
Tibor Lukić · Reneta P. Barneva · 
Valentin E. Brimkov · Lidija Čomić · 
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Preface

This volume contains the Proceedings of the 20th International Workshop on
Combinatorial Image Analysis (IWCIA 2020) organized in Novi Sad, Serbia,
July 16–18, 2020.

Image analysis provides theoretical foundations and methods for solving real-life
problems arising in various areas of human practice, such as medicine, robotics,
defense, and security. Since typically the input data to be processed are discrete, the
“combinatorial” approach to image analysis is a natural one and therefore its appli-
cability is expanding. Combinatorial image analysis often provides advantages in terms
of efficiency and accuracy over the more traditional approaches based on continuous
models that require numerical computation.

The IWCIA workshop series provides a forum for researchers throughout the world
to present cutting-edge results in combinatorial image analysis, to discuss recent
advances and new challenges in this research area, and to promote interaction with
researchers from other countries. IWCIA had successful prior meetings in Paris
(France) 1991, Ube (Japan) 1992, Washington DC (USA) 1994, Lyon (France) 1995,
Hiroshima (Japan) 1997, Madras (India) 1999, Caen (France) 2000, Philadelphia, PA
(USA) 2001, Palermo (Italy) 2003, Auckland (New Zealand) 2004, Berlin (Germany)
2006, Buffalo, NY (USA) 2008, Playa del Carmen (Mexico) 2009, Madrid (Spain)
2011, Austin, TX (USA) 2012, Brno (Czech Republic) 2014, Kolkata (India) 2015,
Plovdiv (Bulgaria) 2017, and Porto (Portugal) 2018. The workshop in Novi Sad
retained and enriched the international spirit of these workshops. The IWCIA 2020
Program Committee members were renowned experts coming from 22 different
countries from Asia, Europe, North and South America, and the authors come from 11
different countries.

Each submitted paper was sent to at least three reviewers for a double-blind review.
EasyChair provided a convenient platform for smoothly carrying out the rigorous
review process. The most important selection criterion for acceptance or rejection of a
paper was the overall score received. Other criteria included: relevance to the workshop
topics, correctness, originality, mathematical depth, clarity, and presentation quality.
We believe that as a result, only papers of high quality were accepted for publication in
this volume.

An excellent keynote talk was given by Prof. Gyula O. H. Katona from the
Hungarian Academy of Sciences who spoke about the classification of random pictures
in cryptology.

The contributed papers included in this volume are grouped into two sections. The
first one consists of 12 papers devoted to theoretical foundations of combinatorial
image analysis, including digital geometry and topology, array grammars, picture
languages, digital tomography, and other technical tools for image analysis. The second
part consists of 8 papers presenting application-driven research on topics such as image
repairing, annotation of images, image reconstruction, forgery detection, and dealing
with noise in images. We believe that many of these papers would be of interest to a



broader audience, including researchers in scientific areas such as computer vision,
shape modeling, pattern analysis and recognition, and computer graphics.

We would like to take the opportunity to honor the memory of the former IWCIA
conference chairs, Program Committee members, and area leaders Rani Siromoney and
Reinhard Klette who recently passed away.

Prof. Rani Siromoney was born in India in 1929. She was on the faculty of the
Department of Mathematics, Madras Christian College, Chennai, India, for 37 years
and later a Professor Emeritus. She was an accomplished researcher and a devoted
teacher, published widely in journals of repute. Prof. Siromoney was recognized
worldwide for her research in a branch of theoretical computer science, known as
Formal Languages and Automata Theory and was one of the leading authorities in this
area. She mentored numerous researchers who are now among the most prominent
scientists in the field. In 1999, she successfully organized the 6th edition of IWCIA in
Chennai, India. Professor Siromoney passed away on September 28, 2019.

Prof. Dr. Reinhard Klette, a fellow of the Royal Society of New Zealand, was born
in Germany in 1950. He served as the director of the Centre for Robotics & Vision at
Auckland University of Technology, New Zealand. He was renowned for his work in
the area of computer vision. His numerous publications include the books “Digital
Geometry” (co-authored by the late Azriel Rosenfeld), “Computer Vision for Driver
Assistance,” “Concise Computer Vision,” “Computer Vision – Three-Dimensional
Data from Images,” and many others. Numerous graduate students developed suc-
cessfully as scientists under his supervision. He was the founding editor in chief of the
Journal of Control Engineering and Technology (JCET) and an associate editor of
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI). In 2004,
Prof. Klette organized the 10th edition of IWCIA in Auckland, New Zealand. He
passed away on April 3, 2020.

