ∀x : X. i x ∈ d;
2. extensionally equal elements of Y are equal; 5. ∀y : Y. y ∈ d → ∃x. y = i x;
3. all n-tuples of members of d exist in Y ; 6. ∀x : X. s(i x) = x;
7. R v iff i(v) is a n-tuple member of r, for any v : Xn.

Proof. We give a brief outline of this quite involved proof, referring to the
Coq code for details. The type Y is built from the type of hereditarily finite sets
based on [18], and when we use the word “set” below, it means hereditarily finite
set. The idea is first to construct d as a transitive set of which the elements are
in bijection i/s with the type X, hence d is the cardinal of X in the set-theoretic
meaning. Then the iterated powersets P(d),P2(d), . . . ,Pk(d) are all transitive as
well and contain d both as a member and as a subset. Considering P2n(d) which
contains all the n-tuples built from the members of d, we define r as the set of
n-tuples collecting the encodings i(v) of vectors v : Xn such that R v. We show
r ∈ p for p defined as p := P2n+1(d). Using the Boolean counterpart of (·) ∈ p
for unicity of proofs, we then define Y := {z | z ∈ p}, restrict membership ∈ to
Y and this gives the finite type equipped with all the required properties. Notice
that the decidability requirement for ∈ holds constructively because we work with
hereditarily finite sets, and would not hold with arbitrary sets. ��
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4.4 Summary: From Discrete Signatures to the Binary Signature

Combining all the previous results, we give a reduction from any discrete signa-
ture to the binary singleton signature.

Theorem 28. FSAT(Σ) 
 FSAT(0; {P 2}) holds for any discrete signature Σ.

Proof. Let us first consider the case of Σn,m = (Fn;Fm), a signature over the
finite and discrete types Fn and Fm. Then we have a reduction FSAT(Fn;Fm) 

FSAT(0; {P 2}) by combining Theorems 20, 21 and 26 and Lemmas 23 and 24.

Let us denote by fn,m the reduction FSAT(Fn;Fm) 
 FSAT(0; {P 2}). Let
us now consider a fixed discrete signature Σ. For a formula ϕ over Σ, using
Lemma 22, we compute a signature Σn,m and ψ over Σn,m s.t. FSAT(Σ)ϕ ↔
FSAT(Fn;Fm)ψ. The map λϕ.fn,m ψ is the required reduction. ��
Lemma 29. FSAT(0; {P 2}) 
 FSAT({fn}; {Q1}) when n ≥ 2.

Proof. We encode the binary relation λx y. P [x; y] with λx y.Q
(
f [x; y; . . . ]

)
,

using the first two parameters of f to encode pairing. But since we need to
change the domain of the model, we also use a fresh variable d to encode the
domain as λx.Q(f [d;x; . . . ]) and we restrict all quantifications to the domain
similarly to the encoding Σr

n�2 of Sect. 4.3. ��
We finish the reduction chains with the weakest possible signature con-

straints. The following reductions have straightforward proofs.

Fact 30. One has reductions for the three statements below (for n ≥ 2):

1. FSAT(0; {P 2}) 
 FSAT(0; {Pn});
2. FSAT(0; {Pn}) 
 FSAT(Σ) if Σ contains an n-ary relation symbol;
3. FSAT({fn}; {Q1}) 
 FSAT(Σ) if Σ contains an n-ary fun. and a unary rel.

5 Decidability Results

Complementing the previously studied negative results, we now examine the
conditions allowing for decidable satisfiability problems.

Lemma 31 (FSAT over a fixed domain). Given a discrete signature Σ and
a discrete and finite type D, one can decide whether or not a formula over Σ
has a (finite) model over domain D.

Proof. By Fact 12, satisfaction in a given finite model is decidable. It is also
invariant under extensional equivalence, so we only need to show that there are
finitely many (decidable) models over D up to extensional equivalence.15 ��
Lemma 32. A formula over a signature Σ has a finite and discrete model if
and only if it has a (finite) model over Fn for some n : N.
15 Without discreteness of Σ, it is impossible to build the list of models over D = B.
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Proof. If ϕ has a model over a discrete and finite domain D, by Corollary 10,
one can bijectively map D to Fn and transport the model along this bijection. ��
Lemma 33. FSAT(0;PΣ) is decidable if PΣ is discrete with uniform arity 1.

Proof. By Lemma 22, we can assume PΣ = Fn w.l.o.g. We show that if ϕ has a
finite model then it must have a model over domain {v : Bn → B | bv = tt} for
some Boolean subset b : (Bn → B) → B. Up to extensional equivalence, there
are only finitely many such subsets b and we conclude with Lemma 31. ��
Lemma 34. For any finite type PΣ of relation symbols and signatures of uni-
form arity 1, we have a reduction FSAT(Fn;PΣ) 
 FSAT(0;LFn × PΣ + PΣ).

Proof. We implemented a proof somewhat inspired by that of Proposition 6.2.7
(Grädel) in [1, pp. 251] but the invariant suggested in the iterative process
described there did not work out formally and we had to proceed in a single
conversion step instead, switching from single symbols to lists of symbols. ��

If functions or relations have arity 0, one can always lift them to arity 1 using
a fresh variable (of arbitrary value), like in Fact 25, item (1).

Fact 35. The reduction FSAT(FΣ ;PΣ) 
 FSAT(F1
Σ ;P1

Σ) holds when all arities
in Σ are at most 1, where F1

Σ and P1
Σ denote arities uniformly updated to 1.

6 Signature Classification

We conclude with the exact classification of FSAT regarding enumerability, decid-
ability, and undecidability depending on the properties of the signature.

Theorem 36. Given Σ = (FΣ ;PΣ) where both FΣ and PΣ are data types, the
finite satisfiability problem for formulas over Σ is enumerable.

Proof. Using Theorem 20 and Lemmas 31 and 32, one constructs a predicate
Q : N → FormΣ → B s.t. FSAT(Σ)ϕ ↔ ∃n.Qnϕ = tt. Then, it is easy to build
a computable enumeration e : N → OFormΣ of FSAT(Σ) : FormΣ → P. ��
Theorem 37. FSAT(Σ) is decidable if Σ is discrete with arities less or equal
than 1, or if all relation symbols have arity 0.

Proof. If all arities are at most 1, then by Fact 35, we can assume Σ of uniform
arity 1. Therefore, for a formula ϕ over Σ with uniform arity 1, we need to decide
FSAT for ϕ. By Theorem 22, we can compute a signature Σn,m = (Fn;Fm) and a
formula ψ over Σn,m equi-satisfiable with ϕ. Using the reduction of Lemma 34,
we compute a formula γ, equi-satisfiable with ψ, over a discrete signature of
uniform arity 1, void of functions. We decide the satisfiability of γ by Lemma 33.

If all relation symbols have arity 0, regardless of FΣ , no term can occur
in formulas, hence neither can function symbols. Starting from ϕ over Σ =
(FΣ ;P0

Σ) where only PΣ is assumed discrete, we compute an equi-satisfiable
formula ψ over Σ′ = (0;P0

Σ) and we are back to the previous case. ��

https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_dec.html#FSAT_MONADIC_DEC
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_dec.html#FSAT_MONADIC_11_FSAT_MONADIC_1
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_dec.html#FSAT_FULL_MONADIC_FSAT_11
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_enum.html#FSAT_opt_enum_t
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_enum.html#FSAT_rec_enum_t
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_enum.html#FSAT_opt_enum_t
https://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_dec.html#FULL_MONADIC
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Theorem 38 (Full Trakhtenbrot). If Σ contains either an at least binary
relation symbol or a unary relation symbol together with an at least binary func-
tion symbol, then BPCP reduces to FSAT(Σ).

Proof. By Theorems 14, 21 and 28, Lemma 29, and Fact 30. ��
Corollary 39. For an enumerable and discrete signature Σ furthermore satisfy-
ing the conditions in Theorem 38, FSAT(Σ) is both enumerable and undecidable,
thus, more specifically, not co-enumerable.

Proof. Follows by Facts 3 and 5. ��
Notice that even if the conditions on arities of Theorems 37 and 38 fully

classify discrete signatures, it is not possible to decide which case holds unless
the signature is furthermore finite. For a given formula ϕ though, it is always
possible to render it in the finite signature of used symbols.

7 Discussion

The main part of our Coq development directly concerned with the classification
of finite satisfiability consists of 10k loc, in addition to 3k loc of (partly reused)
utility libraries. Most of the code comprises the signature transformations with
more than 4k loc for reducing discrete signatures to membership. Comparatively,
the initial reduction from BPCP to FSATEQ(ΣBPCP) takes less than 500 loc.

Our mechanisation of first-order logic in principle follows previous devel-
opments [8,9] but also differs in a few aspects. Notably, we had to separate
function from relation signatures to be able to express distinct signatures that
agree on one sort of symbols computationally. Moreover, we found it favourable
to abstract over the logical connectives in form of �̇ and ∇̇ to shorten purely
structural definitions and proofs. Finally, we did not use the Autosubst 2 [20]
support for de Bruijn syntax to avoid its current dependency on the functional
extensionality axiom.

We refrained from additional axioms since we included our development in
the growing Coq library of synthetic undecidability proofs [11]. In this context,
we plan to generalise some of the intermediate signature reductions so that they
become reusable for other undecidability proofs concerning first-order logic over
arbitrary models.

As further future directions, we want to explore and mechanise the direct
consequences of Trakhtenbrot’s theorem such as the undecidability of query con-
tainment and equivalence in data base theory or the undecidability of separation
logic [3,5]. Also possible, though rather ambitious, would be to mechanise the
classification of first-order satisfiability with regards to the quantifier prefix as
comprehensively developed in [1]. Finally, we plan to mechanise the undecidabil-
ity of semantic entailment and syntactic deduction in first-order axiom systems
such as ZF set theory and Peano arithmetic.

Funding. The work of the second author was partially supported by the TICAMORE

project (ANR grant 16-CE91-0002).
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Abstract. Coding conventions for naming, spacing, and other essen-
tially stylistic properties are necessary for developers to effectively under-
stand, review, and modify source code in large software projects. Consis-
tent conventions in verification projects based on proof assistants, such
as Coq, increase in importance as projects grow in size and scope. While
conventions can be documented and enforced manually at high cost,
emerging approaches automatically learn and suggest idiomatic names
in Java-like languages by applying statistical language models on large
code corpora. However, due to its powerful language extension facilities
and fusion of type checking and computation, Coq is a challenging target
for automated learning techniques. We present novel generation models
for learning and suggesting lemma names for Coq projects. Our models,
based on multi-input neural networks, are the first to leverage syntac-
tic and semantic information from Coq’s lexer (tokens in lemma state-
ments), parser (syntax trees), and kernel (elaborated terms) for naming;
the key insight is that learning from elaborated terms can substantially
boost model performance. We implemented our models in a toolchain,
dubbed Roosterize, and applied it on a large corpus of code derived
from the Mathematical Components family of projects, known for its
stringent coding conventions. Our results show that Roosterize sub-
stantially outperforms baselines for suggesting lemma names, highlight-
ing the importance of using multi-input models and elaborated terms.

Keywords: Proof assistants · Coq · Lemma names · Neural networks

1 Introduction

Programming language source code with deficient coding conventions, such as
misleading function and variable names and irregular spacing, is difficult for
developers to effectively understand, review, and modify [8,52,67]. Code with
haphazard adherence to conventions may also be more bug-prone [17]. The prob-
lem is exacerbated in large projects with many developers, where different source
code files and components may have inconsistent and clashing conventions.

c© Springer Nature Switzerland AG 2020
N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12167, pp. 97–118, 2020.
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Many open source software projects manually document coding conventions
that contributors are expected to follow, and maintainers willingly accept fixes of
violations to such conventions [2]. Enforcement of conventions can be performed
by static analysis tools [30,59]. However, such tools require developers to write
precise checks for conventions, which are tedious to define and often incomplete.
To address this problem, researchers have proposed techniques for automatically
learning coding conventions for Java-like languages from code corpora by apply-
ing statistical language models [4]. These models are applicable because code in
these languages has high naturalness [35], i.e., statistical regularities and repet-
itiveness. Learned conventions can then be used to, e.g., suggest names in code.

Proof assistants, such as Coq [15], are increasingly used to formalize results
in advanced mathematics [28,29] and develop large trustworthy software sys-
tems, e.g., compilers, operating systems, file systems, and distributed sys-
tems [18,44,73]. Such projects typically involve contributions of many partic-
ipants over several years, and require considerable effort to maintain over time.
Coding conventions are essential for evolution of large verification projects, and
are thus highly emphasized in the Coq libraries HoTT [37] and Iris [39], in
Lean’s Mathlib [9], and in particular in the influential Mathematical Components
(MathComp) family of Coq projects [19]. Extensive changes to adhere to con-
ventions, e.g., on naming, are regularly requested by MathComp maintainers for
proposed external contributions [50], and its conventions have been adopted, to
varying degrees, by a growing number of independent Coq projects [1,13,24,66].

We believe these properties make Coq code related to MathComp an attrac-
tive target for automated learning and suggesting of coding conventions, in par-
ticular, for suggesting lemma names [7]. However, serious challenges are posed
by, on the one hand, Coq’s powerful language extension facilities and fusion of
type checking and computation [12], and on the other hand, the idiosyncratic
conventions used by Coq practitioners compared to software engineers. Hence,
although suggesting lemma names is similar in spirit to suggesting method names
in Java-like languages [74], the former task is more challenging in that lemma
names are typically much shorter than method names and tend to include heavily
abbreviated terminology from logic and advanced mathematics; a single char-
acter can carry significant information about a lemma’s meaning. For example,
the MathComp lemma names card support normedTI (“cardinality of support
groups of a normed trivial intersection group”) and extprod mulgA (“associa-
tivity of multiplication operations in external product groups”) concisely convey
information on lemma statement structure and meaning through both abbrevi-
ations and suffixes, as when the suffix A indicates an associative property.

In this paper, we present novel generation models for learning and suggest-
ing lemma names for Coq verification projects that address these challenges.
Specifically, based on our knowledge of Coq and its implementation, we devel-
oped multi-input encoder-decoder neural networks for generating names that
use information directly from Coq’s internal data structures related to lexing,
parsing, and type checking. In the context of naming, our models are the first
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to leverage the lemma lemma statement as well as the corresponding syntax tree
and elaborated term (which we call kernel tree) processed by Coq’s kernel [53].

We implemented our models in a toolchain, dubbed Roosterize, which we
used to learn from a high-quality Coq corpus derived from the MathComp family.
We then measured the performance of Roosterize using automatic metrics,
finding that it significantly outperforms baselines. Using our best model, we
also suggested lemma names for the PCM library [56,66], which were manually
reviewed by the project maintainer with encouraging results.

To allow Roosterize to use information directly from Coq’s lexer, parser,
and kernel, we extended the SerAPI library [26] to serialize Coq tokens, syntax
trees, and kernel trees into a machine-readable format. This allowed us to achieve
robustness against user-defined notations and other extensions to Coq syntax.
Thanks to our integration with SerAPI and its use of metaprogramming, we
expect our toolchain to only require modest maintenance as Coq evolves.
We make the following key contributions in this work:

• Models: We propose novel generation models based on multi-input neural
networks to learn and suggest lemma names for Coq verification projects.
A key property of our models is that they combine data from several Coq
phases, including lexing, parsing, and term elaboration.

• Corpus: Advised by MathComp developers, we constructed a corpus of high-
quality Coq code for learning coding conventions, totaling over 164k LOC
taken from four core projects. We believe that our corpus can enable develop-
ment of many novel techniques for Coq based on statistical language models.

• Toolchain: We implemented a toolchain, dubbed Roosterize, which sug-
gests lemma names for a given Coq project. We envision Roosterize being
useful during the review process of proposed contributions to a Coq project.

• Evaluation: We performed several experiments with Roosterize to evalu-
ate our models using our corpus. Our results show that Roosterize performs
significantly better than several strong baselines, as measured by standard
automatic metrics [60]. The results also reveal that our novel multi-input mod-
els, as well as the incorporation of kernel trees, are important for suggestion
quality. Finally, we performed a manual quality analysis by suggesting lemma
names for a medium sized Coq project [56], evaluated by its maintainer, who
found many of the suggestions useful for improving naming consistency.

The appendix of the extended version of the paper [57] describes more exper-
iments, including an automatic evaluation on additional Coq projects. We
provide artifacts related to our toolchain and corpus at: https://github.com/
EngineeringSoftware/roosterize.

2 Background

This section gives brief background related to Coq and the Mathematical Com-
ponents (MathComp) family of projects, as well as the SerAPI library.

https://github.com/EngineeringSoftware/roosterize
https://github.com/EngineeringSoftware/roosterize
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1 Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 N1.
2 Proof. move => H0 u v. split => [/nerodeP H1 w|H1].
3 - by rewrite -!H0.
4 - apply/nerodeP => w. by rewrite !H0.
5 Qed.

Fig. 1. Coq lemma on the theory of regular languages, including proof script.

Coq and Gallina: Coq is a proof assistant based on dependent types, imple-
mented in the OCaml language [15,20]. For our purposes, we view Coq as a
programming language and type-checking toolchain. Specifically, Coq files are
sequences of sentences, with each sentence ending with a period. Sentences are
essentially either (a) commands for printing and other output, (b) definitions
of functions, lemmas, and datatypes in the Gallina language [21], or (c) expres-
sions in the Ltac tactic language [22]. We will refer to definitions of lemmas as
in (b) as lemma sentences. Coq internally represents a lemma sentence both as
a sequence of tokens (lexing phase) and as a syntax tree (parsing phase).

In the typical workflow for a Coq-based verification project, users write
datatypes and functions and then interactively prove lemmas about them by exe-
cuting different tactic expressions that may, e.g., discharge or split the current
proof goal. Both statements to be proved and proofs are represented internally
as terms produced during an elaboration phase [53]; we refer to elaborated terms
as kernel trees. Hence, as tactics are successfully executed, they gradually build
a kernel tree. The Qed command sends the kernel tree for a tentative proof to
Coq’s kernel for final certification. We call a collection of Ltac tactic sentences
that build a kernel tree a proof script.

Figure 1 shows a Coq lemma and its proof script, taken verbatim from a
development on the theory of regular languages [24]. Line 1 contains a lemma
sentence with the lemma name mg_eq_proof, followed by a lemma statement (on
the same line) involving the arbitrary languages L1 and L2, i.e., typed variables
that are implicitly universally quantified. When Coq processes line 5, the kernel
certifies that the kernel tree generated by the proof script (lines 2 to 4) has the
type (is a proof) of the kernel tree for the lemma statement on line 1.

MathComp and Lemma Naming: The MathComp family of Coq projects,
including in particular the MathComp library of general mathematical defini-
tions and results [49], grew out of Gonthier’s proof of the four-color theorem [28],
with substantial developments in the context of the landmark proof of the odd
order theorem in abstract algebra [29]. The MathComp library is now used in
many projects outside of the MathComp family, such as in the project containing
the lemma in Fig. 1 [23]. MathComp has documented naming conventions for two
kinds of entities: (1) variables and (2) functions and lemmas [19]. Variable names
tend to be short and simple, while function and lemma names can be long and
consist of several name components, typically separated by an underscore, but
sometimes using CamelCase. Examples of definition and lemma names in Fig. 1
include mg_eq_proof, mgClassifier, nerode, and nerodeP. Note that lemma
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Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 N1. sentence

(Sentence((IDENT Lemma)(IDENT mg_eq_proof)(IDENT L1)(IDENT L2)
(KEYWORD"(")(IDENT N1)(KEYWORD :)(IDENT mgClassifier)
(IDENT L1)(KEYWORD")")(KEYWORD :)(IDENT L1)(KEYWORD =i)(IDENT L2)
(KEYWORD ->)(IDENT nerode)(IDENT L2)(IDENT N1)(KEYWORD .)))

tokens

(VernacExpr()(VernacStartTheoremProof Lemma (Id mg_eq_proof)
(((CLocalAssum(Name(Id L1))(CHole()IntroAnonymous()))
(CLocalAssum(Name(Id L2))(CHole()IntroAnonymous()))
(CLocalAssum(Name(Id N1))
(CApp(CRef(Ser Qualid(DirPath())(Id mgClassifier)))(CRef(Ser Qualid(DirPath())(Id L1))))))

(CNotation(InConstrEntrySomeLevel" -> ")
(CNotation(InConstrEntrySomeLevel" =i ")
(CRef(Ser Qualid(DirPath())(Id L1)))(CRef(Ser Qualid(DirPath())(Id L2))))
(CApp(CRef(Ser Qualid(DirPath())(Id nerode)))
(CRef(Ser Qualid(DirPath())(Id L2)))(CRef(Ser Qualid(DirPath())(Id N1))))))))

syntax tree

(Prod (Name (Id char)) ... (Prod (Name (Id L1)) ...
(Prod (Name (Id L2)) ... (Prod (Name (Id N1)) ...
(Prod Anonymous (App (Ref (DirPath ((Id ssrbool) (Id ssr) (Id Coq))) (Id eq mem)) ...
(Var (Id L1)) ... (Var (Id L2)))
(App (Ref (DirPath ((Id myhill nerode) (Id RegLang))) (Id nerode)) ...
(Var (Id L2)) ... (Var (Id N1))))))))

kernel tree

Fig. 2. Coq lemma sentence at the top, with sexps for, from just below to bottom:
tokens, syntax tree, and kernel tree; the lemma statement in each is highlighted.

names sometimes have suffixes to indicate their meaning, such as P in nerodeP
which says that the lemma is a characteristic property. Coq functions tend to be
named based on corresponding function definition bodies rather than just types
(of the parameters and return value), analogously to methods in Java [47]. In
contrast, MathComp lemma names tend to be based solely on the lemma state-
ment. Hence, a more suitable name for the lemma in Fig. 1 is mg_eq_nerode.

SerAPI and Coq Serialization: SerAPI is an OCaml library and toolchain for
machine interaction with Coq [26], which provides serialization and deserializa-
tion of Coq internal data structures to and from S-expressions (sexps) [51]. Ser-
API is implemented using OCaml’s PPX metaprogramming facilities [58], which
enable modifying OCaml program syntax trees at compilation time. Figure 2
shows the lemma sentence on line 1 in Fig. 1, and below it, the corresponding
(simplified) sexps for its tokens, syntax tree, and kernel tree, with the lemma
statement highlighted in each representation. Note that the syntax tree omits the
types of some quantified variables, e.g., for the types of L1 and L2, as indicated
by the CHole constructor. Note also that during elaboration of the syntax tree
into the kernel tree by Coq, an implicit variable char is added (all-quantified
via Prod), and the extensional equality operator =i is translated to its glob-
ally unique kernel name, Coq.ssr.ssrbool.eq_mem. Hence, a kernel tree can be
much larger and contain more information than the corresponding syntax tree.
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Fig. 3. Core architecture of our multi-input encoder-decoder models.

3 Models

In this section, we describe our multi-input generation models for suggesting Coq
lemma names. Our models consider lemma name generation with an encoder-
decoder mindset, i.e., we use neural architectures specifically designed for trans-
duction tasks [68]. This family of architectures is commonly used for sequence
generation, e.g., in machine translation [11] and code summarization [43], where
it has been found to be much more effective than traditional probabilistic and
retrieval-based approaches.

3.1 Core Architecture

Our encoders are Recurrent Neural Networks (RNNs) that learn a deep semantic
representation of a given lemma statement from its tokens, syntax tree, and
kernel tree. The decoder—another RNN—generates the descriptive lemma name
as a sequence. The model is trained end-to-end, maximizing the probability of the
generated lemma name given the input. In contrast to prior work in language-
code tasks that uses a single encoder [27], we design multi-input models that
leverage both syntactic and semantic information from Coq’s lexer, parser, and
kernel. A high-level visualization of our architecture is shown in Fig. 3.

Encoding: Our multi-input encoders combine different kinds of syntactic and
semantic information in the encoding phase. We use a different encoder for each
input, which are: lemma statement, syntax tree, and kernel tree.

Coq data structure instances can be large, with syntax trees having an aver-
age depth of 28.03 and kernel trees 46.51 in our corpus (we provide detailed
statistics in Sect. 4). Therefore, we flatten the trees into sequences, which can
be trained more efficiently than tree encoders without performance loss [38]. We
flatten the trees with pre-order traversal, and we use “(” and “)” as the bound-
aries of the children of a node. In later parts of this paper, we use syntax and
kernel trees to refer to their flattened versions. In Sect. 3.2, we introduce tree
chopping to reduce the length of the resulting sequences.

To encode lemma statements and flattened tree sequences, we use bi-direc-
tional Long-Short Term Memory (LSTM) [36] networks. LSTMs are advanced
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(Prod Anonymous (App (Ref (DirPath ((Id ssrbool) (Id ssr) (Id Coq))) (Id eq_mem)) ...
((App (Ref ... ))) ... ))

(Prod Anonymous (App eq_mem ... (App (Ref ... )) ... ))

Fig. 4. Kernel tree sexp before and after chopping; chopped parts are highlighted.

RNNs good at capturing long-range dependencies in a sequence, and are widely
used in encoders [38]. A bi-directional LSTM learns stronger representations
(than a uni-directional LSTM) by encoding a sequence from both left to right
and right to left [75].

Decoding: We use an LSTM (left to right direction only) as our decoder. To
obtain the initial hidden and cell states (hd, cd) of the decoder, we learn a unified
representation of these separate encoders by concatenating their final hidden and
cell states (hi, ci), and then applying a fully connected layer on the concatenated
states: hd = Wh · concat([hi]) + bh and cd = Wc · concat([ci]) + bc, where Wh,
Wc, bh, and bc are learnable parameters.

During training, we maximize the log likelihood of the reference lemma name
given all input sequences. Standard beam search is used to reduce the search
space for the optimal sequence of tokens. With regular decoding, at each time
step the decoder generates a new token relying on the preceding generated token,
which can be error-prone and leads to slow convergence and instability. We
mitigate this problem by performing decoding with teacher forcing [72] such that
the decoder relies on the preceding reference token. At test time, the decoder
still uses the proceeding generated token as input.

Attention: With RNN encoders, the input sequence is compressed into the
RNN’s final hidden states, which results in a loss of information, especially for
longer sequences. The attention mechanism [48] grants the decoder access to
the encoder hidden and cell states for all previous tokens. At each decoder time
step, an attention vector is calculated as a distribution over all encoded tokens,
indicating which token the decoder should “pay attention to”. To make the
attention mechanism work with multiple encoders, we concatenate the hidden
states of the n encoders [h1, ..., hn] and apply an attention layer on the result [70].

Initialization: Since there are no pre-trained token embeddings for Coq, we
initialize each unique token in the vocabulary with a random vector sampled from
the uniform distribution U(−0.1, 0.1). These embeddings are trained together
with the model. The hidden layer parameters of the encoders and decoders are
also initialized with random vectors sampled from the same uniform distribution.

3.2 Tree Chopping

While syntax and kernel trees for lemma statements can be large, not all parts
of the trees are relevant for naming. For instance, each constant reference is
expanded to its fully qualified form in the kernel tree, but the added prefixes are
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usually related to directory paths and likely do not contain relevant information
for generating the name of the lemma. Irrelevant information in long sequences
can be detrimental to the model, since the model would have to reason about
and encode all tokens in the sequence.

To this end, we implemented chopping heuristics for both syntax trees and
kernel trees to remove irrelevant parts. The heuristics essentially: (1) replace
the fully qualified name sub-trees with only the last component of the name;
(2) remove the location information from sub-trees; (3) extract the singletons,
i.e., non-leaf nodes that have only one child. Figure 4 illustrates the chopping of a
kernel tree, with the upper box showing the tree before chopping with the parts
to be removed highlighted, and the lower box showing the tree after chopping.
In the example in the figure, we chopped a fully qualified name and extracted
a singleton. These heuristics greatly reduce the size of the tree: for kernel trees,
they reduce the average depth from 39.20 to 11.39.

Our models use chopped trees as the inputs to the encoders. As we discuss in
more detail in Sect. 6, the chopped trees help the models to focus better on the
relevant parts of the inputs. While the attention mechanism in principle could
learn what the relevant parts of the trees are, our evaluation shows that it can
easily be overwhelmed by large amounts of irrelevant information.

3.3 Copy Mechanism

We found it common for lemma name tokens to only occur in a single Coq file,
whence they are unlikely to appear in the vocabulary learned from the training
set, but can still appear in the respective lemma statement, syntax tree, or kernel
tree. For example, mg occurs in both the lemma name and lemma statement in
Fig. 1, but not outside the file the lemma is in. To account for this, we adopt
the copy mechanism [64] which improves the generalizability of our model by
allowing the decoder to copy from inputs rather than always choosing one word
from the fixed vocabulary from the training set. To handle multiple encoders,
similar to what we did with the attention layer, we concatenate the hidden states
of each encoder and apply a copy layer on the concatenated hidden states.

3.4 Sub-tokenization

We sub-tokenize all inputs (lemma statements, syntax and kernel trees) and out-
puts (lemma names) in a pre-processing step. Previous work on learning from
software projects has shown that sub-tokenization helps to reduce the sparsity
of the vocabulary and improves the performance of the model [10]. However,
unlike Java-like languages where the method names (almost) always follow the
CamelCase convention, lemma names in Coq use a mix of snake case, Camel-
Case, prefixes, and suffixes, thus making sub-tokenization more complex. For
example, extprod mulgA should be sub-tokenized to extprod, , mul, g, and A.

To perform sub-tokenization, we implemented a set of heuristics based on
the conventions outlined by MathComp developers [19]. After sub-tokenization,
the vocabulary size of lemma names in our corpus was reduced from 8,861 to
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Table 1. Projects from the MathComp family used in our corpus.

Project SHA #Files #Lemmas #Toks LOC LOC/file

Spec. Proof Spec. Proof

finmap 27642a8 4 940 78,449 4,260 2,191 1,065.00 547.75

fourcolor 0851d49 60 1,157 560,682 9,175 27,963 152.92 466.05

math-comp 748d716 89 8,802 1,076,096 38,243 46,470 429.70 522.13

odd-order ca602a4 34 367 519,855 11,882 24,243 349.47 713.03

Avg. N/A 46.75 2,816.50 558,770.50 15,890.00 25,216.75 339.89 539.40

Σ N/A 187 11,266 2,235,082 63,560 100,867 63,560 100,867

Table 2. Statistics on the lemmas in the training, validation, and testing sets.

#Files #Lemmas Name Stmt

#Char #SubToks #Char #SubToks

training 152 8,861 10.14 4.22 44.16 19.59

validation 18 1,085 9.20 4.20 38.28 17.30

testing 17 1,320 9.76 4.34 48.49 23.20

2,328. When applying the sub-tokenizer on the lemma statements and syntax and
kernel trees, we sub-tokenize the identifiers and not the keywords or operators.

3.5 Repetition Prevention

We observed that decoders often generated repeated tokens, e.g., mem_mem_mem.
This issue also exists in natural language summarization [69]. We further
observed that it is very unlikely to have repeated sub-tokens in lemma names
used by proof engineers (only 1.37% of cases in our corpus). Hence, we simply
forbid the decoder from repeating a sub-token (modulo “ ”) during beam search.

4 Corpus

We constructed a corpus of four large Coq projects from the MathComp family,
totaling 164k lines of code (LOC). We selected these projects based on the
recommendation of MathComp developers, who emphasized their high quality
and stringent adherence to coding conventions. Our corpus is self-contained :
there are inter-project dependencies within the corpus, but no project depends
on a project outside the corpus (except Coq’s standard library). All projects
build with Coq version 8.10.2. Note that we need to be able to build projects to
be able to extract tokens, syntax trees, and kernel trees.

Constituent Projects: Table 1 lists the projects in the corpus, along with
basic information about each project. The table includes columns for the project
identifier, revision SHA, number of files (#Files), number of lemmas (#Lemmas),
number of tokens (#Toks), LOC for specifications (Spec.) and proof scripts

https://github.com/math-comp/finmap
https://github.com/math-comp/fourcolor
https://github.com/math-comp/math-comp
https://github.com/math-comp/odd-order
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Fig. 5. Statistics on syntax and kernel trees.

(Proof), and average LOC per file for specifications and proof scripts. The math-
comp SHA corresponds to version 1.9.0 of the library. The LOC numbers are
computed with Coq’s bundled coqwc tool. The last two rows of the table show
the averages and sums across all projects.

Corpus Statistics: We extracted all lemmas from the corpus, and initially
we obtained 15,005 lemmas in total. However, we found several outlier lemmas
where the lemma statement, syntax tree and kernel tree were very large. To
ensure stable training, and similar to prior work on generating method names
for Java [47], we excluded the lemmas with the deepest 25% kernel trees. This
left us with 11,266 lemmas. Column 4 of Table 1 shows the number of lemmas
after filtering.

We randomly split corpus files into training, validation, and testing sets which
contain 80%, 10%, 10% of the files, respectively. Table 2 shows statistics on the
lemmas in each set, which includes columns for the number of files, the number
of lemmas, the average number of characters and sub-tokens in lemma names,
and the average number of characters and sub-tokens in lemma statements.

Figure 5 illustrates the changes of the depth, number of nodes and number
of sub-tokens (after flattening) of the kernel trees (first row) and syntax trees
(second row) before and after chopping. Our chopping process reduced tree depth
by 70.9% for kernel trees and 70.7% for syntax trees, and reduced the number
of nodes by 91.5% for kernel trees and 90.8% for syntax trees; after flattening,
the resulting average sequence length is, for kernel trees 165 comparing to the
original 2,056, and for syntax trees 144 comparing to the original 1,590. We
provide additional statistics on lemmas before filtering in the appendix of the
extended paper [57].

5 Implementation

In this section, we briefly describe our toolchain which implements the models
in Sect. 3 and processes and learns from the corpus in Sect. 4; we dub this tool-
chain Roosterize. The components of the toolchain can be divided into two
categories: (1) components that interact with Coq or directly process information
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extracted from Coq, and (2) components concerned with machine learning and
name generation.

The first category includes several OCaml-based tools integrated with SerAPI
[26] (and thus Coq itself), and Python-based tools for processing of data obtained
via SerAPI from Coq. All OCaml tools have either already been included in, or
accepted for inclusion into, SerAPI itself. The tools are as follows:
sercomp: We integrated the existing program sercomp distributed with SerAPI
into Roosterize to serialize Coq files to lists of sexps for syntax trees.
sertok: We developed an OCaml program dubbed sertok on top of SerAPI.
The program takes a Coq file as input and produces sexps of all tokens found
by Coq’s lexer in the file, organized at the sentence level.
sername: We developed an OCaml program dubbed sername on top of SerAPI.
The program takes a list of fully qualified (kernel) lemma names and produces
sexps for the kernel trees of the corresponding lemma statements.
postproc & subtokenizer: We created two small independent tools in Python
to post-process Coq sexps and perform sub-tokenization, respectively.

For the second category, we implemented our machine learning models in
Python using two widely-used deep learning libraries: PyTorch [61] and Open-
NMT [41]. More specifically, we extended the sequence-to-sequence models in
OpenNMT to use multi-input encoders, and extended attention and copy lay-
ers to use multiple inputs. Source code for the components of Roosterize is
available from: https://github.com/EngineeringSoftware/roosterize.

6 Evaluation

This section presents an extensive evaluation of our models as implemented
in Roosterize. Our automatic evaluation (Sect. 6.2) compares Roosterize
with a series of strong baselines and reports on ablation experiments; additional
experiments, e.g., on chopping heuristics, are described in the appendix of the
extended version of the paper [57]. Our manual quality assessment (Sect. 6.3)
analyzes 150 comments we received from the maintainer of the PCM library on
names suggested by Roosterize for that project using our best model.

6.1 Models and Baselines

We study the combinations of: (1) using individual input (lemma statement
and trees) in a single encoder, or multi-input encoders with different mixture
of these inputs; and (2) using the attention and copy mechanisms. Our inputs
include: lemma statement (Stmt), syntax tree (SynTree), chopped syntax tree
(ChopSynTree), kernel tree (KnlTree), and chopped kernel tree (ChopKnlTree).
For multiple inputs, the models are named by concatenating inputs with “+”;
a “+” is also used to denote the presence of attention (attn) or copy (copy).
For example, Stmt+ChopKnlTree+attn+copy refers to a model that uses two
encoders—one for lemma statement and one for chopped kernel tree—and uses
attention and copy mechanisms.

https://github.com/EngineeringSoftware/roosterize
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Table 3. Results of Roosterize models.

5poT1poT.ccA.garFUELBledoMpuorG

Stmt+ChopKnlTree+ChopSynTree+attn+copy 45.4 22.2% 7.5% 16.5%
Stmt+ChopKnlTree+attn+copy 47.2 24.9% 9.6% 18.0%
Stmt+ChopSynTree+attn+copy 37.7 18.1% 6.1% 10.6%

Multi-input
+attn
+copy ChopKnlTree+ChopSynTree+attn+copy 45.4 22.9% 7.6% 15.3%

%7.11%0.5%8.919.24ypoc+ntta+eerTlnKpohC
%2.21%8.6%3.818.93ypoc+ntta+eerTnySpohC
%4.8%2.2%2.410.73ypoc+ntta+eerTlnK
%1.6%8.2%8.010.13ypoc+ntta+eerTnyS

Single-input
+attn
+copy

%6.11%9.6%4.919.83ypoc+ntta+tmtS

Stmt+ChopKnlTree+ChopSynTree+attn 24.5 8.6% 0.4% 0.9%
%7.1%9.0%5.86.52ntta+eerTlnKpohC+tmtS
%6.1%8.0%2.88.32ntta+eerTnySpohC+tmtS

Multi-input
+attn

ChopKnlTree+ChopSynTree+attn 28.4 10.9% 1.8% 3.4%

%3.1%6.0%9.45.91ntta+eerTlnKpohC
%9.2%5.1%1.219.82ntta+eerTnySpohC
%0.0%0.0%6.11.41ntta+eerTlnK
%0.0%0.0%0.18.8ntta+eerTnyS

Single-input
+attn

%5.2%1.1%1.119.62ntta+tmtS

Stmt+ChopKnlTree+ChopSynTree 17.7 3.5% 0.1% 0.2%
%3.0%1.0%5.45.91eerTlnKpohC+tmtS
%0.0%0.0%6.06.21eerTnySpohC+tmtSMulti-input

%1.0%0.0%4.27.61eerTnySpohC+eerTlnKpohC

%0.0%0.0%6.15.51eerTlnKpohC
%1.0%1.0%8.05.41eerTnySpohC

KnlTree 12.0 0.6% 0.0% 0.0%
SynTree 5.7 0.4% 0.0% 0.0%

Single-input

Stmt 20.0 4.7% 0.1% 0.3%

- Retrieval-based 28.3 10.0% 0.2% 0.3%

We consider the vanilla encoder-decoder models with only one input (lemma
statement, kernel tree, or syntax tree) as baseline models. We also compare
with a retrieval-based baseline model implemented using Lucene [6]: a k-nearest
neighbors classifier using the tf-idf of the tokens in lemma statement as features.

Hyperparameters are tuned on the validation set within the following options:
embedding dimensions from {200, 500, 1000}, number of hidden units in each
LSTM from {200, 500, 1000}, number of stacked LSTM layers from {1, 2, 3}. We
set the dropout rate between LSTM layers to 0.5. We set the output dimension
of the fully connected layer for combining encoders to the same number as the
number of hidden units in each LSTM. We checked the validation loss every 200
training steps (as defined in OpenNMT [41], which is similar to one training
epoch on our dataset), and set an early stopping threshold of 3. We used the
Adam [40] optimizer with a learning rate of 0.001. We used a beam size of 5 in
beam search. All the experiments were run with one NVIDIA 1080-TI GPU and
Intel Xeon E5-2620 v4 CPU.
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6.2 Automatic Evaluation

Metrics: We use four automatic metrics which evaluate generated lemma names
against the reference lemma name (as written by developers) in the testing set.
Each metric captures a different level of granularity of the generation quality.
BLEU [60] is a standard metric used in transduction tasks including language ↔
code transduction. It calculates the number of n-grams in a generated sequence
that also appear in the reference sequence, where one “n-gram” is n consecu-
tive items in a sequence (in our case, one “n-gram” is n consecutive characters
in the sequence of characters of the lemma name). We use it to compute the
1 ∼ 4-grams overlap between the characters in generated name and characters
in the reference name, averaged between 1 ∼ 4-grams with smoothing method
proposed by Lin and Och [46]. Fragment accuracy computes the accuracy of gen-
erated names on the fragment level, which is defined by splitting the name by
underscores (“ ”). For example, map determinant mx has a fragment accuracy
of 66.7% when evaluated against det map mx. Unlike BLEU, fragment accuracy
ignores the ordering of the fragments. Finally, top-1 accuracy and top-5 accuracy
compute how often the true name fully matches the generated name or is one of
the top-5 generated names.
Results: Table 3 shows the performance of the models. Similar models are
grouped together. The first column shows the names of the model groups and
the second column shows the names of the models. For each model, we show val-
ues for the four automatic metrics, BLEU, fragment accuracy (Frag.Acc.), top-1
accuracy (Top1), and top-5 accuracy (Top5). We repeated each experiment 3
times, with different random initialization each time, and computed the averages
of each automated metric. We performed statistical significance tests—under sig-
nificance level p < 0.05 using the bootstrap method [14]—to compare each pair
of models. We use bold text to highlight the best value for each automatic metric,
and gray background for baseline models. We make several observations:

Finding #1: The best overall performance (BLEU = 47.2) is obtained using
the multi-input model with lemma statement and chopped kernel tree as inputs,
which also includes copy and attention mechanisms (Stmt+ChopKnlTree+
attn+copy). The improvements over all other models are statistically signifi-
cant and all automatic metrics are consistent in identifying the best model. This
shows the importance of using Coq’s internal structures and focusing only on
certain parts of those structures.

Finding #2: The copy mechanism brings statistically significant improvements
to all models. This can be clearly observed by comparing groups 1 and 3 in
the table, as well as groups 2 and 4. For example, BLEU for Stmt+attn and
Stmt+attn+copy are 26.9 and 38.9, respectively. We believe that the copy mech-
anism plays an important role because many sub-tokens are specific to the file
context and do not appear in the fixed vocabulary learned on the files in training
set.

Finding #3: Using chopped trees greatly improves performance of models and
the improvements brought by upgrading KnlTree to ChopKnlTree or SynTree to
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Table 4. Manual quality analysis representative examples.

Lemma statement: p s : supp (kfilter p s) = filter p (supp s)

Hand-written: supp kfilt Roosterize: supp kfilter

Comment: � Using only kfilt has cognitive overhead

Lemma statement: g e k v f : path ord k (supp f) ->

foldfmap g e (ins k v f) = g (k, v) (foldfmap g e f)

Hand-written: foldf ins Roosterize: foldfmap ins

Comment: � The whole function name is used in the suggested name

Lemma statement: : transitive (@ord T)

Hand-written: trans Roosterize: ord trans

Comment: � Useful to add the ord prefix to the name

Lemma statement: s : sorted (@ord T) s -> sorted (@oleq T) s

Hand-written: sorted oleq Roosterize: ord sorted

Comment: × The conclusion content should have greater priority

Lemma statement: x y : total spec x y (ord x y) (x == y) (ord y x)

Hand-written: totalP Roosterize: ordP

Comment: × Maybe this lemma should be named ord totalP?

Lemma statement: p1 p2 s : kfilter (predI p1 p2) s =

kfilter p1 (kfilter p2 s)

Hand-written: kfilter predI Roosterize: eq kfilter

Comment: × The suggested name is too generic

ChopSynTree are statistically significant. For example, this can be clearly seen in
the second group: BLEU for KnlTree+attn+copy and ChopKnlTree+attn+copy
are 37.0 and 42.9, respectively. We believe that the size of the original trees,
and a lot of irrelevant data in those trees, hurt the performance. The fact that
ChopKnlTree and ChopSynTree both perform much better than using KnlTree
or SynTree across all groups indicate that the chopped trees could be viewed as
a form of supervised attention with flat values that helps later attention layers
to focus better.

Finding #4: Although chopped syntax tree with attention outperforms (sta-
tistically significant) chopped kernel tree with attention (BLEU 28.9 vs. 19.5),
chopped kernel tree with attention and copy by far outperforms (statistically sig-
nificant) chopped syntax tree with attention and copy (BLEU 42.9 vs. 39.8). The
copy mechanism helps kernel trees much more than the syntax trees, because
the mathematical notations and symbols in the syntax trees get expanded to
their names in the kernel trees, and some of them are needed as a part of the
lemma names.

Finding #5: Lemma statement and syntax tree do not work well together,
primarily because the two representations contain mostly the same information.
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In which case, a model taking both as inputs may not work as well as using only
one of the inputs, because more parameters need to be trained.

Finding #6: The retrieval-based baseline, which is the strongest among base-
lines, outperforms several encoder-decoder models without attention and copy
or with only attention, but is worse than (statistically significant) all models
with both attention and copy mechanisms enabled.

6.3 Manual Quality Analysis

While generated lemma names may not always match the manually written ones
in the training set, they can still be semantically valid and conform to prevailing
conventions. However, such name properties are not reflected in our automatic
evaluation metrics, since these metrics only consider exactly matched tokens as
correct. To obtain a more complete evaluation, we therefore performed a manual
quality analysis of generated lemma names from Roosterize by applying it
to a Coq project outside of our corpus, the PCM library [56]. This project
depends on MathComp, and follows, to a degree, many of the MathComp coding
conventions. The PCM library consists of 12 Coq files, and contains 690 lemmas.

We ran Roosterize with the best model (Stmt+ChopKnlTree+attn+copy)
on the PCM library to get the top-1 suggestions for all lemma names. Overall, the
Roosterize suggestions achieved a BLEU score of 36.3 and a fragment accuracy
of 17%, and 36 suggestions (5%) exactly match the existing lemma names. Next,
we asked the maintainer of the PCM library to evaluate the remaining 654 lemma
names (those that do not match exactly) and send us feedback.

The maintainer spent one day on the task and provided comments on 150
suggested names. We analyzed these comments to identify patterns and trends.
He found that 20% of the suggested names he inspected were of good quality, out
of which more than half were of high quality. Considering that the analysis was of
top-1 suggestions excluding exact matches, we find these figures encouraging. For
low-quality names, a clear trend was that they were often “too generic”. Similar
observations have been made about the results from encoder-decoder models in
dialog generation [45,65]. In contrast, useful suggestions were typically able to
expand or elaborate on name components that are intuitively too concise, e.g.,
replacing kfilt with kfilter. Table 4 lists examples that are representative
of these trends; checkmarks indicate useful suggestions, while crosses indicate
unsuitability. We also include comments from the maintainer. As illustrated by
the comments, even suggestions considered unsuitable may contain useful parts.

7 Discussion

Our toolchain builds on Coq 8.10.2, and thus we only used projects that support
this version. However, we do not expect any fundamental obstacles in support-
ing future Coq releases. Thanks to the use of OCaml metaprogramming via
PPX, which allowed eliding explicit references to the internal structure of Coq
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datatypes, SerAPI itself and our extensions to it are expected to require only
modest effort to maintain as Coq evolves.

Our models and toolchain may not be applicable to Coq projects unre-
lated to the MathComp family of projects, i.e., projects which do not follow
any MathComp conventions. To the best of our knowledge, MathComp’s coding
conventions are the most recognizable and well-documented in the Coq commu-
nity; suggesting coding conventions based on learning from projects unrelated
to MathComp are likely to give more ambiguous results that are difficult to vali-
date manually. Our case study also included generating suggestions for a project
outside the MathComp family, the PCM library, with encouraging results.

Our models are in principle applicable to proof assistants with similar foun-
dations, such as Lean [54]. However, the current version of Lean, Lean 3, does
not provide serialization of internal data structures as SerAPI does for Coq,
which prevents direct application of our toolchain. Application of our models to
proof assistants with different foundations and proof-checking toolchains, such
as Isabelle/HOL, is even less straightforward, although the Archive of Formal
Proofs (AFP) contains many projects with high-quality lemma names [25].

8 Related Work

Naturalness and Coding Conventions: Hindle et al. [35] first applied the
concept of naturalness to Java-like languages, noting that program statement
regularities and repetitiveness make statistical language models applicable for
performing software engineering tasks [4]. Rahman et al. [62] validated the nat-
uralness of other similar programming languages, and Hellendoorn et al. [31]
found high naturalness in Coq code, providing motivation for our application
of statistical language models to Coq. Allamanis et al. [2] used the concept of
naturalness and statistical language models to learn and suggest coding conven-
tions, including names, for Java, and Raychev et al. [63] used conditional random
fields to learn and suggest coding conventions for JavaScript. To our knowledge,
no previous work has developed applications of naturalness for proof assistants;
Hellendorn et al. [31] only measured naturalness for their Coq corpus.

Suggesting Names: Prior work on suggesting names mostly concerns Java
method names. Liu et al. [47] used a similarity matching algorithm, based on
deep representations of Java method names and bodies learned with Paragraph
Vector and convolutional neural networks, to detect and fix inconsistent Java
method names. Allamanis et al. [3] used logbilinear neural language models
supplemented by additional manual features to predict Java method and class
names. Java method names have also been treated as short, descriptive “sum-
maries” of its body; in this view, prior work has augmented attention mecha-
nisms in convolutional networks [5], used sequence-to-sequence models to learn
from descriptions (e.g., Javadoc comments) [27], and utilized the tree-structure
of the code in a hierarchical attention network [74]. Unlike Java syntax trees,
Coq syntax and kernel trees contain considerable semantic information useful
for naming. In the work closest to our domain, Aspinall and Kaliszyk used a
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k-nearest neighbors multi-label classifier on a corpus for the HOL Light proof
assistant to suggest names of lemmas [7]. However, their technique only suggests
names that exist in the training data and therefore does not generalize. To our
knowledge, ours is the first neural generation model for suggesting names in a
proof assistant context.

Mining and Learning for Proof Assistants: Müller et al. [55] exported Coq
kernel trees as XML strings to translate 49 Coq projects to the OMDoc theory
graph format. Rather than translating documents to an independently speci-
fied format, we produce lightweight machine-readable representations of Coq’s
internal data structures. Wiedijk [71] collected early basic statistics on the core
libraries of several proof assistants, including Coq and Isabelle/HOL. Blanchette
et al. [16] mined the AFP to gather statistics such as the average number of lines
of Isabelle/HOL specifications and proof scripts. However, these corpora were
not used to perform learning. Komendantskaya et al. [32–34,42] used machine
learning without neural networks to identify patterns in Coq tactic sequences
and proof kernel trees, e.g., to find structural similarities between lemmas and
simplify proof development. In contrast, our models capture similarity among
several different representations of lemma statements to generate lemma names.

9 Conclusion

We presented novel techniques, based on neural networks, for learning and sug-
gesting lemma names in Coq verification projects. We designed and implemented
multi-input encoder-decoder models that use Coq’s internal data structures,
including (chopped) syntax trees and kernel trees. Additionally, we constructed
a large corpus of high quality Coq code that will enable development and eval-
uation of future techniques for Coq. We performed an extensive evaluation of
our models using the corpus. Our results show that the multi-input models,
which use internal data structures, substantially outperform several baselines;
the model that uses the lemma statement tokens and the chopped kernel tree
with attention and copy mechanism performs the best. Based on our findings, we
believe that multi-input models leveraging key parts of internal data structures
can play a critical role in producing high-quality lemma name suggestions.
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Abstract. We present an original approach to sound program extrac-
tion in a proof assistant, using syntax-driven automation to derive
correct-by-construction imperative programs from nondeterministic
functional source code. Our approach does not require committing to
a single inflexible compilation strategy and instead makes it straightfor-
ward to create domain-specific code translators. In addition to a small
set of core definitions, our framework is a large, user-extensible collection
of compilation rules each phrased to handle specific language constructs,
code patterns, or data manipulations. By mixing and matching these
pieces of logic, users can easily tailor extraction to their own domains
and programs, getting maximum performance and ensuring correctness
of the resulting assembly code.

Using this approach, we complete the first proof-generating pipeline
that goes automatically from high-level specifications to assembly code.
In our main case study, the original specifications are phrased to resemble
SQL-style queries, while the final assembly code does manual memory
management, calls out to foreign data structures and functions, and is
suitable to deploy on resource-constrained platforms. The pipeline runs
entirely within the Coq proof assistant, leading to final, linked assembly
code with overall full-functional-correctness proofs in separation logic.

1 Introduction

The general area of correct-by-construction code generation is venerable, going
back at least to Dijkstra’s work in the 1960s [5]. Oftentimes, solutions offer a
strict subset of the desiderata of generality, automation, and performance of syn-
thesized code. This paper presents the final piece of a pipeline that sits at the
sweet spot of all three, enabling semiautomatic refinement of high-level speci-
fications into efficient low-level code in a proof-generating manner. Our initial
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specification language is the rich, higher-order logic of Coq, and we support a
high degree of automation through domain-specific refinement strategies, which
in turn enable targeted optimization strategies for extracting efficient low-level
code. In order to take advantage of these opportunities, we have built an exten-
sible compilation framework that can be updated to handle new compilation
strategies without sacrificing soundness. Our pipeline is foundational : it pro-
duces a fully linked assembly program represented as a Coq term with a proof
that it meets the original high-level specification.

Fig. 1. The full pipeline, with this work’s con-
tributions in blue. Stick figures indicate user-
supplied components. (Color figure online)

Our complete toolchain uses
Fiat [4] to refine high-level spec-
ifications of abstract data types
(ADTs) into nondeterministic func-
tional programs depending on
external data structures (expressed
in a shallowly embedded Gallina
DSL), then soundly extracts these
programs to an imperative inter-
mediate language (Facade) using
a novel proof-generating extrac-
tion procedure. The resulting pro-
grams are then translated into the
Cito [29] language by a newly writ-
ten compiler, backed by a non-
trivial soundness argument bridg-
ing two styles of operational seman-
tics. A traditional verified compiler
produces efficient Bedrock assem-
bly [3] from the Cito level, which we
soundly link against hand-verified

implementations of the required data structures. Beyond exploring a new tech-
nique for sound extraction of shallowly embedded DSLs (EDSLs), this work
bridges the last remaining gap (extraction) to present the first mechanically cer-
tified automatic translation pipeline from declarative specifications to efficient
assembly programs, as shown in Fig. 1.

In the original Fiat system, specifications were highly nondeterministic pro-
grams, and final implementations were fully deterministic programs obtained by
repeatedly refining the specification, eventually committing to a single possible
result. As a consequence, the generated code committed to a particular determin-
istic (and pure) implementation of external ADTs and functions that it relied on,
reducing flexibility, optimization opportunities, and overall performance. Addi-
tionally, the final step in previous work using Fiat was to extract this code
directly to OCaml, using Coq’s popular but unverified extraction mechanism.
Unfortunately, this meant that correctness of the compiled executable depended
not only on the correctness of Coq’s kernel but also on that of the extraction
mechanism and of the OCaml compiler and runtime system. These two depen-
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dencies significantly decreased the confidence that users can place in programs
synthesized by Fiat, and more generally in all programs extracted from Gallina
code.

Our work overcomes these issues via a novel approach to extraction that
is both extensible and correct and produces efficient, stateful low-level code
from nondeterministic functional sources. The process runs within Coq, produces
assembly code instead of OCaml code, and supports linking with handwritten
or separately compiled verified assembly code.

Instead of refining specifications down to a fully deterministic Gallina pro-
gram, as the original Fiat system did, we allow Fiat’s final output to incorpo-
rate nondeterminism. These choices are resolved at a later stage by interpreting
the nondeterminism as a postcondition specification in Hoare logic and linking
against assembly code proven to meet that specification. Nondeterminism at run-
time, which is not normally present in Gallina programs, is essential to support
code derivation with flexible use of efficient low-level data structures. For exam-
ple, if we represent a database with a type of binary trees that does not enjoy
canonical representations, the same data may admit multiple concrete represen-
tations, each corresponding to a different ordering of results for an operation
enumerating all database records.

Unlike certified compilers like CompCert [13] or CakeML [9], we do not imple-
ment our translator in the proof assistant’s logic and prove it sound once and
for all. Instead, we use proof-generating extraction: we phrase the translation
problem in a novel sequent-calculus-style formulation that allows us to apply
all of Coq’s usual scriptable proof automation. The primary reason is that we
want to make our compiler extensible by not committing to a specific compi-
lation strategy: in our system, programmers can teach the compiler about new
verified low-level data structures and code-generation strategies by introducing
new lemmas explaining how to map a Gallina term to a particular impera-
tive program1. Our automation then builds a (deeply embedded) syntax tree
by repeatedly applying lemmas until the nondeterministic functional program
is fully compiled. The many advantages of this approach (extensibility, ease of
development, flexibility, performance, and ease of verification) do come at a cost,
however: compilation is slower, care is needed to make the compiler robust to
small variations in input syntax, and the extensible nature of the compiler makes
it hard to characterize the supported source language precisely.

To summarize the benefits of our approach:

– It is lightweight: it does not require reifying the entirety of Gallina into a
deeply embedded language before compiling. Instead, we use Coq’s tactic
language to drive compilation.

– It is extensible: each part of the compilation logic is expressed as a derivation
rule, proved as an arbitrarily complex Coq theorem. Users can assemble a

1 In fact, nondeterministic choices cannot be compiled systematically, as they can
represent arbitrary complexity. Additionally, a proof-producing approach lets us ele-
gantly bypass the issue of self-reference, since our original programs are shallowly
embedded.
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customized compiler by supplying their own compilation lemmas to extend
the source language or improve the generated code.

– It is well-suited to compiling EDSLs: we support nondeterminism in input
programs (standard extraction requires deterministic code).

– It allows us to link against axiomatically specified foreign functions and data
structures, implemented and verified separately.

– It compiles to a relatively bare language with explicit memory management.

To demonstrate the applicability of this approach, Sect. 6 presents a set of
microbenchmarks of Fiat programs manipulating variables, conditions, and
nested lists of machine words, as well as a more realistic example of SQL-
like programs similar to those of the original Fiat paper. These benchmarks
start from high-level specifications of database queries and pass automatically
through our pipeline to closed assembly programs, complete with full-functional-
correctness specifications and proofs in separation logic. Source code and com-
pilation instructions for the framework and benchmarks are available online at
https://github.com/mit-plv/fiat/tree/ijcar2020.

2 A Brief Outline of Our Approach

We begin with an example of the pipeline in action. Below are an SQL-style query
finding all titles by an author and a Fiat-generated implementation (right):

The generated code relies on a Fiat module IndexedByAuthor , which is not
an executable implementation of the required functionality; rather, it specifies
certain methods nondeterministically, implying that bfind returns the expected
rows in some undetermined order. The order may even be different for every
call, as might arise, for instance, with data structures like splay trees that adjust
their layout even during logically read-only operations.

Such nondeterministic programs are the starting point for our new refinement
phases. The ultimate output of the pipeline is a library of assembly code in the
Bedrock framework [3], obtained by extracting to a new language, Facade, built
as a layer on top of the Cito C-like language [29], and then compiling to Bedrock.

The output for our running
example might look like the
code on the right. Note that
this code works directly with
pointers to heap-allocated muta-
ble objects, handling all memory
management by itself, including
for intermediate values. The gen-
eral IndexedByAuthor interface
has been replaced with calls to a

https://github.com/mit-plv/fiat/tree/ijcar2020
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concrete module BTree providing binary search trees of tuples, and the call to
map became an imperative loop. We implement and verify BTree in Bedrock
assembly, and then we link code and proofs to obtain a binary and an end-to-end
theorem guaranteeing full functional correctness of assembly libraries, for code
generated automatically from high-level specifications.

The heart of our contribution is spanning the gap from nondeterministic
functional programs (written in Gallina) to imperative low-level programs (writ-
ten in Facade) using an extensible, proof-generating framework. We phrase this
derivation problem as one of finding a proof of a Hoare triple, where the pre-
condition and postcondition are known, but the Facade program itself must be
derived during the proof. The central goal from our running example looks as fol-
lows, where ?1 stands for the overall Facade program that we seek, and where
we unfold IndexedByAuthor.bfind (Subsect. 4.3 defines these triples precisely).

The actual implementation of ?1 is found by applying lemmas to decom-
pose this goal into smaller, similar goals representing subexpressions of the final
program. These lemmas form a tree of deduction steps, produced automatically
by a syntax-directed compilation script written in Coq’s Ltac tactic language.
Crucially, the derivation implemented by this script can include any adequately
phrased lemma, allowing new implementation strategies. Composed with the
automation that comes before and after this stage, we have a fully automated,
proof-generating pipeline from specifications to libraries of assembly code.

3 An Example of Proof-Producing Extraction

We begin by illustrating the compilation process on the example Fiat program
from Sect. 2. We synthesize a Facade program p according to the following spec-

ification2, which we summarize as

– p, when started in an initial state containing the arguments and
must be safe (it must not violate function preconditions, access unde-

fined variables, leak memory, etc.).
– p, when started in a proper initial state, must reach (if it terminates) a state

where the variable has one of the values allowed by the nondeterministic
program p shown above.

Replacing p with our example, we need to find a program p such that

We use our first compilation lemma (with a few examples shown in Fig. 2) to
connect the semantics of Fiat’s bind operation (the ← operator of monads [27])
to the meaning of , which yields the following synthesis goal:

2 In the following, underlined variables such as comp are Fiat computations, and ital-
icized variables such as r are Gallina variables.



124 C. Pit-Claudel et al.

Fig. 2. A few rules of our synthesizing compiler.

In this step, we have broken down the assignment to of a Fiat-level bind
(rows ← ...; ...) into the assignment of two variables: to the intermediate
list of authors, and to the final result. The :: operator separates entries
in a list of bindings of Facade variables to nondeterministic Fiat terms. The
ordering of the individual bindings matters: the Fiat term that we assign to

depends on the particular value chosen for bound locally as r .
We then break down the search for p into the search for two smaller pro-

grams: the first (p1) starts in the initial state (abbreviated to args ) and is only
concerned with the assignment to ; the second (p2) starts in a state where

is already assigned and uses that value to construct the final result.
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At this point, a lemma about connecting the meaning of the nondeterminis-
tic selection of authors and the Facade-level function tells us that

is a good choice for p1 (this is the call rule
for ). We are therefore only left with p2 to synthesize: noticing
the common prefix of the starting and ending states, we apply a rule (called
chomp in our development) allowing us to set aside the common prefix and
focus on the tail of the pre- and post-states, transforming the problem into

The additional mapping pictured under the arrow indicates that the ini-
tial and final states must both map to the same value r . In this form,
we can first rewrite map to foldL, at which point the synthesis goal matches
the conclusion of the foldL rule shown in Fig. 2c: given a program pinit to ini-
tialize the accumulator and a program pbody to implement the body of the fold,
the Facade program defined by the macro obeys the
specification above. This gives us two new synthesis goals, which we can handle
recursively, in a fashion similar to the one described above. Once these obliga-
tions have been resolved, we arrive at the desired Facade program.

4 Proof-Generating Extraction of Nondeterministic
Functional Programs: From Fiat to Facade

4.1 The Facade Language

We start with a brief description of our newly designed target language, Facade.
Facade is an Algol-like untyped imperative language operating on Facade states,
which are finite maps from variable names to Facade values (either scalars, or
nonnull values of heap-allocated ADTs). Syntactically, Facade includes standard
programming constructs like assignments, conditionals, loops, function calls, and
recursion. What distinguishes the language is its operational semantics, pictured
partially in Fig. 3. First, that semantics follows that of Cito in supporting modu-
larity by modeling calls to externally defined functions via preconditions and post-
conditions. Second, linearity is baked into Facade’s operational semantics, which
enforce that every ADT value on the heap will be referred to by exactly one live
variable (no aliasing and no leakage) to simplify reasoning about the formal con-
nection to functional programs: if every object has at most one referent, then we
can almost pretend that variables hold abstract values instead of pointers to muta-
ble objects. In practice, we have not found this requirement overly constraining for
our applications: one can automatically introduce copying when needed, or one can
require the external ADTs to provide nondestructive iteration.

The program semantics manipulates local-variable environments where
ADTs are associated with high-level models. For instance, a finite set is modeled
as a mathematical set, not as e.g. a hash table. A key parameter to the com-
piler soundness theorem is a separation-logic abstraction relation, connecting the
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Fig. 3. Selected syntax & operational semantics of Facade [28].

domain of high-level ADT models to mutable memories of bytes. By picking dif-
ferent relations at the appropriate point in our pipeline, we can justify linking
with different low-level implementations of high-level concepts. No part of our
automated translation from Fiat to Facade need be aware of which relation
is chosen, and the same result of that process can be reused for different later
choices. This general approach to stateful encapsulation is largely inherited from
Cito, though with Facade we have made it even easier to use.

Facade’s operational semantics are defined by two predicates, Ψ � (p, st)↓
and Ψ � (p, st) ⇓ st’, expressing respectively that the Facade program p will
run safely when started in Facade state st, and that p may reach state st’ when
started from st (this latter predicate essentially acts as a big-step semantics of
Facade). Both predicates are parameterized over a context Ψ mapping function
names to their axiomatic specifications. The semantics is nondeterministic in the
sense that there can be more than one possible st’.

Modularity is achieved through the CallAx rule, allowing a Facade program
to call a function via its specification in Ψ . A function call produces a return value
r and a list of output values v representing the result of in-place modification
of input ADT arguments y. A precondition is a predicate pre on the values
assigned to the input arguments of the callee by the map st. A postcondition is
a predicate post on these input values, output values v , and return value r . The
semantics prescribes that a function call will nondeterministically pick a list of
output values and a return value satisfying post and use them to update the
relevant variables in the caller’s postcall state (possibly deallocating them).

Linearity is achieved by a set of syntactic and semantic provisions. For
instance, variables currently holding ADT values cannot appear on the right-
hand sides of assignments, to avoid aliasing. They also cannot appear on the
lefthand sides of assignments, to avoid losing their current payloads and causing
memory leaks.

We have implemented a verified translation from Facade to Cito, and from
there we reuse established infrastructure to connect into the Bedrock framework
for verified assembly code. Its soundness proof has the flavor of justifying a new
type system for an existing language, since Facade’s syntax matches that of Cito
rather closely.
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Fig. 4. Equivalence relation on Fiat and Facade states. Because Facade does not allow
us to leak ADT values, we require that all bindings pointing to ADT values in st be
reflected in and vice versa. For scalars, we only require that bindings in

be present in st.

4.2 Fiat and Facade States

We connect Fiat’s semantics to those of Facade by introducing a notion of Fiat
states, which allow us to express pre and post-conditions in a concise and homo-
geneous way, facilitating syntax-driven compilation. Each Fiat state (denoted as
st ) describes a set of Facade states (denoted as st): in Facade, machine states
are unordered collections of names and values. Fiat states, on the other hand,
are ordered collections of bindings (sometimes called telescopes), each containing
a variable name and a set of permissible values for that variable.

Forexample,thetelescope
describes all machine states in which maps to a positive value x and maps
to the pair (x, x + 1). Each variable in a Fiat state is annotated with a function
wrap describing how to inject values of its type in and out of the concrete type
used at the Facade level (e.g. a linked list may be extracted to a vector, as in
our example).

Finally, to be able to implement the aforementioned chomp rule, Fiat states
are extended with an unordered map (ext ) from names to concrete values. A full
Fiat state is thus composed of a telescope st and an extra collection of bindings
ext , written . We relate Fiat states to Facade states using the ternary
predicate st�st � ext defined in Fig. 4, which ensures that the values assigned
to variables in the Facade state st are compatible with the bindings described
in the Fiat state .

4.3 Proof-Generating Extraction by Synthesis

Armed with this predicate, we are ready for the full definition of st
p

ext
st’:

– ∀ st. st�st � ext =⇒ (p, st)↓
For any initial Facade state st, if st is in relation with the Fiat state st

extended by ext , then it is safe to run the Facade program p from state st.
– ∀ st, st’. st�st � ext ∧ (p, st) ⇓ st’ =⇒ st’�st’ � ext

For all initial and final Facade states st and st’, if st is in relation with the
Fiat state st extended by ext , and if running the Facade program p starting
from st may produce the Facade state st’, then st’ is in relation with the
Fiat state st’ extended by ext .
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This definition is enough to concisely and precisely phrase the three types of
lemmas required to synthesize Facade programs: properties of the relation
used to drive the proof search and provide the extraction architecture; connec-
tions between the relation and Fiat’s semantics, used to reduce extraction
of Fiat programs to that of Gallina programs; and connections between Fiat and
Facade, such as the FoldL rule of Fig. 2c (users provide additional lemmas of
the latter kind to extend the scope of the compiler and broaden the range of
source programs that the compiler is able to handle).

With these lemmas, we can phrase certified extraction as a proof-search
problem that can be automated effectively. Starting from a Fiat computation

mixing Gallina code with calls to external ADTs, we generate a speci-
fication �f� based on the predicate (which itself is defined in terms of Facade’s
operational semantics):

(1)

From this starting point, extraction proceeds by analyzing the shapes of the pre-
and post-states to determine applicable compilation rules, which are then used to
build a Facade program progressively. This stage explains why we chose strongly
constrained representations for pre and post-states: where typical verification
tasks compute verification conditions from the program’s source, we compute
the program from carefully formulated pre- and postconditions (proper care in
designing the compilation rules and their preconditions obviates the need for
backtracking).

In practice, this syntax-driven process is implemented by a collection of
matching functions written in Ltac. These may either fail, or solve the cur-
rent goal by applying a lemma, or produce a new goal by applying a compilation
lemma of the form shown in Fig. 2. Our extraction architecture is extensible:
the main loop exposes hooks that users can rebind to call their own matching
rules. Examples of such rules are provided in Sect. 6.1. Our focus is on extracting
efficient code from Gallina EDSLs, so the set of rules is tailored to each domain
and does not cover all possible programs (in particular, we do not have support
for arbitrary fixpoints or pattern-matching constructs; we use custom lemmas
mapping specific matches to specific code snippets or external functions). When
the compiler encounters an unsupported construct C, it stops and presents the
user with a goal of the form indicating which piece is
missing so the user can provide the missing lemmas and tactics.

In our experience, debugging proof search and adding support for new con-
structs is relatively easy, though it does require sufficient familiarity with Coq.
Typically, our compiler would have two classes of users: library developers, who
interactively implement support for new DSLs (developing compilation tactics
requires manual labor similar to writing a domain-specific compiler); and final
users, who write programs within supported DSLs and use fully automated com-
pilation tactics.



Extensible Extraction of Efficient Imperative Programs 129

5 The Complete Proof-Generating Pipeline

The components presented in the previous section form the final links in an auto-
mated pipeline lowering high-level specifications to certified Bedrock modules,
whose correctness is guaranteed by Theorem 1.

Starting from a Fiat ADT specification ADTspec (a collection of high-level
method specifications mspec, as shown in Fig. 5a), we obtain by refinement under
a relation ≈ a Fiat ADT implementation ADTimpl (a collection of nondetermin-
istic functional programs mimpl, as shown in Fig. 5b). Each method of this imple-
mentation is assigned an operational specification �mimpl� (Eq. 1), from which
we extract (using proof-producing synthesis, optionally augmented with user-
specified lemmas and tactics) a verified Facade implementation mimpl (Sect. 4.3)
that calls into a number of external functions (Ψ , Fig. 3), as shown in Fig. 5c.

Finally, we package the resulting Facade methods into a Facade module.
This module imports Ψ (i.e. it must be linked against implementations of the
functions in Ψ) and exports axiomatic specifications straightforwardly lifted from
the original high-level specifications into Facade-style axiomatic specifications (of
the style demonstrated in the call rule of Fig. 3): for each high-level specification
methspec, we export the following (written �methspec�):

Since we are working in an object-oriented style at the high level, our low-level
code follows a convention of an extra “self” argument added to each method,
written in this logical formulation as rS for spec-level “self” values and rI for
implementation-level “self” values.

A generic proof guarantees that the operational specifications �methimpl� used
to synthesize Facade code indeed refine the axiomatic specifications �methspec�
exported by our Facade module. Compiling this Facade module via our new for-
mally verified Facade compiler produces a correct Bedrock module, completing
Theorem 1:

Theorem 1. Starting from a valid refinement ADTimpl of a Fiat ADT specifica-
tion ADTspec with methods methimpl and methspec and a set of Facade programs
synthesized from each �methimpl�, we can build a certified Bedrock module whose
methods satisfy the axiomatic specifications �methspec�.
The final Bedrock module satisfies the original, high-level Fiat specifications. It
specifies its external dependencies Ψ , for which verified assembly implementa-
tions must be provided as part of the final linking phase, which happens entirely
inside of Coq. After linking, we obtain a closed, executable Bedrock module,
exposing an axiomatic specification directly derived from the original, high-
level ADT specification. Our implementation links against verified hand-written
implementations of low-level indexing structures, though it would be possible to
use the output of any compiler emitting Bedrock assembly code.
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6 Evaluation

6.1 Microbenchmarks

We first evaluated our pipeline by extracting a collection of twenty six Gal-
lina programs manipulating machine words, lists, and nested lists, with optional
nondeterministic choices. Extraction takes a few seconds for each program, rang-
ing from simple operations such as performing basic arithmetic, allocating data
structures, calling compiler intrinsics, or sampling arbitrary numbers to more

Fig. 5. Different stages of a process-scheduler compilation example (see also the anno-
tated ‘ProcessScheduler.v’ file).

https://github.com/mit-plv/fiat/tree/ijcar2020/ProcessScheduler.v
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complex operations involving sequence manipulations, like reversing, filtering,
reducing (e.g. reading in a number written as a list of digits in a given base),
flattening, and duplicating or replacing elements. All examples, and the cor-
responding outputs, are included in a literate Coq file available online. These
examples illustrate that our extraction engine supports a fluid, extensible source
language, including subsets of Gallina and many nondeterministic Fiat programs.

6.2 Relational Queries

To evaluate our full pipeline in realistic conditions, we targeted the query-
structure ADT library of the Fiat paper [4] as well as an ADT modeling process
scheduling inspired by Hawkins et al. [7]. This benchmark starts from high-level
Fiat specifications (as shown in Fig. 5a) and outputs a closed Bedrock module,
linked against a hand-verified nested-binary-tree implementation.

From Fiat specifications we derive a collection of nondeterministic Fiat pro-
grams (one per ADT method, as demonstrated in Fig. 5b), then extract each
method to Facade Fig. 5c) and compile to Bedrock. Extraction is fully auto-
matic; it draws from the default pool of extraction lemmas (about conditionals,
constants, arithmetic operations, etc.) and from bag-specific lemmas that we
added to the compiler (these manually verified call rules connect the pure bag
specifications used in Fiat sources to Bedrock-style specifications of mutable
binary search trees using the relation).
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Fig. 6. Process scheduler benchmarks.

Figure 6 presents the res-
ults of our experimental val-
idation. We compare our
own verified implementation
(“Fiat”) against the corre-
sponding SQL queries exe-
cuted by SQLite 3.8.2 (using
an in-memory database) and
PostgreSQL 9.3.11 (“PG”).
For increasingly large collec-
tions of processes, we run
20,000 Enumerate queries to
locate the 10 active pro-
cesses, followed by 10,000
GetCPUTime queries for arbi-
trary process IDs. In all
cases, the data is indexed
by (state, PID) to allow
for constant-time Enumerate
queries (the number of active
processes is kept constant) and logarithmic-time GetCPUTime queries (assuming
a B-tree–style index and skip-scans).

https://github.com/mit-plv/fiat/tree/ijcar2020/fiat/src/CertifiedExtraction/Benchmarks/MicrobenchmarksAnnotated.v
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Our implementation behaves as expected: it beats SQLite and PostgreSQL
by 1.5 and 2.5 orders of magnitude respectively on GetCPUTime, and com-
petes honorably with SQLite (while beating PostgreSQL by one order of mag-
nitude) on Enumerate. Notice the red curves on the graph: without an explicit
“ ” clause, both database management systems missed the skip-
scan opportunity and exhibited asymptotically suboptimal linear-time behav-
ior, so we had to tweak the queries fed to PostgreSQL and SQLite to obtain
good GetCPUTime performance (in contrast, the optimizer in our system can be
guided explicitly by adding compiler hints in the form of extra tactics, without
modifying the specifications).

Of course, our implementation does much less work than a database engine;
the strength of our approach is to expose an SQL-style interface while enabling
generation of specialized data-structure-manipulation code, allowing program-
mers to benefit from the conciseness and clarity of high-level specifications with-
out incurring the overheads of a full-fledged DBMS.

Trusted Base. Our derivation assumes ensemble extensionality and Axiom K.
Our trusted base comprises the Coq 8.4 checker [25] (∼10 000 lines of OCaml
code), the semantics of the Bedrock IL and the translator from it to x86 assembly
(∼1200 lines of Gallina code), an assembler, and wrappers for extracted methods
(∼50 lines of x86 assembly). We used Proof General [2] for development.

7 Related Work

Closely related to our work is a project by Lammich [10] that uses Isabelle/HOL
to refine functional programs to an embedded imperative language that requires
garbage collection. This approach has been applied to various complex algo-
rithms, whereas our focus is on fully automatic derivation from highly reg-
ular specs. Both approaches use some form of linearity checking to bridge
the functional-imperative gap (Lammich et al. use separation logic [20] and
axiomatic semantics, while we apply Facade’s lighter-weight approach: decid-
able syntactic checks applied after-the-fact, with no explicit pointer reasoning).
A recent extension [11] targets LLVM directly. Crucially, the initial work only
targets Imperative/HOL and its extension does not support linking against sep-
arately verified libraries, while our pipeline allows linking, inside of Coq, low-
level programs against verified libraries written in any language of the Bedrock
ecosystem. Finally, we have integrated our translation into an automated proof-
generating pipeline from relational specifications to executable assembly code—
as far as we know, no such pipeline has been presented before.

Another closely related project by Kumar et al. [8,17] focuses on extract-
ing terms written in a purely functional subset of HOL4’s logic into the
CakeML dialect of ML. The main differences with our pipeline are optimization
opportunities, extensibility, and external linking. Indeed, while the compiler to
CakeML bridges a relatively narrow gap (between two functional languages with
expressive type systems and automatic memory management), our extraction
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procedure connects two very different languages, opening up many more oppor-
tunities for optimizations (including some related to memory management). We
expose these opportunities to our users by letting them freely extend the com-
piler based on their domain-specific optimization knowledge.

Recent work by Protzenko et al. [19] achieves one of our stated goals (efficient
extraction to low-level code, here from F* to C) but does not provide formal
correctness guarantees for the extracted code (the tool, KreMLin, consists of
over 15,000 lines of unverified OCaml code). Additionally, KreMLin requires
source programs to be written in a style matching that of the extracted code:
instead of extending the compiler with domain-specific representation choices
and optimizations, users must restrict their programs to the Low* subset of F*.

One last related project is the compiler of the Cogent language [18]. Its
sources are very close to Facade’s (it allows for foreign calls to axiomatically
specified functions, but it does not permit iteration or recursion except through
foreign function calls), and its compiler also produces low-level code without a
garbage collector. Our projects differ in architecture and in spirit: Cogent is
closer to a traditional verified compiler, producing consecutive embeddings of a
source program (from C to a shallow embedding in Isabelle/HOL) and generating
equivalence proofs connecting each of them. Cogent uses a linear type system to
establish memory safety, while we favor extensibility over completeness, relying
on lemmas to justify the compilation of arbitrary Gallina constructs.

We draw further inspiration from a number of other efforts:

Program Extraction. Program extraction (a facility offered by Coq and other
proof assistants) is a popular way of producing executable binaries from verified
code. Extractors are rather complex programs, subjected to varying degrees of
scrutiny: for example, the theory behind Coq’s extraction was mechanically for-
malized and verified [14], but the corresponding concrete implementation itself
is unverified. The recent development of CertiCoq [1], a verified compiler for
Gallina, has significantly improved matters over unverified extraction, but it
only supports pure Gallina programs, and it uses a fixed compilation strategy.
In contrast, our pipeline ensures that nondeterministic specifications are pre-
served down to the generated Bedrock code and grants user fine control over the
compilation process.

Compiler Verification. Our compilation strategy allows Fiat programs to depend
on separately compiled libraries. This contrasts with verified compilers like
CakeML [9] or CompCert [13]: in the latter, correctness guarantees only extend
to linking with modules written in CompCert C and compiled with the same
version of the compiler. Recent work [23] generalized these guarantees to cover
cross-language compilation, but these developments have not yet been used to
perform functional verification of low-level programs assembled from separately
verified components.
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An alternative approach, recently used to verify an operating-system kernel
[21], is to validate individual compiler outputs. This is particularly attractive
as an extension of existing compilers, but it generally falls short when trying
to verify complex optimizations, such as our high-level selection of algorithms
and data structures. In the same vein, verified compilers often rely on unverified
programs to solve complex problems such as register allocation, paired with
verified checkers to validate solutions. In our context, the solver is the proof-
producing extraction logic, and the verifier is Coq’s kernel: our pipeline produces
proofs that witness the correctness of the resulting Facade code.

Extensible Compilation. Multiple research projects let users add optimizations
to existing compilers. Some, like Racket [26], do not focus on verification. Oth-
ers, like Rhodium [12], let users phrase and verify transformations using DSLs.
Unfortunately, most of these tools are unverified and do not provide end-to-
end guarantees. One recent exception is XCert [24], which lets CompCert users
soundly describe program transformations using an EDSL. Our approach is sim-
ilar insofar as we assemble DSL compilers from collections of verified rewritings.

Program Synthesis. Our approach of program generation via proofs follows in
the deductive-synthesis tradition started in the 1980s [15]. We use the syntactic
structure of our specialized pre- and postconditions to drive synthesis: the idea
of strongly constraining the search space is inherited from the syntax-guided
approach pioneered in the Sketch language [22]. That family of work uses SMT
solvers where we use a proof assistant, offering more baseline automation with
less fundamental flexibility.

Formal Decompilation. Instead of deriving low-level code from high-level specifi-
cations, some authors have used HOL-family proof assistants to translate unver-
ified low-level programs (in assembly [16] or C [6]) into high-level code suitable
for verification. Decompilation is an attractive approach for existing low-level
code, or when compiler verification is impractical.

8 Conclusion

The extraction technique presented in this paper is a convenient and lightweight
approach for generating certified extracted programs, reducing the trusted base
of verified programs to little beyond a proof assistant’s kernel. We have shown our
approach to be suitable for the extraction of DSLs embedded in proof assistants,
using it to compile a series of microbenchmarks and to do end-to-end proof-
generating derivation of assembly code from SQL-style specifications. Crucially,
the latter derivations work via linking with verified implementations of assem-
bly code that our derivation pipeline could never produce directly. To ease this
transition, we developed Facade, a new language designed to facilitate reasoning
about memory allocation in synthesized extracted programs. In the process,
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we have closed the last gap in the first automatic and mechanically certi-
fied translation pipeline from declarative specifications to assembly-language
libraries, supporting user-guided optimizations and parameterization over
abstract data types implemented, compiled, and verified using arbitrary lan-
guages and tools.
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Abstract. Sharing of notations and theories across an inheritance hier-
archy of mathematical structures, e.g., groups and rings, is important
for productivity when formalizing mathematics in proof assistants. The
packed classes methodology is a generic design pattern to define and com-
bine mathematical structures in a dependent type theory with records.
When combined with mechanisms for implicit coercions and unification
hints, packed classes enable automated structure inference and subtyping
in hierarchies, e.g., that a ring can be used in place of a group. However,
large hierarchies based on packed classes are challenging to implement
and maintain. We identify two hierarchy invariants that ensure modu-
larity of reasoning and predictability of inference with packed classes,
and propose algorithms to check these invariants. We implement our
algorithms as tools for the Coq proof assistant, and show that they sig-
nificantly improve the development process of Mathematical Components,
a library for formalized mathematics.

1 Introduction

Mathematical structures are a key ingredient of modern formalized mathematics
in proof assistants, e.g., [1,18,25,41] [10, Chap. 2 and Chap. 4] [20, Sect. 3] [30,
Chap. 5] [46, Sect. 4]. Since mathematical structures have an inheritance/subtyp-
ing hierarchy such that “a ring is a group and a group is a monoid”, it is usual
practice in mathematics to reuse notations and theories of superclasses implicitly
to reason about a subclass. Similarly, the sharing of notations and theories across
the hierarchy is important for productivity when formalizing mathematics.

The packed classes methodology [16,17] is a generic design pattern to define
and combine mathematical structures in a dependent type theory with records.
Hierarchies using packed classes support multiple inheritance, and maximal shar-
ing notations and theories. When combined with mechanisms for implicit coer-
cions [32,33] and for extending unification procedure, such as the canonical struc-
tures [26,33] of the Coq proof assistant [42], and the unification hints [4] of the
Lean theorem prover [6,27] and the Matita interactive theorem prover [5], packed
classes enable subtyping and automated inference of structures in hierarchies.
Compared to approaches based on type classes [22,40], packed classes are more
robust, and their inference approach is efficient and predictable [1]. The success
of the packed classes methodology in formalized mathematics can be seen in
the Mathematical Components library [45] (hereafter MathComp), the Coquelicot
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Fig. 1. The hierarchy of structures in the MathComp library 1.10.0

library [8], and especially the formal proof of the Odd Order Theorem [20]. It
has also been successfully applied for program verification tasks, e.g., a hierarchy
of monadic effects [2] and a hierarchy of partial commutative monoids [28] for
Fine-grained Concurrent Separation Logic [39].

In spite of its success, the packed classes methodology is hard to master
for library designers and requires a substantial amount of work to maintain as
libraries evolve. For instance, the strict application of packed classes requires
defining quadratically many implicit coercions and unification hints in the num-
ber of structures. To give some figures, the MathComp library 1.10.0 uses this
methodology ubiquitously to define the 51 mathematical structures depicted in
Fig. 1, and declares 554 implicit coercions and 746 unification hints to imple-
ment their inheritance. Moreover, defining new intermediate structures between
existing ones requires fixing their subclasses and their inheritance accordingly;
thus, it can be a challenging task.

In this paper, we indentify two hierarchy invariants concerning implicit coer-
cions and unification hints in packed classes, and propose algorithms to check
these invariants. We implement our algorithms as tools for the Coq system, evalu-
ate our tools on a large-scale development, the MathComp library 1.7.0, and then
successfully detect and fix several inheritance bugs with the help of our tools.
The invariant concerning implicit coercions ensures the modularity of reasoning
with packed classes and is also useful in other approaches, such as type classes
and telescopes [26, Sect. 2.3], in a dependent type theory. This invariant was
proposed before as a coherence of inheritance graphs [7]. The invariant concern-
ing unification hints, that we call well-formedness, ensures the predictability of
structure inference. Our tool not only checks well-formedness, but also generates
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an exhaustive set of assertions for structure inference, and these assertions can
be tested inside Coq. We state the predictability of inference as a metatheorem
on a simplified model of hierarchies, that we formally prove in Coq.

The paper is organized as follows: Sect. 2 reviews the packed classes method-
ology using a running example. Section 3 studies the implicit coercion mech-
anism of Coq, and then presents the new coherence checking algorithm and
its implementation. Section 4 reviews the use of canonical structures for struc-
ture inference in packed classes, and introduces the notion of well-formedness.
Section 5 defines a simplified model of hierarchies and structure inference, and
shows the metatheorem that states the predictability of structure inference.
Section 6 presents the well-formedness checking algorithm and its implemen-
tation. Section 7 evaluates our checking tools on the MathComp library 1.7.0.
Section 8 discusses related work and concludes the paper. Our running example
for Sect. 2, Sect. 4, and Sect. 6, the formalization for Sect. 5, and the evaluation
script for Sect. 7 are available at [37].

2 Packed Classes

This section reviews the packed classes methodology [16,17] through an example,
but elides canonical structures. Our example is a minimal hierarchy with mul-
tiple inheritance, consisting of the following four algebraic structures (Fig. 2):

Type

Monoid.type

Semiring.type Group.type

Ring.type

Fig. 2. Hierarchy diagram for
monoids, semirings, groups, and
rings, where an arrow from X.type

to Y.type means that Y directly
inherits from X. The monoid struc-
ture is the superclass of all other
structures. Semirings and groups
directly inherit from monoids.
Rings directly inherit from semir-
ings and groups, and indirectly
inherit from monoids.

Additive monoids (A,+, 0): Monoids have
an associative binary operation + on the
set A and an identity element 0 ∈ A.

Semirings (A,+, 0,×, 1): Semirings have the
monoid axioms, commutativity of addition,
multiplication, and an element 1 ∈ A. Mul-
tiplication × is an associative binary opera-
tion on A that is left and right distributive
over addition. 0 and 1 are absorbing and
identity elements with respect to multipli-
cation, respectively.

Additive groups (A,+, 0,−): Groups have
the monoid axioms and a unary operation
− on A. −x is the additive inverse of x for
any x ∈ A.

Rings (A,+, 0,−,×, 1): Rings have all the
semiring and group axioms, but no addi-
tional axioms.

We start by defining the base class, namely, the Monoid structure.

1 Module Monoid.
2

3 Record mixin_of (A : Type) := Mixin {
4 zero : A;
5 add : A → A → A;
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6 addA : associative add; (* ‘add’ is associative. *)
7 add0x : left_id zero add; (* ‘zero’ is the left and right *)
8 addx0 : right_id zero add; (* identity element w.r.t. ‘add’. *)
9 }.

10

11 Record class_of (A : Type) := Class { mixin : mixin_of A }.
12

13 Structure type := Pack { sort : Type; class : class_of sort }.
14

15 End Monoid.

The above definitions are enclosed by the Monoid module, which forces users to
write qualified names such as Monoid.type. Thus, we can reuse the same name of
record types (mixin_of, class_of, and type), their constructors (Mixin, Class,
and Pack), and constants (e.g., sort and class) for other structures to indicate
their roles. Structures are written as records that have three different roles:
mixins, classes, and structures. The mixin record (line 3) gathers operators and
axioms newly introduced by the Monoid structure. Since monoids do not inherit
any other structure in Fig. 2, those are all the monoid operators, namely 0 and
+, and their axioms. The class record (line 11) assembles all the mixins of the
superclasses of the Monoid structure (including itself), which is the singleton
record consisting of the monoid mixin. The structure record (line 13) is the
actual interface of the structure that bundles a carrier of type Type and its class
instance. Record and Structure are synonyms in Coq, but we reserve the latter
for actual interfaces of structures. In a hierarchy of algebraic structures, a carrier
set A has type Type; hence, for each structure, the first field of the type record
should have type Type, and the class_of record should be parameterized by that
carrier. In general, it can be other types, e.g., Type → Type in the hierarchy of
functors and monads [2], but should be fixed in each hierarchy of structures.

Mixin and monoid records are internal definitions of mathematical struc-
tures; in contrast, the structure record is a part of the interface of the monoid
structure when reasoning about monoids. For this reason, we lift the projections
for Monoid.mixin_of to definitions and lemmas for Monoid.type as follows.

Definition zero {A : Monoid.type} : Monoid.sort A :=
Monoid.zero _ (Monoid.mixin _ (Monoid.class A)).

Definition add {A : Monoid.type} :
Monoid.sort A → Monoid.sort A → Monoid.sort A :=
Monoid.add _ (Monoid.mixin _ (Monoid.class A)).

Lemma addA {A : Monoid.type} : associative (@add A).
Lemma add0x {A : Monoid.type} : left_id (@zero A) (@add A).
Lemma addx0 {A : Monoid.type} : right_id (@zero A) (@add A).

The curly brackets enclosing A mark it as an implicit argument; in contrast, @ is
the explicit application symbol that deactivates the hiding of implicit arguments.

Since a monoid instance A : Monoid.type can be seen as a type equipped
with monoid axioms, it is natural to declare Monoid.sort as an implicit coercion.
The types of zero can be written and shown as ∀ A : Monoid.type, A rather
than ∀ A : Monoid.type, Monoid.sort A thanks to this implicit coercion.

Coercion Monoid.sort : Monoid.type >-> Sortclass.
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Next, we define the Semiring structure. Since semirings inherit from monoids
and the semiring axioms interact with the monoid operators, e.g., distributivity
of multiplication over addition, the semiring mixin should take Monoid.type
rather than Type as its argument.

Module Semiring.

Record mixin_of (A : Monoid.type) := Mixin {
one : A;
mul : A → A → A;
addC : commutative (@add A); (* ‘add’ is commutative. *)
mulA : associative mul; (* ‘mul’ is associative. *)
mul1x : left_id one mul; (* ‘one’ is the left and right *)
mulx1 : right_id one mul; (* identity element w.r.t. ‘mul’. *)
mulDl : left_distributive mul add; (* ‘mul’ is left and right *)
mulDr : right_distributive mul add; (* distributive over ‘add’. *)
mul0x : left_zero zero mul; (* ‘zero’ is the left and right *)
mulx0 : right_zero zero mul; (* absorbing element w.r.t. ‘mul’. *)

}.

The Semiring class packs the Semiring mixin together with the Monoid class
to assemble the mixin records of monoids and semirings. We may also assemble
all the required mixins as record fields directly rather than nesting class records,
yielding what is called the flat variant of packed classes [14, Sect. 4]. Since the
semiring mixin requires Monoid.type as its type argument, we have to bundle the
monoid class with the carrier to provide that Monoid.type instance, as follows.

Record class_of (A : Type) :=
Class { base : Monoid.class_of A; mixin : mixin_of (Monoid.Pack A base) }.

Structure type := Pack { sort : Type; class : class_of sort }.

The inheritance from monoids to semirings can then be expressed as a canonical
way to construct a monoid from a semiring as below.

Local Definition monoidType (cT : type) : Monoid.type :=
Monoid.Pack (sort cT) (base _ (class cT)).

End Semiring.

Following the above method, we declare Semiring.sort as an implicit coer-
cion, and then lift mul, one, and the semiring axioms from projections for the
mixin to definitions for Semiring.type.

1 Coercion Semiring.sort : Semiring.type >-> Sortclass.
2 Definition one {A : Semiring.type} : A :=
3 Semiring.one _ (Semiring.mixin _ (Semiring.class A)).
4 Definition mul {A : Semiring.type} : A → A → A :=
5 Semiring.mul _ (Semiring.mixin _ (Semiring.class A)).
6 Lemma addC {A : Semiring.type} : commutative (@add (Semiring.monoidType A)).
7 ...
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In the statement of the addC axiom (line 6 just above), we need to explicitly
write Semiring.monoidType A to get the canonical Monoid.type instance for
A : Semiring.type. We omit this subtyping function Semiring.monoidType
by declaring it as an implicit coercion. In general, for a structure S inheriting
from other structures, we define implicit coercions from S to all its superclasses.

Coercion Semiring.monoidType : Semiring.type >-> Monoid.type.

The Group structure is monoids extended with an additive inverse. Following
the above method, it can be defined as follows.

Module Group.

Record mixin_of (A : Monoid.type) := Mixin {
opp : A → A;
addNx : left_inverse zero opp add; (* ‘opp x’ is the left and right *)
addxN : right_inverse zero opp add; (* additive inverse of ‘x’. *)

}.

Record class_of (A : Type) :=
Class { base : Monoid.class_of A; mixin : mixin_of (Monoid.Pack A base) }.

Structure type := Pack { sort : Type; class : class_of sort }.

Local Definition monoidType (cT : type) : Monoid.type :=
Monoid.Pack (sort cT) (base _ (class cT)).

End Group.

Coercion Group.sort : Group.type >-> Sortclass.
Coercion Group.monoidType : Group.type >-> Monoid.type.
Definition opp {A : Group.type} : A → A :=
Group.opp _ (Group.mixin _ (Group.class A)).

...

The Ring structure can be seen both as groups extended by the semiring
axioms and as semirings extended by the group axioms. Here, we define it in the
first way, but one may also define it in the second way. Since rings have no other
axioms than the group and semiring axioms, no additional mixin_of record is
needed.1

Module Ring.

Record class_of (A : Type) := Class {
base : Group.class_of A;
mixin : Semiring.mixin_of (Monoid.Pack A (Group.base A base)) }.

Structure type := Pack { sort : Type; class : class_of sort }.

The ring structure inherits from monoids, groups, and semirings. Here, we define
implicit coercions from the ring structure to those superclasses.

1 One may also define a new structure that inherits from multiple existing classes
and has an extra mixin, e.g., by defining commutative rings instead of rings in this
example, and left algebras as lalgType in MathComp.
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Local Definition monoidType (cT : type) : Monoid.type :=
Monoid.Pack (sort cT) (Group.base _ (base _ (class cT))).

Local Definition groupType (cT : type) : Group.type :=
Group.Pack (sort cT) (base _ (class cT)).

Local Definition semiringType (cT : type) : Semiring.type :=
Semiring.Pack (sort cT) (Semiring.Class _ (Group.base _ (base _ (class cT)))

(mixin _ (class cT))).
End Ring.

Coercion Ring.sort : Ring.type >-> Sortclass.
Coercion Ring.monoidType : Ring.type >-> Monoid.type.
Coercion Ring.semiringType : Ring.type >-> Semiring.type.
Coercion Ring.groupType : Ring.type >-> Group.type.

3 Coherence of Implicit Coercions

This section describes the implicit coercion mechanism of Coq and the coherence
property [7] of inheritance graphs that ensures modularity of reasoning with
packed classes, and presents the coherence checking mechanism we implemented
in Coq. More details on implicit coercions can be found in the Coq reference
manual [44], and its typing algorithm is described in [32]. First, we define classes
and implicit coercions.

Definition 3.1. (Classes [32, Sect. 3.1] [44]). A class with n parameters is a
defined name C with a type ∀(x1 : T1) . . . (xn : Tn), sort where sort is SProp,
Prop, Set, or Type. Thus, a class with parameters is considered a single class
and not a family of classes. An object of class C is any term of type C t1 . . . tn.

Definition 3.2. (Implicit coercions). A name f can be declared as an
implicit coercion from a source class C to a target class D with k parameters if
the type of f has the form ∀x1 . . . xk (y : C t1 . . . tn),D u1 . . . um. We then write
f : C � D.2

An implicit coercion f : C � D can be seen as a subtyping C ≤ D and
applied to fill type mismatches to a term of class C placed in a context that
expects to have a term of class D. Implicit coercions form an inheritance graph
with classes as nodes and coercions as edges, whose path [f1; . . . ; fn] where
fi : Ci � Ci+1 can also be seen as a subtyping C1 ≤ Cn+1; thus, we write
[f1; . . . ; fn] : C1 � Cn+1 to indicate [f1; . . . ; fn] is an inheritance path from C1

to Cn+1. The Coq system pre-computes those inheritance paths for any pair of
source and target classes, and updates to keep them closed under transitivity
when a new implicit coercion is declared [32, Sect. 3.3] [44, Sect. 8.2.5 “Inheri-
tance Graph”]. The coherence of inheritance graphs is defined as follows.

2 In fact, the target classes can also be functions (Funclass) and sorts (Sortclass);
that is to say, a function returning functions, types, or propositions can be declared as
an implicit coercion. In this paper, we omit these cases to simplify the presentation,
but our discussion can be generalized to these cases.
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Definition 3.3. (Definitional equality [43] [15, Sect. 3.1]). Two terms t1 and
t2 are said to be definitionally equal, or convertible, if they are equivalent under
βδιζ-reduction and η-expansion. This equality is denoted by the infix symbol ≡.

Definition 3.4. (Coherence [7, Sect. 3.2] [32, Sect. 7]). An inheritance graph
is coherent if and only if the following two conditions hold.

1. For any circular inheritance path p : C � C, p x ≡ x, where x is a fresh
variable of class C.

2. For any two inheritance paths p, q : C � D, p x ≡ q x, where x is a fresh
variable of class C.

Before our work, if multiple inheritance paths existed between the same
source and target class, only the oldest one was kept as a valid one in the
inheritance graph in Coq, and all the others were reported as ambiguous paths
and ignored. We improved this mechanism to report only paths that break the
coherence conditions and also to minimize the number of reported ambiguous
paths [34,35]. The second condition ensures the modularity of reasoning with
packed classes. For example, proving ∀(R : Ring.type) (x, y : R), (−x) × y =
−(x × y) requires using both Semiring.monoidType (Ring.semiringType
R) and Group.monoidType (Ring.groupType R) implicitly. If those Monoid
instances are not definitionally equal, it will prevent us from proving the lemma
by reporting type mismatch between R and R.

Convertibility checking for inheritance paths consisting of implicit coercions
as in Definition 3.2 requires constructing a composition of functions for a given
inheritance path. One can reduce any unification problem to this well-typed term
construction problem, that in the higher-order case is undecidable [19]. However,
the inheritance paths that make the convertibility checking undecidable can
never be applied as implicit coercions in type inference, because they do not
respect the uniform inheritance condition.

Definition 3.5. (Uniform inheritance condition [44] [32, Sect. 3.2]). An
implicit coercion f between classes C � D with n and m parameters, respec-
tively, is uniform if and only if the type of f has the form

∀(x1 : A1) . . . (xn : An) (xn+1 : C x1 . . . xn),D u1 . . . um.

Remark 3.1. Names that can be declared as implicit coercions are defined as
constants that respect the uniform inheritance condition in [32, Sect. 3.2]. How-
ever, the actual implementation in the modern Coq system accepts almost any
function as in Definition 3.2 as a coercion.

Säıbi claimed that the uniform inheritance condition “ensures that any coer-
cion can be applied to any object of its source class” [32, Sect. 3.2], but the actual
condition ensures additional properties. The number and ordering of parameters
of a uniform implicit coercion are the same as those of its source class; thus, con-
vertibility checking of uniform implicit coercions f, g : C � D does not require
any special treatment such as permuting parameters of f and g. Moreover, func-
tion composition preserves this uniformity, that is, the following lemma holds.
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Lemma 3.1. For any uniform implicit coercions f : C � D and g : D � E,
the function composition of the inheritance path [f ; g] : C � E is uniform.

Proof. Let us assume that C, D, and E are classes with n, m, and k parameters
respectively, and f and g have the following types:

f : ∀(x1 : T1) . . . (xn : Tn) (xn+1 : C x1 . . . xn),D u1 . . . um,

g : ∀(y1 : U1) . . . (ym : Um) (ym+1 : D y1 . . . ym), E v1 . . . vk.

Then, the function composition of f and g can be defined and typed as follows:

g ◦ f := λ(x1 : T1) . . . (xn : Tn) (xn+1 : C x1 . . . xn), g u1 . . . um (f x1 . . . xn xn+1)
: ∀(x1 : T1) . . . (xn : Tn) (xn+1 : C x1 . . . xn),
E (v1{y1/u1} . . . {ym/um}{ym+1/f x1 . . . xn xn+1})

...
(vk{y1/u1} . . . {ym/um}{ym+1/f x1 . . . xn xn+1}).

