
3D-Array Token Petri Nets Generating
Tetrahedral Picture Languages

T. Kalyani1 , K. Sasikala2 , D. G. Thomas3(B) , Thamburaj Robinson4 ,
Atulya K. Nagar5 , and Meenakshi Paramasivan6

1 Department of Mathematics, St. Joseph’s Institute of Technology,
Chennai 119, India
kalphd02@yahoo.com

2 Department of Mathematics, St. Joseph’s college of Engineering,
Chennai 119, India

sasikalaveerabadran2013@gmail.com
3 Department of Science and Humanities, (Mathematics Division),
Saveetha School of Engineering, SIMATS, Chennai 602105, India

dgthomasmcc@yahoo.com
4 Department of Mathematics, Madras Christian College, Chennai 59, India

robinson@mcc.edu.in
5 Department of Computer Science, Liverpool Hope University, Hope Park,

Liverpool L169JD, UK
nagara@hope.ac.uk

6 Department of Computer Science, University of Trier, Trier, Germany
meena maths@yahoo.com

Abstract. The study of two-dimensional picture languages has a wide
application in image analysis and pattern recognition [5,7,13,17]. There
are various models such as grammars, automata, P systems and Petri
Nets to generate different picture languages available in the literature
[1–4,6,8,10–12,14,15,18]. In this paper we consider Petri Nets generating
tetrahedral picture languages. The patterns generated are interesting,
new and are applicable in floor design, wall design and tiling. We compare
the generative power of these Petri Nets with that of other recent models
[9,16] developed by our group.

Keywords: Petri Net · Tetrahedral tiles · P systems

1 Introduction

The art of tiling plays an important role in human civilization. A two-dimensional
pattern generating model called pasting system was introduced in the literature
which glues two square tiles together at the edges. Later on two isosceles right
angled triangular tiles are pasted together at the gluable edges and a new pasting
system called triangular tile pasting system was introduced in [3].

Petri Nets are mathematical models introduced to model dynamic systems
[15]. Tokens represented by black dots are used to simulate the dynamic activity
c© Springer Nature Switzerland AG 2020
T. Lukić et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 88–105, 2020.
https://doi.org/10.1007/978-3-030-51002-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51002-2_7&domain=pdf
http://orcid.org/0000-0003-2507-2724
http://orcid.org/0000-0002-4862-0335
http://orcid.org/0000-0001-6327-8446
http://orcid.org/0000-0001-8507-4196
http://orcid.org/0000-0001-5549-6435
http://orcid.org/0000-0002-1509-6557
https://doi.org/10.1007/978-3-030-51002-2_7

3D-Array Token Petri Nets Generating Tetrahedral Picture Languages 89

of the system. Array token Petri Nets are models which generate array languages
[12]. Array Token Petri nets have applications in the following areas namely char-
acter recognition, generation and recognition of picture patterns, tiling pattern
and kolam patterns. Arrays are used as token. The transitions are associated
with catenation rules. Firing of transitions catenate arrays to grow in bigger
size.

The area of membrane computing is a new computability model called P sys-
tem introduced by Gh. Păun inspired by the functioning of living cells. Ceterchi
et al. [4] proposed a theoretical model of P -system called Array Rewriting P -
system for generating two-dimensional patterns. Motivated by these studies a
three-dimensional pattern generating model called tetrahedral tile pasting sys-
tem and tetrahedral tile pasting P system were introduced in [9] by gluing two
tetrahedral tiles at the glueable edges. In the literature the studies on mem-
brane computing generating picture languages is very limited. We have used
membrane computing to generate 3D Tetrahedral picture languages, in which
we can generate both rectangular and non rectangular 3D pictures like stars,
triangles, rhombuses, hexagons, octagons and some kolam patterns which are
some of the interesting patterns.

In this paper we introduce 3D-Array token Petri Nets generating three-
dimensional tetrahedral picture languages (3D-TetATPN) and this model is
compared with K-Tabled Tetrahedral Tile Pasting System (K-TTTPS), Tetra-
hedral Tile Pasting P System (TetTPPS), Regular Tetrahedral Array Languages
(RTAL) and Basic Puzzle Tetrahedral Array Languages (BPTAL) for generative
powers. The patterns generated by the Petri Nets are useful in floor design, wall
design and tiling.