Many individuals and organizations contributed to the success of IWCIA 2020. The
Editors are indebted to IWCIA’s Steering Committee for endorsing the candidacy of
Novi Sad for the 20th edition of the workshop. We wish to thank everybody who
submitted their work to IWCIA 2020. We are grateful to all participants and especially
to the contributors of this volume. Our most sincere thanks go to the IWCIA 2020
Program Committee whose cooperation in carrying out high-quality reviews was
essential in establishing a strong scientific program. We express our sincere gratitude to
the keynote speaker, Gyula O. H. Katona for accepting our invitation and overall
contribution to the workshop program.

The success of the workshop would not be possible without the hard work of the
Local Organizing Committee. We are grateful to the host organization, the Faculty of
Technical Sciences, University of Novi Sad, for their support. Finally, we wish to thank
Springer Nature Computer Science Editorial, and especially Alfred Hofmann and Anna
Kramer, for their efficient and kind cooperation in the timely production of this book.

May 2020 Tibor Lukić
Reneta P. Barneva

Valentin E. Brimkov
Lidija Čomić

Nataša Sladoje

vi Preface
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Euler Well-Composedness

Nicolas Boutry1 , Rocio Gonzalez-Diaz2 , Maria-Jose Jimenez2(B) ,
and Eduardo Paluzo-Hildago2

1 EPITA Research and Development Laboratory (LRDE),
Le Kremlin-Bicêtre, France

nicolas.boutry@lrde.epita.fr
2 Department of Applied Math (I), Universidad de Sevilla, Sevilla, Spain

{rogodi,majiro,epaluzo}@us.es

Abstract. In this paper, we define a new flavour of well-composedness,
called Euler well-composedness, in the general setting of regular cell
complexes: A regular cell complex is Euler well-composed if the Euler
characteristic of the link of each boundary vertex is 1. A cell decomposi-
tion of a picture I is a pair of regular cell complexes

(
K(I), K(Ī)

)
such

that K(I) (resp. K(Ī)) is a topological and geometrical model represent-
ing I (resp. its complementary, Ī). Then, a cell decomposition of a pic-
ture I is self-dual Euler well-composed if both K(I) and K(Ī) are Euler
well-composed. We prove in this paper that, first, self-dual Euler well-
composedness is equivalent to digital well-composedness in dimension 2
and 3, and second, in dimension 4, self-dual Euler well-composedness
implies digital well-composedness, though the converse is not true.

Keywords: Digital topology · Discrete geometry ·
Well-composedness · Cubical complexes · Cell complexes · Manifolds ·
Euler characteristic

1 Introduction

The concept of well-composedness of a picture was first introduced in [13] for
2D pictures and extended later to 3D in [14]: a well-composed picture satisfies
that the continuous analog of the given picture has a boundary surface that is a
manifold. The concept is described in terms of forbidden subsets for which the
picture is not well-composed. In [8], the author defines a gap in a binary object in
a digital space of arbitrary dimension, an analogous concept to that of forbidden
subset of Latecki et al. and similar to the notion of tunnel that had been defined
in [1] for digital hyperplanes. In [3], the concept of critical configurations (i.e.,
forbidden subsets) was extended to nD.

3D well-composed images may have some computational advantages regard-
ing the application of several algorithms in computer vision, computer graphics
and image processing. But in general, images are not a priori well-composed.
There are several “repairing” methods for turning them into well-composed

c© Springer Nature Switzerland AG 2020
T. Lukić et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-51002-2_1
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4 N. Boutry et al.

images (see, for example, [12,15,18,19]). Besides, in [17], the authors extended
the notion of “digital well-composedness” to nD sets.

Equivalences between different flavours of well-composedness have been stud-
ied in [4], namely: continuous well-composedness (CWCness), digital well-com-
posedness (DWCness), well-composedness in the Alexandrov sense (AWCness),
well-composedness based on the equivalence of connectivities (EWCness), and
well-composedness on arbitrary grids (AGWCness). More specifically, as stated
in [4], it is well-known that, in 2D, AWCness, CWCness, DWCness and EWC-
ness are equivalent, so a 2D picture is well-composed if and only if it is XWC
(X = A, C, D, E). In 3D, only AWCness, CWCness, DWCness are equiva-
lent. Note that no link between AGWCness and the other flavours of well-
composedness were known in nD, and for n ≥ 4 the equivalences between
the different flavours of well-composedness (AWCness, CWCness, DWCness and
EWCness) have not been proved yet (except that AWCness implies DWCness,
see [7] and that DWCness implies EWCness, see [3]).

Recently, in [6], a counterexample has been given to prove that DWCness
does not imply CWCness, what is an important result since it breaks with the
idea that all the flavours of well-composedness are equivalent.