The terms u1, . . . , um contain the free variables x1, . . . , xn+1 and we omitted
substitutions for them by using the same names for the binders in the above
definition. Nevertheless, (g ◦ f) : C � E respects the uniform inheritance
condition. �	

In the above definition of the function composition g ◦ f of implicit coer-
cions, the types of x1, . . . , xn, xn+1 and the parameters of g can be automatically
inferred in Coq; thus, it can be abbreviated as follows:

g ◦ f := λ(x1 : ) . . . (xn : ) (xn+1 : ), g . . .
︸ ︷︷ ︸

m parameters

(f x1 . . . xn xn+1).

For implicit coercions f1 : C1 � C2, f2 : C2 � C3, . . . , fn : Cn � Cn+1 that
have m1,m2, . . . ,mn parameters respectively, the function composition of the
inheritance path [f1; f2; . . . ; fn] can be written as follows by repeatedly applying
Lemma 3.1 and the above abbreviation.

fn ◦ · · · ◦ f2 ◦ f1 := λ(x1 : ) . . . (xm1 : ) (xm1+1 : ),
fn . . .

︸ ︷︷ ︸

mn parameters

(. . . (f2 . . .
︸ ︷︷ ︸

m2 parameters

(f1 x1 . . . xm1 xm1+1)) . . . ).

If f1, . . . , fn are all uniform, the numbers of their parameters m1, . . . ,mn are
equal to the numbers of parameters of C1, . . . , Cn. Consequently, the type infer-
ence algorithm always produces the typed closed term of most general function
composition of f1, . . . , fn from the above term. If not all of f1, . . . , fn are uni-
form, type inference may fail or produce an open term, but if this produces a
typed closed term, it is the most general function composition of f1, . . . , fn.

Our coherence checking mechanism constructs the function composition of
p : C � C and compares it with the identity function of class C to check the
first condition, and also constructs the function compositions of p, q : C � D
and performs the conversion test for them to check the second condition.



Validating Mathematical Structures 147

4 Automated Structure Inference

This section reviews how the automated structure inference mechanism [26]
works on our example and in general. The first example is 0+1, whose desugared
form is @add _ (@zero _) (@one _), where holes _ stand for implicit pieces of
information to be inferred. The left- and right-hand sides of the top application
can be type-checked without any use of canonical structures, as follows:

?M : Monoid.type � @add ?M (@zero ?M) : Monoid.sort ?M → Monoid.sort ?M,
?SR : Semiring.type � @one ?SR : Semiring.sort ?SR,

where ?M and ?SR represent unification variables. Type-checking the application
requires solving a unification problem Monoid.sort ?M ≡̂ Semiring.sort ?SR,
which is not trivial and which Coq does not know how to solve without
hints. By declaring Semiring.monoidType : Semiring.type → Monoid.type
as a canonical instance, Coq can become aware of that instantiating ?M with
Semiring.monoidType ?SR is the canonical solution to this unification problem.

Canonical Semiring.monoidType.

The Canonical command takes a definition with a body of the form λx1 . . . xn,
{|p1 := (f1 . . . ); . . . ; pm := (fm . . . )|}, and then synthesizes unification hints
between the projections p1, . . . , pm and the head symbols f1, . . . , fm, respectively,
except for unnamed projections. Since Semiring.monoidType has the following
body, the above Canonical declaration synthesizes the unification hint between
Monoid.sort and Semiring.sort that we need:

fun cT : Semiring.type ⇒
{| Monoid.sort := Semiring.sort cT;

Monoid.class := Semiring.base cT (Semiring.class cT) |}.

In general, for any structures A and B such that B inherits from A with an
implicit coercion B.aType : B.type >-> A.type, B.aType should be declared
as a canonical instance to allow Coq to solve unification problems of the form
A.sort ?A ≡̂ B.sort ?B by instantiating ?A with B.aType ?B.

The second example is −1, whose desugared form is @opp _ (@one _). The
left- and right-hand sides of the top application can be type-checked as follows:

?G : Group.type � @opp ?G : Group.sort ?G → Group.sort ?G,
?SR : Semiring.type � @one ?SR : Semiring.sort ?SR.

In order to type check the application, Coq has to unify Group.sort ?G with
Semiring.sort ?SR, which, again, is not trivial. Moreover, groups and semirings
do not inherit from each other; therefore, this case is not an instance of the
above criteria to define canonical instances. Nevertheless, this unification prob-
lem means that ?G : Group.type and ?SR : Semiring.type are the same, and
they are equipped with both group and semiring axioms, that is, the ring struc-
ture. Thus, its canonical solution should be introducing a fresh unification vari-
able ?R : Ring.type and instantiating ?G and ?SR with Ring.groupType ?R and
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Type

A.type B.type

C.type D.type

Fig. 3. A minimal hierarchy that has
ambiguous joins. Both structure C and
D directly inherit from the structures A

and B; thus, A and B have two joins.

Type

A.type B.type

join(A, B).type

C.type D.type

Fig. 4. A hierachy that disambiguates
the join of A and B in Fig. 3 by redefining
C and D to inherit from a new structure
join(A, B) that inherits from A and B.

Ring.semiringType ?R, respectively. Right after defining Ring.semiringType,
this unification hint can be defined as follows.

Local Definition semiring_groupType (cT : type) : Group.type :=
Group.Pack (Semiring.sort (semiringType cT)) (base _ (class cT)).

This definition is definitionally equal to Ring.groupType, but has a different
head symbol, Semiring.sort instead of Ring.sort, in its first field Group.sort.
Thus, the unification hint we need between Group.sort and Semiring.sort can
be synthesized by the following declarations.

Canonical Ring.semiring_groupType.

This unification hint can also be defined conversely as follows. Whichever of
those is acceptable, but at least one of them should be declared.

Local Definition group_semiringType (cT : type) : Semiring.type :=
Semiring.Pack (Group.sort (groupType cT))
(Semiring.Class _ (Group.base _ (base _ (class cT))) (mixin _ (class cT))).

For any structures A and B that have common (non-strict) subclasses C,
we say that C ∈ C is a join of A and B if C does not inherit from any other
structures in C. For example, if we add the structure of commutative rings to
the hierarchy of Sect. 2, the commutative ring structure is a common subclass
of the group and semiring structures, but is not a join of them because the
commutative ring structure inherits from the ring structure which is another
common subclass of them. In general, the join of any two structures must be
unique, and we should declare a canonical instance to infer the join C as the
canonical solution of unification problems of the form A.sort ?A ≡̂ B.sort ?B.
For any structures A and B such that B inherits from A, B is the join of A and
B; thus, the first criteria to define canonical instances is just an instance of the
second criteria.

Figure 3 shows a minimal hierarchy that has ambiguous joins. If we declare
that C (resp. D) is the canonical join of A and B in this hierarchy, it will also be
accidentally inferred for a user who wants to reason about D (resp. C). Since C and
D do not inherit from each other, inferred C (resp. D) can never be instantiated
with D (resp. C); therefore, we have to disambiguate it as in Fig. 4, so that the
join of A and B can be specialized to both C and D afterwards.
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5 A Simplified Formal Model of Hierarchies

In this section, we define a simplified formal model of hierarchies and show a
metatheorem that ensures the predictability of structure inference. First, we
define the model of hierarchies and inheritance relations.

Definition 5.1. (Hierarchy and inheritance relations). A hierarchy H is
a finite set of structures partially ordered by a non-strict inheritance relation
�∗; that is, �∗ is reflexive, antisymmetric, and transitive. We denote the cor-
responding strict (irreflexive) inheritance relation by �+. A �∗ B and A �+ B
respectively mean that B non-strictly and strictly inherits from A.

Definition 5.2. (Common subclasses). The (non-strict) common subclasses
of A,B ∈ H are C := {C ∈ H | A �∗ C ∧ B �∗ C}. The minimal common
subclasses of A and B is mcs(A,B) := C \ {C ∈ H | ∃C ′ ∈ C, C ′ �+ C}.
Definition 5.3. (Well-formed hierarchy). A hierarchy H is said to be well-
formed if the minimal common subclasses of any two structures are unique; that
is, |mcs(A,B)| ≤ 1 for any A,B ∈ H.

Definition 5.4. (Extended hierarchy). An extended hierarchy H̄ := H∪̇{
}
is a hierarchy H extended with 
 which means a structure that strictly inherits
from all the structures in H; thus, the inheritance relation is extended as follows:

A �̄∗ 
 ⇐⇒ true,

 �̄∗ B ⇐⇒ false (if B �= 
),
A �̄∗ B ⇐⇒ A �∗ B (if A �= 
 and B �= 
).

Definition 5.5. (Join). The join is a binary operator on an extended well-
formed hierarchy H̄, defined as follows:

join(A,B) =

{

C (if A,B ∈ H and mcs(A,B) = {C}),

 (otherwise).

We encoded the above definitions on hierarchies in Coq by using the struc-
ture of partially ordered finite types finPOrderType of the mathcomp-finmap
library [12] and proved the following theorem.

Theorem 5.1. The join operator on an extended well-formed hierarchy is asso-
ciative, commutative, and idempotent; that is, an extended well-formed hierarchy
is a join-semilattice.

If the unification algorithm of Coq respects our model of hierarchies and joins
during structure inference, Theorem5.1 implies that permuting, duplicating, and
contracting unification problems do not change the result of inference; thus, it
states the predictability of structure inference at a very abstract level.
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6 Validating Well-Formedness of Hierarchies

This section presents a well-formedness checking algorithm that can also gen-
erate the exhaustive set of assertions for joins. We implemented this checking
mechanism as a tool hierarchy.ml written in OCaml, which is available as a
MathComp developer utility [45, /etc/utils/hierarchy.ml]. Our checking tool
outputs the assertions as a Coq proof script which can detect missing and mis-
implemented unification hints for joins.

Since a hierarchy must be a finite set of structures (Definition 5.1), Def-
initions 5.2, 5.5, and 5.3 give us computable (yet inefficient) descriptions of
joins and the well-formedness; in other words, for a given hierarchy H and
any two structures A, B ∈ H, one may enumerate their minimal common sub-
classes. Algorithm 1 is the checking algorithm we present, that takes in input
an inheritance relation in the form of an indexed family of strict subclasses
subof(A) := {B ∈ H | A �+ B}. The join function in this algorithm takes two
structures as arguments, checks the uniqueness of their join, and then returns the
join if it uniquely exists. In this function, the enumeration of minimal common
subclasses is done by constructing the set of common subclasses C, and filtering
out subof(C) from C for every C ∈ C. In this filtering process, which is written
as a foreach statement, we can skip elements already filtered out and do not
need to care about ordering of picking up elements, thanks to transitivity.

The hierarchy.ml utility extracts the inheritance relation from a Coq library
by interacting with coqtop, and then executes Algorithm 1 to check the well-
formedness and to generate assertions. The assertions generated from our run-
ning example are shown below.

1 check_join Group.type Monoid.type Group.type.
2 check_join Group.type Ring.type Ring.type.
3 check_join Group.type Semiring.type Ring.type.
4 check_join Monoid.type Group.type Group.type.
5 check_join Monoid.type Ring.type Ring.type.
6 check_join Monoid.type Semiring.type Semiring.type.
7 check_join Ring.type Group.type Ring.type.
8 check_join Ring.type Monoid.type Ring.type.
9 check_join Ring.type Semiring.type Ring.type.

10 check_join Semiring.type Group.type Ring.type.
11 check_join Semiring.type Monoid.type Semiring.type.
12 check_join Semiring.type Ring.type Ring.type.

An assertion check_join t1 t2 t3 asserts that the join of t1 and t2 is t3, and
check_join is implemented as a tactic that fails if the assertion is false. For
instance, if we do not declare Ring.semiringType as a canonical instance, the
assertion of line 9 fails and reports the following error.

There is no join of Ring.type and Semiring.type but it is expected to be
Ring.type.

One may declare incorrect canonical instances that overwrite an existing join.
For example, the join of groups and monoids must be groups; however, defining
the following canonical instance in the Ring section overwrites this join.

Local Definition bad_monoid_groupType : Group.type :=
Group.Pack (Monoid.sort monoidType) (base _ class).



Validating Mathematical Structures 151

Parameters: H is the set of all the structures. subof is the map from
structures to their strict subclasses, which is required to be
transitive: ∀AB ∈ H, A ∈ subof(B) ⇒ subof(A) ⊂ subof(B).

Function join(A, B):
C := (subof(A) ∪ {A}) ∩ (subof(B) ∪ {B});

/* C is the set of all the common subclasses of A and B. */
foreach C ∈ C do C ← C \ subof(C);

/* Since subof is transitive, removed elements of C can be skipped in this
loop, and the ordering of picking elements from C does not matter. */
if C = ∅ then return �; /* There is no join of A and B. */
else if C is singleton {C} then return C; /* C is the join of A and B. */
else fail; /* The join of A and B is ambiguous. */

foreach A ∈ H, B ∈ H do
C := join(A, B); if A 
= B ∧ C 
= � then print “check join A B C.”;

end

Algorithm 1: Well-formedness checking and assertions generation

By declaring Ring.bad_monoid_groupType as a canonical instance, the join of
Monoid.type and Group.type is still Group.type, but the join of Group.type
and Monoid.type becomes Ring.type, because of asymmetry of the unification
mechanism. The assertion of line 1 fails and reports the following error.

The join of Group.type and Monoid.type is Ring.type but it is expected to be
Group.type.

7 Evaluation

This section reports the results of applying our tools to the MathComp library
1.7.0 and on recent development efforts to extend the hierarchy in MathComp
using our tools. MathComp 1.7.0 provides the structures depicted in Fig. 1, except
comAlgType and comUnitAlgType, and lacked a few of the edges; thus, its hier-
archy is quite large. Our coherence checking mechanism found 11 inconvertible
multiple inheritance paths in the ssralg library. Fortunately, those paths concern
proof terms and are intended to be irrelevant; hence, we can ensure no implicit
coercion breaks the modularity of reasoning. Our well-formedness checking tool
discovered 7 ambiguous joins, 8 missing unification hints, and one overwritten
join due to an incorrect declaration of a canonical instance. These inheritance
bugs were found and fixed with the help of our tools; thus, similar issues cannot
be found in the later versions of MathComp.

The first issue was that inheritance from the CountRing structures
(countZmodType and its subclasses with the prefix count) to the FinRing struc-
tures (finZmodType and its subclasses) was not implemented, and consequently
it introduced 7 ambiguous joins. For instance, finZmodType did not inherit
from countZmodType as it should; consequently, they became ambiguous joins
of countType and zmodType. 6 out of 8 missing unification hints should infer
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CountRing or FinRing structures. The other 2 unification hints are in numeric
field (numFieldType and realFieldType) structures. Fixing the issue of missing
inheritance from CountRing to FinRing was a difficult task without tool sup-
port. The missing inheritance itself was a known issue from before our tooling
work, but the sub-hierarchy consisting of the GRing, CountRing, and FinRing
structures in Fig. 1 is quite dense; as a result, it prevents the library developers
from enumerating joins correctly without automation [38].

The second issue was that the following canonical finType instance for
extremal_group overwrote the join of finType and countType, which should
be finType.

Canonical extremal_group_finType := FinType _ extremal_group_finMixin.

In this declaration, FinType is a packager [26, Sect. 7] that takes a type T and
a Finite mixin of T as its arguments and construct a finType instance from
the given mixin and the canonical countType instance for T. However, if one
omits its first argument T with a placeholder as in the above, the packager may
behave unpredictably as a unification hint. In the above case, the placeholder was
instantiated with extremal_group_countType by type inference; as a result, it
incorrectly overwrote the join of finType and countType.

Our tools can also help finding inheritance bugs when extending the hierarchy
of MathComp, improve the development process by reducing the reviewing and
maintenance burden, and allow developers and contributors to focus better on
mathematical contents and other design issues. For instance, Hivert [24] added
new structures of commutative algebras and redefined the field extension and
splitting field structures to inherit from them. In this extension process, he fixed
some inheritance issues with help from us and our tools; at the same time, we
made sure there is no inheritance bug without reviewing the whole boilerplate
code of structures. We ported the order sub-library of the mathcomp-finmap
library [12] to MathComp, redefined numeric domain structures [10, Chap. 4] [11,
Sect. 3.1] to inherit from ordered types, and factored out the notion of norms
and absolute values as normed Abelian groups [1, Sect. 4.2] with the help of
our tools [13,36]. This modification resulted in approximately 10,000 lines of
changes; thus, reducing the reviewing burden was an even more critical issue.
This work is motivated by an improvement of the MathComp Analysis library [3]
[30, Part II], which extends the hierarchy of MathComp with some algebraic and
topological structures [1, Sect. 4] [30, Chap. 5] and is another application of our
tools.

8 Conclusion and Related Work

This paper has provided a thorough analysis of the packed classes methodology,
introduced two invariants that ensure the modularity of reasoning and the pre-
dictability of structure inference, and presented systematic ways to check those
invariants. We implemented our invariant checking mechanisms as a part of the
Coq system and a tool bundled with MathComp. With the help of these tools,
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many inheritance bugs in MathComp have been found and fixed. The MathComp
development process has also been improved significantly.

Coq had no coherence checking mechanism before our work. Säıbi [32, Sect. 7]
claimed that the coherence property “is too restrictive in practice” and “it is bet-
ter to replace conversion by Leibniz equality to compare path coercions because
Leibniz equality is a bigger relation than conversion”. However, most proof assis-
tants based on dependent type theories including Coq still rely heavily on con-
version, particularly in their type checking/inference mechanisms. Coherence
should not be relaxed with Leibniz equality; otherwise, the type mismatch prob-
lems described in Sect. 3 will occur. With our coherence checking mechanism,
users can still declare inconvertible multiple inheritance at their own risk and
responsibility, because ambiguous paths messages are implemented as warnings
rather than errors. The Lean system has an implicit coercion mechanism based
on type class resolution, that allows users to define and use non-uniform implicit
coercions; thus, coherence checking can be more difficult. Actually, Lean has no
coherence checking mechanism; thus, users get more flexibility with this app-
roach but need to be careful about being coherent.

There are three kinds of approaches to defining mathematical structures in
dependent type theories: unbundled, semi-bundled, and bundled approaches [46,
Sect. 4.1.1]. The unbundled approach uses an interface that is parameterized
by carriers and operators, and gathers axioms as its fields, e.g., [41]; in con-
trast, the semi-bundled approach bundles operators together with axioms as in
class_of records, but still places carriers as parameters, e.g., [46]. The bun-
dled approach uses an interface that bundles carriers together with operators
and axioms, e.g., packed classes and telescopes [26, Sect. 2.3] [9,18,29]. The
above difference between definitions of interfaces, in particular, whether car-
riers are bundled or not, leads to the use of different instance resolution and
inference mechanisms: type classes [22,40] for the unbundled and semi-bundled
approaches, and canonical structures or other unification hint mechanisms for
the bundled approach. Researchers have observed unpredictable behaviors [23]
and efficiency issues [46, Sect. 4.3] [41, Sect. 11] in inference with type classes;
in contrast, structure inference with packed classes is predictable, and Theo-
rem 5.1 states this predictability more formally, except for concrete instance
resolution. The resolution of canonical structures is carried out by consulting a
table of unification hints indexed by pairs of two head symbols and optionally
with its recursive application and backtracking [21, Sect. 2.3]. The packed classes
methodology is designed to use this recursive resolution not for structure infer-
ence [17, Sect. 2.3] but only for parametric instances [26, Sect. 4] such as lists and
products, and not to use backtracking. Thus, there is no efficiency issue in struc-
ture inference, except that nested class records and chains of their projections
exponentially slow down the conversion which flat variant of packed classes [14,
Sect. 4] can mitigate. In the unbundled and semi-bundled approaches, a carrier
may be associated with multiple classes; thus, inference of join and our work
on structure inference (Sect. 4, 5, and 6) are problems specific to the bundled
approach. A detailed comparison of type classes and packed classes has also been
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provided in [1]. There are a few mechanisms to extend the unification engines
of proof assistants other than canonical structures that can implement structure
inference for packed classes: unification hints [4] and coercions pullback [31].
For any of those cases, our invariants are fundamental properties to implement
packed classes and structure inference, but the invariant checking we propose
has not been made yet at all.

Packed classes require the systematic use of records, implicit coercions, and
canonical structures. This leads us to automated generation of structures from
their higher-level descriptions [14], which is work in progress.
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Abstract. PyRes is a complete theorem prover for classical first-order
logic. It is not designed for high performance, but to clearly demonstrate
the core concepts of a saturating theorem prover. The system is written in
extensively commented Python, explaining data structures, algorithms,
and many of the underlying theoretical concepts. The prover implements
binary resolution with factoring and optional negative literal selection.
Equality is handled by adding the basic axioms of equality. PyRes uses
the given-clause algorithm, optionally controlled by weight- and age eval-
uations for clause selection. The prover can read TPTP CNF/FOF input
files and produces TPTP/TSTP proof objects.

Evaluation shows, as expected, mediocre performance compared to
modern high-performance systems, with relatively better performance
for problems without equality. However, the implementation seems to be
sound and complete.

1 Introduction

Modern automated theorem provers for first order logic such as E [7,8], Vam-
pire [3], SPASS [12] or iProver [2] are powerful systems. They use optimised
data structures, often very tight coding, and complex work flows and intricate
algorithms in order to maximise performance. Moreover, most of these programs
have evolved over years or even decades. As a result, they are quite daunting for
even talented new developers to grasp, and present a very high barrier to entry.
On the other hand, minimalist systems like leanCoP [5] do not represent typical
current ATP systems, in calculus, structure, or implementation language.

Textbooks and scientific papers, on the other hand, often leave students with-
out a clear understanding of how to translate theory into actual working code.

With PyRes, we try to fill the gap, by presenting a sound and complete the-
orem prover for first order logic based on widely used calculus and architecture,
that is written in an accessible language with a particular focus on readability,
and that explains the important concepts of each module with extensive high-
level comments. We follow an object oriented design and explain data structures
and algorithms as they are used.
c© Springer Nature Switzerland AG 2020
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PyRes consists of a series of provers, from a very basic system without any
optimisations and with naive proof search to a prover for full first-order logic with
some calculus refinements and simplification techniques. Each variant gracefully
extends the previous one with new concepts. The final system is a saturation-
style theorem prover based on Resolution and the given-clause algorithm, option-
ally with CNF transformation and subsumption.

The system is written in Python, a language widely used in education, sci-
entific computing, data science and machine learning. While Python is quite
slow, it supports coding in a very readable, explicit style, and its object-oriented
features make it easy to go from more basic to more advanced implementations.

Students have found PyRes very useful in getting a basic understanding of
the architecture and algorithms of an actual theorem prover, and have claimed
that it enabled them to come to grips with the internals of E much faster than
they could have done otherwise.

PyRes is available as open source/free software, and can be downloaded from
https://github.com/eprover/PyRes.

2 Preliminaries

We assume the standard setting for first-order predicate logic. A signature con-
sists of finite sets P (of predicate symbols) and F (of function symbols) with
associated arities. We write e.g. f/n ∈ F to indicate that f is a function symbol
of arity n. We also assume an enumerable set V = {X,Y,Z, . . .} of variables.
Each variable is a term. Also, if f/n ∈ F and t1, . . . , tn are terms, then so is
f(t1, . . . , tn). This includes the special case of constants (function symbols with
arity 0), for which we omit the parentheses. An atom is composed similarly from
p/n ∈ P and n terms. A literal is either an atom, or a negated atom. A clause
is a (multi-)set of literals, interpreted as the universal closure of the disjunction
of its literals and written as such. As an example, p(X, g(a)) is an atom (and
a literal), ¬q(g(X), a) is a literal, and p(X, g(a)) ∨ ¬q(g(X), a) ∨ p(X,Y ) is a
three-literal clause. A first-order formula is either an atom, or is composed of
existing formulas F,G by negation ¬F , quantification (∀X : F and ∃X : F ), or
any of the usual binary Boolean operators (F ∨ G, F ∧ G, F → G, F ↔ G, . . .).
We assume a reasonable precedence of operators and allow the use of parenthe-
ses where necessary or helpful. A substitution is a mapping from variables to
terms, and is continued to terms, atoms, literals and clauses in the obvious way.
A match from s onto t is a substitution σ such that σ(s) = t (where s and t can
be terms, atoms, or literals). A unifier is similarly a substitution σ such that
σ(s) = σ(t). Of particular importance are most general unifiers. If two terms are
unifiable, a most general unifier is easy to compute, and, up to the renaming of
variables, unique. We use mgu(s, t) to denote the most general unifier of s and t.

PyRes implements standard resolution as described in [6], but like most
implementations, it separates resolution and factoring. It also optionally adds
negative literal selection. This refinement of resolution allows the selection of an

https://github.com/eprover/PyRes
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(BR)
C ∨ A D ∨ ¬B

σ(C ∨ D)
if σ = mgu(A, B) (BF)

C ∨ L ∨ M

σ(C ∨ L)
if σ = mgu(L, M)

(CS)
C σ(C) ∨ D

C

A, B stand for atoms, L, M stand for literals, and C, D are arbitrary clauses.
If negative literal selection is employed, additional constraints to (BR) are that ¬B is
selected, and that no literal in C is selected. (CS) is a contraction rule, i.e. it replaces
the premises by the conclusion, in effect removing the larger clause.

Fig. 1. Binary resolution with subsumption

arbitray negative literal in clauses that have at least one negative literal, and
the restriction of resolution inferences involving this clause to those that resolve
on the selected literal [1]. PyRes also supports subsumption, i.e. the discarding
of clauses covered by a more general clause. The inference system, consisting of
binary resolution (BR), binary factoring (BF) and clause subsumption (CS) is
shown in Fig. 1.

3 System Design and Implementation

3.1 Architecture

The system is based on a layered software architecture. At the bottom is code
for the lexical scanner. This is followed by the logical data types (terms, liter-
als, clauses and formulas), with their associated input/output functions. Logical
operations like unification and matching are implemented as separate modules,
as are the generating inference rules and subsumption. On top of this, there are
clause sets and formula sets, and the proof state of the given-clause algorithms,
with two sets of clauses - one for those clauses that have been processed and one
set that has not yet been processed.

From a logical perspective, the system is structured as a pipeline, starting
with the parser, optionally followed by the clausifier and a module that adds
equality axioms if equality is present, then followed by the core saturation algo-
rithm, and finally, in the case of success, proof extraction and printing. To keep
the learning curve simple, we have created 3 different provers: pyres-simple is a
minimal system for clausal logic, pyres-cnf adds heuristics, indexing, and sub-
sumption, and pyres-fof extends the pipeline to support full first-order logic
with equality [11].

3.2 Implementation

Python is a high-level multi-paradigm programming language that combines
both imperative and functional programming with an object-oriented inheritance
system. It includes a variety of built-in data types, including lists, associative
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arrays/hashes and even sets. It shares dynamic typing/polymorphism, lambdas,
and a built-in list datatype with LISP, one of the classical languages for symbolic
AI and theorem proving. This enables us to implement both terms, the most
frequent data type in a saturating prover, and atoms, as simple nested lists
(s-expressions), using Python’s built-in strings for function symbols, predicate
symbols, and variables.

Literals are implemented as a class, with polarity, atom, and a flag to indicate
literals selected for inference. Logical formulas are implemented as a class of
recursive objects, with atoms as the base case and formulas being constructed
with the usual operators and quantifiers. Top-level formulas are wrapped in
a container object with meta-information. Both these formula containers and
clauses are implemented as classes sharing a common super-class Derivable
that provides for meta-information such as name and origin (read from input
or derived via an inference record). The Clause class extends this with a list of
literals, a TPTP style type, and an optional heuristic evaluation. The WFormula
class extends it with a type and the recursive Formula object.

The ClauseSet class implements simple clause sets. In addition to methods
for adding and removing clauses, it also has an interface to return potential
inference partners for a literal, and to return a superset of possibly subsuming or
subsumed clauses for a query clause. In the basic version, these simply return all
clauses (clause/literal pairs for resolution) from the set. However, in the derived
class IndexedClauseSet, simple indexing techniques (top symbol hashing for
resolution and predicate abstraction indexing, a new technique for subsumption)
return much smaller candidate sets. Resolution, factoring, and subsumption are
implemented as plain functions.

The core of the provers is a given-clause saturation algorithm, based on two
clause sets, the processed clauses and the unprocessed clauses. In the most basic
case, clauses are processed first-in-first out. At each operation of the main loop,
the oldest unprocessed clause is extracted from the unprocessed clauses. All its
factors, and all resolvents between this given clause and all processed clauses,
are computed and added to the unprocessed set. The clause itself is added to
the processed set. The algorithm stops if the given clause is empty (i.e. an
explicit contradiction), or if it runs out of unprocessed clauses. Figure 2 shows
the substantial methods of SimpleProofState. In contrast to most pseudo-code
versions, this actually working code shows e.g. that clauses have to be made
variable-disjoint (here by creating a copy with fresh variables).

The more powerful variant pyres-cnf adds literal selection, heuristic clause
selection with multiple evaluations in the style of E [9], and subsumption to this
loop. For clause selection, each clause is assigned a list of heuristic evaluations
(e.g. symbol counting and abstract creation time), and the prover selects the next
clause in a fixed scheme according to this evaluation (e.g. 5 out of 6 times, it picks
the smallest clause, once it picks the oldest). Subsumption checks are performed
between the given clause and the processed clauses. Forward subsumption checks
if the given clause is subsumed by any processed clause. If so, it is discarded.
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def proces sC lause ( s e l f ) :
”””
Pick a c l au s e from unprocessed and proce s s i t . I f the empty
c l au s e i s found , re turn i t . Otherwise re turn None .
”””
g i v en c l au s e = s e l f . unprocessed . e x t r a c tF i r s t ( )
g i v en c l au s e = g i v en c l au s e . freshVarCopy ( )
print ( ”#” , g i v en c l au s e )
i f g i v en c l au s e . isEmpty ( ) :

# We have found an e x p l i c i t c on t r ad i c t i on
return g i v en c l au s e

new = [ ]
f a c t o r s = computeAllFactors ( g i v en c l au s e )
new . extend ( f a c t o r s )
r e s o l v e n t s = computeAl lResolvents ( g i v en c l au s e , s e l f . p roce s sed )
new . extend ( r e s o l v e n t s )
s e l f . p roce s sed . addClause ( g i v en c l au s e )
for c in new :

s e l f . unprocessed . addClause ( c )
return None

def s a tu ra t e ( s e l f ) :
”””
Main proo f procedure . I f the c l au s e s e t i s found
un s a t i s f i a b l e , r e turn the empty c l au s e as a wi tnes s . Otherwise
re turn None .
”””
while s e l f . unprocessed :

r e s = s e l f . p roce s sC lause ( )
i f r e s != None :

return r e s
else :

return None

While most of the code should be self-explanatory, [] stands for the empty list, and
extend() is a list method that adds the elements of another list at the end of a given
list.

Fig. 2. Simple saturation

Backward subsumption removes processed clauses that are subsumed by the
given clause.

For the full first-order pyres-fof, we first parse the input into a formula set,
and use a naive clausifier to convert it to clause normal form.

The code base has a total of 8553 lines (including comments, docstrings, and
unit tests), or 3681 lines of effective code. For comparison, our prover E has
about 377000 lines of code (about 53000 actual C statements), or 170000 when
excluding the automatically generated strategy code.
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3.3 Experiences

We would like to share some experiences about coding a theorem prover in
Python. First, the high level of abstraction makes many tasks very straightfor-
ward to code. Python’s high-level data types are a good match to the theory
of automated theorem proving, and the combination of object-orientation with
inheritance and polymorphism is particularly powerful.

Python also has good development tools. In particularly, the built-in unit-test
framework (and the coverage tool) are very helpful in testing partial products
and gaining confidence in the quality of the code. The Python profiler (cProfile)
is easy to use and produces useful results. On the negative side, the lack of a
strict type system and the ad-hoc creation of variables has sometimes caused
confusion. In particular, when processing command line options, the relevant
function sometimes has to set global variables. If these are not explicitly declared
as global, a new local variable will be created, shadowing the global variable.
Also, a misspelled name of a class- or structure member will silently create that
member, not throw an error. As an example, we only found out after exten-
sive testing that the prover never applied backward subsumption, not because
of some logic error or algorithmic problem, but because we set the value of
backward subsuption (notice the missing letter “m”) in the parameter set to
True trying to enable it.

Overall, however, programming a prover in Python proved to be a lot easier
and faster than in e.g. programming in C, and resulted in more compact and
easier to read code. This does come at the price of performance, of course. It
might be an interesting project to develop datatype and algorithm libraries akin
to NumPy, TensorFlow, or scikit-learn for ATP application, to bring together
the best of both worlds.

4 Experimental Evaluation

We have evaluated PyRes (in the pyres-fof incarnation) with different param-
eter settings on all clausal (CNF) and unsorted first-order (FOF) problems
from TPTP 7.2.0. Table 1 summarizes the results. We have also included some
data from E 2.4, a state-of-the-art high-performance prover, Prover9 [4] (release
1109a), and leanCoP 2.2. Prover9 has been used as a standard reference in the
CASC competition for several years. LeanCoP is a very compact prover written
in Prolog. Experiments were run on StarExec Miami, a spin-off of the original
StarExec project [10]. The machines were equipped with 256 GB of RAM and
Intel Xeon CPUs running at 3.20 GHz. The per-problem time-limit was set to
300 s. For Prover9 and leanCoP, we used data included with the TPTP 7.2.0
distribution.

The Best configuration for PyRes enables forward and backward subsump-
tion, negative literal selection (always select the largest literal by symbol count),
uses indexing for subsumption and resolution, and processes given clauses inter-
leaving smallest (by symbol count) and oldest clauses with a ratio of 5 to 1. The
other configurations are modified from the Best configuration as described in the
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table. For the Best configuration (and the E results), we break the number of
solutions into proofs and (counter-)saturations, for the other configurations we
only include the total number of successes. All data (and the system and scripts
used) is available at http://www.eprover.eu/E-eu/PyRes1.2.html.

It should be noted that Prover9, E, and leanCoP are all using an automatic
mode to select different heuristics and strategies. leanCoP also uses strategy
scheduling, i.e. it successively tries several different strategies.

We present the results for different problem classes: UEQ (unit problems
with equality), CNE (clausal problems without equality), CEQ (clausal problem
with equality, but excluding UEQ), FNE (FOF problems without equality) and
FEQ (FOF problems with equality).

Table 1. PyRes performance (other systems for comparison)

Strategy UEQ CNE CEQ FNE FEQ All

Class size (1193) (2383) (4442) (1771) (6305) (16094)

Best (all) 116 1048 587 765 860 3376

Best (proofs) 113 946 499 632 725 2915

Best (sat) 3 102 88 133 135 461

No indexing 116 1042 567 736 829 3290

No subsumption 37 448 94 425 123 1127

Forward sub. only 115 1039 581 765 861 3361

Backward sub. only 40 541 106 479 143 1309

No literal selection 73 737 321 584 478 2193

E 2.4 auto (all) 813 1939 2648 1484 4054 10938

E 2.4 auto (proofs) 797 1621 2415 1171 3849 9853

E 2.4 auto (sat) 16 318 233 313 205 1085

Prover9-1109a (all) 728 1316 1678 709 2001 6432

LeanCoP 2.2 (all) 6 0 0 969 1826 2801

A note on the UEQ results: Most of the problems are specified as unit prob-
lems in CNF. A small number are expressed in first-order format. While the
original specifications are unit equality, the added equality axioms are non-unit.
This explains the rather large decrease in the number of successes if negative
literal selection is disabled.

Overall, in the Best configuration, PyRes solves 3376 of the 16094 prob-
lems. Disabling indexing increases run time by a factor of around 3.7 (for prob-
lems with the same search behaviour), but this translates to only about 90 lost
successes. Disabling subsumption, on the other hand, reduces the number of
solutions found by 2/3rd. However, if we compare the effect of forward and
backward subsumption, we can see that forward subsumption is crucial, while
backward subsumption plays a very minor role. If we look at the detailed data,

http://www.eprover.eu/E-eu/PyRes1.2.html
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there are about 10 times more clauses removed by forward subsumption than
by backward subsumption. This reflects the fact that usually smaller clauses are
processed first, and a syntactically bigger clause cannot subsume a syntactically
smaller clause. Finally, looking at negative literal selection, we can see that this
extremely simple feature increases the number of solutions by over 1100.

Comparing PyRes and E, we can see the difference between a rather naive
resolution prover and a high-performance superposition prover. Maybe not unex-
pectedly, the advantage of the more modern calculus is amplified for problems
with equality. Overall, PyRes can solve about 30% of the problems E can solve.
But there is a clear partition into problems with equality (14% in UEQ, 22%
in CEQ, 21% in FEQ) and problems without equality (54% in CNE, 52% in
FNE). PyRes does relatively much better with the latter classes. Prover9 falls
in between E and PyRes. LeanCoP, for the categories it can handle, is similar
to Prover9, but like PyRes is relatively stronger on problems without equality,
and relatively weaker on problems with equality.

5 Conclusion

We have described PyRes, a theorem prover developed as a pedagogical example
to demonstrate saturation-based theorem proving in an accessible, readable, well-
documented way. The system’s complexity is orders of magnitude lower than
that of high-performance provers, and first exposure to students has been very
successful. We hope that the lower barrier of entry will enable more students to
enter the field.

Despite its relative simplicity, PyRes demonstrates many of the same prop-
erties as high-performance provers. Indexing speeds the system up significantly,
but only leads to a moderate increase in the number of problems solved. Sim-
ple calculus refinements like literal selection and subsumption (the most basic
simplification technique) have much more impact, as have search heuristics.

It is tempting to extend the system to e.g. the superposition calculus. How-
ever, implementing term orderings and rewriting would probably at least double
the code base, something that is in conflict with the idea of a small, easily
understood system. We are, however, working on a Java version, to see if the
techniques demonstrated in Python can be easily transferred to a new language
by developers not intimately familiar with automated theorem proving.
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Abstract. In interactive theorem provers (ITPs), extensible syntax is
not only crucial to lower the cognitive burden of manipulating complex
mathematical objects, but plays a critical role in developing reusable
abstractions in libraries. Most ITPs support such extensions in the form
of restrictive “syntax sugar” substitutions and other ad hoc mechanisms,
which are too rudimentary to support many desirable abstractions. As
a result, libraries are littered with unnecessary redundancy. Tactic lan-
guages in these systems are plagued by a seemingly unrelated issue: acci-
dental name capture, which often produces unexpected and counterin-
tuitive behavior. We take ideas from the Scheme family of programming
languages and solve these two problems simultaneously by proposing a
novel hygienic macro system custom-built for ITPs. We further describe
how our approach can be extended to cover type-directed macro expan-
sion resulting in a single, uniform system offering multiple abstraction
levels that range from supporting simplest syntax sugars to elaboration
of formerly baked-in syntax. We have implemented our new macro sys-
tem and integrated it into the upcoming version (v4) of the Lean theorem
prover. Despite its expressivity, the macro system is simple enough that
it can easily be integrated into other systems.

1 Introduction

Mixfix notation systems have become an established part of many modern ITPs
for attaching terse and familiar syntax to functions and predicates of arbitrary
arity.

As a further extension, all shown systems also allow binding names inside
mixfix notations.
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While these extensions differ in the exact syntax used, what is true about
all of them is that at the time of the notation declaration, the system already,
statically knows what parts of the term are bound by the newly introduced
variable. This is in stark contrast to macro systems in Lisp and related languages
where the expansion of a macro (a syntactic substitution) can be specified not
only by a template expression with placeholders like above, but also by arbitrary
syntax transformers, i.e. code evaluated at compile time that takes and returns
a syntax tree.1 As we move to more and more expressive notations and ideally
remove the boundary between built-in and user-defined syntax, we argue that
we should no more be limited by the static nature of existing notation systems
and should instead introduce syntax transformers to the world of ITPs.

However, as usual, with greater power comes greater responsibility. By using
arbitrary syntax transformers, we lose the ability to statically determine what
parts of the macro template can be bound by the macro input (and vice versa).
Thus it is no longer straightforward to avoid hygiene issues (i.e. accidental cap-
turing of identifiers; [11]) by automatically renaming identifiers. We propose to
learn from and adapt the macro hygiene systems implemented in the Scheme
family of languages for interactive theorem provers in order to obtain more gen-
eral but still well-behaved notation systems.

After giving a practical overview of the new, macro-based notation system
we implemented in the upcoming version of Lean (Lean 4) in Sect. 2, we describe
the issue of hygiene and our general hygiene algorithm, which should be just as
applicable to other ITPs, in Sect. 3. Section 4 gives a detailed description of the
implementation of this algorithm in Lean 4. In Sect. 5, we extend the use case
of macros from mere syntax substitutions to type-aware elaboration. Finally,
we have already encountered hygiene issues in the current version of Lean in a
different part of the system: the tactic framework. We discuss how these issues
are inevitable when implementing reusable tactic scripts and how our macro
system can be applied to this hygiene problem as well in Sect. 6.

Contributions. We present a system for hygienic macros optimized for theo-
rem proving languages as implemented2 in the next version of the Lean theorem
prover, Lean 4.

– We describe a novel, efficient hygiene algorithm to employ macros in ITP
languages at large: a combination of a white-box, effect-based approach for
detecting newly introduced identifiers and an efficient encoding of scope meta-
data.

1 These two macro declaration styles are commonly referred to as pattern-based vs.
procedural.

2 https://github.com/leanprover/lean4/blob/IJCAR20/src/Init/Lean/Elab.

https://github.com/leanprover/lean4/blob/IJCAR20/src/Init/Lean/Elab
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– We show how such a macro system can be seamlessly integrated into existing
elaboration designs to support type-directed expansion even if they are not
based on homogeneous source-to-source transformations.

– We show how hygiene issues also manifest in tactic languages and how they
can be solved with the same macro system. To the best of our knowledge,
the tactic language in Lean 4 is the first tactic language in an established
theorem prover that is automatically hygienic in this regard.

2 The New Macro System

Lean’s current notation system as shown in Sect. 1 is still supported in Lean
4, but based on a much more general macro system; in fact, the
keyword itself has been reimplemented as a macro, more specifically as a
macro-generating macro making use of our tower of abstraction levels. The
corresponding Lean 4 command3 for the example from the previous section

expands to the macro declaration

where the syntactic category (term) of placeholders and of the entire macro is now
specified explicitly. The right-hand side uses an explicit syntax quasiquotation
to construct the syntax tree, with syntax placeholders (antiquotations) prefixed
with $. As suggested by the explicit use of quotations, the right-hand side may
now be an arbitrary Lean term computing a syntax object; in other words, there
is no distinction between pattern-based and procedural macros in our system. We
can now use this abstraction level to implement simple command-level macros,
for example.

Syntactic categories can be specified explicitly for antiquotations as in $id: ident
where otherwise ambiguous. itself is another command-level macro that,
for our example, expands to two commands

that is, a pair of parser extension (which we will not further discuss in this
paper) and syntax transformer. Our reason for ultimately separating these two
concerns is that we can now obtain a well-structured syntax tree pre-expansion,
i.e. a concrete syntax tree, and use it to implement source code tooling such
as auto-completion, go-to-definition, and refactorings. Implementing even just
the most basic of these tools for the Lean 3 frontend that combined parsing
and notation expansion meant that they had to be implemented right inside

3 All examples including full context can be found in the supplemental material at
https://github.com/Kha/macro-supplement.

https://github.com/Kha/macro-supplement
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the parser, which was not an extensible or even maintainable approach in our
experience.

Both and are in fact further macros for regular Lean
definitions encoding procedural metaprograms, though users should rarely need
to make use of this lowest abstraction level explicitly. Both commands can only
be used at the top level; we are not currently planning support for local macros.

There is no more need for the complicated scoped syntax since the desired
translation can now be specified naturally, without any need for further
annotations.

The lack of static restrictions on the right-hand side ensures that this works
just as well with custom binding notations, even ones whose translation cannot
statically be determined before substitution.

Here we explicitly make use of the and abstraction level for its
convenient syntactic pattern matching syntax. and are “open” in
the sense that multiple transformers for the same declaration can be
defined; they are tried in reverse declaration order by default up to the first
match (though this can be customized using explicit priority annotations).

As a final example, we present a partial reimplementation of the arithmetic
“bigop” notations found4 in Coq’s Mathematical Components library [12] such as

for summing over a filtered sequence of elements. The specific bigop notations
are defined in terms of a single fold operator; however, because Coq’s nota-
tion system is unable to abstract over this new indexing syntax, every specific
bigop notation has to redundantly repeat every specific index notation before
delegating to . In total, the 12 index notations for are duplicated
for 3 different bigops in the file.

In contrast, using our system, we can introduce a new syntactic category for
index notations, interpret it once in , and define new bigops on top of it
without any redundancy.

4 https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/
bigop.v.

https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/bigop.v
https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/bigop.v
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The full example is included in the supplement.

3 Hygiene Algorithm

In this section, we will give a mostly self-contained description of our algorithm
for automatic hygiene applied to a simple recursive macro expander; we postpone
comparisons to existing hygiene algorithms to Sect. 7.

Hygiene issues occur when transformations such as macro expansions lead to
an unexpected capture (rebinding) of identifiers. For example, given the notation

we would not expect the term x to be closed because intuitively there is
no x in scope at the argument position of ; that the implementation of the
macro makes use of the name internally should be of no concern to the macro
user.

Thus hygiene issues can also be described as a confusion of scopes when
syntax parts are removed from their original context and inserted into new con-
texts, which makes name resolution strictly after macro expansion (such as in
a compiler preceded by a preprocessor) futile. Instead we need to track scopes
as metadata before and during macro expansion so as not to lose information
about the original context of identifiers. Specifically,

1. when an identifier captured in a syntax quotation matches one or more top-
level symbols5, the identifier is annotated with a list of these symbols as
top-level scopes to preserve its extra-macro context (which, because of the
lack of local macros, can only contain top-level bindings), and

2. when a macro is expanded, all identifiers freshly introduced by the expansion
are annotated with a new macro scope to preserve the intra-macro context.
Macro scopes are appended to a list, i.e. ordered by expansion time. This
full “history of expansions” is necessary to treat macro-producing macros
correctly, as we shall see in Sect. 3.2.

Thus, the expansion of the above term is (an equivalent of) where
1 is a fresh macro scope appended to the macro-introduced x , preventing it
from capturing the x from the original input. In general, we will style hygienic
identifiers in the following as n.msc1.msc2.. . ..mscn{tsc1,. . .,tscn} where n
is the original name, msc are macro scopes, and tsc top-level scopes, eliding

5 Lean allows overloaded top-level bindings whereas local bindings are shadowing.
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the braces if there are no top-level scopes as in the example above. We use
the dot notation to suggest both the ordered nature of macro scopes and their
eventual implementation in Sect. 4. We will now describe how to implement these
operations in a standard macro expander.

3.1 Expansion Algorithm

The macro expander described in this section bundles the execution of macros
and insertion of their results with interspersed name resolution to track scopes
and ensure hygiene of identifiers. As we shall see below, top-level scopes on
binding names are always discarded by it. Thus we will define a symbol more
formally as an identifier together with a list of macro scopes, such as x.1 above.

Given a global context (a set of symbols), the expander does a conventional
top-down expansion, keeping track of an initially-empty local context (another
set of symbols). When a binding is encountered, the local context is extended
with that symbol; top-level scopes on bindings are discarded since they are only
meaningful on references. When a reference, i.e. an identifier not in binding
position, is encountered, it is resolved according to the following rules:

1. If the local context has an entry for the same symbol, the reference binds to
the corresponding local binding; any top-level scopes are ignored.

2. Otherwise, if the identifier is annotated with one or more top-level scopes or
matches one or more symbols in the global context, it binds to all of these
(to be disambiguated by the elaborator).

3. Otherwise, the identifier is unbound and an error is generated.

In the common incremental compilation mode of ITPs, every command is
fully processed before subsequent commands. Thus, an expander for such a sys-
tem will not extend the global context by itself, but pass the fully expanded
command to the next compilation step before being called again with the next
command’s unexpanded syntax tree and a possibly extended global context.

Notably, our expander does not add macro scopes to identifiers by itself,
either, much in contrast to other expansion algorithms. We instead delegate
this task to the macro itself, though in a completely transparent way for all
pattern-based and for many procedural macros. We claim that a macro should
in fact be interpreted as an effectful computation since two expansions of the
same identifier-introducing macro should not return the same syntax tree to
avoid unhygienic interactions between them. Thus, as a side effect, it should
apply a fresh macro scope to each captured identifier. In particular, a syntax
quotation should not merely be seen as a datum, but implemented as an effectful
value that obtains and applies this fresh scope to all the identifiers contained in
it to immediately ensure hygiene for pattern-based macros. Procedural macros
producing identifiers not originating from syntax quotations might need to obtain
and make use of the fresh macro scope explicitly. We give a specific monad-based
[14] implementation of effectful syntax quotations as a regular macro in Sect. 4.
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3.2 Examples

Given the following input,

we incrementally parse, expand, and elaborate each declaration before advancing
to the next one. For a first, trivial example, let us focus on the expansion of the
second line. At this point, the global context contains the symbol x (plus any
default imports that we will ignore here). Descending into the right-hand side
of the definition, we first add y to the local context. The reference x does not
match any local definitions, so it binds to the matching top-level definition.

In the next line, the built-in macro expands to the definitions

When a top-level macro application unfolds to multiple declarations, we expand
and elaborate these incrementally as well to ensure that declarations are in
the global context of subsequent declarations. When recursively expanding the

declaration (we will assume for this example that itself
is primitive) in the global context , we first visit the syntax quotation on
the left-hand side. The identifier e inside of it is in an antiquotation and thus not
captured by the quotation. It is in binding position for the right-hand side, so we
add e to the local context. Visiting the right-hand side, we find the quotation-
captured identifier x and annotate it with the matching top-level definition of the
same name; we do not yet know that it is in a binding position. When visiting
the reference e, we see that it matches a local binding and do not add top-level
scopes.

with the global context , we descend into the right-hand side. We expand
the macro given a fresh macro scope 2, which is applied to any captured
identifiers.

We add the symbol x.2 (discarding the top-level scope x) to the local context
and finally visit the reference x. The reference does not match the local binding
x.2 but does match the top-level binding x, so it binds to the latter.
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Now let us briefly look at a more complex macro-macro example demonstrating
use of the macro scopes stack:

If we call m f, we apply a macro scope 1 to all captured identifiers, then incre-
mentally process the two new declarations.

If we call the new macro mm, we apply one more macro scope 2.

When processing these new definitions, we see that the scopes ensure the
expected name resolution. In particular, we now have global declarations f .1,
f .2, and f .1.2 that show that storing only a single macro scope would have led
to a collision.

4 Implementation

Syntax objects in Lean 4 are represented as an inductive type of nodes (or nonter-
minals), atoms (or terminals), and, as a special case of nonterminals, identifiers.

An additional constructor represents missing parts from syntax error recovery.
Atoms and identifiers are annotated with source location metadata unless gen-
erated by a macro. Identifiers carry macro scopes inline in their Name while
top-level scopes are held in a separate list. The additional Nat is an implemen-
tation detail of Lean’s hierarchical name resolution.

The type Name of hierarchical names precedes the implementation of the
macro system and is used throughout Lean’s implementation for referring to
(namespaced) symbols.

The syntax `a.b is a literal of type Name for use in meta-programs. The
numeric part of Name is not accessible from the surface syntax and reserved for
internal names; similar designs are found in other ITPs. By reusing Name for
storing macro scopes, but not top-level scopes, we ensure that the new definition
of symbol from Sect. 3.1 coincides with the existing Lean type and no changes
to the implementation of the local or global context are necessary for adopting
the macro system.
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A Lean 4 implementation of the expansion algorithm described in the pre-
vious section is given in Fig. 1; the full implementation including examples
is included in the supplement. As a generalization, syntax transformers have
the type Syntax where the TransformerM monad gives
access to the global context and a fresh macro scope per macro expansion. The
expander itself uses an extended ExpanderM monad that also stores the local
context and the set of registered macros. We use the Lean equivalent of Haskell’s
do notation [13] to program in these monads.

As usual, the expander has built-in knowledge of some “core forms” (lines
3–17) with special expansion behavior, while all other forms are assumed to be
macros and expanded recursively (lines 20–22). Identifiers form one base case
of the recursion. As described in the algorithm, they are first looked up in the
local context (recall that the val of an identifier includes macro scopes), then as
a fall back in the global context plus its own top-level scopes. mkTermId : Name

creates an identifier without source information or top-level scopes,
which are not needed after expansion. mkOverloadedConstant implements the
Lean special case of overloaded symbols to be disambiguated by elaboration;
systems without overloading support should throw an ambiguity error instead
in this case.

As an example of a core binding form, the expansion of a single-parameter
fun is shown in lines 13–17 of Fig. 1. It recursively expands the given parameter
type, then expands the body in a new local context extended with the value of
id. Here in particular implements the discarding
of top-level scopes from binders.

Finally, in the macro case, we fetch the syntax transformer for the given node
kind, call it in a new context with a fresh current macro scope, and recurse.

Syntax quotations are given as one example of a macro: they do not have
built-in semantics but transform into code that constructs the appropriate syntax
tree (expandStxQuot in Fig. 2). More specifically, a syntax quotation will, at
runtime, query the current macro scope msc from the surrounding TransformerM
monad and apply it to all captured identifiers, which is done in quoteSyntax.
quoteSyntax recurses through the quoted syntax tree, reflecting its constructors.
Basic datatypes such as String and Name are turned into Syntax via the typeclass
method quote. For antiquotations, we return their contents unreflected. In the
case of identifiers, we resolve possible global references at compile time and reflect
them, while msc is applied at runtime. Thus a quotation `(a + $b) inside a global
context where the symbol a matches declarations a.a and b.a is transformed to
the equivalent of

This implementation of syntax quotations itself makes use of syntax quotations
for simplicity and thus is dependent on its own implementation in the previous
stage of the compiler. Indeed, the helper variable msc must be renamed should the
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Fig. 1. Abbreviated implementation of a recursive expander for our macro system

name already be in scope and used inside an antiquotation. Note that quoteSyntax
is allowed to reference the same msc as expandStxQuot because they are part of
the same macro call and the current macro scope is unchanged between them.

5 Integrating Macros into Elaboration

The macro system as described so far can handle most syntax sugars of Lean
3 except for ones requiring type information. For example, the anonymous con-
structor is sugar for (c e ...) if the expected type of the expression is
known and it is an inductive type with a single constructor c. While trivial to
parse, there is no way to implement this syntax as a macro if expansion is done
strictly prior to elaboration. To the best of our knowledge, none of the ITPs
listed in the introduction support hygienic elaboration extensions of this kind,
but we will show how to extend their common elaboration scheme in that way
in this section.

Elaboration6 can be thought of as a function in
an appropriate monad ElabM7 from a (concrete or abstract) surface-level syntax
tree type Syntax to a fully-specified core term type Expr [15]. We have presented
the (concrete) definition of Syntax in Lean 4 in Sect. 4; the particular definition
6 At the term level; other levels work analogously but with different output types.
7 Or some other encoding of effects.



Beyond Notations 177

Fig. 2. Simplified syntax transformer for syntax quotations

of Expr is not important here. While such an elaboration system could readily be
composed with a type-insensitive macro expander such as the one presented in
Sect. 3, we would rather like to intertwine the two to support type-sensitive but
still hygienic-by-default macros (henceforth called elaborators) without having to
reimplement macros of the kind discussed so far. Indeed, these can automatically
be adapted to the new type given an adapter between the two monads, similarly
to the adaption of macros to expanders in [6]:

Because most parts of our hygiene system are implemented by the expander for
syntax quotations, the only changes to an elaboration system necessary for sup-
porting hygiene are storing the current macro scope in the elaboration monad (to
be passed to the expansion monad in the adapter) and allocating a fresh macro
scope in elabTerm and other recursion points, which morally now represent the
starting point of a macro’s expansion. Thus elaborators immediately benefit from
hygiene as well whenever they use syntax quotations to construct unelaborated
helper syntax objects to pass to elabTerm. In order to support syntax quota-
tions in these two and other monads, we generalize their implementation to a
new monad typeclass implemented by both monads.

The second operation is not used by syntax quotations directly, but can be used
by procedural macros to manually enter new macro call scopes.



178 S. Ullrich and L. de Moura

As an example, the following is a simplified implementation of the anonymous
constructor syntax mentioned above.

The [termElab] attribute registers this elaborator for the given syntax node
kind. $args∗ is an antiquotation splice that extracts/injects a syntactic sequence
of elements into/from an Array Syntax. The array by default includes separators
such as “,” as Syntax.atoms in order to be lossless, which we here filter out using
getSepElems. The function synthesizes a hygienic
reference to the given constant name by storing it as a top-level scope and
applying a reserved macro scope to the constructed identifier.

This implementation fails if the expected type is not yet sufficiently known
at this point. The actual implementation8 of this elaborator extends the code by
postponing elaboration in this case. When an elaborator requests postponement,
the system returns a fresh metavariable as a placeholder and associates the input
syntax tree with it. Before finishing elaboration, postponed elaborators associ-
ated with unsolved metavariables are retried until they all ultimately succeed,
or else elaboration is stuck because of cyclic dependencies and an error is signed.

6 Tactic Hygiene

Lean 3 includes a tactic framework that, much like macros, allows users to
write custom automation either procedurally inside a Tactic monad (renamed
to TacticM in Lean 4) or “by example” using tactic language quotations, or in a
mix of both [9]. For example, Lean 3 uses a short tactic block to prove injection
lemmas for data constructors.

Unfortunately, this code unexpectedly broke in Lean 3 when used from a library
for homotopy type theory that defined its own propext and Iff . intro declara-
tions;9 in other words, Lean 3 tactic quotations are unhygienic and required

8 https://github.com/leanprover/lean4/blob/IJCAR20/src/Init/Lean/Elab/
BuiltinNotation.lean#L43.

9 https://github.com/leanprover/lean/pull/1913.

https://github.com/leanprover/lean4/blob/IJCAR20/src/Init/Lean/Elab/BuiltinNotation.lean#L43
https://github.com/leanprover/lean4/blob/IJCAR20/src/Init/Lean/Elab/BuiltinNotation.lean#L43
https://github.com/leanprover/lean/pull/1913
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manual intervention in this case. Just like with macros, the issue with tactics is
that binding structure in such embedded terms is not known at declaration time.
Only at tactic run time do we know all local variables in the current context that
preceding tactics may have added or removed, and therefore the scope of each
captured identifier.

Arguably, the Lean 3 implementation also exhibited a lack of hygiene in the
handling of tactic-introduced identifiers: it did not prevent users from referencing
such an identifier outside of the scope it was declared in.

Coq’s similar Ltac tactic language [5] exhibits the same issue and users are
advised not to introduce fixed names in tactic scripts but to generate fresh names
using the fresh tactic first,10 which can be considered a manual hygiene solution.

Lean 4 instead extends its automatically hygienic macro implementation to
tactic scripts by allowing regular macros in the place of tactic invocations.

By the same hygiene mechanism described above, introduced identifiers such
as h are renamed so as not to be accessible outside of their original scope,
while references to global declarations are preserved as top-level scope annota-
tions. Thus Lean 4’s tactic framework resolves both hygiene issues discussed here
without requiring manual intervention by the user. Expansion of tactic macros
in fact does not precede but is integrated into the tactic evaluator evalTactic :

such that recursive macro calls are expanded lazily.

Here the quotation kind tactic followed by a pipe symbol specifies the parser
to use for the quotation, since tactic syntax may otherwise overlap with term
syntax. automatically infers it from the given syntax category, but cannot
be used here because the parser for repeat would not yet be available in the right-
hand side. When $t eventually fails, the recursion is broken without visiting and
expanding the subsequent repeat macro call. The try tactical is used to ignore
this eventual failure.

While we believe that macros will cover most use cases of tactic quotations
in Lean 3, their use within larger TacticM metaprograms can be recovered by
passing such a quotation to evalTactic:

TacticM implements the MonadQuotation typeclass for this purpose.

10 https://github.com/coq/coq/issues/9474.

https://github.com/coq/coq/issues/9474
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7 Related Work

The main inspiration behind our hygiene implementation was Racket’s new Sets
of Scopes [10] hygiene algorithm. Much like in our approach, Racket annotates
identifiers both with scopes from their original context as well as with additional
macro scopes when introduced by a macro expansion. However, there are some
significant differences: Racket stores both types of scopes in a homogeneous,
unordered set and does name resolution via a maximum-subset check. For both
simplicity of implementation and performance, we have reduced scopes to the
bare minimal representation using only strict equality checks, which we can easily
encode in our existing Name implementation. In particular, we only apply scopes
to matching identifiers and only inside syntax quotations. This optimization is
of special importance because top-level declarations in Lean and other ITPs are
not part of a single, mutually recursive scope as in Racket, but each open their
own scope over all subsequent declarations, which would lead to a total num-
ber of scope annotations quadratic in the number of declarations using the Sets
of Scopes algorithm. Finally, Racket detects macro-introduced identifiers using
a “black-box” approach without the macro’s cooperation following the marking
approach of [11]: a fresh macro scope is applied to all identifiers in the macro
input, then inverted on the macro output. While elegant, a naive implementation
of this approach can result in quadratic runtime compared to unhygienic expan-
sion and requires further optimizations in the form of lazy scope propagation
[7], which is difficult to implement in a pure language such as Lean. Our “white-
box” approach based on the single primitive of an effectful syntax quotation,
while slightly easier to escape from in procedural syntax transformers, is sim-
ple to implement, incurs minimal overhead, and is equivalent for pattern-based
macros.

The idea of automatically handling hygiene in the macro, and not in the
expander, was introduced in [4], though only for pattern-based macros. MetaML
[18] refined this idea by tying hygiene more specifically to syntax quotations
that could be used in larger metaprogram contexts, which Template Haskell [17]
interpreted as effectful (monadic) computations requiring access to a fresh-names
generator, much like in our design. However, both of the latter systems should
perhaps be characterized more as metaprogramming frameworks than Scheme-
like macro systems: there are no “macro calls” but only explicit splices and so
only built-in syntax with known binding semantics can be captured inside syntax
quotations. Thus the question of which captured identifiers to rename becomes
trivial again, just like in the basic notation systems discussed in Sect. 1.

While the vast majority of research on hygienic macro systems has focused
on S-expression-based languages, there have been previous efforts on marrying
that research with non-parenthetical syntax, with different solutions for combin-
ing syntax tree construction and macro expansion. The Dylan language requires
macro syntax to use predefined terminators and eagerly scans for the end of a
macro call using this knowledge [2], while in Honu [16] the syntactic structure of a
macro call is discovered during expansion by a process called “enforestation”. The
Fortress [1] language strictly separates the two concerns into grammar extensions
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and transformer declarations, much like we do. Dylan and Fortress are restricted
to pattern-based macro declarations and thus can make use of simple hygiene
algorithms while Honu uses the full generality of the Racket macro expander.
On the other hand, Honu’s authors “explicitly trade expressiveness for syntactic
simplicity” [16]. In order to express the full Lean language and desirable exten-
sions in a macro system, we require both unrestricted syntax of macros and
procedural transformers.

Many theorem provers such as Coq, Agda, Idris, and Isabelle not already
based on a macro-powered language provide restricted syntax extension mech-
anisms, circumventing hygiene issues by statically determining binding as seen
in Sect. 1. Extensions that go beyond that do not come with automatic hygiene
guarantees. Agda’s macros11, for example, operate on the De Bruijn index-based
core term level and are not hygienic.12 The ACL2 prover in contrast uses a sub-
set of Common Lisp as its input language and adapts the hygiene algorithm of
[7] based on renaming [8]. The experimental Cur [3] theorem prover is a kind
of dual to our approach: it takes an established language with hygienic macros,
Racket, and extends it with a dependent type system and theorem proving tools.
ACL2 does not support tactic scripts, while in Cur they can be defined via reg-
ular macros. However, this approach does not currently provide tactic hygiene
as defined in Sect. 6.13

8 Conclusion

We have proposed a new macro system for interactive theorem provers that
enables syntactic abstraction and reuse far beyond the usual support of mix-
fix notations. Our system is based on a novel hygiene algorithm designed with a
focus on minimal runtime overhead as well as ease of integration into pre-existing
codebases, including integration into standard elaboration designs to support
type-directed macro expansion. Despite that, the algorithm is general enough to
provide a complete hygiene solution for pattern-based macros and provides flex-
ible hygiene for procedural macros. We have also demonstrated how our macro
system can address unexpected name capture issues that haunt existing tactic
frameworks. We have implemented our method in the upcoming version (v4) of
the Lean theorem prover; it should be sufficiently attractive and straightforward
to implement to be adopted by other interactive theorem proving systems as
well.

Acknowledgments. We are very grateful to the anonymous reviewers, David Thrane
Christiansen, Gabriel Ebner, Matthew Flatt, Sebastian Graf, Alexis King, Daniel Sel-
sam, and Max Wagner for extensive comments, corrections, and advice.

11 https://agda.readthedocs.io/en/v2.6.0.1/language/reflection.html#macros.
12 https://github.com/agda/agda/issues/3819.
13 https://github.com/wilbowma/cur/issues/104.

https://agda.readthedocs.io/en/v2.6.0.1/language/reflection.html#macros
https://github.com/agda/agda/issues/3819
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Abstract. Faces play a central role in the combinatorial and computa-
tional aspects of polyhedra. In this paper, we present the first formal-
ization of faces of polyhedra in the proof assistant Coq. This builds on
the formalization of a library providing the basic constructions and oper-
ations over polyhedra, including projections, convex hulls and images
under linear maps. Moreover, we design a special mechanism which auto-
matically introduces an appropriate representation of a polyhedron or a
face, depending on the context of the proof. We demonstrate the usability
of this approach by establishing some of the most important combinato-
rial properties of faces, namely that they constitute a family of graded
atomistic and coatomistic lattices closed under sublattices.

1 Introduction

A face of a polyhedron is defined as the set of points reaching the maximum (or
minimum) of a linear function over the polyhedron. Faces are ubiquitous in the
theory of polyhedra, and especially in the complexity analysis of optimization algo-
rithms. As an illustration, the simplex method, one of the most widely used algo-
rithms for solving linear programming, finds an optimal solution by iterating over
the graph of the polyhedron, i.e. the adjacency graph of vertices and edges, which
respectively constitute the 0- and 1-dimensional faces. The problem of finding a
pivoting rule, i.e. a way to iterate over the graph, which ensures to reach an opti-
mal vertex in a polynomial number of steps, is a central problem in computational
optimization, related with Smale’s ninth problem for the twenty-first century [25].
Faces of polyhedra are also involved in the worst-case complexity analysis of other
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optimization methods, such as interior point methods; see [2,13]. This has moti-
vated several mathematical problems on the combinatorics of faces, which are of
independent interest. For example, the question of finding a polynomial bound
on the diameter of the graphs of polyhedra (in the dimension and the number of
defining inequalities) is still unresolved, despite recent progress [6,7,23]. We refer
to [12] for a recent account on the subject.

Other applications of polyhedra and their faces arise in formal verification, in
which passing from a representation by inequalities to a representation as the con-
vex hull of finitely many points and vice versa, is a critical computational step. The
correctness analysis of the algorithms solving this problem, extensively relies on
the understanding of the mathematical structure of faces, in particular of vertices,
edges and facets (i.e. 1-co-dimensional faces).

In this paper, we formalize a significant part of the properties of faces in the
proof assistant Coq. As usually happens in the formalization of mathematics,
one of the key difficulties is to find the right representation for objects in the
proof assistant. For polyhedra and their faces, the choice of the representation
depends on the context. In more detail, every polyhedron admits infinitely many
descriptions by linear inequality systems. In mathematics textbooks, proofs are
carried out by choosing one (often arbitrary) inequality system for a polyhedron
P, and then manipulating the faces of P or other subsequent polyhedra through
inequality systems which derive from the one chosen for P. Proving that these
are valid inequality systems is usually trivial for the reader, but not for the
proof assistant. We exploit the so-called canonical structures of Coq in order
to achieve this step automatically. This allows us to obtain proof scripts which
only focus on the relevant mathematical content, and which are closer to what
mathematicians write.

Thanks to this approach, we show that the faces of a polyhedron P form
a finite lattice, in which the order is the set inclusion, the bottom and top
elements are respectively the empty set and P, and the meet operation is the set
intersection. We establish that the face lattice is both atomistic and coatomistic,
meaning that every element is the join (resp. the meet) of a finite set of atoms
(resp. coatoms). Atoms and coatoms respectively correspond to minimal and
maximal elements distinct from the top and bottom elements. Moreover, we
prove that the face lattice is graded, i.e. every maximal chain has the same
length. Finally, we show that the family of face lattices of polytopes (convex hulls
of finitely many points) is closed under taking sublattices, i.e. any sublattice of
the face lattice of a polytope is isomorphic to the face lattice of another polytope.
As a consequence of that, we prove that any sublattice of height two is isomorphic
to a diamond.

Formalizing these results requires the introduction of several important and
non-trivial notions. First of all, our work relies on the construction of a library
manipulating polyhedra, which provides all the basic operations over them,
including intersections, projections, convex hulls, as well as special classes of
polyhedra such as affine subspaces. Dealing with faces also requires to formalize
the dimension of a polyhedron, and its relation with the dimension of its affine
hull, i.e. the smallest affine subspace containing it. Some classes of faces also
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retain a particular attention, such as vertices, edges and facets. For instance, we
formalize the vertex figure, which is a geometric construction to manipulate the
faces containing a fixed vertex.

Throughout this work, we have drawn much inspiration from the textbooks
of Schrijver [24] and Ziegler [28] to guide us in our approach. The source code
of our formalization is done within the Coq-Polyhedra project, and is available
at https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020, in the
directory theories. We rely on the Mathematical Components library [18]
(abridged MathComp thereafter) for basic data structures such as finite sets,
ordered fields, and vector spaces.

The paper is organized as follows. In Sect. 2, we present how we define the
basic operations and constructions over polyhedra. Section 3 deals with the cen-
tral problem of finding an appropriate representation of faces, and explains how
this leads to a seamless formalization of important properties like the dimension.
Section 4 demonstrates the practical usability of our approach, by presenting the
formalization of the face lattice and its main characteristics. Finally, we discuss
related work in Sect. 5. A link to the relevant source files is given beside section
titles in order to help the reader finding the results in the source code of the
formalization.

2 Constructing a Library Manipulating Polyhedra

2.1 The Quotient Type of Polyhedra1,2

We recall that a (convex) polyhedron of Rn is defined as the intersection of finitely
many halfspaces {x ∈ R

n : 〈α, x〉 ≥ β}, where α ∈ R
n, β ∈ R, and 〈·, ·〉 is the

Euclidean scalar product, i.e. 〈y, z〉 :=
∑

1≤i≤n yizi. Equivalently, a polyhedron
can be represented as the solution set of a linear affine system Ax ≥ b, where
A ∈ R

m×n and b ∈ R
m, in which case each inequality Aix ≥ bi corresponds to a

halfspace.
Throughout the paper, we use the variable n : nat to represent the dimen-

sion of the ambient space. Instead of dealing with polyhedra over the reals, we
introduce a variable R : realFieldType which represents an abstract ordered field
with decidable ordering. In this setting, 'cV[R]_n (or 'cV_n for short) stands for
the type of column vectors of size n over the field R.

As we mentioned earlier, the representation by inequalities (or halfspaces) of
a convex polyhedron P is not unique. The first step in our work is to introduce
a quotient structure, in order to define the basic operations (membership of a
point, inclusion, etc.) regardless of the exact representation of the polyhedron.
The quotient structure is based on a concrete type denoted by 'hpoly[R]_n (or
simply 'hpoly_n, when R is clear from the context). The prefix letter “h” is taken
from the terminology H-polyhedron or H-representation which is used to refer to

1 https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/
hpolyhedron.v.

2 https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/
polyhedron.v.

https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/hpolyhedron.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/hpolyhedron.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/polyhedron.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/polyhedron.v
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representations by halfspaces. The elements of 'hpoly_n are records consisting of
a matrix A ∈ R

m×n and a vector b ∈ R
m representing the system Ax ≥ b:

Record hpoly := HPoly { m : nat; A : 'M_(m,n); b : 'cV_m }.

We equip 'hpoly_n with a membership predicate stating that, given P : 'hpoly_n

and x : 'cV_n, we have x \in P if and only if x satisfies the system of inequalities
represented by P. Two H-polyhedra are equivalent when they correspond to the
same solution set, i.e. their membership predicate agree. We prove that this
equivalence relation is decidable, by exploiting the implementation of the simplex
method of [3]. The latter allows us to check that an inequality 〈α, x〉 ≥ β is valid
over an H-polyhedron P : 'hpoly_n by minimizing the linear function x �→ 〈α, x〉
over P, and checking that the optimal value is greater than or equal to β. Then,
deciding whether P Q : 'hpoly_n are equivalent amounts to checking that each
inequality in the system defining Q is valid over P, and vice versa.

The quotient structure is built following the approach of [10]. This introduces
a quotient type, denoted here by 'poly[R]_n (or simply 'poly_n). Its elements
are referred to as polyhedra and represent equivalence classes of H-polyhedra. In
practice, each polyhedron is a record formed by a canonical representative of
the class, and the proof that the representative is indeed the canonical one. We
point out that the notion of canonical representative has no special mathematical
meaning or structure.

We define the membership predicate of each P : 'poly_n as the membership
predicate of its canonical representative. As expected, equality between two poly-
hedra of 'poly_n and extensional equality (denoted =i below) of their membership
predicates are equivalent properties:

Lemma poly_eqP {P Q : 'poly_n} : (P = Q) <-> (P =i Q).

2.2 Operations over Polyhedra3

We first lift a number of basic primitives from the type 'hpoly_n to the quotient
type 'poly_n, including the subset relation P `<=` Q and the intersection oper-
ation P `&` Q. The related properties are also lifted by using the fact that the
membership predicate of any element of 'hpoly_n is extentionally equivalent to
the membership predicate of its equivalence class in 'poly_n.

Even though we now work on the quotient type, we still need a way to build
polyhedra from sets of inequalities. While H-polyhedra rely on inequality con-
straints under the matrix form, we choose now to be closer to the mathematical
definition of polyhedra as the intersection of finitely many halfspaces. To this
end, we introduce the type lrel[R]_n (or simply lrel_n when R is clear from the
context), which is isomorphic to the cartesian product 'cV_n * R of vectors of
size n and elements of R. This type is used to construct linear affine inequalities

3 https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/
polyhedron.v.

https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/polyhedron.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/polyhedron.v
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or equalities. In more detail, if e represents the pair (α, β) ∈ R
n × R, then the

polyhedron [hs e] corresponds to the halfspace 〈α, x〉 ≥ β:

Lemma in_hs (e : lrel_n) x : x \in [hs e] <-> ('[e.1,x] >= e.2).

Similarly, the element e is used to build a hyperplane denoted [hp e]:

Lemma in_hp (e : lrel_n) x : x \in [hp e] <-> ('[e.1,x] = e.2).

(In the last two statements, the terms e.1 and e.2 respectively stand for the first
and second component of the pair formed by e, while '[.,.] stands for the scalar
product between two vectors.)

We can now construct polyhedra defined by sets of inequalities. To this aim,
we use the type {fset lrel_n} of finite sets of elements of type lrel_n. Then,
given base : {fset lrel_n}, the polyhedron denoted by 'P(base) is defined as the
intersection of the halfspaces [hs e] for e \in base. In particular, we introduce
the empty polyhedron [poly0] and the full polyhedron [polyT], which are defined
by the inequality 1 ≤ 0 and by no inequality respectively. As we shall see in
Sect. 3, the formalization of faces requires us to manipulate polyhedra defined
by systems mixing inequalities and equalities. We denote such a polyhedron by
'P^=(base; I), where both base and I are of type {fset lrel_n}. It represents the
intersection of the polyhedron 'P(base) with the hyperplanes [hp e] for e \in I.

The cornerstone of more advanced constructions is the primitive proj0, which,
given P : 'poly_(n.+1), builds its projection on the last n components. This is
carried out by implementing Fourier–Motzkin elimination algorithm (see e.g. [24,
Chapter 12]). In short, this algorithm starts from a system of linear inequalities,
and constructs pairwise combinations of them in order to eliminate the first vari-
able. The result is that the new system is a valid representation of the projected
polyhedron. This is written as follows:

Theorem proj0P (P : 'poly_(n.+1)) :

reflect (exists2 y : 'cV_(n.+1), x = row' 0 y & y \in P) (x \in proj0 P).

where row' 0 y : 'cV_n is the projection of y on the last n components, and
reflect stands for a logical equivalence between the two properties. This projec-
tion primitive then allows us to construct many more polyhedra. For example,
we can build the image of a polyhedron P by the linear map represented by
a matrix A ∈ R

k×n. The latter is obtained by embedding P in a polyhedron
over the variables (x, y) ∈ R

n+k, intersecting it with the equality constraints
y = Ax, and finally projecting it on the last k components. The construction of
the convex hull of finitely many points immediately follows. Indeed, the convex
hull of a finite set V = {v1, . . . , vp} ⊂ R

n can be defined as the image of the
simplex Δp := {μ ∈ (R≥0)p :

∑p
i=1 μi = 1} by the linear map μ �→ ∑p

i=1 μiv
i.

We denote the convex hull by conv V where V : {fset 'cV_n} represents a finite
set of points, and we obtain (cf. Lemma in_convP) that x \in conv V if and only
if x is a barycentric combination of the points of V. The convex hull constructor
yields some other elementary yet very useful constructions, such as polyhedra
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Fig. 1. A polyhedron, defined by the inequalities on the right, and its faces. The vertices
(0-dim. faces) are represented by blue dots, while the edges (1-dim. faces) are depicted
in black. Arrows correspond to linear functions associated with some of the faces, in the
sense of Definition 1. We also indicate beside them the set I of the defining inequalities
turned into equalities, as in Theorem 1. (Color figure online)

reduced to a single point (denoted [pt x] where x : 'cV_n) or segments between
two points (denoted [segm x; y] where x y : 'cV_n).

Finally, we recover some important results of the theory of polyhedra which
were proved in [3]. In more detail, we lift a version of Farkas Lemma expressed
on the type 'hpoly_n, and then obtain the Strong Duality Theorem, the com-
plementary slackness conditions (which are conditions characterizing the opti-
mality of solutions of linear programs), and some separation results. We refer to
Section Separation and Section Duality for further details on these statements.

3 Representing Faces of Polyhedra4

3.1 Equivalent Definitions of Faces

Faces are commonly defined as sets of optimal solutions of linear programs,
i.e. problems consisting in minimizing a linear function over a polyhedron.

Definition 1. A set F is a face of the polyhedron P ⊂ R
n if F = ∅ or there

exists c ∈ R
n such that F is the set of points of P minimizing the linear function

x �→ 〈c, x〉 over P.

We note that P is a face of itself (take c = 0). Figure 1 provides an illustration
of this definition.

In formal proving, the choice of the definition plays a major role on the abil-
ity to prove complex properties of the considered objects. A drawback of the
previous definition is that it does not directly exhibit some of the most basic
properties of faces: for instance, the fact that a face is itself a polyhedron, the
fact that the intersection of two faces is a face, or the fact that a polyhedron
4 https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/

poly_base.v.

https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/poly_base.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/poly_base.v
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has finitely many faces. In contrast, these properties are straightforward conse-
quences of the following characterization of faces:

Theorem 1. Let P = {x ∈ R
n : Ax ≥ b}, where A ∈ R

m×n and b ∈ R
m. A set

F is face of P if and only if F = ∅ or there exists I ⊂ {1, . . . , m} such that

F = P ∩ {x ∈ R
n : Aix = bi for all i ∈ I}. (1)

Nevertheless, Theorem 1 is expressed in terms of a certain H-representation of
the polyhedron P, while the property of being a face is intrinsic to the set P.
This raises the problem of exploiting the most convenient representation of P to
apply the characterization of Theorem 1. We illustrate this on the proof of the
following property, which is used systematically (or even implicitly) in almost
every proof of statements on faces:

Proposition 1. If F is a face of P, then any face of F is a face of P.

Assume P is represented by the inequality system Ax ≥ b, and take I as in (1).
Let F ′ be a nonempty face of F . We apply Theorem 1 with F as P, by using the
following H-representation of F : Ax ≥ b and −Aix ≥ −bi for i ∈ I. We get that
F ′ = F ∩ {x ∈ R

n : Aix = bi for all i ∈ I ′} for a certain set I ′ ⊂ {1, . . . ,m}. We
deduce that F ′ = P ∩{x ∈ R

n : Aix = bi for all i ∈ I ∪I ′}, and conclude that F ′

is a face of P by applying Theorem 1. While the choice of the H-representation
of P is irrelevant, we point out that the proof would not have been so immediate
if we had initially chosen an arbitrary H-representation of F .

3.2 Working Within a Fixed Ambient H-Representation

Theorem 1 leads us to the following strategy: when dealing with the faces of
a polyhedron, and possibly with the faces of these faces, etc., we first set an
H-representation of the top polyhedron, and then manipulate the subsequent H-
representations of faces in which some inequalities are strengthened into equali-
ties, like in (1).

The top H-representation will be referred to as the ambient representation,
and is formalized as a term base of type {fset lrel_n} representing a finite set of
inequalities. Then, we introduce the type {poly base}, which corresponds to the
subtype of 'poly_n whose inhabitants are the polyhedra Q satisfying the following
property:

Definition has_base base Q :=

(Q != [poly0]) -> exists I : {fsubset base}, Q = 'P^=(base; I).

where {fsubset base} is the type of subsets of base. We recall that 'P^=(base; I)

denotes the polyhedron defined by the inequalities in base, with the additional
constraint that the inequalities in the subset I are satisfied with equality. This
means that {poly base} corresponds to the polyhedra defined by equalities or
inequalities in base. The choice of the name base is reminiscent of the terminology
used in fiber bundles. Indeed, as we shall see in the next sections, several proofs
will adopt the scheme of fixing a base locally, and then working on polyhedra
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of type {poly base}. Following this analogy, the latter may be thought of as a
fiber.

We now present a first formalization of the set of faces relying on the subtype
{poly base}:

Definition pb_face_set (P : {poly base}) :=

[set Q : {poly base} | Q `<=` P].

It defines the set of faces of P : {poly base} as the set of elements of {poly base}

contained in P. With this definition, some properties of faces come for free. For
instance, the finiteness of the set of faces follows from the fact that there are only
finitely many inhabitants of the type {fsubset base}, and subsequently of {poly

base}. Another example is that Proposition 1 straightforwardly derives from the
transitivity of the inclusion relation `<=`.

Some other properties come at the price of proving that a polyhedron inhab-
its the type {poly base}. As an example, if P : {poly base} and c : 'cV_n, the
polyhedron argmin P c : 'poly_n is defined as the set of points of P minimizing
the function fun x => '[c,x]. Showing that argmin P c is a face of P essentially
amounts to proving the following property:

Lemma argmin_baseP (P : {poly base}) c : has_base base (argmin P c).

Indeed, the inclusion argmin P c `<=` P is immediate from the definition of the
polyhedron argmin P c. However, even once Lemma argmin_baseP is proved, we
cannot yet write a statement of the form argmin P c \in pb_face_set P due to
the fact that argmin P c has type 'poly_n. In order to turn it into an element
of the subtype {poly base}, we need to explain in more detail how this type is
defined. The type {poly base} is a short-hand notation for the following inductive
type:

Inductive poly_base base :=

PolyBase { pval :> 'poly_n ; _ : has_base base pval }.

In other words, an element of type {poly base} is a record formed by an element
pval : 'poly_n and a proof that the property has_base base pval holds. While we
could construct the element PolyBase (argmin_baseP P c), we introduce a more
general scheme to cast elements of type 'poly_n to {poly base} whenever possible.
This scheme relies on Coq canonical structures, which provide an automatic
way to recover a term of record type from the head symbol. The association is
declared as follows:

Canonical argmin_base (P : {poly base}) c := PolyBase (argmin_baseP P c).

One restriction of Coq is that canonical structures are resolved only when unify-
ing types, and not arbitrary terms. This is why our primitive poly_base_of, which
casts a Q : 'poly_n to a {poly base}, encapsulates the value Q in a phantom type,
i.e. a type isomorphic to the unit type, but with a dependency to Q.
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Definition poly_base_of (Q : {poly base}) (_ : phantom 'poly_n Q) := Q.

Notation "Q %:poly_base" := (poly_base_of (Phantom _ Q)).

In consequence, writing (argmin P c)%:poly_base triggers the unification algo-
rithm between the term argmin P c and a value of type {poly base}, which is
resolved using the Canonical declared above. We finally end up with the follow-
ing statement

Lemma argmin_pb_face_set base (P : {poly base}) c :

(argmin P c)%:poly_base \in pb_face_set P.

whose proof is trivial: it just amounts to proving the inclusion argmin P c `<=` P.
We declare other canonical structures over elementary constructions for

which the property has_base base _ can be shown to be satisfied. This includes
the intersection P `&` Q of two elements P Q : {poly base}, the empty set [poly0

], or polyhedra of the form 'P(base) or 'P^=(base; .). This allows us to cast com-
plex terms to the type {poly base}, or, said differently, to prove automatically
that they satisfy the property has_base base _. As an example, the term

('P^=(base; I) `&` argmin 'P(base) c)%:poly_base

typechecks thanks to multiple resolutions of canonical structures on the afore-
mentioned declarations, without requiring extra proof from the user. We refer
to [21] for the use of canonical structures in formal mathematics.

We point out that Lemma argmin_pb_face_set is a proof of one side of the equiv-
alence between the definition of faces brought by pb_face_set and Definition 1
(i.e. the equivalence in Theorem 1). The other side can be written as follows:

Theorem pb_faceP base (P Q : {poly base}) :

Q \in pb_face_set P -> Q != [poly0] ->

exists c, Q = (argmin P c)%:poly_base.

When Q is nonempty, we use a set I such that Q = 'P^=(base, I), and we build c

as the sum of the vectors -e.1 : 'cV_n for e \in I. The equality Q = argmin P c

follows from a routine verification of the complementary slackness conditions.

3.3 Getting Free from Ambient Representations

So far, we have worked with a fixed ambient representation base, and restricted
the formalization of faces to polyhedra that can be expressed as terms of type
{poly base}. We now describe how to formalize the set of faces of any polyhedron
of type 'poly_n as a finite set of polyhedra of the same type, without sacrificing
the benefits brought by {poly base}.

First, we exploit the observation that for each polyhedron P : 'poly_n, there
exists base : {fset lrel_n} and P' : {poly base} such that P = pval P' (recall
that pval also stands for the coercion from the type {poly base} to 'poly_n).
This can be proved by exploiting the definition of the quotient type 'poly_n.
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Indeed, P admits a representative hrepr P : 'hpoly_n corresponding to a certain
H-representation, from which we can build a term base : {fset lrel_n} such
that P = pval 'P(base)%:poly_base.

Second, we introduce another quotient structure over the type 'poly_n, in
order to deal with the fact that a polyhedron may correspond to several ele-
ments of type {poly base} for different values of base. Our construction amounts
to showing that 'poly_n is isomorphic to the quotient of the dependent sum type∑

base {poly base} by the equivalence relation in which Q1 : {poly base1} and
Q2 : {poly base2} are equivalent if pval Q1 = pval Q2. Given a polyhedron P of
type 'poly_n, this construction provides us a canonical ambient representation
denoted \repr_base P : {fset lrel_n}, and an associated canonical representa-
tive \repr P of type {poly (\repr_base P)} satisfying P = pval (\repr P).

We are now ready to define the set of faces of P in full generality:

Definition face_set (P : 'poly_n) :=

[fset (pval F) | F in pb_face_set (\repr P)]%fset.

which corresponds to the image by the coercion pval of the face set of \repr P

(here, pval has type {poly (\repr_base P)} -> 'poly_n). Of course, we need to
check that this definition is independent of the choice of the representative of P

in this new quotient structure. This is written as follows:

Lemma face_set_morph (base : {fset lrel_n}) (P : {poly base}) :

face_set P = [fset pval F | F in pb_face_set P]%fset.

The proof relies on the geometric properties of the elements of pb_face_set estab-
lished in Sect. 3.2. Indeed, they imply that, regardless of the choice of the ambi-
ent representation, the set [fset pval F | F in pb_face_set P] always consists
of the empty set [poly0] and the polyhedra of the form argmin P c.

Now that this architecture is settled, we can prove some of the basic proper-
ties of faces. Most of the proof make use of the following elimination principle:

Lemma polybW (Pt : 'poly_n -> Prop) :

(forall (base : {fset lrel_n}) (Q : {poly base}), Pt Q) ->

(forall P : 'poly_n, Pt P).

which means that, given a property to be proved on any polyhedron P : 'poly_n,
it is sufficient to prove it over the type {poly base} for any choice of base. In
practice, Lemma polybW is used to introduce an ambient representation. Let us
illustrate it on the proof that the intersection of two faces of P is a face of P:

Lemma face_set_polyI (P Q1 Q2 : 'poly_n) :

Q1 \in face_set P -> Q2 \in face_set P -> Q1 `&` Q2 \in face_set P.

Proof.

elim/polybW: P => base P.

case/face_setP => {}Q1 Q1_sub_P.

case/face_setP => {}Q2 Q2_sub_P.

by rewrite face_setE ?(poly_subset_trans poly_subsetIl) ?pvalP.

Qed.
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The first line destructs P, and introduces the ambient representation base and an
element still named P, now of type {poly base}. The second and third lines suc-
cessively consume the assumptions that Q1 and Q2 are faces, then introduce two
elements of type {poly base} having the same name and respectively satisfying
Q1 `<=` P and Q2 `<=` P. Finally, the tactics rewrite face_setE replaces the goal
Q1 `&` Q2 \in face_set P by the following two subgoals: Q1 `&` Q2 `<=` P and
has_base base (Q1 `&` Q2). Since (Q1 `&` Q2) `<=` Q1 and Q1 `<=` P, the former
is proved by transitivity of the subset relation. The latter is automatically pro-
vided by the canonical structure mechanism described in Sect. 3.2, triggered by
the generic statement

Lemma pvalP base (P : {poly base}) : has_base base P.

3.4 From Faces to the Affine Hull and Dimension

We argue that the approach that we have introduced to represent faces of poly-
hedra also perfectly fits the formalization of the affine hull and dimension of
polyhedra. Recall that the affine hull of a polyhedron refers to the smallest
(inclusionwise) affine subspace of R

n containing it, and the dimension of the
polyhedron is defined as the dimension of this subspace (i.e., the dimension of
the underlying vector subspace).

To this end, given an ambient representation base and a polyhedron P of
type {poly base}, we introduce the set of active inequalities of P, i.e. the set of
e \in base such that the corresponding inequality is satisfied as equality over P.
This is written as the inclusion P `<=` [hp e] (recall that [hp e] is the hyper-
plane '[e.1, x] = e.2). The active inequalities form a subset of base denoted
{eq P}. Equivalently, when P is non-empty, {eq P} corresponds to the largest
(inclusionwise) subset I such that P = 'P^=(base; I).

It is a classic property of polyhedra that the affine hull of a non-empty poly-
hedron is the affine subspace defined by the equalities in {eq P}. We take this
property as a definition:

Definition pb_hull base (P : {poly base}) :=

if P != [poly0] then affine << {eq P} >> else [poly0].

Definition hull (P : 'poly_n) := pb_hull (\repr P).

The second definition lifts the affine hull from {poly base} to 'poly_n. Of course,
we show that the resulting affine subspace hull P is independent of the choice
of base (cf. Lemma hullE). We establish that this definition is correct w.r.t. the
usual mathematical definition discussed above, i.e.:

Lemma hullP P U : (P `<=` affine U) <-> (hull P `<=` affine U).

Here, U corresponds to a vector subspace of lrel_n, and the term affine U stands
for the affine subspace given by the intersection of the affine equalities repre-
sented by the elements of U. (The term << {eq P} >> above corresponds to the
vector subspace spanned by the elements of {eq P}.)
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We follow the same scheme to formalize the dimension dim P of a polyhedron
P : 'poly_n, which we define as one plus the co-dimension of the vector span of
{eq P}. The shift by one originates from the fact that dim P ranges over the type
nat of natural numbers. Therefore, we have to set the dimension of the empty
set [poly0] to 0, while it is common to set it to −1 in the literature. As expected,
we obtain the following statement:

Lemma dim_hull (P : 'poly_n) : dim P = dim (hull P).

Like in mathematics textbooks, Lemma dim_hull is the natural way to establish the
basic statements concerning the dimension, i.e. by reducing to elementary proofs
over vector spaces. For instance, we establish that the dimension is monotone
(Lemma dimS), and compute the dimension for important classes of polyhedra.
This includes the fact that segments of two distinct points have dimension 2

(remember the shift by one of our formalization):

Lemma dim_segm (x y : 'cV_n) : dim [segm x; y] = (x != y).+1.

and that, conversely, any compact polyhedron of dimension 2 is a segment of
two points:

Lemma dim2P (P : 'poly_n) : compact P -> dim P = 2 ->

exists x, exists2 y, P = [segm x; y] & x != y.

(We point out that compact P is simply defined as the fact that P is a bounded
set, as polyhedra are topologically closed.) Similarly, we prove that polyhedra
reduced to a single point are precisely the ones having dimension 1, that proper
hyperplanes have codimension 1, etc. We refer to Section Dimension for a detailed
account of our results.

4 The Face Lattice5

In this section, we illustrate how the framework that we have introduced in
Sect. 3 serves as a foundation for formalizing the structural properties of faces.
We refer to Fig. 2 for an example of the properties presented below.

At the core of the formalization lies the theory of ordered structures such as
partial orders, semilattices and lattices. Some of these structures have been very
recently introduced in the MathComp library – for instance, the non-distributive
lattice structure has been introduced in early 2020. However, as we shall see in
this section, the formalization of the face lattice requires to implement additional
objects, such as graded lattices, sublattices, and lattice homomorphisms. This
development is gathered in the module xorder.v of the Coq-Polyhedra project.

The first property that we can immediately formalize following the results of
Sect. 3 is the finite lattice structure over the set face_set P for P : 'poly_n. The

5 https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/
poly_base.v.

https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/poly_base.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/poly_base.v
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Fig. 2. A three-dimensional polytope (left) and the Hasse diagram of its face lattice
(right). A interval of height 2 is depicted in blue. (Color figure online)

partial order is given by the polyhedron inclusion `<=`, the meet operator is the
intersection `&` (as a consequence of Lemma face_set_polyI), while the bottom
and top elements are respectively [poly0] and P. As a finite lattice, the join
operator Q `|` Q' can be built as the meet of all the faces of P containing both
Q and Q'.

4.1 Facets and Gradedness

Recall that a lattice (L,≺) is said to be graded if there exists a rank function
Φ: L → N such that: (i) Φ(u) < Φ(v) whenever u ≺ v, (ii) u � v and Φ(u)+1 <
Φ(v) implies that there exists w ∈ L satisfying u ≺ w ≺ v. Equivalently, this is
a lattice in which all maximal chains have the same length.

In the case of the face lattice, the rank function can be defined as the dimen-
sion of the face. Property (i) is proved as follows. If Q and Q' are both faces of
P and Q `<` Q', then dim Q <= dim Q', as the dimension is monotone. Moreover,
hull Q `<=` hull Q'. If we assume dim Q = dim Q', then we can prove that hull

Q is equal to hull Q' (as affine subspaces of the same dimension). We conclude
that Q = Q' by the fact that F = P `&` hull F for any face F of P.

The proof of Property (ii) (see Lemma graded) relies on the formalization of
facets of polyhedra, and their combinatorial characterization in terms of active
inequalities. We recall that a facet of a non-empty polyhedron P is a face of
P of dimension dim P − 1. A classical result states that when P is given by
a non-redundant system of inequalities Ax ≥ b (i.e. the H-representation is
minimal inclusionwise), the facets are precisely the polyhedra of the form P∩{x ∈
R

n : Aix = bi} for any i such that P �⊂ {x ∈ R
n : Aix = bi}. The formalization

of this statement first goes through the construction of non-redundant bases for
any polyhedron, and the proof of the following elimination principle:



198 X. Allamigeon et al.

Lemma non_redundant_baseW (Pt : 'poly_n -> Prop) :

(forall base, non_redundant base -> Pt 'P(base)%:poly_base) ->

(forall P : 'poly_n, Pt P).

This allows to specialize P to a polyhedron of the form 'P(base) where base is a
minimal set of inequalities defining P. Using the techniques of Sect. 3, we switch
to a proof environment dealing with polyhedra in {poly base}, and establish that
the facets of P are precisely the polyhedra of the form 'P^=(base; [fset i]) for
i \notin {eq P} (where [fset i] is the singleton consisting of i). We refer to the
statements Lemma dim_facet and Lemma facetP for the exact description.

Going back to the description of the proof of Property (ii), we assume that
Q and Q' are two faces of P satisfying Q `<=` Q' and (dim Q).+1 < dim Q'. We
first consider the case where Q' = P. Since Q `<` P, we can pick an element i

in {eq Q} but not in {eq P}, and verify that the facet F := 'P^=(base; [fset i])

satisfies Q `<` F `<` P. The general case where Q' is a proper face of P is handled
by using the fact that Q \in face_set P and Q `<=` Q' ensures that Q is a face of
Q' (see Lemma face_set_of_face).

4.2 Vertices, Atomicity and Coatomicity

The atoms of a lattice L are the elements u ∈ L\{⊥} such that there is no v ∈ L
satisfying ⊥ ≺ v ≺ u, where ⊥ denotes the bottom element of L. In the face
lattice of a polyhedron P, they correspond to the faces F of P such that dim F = 1,
i.e. to the vertices of P (remember the shift by one of our formalization). This
motivates the introduction of the vertex set of P, which satisfies the following
two characteristic properties:

Lemma in_vertex_setP (P : 'poly_n) x :

(x \in vertex_set P) <-> ([pt x] \in face_set P).

Lemma face_dim1 (P Q : 'poly_n) : Q \in face_set P -> dim Q = 1 ->

exists2 x, Q = [pt x] & x \in vertex_set P.

A central property is that if P is compact, then it coincides with the convex hull
of its vertices:

Theorem conv_vertex_set (P : 'poly_n) :

compact P -> P = conv (vertex_set P).

Remark that this shows that any compact polyhedron is a polytope. Together
with the converse statement (Lemma compact_conv in polyheron.v), this brings a
proof of Minkowski Theorem.

The latter result allows us to prove that, when P is compact, its face lattice
is atomistic, meaning that any face of P is the join of a finite set of atoms:

Lemma atomisticP (Q : face_set P) :

reflect (exists2 S, (forall x, x \in S -> atom x) & Q = \join_(x in S) x)

(atomistic Q).

Lemma face_atomistic (Q : face_set P) : atomistic Q.
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To prove this statement for Q, we set S to the set of vertices of Q. The latter
are vertices of P as well, and thus correspond to atoms of the face lattice of
P. The inclusion Q `<=` \join_(x in vertex_set Q) x is established by substitut-
ing Q by conv (vertex_set Q) thanks to Lemma conv_vertex_set, which makes the
statement obvious by construction of the convex hull and the join operator. The
opposite inclusion Q `>=` \join_(x in vertex_set Q) x is trivial by property of
the join operator, and this concludes the proof.

The coatoms of L are defined dually: these are the elements u ∈ L\{�} such
that there is no v ∈ L satisfying u ≺ v ≺ �, where � denotes the top element of
L. The coatomicity of face_set P means that any face of P is the intersection of
facets of P. Our proof exploits the characterization of facets presented in Sect. 4.1.
We refer to Lemma face_coatomistic for more details.

4.3 Closedness Under Taking Sublattices

The closedness under sublattices of the face lattices of polytopes states that if
Q and Q' are two faces of a polytope P such that Q `<=` Q', then the interval
'[< Q; Q' >], i.e. the sublattice formed by the faces F : face_set P satisfying
Q `<=` F `<=` Q', is isomorphic to the face lattice of a polytope of dimension
dim Q' - dim Q.

The interest of this property is that it allows involved induction schemes
on the height of the face lattice. As an example, we can establish the so-called
diamond property, namely that every sublattice of height 2 of the face lattice

consists of precisely four faces ordered as . Equivalently, this means that for

any two faces F and F ′ of a polytope P such that dim F ′ = dimF+2 and F ⊂ F ′,
there are precisely two faces between them (see Lemma diamond for the statement,
and Fig. 2 for an illustration). The proof exploits the closedness by sublattices,
and the subsequent isomorphism of any interval of height 2 with the face lattice
of a polytope P' verifying dim P' = 2. Lemma dim2P reduces it to the face lattice
of a segment [segm x; y], which is given by the following characterization:

Lemma face_set_segm (x y : 'cV_n) :

face_set [segm x; y] = [fset [poly0]; [pt x]; [pt y]; [segm x; y]].

The proof of the closedness by sublattices is done as follows. First, we reduce
to the case where Q' = P, since the face lattice of Q' is isomorphic to the sublattice
of the faces of P contained in Q'. We are left with the following statement:

Lemma closed_by_interval_r (Q : face_set P) :

exists (P' : 'compact_poly_n) (f : {omorphism '[< Q; P >] -> face_set P'}),

bijective f.

The proof is done by induction on the dimension of Q. We restrict the exposition
to the base case dim Q = 1, i.e. when Q corresponds to a vertex x of P, since
the general case is just handled by iterating the process. When dim Q = 1, the
construction of the polyhedron P' is achieved by the vertex figure method. It
consists in slicing the polytope P with a hyperplane [hp e] separating the vertex
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x

P
H

P

Fig. 3. The vertex figure construction, illustrated on the vertex x of the polytope P.
The hyperplane H (light blue) separates x from the other vertices of the polytope.
In the sliced polytope P ′, the vertices (green) and edges (blue) are respectively in
one-to-one correspondence with the edges and facets of P containing x. (Color figure
online)

x from the other vertices (see Fig. 3 for an illustration). We define P' as the
sliced polytope. It has dimension (dim P)-1, and its face lattice can be shown to
be isomorphic to the sublattice '[< [pt x]; P >]. Once again, the isomorphism
is proved by exposing the polyhedron P to the subtype {poly base} for some
ambient representation base, and reducing to basic manipulations of sets {eq _}

of active inequalities of faces. Interestingly, two distinct ambient representations
are used in the proof: base for the original polytope P, and its union e +|` base

with the singleton {e} for the sliced polytope P'. Our use of canonical structures
still applies to this setting, and provides the proof that any face of P sliced
with the hyperplane [hp e] writes down over the base e +|` base of the sliced
polytope P'.

5 Related Work

Many software developments related with convex polyhedra have been motivated
by applications to formal verification. Several libraries have been developed for
this purpose, e.g. [4,20], and, despite being informal, it is worth noting that
they are also used by mathematicians to perform computation over polyhedra
and polytopes, for instance in [16,27]. Initiatives on the development of formally
verified polyhedral algorithms are more recent. The works of [26] and [8] in
Isabelle/HOL aim at providing a formally proven yet practical and efficient algo-
rithm to decide linear rational arithmetic for SMT-solving. The Micromega tac-
tics [5] relies on polyhedra to prove automatically arithmetic goals over ordered
rings in Coq. The Verified Polyhedral Library [9,15] targets abstract interpre-
tation, and brings the ability to verify polyhedral computations a posteriori in
Coq.