2 Preliminaries

In this section we recall the notion of tetrahedral tiles, K-TTTPS and TetTPPS
.

Definition 1. [9] A tetrahedral tile is a polyhedral which has four vertices, four
faces and six edges. Each face is an equilateral triangle. f4 is the base of the
tetrahedron(Fig. 1).

Fig. 1. A Tetrahedron.

90 T. Kalyani et al.

We consider tetrahedral tiles of the following four types, named as

f4 is the base V1V2V3 of the tetrahedral tile.

Definition 2. [9] A K-Tabled Tetrahedral Tile Pasting System (K-TTTPS) is
a 4-tuple M = (Γ,E, P, t0), where Γ is a finite set of tetrahedral tiles of the
forms A and B. E is a set of edge labels of base of tetrahedral tiles A and B.
P is a finite set of tables {T1, T2, . . . TK} where T1, T2, . . . TK (k ≥ 1) are finite
sets of pasting rules. t0 is the axiom pattern.

A tiling pattern ti+1 is generated from a pattern ti in k stages. In each stage,
the rules of the table Ti (i = 1, 2, . . . k) are applied in parallel to the boundary
edges of the pattern obtained in the previous stage. When all the rules in P are
applied one after the other in succession the pattern ti+1 is generated from ti.
i.e. ti ⇒ ti+1. We write t0

∗⇒ tj if t0 ⇒ t1 ⇒ t2 ⇒ · · · ⇒ tj. The collection of
all patterns generated by K-TTTPS derived from the axiom t0 using the pasting
rules of the system M is denoted by T (M) = {tj ∈ Γ ∗∗∗ : t0

∗⇒ tj/j ≥ 0}, where
Γ ∗∗∗ represents the set of all three-dimensional tetrahedral patterns obtained by
gluing tetrahedral tiles of Γ .

The family of all three-dimensional patterns generated by K-TTTPS is
denoted as L(K-TTTPS).

Example 1. A one-tabled Tetrahedral Tile Pasting System, generating a
sequence of three-dimensional patterns whose boundaries are hexagons and stars
alternatively is given below:

M = (Γ,E, P, t0) where

E = {a1, a2, a3, b1, b2, b3};P = {T1};
T1 = {(a1, b1), (a2, b2), (a3, b3), (b1, a1), (b2, a2), (b3, a3)}

3D-Array Token Petri Nets Generating Tetrahedral Picture Languages 91

The first three members of T (M) are shown in Fig. 2.

b2

a3

b1

a2

b3

a1

B

b2 b2

a3

a3

b1

b1

a2a2

b3

b3

a1

a1

t0 t1

b1

a2

a3

a3a1
b2

b3
A

B

AA
B B

a2

a1

A
B

A
B

BB
A

A
B

A A

B B

AA A
B B B

A A A A
B B B B

A A A
B B B

A A

t2

Fig. 2. Hexagon and Star polyhedral.

Definition 3. [9] A Tetrahedral Tile Pasting P system (TetTPPS) Π =
(Γ, μ, F1, . . . , Fm, R1, R2, . . . , Rm, i0) where Γ is a finite set of labeled tetrahedral
tiles; μ is a membrane structure with m membranes, labeled in an one-to-one way
with 1, 2, . . . m; F1, F2, . . . Fm are finite sets of three-dimensional picture patterns
over tiles of Γ associated with the m regions of μ; R1, R2, . . . , Rm are finite sets
of pasting rules of the type (ti, (xi, yi), tar), 1 ≤ i ≤ n associated with the m
regions of μ and i0 is the output membrane which is an elementary membrane.

The computation process in TetTPPS is defined as, to each 3D-Picture pat-
tern present in the region of the system, the pasting rule associated with the
respective region should be applied in parallel to the boundary edges of the base of
the tetrahedral tile. Then the resultant tetrahedral 3D-pattern is moved (remains)
to another region (in the same region) with respect to the target indicator inj

(here) associated with the pasting rule. If the target indicator is out, then the
resultant tetrahedral 3D-pattern is sent immediately to the next outer region of
the membrane structure.

The computation is successful only if the pasting rules of each region are
applied. The computation stops if no further application of pasting rule is appli-
cable. The result of a halting computation consists of the 3D-picture patterns
composed only of tetrahedral tiles from Γ placed in the membrane with label i0
in the halting configuration.