In the papers [5,9,10], the authors developed an nD topological method for
repairing digital pictures (in the cubical grid) with “pinches”, turning them into
weakly well-composed complexes. More specifically, such a method constructs a
“simplicial decomposition”

(
PS(I), PS(Ī)

)
of a given n-dimensional (nD) pic-

ture I (initially represented by a cubical complex Q(I)) such that: (1) PS(I) is
homotopy equivalent to Q(I) and PS(Ī) is homotopy equivalent to Q(Ī) being Ī
the nD picture that is the “complementary” of I; (2)

(
PS(I), PS(Ī)

)
is self-dual

weakly well-composed, that is, for each vertex v on the boundary of PS(I), the set
of n-simplices of PS(I) incident to v are “face-connected” (defined later), as well
as those of PS(Ī) incident to v. As we will see later, in the setting of cubical com-
plexes canonically associated to nD pictures, self-dual weak well-composedness
is equivalent to digital well-composedness.

In fact, our ultimate goal is to prove that this method provides continuously
well-composed complexes, that is, the boundary of their underlying polyhedron
is an (n−1)D topological manifold. Since this goal is not reachable yet according
to us, we propose an “intermediary” flavour of well-composedness, called Euler
well-composedness, that is stronger than weak well-composedness but weaker
than continuous well-composedness. The aim of the present paper is then to
prove that Euler well-composedness implies weak well-composedness but that the
converse is not true. The plan is the following: Sect. 2 and 3 recall the background
relative to self-dual weak and digital well-composedness respectively. Section 4
introduces the definition of Euler well-composedness based on what we call “χ-
critical vertices” and shows that: Euler well-composedness is equivalent to self-
dual weak and digital well-composedness on 2D and 3D cubical grids; and Euler
well-composedness is stronger than weak and digital well-composedness on 4D
cubical grids. Section 5 concludes the paper.
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Fig. 1. Left: a 2-dimensional cube and its faces. Right: a 3-dimensional cube and its
faces.

2 Background on Regular Cell Complexes

Roughly speaking, a regular cell complex K is a collection of cells (where k-cells
are homeomorphic to k-dimensional balls) glued together by their boundaries
(faces), in such a way that a non-empty intersection of any two cells of K is a
cell in K. Regular cell complexes have particularly nice properties, for example,
their homology is effectively computable (see [16, p. 243]). When the k-cells in K
are k-dimensional cubes, we refer to K as a cubical complex (see Fig. 1). When
they are k-dimensional simplices (points, edges, triangles, tetrahedra, etc.), we
refer to K as a simplicial complex.

Let K be a regular cell complex. A k-cell μ is a proper face of an �-cell σ ∈ K
if μ is a face of σ and k < �. A cell of K which is not a proper face of any other
cell of K is said to be a maximal cell of K.

Let k, k′ be integers such that k < k′. Then, the set {k, k + 1, . . . , k′ − 1, k′}
will be denoted by �k, k′�.

Definition 1 (face-connectedness). Let μ be a cell of a regular cell complex
K. Let A(�)

K (μ) be a set of �-cells of K sharing μ as a face. Let σ and σ′ be two
�-cells of A(�)

K (μ). We say that σ and σ′ are face-connected in A(�)
K (μ) if there

exists a path π(σ, σ′) = (σ1 = σ, σ2 . . . , σm−1, σm = σ′) of �-cells of A(�)
K (μ) such

that for any i ∈ �1,m − 1�, σi and σi+1 share exactly one (� − 1)-cell.
We say that a set A(�)

K (μ) is face-connected if any two �-cells σ and σ′ in
A(�)

K (μ) are face-connected in A(�)
K (μ).

An external cell of K is a proper face of exactly one maximal cell in K. A regular
cell complex is pure if all its maximal cells have the same dimension. The rank
of a cell complex K is the maximal dimension of its cells. The boundary surface
of a pure regular cell complex K, denoted by ∂K, is the regular cell complex
composed by the external cells of K together with all their faces. Observe that
∂K is also pure.

Definition 2 (nD cell complex). An nD cell complex K is a pure regular cell
complex of rank n embedded in R

n. The underlying space (i.e., the union of the
cells as subspaces of Rn) will be denoted by |K|.
An nD cell complex K is said to be (continuously) well-composed if |∂K| is
an (n − 1)-manifold, that is, each point of |∂K| has a neighborhood in |∂K|
homeomorphic to R

n−1.



6 N. Boutry et al.

Definition 3 (Weak well-composedness). An nD cell complex K is weakly
well-composed (wWC) if for any 0-cell (also called vertex) v in K, A(n)

K (v) is
face-connected.

Definition 4 (Euler characteristic). Let K be a finite regular cell complex.
Let ak denote the number of k-cells of K. The Euler characteristic of K is defined
as

χ(K) =
∞∑

k=0

(−1)kak.

Recall that the Euler characteristic of a finite regular cell complex depends only
on its homotopy type [11, p. 146].

Definition 5 (star, closed star and link). Let v be a vertex of a given regular
cell complex K.

– The star of v (denoted StK(v)) is the set of cells having v as a face. Note
that the star of v is generally not a cell complex itself.

– The closed star of v (denoted ClStK(v)) is the cell complex obtained by adding
to StK(v) all the faces of the cells in StK(v).