There are far fewer developments focusing on formal mathematics. Euler for-
mula, which relates the number of vertices, edges and facets of three-dimensional
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polytopes, has been proved in [14] in Coq and in [1] in Mizar. The generalization
to polytopes in arbitrary dimension, namely Euler–Poincaré formula, has been
formally proved in HOL-Light [19], together with several intermediate proper-
ties of polyhedra and faces. In the intuitionistic setting, we are not aware of any
work concerning faces and their properties. We point out that Fourier–Motzkin
elimination has been formalized in Coq by [22].

6 Conclusion and Future Work

In this work, we have formalized a substantial part of the theory of polyhedra
and their faces, which has allowed us to obtain some of the essential properties of
face lattices. Beyond the mathematical results formally proven, a special atten-
tion has been paid to the usability of the library. This goes through a mechanism
to bring the right representation of faces according to the context, and the auto-
matic proof that these representations are valid thanks to the use of canonical
structures.

This foundational work opens several perspectives. First, it has raised that an
important development over ordered structures is still needed, in particular for
the manipulation of ordered substructures such as sublattices, and the interplay
between them through morphisms. The formalization of finite groups and sub-
groups in [17] may provide a possible source of inspiration to solve this problem.
Second, there are many other interesting properties in relation with polyhedra
and their faces to be formalized, such as getting upper bounds on the diameter
of polytopes, or more generally, on the number of faces (the so-called f-vector
theory). However, beyond the interest of formalizing already known mathemati-
cal results, we are even more interested in using proof assistants to help getting
new ones. We think of mathematical results relying on computations that are
not accessible by hand. To this extent, we aim at providing a way to compute
with the objects introduced in this work, directly within the proof assistant, and
to introduce all the needed mechanisms for the design and development of large
scale reflection tactics. A basic goal is to compute the face lattice (or part of
it) of a polyhedron defined by a set of inequalities. This requires us to formalize
some algorithms based on faces, and to find a way to execute them on efficient
data structures, in the spirit of the approach of [11].

Acknowledgments. We are grateful to Assia Mahboubi for helpful discussions on
the subject. We thank the anonymous reviewers for their detailed comments and their
suggestions to improve the presentation of the paper.
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Abstract. A fundamental theorem states that every field admits an
algebraically closed extension. Despite its central importance, this the-
orem has never before been formalised in a proof assistant. We fill this
gap by documenting its formalisation in Isabelle/HOL, describing the
difficulties that impeded this development and their solutions.

1 Introduction

The fundamental theorem of algebra states that the field of complex numbers is
algebraically closed: every nonconstant polynomial with complex coefficients has
at least one complex root. By extending the field of real numbers with a single
root of the polynomial X2 + 1, we obtain a field (the complex numbers) where
not only has X2 + 1 a root but also every other polynomial.

At the beginning of the 20th century, this theorem about the reals raised
the question of which other fields could similarly be extended to be algebraically
closed. Curiously, the same mathematician to introduce the concept of a field,
Ernst Steinitz, was the one to answer the question: every field admits an alge-
braically closed extension.

This result has important consequences. It guarantees that every polynomial
has a splitting field; it links algebra and geometry. Kevin Buzzard comments:

The theorems of local and global class field theory are one of the highlights
of early 20th century mathematics. . . . The Langlands Philosophy, one of
the central questions in modern number theory, is a vast conjectural gen-
eralisation of these theorems, and one cannot even state the fundamental
conjectures in this theory without mentioning algebraic closures. Wiles
and Taylor proved an extremely small fragment of these conjectures in
1994 and deduced Fermat’s Last Theorem [3].

Despite its importance, the existence of algebraic closures has never been
formalised in a proof assistant. The gap suggests that the formal proof is chal-
lenging and that there might be ill-understood technical difficulties. Here we
propose to settle this:
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– We formally prove that every field has an algebraic closure: an equivalent way
to state that every field admits an algebraically closed extension (Sect. 5).

– We discuss, from a mathematical perspective, how our proof relates to existing
ones and how we planned the formalisation effort (Sect. 4).

– We describe a limitation of Isabelle’s type system along with a general solu-
tion, where identity is replaced by isomorphism (Sect. 3).

Attempting such proof in Isabelle/HOL is aligned with our intent to investi-
gate the hurdles of formalising algebraic reasoning in a simply-typed setting.

2 Background

Here we recall some key elements of algebra. We suppose familiarity with the
definitions of rings, fields, homomorphisms, ideals and the quotient of a ring by
an ideal. We start with the definition of canonical surjections, which show that
every element of a quotient ring is accessible in a structure-preserving way.

Definition 1 (Canonical surjection). Let R be a ring and I an ideal of R.
The canonical surjection π[R,I] : R → R/I is a surjective homomorphism from
the ring R to the quotient R/I that associates an element r of R to its equivalence
class in R/I, that is, r �→ {r + i | i ∈ I}.

The most common application of the canonical surjection in this paper is
when considering the quotient between the ring of polynomials with coefficients
in some field K, denoted by K[X], and the ideal generated by some polynomial
P ∈ K[X], defined as

(P ) � {P Q | Q ∈ K[X] }.

This gives rise to the canonical surjection π[K[X],(P )], which can sometimes be
seen as a homomorphism from K to K[X]/(P ) and not from K[X] to K[X]/(P ).
Justification comes from the usual abuse of notation of identifying elements of K
with constant polynomials in K[X].

The next proposition elucidates why it is interesting to see π[K[X],(P )] as such:
if P only has trivial factors, that is, if P is an irreducible polynomial, then the
restriction of π[K[X],(P )] to K is in fact a homomorphism of fields.

Definition 2 (Irreducible polynomial). Let K be a field and P a noncon-
stant polynomial with coefficients in K. The polynomial P is irreducible if for
every Q ∈ K[X], if Q divides P then Q = k or Q = k P for some k ∈ K.

Proposition 1. If K is a field and P is a polynomial with coefficients in K,
then P is irreducible iff the quotient of K[X] by the ideal (P ) is a field.

Given a homomorphism φ between two rings A and B, and a polynomial
Q ∈ A[X], we can build the polynomial Qφ ∈ B[X] by applying φ to each of the
coefficients of Q:

Qφ =
(∑

i

aiX
i

)φ

�
∑

i

φ(ai)Xi where ai ∈ A
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It follows from this definition that φ maps the evaluation of Q at an element
a ∈ A to the evaluation of Qφ at φ(a):

φ(Q(a)) = Qφ(φ(a)). (1)

Now, consider a field K and a polynomial P ∈ K[X]. From our previous
discussion, the coefficients of P can be seen as constant polynomials in K[X]
so that P can be seen as lying in (K[X])[X]. Therefore, the evaluation of P at
elements in K[X] is meaningful. For instance, what happens if we evaluate P
at the monomial X ∈ K[X]? We recover P itself: P = P (X). Together with
equation (1), we obtain the following result:

π(P ) = π(P (X)) = Pπ(π(X))

where π stands for the canonical surjection π[K[X],(P )]. Since the equivalence
class of P in K[X]/(P ) is the same as the zero polynomial, we have proved
that π(X) is a root of Pπ. The next proposition rephrases this result using the
terminology of a field extension when P is an irreducible polynomial.

Definition 3 (Field extension). Let K and L be fields and φ : K → L a
homomorphism. Since K is a field, φ is either the trivial map k �→ 0 or an
injective map. When it is injective, L is called a field extension of K under φ.

Proposition 2. Let K be a field and P an irreducible polynomial in K[X]. The
quotient of K[X] by the ideal (P ) is a field extension of K under the homomor-
phism π[K[X],(P )]. Moreover, the polynomial Pπ admits π(X) as a root in the
field K[X]/(P ).

Now let’s see how to build a field isomorphic to the field of complex numbers.
Consider the real polynomial X2 +1. It’s irreducible, therefore by Proposition 2
the ring R[X]/(X2 + 1) is actually a field extension of R under the homomor-
phism π. Furthermore, π(X) is a root of the polynomial (X2+1)π. Thus, we have
built a field where a square root of −1 exists. This fact can be formally stated
by considering the map π(a + bX) �→ a + bi, which establishes an isomorphism
from R[X]/(X2 + 1) to the field C of complex numbers.

Related to the notion of a field extension is the notion of a subfield:

Definition 4 (Subfield). Let L be a field. A subset K ⊆ L is called a subfield
of L if it verifies the axioms of a field when equipped with the same laws as L.

This relation is actually bidirectional:

1. If L is a field extension of K under the homomorphism φ, then the image
φ(K) is a subfield of L.

2. If K is a subfield of L, then L is a field extension of K under the identity
homomorphism k �→ k.
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It is important to notice the nuances of the definition of an irreducible poly-
nomial in the context of subfields. If K is a subfield of L, then a polynomial P in
K[X] has its coefficients in both K and L. When we say that P is an irreducible
polynomial we have to specify in which field: while P may have no nontrivial
factor with coefficients in K, it may have one with coefficients in L. To make
the distinction unambiguous, we say that P is irreducible in K expressing that
it only has trivial factors in the ring K[X].

The next natural notion is that of an algebraic element:

Definition 5 (Algebraic). Let L be a field and K a subfield of L. Then an
element l ∈ L is algebraic over K if there exists a polynomial P with coefficients
in K such that P (l) = 0, that is, l is a root of P .

The subset of elements of L which are algebraic over K is a subfield of L.
Moreover, since the polynomial X − k belongs to the ring K[X] if k ∈ K, every
element of the field K is algebraic over K. In addition, the field K is a subfield
of the subset of algebraics of L, which gives the following inclusions:

K ⊆ {l ∈ L | l is algebraic over K} ⊆ L

Finally, we introduce the formal definition of an algebraically closed field and
the closely related notion of the algebraic closure.

Definition 6 (Algebraically closed). A field K is algebraically closed if
every nonconstant polynomial with coefficients in K has at least one root in K.

Definition 7 (Algebraic closure). Let K and L be two fields. Then L is an
algebraic closure of K if there exists a homomorphism φ : K → L such that

1. Every polynomial P of degree n with coefficients in the subfield φ(K) has n
roots in L: that is, P splits in L.

2. Every element of L is algebraic over the subfield φ(K).

It is usual to refer to L as the algebraic closure: they are unique up to
isomorphism. An additional remark is that if P splits in L, then P only has
trivial irreducible factors. That is, for every irreducible polynomial Q ∈ L[X], if
Q divides P , then Q must have degree 1. The converse also holds.

Our last claim in this section formally connects these notions:

Proposition 3. Let K be a field. The following three statements are equivalent:

1. There exists an algebraically closed field extension of K.
2. There exists an algebraic closure of K.
3. There exists a field extension L of K under a homomorphism φ such that

every polynomial with coefficients in the subfield φ(K) splits in L.

The way we establish that every field admits an algebraically closed extension
in our formal development is by proving that (3) implies (2), that (2) implies (1)
and that assertion (3) holds. The first two proofs are straightforward and our
focus will be in describing how we prove (3).
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3 Formalisation

The formalisation of algebra in the absence of dependent types can sometimes be
challenging. Below we describe how we addressed these situations. We begin by
presenting a technique for changing the underlying type of an algebraic structure.
The application of this procedure is named the induction of a structure. In
addition, we discuss our formalisation of multivariate polynomials. Both of these
two features play an important role in the formal proof of the existence of the
algebraic closure, and they surely have other applications.

3.1 Induced Structures

The type of monoids is formalised in the HOL-Algebra library as a record with
three fields: the carrier, which has the polymorphic type ′a set , the composition
operator and finally the unit.

record ′amonoid = carrier :: ′a set mult :: ′a ⇒ ′a ⇒ ′a one :: ′a

The binary or direct product of two monoids is defined as follows:

definition DirProd (infix ××) where
G ××H = � carrier = carrier G × carrier H; one = (one G, one H);

mult = λ(g1, h1) (g2, h2). (mult G g1 g2,mult H h1 h2) �

This takes two monoids as arguments, G and H. It returns a monoid whose
carrier is the Cartesian product of the carriers of G and H, with composition
defined element-wise. Isabelle assigns DirProd the type

′amonoid ⇒ ′bmonoid ⇒ (′a ∗ ′b)monoid .

Now, let’s say we want to define the direct product of a list of monoids Gs,
that is, the n-ary product of monoids where n is the length of Gs. Consider the
following attempt to define this by recursion on the list:

fun DirProd list where

DirProd list (G#Gs) = G ××DirProd list Gs

| DirProd list [] = � carrier = {[]}; mult = λas bs. []; one = [] �

Such an attempt to define an n-ary product of monoids from a list of monoids
must fail, as the result type would depend on the length of the list.

To solve this problem, we introduce the concept of induced structures. The
idea is that, given the pair of an algebraic structure such as a monoid G of type
′amonoid and an injective function f of type ′a ⇒ ′b, we can induce a monoid
H of type ′bmonoid such that f is an isomorphism between the monoids G and
H. Thus, H has the same algebraic properties as G but with the type we want.
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Definition 8 (Induced monoid). Let G be a monoid, H a set and f : G → H
an injection from G to H. Now the image f(G) is a subset of H, which can be
equipped with a monoid structure as defined below:

1f(G) � f(1G), f(g1) ⊗f(G) f(g2) � f(g1 ⊗G g2).

We obtain a monoid f(G), called the monoid induced by G and f . Furthermore,
f is an isomorphism between the monoids G and f(G).

Here is the formal Isabelle definition (where ‘ denotes the image operator):

definition image monoid where

image monoid f G = � carrier = f ‘ carrier G ; one = f (one G) ;
mult = λh1 h2. f (mult G (inv into (carrier G) f h1)

(inv into (carrier G) f h2)) �

Note that composition is defined as f(f−1h1 ⊗G f−1h2), using the inverse of
the function f . We use the inv into function (from Isabelle’s standard library),
which denotes the inverse of f � A (the function f restricted to domain A).

Let’s return to the definition of the function DirProd list. With this new tool,
we are able to handle the inductive case:

DirProd list(G#Gs) = image monoid (λ(a, as). a# as) (G ××DirProd listGs)

Now, the definition is accepted by Isabelle, yielding the isomorphism

DirProd list(G#Gs) ∼= G ××DirProd listGs.

Algebraically speaking, an isomorphism is enough: we do not need true equality.
More generally, given a monoid G of type ′amonoid and an injective function

f of type ′a ⇒ ′b, we prove that the function f is an isomorphism between the
monoids G and image monoid f G.

f ∈ iso G (image monoid f G)

Other algebraic structures such as groups, rings and fields can also benefit
from this construction. The difference between groups and monoids in HOL-
Algebra is only logical: they satisfy different axioms but both have the same
type, so image monoid can be applied to groups. The same idea works for other
abstract mathematical structures, wherever isomorphism (as opposed to equal-
ity) is good enough.

The ability to choose the type of an algebraic structure while preserving its
abstract properties can also be useful in the formalisation of certain proofs of
existence. We illustrate this use case through the following theorem.

Theorem 1. Let K be a field and P a polynomial with coefficients in K. Then
there exists a field extension L under a homomorphism φ : K → L such that the
polynomial Pφ splits in L.
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Proof. By induction on the degree of P . If deg P = 0, then P already splits in K.
Thus, K itself (with the identity homomorphism) is the required field extension.

If deg P = n+1 for some n then there exists an irreducible polynomial Q with
coefficients in K such that Q divides P . Since Q is irreducible, by Proposition 2
we obtain the field extension K[X]/(Q) where Qπ has π(X) as a root. Since
R �→ Rπ is a homomorphism, Qπ divides Pπ. Consequently, π(X) is also a root
of Pπ and hence X − π(X) divides Pπ.

Let R denote the division of Pπ by the polynomial X − π(X), that is, R
is a polynomial with coefficients in K[X]/(Q) such that Pπ = (X − π(X))R.
Then deg(R) = n and by induction hypothesis we obtain a field L and a homo-
morphism φ : K[X]/(Q) → L such that Rφ splits in L. Clearly L under the
homomorphism φ ◦ π is the required field extension. ��

There are a number of obstacles to the formalisation of this proof in Isabelle,
starting with the statement itself. The theorem asserts the existence of a field,
which in Isabelle has type ′a ring , where ′a is the type of the elements of its
carrier. We need to find a type for the field whose existence is being claimed.

In a dependent type setting, the problem could be avoided. It would suffice
to quantify the type existentially: to announce the existence of both the type
and the field. Then, we would be able to build the precise type during the proof.

This is not possible in Isabelle, but let’s say that we have a type ′b that
could satisfy the requirements of Theorem 1. Then, another problem appears:
the application of the inductive hypothesis to the polynomial R fails with a
type unification issue, because its coefficients belong to K[X]/(Q) while those
of P belong to K. In Isabelle, these fields have different types: if K has type
′a ring and ′a poly is the type of polynomials with coefficients of type ′a, then
the quotient field K[X]/(Q) would have the type ((′a poly) set) ring . So even
if we generalised the induction hypothesis with respect to the field, we would
not be able to instantiate it with K[X]/(Q). And again, dependent types are a
solution: one could generalise the induction hypothesis with respect to the type
of the field.

The solution we propose goes in another direction. The idea is to prove an
intermediate result where we fix a well chosen type ′b for the elements of both the
fields K and L. Then, after we build the field K[X]/(Q) of type ((′b poly) set) ring
during the proof, we use our type-switching mechanism to induce a field of type
′b ring with the same properties of K[X]/(Q). At this point, it will be possible
to use the induction hypothesis and to conclude the proof.

The tricky part is choosing the type ′b. In the definition of the function
DirProd list, we faced a similar problem. We had to come up with a type ′b such
that an injective function of type ′a ∗ ′b ⇒ ′b existed. Clearly, in that case, the
type ′a list was sufficient. Now, the situation is less clear: we need to come up
with a type ′b such that an injective function of type (′b poly) set ⇒ ′b exists.

Observe that the function only needs to be injective on the carrier of the
structure we are planning to use as a model for the induction of a new one.
Therefore, the definition of an injective function of type (′b poly) set ⇒ ′b does
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not constitute a violation of Cantor’s theorem, since the injectivity only needs to
hold in the subset of the elements of type (′b poly) set composed by those which
belong to the carrier of the field K[X]/(Q).

The type we conceived to satisfy these conditions is the type of multivariate
polynomials, or, polynomials with indexed variables. Below we discuss how these
are formalised and how they solve the problem for our development.

3.2 Multivariate Polynomials

Polynomials with coefficients in a field K are usually treated as linear combina-
tions of successive powers of a formal letter X. Multivariate polynomials follow
the same idea, but, instead of dealing with the powers of a fixed formal letter
Xn, we manipulate the linear combination of arbitrary expressions of the form∏

j X nj

j , where j runs over a finite subset of a fixed indexing set J .
The formalisation of multivariate polynomials that we are about to present

relies on the notion of finite maps. A finite map from the set A to the set B is
a partial function from elements of A to elements of B whose support is finite.
The set of finite maps from A to B is written A

fin−⇀ B.
First, we formally define monomials over indexed variables: a monomial is

uniquely identified by a finite map from elements of the set J to positive integers
Z>0. Imagine it as the choice of exponent for each indexed letter. If MonJ denotes
the set of monomials over variables indexed by J , then we have

MonJ � J
fin−⇀ Z>0.

We define multivariate polynomials similarly, as finite maps from monomials
MonJ to K∗, the set of nonzero elements of K. The elements in the support of
the finite map are the monomials involved in the linear combination. The value
in K∗ associated to each monomial is the choice of coefficient. Accordingly, if
K[J ] denotes the set of polynomials over variables indexed by J and coefficients
in K, then

K[J ] � MonJ
fin−⇀ K∗.

Isabelle’s predefined type of multisets comprises the finite maps into Z>0.
A multiset is a function denoting the number of occurrences of each element,
and multisets are finite. In our development, monomials have the same type as
multisets. So, if the indexing set J has type ′c set , then a monomial would have
the type ′cmultiset .

For polynomials, there was no shortcut. They are modelled as functions from
monomials to K and we require that the image of this function is zero save
for a finite set of monomials. Therefore, a multivariate polynomial has the type
′cmultiset ⇒ ′a, where, as usual, ′a is the type of the elements in the field K.

Now, we substantiate our claim that if the type ′b is instantiated with the
type of multivariate polynomials, then there exists an injective function of type
(′b poly) set ⇒ ′b.

First, remember that the set constructor was introduced because it is the type
of the elements of the quotient field K[X]/(Q): equivalence classes are encoded
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as cosets of the form π(P ) for some P ∈ K[X]. However, these equivalence
classes could also be uniquely identified by polynomials:

Definition 9. Let M be a field and Q a polynomial with coefficients in M . We
let mod [M,Q] denote the function which assigns the remainder of the euclidean
division of P by Q to each equivalence class π(P ) for P ∈ M [X]. It is a well-
defined injective function from M [X]/(Q) to M [X].

We use the letter M for an arbitrary field instead of the usual letter K,
because we instantiate this definition with a field whose elements have type ′b,
that is, a field included in K[J ]. Thus, back in Isabelle, we are able to define an
injective function of type (′b poly) set ⇒ ′b poly . The problem becomes simpler,
since now it suffices to define an injective function of type ′b poly ⇒ ′b.

In other words, given a polynomial P with coefficients in K[J ], we need to
define a unique way to recover an element of K[J ]. We do this by replacing the
formal letter X from the polynomial P with an indexed one, Xl. However, in
order to get injectivity, we constrain the coefficients of P to not use the indexed
variable Xl. For this purpose, we introduce the notion of a free index:

Definition 10 (Free index). Let M be a subset of K[J ] and l ∈ J be an index.
Then l is free in M if M is a subset of K[J \ {l}].

Intuitively, l is free in M if Xl does not appear in the writing of any term in
M . The idea of replacing the formal letter X with Xl is captured as follows:

Definition 11 (Eval). Let K be a field, J be an indexing set and l an index in
J . We define Eval l, an injective function from polynomials with coefficients in
K[J \ {l}] to elements in K[J ]:

Eval l

(∑
k

(∑
i

aik

∏
j∈Jik

X nijk

j

)
Xk

)
=

∑
i,k

aik

∏
j∈Jik∪{l}

X n′
ijk

j

where n′
ijk =

{
k if j = l

nijk otherwise

Finally, we are able to define an injective function of type (′b poly) set ⇒ ′b
as the composition of Eval and mod . The following technical lemma exploits this
function to induce a field isomorphic to M [X]/(Q).

Lemma 1. Let K be a field, J be an indexing set, M be a field whose elements
belong to K[J ] and Q an irreducible polynomial in M [X]. If l ∈ J is a free index
in M , then the composition Eval l ◦mod [M,Q] is an injective map from M [X]/(Q)
to K[J ].

M [X]/(Q)
mod [M,Q]−−−−−−→ M [X] ⊆ (K[J \ {l}])[X] Evall−−−→ K[J ]

Moreover, let L denote the structure induced by Eval l ◦ mod [M,Q]. It is a field
whose elements belong to K[J ]. Furthermore, M is a subfield of L and the indexed
variable Xl is a root of Q in L.
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Proof. Injectivity of the map Eval l ◦ mod [M,Q] comes from the composition of
injective maps. Now, let L denote the field induced by Eval l ◦ mod [M,Q]. It is a
field isomorphic to M [X]/(Q) inheriting the same algebraic properties as such.
For instance, there exists a root of Q in L: it is the element that realises π(X),
that is, (Evaln ◦ mod [M,Q])(π(X)). However, remember that π(X) was a root of
the polynomial Qπ in M [X]/(Q). So, the element

(Evaln ◦ mod [M,Q])(π(X))

is actually a root of the polynomial QEvaln◦mod [M,Q]◦π. Fortunately,

(Evaln ◦ mod [M,Q])(π(X)) = Evaln(mod [M,Q](π(X)) = Evaln(X) = Xn

and (Evaln ◦ mod [M,Q] ◦ π)(a) = a for a ∈ M .
Therefore, the field M is a subfield of L, the polynomial Q has its coefficients

in the field L and Xn is a root of Q in L. ��
We can finally proceed to the proof of the intermediate result that enjoys a

direct analogue in Isabelle as suggested in the previous subsection.

Lemma 2. Let M ⊆ K[N] be a field and let P be a polynomial with coefficients
in M . Suppose that for every j ∈ {0, . . . ,deg P − 1}, the index j is free in M .
Under these hypotheses, there exists a field L ⊆ K[N], such that M is a subfield
of L and P splits in L.

Proof. By induction on the degree of P . If deg P = 0, then P splits in M and we
are done. If deg P > 0, then there exists an irreducible polynomial Q ∈ M [X]
such that Q divides P . We can suppose that deg Q > 1, otherwise P have only
trivial irreducible factors and would split in M .

With the polynomial Q and the index n, we are in position to apply Lemma 1;
let S be the field induced by the injective map Evaln ◦ mod [M,Q] such that M is
a subfield of S and Xn is a root of Q in S.

Since the only free index in M that becomes nonfree in S is the index n,
we are allowed to instantiate the induction hypothesis with the field S and the
polynomial P/(X −Xn), whose degree is equal to n. We obtain a field L ⊆ K[N],
such that S is a subfield of L and the polynomial P/(X − Xn) splits in L. It is
easy to see that P splits in L as well. ��

To recover the proper statement of Theorem 1, we only need to find a way
to embed K into the set K[N]. If we have a homomorphism φ : K → M such
that M is a subset of K[N], then the field we get from Lemma 2 together with
φ will be the field extension satisfying the conditions assured by Theorem 1.
The required embedding simply maps each a ∈ K to the constant polynomial a.
Using our representation of multivariate polynomials as finite maps, we can make
this intuition precise:
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Definition 12. Let K be a field and J an indexing set. We define const# a
function from K to the set K[J ]:

const#(a) =

{
{} if a = 0
{} �→ a otherwise

where �→ denotes the singleton map and {}, the empty one.

It is an injective map, therefore we can promote the function const# to an iso-
morphism between K and the induced field const#(K), written K# for brevity.

Corollary 1 (Same statement as Theorem 1).

Proof. Consider the field K# ⊆ K[N]. Observe that every index n ∈ N is free in
K#. Indeed, an element of K# is the image const#(a) for some a in K and no
indexed variable is involved in such terms. Lemma 2 applies. We obtain a field
L ⊆ K[N] such that K# is a subfield of L and P const# splits in L. Rephrase it
with φ = const#: the field L is a field extension of K under the homomorphism
φ such that the polynomial Pφ splits in L. ��

The proof of Lemma 2 follows the same structure as the one from Theorem 1:
obtain an irreducible factor, build the quotient field and then apply induction.
The major difference is that now we have instrumented the proof with technical
arguments concerning indexes. These might seem artificial at first, but they
do have their mathematical value. After all, we’ve built a splitting field of a
polynomial in the same set from which we started. In other words, we had
greater control over the field that was being built during the proof. Notice that
all field extensions explicitly mentioned in the proof are those under the identity
homomorphism.

A final remark: we do not define how multivariate polynomials compose with
each other; we just show how they can be represented. We do not define the
ring operations as we do not need their algebraic properties. We use only their
set properties, which ease the definition of an injective function as described
and allow the construction of an induced structure. Moreover, this procedure of
inducing structures engenders the composition laws for free.

4 Conception

In this section we outline the main ideas behind our formal proof of the existence
of an algebraic closure. We start with a short survey of existing proofs. Technical
details are left for the next section.

We mentioned in the introduction that the existence of an algebraic clo-
sure was proved by Steinitz in 1910. However, because set theory was not yet
well understood, constructions relying on infinite collections were unnecessar-
ily involved and his proof was 20 pages long. The proof preferred by modern
authors [2,9], due to Emil Artin, is much shorter and simpler:
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Proof. Let F be a field. Consider the ring F [F [X]] of multivariate polynomi-
als over variables indexed by polynomials in F [X] and coefficients in F . Then
the ring F [F [X]] admits an ideal I with two key properties: (1) the quotient
F [F [X]]/I is a field; (2) every nonconstant polynomial in F [X] has a root in
F [F [X]]/I. This yields a field extension of F where every nonconstant polyno-
mial with coefficients in F has at least one root. Furthermore, the construction
is parametric in F . Now, consider the chain of field extensions

K = E0 → E1 → E2 → · · · → En → · · ·
where K is the field for which we intend to find an algebraically closed extension
and En+1 is the field obtained by instantiating F with the field En. The sequence
admits a limit. It is a field E left invariant by the construction described above,
that is, a fixed point: every nonconstant polynomial in E[X] has a root in E.
Thus, E is an algebraically closed field. ��

There are two main components in Artin’s proof: the construction of a field
and its iteration. We might wonder which field we obtain if we change the first
component. Would we still have an algebraically closed field? What would be
the impact on the iteration part? Hernandez and Laszlo [6] present a variant
of the proof where the construction is modified to build a field with stronger
properties. They consider the larger ring of multivariate polynomials K[K[X] ×
N] with the product K[X] × N as the choice of indexing set and prove that a
slightly different construction engenders an algebraically closed field extension
of K directly, without iteration.

Our proof goes in the opposite direction. We weaken the construction and
strengthen the iteration method. If F is the current field, we find an irreducible
polynomial Q with coefficients in F and define the usual quotient F [X]/(Q) of
the ring F [X] by the ideal (Q) to be the next field in the sequence.

The increment now is small. Proposition 2 states that we add only one root
at each step, while the previous construction found one root for every polynomial
with coefficients in the current field. We compensate for this deficit through the
use of Zorn’s lemma, which guarantees the existence of a maximal element of a
partially ordered set. Thus we abstract away from the process of iteration and
leap immediately to the required limit.

In our proof, we need this ability. With the construction from Artin’s proof,
we were content to iterate “vertically” over the degree of each polynomial at the
same time. Now, we have to iterate over each polynomial individually. A step
of iteration considers one polynomial at a time. So, we iterate both over each
polynomial and its degree, both “horizontally” and “vertically”.

More precisely, given both a field En in the sequence of Artin’s proof and a
polynomial P with coefficients in the field En, we can find a k such that P splits
in the field En+k. It suffices to take k larger than the degree of P . With our
new construction however, the distance between the field where a polynomial
has its coefficients and the field in which the same polynomial splits might be
larger than every natural number. Since our method iterates over polynomials,
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the subset of steps that interleave the two fields might have the same cardinality
as the set of polynomials, which could be uncountable, depending on the the
cardinality of the field of coefficients.

This simplification eases the formalisation in a number of ways. The field
F [X]/(Q) depends on the ring of polynomials with coefficients in F and the
ideal generated by Q, two straightforward structures. The field F [F [X]]/I, on
the other hand, depends on the ring of multivariate polynomials and the ideal I.
While we don’t see any issues with the definition of the composition laws for the
set F [F [X]], the proof that they satisfy the axioms of a commutative ring seems
laborious. Moreover, the proof that I enjoys the two key properties discussed
in the proof sketch relies on the intermediate result that every field admits an
extension that splits a finite set of polynomials (a corollary of Theorem 1). We
would have to prove a lemma that would immediately be subsumed by our
intended theorem: the existence of an algebraically closed extension.

The idea of coupling a simpler construction with Zorn’s lemma is also seen
in Jelonek [8]. But while he relies on set-theoretical arguments to obtain a set
sufficiently large to host an algebraic closure, we exhibit this set explicitly.

5 The Proof

In this section, we explain our proof that every field admits an algebraic closure.
First, let’s recall order theory and Zorn’s lemma:

Definition 13 (Partial orders, etc.). Let ≤ be a binary relation on a set S.
Then (S,≤) is a partial order if ≤ is transitive, reflexive and anti-symmetric. A
chain of S is a subset of S for which every two of its elements are ≤-comparable.
A maximal element is some a ∈ S such that for all x ∈ S, if a ≤ x then a = x,
while an upper bound of S is some a ∈ S for which a ≥ x for all x ∈ S.

Lemma 3 (Zorn). Let (S,≤) be a partial order where S is nonempty. Suppose
every chain C ⊆ S has an upper bound. Then (S,≤) has a maximal element.

Let K be a field. We will search for an algebraic closure of K in the set
K[J ] of multivariate polynomials indexed by a well-chosen set J . Recall that an
algebraic closure is a field extension, hence we have to search both for a field L
and for a homomorphism φ : K → L. We make some decisions to reduce the
search space. We expect L to be an extension of the induced field K#. Thus, we
anticipate φ to be the natural homomorphism

const# : K → K#

from K to the induced field K#. Now, given a field L embedded in K[J ] such
that K# is a subfield of L, we can simply put L to be the field extension of K
under const#.

Let’s simplify further. Let’s search for a field L ⊆ K[J ] such that K# is
a subfield of L and every polynomial with coefficients in K# splits in L. Such
a field is not necessarily an algebraic closure of K#, with each of its elements
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algebraic over K#. Still, exhibiting a field with these simpler characteristics is
sufficient to prove the existence of an algebraic closure, as it proves assertion (3)
from Proposition 3.

With these considerations in mind, let’s define the concrete set of fields.

Definition 14. For a field K, let AK denote the set of fields L ⊆ K[K[X] ×N]
satisfying the following properties:

1. K# is a subfield of L.
2. For every P ∈ K[X] and natural number n, if the pair (P, n) is a nonfree

index of L, then the indexed variable X(P,n) is a root of P const# in L.

The intuition for property (2) and for the choice of indexing set, K[X] × N,
follows from the insights developed in the last section. Recall the main idea: to
build a chain of fields where at each step we add a new root to the preceding
field. What property (2) intuitively does is to ensure that the role of the new
root is taken by a formal letter Xj , where j is some previously free index j.
Additionally, it also ensures that the choice of index was judicious: if we choose
to include the variable X(P,n) in the next round of the iteration, then it must
be in a way such that it is a root of the polynomial P const# . Look both at the
statement of Lemma 2 and its proof for an example of similar reasoning.

Next, we equip AK with a partial ordering, aiming to use Zorn’s lemma.

Definition 15 (Subfield relation). Let L1 and L2 be two fields. We write
L1 � L2 to denote that L1 is a subfield of L2.

Lemma 4. If K is a field, then AK has a maximal element with respect to the
partial order (AK ,�).

Proof. Clearly (AK ,�) is a partial order. Consider a chain C ⊆ AK and let
E =

⋃
F∈C F . For any two elements a and b in E, there exists a field L ∈ C such

that a, b ∈ L. We define their composition in E (addition and multiplication) to
be the same as in L. Since every two fields in C are comparable, if we obtain
another field L′ ∈ C such that the elements a and b belong to L′, then the field
L′ is either a subfield of L or an extension of L. In both cases, the composition
of a and b gives the same result either in L or in L′. Hence, their composition is
independent on the choice of the field L and therefore well-defined. The set E
equipped with these laws satisfies the axioms of a field. It is also straightforward
to check that E is an upper bound of C in AK .

Since every chain has an upper bound, the result holds by Zorn’s lemma. ��
Although the usual sequence of fields is hidden by the application of Zorn’s

lemma, we can think of the maximal element of AK as the limit of that sequence.
It must be a field that splits every polynomial in K#[X], since otherwise there
would still be space left to add another root, contradicting its maximality:

Theorem 2. Let K be a field and let M be the maximal element of AK for the
subfield relation. Every polynomial with coefficients in K# splits in M .
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Proof. For contradiction, suppose that there exists a polynomial with coefficients
in K# that does not split in M . Since the map const# is an isomorphism between
the fields K and K# we can suppose that the polynomial which fails to split in
M is of the form P const# where P is some polynomial with coefficients in K.

Let Q ∈ M [X] be an irreducible polynomial with degree greater than 1 such
that Q divides P const# and let n be a natural number such that the pair (P, n)
is a free index in M . They both exist, otherwise the polynomial P const# would
split in M . We are able to apply Lemma 1 instantiated with the polynomial Q
and the index (P, n) to obtain a field L such that M is a subfield of L and the
indexed variable X(P,n) is a root of Q in L.

Clearly L belongs to AK , and the indexed variable X(P,n) is an element of
L that does not belong to M . So L is an element of Ak that is strictly greater
than M for the subfield relation, contradicting the maximality of M . ��
Corollary 2. Every field K admits an algebraic closure.

Proof. The maximal element of AK is a field extension of K under the homomor-
phism const# satisfying statement 3 from Proposition 3. By the same theorem,
this is sufficient to prove the existence of an algebraic closure of K. ��

6 Related Work

We believe that our formalisation of the existence of an algebraic closure of any
field is novel. There is, however, a closely related theorem formalised by Gonthier
as part of the Mathematical Components library: every countable field admits
an algebraic closure [4]. Since the proof is carried out in Coq, it is especially
interesting for its computational content. The restriction to countable fields, on
the other hand, precludes the application of the theorem to uncountable fields
such as the reals or the p-adic numbers. This is a problem for the p-adic numbers,
which (unlike the reals) has no well-known algebraic closure construction.

Also in Coq, Mathematical Components supports multivariate polynomi-
als [7] over finite indexing sets of the form {1, . . . , n}.

Schwarzweller proved in Mizar that the real numbers and finite fields are not
algebraically closed [11]. The Lean community maintains an online “Algebraic
closure roadmap” [1].

Work has also been done in Isabelle. An AFP entry [12] uses lists to rep-
resent monomials and polynomials. This choice has a drawback—permutations
of a list might denote the same monomial—but it allows the operations to be
executable. Haftmann et al. [5] discuss different options for multivariate polyno-
mials in Isabelle. They propose two representations, an abstract and a concrete
one, and establish a formal correspondence between them. The abstract repre-
sentation resembles ours; it is based on finite maps. However, the authors fix
the indexing set to the integers. We cannot use either of these Isabelle libraries
because both rely on type classes to model the algebraic properties satisfied by
polynomial coefficients. While type classes are fine for sharing algebraic theo-
rems between types [10], they are too restrictive for abstract algebra, forcing
algebraic objects to be types.
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7 Conclusion

We formalised a proof that every field has an algebraic closure, a fundamental
theorem. We have given a precise description of the known proofs and demon-
strated how Zorn’s lemma led to a straightforward formalisation.

The obstacles that we encountered during the realisation of this work led to
the investigation of some problems related to Isabelle’s type-discipline: that all
the objects in a collection must have the same type. As a solution, we introduced
the notion of an induced structure, which yields an isomorphic algebraic structure
having a specified type.

To complete this project, we had to extend the HOL-Algebra library with
general-purpose topics such as multivariate polynomials, arithmetic on arbitrary
rings, arithmetic on the ring of polynomials, subfields, finite extensions and much
of the content in Sect. 2. The fundamental nature of this material strengthens
the library as the basis for further developments of algebra in Isabelle/HOL. It
comprises nearly 15,000 nonempty lines of code in 21 new theories. The work
was completed within 5 months.

Availability. Our development is part of HOL-Algebra. It is included in the
distribution of Isabelle, directory src/HOL/Algebra and can also be browsed
online.1
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Abstract. We formalize the theory of forcing in the set theory frame-
work of Isabelle/ZF. Under the assumption of the existence of a countable
transitive model of ZFC , we construct a proper generic extension and
show that the latter also satisfies ZFC . In doing so, we remodularized
Paulson’s ZF-Constructibility library.

Keywords: Forcing · Isabelle/ZF · Countable transitive models ·
Absoluteness · Generic extension · Constructibility

1 Introduction

The present work reports on the third stage of our project of formalizing the
theory of forcing and its applications as presented in one of the more important
references on the subject, Kunen’s Set Theory [9] (a rewrite of the classical
book [8]).

We work using the implementation of Zermelo-Fraenkel (ZF ) set theory
Isabelle/ZF by Paulson and Grabczewski [17]. In an early paper [3], we set
up the first elements of the countable transitive model (ctm) approach, defining
forcing notions, names, generic extensions, and showing the existence of generic
filters via the Rasiowa-Sikorski lemma (RSL). In our second (unpublished) tech-
nical report [4] we advanced by presenting the first accurate formal abstract of
the Fundamental Theorems of Forcing, and using them to show that the ZF
axioms apart from Replacement and Infinity hold in all generic extensions.

This paper contains the proof of Fundamental Theorems and complete proofs
of the Axioms of Infinity, Replacement, and Choice in all generic extensions. In
particular, we were able to fulfill the promised formal abstract for the Forcing
Theorems almost to the letter. A requirement for Infinity and the absoluteness of
forcing for atomic formulas, we finished the interface between our development
and Paulson’s constructibility library [15] which enables us to do well-founded
recursion inside transitive models of an appropriate finite fragment of ZF . As a
by-product, we finally met two long-standing goals: the fact that the generic filter
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G belongs to the extension M [G] and M ⊆ M [G]. In order to take full advantage
of the constructibility library we enhanced it by weakening the assumption of
many results and also extended it with stronger results. Finally, our development
is now independent of AC : We modularized RSL in such a way that a version
for countable posets does not require choice.

In the course of our work we found it useful to develop Isar methods to
automate repetitive tasks. Part of the interface with Paulson’s library consisted
in constructing formulas for each relativized concept; and actually Isabelle’s
Simplifier can synthesize terms for unbound schematic variables in theorems. The
synthesized term, however, is not available outside the theorem; we introduced
a method that creates a definition from a schematic goal. The second method is
concerned with renaming of formulas: we improved our small library of bounded
renamings with a method that given the source and target environments figures
out the renaming function and produces the relevant lemmas about it.

The source code of our formalization, written for the 2019 version of
Isabelle, can be browsed and downloaded at https://cs.famaf.unc.edu.ar/
∼pedro/forcing/.

We assume some familiarity with Isabelle and some terminology of set theory.
The current paper is organized as follows. In Sect. 2 we comment briefly on
the meta-theoretical implications of using Isabelle/ZF. In Sect. 3 we explain the
use of relativized concepts and its importance for the ctm approach. The next
sections cover the core of this report: In Sect. 4 we introduce the definition of
the formula transformer forces and reasoning principles about it; in Sect. 5 we
present the proofs of the fundamental theorems of forcing. We show in Sect. 6 a
concrete poset that leads to a proper extension of the ground model. In Sect. 7
we complete the proof that every axiom and axiom scheme of ZFC is valid in
any generic extension. Section 8 briefly discusses related works and we close the
paper by noting the next steps in our project and drawing conclusions from this
formalization.

2 Isabelle and (Meta)theories

Isabelle [14,18] is a general proof assistant based on fragment of higher-order
logic called Pure. The results presented in this work are theorems of a version
of ZF set theory (without the Axiom of Choice, AC ) called Isabelle/ZF, which
is one of the “object logics” that can be defined on top of Pure (which is then
used as a language to define rules). Isabelle/ZF defines types i and o for sets
and Booleans, resp., and the ZF axioms are written down as terms of type o.

More specifically, our results work under the hypothesis of the existence of
a ctm of ZFC .1 This hypothesis follows, for instance, from the existence of
an inaccessible cardinal. As such, our framework is weaker than those found

1 By Gödel’s Second incompleteness theorem, one must assume at least the existence
of some model of ZF . The countability is only used to prove the existence of generic
filters and can be thus replaced in favor of this hypothesis.

https://cs.famaf.unc.edu.ar/~pedro/forcing/
https://cs.famaf.unc.edu.ar/~pedro/forcing/
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usually in type theories with universes, but allows us to work “Platonistically”—
assuming we are in a universe of sets (namely, i) and performing constructions
there.

On the downside, our approach is not able to provide us with finitary consis-
tency proofs. It is well known that, for example, the implication Con(ZF ) =⇒
Con(ZFC + ¬CH ) can be proved in primitive recursive arithmetic (PRA). To
achieve this, however, it would have implied to work focusing on the proof mecha-
nisms and distracting us from our main goal, that is, formalize the ctm approach
currently used by many mathematicians.

It should be noted that Pure is a very weak framework and has no induc-
tion/recursion capabilities. So the only way to define functions by recursion is
inside the object logic. (This works the same for Isabelle/HOL.) For this reason,
to define the relation of forcing, we needed to resort to internalized first-order for-
mulas: they form a recursively defined set formula. For example, the predicate of
satisfaction sats::i⇒i⇒i⇒o (written M,ms |= ϕ for a set M , ms ∈ list(M)
and ϕ ∈ formula) had already been defined by recursion in Paulson [15].

3 Relativization, Absoluteness, and the Axioms

The concepts of relativization and absoluteness (due to Gödel, in his proof of
the relative consistency of AC [2]) are both prerequisites and powerful tools in
working with transitive models. A class is simply a predicate C(x) with at least
one free variable x. The relativization ϕC(x̄) of a set-theoretic definition ϕ (of a
relation such as “x is a subset of y” or of a function like y = P(x)) to a class C
is obtained by restricting all of its quantifiers to C.

x ⊆C y ≡ ∀z. C(z) −→ (z ∈ x −→ z ∈ y)

The new formula ϕC(x̄) corresponds to what is obtained by defining the
concept “inside” C. In fact, for a class corresponding to a set c (i.e. C(x) := x ∈
c), the relativization ϕC of a sentence ϕ is equivalent to the satisfaction of ϕ in
the first-order model 〈c,∈〉.

It turns out that many concepts mean the same after relativization to a
nonempty transitive class C; formally

∀x̄. C(x̄) −→ (ϕC(x̄) ←→ ϕ(x̄))

When this is the case, we say that the relation defined by ϕ is absolute for
transitive models.2 As examples, the relation of inclusion ⊆—and actually, any
relation defined by a formula (equivalent to one) using only bounded quantifiers
(∀x ∈ y) and (∃x ∈ y)—is absolute for transitive models. On the contrary, this
is not the case with the powerset operation.

A benefit of working with transitive models is that many concepts (pairs,
unions, and fundamentally ordinals) are uniform across the universe i, a ctm
2 Absoluteness of functions also requires the relativized definition to behave function-

ally over C.
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(of an adequate fragment of ZF ) M and any of its extensions M [G]. For that
reason, then one can reason “externally” about absolute concepts, instead of
“inside” the model; thus, one has at hand any already proved lemma about the
real concept.

Paulson’s formalization [15] of the relative consistency of AC by Gödel [2]
already contains absoluteness results which were crucial to our project; we real-
ized however that they could be refactored to be more useful. The main objec-
tive is to maximize applicability of the relativization machinery by adjusting
the hypothesis of a greater part of its earlier development. Paulson’s archi-
tecture had only in mind the consistency of ZFC , but, for instance, in order
to apply it in the development of forcing, too much is assumed at the begin-
ning; more seriously, some assumptions cannot be regarded as “first-order” (v.g.
the Replacement Scheme) because of the occurrence of predicate variables. The
version we present3 of the constructibility library, ZF-Constructible-Trans,
weakens the assumptions of many absoluteness theorems to that of a nonempty
transitive class; we also include some stronger results such as the relativization of
powersets.

Apart from the axiom schemes, the ZFC axioms are initially stated as pred-
icates on classes (that is, of type (i⇒o)⇒o); this formulation allows a better
interaction with ZF-Constructible. The axioms of Pairing, Union, Foundation,
Extensionality, and Infinity are relativizations of the respective traditional first-
order sentences to the class argument. For the Axiom of Choice we selected
a version best suited for the work with transitive models: the relativization of
a sentence stating that for every x there is surjection from an ordinal onto x.
Finally, Separation and Replacement were treated separately to effectively obtain
first-order versions afterwards. It is to be noted that predicates in Isabelle/ZF
are akin to second order variables and thus do not correspond to first-order
formulas. For that reason, Separation and Replacement are defined in terms of
the satisfaction of an internalized formula ϕ. We improved their specification,
with respect to our previous report [4], by lifting the arity restriction for the
parameter ϕ; consequently we get rid of tupling and thus various proofs are now
slicker.

A benefit of having class versions of the axioms is that we can apply our
synthesis method to obtain their internal, first-order counterparts. For the case
of the Pairing Axiom, the statement for classes is the following

upair_ax(C)==∀ x[C].∀ y[C].∃ z[C]. upair(C,x,y,z)

where upair says that z is the unordered pair of x and y, relative to C.
The following schematic lemma synthesizes its internal version,4

schematic goal ZF_pairing_auto:

3 While preparing the final version of the present paper, our contributions were
accepted as part of the official Isabelle 2020 release.

4 The use of such schematic goals and the original definition of the collection of lemmas
sep_rules are due to Paulson.
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"upair_ax(##A) ←→ (A, [] |= ?zfpair)"

unfolding upair_ax_def

by ((rule sep_rules | simp)+)

and our synthesize method introduces a new term ZF_pairing_fm for it:

synthesize "ZF_pairing_fm" from schematic "ZF_pairing_auto"

the actual formula obtained is Forall(Forall(Exists(upair_fm(2,1,0)))).

4 The Definition of forces

The core of the development is showing the definability of the relation of forcing.
As we explained in our previous report [4, Sect. 8], this comprises the definition
of a function forces that maps the set of internal formulas into itself. It is the
very reason of applicability of forcing that the satisfaction of a first-order formula
ϕ in all of the generic extensions of a ctm M can be “controlled” in a definable
way from M (viz., by satisfaction of the formula forces(ϕ)).

In fact, given a forcing notion P (i.e. a preorder with a top element) in a
ctm M , Kunen defines the forcing relation model-theoretically by considering
all extensions M [G] with G generic for P. Then two fundamental results are
proved, the Truth Lemma and the Definability Lemma; but the proof of the first
one is based on the formula that witnesses Definability. To make sense of this in
our formalization, we started with the internalized relation and then proved that
it is equivalent to the semantic version (“definition_of_forcing,” in the next
section). For that reason, the usual notation of the forcing relation p � ϕ env
(for env a list of “names”), abbreviates in our code the satisfaction by M of
forces(ϕ):

"p � ϕ env ≡ M, ([p,P,leq,one] @ env) |= forces(ϕ)"

The definition of forces proceeds by recursion over the set formula and its
base case, that is, for atomic formulas, is (in)famously the most complicated
one. Actually, newcomers can be puzzled by the fact that forcing for atomic
formulas is also defined by (mutual) recursion: to know if τ1 ∈ τ2 is forced by p
(notation: forces mem(p, τ1, τ2)), one must check if τ1 = σ is forced for σ moving
in the transitive closure of τ2. To disentangle this, one must realize that this last
recursion must be described syntactically: the definition of forces(ϕ) for atomic
ϕ is then an internal definition of the alleged recursion on names.

Our aim was to follow the definition proposed by Kunen in [9, p. 257], where
the following mutual recursion is given:

forces eq(p, t1, t2) := ∀s ∈ domain(t1) ∪ domain(t2). ∀q 
 p.

forces mem(q, s, t1) ←→ forces mem(q, s, t2), (1)

forces mem(p, t1, t2) := ∀v 
 p. ∃q 
 v.

∃s. ∃r ∈ P. 〈s, r〉 ∈ t2 ∧ q 
 r ∧ forces eq(q, t1, s) (2)
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Note that the definition of forces mem is equivalent to require the set

{q 
 p : ∃〈s, r〉 ∈ t2. q 
 r ∧ forces eq(q, t1, s)}
to be dense below p.

It was not straightforward to use the recursion machinery of Isabelle/ZF to
define forces eq and forces mem. For this, we defined a relation frecR on 4-
tuples of elements of M , proved that it is well-founded and, more important, we
also proved an induction principle for this relation:5

lemma forces_induction:

assumes
"
∧

τ ϑ. [[
∧

σ. σ∈domain(ϑ) =⇒ Q(τ,σ) ]] =⇒ R(τ,ϑ)"
"
∧

τ ϑ. [[
∧

σ. σ∈domain(τ) ∪ domain(ϑ) =⇒ R(σ,τ) ∧ R(σ,ϑ) ]]
=⇒ Q(τ,ϑ)"

shows
"Q(τ,ϑ) ∧ R(τ,ϑ)"

and obtained both functions as cases of a another one, forces at, using a
single recursion on frecR. Then we obtained (1) and (2) as our corollaries
def_forces_eq and def_forces_mem.

Other approaches, like the one in Neeman [11] (and Kunen’s older book [8]),
prefer to have a single, more complicated, definition by simple recursion for
forces eq and then define forces mem explicitly. On hindsight, this might have
been a little simpler to do, but we preferred to be as faithful to the text as
possible concerning this point.

Once forces at and its relativized version is_forces_at were defined, we
proceeded to show absoluteness and provided internal definitions for the recur-
sion on names using results in ZF-Constructible. This finished the atomic case
of the formula-transformer forces. The characterization of forces for negated
and universal quantified formulas is given by the following lemmas, respectively:

lemma sats_forces_Neg:

assumes
"p∈P" "env ∈ list(M)" "ϕ∈formula"

shows
"M, [p,P,leq,one] @ env |= forces(Neg(ϕ)) ←→
¬(∃ q∈M. q∈P ∧ is_leq(##M,leq,q,p) ∧

M, [q,P,leq,one]@env |= forces(ϕ))"

lemma sats_forces_Forall:

assumes
"p∈P" "env ∈ list(M)" "ϕ∈formula"

shows
"M,[p,P,leq,one] @ env |= forces(Forall(ϕ)) ←→
(∀ x∈M. M, [p,P,leq,one,x] @ env |= forces(ϕ))"

5 The logical primitives of Pure are =⇒, &&&, and
∧

(implication, conjunction, and
universal quantification, resp.), which operate on the meta-Booleans prop.
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Let us note in passing another improvement over our previous report: we
made a couple of new technical results concerning recursive definitions. Paul-
son proved absoluteness of functions defined by well-founded recursion over a
transitive relation. Some of our definitions by recursion (check and forces) do
not fit in that scheme. One can replace the relation R for its transitive clo-
sure R+ in the recursive definition because one can prove, in general, that
F �(R−1(x))(y) = F �

(
(R+)−1(x)

)
(y) whenever (x, y) ∈ R.

5 The Forcing Theorems

After the definition of forces is complete, the proof of the Fundamental The-
orems of Forcing is comparatively straightforward, and we were able to follow
Kunen very closely. The more involved points of this part of the development
were those where we needed to prove that various (dense) subsets of P were in
M ; for this, we have resorted to several ad-hoc absoluteness lemmas.

The first results concern characterizations of the forcing relation. Two of
them are Forces_Member:

(p � Member(n,m) env) ←→ forces_mem(p,t1,t2),

where t1 and t1 are the nth resp. mth elements of env, and Forces_Forall:

(p � Forall(ϕ) env) ←→ (∀ x∈M. (p � ϕ ([x] @ env))).

Equivalent statements, along with the ones corresponding to Forces_Equal and
Forces_Nand, appear in Kunen as the inductive definition of the forcing relation
[9, Def. IV.2.42].

As with the previous section, the proofs of the forcing theorems have two
different flavors: The ones for the atomic formulas proceed by using the principle
of forces_induction, and then an induction on formula wraps the former with
the remaining cases (Nand and Forall).

As an example of the first class, we can take a look at our formalization of
[9, Lem. IV.2.40(a)]. Note that the context (a “locale,” in Isabelle terminology,
namely forcing_data) of the lemma includes the assumption of P being a forcing
notion, and the predicate of being M -generic is defined in terms of P:

lemma IV240a:

assumes
"M_generic(G)"

shows
"(τ∈M−→ϑ∈M−→(∀ p∈G.forces_eq(p,τ,ϑ)−→val(G,τ)=val(G,ϑ)))
∧
(τ∈M−→ϑ∈M−→(∀ p∈G.forces_mem(p,τ,ϑ)−→val(G,τ)∈val(G,ϑ)))"

Its proof starts by an introduction of forces_induction; the inductive cases
for each atomic type were handled before as separate lemmas (IV240a_mem and
IV240a_eq). We illustrate with the statement of the latter.
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lemma IV240a_eq:

assumes
"M_generic(G)" "p∈G" "forces_eq(p,τ,ϑ)"
and
IH:"

∧
q σ. q∈P =⇒ q∈G =⇒ σ∈domain(τ) ∪ domain(ϑ) =⇒

(forces_mem(q,σ,τ) −→ val(G,σ) ∈ val(G,τ)) ∧
(forces_mem(q,σ,ϑ) −→ val(G,σ) ∈ val(G,ϑ))"

shows
"val(G,τ) = val(G,ϑ)"

Examples of proofs using the second kind of induction include the basic
strengthening_lemma and the main results in this section, the lemmas of Den-
sity (actually, its nontrivial direction dense_below_imp_forces) and Truth,
which we state next.

lemma density_lemma:

assumes
"p∈P" "ϕ∈formula" "env∈list(M)" "arity(ϕ)≤length(env)"

shows
"(p � ϕ env) ←→ dense_below({q∈P. (q � ϕ env)},p)"

lemma truth_lemma:

assumes
"ϕ∈formula" "M_generic(G)"

shows
"
∧
env. env∈list(M) =⇒ arity(ϕ)≤length(env) =⇒

(∃ p∈G. (p � ϕ env)) ←→ M[G], map(val(G),env) |= ϕ"

From these results, the semantical characterization of the forcing relation (the
“definition of �” in [9, IV.2.22]) follows easily:

lemma definition_of_forcing:

assumes
"p∈P" "ϕ∈formula" "env∈list(M)" "arity(ϕ)≤length(env)"

shows
"(p � ϕ env) ←→
(∀ G. M_generic(G)∧ p∈G −→ M[G], map(val(G),env) |= ϕ)"

The present statement of the Fundamental Theorems is almost exactly the
same of those in our previous report [4], with the only modification being the
bound on arities and a missing typing constraint. This implied only minor adjust-
ments in the proofs of the satisfaction of axioms.

6 Example of Proper Extension

Even when the axioms of ZFC are proved in the generic extension, one cannot
claim that the magic of forcing has taken place unless one is able to provide some
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proper extension with the same ordinals. After all, one is assuming from the start
a model M of ZFC , and in some trivial cases M [G] might end up to be exactly
M ; this is where proper enters the stage. But, for instance, in the presence of
large cardinals, a model M ′

� M might be an end-extension of M—this is where
we ask the two models to have the same ordinals, the same height.

Three theory files contain the relevant results. Ordinals In MG.thy shows,
using the closure of M under ranks, that M and M [G] share the same ordinals
(actually, ranks of elements of M [G] are bounded by the ranks of their names
in M):

lemma rank_val: "rank(val(G,x)) ≤ rank(x)"

lemma Ord_MG_iff:

assumes "Ord(α)"
shows "α ∈ M ←→ α ∈ M[G]"

To prove these results, we found it useful to formalize induction over the relation
ed(x, y) := x ∈ domain(y), which is key to arguments involving names.

Succession Poset.thy contains our first example of a poset that interprets
the locale forcing_notion, essentially the notion for adding one Cohen real. It
is the set 2<ω of all finite binary sequences partially ordered by reverse inclusion.
The sufficient condition for a proper extension is that the forcing poset is separ-
ative: every element has two incompatible (⊥s) extensions. Here, seq_upd(f,x)
adds x to the end of the sequence f.

lemma seqspace_separative:

assumes "f∈2^<ω"
shows "seq_upd(f,0) ⊥s seq_upd(f,1)"

We prove in the theory file Proper Extension.thy that, in general, every
separative forcing notion gives rise to a proper extension.

7 The Axioms of Replacement and Choice

In our report [4] we proved that any generic extension preserves the satisfaction of
almost all the axioms, including the separation scheme (we adapted those proofs
to the current statement of the axiom schemes). Our proofs that Replacement
and choice hold in every generic extension depend on further relativized concepts
and closure properties.

7.1 Replacement

The proof of the Replacement Axiom scheme in M [G] in Kunen uses the Reflec-
tion Principle relativized to M . We took an alternative pathway, following Nee-
man [11]. In his course notes, he uses the relativization of the cumulative hier-
archy of sets.

The family of all sets of rank less than α is called Vset(α) in Isabelle/ZF.
We showed, in the theory file Relative Univ.thy the following relativization
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and closure results concerning this function, for a class M satisfying the locale
M_eclose plus the Powerset Axiom and four instances of replacement.

lemma Vset_abs: " [[ M(i); M(V); Ord(i) ]] =⇒
is_Vset(M,i,V) ←→ V = {x∈Vset(i). M(x)}"

lemma Vset_closed: " [[ M(i); Ord(i) ]] =⇒ M({x∈Vset(i). M(x)})"

We also have the basic result

lemma M_into_Vset:

assumes "M(a)"

shows "∃ i[M]. ∃ V[M]. ordinal(M,i) ∧ is_Vfrom(M,0,i,V) ∧ a∈V"
stating that M is included in

⋃{VsetM (α) : α ∈ M} (actually they are equal).
For the proof of the Replacement Axiom, we assume that ϕ is functional in

its first two variables when interpreted in M [G] and the first ranges over the
domain c ∈ M [G]. Then we show that the collection of all values of the second
variable, when the first ranges over c, belongs to M [G]:

lemma Replace_sats_in_MG:

assumes
"c∈M[G]" "env ∈ list(M[G])"

"ϕ ∈ formula" "arity(ϕ) ≤ 2 #+ length(env)"

"univalent(##M[G], c, λx v. (M[G], [x,v]@env |= ϕ))"
shows

"{v. x∈c, v∈M[G] ∧ (M[G], [x,v]@env |= ϕ)} ∈ M[G]"

From this, the satisfaction of the Replacement Axiom in M [G] follows very easily.
The proof of the previous lemma, following Neeman, proceeds as usual by

turning an argument concerning elements of M [G] to one involving names lying
in M , and connecting both worlds by using the forcing theorems. In the case at
hand, by functionality of ϕ we know that for every x ∈ c ∩ M [G] there exists
exactly one v ∈ M [G] such that M [G], [x, v] @ env |= ϕ. Now, given a name
π′ ∈ M for c, every name of an element of c belongs to π := domain(π′) × P,
which is easily seen to be in M . We will use π to be the domain in an application
of the Replacement Axiom in M . But now, obviously, we have lost functionality
since there are many names v̇ ∈ M for a fixed v in M [G]. To solve this issue, for
each ρp := 〈ρ, p〉 ∈ π we calculate the minimum rank of some τ ∈ M such that
p � ϕ(ρ, τ, . . . ) if there is one, or 0 otherwise. By Replacement in M , we can show
that the supremum ?sup of these ordinals belongs to M and we can construct a
?bigname := {x∈Vset(?sup). x ∈ M} × {one} whose interpretation by (any
generic) G will include all possible elements as v above.

The previous calculation required some absoluteness and closure results
regarding the minimum ordinal binder, Least(Q), also denoted μx.Q(x), that
can be found in the theory file Least.thy.
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7.2 Choice

A first important observation is that the proof of AC in M [G] only requires the
assumption that M satisfies (a finite fragment of) ZFC . There is no need to
invoke Choice in the metatheory.

Although our previous version of the development used AC , that was only
needed to show the Rasiowa-Sikorski Lemma (RSL) for arbitrary posets. We have
modularized the proof of the latter and now the version for countable posets that
we use to show the existence of generic filters does not require Choice (as it is
well known). We also bundled the full RSL along with our implementation of
the principle of dependent choices in an independent branch of the dependency
graph, which is the only place where the theory ZF.AC is invoked.

Our statement of the Axiom of Choice is the one preferred for arguments
involving transitive classes satisfying ZF :

∀ x[M]. ∃ a[M]. ∃ f[M]. ordinal(M,a) ∧ surjection(M,a,x,f)

The Simplifier is able to show automatically that this statement is equivalent to
the next one, in which the real notions of ordinal and surjection appear:

∀ x[M]. ∃ a[M]. ∃ f[M]. Ord(a) ∧ f ∈ surj(a,x)

As with the forcing axioms, the proof of AC in M [G] follows the pattern of
Kunen [9, IV.2.27] and is rather straightforward; the only complicated technical
point being to show that the relevant name belongs to M . We assume that a �= ∅

belongs to M [G] and has a name τ ∈ M . By AC in M , there is a surjection s
from an ordinal α ∈ M (⊆ M [G]) onto domain(τ). Now

{opair_name(check(β),s‘β). β∈α} × {one}

is a name for a function f with domain α such that a is included in its range,
and where opair_name(σ, ρ) is a name for the ordered pair 〈val(G, σ), val(G, ρ)〉.
From this, AC in M [G] follows easily.

7.3 The Main Theorem

With all these elements in place, we are able to transcript the main theorem of
our formalization:

theorem extensions_of_ctms:

assumes
"M ≈ nat" "Transset(M)" "M |= ZF"

shows
"∃ N.

M ⊆ N ∧ N ≈ nat ∧ Transset(N) ∧ N |= ZF ∧ M �=N ∧
(∀α. Ord(α) −→ (α ∈ M ←→ α ∈ N)) ∧
(M, [] |= AC −→ N |= ZFC)"

Here, ≈ stands for equipotency, nat is the set of natural numbers, and the
predicate Transset indicates transitivity; and as usual, AC denotes the Axiom
of Choice, and ZF and ZFC the corresponding subsets of formula.
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8 Related Work

There are various formalizations of Zermelo-Fraenkel set theory in proof assis-
tants (v.g. Mizar, Metamath, and recently Lean [10]) that proceed to different
levels of sophistication. Isabelle/ZF can be regarded as a notational variant of
NGB set theory [9, Sect. II.10], because the schemes of Replacement and Sepa-
ration feature higher order (free) variables playing the role of formula variables.
It cannot be proved that the axioms thus written correspond to first order sen-
tences. For this reason, our relativized versions only apply to set models, where
we restrict those variables to predicates that actually come from first order for-
mulas. In that sense, the axioms of the locale M_ZF correspond more faithfully
to the ZF axioms.

Traditional expositions of the method of forcing [7,9] are preceded by a study
of relativization and absoluteness. For this reason, it was a natural choice at
the beginning of this project to build on top of Paulson’s formalization of con-
structibility on Isabelle/ZF, and that was one of the main early reasons to work
on that logic instead of, e.g., HOL—below we discuss other reasons. In any case,
our development of forcing does not depend on constructibility itself (in contrast
to Cohen’s original presentation, in which ground models are initial segments of
the constructible hierarchy).

A natural question is whether Isabelle/HOL (with a far more solid framework
to work with given its infrastructure and automation) would have been a better
choice than Isabelle/ZF. In fact, there are two developments of Zermelo-Fraenkel
set theory available on it: HOLZF by Obua [12] and ZFC_in_HOL by Paulson [16].
But these (logically equivalent) frameworks are higher in consistency strength
than Isabelle/ZF. To elaborate on this, both ZF and HOL are axiomatized on
top of Isabelle’s metalogic Pure, which is a version of “intuitionistic higher order
logic.” In [13] Paulson proves that Pure is sound for intuitionistic first order
logic, thus it does not add any strength to it. On top of this, the axiomatization
of Isabelle/ZF results in a system equiconsistent with ZFC . On the other hand,
showing the consistency of HOLZF (and thus ZFC_in_HOL) requires assuming the
consistency of ZFC plus the existence of an inaccessible cardinal [12, Sect. 3].
We note, in contrast, that our extra running assumption of the existence of a
countable transitive model is considerably weaker (directly and consistency-wise)
than the existence of an inaccessible cardinal.

Concerning the formalization of the method of forcing, to the best of our
knowledge there is only one other that deals with forcing for set theory: the
recent Flypitch project by Han and van Doorn [5,6], which includes a formal-
ization of the independence of CH using the Lean proof assistant. The Flyp-
itch formalization is largely orthogonal to ours (it is based on Boolean-valued
models, which are interpreted into type theory through a variant of the Aczel
encoding of set theory), and this precludes a direct comparison of code. But
we can highlight some conceptual differences between our development and the
corresponding fraction of Flypitch.

A first observation concerns consistency strength. The consistency of Lean
requires infinitely many inaccessibles. More precisely, let Leann be the theory
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of CiC foundations of Lean restricted to n type universes. Carneiro proved in
his MSc thesis [1] the consistency of Leann from ZFC plus the existence of n
inaccessible cardinals. It is also reported in Carneiro’s thesis that Werner’s results
in [19] can be adapted to show that Leann+2 proves the consistency of the latter
theory. In that sense, although Flypitch includes proofs of unprovability results
in first order logic, the meta-theoretic machinery used to obtain them is far
heavier than the one we use to operate model-theoretically.

In second place, a formalization of forcing with general partial orders, generic
filters and ctms has—in our opinion—the added value that this approach is
used in an important (perhaps the greatest) fraction of the literature, both
in exposition and in research articles and monographs. In verifying a piece of
mature mathematics as the present one, representing the actual practice seems
paramount to us.

Finally, as a matter of taste, one of the main benefits of using transitive
models is that many fundamental notions are absolute and thus most of the
concepts and statements can be interpreted transparently, as we have noted
before. It also provides a very concrete way to understand generic objects: as
sets that (in the non trivial case) are provably not in the original model; this
dispels any mystical feel around this concept (contrary to the case when the
ground model is the universe of all sets). In addition, two-valued semantics is
closer to our intuition.

9 Conclusion and Future Work

We consider that the formalization of the definition of forces and its recur-
sive characterization of forcing for atomic formulas is a turning point in our
project; the reason for this is that all further developments will not involve such
a daunting metamathematical component. Even the proofs of the Fundamental
Theorems of Forcing turned out to follow rather smoothly after this initial setup
was ready, the only complicated affair being to show that various dense sets
belong to M . Actually, this is a point to be taken care of: For every new concept
that is introduced, some lemmas concerning relativization and closure must be
proved to be able to synthesize its internal definition. Further automation must
be developed for this purpose.

In the course of obtaining internal formulas for the atomic case of forcing, a
fruitful discussion concerning complementary perspectives on the role of proof
assistants took place. An earlier approach relied more heavily in formula synthe-
sis, thus making the Simplifier an indispensable main character. Following this
line was quickier from the coding point of view since few new primitives were
introduced and thus fewer lemmas concerning absoluteness and arities. On the
downside, processing was a bit slower, the formulas synthesized were gigantic
and the process on a whole was more error-prone. In fact, this approach was
unsuccessful and we opted for a more detailed engineering, defining all inter-
mediate steps. So the load on the assistant, in this part of the development,
balanced from code-production to code-verification.
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The next task in our path is pretty clear: To develop the forcing notions
to obtain the independence of CH along with the prerequisite combinatorial
results, v.g. the Δ-system lemma. A development of cofinality is under way in a
joint work with E. Pacheco Rodŕıguez, which is needed for a general statement
of the latter. Once these developments are finished, we will be able to give a
more thorough comparison between our project and the Flypitch approach using
Boolean-valued models.

In a second release of ZF-Constructible-Trans, we intend to conform it
to the lines of Basic Set Theory (BST) proposed by Kunen [9, I.3.1] in which
elementary results have proofs using alternatively Powerset or Replacement. The
interest in this arises because many natural set models (rank-initial segments of
the universe or the family H(κ) of sets of cardinality less than κ hereditarily)
satisfy one of those axioms and not the other. There are also still some older or
less significant proofs written in tactical (apply) format; we hope we will find
the time to translate them to Isar. Finally, the automation of formula synthesis
is on an early stage of development; finishing that module will make writing our
proofs of closure under various operations faster, and also turn the set theory
libraries more usable to other researchers.
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Abstract. We prove Chen and Grätzer’s construction theorem for Stone
algebras in Isabelle/HOL. The development requires extensive reasoning
about algebraic structures in addition to reasoning in algebraic struc-
tures. We present an approach for this using classes and locales with
implicit carriers. This involves using function liftings to implement some
aspects of dependent types and using embeddings of algebras to inherit
theorems. We also formalise a theory of filters based on partial orders.

1 Introduction

There is an ongoing effort of formalising results from mathematics, computer
science and other disciplines using various proof assistants such as ACL2, Agda,
Coq, HOL, Isabelle, Lean, Mizar, Nuprl and PVS. These systems differ in the
supported logics, type systems, libraries, automation, code generation capabili-
ties and other ways. In this paper we focus on Isabelle/HOL, which is the higher-
order logic instance of the generic proof assistant Isabelle [29]. It has very good
proof automation facilities, in particular through the Sledgehammer integration
of automated theorem provers and SMT solvers [4,30], but a somewhat limited
type system, notably lacking dependent types.

Isabelle/HOL has a wide range of libraries that come with the system or
the associated Archive of Formal Proofs at https://www.isa-afp.org/. They con-
tain extensive theories of algebraic structures including groups, rings, lattices,
Boolean algebras, Kleene algebras and many others. Algebras are frequently
implemented in Isabelle/HOL using classes and locales, which offer means to
package operations and axioms, arrange them in hierarchies, dynamically inherit
results, and exhibit multiple instances [16,23]. Unlike classes, locales support
multiple type parameters making them useful for applications such as describing
homomorphisms between different structures.

Algebraic hierarchies in Isabelle/HOL come in two flavours: one which makes
the carrier sets of the algebras explicit and one which leaves them implicit. The
latter assumes a universe of discourse, which all operations, axioms, definitions,
theorems and proofs implicitly refer to [16]. The former adds explicit constants
for carrier sets; closure properties of operations and membership in the carrier
sets must be stated explicitly [2,22].
c© Springer Nature Switzerland AG 2020
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Explicit carriers make statements more complex: theories are harder to read
and to understand, and additional membership properties may create an over-
head for automation [10]. It is therefore not surprising that large hierarchies
of algebras have been developed with implicit carriers, which allow for con-
venient reasoning in algebraic structures. As development progressed over the
years issues with this approach when reasoning about algebraic structures have
become more apparent. For example, it is challenging to define subalgebras and
to impose additional algebraic structure on a subset of an algebra. Two ques-
tions arise: to what extent can these issues be overcome while still using implicit
carriers? How can hierarchies with implicit carriers be connected to hierarchies
with explicit carriers while minimising redevelopment and maintenance efforts?

In the present paper we study Chen and Grätzer’s construction theorem for
Stone algebras [8] with the aim of providing some answers to the first of these
questions. Briefly stated, every Stone algebra S is isomorphic to a triple (B,D,ϕ)
comprising a Boolean algebra B, a distributive lattice D with a greatest element
and a bounded lattice homomorphism ϕ from B to filters of D. Stone algebras
have applications ranging from topology [21] over rough sets for representing
uncertainty [31] to modelling weighted graphs for algorithm verification [14,15].
The above theorem has not been formally proved before, is complex enough to
push against some of Isabelle/HOL’s limitations, is based on algebraic struc-
tures that have been developed using implicit carriers, but requires a significant
amount of reasoning about algebras that would benefit from explicit carriers.

We present a proof development of the construction theorem based on a
class hierarchy of pseudo-complemented algebras with implicit carriers. The aim
is to demonstrate challenges when reasoning about algebras with implicit car-
riers and ways to deal with them. At the same time we prepare the ground
for a proof development connecting algebras with implicit carriers and explicit
carriers, which we will use to study the second of the above questions in future
work.

The contributions of this paper are:

– A formal proof of Chen and Grätzer’s construction theorem for Stone alge-
bras. This result has not been formally proved so far.

– An Isabelle/HOL theory of filters based on partial orders. Existing theories
of filters only apply to rings with a carrier and to sets of sets, respectively.

– Examples formalised in Isabelle/HOL of inheriting universal formulas using
an embedding of algebras. This technique is well known in universal algebra
but has not been formalised before.

– A function lifting technique based on universal algebra to circumvent the need
for dependent types. This is a new way to get some aspects of dependent types
in Isabelle/HOL.

The findings of this paper can be summarised as follows. Reasoning about
algebraic structures can be carried out in Isabelle/HOL to a certain extent using
implicit carriers, but would benefit from dependent types beyond. Function lift-
ings can mitigate this problem to a certain extent, but they become complex
and unnatural for more involved constructions.
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In Sect. 2 we give basic definitions and state the construction theorem for
Stone algebras. Section 3 discusses our theory of filters based on partial orders.
The proof of the construction theorem for Stone algebras is described in Sect. 4.
Sections 4.1 and 4.2 construct a triple from a Stone algebra and a Stone algebra
from a triple. Sections 4.3 and 4.4 show that these constructions are mutually
inverse up to isomorphism. The function lifting and embedding techniques are
described in Sect. 4.2. Section 5 puts this work into context. The Isabelle/HOL
theory files containing the results of this paper are available in the Archive of
Formal Proofs [13].

2 Construction Theorem for Stone Algebras

This section states Chen and Grätzer’s construction theorem for Stone alge-
bras [8] and presents the necessary algebraic structures. In particular we dis-
cuss orders, lattices, pseudocomplemented algebras, homomorphisms, filters and
triples. Further details about lattices and pseudocomplemented algebras can be
found, for example, in Blyth’s textbook [5].

A partial order � on a set S is a reflexive, transitive and antisymmetric
relation on S:

x � x x � y ∧ y � z ⇒ x � z x � y ∧ y � x ⇒ x = y

A lattice is a partially ordered set (S,�) where any two elements x, y ∈ S have
a least upper bound or join x � y and a greatest lower bound or meet x � y:

x � x � y y � x � y x � z ∧ y � z ⇒ x � y � z

x � y � x x � y � y z � x ∧ z � y ⇒ z � x � y

The operations � and � are associative, commutative, idempotent and �-isotone.
The absorption laws x� (x�y) = x = x� (x�y) hold. The order � is connected
to join and meet by x � y = y ⇔ x � y ⇔ x � y = x.

Equivalently, a lattice can be constructed from two operations � and � that
are associative, commutative and satisfy the absorption laws. The relation �
defined by either of the connection laws x � y ⇔ x�y = y or x � y ⇔ x�y = x
and the operations � and � satisfy all properties of a lattice stated above.

A lattice is bounded if it has a least element ⊥ and a greatest element 
:

⊥ � x x � 


These axioms are equivalent to ⊥ � x = x = 
 � x.
A lattice is distributive if the following axioms hold:

x � (y � z) = (x � y) � (x � z) x � (y � z) = (x � y) � (x � z)

Either of these axioms implies the other in a lattice.
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A (distributive) p-algebra [5] is a bounded (distributive) lattice with a unary
pseudocomplement operation :

x � y = ⊥ ⇔ x � y

The pseudocomplement y of an element y is the �-greatest element whose meet
with y is ⊥. An element x in a p-algebra is regular if x = x and dense if x = ⊥.
Equivalently, a p-algebra is a bounded lattice with an operation satisfying
⊥ = 
 and 
 = ⊥ and x � x � y = x � y.

A Stone algebra is a distributive p-algebra satisfying the following equation:

x � x = 

A Boolean algebra is a bounded distributive lattice with a complement :

x � x = 
 x � x = ⊥
Equivalently, a Boolean algebra is a Stone algebra whose elements are all regular.
An example of a Stone algebra which is not a Boolean algebra is the three-
element chain {⊥, a,
} where ⊥ � a � 
 and ⊥ = 
 and a = 
 = ⊥.

A bounded-lattice homomorphism is a function f : A → B from a bounded
lattice A to a bounded lattice B preserving join, meet, the least element and the
greatest element:

f(x �A y) = f(x) �B f(y) f(⊥A) = ⊥B

f(x �A y) = f(x) �B f(y) f(
A) = 
B

A subset X ⊆ S of a partially ordered set (S,�) is up-closed if all elements
of S above any element of X are in X:

∀x ∈ X : ∀y ∈ S : x � y ⇒ y ∈ X

The set X ⊆ S is downward directed if any two elements of X have a lower
bound in X:

∀x, y ∈ X : ∃z ∈ X : z � x ∧ z � y

A filter of S is a non-empty, downward directed, up-closed subset of S.
We give a general result about filters, which is necessary for the subsequent

definition to make sense. Let D be a distributive lattice with a greatest element

D. Then the filters of D form a bounded distributive lattice F (D) where the
join of two filters X and Y is

X � Y = {z ∈ D | ∃x ∈ X : ∃y ∈ Y : x �D y �D z},

meet is intersection, the greatest element is D, the least element is {
D} and
the lattice order is the subset order.

Following Chen and Grätzer [8], we use triple as a technical term rather than
just for a collection of three components. A triple (B,D,ϕ) comprises a Boolean
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algebra B, a distributive lattice D with a greatest element, and a bounded-
lattice homomorphism ϕ : B → F (D). Triples (B1,D1, ϕ1) and (B2,D2, ϕ2)
are isomorphic if there is an isomorphism b : B1 → B2 of Boolean algebras B1

and B2, and an isomorphism d : D1 → D2 of lattices D1 and D2 with greatest
elements such that ϕ2(b(x)) = d′(ϕ1(x)), where d′(X) = {d(x) | x ∈ X} applies
d to all elements of X.

In this paper we formally prove the construction theorem for Stone algebras
[8,25], by which we understand the following collection of results:

1. Let S be a Stone algebra. Consider the set B = {x ∈ S | x = x} of regular
elements of S, the set D = {x ∈ S | x = ⊥} of dense elements of S, and the
function ϕ : B → 2D defined by ϕ(x) = {y ∈ D | x �S y}. Then (B,D,ϕ) is
a triple, called the triple associated with S, where B forms a subalgebra of S
and D forms a subalgebra of the reduct of S to �, � and 
.

2. Let (B,D,ϕ) be a triple. Consider the set

S = {(x, Y ) ∈ B × F (D) | ∃z ∈ D : Y = ϕ(x) �F (D) ↑z}

where ↑z = {y ∈ D | z �D y} is the up-closure of z in D. Then S is a Stone
algebra where

(x, Y ) �S (z,W ) ⇔ x �B z ∧ W �F (D) Y

(x, Y ) = (x, ϕ(x))

It is called the Stone algebra associated with (B,D,ϕ).
3. The Stone algebra associated with the triple (B,D,ϕ) associated with a Stone

algebra S is isomorphic to S.
4. The triple associated with the Stone algebra S associated with a triple

(B,D,ϕ) is isomorphic to (B,D,ϕ).

There are a number of construction theorems using triples for similar alge-
braic structures such as Heyting semilattices and pseudocomplemented distribu-
tive lattices [24,26,28].

3 An Isabelle/HOL Theory of Filters Based on Orders

The construction theorem for Stone algebras is based on lattices, pseudocomple-
mented algebras and filters. In this section, we discuss the extent to which these
foundations are supported in Isabelle/HOL.

Prior to this work, Isabelle/HOL had libraries for lattices and filters, but not
for pseudocomplemented algebras. We reused the available theories for lattices.
Only small extensions were necessary, in particular, for directed semilattices,
bounded distributive lattices and lattice homomorphisms.

The available theories for filters could not be reused as they are too specific.
The theory HOL/Algebra/Ideal.thy defines ring-theoretic ideals in locales with
a carrier set. In the theory HOL/Filter.thy a filter is defined as a set of sets.
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Filters based on orders and lattices abstract from the inner set structure; this
approach is used in many texts [1,3,5,9,11]. Moreover, it is required for the
construction theorem of Stone algebras, whence we implemented filters this way.

While theories were available for Boolean algebras, they did not cover pseudo-
complemented algebras, which have the same signature but weaker axioms. We
therefore developed a theory covering p-algebras, distributive p-algebras, Stone
algebras, Heyting semilattices, Heyting algebras, Brouwer algebras and addi-
tional results for Boolean algebras. This theory has been used independently for
modelling weighted graphs and verifying minimum spanning tree algorithms and
has been described in this context [14,15].

In the remainder of this section, we describe our new theory of filters in more
detail. It is structured by the assumptions on the underlying order. We consider
filters based on partial orders, semilattices, lattices and distributive lattices. The
following is a selection of results proved in this theory:

1. We generalise the ultrafilter lemma [9, Theorem 10.17] to orders with a least
element. A proper filter of S is a filter of S that is different from S. An
ultrafilter of S is a ⊆-maximal proper filter of S. The ultrafilter lemma states
that every proper filter of S is a subset of an ultrafilter of S.
Actually, our proof does not need that � is a partial order, but also works if �
is an arbitrary relation satisfying ⊥ � x for some element ⊥ and all elements x
of the algebra (defining filters as in Sect. 2 but for arbitrary �). The proof uses
Isabelle/HOL’s Zorn_Lemma, which requires closure under union of arbitrary
(possibly empty) chains of sets.

2. We study the lattice structure of filters. A meet-semilattice is a partially
ordered set (S,�) where all x, y ∈ S have a greatest lower bound x � y.
A meet-semilattice is directed if any two elements have an upper bound. A
meet-semilattice is bounded if it has a greatest element. The results state:
(a) The set of filters where the underlying order is a directed meet-semilattice

forms a lattice with a greatest element.
(b) The set of filters over a bounded meet-semilattice forms a bounded lattice.
(c) The set of filters over a distributive lattice with a greatest element forms

a bounded distributive lattice.
3. We connect ultrafilters and prime filters [9, Theorem 10.11]. A prime filter of

S is a proper filter X of S where x � y ∈ X implies x ∈ X or y ∈ X for all
x, y ∈ S. The result shows that in a distributive lattice every ultrafilter is a
prime filter. The lattice does not need to be bounded [9, p. 234].

4. We prove a result about principal filters [12, Lemma II]. A principal filter of S
is a filter X of S such that X = ↑x for some x ∈ S where ↑x = {y ∈ S | x � y}.
The result shows that in a distributive lattice, if both join and meet of two
filters are principal filters, both filters are principal filters.

4 The Construction Theorem for Stone Algebras

In this section, we describe the proof of the construction theorem for Stone alge-
bras in Isabelle/HOL. Section 4.1 constructs the triple associated with a Stone
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algebra. Section 4.2 constructs the Stone algebra associated with a triple. It
describes the function lifting technique for dependent types and the embedding
technique, both based on universal algebra. Section 4.3 shows that the first con-
struction followed by the second construction gives back the original Stone alge-
bra up to isomorphism. Section 4.4 shows that the second construction followed
by the first construction gives back the original triple, again up to isomorphism.

4.1 Constructing a Triple from a Stone Algebra

The first set of results concerns the construction of a triple from a Stone algebra
S. Specifically, we show:

1. The regular elements of S form a Boolean algebra B that is a subalgebra of
S.

2. The dense elements of S form a distributive lattice D with a greatest element,
which is a subalgebra of the reduct of S to �, � and 
.

As shown in Sect. 3, it follows that the set of filters F (D) of the dense elements
of S forms a bounded distributive lattice. Considering the function ϕ : B → 2D

defined by ϕ(x) = {y ∈ D | x �S y}, we show:

3. ϕ maps every regular element to a filter of D.
4. ϕ is a bounded-lattice homomorphism from B to F (D).

Hence (B,D,ϕ) is a triple.
We have implemented Stone algebras using classes in Isabelle/HOL, situat-

ing them between lattices and Boolean algebras in the existing class hierarchy
provided by HOL/Lattices.thy. Every class has a single type parameter, which
represents the carrier set of an algebra and is left implicit. For every operation
of an algebra there is an additional class parameter. Axioms for these operations
are provided as statements assumed to hold in the context of the class but not
outside. Classes can be instantiated by providing a particular type, appropriate
operations and proofs of these assumptions.

Using classes to implement algebraic structures makes it easy to extend the
hierarchy. For example, p-algebras are defined as a subclass of the existing class
for bounded lattices, extending the latter by a unary pseudocomplement opera-
tion satisfying the appropriate axiom:

class p algebra = bounded lattice + uminus +
assumes pseudo complement: “x � y = ⊥ ←→ x � −y”

Similarly, Stone algebras are introduced as a subclass of distributive p-algebras,
which are introduced as a subclass of p-algebras. On top of that, the existing
class for Boolean algebras forms a subclass of the new class for Stone algebras,
which is proved as follows:

context boolean algebra begin
subclass stone algebra

– proof of axioms pseudo complement and x � x = 
 (omitted)
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Existing subclass relationships are taken into account which avoids the need
to repeat proofs. For example, the axioms of bounded distributive lattices, which
are necessary for Stone algebras, follow automatically since the class for Boolean
algebras is a subclass of the classes for bounded lattices and distributive lattices.

Reasoning in algebraic structures and proving subclass relationships of entire
algebras is well supported this way. For the Stone construction theorem, however,
we need to prove that the subset of regular elements forms a Boolean algebra.
This cannot be done using the subclass mechanism in a class as it implicitly
refers to the entire carrier sets of the related algebras. We therefore introduce
a new type corresponding to the set of regular elements. New types have to
be introduced outside a class at a global level, since otherwise they could refer
to class parameters making them dependent types, which are not supported by
HOL:

typedef ’a regular = “{x::(’a::stone algebra) . x = − − x}” by auto

Here ’a is a type parameter, which is constrained to being a subclass of the
class for Stone algebras, and every element x of the set underlying the new
type is restricted to have type ’a. New type definitions require a proof that
the set they are derived from is not empty, which is discharged by the auto
proof method since any Stone algebra contains ⊥ and 
. Such a type definition
automatically introduces representation and abstraction functions between the
new type and the set it is derived from, and automatically derives basic theorems
about these functions including their inverse relationship. We then show that this
type instantiates the class for Boolean algebras:

instantiation regular :: (stone algebra) boolean algebra begin
– definitions of Boolean algebra operations and proofs of axioms (omitted)

The parentheses indicate the subclass constraint required for the type parameter,
that is, the kind of algebra from which the regular elements are taken. A stronger
constraint than required by the type can be provided in such an instantiation; for
example, this is used to characterise the structure formed by the set of filters over
various kinds of semilattice as mentioned in Sect. 3. The operations on the new
type are derived from the operations on Stone algebras using the representation
and abstraction functions of the type. Working with new types introduced like
this often requires handling the representation and abstraction functions, which
clutter definitions, statements and proofs. Some of this can be hidden using
mechanisms from Isabelle/HOL’s Lifting package [18].

Similarly, we introduce a new type for the dense elements of a Stone algebra
and show that it forms a distributive lattice with a greatest element. We also
introduce a new type for the filters of dense elements and show that it forms
a bounded distributive lattice. The proofs of these instances are simple as the
operations are derived from the underlying algebras without changes. The main
work is proving that filters over a distributive lattice with a greatest element
form a bounded distributive lattice, which was done generally in Sect. 3.

We next construct the function ϕ mapping regular elements to sets of dense
elements, where ⇒ is the function type constructor:
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definition stone phi :: “’a::stone algebra regular ⇒ ’a dense filter”
where “stone phi x = Abs filter {y . −Rep regular x � Rep dense y}”

The representation functions convert elements x and y from the regular and
dense types to the underlying Stone algebra, where they can be compared. The
set of dense elements satisfying the given property is converted to a filter using
the abstraction function of this type.

A triple consists of a Boolean algebra, a distributive lattice with a greatest
element, and a structure map. The Boolean algebra and the distributive lattice
are represented as HOL types with appropriate subclass constraints. Because
both occur in the type of the structure map, the triple is determined simply by
the structure map and its HOL type. The structure map needs to be a bounded
lattice homomorphism. This information is collected in the following locale:

locale triple =
fixes phi :: “’a::boolean algebra ⇒ ’b::distrib lattice top filter”
assumes hom: “bounded lattice homomorphism phi”

Unlike classes, locales support multiple type parameters such as ’a and ’b used
here. Another difference is that a locale can have multiple instances for the
same type. On the other hand, different instances of a class can share the same
notation for an operation, which is closer to mathematical usage. It remains to
show that ϕ is indeed a bounded lattice homomorphism:

interpretation stone phi: triple “stone phi”
– proof of homomorphism properties for �, �, ⊥, 
 (omitted)

The proof is cluttered with occurrences of the representation and abstraction
functions for the types of regular and dense elements. The preservation of � has
to be broken down into quite small steps, whereas Sledgehammer [30] is more
helpful with automating the preservation of the other three operations. This
is partly because the join of filters has the most complex definition, but the
representation and abstraction functions cause further overhead.

Referees of this paper suggested to use the Lifting package to hide repre-
sentation and abstraction functions in the definition of stone phi and in other
definitions in the following sections. The author has tried this but soon ran into
problems which could not be solved during revision of the paper. One of the
issues appeared to be the lack of suitable transfer rules for the composite type
“’a dense filter” even though transfer rules are automatically generated for the
dense and filter type constructors.

4.2 Constructing a Stone Algebra from a Triple

Next, from a triple (B,D,ϕ) such that B is a Boolean algebra, D is a distribu-
tive lattice with a greatest element and ϕ : B → F (D) is a bounded lattice
homomorphism, we construct a Stone algebra S. The elements of S are pairs
taken from B × F (D) following the construction of Katriňák [25]. This set and
the operations making it a Stone algebra can be defined in the locale for triples:
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context triple begin
definition pairs :: “(’a × ’b filter) set”
where “pairs = {(x, y) . ∃z . y = phi(−x) � Abs filter(↑z)}”

fun pairs uminus :: “(’a × ’b filter) ⇒ (’a × ’b filter)”
where “pairs uminus (x, y) = (−x,phi(x))”

fun pairs sup :: “(’a × ’b filter) ⇒ (’a × ’b filter) ⇒ (’a × ’b filter)”
where “pairs sup (x, y) (z, w) = (x � z, y � w)”

– definitions of further operations on pairs (omitted)

We need to represent the set of pairs as a type to be able to instantiate the Stone
algebra class. Because the definition of this set depends on ϕ, which is a param-
eter of the triple locale, this would require dependent types. Since Isabelle/HOL
does not have dependent types, we use a function lifting instead (which is unre-
lated to the Lifting package). Similarly to the ‘lambda lifting’ technique in func-
tional programming [20], our function lifting makes a conceptually local entity
global by capturing its free variables as parameters. However, in our case the
result is a global type not a global function.

We initially describe the process for the application at hand. Because it
applies more generally we summarise the ideas at the end of this section.

We first define a type to capture the parameter ϕ of the triple locale. This
parameter is the structure map that occurs in the definition of the set of pairs.
The set of all structure maps is the set of all bounded lattice homomorphisms
(of appropriate type):

typedef (’a,’b) phi = “{f ::(’a::non trivial boolean algebra ⇒
’b::distrib lattice top filter) . bounded lattice homomorphism f}”
– proof that the type is not empty (omitted)

In order to make the set a HOL type, we need to show that at least one such
structure map exists. To this end we use the ultrafilter lemma shown in Sect. 3:
the required bounded lattice homomorphism is essentially the characteristic map
of an ultrafilter, but the latter must exist. In particular, the underlying Boolean
algebra must contain at least two elements, which we guarantee by introducing
a suitable subclass of the class for Boolean algebras.

We then implement the type that represents the set of pairs depending on
structure maps. It uses functions from structure maps to pairs with the require-
ment that, for each structure map, the corresponding pair is contained in the
set of pairs constructed for a triple with that structure map:

typedef (’a,’b) lifted pair = “{p::(’a::non trivial boolean algebra,
’b::distrib lattice top)phi⇒ (’a× ’bfilter) .∀f .p(f)∈ triple.pairs (Rep phif)}”

If this type could be defined in the locale triple and instantiated to Stone algebras
in this locale, there would be no need for the lifting and we could work with
triples directly. Since the type needs to be defined outside the triple locale at
global level, we supply the type parameter (Rep phi f) when referring to the
set of pairs defined in the locale. The function lifting allows us to express the
dependence on the locale parameter at the type level.
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The lifted pairs form a Stone algebra, where the operations are lifted point-
wise from pairs to functions:

instantiation lifted pair :: (non trivial boolean algebra,distrib lattice top)
stone algebra begin
– definitions of Stone algebra operations and proof of axioms (omitted)

The proofs of the Stone algebra axioms are again quite low-level as a consequence
of having to deal with the function lifting in addition to various representation
functions. Apart from these technical issues, at this stage the development devi-
ates from the original statements. We are here constructing a Stone algebra of
functions from structure maps to pairs, whereas the original construction yields
a Stone algebra of pairs for any given structure map. However, any Stone algebra
of pairs obtained for a given structure map is isomorphic to a subalgebra of the
Stone algebra of functions. While this relationship cannot be expressed directly
as it would again require dependent types, we can prove a special case of it.

To this end, we specialise the construction to start with the triple associated
with a Stone algebra, that is, the triple obtained in Sect. 4.1. For that particular
structure map stone phi (as for any other particular structure map) the resulting
type of pairs is no longer a dependent type. It is just the set of pairs obtained
for the given structure map:

typedef ’a stone phi pair =
“triple.pairs (stone phi::(’a::stone algebra regular ⇒ ’a dense filter))”

It could be proved directly that this type is a Stone algebra. To demonstrate how
a technique of universal algebra can be realised in Isabelle/HOL, we choose a dif-
ferent approach: we embed the type of pairs into the lifted type. The embedding
injects a pair x into a function as the value at the given structure map; this makes
the embedding injective. The value of the function at any other structure map is
carefully chosen to make the resulting function a Stone algebra homomorphism.
We use x, which is essentially a projection to the regular element component of
x, whence the range of λx.x has the structure of a Boolean algebra:

fun stone phi embed :: “’a::non trivial stone algebra stone phi pair ⇒
(’a regular,’a dense) lifted pair”
where “stone phi embed x = Abs lifted pair (λf .

if Rep phi f = stone phi then Rep stone phi pair x
else triple.pairs uminus (Rep phi f) (triple.pairs uminus (Rep phi f)

(Rep stone phi pair x)))”

Again, since we reason outside the triple locale at a global level, we supply
the locale parameter, in this case to both occurrences of the pseudocomplement
operation triple.pairs uminus.

We then show that stone phi embed is an embedding, that is, it preserves �,
�, ⊥, 
, and it is injective. Hence all Stone algebra axioms can be inherited
using the embedding. This is because the axioms are universal formulas, that is,
first-order formulas in prenex form where all quantifiers are universal [6]. We also
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show that stone phi embed is an order-isomorphism, which allows us to inherit
inequalities without transforming them to equations. It follows that the pairs
form a Stone algebra:

instantiation stone phi pair :: (non trivial stone algebra) stone algebra begin
– definitions of Stone algebra operations and proof of axioms (omitted)

When proving the Stone algebra axioms, Sledgehammer automatically finds
proofs using the embedding property of stone phi embed and the correspond-
ing axioms of the underlying Stone algebra.

Generalising the Function-Lifting Construction. We discuss the ideas
of this section as more general recipes. Mathematically speaking we wish to show
that a set S depending on a parameter p forms an algebra. For instance, assume
the algebra has an operation F : S → S → S and a relation R : S → S → bool,
whose definitions may also depend on p.

In Isabelle/HOL, we have a locale L with parameter p of type A. In this
locale, we define the set S of elements of type B and show S is not empty. We
also define F and R and show they satisfy the axioms of the algebra. However,
we cannot instantiate the class that implements the algebra. This requires a type
instead of the set S and the type cannot be defined in L where it might depend
on p.

We therefore simulate a dependent type outside L. Observe that for any p
satisfying the assumptions of L, the locale yields a set Sp; in Isabelle/HOL it
is obtained by L.S p. We construct the (infinite) direct product of these sets∏

p Sp. We represent each value in this product by a function indexed with p.
Technically, we first create a type T ′ from the set of all possible values of the

locale parameter p. This set contains the elements of type A subject to assump-
tions about p in L; it is not empty (or else the locale could not be instantiated).
We then create the type T of functions f : T ′ → B such that f(p) ∈ Sp for all
p ∈ T ′. This is the direct product; it exists because no Sp is empty.

We show that T instantiates the algebra where F and R are lifted pointwise
from S to T . Specifically, FT f g = λp . F (f p) (g p) is the lifting of F and
RT f g = ∀p . R (f p) (g p) is the lifting of R. Because the constituent sets Sp

satisfy the axioms of the algebra so does their direct product T in many cases.
In particular, direct products preserve universal Horn formulas [17]. Hence it
suffices if all axioms are universally quantified conditional equations. This works
not just for Stone algebras but for many others such as groups, rings, fields,
lattices, Boolean algebras, dioids, Kleene algebras and action algebras.

We next specialise the product to a given value q for the locale parameter.
That is, we create a type Tq for the set Sq and show that it instantiates the
algebra. To this end, we embed Tq in T using a function H : Tq → T . Specifically,
H x = λp . if p = q then x else h p x, where h p is any homomorphism from Sq to
Sp. The latter condition for h is sufficient for H to be an embedding. While we
do not give a general scheme for how to obtain h, we note that all algebras Sp are
defined using the same pattern, which can help. If a suitable h is available, the
axioms of the algebra can be derived for Tq via the embedding H. This works for
arbitrary universal formulas, which covers even more algebras than listed above.
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We explain how to derive universal formulas via embeddings using universal
algebra [6]. Let X and Y be algebras with the same signature and let e be an
embedding of X into Y . Let U be the universe of X. Induction over the structure
of terms yields e(tX(x1, . . . , xn)) = tY(e(x1), . . . , e(xn)) for all terms t over the
signature (with interpretations tX , tY in X,Y ) and all xi ∈ U . Since e is injective,
tX(x1, . . . , xn) = sX(x′

1, . . . , x
′
m) ⇔ tY(e(x1), . . . , e(xn)) = sY(e(x′

1), . . . , e(x
′
m))

for all terms s, t and all xi, x
′
j ∈ U . Consider a formula P with k free variables,

which is constructed by combining such equalities between terms with proposi-
tional connectives. Induction over the structure of P yields PX(x1, . . . , xk) ⇔
PY(e(x1), . . . , e(xk)) for all xi ∈ U . Hence, if ∀y1, . . . , yk : PY(y1, . . . , yk) holds,
so does ∀x1, . . . , xk : PX(x1, . . . , xk). This argument generalises from algebras
to first-order structures (with relations in the signature). It does not extend to
existential quantifiers as the asserted element may lie outside the range of e.

4.3 The Stone Algebra of a Triple of a Stone Algebra

Next, we show that the Stone algebra constructed in Sect. 4.2 from the triple
constructed in Sect. 4.1 from a Stone algebra S is isomorphic to S. We give
explicit mappings in both directions:

abbreviation sa iso :: “’a::non trivial stone algebra ⇒ ’a stone phi pair”
where “sa iso = λx . Abs stone phi pair (Abs regular (− − x),

stone phi (Abs regular (−x)) � Abs filter (↑ Abs dense (x � −x)))”

abbreviation sa iso inv :: “’a::non trivial stone algebra stone phi pair ⇒ ’a”
where “sa iso inv = λp . Rep regular (fst (Rep stone phi pair p)) �

Rep dense (triple.rho pair stone phi (Rep stone phi pair p))”

Without the necessary representation and abstraction functions, the first map-
ping is λx.(x, ϕ(x) � ↑(x � x)). The second of the above mappings extracts from
a pair a dense element using the following function defined in the locale triple:

fun rho pair :: “’a × ’b filter ⇒ ’b”
where “rho pair (x,y) = (SOME z . Abs filter (↑z) = phi(x) � y)”

The Hilbert choice construct SOME z . P (z) yields some element z that satisfies
P (z). This works because the intersection of ϕ(x) with a principal filter is a
principal filter, which we prove using a result shown in Sect. 3 [12, Lemma II].

We then show that sa iso inv and sa iso are mutually inverse and that sa iso
is a homomorphism of Stone algebras. The proofs of these results are cluttered
with representation and abstraction functions as the above definitions indicate.

4.4 The Triple of a Stone Algebra of a Triple

Finally, we show that the triple constructed in Sect. 4.1 from the Stone algebra
constructed in Sect. 4.2 from a triple (B,D,ϕ) is isomorphic to (B,D,ϕ). This
requires an isomorphism of Boolean algebras, an isomorphism of distributive lat-
tices with a greatest element, and a commuting diagram involving the structure
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maps. We give explicit mappings of the Boolean algebra isomorphism and the
distributive lattice isomorphism in both directions.