The set of all such tetrahedral 3D-patterns computed or generated by
a TetTPPS Π is denoted by TetPL(Π). The family of all such languages

92 T. Kalyani et al.

TetPL(Π) generated by system Π with at most m membranes, is denoted by
TetPLm(TetTPPS).

Example 2. Consider the Tetrahedral Tile Pasting P System, TetTPPS

Π1 = (Γ, μ = [1[2[3]3]2]1, F1, F2, F3, R1, R2, R3, 3),

which generates a sequence of tetrahedral 3D-picuture patterns whose bound-
aries are hexagons, μ indicates that the system has three regions one within
another i.e. region 1 is the ‘skin’ membrane which contains region 2, which in
turn contains region 3, i0 = 3 indicates that region 3 is the output region.

R1 = {(B, (a1, b1), here), (A, (b1, a1), here), (B, (a2, b2), here),
(A, (b3, a3), here), (B, (a3, b3), here), (A, (b2, a2), in)}

R2 = {(B, (a1, b1), here), (A, (b1, a1), here), (B(a2, b2), here),
(A, (b3, a3), here), (B, (a3, b3), here), (A, (b2, a2), in), (A, (b2, a2), out)}

R3 = ∅.

Beginning with the initial object F1 in region 1, the pasting rule R1 is applied,
where the rules in R1 are applied in parallel to the boundary edges of the pic-
ture pattern present in region 1. Once the rule (A, (b2, a2), in) is applied, the
generated 3D-pattern is sent to the inner membrane 2, and in region 2, the rules
of R2 are applied in parallel to the boundary edges of the pattern generated
in region 1. If the rule (A, (b2, a2), out) is applied, the 3D-pattern generated is
sent to region 1, and the process continues. Whereas if the rule (A, (b2, a2), in)
is applied the 3D-pattern generated is sent to region 3, which is the output
region, wherein it is collected in the 3D-picture pattern language formed by
TetTPPSΠ1. TetTPPSΠ1 is the tetrahedral 3D-Picture language whose bound-
ary is the hexagon.

3 3D-Array Token Petri Nets

In this section we recall some notions of Petri Nets. For more details we refer
to [15]. Here we introduce catenation rules and firing rules for 3D-Array token
Petri Nets and Tetrahedral 3D-Array token Petri Nets structure.

3D-Array Token Petri Nets Generating Tetrahedral Picture Languages 93

Definition 4. [11] A Petri Net structure is a four tuple C = (P, T, I,O) where
P = {P1, P2, . . . Pn} is a finite set of places, n ≥ 0, T = {t1, t2, . . . tm} is a
finite set of transitions m ≥ 0, P ∩ T = ∅, T → P∞ is the input function
from transitions to bags of places and O : T → P∞ is the output function from
transitions to bags of places.

Definition 5. [11] A Petri Net marking is an assignment of tokens to the places
of a Petri Net. The tokens are used to define the execution of a Petri Net. The
number and position of tokens may change during the execution of a Petri Net.
The marking can be defined as an n-vector μ = (μ1, μ2, μ3, . . . μn) where μi is
the number of tokens in the Pi, i = 1, 2, . . . , n. We can also write μ(Pi) = μi.

Definition 6. [11] A Petri Net C with initial marking μ is called a marked Petri
Net. A marked Petri Net M = (C, μ) can also be written as M = (P, T, I,O, μ).

When a transition is fired one token is removed from its input place and one
token is placed in each of its output place. For example when t1 is fired in the
following figure one token from place A is removed and one token is placed in
both B & C which are the output places of t1.

Now we turn our attention to define Tetrahedral 3D Array Token Petri Net.

Catenation Rules
The catenation rules which glue any two tetrahedral tiles at the glueable edges
are given below:

94 T. Kalyani et al.

Now let us consider the hexagonal polyhedral , which is made

up of gluing A-tetrahedral and B tetrahedral tiles. This H can be catenated to
A and B - tetrahedral tiles in the following manner.

3D-Array Token Petri Nets Generating Tetrahedral Picture Languages 95

Firing Rules
The transitions of the Petri Net are associated with the catenation rules of
the form where P,Q ∈ {A,B,C,D,H} and is any one of the
above catenation rules. When transition fires, the array in the input place gets
catenated according to the catenation rule and the resultant array is placed in
the output place. The transitions will be enabled as per the following conditions.