– The link of v (denoted LkK(v)) is the closed star of v minus the star of v,
that is, ClStK(v) \ StK(v).

3 Background on nD Pictures

Now, let us formally introduce some concepts related to digital well-
composedness of nD pictures.

Definition 6 (nD picture). Let n ≥ 2 be an integer and Z
n the set of points

with integer coordinates in R
n. An nD picture is a pair I = (Zn, FI), where FI

is a subset of Zn. The set FI is called the foreground of I and the set Zn \FI the
background of I. The picture “complement” of I is defined as Ī = (Zn,Zn \ FI).

Definition 7 (cubical complex Q(I)). The nD cubical complex Q(I) canon-
ically associated to an nD picture I = (Zn, FI) is composed by those n-dimen-
sional unit cubes centered at each point in FI , whose (n − 1)-faces are parallel
to the coordinate hyperplanes, together with all their faces.

Figure 2 shows the geometric realization of cubical complexes representing a 2D
binary picture of two pixels (left) and two 3D pictures of 2 voxels each.

Roughly speaking, two topological spaces are homotopy equivalent if one can
be continuously deformed into the other. A specific example of homotopy equiv-
alence is a deformation retraction of a space X onto a subspace A which is a
family of maps ft : X → X, t ∈ [0, 1], such that: f0(x) = x, ∀x ∈ X; f1(X) = A;
ft(a) = a, ∀a ∈ A and t ∈ [0, 1]. The family {ft : X → X}t∈[0,1] should be contin-
uous in the sense that the associated map F : X ×I → X, where F (x, t) = ft(x),
is continuous. See [11, p. 2].
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Fig. 2. Top figures: cubical complexes (in brown) of dimension 2 (left) and 3 (middle
and right). Bottom figures: point representation of the cubical complexes on the top
to help the intuition of Table 6 and 7. Points in red correspond to the maximal cubes,
that are joined by a red edge if the corresponding cubes are face–connected. (Color
figure online)

Definition 8 (cell complex over an nD picture). A cell complex over an
nD picture I is an nD cell complex, denoted by K(I), such that there exists a
deformation retraction from K(I) onto Q(I).

In [2], the concept of blocks was introduced. For two integers k ≤ k′, let E =
{e1, . . . , en} be the canonical basis of Zn. Given a point z ∈ Z

n and a family of
vectors F = {f1, . . . , fk} ⊆ E , the block of dimension k associated to the couple
(z,F) is the set defined as:

B(z,F) =

⎧
⎨

⎩
z +

∑

i∈�1,k�

λi f i : λi ∈ {0, 1}, ∀i ∈ �1, k�

⎫
⎬

⎭
.

This way, a 0-block is a point, a 1-block is a set of two points in Z
n on an unit

edge, a 2-block is a set of four points on a unit square, and so on. A subset
B ⊂ Z

n is called a block if there exists a couple (z,F) ∈ Z
n ×P(E) (where P(E)

represents the set of all the subsets of E), such that B = B(z,F). We will denote
the set of blocks of Zn by B(Zn).

Definition 9 (antagonists). Two points p, q belonging to a block B ∈ B(Zn)
are said to be antagonists in B if their distance equals the maximum distance
using the L1-norm1 between two points in B, that is, ‖p − q‖1 = max

{‖r − s‖1
: r, s ∈ B

}
.

Remark 1. The antagonist of a point p in a block B ∈ B(Zn) containing p exists
and is unique. It is denoted by antagB(p).
1 The L1-norm of a vector α = (x1, . . . , xn) is ||α||1 =

∑
i∈�1,n� |xi|.
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Note that when two points (x1, . . . , xn) and (y1, . . . , yn) are antagonists in a
block of dimension k ∈ �0, n�, then |xi − yi| = 1 for i ∈ {i1, . . . , ik} ⊆ �1, n� and
xi = yi otherwise.

Definition 10 (critical configuration). Let I = (Zn, FI) be an nD picture
and B ∈ B(Zn) a block of dimension k ∈ �2, n�. We say that I contains a
critical configuration in the block B if FI ∩ B = {p, p′} or FI ∩ B = B \ {p, p′},
with p, p′ being two antagonists in B.

Definition 11 (digital well-composedness). An nD picture is said to be dig-
itally well-composed (DWC) if it does not contain any critical configuration in
any block B ∈ B(Zn).

We say that a property of an nD picture I is self-dual, if its complement Ī
also satisfies the property. Hence, last definition of digital well-composedness is
self-dual and based on local patterns.

4 Introducing the Concept of Euler Well-Composedness

In this section, we introduce the new concept of Euler well-composedness
for regular cell complexes and show that, in the cubical setting, digital well-
composedness is equivalent to Euler well-composedness in 2D and 3D, but digital
well-composedness is weaker than Euler well-composedness in 4D.