We first define and prove the isomorphism of Boolean algebras. Because the
Stone algebra of a triple is implemented as a lifted pair, we also lift the Boolean
algebra using a parameter of the same type as that used by the lifted pairs:

typedef (’a,’b) lifted boolean algebra =
“{f ::((’a::non trivial boolean algebra,’b::distrib lattice top) phi ⇒ ’a).True}”

The resulting function type forms a Boolean algebra with operations lifted point-
wise:

instantiation lifted boolean algebra ::
(non trivial boolean algebra,distrib lattice top) boolean algebra

We can now define the mappings between the two lifted structures:

abbreviation ba iso :: “(’a::non trivial boolean algebra,’b::distrib lattice top)
lifted pair regular ⇒ (’a,’b) lifted boolean algebra”
where “ba iso = λp . Abs lifted boolean algebra (λf .

fst (Rep lifted pair (Rep regular p) f))”

abbreviation ba iso inv :: “(’a::non trivial boolean algebra,
’b::distrib lattice top) lifted boolean algebra ⇒ (’a,’b) lifted pair regular”
where “ba iso inv = λx . Abs regular (Abs lifted pair (λf .

(Rep lifted boolean algebra x f ,
Rep phi f (−Rep lifted boolean algebra x f))))”

We then show that ba iso inv and ba iso are mutually inverse and that ba iso is
a homomorphism of Boolean algebras.

We carry out a similar development for the isomorphism of distributive lat-
tices with greatest elements. Again, the original distributive lattice with a great-
est element needs to be lifted to match the lifted pairs. The resulting function
type forms a distributive lattice with a greatest element with operations lifted
pointwise. The mappings between the two lifted structures are:

abbreviation dl iso :: “(’a::non trivial boolean algebra,’b::distrib lattice top)
lifted pair dense ⇒ (’a,’b) lifted distrib lattice top”
where “dl iso = λp . Abs lifted distrib lattice top (get dense p)”

abbreviation dl iso inv :: “(’a::non trivial boolean algebra,
’b::distrib lattice top) lifted distrib lattice top ⇒ (’a,’b) lifted pair dense”
where “dl iso inv = λx . Abs dense (Abs lifted pair (λf .

(
,Abs filter(↑ Rep lifted distrib lattice top x f))))”

The first mapping uses the following function to extract the least element of the
filter of a dense pair, which turns out to be a principal filter:

fun get dense :: “(’a::non trivial boolean algebra,’b::distrib lattice top)
lifted pair dense ⇒ (’a,’b) phi ⇒ ’b”
where “get dense p f = (SOME z . Rep lifted pair (Rep dense p) f =

(
,Abs filter(↑z)))”
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We then show that dl iso inv and dl iso are mutually inverse and that dl iso
preserves �, � and 
.

We finally show that the isomorphisms are compatible with the structure
maps. This involves lifting the distributive lattice isomorphism to filters of dis-
tributive lattices as these are the targets of the structure maps. To this end, we
show that the lifted isomorphism preserves filters. The compatibility of isomor-
phisms states that the same result is obtained in two ways by starting with a
regular lifted pair p:

– apply the Boolean algebra isomorphism to the pair; then apply a structure
map f to obtain a filter of dense elements; or,

– apply the structure map stone phi to the pair; then apply the distributive
lattice isomorphism lifted to the resulting filter.

This commutativity property is formally stated as follows:

lemma phi iso: “Rep phi f (Rep lifted boolean algebra (ba iso p) f) =
Abs filter ((λq . Rep lifted distrib lattice top (dl iso q) f) ‘
Rep filter (stone phi p))”

Here g ‘ X is the union of the sets g(x) taken over all x ∈ X.
Apart from the many representation and abstraction functions occurring in

these definitions and proofs, the development again deviates from the original
statements. We have to artificially lift the constituent algebras of triples – a
Boolean algebra and a distributive lattice with a greatest element – to functions.
This is necessary in order to establish the isomorphisms to lifted pairs, which are
parameterised in ϕ. The same parameter ϕ is introduced for the Boolean algebra
and the distributive lattice, even though it is not needed for these, simply to get
a matching cardinality for the isomorphism. This is a flow-on effect from lifting
to functions in Sect. 4.2 due to the lack of dependent types there.

5 Discussion

We put this work into context by discussing a number of questions.
Are the encountered issues self-inflicted and could they have been prevented

by choosing other proof assistants? Possibly; for example, some proof assistants
such as Agda, Coq and Lean support dependent types. Aspects of universal
algebra have been formalised in Coq [7,32]. The present paper does not aim to
find the ‘best’ system for reasoning about algebraic structures. Proof assistants
differ in many dimensions; a particular choice will typically involve trade-offs.
There may be various reasons (such as external requirements, existing libraries,
automation support) for choosing Isabelle/HOL despite the fact it does not
support dependent types. By studying a sufficiently complex example, this paper
provides a data point to inform such compromises.

Are the encountered issues well known in the Isabelle community? Difficult
to say. Some issues have been briefly noted [10]. We are not aware of a sufficiently
complex case study exploring the limitations of reasoning about algebras with
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implicit carriers. Without such case studies newcomers to a community might
take a very long time to appreciate the issues. This paper also provides new
means to overcome some of the limitations.

Do we allow Isabelle and not the mathematics to dictate the approach? Yes
and no. To formally verify any result a system has to be chosen; staying ‘close’ to
the mathematics is one aspect of the trade-off mentioned above and discussed in
this paper. By choosing Isabelle/HOL, its capabilities necessarily constrain the
approach. The trade-off between implicit and explicit carrier sets has been dis-
cussed in the introduction. Within the setting of implicit carriers in Isabelle/HOL
we tried to follow the mathematics. Of course, Isabelle’s capabilities might be
extended to bring the approach closer to mathematics. Here too, this paper
provides a data point to inform about what might be useful.

What concrete lessons could an Isabelle user learn? Users who wish to reason
about algebraic structures can learn about the consequences of working with
implicit carriers to inform their choice between them and explicit carriers. Users
could find some of the techniques such as function lifting for dependent types and
inheriting theorems via embeddings helpful for their work. Since the underlying
universal algebra can be applied in many settings, the techniques are potentially
of wider interest.

Are the experiences reported in this paper largely negative? Not in the
author’s opinion. There are negative aspects and positive aspects. This paper
attempts to present a balanced view to inform choices.

6 Conclusion

The proof of Chen and Grätzer’s construction theorem shows that reasoning
about algebraic structures can be carried out in Isabelle/HOL using algebraic
structures with implicit carrier sets. At the same time, the lack of dependent
types leads to the introduction of function liftings. To remain compatible with
this lifting, some other types also need to be lifted to functions even though they
do not have an actual dependence. Overall this makes the constructions more
complex and less related to the original proof.

An alternative way to reason about algebras is to explicitly represent their
carrier sets in the corresponding classes and locales. Algebraic structures with
explicit carriers are defined, for example, in the theories HOL/Algebra/*.thy.
Previous work [10] briefly compares algebras with implicit and explicit carriers.
It is desirable to automatically connect hierarchies of algebras with implicit
and explicit carriers to ensure consistency and avoid duplication in maintenance
and evolution. Isabelle/HOL’s types-to-sets framework [19,27] offers a promising
approach using local type definitions, which we will explore in future work.

The function liftings in this paper are used to work around the dependence on
locale parameters. There is no claim that this gives a full-fledged implementation
of dependent types. Kammüller [22] describes an approach to represent modular
structures by dependent types constructed as sets in Isabelle/HOL.
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Abstract. This article gives an elementary computational proof of the
group law for Edwards elliptic curves. The associative law is expressed as
a polynomial identity over the integers that is directly checked by polyno-
mial division. Unlike other proofs, no preliminaries such as intersection
numbers, Bézout’s theorem, projective geometry, divisors, or Riemann
Roch are required. The proof of the group law has been formalized in
the Isabelle/HOL proof assistant.

1 Introduction

Elliptic curve cryptography is a cornerstone of mathematical cryptography.
Many cryptographic algorithms (such as the Diffie-Hellman key exchange algo-
rithm which inaugurated public key cryptography) were first developed in the
context of the arithmetic of finite fields. The preponderance of finite-field cryp-
tographic algorithms have now been translated to an elliptic curve counterpart.
Elliptic curve algorithms encompass many of the fundamental cryptographic
primitives: pseudo-random number generation, digital signatures, integer factor-
ization algorithms, and public key exchange.

One advantage of elliptic curve cryptography over finite-field cryptography
is that elliptic curve algorithms typically obtain the same level of security with
smaller keys than finite-field algorithms. This often means more efficient algo-
rithms.

Elliptic curve cryptography is the subject of major international crypto-
graphic standards (such as NIST). Elliptic curve cryptography has been imple-
mented in widely distributed software such as NaCl [BLS12]. Elliptic curve algo-
rithms appear in nearly ubiquitous software applications such as web browsers
and digital currencies.

The same elliptic curve can be presented in different ways by polynomial
equations. The different presentations are known variously as the Weierstrass
curve (y2 = cubic in x), Jacobi curve (y2 = quartic in x), and Edwards curve
(discussed below).

The set of points on an elliptic curve forms an abelian group. Explicit for-
mulas for addition are given in detail below. The Weierstrass curve is the most
familiar presentation of an elliptic curve, but it suffers from the shortcoming
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that the group law is not given by a uniform formula on all inputs. For example,
special treatment must be given to the point at infinity and to point doubling:
P �→ 2P . Exceptional cases are bad; they are the source of hazards such as
side-channel attacks (timing attacks) by adversaries and implementation bugs
[BJ02].

Edwards curves have been widely promoted for cryptographic algorithms
because their addition law avoids exceptional cases and their hazards. Every
elliptic curve (in characteristic different from 2) is isomorphic to an elliptic curve
in Edwards form (possibly after passing to a quadratic extension). Thus, there is
little loss of generality in considering elliptic curves in Edwards form. For most
cryptographic applications, Edwards curves suffice.

The original contributions of this article are both mathematical and for-
mal. Our proof that elliptic curve addition satisfies the axioms of an abelian
group is new (but see the literature survey below for prior work). Our proofs
were designed with formalization specifically in mind. To our knowledge, our
proof of associativity in Sect. 3.3 is the most elementary proof that exists any-
where in the published literature (in a large mathematical literature on elliptic
curves extending back to Euler’s work on elliptic integrals). Our proof avoids
the usual machinery found in proofs of associativity (such as intersection num-
bers, Bézout’s theorem, projective geometry, divisors, or Riemann Roch). Our
algebraic manipulations require little more than multivariate polynomial divi-
sion with remainders, even avoiding Gröbner bases in most places. Based on this
elementary proof, we give a formal proof in the Isabelle/HOL proof assistant
that every Edwards elliptic curve (in characteristic other than 2) satisfies the
axioms of an abelian group.1

It is natural to ask whether the proof of the associative law also avoids
exceptional cases (encountered in Weierstrass curves) when expressed in terms
of Edwards curves. Indeed, this article gives a two-line proof of the associative
law for so-called complete Edwards curves that avoids case splits and all the
usual machinery.

By bringing significant simplification to the fundamental proofs in cryptogra-
phy, our paper opens the way for the formalization of elliptic curve cryptography
in many proof assistants. Because of its extreme simplicity, we hope that our
approach might be widely replicated and translated into many different proof
assistants.

2 Published Literature

A number of our calculations are reworkings of calculations found in Edwards,
Bernstein, Lange et al. [Edw07], [BBJ+08], [BL07]. A geometric interpretation
of addition for Edwards elliptic curves appears in [ALNR11].
1 Mathematica calculations are available at https://github.com/thalesant/

publications-of-thomas-hales/tree/master/cryptography/group law edwards.
The Isabelle/HOL formalization is available at https://github.com/rjraya/Isabelle/
blob/master/curves/Hales.thy.

https://github.com/thalesant/publications-of-thomas-hales/tree/master/cryptography/group_law_edwards
https://github.com/thalesant/publications-of-thomas-hales/tree/master/cryptography/group_law_edwards
https://github.com/rjraya/Isabelle/blob/master/curves/Hales.thy
https://github.com/rjraya/Isabelle/blob/master/curves/Hales.thy
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Working with the Weierstrass form of the curve, Friedl was the first to give
a proof of the associative law of elliptic curves in a computer algebra system (in
Cocoa using Gröbner bases) [Fri98], [Fri17]. He writes, “The verification of some
identities took several hours on a modern computer; this proof could not have
been carried out before the 1980s.” These identities were later formalized in Coq
with runtime one minute and 20 s [The07]. A non-computational Coq formal-
ization based on the Picard group appears in [BS14]. By shifting to Edwards
curves, we have eliminated case splits and significantly improved the speed of
the computational proof.

An earlier unpublished note contains more detailed motivation, geometric
interpretation, pedagogical notes, and expanded proofs [Hal16]. The earlier ver-
sion does not include formalization in Isabelle/HOL. Our formalization uncov-
ered and corrected some errors in the ideal membership problems in [Hal16]
(reaffirming the pervasive conclusion that formalization catches errors that math-
ematicians miss).

Other formalizations of elliptic curve cryptography are found in Coq and
ACL2 by different methods [Rus17]. After we posted our work to the arXiv,
another formalization was given in Coq along our same idea [Erb17,EPG+17].
It goes further by including formalization of implementation of code, but it falls
short of our work by not including the far more challenging and interesting case
of projective curves.

We do not attempt to survey the various formalizations of cryptographic
algorithms built on top of elliptic curves. Because of the critical importance of
cryptography to the security industry, the formalization of cryptographic algo-
rithms is rightfully a priority within the formalization community.

3 Group Axioms

This section gives an elementary proof of the group axioms for addition on
Edwards curves (Theorem 1). We include proofs, because our approach is not
previously published.

Our definition of Edwards curve is more inclusive than definitions stated
elsewhere. Most writers prefer to restrict to curves of genus one and generally
call a curve with c �= 1 a twisted Edwards curve. We have interchanged the x
and y coordinates on the Edwards curve to make it consistent with the group
law on the circle.

3.1 Rings and Homomorphisms

In this section, we work algebraically over an arbitrary field k. We assume a
basic background in abstract algebra at the level of a first course (rings, fields,
homomorphisms, and kernels). We set things up in a way that all of the main
identities to be proved are identities of polynomials with integer coefficients.

All rings are assumed to be commutatative with identity 1 �= 0. If R is an
integral domain and if δ ∈ R, then we write R[1δ ] for the localization of R with
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respect to the multiplicative set S = {1, δ, δ2, . . .}; that is, the set of fractions
with numerators in R and denominators in S. We will need the well-known fact
that if φ : R → A is a ring homomorphism sending δ to a unit in A, then φ
extends uniquely to a map R[1δ ] → A that maps a fraction r/δi to φ(r)φ(δi)−1.

Lemma 1 (kernel property). Suppose that an identity r = r1e1+r2e2+ · · ·+
rkek holds in a commutative ring R. If φ : R → A is a ring homomorphism such
that φ(ei) = 0 for all i, then φ(r) = 0.

Proof. φ(r) =
∑k

i=1 φ(ri)φ(ei) = 0. ��
We use the following rings: R0 := Z[c, d] and Rn := R0[x1, y1, . . . , xn, yn].

We introduce the polynomial for the Edwards curve. Let

e(x, y) = x2 + cy2 − 1 − dx2y2 ∈ R0[x, y]. (1)

We write ei = e(xi, yi) for the image of the polynomial in Rj , for i ≤ j, under
x �→ xi and y �→ yi. Set δx = δ− and δy = δ+, where

δ±(x1, y1, x2, y2) = 1 ± dx1y1x2y2 and

δ(x1, y1, x2, y2) = δxδy ∈ R2.

We write δij for its image of δ under (x1, y1, x2, y2) �→ (xi, yi, xj , yj). So, δ = δ12.

3.2 Inverse and Closure

We write zi = (xi, yi). We define a pair of rational functions that we denote
using the symbol ⊕0:

z1 ⊕0 z2 =
(

x1x2 − cy1y2
1 − dx1x2y1y2

,
x1y2 + y1x2

1 + dx1x2y1y2

)

∈ R2[
1
δ
] × R2[

1
δ
]. (2)

When specialized to c = 1 and d = 0, the polynomial e(x, y) = x2+y2−1 reduces
to a circle, and (2) reduces to the standard group law on a circle. Commutativity
is a consequence of the subscript symmetry 1 ↔ 2 evident in the pair of rational
functions:

z1 ⊕0 z2 = z2 ⊕0 z1.

If φ : R2[1δ ] → A is a ring homomorphism, we also write P1 ⊕0 P2 ∈ A2 for the
image of z1 ⊕0 z2. We write e(Pi) ∈ A for the image of ei = e(zi) under φ. We
often mark the image r̄ = φ(r) of an element with a bar accent.

Let ι(zi) = ι(xi, yi) = (xi,−yi). The involution zi → ι(zi) gives us an inverse
with properties developed below.

There is an obvious identity element (1, 0), expressed as follows. Under a
homomorphism φ : R2[1δ ] → A, mapping z1 �→ P and z2 �→ (1, 0), we have

P ⊕0 (1, 0) = P. (3)
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Lemma 2 (inverse). Let φ : R2[1δ ] → A, with z1 �→ P , z2 �→ ι(P ). If e(P ) = 0,
then P ⊕0 ι(P ) = (1, 0).

Proof. Plug P = (a, b) and ι P = (a,−b) into (2) and use e(P ) = 0. ��
Lemma 3 (closure under addition). Let φ : R2[1δ ] → A with zi �→ Pi. If
e(P1) = e(P2) = 0, then

e(P1 ⊕0 P2) = 0.

Proof. This proof serves as a model for several proofs that are based on multi-
variate polynomial division. We write

e(z1 ⊕0 z2) =
r

δ2
,

for some polynomial r ∈ R2. It is enough to show that φ(r) = 0. Polynomial
division gives

r = r1e1 + r2e2, (4)

for some polynomials ri ∈ R2. Concretely, the polynomials ri are obtained as
the output of the one-line Mathematica command

PolynomialReduce[r, {e1, e2}, {x1, x2, y1, y2}].

The result now follows from the kernel property and (4); e(P1) = e(P2) = 0
implies φ(r) = 0, giving e(P1 ⊕0 P2) = 0. ��

Mathematica’s PolynomialReduce is an implementation of a naive multi-
variate division algorithm [CLO92]. In particular, our approach does not require
the use of Gröbner bases until Sect. 5.3. We write

r ≡ r′ mod S,

where r − r′ is a rational function and S is a set of polynomials, to indicate that
the numerator of r−r′ has zero remainder when reduced by polynomial division
with respect to S using PolynomialReduce. We also require the denominator of
r − r′ to be invertible in the localized polynomial ring. The zero remainder will
give φ(r) = φ(r′) in each application. We extend the notation to n-tuples

(r1, . . . , rn) ≡ (r′
1, . . . , r

′
n) mod S,

to mean ri ≡ r′
i mod S for each i. Using this approach, most of the proofs in

this article almost write themselves.

3.3 Associativity

This next step (associativity) is generally considered the hardest part of the
verification of the group law on curves. Our proof is two lines and requires little
more than polynomial division. The polynomials δx, δy appear as denominators
in the addition rule. The polynomial denominators Δx,Δy that appear when we
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add twice are more involved. Specifically, let (x′
3, y

′
3) = (x1, y1) ⊕0 (x2, y2), let

(x′
1, y

′
1) = (x2, y2) ⊕0 (x3, y3), and set

Δx = δx(x′
3, y

′
3, x3, y3)δx(x1, y1, x

′
1, y

′
1)δ12δ23 ∈ R3.

Define Δy analogously.

Lemma 4 (generic associativity). Let φ : R3[ 1
ΔxΔy

] → A be a homomor-
phism with zi �→ Pi. If e(P1) = e(P2) = e(P3) = 0, then

(P1 ⊕0 P2) ⊕0 P3 = P1 ⊕0 (P2 ⊕0 P3).

Proof. By polynomial division in the ring R3[ 1
ΔxΔy

]

((x1, y1) ⊕0 (x2, y2)) ⊕0 (x3, y3) ≡ (x1, y1) ⊕0 ((x2, y2) ⊕0 (x3, y3)) mod {e1, e2, e3}.

��

3.4 Group Law for Affine Curves

Lemma 5 (affine closure). Let φ : R2 → k be a homomorphism into a field
k. If φ(δ) = e(P1) = e(P2) = 0, then either d̄ or c̄d̄ is a nonzero square in k.

The lemma is sometimes called completeness, in conflict with the usual def-
inition of complete varieties in algebraic geometry. To avoid possible confusion,
we avoid this terminology. We use the lemma in contrapositive form to give
conditions on d̄ and c̄d̄ that imply φ(δ) �= 0.

Proof. Let r = (1 − cdy2
1y

2
2)(1 − dy2

1x
2
2). We have

r = d2y2
1y

2
2x

2
2e1 + (1 − dy2

1)δ − dy2
1e2. (5)

This forces φ(r) = 0, which by the form of r implies that c̄d̄ or d̄ is a nonzero
square. ��

We are ready to state and prove one of the main results of this article. This
group law is expressed generally enough to include the group law on the circle
and ellipse as a special case d̄ = 0.

Theorem 1 (group law). Let k be a field, let c̄ ∈ k be a square, and let
d̄ �∈ k×2. Then

C = {P ∈ k2 | e(P ) = 0}
is an abelian group with binary operation ⊕0.

Proof. This follows directly from the earlier results. For example, to check asso-
ciativity of P1⊕0P2⊕0P3, where Pi ∈ C, we define a homomorphism φ : R3 → k
sending zi �→ Pi and (c, d) �→ (c̄, d̄). By a repeated use of the affine closure lemma,
φ(ΔyΔx) is nonzero and invertible in the field k. The universal property of local-
ization extends φ to a homomorphism φ : R3[ 1

ΔyΔx
] → k. By the associativity

lemma applied to φ, we obtain the associativity for these three (arbitrary) ele-
ments of C. The other group axioms follow similarly from the lemmas on closure,
inverse, and affine closure. ��

The Mathematica calculations in this section are fast. For example, the asso-
ciativity certificate takes about 0.12 s to compute on a 2.13 GHz processor.



260 T. Hales and R. Raya

4 Formalization in Isabelle/HOL

In this section, we describe the proof implementation in Isabelle/HOL. We have
formalized the two main theorems (Theorem 1 and Theorem 2). Formalization
uses two different locales: one for the affine and one for the projective case. (The
projective case will be discussed in Sect. 5.)

Let k be the underlying curve field. k is introduced as the type class field
with the assumption that 2 �= 0 (characteristic different from 2). This is not
included in the simplification set, but used when needed during the proof. The
formalized theorem is slightly less general than then informal statement, because
of this restriction.

4.1 Affine Edwards Curves

The formal proof fixes the curve parameters c, d ∈ k (dropping the bar accents
from notation). The group addition ⊕0 (of Eq. 2) can be written as in Fig. 1. In
Isabelle’s division ring theory, the result of division by zero is defined as zero.
This has no impact on validity of final results, but gives cleaner simplifications
in some proofs.

add :: ’a × ’a ⇒ ’a × ’a ⇒ ’a × ’a

add (x1,y1) (x2,y2) = ((x1*x2 - c*y1*y2) div (1-d*x1*y1*x2*y2),

(x1*y2+y1*x2) div (1+d*x1*y1*x2*y2))

Fig. 1. Definition of ⊕0 in Isabelle/HOL

Most of the proofs in this section are straight-forward. The only difficulty was
to combine the Mathematica certificates of computation, into a single process in
Isabelle.

In Fig. 2, we show an excerpt of the proof of associativity. We use the following
abbreviations:

ei = x2
i + c ∗ y2

i − 1 − d ∗ x2
i ∗ y2

i

where ei = 0, since the involved points lie on the curve and

gxpoly = ((p1 ⊕0 p2) ⊕0 p3 − p1 ⊕0 (p2 ⊕ p3))1 ∗ Δx

which stands for a normalized version of the associativity law after clearing
denominators. We say that points are summable, if the rational functions defining
their sum have nonzero denominators. Since the points pi are assumed to be
summable, Δx �= 0. As a consequence, the property stated in Fig. 2 immediately
implies that associativity holds in the first component of the addition.

Briefly, the proof unfolds the relevant definitions and then normalizes to clear
denominators. The remaining terms of Δx are then distributed over addends. The
unfolding and normalization of addends is repeated in the lemmas simp1gx and
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have "∃ r1 r2 r3. gxpoly = r1 * e1 + r2 * e2 + r3 * e3"

unfolding gxpoly_def gx_def Deltax_def

apply(simp add: assms(1,2))

apply(rewrite in "_ / " delta_minus_def[symmetric])+

apply(simp add: divide_simps assms(9,11))

apply(rewrite left_diff_distrib)

apply(simp add: simp1gx simp2gx)

unfolding delta_plus_def delta_minus_def

e1_def e2_def e3_def e_def

by algebra

Fig. 2. An excerpt of the proof of associativity

simp2gx. Finally, the resulting polynomial identity is proved using the algebra
method. Note that no computation was required from an external tool.

The rewrite tactic, which can modify a goal with various rewrite rules in
various locations (specified with a pattern), is used to normalized terms [NT14].
Rewriting in the denominators is sufficient for our needs.

For proving the resulting polynomial expression, the algebra proof method is
used [CW07,Cha08,Wen19]. Given ei(x), pij(x), ai(x) ∈ R[x1, . . . , xn], where
R is a commutative ring and x = (x1, . . . , xn), the method verifies formulas

∀x.

L∧

i=1

ei(x) = 0 → ∃y.

M∧

i=1

⎛

⎝ai(x) =
N∑

j=1

pij(x)yj

⎞

⎠

The method is complete for such formulas that hold over all commutative rings
with unit [Har07].

5 Group Law for Projective Edwards Curves

By proving the group laws for a large class of elliptic curves, Theorem 1 is suffi-
ciently general for many applications to cryptography. Nevertheless, to achieve
full generality, we push forward.

This section shows how to remove the restriction d̄ �∈ k×2 that appears in
the group law in the previous section. By removing this restriction, we obtain a
new proof of the group law for all elliptic curves in characteristics different from
2. Unfortunately, in this section, some case-by-case arguments are needed, but
no hard cases are hidden from the reader. The level of exposition here is less
elementary than in the previous section. Again, we include proofs, because our
approach is designed with formalization in mind and has not been previously
published.

The basic idea of our construction is that the projective curve E is obtained
by gluing two affine curves Eaff together. The associative property for E is
a consequence of the associative property on affine pieces Eaff, which can be
expressed as polynomial identities.
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5.1 Definitions

In this section, we assume that c �= 0 and that c and d are both squares. Let
t2 = d/c. By a change of variable y �→ y/

√
c, the Edwards curve takes the form

e(x, y) = x2 + y2 − 1 − t2x2y2. (6)

We assume t2 �= 1. Note if t2 = 1, then the curve degenerates to a product
of intersecting lines, which cannot be a group. We also assume that t �= 0, which
only excludes the circle, which has already been fully treated. Shifting notation
for this new setting, let

R0 = Z[t,
1

t2 − 1
,
1
t
], Rn = R0[x1, y1, . . . , xn, yn].

As before, we write ei = e(zi), zi = (xi, yi), and e(Pi) = φ(ei) when a homomor-
phism φ is given.

Define rotation by ρ(x, y) = (−y, x) and inversion τ by

τ(x, y) = (1/(tx), 1/(ty)).

Let G be the abelian group of order eight generated by ρ and τ .

5.2 Extended Addition

We extend the binary operation ⊕0 using the automorphism τ . We also write δ0
for δ, ν0 for ν and so forth.

Set

z1 ⊕1 z2 := τ((τz1) ⊕0 z2) =
(

x1y1 − x2y2
x2y1 − x1y2

,
x1y1 + x2y2
x1x2 + y1y2

)

= (
ν1x

δ1x
,
ν1y

δ1y
) (7)

in R2[ 1
δ1

]2 where δ1 = δ1xδ1y.
We have the following easy identities of rational functions that are proved

by simplification of rational functions:

inversion invariance: τ(z1) ⊕i z2 = z1 ⊕i τz2; (8)

rotation invariance:
ρ(z1) ⊕i z2 = ρ(z1 ⊕i z2);
δi(z1, ρz2) = ±δi(z1, z2);

(9)

inverses for σ = τ, ρ:
ισ(z1) = σ−1ι(z1);

ι(z1 ⊕i z2) = (ιz1) ⊕i (ιz2).
(10)

coherence:
z1 ⊕0 z2 ≡ z1 ⊕1 z2 mod {e1, e2};

e(z1 ⊕1 z2) ≡ 0 mod {e1, e2}.
(11)

The first identity of (11) inverts δ0δ1, and the second inverts δ1. Proofs of (11)
use polynomial division.
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5.3 Projective Curve and Dichotomy

Let k be a field of characteristic different from two. We let Eaff be the set of zeros
of Eq. (6) in k2. Let E◦ ⊂ Eaff be the subset of Eaff with nonzero coordinates
x, y �= 0.

We construct the projective Edwards curve E by taking two copies of Eaff,
glued along E◦ by isomorphism τ . We write [P, i] ∈ E, with i ∈ Z/2Z = F2, for
the image of P ∈ Eaff in E using the ith copy of Eaff. The gluing condition gives
for P ∈ E◦:

[P, i] = [τP, i + 1]. (12)

The group G acts on the set E, specified on generators ρ, τ by ρ[P, i] =
[ρ(P ), i] and τ [P, i] = [P, i + 1].

We define addition on E by

[P, i] ⊕ [Q, j] = [P ⊕� Q, i + j], if δ�(P,Q) �= 0, 
 ∈ F2 (13)

We will show that the addition is well-defined, is defined for all pairs of points
in E, and that it gives a group law with identity element [(1, 0), 0]. The inverse
is [P, i] �→ [ιP, i], which is well-defined by the inverse rules (10).

Lemma 6. G acts without fixed point on E◦. That is, gP = P implies that
g = 1G ∈ G.

Proof. Write P = (x, y). If g = ρk �= 1G, then gP = P implies that 2x = 2y = 0
and x = y = 0 (if the characteristic is not two), which is not a point on the
curve. If g = τρk, then the fixed-point condition gP = P leads to 2txy = 0 or
tx2 = ty2 = ±1. Then e(x, y) = 2(±1 − t)/t �= 0, and again P is not a point on
the curve. ��

The domain of ⊕i is

Eaff,i := {(P,Q) ∈ E2
aff | δi(P,Q) �= 0}.

Whenever we write P ⊕i Q, it is always accompanied by the implicit assertion
of summability; that is, (P,Q) ∈ Eaff,i.

There is a group isomorphism 〈ρ〉 → Eaff \ E◦ given by

g �→ g(1, 0) ∈ {±(1, 0),±(0, 1)} = Eaff \ E◦.

Lemma 7 (dichotomy). Let P,Q ∈ Eaff. Then either P ∈ E◦ and Q = gι P
for some g ∈ τ〈ρ〉, or (P,Q) ∈ Eaff,i for some i. Moreover, assume that P ⊕iQ =
(1, 0) for some i, then Q = ι P .

Proof. We start with the first claim. We analyze the denominators in the for-
mulas for ⊕i. We have (P,Q) ∈ Eaff,0 for all P or Q ∈ Eaff \ E◦. That case
completed, we may assume that P,Q ∈ E◦. Assuming

δ0(P,Q) = δ0x(P,Q)δ0y(P,Q) = 0, and δ1(P,Q) = δ1x(P,Q)δ1y(P,Q) = 0,
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we show that Q = gιP for some g ∈ τ〈ρ〉. Replacing Q by ρQ if needed, which
exchanges δ0x ↔ δ0y, we may assume that δ0x(P,Q) = 0. Set τQ = Q0 = (a0, b0)
and P = (a1, b1).

We claim that
(a0, b0) ∈ {±(b1, a1)} ⊂ 〈ρ〉ι P. (14)

We describe the main polynomial identity that must be verified. Write δ′, δ+, δ−
for x0y0δ0x, tx0y0δ1x, and tx0y0δ1y respectively, each evaluated at (P, τ(Q0)) =
(x1, y1, 1/(tx0), 1/(ty0)). The nonzero factors x0y0 and tx0y0 have been included
to clear denominators, leaving us with polynomials.

We have two cases ±, according to δ± = 0. In each case, let

S± = Gröbner basis of {e1, e2, δ
′, δ±}.

We have

(x2
0 − y2

1 , y
2
0 − x2

1, x0y0 − x1y1) ≡ (0, 0, 0) mod S+

(2x0y0(x2
0 − y2

1), 2(1 − t2)x0y0(y2
0 − x2

1), x0y0 − x1y1) ≡ (0, 0, 0) mod S−.

(15)

In fact, δ′ = x0y0 − x1y1, so that the ideal membership for this polynomial is
immediate. The factors 2, 1− t2, and x0y0 are nonzero and can be removed from
the left-hand side. These equations then immediately yield (a0, b0) = ±(b1, a1).
This gives the needed identity: τQ = Q0 = (a0, b0) = gι P , for some g ∈ 〈ρ〉.
Then Q = τgι P .

The second statement of the lemma has a similar proof. Polynomial division
gives for i ∈ F2:

(x1 − x2, y1 + y2) ≡ (0, 0) mod Gröbner{e1, e2, qxδix − 1, qyδiy − 1, νiy, νix − δix}.

In fact, both x1−x2 and y1+y2 (which specify the condition Q = ι P ) are already
members of the Gröbner basis. The fresh variables qx, qy force the denominators
δix and δiy to be invertible. Here the equations νiy = νix − δix = 0 specify the
sum (1, 0) = (νix/δix, νiy/δiy) of Q and P . ��
Lemma 8 (covering). The rule (13) defining ⊕ assigns at least one value for
every pair of points in E.

Proof. If Q = τρkι P , then τQ does not have the form τρkιP because the action
of G is fixed-point free. By dichotomy,

[P, i] ⊕ [Q, j] = [P ⊕� τQ, i + j + 1] (16)

works for some 
. Otherwise, by dichotomy P ⊕� Q is defined for some 
. ��
Lemma 9 (well-defined). Addition ⊕ given by (13) on E is well-defined.
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Proof. The right-hand side of (13) is well-defined by coherence (11), provided
we show well-definedness across gluings (12). We use dichotomy. If Q = τρkι P ,
then by an easy simplification of polynomials,

δ0(z, τρkιz) = δ1(z, τρkιz) = 0.

so that only one rule (16) for ⊕ applies (up to coherence (11) and inversion (8)),
making it necessarily well-defined. Otherwise, coherence (11), inversion (8), and
(7)) give when [Q, j] = [τQ, j + 1]:

[P ⊕k τQ, i + j + 1] = [τ(P ⊕k τQ), i + j] = [P ⊕k+1 Q, i + j] = [P ⊕� Q, i + j].

��

5.4 Group Law

Theorem 2. E is an abelian group.

Proof. We have already shown the existence of an identity and inverse.
We prove associativity. Both sides of the associativity identity are clearly

invariant under shifts [P, i] �→ [P, i+ j] of the indices. Thus, it is enough to show

[P, 0] ⊕ ([Q, 0] ⊕ [R, 0]) = ([P, 0] ⊕ [Q, 0]) ⊕ [R, 0].

By polynomial division, we have the following associativity identities

(z1 ⊕k z2) ⊕� z3 ≡ z1 ⊕i (z2 ⊕j z3) mod {e1, e2, e3} (17)

in the appropriate localizations, for i, j, k, 
 ∈ F2.
Note that (g[P1, i]) ⊕ [P2, j] = g([P1, i] ⊕ [P2, j]) for g ∈ G, as can easily be

checked on generators g = τ, ρ of G, using dichotomy, (13), and (9). We use
this to cancel group elements g from both sides of equations without further
comment.

We claim that
([P, 0] ⊕ [Q, 0]) ⊕ [ιQ, 0] = [P, 0]. (18)

The special case Q = τρkι(P ) is easy. We reduce the claim to the case where
P ⊕� Q �= τρkQ, by applying τ to both sides of (18) and replacing P with τP if
necessary. Then by dichotomy, the left-hand side simplifies by affine associativity
17 to give the claim.

Finally, we have general associativity by repeated use of dichotomy, which
reduces in each case to (17) or (18). ��

5.5 Formalization in Isabelle/HOL of Projective Edwards Curves

Following the change of variables performed in Sect. 5.1, it is assumed that c = 1
and d = t2 where t �= −1, 0, 1. The resulting formalization is more challenging.
In the following, some key insights are emphasized.



266 T. Hales and R. Raya

Gröbner Basis. The proof of Lemma 7 (dichotomy) requires solving particular
instances of the ideal membership problem. Formalization caught and corrected
some ideal membership errors in [Hal16], which resulted from an incorrect inter-
pretation of computer algebra calculations. For instance, a goal

∃r1 r2 r3 r4. y2
0 − x2

1 = r1e(x0, y0) + r2e(x1, y1) + r3δ
′ + r4δ−

(derived from [Hal16]) had to be corrected to

∃r1 r2 r3 r4. 2x0y0(y2
0 − x2

1) = r1e(x0, y0) + r2e(x1, y1) + r3δ
′ + r4δ−

to prove (15). In another subcase, it was necessary to strengthen the hypothesis
δ+ = 0 to δ− �= 0. Eventually, after some reworking, algebra solved the required
ideal membership problems.

Definition of the Group Addition. We defined the addition in three stages.
This is convenient for some lemmas like covering (Lemma 8). First, we define
the addition on projective points (Fig. 3). Then, we add two classes of points by
applying the basic addition to any pair of points coming from each class. Finally,
we apply the gluing relation and obtain as a result a set of classes with a unique
element, which is then defined as the resulting class (Fig. 4).

The definitions use Isabelle’s ability to encode partial functions. However,
it is possible to obtain an equivalent definition more suitable for execution. In

type synonym (’b) ppoint = 〈((’b × ’b) × bit) 〉

p_add :: ’a ppoint ⇒ ’a ppoint ⇒ ’a ppoint where
p_add ((x1, y1), l) ((x2, y2), j) = (add (x1, y1) (x2, y2), l+j)

if delta x1 y1 x2 y2 �= 0 ∧ (x1, y1) ∈ e’_aff ∧ (x2, y2) ∈ e’_aff

| p_add ((x1, y1), l) ((x2, y2), j) = (ext_add (x1, y1) (x2, y2), l+j)

if delta’ x1 y1 x2 y2 �= 0 ∧ (x1, y1) ∈ e’_aff ∧ (x2, y2) ∈ e’_aff

Fig. 3. Definition of ⊕ on points

type synonym (’b) pclass = 〈(’b) ppoint set 〉

proj_add_class :: (’a) pclass ⇒ (’a) pclass ⇒ (’a) pclass set

proj_add_class c1 c2 =

(p_add ‘ {(((x1, y1), i),((x2, y2), j)).

(((x1, y1), i),((x2, y2), j)) ∈ c1 × c2 ∧
((x1, y1), (x2, y2)) ∈ e’_aff_0 ∪ e’_aff_1}) // gluing

if c1 ∈ e_proj and c2 ∈ e_proj

proj_addition c1 c2 = the_elem (proj_add_class c1 c2)

Fig. 4. Definition of ⊕ on classes
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particular, it is easy to compute the gluing relation (see lemmas e proj elim 1,
e proj elim 2 and e proj aff in the formalization scripts).

Finally, since projective addition works with classes, we had to show that its
definition does not depend on the representative used.

Table 1. List of δ relations

δ τP1 τP2 �= 0 =⇒ δ P1 P2 �= 0

δ′ τP1 τP2 �= 0 =⇒ δ′ P1 P2 �= 0

δ P1 P2 �= 0, δ P1 τP2 �= 0 =⇒ δ′ P1 P2 �= 0

δ′ P1 P2 �= 0, δ′ P1 τP2 �= 0 =⇒ δ P1 P2 �= 0

δ′ (P1 ⊕1 P2) τιP2 �= 0 =⇒ δ (P1 ⊕1 P2) ιP2 �= 0

δ P1 P2 �= 0, δ (P1 ⊕0 P2) τιP2 �= 0 =⇒ δ′(P1 ⊕0 P2) ιP2 �= 0

δ P1 P2 �= 0, δ′ (P0 ⊕0 P1) τιP2 �= 0 =⇒ δ (P0 ⊕0 P1) ιP2 �= 0

δ′ P1 P2 �= 0, δ (P0 ⊕1 P1) τιP2 �= 0 =⇒ δ′ (P0 ⊕1 P1) ιP2 �= 0

Proof of Associativity. During formalization, we found several relations
between δ expressions (see Table 1). While they were proven in order to show
associativity, the upper group can rather be used to establish the independence
of class representative and the lower group is crucial to establish the associativity
law.

In particular, the lower part of the table is fundamental to the formal proof
of Eq. (18). In more detail, the formal proof development showed that it was
necessary to perform a dichotomy (Lemma 7) three times. The first dichotomy
is performed on P , Q. The non-summable case was easy. Therefore, we set R =
P ⊕ Q. On each of the resulting branches, a dichotomy on R, ιQ is performed.
This time the summable cases were easy, but the non-summable case required
a third dichotomy on R, τιQ. The non-summable case was solved using the no-
fixed-point theorem but for the summable subcases the following expression is
obtained:

([P, 0] ⊕ [Q, 0]) ⊕ [τιQ, 0] = [(P ⊕ Q) ⊕ τιQ, 0]

Here we cannot invoke associativity because Q, τιQ are non-summable (lemma
not add self). Instead, we use the equations from the lower part of the table and
the hypothesis of the second dichotomy to get a contradiction.

6 Conclusion

We have shown that Isabelle can encompass the process of defining, computing
and certifying intensive algebraic calculations. The encoding in a proof-assistant
allows a better comprehension of the methods used and helps to clarify its struc-
ture.



268 T. Hales and R. Raya

References

[ALNR11] Arene, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster computation of
the Tate pairing. J. Number Theory 131(5), 842–857 (2011)

[BBJ+08] Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted
Edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol.
5023, pp. 389–405. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-68164-9 26
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Abstract. Many applications require generating catalogues of combina-
torial objects, that do not contain isomorphs. Several efficient abstract
schemes for this problem exist. One is described independently by
I. A. Faradžev and R. C. Read and has since been applied to catalogue
many different combinatorial structures. We present an Isabelle/HOL
verification of this abstract scheme. To show its practicality, we instanti-
ate it on two concrete problems: enumerating digraphs and enumerating
union-closed families of sets. In the second example abstract algorithm
specification is refined to an implementation that can quite efficiently
enumerate all canonical union-closed families over a six element universe
(there is more than 100 million such families).

Keywords: Isomorph-free exhaustive generation · Orderly · Software
verification · Isabelle/HOL

1 Introduction

Cataloguing finite combinatorial structures (e.g., subsets, partitions, words,
Latin squares, graphs, designs, codes) described by certain specified properties is
required in many application domains. It is very desirable that such catalogues
are exhaustive and isomorph-free i.e., to contain exactly one representative of
each class of isomorphic structures. Often it is not enough to count objects (to
enumerate them), but it is needed to generate them explicitly.

Efficient isomorph-free cataloguing algorithms are often divided into three
types: (i) Faradžev–Read-type orderly algorithms based on canonical represen-
tatives [8,20], (ii) McKay-type algorithms based on canonical orderings [1], and
(iii) algorithms based on the homomorphism principle for group actions [10].
These are applied to a wide variety of problems (according to Google Scholar,
McKay’s paper has more than 500 citations, most of which describe its concrete
applications in mathematics, computer science, chemistry, biology etc.).

In this paper we present a formal verification of Faradžev-Read cataloguing
scheme within Isabelle/HOL. Verified cataloguing of combinatorial structures is
often used in formal proofs (e.g., enumeration of Tame Graphs given by Nipkow
et al. [18] was an important part of the Flyspeck proof of Kepler conjecture). We
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advocate that verifying general isomorph-free catalouging schemes might facili-
tate verifying enumeration algorithms needed for concrete applications. Author’s
personal motivation for these algorithms comes from his previous and current
work in formalizing combinatorics and finite geometry [15,16].

To demonstrate its usefulness, we applied our general framework on two
concrete problems: cataloguing all directed graphs on n nodes (this was the first
problem analyzed in the original Read’s paper [20]) and cataloguing families of
subsets of an n-element domain, closed under unions. A solution for the second
problem was described by Brinkmann and Deklerck in 2018 [4] and it combines
Faradžev-Read type orderly generation [8,20] and the homomorphism principle
[3]. For n = 6, their C implementation found around 100 million such families in
several seconds, while for n = 7, it found around 2 ·1015 in around 10 to 12 CPU
years (on a cluster computer). We refine an abstract algorithm specification to
an efficient implementation (still purely functional) and show that it can solve
the case n = 6 within Isabelle/HOL in a matter of minutes.

In the current paper we focus mainly on presenting definitions (in the most
cases proofs are not discussed). It is assumed that the reader is familiar with
functional programming and Isabelle/HOL [19]. Some definitions are slightly
simplified, to make them more comprehensible. Proof documents are available
in the Downloads section at http://argo.matf.bg.ac.rs/ and are going to be sub-
mitted to the Archive of Formal Proofs.

Contributions. Our central contribution is the verification of the abstract Fa-
radžev-Read scheme that can be instantiated for many concrete applications.
Other contributions are:

– a verified algorithm for cataloguing digraphs and other similar objects [20];
– a verified efficient algorithm for generating union-closed families [4];
– a small verified library for generating basic combinatorial objects (permuta-

tions and combinations);
– verified bitwise representation of sets, set operations and families of sets by

unsigned integers and some common “bit-hacks”.

Related Work. Literature on fast computer-based enumeration of various com-
binatorial objects is vast, but it seems that there are not many formally veri-
fied algorithms and tools. As a part of Flyspeck project, Nipkow et al. used
Isabelle/HOL to verify an algorithm for enumerating tame graphs [17,18]. Bowles
and Caminati used Isabelle/HOL to verify an algorithm for enumerating event
structures and, as a byproduct, all preorders and partial orders [2]. Giorgetti et
al. used Why3 and Coq to generate basic combinatorial objects, used in software
testing [7,9]. We are not aware of any verified general methods for isomorph-free
exhaustive combinatorial enumeration.

2 General Faradžev-Read Scheme

Algorithms for generating combinatorial objects are usually based on recursive
schemes that build larger objects by augmenting smaller ones. We shall assume

http://argo.matf.bg.ac.rs/
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that the set of all objects S is divided into its subsets S0, S1, S2, . . . grouped by
object “size” (e.g., the size can be the number of edges in a graph or the number
of sets in a family). Objects in Sq+1 are produced by augmenting objects in Sq.

A classic, naive algorithm for isomorphism rejection maintains a list Lq of
objects of Sq produced so far, and compares the current object with all objects
in that list, adding it to the list Lq only if Lq does not contain its isomorph.
That assumes that there is an efficient isomorphism test and is doomed to be
inefficient when the list becomes long. Efficient schemes (including the Faradžev-
Read’s) avoid comparing the current object with the previous ones an can deduce
whether it should be added to the list only by examining the object itself.

A central component of Faradzev-Read’s scheme is a linear order (we shall
denote it by <) in which objects are produced (the scheme is sometimes called
orderly generation). Lq shall always be sorted wrt. that order. Also, it is assumed
that for each isomorphism class there is a single canonical object, that for each
object we can test if it is canonical and that lists Lq shall contain only canonical
objects. We specify this in an Isabelle/HOL locale (use of locales for stepwise
implementation is described by Nipkow [17]).

locale FaradzevRead’ =
fixes S :: “nat ⇒ (’s::linorder) set”
fixes equiv :: “’s ⇒ ’s ⇒ bool”
fixes is canon :: “’s ⇒ bool”
fixes is canon test :: “’s ⇒ bool”
fixes augment :: “’s ⇒ ’s list”
assumes “

∧
q. equivp on (S q) equiv”

assumes “
∧

s s’ q. �equiv s s’; s ∈ S q� =⇒ s’ ∈ S q”
assumes “

∧
s q. s ∈ S q =⇒ ∃! sc. equiv s sc ∧ is canon sc”

assumes “
∧

s s’ q. �is canon s; s’ ∈ set (augment s)� =⇒ s ∈ S q ←→ s’ ∈ S (q + 1)”
assumes “

∧
s s’ q. �s ∈ S q; is canon s; s’ ∈ set (augment s)� =⇒

is canon test s’ ←→ is canon s”’

First two assumptions ensure that equiv is an equivalence (isomorphism)
relation on every Sq (note that Faradžev-Read scheme does not require to have
an executable isomorphism test). The third one ensures that each isomorphism
class contains exactly one canonical representative. The fourth one describes the
augmentation procedure that builds a list containing possible extensions of a
given canonical object (their dimension is always increased by one). Definition
of a canonical representative should be as simple as possible, since it is used in
proofs. It need not be executable and if it is executable it need not be efficient.
We provide another function is canon test that is used to test for canonicity. It
does not need to match the abstract is canon definition in general, but they need
to match on the objects obtained by augmenting canonical objects.

Faradžev-Read algorithm iterates through a sorted catalogue Lq of canonical
objects of Sq and builds a sorted catalogue Lq+1 for Sq+1. For each object p it
iterates trough a list of objects s that augment it. If an object s is non-canonical
it is eliminated. If it is canonical, then it is appended at the end of Lq+1 only if
it does not violate the list order. This procedure is specified as follows.
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order test s res = ( if res = [] ∨ s > hd res then s # res else res)

step L = ( let cs = filter is canon test (concat (map augment L))
in rev (fold order test cs []))

Three conditions are sufficient for the correctness of the previous procedure.
First, it must be possible to obtain each canonical object s in Sq+1 by augment-
ing at least one canonical object in Sq. If that holds, then all canonical objects
in Sq+1 will be enumerated at least once and we need to guarantee that they
will survive the order test exactly once. Since the ordering of Lq+1 is strict, a
canonical object cannot survive the order test more than once. The first appear-
ance of a canonical object s will be eliminated by the order test iff the list Lq+1

constructed so far contains an object s′ such that s′ > s. Element s′ could be
produced either by the same p that produced s or by some element p′ of Lq that
precedes p. The former cannot happen if the augmentation procedure always
gives elements s in sorted order. Let f(s) = p be the first element of Lq which
produces s, and let f(s′) = p′ be the first element of Lq which produces s′. To
forbid that s′ is produced by some element p′ of Lp that precedes p, we must
forbid that both s′ > s and f(s′) < f(s) hold i.e., we must require that s′ > s
implies f(s′) ≥ f(s). To formalize this, we first define the function f (we call it
the minimal parent function).

parent p s ←→ is canon p ∧ s ∈ set (augment p)

min parent p s −→ parent p s ∧ (∀ p’. parent p’ s −→ p ≤ p’)

Then we extend the locale by requiring the following three conditions.

locale FaradzevRead = FaradzevRead’ +
assumes “

∧
s q. �s ∈ S (q + 1); is canon s� =⇒ ( ∃ p ∈ S q. parent p s)”

assumes “
∧

s q. �s ∈ S q; is canon s� =⇒ sorted (filter is canon (augment s))”
assumes “

∧
s s’ p p’ q.

�s ∈ S (q + 1); is canon s; min parent p s;
s’ ∈ S (q + 1); is canon s’; min parent p’ s’; s < s’� =⇒ p ≤ p”’

Now we can formulate and prove algorithm correctness. We define catalogue
for Sq as a strictly sorted list of canonical elements of Sq that contains an element
for each isomorphism class.

catalogue L q ←→ sorted L ∧ distinct L ∧ set L ⊆ S q ∧ (∀ s ∈ set L. is canon s) ∧
( ∀ s ∈ S q. ∃ sc ∈ set L. is canon sc ∧ equiv s sc)

It is easily shown that catalogue for every q is unique and that it always
exists if Sq is finite (we denote it by the catalogue q).

The central theorem states that the step function when applied to a catalogue
for Sq produces a catalogue for Sq+1.

theorem “catalogue L q =⇒ catalogue (step L) (q + 1)”
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The original proof given by Read is as follows.“Condition 1 ensures that every
canonical configuration X in Sq+1 is produced at least once. Condition 2 ensures
that when X is produced for the first time from f(X) there cannot be an entry
Y produced from f(Y ) �= f(X) which follows X in Lq+1 and whose presence
will therefore block the addition of X to the list. Condition 3 ensures the same
thing when f(X) = f(Y ).” This informal proof sketch had to be expanded to
around 300 lines long Isar proof which employed nested reverse list induction.

Strict Faradžev/Read Conditions. In some concrete instances stronger con-
ditions are met that make possible to skip the order test within step function.
Although that does not make the implementation much more efficient (the order
test is usually quite fast), this can significantly simplify the depth-first variant
of the procedure.

locale FaradzevReadStrict = FaradzevRead’ +
assumes “

∧
s q. �s ∈ S (q + 1); is canon s� =⇒ ( ∃ p ∈ S q. parent p s)”

assumes “
∧

s q. �s ∈ S q; is canon s� =⇒ sorted (augment s) ∧ distinct (augment s)”
assumes “

∧
p s p’ s’ q. �p ∈ S q; parent p s; p’ ∈ S q; parent p’ s’; p < p’� =⇒ s < s”’

We formally showed that the order test can be skipped.

lemma
assumes “distinct L” “sorted L” “set L ⊆ S q” “∀ x ∈ set L. is canon x”
shows “step L = filter is canon test (concat (map augment L))” “distinct (step L)”

We have also shown that strict conditions imply the original conditions (by
showing that FaradzevReadStrict is a sublocale of FaradzevRead).

Depth First Variant. When step function is iterated, objects are generated
in breadth first fashion. A serious concern about such procedure is its mem-
ory usage, since at each step it needs to store both the whole list Lq and the
elements of Lq+1 that are generated. We have defined a procedure that makes
the catalogue in depth first fashion, and that usually consumes significantly less
memory. Note that such procedure could have been defined in the non-strict
Faradžev/Read locale, but it would be more complicated, since, to be able to
perform the order tests, it would have to store the largest element in Lq for all
recursion levels q. In many concrete applications, including both our case studies,
strict conditions hold, so we opted only for the simpler variant. We have defined
a function fold dfs that “folds” the elements of the Faradžev-Read tree, enumer-
ated in the DFS order, by some given accumulating function. This tree can be
formed by augmenting each node in each possible way (using the augment func-
tion) and retaining only the canonical descendants (filtered by the is canon test
function), but it is not explicitly built in the memory. The lvl parameter guaran-
tees termination by controlling the depth of the generated tree. The definition
of fold dfs is quite technical.

fold dfs lvl f i ss =
(if lvl = 0 then i
else fold (λ s’ x. f s’ (fold dfs (lvl - 1) f x (filter is canon test (augment s’)))) ss i)
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Elements of the tree are usually folded by the following functions. The func-
tion catalogue dfs computes the catalogue by collecting all tree nodes in a list,
while the function count dfs only counts nodes, without keeping their list.

catalogue dfs lvl ss = fold dfs lvl (λ s x. s # x) [] ss

count dfs lvl ss = fold dfs lvl (λ s x. x + 1) 0 ss

If the procedure catalogue dfs starts from a catalogue for Sq, then it traverses
over elements of all catalogues from Sq to Sq+lvl−1 (although in different order
than the traversal based on the step function). This is formalized by the following
theorem (where mset denotes the multiset of list elements).

theorem
assumes “catalogue L q”
shows “mset (catalogue dfs lvl L) = mset (concat (map the catalogue [q..<q+lvl]))”

3 Cataloguing Digraphs

The first case-study used to test our general scheme was cataloguing all loopless
directed graphs (digraphs) with n nodes. It was the first problem described by
Read [20] and we directly follow his approach. As this was just a toy-example, we
did not invest much effort into low-level implementation details (e.g., we have
used lists which are the simplest data structures)—additional refinement step
that would introduce more efficient data structures and some other algorithmic
enhancements could make the enumeration much more efficient.

Objects. Following [20], digraphs are represented by their adjacency matrices.
As only loopless digraphs with n nodes are considered, the diagonal can be
excluded from the matrix and by concating matrix rows an n × (n − 1) vector
(a list) representation can be obtained. Graphs will be augmented by adding
branches, so we define sets S0, S1, . . . in the following way (the number of nodes
n is fixed when interpreting the locale).

S n q = {l. length l = n * (n - 1) ∧ set l ⊆ {0, 1} ∧ sum list l = q}

Example graph, its matrix and list representation are shown on Fig. 1.

1 0 2
(

0 0 0
1 0 0
1 0 0

)
[0, 0, 1, 0, 1, 0]

Fig. 1. A graph represented graphically, by a matrix and by a list

Equivalence. Two graphs are equivalent if there is a permutation of nodes that
would map one graph onto another. Permutations are represented by lists of
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length n (e.g., [2, 0, 1] denotes a permutation that maps 0 to 2, 1 to 0 and 2 to
1). For example, if nodes in the Fig. 1 are ordered 0, 1, 2 instead of 1, 0, 2, then
the graph would be represented by the list [1, 0, 0, 0, 0, 1]. A direct (but not the
most efficient) way to define action of node permutation to a list representing a
digraph is to convert it to a matrix, permute the rows and columns of the matrix
and then convert the matrix back to a digraph list.

permute matrix p M = permute list p (map (permute list p) M)
permute dig p n l ←→ mat2dig (permute matrix p (dig2mat n l))

Equivalence is often defined by using permutations, so we introduce it
abstractly in a separate locale and prove its properties.

locale Permute =
fixes invar :: “nat ⇒ ’a ⇒ bool”
fixes permute :: “nat ⇒ nat list ⇒ ’a ⇒ ’a”
assumes “

∧
a p n. �invar n a; is perm n p� =⇒ invar n (permute n p a)”

assumes “
∧

a n. invar n a =⇒ permute n (perm id n) a = a”
assumes “

∧
a p1 p2 n. �invar n a; is perm n p1; is perm n p2� =⇒

permute n (perm comp p1 p2) a = permute n p1 (permute n p2 a))”
assumes “

∧
a p n. �invar n a; is perm n p� =⇒

permute n (perm inv p) (permute n p a) = a”

Predicate is perm abbreviates the condition p <∼∼> [0.. < n], where <∼∼>
is the permutation relation from the Isabelle/HOL library. Permutations are
applied on objects of some abstract type ’a (e.g., to lists that represent digraphs)
that may satisfy some given invariant (e.g., that the list length is n(n− 1)). The
function permute is the action of permutations on the objects of type ’a. If it
respects the permutation group operations (identity perm id, inverse perm inv,
and composition perm comp), then we can use it to define equivalent objects and
to prove that it is an equivalence relation.

equiv n F1 F2 ←→ (∃ p. is perm n p ∧ F2 = permute p F1)

Ordering. The ordering is very simple – the lexicographic order on lists used
to represent graphs is used, except that the order of list elements is reversed (1
is treated as less than 0).

Canonical Objects. Permutations are also used to define canonical objects.
An object is canonical if it is minimal among all its possible permutations. For
example, the list [1, 0, 0, 0, 0, 1] is canonical for the graph shown in Fig. 1. This
definition is also generic and can be specified within the previous locale (a linear
order on the type ’a is assumed). Then it can be proved that each equivalence
class contains a single canonical representative (what is needed for Faradzev-
Read enumeration).

“is canon n F ←→ (∀ p. is perm n p −→ F ≤ permute p F)”

lemma “inv n a =⇒ ∃! c. equiv n a c ∧ is canon n c”
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An optimization can be made when checking canonicity of a digraph. By the
definition of ordering, the list that starts with as most ones as possible will be
always less than lists that have zeros at that initial positions. Therefore only
permutations that put a maximal degree node at the beginning and nodes that
it is connected to after it need to be considered. This is the essence of our
is canon test definition (that we do not show here).

Augmentation. Graphs are augmented by adding an edge i.e., by changing one
0 in the list to 1. If the list contains some elements 1, then only zeros behind the
last 1 can be changed (otherwise any zero can be changed). For example, the list
[1, 0, 0, 1, 0, 0] can be augmented to [1, 0, 0, 1, 1, 0] and [1, 0, 0, 1, 0, 1]. This can be
formalized as a relation between two lists1.

is last one i xs ←→ xs ! i = 1 ∧ (∀ i’. i < i’ ∧ i’ < length xs −→ xs ! i’ = 0)
all zeros xs ←→ (∀ i < length xs. xs ! i = 0)
increment after last one xs ys ←→ (∃ j. j < length xs ∧ ys = xs [j := 1] ∧

(all zeros xs ∨ (∃ i. is last one xs i ∧ i < j)))

All required properties of the augmentation procedure are proved using this
abstract definition, and only then its concrete implementation is given (it is quite
technical, so we do not show it here). It must return digraphs in sorted order,
which is ensured by sequentially incrementing every 0, after the last 1, one by
one.

Results. The naive implementation we defined can catalogue all 1 540 944
digraphs with 6 nodes in 276 seconds (on an 2.4GHz, Intel Core i5, 8GB RAM
laptop). Interestingly, the original paper reports only 1 540 744 digraphs [20].
Cataloguing more than 800 million digraphs with 7 nodes is possible, but would
require significant improvements of the implementation.

4 Cataloguing Union-Closed Families

Families of sets closed under unions have gotten a lot of research attention due to
the famous conjecture by Péter Frankl, claiming that in each such family there
is an element occurring in at least half of the sets. Although quite elementary,
the conjecture is still open [5,16]. Recently Brinkmann and Deklerck applied
Faradžev-Read type algorithm to catalogue union-closed and intersection-closed
families [4]. We have formalized their procedure in Isabelle/HOL.

4.1 Abstract Procedure Specification

Objects. The most natural way to model sets of natural numbers in
Isabelle/HOL is to use the built-in nat set type. The type nat set set could

1 By following Read [20], we formalized a slightly more general case where the lists
can contain larger numbers than 1 (so at some future point multigraphs can also be
considered).
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be used for families of sets. However, in order to apply Faradžev-Read enumera-
tion, we need to define a very specific total order of families (based on a specific
ordering of sets). We cannot change the default ordering of sets on the type ’a
set nor the ordering of families on the type ’a set set. Additionally, only finite
sets can be ordered, so we must introduce the following two types.

typedef Set = “{ s :: nat set. finite s }” morphisms elems Set
typedef Family = “{ s :: Set set. finite s }” morphisms sets Family

The union-closed property is defined as follows.

union s1 s2 = Set (elems s1 ∪ elems s2)
union closed F ←→ (∀ A ∈ sets F. ∀ B ∈ sets F. union A B ∈ sets F)

We want to enumerate all families closed for union whose largest set is
{0, 1, . . . , n − 1}. Since the empty set does not affect union-closedness, when
enumerating union-closed families it is usually excluded from all families. Enu-
meration starts from the family {{0, 1, . . . , n − 1}}, and extends it by adding
sets with less elements. We define the dimension of a family, as the number of
its sets without this largest set. Therefore, we define collections S0, S1, S2, . . . by
the following definition.

“S n q = {F. ( ∀ s ∈ sets F. elems s ⊆ {0..<n}) ∧ card (sets F) = q+1”
Set {0..<n} ∈ sets s ∧ Set {} /∈ sets F ∧ union closed F}

Equivalence. The function permute family permutes every set in a family by
applying the permute set function which permutes a set by applying the given
permutation to each member. The function permute family interprets the locale
Permute (with the invariant that all elements if family sets are less than n) and
the definition and properties of equivalence given in that locale are used.

Ordering. The ordering of families is based on an ordering of sets. Sets are
ordered first by their cardinality (sets with more elements are declared to precede
sets with less elements). Sets of the same cardinality are ordered by lexicographi-
cally comparing reverse-sorted lists of their elements. For example, the following
is a strictly increasing chain of sets {0, 1, 2} < {0, 1} < {0, 2} < {1, 2} < {0} <
{1} < {2} < {}.

less Set (Set s1) (Set s2) ←→
( let n1 = card s1; n2 = card s2
in n1 > n2 ∨ (n1 = n2 ∧ rev (sorted list of set s1) > rev (sorted list of set s2)))

Families are ordered by lexicographically comparing sorted lists of their sets
(wrt. the previous ordering of sets).

less Family (Family F1) (Family F2) ←→ sorted list of set F1 < sorted list of set F2
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Canonical Objects. Canonical families are also defined by using permutations,
by reusing definitions and statements from the Permute locale—two families are
equivalent if there is a permutation that transforms one family to the other,
and a family is canonical if it is the least one (wrt. the ordering of families)
among all its permutations. We have formalized an efficient method for testing
if a given family is canonical. The crucial insight is that if a family is obtained
by augmenting a canonical family (and that is always the case in the Faradzev-
Read scheme), then it is certainly less than all families obtained by permutations
that change some of its sets with cardinality greater than minimal. Therefore,
it is enough to check only the permutations that fix such sets. For example,
when extending the family {{0, 1, 2}, {0, 1}, {0, 2}, {0}}, the permutation 0 �→
1, 1 �→ 2, 2 �→ 0 needs not to be considered since it maps non-minimal cardinality
sets {0, 1, 2}, {0, 1}, {0, 2} to {0, 1, 2}, {0, 1}, {1, 2}, thus always yielding a greater
family. Only permutations that map 0 to 0 need to be analyzed. Note that this
is one of the crucial components of the algorithm, since it tremendously reduces
the number of permutations that have to be applied to check if a given family
is canonical (as the number of sets in families is increased, that number very
quickly drops to just a couple of permutations).

min card F = Min (set card ‘ (sets F))
above card sets F c = {s. s ∈ sets F ∧ set card s > c}
perm fixes F ←→ (∀ s ∈ F. permute set p s ∈ F)
filter perms ps F = (let F’ = above card sets F (min card F)

in filter (λ p. perm fixes p F’) ps)
is canon test n F ←→ ( ∀ p ∈ set (filter perms (permute [0..<n]) F).

F ≤ permute family p F)

Augmentation. A family is augmented by adding sets that are larger than its
largest set (wrt. the ordering of sets).

augment set n s = {s’. elems s’ 
= {} ∧ elems s’ ⊆ {0..<n} ∧ s’ > s}

augment n F = ( let Fs = {add set F s | s. s ∈ augment set n (Max (sets F))}
in sorted list of set {F’ ∈ Fs. union closed F’})

Testing if a family is union-closed requires analyzing all pairs of sets. However,
since families are generated by adding sets to smaller union-closed families, we
only need to find unions of the new set s with the sets present in the family F
that is being augmented. Since s is larger than all sets in F, the procedure can
be optimized. It suffices to check only those sets of F that do not contain subsets
in F (those sets form the reduction of F).

reduction F = {s ∈ sets F. ¬ (∃ s’ ∈ sets F. elems s’ ⊂ elems s)}
lemma

assumes “union closed F” “∀ s’ ∈ sets F. s > s”’
shows “union closed (add set F s) ←→ ( ∀ s’ ∈ reduction F. union s’ s ∈ sets F)”
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Note that many previous definitions are not efficient or even not executable
(e.g., in the augmentation procedure it is not specified how to construct sets
larger than the given one, and the required sorted order of the resulting list of
families is ensured by explicitly sorting the list, which would be inefficient in
a real implementation). However, abstract specification like this one are very
convenient for proving algorithm correctness, while efficient executable imple-
mentation can be defined later.

4.2 Implementation

The abstract procedure specification already contains two very important opti-
mizations: filtering permutations when checking canonicity and filtering sets
when checking union-closedness. However, there are many additional optimiza-
tions that should be done in order to get an executable, efficient implementation
of the procedure:

– sets and families must be represented using efficient data structures;
– objects should be generated in-order, and a-posteriori sorting must be

avoided;
– computations that are redundantly repeated many times should be avoided

by applying memorization and storing results in lookup tables.

Unlike abstract specification that is stateless, an efficient implementation
must be stateful. There are many methods to handle state in functional pro-
grams, and we use the simplest one: it is explicitly passed trough function calls.

Objects. Using bitwise representation is the best choice for representing sets
and families. A set can be represented by an unsigned integer that has the bit
i equal to 1 iff the set contains the element i. For example, if 8-bit words are
used, the set {0, 2, 5} can be represented by 00100101, i.e., by 37. Similarly, a
family can be represented by unsigned integer that has the bit i equal to 1 iff
the family contains the set represented by i. Since there are 22

n

families over
{0, . . . , n − 1}, 64-bit words can be used to represent families over {0, . . . , 5}.

However, since we wanted to make a very clear separation between the high-
level algorithm correctness and low-level bit-twiddling hacks, we have introduced
another layer of abstraction. We have introduced another locale, parametrised
by the type ’s for representing sets and ’f for representing families, and by some
primitive operations over these types.

For example, a type ’s that represents sets must support a constant for the
empty set, must support reading the list of set elements, checking if the set
contains an element, adding an element to a set, finding union of two sets,
determining the cardinality of a set, finding the list of all possible subsets of
{0, . . . , n−1}, etc. It must be linearly ordered and that order must be compliant
with the lexicographic order of reversed lists of set elements. Since only elements
up to a certain size must be represented, all assumptions in our locale are guarded
by the condition n ≤ nmax, where nmax is a locale parameter. Based on such
primitives, algorithm-specific set operations are defined (e.g., ordering of sets is
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defined based on card and <, and permuting sets is defined by traversing the list
of elements and inserting their permuted images into a resulting set).

A type ’f must support a constant for the empty family, must support reading
the list of family sets, adding and removing set from the given family etc. Again,
value nmax assures that all families can be properly represented.

Caching Information About Families. Each family F must contain infor-
mation about all sets that it contains (and this is represented by a value of
type ’f). However, in order to avoid repeating computations, we shall associate
some additional data with each family. For augmentation of F we need to know
the maximal set and the reduction of a family (so that we can efficiently check
union-closure). For testing canonicity we need to know a list of permutations
that fix sets in F with cardinality above minimal. We store all these in a record
(permutations are represented by numbers from 0 to n! − 1).

datatype (’f, ’s) FamilyRecord =
FamilyRecord (all sets : ’f) (max set : ’s) (reduction : ’f) (perms : “nat list”)

Ordering. Ordering families is a bit tricky in the general case. If bitwise repre-
sentation is used, the order of family codes need not necessarily comply with our
abstract ordering of families (which takes into account set cardinality). However,
within the enumeration we only compare families with their permuted variants
for permutations that fix all sets except those with the minimal cardinality.
Therefore, it suffices just to extract sets with minimal cardinality and compare
two families based only on those sets. When bitwise representation is used, since
all other bits will be the same, it suffices just to compare family codes.

Canonical Objects. Due to a relatively low number of subsets of {0, . . . , n −
1} (for n = 6, there are only 64 such sets) and a relatively low number of
permutations of [0, . . . , n− 1] (for n = 6, there are only 720 such permutations),
the action of all permutations on all sets can be precomputed and stored into a
lookup table (we use a RBT Mapping available from the Isabelle/HOL library).
The function that initializes the lookup table can easily be defined and it need
not be very efficient (it is called only once at the very beginning of the procedure).

type synonym ’s SetPerms = “((nat × ’s), ’s) mapping”

init set perms n =
(let ps = permute [0..<n]; ss = powerset n;

keys = concat (map (λ p. map (λ s. (p, s)) ss) [0..<length ps])
in Mapping.tabulate keys (λ (p, s). permute set n (ps ! p) s))

In the previous code, the function permute is defined within our small library
for generating basic combinatorial objects and it generates all permutations of
the given list. The function that permutes a given family then just looks up
permuted sets from the set perms mapping.

permute family F p =
foldl (λ F’ s. add F’ (the (Mapping.lookup set perms (p, s)))) empty family (sets F)
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Now the canonicity check can easily be implemented. The list of relevant
permutations is stored within the family record. The first permutation in that
list is always the identity permutation and it does not need to be checked (so in
many cases no family permutations at all need to be made).

is canon test set perms F =
list all (λ p. less eq family (all sets F) (permute family set perms p (all sets F)))

(tl (perms F))

Augmentation. Implementing augmentation has several important parts. First,
we need to know how to enumerate all augmenting sets for a given set, then we
need to check if adding an augmenting set to a family would leave it union-closed
and finally, when the set is added we need to update the list of permutations
that need to be tested when checking if the family is canonical, to update the
reduction of the family and to update its maximal set.

The function that finds all possible augmentations for a given set might be
implemented in the following way (again, it does not need to be much efficient,
since it is also called only once).

augment set n s = filter (λ s’. s < s’) (set of (combine [0..<n] (card s))) @
concat (map (λ c’. set of (combine [0..<n] c’)) (rev [1..<card s]))

The function combine is also defined within our small library for generating
basic combinatorial objects and combine l k computes all k-element sublists of
the given list l. Augmenting sets of a set s first contain sets with the same
cardinality as s that are larger than it, and then, all sets of each cardinality
less than the cardinality of s, in decreasing order (this gives a sorted list of all
augmenting sets wrt. our set order).

Since the same sets are augmented over and over again (as they occur in
different families), results of augment set for each s in powerset n are stored
in a lookup table and that lookup table becomes a parameter of the family
augmentation procedure augment.

Each augmenting set is analyzed and it is checked if adding it to the family
leaves it union-closed. This is done by examining only the sets from the reduced
family (which are stored within the family record).

is union closed F s = list all (λ s’. contains set F (union s’ s)) (sets (reduction F))

If adding the set s to the family F leaves it union closed, then a new family
record is created. The set is added to the collection of all sets using the primitive
operation and it is set as the maximal set of the extended family (since the
augmenting sets are always larger than all sets in the family). The reduction
of the extended family is obtained by analyzing all sets in the reduction of the
original family F, removing those that contain s (by means of the primitive
operation), and by adding s to the reduction (as the maximal set it has the
minimal cardinality and the family cannot contain its subset).
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update reduction Rs s =
(let Rs’ = foldl (λ Rs s’. if is subset s s’ then remove Rs s’ else Rs) Rs (sets Rs)
in add Rs’ s)

add set F s = FamilyRecord (add (all sets F) s)
(update reduction (reduction F) s) s (perms F)

Finally, the augmented set is added to the family and if its cardinality is
strictly less than cardinality of other sets in the family, the set of permuta-
tions is filtered (permutations that do not fix sets above minimal cardinality are
removed).

perm fixes set perms F p ←→
list all (λ s. contains set F (the (Mapping.lookup set perms (p, s)))) (sets F)

filter perms n set perms F c =
( let perms’ = filter (perm fixes set perms (sets of card F c)) (perms F)
in FamilyRecord (all sets F) (reduction F) (last set F) perms’)

extend family n set perms F s =
( let F’ = add set F s; c = card (max set F); c’ = card s
in if c 
= c’ then filter perms n set perms c F’ else F’)

With these functions available, we define the augmenting procedure.

augment n augmenting sets powerset by card set perms F =
map (extend family n powerset by card set perms F)

(filter (λ s. is union closed F s)
(the (Mapping.lookup augmenting sets (max set F))))

Correctness Proof. The correctness proof reduces to showing that this stateful
implementation corresponds to the abstract specification. Functions abs set and
abs family that convert ’s to Set and ’f to Family are easily defined and it is
easily shown (by using the locale assumptions) that primitive operations given
in a locale are in accordance with operations on sets (the real burden of showing
this is when interpreting the locale by bitwise representation). Then, a set of
lemmas is proved that connects each implemented function with its abstract
counterpart. For example, the lemma that establishes the connection between
the abstract test for canonicity and its implementation is the following.

lemma
assumes “n ≤ n max” “inv f n (all sets F)”

“set perms OK set perms n” “perms filtered F n” “hd perms F”
shows “FamilyImpl.is canon test n set perms F ←→

FamilyAbs.is canon test n (abs fam (all sets F))”

The assumptions require that all sets in the family record satisfy all required
representation invariants (for example, this guarantees that all sets in F are
subsets of {0, . . . , n−1}), that the lookup table set perms contains permutations
of all sets, that the family record contains exactly those permutations that fix
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all sets of F with more elements than the minimal set of F, and that the first
element in the list of those permutations is the identity permutation. In many
cases such lemmas are proved almost immediately (by using similar lemmas
about functions called in the current function definition). However, in some
cases there is more work that should be done (e.g., we need to show that our
augment set implementation builds a sorted and distinct list of sets that covers
every set that is larger than the one being augmented).

It is also necessary to show that functions preserve invariants. All lookup
tables are initialized before the enumeration starts and we prove that func-
tions that initialize lookup tables do that correctly. For example, we show that
init set perms builds a lookup table that for each set s in powerset n and each per-
mutation index p from 0 to n!−1 returns the set obtained by permuting s by the
p-th permutation in the lexicographic ordering of permutations of [0, . . . , n− 1].
Other invariants characterize data in the family record. For example, one such
invariant claims that max set F is always a set in F that is the largest among all
sets of F. Since the family record is updated only in the augment function, the
major challenge is to show that it preservers all such invariants.

4.3 Bitwise Set Representation

Finally, we used the bitwise representation to represent sets and families, based
on the Native word library [14]. Sets are represented by the type uint8, while
families are represented by the type uint64. Primitive operations on sets are
implemented using the bitwise operations. For example, adding element and
removing element from a set, union and intersection of sets is defined by

add x e = x OR (1 << k) remove x e = x AND NOT (1 << k)
union x1 x2 = x1 OR x2 inter x1 x2 = x1 AND x2

We have also implemented an efficient function for finding the cardinality of
a set, by using the parallel bit-count algorithm.

card s0 = (let s1 = (s0 AND 0x55) + ((s0 >> 1) AND 0x55);
s2 = (s1 AND 0x33) + ((s1 >> 2) AND 0x33);
s3 = (s2 AND 0x0F) + ((s2 >> 4) AND 0x0F)

in nat of uint8 s3)

However, since we calculate cardinality only for 8-bit numbers, it turns out
that there is no much benefit to using a naive, sequential bit-testing algorithm.

Similarly, a list of sets in a family could be determined by a naive, sequential
test of each of 64 bits. For families that do not contain many sets, it is more
efficient to iterate only trough the bits that are set. Many hardware architectures
offer count trailing zeros (ctz) instruction that is used to find the last set bit.
Clearing last set bit can be achieved by calculating x & (x-1). Unfortunately,
it seems that ctz instruction is not available from functional languages. It can
be implemented by a binary search approach, yielding a six-step algorithm for
64-bit words, but our experiments reveal that using such implementation is less
efficient than the naive algorithm.
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4.4 Results

Our verified implementation exported to Haskell catalogues all 108 281 182
union-closed families in around 11 min (on an 2.4GHz, Intel Core i5, 8GB RAM
laptop). Our fastest, unverified implementation in C++ that uses the same algo-
rithm, but is based on arrays, does it in around 28 seconds. Profiling shows
that the verified implementation spends more than 60% of the time in RBT
lookup. Replacing O(log n) RBT with O(1) lookup array reduces the time to
less than 5 min (for this we can use the Isabelle Collections Framework [11] or
Imperative/HOL [6]). Unfortunately, a range-check is performed with each ver-
ified bitwise operation, and there is no direct access from Isabelle/HOL to all
hardware implemented bitwise operations (e.g., builtin ctzl in GCC), so its
hard to expect that C++ runtimes could be reached with standard Isabelle code
generator. When families are only counted using the depth-first variant of the
algorithm, memory consumption is not an issue.

5 Conclusions and Further Work

We have formalized the general Faradžev-Read scheme for making exhaustive,
isomorph-free catalogues of combinatorial objects within Isabelle/HOL and have
shown its applicability by instantiating in on two different problems: cataloguing
directed graphs and cataloguing union-closed families. In the second case study
we have created an efficient implementation capable of generating more than one
hundred million union-closed families over a six-element domain.

Our experience shows that even with the general scheme verified, there is
still much work to do for each concrete application, especially if efficient imple-
mentation is required (our rough estimate is that verifying the general scheme is
around 30–50% of the effort needed to verify a concrete efficient algorithm). Still,
a verified general scheme does save a significant amount of work in each con-
crete instance, and, more importantly, guides us towards elements that should
be defined in order to get an efficient algorithm.

Specification and the correctness proof of the abstract Faradžev-Read scheme
contains 3 locales with around 10 assumptions, 10 definitions and 40 lemmas,
consuming around 1200 lines of code (LOC). The case study of digraphs contains
around 25 definitions and 100 lemmas, consuming around 4000 LOC. The case
study of union-closed families contains around 105 definitions and 350 lemmas,
consuming around 8000 LOC (5000 LOC are devoted to efficient implementa-
tion). Some definitions and lemmas are shared between both case studies.

We use refinement based on Isabelle/HOL locales to separate reasoning
about abstract procedure properties and concrete implementation details. Using
a framework (e.g., Isabelle refinement framework [12]) might give us better proof
automation and easier introduction of imperative features [13], so we plan to use
it in our future work.

There are other general cataloguing schemes, some more efficient than Fa-
radžev-Read’s. Most notable of them is McKay’s canonical path generation [1].
In our further work we plan to formalize it, too. We hope that some parts of
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the developed theory could be reused (e.g., the definition of isomorphism based
on permutations and their action and the definition of the catalogue). On the
other hand, Faradzev/Read and McKay’s approach are substantially different
so we are not too optimistic that any parts of Faradzev/Read algorithm spec-
ification would be useful for computing canonical labellings. A prerequisite for
McKay’s algorithm trusted implementation is an efficient, trusted graph isomor-
phism testing algorithm which we plan to construct (either by its verification
within a theorem prover, or by some kind of certificate checking).
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Abstract. We present the first formal verification of approximation
algorithms for NP-complete optimization problems: vertex cover, inde-
pendent set, load balancing, and bin packing. We uncover incomplete-
nesses in existing proofs and improve the approximation ratio in one
case.

1 Introduction

Approximation algorithms for NP-complete problems [12] are a rich area of
research untouched by automated verification. We present the first formal verifi-
cations of three classical and one lesser known approximation algorithm. Three
of these algorithms had been verified on paper by program verification experts
[3,4]. We found that their claimed invariants need additional conjuncts before
they are strong enough to be real invariants. That is, their proofs are incomplete.
The fourth algorithm only comes with a sketchy informal proof.

To put an end to this situation we formalized the correctness proofs of four
approximation algorithms for fundamental NP-complete problems in the theo-
rem prover Isabelle/HOL [9,10]. We verified (all proofs are online [6]) that

– the classic approximation algorithm for a minimal vertex cover is a k-
approximation algorithm for rank k hypergraphs;

– Wei’s algorithm for a maximal independent set [13] is a Δ-approximation
algorithm for graphs with maximum degree Δ;

– the greedy algorithm for the load balancing problem is a 3
2 -approximation

algorithm if job loads are sorted and a 2-approximation algorithm if job loads
are unsorted [8];

– the bin packing algorithm by Berghammer and Reuter [4] is a 3
2 -

approximation algorithm.

Isabelle not only helped finding mistakes in pen-and-paper proofs but also
encouraged proof refactoring that led to simpler proofs, and in one case, to a
stronger result: The invariant given by Berghammer and Müller for Wei’s algo-
rithm [3] is sufficient to show that the algorithm has an approximation ratio of
Δ + 1. We managed to simplify their argument significantly which lead to an
improved approximation ratio of Δ.

All algorithms are expressed in a simple imperative WHILE -language. In
each case we show that the approximation algorithm computes a valid solution
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that is at most a constant factor worse than an optimum solution. The polyno-
mial running time of the approximation algorithm is easy to see in each case.

2 Isabelle/HOL and Imperative Programs

Isabelle/HOL is largely based on standard mathematical notation but with some
differences and extensions.

Type variables are denoted by ′a, ′b, etc. The notation t :: τ means that term
t has type τ . Except for function types ′a ⇒ ′b, type constructors follow postfix
syntax, e.g. ′a set is the type of sets of elements of type ′a. Function some ::
′a set ⇒ ′a picks an arbitrary element from a set; the result is unspecified if the
set is empty.

The types nat and real represent the sets N and R. In this paper we drop the
coercion function real :: nat ⇒ real. The set {m..n} is the closed interval [m,n].

The Isabelle/HOL distribution comes with a simple implementation of Hoare
logic where programs are annotated with pre- and post-conditions and invariants
(all in HOL) as in this example, where all variables are of type nat:

{m = 0 ∧ p = 0}
WHILE m �= a INV {p = m ∗ b} DO p := p + b; m := m + 1 OD
{p = a ∗ b}

The box around the program means that it has been verified. All our proofs
employ a VCG and essentially reduce to showing the preservation of the invari-
ants.

3 Vertex Cover

We verify the proof in [3] that the classic greedy algorithm for vertex cover is
a 2-approximation algorithm. In fact, we generalize the setup from graphs to
hypergraphs. A hypergraph is simply a set of edges E, where an edge is a set
of vertices of type ′a. A vertex cover for E is a set of vertices C that intersects
with every edge of E:

vc :: ′a set set ⇒ ′a set ⇒ bool
vc E C = (∀ e∈E. e ∩ C �= ∅)

A matching (matching :: ′a set set ⇒ bool) is a set of pairwise disjoint sets.
The following is a key property that relates vc and matching:

finite C ∧ matching M ∧ M ⊆ E ∧ vc E C −→ |M | ≤ |C|
We fix a rank-k hypergraph E :: ′a set set assuming ∅ /∈ E, finite E and
e ∈ E −→ finite e ∧ |e| ≤ k.
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We have verified the well known greedy algorithm that computes a vertex
cover C for E. It keeps picking an arbitrary edge that is not covered by C yet
until all vertices are covered. The final C has at most k times as many vertices
as any vertex cover of E (which is essentially optimal [1]).

{True}
C := ∅; F := E;
WHILE F �= ∅ INV {invar C F}
DO C := C ∪ some F ; F := F − {e′ ∈ F | some F ∩ e′ �= ∅} OD
{vc E C ∧ (∀C ′. finite C ′ ∧ vc E C ′ −→ |C| ≤ k ∗ |C ′|)}

where invar is the following invariant:

invar :: ′a set ⇒ ′a set set ⇒ bool
invar C F =
(F ⊆ E ∧ vc (E − F ) C ∧ finite C ∧ (∃ M. inv_matching C F M))

inv_matching C F M =
(matching M ∧ M ⊆ E ∧ |C| ≤ k ∗ |M | ∧ (∀ e∈M. ∀f ∈F. e ∩ f = ∅))

The key step in the program proof is that the invariant is invariant:

Lemma 1. F �= ∅ ∧ invar C F −→
invar (C ∪ some F ) (F − {e′ ∈ F | some F ∩ e′ �= ∅})

Our invariant is stronger than the one in [3] which lacks F ⊆ E. But without
F ⊆ E the claimed invariant is not invariant (as acknowledged by Müller-Olm).

4 Independent Set

As in the previous section, a graph is a set of edges. An independent set of a
graph E is a subset of its vertices such that no two vertices are adjacent.

iv :: ′a set set ⇒ ′a set ⇒ bool
iv E S = (S ⊆ ⋃

E ∧ (∀ v1 v2. v1 ∈ S ∧ v2 ∈ S −→ {v1, v2} /∈ E))

We fix a finite graph E :: ′a set set such that all edges of E are sets of
cardinality 2. The set of vertices

⋃
E is denoted V , and the maximum number

of neighbors for any vertex in V is denoted Δ. We show that the greedy algorithm
proposed by Wei is a Δ-approximation algorithm. The proof is inspired by one
given in [3]. In particular, the proof relies on an auxiliary variable P , which is
not needed for the execution of the algorithm, but is used for bookkeeping in
the proof. In [3], P is initially a program variable and is later removed from the
program and turned into an existentially quantified variable in the invariant. We
directly use the latter representation.
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{ True }
S := ∅; X := ∅;
WHILE X �= V INV { ∃P. inv_partition S X P }
DO x := some (V − X); S := S ∪ {x}; X := X ∪ neighbors x ∪ {x} OD
{ iv E S ∧ (∀S′. iv E S′ −→ |S′| ≤ |S| ∗ Δ) }

To keep the size of definitions manageable, we split the invariant in two. The
first part is not concerned with P , but suffices to prove the functional correctness
of the algorithm, i.e. that it outputs an independent set of the graph:

inv_iv :: ′a set ⇒ ′a set ⇒ bool
inv_iv S X =
(iv E S ∧ X ⊆ V ∧ (∀v1∈V − X. ∀v2∈S. {v1, v2} /∈ E) ∧ S ⊆ X)

This invariant is taken almost verbatim from [3], except that in [3] it says that
S is an independent set of the subgraph generated by X. This is later used
to show that the x picked at each iteration from V − X is not already in S.
Defining subgraphs adds unnecessary complexity to the invariant. We simply
state S ⊆ X, together with the fact that S is an independent set of the whole
graph.

We now extend the invariant with properties of the auxiliary variable P .

inv_partition :: ′a set ⇒ ′a set ⇒ ′a set set ⇒ bool
inv_partition S X P =
(inv_iv S X ∧⋃

P = X ∧ (∀ p∈P. ∃ s∈V. p = {s} ∪ neighbors s) ∧ |P | = |S| ∧ finite P )

We can view the set P as an auxiliary program variable. In order to satisfy
the invariant, P would be initially empty and the loop body would include the
assignement P := P ∪ {neighbors x ∪ {x}}. Intuitively, P contains the sets
of vertices that are added to X at each iteration (or more precisely, an over-
approximation, since some vertices in neighbors x may have been added to X in
a previous iteration). Instead of adding an unnecessary variable to the program,
we only use the existentially quantified invariant. The assignments described
above correspond directly to instantiations of the quantifier that are needed
to solve proof obligations. This is illustrated with the following lemma, which
corresponds to the preservation of the invariant:

Lemma 2. (∃P. inv_partition S X P ) ∧ x ∈ V − X −→
(∃P ′. inv_partition (S ∪ {x}) (X ∪ neighbors x ∪ {x}) P ′)

The existential quantifier in the antecedent yields a witness P . After instantiating
the quantifier in the succedent with P ∪ {neighbors x ∪ {x}}, the goal can be
solved straightforwardly. Finally, the following lemma combines the invariant
and the negated post-condition to prove the approximation ratio:

Lemma 3. inv_partition S V P −→ (∀S′. iv E S′ −→ |S′| ≤ |S| ∗ Δ)
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To prove it, we observe that any set p ∈ P consists of a vertex x and its neighbors,
therefore an independent set S′ can contain at most Δ of the vertices in p, thus
|S′| ≤ |P | ∗ Δ. Furthermore, as indicated by the invariant, |P | = |S|.

Compared to the proof in [3], our invariant describes the contents of the set P
more precisely, and thus yields a better approximation ratio. In [3], the invariant
merely indicates that X =

⋃
P , together with two cardinality properties: ∀p∈

P. |p| ≤ Δ + 1 and |P | ≤ |S|. Taken with the negated post-condition, this
invariant can be used to show that for any independent set S′, we have |S′| ≤
|S| ∗ (Δ + 1). The proof of this lemma makes use of the following (in)equalities:
|S′| ≤ |V |, |V | = |⋃ P |, |⋃ P | ≤ |P | ∗ (Δ + 1) and finally |P | ∗ (Δ + 1) ≤
|S| ∗ (Δ + 1). Note that this only relies on the trivial fact that an independent
set cannot contain more vertices than the graph. By contrast, our own argument
takes into account information regarding the edges of the graph.

Although this proof results in a weaker approximation ratio than our own,
it yields a useful insight: an approximation ratio is given by the cardinality of
the largest set p∈P (i.e., the largest number of vertices added to X during any
given iteration). In the worst case, this is equal to Δ + 1, but in practice the
number may be smaller. This suggests a variant of the algorithm that stores
that value in a variable r, as described in [3]. At every iteration, the variable r is
assigned the value max r |{x} ∪ neighbors x − X|. Ultimately, the algorithm
returns both the independent set S and the value r, with the guarantee that
|S′| ≤ |S| ∗ r for any independent set S′.

We also formalized this variant and proved the aforementioned property.
The proof follows the idea outlined above, but does away with the variable P
entirely: instead, the invariant simply maintains that inv_iv S X ∧|X| ≤ |S| ∗r,
and the proof of preservation is adapted accordingly. Indeed, this demonstrates
that the argument used in [3] does not require an auxiliary variable nor an
existentially quantified invariant. For the proof of the approximation ratio Δ, a
similar simplification is not as easy to obtain, because the argument relies on
a global property of the graph (a constraint that edges impose on independent
sets) that is not easy to summarize in an inductive invariant.

So far, we have only considered an algorithm where the vertex x is picked
non-deterministically. An obvious heuristic is to pick, at every iteration, the
vertex with the smallest number of neighbors among V − X. Halldórsson and
Radhakrishnan [7] prove that this heuristic achieves an approximation ratio of
(Δ + 2) / 3. However their proof is far more complex than the arguments
presented here. It is also not given as an inductive invariant, instead relying on
case analysis for different types of graphs. This is beyond the scope of our paper.

5 Load Balancing

Our starting point for the load balancing problem is [8, Chapter 11.1]. We need to
distribute n :: nat jobs on m :: nat machines with 0 < m. A job j ∈ {1..n} has a
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load t(j) :: nat. Variables m, n, and t are fixed throughout this section. A solution
is described by a function A that maps machines to sets of jobs: k ∈ {1..m} has
job j assigned to it iff j ∈ A(k). The sum of job loads on a machine is given by
a function T that is derived from t and A: (

∑
j ∈A k. t j) = T k. Predicate lb

defines when T and A are a partial solution for j ≤ n jobs:

lb :: (nat ⇒ nat) ⇒ (nat ⇒ nat set) ⇒ nat ⇒ bool
lb T A j =
((∀x∈ {1..m}. ∀y ∈ {1..m}. x �= y −→ A x ∩ A y = ∅) ∧
(
⋃

x∈{1..m} A x) = {1..j} ∧ (∀x∈{1..m}. (
∑

y∈A x. t y) = T x))

It consists of three conjuncts. The first ensures that the sets returned by A are
pairwise disjoint, thus, no job appears in more than one machine. The second
conjunct ensures that every job x ∈ {1..j} is contained in at least one machine.
It also ensures that only jobs {1..j} have been added. The final conjunct ensures
that T is correctly defined to be the total load on a machine. To ensure that
jobs are distributed evenly, we need to consider the machine with maximum
load. This load is referred to as the makespan of a solution (where f ‘ I is the
image of f over I):

makespan :: (nat ⇒ nat) ⇒ nat
makespan T = Max (T ‘{1..m})

The greedy approximation algorithm outlined in [8] relies on the ability to
determine the machine k ∈ {1..m} that has a minimum combined load. As the
goal is to approximate the optimum in polynomial time, a linear scan through T
suffices to find the machine with minimum load. However, other methods may
be considered to further improve time complexity. To determine the machine
with minimum load, we will use the following function:

mink :: (nat ⇒ nat) ⇒ nat ⇒ nat
mink T 0 = 1
mink T (x + 1) =
(let k = mink T x in if T (x + 1) < T k then x + 1 else k)

We will focus on the approximation factor of 3
2 , which can be proved if

the job loads are assumed to be sorted in descending order. The proof for the
approximation factor of 2 if jobs are unsorted is very similar and we describe
the differences at the end. We say that j jobs are sorted in descending order if
sorted holds:

sorted :: nat ⇒ bool
sorted j = (∀x∈{1..j}. ∀y∈{1..x}. t x ≤ t y)

Below we prove the following conditional Hoare triple that expresses the
approximation factor and functional correctness of the algorithm given in [8]:
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sorted n −→
{True}
T := (λ_. 0); A := (λ_. ∅); j := 0;
WHILE j < n INV {inv2 T A j}
DO i := mink T m; j := j + 1;

A := A(i := A(i) ∪ {j}); T := T (i := T (i) + t(j))
OD
{lb T A n ∧
(∀T ′ A′. lb T ′ A′ n −→ makespan T ≤ 3 / 2 ∗ makespan T ′)}

Property sorted n is not part of the precondition because it is not influenced
by the algorithm and thus there is no need to prove that it remains unchanged.
Therefore we made sorted n an assumption of the whole Hoare triple. The nota-
tion f(a := b) denotes an updated version of function f that maps a to b and
behaves like f otherwise. Thus an assignment f := f(i := b) is nothing but the
conventional imperative array update notation f [i] := b.

Functional correctness follows because each iteration extends a partial solu-
tion for j jobs to one for j + 1 jobs:

Lemma 4. lb T A j ∧ x ∈ {1..m} −→
lb (T (x := T x + t (j + 1))) (A(x := A x ∪ {j + 1})) (j + 1)

Moreover, it is easy to see that the initialization establishes lb T A j.
To prove the approximation factor in both the sorted and unsorted case, the

following lower bound is important:

Lemma 5. lb T A j −→ (
∑j

x=1 t x) / m ≤ makespan T

This is a result of
∑m

x=1 T (x) =
∑j

x=1 t(x) together with this general property
of sums: finite A ∧ A �= ∅ −→ (

∑
a∈A. f a) ≤ |A| ∗ Max (f ‘ A).

A similar observation applies to individual jobs. Any job must be a lower
bound on some machine, as it is assigned to one and, by extension, it must also
be a lower bound of the makespan:

Lemma 6. lb T A j −→ Max0 (t‘{1..j}) ≤ makespan T

As any job load is a lower bound on the makespan over the machines, the job
with maximum load must also be such a lower bound. Note that Max0 returns
0 for the empty set.

When jobs are sorted in descending order, a stricter lower bound for an
individual job can be established. We observe that an added job is at most as
large as the jobs preceding it. Therefore, if a machine contains at least two jobs,
this added job is only at most half as large as the makespan. We can use this
observation by assuming the machines to be filled with more than m jobs, as
this will ensure that some machine must contain at least two jobs.

Lemma 7. lb T A j ∧ m < j ∧ sorted j −→ 2 ∗ t j ≤ makespan T
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Note that this lower bound only holds if there are strictly more jobs than
machines. One must, however, also consider how the algorithm behaves in the
other case. One may intuitively see that the algorithm will be able to distribute
the jobs such that every machine will only have at most one job assigned to
it, making the algorithm trivially optimal. To prove this, we need to show the
following behavior of mink:

Lemma 8.
1. x ∈ {1..m} ∧ T x = 0 −→ T (mink T m) = 0
2. x ∈ {1..m} ∧ T x = 0 −→ mink T m ≤ x

They can be shown by induction on the number of machines m.
As the proof in [8] is only informal, Kleinberg and Tardos do not provide any

loop invariant. We propose the following invariant for sorted jobs:

inv2 :: (nat ⇒ nat) ⇒ (nat ⇒ nat set) ⇒ nat ⇒ bool
inv2 T A j =
(lb T A j ∧ j ≤ n ∧
(∀T ′ A′. lb T ′ A′ j −→ makespan T ≤ 3 / 2 ∗ makespan T ′)∧
(∀x > j. T x = 0) ∧ (j ≤ m −→ makespan T = Max0 (t ‘ {1..j})))

The final two conjuncts relate to the trivially optimal behavior of the algorithm
if j ≤ m. The penultimate conjunct shows that only as many machines can be
occupied as there are available jobs. The final conjunct ensures that every job
is distributed on its own machine, making the makespan equivalent to the job
with maximum load.

It should be noted that if the makespan is sufficiently large, an added job
may not increase the makespan at all, as the machine with minimum load com-
bined with the job may not exceed the previous makespan. As such, we will
also consider the possibility that an added job can simply be ignored without
affecting the overall makespan.

Lemma 9. makespan (T (x := T x + y)) �= T x + y −→
makespan (T (x := T x + y)) = makespan T

To make use of this observation, we need to be able to relate the makespan of a
solution with the added job to the makespan of a solution without it. One can
easily show the following by removing j + 1 from the solution:

Lemma 10. lb T A (j + 1) −→
(∃T ′ A′. lb T ′ A′ j ∧ makespan T ′ ≤ makespan T )

We can now prove the preservation of inv2. Let i = mink T m be the
machine with minimum load. We define:

Tg := T (i := T (i) + t(j + 1)) Ag := A (i := A(i) ∪ {j + 1})

We begin with a case distinction. If j+1 ≤ m, we can make use of the additional
conjuncts to prove the trivially optimal behavior. We first note in-range: j +1 ∈
{1..m}. Moreover, from the penultimate conjunct, T (j +1) = 0. Combining this
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with Lemma 8.1, we can see that T (i) = 0. Therefore Tg(i) = t(j+1) and with the
final conjunct of the assumed invariant, the makespan of Tg remains equivalent to
the job with maximum load. To prove that the penultimate conjunct is preserved,
we again use in-range, T (j + 1) = 0, and Lemma 8.2 to prove that i ≤ j + 1.
Moreover, Tg only differs from T by the modification of machine i. Thus, the
penultimate conjunct for j + 1 jobs is preserved as well. From Lemma 6 we can
then see that, as the makespan of Tg is equivalent to the job with maximum
load, it must be trivially optimal. Functional correctness can be shown using
Lemma 4, and proving the preservation of the remaining conjunct is trivial. We
now come to the case j+1 > m. We first show that the penultimate conjunct is
preserved (the final conjunct can be ignored, as ¬ j + 1 ≤ m). This follows from
the correctness of mink, as the index returned by it has to be in {1..m} as long
as m > 0. Therefore, we can simply show this from the penultimate conjunct of
the assumed invariant. We now come to the proof of the approximation factor:

∀T ′ A′. lb T ′ A′ (j + 1) −→ makespan Tg ≤ 3 / 2 ∗ makespan T ′

To prove it, we fix T1 and A1 such that lb T1 A1 (j + 1). Using Lemma 10,
one can now obtain T0 and A0 such that lb T0 A0 j and MK : makespan T0 ≤
makespan T1. From the assumed loop invariant, we can now show:

makespan T ≤ 3
2
makespan T0 by inv2-def

≤ 3
2
makespan T1 by MK

To prove the makespan for j + 1 jobs, there are now two cases to consider: The
added job j + 1 contributes to the makespan or it does not. The case in which
it does not can be shown by combining the previous calculation with Lemma9.
For the first case, we may then assume that makespan Tg = T (i) + t(j + 1).
Like in Lemma 5, we note that sum-eq : (

∑m
x=1 T x) = (

∑j
x=1 t x). Moreover,

min-avg : m ∗ T (mink T m) ≤ (
∑m

i=1 T i). This allows us to calculate the
following lower bound for T (i):

m ∗ T (i) ≤
m∑

i=1

T (i) =
j∑

i=1

t(i) by min-avg and sum-eq

⇐⇒ T (i) ≤
∑j

i=1 t(i)
m

because m > 0

≤ makespan T0 ≤ makespan T1 by Lemma 5 and MK

From Lemma 7 we can also show that t(j + 1) is a lower bound for 1
2 of the

makespan of T1. Therefore:

makespan Tg = T (i) + t(j + 1) ≤ makespan T1 +
makespan T1

2

=
3
2
makespan T1
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The proof of functional correctness and remaining conjuncts is again trivial.
Let us now consider the unsorted case where one can still show an approxi-

mation factor of 2. The algorithm is identical but the invariant is simpler:

inv1 T A j =
(lb T A j ∧ j ≤ n∧ (∀ T ′ A′. lb T ′ A′ j −→ makespan T ≤ 2 ∗ makespan T ′))

The proof for this invariant is a simpler version of the proof above: We do
not need the initial case distinction (case j + 1 ≤ m need not be considered
separately) and to prove the approximation factor we use Lemma 6 instead of
Lemma 7 to obtain a bound for t(j + 1).