(i) All the input places will have the same array as token.
(ii) If there is no label for the transition then the same array will be moved to

all the output places.
(iii) If there is a label i.e a catenation rule for the transition then the array

in the input place gets catenated according to the catenation rule and the
resultant array is moved to all the output places.

Example 3. If the input place of transition has the tetrahedral polyhedral

as token and the transition is attached to the rule then after the firing
the output places of the transition will have the tetrahedral picture

96 T. Kalyani et al.

The tetrahedral tile - B is catenated in parallel manner to all the A-tetrahedral

tiles in the right up direction. The 3D-array token Petri Net diagram is given
below for the above transition.

Definition 7. A 3D Tetrahedral Tile Array Token Petri Net (3D-TetATPN) is
a six tuple N = (Σ,C, μ, S, σ, F) where Σ is an alphabet of tetrahedral tiles or
extended tetrahedral tiles (3D-picture made up of tetrahedral tiles), C is a Petri
Net structure, μ is an initial marking of 3D-pictures made up of tetrahedral tiles
or extended tetrahedral tiles kept in some places of the net, S is a set of catenation
rules, σ is a partial mapping which attaches rules to the various transitions of

the Petri Net of the form , F is a subset of the set of places of
the Petri Net where the final 3D-tetrahedral picture is stored after all the firing
of the various possible transitions of the Petri Net.

Definition 8. The language generated by 3D-TetATPN is the set of all 3D-
tetrahedral pictures stored in the final places of the Petri Net structure and is
denoted by L(N).

Example 4. Consider the 3D-TetATPN N1 = (Σ,C, μ, S, σ, F) where Σ =

{R,A,B} where , C = (P, T, I,O) where P = {P1, P2, P3, P4, P5},
T = {t1, t2, t3, t4}. The initial marking μ is the rhombus polyhedral R in the

place of P1. σ the

mapping from the set of transitions to the set of rules is shown in Fig. 3 and
F = {P5}.

Starting with R, on firing the sequence t1t2t3t4, the rhombus polyhedral is
generated. The first two members of the language are shown in the following
Fig. 4.

3D-Array Token Petri Nets Generating Tetrahedral Picture Languages 97

R
P1 P2

P3P4

t4 t2

t1

t3

P5 A ru B

A d B B rd A

B u A

Fig. 3. The 3D - Array token Petri Net generating rhombus polyhedral.

A

B
A

A

A

A

B B

B

B

t1t2t3t4 t1t2t3t4 A

A

A

A

B B

B

B

A
B

A

A

A

A

B

B

B

B

R =

Fig. 4. Rhombus polyhedral.

Example 5. Consider the 3D-TetATPN N2 = (Σ,C, μ, S, σ, F) where, Σ =
{H,A,B,C,D}, C = (P, T, I,O), P = {P1, P2, P3, . . . P8}, T = {t1, t2, t3, . . . t7}.
The initial marking μ is the hexagonal polyhedral H in the place of P1.

σ the mapping from the set of transitions to the set of rules is shown in Fig. 5
and F = {P8}

Starting with H on firing the sequence t1t2t3t4 the tetrahedral tiles B, A, D
and C are catenated to H according to the catenation rules respectively and the
resultant 3D-array is sent out to place P5. On firing the sequence t5t6 Hexagonal
polyhedrals are catenated to C-tetrahedral tile in parallel in the right up and
right down directions and then firing t7 hexagonal polyhedrals are catenated
to hexagonal polyhedrals in the right down direction in parallel and finally the
resultant sequence of hexagonal polyhedral language is sent to the final place P8.

98 T. Kalyani et al.

The first member of the language generated is shown in Fig. 6. In every
generation the hexagonal polyhedral tile catenated is increased by one. In the
first member two hexagonal polyhedral are catenated twice.

Example 6. Consider the 3D-TetATPN N3 = (Σ,C, μ, S, σ, F) where, Σ =
{H,A,B}, C = (P, T, I,O), P = {P1, P2, P3, . . . P12}, T = {t1, t2, t3, . . . t12}.
The initial marking μ is the hexagonal polyhedral H in the place of P1.

σ the mapping from the set of transitions to the set of rules is shown in Fig. 7
and F = {P13}.