Definition 12 (χ-critical vertex). Given an nD cell complex K, n ≥ 2, a
vertex v ∈ K is χ-critical for K if:

v ∈ ∂K and χ
(
LkK(v)

) �= χ(Bn−1) = 1,

where B
n−1 is an (n − 1)-dimensional ball.

In Fig. 3, different cases of χ-critical and non-χ-critical vertices are shown.

Fig. 3. Different cases of a vertex v on the boundary of a cubical complex Q(I). LkQ(v)
has been drawn in grey. a) A 2D case of a χ- critical vertex, with χ

(
LkQ(v)

)
= 2; b)

a 3D case of a χ-critical vertex, with χ
(
LkQ(v)

)
= 2; c) a 3D case of a vertex on

the boundary that is not a χ-critical vertex, since χ
(
LkQ(v)

)
= 1; d) complementary

configuration of case (c) in which v is a χ-critical vertex, with χ
(
LkQ(v)

)
= 0.
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Definition 13 (Euler well-composedness). An nD cell complex is Euler
well-composed if it has no χ-critical vertices.

For example, in Fig. 3, only case (c) represents a cubical complex that is Euler
well-composed.

Definition 14 (cell decomposition of an nD picture). A cell decomposition
of an nD picture I consists of a pair of nD cell complexes,

(
K(I),K(Ī)

)
, such

that:

– K(I) is a cell complex over I and K(Ī) is a cell complex over Ī.
– |K(I) ∪ K(Ī)| = R

n.
– K(I) ∩ K(Ī) = ∂K(I) = ∂K(Ī).

Table 1. All the possible configurations (cubical and points representations) for U =
(Z2, FU ) in B(o,Z2) satisfying that o ∈ FU and card(FU ) ≤ 2, up to rotations and
reflections around v = (1/2, 1/2).

card(FU ) = 1, 2
Q(I) Q(Ī) Q(I) Q(Ī) Q(I) Q(Ī)

wWC Yes Yes Yes Yes No No
χWC Yes Yes Yes Yes No No
DWC Yes Yes No

Definition 15 (self-dual Euler well-composedness). A cell decomposition(
K(I),K(Ī)

)
of an nD picture I is self-dual Euler well-composed (sχWC) if both

K(I) and K(Ī) are Euler well-composed.

The definition of self-dual weak well-composedness was introduced in [5]. We
recall it here.

Definition 16 (self-dual weak well-composedness). A cell decomposition(
K(I),K(Ī)

)
of an nD picture I is self-dual weakly well-composed (swWC) if

both K(I) and K(Ī) are weakly well-composed.

We recall now that self-dual weak well-composedness is equivalent to digital
well-composed in the cubical setting.

Theorem 1 ([3]). Let I = (Zn, FI) be an nD picture and Q(I) the cubical
complex canonically associated to I. Then, I is digitally well-composed if and
only if

(
Q(I), Q(Ī)

)
is self-dual weakly well-composed.
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We study now the possible equivalences between self-dual weak well-compos-
edness and self-dual Euler well-composedness. We will prove that, as expected,
self-dual Euler well-composedness is equivalent to digital well-composedness in
2D and 3D. Nevertheless, as we will see later, this equivalence is no longer true for
4D pictures. We will prove that self-dual Euler well-composedness implies digital
well-composedness in 4D although the converse is not true. Observe that con-
sidering the definition of Euler well-composedness, we can study local patterns
only. To prove such results, we should check the exhaustive lists of all the possi-
ble configurations U = (Zn, FU ) in any block B(z,Zn) for z ∈ Z

n, for n = 2, 3, 4.
To reduce the list and without loss of generality, we will only study configurations

Table 2. All the possible configurations for U = (Z3, FU ) in B(o,Z3) satisfying that
o ∈ FU and card(FU ) ≤ 3, up to rotations and reflections around v = (1/2, 1/2, 1/2).

card(FU ) = 1
Q(I) Q(Ī)

wWC Yes Yes
χWC Yes Yes
DWC Yes

card(FU ) = 2
Q(I) Q(Ī) Q(I) Q(Ī) Q(I) Q(Ī)

wWC No Yes Yes Yes No Yes
χWC Yes No Yes Yes No No
DWC No Yes No

card(FU ) = 3
Q(I) Q(Ī) Q(I) Q(Ī) Q(I) Q(Ī)

wWC Yes Yes No Yes No No
χWC Yes Yes Yes No No No
DWC Yes No No
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U = (Zn, FU ) in the block B(o,Zn) for o being the coordinates origin. Besides,
we will also assume, again without loss of generality, that o is always in FU . Let
card(FU ) denote the number of points in FU . Since card(FŪ ) = 2n − card(FU ),
we will only study configurations U in B(o,Zn) satisfying that card(FU ) ≤ 2n−1.