6 Bin Packing

We finally consider the linear time 3
2 -approximation algorithm for the bin pack-

ing problem proposed by Berghammer and Reuter [4]. The bin packing problem
is similar to the load balancing problem described in the previous section. The
main distinction is that in the load balancing problem, the number of machines
is fixed, while the load a single machine can hold is unbounded. With the bin
packing problem, this is essentially reversed. The maximum capacity a single bin
can hold is limited by some fixed c. However, we are free to use as many bins
as necessary to achieve a solution. The goal is now to minimize this number of
bins used instead of the maximum capacity of a bin.

For the bin packing problem we are given a finite, non-empty set of objects
U :: ′a set, whose weights are given by a function w :: ′a ⇒ real. Note that
in this paper nats are implicitly converted to reals if needed. The weight of an
object in U is strictly greater than zero, but bounded by a maximum capacity
c :: nat. The abbreviation W (B) ≡ ∑

u∈B w(u) denotes the weight of a bin
B ⊆ U . The set U can also be separated into small and large objects. An object
u is considered small if w(u) ≤ c

2 . An object is large if the opposite is the case.
We will begin by assuming that all small objects in U can be found in a set S,
and large objects in U can be found in a set L, such that S ∪ L = U and
S ∩ L = ∅. Of course L and S can also be computed from U in linear time.
Variables U , w, c, L, and S are fixed throughout this section.

A solution P to the bin packing problem is then defined as follows:

bp :: ′a set set ⇒ bool
bp P = (partition_on U P ∧ (∀ B∈P. W B ≤ c))

P contains all the bins necessary such that it is a correct partition of U . To check
for this, we use a function partition_on :: ′a set ⇒ ′a set set ⇒ bool which
can be found in the Isabelle HOL-Library. We add the final conjunct to ensure
that no bin B∈P exceeds the maximum capacity c.

The idea behind the algorithm proposed by Berghammer and Reuter is to
split the solution P into two partial solutions P1 and P2. At every step of the
algorithm we consider two bins B1 and B2 which we try to fill with remaining
objects from V ⊆ U that have not been assigned yet. If adding the object to
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B1 or B2 would cause it to exceed its maximum capacity, the bin is moved into
the partial solution P1 or P2 respectively and cleared. Once there are no small
objects left, the solution is the union of the partial solutions P1 and P2, the bins
B1 and B2 (if they still contain objects), and the remaining large objects, which
each receive their own bin, as no two large objects can fit into a single bin. To
ensure that no empty bins are added to the solution, we define:

[[·]] :: ′a set ⇒ ′a set set
[[B]] = (if B = ∅ then ∅ else {B})

The final union can now be written as P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V }
where V contains the remaining large elements. The algorithm can be specified
by the following Hoare triple:

{True}
P1 := ∅; P2 := ∅; B1 := ∅; B2 := ∅; V := U ;
WHILE V ∩ S �= ∅ INV {inv3 P1 P2 B1 B2 V } DO
IF B1 �= ∅ THEN u := some (V ∩ S)
ELSE IF V ∩ L �= ∅ THEN u := some (V ∩ L)

ELSE u := some (V ∩ S) FI FI;
V := V − {u};
IF W (B1) + w(u) ≤ c THEN B1 := B1 ∪ {u}
ELSE IF W (B2) + w(u) ≤ c THEN B2 := B2 ∪ {u}

ELSE P2 := P2 ∪ [[B2]]; B2 := {u} FI;
P1 := P1 ∪ [[B1]]; B1 := ∅ FI

OD;
P := P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V }
{bp P ∧ (∀Q. bp Q −→ |P | ≤ 3 / 2 ∗ |Q|)}

Berghammer and Reuter prove functional correctness using a simplified ver-
sion of this algorithm where an arbitrary element of V is assigned to u. This
allows for fewer case distinctions, as the first IF−THEN−ELSE block can be
ignored. One needs to find a loop invariant that implies functional correctness
and prove that it is preserved in the following cases:

Case 1. The object fits into B1:

inv1 P1 P2 B1 B2 V ∧ u ∈ V ∧ W B1 + w u ≤ c −→
inv1 P1 P2 (B1 ∪ {u}) B2 (V − {u})

Case 2. The object fits into B2:

inv1 P1 P2 B1 B2 V ∧ u ∈ V ∧ W B2 + w u ≤ c −→
inv1 (P1 ∪ [[B1]]) P2 ∅ (B2 ∪ {u}) (V − {u})

Case 3. The object fits into neither bin:

inv1 P1 P2 B1 B2 V ∧ u ∈ V −→
inv1 (P1 ∪ [[B1]]) (P2 ∪ [[B2]]) ∅ {u} (V − {u})
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Berghammer and Reuter [4] define the following predicate as their loop invariant:

inv1 P1 P2 B1 B2 V = bp (P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V })

As it turns out, this invariant is too weak. Assume inv1 P1 P2 B1 B2 V . Suppose
P1 (alternatively P2) already contains the non-empty bin B1. Note that this
does not violate the invariant because P1 ∪ [[B1]] = P1. Now, if the algorithm
modifies B1 by adding an element from V such that B1 becomes some B1

′ then
B1 ∩ B1

′ �= ∅ and B1 ∈ P1, i.e., B1
′ is no longer disjoint from the elements of

P . The same issue arises with the added object u ∈ V , if {u} is already in P1 or
P2. To account for such cases, we will require additional conjuncts:

inv1 :: ′a set set ⇒ ′a set set ⇒ ′a set ⇒ ′a set ⇒ ′a set ⇒ bool
inv1 P1 P2 B1 B2 V =
(bp (P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V }) ∧⋃

(P1 ∪ [[B1]] ∪ P2 ∪ [[B2]]) = U − V ∧
B1 /∈ P1 ∪ P2 ∪ [[B2]] ∧
B2 /∈ P1 ∪ [[B1]] ∪ P2 ∧
(P1 ∪ [[B1]]) ∩ (P2 ∪ [[B2]]) = ∅)

There are different ways to strengthen the original inv1. We use the above addi-
tional conjuncts as they can be inserted in existing proofs with little modifica-
tion, and their preservation in the invariant can be proved quite trivially. The
first additional conjunct ensures that no element still in V is already in a bin or
partial solution. The second and third additional conjuncts ensure distinctness
of the bins B1 and B2 with the remaining solution. The final conjunct ensures
that the partial solutions with their added bins are disjoint from each other.
It should be noted that the last conjunct is not necessary to prove functional
correctness. It will, however, be needed in later proofs, and as its preservation
in this invariant for the simplified algorithm can be used in the proof of the full
algorithm, one can save redundant case distinctions by proving it now. Another
advantage of proving it now is that later invariants can remain identical to the
invariants proposed in the paper.

We now prove the preservation of inv1 in all three cases. As we assume the
invariant to hold before the execution of the loop body, we can see from the first
additional conjunct

⋃
(P1 ∪ [[B1]] ∪ P2 ∪ [[B2]]) = U − V and the assumption

u ∈ V that not-in: ∀B ∈ P1 ∪ [[B1]]∪ P2 ∪ [[B2]]. u /∈ B holds. This will be needed
for all three cases. Now, we can begin with Case 1. We first show

bp (P1 ∪ [[B1 ∪ {u}]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V − {u}})

One can see that this union does not contain the empty set. The object u is
now moved from a singleton set into B1. Therefore, the union of all bins will
again return U . To show that this union remains pairwise disjoint, we can use
not-in and the second additional conjunct of inv1 to show that u is not yet
contained in the partial solution and B1 is distinct from any other bin. Therefore,
combined with the assumption that the union was pairwise disjoint before the
modification, the union remains pairwise disjoint. To prove the preservation of
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the second conjunct of bp, we need to show that the bin weights do not exceed
their maximum capacity c. The only bin that was changed in this step is B1,
which has increased its weight by w(u). As we are in Case 1, we can assume that
u fits into B1, W (B1) + w(u) ≤ c. Therefore, this conjunct holds as well. Now,
one only needs to show that the additional conjuncts are preserved. For the first
additional conjunct, we can again use not-in to show:

⋃
(P1 ∪ [[B1 ∪ {u}]] ∪ P2 ∪ [[B2]]) = U − (V − {u})

⇐⇒
⋃

(P1 ∪ [[B1]] ∪ P2 ∪ [[B2]]) ∪ {u} = U − (V − {u}) by not-in

⇐⇒
⋃

(P1 ∪ [[B1]] ∪ P2 ∪ [[B2]]) ∪ {u} = U − V ∪ {u} by u ∈ U

Using the first additional conjunct of the assumed invariant, one can see that
this must hold. The remaining conjuncts

B1 ∪ {u} /∈ P1 ∪ P2 ∪ [[B2]]
B2 /∈ P1 ∪ [[B1 ∪ {u}]] ∪ P2

(P1 ∪ [[B1 ∪ {u}]]) ∩ (P2 ∪ [[B2]]) = ∅
can be automatically proved in Isabelle using not-in and the assumption that
the conjuncts of inv1 P1 P2 B1 B2 V held before the modification. The proof for
Case 2 is almost identical to that of Case 1. The main difference is that the focus
now lies on B2 and the fact that B1 is now emptied and the previous contents
added to the partial solution P1. One therefore has to show that

bp (P1 ∪ [[B1]] ∪ [[∅]] ∪ P2 ∪ [[B2 ∪ {u}]] ∪ {{v} | v ∈ V − {u}})

holds. As [[∅]] can be ignored, one can see that the act of emptying B1 and adding
it to the partial solution will not otherwise affect the proof. The proof of bp in
Case 3 is trivial, as the modifications made in this step can simply be undone
by applying the following steps:

P1 ∪ [[B1]] ∪ [[∅]] ∪ (P2 ∪ [[B2]]) ∪ [[{u}]] ∪ {{v} | v ∈ V − {u}}
= P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{u}} ∪ {{v} | v ∈ V − {u}} by [[·]]−def

= P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V } by u ∈ V

Now, one only needs to show that the remaining additional conjuncts hold.
This can again be shown automatically using not-in and the fact that
inv1 P1 P2 B1 B2 V held before the modifications. Therefore, inv1 is preserved
in all three cases.

To prove the approximation factor, we proceed as in [4] and establish suitable
lower bounds. The first lower bound

Lemma 11. bp P −→ |L| ≤ |P |
holds because a bin can only contain at most one large object, and every large
object needs to be in the solution. To prove this in Isabelle, we first make the
observation that for every large object there exists a bin in P in which it is
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contained. Therefore, we may obtain a function f that returns this bin for every
u ∈ L. Using the fact that any bin can hold at most one large object, we can
show that this function has to be injective, as every large object must map to a
unique bin. Hence, the number of large objects is equal to the number of bins f
maps to. Moreover, the image of f has to be a subset of P . Thus, the number
of large objects has to be a lower bound on the number of bins in P .

As it turns out, the algorithm will ensure that there is always at least one
large object in a bin for the first partial solution as long as large objects are
available. This means we can assume that:

V ∩ L �= ∅ −→ (∀ B∈P1 ∪ [[B1]]. B ∩ L �= ∅)

Therefore, we can use the previous lower bound to show the following:

Lemma 12. bp P ∧ inv1 P1 P2 B1 B2 V ∧ (∀B ∈P1 ∪ [[B1]]. B ∩ L �= ∅) −→
|P1 ∪ [[B1]] ∪ {{v} | v ∈ V ∩ L}| ≤ |P |

Another easy lower bound is this one:

Lemma 13. bp P −→ (
∑

u∈U w u) ≤ c ∗ |P |
The next lower bound arises from the fact that an object is only ever put

into B2, and therefore P2, if it would have caused B1 to overflow. As a result of
this, we can define a bijective function f that maps every bin of P1 to the object
in P2 ∪ [[B2]] that would have caused the bin to overflow. We define:

bij_exists :: ′a set set ⇒ ′a set ⇒ bool
bij_exists P V = (∃ f. bij_betw f P V ∧ (∀ B∈P. c < W B + w (f B)))

From this, we can make the observation that the number of bins in P1 is a strict
lower bound on the number of bins of any correct bin packing P :

Lemma 14. bp P ∧ inv1 P1 P2 B1 B2 V ∧ bij_exists P1 (
⋃

(P2 ∪ [[B2]])) −→
|P1| + 1 ≤ |P |
Unlike the proof outlined in [4], we begin with a case distinction on P1. The
reasoning behind this is that if P1 is empty, the strict nature of the lower
bound cannot be shown from the calculation that Berghammer and Reuter
make. Therefore, we consider the case where P1 is empty separately. If P1 is
empty, our goal is to prove that 1 is a lower bound on the number of bins in P .
This follows from the fact that U is non-empty, and therefore any correct bin
packing must contain at least one bin. For the other case, we may now assume
that P1 is non-empty. In the following proof, we will need the final conjunct
of inv1, (P1 ∪ [[B1]]) ∩ (P2 ∪ [[B2]]) = ∅, which we can transform into disjoint :
P1 ∩ (P2 ∪ [[B2]]) = ∅. We also obtain the bijective function f and observe that,
as the object obtained from f for a bin B ∈ P1 caused B to exceed its capacity,
exceed : c < W (B) + w(f(B)) must hold. We can now perform the following
calculation:
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c|P1| =
∑

B∈P1

c

<
∑

B∈P1

W (B) +
∑

B∈P1

w(f(B)) by P1 �= ∅ and exceed

=
∑

B∈P1

W (B) +
∑

B∈P2∪[[B2]]

W (B) by f bijective

=
∑

B∈P1∪ P2∪ [[B2]]

W (B) by disjoint

≤
∑

u∈U

w(u) ≤ c|P | by inv1 and Lemma 13

Therefore |P1| < |P | and, by extension, |P1| + 1 ≤ |P |.
We only sketch the rest of the proof because it is almost identical to that in

[4]. First we need two extensions of inv1 to show the approximation ratio:

inv2 P1 P2 B1 B2 V =
(inv1 P1 P2 B1 B2 V ∧
(V ∩ L �= ∅ −→ (∀ B∈P1 ∪ [[B1]]. B ∩ L �= ∅)) ∧
bij_exists P1 (

⋃
(P2 ∪ [[B2]])) ∧ 2 ∗ |P2| ≤ |⋃ P2|)

inv3 P1 P2 B1 B2 V = (inv2 P1 P2 B1 B2 V ∧ B2 ⊆ S)

The motivation for the last conjunct in inv2 is the following lower bound:

inv1 P1 P2 B1 B2 V ∧ 2 ∗|P2| ≤ |⋃ P2| ∧ bij_exists P1 (
⋃

(P2 ∪ [[B2]])) −→
2 ∗ |P2 ∪ [[B2]]| ≤ |P1| + 1.

The main lower bound lemma (Theorem 4.1 in [4]) is the following:

Lemma 15. V ∩ S = ∅ ∧ inv2 P1 P2 B1 B2 V ∧ bp P −→
|P1 ∪ [[B1]] ∪ P2 ∪ [[B2]] ∪ {{v} | v ∈ V }| ≤ 3 / 2 ∗ |P |

From this lower bound the postcondition of the algorithm follows easily under
the assumption that inv2 holds at the end of the loop. This in turn follows
because inv3 can be shown to be a loop invariant.

7 Conclusion

In the first application of theorem proving to approximation algorithms we have
verified three classical and one less well-known approximation algorithm for
fundamental NP-complete problems, have corrected purported invariants from
the literature and could even strengthen the approximation ratio in one case.
Although we have demonstrated the benefits of formal verification of approxi-
mation algorithms, we have only scratched the surface of this rich theory. The
next step is to explore the subject more systematically. As a large fraction of
the theory of approximation algorithms is based on linear programming, this
is a promising and challenging direction to explore. Some linear programming
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theory has been formalized in Isabelle already [5,11]. Approximation algorithms
can also be formulated as relational programs, and verified accordingly. This
approach was explored in [2], with some support from theorem provers, but has
yet to be fully formalized.
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Abstract. Sorting algorithms are an important part of most standard
libraries, and both, their correctness and efficiency is crucial for many
applications.

As generic sorting algorithm, the GNU C++ Standard Library imple-
ments the introsort algorithm, a combination of quicksort, heapsort, and
insertion sort. The Boost C++ Libraries implement pdqsort, an exten-
sion of introsort that achieves linear runtime on inputs with certain pat-
terns.

We verify introsort and pdqsort in the Isabelle LLVM verification
framework, closely following the state-of-the-art implementations from
GNU and Boost. On an extensive benchmark set, our verified implemen-
tations perform on par with the originals.

1 Introduction

Sorting algorithms are an important part of any standard library. The GNU
C++ Library (libstdc++) [15] implements Musser’s introspective sorting algo-
rithm (introsort) [28]. It is a combination of quicksort, heapsort, and insertion
sort, which has the fast average case runtime of quicksort and the optimal
O(n log(n)) worst-case runtime of heapsort. The Boost C++ Libraries [6] provide
a state-of-the-art implementation of pattern-defeating quicksort (pdqsort) [29],
an extension of introsort to achieve better performance on inputs that contain
certain patterns like already sorted sequences. Verification of these algorithms
and their state-of-the-art implementations is far from trivial, but turns out to
be manageable when handled with adequate tools.

Sorting algorithms in standard libraries have not always been correct. The
timsort [30] algorithm in the Java standard library has a history of bugs1, the
(hopefully) last of which was only found by a formal verification effort [10]. Also,
many real-world mergesort implementations suffered from an overflow bug [5].
Finally, LLVM’s libc++ [26] implements a different quicksort based sorting algo-
rithm. While it may be functionally correct, it definitely violates the C++ stan-
dard by having a quadratic worst-case run time2.
1 See https://bugs.java.com/bugdatabase/view bug.do?bug id=8011944.
2 See https://bugs.llvm.org/show bug.cgi?id=20837. This has not been fixed by April

2020.
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In this paper, we present efficient implementations of introsort and pdq-
sort that are verified down to their LLVM intermediate representation [27]. The
verification uses the Isabelle Refinement Framework [24], and its recent Isabelle-
LLVM backend [23]. We also report on two extensions of Isabelle-LLVM, to
handle nested container data structures and to automatically generate C-header
files to interface the generated code. Thanks to the modularity of the Isabelle
Refinement Framework, our verified algorithms can easily be reused in larger
verification projects.

While sorting algorithms are a standard benchmark for theorem provers and
program verification tools, verified real-world implementations seem to be rare:
apart from our work, we are only aware of two verified sorting algorithms [3,10]
from the Java standard library.

The complete Isabelle/HOL formalization and the benchmarks are available
at http://www21.in.tum.de/∼lammich/isabelle llvm/.

2 The Introsort and Pdqsort Algorithms

The introsort algorithm by Musser [28] is a generic unstable sorting algorithm
that combines the good average-case runtime of quicksort [18] with the optimal
O(n log(n)) worst-case complexity of heapsort [1]. The basic idea is to use quick-
sort as main sorting algorithm, insertion sort for small partitions, and heapsort
when the recursion depth exceeds a given limit, usually 2�log2 n� for n elements.

1: procedure introsort(xs, l, h)
2: if h − l > 1 then
3: introsort aux(xs, l, h, 2�log2(h − l)�)
4: final insort(xs, l, h)

5: procedure introsort aux(xs, l, h, d)
6: if h − l > threshold then
7: if d = 0 then heapsort(xs, l, h)
8: else
9: m ← partition pivot(xs, l, h)

10: introsort aux(xs, l, m, d − 1)
11: introsort aux(xs, m, h, d − 1)

Algorithm 1: Introsort

Algorithm 1 shows our implementation of introsort, which closely follows the
implementation in libstdc++ [15]. The function introsort sorts the slice from
index l (inclusive) up to index h (exclusive) of the list3 xs. If there is more
than one element (line 2), it initializes a depth counter and calls the function
introsort aux (line 3), which partially sorts the list such that every element

3 Our formalization initially uses lists to represent the sequence of elements to be
sorted, and refines them to arrays later (cf. Sect. 4).

http://www21.in.tum.de/~lammich/isabelle_llvm/
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is no more than threshold positions away from its final position in the sorted
list. The remaining sorting is then done by insertion sort (line 4). The function
introsort aux implements a recursive quicksort scheme: recursion stops if the
slice becomes smaller than the threshold (line 6). If the maximum recursion
depth is exhausted, heapsort is used to sort the slice (line 7). Otherwise, the
slice is partitioned (line 9), and the procedure is recursively invoked for the
two partitions (line 10–11). Here, partition pivot moves the pivot element to
the first element of the left partition, and returns the start index of the right
partition.

Note that we do not try to invent our own implementation, but closely fol-
low the existing (and hopefully well-thought) libstdc++ implementation. This
includes the slightly idiosyncratic partitioning scheme, which leaves the pivot-
element as first element of the left partition. Moreover, the libstdc++ imple-
mentation contains a manual tail-call optimization, replacing the recursive call
in line 11 by a loop. While we could easily add this optimization in an addi-
tional refinement step, it turned out to be unnecessary, as LLVM recognizes and
eliminates this tail call automatically.

1: procedure pdqsort(xs, l, h)
2: if h − l > 1 then pdqsort aux(true, xs, l, h, log(h − l))

3: procedure pdqsort aux(lm, xs, l, h, d)
4: if h − l < threshold then insort(lm, xs, l, h)
5: else
6: pivot to front(xs, l, h)
7: if ¬lm ∧ xs[l − 1] �< xs[l] then
8: m ← partition left(xs, l, h)
9: assert m + 1 ≤ h

10: pdqsort aux(false, xs, m + 1, h, d)
11: else
12: (m, ap) ← partition right(xs, l, h)
13: if m − l < �(h − l)/8� ∨ h − m − 1 < �(h − l)/8� then
14: if −−d = 0 then heapsort(xs,l,h); return

15: shuffle(xs,l,h,m)
16: else if ap ∧ maybe sort(xs, l, m) ∧ maybe sort(xs, m + 1, h) then
17: return
18: pdqsort aux(lm, xs, l, m, d)
19: pdqsort aux(false, xs, m + 1, h, d)

Algorithm 2: Pdqsort

Algorithm 2 shows our implementation of pdqsort. As for introsort, the wrap-
per pdqsort just initializes a depth counter, and then calls the function pdq-
sort aux (line 2), which, in contrast to introsort, completely sorts the list,
such that no final insertion sort is necessary. Again, the pdqsort aux func-
tion implements a recursive quicksort scheme, however, with a few additional
optimizations. Slices smaller than the threshold are sorted with insertion sort
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(line 4). If the current slice is not the leftmost one of the list, as indicated by
the parameter lm, the element before the start of the slice is guaranteed to be
smaller than any element of the slice itself. This can be exploited to omit a
comparison in the inner loop of insertion sort (cf. Sect. 3.3). If the slice is not
smaller than the threshold, a pivot element is selected and moved to the front
of the slice (line 6). If the pivot is equal to the element before the current slice
(line 7), this indicates a lot of equal elements. The partition left function
(line 8) will put them in the left partition, and then only the right partition
needs to be sorted recursively (line 10). Otherwise, partition right (line 12)
places elements equal to the pivot in the right partition. Additionally, it returns
a flag ap that indicates that the slice was already partitioned. Next, we check for
a highly unbalanced partitioning (line 13), i.e., if one partition is less than 1/8th
of the overall size. After encountering a certain number of highly unbalanced par-
titionings, pdqsort switches to heapsort (line 14). Otherwise, it will shuffle some
elements in both partitions, trying to break up patterns in the input (line 15). If
the input was already partitioned wrt. the selected pivot (indicated by the flag
ap), pdqsort will optimistically try to sort both partitions with insertion sort
(line 17). However, these insertion sorts abort if they cannot sort the list with
a small number of swaps, limiting the penalty for being too optimistic. Finally,
the two partitions are recursively sorted (lines 18–19).

Our implementation of pdqsort closely follows the implementation we found
in Boost [6]. Again, we omitted a manual tail call optimization that LLVM does
automatically. Moreover, for certain comparison functions, Boost’s pdqsort uses
a special branch-aware partitioning algorithm [11]. We leave its verification to
future work, but note that it will easily integrate in our existing formalization.

While introsort and pdqsort are based on the same idea, this presenta-
tion focuses on the more complex pdqsort: apart from the more involved pdq-
sort aux function, pivot to front uses Tukey’s ‘ninther’ pivot selection [4],
while introsort uses the simpler median-of-three scheme. It has two partitioning
algorithms used in different situations, and the partition right algorithm also
checks for already partitioned slices. Finally, with insort and maybe sort, it
uses two different versions of insertion sort.

3 Verification

We use the Isabelle Refinement Framework [23,24] to formally verify our algo-
rithms. It provides tools to develop algorithms by stepwise refinement, and gen-
erates code in the LLVM intermediate representation [27].

A program returns an element of the following datatype:

α nres ≡ fail | spec (α ⇒ bool)

Here fail represents possible non-termination or assertion violation, and spec P
a result nondeterministically chosen to satisfy predicate P . Note that we use ≡
to indicate defining equations. We define a refinement ordering on nres by
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spec P ≤ spec Q ≡ ∀x. P x =⇒ Q x fail �≤ spec Q m ≤ fail

Intuitively, m1 ≤ m2 means that m1 returns fewer possible results than m2, and
may only fail if m2 may fail. Note that ≤ is a complete lattice, with top element
fail. The monad combinators are then defined as

return x ≡ spec y. y=x
bind (spec P) f ≡ ⊔{f x | P x} bind fail f ≡ fail

Here, return x deterministically returns x, and bind m f chooses a result of m
and then applies f to it. If m may fail, then the bind may also fail. We write
x←m; f x for bind m (λx. f x), and m1; m2 for bind m1 (λ . m2).

Arbitrary recursive programs can be defined via a fixed-point construc-
tion [20]. An assertion fails if its condition is not met, otherwise it returns
the unit value:

assert P ≡ if P then return () else fail;

Assertions are used to express that a program m satisfies the Hoare triple with
precondition P and postcondition Q:

m ≤ assert P; spec x. Q x

If the precondition is false, the right hand side is fail, and the statement trivially
holds. Otherwise, m cannot fail, and every possible result x of m must satisfy Q.

While the Isabelle Refinement Framework provides some syntax to express
programs, for better readability, we use the slightly more informal syntax that
we have already used in Algorithms 1 and 2. In particular, we treat lists as if they
were updated in place, while our actual formalization is purely functional, i.e.,
generates a new version of the list on each update, which is explicitly threaded
through the program. Destructively updated arrays will only be introduced in a
later refinement step (cf. Sect. 4).

3.1 Specification of Sorting Algorithms

The first step to verify a sorting algorithm is to specify the desired result. We
specify a sorting algorithm as follows:

sort spec xs l h
≡ assert l≤h ∧ h≤|xs|; spec xs′. xs =l,h xs′ ∧ sorted (xs′[l..<h])

here |xs| is the length of the list xs and xs[I] is the slice of the list xs for indexes
in the interval I4. The equivalence relation xs =l,h xs′ relates lists xs and xs′ iff
they are equal outside the slice l..<h and xs is a permutation of xs′. To simplify
the presentation, we assume a linear ordering on the elements. Note that both
C++ and our actual formalization support arbitrary weak orderings [19].

4 An interval from index l (inclusive) to h (exclusive) is denoted as l..<h. If both
indexes are exclusive, we write l<..<h.



312 P. Lammich

3.2 Quicksort Scheme

We split a call of pdqsort aux into phases, described by the following predi-
cates:

pvt xs ≡ a0 =l,h xs ∧ (∃i ∈ l<..<h. xs[i] ≤ xs[l]) ∧ (∃i ∈ l<..<h. xs[i] ≥ xs[l])
part m xs ≡ a0 =l,h xs ∧ l≤m ∧ m<h

∧ (∀i ∈ l..<m. xs[i]≤xs[m]) ∧ (∀i ∈ m<..<h. xs[m]≤xs[i])
sortl m xs ≡ part m xs ∧ sorted (xs[l..<m])
sortr m xs ≡ sortl m xs ∧ sorted (xs[m<..<h])

Let a0 denote the original list. First, a pivot element is selected and moved to
the beginning of the slice (phase pvt). The pivot is selected in a way such there is
at least one smaller (≤) and one greater (≥) element, e.g., by a median-of-three
selection. This knowledge can later be exploited to optimize the inner loops of
the partitioning algorithm. After the partitioning (phase part m), m points to
the pivot element, and all elements before m are smaller, and all elements after
m are greater. Then, first the left (phase sortl m), and then the right (phase
sortr m) partition gets sorted, while the list remains partitioned around m.

This approach allows us to prove correct the algorithm, without assuming
too many details of the underlying subroutines. The following is all we need to
know about the subroutines:

(a) lm ∨ notleft xs l h =⇒ insort lm xs l h ≤ sort spec xs l h
(b) l+4<h =⇒ pivot to front xs l h ≤ spec xs′. pvt xs′

(c) pvt xs =⇒ partition right xs l h ≤ spec (xs′,m, ). part m xs′

∧ partition left xs l h ≤ spec (xs′,m, ). part m xs′

(d) heapsort xs l h ≤ sort spec xs l h
(e) part m xs =⇒ shuffle xs l h m ≤ spec xs′. part m xs′

(f) i≤j ∧ j≤|xs|
=⇒ maybe sort xs i j ≤ spec (b,xs′). xs=i,jxs′ ∧ (¬b ∨ sorted xs′[i..<j])

where notleft xs l h ≡ 0<l ∧ ∀i ∈ l..<h. xs[l−1] ≤ xs[i] states that the element
xs[l−1] before the slice is smaller than any element of the slice. Note that we
explicitly mention the changed list xs′ in these specifications, while we left the
list changes implicit in the algorithm description.

Intuitively, (a,d,f) state correctness of the sorting subroutines, (b) states that
pivot selection goes to phase pvt, (c) states that partitioning transitions from
phase pvt to phase part, and (e) states that shuffling preserves phase part. From
the above, we easily prove the following lemmas:

(g) part m xs ∧ notleft xs l h ∧ xs[m] ≤ xs[l−1] =⇒ sorted xs[l..<m]
(h) part m xs ∧ (xs=l,mxs′ ∨ xs=m+1,hxs′) =⇒ part m xs′

(i) sortl m xs ∧ xs=m+1,hxs′ =⇒ sortl m xs′

(j) part m xs =⇒ sort spec xs l m ≤ spec xs′. sortl m xs′

(k) sortl m xs =⇒ sort spec xs (m+1) h ≤ spec xs′. sortr m xs′

(l) sortr m xs =⇒ sorted xs[l..<h]
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The correctness statement for pdqsort aux is:

lm ∨ notleft xs l h =⇒ pdqsort aux lm xs l h d ≤ sort spec xs l h

The proof is done by using the Refinement Framework’s verification condition
generator, and then discharging the generated VCs using the above lemmas. The
line numbers in the following brief sketch refer to Algorithm2. As termination
measure for the recursion, we use the size h − l of the slice to be sorted. If we
switch to insertion sort in line 4, (a) implies that the slice gets sorted, and we
are done. Otherwise, we select a pivot in line 6, going to phase pvt (b). When the
equals optimization is triggered in line 7, we transition to phase part (c), and the
left partition is already sorted5 (g), such that we can transition to phase sortl (j),
and, via a recursive call in line 10 to phase sortr (k). This implies that the slice is
sorted (l), and we are done. When the equals optimization is not used, (c) shows
that we transition to phase part in line 12. If the partition is unbalanced, we
either use heapsort (line 14) to directly sort the slice (d), or shuffle the elements
(line 15) and stay in phase part (e). In line 17, the algorithm may attempt to
sort the slice. If this succeeds, we are done (f). Otherwise, we stay in phase part
(h), and the recursive calls in lines 18 and 19 will take us to phase sortr (j,k),
which implies sortedness of the slice (l).

Using the above statement, and an analogous statement for introsort, we can
prove the main correctness theorem:

Theorem 1. pdqsort xs l h ≤ sort spec xs l h
and introsort xs l h ≤ sort spec xs l h

Note that we could prove the correctness of our algorithm with only minimal
assumptions about the used subroutines. This decoupling of the algorithm from
its subroutines simplifies the proof, as it is not obfuscated with unnecessary
details. For example, correctness of the algorithm does not depend on the exact
partitioning scheme being used, as long as it implements a transition from the pvt
to the part phase. It also simplifies changing the subroutines later, e.g., adding
further optimizations such as branch-aware partitioning [11].

Breaking down an algorithm into small and decoupled modules is often the
key to its successful verification. Note that the original implementation in Boost
is more coarse grained, inlining much of the functionality into the main algo-
rithm. After having proved correct an algorithm, we can always do the inlining in
a later refinement step, or rely on the LLVM optimizer to do the inlining for us.
In our formalization, we use the inlining feature of Isabelle-LLVM’s preprocessor.

5 Actually all elements in the left partition are equal to the pivot.
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1: procedure insort(G, xs, l, h)
2: if l = h then return
3: i ← l + 1
4: while i < h do
5: insert(G, xs, l, i)
6: ++i

7: procedure insert(G, xs, l, i)
8: t ← xs[i]
9: while (¬G ∨ l < i) ∧ t < xs[i − 1] do

10: xs[i] ← xs[i − 1]
11: −−i

12: xs[i] ← t

Algorithm 3: Insertion Sort

3.3 Insertion Sort

Algorithm 3 shows our implementation of insertion sort. The insort procedure
repeatedly calls insert to add elements to a sorted prefix of the list. The flag
G controls the unguarded optimization: if it is false, we assume that insert
will hit a smaller element before underflowing the list index i, and thus omit
the comparison l < i (line 9) in the inner loop. We later specialize the insort
algorithm for the two cases of G, and simplify the loop conditions accordingly.

Again, we split the insertion sort algorithm into two smaller parts, which are
proved separately via the following specification for insert:

assert sorted xs[l..<i] ∧ l≤i ∧ i<|xs| ∧ (G ∨ xs[l−1] ≤ xs[i]);
spec xs′. xs=l,i+1xs′ ∧ sorted xs[l..<i+1]

This captures the intuition that insert goes from a slice that is sorted up to
index i to one that is sorted up to index i + 1.

3.4 The Remaining Subroutines

The proofs of the remaining subroutines follow a similar plot, and are not dis-
played here in full. Most of them were straightforward, and we could use existing
Isabelle proofs as guideline [16,22,25]. For the shuffle and pivot to front
procedures, which contain a large number of indexing and update operations,
we ran into a scalability problem: the many partially redundant in-bound state-
ments for the indexes overwhelmed the linear arithmetic solver that is hard-wired
into the simplifier. We worked around this problem by introducing auxiliary def-
initions, which hide the in-bound statements from the simplifier, and allow us
to precisely control when it sees them.

Finally, we point out another interesting application of refinement: the
sift down function of heapsort restores the heap property by floating down
an element6. A straightforward implementation swaps the element with one of
its children, until the heap property is restored (Algorithm4 (left)). However,
the element that is written to xs[right(i)] or xs[left(i)] by the swap will get over-
written in the next iteration. A common optimization to save half of the writes
is to store the element to be moved down in a temporary variable, and only
assign it to its final position after the loop (Algorithm4 (right)). Note that the

6 See, e.g., [9, Ch. 6] or [33, Ch. 2.4] for a description of heapsort.
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procedure sift down(xs, i)

while has right(i) do
if xs[left(i)] < xs[right(i)] then

if xs[i] < xs[right(i)] then
swap(xs[i], xs[right(i)])
i ← right(i)

else return
else if xs[i] < xs[left(i)] then

swap(xs[i], xs[left(i)])
i ← left(i)

else return
if has left(i) ∧ xs[i] < xs[left(i)]

then
swap(xs[i], xs[left(i)])

procedure sift down opt(xs′, i)
t ← xs′[i]
while has right(i) do

if xs′[left(i)] < xs′[right(i)] then
if t < xs′[right(i)] then

xs′[i] ← xs′[right(i)]
i ← right(i)

else return
else if t < xs[left(i)] then

xs′[i] ← xs′[left(i)]
i ← left(i)

else return
if has left(i) ∧ t < xs′[left(i)] then

xs′[i] ← xs′[left(i)]
i ← left(i)

xs′[i] ← t

Algorithm 4: The standard (left) and optimized (right) sift-down function.

insert procedure of insertion sort (cf. Algorithm3) does a similar optimization.
However, for insert, it was feasible to prove the optimization together with the
actual algorithm. For the slightly more complicated sift-down procedure, we first
prove correct the simpler algorithm with swaps, and then refine it to the opti-
mized version. Inside the loop, the refinement relation between the abstract list
xs and the concrete list xs′ is xs = xs′[i:=t]. Using the tool support of the Isabelle
Refinement Framework, the proof that the optimized version refines the version
with swaps requires only about 20 lines of straightforward Isabelle script.

4 Imperative Implementation

We have presented a refinement based approach to verify the introsort and pdq-
sort algorithms, including most optimizations we found in their libstdc++ and
Boost implementations. However, the algorithms are still expressed as nonde-
termistic programs on functional lists and unbounded natural numbers. In this
section, we use the Isabelle-LLVM framework [23] to (semi-)automatically refine
them to LLVM programs on arrays and 64 bit integers.

4.1 The Sepref Tool

The Sepref tool [21,23] symbolically executes an abstract program in the nres-
monad, keeping track of refinements for every abstract variable to a concrete rep-
resentation, which may use pointers to dynamically allocated memory. During
the symbolic execution, the tool synthesizes an imperative Isabelle-LLVM pro-
gram, together with a refinement proof. The synthesis is automatic, but usually
requires some program-specific setup and boilerplate. For a detailed discussion
of Sepref and Isabelle-LLVM, we refer the reader to [21,23].
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Sepref comes with standard setup to refine lists to arrays. List updates are
refined to destructive array updates, as long as the old version of the list is
not used after the update. It also provides setup to refine unbounded natural
numbers to bounded integers. It tries to discharge the resulting in-bounds proof
obligations automatically. If this is not possible, it relies on hints from the user.

A common technique to provide such hints is to insert additional assertions
into the abstract program. Usually, these can be proved easily. For example,
in the pdqsort aux algorithm (Algorithm 2, line 9), the assertion m + 1 ≤ h
ensures that the addition m + 1 in the next line cannot overflow. This asser-
tion adds a proof obligation to the correctness proof of pdqsort aux, which is
easily discharged (we are in phase part, which guarantees m < h). When refin-
ing pdqsort aux to an implementation with bounded integers, one can assume
m + 1 ≤ h to discharge the non-overflow proof obligation. Note that re-proving
m + 1 ≤ h when doing the refinement would require duplicating large parts of
the correctness proof. Thus, assertions provide a convenient tool to pass proper-
ties down the refinement chain. Our actual formalization contains multiple such
assertions, which we have omitted in this presentation for the sake of readability.

ug insert impl ≡ λa l i. doM {
x ← array nth a i;
(a, i) ← llc while (λ(a, i). doM {

bi ← ll sub i 1;
t ← array nth a bi;
ll icmp ult x t

}) (λ(a, i). doM {
i ← ll sub i 1;
t ← array nth a i ;
a ← array upd a i t;
i ← ll sub i 1;
return (a, i)

}) (a, i);
array upd a i x

}

Fig. 1. Implementation of the insert procedure for 64 bit unsigned integer elements
and G = false, which is generated by the Sepref tool. This definition lies within the
executable fragment of Isabelle-LLVM, i.e., the Isabelle LLVM code generator can
translate it to LLVM intermediate representation. Note that the function does not
depend on the lower bound parameter l any more, as this was only required in the
guarded version. Inlining will remove this bogus parameter.

Using the Sepref tool, it is straightforward to refine the sorting algorithms
and their subroutines to an Isabelle-LLVM program. For example, Fig. 1 shows
the Isabelle-LLVM code that is generated for the insert procedure for unsigned
64 bit integer elements and G = false (cf. Sect. 3.3). Moreover, the Sepref tool
proves that the generated program actually implements the abstract one:
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(ug insert impl, insert False) : arrd × natk64 × natk64 → arr

This specifies the refinement relations for the parameters and the result, where
arr relates arrays with lists, and nat64 relates 64-bit integers with natural num-
bers. The ·d annotation means that the parameter will be destroyed by the
function call, while ·k means that the parameter is kept. Here, the insertion is
done in place, such that the original array is destroyed.

The final correctness statement for our implementations is:

Theorem 2. (introsort impl, sort spec) : arrd × natk64 × natk64 → arr
and (pdqsort impl, sort spec) : arrd × natk64 × natk64 → arr

Here, introsort impl and pdqsort impl are the Isabelle-LLVM programs generated
by Sepref from introsort and pdqsort (Algorithms 1 and 2). The theorem is
easily proved by combining Theorem1 with the theorems generated by Sepref.

4.2 Separation Logic and Ownership

Internally, the Sepref tool represents the symbolic state that contains all abstract
variables and their refinements to concrete variables as an assertion in separation
logic [8,31]. Thus, two variables can never reference the same memory. This is a
problem for nested container data structures like arrays of strings: when indexing
the array, both the array element and the result of the indexing operation would
point to the same string. In the original Sepref tool [21], which targeted Standard
ML, we worked around this problem by always using functional data types (e.g.
lists) to represent the inner type of a nested container. This workaround is no
longer applicable for the purely imperative LLVM, such that we could not use
Sepref for nested container data structures7.

We now describe an approach towards solving this problem for Sepref.
Abstractly, we model an array by the type α option list8, where None means that
the array does currently not own the respective element. The abstract indexing
operation then moves the element from the list to the result:

move xs i ≡ assert i<|xs| ∧ xs[i] �=None; return (the (xs[i]), xs[i:=None])

As no memory is shared between the result and the array, we can show the
following refinement:

(λa i. (a[i],a), λxs i. move xs i) : oarrd × natk64 → A × oarr

where oarr is the relation between an array and an α option list, and A is the
relation for the array elements. Note that this operation does not change the
concrete array a. The movement of ownership is a purely abstract concept, which
results in no implementation overhead.
7 We could still reason about such structures on a lower level.
8 Here, α option = None | Some α is Isabelle’s option datatype, and the (Some x) ≡ x

is the corresponding selector function.
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The transition from α list to α option list can typically be done in an addi-
tional refinement step, and thus does not obfuscate the actual correctness proofs,
which are still done on plain α list. Moreover, the α option list representation is
only required for subroutines where extracted array elements are actually visible.
For example, we define an operation to compare two array elements:

cmp idxs xs i j ≡ assert i<|xs| ∧ j<|xs|; return xs[i] < xs[j]

Inside this operation, we have to temporarily extract the elements i and j from
the array, requiring an intermediate refinement step to α option list. However,
at the start and end of this operation, the array owns all its elements. For the
whole operation, we thus get a refinement on plain arrays:

(cmp impl, cmp idxs) : arrk × natk64 × natk64 → bool

In our case, we only have to explicitly refine insert and sift down. The other
subroutines use cmp idxs and swap operations on plain lists.

4.3 The Isabelle-LLVM Code Generator

The programs that are generated by Sepref (cf. Fig. 1) lie in the fragment for
which Isabelle-LLVM [23] can generate LLVM text. For example, the pdqsort
algorithm for strings yields an LLVM function with the signature:

Here, the type represents dynamic arrays of characters9,
represented by length, capacity, and a data pointer.

The generated LLVM text is then compiled to machine code using the LLVM
toolchain. To make the generated program usable, one has to link it to a C
wrapper, which handles parsing of command line options and printing of results.
However, the original Isabelle-LLVM framework provides no support for inter-
facing the generated code from C: one has to manually write a C header file,
which hopefully matches the object file generated by the LLVM compiler. If it
doesn’t, the program has undefined behaviour10.

To this end, we extended Isabelle-LLVM to also generate a header file for the
exported functions. For example, the Isabelle command

9 For strings, we use the verified dynamic array implementation provided by Isabelle-
LLVM. Note that C++ uses a similar representation, with an additional optimization
for small strings.

10 In practice, this means it will probably SEGFAULT. However, it also might return
wrong results, or be prone to various kinds of exploits.
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will check that the specified signature actually matches the Isabelle definition,
and generate the following C declarations:

typedef struct { int64 t size; struct { int64 t capacity; char ∗data; }; } llstring;
llstring∗ str introsort(llstring∗, int64 t, int64 t);

5 Benchmarks

The Boost library comes with a sorting algorithm benchmark suite, which we
extended with further benchmarks indicated in [4]: apart from sorting random
lists of elements that are mostly different (random), we also sort lists of length
n that contain only n/10 different elements (random-dup-10), and lists of only
two different elements (random-boolean), as well as lists where all elements are
equal (equal). We also consider already sorted sequences (sorted, rev-sorted),
as well as a sequence of n/2 elements in ascending order, followed by the same
elements in descending order (organ-pipe). We also consider sorted sequences
where we applied pn/100 random swap operations (almost-sorted-p). Finally, we
consider sorted sequences with pn/100 random elements inserted at the end or
in the middle ([rev-]sorted-end-p, [rev-]sorted-middle-p).

We sorted integer arrays with n = 108 elements, and string arrays with n =
107 elements. For strings, all implementations use the same data structure and
compare function. For integers, we disable pdqsorts branch-aware partitioning,
which we have not yet verified. For strings, it does not apply anyway.

We compile both, the verified and unverified algorithms with clang-6.0.0, and
run them on a laptop with an Intel(R) Core(TM) i7-8665U CPU and 32 GiB of
RAM, as well as on a server machine with 24 AMD Opteron 6176 cores and
128 GiB of RAM. Ideally, the same algorithm should take exactly the same time
when repeatedly run on the same data and machine. However, in practice, we
encountered some noise up to 17%. Thus, we have repeated each experiment
at least ten times, and more often to confirm outliers where the verified and
unverified algorithms’ run times differ significantly. Assuming that the noise only
slows down an algorithm, we take the fastest time measured over all repetitions.
The results are displayed in Fig. 2.

They indicate that both our pdqsort and introsort implementations are com-
petitive. There is one outlier for pdqsort for already sorted integer arrays on the
laptop. We have not yet understood its exact reason. The remaining cases differ
by less than 20%, and in many cases our verified algorithm is actually faster.
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Fig. 2. Benchmarking our verified implementations against the unverified originals.
For each element type, machine, and distribution, the value (t1/t2 − 1) ∗ s is shown,
where t1 is the slower time, t2 is the faster time, and s = 100 if our implementation
is slower, and s = −100 if the original implementation is slower. That is, a positive
value p indicates that our implementation is slower, requiring 100 + p percent of the
run time of the original. Analogously, a negative value −p means that the original
implementation is slower, requiring 100 + p percent of our implementation’s run time.
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6 Conclusions

We have presented the first verification of the introsort and pdqsort algorithms.
We verified state-of-the-art implementations, down to LLVM intermediate rep-
resentation. On an extensive set of benchmarks, our verified implementations
perform on par with their unverified counterparts from the GNU C++ and
Boost C++ libraries. Apart from our work, the only other verified real-world
implementations of sorting algorithms are Java implementations of timsort and
dual-pivot quicksort that have been verified with KeY [3,10].

Compared to other program verification methods, the trusted code base
of our approach is small: apart from the well-tested and widely used LLVM
compiler, it only includes Isabelle’s logical inference kernel, and the relatively
straightforward Isabelle-LLVM semantics and code generation [23]. In contrast,
deductive verification tools like KeY [2] depend on the correct axiomatization
of the highly complex Java semantics, as well as on several automatic theorem
provers, which, themselves, are highly complex and optimized C programs.

Our verified algorithms can readily be used in larger verification projects, and
we have already replaced a naive quicksort implementation that caused a stack
overflow in an ongoing SAT-solver verification project [13]. For fixed element
types and containers based on arrays (e.g. std::vector), we can use our verified
algorithms as a drop-in replacement for C++’s std::sort. A direct verification of
the C++ code of std::sort, however, would require a formal semantics of C++,
including templates and the relevant concepts from the standard template library
(orderings, iterators, etc.). To the best of our knowledge, such a semantics has
not yet been formalized, let alone been used to verify non-trivial algorithms.

The verification of introsort took us about 100 person hours. After we had
set up most of the infrastructure for introsort, we could verify the more complex
pdqsort in about 30 h. The development consists of roughly 8700 lines of Isabelle
text, of which 2400 lines are for introsort and 2200 lines for pdqsort. The rest
is boilerplate and libraries shared between both algorithms, among them 1500
lines for the verification of heapsort.

6.1 Related Work

Sorting algorithms are a standard benchmark for program verification tools,
such that we cannot give an exhaustive overview here. Nevertheless, we discuss
a few notable examples: the arguably first formal proof of quicksort was given
by Foley and Hoare himself [14], though, due to the lack of powerful enough
theorem provers at these times, it was only done on paper.

One of the first mechanical verifications of imperative sorting algorithms is
by Filliâtre and Magaud [12], who prove correct imperative versions of quicksort,
heapsort, and insertion sort in Coq. However, they use a simplistic partitioning
scheme, do not report on code generation or benchmarking, nor do they combine
their separate algorithms to get introsort.

The timsort algorithm, which was used in the Java standard library, has been
verified with the KeY tool [10]. A bug was found and fixed during the verification.
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Subsequently, KeY has been used to also verify the dual-pivot quicksort algorithm
from the Java standard library [3]. This time, no bugs were found.

6.2 Future Work

An obvious next step is to verify a branch-aware partitioning algorithm [11].
Thanks to our modular approach, this will easily integrate with our existing
formalization. We also plan to extend our work to stable sorting algorithms.
Recently, we have extended the Refinement Framework to support reasoning
about algorithmic complexity [17]. Once this work has been integrated with
Isabelle-LLVM, we can also prove that our implementations have a worst-case
complexity of O(n log(n)), as required by the C++ standard. Finally, we pro-
posed an explicit ownership model for nested lists. We plan to extend this to
more advanced concepts like read-only shared ownership, inspired by Rust’s [32]
ownership system. Formally, this could be realized with fractional permission
separation logic [7].

Acknowledgements. We received funding from DFG grant LA 3292/1 “Verifizierte
Model Checker” and VeTSS grant “Formal Verification of Information Flow Security
for Relational Databases”.
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Abstract. Liveness analysis is a standard compiler analysis, enabling
several optimizations such as deadcode elimination. The SSA form is
a popular compiler intermediate language allowing for simple and fast
optimizations. Boissinot et al. [7] designed a fast liveness analysis by
combining the specific properties of SSA with graph-theoretic ideas such
as depth-first search and dominance. We formalize their approach in the
Coq proof assistant, inside the CompCertSSA verified C compiler. We
also compare experimentally this approach on CompCert’s benchmarks
with respect to the classic data-flow-based liveness analysis, and observe
performance gains.

Keywords: Liveness analysis · SSA form · Dominance · Verified
compilation

1 Introduction

In order to be precise, several important compiler analyses need to know the life-
time of variables. This is of course the case with deadcode elimination and regis-
ter allocation, but also for instance with software pipelining and trace scheduling.
Computing this information efficiently is thus of utmost importance. This is the
purpose of liveness analysis.

Given a program and a variable, liveness analysis consists in determining the
points of the program where this variable is needed, i.e. the points from which
an execution can reach an instruction where this variable is used. At such points,
this variable is said to be live. Like many other semantic properties, this property
is undecidable and is classically over-approximated by its syntactic counterpart
which considers, instead of real executions, paths in the control flow graph (CFG)
of the program.

Traditionally, liveness information is computed by a backward data-flow anal-
ysis that computes monolithically the liveness status of all program variables at
all program points [2]. In 2008, Boissinot et al. [7] described another method
to compute this information, with two particularities. Firstly, their technique
is applicable only to programs in SSA form, an intermediate language adopted
by most of the modern compilers, e.g. LLVM [11]. Indeed, their approach relies
on one of the key properties of SSA, that they combine with graph-theoretic
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notions. Secondly, it is not designed to compute the whole liveness information
of the program, but instead to answer so-called liveness queries, of the form “is
variable a live at point q?”. They call this approach, considering only one vari-
able and one program point at a time, “liveness checking”. Since this approach
computes only limited information compared to the data-flow based one, they
claim that it outperforms it as long as the number of asked queries is low, which
their experiments confirm.

In this paper, we focus on liveness checking, as presented in [7], from the point
of view of formally verified compilation. In this context, an implementation of
liveness checking should not only be efficient, as usual in compilation, but also
needs to be formally proved correct.

We tackle this problem in the context of CompCert [12,13], a verified C
compiler written in the Coq proof assistant, and its fork with an SSA middle-
end, CompCertSSA [3]. CompCert and CompCertSSA already contain several
liveness analyses (e.g. in module Liveness), but all of them, like in the other ver-
ified compilers (e.g. CakeML [15]), are data-flow based. Our goal is to implement
liveness checking on the SSA form of CompCertSSA, taking into account the par-
ticularities of Coq and CompCertSSA, and carefully enough so that we observe
the expected performance improvement w.r.t. the data-flow based approach.

After describing liveness checking, as well as the required background, in
detail in Sect. 2, we present the following contributions:

– an implementation of liveness checking in CompCertSSA (Sect. 3) adapting
the ideas of [7] to CompCertSSA, including some advanced optimizations;

– a proof of correctness of this algorithm (Sect. 4) showing the validity of
Boissinot et al.’s subtle graph-theoretic arguments;

– experiments on CompCert’s benchmarks (Sect. 5) showing that two variants
of the liveness checking algorithm compare favorably w.r.t. the data-flow
based approach.

The formalization and the experiments are available online [1].

2 Background

We first recall some notions from graph theory and compilers in Sect. 2.1, then
we give the idea of liveness checking in Sect. 2.2, before describing it in detail in
Sects. 2.3 and 2.4.

2.1 Basic Concepts in Graphs and Compilers

Fig. 1. Example of edge classification

Depth-First Search. DFS classifies the
edges of a graph into four categories (cf.
Fig. 1): the tree edges that form a spanning
tree, the forward edges connecting a node
to one of its descendants in the spanning
tree, the cross edges connecting a node to
an unrelated node in the spanning tree,
and the back edges connecting a node to
one of its ancestors in the spanning tree.
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Encoding Reachability in a Tree. It is possible to label each node of a tree
with a pair of integers, allowing to determine whether a node is an ancestor of
another node just by comparing their labels. One possible labeling is based on a
DFS preorder numbering, the first integer of a node being its preorder number
and the second one being the maximum preorder number in the subtree rooted
at that node. An example of such a labeling is provided in Fig. 2b.

Dominance. The dominance relation is traditionally defined on a flow graph,
i.e. a graph with a distinguished node entry such that every vertex is reachable
from that node. We say that a node u dominates a node v if every path from
entry to v goes through u; u strictly dominates v if u dominates v and u and
v are distinct. Dominance is an order relation, i.e. it is reflexive, transitive and
antisymmetric. Moreover, each node u distinct from entry has a unique strict
dominator dominated by all the strict dominators of u, showing that dominance
can be encoded as a tree, called the dominance tree.

SSA Form. The SSA form, standing for Static Single Assignment, is a program
representation where each variable is textually defined at most once. To turn a
non-SSA representation into SSA, variables that are assigned to multiple times
are renamed so that each renamed version is associated to one definition point
only. When two flows of the program, carrying two different versions of the
same initial variable, merge at a so-called join point, we need a way to express
which version is selected. SSA introduces special nodes for this, called φ-nodes.
The φ-function inside the φ-node takes as many arguments as the number of
predecessors of the node. When the flow comes from the ith predecessor, the
φ-function returns the ith argument, thus selecting the version of the variable
corresponding to that predecessor. φ-nodes must be handled with care in terms
of where they use and define variables. In this paper, each argument of a φ-
function is considered used at the corresponding predecessor of the φ-node. The
variables defined by the φ-node are treated normally. An example SSA program
is shown in Fig. 2, along with its dominance tree.

A program in strict SSA form is a program where each use of a variable is
preceded by its definition (unique per definition of SSA). A program in strict
SSA form obeys the dominance property [7], stating that each use of a variable
is dominated by its definition.

Liveness. In this paper, by “live”, we mean “live-in”, which in the context of a
program in strict SSA form can be defined as follows. A variable a is live-in at
point q if there exists a path in the CFG from q to a use of a that does not go
through the definition of a.

2.2 Liveness Checking

Boissinot et al.’s algorithm answers liveness queries efficiently based on some
precomputed information. The algorithm is thus composed of two parts: a pre-
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(b) Dominance tree

Fig. 2. The CFG and dominance tree of an SSA program, both labeled with reacha-
bility intervals based on preorder numberings

computation part that captures information about the CFG structure and an
online part that answers the liveness queries based on this information.

This architecture has two main advantages compared to the classic one.
Firstly, the precomputation step is faster than the full liveness analysis. Thus,
if the number of queries is rather small, this algorithm is faster than the classic
one. Secondly, since the precomputation step depends on the CFG structure and
not on liveness information, its result remains correct if the program is modified
by some transformations that preserve its structure. In this sense, precomputed
information is more robust than the liveness one.

Actually, the classic liveness analysis approach can also be seen as being made
of a precomputation part (the analysis), followed by an online part (reading in
the liveness table). From this point of view, Boissinot et al.’s algorithm just
chooses a different trade-off than the classic approach: a faster precomputation
at the cost of slower queries. As mentioned above, this compromise is interesting
if the number of queries is low.

2.3 Precomputation

Let us consider the following liveness query: “is variable a live at point q?”. This
query amounts to checking whether a path exists between q and a use of a that
does not go through the definition d of a. Note that, by the dominance property,
we know that all uses of a are dominated by d. It is possible that a is used at d,
but since in this paper by “live” we mean “live-in”, such a case has no impact
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on the answer to the query. We can thus restrict ourselves to the uses of a that
are strictly d-dominated.

Let π be a path from q to a use u of a that does not go through d. If there
is a node x on π that is not strictly d-dominated, we can show that u is not
dominated by d, contradicting the dominance property. Reciprocally, a strictly
d-dominated path from q to u does not go through d. This shows that a is live
at q if and only if there exists a strictly d-dominated path from q to a use of a.

d

q

u

d
om

(d)

Fig. 3. Leaving and reentering the
set of strictly dominated nodes
requires a back edge.

Boissinot et al. show more. If q is strictly
d-dominated, any non-strictly d-dominated
path from q to a use u of a goes through d,
since it reenters the set of strictly dominated
nodes, and the part of the path from q to d
contains a back edge (intuitively, we need to go
back up from q to d), represented as a dashed
arrow in Fig. 3. Stated in the opposite way, if
there exists a path from q to u that does not
contain a back edge, then the path is strictly
d-dominated, which shows that a is live at q.

Based on this observation, Boissinot et al.’s main idea is that back edges
must be dealt with separately from the other edges. They suggest to decompose
the reachability in the original graph into two relations, called R and T . Relation
R captures the reachability in the reduced graph ˜G, the acyclic graph obtained
by removing the back edges from the original graph. Relation T associates to
each program point both itself and a set of interesting back edge targets.

Formally, T is the reflexive and transitive closure of T ↑, where T ↑
t

(cf. Definition 1)1 is the set of back edge targets not reduced reachable (i.e. reach-
able in the reduced graph) from node t but whose source is reduced reachable
from t. For instance, in Fig. 2a, T ↑

5 = {4}, T ↑
4 = {3}, and thus T5 = {3, 4, 5}.

Definition 1 (T ↑ and T ).

T ↑
t = {t′ ∈ V \ Rt | ∃s′ ∈ Rt ∧ (s′, t′) ∈ E↑} and T = (T ↑)

∗

where E↑ is the set of back edges, ∗ is the reflexive and transitive closure.

2.4 Online Part

The online part leverages precomputed and dominance information to answer
liveness queries efficiently. Boissinot et al.’s algorithm ([7, Algorithm 1]) is repro-
duced as Algorithm 1. Given a variable a and a program point q, the algorithm
filters the content of Tq to keep only the set T(q,a) of points that are strictly
dominated by the definition point of a (line 2). Then it tests whether one of
these points can reach a use of a in the reduced graph (lines 3–4). If one test
succeeds, then it returns true (line 4), the variable a is live at q, otherwise it
returns false (line 5), the variable a is not live at q. In Fig. 2a, T(5,x1) = {4, 5},
uses(x1) = {4, 9}, 4 ∈ R4, thus x1 is live at 5. T(5,x2) = ∅, thus x2 is not live at
5. T10 = {3, 10}, T(10,x1) = {10}, R10 ∩ uses(x1) = ∅, thus x1 is not live at 10.
1 Given a relation R, Rx denotes the set of elements related to x in R.
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1 Function IsLiveIn(variable a, node q):
2 T(q,a) ← Tq ∩ sdom(def (a))
3 for t ∈ T(q,a) do
4 if Rt ∩ uses(a) �= ∅ then return true
5 return false

Algorithm 1: Online part of Boissinot et al.’s algorithm

3 Formalization

Our Coq implementation follows approximately the same structure as the algo-
rithm described in Sect. 2. In particular, it is divided into two parts: the precom-
putation and the online parts.

3.1 Precomputation

As highlighted in Sect. 2.2, the precomputation step depends only on the CFG
structure. Thus, we can abstract the specific features of the SSA form and
only work at the graph-theoretic level. We model the CFG as a map of type
graph = map (list node)2 associating to each node the list of its successors, and
a node entry representing the entry point of the CFG. Moreover, to implement
the second optimization described in Sect. 3.2, we need to model the preorder
numbering on the dominance tree. We assume that we are given a function
dom_pre : node → Z associating to each node the corresponding number.

As proposed in [7], the precomputation step itself is split into two parts. In
[7], the first one computes R, while the second one computes T based on R. We
slightly adapted both parts. In our implementation, the first part computes R
and T ↑, and the second part computes T in a different way than in [7].

Precomputation of R and T ↑ . Boissinot et al. [7] suggest encoding the set
of reduced reachable nodes from node t, Rt, as a set (using bitsets or sorted
arrays). But they assume, as is the case for most compilers, that the nodes
in the CFG represent blocks of instructions, which means that the CFG is not
really large. CompCertSSA’s peculiarity is that, like CompCert, each node in the
CFG represents only one instruction, and thus the CFG is noticeably bigger. To
avoid manipulating large sets, we decided to encode R differently, drawing our
inspiration from Boissinot et al.’s idea to treat back edges specially. We choose
to treat cross edges specially, and to break down reachability in the reduced
graph into reachability in the spanning tree from sets of cross edge targets. This
decomposition seems to forget forward edges, but as far as only reachability is
concerned, they can be safely ignored, as they are just shortcuts of tree edges.

We introduce the relations ˜R that denotes the reachability in the spanning
tree, and C that associates to each program point both itself and a set of cross

2 node is an alias for positive, a binary encoding of strictly positive integers; map is
implemented using PTree.t, an associative map whose keys are positive and which
is used pervasively in CompCertSSA.
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1 Record state := {
2 gr: graph; (* current graph, without already-visited nodes *)
3 wrk: list (node * positive * list node * (set * list (node * Z)));
4 (* worklist: node, label, children to be treated, results from treated children *)
5 next: positive; (* number to use for next numbering *)
6 r : map itv; (* reachability relation using intervals *)
7 c : map set; (* cross nodes to test for reduced reachability *)
8 t_up : map (list (node * Z)); (* sorted list of back nodes to test for reachability *)
9 back : list (node * node) (* back edges *)

10 }.
11 (* result is the expected type of the returned tuple (r, c, t_up, back) *)
12 Definition result := map itv * map set * map (list (node * Z)) * list(node * node).
13
14 Definition transition (dom_pre : node → Z) (s: state) : result + state :=
15 match s.(wrk) with
16 | [] ⇒ inl (s.(r), s.(c), s.(t_up), s.(back)) (* end of the DFS *)
17 | (u, n, [], (s_c, s_t)) :: wrk’ ⇒ (* end of processing of node u *)
18 let r’ := update u (n, Pos.pred s.(next)) s.(r) in
19 let s_c’ := filter (fun v _ ⇒ negb (is_directly_included r’ u v)) s_c in
20 let s_c’’ := add u s_c’ in
21 let c’ := update u s_c’’ s.(c) in
22 let s_t’ := List.filter (fun ’(v, _) ⇒ negb (is_cross_included r’ c’ u v)) s_t in
23 let t_up’ := update u s_t’ s.(t_up) in
24 inr {| s with wrk := wrk’; r := r’; c := c’; t_up := t_up’ |}
25 | (u, n, v :: succs_u, (s_c, s_t)) :: wrk’ ⇒ (* processing of child v of node u *)
26 match s.(gr) ! v with (* "!" is the lookup operator in maps *)
27 | None ⇒ (* v has already been discovered *)
28 match s.(r) ! v with
29 | None ⇒ (* back edge *)
30 let s_t’ := merge [(v, dom_pre v)] s_t in (* merge is order-preserving *)
31 let back’ := (u, v) :: s.(back) in
32 inr {| s with wrk := (u, n, succs_u, (s_c, s_t’)) :: wrk’; back := back’ |}
33 | Some _ ⇒ (* processed tree edge, forward edge or cross edge *)
34 let s_c’ := match s.(c) ! v with | None ⇒ s_c | Some s ⇒ union s s_c end in
35 let s_t’ := match s.(t_up) ! v with | None ⇒ s_t | Some s ⇒ merge s s_t end in
36 inr {| s with wrk := (u, n, succs_u, (s_c’, s_t’)) :: wrk’ |}
37 end
38 | Some succs_v ⇒ (* new tree edge *)
39 inr {| s with gr := remove v s.(gr);
40 (* v is left in the worklist so that we can propagate the result *)
41 wrk := (v, s.(next), succs_v, (empty, [])) :: s.(wrk);
42 next := Pos.succ s.(next) |}
43 end
44 end.
45
46 Definition precompute_r_t_up (g: graph) (root: node) (dom_pre : node → Z) : result :=
47 WfIter.iterate (transition dom_pre)
48 lt_state lt_state_wf (transition_decreases dom_pre)
49 (init_state g root).

Fig. 4. Function precompute_r_t_up implements the first part of the precomputation.

edge targets that are interesting for checking reduced reachability at this point.
Like T , C is defined as the reflexive and transitive closure of C↑, where C↑

t (cf.
Definition 2) associates to node t the set of cross edge targets not tree reachable
(i.e. reachable in the spanning tree) from t but whose source is tree reachable
from t. In Fig. 2a, only C↑

8 = {7} is non-empty. We have thus C8 = {7, 8}.

Definition 2 (C↑ and C).

C↑
t = {t′ ∈ V \ ˜Rt | ∃s′ ∈ ˜Rt ∧ (s′, t′) ∈ ˜E↑} and C = (C↑)

∗

where ˜E↑ designates the set of cross edges.
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Moreover, since the spanning tree is a tree, we can use the technique men-
tioned in Sect. 2.1, i.e. encode ˜R as a labeling of each node in the spanning tree
with a pair of integers representing an interval. We can then answer reachability
queries in the spanning tree efficiently by testing inclusion of those intervals.

In the Coq development, function precompute_r_t_up, shown in Fig. 4, imple-
ments this first step of precomputation. For the sake of clarity, the Coq code
was a little prettified. In particular, the notation {| .. with .. := .. |}, allow-
ing to update only some fields of a record, is not a valid Coq expression.
precompute_r_t_up returns a quadruple (r, c, t_up, back), where:

– r : map itv encodes ˜R by associating to each node an interval of positive;
– c : map set3 implements C;
– t_up : map (list (node * Z)) encodes T ↑ (t_up associates to each node a list

of pairs (u, n) where u is a node and n is just dom_pre u; this list is sorted
on the second component (see Sect. 3.2); that second component is not really
needed, it is a slight optimization that allows to reduce the number of calls
to dom_pre u by storing its result next to u the first time it is called);

– back : list (node * node) is the list of identified back edges.

Function precompute_r_t_up performs a DFS traversal of the CFG. In the
style of module Postorder of CompCert, it calls iteratively a transition func-
tion (l. 47) that updates a state (initialized l. 49) with the guarantee that the
iterations eventually terminate (l. 48). The state aggregates seven fields (l. 1).
Four fields (r, c, t_up and back) correspond to the final results. The three other
fields are used to implement the DFS: gr remembers whether a node has already
been seen during the traversal; next is the current value of the counter used to
number the encountered nodes; and wrk is a worklist of nodes to be treated.
Each element of wrk is a quadruple (u, n, succs, (s_c, s_t)), where u is a
node labeled with number n, succs is the list of successors of u yet to be treated,
and s_c and s_t (detailed below) are pieces of information, retrieved from the
successors of u that have already been treated, and used to compute the value
attached to u in c and t_up respectively.

Function transition begins with checking whether the worklist is empty.
If so (l. 16), it is the last iteration and the appropriate fields of the state are
returned. If not, it analyzes the status of the first node u of the worklist. If it
has still children to be treated (l. 25), it checks the status of the first child v.
If v is new to the DFS (l. 38), it is given number s.(next), and is explored
recursively by extending the worklist (l. 41). If v has already been seen before
during the DFS (l. 27), we retrieve from it the pieces of information that need
to be propagated to u, and we update s_c and s_t accordingly depending on the
type of edge connecting u and v (ll. 28–37). Note that, in the first case (l. 38), v
is intentionally left as a child of u in the worklist (l. 41), so that it can be seen
again in the second case (l. 33), and results can be propagated from v to u. If all
the children of u (l. 17) have been treated, we use the data available in the state
and the worklist to update maps r, c and t_up at key u.

3 set = map unit is a map where only keys are meaningful.
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To update r, we attach to u (l. 18) an interval based on the number n associ-
ated to u when it was discovered (l. 41) and the current value of the counter next.
The update of c relies on the following equation: Cu = {u}∪

[

⋃

(u,v)∈ ˜E Cv

]

\ ˜Ru.
Cu is computed from the sets Cv of its children in the reduced graph (i.e. chil-
dren v where (u, v) is not a back edge). The union of these sets (l. 34) is filtered
(l. 19), so that only nodes that are not already tree reachable from u are kept.
Finally, node u is added to the set (l. 20). The update of t_up relies on a simi-
lar equation: T ↑

u =
[

⋃

(u,v)∈E↑{v} ∪ ⋃

(u,v)∈ ˜E T ↑
v

]

\ Ru. T ↑
u is computed from its

children in the graph. If (u, v) is a back edge, then the contribution of v is {v}
(l. 30). If (u, v) is not a back edge, then the contribution of v is T ↑

v (l. 35). These
sets are merged in an order-preserving way, and then filtered so that only nodes
that are not already reduced reachable from u are kept (l. 22).

The edges in back are classically identified during the DFS (l. 31) as the edges
from the current node to nodes already discovered but not fully processed.

In terms of structure, our code is really close to the code of module
Postorder. There are two key differences, though. The first one is that we need
to remember some information between the time a node is discovered and the
time it is fully processed (the preorder number n). The second one is that we
need to propagate some information during the traversal (the sets s_c and s_t).
This implied the two following changes. Firstly, the tuples in our worklist are
more complex, since they contain the additional data. In Postorder, the worklist
has the simpler type list (node * list node). Secondly, as mentioned above, a
node that is discovered is left in the worklist as a child of its parent, so that
some information can be propagated to its parent the second time it is seen.

Precomputation of T . The second part of the precomputation consists in
computing T from T ↑, i.e. computing the reflexive and transitive closure of T ↑.
For this, we follow another suggestion from Boissinot et al. consisting in using
the following equation ([7, Equation (1)]): Tv = {v} ∪

[

⋃

w∈T↑
v

Tw

]

, that we also

call Equation (1). They note that, given a node t, all nodes t′ in T ↑
t have a

DFS preorder number4 smaller than that of t. This means that if we treat the
back edge targets by growing DFS preorder number, we can use this equation
to compute T for all the back edge targets.

In our Coq development, this step is performed by precompute_t_from_t_up_1.
It takes as arguments dom_pre, the preorder numbering on the dominance tree,
pre, the DFS preorder number, and t_up and back, returned by the previous
step. It extracts the back edge targets from back, sorts them according to pre,
and uses Equation (1) to compute T for the back edge targets. It returns a map
t’ which is t_up updated with the new values for the back edge targets. We are
careful to preserve in t’ the sorting of the values of t_up according to dom_pre.

Boissinot et al. also suggest computing T for the rest of the nodes by travers-
ing the reduced graph in a second phase. Instead, we choose to use the same

4 This numbering must not be confused with dom_pre, the preorder numbering on the
dominance tree.
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equation. This is the role of function precompute_t_from_t_up_2. It takes as an
argument dom_pre and the map t’ returned by precompute_t_from_t_up_1, and
applies Equation (1) to every node in any arbitrary order. This means that we
also apply it to back edge targets, though they already have the right value, but
this is correct and probably not costly. As before, we take care to ensure that
the values of the returned map, t, are sorted according to dom_pre. However, we
drop the preorder number component from the elements of t. They are no longer
necessary, and, as mentioned in Sect. 3, were only there as an optimization.

Finally, function precompute_t_from_t_up assembles both previous functions
to compute T from T ↑.

Definition precompute_t_from_t_up dom_pre pre t_up back :=

let t’ := precompute_t_from_t_up_1 dom_pre pre t_up back in

precompute_t_from_t_up_2 dom_pre t’.

Assembling. To obtain the full precomputation step, we just have to assemble
the pieces introduced in the previous sections. This is the role of precompute_r_t.

Definition precompute_r_t (g:graph) (entry:node) (dom_pre:node→ Z) :=

let ’(r, c, t_up, back) := precompute_r_t_up g entry dom_pre in

let pre u := match r ! u with | None ⇒ 1 | Some (n, _) ⇒ n end in

let t := precompute_t_from_t_up dom_pre pre t_up back in

(r, c, t, back).

It takes as arguments a graph g, an entry node entry and a preorder num-
bering on the dominance tree, dom_pre. It returns R (encoded as r and c), T
(encoded as t) and the list of back edges, back. Note that pre, the DFS preorder
number, is simply defined as a lookup in r.

3.2 Online Part

The implementation of the online part in Coq is faithful to Algorithm1, but also
takes advantage of optimizations discussed in [7]. More precisely, it is an adap-
tation of [7, Algorithm 3] that uses sorted lists instead of bitsets, and functional
instead of imperative programming.

Indeed, Boissinot et al. suggest two optimizations to speed up Algorithm1.
The first one, that we call (opt1), consists in testing at the beginning whether
q is strictly dominated by the definition point of a. If that is not the case,
as explained in Sect. 2.3, false can be returned immediately. The second one,
denoted (opt2), uses dominance information more. The idea is that if we test a
node t in T(q,a) and that fails, then the test for any t′ dominated by t will fail too,
and thus we can skip all such nodes. For instance, in Fig. 2a, T(5,x0) = {3, 4, 5},
R3 ∩ uses(x0) = ∅, and 3 dominates 4 and 5, thus we can return false without
testing 4 and 5. Boissinot et al. suggest taking advantage of a preorder numbering
on the dominance tree. This numbering can be used in two ways. It can be used
to sort Tq, since the node with the lowest number is likely to dominate the other
nodes to be tested (this is always the case if the CFG is reducible). It can also
be used as described in Sect. 2.1, to build a dominance test in constant time.
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Our implementation is parameterized by the following objects. dom : map itv

associates to each node an interval based on its preorder number in the domi-
nance tree (this numbering is actually used to implement dom_pre in the precom-
putation step, cf. Sect. 3.1); def : reg → node associates to each variable of type
reg its definition point; du_chain : map (list node) connects each variable to
the points where it is used; r : map itv, c : map set and t : map (list node)

are the results of the precomputation part. Based on these objects, we implement
function is_live_in, given in Fig. 5. is_live_in x u returns whether variable x

is live at point u. It is a bit difficult to read due to Coq syntax and notations,
but it is rather straightforward.

First, we get the definition point, d, of variable x (l. 1). Then we get the
preorder intervals in the dominance tree of d and u (ll. 3–8). We check that the
interval of u is strictly included in that of d (l. 9), meaning that u is strictly
dominated by d, otherwise we directly return false (this is (opt1)). Then we
get the list uses of program points where u is used (l. 10), and we read in t the
list l of points to test to answer the liveness query (l. 11). Recall that l is sorted
according to the preorder numbering on the dominance tree. Then we call fold_t
that tests the nodes in l one after the other.

fold_t performs case analysis on l. If it is empty (l. 20), this means that
we have tested all the nodes and none of them have revealed a path to a use of
x, thus we return false. Else, we consider the first element v of l (l. 21) and its
preorder interval n_v in the dominance tree (l. 22). If n_v.(pre), the left bound
of the interval n_v, is greater than max (l. 25), this means that v is not dominated
by d, and neither are the other nodes in l, thus we can answer false. Otherwise,
if n_v.(pre) is not larger than min (l. 26), this means that v is not strictly
dominated by d or is dominated by a node that has been tested unsuccessfully
in a previous iteration, thus we can skip v. Otherwise (l. 27), we test if a node
in uses is reduced reachable from v thanks to function is_cross_included. If
yes, we return true. Otherwise, we test the other nodes of l and update the
minimal bound to n_v.(post), the right bound of the interval n_v, so that nodes
dominated by v are skipped in the next iterations.

4 Proof of Correctness

The functions described in Sect. 3 all come with proofs of their correctness.
However, among the pieces of CompCertSSA on which we build our work, one,
namely the formalization of the dominance test [4], turned out to be too weak for
our purposes. Indeed, it is proved correct, but not complete, while its complete-
ness is necessary to prove the correctness of our approach. There is an ongoing
effort based on [10] to build a correct and complete dominance test, but for now,
completeness is admitted.

Most of the proof effort lies in the precomputation part (precompute_r_t,
1700 lines of specification and 4000 lines of proof), and especially in the proof of
precompute_r_t_up that required dozens of invariants. While this number could
undoubtedly be decreased, it shows that the justification of the operations per-
formed during the DFS is non-trivial.
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1 Definition is_live_in (x : reg) (u : node) :=
2 let d := def x in
3 match dom ! d with
4 | None ⇒ false (* impossible *)
5 | Some n_d ⇒
6 match dom ! u with
7 | None ⇒ false (* impossible *)
8 | Some n_u ⇒
9 (n_d.(pre) <? n_u.(pre)) && (n_d.(post) <=? n_u.(post)) &&

10 let uses := du_chain ! x in
11 match t ! u with
12 | None ⇒ false (* impossible *)
13 | Some l ⇒ fold_t uses l n_d.(pre) n_d.(post)
14 end
15 end
16 end.

17 Definition fold_t (uses l : list node) (min max : itv) :=
18 let fix aux l min :=
19 match l with
20 | [] ⇒ false (* all nodes tested, not live *)
21 | v :: l ⇒
22 match dom ! v with
23 | None ⇒ false (* impossible *)
24 | Some n_v ⇒
25 if max <? n_v.(pre) then false
26 else if n_v.(pre) <=? min then aux l min
27 else existsb (is_cross_included r c v) uses || aux l num.(post)
28 end
29 end
30 in
31 aux l min.

Fig. 5. Function is_live_in implements the online part of the algorithm.

For lack of space, we do not detail the proofs of precompute_r_t_up and
precompute_t_from_t_up. We just want to emphasize one point in the proof of
the latter. precompute_t_from_t_up is written using a fold_left operation on the
list of back-edge targets, and the validity of this computation is really subtle.
Indeed, it relies on Equation (1) and the fact that nodes are considered in the
right order, i.e. in increasing DFS preorder number. To ease the definition of com-
plex invariants, we reuse the architecture of precompute_r_t_up (cf. Fig. 4), but
this time only on the proof side. This form allows to express more easily proper-
ties involving the nodes that have already been processed or those that are to be
processed. We then show the equivalence of this form with the fold_left-based
version, and we conclude about the correctness of precompute_t_from_t_up.

To state the correctness theorems of precompute_r_t, we assume we are given
a graph g, a node entry in g, and a labeling function dom_pre. We make two
reasonable assumptions about dom_pre and g.

Hypothesis dom_pre_inj : forall u v, dom_pre u = dom_pre v →
reachable g entry u → reachable g entry v → u = v.

Hypothesis g_closed : forall u, reachable g entry u → g ! u <> None.

dom_pre_inj ensures that the preorder numbering on the dominance tree modeled
by dom_pre is injective. g_closed ensures a kind of well-formedness of g, namely
that all nodes reachable from entry must be in g.
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We can note that both hypotheses take as preconditions that the considered
nodes are reachable from the entry node of the CFG. Actually, most of the results
have this kind of hypothesis, since the DFS from node entry can only discover
nodes reachable from entry. In this section, such hypotheses will appear in the
formal statements, but we will ignore them in the discussion.

Under these hypotheses, we can state the two main correctness theorems of
precompute_r_t. They state that it computes correctly relations R and T .

Theorem precompute_r_t_r_c_correct :

let ’(r, c, t, back) := precompute_r_t g root dom_pre in

forall u v, cross_included r c u v

↔ (reachable g root u ∧ g ! u <> None ∧ reduced_reachable g back u v).

precompute_r_t_r_c_correct states that a node v is reduced reachable from a
node u if and only if u and v are related by predicate cross_included, meaning
that v is tree reachable from one node in Cu.

Theorem precompute_r_t_t_correct :

let ’(r, c, t, back) := precompute_r_t g root dom_pre in

forall u v, reachable g root u ∧ is_in_t g back u v ↔ t_linked t u v.

precompute_r_t_t_correct states that a node v is in Tu (modeled by is_in_t) if
and only if v is in the list associated to u in t (specified by t_linked).

The proof of correctness of the online part is much smaller (230 lines of
specification, 1000 lines of proof). One big fragment of it is the proof of the link
between T and the existence of strictly dominated paths, that justifies the use
of T in the liveness analysis. is_in_t_sdom_1 is a lemma from this fragment. It
states that if p is a strictly d-dominated path between u and v, then there exists
a node w in Tu, strictly d-dominated and from which v is reduced reachable.

Lemma is_in_t_sdom_1 :

let ’(r, c, t, back) := precompute_r_t (succs f) f.(entry) dom_pre in

forall d u p v, SSApath f (PState u) p (PState v) →
Forall (sdom f d) (p ++ [v]) →
exists w, is_in_t (successors f) back u w ∧ sdom f d w

∧ reduced_reachable back w v.

The proof of this lemma is interesting, because the proof given by Boissinot
et al. in [7] was not easily translatable in Coq. Indeed, their proof consists in
considering a path with a minimal number of back edges among the strictly
d-dominated paths from u to v. Such a property is not easy to express in Coq.
We proved this result in another manner, by induction on the path.

Finally, theorem analyze_correct states the correctness of the liveness anal-
ysis, namely that if the analysis succeeds, a liveness query is answered true
if and only if the considered variable is live at the considered program point.
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wf_ssa_function is a predicate guaranteeing that function f is well-formed. It
allows to prove the hypotheses of the lemma described above (e.g. g_closed).

Theorem analyze_correct :

forall (f : function), wf_ssa_function f →
let live := analyze f in

forall a q, live a q = true ↔ live_spec f a q.

5 Experiments

To evaluate the efficiency of the liveness checking approach, we compare it exper-
imentally w.r.t. a standard liveness analysis.

More precisely, our reference implementation, called (impl1), is a standard
analysis based on data-flow equations. As already mentioned, CompCertSSA
contains several liveness analyses, but actually none of them are defined on
SSA, so we adapted one of them to SSA. Like the existing ones, this analysis
uses the data-flow solver provided by CompCert in module Kildall, but takes
into account the particularities of SSA, especially the φ-nodes.

The two other implementations, called (impl2) and (impl3), are variations
of the implementation presented in Sect. 3. They both implement (opt1) men-
tioned in Sect. 3.2. However, (impl2) implements (opt2) only partially, it only
sorts the nodes in Tq by their preorder number in the dominance tree, while
(impl3) implements it fully, since it can also skip a subtree of the dominance
tree when a test fails.

We ran the three implementations on a set of programs taken from Com-
pCert’s benchmarks. These programs cover a wide range of size. Most of these
programs are one or a few hundred lines long, some of them (e.g. bzip2 and
raytracer) are a few thousand lines long, and one of them (spass) contains more
than 50,000 lines. Experiments were conducted on a Dell Latitude 7490 with an
Intel Core i7-8650U processor at 1.90 GHz and 16 GB of memory.

To perform the comparison, we need a set of liveness queries. To generate
these, the best option would be to use a real compiler pass relying on liveness.
However, CompCertSSA does not include such a pass at the level of SSA. We
came up with the following, admittedly contrived, solution. We generate one
query per variable and per natural loop header (a node dominating one of its
predecessors). We do not know whether this kind of query is representative of
actual queries. However, we can verify that the number of queries is reasonable.
In particular, we have two programs in common with Boissinot et al.’s bench-
marks: bzip2 and mcf. On both programs, we ask more queries (bzip2: 275071 vs.
10100, mcf: 3748 vs 2369). As doing too many queries penalizes us, the results
we give underestimate the benefits of our implementation. Yet, this way of gen-
erating queries is fundamentally biased, since depending on the number of loops
in a function, the number of queries varies widely. In particular, the functions
with no loops are not tested. One program (fib) even has no loop, thus no query.
We thus removed it from the experiments.
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Fig. 6. Total overhead of (impl2) and (impl3) w.r.t. (impl1)

We first compared separately the precomputation and online parts of
(impl2) and (impl3) w.r.t. (impl1). The results, not included in the paper
for lack of space, but available in [1], confirm the expected trends: (impl1) is
significantly slower than (impl2) and (impl3) in the precomputation part, and
significantly faster in the online part. Then, we compared the total time taken
by both parts performed successively in (impl2) and (impl3) w.r.t. the time
they take in (impl1) (see Fig. 6). We can observe that (impl2) and (impl3)
are in nearly all the cases faster than (impl1). With the set of queries consid-
ered, liveness checking is thus a better trade-off than standard liveness analysis
in terms of efficiency. If we compare our results to those obtained by Boissinot
et al. [7], we observe a better average speedup (1.48, with (impl3)) of liveness
checking w.r.t. standard liveness than them (1.16). But there are many differ-
ences in terms of implementation and testing process between Boissinot et al.’s
work and ours, thus the comparison of these numbers is of limited value. On the
comparison of (impl2) and (impl3), we can notice that (impl3) is in almost all
cases faster than (impl2), although moderately, showing that the added com-
plexity of (impl3) is worthwhile. There are two exceptions, aes and qsort, but
with no clear explanation.

6 Conclusion and Perspectives

We have described the formalization and implementation in the CompCertSSA
verified compiler of the liveness analysis described in [7]. This analysis belongs
to the “liveness checking” category, i.e. it is designed to answer liveness queries
of the form “is variable a live at point q?”. Its proof of correctness involves the
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combination of non-trivial arguments about liveness, SSA form, dominance and
depth first search. Limited experiments show that, as expected, this algorithm
outperforms the classic data-flow based approach if the number of queries is low.

Boissinot et al.’s work is not the only alternative to the data-flow based
technique. Appel [2] describes how to propagate liveness information backwards
from uses to definitions in programs in SSA form. Boissinot et al. [5] extended
the ideas of [7] in 2011, still for SSA-form programs, by taking advantage of an
auxiliary structure called a loop-nesting forest. They also propose two variants
of Appel’s approach, and experimentally compare the three algorithms. Das et
al. suggest DJ-graphs rather than loop-nesting forests as auxiliary structures.
Among all these works, only [7] and Das et al. [8] embrace the “liveness checking”
approach.

One limitation of this work is that it has not been used in a real pass of Com-
pCertSSA yet. This is the reason why we came up with an artificial criterion
to evaluate our approach. One pass where it could be used is SSA destruction.
Indeed, Boissinot et al. detail in yet another work [6] an SSA destruction pass
that uses liveness checking. We could take advantage of [9] that already for-
malized most of [6] in CompCertSSA, but used a traditional data-flow-based
liveness analysis. However, [6] describes an approach with a linear number of
queries, while, for the sake of simplicity, [9] makes a quadratic number of them.
As the “liveness checking” approach is interesting only if the number of queries
is low, we would need to implement the clever approach of [6] first.

A natural extension of this work is the mechanization of Boissinot et al.’s
algorithm based on loop-nesting forests [5]. The formalization of a such a complex
structure would certainly add a level of difficulty to the correctness proof, but
this structure is generic enough to serve as a basis for other program analyses and
transformations (e.g. [14]), thus formalizing it could turn out to be profitable.

Acknowledgments. This work is supported by a European Research Council (ERC)
Consolidator Grant for the project “VESTA”, funded under the European Union’s
Horizon 2020 Framework Programme (grant agreement no. 772568).

References

1. Companion website. http://www.irisa.fr/celtique/ext/fast liveness/
2. Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java, 2nd edn.

Cambridge University Press, Cambridge (2002)
3. Barthe, G., Demange, D., Pichardie, D.: Formal verification of an SSA-based

middle-end for CompCert. ACM Trans. Program. Lang. Syst. 36(1), 4:1–4:35
(2014). https://doi.org/10.1145/2579080

4. Blazy, S., Demange, D., Pichardie, D.: Validating dominator trees for a fast, verified
dominance test. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp.
84–99. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1 6

5. Boissinot, B., Brandner, F., Darte, A., de Dinechin, B.D., Rastello, F.: A non-
iterative data-flow algorithm for computing liveness sets in strict SSA programs.
In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 137–154. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25318-8 13

http://www.irisa.fr/celtique/ext/fast_liveness/
https://doi.org/10.1145/2579080
https://doi.org/10.1007/978-3-319-22102-1_6
https://doi.org/10.1007/978-3-642-25318-8_13
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Verification of Closest Pair of Points
Algorithms

Martin Rau and Tobias Nipkow(B)
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Abstract. We verify two related divide-and-conquer algorithms solv-
ing one of the fundamental problems in Computational Geometry, the
Closest Pair of Points problem. Using the interactive theorem prover
Isabelle/HOL, we prove functional correctness and the optimal running
time of O(n logn) of the algorithms. We generate executable code which
is empirically competitive with handwritten reference implementations.

1 Introduction

The Closest Pair of Points or Closest Pair problem is one of the fundamental
problems in Computational Geometry: Given a set P of n ≥ 2 points in R

d, find
the closest pair of P , i.e. two points p0 ∈ P and p1 ∈ P (p0 �= p1) such that the
distance between p0 and p1 is less than or equal to the distance of any distinct
pair of points of P .

Shamos and Hoey [25] are one of the first to mention this problem and intro-
duce an algorithm based on Voronoi diagrams for the planar case, improving the
running time of the best known algorithms at the time from O(n2) to O(n log n).
They also prove that this running time is optimal for a deterministic computa-
tion model. One year later, in 1976, Bentley and Shamos [2] publish a, also
optimal, divide-and-conquer algorithm to solve the Closest Pair problem that
can be non-trivially extended to work in arbitrary dimensions. Since then the
problem has been the focus of extensive research and a multitude of optimal
algorithms have been published. Smid [24] provides a comprehensive overview
over the available algorithms, including randomized approaches which improve
the running time even further to O(n).

The main contribution of this paper is the first verification of two related
functional implementations of the divide-and-conquer algorithm solving the
Closest Pair problem for the two-dimensional Euclidean plane with the optimal
running time of O(n log n). We use the interactive theorem prover Isabelle/HOL
[17,18] to prove functional correctness as well as the running time of the algo-
rithms. In contrast to many publications and implementations we do not assume
all points of P to have unique x -coordinates which causes some tricky complica-
tions. Empirical testing shows that our verified algorithms are competitive with
handwritten reference implementations. Our formalizations are available online
[23] in the Archive of Formal Proofs.
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This paper is structured as follows: Sect. 2 familiarizes the reader with the
algorithm by presenting a high-level description that covers both implemen-
tations. Section 3 presents the first implementation and its functional correct-
ness proof. Section 4 proves the running time of O(n log n) of the implementa-
tion of the previous section. Section 5 describes our second implementation and
illustrates how the proofs of Sects. 3 and 4 need to be adjusted. We also give
an overview over further implementation approaches. Section 6 describes final
adjustments to obtain executable versions of the algorithms in target languages
such as OCaml and SML and evaluates them against handwritten imperative
and functional implementations. Section 7 concludes.

1.1 Related Verification Work

Computational geometry is a vast area but only a few algorithms and theorems
seem to have been verified formally. We are aware of a number of verifications of
convex hull algorithms [4,14,20] (and a similar algorithm for the intersection of
zonotopes [12]) and algorithms for triangulation [3,7]. Geometric models based
on maps and hypermaps [6,22] are frequently used.

Work on theorem proving in geometry (see [15] for an overview) is also related
but considers fixed geometric constructions rather than algorithms.

1.2 Isabelle/HOL and Notation

The notation t :: τ means that term t has type τ . Basic types include bool , nat ,
int and real ; type variables are written ′a, ′b etc; the function space arrow is ⇒.
Functions fst and snd return the first and second component of a pair.

We suppress numeric conversion functions, e.g. real :: nat ⇒ real , except
where that would result in ambiguities for the reader.

Most type constructors are written postfix, e.g. ′a set and ′a list . Sets follow
standard mathematical notation. Lists are constructed from the empty list [] via
the infix cons-operator (#). Functions hd and tl return head and tail, function
set converts a list into a set.

2 Closest Pair Algorithm

In this section we provide a high-level overview of the Closest Pair algorithm
and give the reader a first intuition without delving into implementation details,
functional correctness or running time proofs.

Let P denote a set of n ≥ 2 points. If n ≤ 3 we solve the problem naively using
the brute force approach of examining all

(
n
2

)
possible closest pair combinations.

Otherwise we apply the divide-and-conquer tactic.
We divide P into two sets PL and PR along a vertical line l such that the

sizes of PL and PR differ by at most 1 and the x-coordinate of all points pL ∈
PL (pR ∈ PR) is ≤ l (≥ l).
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We then conquer the left and right subproblems by applying the algorithm
recursively, obtaining (pL0, pL1) and (pR0, pR1), the respective closest pairs of
PL and PR. Let δL and δR denote the distance of the left and right closest pairs
and let δ = min δL δR. At this point the closest pair of P is either (pL0, pL1),
(pR0, pR1) or a pair of points p0 ∈ PL and p1 ∈ PR with a distance strictly less
than δ. In the first two cases we have already found our closest pair.

Now we assume the third case and have reached the most interesting part
of divide-and-conquer algorithms, the combine step. It is not hard to see that
both points of the closest pair must be within a 2δ wide vertical strip centered
around l. Let ps be a list of all points in P that are contained within this 2δ
wide strip, sorted in ascending order by y-coordinate. We can find our closest
pair by iterating over ps and computing for each point its closest neighbor. But
in the worst case ps contains all points of P , and we might think our only option
is to again check all

(
n
2

)
point combinations. This is not the case. Let p denote

an arbitrary point of ps, depicted as the square point in Fig. 1. If p is one of the
points of the closest pair, then the distance to its closest neighbor is strictly less
than δ and we only have to check all points q ∈ set ps that are contained within
the 2δ wide horizontal strip centered around the y-coordinate of p.

Fig. 1. The combine step

In Sect. 4 we prove that, for each p ∈ set ps, it suffices to check only a constant
number of closest point candidates. This fact allows for an implementation of the
combine step that runs in linear time and ultimately lets us achieve the familiar
recurrence of T (n) = T (�n/2�) + T (	n/2
) + O(n), which results in the running
time of O(n log n).
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We glossed over some implementation details to achieve this time complexity.
In Sect. 3 we refine the algorithm and in Sect. 4 we prove the O(n log n) running
time.

3 Implementation and Functional Correctness Proof

We present the implementation of the divide-and-conquer algorithm and the
corresponding correctness proofs using a bottom-up approach, starting with the
combine step. The basis for both implementation and proof is the version pre-
sented by Cormen et al. [5]. But first we need to define the closest pair problem
formally.

A point in the two-dimensional Euclidean plane is represented as a pair of
(unbounded) integers1. The library HOL-Analysis provides a generic distance
function dist applicable to our point definition. The definition of this specific
dist instance corresponds to the familiar Euclidean distance measure.

The closest pair problem can be stated formally as follows: A set of points P
is δ-sparse iff δ is a lower bound for the distance of all distinct pairs of points
of P .

sparse δ P = (∀ p0 ∈ P . ∀ p1 ∈ P . p0 �= p1 −→ δ ≤ dist p0 p1)

We can now state easily when two points p0 and p1 are a closest pair of P :
p0 ∈ P , p1 ∈ P , p0 �= p1 and (most importantly) sparse (dist p0 p1) P .

In the following we focus on outlining the proof of the sparsity property of
our implementation, without going into the details. The additional set mem-
bership and distinctness properties of a closest pair can be proved relatively
straightforwardly by adhering to a similar proof structure.

3.1 The Combine Step

The essence of the combine step deals with the following scenario: We are given
an initial pair of points with a distance of δ and a list ps of points, sorted
in ascending order by y-coordinate, that are contained in the 2δ wide vertical
strip centered around l (see Fig. 1). Our task is to efficiently compute a pair of
points with a distance δ′ ≤ δ such that ps is δ′-sparse. The recursive function
find closest pair achieves this by iterating over ps, computing for each point
its closest neighbor by calling the recursive function find closest that considers
only the points within the shaded square of Fig. 1, and updating the current
pair of closest points if the newly found pair is closer together. We omit the
implementation of the trivial base cases.

1 We choose integers over reals because be we cannot implement mathematical reals.
See Sect. 6. Alternatively we could have chosen rationals.
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find closest pair :: point × point ⇒ point list ⇒ point × point
find closest pair (c0, c1) (p0 # ps) =
(let p1 = find closest p0 (dist c0 c1) ps
in if dist c0 c1 ≤ dist p0 p1 then find closest pair (c0, c1) ps

else find closest pair (p0, p1) ps)

find closest :: point ⇒ real ⇒ point list ⇒ point
find closest p δ (p0 # ps) =
(if δ ≤ snd p0 − snd p then p0

else let p1 = find closest p (min δ (dist p p0)) ps
in if dist p p0 ≤ dist p p1 then p0 else p1)

There are several noteworthy aspects of this implementation. The recursive
search for the closest neighbor of a given point p of find closest starts at the first
point spatially above p, continues upwards and is stopped early at the first point
whose vertical distance to p is equal to or exceeds the given δ. Thus the function
considers, in contrast to Fig. 1, only the upper half of the shaded square during
this search. This is sufficient for the computation of a closest pair because for
each possible point q preceding p in ps we already considered the pair (q, p),
if needed, and do not have to re-check (p, q) due to the commutative property
of our closest pair definition. Note also that δ is updated, if possible, during
the computation and consequently the search space for each point is limited to
a 2δ × δ′ rectangle with δ′ ≤ δ. Lastly we intentionally do not minimize the
number of distance computations. In Sect. 6 we make this optimization for the
final executable code.

The following lemma captures the desired sparsity property of our implemen-
tation of the combine step so far. It is proved by induction on the computation.

Lemma 1. sorted snd ps ∧ (p0, p1) = find closest pair (c0, c1) ps
=⇒ sparse (dist p0 p1) (set ps)

where sorted snd ps means that ps is sorted in ascending order by y-coordinate.
We wrap up the combine step by limiting our search for the closest pair

to only the points contained within the 2δ wide vertical strip and choosing as
argument for the initial pair of points of find closest pair the closest pair of the
two recursive invocations of our divide-and-conquer algorithm with the smaller
distance δ.

combine :: point × point ⇒ point × point ⇒ int ⇒ point list ⇒ point × point
combine (p0L, p1L) (p0R, p1R) l ps =
(let (c0, c1) =

if dist p0L p1L < dist p0R p1R then (p0L, p1L) else (p0R, p1R)
in find closest pair (c0, c1)

(filter (λp. dist p (l , snd p) < dist c0 c1) ps))

Lemma 2 shows that if there exists a pair (p0, p1) of distinct points with a
distance < δ, then both its points are contained in the mentioned vertical strip,
otherwise we have already found our closest pair (c0, c1), and the pair returned
by find closest pair is its initial argument.
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Lemma 2. p0 ∈ set ps ∧ p1 ∈ set ps ∧ p0 �= p1 ∧ dist p0 p1 < δ ∧
(∀ p ∈ PL. fst p ≤ l) ∧ sparse δ PL ∧
(∀ p ∈ PR. l ≤ fst p) ∧ sparse δ PR ∧
set ps = PL ∪ PR ∧ ps ′ = filter (λp. dist p (l , snd p) < δ) ps
=⇒ p0 ∈ set ps ′ ∧ p1 ∈ set ps ′

We then can prove, additionally using Lemma1, that combine computes
indeed a pair of points (p0, p1) such that our given list of points ps is (dist
p0 p1)-sparse.

Lemma 3. sorted snd ps ∧ set ps = PL ∪ PR ∧
(∀ p ∈ PL. fst p ≤ l) ∧ sparse (dist p0L p1L) PL ∧
(∀ p ∈ PR. l ≤ fst p) ∧ sparse (dist p0R p1R) PR ∧
(p0, p1) = combine (p0L, p1L) (p0R, p1R) l ps
=⇒ sparse (dist p0 p1) (set ps)

One can also show that p0 and p1 are in ps and distinct (and thus a closest
pair of set ps), if p0L (p0R) and p1L (p1R) are in PL (PR) and distinct.

3.2 The Divide & Conquer Algorithm

In Sect. 2 we glossed over some implementation detail which is necessary to
achieve to running time of O(n log n). In particular we need to partition the
given list2 of points ps along a vertical line l into two lists of nearly equal
length during the divide step and obtain a list ys of the same points, sorted
in ascending order by y-coordinate, for the combine step in linear time at each
level of recursion.

Cormen et al. propose the following top-down approach: Their algorithm
takes three arguments: the set of points P and lists xs and ys which contain
the same set of points P but are respectively sorted by x and y-coordinate.
The algorithm first splits xs at length xs div 2 into two still sorted lists xsL
and xsR and chooses l as either the x -coordinate of the last element of xsL
or the x -coordinate of the first element of xsR. It then constructs the sets PL

and PR respectively consisting of the points of xsL and xsR. For the recursive
invocations it needs to obtain in addition lists ysL and ysR that are still sorted
by y-coordinate and again respectively refer to the same points as xsL and xsR.
It achieves this by iterating once through ys and checking for each point if it is
contained in PL or not, constructing ysL and ysR along the way.

But this approach requires an implementation of sets. In fact, if we want to
achieve the overall worst case running time of O(n log n) it requires an implemen-
tation of sets with linear time construction and constant time membership test,
which is nontrivial, in particular in a functional setting. To avoid sets many pub-
lications and implementations either assume all points have unique x -coordinates
or preprocess the points by applying for example a rotation such that the input

2 Our implementation deals with concrete lists in contrast to the abstract sets used in
Sect. 2.
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fulfills this condition. For distinct x -coordinates one can then compute ysL and
ysR by simply filtering ys depending on the x -coordinate of the points relative
to l and eliminate the usage of sets entirely.