Starting with H on firing the sequence t1t2t3t4t5t6 the tetrahedral tiles A
and B are catenated to H according to the catenation rules respectively and the
resultant 3D-array is sent to place P7 on firing the sequence t7t8t9t10t11t12 the
tetrahedral tiles A and B are catenated according to the catenation rules and
the resultant star polyhedral is generated and it is sent to place P13 which is
the final place or the sequence of transitions t7t8t9t10t11t12 can be repeated any
number of times before reaching the final destination P13.

The first two members generated by N3 are shown in Fig. 8.

H
P1

P7

t7

t1

t6

P8 H ru B

B rd H

C rd H t5P6 C ru H P5

t4

t3 B rd D

D r C

H rd A

P3P2

t2

P4

Fig. 5. 3D-Array token Petri Net generating increasing sequence of hexagonal polyhe-
drals.

3D-Array Token Petri Nets Generating Tetrahedral Picture Languages 99

A

A

A

A

B B

D CBB
A A

A

B B

B

t1t2t3t4 A

A

A

A

A

AA

B B A
A

A

A
B

BB

B

BD CBB

B

t5t6

t7 A

A

A

A

A

AA

B B B
A

A

A

B

BB

B

BD CBB
A A

A

B B

B

A A

A

B B

B

Fig. 6. First member of the language generated by N2.

H

P1 P2 P3 P4 P5

P8

P7

P9

P6

P10

t1

t7

t3 t4t2

t6

t5

t8t9

t10 t11 t12

P11 P12

P13

H u A H ru B H rd A H d B

H ld A

H lu B

A ru BA lu BA d B

B u A B rd A B ld A

Fig. 7. 3D-array token Petri Net generating sequence of star polyhedrals.

100 T. Kalyani et al.

t1 t2 t3 t4 t5 t6A A

A

B

B B

A

A A

A A A

B B B

B B

B

t7 t8 t9 t10 t11 t12

A A

A A A

A A A A

A A A A A

A A A A

BB

B B B

B B B B

BBB

Fig. 8. Star polyhedrals.

4 Comparative Results

In this section, we compare 3D-TetATPN with K-TTTPS, TetTPPS, RTAL [16]
and BPTAL [16].

Theorem 1. The families of languages generated by 3D-TetATPN and K-
TTTPS are incomparable but not disjoint.

Proof. The families of languages generated by K-TTTPS and 3D-TetATPN are
by parallel mechanism. The constraint in K-TTTPS is that the pasting rules of
the tables are applied in parallel to the pattern obtained in the previous stage.
In 3D-TetATPN the catenation rules generate the family of languages where
extended tetrahedral tiles are also used.

The language of star and hexagonal polyhedrals in Example 1 cannot be
generated by 3D-TetATPN, since the catenation rules are applied in parallel
wherever applicable.

The language of increasing sequence of hexagonal polyhedrals given in Exam-
ple 5 cannot be generated by K-TTTPS, since extended tetrahedral tile, namely
hexagonal polyhedral, is used in the catenation rules.

The language of rhombus given in Example 4 can be generated by both sys-
tems. A 3-TTTPS generating the family of rhombuses is given below:

Consider a three tabled Tetrahedral Tile Pasting System generating a

sequence of rhombuses,

E = {a1, a2, a3, b1, b2, b3}, P = {T1, T2, T3}, T1 = {(a3, b3), (b1, a1)},

T2 = {(b2, a2), (b1, a1)}T3 = {(a2, b2)}.

	

3D-Array Token Petri Nets Generating Tetrahedral Picture Languages 101

Theorem 2. The families of languages generated by 3D-TetATPN and
TetTPPS are incomparable but not disjoint.

Proof. In 3D-TetATPN the catenation rules are applied in parallel to generate
the language concerned and extended tetrahedral tiles are also used. In TetTPPS
the pasting rules are applied in parallel and the target indications permits the
array generated to transit within the regions.

The language of stars and hexagonal polyhedrals given in Example 2 gener-
ated by TetTPPS cannot be generated by 3D-TetATPN as the catenation rules
are applied in parallel wherever applicable.

The language of increasing sequence of hexagonal polyhedrals given in Exam-
ple 5 cannot be generated by TetTPPS, since extended tetrahedral tiles, namely
hexagonal polyhedral, is used in the catenation rules.