Table 3. All the possible configurations for U = (Z3, FU ) in B(o,Z3) satisfying that
o ∈ FU and card(FU ) = 4, up to rotations and reflections around v = (1/2, 1/2, 1/2).

card(FU ) = 4
Q(I) Q(Ī) Q(I) Q(Ī) Q(I) Q(Ī)

wWC Yes Yes Yes Yes No No
χWC Yes Yes Yes Yes No No
DWC Yes Yes No

card(FU ) = 4
Q(I) Q(Ī) Q(I) Q(Ī) Q(I) Q(Ī)

wWC No No No No Yes Yes
χWC No No No No Yes Yes
DWC No No Yes

Fix a configuration U satisfying all the requirements listed above. Let
v ∈ ∂Q(U) be the vertex with coordinates (1/2, n times. . . , 1/2). Then, to see if
such configuration is digitally well-composed, we will check if both A(n)

Q(U)(v)

and A(n)

Q(Ū)
(v) are face-connected or not. That is, we will check if the pair

(Q(U), Q(Ū)) is self-dual weakly well-composed. Similarly, to see if such con-
figuration is self-dual Euler well-composed, we will check if vertex v is χ-critical
in both Q(U) and Q(Ū).

Theorem 2. Self-dual Euler well-composedness in the 2D and 3D cubical setting
is equivalent to digital well-composedness.
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Table 4. Amount of configurations U = (Zn, FU ) in B(o,Z4) for the different cases in
4D clustered depending on the number of points in FU and the property of being (or
not) Q(U) and Q(Ū) weakly well-composed and/or Euler well-composed.

card(FU ) Q(U) Q(Ū)

1 2 3 4 5 6 7 8 wWc χWc wWc χWc

0 0 0 0 0 0 0 120 Yes No No No

0 0 0 0 0 24 189 96 No Yes No No

0 1 18 149 500 870 490 120 No No Yes No

0 0 0 0 0 0 28 96 No No No Yes

0 0 0 0 0 0 0 0 Yes Yes No No

0 0 0 0 0 0 0 60 Yes No Yes No

0 0 0 0 0 0 112 672 Yes No No Yes

0 10 69 232 565 1074 1554 672 No Yes Yes No

0 0 0 0 0 0 0 0 No Yes No Yes

0 0 0 0 0 0 0 0 No No Yes Yes

0 0 0 0 0 12 84 240 Yes Yes Yes No

0 0 0 0 0 0 0 0 Yes Yes No Yes

0 0 0 0 0 72 336 240 Yes No Yes Yes

0 0 0 0 0 0 0 0 No Yes Yes Yes

0 0 0 4 55 303 861 1811 No No No No

1 4 18 70 245 648 1351 2308 Yes Yes Yes Yes

Proof. Table 1 shows all the possible configurations for U = (Z2, FU ) in B(o,Z2)
satisfying that o ∈ FU and card(FU ) ≤ 2, up to rotations and reflections
around v. Looking at the table, we can check that DWCness ⇔ sχWCness in
2D. Similarly, Tables 2 and 3 show that DWCness ⇔ sχWCness in 3D. ��
Theorem 3. Digital well-composedness does NOT imply self-dual Euler well-
composedness in 4D.

Proof. An exhaustive list of configurations of hypercubes in 4D incident to a
vertex that are digitally well-composed but not self-dual Euler well-composed
is provided in Table 6. The complete list is summed up in Table 5 and can be
found in the GitHub repository: https://github.com/Cimagroup/Euler-WCness
(Table 5). ��

Theorem 4. Self-dual Euler well-composedness in the 4D cubical setting implies
digital well-composedness.

Proof. An exhaustive list of all the possible configurations U = (Zn, FU ) in
the block B(o,Z4) satisfying that U is not digitally well-composed is given in
Table 7. All such cases satisfy that they are not self-dual Euler well-composed
either. ��

https://github.com/Cimagroup/Euler-WCness
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Table 5. Exhaustive list in 4D of configurations for U in B(o,Z4) clustered in the
number of points in FU and the property of being or not DWC and/or sχWC.

card(FU ) U
(
Q(U), Q(Ū)

)

1 2 3 4 5 6 7 8 DWC sχWC

1 4 18 70 245 648 1351 2308 Yes Yes

0 0 0 0 0 84 420 540 Yes No

0 0 0 0 0 0 0 0 No Yes

0 11 87 385 1120 2271 3234 3587 No No

Table 6. Exhaustive list of configurations for U in B(o,Z4) satisfying that U is DWC
but (Q(U), Q(Ū)) is not sχWC. First column indicates the number of points of FU ;
second column corresponds to the amount of configurations for U in B(o,Z4) with the
corresponding number of points in FU and third column is an example of such kind of
configuration.

card(FU )Amount Example
6 84 {(0,0,0,0),(0,0,0,1),(0,0,1,0),

(0,1,0,1),(0,1,1,0),(0,1,1,1)}

7 420 {(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),
(0,1,0,0),(1,0,1,1),(1,1,0,0)}