But there exists a third option which we have found only in Cormen et al.
where it is merely hinted at in an exercise left to the reader. The approach
is the following. Looking at the overall structure of the closest pair algorithm
we recognize that it closely resembles the structure of a standard mergesort
implementation and that we only need ys for the combine step after the two
recursive invocations of the algorithm. Thus we can obtain ys by merging ‘along
the way’ using a bottom-up approach. This is the actual code:

closest pair rec :: point list ⇒ point list × point × point
closest pair rec xs =
(let n = length xs
in if n ≤ 3 then (mergesort snd xs, closest pair bf xs)

else let (xsL, xsR) = split at (n div 2) xs;
(ysL, p0L, p1L) = closest pair rec xsL;
(ysR, p0R, p1R) = closest pair rec xsR;
ys = merge snd ysL ysR

in (ys, combine (p0L, p1L) (p0R, p1R) (fst (hd xsR)) ys))

closest pair :: point list ⇒ point × point
closest pair ps =
(let (ys, c0, c1) = closest pair rec (mergesort fst ps) in (c0, c1))

Function closest pair rec expects a list of points xs sorted by x -coordinate.
The construction of xsL, xsR and l is analogous to Cormen et al. In the base
case we then sort xs by y-coordinate and compute the closest pair using the
brute-force approach (closest pair bf ). The recursive call of the algorithm on xsL
returns in addition to the closest pair of xsL the list ysL, containing all points of
xsL but now sorted by y-coordinate. Analogously for xsR and ysR. Furthermore,
we reuse function merge from our mergesort implementation, which we utilize
to presort the points by x -coordinate, to obtain ys from ysL and ysR in linear
time at each level of recursion.

Splitting of xs is performed by the function split at via a simple linear pass
over xs. Our implementation of mergesort sorts a list of points depending on a
given projection function, fst for ‘by x -coordinate’ and snd for ‘by y-coordinate’.

Using Lemma 3, the functional correctness proofs of our mergesort implemen-
tation and several auxiliary lemmas proving that closest pair rec also sorts the
points by y-coordinate, we arrive at the correctness proof of the desired sparsity
property of the algorithm.

Theorem 1. 1 < length xs ∧ sorted fst xs ∧ (ys, p0, p1) = closest pair rec xs
=⇒ sparse (dist p0 p1) xs

Corollary 1 together with Theorems 2 and 3 then show that the pair (p0, p1)
is indeed a closest pair of ps.
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Corollary 1. 1 < length ps ∧ (p0, p1) = closest pair ps
=⇒ sparse (dist p0 p1) ps

Theorem 2. 1 < length ps ∧ (p0, p1) = closest pair ps
=⇒ p0 ∈ set ps ∧ p1 ∈ set ps

Theorem 3. 1 < length ps ∧ distinct ps ∧ (p0, p1) = closest pair ps
=⇒ p0 �= p1

4 Time Complexity Proof

To formally verify the running time we follow the approach in [16]. For each
function f we define a function t f that takes the same arguments as f but
computes the number of function calls the computation of f needs, the ‘time’.
Function t f follows the same recursion structure as f and can be seen as an
abstract interpretation of f . To ensure the absence of errors we derive f and
t f from a monadic function that computes both the value and the time but for
simplicity of presentation we present only f and t f . We also simplify matters a
bit: we count only expensive operations where the running time increases with
the size of the input; in particular we assume constant time arithmetic and ignore
small additive constants. Due to reasons of space we only show one example of
such a ‘timing’ function, t find closest , which is crucial to our time complexity
proof.

t find closest :: point ⇒ real ⇒ point list ⇒ nat
t find closest p δ [] = 0
t find closest p δ [p0] = 1
t find closest p δ (p0 # ps) = 1 +
(if δ ≤ snd p0 − snd p then 0
else let p1 = find closest p (min δ (dist p p0)) ps

in t find closest p (min δ (dist p p0)) ps +
(if dist p p0 ≤ dist p p1 then 0 else 0))

We set the time to execute dist computations to 0 since it is a combination of
cheap operations. For the base cases of recursive functions we fix the computation
time to be equivalent to the size of the input. This choice of constants is arbitrary
and has no impact on the overall running time analysis but leads in general to
‘cleaner’ arithmetic bounds.

4.1 Time Analysis of the Combine Step

In Sect. 2 we claimed that the running time of the algorithm is captured by
the recurrence T (n) = T (�n/2�) + T (	n/2
) + O(n), where n is the length
of the given list of points. This claim implies an at most linear overhead at
each level of recursion. Splitting of the list xs, merging ysL and ysR and the
filtering operation of the combine step run in linear time. But it is non-trivial
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that the function find closest pair , central to the combine step, also exhibits a
linear time complexity. It is applied to an argument list of, in the worst case,
length n, iterates once through the list and calls find closest for each element.
Consequently our proof obligation is the constant running time of find closest
or, considering our timing function, that there exists some constant c such that
t find closest p δ ps ≤ c holds in the context of the combine step.

Looking at the definition of find closest we see that the function terminates
as soon as it encounters the first point within the given list ps that does not
fulfill the predicate (λq . δ ≤ snd q − snd p), the point p being an argument to
find closest , or if ps is a list of length ≤1. The corresponding timing function
t find closest computes the number of recursive function calls, which is, in this
case, synonymous with the number of examined points. For our time complexity
proof it suffices to show the following bound on the result of t find closest . The
proof is by induction on the computation of t find closest . The function count f
is an abbreviation for length ◦ filter f .

Lemma 4. t find closest p δ ps ≤ 1 + count (λq . snd q − snd p ≤ δ) ps

Therefore we need to prove that the term count (λq . snd q − snd p ≤ δ) ps
does not depend on the length of ps. Looking back at Fig. 1, the square point
representing p, we can assume that the list p # ps is distinct and sorted in
ascending order by y-coordinate. From the precomputing effort of the combine
step we know that its points are contained within the 2δ wide vertical strip
centered around l and can be split into two sets PL (PR) consisting of all
points which lie to the left (right) of or on the line l . Due to the two recursive
invocations of the algorithm during the conquer step we can additionally assume
that both PL and PR are δ-sparse, suggesting the following lemma which implies
t find closest p δ ps ≤ 8 and thus the constant running time of find closest .

Lemma 5. distinct (p # ps) ∧ sorted snd (p # ps) ∧ 0 ≤ δ ∧
(∀ q ∈ set (p # ps). l − δ < fst q ∧ fst q < l + δ) ∧
set (p # ps) = PL ∪ PR ∧
(∀ q ∈ PL . fst q ≤ l) ∧ sparse δ PL ∧
(∀ q ∈ PR . l ≤ fst q) ∧ sparse δ PR

=⇒ count (λq . snd q − snd p ≤ δ) ps ≤ 7

Proof. The library HOL-Analysis defines some basic geometric building blocks
needed for the proof. A closed box describes points contained within rectangular
shapes in Euclidean space. For our purposes the planar definition is sufficient.

cbox (x 0, y0) (x 1, y1) = {(x , y) | x 0 ≤ x ∧ x ≤ x 1 ∧ y0 ≤ y ∧ y ≤ y1}

The box is ‘closed’ since it includes points located on the border of the box.
We then introduce some useful abbreviations:

– The rectangle R is the upper half of the shaded square of Fig. 1:
R = cbox (l − δ, snd p) (l + δ, snd p + δ)
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– The set Rps consists of all points of p # ps that are encompassed by R:
Rps = R ∩ set (p # ps)

– The squares SL and SR denote the left and right halves of R:
SL = cbox (l − δ, snd p) (l , snd p + δ)
SR = cbox (l , snd p) (l + δ, snd p + δ)

– The set SPL holds all points of PL that are contained within the square SL.
The definition of SPR is analogous:
SPL = PL ∩ SL, SPR = PR ∩ SR

Let additionally psf abbreviate the term filter (λq . snd q − snd p ≤ δ)
ps. First we prove length (p # psf ) ≤ |Rps|: Let q denote an arbitrary point
of p # psf . We know snd p ≤ snd q because the list p # ps and therefore
p # psf is sorted in ascending order by y-coordinate and snd q ≤ snd p + δ
due to the filter predicate (λq . snd q − snd p ≤ δ). Using the additional facts
l − δ ≤ fst q and fst q ≤ l + δ (derived from our assumption that all points
of p # ps are contained within the 2δ strip) and the definitions of Rps, R
and cbox we know q ∈ Rps and thus set (p # psf ) ⊆ Rps. Since the list
p # psf maintains the distinctness property of p # ps we additionally have
length (p # psf ) = |set (p # psf )|. Our intermediate goal immediately follows
because |set (p # psf )| ≤ |Rps| holds for the finite set Rps.

But how many points can there be in Rps? Lets first try to determine an
upper bound for the number of points of SPL. All its points are contained
within the square SL whose side length is δ. Moreover, since PL is δ-sparse
and SPL ⊆ PL, SPL is also δ-sparse, or the distance between each distinct pair
of points of SPL is at least δ. Therefore the cardinality of SPL is bounded
by the number of points we can maximally fit into SL, maintaining a pairwise
minimum distance of δ. As the left-hand side of Fig. 2 depicts, we can arrange at
most four points adhering to these restrictions, and consequently have |SPL| ≤
4. An analogous argument holds for the number of points of SPR. Furthermore
we know Rps = SPL ∪ SPR due to our assumption set (p # ps) = PL ∪ PR

and the fact R = SL ∪ SR and can conclude |Rps| ≤ 8. Our original statement
then follows from length (p # psf ) ≤ |Rps|. ��

Fig. 2. Core argument.

Note that the intermediate proof for the bound on |Rps| relies on basic human
geometric intuition. Indeed Cormen et al. [5] and most of the proofs in the
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literature do. But for a formal proof we have to be rigorous. First we show two
auxiliary lemmas: The maximum distance between two points in a square S with
side length δ is less than or equal to

√
2δ.

Lemma 6. p0 = (x , y) ∧ p1 = (x + δ, y + δ) ∧ 0 ≤ δ ∧
(x 0, y0) ∈ cbox p0 p1 ∧ (x 1, y1) ∈ cbox p0 p1

=⇒ dist (x 0, y0) (x 1, y1) ≤ √
2 ∗ δ

The proof is straightforward. Both points are contained within the square S ,
the difference between their x and y coordinates is hence bounded by δ and we
finish the proof using the definition of the Euclidean distance. Below we employ
the following variation of the pigeonhole principle:

Lemma 7. finite B ∧ A ⊆ ⋃
B ∧ |B | < |A|

=⇒ ∃ x ∈ A. ∃ y ∈ A. ∃S ∈ B . x �= y ∧ x ∈ S ∧ y ∈ S

Finally we replace human intuition with formal proof:

Lemma 8. (∀ p ∈ P . p ∈ cbox (x , y) (x + δ, y + δ)) ∧ sparse δ P ∧ 0 ≤ δ
=⇒ |P | ≤ 4

Proof. Let S denote the square with a side length of δ and suppose, for the
sake of contradiction, that 4 < |P |. Then S can be split into the four congruent
squares S 1, S 2, S 3, S 4 along the common point (x + δ/2, y + δ/2) as depicted
by the right-hand side of Fig. 2. Since all points of P are contained within S
and S =

⋃ {S 1, S 2, S 3, S 4} we have P ⊆ ⋃ {S 1, S 2, S 3, S 4}. Using Lemma 7 and
our assumption 4 < |P | we know there exists a square S i ∈ {S 1, S 2, S 3, S 4} and
a pair of distinct points p0 ∈ S i and p1 ∈ S i. Lemma 6 and the fact that all four
sub-squares have the same side length δ / 2 shows that the distance between p0

and p1 must be less than or equal to
√

2 / 2 ∗ δ and hence strictly less than δ. But
we also know that δ is a lower bound for this distance because p0 ∈ P , p0 ∈ P ,
p0 �= p1 and our premise that P is δ-sparse, a contradiction. ��

4.2 Time Analysis of the Divide & Conquer Algorithm

In summary, the time to evaluate find closest p δ ps is constant in the context
of the combine step and thus evaluating find closest pair (p0, p1) ps as well as
combine (p0L, p1L) (p0R, p1R) l ps takes time linear in length ps.

Next we turn our attention to the timing of closest pair rec and derive (but do
not show) the corresponding function t closest pair rec. At this point we could
prove a concrete bound on t closest pair rec. But since we are dealing with a
divide-and-conquer algorithm we should, in theory, be able to determine its run-
ning time using the ‘master theorem’ [5]. This is, in practice, also possible in Isa-
belle/HOL. Eberl [8] has formalized the Akra-Bazzi theorem [1], a generalization
of the master theorem. Using this formalization we can derive the running time
of our divide-and-conquer algorithm without a direct proof for t closest pair rec.
First we capture the essence of t closest pair rec as a recurrence on natural num-
bers representing the length of the list argument of (t )closest pair rec:
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closest pair recurrence :: nat ⇒ real
closest pair recurrence n =
(if n ≤ 3 then n + mergesort recurrence n + n ∗ n
else 13 ∗ n + closest pair recurrence 	n / 2
 +

closest pair recurrence �n / 2�)
The time complexity of this recurrence is proved completely automatically:

Lemma 9. closest pair recurrence ∈ Θ(λn. n ∗ ln n)

Next we need to connect this bound with our timing function. Lemma10
below expresses a procedure for deriving complexity properties of the form

t ∈ O [m going to at top within A](f ◦ m)

where t is a timing function on the data domain, in our case lists. The function
m is a measure on that data domain, r is a recurrence or any other function of
type nat ⇒ real and A is the set of valid inputs. The term ‘m going to at top
within A’ should be read as ‘if the measured size of valid inputs is sufficiently
large’ and utilizes Eberls formalization of Landau Notation [9] and the “filter”
machinery of asymptotics in Isabelle/HOL [11]. For readability we omit stating
the filter and m explicitly in the following and just state the conditions required
of the input A. The measure m always corresponds to the length function.

Lemma 10. (∀ x ∈ A. t x ≤ (r ◦ m) x ) ∧ r ∈ O(f ) ∧ (∀ x ∈ A. 0 ≤ t x )
=⇒ t ∈ O [m going to at top within A](f ◦ m)

Lemma 11. distinct ps ∧ sorted fst ps
=⇒ t closest pair rec ps ≤ (closest pair recurrence ◦ length) ps

Using Lemmas 9, 10 and 11 we arrive at Theorem 4, expressing our main
claim: the running time of the divide-and-conquer algorithm.

Theorem 4. For inputs that are distinct and sorted by x-coordinate:
t closest pair rec ∈ O(λn. n ∗ ln n)

Since the function closest pair only presorts the given list of points using our
mergesort implementation and then calls closest pair rec we obtain Corollary 2
and finish the time complexity proof.

Corollary 2. For distinct inputs: t closest pair ∈ O(λn. n ∗ ln n)

5 Alternative Implementations

In the literature there exist various other algorithmic approaches to solve the
closest pair problem. Most of them are closely related to our implementation
of Sect. 3, deviating primarily in two aspects: the exact implementation of the
combine step and the approach to sorting the points by y-coordinate we already
discussed in Subsect. 3.2. We present a short overview, concentrating on the
combine step and the second implementation we verified.
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5.1 A Second Verified Implementation

Although the algorithm described by Cormen et al. is the basis for our imple-
mentation of Sect. 3, we took the liberty to optimize it. During execution of
find closest p δ ps our algorithm searches for the closest neighbor of p within
the rectangle R, the upper half of the shaded square S of Fig. 1, and terminates
the search if it examines points on or beyond the upper border of R. Cormen
et al. originally follow a slightly different approach. They search for a closest
neighbor of p by examining a constant number of points of ps, the first 7 to be
exact. This is valid because there are at most 7 points within R, not counting
p, and the 8th point of ps would again lie on or beyond the upper border of
R. This slightly easier implementation comes at the cost of being less efficient
in practice. Cormen et al. are always assuming the worst case by checking all 7
points following p. But it is unlikely that the algorithm needs to examine even
close to 7 points, except for specifically constructed inputs. They furthermore
state that the bound of 7 is an over-approximation and dare the reader to lower
it to 5 as an exercise. We refrain from doing so since a bound of 7 suffices for the
time complexity proof of our, inherently faster, implementation. At this point
we should also mention that the specific optimization of Sect. 3 is not our idea
but rather an algorithmic detail which is unfortunately rarely mentioned in the
literature.

Nonetheless we can adapt the implementation of Sect. 3 and the proofs of
Sect. 4 to verify the original implementation of Cormen et al. as follows: We
replace each call of find closest p δ ps by a call to find closest bf p (take 7 ps)
where find closest bf iterates in brute-force fashion through its argument list to
find the closest neighbor of p. To verify this implementation we then reuse most
of the elementary lemmas and proof structure of Sects. 3 and 4, only a slightly
adapted version of Lemma 5 is necessary. Note that this lemma was previously
solely required for the time complexity proof of the algorithm. Now it is already
necessary during the functional correctness proof since we need to argue that
examining only a constant number of points of ps is sufficient. The time analysis
is overall greatly simplified: A call of the form find closest bf p (take 7 ps) runs in
constant time and we again are able to reuse the remaining time analysis proof
structure of Sect. 4. For the exact differences between both formalizations we
encourage the reader the consult our entry in the Archive of Formal Proofs [23].

5.2 Related Work

Over the years a considerable amount of effort has been made to further optimize
the combine step. Central to these improvements is the ‘complexity of comput-
ing distances’, abbreviated CCP in the following, a term introduced by Zhou et
al. [26] which measures the number of Euclidean distances computed by a closest
pair algorithm. The core idea being, since computing the Euclidean distance is
more expensive than other primitive operations, it might be possible to improve
overall algorithmic running time by reducing this complexity measure. In the
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same paper they introduce an optimized version of the closest pair algorithm
with a CCP of 2n log n, in contrast to 7n log n which will be the worst case CCP
of the algorithm of Sect. 3 after we minimize the number of distance computa-
tions in Sect. 6. They improve upon the algorithm presented by Preparata and
Shamos [21] which achieves a CCP of 3n log n. Ge et al. [10] base their, quite
sophisticated, algorithm on the version of Zhou et al. and prove an even lower
CCP of 3

2n log n for their implementation. The race for the lowest number of dis-
tance computations culminates so far with the work of Jiang and Gillespie [13]
who present their algorithms ‘Basic-2’3 and ‘2-Pass’ with a respective CCP of
2n log n and (for the first time linear) 7

2n.

6 Executable Code

Before we explore how our algorithm stacks up against Basic-2 (which is sur-
prisingly the fastest of the CCP minimizing algorithms according to Jiang and
Gillespie) we have to make some final adjustments to generate executable code
from our formalization.

In Sect. 3 we fixed the data representation of a point to be a pair of mathemat-
ical ints rather than mathematical reals. During code export Isabelle then maps,
correctly and automatically, its abstract data type int to a suitable concrete
implementation of (arbitrary-sized) integers; for our target language OCaml
using the library ‘zarith’. For the data type real this is not possible since we
cannot implement mathematical reals. We would instead have to resort to an
approximation (e.g. floats) losing all proved guarantees in the process. But cur-
rently our algorithm still uses the standard Euclidean distance and hence math-
ematical reals due to the sqrt function. For the executable code we have to
replace this distance measure by the squared Euclidean distance. To prove that
we preserve the correctness of our implementation several small variations of the
following lemma suffice:

dist p0 p1 ≤ dist p2 p3 ←→ (dist p0 p1)2 ≤ (dist p2 p3)2

We apply two further code transformations. To minimize the number of distance
computations we introduce auxiliary variables which capture and then replace
repeated computations. For all of the shown functions that return a point or a
pair of points this entails returning the corresponding computed distance as well.
Furthermore we replace recursive auxiliary functions such as filter by correspond-
ing tail-recursive implementations to allow the OCaml compiler to optimize the
generated code and prevent stackoverflows. To make sure these transformations
are correct we prove lemmas expressing the equivalence of old and new imple-
mentations for each function. Isabelles code export machinery can then apply
these transformations automatically.

Now it is time to evaluate the performance of our verified code. Figure 3
depicts the running time ratios of several implementations of the algorithm of
3 Pereira and Lobo [19] later independently developed the same algorithm and addi-

tionally present extensive functional correctness proofs for all Minkowski distances.
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Sect. 3 (called Basic-δ) and Basic-7 (the original approach of Cormen et al.) over
Basic-2. Basis-δ is tested in three variations: the exported (purely functional)
Isabelle code and equivalent handwritten functional and imperative implemen-
tations to gauge the overhead of the machine generated code. All algorithms
are implemented in OCaml, use our bottom-up approach to sorting (imperative
implementations sort in place) of Subsect. 3.2 and for each input of uniformly
distributed points 50 independent executions were performed. Remarkably the
exported code is only about 2.284 times slower than Basic-2 and furthermore
most of the difference is caused by the inefficiencies inherent to machine gen-
erated code since its equivalent functional implementation is only 11% slower
than Basic-2. Basic-7 is 2.26 times slower than the imperative Basic-δ which
demonstrates the huge impact the small optimization of Subsect. 5.1 can have
in practice.

Fig. 3. Benchmarks.

7 Conclusion

We have presented the first verification (both functional correctness and run-
ning time) of two related closest pair of points algorithms in the plane, without
assuming the x coordinates of all points to be distinct. The executable code
generated from the formalization is competitive with existing reference imple-
mentations. A challenging and rewarding next step would be to formalize and

4 We measure differences between running times as the average over all data points
weighted by the size of the input.
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verify a closest pair of points algorithm in arbitrary dimensions. This case is
treated rather sketchily in the literature.
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Abstract. We have modified the Vampire theorem prover to support
rank-1 polymorphism. In this paper we discuss the changes required
to enable this and compare the performance of polymorphic Vampire
against other polymorphic provers. We also compare its performance on
monomorphic problems against standard Vampire. Finally, we discuss
how polymorphism can be used to support theory reasoning and present
results related to this.

1 Introduction

Vampire is a well known automated theorem prover for first-order logic with
equality [14]. For a long period, Vampire supported only untyped first-order
logic. Around 2011 it was extended to support monomorphic first-order logic
(FOL). As part of recent work on supporting higher-order logic reported on
elsewhere [1], Vampire has been extended to support rank-1, polymorphic, first-
order logic1.

Polymorphic types have a number of advantages over their monomorphic
counterparts. Firstly, they provide the user with a more succinct language for
describing their problem. Secondly, they provide an elegant solution to deal-
ing with theories. For example, when dealing with the theory of arrays, rather
than having to provide separate sets of axioms for arrays of different sorts, poly-
morphism allows us to provide a single set of axioms. Thirdly, polymorphism
also permits higher-order logic to be finitely axiomatizable in first-order logic by
introducing polymorphic axioms for the SK-combinators.

There are several ways of encoding polymorphism. However, many of these
are cumbersome and some even unsound [8]. Blanchette et al. [2] list a number
of common translation methods including the use of type tags, type guards and
type arguments. Of these, the last is unsound and the first two cumbersome. As
the type tags and guards are ubiquitous in the literature, we provide a compari-
son between native handling of polymorphism and the use of these encodings in
Sect. 5. Given issues with encodings, it makes sense to deal natively with poly-
morphism if possible. We are certainly not the first to attempt to do so. Bobot et

1 At the time of publication this extension exists in a separate branch from the main
Vampire development. See https://vprover.github.io/download.html.
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Problem 1 Sample TF1 problem (truncated)
tff(map, type, map : ($tType * $tType) > $tType).
tff(lookup, type,

lookup : !>[A : $tType, B : $tType]: ((map(A, B) * A) > B)).
tff(update, type,

update : !>[A : $tType, B : $tType]:
((map(A, B) * A * B) > map(A, B))).

tff(lookup_update_same, axiom,
![A : $tType, B : $tType, M : map(A, B), K : A, V : B]:

lookup(A, B, update(A, B, M, K, V), K) = V).
tff(update_idem, conjecture,

![A : $tType, B : $tType, M : map(A, B), K : A, V : B]:
update(A, B, update(A, B, M, K, V), K, V) =
update(A, B, M, K, V)).

al. [5] have introduced polymorphism into their SMT solver Alt-Ergo. Similarly,
the first-order provers ZenonModulo [11] and Zipperposition [9] support some
form of polymorphism. However, it remains the case that few first-order provers
can handle polymorphism.

In this short paper we begin by describing the relatively modest changes that
had to be made to Vampire to support polymorphism (Sect. 2). We then present
experimental results demonstrating that these changes are useful (Sect. 3).
Finally, we discuss work-in-progress to use these polymorphic extensions to
improve theory reasoning in Vampire both in terms of proof search and imple-
mentation (Sect. 4).

Before this, we give a brief (and informal) reminder of what rank-1 poly-
morphism is. A polymorphic type is a type variable, or n-ary type constructor
applied to n types. The type of all types is represented as $tType in TPTP syn-
tax [17] which is used throughout this paper. Terms, in polymorphic FOL, are
either a variable or a function symbol applied to m type arguments and n term
arguments. Rank-1 polymorphism allows type and term variables to be quanti-
fied with the rule that an existentially quantified type may not occur underneath
a universal term quantifier. On skolemisation such a construct would become a
dependent type and require superposition into types.

2 Implementation

To support polymorphism modifications had to be carried out in three main
areas. Firstly, changes had to be made to the concept of types in Vampire.
Secondly, some inferences had to be modified slightly and finally preprocessing
required consideration. We describe the work undertaken in this order.

Problem 1 is an example of a problem in TPTP TF1 syntax [3,17]. We use
this problem to illustrate our implementation. The major change undertaken was
to replace types with terms. In monomorphic Vampire each type in the input
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problem is stored as an unsigned integer. Function symbols are then assigned
a type signature which is merely a list of unsigned integers representing the
argument and return types. In polymorphic first-order logic, types have all the
structure of terms. Therefore, it made sense to replace the types with terms.
Type signatures then become a list of terms.

The type of a term of the form func_sym(arg_1 ... arg_n) can be calcu-
lated by substituting the type arguments that the head symbol is applied to into
its result type. For example, the type of update($int, $i, map, 1, X) would
be map($int, $i). For a term func_sym(arg_1 ... arg_n), the type of the
ith term argument can be calculated in the same way. The one problem that
arises is with two variable literals such as X = Y. In this case, the type of the
terms X and Y have to be stored as a separate field in the literal.

The elegance of treating types as terms can be gauged when attention is
turned to unification. Had types and terms been kept separate, unifying terms
would have become an involved process requiring the unification of term and
type arguments separately. As it is, type unification comes for ‘free’ with one
caveat as shall be seen. Consider unifying the terms update($int, $i, map,
1, X) and update(Y, Z, map, Z’, a). The existing unification procedure in
Vampire can handle this and return the type and term unifier {Y → $int, Z →
$i, Z’ → 1, X → a}. The one hitch occurs when unifying a term with a variable.
As variables carry no type information, a second call must be made to the
unification procedure to ensure that the type of the variable and the type of the
term are unifiable.

As far as changes to inferences are concerned, no updates were required for
inferences that do not work at subterms such as resolution or equality factoring.
For inferences that work at subterms such as superposition and demodulation, we
modified the iterators that return candidate subterms so that they do not return
type arguments as superposition into types is unnecessary. We mentioned that
the modifications required to support polymorphism were light. They also (in
theory, see later experiment) add no overhead when dealing with monomorphic
problems. In this case all types are constants and unifiability checking of types
in the variable case degenerates to a syntactic equality check.

Finally, regarding preprocessing, implementing skolemisation posed a subtle
issue. A skolem function must be applied to the free term and type variables in
its context. For example, the skolemisation of ![X: $int, Y: $tType] : ?[Z
: $i] : (func_sym(Y, X, Z)) would be ![X: $int, Y: $tType] : ?[Z :
$i] : (func_sym(Y, X, sk(Y, Z))). This required us to update the notion
of free variable within the code (e.g., when iterating over the free variables of a
formula).

3 Results

To test our implementation we ran two experiments. All experiments were carried
out with a CPU time limit of 300 s on StarExec [16] nodes equipped with four
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Table 1. Problems proved theorem or unsat

TF1 problems TF0 problems
Solved Uniques Solved Uniques

Leo-III 1.4 224 10 8,665 100
Vampire 4.4 – – 11,338 476
Vampire-poly 239 21 10,641 88
ZenonModulo 0.4.2 80 1 2,926 14

2.40GHz Intel Xeon CPUs. Our experimental results are publicly available.2 All
solver configurations used where taken from the last CASC in which that solver
was entered. The portfolio of strategies for the two Vampire variants were the
same.

Experiment 1. Firstly we ran Vampire on the set of 539 TF1 (rank-1 polymor-
phic) problems in the TPTP library. We compared the results against those of
two other provers able to parse TPTP syntax and handle polymorphism that
we are aware of, Leo-III [15] and ZenonModulo [11].3 Vampire solved 15 more
problems than Leo-III and 21 problems that neither Leo-III nor ZenonModulo
could solve (see Table 1), although both solvers also solved problems Vampire
was unable to solve. Vampire solves 7 previously unsolved rating 1.00 problems.

Experiment 2. We also wanted to ascertain how much overhead had been added
for non-polymorphic problems, so we tested the polymorphic version of Vampire,
Vampire-poly, against the previous version on the set of all 33,843 monomorphic
or untyped first order problems in the TPTP library not containing arithmetic.
Note that this simply tests whether we go from solving a problem to not solving
it (or vice versa) and not the time taken to find a solution, i.e., we test the
impact on proof search and whether any time overhead takes us past the given
time limit.

The results (see Table 1) are interesting. For TF0 problems Vampire 4.4 does
indeed outperform its polymorphic sibling. However, at the time of writing, there
is a bug in the polymorphic parser that resulted in 324 problems being incorrectly
rejected. Even taking this into account, the performance of Vampire-poly lags
behind and the cause of this remains to be fully investigated, although is likely to
be due to the fragile nature of proof search in Vampire. Note that Vampire-poly
solves 88 problems unsolved by Vampire 4.4.

2 https://github.com/vprover/vampire_publications/tree/master/experimental_data
/IJCAR-2020-POLY-VAMP - this contains the results themselves and a link to the
Vampire executable that produced them. Polymorphism is not yet supported in
the main branch of Vampire but is available in the polymorphic_vampire branch,
which may be merged in the future.

3 At a late stage, we realised that Zipperposition [10] can also parse TF1 syntax.
Unfortunately, it was too late to incorporate it into the results.

https://github.com/vprover/vampire_publications/tree/master/experimental_data/IJCAR-2020-POLY-VAMP
https://github.com/vprover/vampire_publications/tree/master/experimental_data/IJCAR-2020-POLY-VAMP
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4 Polymorphism and Theory Reasoning

Vampire has built-in support for the polymorphic theory of arrays [12] and the
polymorphic theory of first-class tuples [13]. Here we briefly discuss work-in-
progress to improve the implementation of these theories (and future similar
theories) using polymorphism.

Both theories are supported by detecting instances of the polymorphic theory
and adding the relevant instances of that theory’s axioms to the input problem.
For example, for the polymorphic theory of arrays, for each array sort array(t1,
t2) detected in the input problem, we add instances of the axioms

![V:array(t1, t2), X: t1, Y: t2, Z:t2] : (Y = Z
=> select(store(V, Y, X), Z) = X)

![V:array(t1, t2), X: t1, Y: t2, Z:t2] : (Y != Z
=> select(store(V, Y, X), Z) = select(V, Z))

![V:array(t1, t2), X: array(t1, t2), Y: t1] :
(select(V, Y) = select(X, Y) => V = X)

With support for polymorphism, as soon as we detect that arrays of any kind
are used we can simply add the three polymorphic axioms

!>[T1: $tType, T2: $tType]:
( ![V:array(T1, T2), X: T1, Y: T2, Z:T2] :

(Y = Z => select(store(V, Y, X), Z) = X))
!>[T1: $tType, T2: $tType]:

( ![V:array(T1, T2), X: T1, Y: T2, Z: T2] :
(Y != Z => select(store(V, Y, X), Z) = select(V, Z)))

!>[T1: $tType, T2: $tType]:
( ![V:array(T1, T2), X: array(T1, T2), Y: T1] :

((select(V, Y) = select(X, Y) => V = X))

This has a minor impact on proof search. Instead of adding 3n clauses when
we have n different instances of the polymorphic theory, we only add 3 clauses.
As n is usually small, this is unlikely to have a significant impact. At the same
time, we should not see any negative impact, these polymorphic axioms will act
in the same way as the 3n instances did.

The main impact is on the implementation of theories within Vampire. A
non-trivial amount of complexity is required within the Vampire codebase to
support the current mechanisms for the two supported polymorphic theories.
Adding a new polymorphic theory of this kind involves a lot of boilerplate code
and updating of various definitions. Replacing this with polymorphic theory
axioms will simplify the code significantly. For example, if the SMT-LIB language
is extended to support polymorphism in the future (this has been discussed,
e.g., [6] but not implemented), internal support for polymorphism would make
supporting the polymorphic theory of term algebras straightforward.

Moreover, not all polymorphic theories are supported by the mechanism
described above; our current approach of adding instantiated axioms based on
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the input is complete for the theory of arrays, but cannot be complete in gen-
eral as shown by Bobot and Paskevich [4]. For the theory of combinatory logic
for example, no decision procedure can exist for selecting a set of monomorphic
combinator axioms to add to a problem and ensure completeness (even though
such a set must exist).

5 Related Work

The polymorphism of TPTP’s TF1 language is inspired by ML-style polymor-
phism but differs in the use of type quantifiers. As pointed out by Blanchette
et al. [3], ML-style polymorphism avoids explicit type quantifiers, choosing to
determine type signatures by the types of arguments, results or additional anno-
tations (which are sometimes needed to guide Hindley-Milner type inference).
Comparatively, type checking is more straightforward in TF1 due to an explicit
signature and explicit type quantifiers.

As mentioned earlier, there are two main methods for reasoning in poly-
morphic logic: natively or via translations. We discuss related work for each
direction.

Zipperposition [9] was built using explicit polymorphism – types are explic-
itly represented in terms and inferences perform unification on both terms and
types. The main difference with our approach is that we are ‘retro-fitting’ poly-
morphism into a monomorphic theorem prover. Additionally, our ‘types as terms’
internal representation (mostly) removes the additional book-keeping required
when performing separate term and type unification.

There are three main approaches to translation - type tags, type guards, and
type arguments. The purpose of both the type tag and type guard encoding is
to ensure that unsound inferences that violate typing constraints cannot occur
in the untyped problem. We do not provide details of the encodings here, but
refer readers to [2] with a further example given by Brown et al. [7] in their
work translating between different TPTP formalisms. Consider the following
satisfiable polymorphic problem with a polymorphic predicate p:

tff(a,type, p : !> [X : $tType] : X > $o).
tff(b, conjecture, ?[X:$i, Y:$int] : p($i,X) => p($int,Y)).

The negated conjecture becomes the two clauses ~p($i,X) and p($int,Y).
Clearly, if we drop the types (i.e. via type erasure) then this satisfiable problem
becomes unsatisfiable as we can no longer differentiate between the two versions
of p. Using type tags we would get ~p(ti(X, $i)) and p(ti(Y, $int)) and
with type guards we would get ~isi(X) | ~p (X) and ~isint(Y) | p(Y) –
both prevent the unsatisfiability from type erasure at the expense of introducing
extra functions or predicates. We achieve the same through type inference and
unification. The type argument translation looks similar to our internal represen-
tation of types, e.g. types are encoded as terms. However, without being aware
of the type of equalities where at least one side is a variable (as we are in our
translation) this encoding can be unsound as equalities can capture cardinality
constraints between types.
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6 Conclusion

We have successfully extended a state-of-the-art first-order prover to support
prenex polymorphism and shown that the difficulty in doing so is not as great
as may be expected. We hope to encourage other researchers to do the same.

Theoretically, extending Vampire to polymorphic FOL should be graceful in
the sense that no degradation of performance should be seen on non-polymorphic
problems. Our experimental results do not bear this out. In future work, we
hope to achieve two objectives. Firstly, to fix and refine our implementation of
polymorphism such that no degradation on monomorphic or untyped problems
is experienced. Secondly, as outlined above, to utilise polymorphism to simplify
and extend theory reasoning in Vampire for polymorphic theories such as arrays.
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Abstract. N-PAT is a new model-checking tool that supports the ver-
ification of nested-models, i.e. models whose behaviour depends on the
results of verification tasks. In this paper, we describe its operation and
discuss mechanisms that are tailored to the efficient verification of nested-
models. Further, we motivate the advantages of N-PAT over traditional
model-checking tools through a network security case study.

1 Introduction

Model-checking is the problem of formally verifying that a model of a sys-
tem meets a given specification. Automated model-checking techniques have
been successfully applied to find subtle errors in complex industrial designs of
e.g., hardware circuits, software controllers, and communication protocols [1].
However, the adoption rate of model-checking remains low in software engi-
neering because of the computational complexity of model-checking algorithms.
The state-space explosion problem [2] makes the verification of large models
intractable unless high-level abstractions are used in the development and lever-
aged during verification.

Nowadays, complex systems are often designed in a modular and hierarchical
fashion. Hierarchical models, also called multilevel models, are abstract repre-
sentations of systems that span multiple levels of abstraction. They encode the
hierarchical structure of systems explicitly and therefore enable reasoning about
how properties of one level reflect across multiple levels of the model [5].

In this paper, we introduce the notion of nested model and nested model-
checking. The main idea is to break up a large model-checking task into a hier-
archy of smaller model-checking tasks. A Nested model is a high-level model
which may contain several child models nested inside; its behaviour depends on
the verification results of its child models. Note that the properties to be verified
in child tasks may be different from the properties to be verified in parent tasks.
c© Springer Nature Switzerland AG 2020
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We present N-PAT – a nested model-checker suited to the verification of
hierarchical systems and designed to perform nested model-checking tasks. In
hierarchical modelling, some verification tasks may be used to determine and
lift the properties of underlying child models to parent models. This structural
abstraction provides modellers with the ability to structure the verification and
guide the state-space exploration of model-checking methods, it also provides
significant benefits in term of scalability for verification when compared to the
traditional approach to modelling. We implement several optimisations leverag-
ing the hierarchical structure of nested models. Also, since the time and space
complexity of model-checking algorithms with respect to the size of models is
super-linear, the divide-and-conquer approach employed by N-PAT significantly
reduces the overall verification time. What sets N-PAT apart from existing model
checkers (e.g., [4,6,7]) is the abstraction level of the modelling language. In our
work, the modelling language of nested models has high-level primitives such as
model checking and nested model instantiation.

2 Nested Model-Checking

Standard model checking is the problem of verifying whether a standard model
complies with a given property. A standard model is a static and finite-state
representation of a system, which may exhibit non-deterministic and proba-
bilistic behaviours. The semantics of a standard model can be specified as a
labelled transition system or a Markov decision process. Properties that can be
verified include reachability, deadlock-freeness, divergence-freeness, reachability,
and LTL formulae. The result of a model checking task depends on the type of
the model. When checking a property over a non-probabilistic model, the result
is 0 (not satisfied) or 1 (satisfied). When checking a property over a probabilistic
model, the result is the min (alt. max) probability that the property is satisfied.
Note that we only consider results in natural numbers, and a probability is repre-
sented in e.g., per thousand. Formally, let Ms be the set of standard models and
Φ be the set of properties. We denote by mc : Ms × Φ → N the model checking
function that returns the results of checking a property over a standard model.

A meta model, also commonly referred to as a template, is a model of standard
models. It can be viewed as a function that has a finite number of arguments
and returns a standard model. Formally, a meta model is a function of the form
A1 × ... × An → Ms where n ∈ N and A1, ..., An ∈ N. We denote by Mm the
set of meta models. In order to instantiate a meta model, every argument must
be known. An instantiated meta model is a standard model and can be verified
using standard model checking.

Traditionally, meta models are instantiated from values specified by the mod-
eller. In our work, we consider the verification of meta models instantiated from
values that are the result of model checking tasks. Such a meta model is called a
nested model and denoted as Mn. Figure 1 illustrates the structure and compo-
nents of a nested model. Each diamond represents a standard model. Each box
represents a meta model. Verification tasks are symbolised by circles. The text
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M0

M1

M2 M3

1

2 3

4

Fig. 1. Illustration of the structure of a nested model.

binding ::= const = expr mc ::=mc(model, )
model ::=Ms | Mm(binding [, binding]∗) op ::= expr (+ | − | × | /) expr
de f ::= let binding [, binding]∗ in expr expr ::= N | op | mc | const | de f

Fig. 2. The BNF grammar of nested model checking problems.

within each circle is the property to be checked in the corresponding verifica-
tion task. The arrows symbolise dependencies among verification tasks. In Fig. 1,
there are two standard models: M2 and M3, and two meta models: M0 and M1.
For instance, M1 requires the verification results from mc(M2, φ2) and mc(M3, φ3)
to be instantiated. After instantiation, M1 will become a standard model. To ver-
ify the property φ0 over the nested-model M0, we need to evaluate the following
expression: mc(M0(mc(M1(mc(M2, φ2), mc(M3, φ3)), φ1), mc(M3, φ4)), φ0).

A nested model checking problem is an expression that can be evaluated to
an integer; it is formulated in a language that has two main primitives: meta
model instantiation and standard model checking. For convenience, the language
of nested model checking problems is extended with integers, basic arithmetic
operations and restricted scope constant definitions. Let const be the set of
constant identifiers, the syntax of nested model checking problems is given by
the grammar in Fig. 2, where [α]∗ denotes repeating α zero or more times.

eval(n, ) = n eval(ms, ) = ms eval(c, ) = v where 〈c,v〉 ∈
eval(e1 op e2, ) = eval(e1, ) op eval(e2, ) eval(mc(m, ), ) = mc(eval(m, ), )
eval(mm({〈c1,e1〉, ...,〈cn,en〉}), ) = m({〈c1,v1〉, ...,〈cn,vn〉}) where

v1 = eval(e1, ), ..., vn = eval(en, )
eval(let {〈c1,e1〉, ...,〈cn,en〉} in e) = eval(e, ′) where

′ = ∪{〈c1,eval(e1, )〉, ...,〈cn,eval(en, )〉}

Fig. 3. The semantics of nested model checking problems.

We assume that the set of verification tasks related to a nested model form a
directed acyclic graph (as in Fig. 1), which defines the dependencies of tasks, and
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that the tasks and the graph are known before the verification stage. When a let
expression introduces multiple bindings, these bindings must be independent of
one another, non-recursive, and may be evaluated in parallel.

The semantics of nested model checking problems in a given context is defined
by the evaluation function eval, given in Fig. 3. A valued binding is a tuple 〈c, v〉
where c ∈ const and v ∈ N. A context is a set of valued bindings. Let Γ be a
context, e, e1, ... ∈ expr be expressions, c, c1, ... ∈ const be constant identifiers,
ms ∈ Ms be a standard model, mm ∈ Mm be a meta model, m ∈ Ms ∪ Mm be
a model, φ ∈ Φ be a property, n, v, v1, ... ∈ N be numbers, and op ∈ {+,−, ∗, /}
be an integer operator.

3 N-PAT: Implementation

N-PAT is built on top of Process Analysis Toolkit [7] (PAT) – an industrial scale
model-checker which employs an expressive modelling language called Commu-
nicating Sequential Processes with C# (CSP#) developed by Hoare [3] and oth-
ers [9]. PAT features a model editor and an animated simulator using a mature
and IDE-style user interface. Further, PAT facilitates new language and algo-
rithm design and implementation as extended modules. Over the past 10 years,
we have extended PAT with new verification modules for timed automata [9],
real-time systems [8], and probabilistic systems [10]. We implemented N-PAT in
C# as an extension of PAT. N-PAT is open-source and freely available online.1

CSP# Models

N-PAT

Results

M-CSP# Models

Nested Model
Checking Problem

PAT

Fig. 4. N-PAT data-flow overview.

Standard models are specified by (probabilistic) CSP# models and properties
are specified by CSP# assertions [7]. Meta models are specified by a meta-level
CSP# language. This language, called meta-CSP#, introduces labelled place-
holders, of the form [id ] where id ∈ const is a label. These labelled place-holders
extend the CSP# language and can be used in place of integer constants (e.g.,
variable initial values, choice probabilities). Let m be a meta-CSP# model and
id1, ..., idn where n ∈ N be the set of placeholders that appears in its definition.
1 https://formal-analysis.com/research/npat/index.html.

https://formal-analysis.com/research/npat/index.html
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Let v = {〈id1, v1〉, ..., 〈idn, vn〉} where v1, ..., vn ∈ N be a set of valued bindings.
The meta-CSP# model m can be instantiated using v into a CSP# model by
substituting the occurrences of [id i] by vi for all i ∈ {1, ..., n}. Nested model
checking problems are specified using the language described in Sect. 2. Model
checking is performed by N-PAT through the orchestration of calls to PAT.

Figure 4 depicts the overall data-flow of N-PAT. The input of N-PAT is a set
of standard CSP# and meta-CSP# models and a nested model checking prob-
lem. N-PAT evaluates the result of the nested model checking problem similarly
to how a dynamic interpreter evaluates an expression. The nested model check-
ing problem is first parsed, and a corresponding abstract syntactic tree is built.
This step is implemented using parser combinators (i.e., using recursive descent
parsing). The resulting abstract syntactic tree is then recursively evaluated in a
bottom-up fashion.

N-PAT exploits the hierarchical nature of nested models and provides
improved verification scalability when compared to traditional model checkers
that operate on flattened models. First, since CSP# models are static (i.e., they
are not modified during execution), N-PAT applies stage-wise partial evalua-
tion of verification sub-tasks to optimise the verification phase of nested CSP#
models. Second, given a nested CSP# model, we assume that its verification
sub-tasks are independent and can be computed concurrently. Thus N-PAT uses
parallelism to speed up verification on modern architectures with multiple cores.
This parallelism manifests itself in three places: bindings, operands, and the
evaluation of meta model arguments.

4 Case Study and Experiment

We introduce a network security case study to illustrate the modelling and scal-
ability advantages of nested model-checking. The case study is concerned with
computing the probabilistic security level of a network. It is a simplified version
of a real-life example which is studied by Australian Defence. The problem is
hierarchical by nature, which illustrates code-reuse and modularisation of the
proposed modelling approach. Another nice property of this example is that we
can create models of different sizes to test the scalability of the verification, as
will be shown in the experiment.

The details of the example are as follows: suppose there is a cluster of compu-
tation nodes, and each node can be in one of the three states: safe, compromised,
and isolated. Initially, each node is safe, but it has a chance to be hacked, which
changes the state of the node to compromised. When a node is compromised, it
can either be patched, which will make the node safe again, or be isolated, which
will disconnect the node from the cluster. If a node is isolated, then it loses
the connection to other nodes and thus cannot contribute to the computational
power of the cluster. When the node is isolated, it has a chance to be recovered,
which will lead the node to the safe state again. Otherwise, the node stays iso-
lated, in which case we increase down nodes counter, i.e., the number of nodes
that are offline, by 1. For simplicity, we assume that the hacking of each node
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Fig. 5. The Markov chain of the traditional model, exemplified with two nodes.

is independent. We model two types of nodes: normal node and premium node,
where the latter has a higher chance to be patched when it is compromised and
a higher chance to be recovered when it is isolated.

Traditional Method: We shall formalise the above as a Markov chain in CSP#,
and we have to define the state transitions for both types of nodes. Next, we
model a cluster manager, which iterates through each node in the cluster and
checks whether the node is offline. The manager will report that the cluster is in
critical condition if at least half of the nodes in the cluster are offline. Consider
an example where there are only two nodes in the network: the first node is
a normal node, and the second node is a premium node. We show the overall
Markov chain in Fig. 5. We annotate the event and its probability on the arrows.
The upper part of the figure describes the process of checking the normal node,
which can be either safe or isolated. The lower part of the figure splits into
two cases when checking the premium node. The Down = x line in each circle
indicates the down nodes counter. The premium node in Fig. 5 has a higher
chance to be hacked than because in our hypothetical scenario, the hacker is
more likely to target a premium node.

Nested Model Checking Method: We break the model in Fig. 5 down into two
levels of abstraction: the node level and the cluster level. The idea is to create
more modular models so that the model for a node can be used for both normal
nodes and for premium nodes, and potentially can be used in future develop-
ments of other models. At the node level, we study the common properties of the
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(a) Node Level (b) Cluster Level

Fig. 6. Modular models of Fig. 5 for nested model checking. a) Node Level b) Cluster
Level

two types of nodes, and try to generalise the model so that the model-checking
result is exactly what we need at the cluster level. As the cluster manager, we
only need to know whether a node is offline or not. Therefore, besides safe, iso-
lated, and compromised, we give a node two additional states: ok and down. Like
in the traditional model, each node is initialised to be in the safe state. Since we
do not consider cluster manager operations at the node level, we do not use the
counter for offline nodes. Instead, when the node stays isolated, we change its
state to down, and when it is not hacked/patched/recovered, we change its state
to ok. The state transition diagram is shown in Fig. 6a.

At the cluster level, we abstract the notion of a node into only two states:
ok and down. The probability of going to these two states will be given by the
model-checking results from the node level. If a node is down, then we increment
down nodes counter. We then model the cluster manager similarly as in the tra-
ditional model. The (partial) Markov chain for checking nodes is illustrated in
Fig. 6b, where we only show two nodes. Note that places holders for probabil-
ities in Fig. 6a, such as [Isolated], will be instantiated with specific values,
depending on the type of the node, at run-time. Place holders in Fig. 6b will be
instantiated with the results of node-level verification at run-time. Compared to
the traditional model (cf. Fig. 5), the nested model is much simpler, and we will
show that this leads to significant improvement in scalability.

Experimental Comparison: We compare the performance of both modelling
approaches by evaluating the overall security of network of different sizes. In each
case, the number of normal nodes are 4/5 of the total number. All experiments
were carried on a desktop with Core i7-7700 quad-core processor at 3.6 GHz and
32 GB RAM. We verify multiple instances of the above models, starting with 8
nodes in a cluster, and increase the number of nodes by 2 at a time, and main-
tain the number of normal nodes at (4×num of nodes)/5. We then observe the
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time used in model checking as the number of nodes increases. We run each test
5 times and compute the average time spent to obtain the results.

Table 1. Experiment of traditional (probabilistic) model-checking compared with
nested model checking.

Number of nodes 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Runtime traditional (ms) 248 306 569 1771 7411 35K 279K Out of memory

Runtime N-PAT (ms) 427 430 430 430 430 431 445 438 442 461 458 469 465 476

Discussion: As seen from the results in Table 1, the run-time of traditional
model-checking grows rapidly as the size of the model (the number of nodes)
increases. On the other hand, the run-time growth of nested model checking is
moderate, and it solves instances up to 34 nodes less than 0.5 s. N-PAT also
uses very little memory compared to PAT which uses up to 26.6 GB memory
when running the 20 nodes instance. For small examples, the traditional mod-
elling approach may be faster because the verification of nested models involves
several calls to PAT which incur marginal overhead. However, the nested model
checking approach scales better. The source code of this experiment, i.e. both
the traditional model and the hierarchical model, can be found online.2

5 Conclusion and Future Work

We presented N-PAT – a high-level model checker that enables the verification
of models that relies on the results of other verification tasks. We demonstrated
in a case study in network security that this tool permits the use of high-level
abstraction mechanisms and can therefore significantly improve the time and
memory efficiency of verification tasks. These results indicate that nested model
checking provides a novel modelling approach that can in some cases scale better
than traditional model-checking.

In future work, we intend to provide more modelling flexibility by allow-
ing dynamic calls to verification tasks that are not known a priori. We also
planned to apply dynamic language optimisation techniques such as memoisa-
tion to speed up verification. Finally, we planned on supporting a fully reflective
modelling language that permits inspection and modification of the behaviour
and structure of models at verification-time.
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Abstract. We present HYPNO (HYpersequent Prover for NOn-normal
modal logics), a Prolog-based theorem prover and countermodel genera-
tor for non-normal modal logics. HYPNO implements some hypersequent
calculi recently introduced for the basic system E and its extensions with

axioms M, N, and C. It is inspired by the methodology of leanTAP , so
that it does not make use of any ad-hoc control mechanism. Given a for-
mula, HYPNO provides either a proof in the calculus or a countermodel,
directly built from an open saturated hypersequent. Preliminary experi-
mental results show that the performances of HYPNO are very promising
with respect to other theorem provers for the same class of logics.

Keywords: Non-normal modal logics · Hypersequent calculi · Prolog

1 Introduction

Non-Normal Modal Logics (NNMLs for short) are a generalization of ordinary
modal logics that do not satisfy some axioms or rules of minimal normal modal
logic K. They have been studied since the seminal works by C.I. Lewis, Scott,
Lemmon, and Chellas (for an introduction see [3]), and along the years have
gained interest in several areas such as epistemic, deontic, and agent reason-
ing among others [1,7,12–14]. NNMLs are characterised by the neighbourhood
semantics. In [4,6], a variant of it is presented, called bi-neighbourhood seman-
tics, this variant is more suitable for logics lacking the monotonicity property,
although equivalent to the standard one.
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Not many theorem provers for NNMLs have been developed so far.1 In [8]
optimal decision procedures are presented for the whole cube of NNMLs; these
procedures reduce a validity/satisfiability checking in NNMLs to a set of SAT
problems and then call an efficient SAT solver. Despite undoubtably efficient,
they do not provide explicitly “proofs”, nor countermodels. A theorem prover for
logic EM based on a tableaux calculus very similar to the one in [10], is presented
in [9]: the system, is implemented in ELAN and handles also more complex
Coalition Logic and Alternating Time Temporal logic. In [11] it is presented
a Prolog implementation of a NNML containing both the [∀∀] and the [∃∀]
modality; its [∃∀] fragment coincides with the logic EM, also covered by HYPNO.
Finally in [5] it is presented PRONOM, a theorem prover for the whole range
of NNMLs, which implements labelled sequent calculi in [6]; PRONOM provides
both proofs and countermodels in the mentioned bi-neighbourhood semantics.

In this paper we describe HYPNO (HYpersequent Prover for NOn-normal
modal logics) a Prolog theorem prover for the whole cube of NNMLs. The prover
HYPNO implements the optimal calculi for NNMLs recently introduced in [4].
These calculi handle hypersequents, where a hypersequent represents intuitively
a metalogical disjunction of sequents; sequents in themselves can be interpreted
as formulas of the language. While the hypersequent structure is not strictly
needed for proving formulas, it ensures a direct computation of a countermodel
from one failed proof-branch. Consequently, the prover takes as input a for-
mula and either returns a proof or a countermodel of it in the bi-neighbourhood
semantics mentioned above. The Prolog implementation closely corresponds to
the calculi: each rule is encoded by a Prolog clause of a prove predicate. This
correspondence ensures in principle both the soundness and completeness of the
theorem prover. Termination of proof search is obtained by preventing redun-
dant application of rules. Although there are no benchmarks in the literature, the
performance seems promising, in particular it outperforms the theorem prover
PRONOM based on labelled calculi.

The program HYPNO as well as all the Prolog source files, including those
used for the performance evaluation, are available for free usage and download
at http://193.51.60.97:8000/HYPNO/.

2 Axioms, Semantics, and Hypersequent Calculi

We present first the axiomatization and semantics of NNMLs of the classical
cube and then the hypersequent calculi implemented by HYPNO.

Given a countable set of propositional variables Atm, the formulas of the
language L of NNMLs are built as follows: A :: = p | ⊥ | � | A∨A | A∧A | A →
A | �A, where p ∈ Atm. The minimal NNML E is defined in L by extending
classical propositional logic with the rule RE below. The systems of the classical
cube are then obtained by adding to E any combination of axioms M, C, and
N. We obtain in this way eight distinct logics (see the classical cube, below on
the right), where the top system EMCN coincides with normal modal logic K.
1 We only mention here implemented systems, for a discussion on proof systems for
NNMLs we refer to [4,6] and references therein.

http://193.51.60.97:8000/HYPNO/
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A ↔ B
RE

�A ↔ �B

M �(A ∧ B) → �A

C �A ∧ �B → �(A ∧ B)
N ��

E

EM

EC EN

EMC EMN

ECN

EMCN (K)

Coming to the semantics, we consider the bi-neighbourhood models [6]. As a
difference with standard neighbourhood semantics, in the bi-neighbourhood one,
worlds are equipped with sets of pairs of neighbours which can be thought as
lower and upper approximations of neighbourhood in the standard semantics.

Definition 1. A bi-neighbourhood model is a tuple M = 〈W,Nb,V〉, where
W is a non-empty set of worlds, V is a valuation function, and Nb is a bi-
neighbourhood function W −→ P(P(W)×P(W)). We say that M is a M-model
if (α, β) ∈ Nb(w) implies β = ∅, it is a N-model if for all w ∈ W there is α ⊆ W
such that (α, ∅) ∈ Nb(w), and it is a C-model if (α1, β1), (α2, β2) ∈ Nb(w)
implies (α1 ∩ α2, β1 ∪ β2) ∈ Nb(w). The forcing relation for boxed formulas is as
follows: M, w � �A if and only if there is (α, β) ∈ Nb(w) s.t. α ⊆ [A] ⊆ W \ β,
where [A] denotes the truth set of A in M.

Bi-neighbourhood models can be easily transformed into equivalent standard
neighbourhood models, and vice versa. Moreover, bi-neighbourhood semantics
characterises the whole cube of NNMLs [6], in the sense that a formula A is deriv-
able in E(M/C/N) if and only if it is valid in all bi-neighbourhood (M/N/C)-
models of the corresponding class.

The hypersequent calculi for NNMLs implemented by HYPNO are intro-
duced in [4]. Their syntax is as follows: a block is a structure 〈Σ〉, where Σ
is a multiset of formulas of L. A sequent is a pair Γ ⇒ Δ, where Γ is a mul-
tiset of formulas and blocks, and Δ is a multiset of formulas. A hypersequent
is a multiset S1 | ... | Sn, where S1, ..., Sn are sequents. Single sequents can
be interpreted into the language as: i(A1, ..., An, 〈Σ1〉, ..., 〈Σm〉 ⇒ B1, ..., Bk) =∧

i≤n Ai ∧ ∧
j≤m �

∧
Σj → ∨

�≤k B� . We say that a sequent S is valid in a
bi-neighbourhood model M (written M |= S) if for all w ∈ M, M, w � i(S).
Moreover, a hypersequent H is valid in M (M |= H) if M |= S for some
S ∈ H, and it is valid in (M/C/N-)models if it is valid in all models of that kind.

The calculi implemented by HYPNO are a minor variant of the ones in [4]:
they contain an additional arrow � used to represent that the formulas on the
left of � entails the conjunction (rather than their disjunction) of the formulas
on its right. By this modification, all rules of the calculi are at most binary; the
equivalence of the modified calculi with the original ones in [4] is straightforward.

The hypersequent calculi are defined by the rules in Fig. 1 (for propositional
rules we only show the initial sequents and the rules for implication). In par-
ticular: HE := propositional rules + �L + �R + �1 + �2; HEN := HE + N;
HEC := HE + C; HECN := HE + C + N; HM := propositional rules + �L + M�R;
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init
G | p, Γ ⇒ Δ, p

⊥L
G | ⊥, Γ ⇒ Δ

�R
G | Γ ⇒ Δ, �

G | A → B, Γ ⇒ Δ, A G | B, A → B, Γ ⇒ Δ→L
G | A → B, Γ ⇒ Δ

G | A, Γ ⇒ Δ, A → B, B→R
G | Γ ⇒ Δ, A → B

G | 〈A〉, �A, Γ ⇒ Δ
�L

G | �A, Γ ⇒ Δ

G | 〈Σ〉, Γ ⇒ Δ, �B | Σ ⇒ B
M�R

G | 〈Σ〉, Γ ⇒ Δ, �B

G | 〈Σ〉, Γ ⇒ Δ, �B | Σ ⇒ B G | 〈Σ〉, Γ ⇒ Δ, �B | B � Σ
�R

G | 〈Σ〉, Γ ⇒ Δ, �B

G | A ⇒ B�1
G | A � B

G | A ⇒ B G | A � Σ�2 |Σ| ≥ 1
G | A � B, Σ

G | 〈�〉, Γ ⇒ Δ
N

G | Γ ⇒ Δ

G | 〈Σ, Π〉, 〈Σ〉, 〈Π〉, Γ ⇒ Δ
C

G | 〈Σ〉, 〈Π〉, Γ ⇒ Δ

Fig. 1. Rules of HE� .

HMN := HM + N; HMC := HM + C; and HMCN := HM + C + N. In the following,
we denote by HE� any extension of HE.

3 Design of HYPNO

The prover HYPNO implements the calculi of Fig. 1. It is inspired by the “lean”
methodology of leanTAP [2], even if it does not follow its style in a rigorous
manner. The program comprises a set of clauses, each one of them implementing
a rule or an axiom of the mentioned calculi. The proof search is provided for free
by the mere depth-first search mechanism of Prolog, without any additional ad
hoc mechanism. Before presenting in details the code of the theorem prover, let
us discuss a general design choice.

As mentioned, HYPNO searches for a derivation of an input formula and in
case of failure, on demand, it produces a countermodel of it. The proof search
procedure is implemented by a predicate terminating proof search which tries
to generate a derivation of the given input formula. In case it fails, on demand by
the user, another predicate build saturated branch is invoked that computes
an open saturated branch from which a countermodel is extracted. The predicate
build saturated branch is in some sense “dual” of the proof search one. We
have chosen to implement a two-phase computation, instead of a single one
taking care of both tasks, for the following reason: a single-phase procedure
would need to carry over all information for extracting a countermodel anyway;
this information would be completely useless in case of a successful derivation
and would unacceptably overload proof-search. As matter of fact, the time spent
to “recompute” the saturated branch is negligible with respect to the overload of
a proof-search procedure storing also information for countermodel extraction.
By this choice we get a simpler and more readable code, and of course, more
suited for countermodel generation only “on demand”.
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HYPNO represents an hypersequent with a Prolog list whose elements are
Prolog terms of the form singleSeq([Gamma,Delta],Additional), each one
representing a sequent in the hypersequent. Gamma, Delta, and Additional are
in turn Prolog lists: Gamma and Delta represent the left side and the right side
of the single sequent, respectively, whereas Additional keeps track of the rules
already applied to each sequent in order to ensure termination by avoiding mul-
tiple redundant applications of the same rule to a given hypersequent. Elements
of Gamma and Delta are either formulas or Prolog lists representing blocks. Sym-
bols � and ⊥ are represented by constants true and false, respectively, whereas
connectives ¬, ∧, ∨, →, and � are represented by -, ^, ?, ->, and box. The sym-
bol of provability � in systems with axiom C is represented by =>. Propositional
variables are represented by Prolog atoms. As an example, the Prolog list

[singleSeq( [[box (a ^ c), [true], [a,c]], [a, b, a -> b, box b]],

[n, right(a -> b), apdR([a,c],b)]), singleSeq ([[P], [P]] ,[ ])]

is used to represent the hypersequent �(A∧C), 〈�〉, 〈A,C〉 ⇒ A,B,A∨B,�B |
P ⇒ P , to which the rules N, ∨R and �R have been already applied, the last
one by using the block 〈A,C〉 and the formula �B as the principal formulas. In
turn, no rule has been applied to P ⇒ P (the list Additional is empty).

Given a NNML formula F represented by the Prolog term f, HYPNO exe-
cutes the main predicate of the prover, called prove2, whose only two clauses
implement the functioning of HYPNO: the first clause checks whether F is valid
and, in case of a failure, the second one enables the graphical interface to invoke
a predicate called counter to compute a model falsifying F . In detail, the predi-
cate prove first checks whether the formula is valid by executing the predicate:

terminating proof search(Hyper, ProofTree).

This predicate succeeds if and only if the hypersequent represented by the list
Hyper is derivable in HE� . When it succeeds, the output term ProofTree matches
with a representation of the derivation found by the prover. As an example, in
order to prove that the sequent �(A ∧ (B ∨ C)) ⇒ �((A ∧ B) ∨ (A ∧ C)) is valid
in E, one queries HYPNO with the goal:

terminating proof search([singleSeq([[box (a ^ (b ? c))], [box ((a ^ b) ?

(a ^ c))]], [ ]), ProofTree).

Each clause of terminating proof search implements an axiom or rule of the
sequent calculi HE� . To search for a derivation of a sequent Γ ⇒ Δ, HYPNO
proceeds as follows. First of all, if Γ ⇒ Δ is an instance of an axiom, then
the goal will succeed immediately by using one of the clauses implementing the
axioms. As an example, the clause implementing init is as follows:

terminating_proof_search(Hyper,tree(axiom,PrintableHyper,no,no)):-

member(singleSeq([Gamma,Delta],_),Hyper),

member(P,Gamma), member(P,Delta),!,

extractPrintableSequents(Hyper,PrintableHyper).

2 The user can run HYPNO without using the interface of the web application. To this
aim, he just needs to invoke the goal prove(f).
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The auxiliary predicate extractPrintableSequents is used just for a graphical
rendering of the hypersequent. If Γ ⇒ Δ is not an instance of the axioms, then
the first applicable rule will be chosen, e.g. if Gamma contains a list Sigma repre-
senting a block 〈Σ〉 ∈ Γ , and Delta contains box b representing that �B ∈ Δ,
then the clause for �R will be chosen, and HYPNO will be recursively invoked on
its premises. HYPNO proceeds in a similar way for the other rules. The ordering
of the clauses is such that the application of branching rules is postponed as
much as possible. As an example, here is the clause implementing �R:

1. terminating_proof_search(Hyper,tree(rbox,PrintableHyper,Sub1,Sub2)):-
2. select(singleSeq([Gamma,Delta],Additional),Hyper,NewHyper),
3. member(Sigma,Gamma), is_list(Sigma),member(box B,Delta),
4. list_to_ord_set(Sigma,SigmaOrd), \+member(apdR(SigmaOrd,B),Additional),!,
5. terminating_proof_search([singleSeq([Sigma,[B]],[])|

[singleSeq([Gamma,Delta],[apdR(SigmaOrd,B)|Additional])|NewHyper]],Sub1),
6. terminating_proof_search([singleSeq([[],[B => Sigma]],[])|

[singleSeq([Gamma,Delta],[apdR(SigmaOrd,B)|Additional])|NewHyper]],Sub2),
7. extractPrintableSequents(Hyper,PrintableHyper).

Line 3 checks whether Gamma contains an item Sigma which is a list representing
a block and if a box formula box B belongs to the list Delta. Line 4 imple-
ments the restriction on the application of the rule used in order to ensure
a terminating proof search: if the Additional list contains the Prolog term
apdR(SigmaOrd,B)3, this means that the rule �R has been already applied on
that sequent by using �B and the block Σ, and HYPNO does no longer apply
it. Otherwise, the predicate terminating proof search is recursively invoked
on the two premises of the rule (lines 5 and 6), by introducing Σ ⇒ B and
B � Σ respectively. Since the rule is invertible, Prolog cut ! is used in line 4 to
eventually block backtracking.

When the predicate terminating proof search fails, then the initial for-
mula is not valid. On user demand, as recalled at the beginning of this section,
HYPNO extracts a model falsifying such a formula from an open saturated
branch, following the model extraction method described in [4]. The model is
computed by executing the predicate:

build saturated branch(Hyper, Model).

When this predicate succeeds, the variable Model matches a description of an
open saturated branch obtained by applying the rules of HE� to the initial for-
mula. Since the very objective of this predicate is to build an open saturated
hypersequent in the sequent calculus, its clauses are essentially the same as the
ones for the predicate terminating proof search, however rules introducing
a branching in a backward proof search are implemented by pairs of (disjoint)
clauses, each one attempting to build an open saturated hypersequent from the
corresponding premise. As an example, the following clauses implement the sat-
uration in presence of a block Σ in the left hand side and of a boxed formula
�B in the right hand side of a sequent:

3 The predicate list to ord set is used in order to check the applicability of the rule
by ignoring the order of the formulas in the block.
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build_saturated_branch(Hyper,Model):-
select(singleSeq([Gamma,Delta],Additional),Hyper,NewHyper),
member(Sigma,Gamma),is_list(Sigma),member(box B,Delta),
list_to_ord_set(Sigma,SigmaOrd),\+member(apdR(SigmaOrd,B),Additional),
build_saturated_branch([singleSeq([Sigma,[B]],[])|
[singleSeq([Gamma,Delta],[apdR(SigmaOrd,B)|Additional])|NewHyper]],Model).

build_saturated_branch(Hyper,Model):-
select(singleSeq([Gamma,Delta],Additional),Hyper,NewHyper),
member(Sigma,Gamma),is_list(Sigma),member(box B,Delta),
list_to_ord_set(Sigma,SigmaOrd),\+member(apdR(SigmaOrd,B),Additional),
build_saturated_branch([singleSeq([[],[B => Sigma]],[])|
[singleSeq([Gamma,Delta],[apdR(SigmaOrd,B)|Additional])|NewHyper]],Model).

HYPNO will first try to build a countermodel by considering the left premise
of �R, whence recursively invoking the predicate build saturated branch on
the premise with the sequent Σ ⇒ B. In case of a failure, it will carry on the
saturation process by using the right premise of �R with the sequent B � Σ.

Clauses implementing axioms for the predicate terminating proof search
are replaced by the last clause, checking whether the current sequent represents
an open and saturated hypersequent:

build_saturated_branch(Hyper,model(Hyper)):-\+instanceOfAnAxiom(Hyper).

Since this is the very last clause of build saturated branch, it is considered by
HYPNO only if no other clause is applicable, then the hypersequent is saturated.
The auxiliary predicate instanceOfAnAxiom checks whether the hypersequent
is open by proving that it is not an instance of the axioms. The second argument
matches a term model representing the countermodel extracted from Hyper.

The implementation of the calculi for extensions of E is very similar: given the
modularity of the calculi HE� , each system is obtained by just adding clauses for
both the predicates terminating proof search and build saturated branch
corresponding to the specific axioms/rules. However, we provide a different Pro-
log file for each system of the cube. This choice is justified by two reasons: first
of all readiness of the code: one may be interested only in one specific system,
wishing to have all the rules in a stand-alone file. Second and more important,
an implementation of calculi for a family of logic cannot be completely modular:
the computation (both proof-search and countermodel extraction) is sensitive to
the order of application of the rules, so that the insertion of different rules may
result in different orders of application of the whole set of rules.

HYPNO can be used on any computer or mobile device through a web inter-
face implemented in php, which allows the user to choose the modal logic. When
a formula is valid, HYPNO builds a pdf file showing a derivation in the corre-
sponding calculus, as well as the LaTEX source file. Otherwise, a countermodel
falsifying the initial formula is displayed. Prolog source codes are also available.

4 Performance of HYPNO

We have compared the performance of HYPNO with those of the prover
PRONOM [5], which deals with the same set of logics, obtaining promising
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results. We have tested it by running SWI-Prolog, version 7.6.4, on an Apple
MacBook Pro, 2.7 GHz Intel Core i7, 8 GB RAM machine. First, we have tested
HYPNO over hundred valid formulas in E and considered extensions obtained
by generalizing schemas of valid formulas by varying some crucial parameters,
like the modal degree (the level of nesting of the � connective), already used
for testing PRONOM. For instance, we have considered the schemas (valid in all
systems):
(�(�(A1∧(B1∨C1))∧· · ·∧�(An∧(Bn∨Cn)))) → (�(�((A1∧B1)∨(A1∧C1))∧· · ·∧�((An∧Bn)∨(An∧Cn)))

(�n
C1 ∧ · · · ∧ �n

Cj ∧ �n
A) → (�n

A ∨ �n
D1 ∨ · · · ∨ �n

Dk)

obtaining encouraging results: Table 1 reports the number of timeouts of HYPNO
and PRONOM over a set of valid formulas in system E.

Table 1. Percentage of timeouts over valid formulas in E.

System 0,1ms 1ms 100ms 1 s 5 s

HYPNO 91,50% 78,91% 28,23% 9,52% 5,78%

PRONOM 85,71% 77,55% 57,82% 31,16% 19,80%

HYPNO is able to answer in less than one second on more than the 90% of the
tests, whereas PRONOM is not even if we extend the time limit to 5 s.

We have also tested HYPNO on randomly generated formulas, fixing different
time limits, numbers of propositional variables, and levels of nesting of connec-
tives. We have compared the performances of HYPNO with those of PRONOM,
obtaining the results in Table 2: in each pair, the first number is the percent-
age of timeouts of HYPNO, the second number is the percentage of timeouts of
PRONOM given the fixed time limit.

Table 2. Percentage of timeouts in 5000 random tests (system E).

Vars/Depth 1ms 10ms 1 s 10 s

3 vars - depth 5 4–5,58% 0,78–1,76% 0,02–0,48% 0–0,22%

3 vars - depth 7 23,78–25,18% 10,86–20,16% 3,16–14,40% 2,02–12%

7 vars - depth 10 45,22–44,94% 34,36–42,36% 19,06–30,30% 16,06–20,34%

Also in case of formulas generated from 3 different atomic variables and with a
higher level of nesting (7), HYPNO is able to answer in more than 96% of the cases
within 1 s, against the 85% of PRONOM. We have repeated the experiments also
for all the extensions of E considered by HYPNO: complete results can be found
at http://193.51.60.97:8000/HYPNO/#experiments. Moreover, we are planning
to perform more accurate tests following the approach of [8], where randomly
generated formulas can be obtained by selecting different degrees of probability
about their validity.

http://193.51.60.97:8000/HYPNO/#experiments
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5 Conclusions

We have presented HYPNO, a prover for the cube of NNMLs based on some
hypersequent calculi for these logics recently introduced. HYPNO produces
both proofs and countermodels in the bi-neighbourhood semantics. Although
no specific optimisation has been implemented, the performances of HYPNO are
promising. In the future we intend to extend possible optimisation, in particular
to minimize the size of countermodels. Moreover we intend to extend it to other
non-normal modal logics in the realm of deontic and agent-ability logics.

Acknowledgements. We thank the reviewers for their careful reading that helped
us to improve this paper. We are currently developing a new version of HYPNO taking
into account all the suggestions about its implementation.
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Abstract. iProver is a saturation theorem prover for first-order logic
with equality, which is originally based on an instantiation calculus Inst-
Gen. In this paper we describe an extension of iProver with the superpo-
sition calculus. We have developed a flexible simplification setup that
subsumes and generalises common architectures such as DISCOUNT
or Otter. This also includes the concept of “immediate simplification”,
wherein newly derived clauses are more aggressively simplified among
themselves, and the concept of “light normalisation”, wherein ground
unit equations are stored in an interreduced TRS which is then used
to simplify new clauses. We have also added support for associative-
commutative theories (AC), namely by deletion of AC-joinable clauses,
semantic detection of AC axioms, and preprocessing normalisation.

iProver1 [10] is an automated theorem prover for first-order logic. It is a satura-
tion prover, and is based primarily on the Inst-Gen calculus [7], but also imple-
ments resolution and supports running them in combination in an abstraction-
refinement framework [9,12]. In this work we detail how iProver was extended
with support for the superposition calculus.

Currently, iProver deals with equality axiomatically, which can be inefficient
for problems heavy on equality. At the same time, the superposition calculus
is a set of complete inference rules specialised for first-order logic with equal-
ity. It complements the instantiation calculus since it is effective on problems
where instantiation struggles, and vice-versa. We show that running the two cal-
culi in combination yields better results than either plain instantiation or plain
superposition.

Rules in a calculus can be classified as “generating”, if they derive new clauses,
or “simplifying”, if some premise gets deleted. While generating rules are the ones
necessary for completeness of a calculus, simplification rules are crucial for prac-
tical performance. Intuitively, simplification rules are beneficial to taming the
growth of the search space as more clauses get generated. However, the compu-
tation of those simplifications itself takes time, so being too eager in applying
them will also grind the prover to a halt. It is an open problem, what the opti-
mal strategy to balance these conflicting requirements is, and although there is

1 Available at http://www.cs.man.ac.uk/~korovink/iprover.
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a huge amount of flexibility in how to perform simplifications (see e.g., [21]),
most provers are rather restrictive about this. In iProver we developed a flexible
simplification setup that subsumes and generalises most common architectures.

Finally, we have also implemented specialised techniques to deal with
associative-commutative (AC) theories. These are theories of great interest which
arise in several domains [20], and are traditionally problematic for theorem
provers to deal with, due to combinatorial explosion and the non-orientability
of the AC axioms.

The paper is structured as follows: first, we give a quick overview of the
architecture of iProver. Then, we describe the implementation of superposition
in iProver, its modifications, the simplification architecture and given clause
loop, and AC reasoning rules. For a more in-depth description of basic features
of iProver, see [9].

1 Overview

iProver is based on the Inst-Gen calculus, which is based on the following idea.
We approximate the first-order problem to a propositional problem, and submit
it to a black box SAT solver. It either finds an inconsistency, which is also an
inconsistency at the first-order level, or else it returns a model, which guides the
instantiation of new clauses whose abstraction witnesses some inconsistency at
the ground level. If no such instantiation exists, then the problem is satisfiable.

The SAT solver is also used to implement “global” simplification rules (in the
sense that they involve reasoning with the clause set which is shared between
different calculi), such as global propositional subsumption [9]. In a nutshell,
we submit ground abstractions of clauses in S to a set Sgr. If the SAT solver
finds that Sgr propositionally implies Dγ, with D a strict subset of C and γ an
injective substitution of variables to fresh constants, then we can replace Cθ, in
S, by D.

Glob. prop. subs.
��Cθ

D
,

where D � C
and C ∈ S, S |= Sgr, Sgr |= Dγ

(1)

As mentioned before, iProver can also run other calculi. This is beneficial
because (i) some problems are solved easily by one strategy and not by others,
and (ii) clauses derived in e.g. resolution can be passed to the instantiation solver
to participate in simplifications. For example, clauses derived in all calculi are
submitted to a shared global propositional subsumption set, which is in turn
used by all calculi to simplify its clauses.

Schematically, the high-level architecture of iProver is summarised in Fig. 1.
We can view it as a modular architecture where each calculus (Inst-Gen, reso-
lution, superposition) runs its own saturation loop, and can (i) query external
SAT and SMT solvers, and (ii) submit clauses to, and retrieve clauses from, the
‘Exchange’ module. The instantiation and resolution modules are discussed in
[9]. Here we will focus on the superposition calculus.
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Fig. 1. Architecture of iProver.

2 Extension with Superposition

The superposition inference system consists of the following rules [15]:2

Superposition
l ≈ r ∨ C t[s] ≈̇ u ∨ D

(t[s �→ r] ≈̇ u ∨ C ∨ D)θ
(2)

where θ = mgu(l, s), lθ � rθ, tθ � uθ, and s not a variable,

Eq. Resolution
l �≈ r ∨ C

Cθ
where θ = mgu(l, r), (3)

Eq. Factoring
l ≈ r ∨ l′ ≈ r′ ∨ C

(l ≈ r ∨ r �≈ r′ ∨ C)θ
where θ = mgu(l, l′),
lθ � rθ and rθ � r′θ. (4)

We assume that ≺ is a simplification ordering. Non-equality predicates P (t) are
encoded as P (t)≈ 	. The calculus can easily be generalised to the many-sorted
case, which iProver uses even in untyped problems, since it can perform sub-
type inference during preprocessing. Superposition is sound and refutationally
complete for first-order logic with equality (see [2,15]) and implemented in a
number of state-of-the-art theorem provers: Vampire [11], E [19] and SPASS
[22]. Currently, iProver uses non-perfect discrimination trees to find unification
candidates efficiently [8,16]. For the literal selection, to ensure completeness, we
must select either a negative literal, or all maximal literals. In iProver we use a
variant of the Knuth-Bendix ordering which prioritises non-equational literals.

2 ‘≈̇’ means ‘≈’ or ‘ �≈’; also rules are to be read modulo flipping the equalities.
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Simultaneous Superposition. In (2), by t[s] and t[s �→ r] we can mean
resp. “a distinguished occurrence of s as a subterm of t” and “replacing that
subterm at that position by r. We call the variant simultaneous superposition
where we mean instead “replacing all occurrences of s in t by r”. This variant
is still refutationally complete [3]. In cases where there are several occurrences
of the same term, as in f(s, s, . . . , s

︸ ︷︷ ︸

n times

), this avoids producing 2n − 1 intermediate

clauses with f(r, s, . . . , s), f(s, r, . . . , s), f(r, r, . . . , s), etc., instead producing
only f(r, r, r, . . . , r). In iProver, we implement this variant of superposition.

2.1 Simplifications

Apart from the generating inferences, necessary for completeness, we can add
simplification inferences. In our implementation, we use the following rules: tau-
tology deletion, syntactic equality resolution, subsumption, subset subsumption,
subsumption resolution, demodulation and global subsumption [9,11,17,22].

Light Normalisation. In addition, we introduce the following rule:

Light Normalisation
R �

�C[l]
C[l �→ r]

, where l → r ∈ R (5)

where R is a set of interreduced wrt. (5) oriented rewrite rules. It can be seen
as a restricted case of the demodulation rule, but it is advantageous to formu-
late this separately because it may be implemented much more efficiently than
demodulation, by simply looking up terms in a hashtable, rather than having to
do matching with variable instantiations.

A light normalisation index consists of (i) a hashtable that indexes rewrite
rules in R by their left-hand sides for forward light normalisations and (ii) a map
of all subterms in R for keeping R interreduced. When we derive a unit equality,
we first normalise it wrt. R by recursively replacing each subterm by its normal
form wrt. R. Then, if the simplified equality is orientable (wrt. ≺) we use it to
normalise rules in R add it to R. If there is a conflict between two rules t → s
and t → u where t 
 s 
 u, we keep the rules t → u and s → u. If s and u are
incomparable wrt. 
 we keep one of the rules in R. Since R is only used for
simplifications this choice does not affect the completeness. In general, we can
restrict which orientable equations we add to R (e.g. only ground ones, or small
in size).

2.2 Given Clause Algorithm

In a standard given clause loop, the clause set is split into an active set, where
inferences among the clauses have been performed, and a passive set, of clauses
waiting to participate in inferences. Clauses are initially added to the passive,
then in each iteration one given clause is picked from the passive set, added to
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the active set, and all inferences between given and active are performed. Newly
derived clauses are pushed into the passive. The loop finishes when all clauses
have been moved to the active set, meaning the initial set is satisfiable, or when
a contradiction is derived.

Immediate Simplification Set. Next, we introduce the idea of immediate
simplification. The intuition is as follows. Clauses that are derived in each loop
are “related” to each other. It may be beneficial to keep the set of immediate
conclusions inter-simplified. Also, throughout the execution of the program the
set of generated clauses in each loop remains small compared to the set of passive
or active clauses. Therefore, we can get away with applying more expensive
rules that we do not necessarily want to apply on the set of all clauses (e.g.
only “light” simplifications between newly derived clauses and passive clauses,
but more expensive “full” simplifications among newly derived clauses). Finally,
during this process, it is possible that the given clause itself becomes redundant
(e.g. subsumed by one of its children). If this happens, we can add only the
clauses responsible for making it redundant to the passive set, then remove the
given clause from the active set, and throw away the rest of the iteration’s newly
generated clauses, abort the rest of the iteration, and proceed to the next given
clause. In some problems, a significant number of iterations may be aborted,
which means that fewer new clauses are added to the passive queue, and that
we avoid the work of computing those inferences. This can be seen as a variant
of orphan elimination [17]. Even when the given clause is not eliminated it is
often beneficial to extensively inter-simplify immediate descendants of the given
clause.

Simplification Setup. How all these simplifications are performed can greatly
impact the performance of the solver, so care is needed, and tuning this part of
the solver can pay off significantly. There is a significant amount of choice in how
to perform simplifications. We can choose which simplifications to perform, and
at what times, and with respect to which clauses. Additionally, some of these
simplifications require auxiliary data structures (here referred to generally as
“indices”) to be done efficiently, and some indices support several simplification
rules. Therefore we also need to choose which clauses to add to which indices at
which stages.

For example, Otter-style loops [14] perform simplifications on clauses before
adding them to the passive set. The problem with this is that the passive set is
often orders of magnitude larger than the active set, therefore performance will
degrade significantly as this set grows, and the system will spend most of its
time performing simplifications on clauses that may not even end up being used.
On the other hand, DISCOUNT-style loops [4] perform simplifications only with
clauses that have been added to the active set. This has the benefit of reducing
the time spent in simplifications, at the cost of potentially missing many valuable
simplifications wrt. passive clauses. It is not clear where the “sweet spot” is, in
terms of these setups.
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It is possible, for example, to choose to apply only “cheap” simplifications to
the full active + passive set (e.g. subset subsumption, and light normalisation),
and use more expensive ones only on the small active set (e.g. full subsumption
and demodulation). In Listing 1.1 we describe the ‘iProver-Sup’ given-clause
saturation loop for superposition. A simplification set consists of a collection
of indices, each of which supports one or more simplification rules. In our given
clause loop we have four such sets: Spassive, to which we add the clauses added to
the passive set, Sactive, for the clauses in the active set, Simmed for newly derived
clauses (this set is cleared at the end of every given-clause iteration, and the
non-redundant clauses added to the passive queue), and Sinput for preprocessing
input clauses. Each set supports the following operations: add, which adds a
clause to all indices in a set S, and simplify, which simplifies via some rules R
wrt. a set S. These are called at several points in the loop (see Listing 1.1 ), and
the user can configure which indices/rules are involved in each operation. When
simplifying, some rules forward simplify the clause wrt. the existing set, and
others backward simplify the clauses in the set wrt. the new clause.

The simplification setup is specified by the rules to apply at each stage (Rx).
and the indices to which to add at each stage (Sx). These can be specified by
the user via command-line options. Sx are lists of indices from {Subsumption,
SubSetSubsumption, FwDemod, BwDemod, LightNorm, PropSubsSet}. Rx are lists
of rules from {EqResSimp, TautologyElim, EqTautologyElim, TrivRules,
FwPropSubs, FwSubsumption, FwSubsumptionStrict, FwSubsumptionRes,
FwDemod, FwLightNorm, FwLightNormDemodLoop, ACJoinability,
BwSubsumption, BwSubsumptionRes, BwDemod}. Their usage is documented in
the command-line help. The default options are presented in Table 1.

Currently iProver uses non-perfect discrimination trees for implementing
backward and forward demodulation [8,16], feature vector indices for subsump-
tion [18], tries for subset subsumption [8], and MiniSat [6] for global subsump-
tion.

Generally, when during immediate simplification a parent clause of a newly
derived clause is made redundant, we can remove all the children of that clause
from the immediate set (and thus avoid adding them to the passive queues),
except for the ones which caused it to be redundant. Currently, we restrict this
feature to the given clause rather than to all the parent clauses, therefore, this
simplifies to checking whether the given clause is made redundant in Simmed,
and if so abort the loop, add only the clauses that made it redundant to the
passive, and remove the given clause.

2.3 AC Reasoning

If a problem contains associativity and commutativity axioms,

f(x, f(y, z)) = f(f(x, y), z) , f(x, y) = f(y, x) , (6)

then f is said to be AC.
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Table 1. Default simplification options

Spassive SubsetSubsumption, PropSubs
Sactive Subsumption, LightNorm, FwDemod, BwDemod
Simmed SubsetSubsumption, Subsumption, LightNorm, FwDemod, BwDemod
Sinput SubsetSubsumption, Subsumption, LightNorm, FwDemod, BwDemod

Rpassive TrivRules, ACJoinability, FwLightNormDemod, FwSubsumption
Ractive TrivRules, FwPropSubs, FwLightNormDemod, FwSubsumption,

FwSubsumptionRes, BwDemod
Rimmed TrivRules, FwLightNormDemod, FwSubsumption,

FwSubsumptionRes, BwDemod, BwSubsumption
Rinput TrivRules, FwLightNormDemod, FwSubsumption,

FwSubsumptionRes, BwDemod, BwSubsumption, BwSubsumptionRes

AC axioms are particularly problematic in theorem proving, because they
are non-orientable, which means they can generate permutations of arguments of
AC functions. This leads to combinatorial explosion in the number of clauses. In
particular, they will combine with each other to produce an exponential number
of instances.
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AC problems are ubiquitous and appear in a variety of domains [20].
Although theoretical developments behind AC reasoning have a long history,
AC support in most theorem provers is limited due to implementation complex-
ity and is mainly restricted to unit equality problems. We extended some of the
techniques to be applicable to the general clausal case, see Theorem 1 below, and
implemented them in iProver.

AC Preprocessing. During preprocessing we can transform the input problem
into any equisatisfiable form. We can normalise AC terms, by e.g. collecting
nested AC subterms into a flat list, sorting wrt. some total extension of the term
ordering, and making them right-associative.

Deletion of Joinable Equations. A rewrite system is a set of rules l → r,
such that, if l → r, then for any substitution σ, lσ → rσ, and for any term u,
u[l] → u[l �→ r]. By abuse of notation we can also use unorientable equalities
l ↔ r, in which case they stand for the set of its orientable instances, {lσ → rσ |
lσ 
 rσ} ∪ {rσ → lσ | rσ 
 lσ}. Two terms s and t are joinable wrt. a rewrite
system R (written s ↓R t) if s

�→ c
�← t, where ‘→’ denotes a rewrite step with a

rule in R and ‘ �→’ its reflexive-transitive closure. Two terms are ground joinable
(s ⇓R t) if all its ground instances are joinable. Two terms are strongly ground
joinable (written s ⇓�R t) if, for all s′ = sσ, t′ = tσ ground instances of s, t resp.,
with s′ � t′, either s′ is t′ or else s′ l→r∈R−−−−−→ u′ ↓R t′ where either l ≺ s′ or l is s′

but not u′ 
 t′ (see [1,13]).

Theorem 1. If s ⇓�R t, then s ≈ t ∨ C is redundant wrt. R. If s ⇓R t then
s �≈ t ∨ C is redundant wrt. R ∪ {C}.
Theorem 1 was shown in the context of unit equality reasoning in [1]; we extended
this theorem to general clauses and provided a different proof [5].

This abstract theorem can be used for AC reasoning, provided we have a
criterion to test l ⇓� r. We use the following criterion [1]. Let RAC be

f(x, y) ↔ f(y, x) , (7a)
f(f(x, y), z) → f(x, f(y, z)) , (7b)
f(x, f(y, z)) ↔ f(y, f(x, z)) , (7c)

Unless l ≈̇ r is an instance of RAC or can be simplified by an equation in RAC,
l =AC r implies l ⇓�RAC

r, which means we can use Theorem 1 to simplify/delete
clauses wrt. RAC. This is a cheap test for strong ground joinability to apply in
practice, since in order to check whether s =AC t we can simply treat nested
applications of f as a flat-list, and then sort wrt. some total order on terms (see
above discussion on AC normalisation).
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Semantic Detection of Axioms. Some problems are AC even though the
input does not contain the axioms explicitly. We say that a problem S is AC if
S |= AC. The usual syntactic detection checks if AC ∈ S. But we wish also to
detect AC problems even when this is not the case.

During preprocessing, we query an SMT solver to find out whether S |= AC.
Since SMT solvers only accept ground problems, we need to use a sound approx-
imation of the entailment relation. We do this using an injective substitution
mapping variables to fresh constants similar as it is done for global subsumption
[9]. This is a sound approximation, since φ(c̄) |= ψ(c̄) ⇒ ∀xφ(x̄) |= ∀xψ(x̄).
In order to make SMT reasoning more efficient we can further restrict reasoning
to fast rules like unit propagation or place a limit on the number of backtracks.
Apart from this, we also check if the AC axioms (6) get produced at some point
during saturation, among binary symbols of sort α × α → α.

3 Implementation and Experimental Results

We integrated the simultaneous superposition calculus, with the iProver-Sup
saturation loop, into iProver and evaluated it over 15 168 first-order problems
in TPTP-v7.2.0. The superposition loop can solve 7375 (49%), the instantia-
tion loop (on the previous version of iProver) can solve 7884 (52%), and their
combination can solve 8708 (57%). We can see that the combination with super-
position and the iProver-Sup simplification setup improved the performance of
iProver over the whole TPTP library.

Among problems that were solved by superposition, (excluding trivial prob-
lems solved by preprocessing), immediate simplification was used in 71.7% of
problems and light normalisation was used in 64.5% of problems. AC axioms
were detected in 1903 problems.

References

1. Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations in
equational theorem proving. J. Symb. Comput. 36(1–2), 217–233 (2003). https://
doi.org/10.1016/S0747-7171(03)00024-5

2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Log. Comput. 4(3), 217–247 (1994). https://doi.org/10.
1093/logcom/4.3.217

3. Benanav, D.: Simultaneous paramodulation. In: Stickel, M.E. (ed.) CADE 1990.
LNCS, vol. 449, pp. 442–455. Springer, Heidelberg (1990). https://doi.org/10.1007/
3-540-52885-7_106

4. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT - a distributed and learning
equational prover. J. Autom. Reasoning 18(2), 189–198 (1997). https://doi.org/
10.1023/A:1005879229581

5. Duarte, A., Korovin, K.: AC Reasoning Revisited (2020, to appear)
6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,

A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

https://doi.org/10.1016/S0747-7171(03)00024-5
https://doi.org/10.1016/S0747-7171(03)00024-5
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1007/3-540-52885-7_106
https://doi.org/10.1007/3-540-52885-7_106
https://doi.org/10.1023/A:1005879229581
https://doi.org/10.1023/A:1005879229581
https://doi.org/10.1007/978-3-540-24605-3_37


Implementing Superposition in iProver (System Description) 397

7. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving.
In: Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS
2003), pp. 55–64. IEEE Computer Society Press (2003)

8. Graf, P. (ed.): Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-61040-5. 284 p. ISBN 978-3-540-61040-3

9. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS,
vol. 7797, pp. 239–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37651-1_10

10. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7_24

11. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

12. Lopez Hernandez, J.C., Korovin, K.: An abstraction-refinement framework for rea-
soning with large theories. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR
2018. LNCS (LNAI), vol. 10900, pp. 663–679. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94205-6_43

13. Martin, U., Nipkow, T.: Ordered rewriting and confluence. In: Stickel, M.E. (ed.)
CADE 1990. LNCS, vol. 449, pp. 366–380. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-52885-7_100

14. McCune, W.: OTTER 3.3 Reference Manual. CoRR cs.SC/0310056 (2003).
arXiv: cs.SC/0310056

15. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, pp. 371–443.
Elsevier and MIT Press, Cambridge (2001). ISBN 0-444-50813-9

16. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning, vol. 2.
Elsevier and MIT Press, Cambridge (2001). ISBN 0-444-50813-9

17. Schulz, S.: E - a brainiac theorem prover. J. AI Commun. 15(2/3), 111–126 (2002)
18. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing.

In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 45–67. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36675-8_3

19. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5_49

20. Sutcliffe, G.: The TPTP problem library and associated infrastructure. from CNF
to TH0, TPTP v6.4.0. J. Autom. Reasoning 59(4), 483–502 (2017). https://doi.
org/10.1007/s10817-017-9407-7

21. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive frame-
work for saturation theorem proving. In: Peltier, N., Sofronie-Stokkermans, V.
(eds.) IJCAR 2020. LNCS, vol. 12166, pp. xx–yy. Springer, Heidelberg (2020)

22. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System
description: Spass version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 514–520. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73595-3_38

https://doi.org/10.1007/3-540-61040-5
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-319-94205-6_43
https://doi.org/10.1007/978-3-319-94205-6_43
https://doi.org/10.1007/3-540-52885-7_100
https://doi.org/10.1007/3-540-52885-7_100
http://arxiv.org/abs/cs.SC/0310056
https://doi.org/10.1007/978-3-642-36675-8_3
https://doi.org/10.1007/978-3-642-36675-8_3
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/978-3-540-73595-3_38
https://doi.org/10.1007/978-3-540-73595-3_38


MOIN: A Nested Sequent Theorem
Prover for Intuitionistic Modal Logics

(System Description)

Marianna Girlando(B) and Lutz Straßburger

Inria, Equipe Partout, Centre Inria Saclay & École Polytechnique, LIX,
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Abstract. We present a simple Prolog prover for intuitionistic modal
logics based on nested sequent proof systems. We have implemented
single-conclusion systems (Gentzen-style) and multi-conclusion systems
(Maehara-style) for all logics in the intuitionistic modal IS5-cube. While
the single-conclusion system are better investigated and have an inter-
nal cut-elimination, the multi-conclusion systems can provide a coun-
termodel in case the proof search fails. To our knowledge this is the
first automated theorem prover for intuitionistic modal logics. For wider
usability, we also implemented classical normal modal logics in the S5-
cube.

Keywords: Intuitionistic modal logic · Nested sequents · Prolog

1 Introduction

In the last decade, nested sequent calculi have been successfully used to define
cut-free deductive systems for various normal modal logics (classical [3], intu-
itionistic [17,23], constructive [1] and tense logics [10]) and non-normal modal
logics [14]. For some variants there also exist focused calculi [5,6].

Even though many of these calculi yield terminating decision procedures,
most of them have not (yet) been implemented in automated theorem provers.
In fact, the only implementations of nested sequent systems that we are aware of
are for non-normal logics [13,14] and normal conditional logics [18]. But for the
more widely used classical and intuitionistic normal modal logics in the S5-cube
no implementations using nested sequents exist. In fact, for intuitionistic modal
logics we are not aware of any automated theorem provers.

For this reason we present here a modular Prolog implementation for nested
sequent calculi for all intuitionistic normal modal logics in the IS5-cube (see
Fig. 1). For the systems whose decidability is known, our prover terminates. For
IS4, IK4, and ID4, for which decidability is still an open problem, we cannot
ensure termination. For the sake of higher usability, we included in the imple-
mentation also all classical normal modal logics in the S5-cube, but they are not
discussed here, as their implementation is rather straightforward [3].
c© Springer Nature Switzerland AG 2020
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The prover, called Moin1 (for MOdal Intuitionistic Nested sequents), is
inspired by the lean deduction methodology introduced in [2]: the program is
constituted by a set of Prolog clauses, one for each inference rule of the calcu-
lus, and the proof search is provided by the Prolog depth-first mechanism2. The
advantages of this approach, as stated in [2], are high degree of adaptability and
safety (i.e. the Prolog clauses are easy to verify), and high efficiency.

This article is organized as follows. Section 2 introduces intuitionistic modal
logics; Sect. 3 and 4 present nested sequents (single- and multi-conclusion) and
the proof systems we use. Section 5 treats termination and countermodel con-
struction, and Sect. 6 describes the main features of Moin.

2 Intuitionistic Modal Logics

We consider here the variant of intuitionistic modal logic that has first been
studied in [7] and [20], and then been investigated in detail by Simpson in his
PhD-thesis [22]. It is obtained from intuitionistic propositional logic, by adding
the two modalities � and ♦, together with the necessitation rule (if A is provable,
then so is �A), and the following five axioms:

k1 : �(A → B) → (�A → �B) k3 : ♦(A ∨ B) → (♦A ∨ ♦B) k5 : ♦⊥ → ⊥
k2 : �(A → B) → (♦A → ♦B) k4 : (♦A → �B) → �(A → B)

In classical modal logic, only k1 is added, as the others follow via the De
Morgan duality between � and ♦, which is not present in the intuitionistic case.

But as in the classical case, we can extend the logic by additional axioms.
We restrict ourselves here to the five axioms d, t, b, 4 and 5, which in the
classical as well as in the intuitionistic case generate 15 different logics, which
can be arranged in the so-called S5-cube (classical) or IS5-cube (intuitionistic).
Figure 1 shows the intuitionistic variant of that cube, together with the five
aforementioned axioms. The reason for the restriction to these logics in this
presentation is that the nested sequent proof systems for them are particularly
well-studied [3,5,6,8,17,23]. The Prolog code is written in a way that it can
easily be extended to other logics. The semantics of the logics in the IS5-cube is
defined in terms of bi-relational models, introduced in [7,20,22]. No complexity
results are known for these logics; however, their complexity has to be at least
PSPACE-hard, as intuitionistic propositional logic is PSPACE-complete.

3 Nested Sequents

Nested sequents have been introduced independently in [3,11], and [21]. Whereas
an ordinary sequent is a list (or multiset or set) of formulas, a nested sequent is

1 Available at www.lix.polytechnique.fr/Labo/Lutz.Strassburger/Software/Moin.
2 An introduction on Prolog theorem provers design is Jens Otten’s tutorial at
TABLEAUX 2019 [19].

www.lix.polytechnique.fr/Labo/Lutz.Strassburger/Software/Moin
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d : �A ⊃ ♦A
t : (A ⊃ ♦A) ∧ (�A ⊃ A)
b : (A ⊃ �♦A) ∧ (♦�A ⊃ A)
4 : (♦♦A ⊃ ♦A) ∧ (�A ⊃ ��A)
5 : (♦A ⊃ �♦A) ∧ (♦�A ⊃ �A)

Fig. 1. The intuitionistic modal IS5-cube

a tree of lists (or multisets or sets) of formulas. In the classical setting a nested
sequent Γ is written as

Γ :: = A1, . . . , An, [Γ1 ], . . . , [Γm ],

where A1, . . . , An are formulas and Γ1, . . . , Γm are nested sequents. This cor-
responds to a one-sided setting, and the formula interpretation fm(Γ ) of the
sequent above isfm(Γ ) = A1 ∨ · · · ∨ An ∨ �fm(Γ1) ∨ · · · ∨ �fm(Γm).

This setting is used by Brünnler in [3], to give cut-free systems for all logics
in the classical S5-cube, including a decision procedure. He has also shown how a
finite countermodel can be extracted from a failed proof search. We implemented
his method in Moin, but we will not go into details here because there are already
many different provers for classical modal logic in the literature3, and the details
of our implementation for classical modal logics follow straightforwardly from our
implementation for intuitionistic modal logics, that we discuss below.

The first observation is that for intuitionistic logic we need two-sided
sequents, which are formally generated by

Γ :: = A•
1, . . . , A

•
n, B◦

1 , . . . , B◦
k , [Γ1 ], . . . , [Γm ],

where A1, . . . , An are the formulas that would occur on the left of the turnstile if
there was a turnstile, B1, . . . , Bk are the formulas that would occur on the right
of the turnstile if there was a turnstile, and Γ1, . . . , Γm are nested sequents. We
use the •- and ◦-superscripts as polarity indication for formulas.

In this (multi-conclusion) intuitionistic two-sided setting, it is not possible
to give a formula interpretation as in the one-side classical case. However, this
is possible in the single-conclusion setting, where there is only one formula B◦

in the whole sequent. Single-conclusion sequents are formally generated by

Γ :: = Λ,B◦ | Λ, [Γ ] Λ:: = ∅ | A•, Λ | [Λ1 ], Λ2

where Γ stands for a (non-empty) sequent that contains exactly one formula
with ◦-polarity, and Λ for a (possibly empty) sequent in which all formulas have
3 For an extensive list of provers for classical modal logic, see http://www.cs.man.ac.
uk/∼schmidt/tools/, maintained by Renate Schmidt.

http://www.cs.man.ac.uk/~schmidt/tools/
http://www.cs.man.ac.uk/~schmidt/tools/
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•-polarity. Then the formula interpretation is:

fm(∅) = ⊥ fm(A•, Λ) = A ∧ fm(Λ) fm([Λ1 ], Λ2) = ♦fm(Λ1) ∧ fm(Λ2)
fm(Λ,B◦) = fm(Λ) ⊃ B fm(Λ, [Γ ]) = fm(Λ) ⊃ �fm(Γ )

In order to define inference rules on nested sequents, we need the notion of
context, denoted as Γ{·}, which is a nested sequent that contains exactly one
occurrence of the hole {·} in the place of a formula (of either polarity). Then
we write Γ{A} (respectively Γ{Δ}, respectively Γ{∅}) for the sequent obtained
from the context Γ{·} by replacing the hole {·} by the formula A (respectively
the sequent Δ, respectively deleting the hole). Finally, we define Γ ∗{·} to be the
context that is obtained from Γ{·} by removing all ◦-formulas.