The language of rhombuses given in Example 4 is generated by both
systems. TetTPPS generating the language of rhombuses is given below.
Consider TetTPPS π2 = (Γ, μ = [1[2[3]3]2]1, F1, F2, F3, R1, R2, R3, 3). μ-
indicates that the system has three regions one within the another i.e
region 1 is the skin membrane which contains region 2, which in turn
contains region 3, i0 = 3 indicates that region 3 is the output region.

R1 = {(A, (b2, a2), here), (B, (a3, b3), here), (A, (b1, a1), in)}
R2 = {(B, (a2, b2), in), (B, (a2, b2), out)}, R3 = ∅.

Beginning with the initial object F1 in region 1, the pasting rule R1 is applied,
where the rules in region 1 are applied in parallel to the boundary edges of
the pattern present in region 1. Once the rule (B, (a3, b3), here) is applied, the
tetrahedral tile B is catenated to A and then, when the rule (A, (b1, a1), in) is
applied, the picture pattern generated is sent to the inner region 2. In region 2,
when the rule (B, (a2, b2), in) is applied the generated picture pattern is sent to
region 3, which is the output region, where there is no rule exits and the language
of rhombus is collected in region 3. Whereas if the rule (B, (a2, b2), out) is applied,
the generated picture pattern is sent to region 1 and the process continues. 	

Theorem 3. L(3D − TetATPN) − RTAL �= ∅.
Proof. We consider a tetrahedral language whose boundary is an equilateral
triangle. This language cannot be generated by any Regular Tetrahedral Array
Grammar (RTAG) [16]. Since the rules in RTAG are of the following forms:

102 T. Kalyani et al.

Similar rules can be given for the other two tetrahedral tiles C and D, where
A and B are non terminal symbols and a and b are terminal symbols. Starting
with a tetrahedral tile A, RTAG can generate at most three connected tiles. So

it cannot generate an equilateral triangle of the form but this language
can be generated by the following 3D-TetATPN.

Consider a 3D-TetATPN N4 = (Σ,C, μ, S, σ, F), where Σ = {A,B}, C =
(P, T, I,O) where P = {P1, P2, P3, P4}, T = {t1, t2, t3}. The initial marking μ is
the tetrahedral tile A in place P1.

σ the mapping from the set of transitions to the set of rules is shown in Fig. 9,
F = {P4} and the language generated by N4 is shown in Fig. 10.

	

A

A ru Bt1
P1

P2 B u At2 t3 B rd A
P4

P3

Fig. 9. 3D-TetATPN of the language of equilateral triangle tetrahedral.

t1 t2 t3 t1 t2 t3

A

A A

A

B

A A A

A A

A

B

B B

Fig. 10. Language of equilateral triangle tetrahedral.

3D-Array Token Petri Nets Generating Tetrahedral Picture Languages 103

Theorem 4. L(3DTetATPN) and BPTAL are incomparable but not disjoint.

Proof. Consider a tetrahedral language whose boundary is an equilateral triangle
of size 2. This language is generated by both systems Basic Puzzle Tetrahedral
Array Grammar (BPTAG) [16] as well as by 3D-TetATPN.

Consider a BPTAG, where P consists
of the following rules:

The language generated by G is an equilateral triangle tetrahedral of size 2 which
is shown in Fig. 11.

This language can be generated by the following 3D-TetATPN:
Consider a 3DTetATPN N5 = (Σ,C, μ, S, σ, F), where Σ = {A,B}, C =

(P, T, I,O) where P = {P1, P2, P3, P4}, T = {t1, t2, t3}. The initial marking μ

is the tetrahedral tile A in place P1. , σ the

mapping from the set of transitions to the set of rules is shown in Fig. 12 and
F = {P4}

Equilateral triangle tetrahedral of size more than 2 cannot be generated by
BPTAG, whereas it can be generated by 3D-TetATPN (as in Theorem 3). On
the other hand the sequence of overlapping equilateral triangle tetrahedral can
be generated by the above BPTAG, whereas it cannot be generated by any
3D-TetATPN as the catenation rules are applied in parallel wherever possible.

	

a

a

b

a

Fig. 11. Equilateral triangle tetrahedral picture of size 2.

104 T. Kalyani et al.

A

A ru Bt1
P1

P2

B ru At2 t3 B rd A

P4P3

Fig. 12. 3D-TetATPN generating equilateral triangle tetrahedral of size 2.