(continued)
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Table 6. (continued)

8 540 {(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),
(0,1,0,0),(0,1,0,1),(1,0,1,0),(1,1,0,1)}
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Table 7. Exhaustive list of all the possible configurations U = (Zn, FU ) in the block
B(o,Z4) satisfying that U is not digitally well-composed. All such cases satisfy that
they are not self-dual Euler well-composed either. First column corresponds to the
number of points in FU , second column corresponds to the amount of configurations
that there exist with such number of points in FU . Third column shows an example of
such configuration.

not DWC ⇒ not sχWC
card(FU )Amount Example
1 0 -
2 11 {(0,0,0,0),(0,0,1,1)}

3 87 {(0,0,0,0),(0,0,0,1),(0,1,1,0)}

4 385 {(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,1,1,1)}
(continued)
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Table 7. (continued)

5 1120 {(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(1,1,0,0)}

6 2271 {(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),
(0,1,0,0),(1,1,0,1)}

(continued)
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Table 7. (continued)

7 3234 {(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),
(0,1,0,0),(0,1,0,1),(1,1,1,0)}

8 3587 {(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),
(0,1,0,0),(0,1,0,1),(0,1,1,0),(1,1,1,1)}

(continued)
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Table 7. (continued)

5 Conclusions and Future Works

We have proved via exhaustive lists of cases that self-dual weak well-composed-
ness and digital well-composedness do not imply self-dual Euler well-composed-
ness, but that the converse is true in 2D, 3D and 4D. In a future paper, we plan to
cluster the 4D configurations obtained in equivalent classes up to rotations and
reflections around the vertex v, similarly as what we have done to study the 2D
and 3D cases. We also plan to prove the claim “self-dual Euler well-composed-
ness implies digital well-composedness” in nD, n ≥ 2 and study the existence of
counter-examples for the converse in nD, for n > 4. Moreover, we plan to prove
that the nD repairing method of [5,9,10] provides self-dual Euler well-composed
simplicial complexes, providing a step forward to continuous well-composedness.
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Abstract. Constructing a discretization of a given set is a major prob-
lem in various theoretical and applied disciplines. An offset discretization
of a set X is obtained by taking the integer points inside a closed neigh-
borhood of X of a certain radius. In this note we determine a minimum
threshold for the offset radius, beyond which the discretization of an arbi-
trary (possibly disconnected) set is always connected. The results hold
for a broad class of disconnected subsets of R

n, and generalize several
previous results.

Keywords: Discrete geometry · Geometrical features and analysis ·
Connected set · Discrete connectivity · Connectivity control · Offset
discretization

1 Introduction

Constructing a discretization of a set X ⊆ R
n is a major problem in various

theoretical and applied disciplines, such as numerical analysis, discrete geome-
try, computer graphics, medical imaging, and image processing. For example, in
numerical analysis, one may need to transform a continuous domain of a function
into its adequate discrete analogue. In raster/volume graphics, one looks for a
rasterization that converts an image described in a vector graphics format into
a raster image built by pixels or voxels. Such studies often elucidate interesting
relations between continuous structures and their discrete counterparts.

Some of the earliest ideas and results for set discretization belong to Gauss
(see, e.g., [22]); Gauss discretization is still widely used in theoretical research
and applications. A number of other types of discretization have been studied
by a large number of authors (see, e.g., [1,2,10,14,17–19,24,25,29] and the bib-
liographies therein). These works focus on special types of sets to be discretized,
such as straight line segments, circles, ellipses, or some other classes of curves in
the plane or on other surfaces.

An important requirement for any discretization is to preserve certain topo-
logical properties of the original object. Perhaps the most important among these
c© Springer Nature Switzerland AG 2020
T. Lukić et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 20–28, 2020.
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is the connectedness or disconnectedness of the discrete set obtained from a dis-
cretization process. This may be crucial for various applications ranging from
medicine and bioinformatics (e.g. organ and tumor measurements in CT images,
beating heart or lung simulations, protein binding simulations) to robotics and
engineering (e.g. motion planning, finite element stress simulations). Most of the
works cited above address issues related to the connectedness of the obtained
discretizations. To be able to perform a reliable study of the topology of a digital
object by means of shrinking, thinning and skeletonization algorithms (see, e.g.
[4,7,20,26,28] and the bibliography therein), one needs to start from a faithful
discretization of the original continuous set.

Perhaps the most natural and simple type of discretization of a set X is the one
defined by the integer points within a closed neighborhood of X of radius r. This
will be referred to as an r-offset discretization. Several authors have studied prop-
erties of offsets of certain curves and surfaces [3,5,11,16], however without being
concerned with the properties of the integer set of points enclosed within the off-
set. In [12,15] results are presented on offset-like conics discretizations. Conditions
for connectedness of offset discretizations of path connected or connected sets are
presented in [8,9,27].