Example 3.1 The nested sequent Γ{[C• ]} = A•, B•, [C• ], [D•, E•, [F •, G◦ ] ]
is the result of filling context Γ{·} = A•, B•, {·}, [D•, E•, [F •, G◦ ] ] with [C• ].
As Γ{[C• ]} is a single-conclusion sequent, we can give its formula inter-
pretation: (A ∧ B ∧ ♦C) ⊃ �((D ∧ E) ⊃ �(F ⊃ G)). Then, for Γ ∗{·} =
A•, B•, {·}, [D•, E•, [F • ] ], we have Γ ∗{A◦} = A•, B•, A◦, [D•, E•, [F • ] ], whose
formula interpretation is (A ∧ B ∧ ♦(D ∧ E ∧ ♦F ) ⊃ A). Finally, Γ{∅} =
A•, B•, [D•, E•, [F •, G◦ ] ].

4 The Proof Systems

There are two kinds of nested sequent systems for intuitionistic logic: single-
conclusion [6,17,23] in the style of Gentzen [9] and multi-conclusion [12], in
the style of Maehara [15]. In Moin, we implemented both. More precisely, we
implemented the single-conclusion systems of [23] and (a minor variation of) the
multi-conclusion systems presented in [12].

Figure 2 shows the basic single-conclusion system NIKs for the modal logic
IK as presented in [23]. Formulas marked in gray are formally not part of the
rules, but are part of the implementation in order to ease termination checks,
and to reduce the search space. Gray formulas can never be principal in a rule
application; they are kept in the premisses for book-keeping. The use of Γ ∗ in
the ⊃•

s-rule is due to the fact that every sequent occurring in a proof has to be
a single-conclusion sequent.

Then, Fig. 3 shows the extension rules corresponding to the axioms in Fig. 1.
They are taken from [23], and we refer the reader to [23] or [17] for a discussion
on which set of rules gives which logic in the cube in Fig. 1. For a set X ⊆
{d, t, b, 4, 5}, we write NIKs + X for the system obtained from NIKs by adding
the corresponding rules in Fig. 3. If d ∈ X we need in some cases also the d

[]
s -rule

shown in Fig. 4 (see [16] for more details).4

Finally, Fig. 4 shows the rules needed for the multi-conclusion system. For
each X ⊆ {d, t, b, 4, 5}, we write NIKm+X for the system obtained from NIKs+X
by removing the rules with an s in the subscript and replacing them with the

4 If d
[]
s is in the system, the rules d

◦
s and d

•
can be omitted, as they become admissible.
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corresponding rules in Fig. 4 with an m in the subscript. The d
[]
s -rule is never

needed in the multi-conclusion system. For more details see [12].

5 Termination and Countermodel Construction

All the classical modal logics in the S5-cube are decidable, and a simple loop
check in the rules that create a new nesting is enough to ensure termination
(see [3] for details). It is also explained in [3] how to obtain a finite countermodel
from a failed proof search, and we implemented that method in Moin.

In the intuitionistic case, not all logics in the IS5-cube are known to be
decidable. For the logics ID4, IK4 and IS4, this is still an open problem. But,
as already observed in [22], all other logics are decidable. Termination for logics
that do not need the 4- and 5-axioms can be proved similarly as in the case of
propositional intuitionistic logic: the only loop-check to be performed concerns
application of the ⊃•

s-rule, where it is needed to check whether the current
sequent already occurs in the derivation branch.

For the logics containing the 5-axiom, it is enough to restrict the depth of a
sequent to 1: when the ♦•-, �◦-, or one of the d-rules creates a new nesting at a
depth > 1, the nesting is introduced at the root level of the sequent. Complete-
ness of the resulting proof system has been proved in [8]. Thus, the restriction
on the ⊃•

s rule mentioned above is the only loop-check needed for these systems.
For the remaining logics (ID4, IK4, IS4), decidability is not known, and we

implement only two naive loop-checks: one for ⊃•
s mentioned above, and one

that is similar to the loop-check for classical modal logics. Refer to [22] for an
explanation on why this strategy does not suffice to ensure termination.

When using the single-conclusion systems, termination and completeness can
easily be shown via cut-elimination [23]. However, it is not clear how to obtain
a finite countermodel from a failed proof search. The reason is that there is
not such a close correspondence between models and sequents as for classical
modal logic. For this reason we also implemented the multi-conclusion systems
of [12]. They are related to the intuitionistic (bi-relational) Kripke models [7,
20], as classical nested sequent systems to classical Kripke models. The tree-
structure of the sequent tree corresponds to the R-relation (the accessibility
relation for the modalities), and the tree-structure of the proof tree corresponds
to the intuitionistic ≤-relation (often interpreted as future-relation). We follow
the construction of [12] for obtaining a countermodel from a failed proof search,
with certain simplifications, as in our case the model is always finite.

Termination for NIKm+X is ensured by the same arguments as for NIKs+X,
with the difference that the loop-check (which is performed for ⊃•

s in NIKs) is
performed for ⊃◦

m and �◦
m in NIKm + X.

6 The Prolog Implementation

Moin implements the nested sequents for classical modal logics from [3], and
the single- and multi-conclusion calculi for intuitionistic modal logics shown in
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⊥•
Γ{⊥•} id

Γ{a•, a◦}
Γ{A ∧ B•, A•, B•}∧•

Γ{A ∧ B•}
Γ{A ∧ B◦, A◦} Γ{A ∧ B◦, B◦}∧◦

Γ{A ∧ B◦}
Γ{A ∨ B•, A•} Γ{A ∨ B•, B•}∨•

Γ{A ∨ B•}
Γ{A◦}∨◦

s1
Γ{A ∨ B◦}

Γ{B◦}∨◦
s2

Γ{A ∨ B◦}
Γ ∗{A ⊃ B•, A◦} Γ{A ⊃ B•, B•}⊃•
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�•
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Γ{[A◦ ]}

�◦
s

Γ{�A◦}
Γ{♦A◦, [A◦, Δ ]}

♦◦
Γ{♦A◦, [Δ ]}

Fig. 2. System NIKs
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1s Γ{[Δ, ♦A◦ ]}
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◦
2s Γ{[Δ, ♦A◦ ], [Σ ]}
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•
1 Γ{[Δ, �A• ]}
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Γ{[Δ, �A•, [�A•, Σ ] ]}
5

•
3 Γ{[Δ, �A•, [Σ ] ]}

Fig. 3. Intuitionistic ♦◦- and �•-rules for the axioms d, t, b, 4, and 5.
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Fig. 4. The structural d
[]
s -rule, and the rules for the multi-conclusion system NIKm+X



404 M. Girlando and L. Straßburger

Figs. 2, 3, 4. The prover is composed of a set clauses, each implementing a rule
of the sequent calculus. The structure of Moin reflects the modularity of the
calculi: implementations of stronger systems are obtained by adding the clauses
corresponding to the rules to the set of clauses for weaker systems.

The biggest difficulty in implementing nested sequents lies in the choice of the
data structure. For ordinary sequents, it is straightforward to use the Prolog-
lists. However, nested sequents are not lists of formulas, but trees of lists of
formulas, and Prolog does not come with an efficient representation of trees,
which would allow formulas occurring in lists inside a node of the tree to be easily
accessed and replaced. There exist several approaches to overcome this difficulty.
The implementation of conditional modal logics in [18] and of non-normal modal
logics in [14] implement nested sequents as nested lists, while the implementation
of non-normal modal logics in [13] uses a tree structure, in which nodes are
annotated with sequents. We follow a different approach, representing nested
sequents as Prolog lists with annotations. This can be compared to labelled
calculi [22]: an annotation is an index labelling formulas of a nested sequent,
with formulas occurring at the same node sharing the same annotation. This
data structure allows for an easier countermodel extraction from a failed branch.

Propositional variables are represented in Moin as Prolog atoms a,b,. . . ; ⊥
and � are Prolog false and true, and the connectives ¬, ∧, ∨, ⊃, � and ♦
are respectively represented by ~, v ^, ->, ! and ?. Nested sequents for classical
modal logic are represented by means of two Prolog lists Rel,Seq. Seq is a list
of triples (X,F,Sign), where F is a formula in Moin syntax, X is the annotation
of F, i.e., an integer keeping track of the component of the nested sequent at
which the formula occurs, and Sign is either + or -. Rules can only be applied
to formulas with a positive sign, while formulas with a negative sign are used
for book-keeping (they are the gray formulas from Figs. 2, 3 and 4). Rel is a list
of pairs (X,Y), representing the parent-child relation between nodes of a nested
sequent. Single-conclusion nested sequents are represented as Rel,Lambda,Out,
where Lambda is a list of elements (X,F,Sign) storing the •-formulas, and Out is
a pair (X,F) storing the ◦-formula. Finally, multi-conclusion nested sequents are
represented by means of three lists Rel,Gamma,Delta, where Gamma and Delta
are lists of elements (X,F,Sign), respectively representing •- and ◦-formulas.

Proof search is invoked by the predicate derive(PS,Axioms,F), where
F is the formula to be checked, PS selects the proof system (k for classi-
cal, i for intuitionistic single-conclusion, m for intuitionistic multi-conclusion
nested sequents), and Axioms is a (possibly empty) list specifying the addi-
tional axioms to be used (d, t, b, 4 and 5). For instance, derive(i,[b,5],
(?a -> !?a) ^ (?!a -> !a)) triggers the derivation of axiom 5 in NIKs +
{b, 5}. The predicate derive queries the corresponding predicate prove_k\4,
prove_i\3 or prove_m\4. These predicates are recursively invoked and generate
the proof-search tree (and the countermodel). To ensure termination, applica-
tion of some rules needs to be restricted (see Sect. 5). The loop-checks are imple-
mented by auxiliary predicates. The application of prove to a branch stops when
an axiom clause is reached (success), or when no clause succeeds, producing a
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A = �1, . . . , �8(a ⊃ b) ⊃ (�1, . . . , �8 a ⊃ �1, . . . , �8 b)

B = (♦1, . . . , ♦5a ⊃ �1, . . . , �5b) ⊃ �1, . . . , �5(a ⊃ b)

C = (�a ∧ ¬��a) ⊃ ♦(��a ∧ ¬���a)

D = �(�(a ⊃ �a) ⊃ a) ⊃ (♦�a ⊃ a)

E = (♦(a ∨ b) ∧ �(♦(a ∨ b))) ⊃ (♦♦♦♦a ∨ ♦♦♦♦b)

Fig. 5. Formulas A and B are generated by adding modal operators to k1 and k4, and
are both derivable in all systems. Formulas C and D are from [4]; C is valid in all
systems with 4 and D in all systems with b. Formula E is not derivable in any system.

IK ID IT IKB IK5 IK45 IKB5 IDB ID5 ID45 ITB IS5

A 0, 1 · 0, 1 0, 1 · 0, 7 0, 2 · 0, 2 0, 1 · 0, 1 19, 6 · 0, 2 113, 9 · 0, 3 16, 1 · 0, 3 0, 2 · 38, 7 ∗ · ∗ ∗ · ∗ 0, 2 · 0, 2 32, 8 · 0, 5
B 0, 1 · 0, 1 0, 1 · 0, 2 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 2 0, 1 · 0, 2 0, 1 · 0, 5 0, 2 · 40, 2 0, 2 · 46, 2 0, 1 · 0, 1 0, 1 · 0, 2
C 0, 1 · 0, 1 0, 3 · 0, 1 0, 1 · 0, 1 0, 6 · 0, 1 0, 2 · 0, 1 0, 1 · 0, 1 0, 2 · 0, 1 3, 0 · 0, 1 8, 1 · 0, 1 0, 1 · 0, 1 1, 2 · 0, 1 0, 1 · 0, 1
D 0, 1 · 0, 2 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1
E 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 1 0, 1 · 0, 3 0, 1 · 0, 8 0, 1 · 0, 1 0, 1 · 0, 1

Fig. 6. Results in seconds of tests in implementations for NIKs+X (red/left entry) and
NIKm + X (blue/right entry). Symbol ∗ means execution time > 150 s. (Color figure
online)

failed branch. In case of success of the proof-search, Moin produces a
file containing the derivation. Otherwise, for classical and intuitionistic multi-
conclusion sequents, Moin prints out a countermodel in a file. While in
the classical system the information contained in the leaf of a failed branch is
enough to extract a countermodel, this is not the case for NIKm + X, where all
the failed branches need to be considered.

7 Performances

Due to the absence of benchmarks for intuitionistic modal logics, we have mea-
sured the performance Moin with some adhoc (valid and non valid) formulas
shown in Fig. 5. The construction of a set of benchmark formulas has to be post-
poned to future work, as the 15 different logics in the IS5-cube make this not an
easy task.

We used SWI Prolog 8.0.3 on a Dell XPS 13 9370 laptop running with a
1.80 GHz Quad Core, Intel Core i7-8550U, 8 GB RAM, under Linux Mint 19.1.
The numbers reported in the Fig. 6 are the results given in seconds of the user
time command from bash script, approximated at 0,05 s. Numbers in red (left
side) are the results of the single-conclusion calculus, numbers in blue (right
side) of the multi-conclusion one. We removed the -output part from Moin
before proceeding to the tests.

The results vary depending on the formula under scope. In some cases (for-
mula A tested in IK45 and IS5; formula C in IDB, ID5) the implementation of
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NIKm + X seems to have better performances than the one of NIKs + X, since
the multi-conclusion prover has a smaller number of backtrack points (only the
rules ⊃◦

m and �◦
m are non-invertible). In some other cases (formula A tested in

IDB; formula B tested in ID5 and ID45), the NIKm+X prover is slower than the
NIKs+X one: this is due to the fact that in the multi-conclusion implementation
the order in which the rules are applied is different from the single-conclusion
one, and a larger number of sequents can be introduced in the proof search.

8 Conclusion and Future Work

The main purpose of Moin is to be a tool for experimentation. The proof theory
of intuitionistic modal logics has seen many advances in the last decade, and we
felt the need for a tool that makes these advances accessible to a wider audience.
We also hope to get through the use of Moin some new insights in the decision
problem for ID4, IK4 and IS4.

Further future work is to find more efficient implementations of the termina-
tion checks and to implement the focused systems of [5,6].
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Abstract. In this work in progress, we demonstrate a new use-case for
the ENIGMA system. The ENIGMA system using the XGBoost imple-
mentation of gradient boosted decision trees has demonstrated high capa-
bility to learn to guide the E theorem prover’s inferences in real-time.
Here, we strip E to the bare bones: we replace the KBO term ordering
with an identity relation as the minimal possible ordering, disable literal
selection, and replace evolved strategies with a simple combination of the
clause weight and FIFO (first in first out) clause evaluation functions.
We experimentally demonstrate that ENIGMA can learn to guide E as
well as the smart, evolved strategies even without these standard auto-
mated theorem prover functionalities. To this end, we experiment with
XGBoost’s meta-parameters over a dozen loops.

1 Introduction: Making E Stupid and Then Smart Again

State-of-the-art saturation-based automated theorem provers (ATPs) for first-
order logic (FOL), such as E and Vampire [12], employ the given clause algo-
rithm [13], translating the input FOL problem T ∪{¬C} (background theory and
negated conjecture) into a refutationally equivalent set of clauses. The search for
a contradiction is performed maintaining sets of processed (P ) and unprocessed
(U) clauses (the proof state Π). The algorithm repeatedly selects a given clause
g from U , moves g to P , and extends U with all clauses inferred with g and P .
This process continues until a contradiction is found, U becomes empty, or a
resource limit is reached.

Historically, term ordering, together with literal selection, is used to guarantee
the completeness of the proof search [1] and to “tame the growth of the search
space and help steer proof search” [5]. Term ordering ensures that rewriting
happens in only one direction, toward smaller terms. Literal selection limits the
inferences done with each given clause g to the selected literals, which slows
down the growth of the search space and reduces redundant inferences.

E includes a strategy language of clause evaluation functions, made up of
weight and priority functions, to heuristically guide the proof search. In this
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work, I use two algorithmically invented [6,7] strategies, E1 and E21, that
use many sophisticated clause evaluation functions, the Knuth-Bendix ordering
(KBO6), literal selection, and other E heuristics.

The ENIGMA [4,8–10] system with the XGBoost [2] implementation of gra-
dient boosted decision trees has recently demonstrated high capability to learn
to guide the E [14] theorem prover’s inferences in real-time. ENIGMA uses the
XGBoost model as a clause evaluation function to recommend clauses for selec-
tion based on clause and conjecture features. In particular, after several prov-
ing and learning iterations, its performance on the 57880 problems from the
Mizar40 [11] benchmark improved by 70% (= 25397/14933) [10] over the strat-
egy E1 used for the initial proving phase.

In this work, E is stripped to the bare bones by disabling term ordering and
literal selection. KBO6 is replaced with an identity relation as the minimal possi-
ble ordering (called IDEN – an addition to E2). While this frees E to do inferences
in any order, E can no longer perform rewriting inferences. The strategy E1 is
replaced with the simple combination of the clause weight and FIFO (first in first
out) evaluation functions. E is thus practically reduced to a basic superposition
prover, without advanced heuristics, rewriting, or completeness guarantees. We
call this strategy E0:

--definitional-cnf=24 --prefer-initial-clauses -tIDEN

--restrict-literal-comparisons -WNoSelection

-H’(5*Clauseweight(ConstPrio,1,1,1),1*FIFOWeight(ConstPrio))’

E0 solves only 3872 of the Mizar40 problems in 5 s compared to 14526 for E1.
The first research question is the extent to which ENIGMA with this basic prover
can learn ATP guidance completely on its own. The second is to what extent
ENIGMA’s learning can be boosted with data from strong strategies and models.
That is, I explore how smart machine learning can become in this zero-strategy
setting. The more general related question is to what extent can machine learning
replace the sophisticated human-invented theorem-proving body of wisdom used
in today’s ATPs for restricting advanced proof calculi.

2 Experiments

We evaluate ENIGMA with the basic strategy, E0, in several scenarios and
over two datasets of different sizes. All experiments are run with 5 s per
problem3 4.

1 Strategies E1 and E2 are displayed in the appendix.
2 The E version used in this paper can be found at https://github.com/zariuq/

eprover/tree/identity-order, and the library for running ENIGMA with E can be
found at https://github.com/zariuq/enigmatic.

3 As a rule of thumb, E solves most problems within a few seconds or not for a very
long time.

4 All the experiments are run on the same hardware unless otherwise specified: Intel(R)
Xeon(R) Gold 6140 CPU @ 2.30GHz with 188GB RAM.

https://github.com/zariuq/eprover/tree/identity-order
https://github.com/zariuq/eprover/tree/identity-order
https://github.com/zariuq/enigmatic
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ENIGMA has so far been used in two ways: coop combines the learned model
with some standard E strategy equally (50:50) while solo only uses the learned
model for choosing the given clauses. The best results have been achieved by
MaLARea-style [16] looping: that is, an ENIGMA model is trained and run
with E (loop 0), then the resulting data are added to the initial training data
and a new ENIGMA model is trained (loop 1).

In this work, ENIGMA trains with both solo and coop data. I present results
from solo runs because they represent the most minimal setting.

2.1 Small Data (2000 Problems)

The E evaluations and XGBoost training can take a long time on the full Mizar40
dataset, so 2000 randomly sampled problems are used to test meta-parameters
on. Each XGBoost model consists of T decision trees of depth D, the most
important training meta-parameters in addition to the learning rate (η = 0.2).
In previous work with ENIGMA, T and D were fixed for all loops of learning.
Here we try to vary the values of T and D during 16 loops. Let SD,T denote the
experiment with specific T and D. Of the many protocols tested, the following
are included in the plot of solved problems (above): Fives (S5,100), Nines (S9,100),
Thirteens (S13,200), Sixteens (S16,100).

We also experiment with adaptively setting the meta-parameters as the num-
ber of training examples increases according to the following protocols:

– Inc (S[3,33],100) increases D by 2 from 3 to 33 and keeps T = 100 fixed.
– 32 inc (S32,[50,250]) fixes D = 32 and gradually increases T from 50 to 250.
– Inc2 (S[3,33],∗) gradually decreases T from 150 to 50, varying the value

intuitively5.

5 Precise details of intuitively set parameters can be seen in the appendix.
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– Inc3 (S[3,33],[50,250]) aims to be more systematic and steps T from 50 to 250.
– Dec3 (S[3,33],[250,50]) decreases T from 250 to 50.

At the 16th loop Inc’s performance is best, solving 299 problems, doubling
the performance of E0 (152). However Inc2 and Inc3 solve 298 problems and
32 inc solves 291 problems. The conclusion is that simple protocols work well so
long as T or D is incremented adaptively rather than fixed.

2.2 Big Data (57880 Problems)

These experiments are done on the large benchmark of 57880 Mizar40 [11] prob-
lems from the MPTP dataset [15]. E1 and E2 are two strong E strategies that
solve 14526 and 12788 problems.

– Experiment 1 is done with D = 9 and T = 200 and uses our previously
trained model that allowed us to solve 25562 problems when cooperating
with E1 in our previous experiments [10]. This strong model, which hashes
the features into 32768 (215) buckets [3, Sect. 3.4], is used with E0 now.

– Experiment 2’s parameters were intuitively toggled during the looping as in
Inc3, and a feature size of 216 is used. Exp. 2 uses training data from E1 and
E2 for additional guidance up to the 4th loop (and then stops including them
in the training data based on the assumption they may confuse learning).

– Experiment 3 sets T and D according to protocol Inc3. Exp. 3 only learns
from E run with E0 and trains on the GPU, which requires the feature size
to be reduced to 256.

– Experiment 4 mimics Exp. 3 but uses E1 and E2 data for training (up to
the 4th loop).

– Experiment 5 further tests boosting with data from an E0 ENIGMA
model that proved 9759 problems and an E1 that proved 21542 problems.
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Tree depth is intuitively varied among 32, 512, and 1000, the number of trees
is varied among 2, 100, 200, and 32. The feature vector size starts at 214 and
is decreased to allow the data to fit on the RAM, down to 32 (= 25).

As seen in the figure, the strong model does not help much in guiding E
without ordering or selection in Exp. 1. Exp. 2 learns gradually and catches up
with Exp. 1, but seems to plateau around 10,000. Surprisingly the pure Exp. 3
learns fast with the small feature size, but plateaus and drops in performance
(perhaps due to overfitting). Exp. 4 indicates that guidance is useful and sur-
passes E2 with 13805 in round 13. Exp. 5 solves 15990 problems, showing that
ENIGMA can take E0 beyond the smart strategies with appropriate parameters
and boosting. This is a great improvement over the 3872 problems solved by E0.

3 Conclusion

ENIGMA can learn to guide the E prover effectively even without smart strate-
gies and term orderings. The models confer a 256% increase over the naive E0
after 13 rounds of the proving/learning loop, and even trained without guidance
data, a 121% increase.

The experiments indicate that machine learning can be used to fully control
an ATP’s guidance, learning to replace orderings, heuristic strategies, and deal
with the increase in generated clauses without literal selection. However the
combination of ENIGMA and standard ATP heuristics still significantly out-
performs ENIGMA alone.

Given the large symmetry-breaking impact of these methods in classical ATP,
future work includes, e.g., training the guidance in such a way that redundant
(symmetric) inferences are not done by the trained model once it has commit-
ted to a certain path. This probably means equipping the learning with more
history and knowledge of the proof state in the saturation-style setting. ENIG-
MAWatch [4] may aid with symmetry breaking by focusing the proof search
on particular proof paths. Additional work is needed to isolate the factors in
Exp. 5’s performance, and determine the most effective boosting methods in
addition to increasing D and T with training loops. Ablation studies should be
done to discover the impact of term ordering and literal selection individually
on E and ENIGMA’s performance. Perhaps term ordering alone is sufficient to
train good ENIGMA models.

Running ENIGMA without term ordering and other restrictions is important
because it may allow us to combine training data from different strategies, and
it may allow ENIGMA to find novel proofs.

Acknowledgments. The research topic was proposed by Jan Jakubuv and Josef
Urban, and further discussed with them, Martin Suda, and Thomas Tan. I also thank
the AITP’20 anonymous referees for their comments on the first extended abstract of
this work.
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A Strategies

Strategy E1 is:

--definitional-cnf=24 --split-aggressive --simul-paramod
--forward-context-sr --destructive-er-aggressive --destructive-er
--prefer-initial-clauses -tKBO -winvfreqrank -c1 -Ginvfreq -F1
--delete-bad-limit=150000000 -WSelectMaxLComplexAvoidPosPred
-H’(1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.1,5,0,0.1,1,4),
1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.5,100,0,0.2,0.2,4),
1*Refinedweight(PreferWatchlist,4,300,4,4,0.7),
1*RelevanceLevelWeight2(PreferProcessed,0,1,2,1,1,1,200,200,2.5,9999.9,9999.9),
1*StaggeredWeight(DeferSOS,1),
1*SymbolTypeweight(DeferSOS,18,7,-2,5,9999.9,2,1.5),
2*Clauseweight(PreferWatchlist,20,9999,4),
2*ConjectureSymbolWeight(DeferSOS,9999,20,50,-1,50,3,3,0.5),
2*StaggeredWeight(DeferSOS,2))’

Strategy E2 is:

--definitional-cnf=24 --split-aggressive --split-reuse-defs
--simul-paramod --forward-context-sr --destructive-er-aggressive
--destructive-er --prefer-initial-clauses -tKBO -winvfreqrank
-c1 -Ginvfreq -F1 --delete-bad-limit=150000000
-WSelectMaxLComplexAvoidPosPred -H’(
3*ConjectureRelativeSymbolWeight(PreferUnitGroundGoals,0.1,100,100,50,100,0.3,1.5,1.5),
4*FIFOWeight(PreferNonGoals),
5*RelevanceLevelWeight2(ConstPrio,1,0,2,1,50,-2,-2,100,0.2,3,4))’

B Additional Protocol Details

In this section I include the details for intuitively toggled protocols.
Protocol Inc2 is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Depth 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Trees 150 150 150 100 100 100 75 50 75 100 150 75 100 150 75 100

The protocol for Exp. 2 is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

D 4 5 6 7 8 9 10 11 12 13 14 15 16 16 32 9 16 32 64 24 25 32

T 50 150 160 170 180 190 200 200 200 200 210 220 225 225 225 300 300 225 150 250 250 250

The protocol for Exp. 5 requires some explanation. The motivation is to see how
far E0 can be taken, even if the methods are too CPU-intensive for a thorough
grid search.
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Exp. 2 and Exp. 4 demonstrate the utility of boosting. Thus to create better
boosting data I trained ENIGMA for 10 loops with strategies E1 through E12
and used this as boosting data for the first 4 of 10 loops of training. In addition
to training E0, and in the spirit of ablation studies, I also trained ENIGMA
models for E0 with KBO ordering (and no literal selection) and for E0 with
KBO ordering and restricted literal comparisons. The motivation is that these
versions may serve as a bridge between standard E and the basic E0.

Then I used these results to boost an ENIGMA model in loop 0, and trained
based on this for 10 loops, proving 9759 problems.

Finally this data and the data from a loop 3 ENIGMA model trained with
E1 is used to boost E0 with the following meta-parameters:

0 1 2 3 4 5 6 7 8 9 10 11

Depth 512 512 32 1000 32 1000 32 1000 32 1000 1000 100

Trees 2 2 100 100 200 100 200 32 300 32 32 32

Feature size 16384 8192 4096 28 4096 28 4096 32 2048 64 32 128
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Abstract. In the realm of term rewriting, given terms s and t, a reach-
ability condition s →∗ t is called feasible if there is a substitution σ
such that σ(s) rewrites into σ(t) in zero or more steps; otherwise, it is
called infeasible. Checking infeasibility of (sequences of) reachability con-
ditions is important in the analysis of computational properties of rewrite
systems like confluence or (operational) termination. In this paper, we
generalize this notion of feasibility to arbitrary n-ary relations on terms
defined by first-order theories. In this way, properties of computational
systems whose operational semantics can be given as a first-order the-
ory can be investigated. We introduce a framework for proving feasibil-
ity/infeasibility, and a new tool, infChecker, which implements it.

Keywords: Conditional rewriting · Feasibility · Program analysis

1 Introduction

The (in)feasibility of sequences of goals s →∗ t representing many step rewritings
in Conditional Term Rewriting Systems (CTRSs, see [22, Section 7]) has been
investigated by several authors. The word “feasibility” refers to the possibility
of applying a substitution σ as part of the desired test, i.e., checking whether
σ(s) →∗

R σ(t) holds for some substitution σ, rather than just checking s →∗
R t

(reachability test). The use of (in)feasibility tests in confluence and (operational)
termination analysis of CTRSs has been investigated elsewhere (see, e.g., [13,25]
and the references therein). We generalize “feasibility of a reachability problem”
by defining feasibility conditions, sequences and goals without any specific refer-
ence to rewriting systems or rewriting goals. Instead, we rely on first-order logic
and use (two layered) sequences of atoms headed with a predicate �� as feasibil-
ity goals. The meaning of predicates �� is given by using first-order theories Th��

by provability of the corresponding atoms. New properties (also of CTRSs) can
be investigated in this way.
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Example 1. Given a CTRS R, a term t loops if t = t1 →R · · · →R tn for some
n > 1 such that t is a subterm of tn, written tn�t, cf. [2, Def. 3]. Provided that →,
→∗ and � are given appropriate theories (see Example 3 below), non-loopingness
of ground terms t is the infeasibility of the sequence t → x, x →∗ y, y � t.

Now, looping CTRSs can be defined as those having looping terms. Thus,
loopingness of CTRSs can be defined as the feasibility of x → y, y →∗ z, z � x.

In order to automatically analyze such (in)feasibility goals, we describe a frame-
work similar to the Dependency Pair (DP) Framework for proving termination
of TRSs [3]. After some preliminaries in Sect. 2, Sect. 3 presents the notion of
feasibility goal. Section 4 describes the feasibility framework for proving and dis-
proving feasibility goals. Section 5 describes our tool infChecker which provides
a (partial) implementation of the framework introduced here. Section 6 provides
an experimental evaluation and discusses some related work. Section 8 concludes.

2 Preliminaries

We use the standard notations in term rewriting (see, e.g., [22]). In this paper,
X denotes a countable set of variables and F denotes a signature, i.e., a set of
function symbols {f, g, . . .}, each with a fixed arity given by a mapping ar : F →
N. The set of terms built from F and X is T (F ,X ). The symbol labeling the
root of t is denoted as root(t). The set of variables occurring in t is Var(t). Terms
are viewed as labeled trees in the usual way. Positions p, q, . . . are represented
by chains of positive natural numbers used to address subterms t|p of t. The set
of positions of a term t is Pos(t). A substitution is a mapping from variables
into terms which is homomorphically extended to a mapping from terms to
terms. A conditional rule is written � → r ⇐ s1 ≈ t1, · · · , sn ≈ tn, where
�, r, s1, t1, . . . , sn, tn ∈ T (F ,X ) and � /∈ X . As usual, � and r are called the left-
and right-hand sides of the rule, and the sequence s1 ≈ t1, · · · , sn ≈ tn (often
abbreviated to c) is the conditional part of the rule. We often write si ≈ ti ∈ c to
refer to the i-th atomic condition in c or s → t ∈ c if the position of the atomic
condition in c does not matter. Rules � → r ⇐ c are classified according to
the distribution of variables as follows: type 1 (or 1-rules), if Var(r) ∪ Var(c) ⊆
Var(�); type 2, if Var(r) ⊆ Var(�); type 3, if Var(r) ⊆ Var(�) ∪ Var(c); and
type 4, if no restriction is given. A CTRS R is a set of conditional rules; R is
called an n-CTRS if it contains only n-rules; A 3-CTRS R is called deterministic
if for each rule � → r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R and each 1 ≤ i ≤ n,
we have Var(si) ⊆ Var(�) ∪

⋃i−1
j=1 Var(tj). Oriented CTRSs are those whose

conditions s ≈ t are handled as reachability tests σ(s) →∗ σ(t) for an appropriate
substitution σ. For oriented CTRSs R, an inference system I(R) is obtained from
the following generic inference system ICTRS:

(Rf)
x →∗ x

(C)f,i
xi → yi

f(x1, . . . , xi, . . . , xk) → f(x1, . . . , yi, . . . , xk)

for all f ∈ F (k) and 1 ≤ i ≤ k

(T)
x → y y →∗ z

x →∗ z
(Rl)α

s1 →∗ t1 · · · sn →∗ tn

� → r
for α : � → r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R
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le(0, s(y)) → true (1)

le(s(x), s(y)) → le(x, y )2()

le(x, 0) → false (3)

min(cons(x, nil)) → x (4)

min(cons(x, xs)) → x ⇐ min(xs) ≈ y, le(x, y) ≈ true (5)

min(cons(x, xs)) → y ⇐ min(xs) ≈ y, le(x, y) ≈ false (6)

Fig. 1. CTRS 551.trs in COPS database of confluence problems.

by specializing (C)f,i for each k-ary symbol f in the signature F and 1 ≤ i ≤ k
and (Rl)α for all conditional rules α : � → r ⇐ c in R. Rules in I(R)
are schematic: each inference rule B1 ··· Bn

A can be used under any instance
σ(B1) ··· σ(Bn)

σ(A) of the rule by a substitution σ. We write s →R t (resp. s →∗
R t)

iff there is a proof tree for s → t (resp. s →∗ t) using I(R). Operational termi-
nation of R is defined as the absence of infinite proof trees for goals s → t and
s →∗ t in I(R) [14].

A structure A for a first-order language is an interpretation of the func-
tion and predicate symbols (f, g, . . . and P,Q, . . ., respectively) as mappings
fA, gA, . . . and relations PA, QA, . . . on a given set (carrier) also denoted A.
Then, the usual interpretation of first-order formulas with respect to A is con-
sidered. A model for a theory Th, i.e., a set of first-order sentences (formulas
whose variables are all quantified), is just a structure A that makes them all
true, written A |= Th. In the following, Th 	 ϕ means that formula ϕ is a
logical consequence of Th. We assume the use of a sound and complete proof
method, in particular Gentzen’s natural deduction, see [23]. In this setting, we
often assume the use of the inference rules of natural deduction [23, p. 20] to
deal with logical connectives and quantifiers when necessary.

3 Feasibility of Sequences and Goals

Consider a signature Σ of function symbols and a set Π of predicate symbols. As
in [4], (Σ,Π) is often called a signature with predicates. Let F ⊆ Σ be a signature
and P ⊆ Π be a set of predicates (e.g., P = {→,→∗, ↓,↔,↔∗,�, . . .}).1 Let
T = {Th�� | �� ∈ P} be a P-indexed set of first-order theories Th�� defining the
predicates �� in P, possibly involving predicate symbols which are not in P.

Example 2. For the CTRS R in Fig. 1, we obtain a theory R from I(R) as
follows [11, Section 4.5]: the inference rules (ρ)B1 ··· Bn

A in I(R) are considered
as sentences ρ of the form (∀x) B1 ∧ · · · ∧ Bn ⇒ A, where x is the sequence of
variables occurring in atoms B1, . . . , Bn and A; if empty, we just write B1 ∧· · ·∧
Bn ⇒ A (see Fig. 2). For P = {→,→∗}, we let Th→ = Th→∗ = R.

1 For simplicity, in our exposition we restrict the attention to binary predicates, but
the techniques and results in this paper easily generalize to n-ary predicates.
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(∀x) x →∗ x

(∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z

(∀x, y) x → y ⇒ s(x) → s(y)

(∀x, y, z) x → y ⇒ cons(x, z) → cons(y, z)

(∀x, y, z) x → y ⇒ cons(z, x) → cons(z, y)

(∀x, y, z) x → y ⇒ le(x, z) → le(y, z)

(∀x, y, z) x → y ⇒ le(z, x) → le(z, y)

(∀x, y) x → y ⇒ min(x) → min(y)

(∀y) le(0, s(y)) → true

(∀x, y) le(s(x), s(y)) → le(x, y)

(∀x) le(x, 0) → false

(∀x) min(cons(x, nil)) → x

(∀x, y, xs) min(xs) →∗ y ∧ le(x, y) →∗ true ⇒ min(cons(x, xs)) → x

(∀x, xs) min(xs) →∗ y ∧ le(x, y) →∗ false ⇒ min(cons(x, xs)) → y

Fig. 2. Theory R for the CTRS R in Example 2

Examples 6 and 7 illustrate and motivate the use of theories involving predicates
not in P.

An (F ,P)-f-condition γ (or just f-condition if F and P are clear from the con-
text) is an atom s �� t where ��∈ P and s, t ∈ T (F ,X ). Sequences F = (γi)n

i=1 =
(γ1, . . . , γn) of f-conditions are called f-sequences. A set G = {F1; . . . ;Fm} of f-
sequences is called an f-goal ; we use ‘;’ intead of ‘,’ which is already considered in
f-sequences. We often drop ‘f-’ when no confusion arises. Empty sequences and
goals are written () and {}.

Remark 1 (Notation). In the following, we often use ‘∈’ to denote membership
of components in both sequences and goals.

Definition 1 (Feasibility). A condition s �� t is (T, σ)-feasible if Th�� 	
σ(s) �� σ(t) holds; otherwise, it is (T, σ)-infeasible. We also say that s �� t is
T-feasible (or Th��-feasible, or just feasible if no confusion arises) if it is (T, σ)-
feasible for some substitution σ; otherwise, we call it infeasible.

A sequence F is T-feasible (or just feasible) iff there is a substitution σ such
that, for all γ ∈ F, γ is (T, σ)-feasible. Note that () is trivially feasible. A goal G
is feasible iff it contains a feasible sequence F ∈ G. Now, {} is trivially infeasible.

Example 3. (continuing Example 1) We can prove a ground term t non-looping
as the T-infeasibility of G = {(t → y, y →∗ z, z � t)}, with x, y, and z variables,
and T = {Th→,Th→∗ ,Th�} such that Th→ = Th→∗ = R and Th� is given by:

(∀x) x � x (7)
(∀x, y, z) x � y ∧ y � z ⇒ x � z (8)

(∀x1, . . . , xk) f(x1, . . . , xk) � xi (9)
for each f ∈ F and 1 ≤ i ≤ k
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Example 4. A term t is root-stable (with respect to a TRS R) if t cannot be
reduced to a redex, i.e., there is no rule � → r ∈ R such that t →∗ σ(�) for
some substitution σ. If R consists of rules �1 → r1, . . . , �p → rp (assume that
different rules in R share no variable), we can prove a ground term t root-stable
by showing the {Th→∗}-infeasibility of G = {(t →∗ �1); · · · ; (t →∗ �p)} with
Th→∗ = R.

More examples of theories Th�� can be found in [9, Sections 5.3 and 5.4] and [11,
Sections 8.1 and 8.2].

Given theories Th,Th′ and a set of atoms A, we write Th ≡A Th′ if for all
A ∈ A, Th 	 A if and only if Th′ 	 A. Also, given a set of atoms A and a
predicate symbol ��, A�� is the subset of atoms in A with root ��.

Definition 2. Given a set of predicates P and a P-indexed set of theories T, we
say that a theory Th preserves a feasibility sequence F (in T) if for all predicates
�� occurring in F, Th ≡A��

Th�� holds. Thus, Th cannot prove more atoms rooted
with �� than Th��. Similarly, Th preserves a goal G = {Fi}m

i=1 if it preserves Fi

for all 1 ≤ i ≤ m.

In the following, when no confusion arises, we do not explicitly mention the
underlying set of theories T. Given G = {Fi}m

i=1 and Fi = (sij ��ij tij)ni
j=1 for

1 ≤ i ≤ m, we let ThFi
=

⋃ni

j=1 Th��ij
and ThG =

⋃m
i=1 ThFi

.

Example 5. It is not difficult to see that ThG preserves G in Example 3.

The following result provides a (first-order) provability perspective of feasibility.

Theorem 1. 1. A condition γ = s �� t is feasible iff Th�� 	 (∃x)s �� t holds.
2. If F = (si ��i ti)n

i=1 is feasible, then ThF 	 (∃x)
∧n

i=1 si ��i ti holds. If ThF
preserves F and ThF 	 (∃x)

∧n
i=1 si ��i ti holds, then F is feasible.

3. If G = {Fi}m
i=1, where Fi = (sij ��ij tij)ni

j=1 for some ni, is feasible,
then we have that ThG 	 (∃x)

∨m
i=1

∧ni

j=1 sij ��ij tij holds. If ThG 	
(∃x)

∨m
i=1

∧ni

j=1 sij ��ij tij holds and ThG preserves G, then G is feasible. Also,
if there is 1 ≤ i ≤ m such that ThFi

preserves Fi and ThFi
	 (∃x)

∧ni

j=1 sij ��ij

tij holds, then G is feasible.

Sentences in Theorem 1 are Existentially Closed Boolean Combinations of Atoms
(ECBCAs), i.e., formulas of the form (∃x)

∨m
i=1

∧ni

j=1 Aij , where Aij are atoms
and x is the sequence of variables occurring in such atoms. We have investi-
gated them in [9,11]. Requiring preservation is necessary for items (2) and (3)
in Theorem 1.

Example 6. Let R1 = {a → b ⇐ b ≈ a} and R2 = {b → a}. With P = {→,→∗}
and T = {Th→,Th→∗}, where Th→ = R1 = {(∀x)x →∗ x, (∀x, y, z)x → y∧y →∗

z ⇒ x →∗ z, b →∗ a ⇒ a → b} and Th→∗ = R2 = {(∀x) x →∗ x, (∀x, y, z) x →
y ∧ y →∗ z ⇒ x →∗ z, b → a}, we have Th = R1 ∪R2 and Th 	 a → b. However,
a → b is not T-feasible because R1 �	 a → b. Note that Th does not preserve
(a → b).
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Preservation is often achieved by distinguishing predicates describing different
computations.

Example 7. Let R′
1 and R′

2 be theories for R1 and R2 in Example 6, where →∗
1

is used instead of →∗ in R1 (but → remains as it is) to yield R′
1 = {(∀x) x →∗

1

x, (∀x, y, z)x → y ∧y →∗
1 z ⇒ x →∗

1 z, b →∗
1 a ⇒ a → b} and →2 is used instead

of → in R2 (and →∗ is still used) to yield R′
2 = {(∀x) x →∗ x, (∀x, y, z) x →2

y ∧ y →∗ z ⇒ x →∗ z, b →2 a}. With Th′
→ = R′

1 and Th′
→∗ = R′

2 (and
T

′ = {Th′
→,Th′

→∗}), we have that Th′ = R′
1 ∪ R′

2 preserves G = {(a → b)} and
Th′ �	 a → b. By Theorem 1 a → b, is not T

′-feasible, as expected.

Theorem 1 characterizes feasibility of a goal G as provability of an ECBCA
ϕG . If ϕG is shown unprovable, we conclude infeasibility of G. And, under appro-
priate preservation conditions, theorem proving can be used to conclude feasi-
bility of a goal G. However, (un)provability of atoms is often undecidable. For
instance, for TRSs R, it is well-known that given ground terms s and t, it is in
general undecidable whether s rewrites into t; i.e., whether R 	 s →∗ t holds (as
Post’s correspondence problem is a particular case, see, e.g., [22, Section 4.1]).
Hence, feasibility of conditions, sequences and goals remains, in general, unde-
cidable. In order to obtain automatic proofs of feasibility, it is often useful to
proceed using a ‘divide-and-conquer’ strategy. In the following, we exploit this
idea to define a practical framework to prove/disprove feasibility of goals.

4 Feasibility Framework

In [3], proofs of termination of TRSs proceed by transforming the so-called DP
problems τ . A divide-and-conquer approach is applied by means of processors
P mapping a DP problem τ into a (possibly empty) set P(τ) of DP problems
{τ1, . . . , τn}. DP problems τi returned by P can now be treated independently
by using other processors. In this way, a DP proof tree is built.

In our setting, we first define notions of f-problem and f-processor, and then
show how to use them to (dis)prove feasibility.

Definition 3 (f-Problem and f-Processor). Given a set of predicates P, a
P-indexed theory T, and a goal G, a pair τ = (T,G) is called an f-Problem. We
say that τ is feasible if G is T-feasible; otherwise it is infeasible.

An f-Processor P is a partial function from f-Problems into sets of f-
Problems. Alternatively, it can return “yes”. Dom(P) represents the domain of
P, i.e., the set of f-Problems τ that P is defined for.

Definition 4 (Soundness and completeness). Let P be an f-Processor and
τ ∈ Dom(P). We say that P is

– sound iff τ is feasible whenever either P(τ) = “yes” or ∃τ ′ ∈ P(τ), such that
τ ′ is feasible.

– complete iff τ is infeasible whenever P(τ) �= “yes” and ∀τ ′ ∈ P(τ), τ ′ is
infeasible.
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Feasibility problems can be proved or disproved by using a proof tree as follows
(where inner nodes include the root of the tree unless it consists of a single node).

Definition 5 (Feasibility Proof Tree). Let τ = (T,G) be an f-Problem. A
feasibility proof tree (FP Tree) T for τ is a tree whose inner nodes are labeled
with f-Problems and the leaves are labeled either with f-Problems, “yes” or “no”.
The root of T is labeled with τ and for every inner node n labeled with τ ′, there
is an f-Processor P such that τ ′ ∈ Dom(P) and:

1. if P(τ ′) =“yes” then n has just one child, labeled with “yes”.
2. if P(τ ′) = ∅ then n has just one child, labeled with “no”.
3. if P(τ ′) = {τ1, . . . , τk} with k > 0, then n has k children labeled with the

f-Problems τ1, . . . , τk.

Theorem 2 (Feasibility Framework). Let T be a feasibility proof tree for
τI = (T,G). Then:

1. if all leaves in T are labeled with “no” and all involved f-Processors are com-
plete for the f-Problems they are applied to, then G is T-infeasible.

2. if T has a leaf labeled with “yes” and all f-Processors in the path from τI to
the leaf are sound for the f-Problems they are applied to, then G is T-feasible.

In the following, we describe some sound and complete f-Processors. If no con-
fusion arises, we use processor instead of f-Processor.

4.1 Splitting Processor

Our first processor decomposes a feasibility goal into its feasibility sequences.

Definition 6 (Splitting Processor). Let τ = (T,G) be an f-Problem. The
processor PSpl is given by PSpl(τ) = {(T, {F}) | F ∈ G}.

The proof of the following result is immediate by using Definitions 3 and 1.

Theorem 3. Processor PSpl is sound and complete.

Example 8. Consider the following TRS R [13, Example 9]:

a → b (10)
b → a (11)

f(x, x) → c (12)

Following Example 4, we prove root-stability of f(a, c) as the {R}-infeasibility
of G = {((f(a, c) →∗ a) ; (f(a, c) →∗ b); (f(a, c) →∗ f(x, x))}. With PSpl we
start the proof of infeasibility of τ = ({R},G) as follows: PSpl(τ) = {τ1, τ2, τ3},
where τ1 = ({R}, {(f(a, c) →∗ a)}), τ2 = ({R}, {(f(a, c) →∗ b)}), and τ3 =
(({R}, {(f(a, c) →∗ f(x, x))}).
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4.2 Provability Processor

Our next processor exploits Theorem 1 to use theorem proving in proofs of fea-
sibility.

Definition 7 (Provability processor). Let τ = (T,G) be an f-Problem with
G = {F} � G′ where F = (si ��i ti)n

i=1. Processor PProv is given by

PProv(τ) = “yes” iff ThF 	 (∃x)
n∧

i=1

si ��i ti holds.

Note that, whenever n = 0, i.e., F = (), then
∧n

i=1 si ��i ti is true and PProv(τ) =
“yes”.

Theorem 4. Processor PProv is complete. If ThF preserves F, then it is sound.

In infChecker, we use Prover9 [18] as a backend to implement PProv.

Example 9. For R in Fig. 1, the feasibility goal G (see file 903 in COPS):

{(le(x,min(y)) →∗ false,min(y) →∗ x)}

and the corresponding first-order formula:

(∃x, y) le(x,min(y)) →∗ false ∧ min(y) →∗ x (13)

with τI = ({R},G), we have PProv(τI) = “yes” by using Prover9 to prove (13) by
resolution as follows2:

(11) exists x y (le(x,min(y)) ->* false) & (min(y) ->* x) [goal]

(12) x ->* x [assumption]

(13) -(x -> y) | -(y ->* z) | (x ->* z) [assumption]

(15) -(x -> y) | (le(z,x) -> le(z,y)) [assumption]

(22) le(x,0) -> false [assumption]

(23) min(cons(x,nil)) -> x [assumption]

(27) -(le(x,min(y)) ->* false) | -(min(y) ->* x) [deny(11)]

(48) le(x,0) ->* false [ur(13,22,12)]

(59) -(le(min(x),min(x)) ->* false) [resolve(27,12)]

(67) -(le(min(x),min(x)) -> y) | -(y ->* false) [resolve(59,13)]

(69) -(le(min(x),y) ->* false) | -(min(x) -> y) [resolve(67,15)]

(76) -(le(min(cons(x,nil)),x) ->* false) [resolve(69,23)]

(77) $F [resolve(76,48)]

Example 10. Consider the two rules TRS R = {a → c(b), b → c(b)}. For R =
{(14) − (18)} and Th� = {(19) − (21)}:

2 For readability, the output is slightly pretty printed.
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(∀x) x →∗ x (14)
(∀x, y, z) (x → y ∧ y →∗ z ⇒ x →∗ z) (15)

(∀x, y) (x → y ⇒ c(x) → c(y)) (16)
a → c(b) (17)
b → c(b) (18)

(∀x) x � x (19)
(∀x, y, z) x � y ∧ y � z ⇒ x � z (20)

(∀x) c(x) � x (21)

infChecker can prove loopingness of R as the feasibility of ({R,Th�},G) by
relying on Prover9 with G = {(x → y, y →∗ z, z �x)} (see Example 1). Note that
the union of R and Th� preserves both R and Th�, as required for soundness
of PProv.

If no proof of ϕF = (∃x)
∧n

i=1 si ��i ti is found, then PProv does not apply. In this
case, it is still possible that F is feasible, but the proof system failed to prove it.
Also, it is possible that F is infeasible. In this case, our next processor, which
tries to prove infeasibility as satisfiability [9], can be useful.

4.3 Satisfiability Processors

The next processor implements the satisfiability approach in [9].

Definition 8 (Satisfiability Processor). Let τ = (T,G) be an f-Problem with
G = {F} � G′ for F = (si ��i ti)n

i=1 and A be a structure. Processor PSat is given
by PSat(τ) = (T,G′) iff A |= ThF ∪ {¬(∃x)

∧n
i=1 si ��i ti}.

Remark 2. In the following, the soundness and completeness theorems given for
the different introduced processors assume the notations previously introduced
in the corresponding definitions.

In the following, we say that a theory Th is stable if for all terms s, t and sub-
stitutions σ, if Th 	 s �� t, then Th 	 σ(s) �� σ(t).

Theorem 5. Processor PSat is sound. If T (F) �= ∅ and ThF is stable, then it is
complete.

In infChecker, we use the model generators AGES [5] and Mace4 [18] to find
suitable structures A to be used in the implementation of PSat.

Example 11. For R, R and Th� as in Example 10, we can prove term a non-
looping. The following structure over N ∪ {−1}:

aA = −1 bA = 1 cA(x) = x
x →A y ⇔ x ≤ 1 ∧ y ≥ 1 x (→∗)A y ⇔ x ≤ y x �A y ⇔ x ≤ y

satisfies R ∪Th� ∪ {¬(∃x, y) (a → x ∧ x →∗ y ∧ y � a)}. Thus, a is non-looping.

The following version of PSat often provides a direct answer about infeasibility
of a goal.
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Definition 9 (One-Step Satisfiability Processor). Let τ = (T,G) be an
f-Problem with G = {F1; · · · ;Fm}, where, for all 1 ≤ i ≤ m, Fi is (si1 ��i1

ti1, . . . , sini
��ini

tini
) for some ni > 0. Let A be a structure. Processor PSatAll is

given by PSatAll(τ) = ∅ iff A |= ThG ∪ {¬(∃x)
∨m

i=1

∧ni

j=1 sij ��ij tij}.

Theorem 6. Processor PSatAll is sound. If T (F) �= ∅ and ThG is stable, then it
is complete.

Example 12. (continuing Example 8) With Mace4 we obtain a model of

R ∪ {¬(∃x) (f(a, c) →∗ a ∨ f(a, c) →∗ b ∨ f(a, c) →∗ f(x, x))}

Since PSatAll(τ) = ∅, G is T-infeasible. This is an alternative proof without PSpl.

Although PSatAll can be simulated by a single step of PSpl followed by the appli-
cation of PSat to the obtained f-Problems, from a practical point of view PSatAll

has the advantage of avoiding the overloading due to the split the initial goal
into a set of sequences with the generation of several models by means of calls
to (external) model generators. Instead, PSatAll makes a single call to the model
generator(s).

4.4 Usable Rules in CTRS Theories

As discussed in [13, Section 2], dealing with CTRSs R = (F , R), we may often
drop some rules in R before establishing (in)feasibility of conditions s →∗ t.
First, consider the following overapproximation of the set of rules that can be
applied to a term t:

RULES (R, t) = {� → r ⇐ c ∈ R | ∃p ∈ Pos(t), root(�) = root(t|p)}

The set of usable rules for t is defined as follows:

U(R, t) = RULES (R, t) ∪
⋃

l→r⇐c∈RULES(R,t)

(

U(R�, r) ∪
⋃

s≈t∈c

U(R�, s)

)

where R�= R − RULES (R, t).3 Given a sequence F, we let

U→∗(R,F) =
⋃

s→∗t∈F

U(R, s) (22)

Example 13. For R in Fig. 1 and F = (le(0, s(0)) →∗ x), U→∗(R,F) =
{(1), (2), (3)}.

Let R|U→∗ (R,F) be the first-order theory for the CTRS (F ,U→∗(R,F)), which
keeps the original signature of R.
3 The use of R� instead of R is important for implementing the computation of usable

rules. By decreasing (from R to R�) the set of considered rules, the recursive defini-
tion is shown to be terminating.
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Definition 10. Let τ = (T,G) be an f-Problem such that T = {Th→∗}�T
′ with

Th→∗ = R for a CTRS R and G = {F}�G′. Let Th′
→∗ = R|U→∗ (R,F). Processor

PUR is given by PUR(τ) = {({Th′
→∗} � T

′, {F}), (T,G′)}.

PUR distributes the sequences in G in two new f-Problems: the first one consists
of a goal with a single sequence F together with a refined version of T where
R is simplified into R|U→∗ (R,F); the second f-Problem consists of G′ but keeps
the original set of theories T. By using [13, Proposition 4], we can see that the
({R|U→∗ (R,G)} � T)-feasibility of a sequence F implies its ({R} � T)-feasibility.
Similarly, ({R} � T)-infeasibility of F can be proved as ({R|U→∗ (R,F)} � T)-
infeasibility provided that all terms s in feasibility conditions s →∗ t in F are
ground. Thus, we have the following:

Theorem 7. PUR is sound. If for all s →∗ t ∈ F, s is ground, then PUR is
complete.

As discussed in the last paragraph of [13, Section 2], the groundness requirement
cannot be dropped, in general (even for TRSs).

Example 14. For R = {a → b}, the sequence F = (x →∗ a, x →∗ b) is {Th→∗}-
feasible (just instantiate variable x to a and use the rule in R). However, it is
not {Th′

→∗}-feasible for Th′
→∗ = R|U→∗ (R,F) because U(R, x) is empty. Hence,

U→∗(R,F) = U(R, x) ∪ U(R, x) is also empty.

PUR deals with many-step conditions s →∗ t only. Furthermore, note that no
change (simplification) in Th→ (if used in T) is introduced. For one-step con-
ditions s → t, we can use a similar (sound and complete) processor PUR1 as
follows. Let U→(R,F) =

⋃
s→t∈F U(R, s) and R|U→(R,F) be the first-order theory

for (F ,U→(R,F)).

Definition 11. Let τ = (T,G) be an f-Problem such that T = {Th→} � T
′ with

Th→ = R for a CTRS R and G = {F} � G′. Let Th′
→ = R|U→(R,F). Processor

PUR1 is given by PUR1(τ) = {({Th′
→} � T

′, {F}), (T,G′)}.

Theorem 8. PUR1 is sound. If for all s → t ∈ F, s is ground, then PUR1 is
complete.

Starting from the f-Problem (T,G), where G = {F} � G′, both PUR and PUR1

return two f-Problems (T1,G1) and (T2,G2). For both PUR and PUR1, we have
G1 = {F}, G2 = G′, and T2 = T. As for T1, PUR changes the component Th→∗

of T. On the other hand, PUR1 changes Th→. With regard to the preservation
property, which is relative to the goal and theory in a given f-Problem, whenever
it holds for (T,G), it is not difficult to see (from the definition of preservation
and usable rules) that it also remains true for (T1,G1) and (T2,G2).
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4.5 Narrowing on Rewriting Conditions Processor

Reachability problems σ(s) →∗ σ(t) are often investigated using narrowing and
unification conditions directly over terms s and t, thus avoiding the ‘generation’
of the required substitution σ. In this section, we use narrowing to simplify
feasibility conditions in G. Definition 12 describes how narrowing is defined in
the context of CTRSs. In the following, we write s =?

θ t if s and t unify with
mgu θ.

Definition 12. [16, Definition 79] Let R be a CTRS. A term s narrows to
a term t (written s �R,θ,p t or just s �R,θ t or even s � t), iff there is a
nonvariable position p ∈ PosF (s), a renamed rule � → r ⇐ s1 ≈ t1, . . . , sn ≈ tn
in R, substitutions θ0, . . . , θn, τ1, . . . , τn, and terms t′1, . . . , t

′
n such that:

1. s|p =?
θ0

�,
2. for all i, 1 ≤ i ≤ n, ηi−1(si) �∗

R,θi
t′i and t′i =?

τi
θi(ηi−1(ti)), where η0 = θ0

and for all i > 0, ηi = τi ◦ θi ◦ ηi−1, and
3. t = θ(s[r]p), where θ = ηn.

We write u �∗
R,β v for terms u, v and substitution β iff there are terms

u1, . . . , um+1 and substitutions β1, . . . , βm for some m ≥ 0 such that

u = u1 �R,β1 u2 �R,β2 · · · �R,βm
um+1 = v

and β = βm ◦ · · · ◦ β1 (or β = ε if m = 0).

Given a term u, the set N1(R, u) represents the set of one-step R-narrowings
issued from u:

N1(R, u) = {(v, θ↓Var(u)) | u �
→r⇐c,θ v, � → r ⇐ c ∈ R} (23)

where θ↓Var(u) is a substitution defined by θ↓Var(u)(x) = θ(x) if x ∈ Var(u) and
θ↓Var(u)(x) = x otherwise.

As discussed in [16, Section 7.5], the set N1(R, u) can be infinite. In [16,
Proposition 87] some sufficient conditions for finiteness of N1(R, u) are given.
Knowing these restrictions, in Definition 13 we define a narrowing processor on
feasibility conditions.

Given a sequence Fk = (sj ��j tj)n
j=1 in a goal G, and 1 ≤ i ≤ n such that

��i = →∗, N (R,G, k, i) returns a new set of feasibility goals where each element
of the set corresponds to a possible narrowing on the condition i:

N (R,G, k, i) = {G[Fk[θ, w →∗ ti]i]k | si →∗ ti ∈ Fk, (w, θ) ∈ N1(R, si)}

where θ consists of new conditions x1 →∗ θ(x1), . . . , xm →∗ θ(xm) obtained
from the bindings in θ for variables in Var(si) = {x1, . . . , xm}.

Definition 13 (Narrowing on f-Conditions Processor). Let τ = ({R},G)
be an f-Problem, si →∗ ti ∈ Fk for some Fk in G, and N ⊆ N (R,G, k, i) finite.
PNC is given by PNC(τ) = {({R},G′) | G′ ∈ N}.
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add(0, x) → x
add(s(x), y) → s(add(x, y))
div(0, s(x)) → 0

div(s(x), s(y)) → 0 ⇐ lte(s(x), y) ≈ true
div(s(x), s(y)) → s(q) ⇐ lte(s(x), y) ≈ false, div(minus(x, y), s(y)) ≈ q

lte(0, y) → true
lte(s(x), 0) → false

lte(s(x), s(y)) → lte(x, y)
minus(0, s(y)) → 0

minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x

mod(0, y) → 0
mod(x, 0) → x

mod(x, s(y)) → mod(minus(x, s(y)), s(y)) ⇐ lte(s(y), x) ≈ true
mod(x, s(y)) → x ⇐ lte(s(y), x) ≈ false

mult(0, y) → 0
mult(s(x), y) → add(mult(x, y), y)

power(x, 0) → s(0)
power(x, n) → mult(mult(y, y), s(0)) ⇐ n ≈ s(n′),

mod(n, s(s(0))) ≈ 0, power(x, div(n, s(s(0)))) ≈ y
power(x, n) → mult(mult(y, y), x) ⇐ n ≈ s(n′),

mod(n, s(s(0))) ≈ s(z), power(x, div(n, s(s(0)))) ≈ y

Fig. 3. CTRS 529.trs in COPS

Given a term s, we let NRules(R, s) be the set of rules α : � →
r ⇐ c ∈ R such that a nonvariable subterm t of s is a narrex of α,4
and, given a substitution θ, we denote as θ↓Var(s) the substitution defined by
θ↓Var(s) (x) = θ(x) if x ∈ Var(s) and θ↓Var(s) (x) = x otherwise.

Theorem 9. PNC is sound. If N = N (R,G, k, i) and si →∗ ti ∈ Fk is such
that si and ti do not unify and either si is ground and R is a 2-CTRS or (1)
NRules(R, si) is a TRS, (2) si is linear, and (3) Var(si) ∩ Var(ti) = ∅, then
PNC is complete.5

Even with N (R,G, k, i) infinite, a subset N of N (R,G, k, i) can be sufficient to
prove feasibility. However, to prove infeasibility we need to consider all possible
narrowings.

4 Given a CTRS S, a non-variable term t is a narrowing redex (or a narrex, for short)
of a rule � → r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ S if t and � unify with mgu θ (we assume
Var(t) ∩ Var(�) = ∅). However, if (θ(s1) ≈ θ(t1), . . . , θ(sn) ≈ θ(tn)) can be proved
{S}-infeasible, we can discard t, as no narrowing step is possible on it. In our current
implementation, though, only the unification test is used.

5 This processor is inspired by the processor defined in [17, Section 4.1]. A justification
for the completeness conditions can be obtained from [17, Examples 18 and 19].
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τI no!

PNC

τ1

PSat

no

Fig. 4. Proof tree obtained from Example 15

Example 15. Consider the CTRS R in Fig. 3, G = {(lte(s(x), 0) →∗ true)},
and τI = ({R},G). Since NRules(R, lte(s(x), 0)) contains the lte rules only,
N (R,G, 1, 1) = {(x →∗ x, false →∗ true)}. Therefore, PNC(τI) = {τ1}
with τ1 = ({R}, (x →∗ x, false →∗ true)). Since NRules(R, lte(s(x), 0)) is a
TRS, lte(s(x), 0) is linear, and Var(lte(s(x), 0)) ∩ Var(true) = ∅, PNC is com-
plete. Now, we apply PSat to τ1 to obtain PSat(τ1) = ∅ by using Mace4. The
obtained FP tree is in displayed in Fig. 4.

5 Implementation and Web Interface

infChecker 1.0 is written in Haskell and consists of 30 Haskell modules with more
than 4500 lines of code. The tool can be used through its web interface here:

http://zenon.dsic.upv.es/infChecker/

The input format is an extended version of the Confluence Competition (CoCo)
format [20], which is the official format used in the infeasibility (INF) category.6

The input has two components:

1. A CTRS R in TPDB format7 which can specify a replacement map μ for
context-sensitive rewriting (CSR [10]) establishing the arguments μ(f) ⊆
{1, . . . , k} which can be rewritten for each k-ary symbol f . This is top-down
propagated to positions of terms, which are then called active. We write s ↪→ t
if an active subterm of s can be rewritten so that s → t. Then, →∗, ↓, ↔,
etc. are generalized to CSR as ↪→∗,

↪→

, ←↩↪→, etc., by using ↪→ instead of →.
2. An f-goal built using the set

PiCh = {|>, |>=} ∪ {->, ->*, ->*<-, <-->, <-->*} ∪ {\->, \->*, \->*<-/, <-/\->, <-/\->*} ∪ {==}

of (binary) predicates for (strict) subterm (|> and |>=), one or many rewrit-
ing steps (-> and ->*), joinability (->*<-), symmetric closure of -> (<-->),
conversion (<-->*) and their context-sensitive versions \->, \->*, \->*<-/,
<-/\->, and <-/\->*.

6 See http://project-coco.uibk.ac.at/2019/categories/infeasibility.php.
7 See http://zenon.dsic.upv.es/muterm/?page id=31.

http://zenon.dsic.upv.es/infChecker/
http://project-coco.uibk.ac.at/2019/categories/infeasibility.php
http://zenon.dsic.upv.es/muterm/?page_id=31
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Theories Th�� for each ��∈ PiCh are automatically obtained from the components
of R (signature, replacement map, conditional rules). Symbol == is borrowed
from the COPS syntax, where it is used to specify the conditional part of rewrite
rules (see ≈ in Fig. 1). Both in the conditional part of rules and in f-goals, its
meaning depends on the CONDITIONTYPE section of the input specifying how the
conditions of rules are evaluated [22, Definition 7.1.3] according to:

CONDITIONTYPE replace == by

ORIENTED ->*

JOIN -><-

SEMI-EQUATIONAL <-->*

In this respect, when using ↪→ or ↪→∗ (i.e., \-> or \->*) in f-goals, the associ-
ated theories Th↪→ and Th↪→∗ are those obtained by evaluating the conditions
si ≈ ti in rules using ↪→∗,

↪→

, or ←↩↪→∗, depending on the label ORIENTED, JOIN, or
SEMI-EQUATIONAL specified in CONDITIONTYPE. If no replacement map has been
specified (i.e., no STRATEGY section with CONTEXTSENSITIVE label is given), the
trivial replacement map μ�(f) = {1, . . . , k}, establishing no replacement restric-
tions, is automatically assumed for each k-ary symbol f .

When the problem is introduced, a model generator for infeasibility
(AGES, Mace4 or Automatic) can be selected. Then, pressing button Prove
automatically initiates the procedure to check whether the problem is feasible
or infeasible in the given timeout.

Currently, infChecker implements the construction of the FP tree in Defini-
tion 5 with the processors presented in Sect. 4 by depth-first generation of the
nodes and orderly attempting the following sequence of processors to develop
each node:8 PSpl, PProv, PSat, and PNC. If the final answer is YES or NO, the tool
displays a report in plain text. Otherwise, MAYBE is returned.

6 Experimental Evaluation

We participated in the INF category of the 2019 Confluence Competition
(CoCo),9 with a limit of 60 s to return a proof of feasibility or infeasibility (or a
don’t know answer). infChecker obtained the following results:

8 We use a Haskell library for parallelism. However, due to the Breadth First Search
evaluation strategy of the library, in a parallel execution P1 ‖ P2 ‖ · · · ‖ Pn of several
processors we wait until the leftmost processor (P1) is completely evaluated (returns
a solution or reaches a timeout) before continuing with P2 ‖ · · · ‖ Pn. Thus, there is
a kind of ‘restricted’ parallelism in our implementation.

9 http://project-coco.uibk.ac.at/2019/.

http://project-coco.uibk.ac.at/2019/
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INF Tool Yes No Total

infChecker 40 32 72

ConCon 31 0 31

nonreach 30 0 30

Moca 26 0 26

maedmax 15 0 15

CO3 12 0 12

Answers Yes/No in the table refer to infeasibility (which is the focus of the
competition). In our setting, given a CTRS R and an infeasibility problem given
as a feasibility sequence G, we just return “Yes” if τI is proved infeasible, and
“No” if τI is proved feasible. Apart from the 32 “No” answers, there are 7 more
examples that can be proved positively (“Yes”) using infChecker only. There
also are 10 examples that can be proved by other tools and cannot be proved by
infChecker.

In the experiments PUR was used 11 times and PNC was used twice. We
required a combination of processors in 13 examples: the sum of uses of PUR

and PNC. Being unable to provide a definite (YES/NO) answer, their use
always requires another processor to finish the proof. According to the strat-
egy described at the end of Sect. 5, such a combination is necessary. Thus, we
need both PUR and PNC to solve the examples.

7 Related Work

The notion of (in)feasibility of a logic formula has been investigated in [12,
Section 4.1], in the context of the analysis of operational termination of programs
in general logics [15]. A satisfiability approach to prove infeasibility of first-order
formulas with respect to an order-sorted first-order theory [4] is described in [12,
Section 4.1.1]. No attempt to decompose such proofs by taking into account the
structure of the logic formula (as done in our feasibility framework) is made. No
technique for proving feasibility is proposed. Actually, our feasibility framework
could be advantageously used to implement proofs of operational termination of
programs in general logics.

Sternagel and Yamada [25] define a framework to prove reachability con-
straints φ for TRSs R as first-order formulas where only reachability atoms
s � t (instead of s →∗ t) are allowed. As remarked in [25, footnote 1], negation
and universal quantification are not considered, i.e., only ECBCAs with atoms
s � t are (ultimately) considered. A constraint s � t is satisfied by a substitu-
tion σ with respect to R if σ(s) →∗

R σ(t). Reachability constraints φ are called
satisfiable if there is a substitution σ such that σ(φ)10 is satisfied in the usual
10 Obtained by (i) renaming all bounded variables in φ using variables not occurring

in bindings of σ to obtain φ′, and then (ii) replacing each free variable x of φ′ by
σ(x).
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first-order logic sense. Our approach is more flexible as more predicates can
be defined by appropriate theories (including CTRSs). For instance, non-root

reachability constraints s
>Λ� t (given in [25, Section 4] in terms of reachability

constraints) can be defined by Th>Λ−→∗ consisting of

(∀x) x
>Λ−→∗ x (24)

(∀x)(∀y)(∀z) x
>Λ→ y ∧ y

>Λ−→∗ z ⇒ x
>Λ−→∗ z (25)

plus sentences (Rl)α for each rewrite rule α, sentences (C)f,i for each k-ary

symbol f and 1 ≤ i ≤ k, and (∀x)(∀yi)xi → yi ⇒ f(x1, . . . , xi, . . . , xk) >Λ→
f(x1, . . . , yi, . . . , xk). We could also cover CTRSs by also adding (T), for the
transitivity rule (T), necessary for the evaluation of the conditional part of
conditional rules α (which may require root steps). Then, the non-reachability
problems considered in [25, Section 4] for TRSs R could be treated in our
framework using P = {→,→∗, >Λ−→∗ } and T = {Th→,Th→∗ ,Th>Λ−→∗}, where
Th→ = Th→∗ = R. Actually, we can ‘import’ the decomposition treatment
for non-root reachability goals in [25, Definition 5] as a transformation pro-
cessor (like PNC) specific for non-root reachability conditions of TRSs as fol-
lows: let τ = (T,G) and Fi ∈ G be such that Fi = (γ1, . . . , γj , . . . , γn) with

γj = f(s1, . . . , sk) >Λ−→∗ f(t1, . . . , tk) ∈ Fi for some terms si, ti, 1 ≤ i ≤ k. Then,

Pnon-root-r(τ) = {(T,G[F′
i]i)}

where F′
i = (γ1, . . . , γj−1, s1 →∗ t1, . . . , sk →∗ tk, γj+1, . . . , γn) and G[F′

i]i is
the goal obtained by replacing the i-th sequence of G by F′

i. This example also
shows how techniques developed elsewhere could be smoothly integrated in our
framework.

Decidability of reachability problems for CSR in TRSs (i.e., does s ↪→∗ t
hold?) has been investigated using tree-automata techniques [1,6–8]. infChecker
is able to (try to) prove and disprove reachability conditions as f-goals using
predicate \->* without any specific restriction on the TRSs (e.g., left-linearity),
as done in these papers.

Regarding the automation of proofs of infeasibility in (conditional) rewriting,
2019 was the first year the infeasibility category was included in the International
Confluence Competition. The new category had a good reception, with 6 par-
ticipating tools (summary of results in Sect. 6), and provided a good picture of
the state of the art:

– CO3 tries to prove confluence and if it fails linearizes the condition and tries
to compute a narrowing tree for the linearized condition. The applicability
of narrowing trees in this context is restricted to syntactically deterministic
conditional term rewriting systems (right-hand sides of conditions must be
constructor terms or ground normal forms) that are constructor systems [21].
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– ConCon uses a variety of methods to check for infeasibility of conditional crit-
ical pairs, ranging from a simple technique based on unification, via symbol
transition graph analysis, reachability problem decomposition, the exploita-
tion of certain equalities in the conditions, and tree automata completion to
equational reasoning [24].

– Moca implements maximal ordered completion similar to maedmax [26]
together with some approximation techniques not yet published.

– maedmax implements maximal order completion [26].
– nonreach uses two approaches: transformations based on decomposition and

narrowing and nonreachability checks based on unification, symbol transition
graphs, equational reasoning and tree automata completion [19,25].

Thanks to representing CTRSs R as first-order theories R, infChecker was not
only the most successful tool for checking infeasibility, but also the only tool
currently able to disprove it (by proving feasibility). There also is room, however,
for improvements, as witnessed by the 10 examples mentioned in the summary
of experiments in Sect. 6. In order to deal with these examples (not handled
by infChecker), nonreach uses narrowing and Moca uses satisfiability with LPO.
Regarding ConCon, it is unclear from the report provided by the tool, which
specific technique was used to solve the examples.

8 Conclusions and Future Work

We have extended and generalized the notion of feasibility sequence introduced
in [13] by considering goals which are sets of sequences of conditions s �� t for
arbitrary predicates ��. Each predicate symbol �� is ‘defined’ by a first-order
theory Th��. Such conditions, sequences, and goals have a precise logical char-
acterization as ECBCAs, and its feasibility can be investigated as provability
of such formulas (Theorem 1). We have shown some examples of properties (of
CTRSs) which can be proved by using this approach. We have introduced a
framework for proving and disproving feasibility of such goals. To the best of
our knowledge, our logic-based notion of feasibility goal and the framework to
prove and disprove them are new in the literature.

We have developed a new tool implementing our framework: infChecker. Cur-
rently, infChecker provides a first implementation of the framework introduced in
this paper (restricted to CTRSs, but extended with context-sensitivity, subterm,
etc.), and supports predicates like → (one-step rewriting), →∗ (many-step rewrit-
ing), ↓ (joinability), ↔∗ (conversion), and the analogous for context-sensitive
rewriting. We also give support to � (subterm) and � (strict subterm). As far
as we know, infChecker is the first tool dealing with (in)feasibility problems sup-
porting this set of predicates. Also, the use of provability/satisfiability techniques
in proofs of (in)feasibility seems to be new in the literature. We participated in
the 2019 Confluence Competition [20] in the INF (infeasibility) category, being
the most powerful tool for checking both infeasibility and feasibility. In the near
future, we plan to extend infChecker to provide full support to our framework, by
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allowing the explicit definition of (not necessarily binary) predicates and inde-
pendent first-order theories associated to such predicates besides the built-in set
of predicates PiCh and associated theories which are available now.

Acknowledgments. We thank the anonymous referees for many remarks and sug-
gestions that led to improve the paper.
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Abstract. We report on the new version of mu-term, a tool for prov-
ing termination properties of variants of rewrite systems, including con-
ditional, context-sensitive, equational, and order-sorted rewrite systems.
We follow a unified, logic-based approach to describe rewriting compu-
tations. The automatic generation of logical models for suitable first-
order theories and formulas provides a common basis to implement the
proofs.

1 Introduction

mu-term is a tool that can be used to automatically verify termination prop-
erties of variants of Term Rewriting Systems (TRSs): termination and inner-
most termination of TRSs using the DP Framework for TRSs [10] (this frame-
work is also used to prove termination of String Rewriting Systems); termina-
tion and innermost termination of context-sensitive rewriting [16,17] using the
Context-Sensitive DP Framework [2,13]; termination of rewriting modulo asso-
ciative/commutative theories using the A∨C-DP Framework [4]; termination of
order-sorted rewriting using the Order-Sorted DP Framework [22]; and opera-
tional termination of Conditional TRSs (CTRSs) using the 2D DP Framework
[24,25]. In this setting, describing different kinds of rewriting computations as
proofs of goals s → t and s →∗ t with respect to an appropriate inference system
is useful. Such an approach, exploiting the logic-based description of rewriting
computations, involves the use of several techniques which have been recently
investigated elsewhere: (i) the generation logical models and well-founded rela-
tions [19], (ii) modeling operational termination of CTRSs with conditional
dependency pairs [23], (iii) the use of removal triples [24] generated by logi-
cal models [25], etc. Giving support to such techniques in termination proofs
motivated the development of a new version of our tool, mu-term 6.0:
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We report on the new logic-based approach followed by mu-term 6.0, and also
on the new features included since the last description of the system in 2010 [3].

2 New Features of mu-term

In the following, we enumerate the new features of mu-term 6.0 and illustrate
them with some examples. Examples are intended to provide a better under-
standing of the techniques and often display solutions not necessarily obtained
by an automatic proof with the tool, where the use of a specific proof strat-
egy combining a sequence of several techniques (see Sect. 3) may dismiss the
focused technique. Although we use some examples from other papers, all proofs
of (operational) termination displayed here are new. For instance, the CTRS in
Example 1 was proved operationally terminating in [25, Example 33], but the
use of models in Example 3 below to show the absence of a link in the depen-
dency graph is new. Examples 6 and 7 (of Order-Sorted TRSs) are discussed
and proved here for the first time.

2.1 Logic-Based Representation of CTRSs

Given an oriented CTRS R, with rules � → r ⇐ s1 ≈ t1, . . . , sn ≈ tn,1 an infer-
ence system I(R) is obtained from the following generic inference system ICTRS

(Rf)
x →∗ x

(C)f,i
xi → yi

f(x1, . . . , xi, . . . , xk) → f(x1, . . . , yi, . . . , xk)
for all f ∈ F (k) and 1 ≤ i ≤ k

(T)
x → y y →∗ z

x →∗ z
(Rl)α

s1 →∗ t1 · · · sn →∗ tn
� → r

for α : � → r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R
by specializing (C)f,i for each k-ary symbol f in the signature F and 1 ≤ i ≤ k,
and (Rl)α for all conditional rules α : � → r ⇐ c in R. Rules B1 ··· Bn

A in
I(R) are schematic: they can be used under any instance σ(B1) ··· σ(Bn)

σ(A) by a
substitution σ. We write s →R t (s →∗

R t) iff there is a proof tree for s → t
(s →∗ t) using I(R). Operational termination of R is defined as the absence of
infinite proof trees for goals s → t and s →∗ t in I(R) [21]. In the analysis of
computational properties of R, we use the first-order theory R obtained from
I(R) by translating the inference rules (ρ)B1 ··· Bn

A in I(R) into sentences ρ of
the form (∀x) B1 ∧ · · · ∧ Bn ⇒ A, for x the sequence of variables occurring in
A,B1, . . . , Bn [18, Sect. 4.5].

1 Oriented CTRSs treat conditions si ≈ ti in rules as rewriting goals σ(si) →∗ σ(ti)
for appropriate substitutions σ [27, Definition 7.1.3].

http://zenon.dsic.upv.es/muterm
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x →∗ xx → y ∧ y →∗ z ⇒ x →∗ z

x1 → y1 ⇒ f(x1, x2, x3) → f(y1, x2, x3) x2 → y2 ⇒ f(x1, x2, x3) → f(x1, y2, x3)

x3 → y3 ⇒ f(x1, x2, x3) → f(x1, x2, y3) x → y ⇒ c(x) → c(y)

x → y ⇒ g(x) → g(y) x → y ⇒ h(x) → h(y)

x → y ⇒ k(x) → k(y) h(d) → c(a)

h(d) → c(b) f(k(a), k(b), x) → f(x, x, x)

h(x) →∗ d ∧ h(x) →∗ c(y) ⇒ g(x) → k(y)

Fig. 1. First-order theory R for R in Example 1 (all variables universally quantified)

Example 1. For the following CTRS R [27, Example 7.2.51]

h(d) → c(a) (1)
h(d) → c(b) (2)

f(k(a), k(b), x) → f(x, x, x) (3)
g(x) → k(y) ⇐ h(x) ≈ d, h(x) ≈ c(y) (4)

the theory R is given in Fig. 1.

2.2 Operational Termination of Conditional Rewrite Systems

In [24,25] a framework for automatically proving operational termination of
(oriented) CTRSs using appropriate notions of dependency pairs (adapting the
original notion for TRSs [5]) has been introduced: the 2D DP Framework.

Dependency Pairs for CTRSs. Given a CTRS R, two new CTRSs DPH (R)
and DPV (R) are introduced to capture the two horizontal and vertical dimen-
sions of operational termination of CTRSs [23]: the usual absence of infinite
rewrite sequences (termination), and the absence of infinite ‘climbs’ on a proof
tree when trying to prove a goal s → t or s →∗ t (called V -termination). DPH (R)
consists of rules u → v ⇐ c whose terms u and v capture the progress of infi-
nite rewrite sequences involving rules � → r ⇐ c with u and v marked versions
of � and a subterm of r respectively (only the root symbol f is marked as
f �, or just capitalized: F ). Similarly, DPV (R) consists of rules u → v ⇐ d
where v is a marked subterm of si for a condition si ≈ ti in c and d is
s1 ≈ t1, . . . , si−1 ≈ ti−1.2

Example 2. For R in Example 1, we have DPH (R) = {F(k(a), k(b), x) →
F(x, x, x)} and DPV (R) = {G(x) → H(x),G(x) → H(x) ⇐ h(x) ≈ d}

2 A third set of dependency pairs DPVH (R) ⊆ DPH (R) is used in [23]. For simplicity,
in the examples of this paper, DPVH (R) is empty and we pay no attention to it.
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As in [7, Sect. 5], we use a set of sorts SDP = {s,p} so that symbols f are
(automatically) given a rank f : s · · · s → s and marked symbols are given rank
F : s · · · s → p [25, Sect. 4.3]. Variables of formulas in R (e.g., Fig. 1) are then
assumed to be universally quantified on sort s.

The 2D DP Framework for CTRSs. The absence of infinite chains of 2D
DPs (i.e., sequences of 2D DPs which model infinite branches in the proof trees
for goals s → t and s →∗ t) characterizes operational termination of CTRSs [23].
This is proved using a divide-and-conquer strategy which successively decom-
poses operational termination problems into smaller and simpler ones. Proces-
sors P are used for this purpose [24]. They simplify problems by decomposing
or shrinking them. In particular, the appropriate estimation of graphs G whose
nodes are dependency pairs is useful to analyze the existence of such infinite
chains as cycles in the graph. The absence of cycles implies operational termi-
nation. The presence of conditional rules and pairs introduces some particular
issues which we enumerate, and discuss below.
1. Some pairs could be infeasible, i.e., unable to be used in any of the afore-

mentioned chains. Then, we could remove them [24, Sect. 4]. Also, arcs in G
are defined by specific (often undecidable) sequences s1 ��1 t1, . . . , sn ��n tn
(called f-sequences [15]) where si and ti are terms and ��i are predicates
→∗

i that capture the possibility of having two nodes involved in a chain [20,
Sect. 4.5] and must be proved feasible or infeasible (for some substitution σ
which applies to terms si and ti). A typical strategy is discarding arcs whose
associated sequence is infeasible. We discuss this in paragraph Infeasibility in
Termination Proofs below (see Examples 3 and 4).

2. Some pairs could be ‘harmless’, i.e., unable to be persistently used in any
infinite chain. This can be shown if we prove a ‘decrease’ when such pairs are
used in a chain. Again, we can remove them to obtain a simplification [25,
Sect. 4.3]. We discuss this in paragraph Use of Well-Founded Relations below
(see Example 5).

Infeasibility in Termination Proofs. Given a (C)TRS R we say that a
sequence s1 →∗ t1, . . . , sn →∗ tn is R-infeasible if there is no substitution
σ such that σ(si) →∗

R σ(ti) holds for all 1 ≤ i ≤ n. In [20] it is proved
that a sequence s1 →∗ t1, . . . , sn →∗ tn is R-infeasible if there is a model
of R ∪ {¬(∃x) s1 →∗ t1, . . . , sn →∗ tn}, where x contains the variables in
s1, t1, . . . , sn, tn. In termination proofs, proving infeasibility is useful at different
levels. As remarked above, when the conditional part c of a pair u → v ⇐ c is
proved infeasible, we can remove it. Also, the absence of an arc between two nodes
(pairs) u → v ⇐ c and u′ → v′ ⇐ c′ in the graph G can be treated as the infea-
sibility of v →∗ u′ (where, as usual, we assume that v and u′ share no variable).
For instance, for R in Example 1, it is possible to prove that there is no arc in
the ‘horizontal’ graph which consists of a single node F(k(a), k(b), x) → F(x, x, x)
(the only dependency pair in DPH (R)) by just finding a model of

R ∪ {¬(∃x, y : s) F(x, x, x) →∗ F(k(a), k(b), y)} (5)
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For this purpose, model generators AGES [14] and Mace4 [26] are used by
mu-term.

Example 3. We obtain a model A of (5) with Mace4. The domain is A = {0, 1}
(Mace4 does not support sorts; thus, both s and p are merged into a single sort).
Function and predicate symbols are interpreted as follows:

aA = dA = 0 bA = cA(x) = 1 fA(x, y, z) = gA(x) = 0

hA(x) = 1 − x kA(x) = x FA(x, y, z) =
{

1 if x = 0 and y = 1
0 otherwise

x(→R)Ay ⇔ x = y x(→∗
R)Ay ⇔ x = y

Discarding the arc would not be possible by the usual unification-based tech-
nique in [9]. With regard to infeasibility of pairs, consider the following well-
known example.

Example 4. Consider the following CTRS R [8, p. 46]:

a → b (6)
f(a) → b (7)

g(x) → g(a) ⇐ f(x) ≈ x (8)

where DPH (R) = {G(x) → G(a) ⇐ f(x) ≈ x,G(x) → A ⇐ f(x) ≈ x}. Both pairs
in DPH (R) are R-infeasible: no substitution σ makes σ(f(x)) →∗ σ(x) true. We
can prove it if a model A of R ∪ {¬(∃x) f(x) →∗ x} can be found. We obtain
a model with AGES. The domain is A = N − {0} (since no marked symbol is
involved, we can use a single interpretation domain); for function and predicate
symbols:

aA = 1 bA = 2 fA(x) = x + 1 gA(x) = 1 x(→R)A
s y ⇔ x(→∗

R)A
s y ⇔ y ≥ x

We can safely remove both pairs. Thus no infinite chain of pairs in DPH (R)
exists.

Use of Well-Founded Relations. The removal triple processor [24, Def. 70]
implements the use of removal triples (�,�,�), including a well-founded relation
� to remove pairs from, and hence simplify, termination problems. For instance,
as shown in [25, Sect. 4.3], R in Example 1 is operationally terminating if we
find a model A of

SRT
R ∪ {(∀x : s) F(k(a), k(b), x) π� F(x, x, x)} (9)

where π� (a new predicate symbol representing �) is interpreted as a well-
founded relation πA

� , and SRT
R extends R with the following additional require-

ments to apply the processor [24, Definitions 68 and 69]:

(∀x, y : p) x π� y ∧ y π� z ⇒ x π� z (10)
(∀x, y : p) x → y ⇒ x π� y (11)

No predicate π� is necessary in this example (where a single pair is considered).
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Example 5. We obtain a model A of (9) with AGES. Domains are Ap = {−1, 0, 1}
and As = {0, 1}. With regard to function and predicate symbols:

aA = dA = 0 bA = cA(x) = 1 fA(x, y, z) = gA(x) = 0
hA(x) = 1 kA(x) = 1 − x FA(x, y, z) = x − y

x (→)A
p y ⇔ x ≥ y x (→∗)A

p y ⇔ true x (→)A
s y ⇔ x = y

x (→∗)A
s y ⇔ y ≥ x x πA

� y ⇔ x ≥ y x πA
� y ⇔ 6x ≥ 1 + 6y

where, as in the semantic approach in [25, Sect. 4.3], → and →∗ are over-
loaded for sorts p and s; thus, (→)A

p , (→∗)A
p , (→)A

s , and (→∗)A
s are the cor-

responding interpretations. Note that πA
� = {(x, y) | x, y ∈ Ap, 6x ≥ 1 + 6y} =

{(0,−1), (1,−1), (1, 0)} is well-founded on Ap. Thus, we conclude operational
termination of R.

2.3 Termination of Order-Sorted Rewriting

Sorts are often used to reinforce program termination. Order-sorted dependency
pairs were introduced in [22] for proving termination of order-sorted TRSs.

Example 6. The following many-sorted TRS R in [29, Sect. 3.3] (in the hopefully
self-explained Maude format [6]) is a terminating version of Toyama’s example,
which is nonterminating as a TRS (i.e., without sort information):

mod Toyama-MS is

sorts S1 S2 .

ops a b : -> S1 . op f : S1 S1 S1 -> S1 . op g : S2 S2 -> S2 .

vars x : S1 . vars y z : S2 .

rl g(y,z) => y . rl g(y,z) => z . rl f(a,b,x) => f(x,x,x) .

endm

The 2010 version of mu-term could not prove it terminating.3 According to
[22], R has a single dependency pair:

F(a, b, x) → F(x, x, x) (12)

where F has rank S1 S1 S1 → P for a new sort P [22, Sect. 3.2] and x has sort S1.
We can prove that the dependency graph consisting of this single pair has no
cycle. With AGES we can compute a model of R ∪ {¬(∃x, y : S1) F(x, x, x) →∗

F(a, b, y)} which is as follows: AS1 = {0, 1}, AS2 = {1}, AP = −N (i.e., the set of
nonpositive integers), and functions and predicates interpreted as follows:

aA = 1 bA = 0 fA(x, y, z) = 1 gA(x) = 1 FA(x, y, z) = x − y − 1

x(→R)AS1y ⇔ x = y = 1 x(→∗
R)AS1y ⇔ true x(→R)AS2y ⇔ true

x(→∗
R)AS2y ⇔ true x(→R)AP y ⇔ x = y x(→∗

R)AP y ⇔ x ≥ y

3 Benchmarks available here: http://zenon.dsic.upv.es/muterm/benchmarks/benchma
rks-ostrs/benchmarks.html.

http://zenon.dsic.upv.es/muterm/benchmarks/benchmarks-ostrs/benchmarks.html
http://zenon.dsic.upv.es/muterm/benchmarks/benchmarks-ostrs/benchmarks.html
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The crucial point to obtain the proof in Example 6 is the ability to provide
different interpretations to different sorts. The following example from [28] could
not be handled by the 2010 version of mu-term because orderings were generated
without paying attention to sorts (see [22, Sect. 6]).

Example 7. The following OS-TRS R [28, Example 11] is nonterminating as a
TRS:

mod Example11-OL96 is

sorts S S1 S2 S3 S4 . subsorts S1 S2 S3 S4 < S .

ops f g : S -> S . op g : S3 -> S1 . op g : S4 -> S2 .

op h : S1 -> S2 . op a : -> S3 . op b : -> S4 .

var x : S1 . rl f(x) => f(h(x)) . rl a => b .

endm

There is a single OS-DP for R: F(x) → F(h(x)), where F has rank S → P
for a new sort P and x has sort S1. We can prove termination of R by finding
a removal triple (�,�,�) such that the rules of R are compatible with �, and
F(x) � F(h(x)) holds whenever x ranges on terms of sort S1. With AGES we
obtain an interpretation A as follows: sorts are interpreted as AS = {−1, 0, 1},
AS1 = {−1}, AS2 = {−1, 0}, AS3 = {−1}, AS4 = {−1, 0}, and AP = N ∪ {−1}.
Functions and predicates are interpreted as follows:

aA = −1 bA = 0 fA(x, y, z) = x gA
S (x) = x

gA
S3(x) = −1 gA

S4(x) = x hA(x, y, z) = 0 FA(x, y, z) = −x

(where different overloaded versions of g use the input sort as a subindex) and

x(→R)A
S y ⇔ y = 0 ∧ x = −1 x(→∗

R)A
S y ⇔ true x(→R)A

P y ⇔ x ≥ y

x(→∗
R)A

P y ⇔ true x �A y ⇔ x ≥ y x �A y ⇔ x > y

Note that the interpretation of the ‘original’ rewrite relation concerns sort S
only because it is the top sort of the full sort hierarchy.

2.4 Termination of Context-Sensitive Rewriting

In context-sensitive rewriting (CSR [16]), a replacement map μ is used to restrict
the arguments μ(f) ⊆ {1, . . . , k} which can be rewritten for each k-ary symbol
f . The restriction on arguments is top-down propagated to positions of terms t,
which are called active positions of t. We write s ↪→ t if an active subterm of
s can be rewritten so that s → t. In the dependency pair approach for proving
termination of CSR [2], rules of the form f(�1, . . . , �k) → r are given dependency
pairs f �(�1, . . . , �k) → g�(s1, . . . , sm), for s = g(s1, . . . , sm) a replacing subterm
of r (i.e., a subterm s = r|p occurring at an active position p of r) and g a
defined symbol. The notation f � means that f is marked (capital letters F are
often used instead of f �). However, due to rules � → r ∈ R with migrating
variables x ∈ Varμ(r)\Varμ(�) (that are frozen, i.e., not active, in � but become
active in r, possibly ‘awaking’ infinite rewrite sequences), we also need collapsing
dependency pairs �� → x where x is a migrating variable of the rule.
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Example 8. For the following TRS R in [30, Introduction]
p(s(x)) → x

0+ x → x

s(x) + y → s(x + y)

0 × y → 0

s(x) × y → y + (x × y)

if(true, x, y) → x

if(false, x, y) → y

zero(0) → true

zero(s(x)) → false

fact(x) → if(zero(x), s(0), fact(p(x)) × x)

and μ given by μ(if) = {1} and μ(f) = {1, . . . , k} for any other k-ary symbol
f [12, Example 1]. DP(R, μ) consists of pairs

s(x) +� y → x +� y s(x) ×� y → y +� (x × y) s(x) ×� y → x ×� y
FACT(x) → ZERO(x) FACT(x) → IF(zero(x), s(0), fact(p(x)) × x)

IF(true, x, y) → x IF(false, x, y) → y

Collapsing pairs capture a kind of recursion which is hidden below frozen
parts of the terms involved in infinite context-sensitive rewrite sequences until
a migrating variable within a rule � → r shows them up. The hidden terms of a
TRS R are defined subterms occurring at frozen positions in the rhs of some rule
of R [2]. Hiding contexts are contexts where hidden terms can occur at active
positions within a context-sensitive rewrite sequence [1,13]. There, hidden terms
can restart a delayed recursive call after the application of a rule with migrating
variables (see [12] for a detailed analysis). For R and μ in Example 8, the only
rule with hidden terms is fact(x) → if(zero(x), s(0), fact(p(x))×x). Symbols fact
and ‘×’ hide position 1 because p(x) is rooted by a defined symbol. Symbol ‘×’
does not hide position 2. Symbol p hides no position. The refinements introduced
in [12] have led to a more precise notion of hidden terms and contexts, enabling
a better analysis of the connections between them. This has greatly improved
the ability of mu-term to prove termination of CSR. For instance, the proof of
termination of R and μ in Example 8, which could not be obtained with the
2010 version of mu-term, is now possible with mu-term 6.0, see the proof of
CSR 04/ExIntrod Zan97.xml in the 2019 Termination Competition

http://group-mmm.org/termination/competitions/Y2019/caches/
termination 33019.html

or in our local benchmarks:

http://zenon.dsic.upv.es/muterm/benchmarks/ijcar20/TRS
Contextsensitive/benchmarks.html

3 Termination Expert

The arbitrary application of processors can generate a huge search space. Fur-
thermore, proofs usually proceed under some timeout. For this reason, we need to
choose a fixed strategy where fast processors that reduce the number of rules are
first used, and slow processors, or processors that increase the number of rules,

http://group-mmm.org/termination/competitions/Y2019/caches/termination_33019.html
http://group-mmm.org/termination/competitions/Y2019/caches/termination_33019.html
http://zenon.dsic.upv.es/muterm/benchmarks/ijcar20/TRS_Contextsensitive/benchmarks.html
http://zenon.dsic.upv.es/muterm/benchmarks/ijcar20/TRS_Contextsensitive/benchmarks.html
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are used when fast processors fail. Hence, the frequency of use for the different
processors depends on the chosen strategy. With small differences depending on
the particular kind of problem, we do the following:

1. If R is a TRS or a CS-TRS, we check whether the system is innermost equiv-
alent [3, Sect. 2.2]. If it is true, then we transform the problem into an inner-
most one.

2. Then, we obtain the corresponding dependency pairs, obtaining a CTRS, OS,
CS, or DP problem. Then we perform the following steps repeatedly
(a) Decision point between processors for proving (operational) non-

termination and the strongly connected component (SCC) processor.
(b) Subterm criterion processor.
(c) Removal triple processor generating models with AGES (we try different

configurations, from simpler to more complex).
(d) If R is a CTRS, we apply simplification and removal processors on the

conditions (using AGES when a model is necessary).
(e) Transformation processors on rules, pairs and conditions: instantiation,

forward instantiation, and narrowing.

Full explanations of the processors can be found in [4,12,13,19,20,24,25].
The mu-term 6.0 logic-based approach has led to dramatic improvements, as
reported here:

http://zenon.dsic.upv.es/muterm/benchmarks/ijcar20/Comparison/
benchmarks.html

where the use of logical models is compared with the exclusive use of polynomial
interpretations (as in mu-term 5.0). Polynomial interpretations are strictly less
powerful in terms of solved examples (as every proof using polynomial interpre-
tations can be obtained using the new logic-based approach). However, we keep
them in mu-term 6.0 as they lead to faster proofs. We use polynomial interpre-
tations as part of mu-term 6.0 strategy (via the removal triple processor).

mu-term 6.0 consists of more than 30000 lines of Haskell code. In the web-
based interface, besides the fully automatic use of the termination expert, we
can also use specific techniques like polynomial orderings, matrix interpretations,
(context-sensitive) recursive path ordering, etc., which we have found useful for
teaching purposes.

4 Experimental Evaluation

Since 2014, mu-term has proven to be the most powerful tool for proving
operational termination of conditional rewriting and termination of context-
sensitive rewriting, each year winning the corresponding subcategory of the
annual International Competition of Termination Tools, see http://zenon.dsic.
upv.es/muterm/?page id=82 for an historical account. In the CSR subcategory,
since 2014 mu-term is able to prove all the examples proved by any other
participating tool (thanks to the results in [12]).

http://zenon.dsic.upv.es/muterm/benchmarks/ijcar20/Comparison/benchmarks.html
http://zenon.dsic.upv.es/muterm/benchmarks/ijcar20/Comparison/benchmarks.html
http://zenon.dsic.upv.es/muterm/?page_id=82
http://zenon.dsic.upv.es/muterm/?page_id=82
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The benchmarks web page of mu-term reports on specific experiments com-
paring the 2010 and 2020 versions. First, the 2010 version did not support
CTRSs. For CS-TRSs, three new examples can be proved now (and all the
examples handled by the 2010 version are also handled now). As for OS-TRSs,
mu-term 6.0 is able to prove or disprove termination of all the OS-TRSs in the
2010 benchmark suite (except a non-sort-decreasing OS-TRS, not covered by
the theory in [22], where sort-decreasingness [11] is required). The 2010 version
could not disprove termination of OS-TRSs.

Acknowledgments. We thank the anonymous referees for many remarks and sug-
gestions that led to improve the paper.
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termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4 4

5. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
Theor. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-
3975(99)00207-8

6. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

7. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termi-
nation of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008). https://
doi.org/10.1007/s10817-007-9087-9

8. Giesl, J., Arts, T.: Verification of erlang processes by dependency pairs. Appl.
Algebra Eng. Commun. Comput. 12(1/2), 39–72 (2001). https://doi.org/10.1007/
s002000100063

9. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-
tion of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/
11559306 12

10. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/
10.1007/s10817-006-9057-7

11. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992). https://doi.org/10.1016/0304-3975(92)90302-V

https://doi.org/10.1007/978-3-540-89439-1_44
https://doi.org/10.1016/j.ic.2010.03.003
https://doi.org/10.1007/978-3-642-17796-5_12
https://doi.org/10.1007/978-3-642-17796-5_12
https://doi.org/10.1007/978-3-642-16310-4_4
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/s10817-007-9087-9
https://doi.org/10.1007/s10817-007-9087-9
https://doi.org/10.1007/s002000100063
https://doi.org/10.1007/s002000100063
https://doi.org/10.1007/11559306_12
https://doi.org/10.1007/11559306_12
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1016/0304-3975(92)90302-V


446 R. Gutiérrez and S. Lucas

12. Gutiérrez, R., Lucas, S.: Function calls at frozen positions in termination of
context-sensitive rewriting. In: Mart́ı-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.)
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1 Introduction: Symbol Independent Inference Guidance

In this work, we develop two symbol-independent (anonymous) inference guiding
methods for saturation-style automated theorem provers (ATPs) such as E [25]
and Vampire [20]. Both methods are based on learning clause classifiers from
previous proofs within the ENIGMA framework [5,13,14] implemented in E. By
symbol-independence we mean that no information about the symbol names is
used by the learned guidance. In particular, if all symbols in a particular ATP
problem are consistently renamed to new symbols, the learned guidance will
result in the same proof search and the same proof modulo the renaming.

Symbol-independent guidance is an important challenge for learning-guided
ATP, addressed already in Schulz’s early work on learning guidance in E [23].
With ATPs being increasingly used and trained on large ITP libraries [2,3,6,8,
16,18], it is more and more rewarding to develop methods that learn to reason
without relying on the particular terminology adopted in a single project. Initial
experiments in this direction using concept alignment [10] methods have already
shown performance improvements by transferring knowledge between the HOL
libraries [9]. Structural analogies (or even terminology duplications) are however
common already in a single large ITP library [17] and their automated detection
can lead to new proof ideas and a number of other interesting applications [11].

This system description first briefly introduces saturation-based ATP with
learned guidance (Sect. 2). Then we discuss symbol-independent learning and
guidance using abstract features and gradient boosting trees (Sect. 3) and graph
neural networks (Sect. 4). The implementation details are explained in Sect. 5
and the methods are evaluated on the MPTP benchmark in Sect. 6.