5 Conclusion

This model is found to be useful in generating interesting patterns and is com-
pared with other recent models in terms of their generative powers. P systems
are by definition distributed parallel computing devices and they can solve com-
putationally hard problems in a feasible time. There are NP hard problems in
picture languages also. We will analyze whether these problems can be studied
using membrane computing. Also we propose to work on a more powerful model
of 3D-TetATPN using a concept called ‘inhibitor arc’ to generate further useful
patterns and closure properties of 3D-TetATPN. This is our future work.

References

1. Alhazov, A., Fernau, H., Freund, R., Ivanov, S., Siromoney, R., Subramanian, K.G.:
Contextual Array Grammars with matrix control, regular control languages and
tissue P systems control. Theor. Comput. Sci. 682, 5–21 (2017)

2. Immanuel, B., Usha, P.: Array-token Petri nets and 2d grammars. Int. J. Pure
Appl. Math. 101(5), 651–659 (2015)

3. Bhuvaneswari, K., Kalyani, T., Lalitha, D.: Triangular tile pasting P system and
array generating Petri nets. Int. J. Pure Appl. Math. 107(1), 111–128 (2016)

4. Ceterchi, R., Mutyam, M., Păun, G., Subramanian, K.G.: Array - rewriting P
Systems. Nat. Comput. 2, 229–249 (2003)

5. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 4

6. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture language with array rewrite
rules. Inf. Control 22(5), 447–470 (1973)

7. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Simple picture pro-
cessing based on finite automata and regular grammars. J. Comput. Syst. Sci. 95,
232–258 (2018)

8. Venkat, I., Robinson, T., Subramanian, K.G., de Wilde, P.: Generation of kolam-
designs based on contextual array P systems. In: Chapman, P., Stapleton, G., Mok-
tefi, A., Perez-Kriz, S., Bellucci, F. (eds.) Diagrams 2018. LNCS (LNAI), vol. 10871,
pp. 79–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91376-6 11

9. Kalyani, T., Raman, T.T., Thomas, D.G.: Tetrahedral tile pasting P system for
3D patterns. Math. Eng. Sci. Aerosp. 11(1), 255–263 (2020)

10. Kamaraj, T., Lalitha, D., Thomas, D.G.: A formal study on generative power of
a class of array token Petrinet structure. Int. J. Syst. Assur. Eng. Manag. 9(3),
630–638 (2018)

https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/978-3-319-91376-6_11

3D-Array Token Petri Nets Generating Tetrahedral Picture Languages 105

11. Lalitha, D., Rangarajan, K.: Characterisation of pasting system using array token
Petri nets. Int. J. Pure Appl. Math. 70(3), 275–284 (2011)

12. Lalitha, D., Rangarajan, K., Thomas, D.G.: Rectangular arrays and Petri nets. In:
Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol.
7655, pp. 166–180. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34732-0 13

13. Anselmo, M., Giammarresi, D., Madonia, M.: A common framework to recognize
two-dimensional languages. Fundam. Inform. 171(1–4), 1–17 (2020)

14. Păun, G.: Computing with Membranes: An Introduction. Springer, Berlin (2002).
https://doi.org/10.1007/978-3-642-56196-2

15. Peterson, J.L.: Petri Net Theory and Modeling of Systems. Prentice Hall Inc.,
Englewood Cliffs (1981)

16. Raman, T.T., Kalyani, T., Thomas, D.G.: Tetrahedral array grammar system.
Math. Eng. Sc. Aerosp. 11(1), 237–254 (2020)

17. Rosenfeld, A.: Picture Languages (Formal Models for Picture Recognition). Aca-
demic Press, New York (1979)

18. Subramanian, K.G., Sriram, S., Song, B., Pan, L.: An overview of 2D picture
array generating models based on membrane computing. In: Adamatzky, A. (ed.)
Reversibility and Universality. ECC, vol. 30, pp. 333–356. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-73216-9 16

https://doi.org/10.1007/978-3-642-34732-0_13
https://doi.org/10.1007/978-3-642-34732-0_13
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/978-3-319-73216-9_16

	3D-Array Token Petri Nets Generating Tetrahedral Picture Languages
	1 Introduction
	2 Preliminaries
	3 3D-Array Token Petri Nets
	4 Comparative Results
	5 Conclusion
	References