2 Saturation Proving Guided by Machine Learning

Saturation-Based Automated Theorem Provers (ATPs) such as E and
Vampire are used to prove goals G using a set of axioms A. They clausify the for-
mulas A∪{¬G} and try to deduce contradiction using the given clause loop [22]
as follows. The ATP maintains two sets of processed (P ) and unprocessed (U)
clauses. At each loop iteration, a given clause g from U is selected, moved to
P , and U is extended with new inferences from g and P . This process continues
until the contradiction is found, U becomes empty, or a resource limit is reached.
The search space grows quickly and selection of the right given clauses is critical.

Learning Clause Selection over a set of related problems is a general
method how to guide the proof search. Given a set of FOL problems P and
initial ATP strategy S, we can evaluate S over P obtaining training samples T .
For each successful proof search, training samples T contain the set of clauses
processed during the search. Positive clauses are those that were useful for the
proof search (they appeared in the final proof), while the remaining clauses
were useless, forming the negative examples. Given the samples T , we can train
a machine learning classifier M which predicts usefulness of clauses in future
proof searches. Some clause classifiers are described in detail in Sects. 3, 4, and 5.
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ATP Guidance By a Trained Classifier: Once a clause classifier M is
trained, we can use it inside an ATP. An ATP strategy S is a collection of
proof search parameters such as term ordering, literal selection, and also given
clause selection mechanism. In E, the given clause selection is defined by a col-
lection of clause weight functions which alternate to select the given clauses. Our
ENIGMA framework uses two methods of plugging the trained classifier M into
S. Either (1) we use M to select all given clauses (solo mode denoted S �M), or
(2) we combine predictions of M with clause selection mechanism from S so that
roughly 50% of the clauses is selected by M (cooperative mode denoted S ⊕M).
Proof search settings other than clause selection are inherited from S in both
the cases. See [5] for details. The phases of learning and ATP guidance can be
iterated in a learning/evaluation loop [29], yielding growing sets of proofs Ti and
stronger classifiers Mi trained over them. See [15] for such large experiment.

3 Clause Classification by Decision Trees

Clause Features are used by ENIGMA to represent clauses as sparse vectors
for machine learners. They are based mainly on vertical/horizontal cuts of the
clause syntax tree. We use simple feature hashing to handle theories with large
number of symbols. A clause C is represented by the vector ϕC whose i-th index
stores the value of a feature with hash index i. Values of conflicting features
(mapped to the same index) are summed. Additionally, we embed conjecture
features into the clause representation and we work with vector pairs (ϕC , ϕG)
of size 2 ∗ base, where ϕG is the feature vector of the current goal (conjecture).
This allows us to provide goal-specific predictions. See [15] for more details.

Gradient Boosting Decision Trees (GBDTs) implemented by the
XGBoost library [4] currently provide the strongest ENIGMA classifiers. Their
speed is comparable to the previously used [14] weaker linear logistic classifier,
implemented by the LIBLINEAR library [7]. In this work, we newly employ the
LightGBM [19] GBDT implementation. A decision tree is a binary tree whose
nodes contain Boolean conditions on values of different features. Given a feature
vector ϕC , the decision tree can be navigated from the root to the unique tree
leaf which contains the classification of clause C. GBDTs combine predictions
from a collection of follow-up decision trees. While inputs, outputs, and API
of XGBoost and LightGBM are compatible, each employ a different method of
tree construction. XGBoost constructs trees level-wise, while LightGBM leaf-
wise. This implies that XGBoost trees are well-balanced. On the other hand,
LightGBM can produce much deeper trees and the tree depth limit is indeed an
important learning meta-parameter which must be additionally set.

New Symbol-Independent Features: We develop a feature anonymization
method based on symbol arities. Each function symbol name s with arity n is
substituted by a special name “fn”, while a predicate symbol name q with arity
m is substituted by “pm”. Such features lose the ability to distinguish different
symbol names, and many features are merged together. Vector representations
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of two clauses with renamed symbols are clearly equal. Hence the underlying
machine learning method will provide equal predictions for such clauses. For
more detailed discussion and comparison with related work see Appendix B.

New Statistics and Problem Features: To improve the ability to distinguish
different anonymized clauses, we add the following features. Variable statistics of
clause C containing (1) the number of variables in C without repetitions, (2) the
number of variables with repetitions, (3) the number of variables with exactly
one occurrence, (4) the number of variables with more than one occurrence, (5–
10) the number of occurrences of the most/least (and second/third most/least)
occurring variable. Symbol statistics do the same for symbols instead of variables.
Recall that we embed conjecture features in clause vector pair (ϕC , ϕG). As G
embeds information about the conjecture but not about the problem axioms,
we propose to additionally embed some statistics of the problem P that C and
G come from. We use 22 problem features that E prover already computes for
each input problem to choose a suitable strategy. These are (1) number of goals,
(2) number of axioms, (3) number of unit goals, etc. See E’s manual for more
details. Hence we work with vector triples (ϕC , ϕG, ϕP ).

4 Clause Classification by Graph Neural Network

Another clause classifier newly added to ENIGMA is based on graph neural
networks (GNNs). We use the symbol-independent network architecture devel-
oped in [21] for premise selection. As [21] contains all the details, we only briefly
explain the basic ideas behind this architecture here.

Hypergraph. Given a set of clauses C we create a directed hypergraph with
three kinds of nodes that correspond to clauses, function and predicate symbols
N , and unique (sub)terms and literals U occurring in C, respectively. There are
two kinds of hyperedges that describe the relations between nodes according
to C. The first kind encodes literal occurrences in clauses by connecting the
corresponding nodes. The second hyperedge kind encodes the relations between
nodes from N and U . For example, for f(t1, . . . , tk) ∈ U we loosely speaking
connect the nodes f ∈ N and t1, . . . , tk ∈ U with the node f(t1, . . . , tk) and
similarly for literals, where their polarity is also taken into account.

Message-Passing. The hypergraph describes the relation between various kinds
of objects occurring in C. Every node in the hypergraph is initially assigned a
constant vector, called the embedding, based only on its kind (C, N , or U). These
node embeddings are updated in a fixed number of message-passing rounds,
based on the embeddings of each node’s neighbors. The underlying idea of such
neural message-passing methods1 is to make the node embeddings encode more
and more precisely the information about the connections (and thus various

1 Graph convolutions are a generalization of the sliding window convolutions used for
aggregating neighborhood information in neural networks used for image recognition.
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properties) of the nodes. For this to work, we have to learn initial embeddings
for our three kinds of nodes and the update function.2

Classification. After the message-passing phase, the final clause embeddings
are available in the corresponding clause nodes. The estimated probability of
a clause being a good given clause is then computed by a neural network that
takes the final embedding of this clause and also aggregated final embeddings of
all clauses obtained from the negated conjecture.

5 Learning and Using the Classifiers, Implementation

In order to use either GBDTs (Sect. 3) or GNNs (Sect. 4), a prediction model
must be learned. Learning starts with training samples T , that is, a set of pairs
(C+, C−) of positive and negative clauses. For each training sample T ∈ T , we
additionally know the source problem P and its conjecture G. Hence we can
consider one sample T ∈ T as a quadruple (C+, C−, P,G) for convenience.

GBDT. Given a training sample T = (C+, C−, P,G) ∈ T , each clause C ∈
C+ ∪ C− is translated to the feature vector (ϕC , ϕG, ϕP ). Vectors where C ∈ C+

are labeled as positive, and otherwise as negative. All the labeled vectors are fed
together to a GBDT trainer yielding model DT .

When predicting a generated clause, the feature vector is computed and DT
is asked for the prediction. GBDT’s binary predictions (positive/negative) are
turned into E’s clause weight (positives have weight 1 and negatives 10).

GNN. Given T = (C+, C−, P,G) ∈ T as above we construct a hypergraph for the
set of clauses C+∪C−∪G. This hypergraph is translated to a tensor representation
(vectors and matrices), marking clause nodes as positive, negative, or goal. These
tensors are fed as input to our GNN training, yielding a GNN model NT . The
training works in iterations, and NT contains one GNN per iteration epoch. Only
one GNN from a selected epoch is used for predictions during the evaluation.

In evaluation, it is more efficient to compute predictions for several clauses
at once. This also improves prediction quality as the queried data resembles
more the training hypergraphs where multiple clauses are encoded at once as
well. During an ATP run on problem P with the conjecture G, we postpone
evaluation of newly inferred clauses until we reach a certain amount of clauses
Q to query.3 To resemble the training data even more, we add a fixed number of
the given clauses processed so far. We call these context clauses (X ). To evaluate
Q, we construct the hypergraph for Q∪X ∪G, and mark clauses from G as goals.
Then model NT is asked for predictions on Q (predictions for X are dropped).
The numeric predictions computed by NT are directly used as E’s weights.

Implementation and Performance. We use GBDTs implemented by the
XGBoost [4] and LightGBM [19] libraries. For GNN we use Tensorflow [1]. All
2 We learn individual components, which correspond to different kinds of hyperedges,

from which the update function is efficiently constructed.
3 We may evaluate less than Q if E runs out of unevaluated unprocessed clauses.
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Table 1. Model training and evaluation for anonymous GBDTs (Di) and GNN (Ni).

M TPR TNR Training Real time Abstract time

[%] [%] Size Time Params S ⊕ M +% S ⊕ M +%

∅ - - - - - 14 966 0.0 10 679 0.0

D0 84.9 68.4 14M 2h29m X,d12 20 679 38.1 17 917 67.8

D1 79.0 79.5 29M 4h33m X,d12 23 280 58.2 20 760 94.4

D2 80.5 79.2 47M 40m L,d30,l1800 24 347 62.7 22 661 112.2

N0 92.1 77.1 14M 17h e20,q128,c512 20 912 39.7 19 755 84.9

N1 90.0 78.6 31M 1d19h e10,q128,c512 23 156 54.7 21 737 103.5

N2 91.3 79.6 50M 1d 8h e50,q256,c768 23 262 55.4 22 169 107.6

the libraries provide Python interfaces and C/C++ APIs. We use the Python
interfaces for training and the C APIs for the evaluation in E. The Python
interfaces for XGBoost and LightGBM include the C APIs, while for Tensor-
flow this must be manually compiled, which is further complicated by poor
documentation.

The libraries support training both on CPUs and on GPUs. We train Light-
GBM on CPUs, and XGBoost and Tensorflow on GPUs. However, we always
evaluate on a single CPU as we aim at practical usability on standard hardware.
This is non-trivial and it distinguishes this work from evaluations done with
large numbers of GPUs or TPUs and/or in prohibitively high real times. The
LightGBM training can be parallelized much better – with 60 CPUs it is much
faster than XGBoost on 4 GPUs. Neither using GPUs for LightGBM nor many
CPUs for XGBoost provided better training times. The GNN training is slower
than GBDT training and it is not easy to make Tensorflow evaluate reasonably
on a single CPU. It has to be compiled with all CPU optimizations and restricted
to a single thread, using Tensorflow’s poorly documented experimental C API.

6 Experimental Evaluation

Setup. We experimentally evaluate4 our GBDT and GNN guidance5 on a large
benchmark of 57880 Mizar40 [18] problems6 exported by MPTP [28]. Hence
this evaluation is compatible with our previous symbol-dependent work [15].
We evaluate GBDT and GNN separately. We start with a good-performing E
strategy S (see [5, Appendix A]) which solves 14 966 problems with a 10 s limit
per problem. This gives us training data T0 = eval(S) (see Sect. 5), and we start
three iterations of the learning/evaluation loop (see Sect. 2).

4 On a server with 36 hyperthreading Intel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz
cores, 755 GB of memory, and 4 NVIDIA GeForce GTX 1080 Ti GPUs.

5 Available at https://github.com/ai4reason/eprover-data/tree/master/IJCAR-20.
6 http://grid01.ciirc.cvut.cz/∼mptp/1147/MPTP2/problems small consist.tar.gz.

https://github.com/ai4reason/eprover-data/tree/master/IJCAR-20
http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz
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For GBDT, we train several models (with hash base 215) and conduct a
small learning meta-parameters grid search. For XGBoost, we try different tree
depths (d ∈ {9, 12, 16}), and for LightGBM various combinations of tree depths
and leaves count ((d, l) ∈ {10, 20, 30, 40} × {1200, 1500, 1800}). We evaluate all
these models in a cooperative mode with S on a random (but fixed) 10% of all
problems (Appendix A). The best performing model is evaluated on the whole
benchmark in both cooperative (⊕) and solo (�) runs. These give us the next
samples Ti+1. We perform three iterations and obtain models D0, D1, and D2.

For GNN, we train a model with 100 epochs, obtaining 100 different GNNs.
We evaluate GNNs from selected epochs (e ∈ {10, 20, 50, 75, 100}) and we try
different settings of query (q) and context (c) sizes (see Sect. 5). In particular,
q ranges over {64, 128, 192, 256, 512} and c over {512, 768, 1024, 1536}. All pos-
sible combinations of (e, q, c) are again evaluated in a grid search on the small
benchmark subset (Appendix A), and the best performing model is selected for
the next iteration. We run three iterations and obtain models N0, N1, and N2.

Results are presented in Table 1. For each model Di and Ni we show (1) true
positive/negative rates, (2) training data sizes, (3) train times, and (4) the best
performing parameters from the grid search. Furthermore, for each model M we
show the performance of S ⊕M in (5) real and (6) abstract time. Details follow.
(1) Model accuracies are computed on samples extracted from problems newly
solved by each model, that is, on testing data not known during the training.
Columns TPR/TNR show accuracies on positive/negative testing samples. (2)
Train sizes measure the training data in millions of clauses. (4) Letter “X” stands
for XGBoost models, while “L” for LightGBM. (5) For real time we use 10 s limit
per problem, and (6) in abstract time we limit the number of generated clauses
to 5000. We show the number of problems solved and the gain (in %) on S. The
abstract time evaluation is useful to assess the methods modulo the speed of the
implementation. The first row shows the performance of S without learning.

Evaluation. The GNN models start better, but the GBDT models catch up and
beat GNN in later iterations. The GBDT models show a significant gain even
in the 3rd iteration, while the GNN models start stagnating. The GNN models
report better testing accuracy, but their ATP performance is not as good.

For GBDTs, we see that the first two best models (D0 and D1) were produced
by XGBoost, while D2 by LightGBM. While both libraries can provide similar
results, LightGBM is significantly faster. For comparison, the training time for
XGBoost in the third iteration was 7 h, that is, LightGBM is 10 times faster. The
higher speed of LightGBM can overcome the problems with more complicated
parameter settings, as more models can be trained and evaluated.

For GNNs, we observe higher training times and better models coming from
earlier epochs. The training in the 1st and 2nd iterations was done on 1 GPU,
while in the 3rd on 4 GPUs. The good abstract time performance indicates that
further gain could be obtained by a faster implementation. But note that this is
the first time that NNs have been made comparable to GBDTs in real time.
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Fig. 1. Left: the number of problems solved in time; Right: the number of processed
clauses (the x-axis for S, and the y-axis for S ⊕ D0 and S ⊕ N0, respectively).

Figure 1 summarizes the results. On the left, we observe a slower start for
GNNs caused by the initial model loading. On the right, we see a decrease in
the number of processed clauses, which suggests that the guidance is effective.

Complementarity. The twelve (solo and cooperative) versions of the methods
compared in Fig. 1 solve together 28271 problems, with the six GBDTs solving
25255 and the six GNNs solving 26571. All twenty methods tested by us solve
29118 problems, with the top-6 greedy cover solving (in 60 s) 28067 and the top-
15 greedy cover solving (in 150 s) 29039. The GNNs show higher complementarity
– varying the epoch as well as the size of the query and context produces many
new solutions. For example, the most complementary GNN method adds to the
best GNN method 1976 solutions. The GNNs are also quite complementary to
the GBDTs. The second (GNN) strategy in the greedy cover adds 2045 solutions
to the best (GBDT) strategy. Altogether, the twenty strategies solve (in 200 s)
2109 of the Mizar40 hard problems, i.e., the problems unsolved by any method
developed previously in [18].

7 Conclusion

We have developed and evaluated symbol-independent GBDT and GNN ATP
guidance. This is the first time symbol-independent features and GNNs are
tightly integrated with E and provide good real-time results on a large cor-
pus. Both the GBDT and GNN predictors display high ability to learn from
previous proof searches even in the symbol-independent setting.

To provide competitive real-time performance of the GNNs, we have devel-
oped context-based evaluation of generated clauses in E. This introduces a new
paradigm for clause ranking and selection in saturation-style proving. The gen-
erated clauses are not ranked immediatelly and independently of other clauses.
Instead, they are judged in larger batches and with respect to a large number of
already selected clauses (context) by a neural network that estimates their collec-
tively most useful subset by several rounds of message passing. This also allows
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new ways of parameterizing the search that result in complementary methods
with many new solutions.

The new GBDTs show even better performance than their symbol-dependent
versions from our previous work [15]. This is most likely because of the parameter
grid search and new features not used before. The union of the problems solved
by the twelve ENIGMA strategies (both � and ⊕) in real time adds up to 28
247. When we add S to this portfolio we solve 28 271 problems. This shows that
the ENIGMA strategies learned quite well from S, not losing many solutions.
When we add eight more strategies developed here we solve 29 130 problems,
of which 2109 are among the hard Mizar40. This is done in general in 200 s and
without any additional help from premise selection methods. Vampire in 300 s
solves 27 842 problems. Future work includes joint evaluation of the system on
problems translated from different ITP libraries, similar to [9].

Acknowledgments. We thank Stephan Schulz and Thibault Gauthier for discussing
with us their methods for symbol-independent term and formula matching.

A Additional Data From the Experiments

This appendix presents additional data from the experiments in Section 6.
Figure 3 shows the results of the grid search for GNN models on one tenth
of all benchmark problems done in order to find the best-performing parameters
for query and context sizes. The x-axis plots the query size, the y-axis plots the
context size, while the z-axis plots the ATP performance, that is, the number
of solved problems. Recall that the grid search was performed on a randomly
selected but fixed tenth of all benchmark problems with a 10 s real-time limit per
problem. For N0 and N1, there is a separate graph for each iteration, showing
only the best epochs. For N2, there are two graphs for models from epoch 20
and 50. Note how the later epoch 50 becomes more independent on the context
size. The ranges of the grid search parameters were extended in later iterations
when the best-performing value was at the graph edge.

Figure 4 shows the grid search results for the best LightGBM’s GBDT models
from iterations 1, 2, and 3 (denoted here D0, D1, and D2). The x-axis plots the
number of tree leaves, the y-axis plots the tree depth, while the z-axis plots
the number of solved problems. There are two models from the second iteration
(D1), showing the effect of different learning rate (η). Again, the ranges of meta-
parameters were updated in between the iterations by a human engineer.

Figure 5 shows the training accuracies and training loss for the LightGBM
model D2. Accuracies (TPR and TNR) of the training data are computed from
the first iteration (T0). The values for loss (z) are inverted (1− z) so that higher
values correspond to better models which makes a visual comparison easier. We
can see a clear correlation between the accuracies and the loss, but not so clear
correlation with the ATP performance. The ATP performance of D2 is the same
as in Figure 4, repeated here for convenience.
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Fig. 2. Scatter plots for the lengths of the discovered proofs (the x-axis for S, and the
y-axis for S ⊕ D2 and S ⊕ N2, respectively).

Figure 2 compares the lengths of the discovered proofs. We can see that
there is no systematic difference in this metric between the base strategy and
the ENIGMA ones.

Finally, we have compared the feature vectors of the symbol-dependent and
symbol-independent versions of the GBDTs. On the same data, we observe
roughly 2x more collisions. The symbol-independent version has around 1% of
colliding feature vectors, while the symbol-dependent version has 0.42%.

B Discussion of Anonymization

Our use of symbol-independent arity-based features for GBDTs differs from
Schulz’s anonymous clause patterns [23,24] (CPs) used in E for proof guidance
and from Gauthier and Kaliszyk’s (GK) anonymous abstractions used for their
concept alignments between ITP libraries [10] in two ways:

1. In both CP and GK, serial (de Bruijn-style) numbering of abstracted sym-
bols of the same arity is used. I.e., the term h(g(a)) will get abstracted to
F11(F12(F01)). Our encoding is just F1(F1(F0)). It is even more lossy,
because it is the same for h(h(a)).

2. ENIGMA with gradient boosting decision trees (GBDTs) can be (approxi-
mately) thought of as implementing weighted feature-based clause classifica-
tion where the feature weights are learned. Whereas both in CP and GK,
exact matching is used after the abstraction is done.7 In CP, this is used for
hint-style guidance of E. There, for clauses, such serial numbering however
isn’t stable under literal reordering and subsumption. Partial heuristics can
be used, such as normalization based on a fixed global ordering done in both
CP and GK.

Addressing the latter issue (stability under reordering of literals and sub-
sumption) leads to the NP hardness of (hint) matching/subsumption. I.e.,
7 We thank Stephan Schulz for pointing out that although CPs used exact matching

by default, matching up to a certain depth was also implemented.
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the abstracted subsumption task can be encoded as standard first-order
subsumption for clauses where terms like F11(F12(F01)) are encoded as
apply1(X1, apply1(X2, apply0(X3))). The NP hardness of subsumption is how-
ever here more serious in practice than in standard ATP because only applica-
tions behave as non-variable symbols during the matching.

Thus, the difference between our anonymous approach and CP is practi-
cally the same as between the standard symbol-based ENIGMA guidance and
standard hint-based [30] guidance. In the former the matching (actually, clause
classification) is approximate, weighted and learned, while with hints the clause
matching/classification is crisp, logic-rooted and preprogrammed, sometimes
running into the NP hardness issues. Our latest comparison [12] done over the
Mizar/MPTP corpus in the symbol-based setting showed better performance of
ENIGMA over using hints, most likely due to better generalization behavior of
ENIGMA based on the statistical (GBDT) learning.

Note also that the variable and symbol statistics features to some extent
alleviate the conflicts obtained with our encoding. E.g., h(g(a)) and h(h(a))
will have different symbol statistics (Section 3) features. To some extent, such
features are similar to Schulz’s feature vector and fingerprint indexing [26,27].
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20. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

21. Olsák, M., Kaliszyk, C., Urban, J.: Property invariant embedding for automated
reasoning. CoRR, abs/1911.12073 (2019)

22. Overbeek, R.A.: A new class of automated theorem-proving algorithms. J. ACM
21(2), 191–200 (1974)

23. Schulz, S.: Learning Search Control Knowledge For Equational Deduction of
DISKI, vol. 230. Infix Akademische Verlagsgesellschaft, Frankfurt (2000)

24. Schulz, S.: Learning search control knowledge for equational theorem proving. In:
Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp.
320–334. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45422-5 23

25. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
26. Schulz, S.: Fingerprint indexing for paramodulation and rewriting. In: Gramlich,

B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 477–
483. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 37

https://doi.org/10.1007/978-3-030-29026-9_21
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1007/978-3-319-96812-4_11
https://doi.org/10.1007/978-3-319-96812-4_11
https://doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1007/s11786-014-0182-0
https://doi.org/10.1007/s10817-015-9330-8
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/3-540-45422-5_23
https://doi.org/10.1007/978-3-642-31365-3_37


ENIGMA Anonymous 463

27. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 45–67. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36675-8 3

28. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reasoning 37(1–2), 21–43 (2006)

29. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner
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Abstract. We describe Imandra, a modern computational logic theo-
rem prover designed to bridge the gap between decision procedures such
as SMT, semi-automatic inductive provers of the Boyer-Moore family
like ACL2, and interactive proof assistants for typed higher-order log-
ics. Imandra’s logic is computational, based on a pure subset of OCaml
in which all functions are terminating, with restrictions on types and
higher-order functions that allow conjectures to be translated into multi-
sorted first-order logic with theories, including arithmetic and datatypes.
Imandra has novel features supporting large-scale industrial applications,
including a seamless integration of bounded and unbounded verification,
first-class computable counterexamples, efficiently executable models and
a cloud-native architecture supporting live multiuser collaboration. The
core reasoning mechanisms of Imandra are (i) a semi-complete procedure
for finding models of formulas in the logic mentioned above, centered
around the lazy expansion of recursive functions, (ii) an inductive water-
fall and simplifier which “lifts” many Boyer-Moore ideas to our typed
higher-order setting. These mechanisms are tightly integrated and sub-
ject to many forms of user control.

1 Introduction

Imandra is a modern computational logic theorem prover built around a pure,
higher-order subset of OCaml. Mathematical models and conjectures are writ-
ten as executable OCaml programs, and Imandra may be used to reason about
them, combining models, proofs and counterexamples in a unified computa-
tional environment. Imandra is designed to bridge the gap between decision
procedures such as SMT [2], semi-automatic inductive provers of the Boyer-
Moore family like ACL2 [1,6], and interactive proof assistants for typed higher-
order logics [4,5,7,8]. Our goal is to build a friendly, easy to use system by
leveraging strong automation in proof search that can also robustly provide
counterexamples for false conjectures. Imandra has novel features supporting
large-scale industrial applications, including a seamless integration of bounded
and unbounded verification, first-class computable counterexamples, efficiently
executable models and a cloud-native architecture supporting live multiuser
c© Springer Nature Switzerland AG 2020
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Fig. 1. An example Imandra session illustrating recursive definitions, computable coun-
terexamples (CX), bounded verification (verify upto), unbounded verification with auto-
mated induction (@@auto), and higher-order instance synthesis.
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collaboration. Imandra is already in use by major companies in the financial
sector, including Goldman Sachs, Itiviti and OneChronos [9].

An online version may be found at https://try.imandra.ai (Fig. 1).

2 Logic

Imandra’s logic is built on a mechanized formal semantics for a pure, higher-order
subset of OCaml. Foundationally, the subset of OCaml Imandra supports (called
the ‘Imandra Modelling Language’) corresponds to a (specializable) computa-
tional fragment of HOL equivalent to multi-sorted first-order logic with induc-
tion up to ε0 extended with theories of datatypes, integer and real arithmetic.
Theorems are implicitly universally quantified and expressed as Boolean-valued
functions. Proving a theorem establishes that the corresponding function always
evaluates to true. As in PRA (Primitive Recursive Arithmetic) and Boyer-Moore
logics, existential goals are expressed with explicit computable Skolem func-
tions [1,3,11].

2.1 Definitional Principle

Users work with Imandra by incrementally extending its logical world through
definitions of types, functions, modules and theorems. Each extension is governed
by a definitional principle designed to maintain the consistency of Imandra’s cur-
rent logical theory through a discipline of conservative extensions. Types must be
proved well-founded. Functions must be proved terminating. These termination
proofs play a dual role: Their structure is mined in order to instruct Imandra
how to construct induction principles tailored to the recursive function being
admitted when it later appears in conjectures.

Imandra’s definitional principle is built upon the ordinals up to ε0. Ordinals
are encoded as a datatype (Ordinal.t) in Imandra using a variant of Cantor normal
form, and the well-foundedness of Ordinal.(<<)—the strict less-than relation on
Ordinal.t values—is an axiom of Imandra’s logic.

To prove a function f terminating, an ordinal-valued measure is required.
Measures can often be inferred (e.g., for structural recursions) and may be spec-
ified by the user. To establish termination, all recursive calls of f are collected
together with their guards, and their arguments must be proved to conditionally
map to strictly smaller ordinals via the measure. Imandra provides a shorthand
annotation for specifying lexicographic orders (@@adm), and explicit measure
functions may be given using the @@measure annotation.

Example 1 (Ackermann). We can define the Ackermann function and prove it
terminating with the attribute [@@adm m,n] which maps ack m n to the ordinal m·
ω + n. Alternatively, we could use [@@measure Ordinal.(pair (of_int m) (of_int n))]
to give an explicit measure via helper functions in Imandra’s Ordinal module.
let rec ack m n =
if m <= 0 then n + 1 else if n <= 0 then ack (m−1) 1 else ack (m−1) (ack m (n−1))

[@@adm m,n]

https://try.imandra.ai
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Example 2. Here we have a naive version of the classic left-pad function [13],
where termination depends on both arguments in a non-lexicographic manner:

let rec left_pad c n xs =
if List.length xs >= n then xs else left_pad c n (c :: xs)

[@@measure Ordinal.of_int (n − List.length xs)]

2.2 Lifting, Specialization and Monomorphization

Imandra definitions may be polymorphic and higher-order. However, once Iman-
dra is tasked with determining the truth value of a conjecture, the goal and its
transitive dependencies are transformed into a family of ground, monomorphic
first-order (recursive) definitions. These transformations include lambda lifting,
specialization and monomorphization. Imandra’s supported fragment of OCaml
is designed so that all admitted definitions may be transformed in this way.

Example 3. To prove the following higher-order theorem

theorem same_len l =
List.length (List.map (fun x −> x+1) l) = List.length l

we obtain a set of lower level definitions, where the anonymous function was
lifted, the type list was monomorphised, and map and length were specialised:

type int_list = Nil_int | Cons_int of int ∗ int_list
let rec length_int = function
| Nil_int −> 0
| Cons_int (_, tl) −> 1 + length_int tl

let map_lambda0 x = x+1
let rec map1 = function
| Nil_int −> Nil_int
| Cons_int (x, tl) −> Cons_int (map_lambda0 x, map1 tl)

theorem same_len (l:int_list) : bool =
length_int (map1 l) = length_int l

3 Unrolling of Recursive Functions

A major feature of Imandra is its ability to automatically search for proofs and
counterexamples in a logic with recursive functions. When a counterexample is
found, it is reflected as a first-class value in Imandra’s runtime and can be directly
computed with and run through the model being analysed. In fact, the state-
ment verify (fun x −> ...) does not try any inductive proving unless requested;
the default strategy is recursive function unrolling for a fixed number of steps,
a form of bounded symbolic model-checking.

Our core unrolling algorithm is similar in spirit to the work of Suter et al. [12]
but with crucial strategic differences. In essence, Imandra uses the assumption
mechanism of SMT to block all Boolean assignments that involve the evaluation



468 G. Passmore et al.

of a (currently) uninterpreted ground instance of a recursive function. A refine-
ment loop, based on extraction of unsat-cores from this set of assumptions, then
expands (interprets) the function calls one by one until a model is found, an
empty unsat-core is obtained, or a maximal number of steps is reached.

Definition 1 (Function template). A function template for f is a set of
tuples (g, t,p) such that the body of f contains a call to g(t) under the path p.

Example 4

– fact(x) = if x > 1 (x∗ fact(x−1)) 1 has as template {(fact, (x − 1), (x > 1))}
– f(x) = 1 + if g(0) h(g(x)) h(42)

has as template
{(g, (0),�), (h, (g(x)), (g(0) = �)), (g, (x), g(0) = �), (h, (42), (g(0) = ⊥))}
We use what we call reachability literals to prevent the SMT solver from

picking assignments that use function calls that are not expanded yet. A reacha-
bility literal is a Boolean atom that doesn’t appear in the original problem, and
that we associate to a given function call f(t) regardless of where it occurs. This
is to be contrasted with Suter et al.’s notion of control literals associated with
individual occurrences of function calls within the expanded body of another
function call. We denote by b[f(t)] the unique reachability literal for f(t).

1 def calls of term(t: Term):
2 return {b[f(�u)] | f(�u) � t}
3
4 def subcalls of call(f(�t): Term, expanded: Set[Term]):

5 return {(b[g(�u)], p) | (g, �u,
∧

p) ∈ template(f)[�t/�x] ∧ g(�u) �∈ expanded}
6
7 def unroll(goal: Formula) −> SAT|UNSAT:
8 q = calls of term(goal), expanded = ∅
9 F = goal ∧ ∧

a∈q a

10 while True:
11 is sat, unsat core = check sat(F, assume={¬a | a ∈ q})
12 if is sat == SAT: return SAT
13 else if is sat == UNSAT:
14 if unsat core == ∅: return UNSAT

15 b[f(�t)] = pick from(unsat core) # next call to expand
16 expanded = {f(�t)} ∪ expanded

17 {(ai, pi)}i = subcalls of call(f(�t), expanded)
18 q = q ∪ {ai}i \ b[f(�t)]
19 F = F ∧ b[f(�t)] ∧ f(�t) = bodyf [�t/�x] ∧ ∧

i b[f(�t)] ∧ pi ⇒ ai

)

Fig. 2. Unrolling algorithm

The main search loop is presented in Fig. 2, where bodyf is the body of f
(i.e. f(x) def= bodyf ) and t � u means t is a proper subterm of u. We start with F
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initialized to the original goal, and the queue q containing function calls in the
goal (computed by calls_of_term). Each iteration of the loop starts by checking
validity under the assumption that all reachability literals in q are false (line 11).
If no model is found, we pick an unexpanded function call f(t) from the unsat
core (line 15). Selection must be fair : all function calls must eventually be picked.

To expand f(t), the corresponding reachability literal becomes true, we
instantiate the body of f on t, and use subcalls_of_call to compute the set
of subcalls along with their control path within f(t) (using f ’s template).
For each b[g(u)] occurring under path p inside bodyf (t), we need to block
models that would make p valid until g(u) gets expanded. The assertions∧

i (b[f(t)] ∧ pi ⇒ ai) delegate to SMT the work of tracking which paths are
forbidden. This way, expanding one function call might lead to many paths
becoming “unlocked” at once.

4 Induction

Imandra has extensive support for automated induction built principally around
Imandra’s inductive waterfall1. This combines techniques such as symbolic exe-
cution, lemma-based conditional rewriting, forward-chaining, generalization and
the automatic synthesis of goal-specific induction principles. Induction principle
synthesis depends upon data computed about a function’s termination obtained
when it was admitted via our definitional principle. Imandra’s waterfall is deeply

Fig. 3. Imandra’s inductive waterfall

1 More details about Imandra’s waterfall and rule classes may be found in our online
documentation at https://docs.imandra.ai.

https://docs.imandra.ai
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inspired by the pioneering work of Boyer-Moore [1,6], and is in many ways a “lift-
ing” of the Boyer-Moore waterfall to our typed, higher-order setting (Fig. 3).

Imandra’s waterfall contains a simplifier which automatically makes use of
previously proved lemmas. Once proved, lemmas may be installed as rewrite,
forward-chaining, elimination or generalization rules. Imandra gives users feed-
back in order to help them design efficient collections of rules. With a good
collection of rules (especially rewrite rules), it is hoped that “most” useful theo-
rems over a given domain will be provable by simplification alone, and induction
will only be applied as a last resort. In these cases, the subsequent waterfall
moves are designed to prepare the simplified conjecture for induction (via, e.g.,
generalization) before goal-specific induction principles are synthesized.

Imandra’s inductive waterfall plays an important role in what we believe to be
a robust verification strategy for applying Imandra to real-world systems. Recall
that all Imandra goals may be subjected to bounded verification via unrolling (cf.
Sect. 3). In practice, we almost always attack a goal by unrolling first, attempt-
ing to verify it up to a bound before we consider trying to prove it by induction.
Typically, for real-world systems, models and conjectures will have flaws, and
unrolling will uncover many counterexamples, confusions and mistakes. As all
models are executable and all counterexamples are reflected in Imandra’s run-
time, they can be directly run through models facilitating rapid investigation.
It is typically only after iterating on models and conjectures until all (bounded)
counterexamples have been eliminated that we consider trying to prove them by
induction. Imandra’s support for counterexamples also plays another important
role: as a filter on heuristic waterfall steps such as generalization.

5 Architecture and User Interfaces

Imandra is developed in OCaml and integrates with its compiler libraries. Arbi-
trary OCaml code may interact with Imandra models and counterexamples
through the use of Imandra’s program mode and reflection machinery. Iman-
dra integrates with Z3 [2] for checking satisfiability of various classes of ground
formulas. Imandra has a client-server architecture: (i) the client parses and exe-
cutes models with an integrated toplevel; (ii) the server, typically in the cloud,
performs all reasoning. Imandra’s user interfaces include:

Command line for power users, with tab-completion, hints, and colorful mes-
sages. This interface is similar in some ways to OCaml’s utop.

Jupyter notebooks hosted online or via local installation through Docker [10].
This presents Imandra through interactive notebooks in the browser.

VSCode plugin where documents are checked on the fly and errors are under-
lined in the spirit of Isabelle’s Prover IDE [14].

6 Conclusion

Imandra is an industrial-strength reasoning system combining ideas from SMT,
Boyer-Moore inductive provers, and ITPs for typed higher-order logics. Iman-
dra delivers an extremely high degree of automation and has novel techniques
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such as reflected computable counterexamples that we now believe are indis-
pensible for the effective industrial application of automated reasoning. We are
encouraged by Imandra’s success in mainstream finance [9], and share a deep
conviction that further advances in automation and UI—driven in large part by
meeting the demands of industrial users—will lead to a (near-term) future in
which automated reasoning is a widely adopted foundational technology.
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Abstract. SUMOjEdit is a programmer’s text editor for the SUO-
KIF language and SUMO http://www.ontologyportal.org theory. Mod-
ern procedural programming is done in a text editor with tool support.
Development of ontologies and taxonomies has often been done in graph-
ical editors, leading many developers to employ only logics of very limited
expressiveness that can be manipulated visually. Developers in the theo-
rem proving community typically work in text editors but often without
the same degree of tool support that most programmers rely on. Begin-
ners working with SUMO make some very predictable errors in syntax,
logical formulation, and use of the library of theories. Many of these
errors can be flagged during editing, resulting in reduced time to become
a productive developer. An editor designed for working with SUMO has
the potential to aid beginners and experienced SUMO developers.

1 Introduction

The Suggested Upper Merged Ontology (SUMO) [6,9] is a logical theory stated
in a higher-order logic, in SUO-KIF syntax1. It has roughly 20,000 constant
symbols and 80,000 statements that have been written by hand since the start
of the effort in the year 2000. It has been mapped by hand [7] to all 100,000 word
senses in the WordNet lexicon [4] and to the Open Multilingual WordNet [3] that
includes some two dozen languages. SUMO has been used as a source theory in
several CASC competitions [13]. The Sigma knowledge engineering environment
(SigmaKEE) [11] is the tool set employed in development of SUMO. It includes
translators that translate SUMO from SUO-KIF to TPTP FOF [12], TFF0 [10]
and THF [2] and interfaces to provers including E [14] and Vampire [5].

2 Motivation: Support for New Ontologists

We recently employed SUMO on a project to improve a taxonomy of customer
service requests for a consumer electronics company. They had thousands of tags

1 https://github.com/ontologyportal/sigmakee/blob/master/suo-kif.pdf.
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that were used to classify problems, products and solutions to problems. The
tags were created by customer service people, essentially forming a“folksonomy”
that had considerable overlap and duplication of concepts. Because of a lack of
definition of the tags, they were often reused in an inconsistent manner, since
users of the tags would often not have the same understanding of their intended
meaning as their author.

The project started quickly, with very little time to recruit and train develop-
ers. Three recent college graduates with Bachelor’s degrees in Computer Science
or Physics were employed and given one week of training based on the SUMO
textbook [9]. They were then expected to begin work and ramp up their rate of
constant symbol and definition authorship over the course of a month to a target
of 50 concepts with definitions per week. None had any prior experience writing
logic expressions. The training consisted of exercises in the SUO-KIF language
and the most commonly used terms in SUMO, and use of the Sigma environment
to view and test new SUMO content. The training followed the textbook [9] on
SUMO. It became clear over the course of the project that although developers
could load their new theories into Sigma and get feedback on errors, and were
required to do so each week, that getting more immediate feedback would be
valuable. Getting feedback from Sigma is essentially a batch process. If a syntax
error is found and the system can’t recover and interpret the rest of the state-
ments in a file, then that error has to be corrected and then the process must
start over. If instead errors could be caught at editing time, it would improve
productivity.

A retrospective analysis of coding errors was performed. Given the sample
size of only three developers and that this was not a controlled study, it must
be considered anecdotal, but may still be informative. Many corrections were
provided in person to the developers by the author of SUMO, so only email
comments could be analyzed. The result was a set of 104 corrections that have
been grouped into 7 categories. Only data for the first month of work was sampled
as after that time basic coding errors became less frequent. Figure 1 shows the
results of the analysis. The seven categories of errors are:

– syntax error - This refers to any number of violations of the BNF grammar
of SUO-KIF [8].

– unused var & var name - A variable may appear in a quantifier list and never
get used or a variable might be used only once. In the first case that is logically
harmless but may indicate a mistake. In the second case, it’s allowed if the
intent of the formula is to specify some restriction about an argument to a
relation, without respect to the other arguments. However, it is also often
indicative of a mistake.

– term name - The developer uses a name for a constant that is likely misspelled
and not defined elsewhere.

– arg order or num - A common error is to reverse the arguments to case roles
or other binary relations, or to forget an argument to a higher-arity relation.

– class vs. instance - It is a common error for beginners to confuse an instance
with a type. An example of this error would be stating that the result of
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Fig. 1. Knowledge coding errors

a Cooking process is the class PreparedFood rather than an instance of
PreparedFood.

– type - This refers to any error with types. All relations in SUMO have required
types. Errors can include using an argument of the wrong type to a relation
as well as using variables as arguments to relations that would require the
variable to have two disjoint types.

– semantic - This refers to comments and corrections about whether the devel-
oper stated a fact that accurately reflects the domain. This sort of com-
ment would be expected to be the most common correction. It’s also one
that automation cannot address. Semantic corrections become a much larger
percentage as users gain facility in using the mechanics of SUMO and the
SUO-KIF logical language.

3 SUMOjEdit Features and Functions

While theorem proving should in theory be able to find most contradictions, on
large theories such as SUMO it may fail to find them in a reasonable amount of
time. Theorem proving will also not be able to find a problem that doesn’t result
in a contradiction, like use of a constant symbol that only appears once. Much
simpler inference procedures, coded in Java, can find many straightforward issues
that would result in a logical contradiction, such as argument type violations,
very quickly. In addition, such dedicated procedures can also find all such issues
at once, and without the need for the user to diagnose the root cause by reading
a potentially long or complicated proof. Apart from errors that result in logical
contradictions, there are also many issues that can be classified as “warnings”,
that are indicative of possible errors, but are still logically consistent. Lastly,
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Fig. 2. An editor screen

some features may be viewed as helpful productivity enhancements, such as
finding the likely definition of a constant symbol.

The features currently implemented in the editor are:

– color coding - there are only eight “reserved words” in the SUO-KIF language
- and, or, not, =>, <=>, equal, forall, exists and they are given their own
color. Comments, numbers and strings are uniquely color coded as shown in
Fig. 2. The most fundamental defining relations in SUMO are given their
own color. They are instance, subclass, domain, domainSubclass, range,
rangeSubclass. Documentation predicates are also color-coded. These pred-
icates are: documentation, termFormat and format. Lastly True and False
are highlighted. Color coding often makes some errors obvious, such as a case
of comment text not being preceded by a semicolon comment symbol.

– check for errors and warnings - There are many errors that can be checked
for by the Sigma system and this feature applies all the checks to a file. A
common error is for a developer to make an instance of an Object as the Agent
of a Process. Agent(s) however must be sentient beings and not inanimate
objects. Another common error is for a particular variable not to get used
because one occurrence of it has a typo. Beginners often do copy-and-modify
as an approach to writing rules and wind up with a conjunction with just one
element, or a quantifier enclosing a set of literals, rather than a conjunction of
literals. This function should catch all of the errors (other than “semantic”)
listed in Fig. 1.
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– formatting - This is analogous to a Lisp “pretty-print” function and formats
a statement to conform to the convention for SUO-KIF.

– open browser - This opens the browser-based Sigma system to the page show-
ing all statements for a given term that is highlighted in the editor.

– go to definition - Sigma users define which files of SUO-KIF content comprise
the current knowledge base either interactively or via editing a configura-
tion file. Although formulas in different files can refer to a constant symbol,
a good developer will put the basic information about a constant symbol -
its class membership and documentation string at least - in the same place
in one file. This function looks in order for statements involving the con-
stant symbol to make a good guess at where to move the cursor. In order,
it looks for instance, subclass, subAttribute, subrelation, domain and
documentation, stopping at the first such statement.

– theorem proving - The user highlights a formula in the editor and this is
sent as a query to a theorem prover. In other work [12] we have described
the transformations needed to convert a SUO-KIF formula to TPTP FOF
formula. The resulting proof is then converted back into SUO-KIF and a new
editing buffer is opened that contains the proof (if found) (see Fig. 3). With
this feature, it becomes easier to use automated theorem provers as proof
assistants, trying to assemble lemmas that can be proven into a larger proof,
adding new formulas that are required as a desired proof is built up from
smaller proofs.

4 Related Work

Most prior work in this area is on editing tools for proofs using proof assistants.
The focus of SUMO, and the SUMO editor, is on authoring logical theories,
where the primary applications of the theories are as metadata for software
engineering, including development of taxonomies and schemas.

The Logic text editor - 2 is designed for human authoring of statements
and proofs. It is a set of extensions for the Markdown language. No automation
support is provided for checking the statements or proofs that a user creates.

ProofGeneral [1] - 3 is an editor based on Emacs (and more recently, there
is a proposed port to the Eclipse IDE) for proof assistants and supports many
provers including Coq, EasyCrypt and PhoX. It includes color coding of proofs
and interactive application of tactics.

Isabelle/jEdit [17]4 is an interface to the Isabelle interactive prover with
many sophisticated functions. It includes color coding and the ability to display
non-ASCII symbols in formulas. It does theory formatting. Many kinds of auto-
completion of formulas and symbols can be performed. Proof checking can be
done continuously as a background task.
2 http://davidagler.com/teaching/logic/handouts/supplemental material/

MarkdownForSymbolicLogic.html.
3 https://proofgeneral.github.io/.
4 https://isabelle.in.tum.de/dist/doc/jedit.pdf.

http://davidagler.com/teaching/logic/handouts/supplemental_material/MarkdownForSymbolicLogic.html
http://davidagler.com/teaching/logic/handouts/supplemental_material/MarkdownForSymbolicLogic.html
https://proofgeneral.github.io/
https://isabelle.in.tum.de/dist/doc/jedit.pdf
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Fig. 3. A proof window

MizarMode [15,16] is focused on interactive theorem proving with the
Mizar library. Like ProofGeneral, it runs on top of Emacs. It supports brows-
ing semantically disambiguated queries, placing the cursor at the definition of a
constant and sending a formula to the Mizar Proof Advisor.

Other systems include CoqIDE5 and the Lean prover’s UI6.

5 Code and Future Work

SUMOjEdit is implemented in Java as a plugin for jEdit. It relies on the Sigma
framework that is also written in Java, as well as the ErrorList jEdit plugin. It
is open source and available at https://github.com/ontologyportal/SUMOjEdit.

Auto-complete would be a useful feature, especially given that there are
20,000 constant symbols in SUMO, and spelling unusual ones correctly can some-
time be a challenge. A more thorough review of the proof assistant tools listed in
the Related Work section will be helpful to see if the approach of proof assistants
can be more thoroughly applied to work with automated provers. Finally, in this
first version, much could be done to improve speed and efficiency. Load time is
rather slow, and implementing jEdit’s listener functionality would help to get the
editor running while more complex operations proceed in the background and

5 https://coq.inria.fr/refman/practical-tools/coqide.html.
6 https://leanprover.github.io/.

https://github.com/ontologyportal/SUMOjEdit
https://coq.inria.fr/refman/practical-tools/coqide.html
https://leanprover.github.io/
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then trigger the availability of the more sophisticated forms of analysis. We are
currently using the system interactively to develop spatial reasoning problems
and SUMO-based proofs for those problems. More experience with the system
will likely yield more practical improvements.
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Abstract. Sequent calculus is a pervasive technique for studying logics
and their properties due to the regularity of rules, proofs, and meta-
property proofs across logics. However, even simple proofs can be large,
and writing them by hand is often messy. Moreover, the combinatorial
nature of the calculus makes it easy for humans to make mistakes or miss
cases. Sequoia aims to alleviate these problems. Sequoia is a web-based
application for specifying sequent calculi and performing basic reasoning
about them. The goal is to be a user-friendly program, where logicians
can specify and “play” with their calculi. For that purpose, we provide
an intuitive interface where inference rules can be input in LATEX and are
immediately rendered with the corresponding symbols. Users can then
build proof trees in a streamlined and minimal-effort way, in whichever
calculus they defined. In addition to that, we provide checks for some
of the most important meta-theoretical properties, such as weakening
admissibility and identity expansion, given that they proceed by the
usual structural induction. In this sense, the logician is only left with the
tricky and most interesting cases of each analysis.

Keywords: Sequent calculus · Meta-properties · Web-based app

1 Introduction

Proof (and derivation) trees are a central structure for sequent calculus. They
are used to check validity of formulas and sequents, as well as for checking
meta-properties of the calculus (such as rule permutability, invertibility, and cut-
elimination). In the latter, trees are generally schematic, using context variables
to represent a family of trees with that shape.

When checking the validity of sequents, the required proof trees can become
quite large (both in depth and breadth) to be written on paper. At the same time,
the proofs of meta-properties may involve several (often small) proof trees to
cover all the cases. Many times they are slight variations of each other, or largely
the same across logics. Building and then verifying these proof trees is often a
tedious task. Several tiresome issues arise: symbols can easily be misplaced, look
unclear, or be confused by mistake; trees may have to be adjusted or re-sized to
fit the writing space; and the proofs themselves may not look as elegant as their
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typeset counterpart. However, a glance towards creating proof trees in a digital
environment shows a separate set of issues. Currently there are very few tools
for creating proof trees intuitively. The most common method is to write the
proofs in LATEX, or a program that produces such proofs. Even then, the process
can easily become too long and cumbersome.

Sequoia is a web application that makes sequent calculus tree building,
whether schematic or not, simple and intuitive. Sequoia is aimed at students
and academics who find the traditional methods too cumbersome, and provides
a user-friendly means to create multiple calculi specified from user-defined sym-
bols and inference rules, as well as a way to correctly build proof trees with
their defined calculi. We use a sound and complete algorithm that computes all
valid applications of a rule to a sequent. In addition, Sequoia features meta-
theoretical property checking for weakening admissibility, identity expansion,
and permutability. It provides all the straightforward cases needed for the com-
plete proofs of these properties, alleviating the user from the monotonous part,
and allowing them to focus on the interesting cases. All these features are ready
to be used now, and we are still improving Sequoia by adding more properties
to check and more proof tree building tools.

Sequoia can be accessed at: https://logic.qatar.cmu.edu/sequoia/, and the
source code is available at https://github.com/meta-logic/sequoia.

2 System Description

Sequoia consists of a front-end built in JavaScript and HTML, and a back-
end built in MongoDB and Standard ML New Jersey. The application runs in a
Node.js environment. The front-end is responsible for displaying the user defined
rules and symbols, rendering the interactive proof tree, and presenting possible
proof tree transformations for property testing, among other things. Aside from
running the server, the back-end stores the user’s defined calculi (including rules
and symbols), computes all the possible valid proof trees when a rule is applied to
a tree sequent, and constructs all possible tree derivations for a particular meta-
property. The following sections will progressively describe the design of our
system by first providing the basic representations for the datatypes in SML,
then describing the schematic tree building, and explaining our approach to
automating the meta-property tests.

2.1 Datatypes

Currently, Sequoia supports sequent calculi with multiple contexts on the left
and right. We restrict the rules in a calculus to operate on one connective at a
time. We also require that rules have no restrictions on their contexts, such as:

�Γ � A
Γ, �Γ � �A

Note that such rules can often be rewritten using multiple contexts.

https://logic.qatar.cmu.edu/sequoia/
https://github.com/meta-logic/sequoia
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Our datatypes are defined as:

Formula F ::= p, q, ... | A, B, ... | •1(F1, ..., Fr1), •2(F1, ..., Fr2), ...
Context Γ/Δ ::= Θ1, ..., Θk, F1, ...Fl

Sequent S ::= Γ1 �1 ... �n−1 Γn � Δ1 �′
1 ... �′

m−1 Δm

Rule R ::= (rule name, Si, [S1, ...Sz])
Tree T ::= (rule name, Si, [T1, ...Ty])

Where p, q, ... are atom variables, A,B, ... are formula variables, •1, •2, ... are
connectives with arities r1, r2, ... respectively, Θ1, Θ2, ... are context variables,
� is a context separator and � is a sequent sign. Context separators are sym-
bols used to separate different contexts on either the left or right sides the
sequent. For example, in the focused system for linear logic [3], three symbols
(“;”, “⇓”, “⇑”) are used to separate different parts of the right context. Note
that all the mentioned symbols must be declared by the user and cannot contain
superscripts.

Proof trees are recursive structures made up of a sequent, the rule name (if
any) and a set of proof trees above the sequent; rules consist of a conclusion
sequent and a set of premise sequents.

2.2 Core Operations

Rule application is the most important operation of Sequoia. It relies on three
core operations: unification, substitution, and variable renaming. Rule applica-
tion is a function applied to a rule and a sequent. We will use the following
rule and sequent as our running example (assuming all the symbols have been
declared by the user):

Γ1 � A Γ2 � B

Γ1, Γ2 � A ∧ B
∧r

Δ, F ∨ G, H � X ∧ Y

Unification. The first step for rule application is obtaining the valid unifiers
between the sequent and the conclusion sequent of the rule. The reason we are not
using pattern matching is because we may have to substitute context variables
in the sequent as well as in the inference rule. For example, if the context is
Γ, r, p∧ q and the conclusion of the rule is Γ1, Γ2, A∧B, then we need: one of Γi

substituted by a context variable and r, and Γ substituted by two new context
variables. Unification of sequents and contexts is defined as:

� = �′ Γ1 �1 ...Γn =̇ Γ ′
1 �′

1 ...Γ ′
n | Σ1

∀σ ∈ Σ1

(Δ1;1 ...Δk)σ =̇ (Δ′
1;

′
1 ...Δ′

k)σ | Σ2

Γ1 �1 ...Γn � Δ1 �1 ...Δk =̇ Γ ′
1 �′

1 ...Γ ′
n �′ Δ′

1 �′
1 ...Δ′

k | Σ1 ◦ Σ2

seq

·=̇· | {} ctx0
�1 = �′

1 Γ1 =̇ Γ ′
1 | Σ1

∀σ ∈ Σ1

(Γ2 �2 ...Γn)σ =̇ (Γ ′
2 �′

2 ...Γ ′
n)σ | Σ2

Γ1 �1 Γ2 �2 ...Γn =̇ Γ ′
1 �′

1 Γ ′
2 �′

2 ...Γ ′
n | Σ1 ◦ Σ2

ctx
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Note that the symbols between contexts and the sequent sign must match
for the unification to succeed, and that contexts are ordered. The unification of
individual contexts is done through multiset unification using constraints [6].

Suppose that we want to apply the rule ∧r to the sequent in the example
above. Then, we need to get the unifiers between Γ1, Γ2 � A∧B (∧r conclusion)
and Δ,F ∨ G,H � X ∧ Y . This will produce a number of valid unifiers and a
constraint theory alongside each unifier, one of them being:

σ = {A → X, B → Y, Γ1 → [Γ ′
1, H], Γ2 → [Γ ′

2, F ∨ G]} (Δ = Γ ′
1, Γ

′
2)

Constraint theories are used to maintain consistency between a conclusion and
its premises in a proof tree. Its importance is discussed later in Sect. 2.3.

Substitution. Once unification is done, every valid unifier represents one pos-
sible way of applying the inference rule to the sequent. The premises are deter-
mined by applying the resulting unifier to the rule’s premises. For example, the
unifier above can be applied to the premises of ∧r, resulting in:

(Γ1 � A)σ = Γ ′
1, H � X (Γ2 � Y )σ = Γ ′

2, F ∨ G � Y

Which is a correct set of premises when applying ∧r to Δ,F ∨ G,H � X ∧ Y ,
given the constraint Δ = Γ ′

1, Γ
′
2:

(Γ1 � A)σ (Γ2 � B)σ

(Γ1, Γ2 � A ∧ B)σ
∧r

=

Γ ′
1, H � X Γ ′

2, F ∨ G � Y

Δ, F ∨ G, H � X ∧ Y
∧r

Variable Renaming. When applying a rule, we can assume that the sequent
and the conclusion sequent of the rule have different variable names because of
the symbol restrictions in the symbols tables. However, after applying a rule
some problems might arise. For example, applying the ∧r rule on Γ � (a ∧ b) ∧ c
would yield the premises Γ1 � a ∧ b and Γ2 � c and the constraint Γ = Γ1, Γ2.
However, applying ∧r again on Γ1 � a∧ b would cause problems in unification as
Γ1 is used in both the rule and the sequent. To avoid this problem, all context
variables are renamed after unification. To rename a context variable, we simply
add a fresh superscript to the name of the variable, or update it if the name has
one already.

2.3 Functionalities

The key features of Sequoia are that it allows the user to build ground and
schematic proof trees, and to automate the process of testing for certain meta-
properties. Currently, Sequoia is able to check rule permutability, weakening
admissibility (for each context), and identity expansion.
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Tree Building. Sequoia’s tree building relies entirely on rule application. Given
a tree, a constraint list, and a set of rules, a selected rule can be applied to an open
sequent in the tree to produce a new tree and constraints with the appropriate
updates. To do this, we first compute all possible unifiers of an open sequent
and a rule. Then for each unifier, the empty premise set of the open sequent is
replaced by the new premises obtained as explained above. The unifier is applied
to each sequent in the tree, including the open sequent, and the constraint list is
updated with the unifier’s accompanying constraint theory. The constraint list
is bound to the tree and accounts for the context variables changing at different
levels in the tree as a result of multiple rule applications. The user can undo rule
applications, as well as export the proof tree to LATEX.

Proof Transformations. In some cases (such as checking for permutability),
we need to decide whether a tree T1 with end sequent S can be transformed into
another tree T2 with the same end sequent. For that, we assume that T1 is a
closed tree, i.e., each premise S1,i in T1 has a proof D1,i. Checking if T1 can be
transformed into T2, amounts to checking that each open premise S2,j in T2 can
be proved using some D1,i. The proof D1,i for S1,i can be used to prove S2,j if:
(1) the two sequents are the same (modulo context variables), or (2) if weakening
is admissible in some contexts, that S1,i can be obtained by weakening S2,j . If
the proof can be used, we add constraints specifying which multiset of context
variables in S2,j is equal to the multiset of context variables in S1,i. Given this
set of constraints and the ones obtained from unification when applying the
rules, which are equalities between multisets, we try to find an AC11 unifier [1,
section 10.3] such that it does not map context variables of T1 to empty or a
multiset which contains more than one copy of each context. This approach to
proof transformations has its limitations, since we do not take into consideration
cases that succeed because of a rule’s invertibility or the use of cut rules. Thus,
the check is always sound, but not complete. The user needs to check by hand
the cases that Sequoia cannot infer.

Permutability. Given two rules R1 and R2, the initial rules, and the weakening
properties of the calculus, we say that R1 permutes up R2 if a proof tree T ending
with the rule R2 applied over R1 can be transformed into a proof tree T ′ ending
with R1 applied over R2. Sequoia performs this check by first generating all
derivations T where R2 is applied over R1, and all derivations T ′ where R1 is
applied over R2. Then, for each tree T , we try to find a tree T ′ such that T can
be transformed into T ′.

Weakening Admissibility. The admissibility of weakening for a calculus is
checked for each context separately. Given a context Γ in a sequent S, the
theorem states: if a sequent S[Γ ] is provable, then so is S[Γ, F ]. The usual proof

1 Associative, commutative, with neutral element (the properties of multiset union).
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proceeds by structural induction on the derivation of S[Γ ]. Sequoia is able to
check all “trivial” cases, i.e. the ones that require only the inductive hypothesis.

Identity Expansion. Identity expansion is the property that all identity rules
can be applied on atoms. The usual proof proceeds by induction on the formula
structure. Let •(F1, ..., Fn) be a formula with main connective •, [•1], ..., [•k] be
the rules for decomposing •, and [id] one identity rule. Sequoia checks if a proof
ending with [id] on •(F1, ..., Fn) can be transformed into a proof using some of
the rules [•1], ..., [•k] and [id] only on F1, ..., Fn. This is done by applying left
and right pairs of rules and trying to close the proof.

Once again, this check is sound, but not complete. For example, take the LJ
calculus for intuitionistic logic with the following rules for conjunction left:

Γ, A1 � C

Γ, A1 ∧ A2 � C
∧1

r

Γ, A2 � C

Γ, A1 ∧ A2 � C
∧2

r

Sequoia is not able to infer identity expansion because it will not apply contrac-
tion arbitrarily. Instead, if the following rule is used:

Γ, A1, A2 � C

Γ, A1 ∧ A2 � C
∧r

Then Sequoia succeeds in showing identity expansion for the case of ∧.

3 Usage

Sequoia was made with the goal in mind that a calculus construction and tree
building tool should have a nice design and an intuitive interface for students
and academics. All input is compiled in LATEX, as it is a familiar typesetting
language with a vast access to symbols.

Symbols Table. Before creating rules and building trees, users must declare
the symbols to be used and their types. A symbols table consists of the symbol
(input in LATEX) and its type (chosen from a drop-down menu). Symbols can
be updated by changing their type or simply deleted. There are two symbols
tables: a rule one (symbols used for the rules in a calculus) and an end-sequent
one (symbols used on the end-sequent of a proof tree). The following restrictions
apply to both tables: the same symbol cannot be assigned different types (per
calculus), and symbols cannot contain superscripts. Moreover, the symbols used
for context variables and formulas in rules and end-sequents must be disjoint.

Calculus Specification. The homepage displays a user’s defined calculi, a form
to create new calculi, and buttons to add sample calculi that are available by
default. Each calculus will have a card. Clicking on a calculus card will direct
the user to the main page for that calculus, which contains all its rules and
the rule symbols table. “Add Rule” directs the user to the rule creation page,
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where they see the input fields for a rule: name, main connective, conclusion, and
premise(s). There is also a drop-down menu for indicating on which side of the
sequent the rule operates (left, right, or none). After filling in the information,
clicking on “Preview” will show a rendering of the rule compiled in LATEX and
the rule symbols table from the calculus page. When all symbols in the premises
and conclusion are in the table, the new rules can be added to the calculus.

Tree Building. Clicking on “Proof Tree” (upper right corner) takes the user to
a page where they can build proof trees using the calculus rules they have defined
(listed on the right). After entering an end-sequent and clicking on “Preview”,
they will see a rendering of the sequent in LATEX and the end-sequent symbols
table. Once all the context variable and formula symbols are declared in the
table, the user can begin building the tree. The constraint list (initially empty)
is shown on the left. To build on a proof tree, the user selects a leaf premise in
the tree and a rule to apply on it. If the rule is not applicable, the user will be
informed. Otherwise, the user is prompted with a selection of all the possible
premise sets that result from applying the rule. Selecting a premise set renders
the appropriate tree with these premises and the constraint list is updated with
the associated constraint. In case the selected rule is cut, the user is prompted
for the substitution to be used. They must type the cut-formula variable (used
in the rule), and the cut-formula to be used for that variable.

Properties Testing. The properties page allows the user to test certain meta-
properties for a sequent calculus system. Currently, the implemented meta-
properties are: weakening admissibility, identity expansion, and permutability.

By clicking on “Weakening Admissibility” or “Identity Expansion”, the user
is presented with several cards representing contexts or connectives, respectively.
Clicking on a card will show all its proof tree transformations for that property.
By clicking on “Permutability”, the user is shown all rules and must select two
to perform the check. After clicking on “Permute Rules”, Sequoia shows all the
successful and failed proof transformations for permutability between them.

4 Related Work

There are several other tools for constructing and visualizing proofs. We will
focus on the ones that are interactive and offer support for sequent calculi.

Closest to our approach is Carnap.io [5], a web-based tool built using proofJS
and Haskell. Carnap supports different deductive systems and allows users to add
their logic by implementing it in Haskell with the help of Carnap’s type classes.
Proof tree construction is done by typing the proof, while Carnap checks each
step. The sequent calculus calculator [4] has an interface similar to Sequoia, and
also allows the user to build proof trees in four different logics. The user needs
to instantiate the rules before applying them. Axolotl [2] is a Java applet and
mobile app for constructing proofs. It can handle proofs in sequent calculus,
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natural deduction, or Hilbert systems. Sequent calculus rules are displayed on a
one-dimensional notation, and proof goals may not contain context variables.

Both Carnap.io and the sequent calculus calculator require manual input
from the user when building proofs, which are checked. Sequoia instead computes
all possibilities for a correct rule application, and prompts the user to choose
one. This is less tedious for experienced users, and more user friendly for those
not versed in sequent calculus. This is also the approach used in Axolotl.

Concerning different logics, while Carnap.io allows the user to add more cal-
culi, this requires expertise with Haskell and type classes, which most undergrad-
uate students lack. We believe that the approach of inputting sequent calculus
via LATEX will be more appealing for those users. The other systems only work
on a pre-determined set of calculi.

Different from all the aforementioned systems, Sequoia allows users to build
schematic proofs, using context variables. The reason for including this feature
is that, most of the time, logicians “play” with proofs using schemas as opposed
to concrete formulas since they are trying to see patterns or investigate proof
transformations regardless of concrete terms.

Tatu [7] and Quati [8] are web-based tools that allow users to check for cer-
tain meta-properties of sequent calculus systems. Tatu allows the user to check
for identity expansion and cut admissibility, while Quati allows the user to check
if rules permute over each other and shows the proof tree transformations ren-
dered from LATEX. To use those tools, users have to define their sequent calculus
system in linear logic with subexponentials, a non-trivial task that cannot be eas-
ily automated. Another approach for checking meta-properties is using rewrite
logic. In [9] the authors used Maude to automate the checking of permutability,
admissibility and invertibility of rules. Although there is no user interface, the
technique seems powerful and could be used in Sequoia for other checks.

Sequoia improves on Tatu and Quati by facilitating considerably the input of
systems. The main difference between Sequoia and the tool based on Maude is
that Sequoia displays the proof transformations that were found, thus showing
the user how they work and increasing the trust in the system.

5 Future Work

There are a number of features and improvements we plan to add to Sequoia.
We have recently finished the implementation of two new features: checking

cut admissibility (using Gentzen-style proofs), and supporting rules with context
restrictions (such as the one mentioned in Sect. 2.1). These will be added to the
website soon. The next meta-property we would like to add support for is rule
invertibility. It should not be hard to check the simplest cases, which use a
short derivation with cut. Most, if not all, of the operations needed are already
implemented. We also plan to add support for first-order systems, but this will
be more challenging, since it requires changes to some of the core operations. It
will also result in more prompts to the user.

To improve usability, we are investigating the possibility of inputting sequent
calculi or proofs by taking pictures of hand-written objects. We believe this
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feature will make the system much more appealing, specially to undergrads who
do their work by hand, and need to type it in LATEX afterwards. A simpler
addition that increases usability is allowing that rules be reused between calculi.

Concerning the meta-property proofs, we want to give the user the ability to
export (incomplete) proofs to LATEX. Given a stable framework for formalizing
meta-properties, one could also think of exporting these proofs into partial proof
scripts to be completed by the user.
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Abstract. We present a reinforcement learning toolkit for experiments
with guiding automated theorem proving in the connection calculus. The
core of the toolkit is a compact and easy to extend Prolog-based auto-
mated theorem prover called plCoP. plCoP builds on the leanCoP Prolog
implementation and adds learning-guided Monte-Carlo Tree Search as
done in the rlCoP system. Other components include a Python inter-
face to plCoP and machine learners, and an external proof checker that
verifies the validity of plCoP proofs. The toolkit is evaluated on two
benchmarks and we demonstrate its extendability by two additions: (1)
guidance is extended to reduction steps and (2) the standard leanCoP
calculus is extended with rewrite steps and their learned guidance. We
argue that the Prolog setting is suitable for combining statistical and
symbolic learning methods. The complete toolkit is publicly released.

Keywords: Automated theorem proving · Reinforcement learning ·
Logic programming · Connection tableau calculus

1 Introduction

Reinforcement learning (RL) [36] is an area of Machine Learning (ML) that
has been responsible for some of the largest recent AI breakthroughs [3,32–
34]. RL develops methods that advise agents to choose from multiple actions in
an environment with a delayed reward. This fits many settings in Automated
Theorem Proving (ATP), where many inferences are often possible in a particular
search state, but their relevance only becomes clear when a proof is found.

Several learning-guided ATP systems have been developed that interleave
proving with supervised learning from proof searches [4,10–13,17,19,23,39]. In
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the saturation-style setting used by ATP systems like E [31] and Vampire [21],
direct learning-based selection of the most promising given clauses leads already
to large improvements [14], without other changes to the proof search procedure.

The situation is different in the connection tableau [22] setting, where choices
of actions rarely commute, and backtracking is very common. This setting resem-
bles games like Go, where Monte-Carlo tree search [20] with reinforcement learn-
ing used for action selection (policy) and state evaluation (value) has recently
achieved superhuman performance. First experiments with the rlCoP system in
this setting have been encouraging [19], achieving more than 40% improvement
on a test set after training on a large corpus of Mizar problems.

The connection tableau setting is attractive also because of its simplicity,
leading to very compact Prolog implementations such as leanCoP [29]. Such
implementations are easy to modify and extend in various ways [27,28]. This
is particularly interesting for machine learning research over reasoning corpora,
where automated learning and addition of new prover actions (tactics, inferences,
symbolic decision procedures) based on previous proof traces seems to be a large
upcoming topic. Finally, the proofs obtained in this setting are easy to verify,
which is important whenever automated self-improvement is involved.

The goal of the work described here is to develop a reinforcement learning
toolkit for experiments with guiding automated theorem proving in the connec-
tion calculus. The core of the toolkit (Sect. 2) is a compact and easy to extend
Prolog-based automated theorem prover called plCoP. plCoP builds on the lean-
CoP Prolog implementation and adds learning-guided Monte-Carlo Tree Search
as done in the rlCoP [19] system. Other components include a Python interface to
plCoP and state-of-the-art machine learners and an external proof checker that
verifies the validity of the plCoP proofs. The proof checker has proven useful in
discovering bugs during development. Furthermore, it is our long term goal to
add new prover actions automatically, where proof checking becomes essential.

Prolog is traditionally associated with ATP research, and it has been used for
a number of Prolog provers [5,24,29,35], as well as for rapid ATP prototyping,
with core methods like unification for free. Also, Prolog is the basis for Inductive
Logic Programming (ILP) [25] style systems and a natural choice for combining
such symbolic learning methods with machine learning for ATP systems, which
we are currently working on [41]. In more detail, the main contributions are:

1. We provide an open-source Prolog implementation of rlCoP, called plCoP,
that uses the SWI-Prolog [40] environment.

2. We extend the guidance of leanCoP to reduction steps involving unification.
3. We extend leanCoP with rewrite steps while keeping the original equality

axioms. This demonstrates the benefit of adding a useful but redundant infer-
ence rule, with its use controlled by the learned guidance.

4. We provide an external proof checker that certifies the validity of the proofs.
5. The policy model of rlCoP is trained using Monte Carlo search trees of all

proof attempts. We show, however, that this introduces a lot of noise, and
we get significant improvement by limiting policy training data to successful
theorem proving attempts.
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6. Policy and value models are trained in rlCoP using a subset of the Monte
Carlo search nodes, called bigstep nodes. However, when a proof is found,
not all nodes leading to the proof are necessarily bigstep nodes. We make
training more efficient by explicitly ensuring that all nodes leading to proofs
are included in the training dataset.

7. The system is evaluated in several iterations on two MPTP-based [37] bench-
marks, showing large performance increases thanks to learning (Sect. 3). We
also improve upon rlCoP with 12% and 7% on these benchmarks.

2 Prolog Technology Reinforcement Learning Prover

The toolkit is available at our repository.1 Its core is our plCoP connection prover
based on the leanCoP implementation and inspired by rlCoP. leanCoP [29] is a
compact theorem prover for first-order logic, implementing connection tableau
search. The proof search starts with a start clause as a goal and proceeds by
building a connection tableau by applying extension steps and reduction steps.
leanCoP uses iterative deepening to ensure completeness. This is removed in
rlCoP and plCoP and learning-guided Monte-Carlo Tree Search (MCTS) [8] is
used instead. Below, we explain the main ideas and parts of the system.

Monte Carlo Tree Search (MCTS) is a search algorithm for sequential
decision processes. MCTS builds a tree whose nodes are states of the process,
and edges represent sequential decisions. Each state (node) yields some reward.
The aim of the search algorithm is to find trajectories (branches in the search
tree) that yield high accumulated reward. The search starts from a single root
node (starting state), and new nodes are added iteratively. In each node i, we
maintain the number of visits ni, the total reward ri, and its prior probability pi
given by a learned policy function. Each iteration, also called playout, starts with
the addition of a new leaf node. This is done by recursively selecting a child that
maximizes the standard UCT [20] formula (1), until a leaf is reached. In (1), N
is the number of visits of the parent, and cp is a parameter that determines the
balance between nodes with high value (exploitation) and rarely visited nodes
(exploration). Each leaf is given an initial value, which is typically provided by
a learned value function. Next, ancestors are updated: visit counts are increased
by 1 and value estimates are increased by the value of the new node. The value
and policy functions are learned in AlphaGo/Zero, rlCoP and plCoP.

UCT(i) =
ri
ni

+ cp · pi ·
√

lnN

ni
(1)

MCTS for Connection Tableau: Both rlCoP and plCoP use the DAgger [30]
meta-learning algorithm to learn the policy and value functions. DAgger inter-
leaves ATP runs based on the current policy and value (data collection phase)
with a training phase, in which these functions are updated to fit the collected
1 https://github.com/zsoltzombori/plcop.

https://github.com/zsoltzombori/plcop
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data. Such iterative interleaving of proving and learning has also been used suc-
cessfully in ATP systems such as MaLARea [38] and ENIGMA [14]. During the
proof search plCoP builds a Monte Carlo tree for each training problem. Its
nodes are the proof states (partial tableaux), and edges represent inferences. A
branch leading to a node with a closed tableau is a valid proof. Initially, plCoP
uses simple heuristic value and policy functions, later to be replaced with learned
guidance. To enforce deeper exploration, rlCoP and plCoP perform a bigstep after
a fixed number of playouts: the starting node of exploration is moved one level
down towards the child with the highest value (called bigstep node). Later MCTS
steps thus only extend the subtree under the bigstep node.

Training data for policy and value learning is extracted from the tableau
states of the bigstep nodes. The value model gets features from the current goal
and path, while the policy model also receives features of the given action.

We use term walks of length up to 3 as main features. Both rlCoP and plCoP
add also several more specific features.2 The resulting sparse feature vectors are
compressed to a fixed size (see Appendix E). For learning value, each bigstep
node is assigned a label of 13 if it leads to a proof and 0 otherwise. The policy
model gets a target probability for each edge based on the relative frequency
of the corresponding child. Both rlCoP and plCoP use gradient boosted trees
(XGBoost [9]) for guidance. Training concludes one iteration of the DAgger
method. See AppendixD for more details about policy and value functions.

Prolog Implementation of plCoP: To implement MCTS, we modify leanCoP
so that the Prolog stack is explicitly maintained and saved in the Prolog database
using assertions after each inference step. This is done in the leancop step.pl
submodule, described in AppendixC. This setup makes it possible to interrupt
proof search and later continue at any previously visited state, required to inter-
leave prover steps with Monte Carlo tree steps, also implemented in Prolog. The
main MCTS code is explained in AppendixB. The MCTS search tree is stored
in destructive Prolog hashtables.4 These are necessary for efficient updates of
the nodes statistics. The training data after each proof run is exported from the
MCTS trees and saved for the XGBoost learning done in Python.

To guide the search, the trained XGBoost policy and value functions are
accessed efficiently via the C foreign language interface of SWI-Prolog. This is
done in 70 lines of C++ code, using the SWI C++ templates and the XGBoost
C++ API. The main foreign predicate xgb:predict takes an XGBoost predic-
tor and a feature list and returns the predicted value. A trained model performs
1000000 predictions in 19 s in SWI. To quantify the total slowdown due to the
guidance, we ran plCoP with 200000 inference step limit and a large time limit
(1000 s) on the M2k dataset (see Sect. 3) with and without guidance. The average
execution time ratio on problems unsolved in both cases is 2.88, i.e., the XGBoost
guidance roughly triples the execution time. Efficient feature collection in plCoP

2 Number of open goals, number of symbols in them, their maximum size and depth,
length of the current path, and two most frequent symbols in open goals.

3 A discount factor of 0.99 is applied to positive rewards to favor shorter proofs.
4 The hashtbl library of SWI by G. Barany – https://github.com/gergo-/hashtbl.

https://github.com/gergo-/hashtbl
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is implemented using declarative association lists (the assoc SWI library) imple-
mented as AVL trees. Insertion, change, and retrieval is O(log(N)). We also use
destructive hashtables for caching the features already computed. Compared to
rlCoP, we can rely on SWI’s fast internal hash function term hash/4 that only
considers terms to a specified depth. This all contributes to plCoP’s smaller size.

Guiding Reduction Steps: The connection tableau calculus has two steps: 1)
extension that replaces the current goal with a new set of goals and 2) reduction
that closes off the goal by unifying it with a literal on the path. rlCoP applies
reduction steps eagerly, which can be harmful by triggering some unwanted uni-
fication. Instead, plCoP lets the guidance system learn when to apply reduction.
Suppose the current goal is G. An input clause {H,B}, s.t. H is a literal that
unifies with ¬G and B is a clause, yields an extension step, represented as
ext(H,B), while a literal P on the path that unifies with ¬G yields a reduc-
tion step, represented as red(P ). The symbols red and ext are then part of the
standard feature representation.

Limited Policy Training: rlCoP extracts policy training data from the child
visit frequencies of the bigstep nodes. We argue, however, that node visit fre-
quencies may not be useful when no proof was found, i.e., when no real reward
was observed. A frequently selected action that did not lead to proof should not
be reinforced. Hence, plCoP only extracts policy training data when a proof was
found. Note that the same is not true for value data. If MCTS was not successful,
then bigstep nodes are given a value of 0, which encourages exploring elsewhere.

Training from all Proofsteps: Policy and value models are trained in rlCoP
using bigstep nodes. However, when a proof is found, not all nodes leading to the
proof are necessarily bigstep nodes. We make training more efficient by explicitly
ensuring that all nodes leading to proofs are included in the training dataset.

(Conditional) Rewrite Steps: plCoP extends leanCoP with rewrite steps that
can handle equality predicates more efficiently. Let t|p denote the subterm of t
at position p and t[u]p denote the term obtained after replacing in t at position p
by term u. Given a goal G and an input clause {X = Y,B}, s.t. for some position
p there is a substitution σ such that G|pσ = Xσ, the rewrite step changes G to
{G[Y ]pσ,¬Bσ}. Rewriting is allowed in both directions, i.e., the roles of X and
Y can be switched.5 This is a valid and well-known inference step, which can
make proofs much shorter. On the other hand, rewriting can be simulated by
a sequence of extension steps. We add rewriting without removing the original
congruence axioms, making the calculus redundant. We find, however, that the
increased branching in the search space is compensated by learning since we only
explore branches that are deemed “reasonable” by the guidance.

Proof Checking: After plCoP generates a proof, the leancheck program
included in the toolkit does an independent verification. Proofs are first

5 The rewrite step could probably be made more powerful by ordering equalities via a
term ordering. However, we wanted to use as little human heuristics as possible and
let the guidance figure out how to use the rewrite steps.
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translated into the standard leanCoP proof format. In case of rewriting steps,
plCoP references the relevant input clause (with an equational literal), its substi-
tution, the goal before and after rewriting, the equation used and the side literals
of the instantiated input clause. Using this information, leancheck replaces the
rewriting step with finitely many instances of equational axioms (reflexivity, sym-
metry, transitivity, and congruence) and proceeds as if there were no rewriting
steps.

The converted output from plCoP includes the problem’s input clauses and
a list of clauses that contributed to the proof. The proof clauses are either
input clauses, their instances, or extension step clauses. Proof clauses may have
remaining uninstantiated (existential) variables. However, for proof checking, we
can consider these to be new constants, and so we consider each proof clause to
be ground. To confirm we have a proof, it suffices to verify two assertions:

1. The proof clause alleged to be an input clause, or its instance is subsumed
by the corresponding input clause (as identified in the proof by a label).

2. The set of such proof clauses forms a propositionally unsatisfiable set.

Each proof clause alleged to be an instance of an input clause is reported as a
clause B, a substitution θ and a reference to an input clause C. Optimally, the
checker should verify that each literal in θ(C) is in B, so that θ(C) propositionally
subsumes B. In many cases this is what the checker verifies. However, Prolog
may rename variables so that the domain of θ no longer corresponds to the free
variables of C. In this case, the checker computes a renaming ρ such that θ(ρ(C))
propositionally subsumes B.6 We could alternatively use first-order matching to
check if C subsumes B. This would guarantee a correct proof exists, although it
would accept proofs for which the reported θ gives incorrect information about
the intended instantiation. For the second property, we verify the propositional
unsatisfiability of this ground clause set using PicoSat [7]. While plCoP is proving
a theorem given in disjunctive normal form PicoSat is refuting a set of clauses.
Hence we swap polarities of literals when translating clauses to PicoSat. 7 An
example is given in AppendixA.

3 Evaluation

We use two datasets for evaluation. The first is the M2k benchmark that was
introduced in [19]. The M2K dataset is a selection of 2003 problems [15] from
the larger Mizar40 dataset [16], which consists of 32524 problems from the Mizar
Mathematical Library that have been proven by several state-of-the-art ATPs
used with many strategies and high time limits in the Mizar40 experiments [18].
Based on the proofs, the axioms were ATP-minimized, i.e., only those axioms
were kept that were needed in any of the ATP proofs found. This dataset is by
6 Note that this ρ may not be unique. Consider C = {p(X), p(Y )}, B = {p(c), p(c)}

and θ = W �→ c, Z �→ c.
7 Technically swapping the polarities is not necessary since unsatisfiability is invariant

under such a swap. However, there is no extra cost since the choice of polarity is
made when translating from the plCoP proof to an input for PicoSat.
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construction biased towards saturation-style ATP systems. To have an unbiased
comparison with state-of-the-art saturation-style ATP systems such as E, we
also evaluate the systems on the bushy (small) problems from the MPTP2078
benchmark [1], which contains just an article-based selection of Mizar problems,
regardless of their solvability by a particular ATP system.

We report the number of proofs found using a 200000 step inference limit.
Hyperparameters (described in AppendixE) were selected to be consistent with
those of rlCoP. A lot of effort has already been invested in tuning rlCoP, further-
more, we wanted to make sure that the effects of our most important additions
are not obfuscated by hyperparameter changes. As Tables 1 and 2 show, our
baseline is weaker, due to several subtleties of rlCoP that are not reproduced.
Nevertheless, since our main focus is to make learning more efficient, improve-
ment with respect to the baseline can be used to evaluate the new features.

M2k Experiments: We first evaluate the features introduced in Sect. 2 on the
M2k dataset. Table 1 shows that both limited policy training and training from
all proofsteps yield significant performance increase: together, they improve upon
the baseline with 31% and upon rlCoP with 3%. However, guided reduction does
not help. We found that the proofs in this dataset tend to only use reduction
on ground goals, i.e., that does not involve unification, which indeed can be
applied eagerly. The rewrite step yields a 9% increase. Improved training and
rewriting together improve upon the baseline by 42% and upon rlCoP by 12%.
Overall, thanks to the changes in training data collection, plCoP shows greater
improvement during training and finds more proofs than rlCoP, even without
rewriting. Note that rlCoP has been developed and tuned on M2k. Adding ten
more iterations to the best performing (combined) version of plCoP results in
1450 problems solved, which is 17.4% better than rlCoP in 20 iterations (1235).

Table 1. Performance on the M2k dataset: original rlCoP, plCoP (baseline), plCoP
with guided reduction, plCoP with limited policy training, plCoP trained using all
proofsteps, plCoP using the previous two improved training plCoP with rewriting
and plCoP with rewriting and improved training combined. incr shows the perfor-
mance increase in percentages from iteration 0 (unguided) to the best result.

Iteration 0 1 2 3 4 5 6 7 8 9 10 Incr

rlCoP 770 1037 1110 1166 1179 1182 1198 1196 1193 1212 1210 57%

Baseline 632 852 860 915 918 944 949 959 955 943 954 52%

Guided

reduction

616 840 884 905 915 900 914 924 942 915 912 53%

Limited

policy

632 988 1037 1071 1080 1094 1092 1101 1103 1118 1111 77%

All

proofsteps

632 848 930 988 986 1018 1033 1039 1053 1043 1050 67%

Improved

training

632 975 1100 1154 1180 1189 1209 1231 1238 1243 1254 98%

Rewriting 695 913 989 995 1003 1019 1030 1030 1033 1038 1045 50%

Combined 695 1070 1209 1253 1295 1309 1322 1335 1339 1346 1359 96%
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MPTP2078: Using a limit of 200000 inferences, unmodified leanCoP solves 612
of the MPTP2078 bushy problems, while its OCaml version (mlcop), used as a
basis for rlCoP solves 502. E solves 998, 505, 326, 319 in auto, noauto, restrict,
noorder modes8 plCoP and rlCoP results are summarized in Table 2. Improved
training and rewriting together yield 63% improvement upon the baseline and 7%
improvement upon rlCoP. Here, it is plCoP that starts better, while rlCoP shows
stronger learning. Eventually, plCoP outperforms rlCoP, even without rewriting.
Additional ten iterations of the combined version increase the performance to
854 problems. This is 12% more than rlCoP in 20 iterations (763) but still weaker
than the strongest E configuration (998). However it performs better than E with
the more limited heuristics, as well as leanCoP with its heuristics.

Table 2. Performance on the MPTP2078 bushy dataset: original rlCoP, baseline
plCoP, plCoP using improved training and combined plCoP. incr shows the per-
formance increase in percentages from iteration 0 (unguided) to the best result.

Iteration 0 1 2 3 4 5 6 7 8 9 10 Incr

rlCoP 198 300 489 605 668 701 720 737 736 732 733 270%

Baseline 287 363 413 420 429 441 454 464 465 479 469 67%

Improved training 287 449 544 611 640 674 692 704 720 731 744 140%

Combined 326 460 563 642 671 694 721 740 761 775 782 140%

4 Conclusion and Future Work

We have developed a reinforcement learning toolkit for experiments with guiding
automated theorem proving in the connection calculus. Its core is the Prolog-
based plCoP obtained by extending leanCoP with a number of features motivated
by rlCoP. New features on top of rlCoP include guidance of reduction steps, the
addition of the rewrite inference rule and its guidance, external proof checker,
and improvements to the training data selection. Altogether, plCoP improves
upon rlCoP on the M2K and the MPTP2078 datasets by 12% and 7% in ten
iterations, and by 17.4% and 12% in twenty iterations. The system is publicly
available to the ML and AI/TP communities for experiments and extensions.

One lesson learned is that due to the sparse rewards in theorem proving,
care is needed when extracting training data from the prover’s search traces.
Another lesson is that new sound inference rules can be safely added to the
underlying calculus. Thanks to the guidance, the system still learns to focus on
promising actions, while the new actions may yield shorter search and proofs
for some problems. An important part of such an extendability scheme is the
independent proof checker provided.

8 For a description of these E configurations, see Table 9 of [19].
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Future work includes, e.g., the addition of neural learners, such as tree and
graph neural networks [10,26]. An important motivation for choosing Prolog is
our plan to employ Inductive Logic Programming to learn new prover actions
(as Prolog programs) from the plCoP proof traces. As the manual addition of
the rewrite step already shows, such new actions can be inserted into the proof
search, and guidance can again be trained to use them efficiently. Future work,
therefore, involves AI/TP research in combining statistical and symbolic learn-
ing in this framework, with the goal of automatically learning more and more
complex actions similar to tactics in interactive theorem provers. We believe this
may become a very interesting AI/TP research topic facilitated by the toolkit.

A Proof Checking Example

As a simple example suppose we are proving a proposition q(a) under two
assumptions ∀x.p(x) and ∀x.p(x) ⇒ q(a). plCoP will start with three input
“clauses” p(X)−, p(Y ) ∨ q(a)− and q(a). The connection proof proceeds in
the obvious way and yields three proof clauses that are either input clauses
or instances of input clauses: p(X)−, p(X) ∨ q(a)− and q(a). Unification during
the search makes the two variables X and Y the same variable X. For proof
checking, we now consider X to be constant (in the same sense as a). Switch-
ing from the point of view of proving a disjunction of conjuncts to the point of
view of refuting a conjunction of disjuncts, we see these as three propositional
clauses: P , P− ∨ Q and Q− where P stands for the atom p(X) (now viewed as
ground) and Q stands for q(a) (also ground). The set {P, P− ∨Q,Q−} is clearly
unsatisfiable. In terms of the connection method, the unsatisfiability of this set
guarantees every path [2,6] has a pair of complementary literals.

B Monte Carlo Tree Search in Prolog

We show the most important predicates that perform the MCTS. The code has
been simplified for readability.

We repeatedly perform playouts, which consist of three steps: 1) find the next
tree node to expand, 2) add a new child to this node and 3) update ancestor
values and visit counts:

mc_playout(ChildHash,ParentHash,NodeHash,FHash):-

% get the current bigstep node (root of exploration)
rootnode(StartId), !,

% find node to expand
mc_find_unexpanded(StartId,ChildHash,NodeHash,

ExpandId,UnexpandedActionIds),
nb_hashtbl_get(NodeHash,ExpandId,[State,_,_,_,ChProbs]),
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State=state(_,_,_,_,_,_,Result),
( Result == 1 -> Reward = 1 % we found a proof
; Result == -1 -> Reward = 0 % proof failed

; get_largest_index(UnexpandedActionIds, ChProbs,
ActionIndex),

flag(inference_cnt, X, X+1), % increase inference count

% we expand the child with the largest prior probability
mc_expand_node(ExpandId,ChildHash,ParentHash,NodeHash,

FHash,ActionIndex,Reward)
),

% update ancestor visit counts and values
mc_backpropagate(ExpandId,Reward,ParentHash,NodeHash).

We search for the node to expand based on the standard UCT formula:

% +Id: current node id
% -Id2: next node id to expand
mc_find_unexpanded(Id,ChildHash,NodeHash,

Id2,UnexpandedActionIds):-
mc_child_list(Id,NodeHash,ChildHash,ChildPairs),
nb_hashtbl_get(NodeHash,Id,[State,_,VisitCount,_,_]),
action_count(State,ActionCount),
length(ChildPairs,L),
( ActionCount == 0 -> % no valid moves

Id2=Id, UnexpandedActionIds=[]
; mc_ucb_select_child(VisitCount,ChildPairs,NodeHash,

SelectedId,UCBScore),
( L < ActionCount,

mc_ucb_score_unexplored(VisitCount,ActionCount,
UCBUnexploredScore),

UCBUnexploredScore > UCBScore -> %select current node
Id2=Id,
missing_actions(ActionCount,ChildPairs,

UnexpandedActionIds)
;

% we move towards the child with the highest UCB score
mc_find_unexpanded(SelectedId,ChildHash,NodeHash,

Id2,UnexpandedActionIds)
), !

; % The current node is a leaf, so we select it
Id2=Id,
missing_actions(ActionCount,ChildPairs,

UnexpandedActionIds)
).
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Once the node to expand has been selected, we pick the unexplored child
that has the highest UCB score:

mc_expand_node(ParentId,ChildHash,ParentHash,NodeHash,FHash,
ActionIndex,ChildValue):-

nb_hashtbl_get(NodeHash,ParentId,[ParentState,_,_,_,ChProbs]),

% we perform the inference step corresponding to the new child
copy_term(ParentState,ParentState2),
logic_step(ParentState2,ActionIndex,ChildState),

% value estimate from the external (xgboost) model
guidance_get_value(ChildState, FHash, ChildValue),

% probability estimates for the children of the new node
% from the external (xgboost) model
guidance_action_probs(ChildState,FHash,ChChProbs),

% store the new node in the hash tables
nth0(ActionIndex, ChProbs, ChProb),
flag(nodecount, ChildId, ChildId+1),
nb_hashtbl_set(ChildHash,ParentId-ActionIndex,ChildId),
nb_hashtbl_set(ParentHash,ChildId,ParentId),
nb_hashtbl_set(NodeHash,ChildId,

[ChildState,ChProb,1,ChildValue,ChChProbs]).

Finally, we update ancestor nodes after the insertion of the new leaf:

mc_backpropagate(Id,Reward,ParentHash,NodeHash):-
nb_hashtbl_get(NodeHash,Id,[State,Prob,VCnt,Value,ChProbs]),
VCnt1 is VCnt + 1,
Value1 is Value + Reward,
nb_hashtbl_set(NodeHash,Id,[State,Prob,VCnt1,Value1,ChProbs]),
( nb_hashtbl_get(ParentHash, Id, ParentId) ->

mc_backpropagate(ParentId,Reward,ParentHash,NodeHash)
; true
).

C leancop step.pl Module

Below we provide the code for the most important predicates that handle leanCoP
inference steps in such a way that the entire prover state is explicitly maintained.
For better readability, we omit some details, mostly related to problem loading,
logging, and proof reconstruction. The nondet step predicate takes a prover
state along with the index of an extension or reduction step and returns the
subsequent state. Before returning, it repeatedly calls the det steps predicate,
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which performs optimization steps that do not involve choice (loop elimination,
reduction without unification, lemma, single action).

% init_pure(+File,+Settings,-NewState)
init_pure(File,Settings,NewState):-

NewState = state(Goal,Path,Lem,Actions,Todos,Proof,Result),

% store options
retractall(option(_)),
findall(_, ( member(S,Settings), assert(option(S)) ), _ ),

% load tptp file and store contrapositives
{...}

% perform any potential optimizations
det_steps([-(#)],[],[],[],[init((-#)-(-#))],

Goal,Path,Lem,Todos,Proof,Result),

% collect valid moves from this state
% valid_actions(Goal, Path, Actions).

:- dynamic(alt/6).
% step_pure(+ActionIndex,+State,-NewState,-SelectedAction))
step_pure(ActionIndex,State,NewState,Action0):-

State = state(Goal0,Path0,Lem0,Actions0,Todos0,Proof0,_),
NewState = state(Goal,Path,Lem,Actions,Todos,Proof,Result),

nth0(ActionIndex,Actions0,Action0),

% if there were other alternative actions, store them
(option(backtrack), Actions0=[_,_|_] ->

select_nounif(Action0, Actions0, RemActions0), !,
asserta(alt(Goal0,Path0,Lem0,RemActions0,Todos0,Proof0))

; true
),

% perform any potential optimizations
nondet_step(Action0,Goal0,Path0,Lem0,Todos0,Proof0,

Goal1,Path1,Lem1,Todos1,Proof1,Result1),

% if proof search fails, pop an alternative
( Result1 == -1, option(backtrack),

pop_alternative(Goal,Path,Lem,Actions,Todos,Proof) ->
Result=0,

; [Goal,Path,Lem] = [Goal1,Path1,Lem1],
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[Todos,Proof,Result] = [Todos1,Proof1,Result1],
valid_actions(Goal,Path,Actions)

).

%%% make a single proof step from a choice point
% nondet_step(Action,Goal,Path,Lem,Todos,Proof,
% NewGoal,NewPath,NewLem,NewTodos,NewProof,Result)
% reduction step
nondet_step(red(NegL),[Lit|Cla],Path,Lem,Todos,Proof,

NewGoal,NewPath,NewLem,NewTodos,NewProof,Result):-
neg_lit(Lit,NegL),
Proof2 = {...}
det_steps(Cla,Path,Lem,Todos,Proof2,

NewGoal,NewPath,NewLem,NewTodos,NewProof,Result).
% extension step
nondet_step(ext(NegLit,Cla1,_),[Lit|Cla],Path,Lem,Todos,Proof,

NewGoal,NewPath,NewLem,NewTodos,NewProof,Result):-
neg_lit(Lit, NegLit),
( Cla=[_|_] ->

Todos2 = [[Cla,Path,[Lit|Lem]]|Todos]
; Todos2 = Todos

),
Proof2= {...}
det_steps(Cla1,[Lit|Path],Lem,Todos2,Proof2,

NewGoal,NewPath,NewLem,NewTodos,NewProof,Result).

% perform steps until the next choice point (or end of proof)
det_steps([],_Path,_Lem,Todos,Proof,

NewGoal,NewPath,NewLem,NewTodos,NewProof,Result):-
!,
( Todos = [] -> % nothing to prove, nothing todo on the stack

[NewGoal,NewPath,NewLem,NewTodos,NewProof,Result] =
[[success],[],[],[],Proof,1]

; Todos = [[Goal2,Path2,Lem2]|Todos2] ->
% nothing to prove, something on the stack
det_steps(Goal2,Path2,Lem2,Todos2,Proof,NewGoal,

NewPath,NewLem,NewTodos,NewProof,Result)
).

det_steps([Lit|_Cla],Path,_Lem,_Todos,Proof,
NewGoal,NewPath,NewLem,NewTodos,NewProof,Result):-

member(P,Path), Lit == P, !, % loop elimination
[NewGoal,NewPath,NewLem,NewTodos,NewProof,Result] =
[[failure],[],[],[],Proof,-1].

det_steps([Lit|Cla],Path,Lem,Todos,Proof,
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NewGoal,NewPath,NewLem,NewTodos,NewProof,Result):-
member(LitL,Lem), Lit==LitL, !, % perform lemma step
Proof2 = [lem(Lit)|Proof],
det_steps(Cla,Path,Lem,Todos,Proof2,

NewGoal,NewPath,NewLem,NewTodos,NewProof,Result).
det_steps([Lit|Cla],Path,Lem,Todos,Proof,

NewGoal,NewPath,NewLem,NewTodos,NewProof,Result):-
neg_lit(Lit,NegLit),
( option(eager_reduction(1)) ->

member(NegL,Path),
unify_with_occurs_check(NegL, NegLit), ! % eager reduction

; member(NegL,Path),
NegL == NegLit, ! % reduction without unification is safe

),
Ext = [NegL, NegL],
Proof2 = [red(Ext-Ext)|Proof],
det_steps(Cla,Path,Lem,Todos,Proof2,

NewGoal,NewPath,NewLem,NewTodos,NewProof,Result).
det_steps(Goal,Path,Lem,Todos,Proof,

NewGoal,NewPath,NewLem,NewTodos,NewProof,Result):-
valid_actions(Goal,Path,Actions),
( option(single_action_optim), Actions==[A] ->

% only a single action is available, so perform it
nondet_step(A,Goal,Path,Lem,Todos,Proof,NewGoal,

NewPath,NewLem,NewTodos,NewProof,Result)
;Actions==[] -> % proof failed

[NewGoal,NewPath,NewLem,NewTodos,NewProof,Result] =
[[failure],[],[],[],Proof,-1]

; option(comp(PathLim)), \+ ground(Goal), length(Path,PLen),
PLen > PathLim -> % reached path limit
[NewGoal,NewPath,NewLem,NewTodos,NewProof,Result] =
[[failure],[],[],[],Proof,-1]

;[NewGoal,NewPath,NewLem,NewTodos,NewProof,Result] =
[Goal,Path,Lem,Todos,Proof,0]

).

D Policy and Value Functions

Here we describe 1) the default value and policy functions used in the first
iteration, 2) the training data extraction and 3) how the predicted model values
are used in MCTS. All these formulae are taken directly from rlCoP [19] and
have been highly hand-engineered. We currently use these solutions in plCoP
without altering them; however, we believe some of these decisions are worth
reconsidering.
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D.1 Value Function

In the first iteration, the default value Vd is based on the total term size of all
open goals. Given s with total term size of open goals t, its value is

V (s) =
1

1 + e−3.7∗e−0.05t+2.5
(2)

After the MCTS phase, training data is extracted from the states in the
bigstep nodes. If a state s is k steps away from a success node, its target value is
0.99k. If none of its descendants are success nodes, then its target value is 0. We
can then build a model using logistic regression. However, the authors of rlCoP
find that the xgboost model works better if standard regression is used, so the
target value is first mapped into the range [−3, 3]. The value Vt used for model
training is

Vt(s, k) = min(3,max(−3, log(0.99k/(1 − 0.99k))))

In subsequent iterations, the prediction Vp of the model is mapped back to
the [0, 1] range (V ′

p):

V ′
p(Vp) =

1
1 + e−Vp

This value is further adjusted to give an extra incentive towards states with
few open goals. If the state has g open goals, then the final value (Vf ) used in
MCTS is

Vf (V ′
p , g) = (

√
V ′
p)g

D.2 Policy Function

The default policy Pd is simply the uniform distribution, i.e., if a state s has n
valid inferences, then each action a has a prior probability of

Pd(n) =
1
n

After the MCTS phase, training data is extracted from the (state, action)
pairs in the bigstep nodes. Target probabilities are based on relative visit fre-
quencies of child nodes. These frequencies are again mapped to a range where
we can do standard regression. Given state s with n valid inferences, such that
s was expanded N times and its jth child was visited Nj times, then the policy
Pt used for model training is

Pt(s, n,N,Nj) = max(−6, log(
Nj

N
n))

The prediction Pp is mapped back to the [0, 1] range and normalized across

all actions using the softmax function softmax(x)i = e
xi
T

∑
j e

xi
T

, where T is the
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temperature parameter that was set to 2. The final prior probabilities used in
MCTS are

Pf (Pt) = softmax(Pt)

E Experiment Hyperparameters

plCoP is parameterized with configuration files (see examples in the ini directory
of the distributed code), so the key parameters can be easily modified. Here we
list the most important hyperparameters used in our experiments.

Feature Extraction. Our main features are term walks of length up to 3. We also
add several more specific features: number of open goals, number of symbols
in them, their maximum size and depth, length of the current path, and two
most frequent symbols in open goals. The resulting feature vectors are sparse
and long, so they are first compressed to a fixed size d: vector f is compressed
to f ′, such that f ′

i =
∑

{j|j mod d=i} fj .
One difference from rlCoP is that they hash features to a fixed 262139 dimen-

sional vector while plCoP uses a 10000 dimensional feature vector for faster com-
putation. Over 5 iterations of our baseline on the M2k dataset, this even yields
a small improvement (928 vs. 940), likely due to less overfitting.

MCTS. MCTS has an inference limit of 200000 steps and an additional time
limit of 200 s. Bigsteps are made after 2000 steps. The exploration constant (cp)
is 3 in the first iterations and 2 in later iterations.

leanCoP Parameters. leanCoP usually employs an iteratively increasing path limit
to ensure completeness. We set path limit to 1000, i.e., we practically remove it,
in order to allow exploration at greater depth.

XGBoost Parameters. To train XGBoost models, we use a learning rate of 0.3,
maximum tree depth of 9, a weight decay of 1.5, a limit of 400 training rounds
with early stopping if no improvement takes place over 50 iterations. We use
the built-in “scale pos weight” XGBoost training argument to ensure that our
training data is sign-balanced.

Furthermore, there is an option to keep or filter duplicate inputs with different
target values. Our experiments did not show the importance of this feature, and
all results presented in this paper apply duplicate filtering.
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