While all related works study conditions under which connectedness of the
original set is preserved upon discretization, in the present paper we determine
minimum thresholds for the offset radius, beyond which disconnectedness of a
given original set is never preserved, i.e., the obtained discretization is always
connected. The results hold for a broad class of disconnected subsets of Rn. The
technique we use is quantizing the set X by the minimal countable set of points
containing X, which makes the use of induction feasible. To our knowledge, these
are the first results concerning offset discretizations of disconnected sets. They
extend a result from [9] which gives best possible bounds for an offset radius to
guarantee 0- and (n − 1)-connectedness of the offset discretization of a bounded
path-connected set.

Our results can be used to model a broad range of plausible tasks related
to image processing. From a theoretical perspective, they can be applied to a
discretization of a set that is disconnected but whose closure is connected, e.g.,
a set that has been obtained by removing lower dimensional subsets from a
connected set. This scenario can arise in practice when one needs to obtain a
faithful digitization of an image or rendering which has been corrupted by linear
or pointwise shapes. These flaws can be manifested as scratches on photographs,
cracks on plasters, pottery, or bones, obstructions by hair, threads, or fibers,
and point distortions such as piercings, dust, or other small particles. Our results
imply that in such cases, under specified conditions on the offset radius, the offset
discretization of the original object would not be affected by these corruptions.

In the next section we introduce various notions and notations to be used in
the sequel. In Sect. 3 we present the main results of the paper. We conclude in
Sect. 4 with final remarks.
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2 Preliminaries

We recall a few basic notions of general topology and discrete geometry. For
more details we refer to [13,20,21].

All considerations take place in R
n with the Euclidean norm. By d(x, y)

we denote the Euclidean distance between points x, y ∈ R
n. Given two sets

A,B ⊂ R
n, the number g(A,B) = inf{d(x, y) : x ∈ A, y ∈ B} is called the gap1

between the sets A and B. Bn(x, r) is the closed n-ball of radius r and center x
defined by the Euclidean distance (dependence on n will be omitted when it is
clear from the context). Given a set X ⊆ R

n, |X| is its cardinality. The closed
r-neighborhood of X, which we will also refer to as the r-offset of X, is defined
by U(X, r) = ∪x∈XB(x, r). Cl(X) is the closure of X, i.e., the union of X and
the limit points of X. X is connected if it cannot be presented as a union of two
nonempty subsets that are contained in two disjoint open sets. Equivalently, X
is connected if and only if it cannot be presented as a union of two nonempty
subsets each of which is disjoint from a closed superset of the other. A (possibly
infinite) family F of sets is said to satisfy the local finiteness property if every
point of a set in F has a neighborhood which intersects only a finite number of
sets from F .

In a discrete geometry setting, considerations take place in the grid cell model.
In this model, the regular orthogonal grid subdivides Rn into n-dimensional unit
hypercubes (e.g., unit squares for n = 2 or unit cubes for n = 3). These are
regarded as n-cells and are called hypervoxels, or voxels, for short. The (n − 1)-
cells, 1-cells, and 0-cells of a voxel are referred to as facets, edges, and vertices,
respectively.

Given a set X ⊆ R
n, XZ = X ∩Z

n is its Gauss discretization, while Δr(X) =
U(X, r) ∩ Z

n is its discretization of radius r, which we will also call the r-offset
discretization of X.

Two integer points are k-adjacent for some k, 0 ≤ k ≤ n−1, iff no more than
n − k of their coordinates differ by 1 and none by more than 1. A k-path (where
0 ≤ k ≤ n − 1) in a set S ⊂ Z

n is a sequence of integer points from S such that
every two consecutive points of the path are k-adjacent. Two points of S are
k-connected (in S) iff there is a k-path in S between them. S is k-connected iff
there is a k-path in S connecting any two points of S. If S is not k-connected,
we say that it is k-disconnected. A maximal (by inclusion) k-connected subset
of S is called a k-(connected) component of S. Components of nonempty sets
are nonempty and any union of distinct k-components is k-disconnected. Two
voxels v, v′ are k-adjacent if they share a k-cell. Definitions of connectedness and
components of a set of voxels are analogous to those for integer points.

In the proof of our result we will use the following well-known facts (see [9]).

Fact 1. Any closed n-ball B ⊂ R
n with a radius greater than or equal to

√
n/2

contains at least one integer point.

1 The function g itself, defined on the subsets of R
n is called a gap functional. See,

e.g., [6] for more details.
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Fact 2. Let A and B be sets of integer points, each of which is k-connected. If
there are points p ∈ A and q ∈ B that are k-adjacent, then A∪B is k-connected.

Fact 3. If A and B are sets of integer points, each of which is k-connected, and
A ∩ B 	= ∅, then A ∪ B is k-connected.

Fact 4. Given a closed n-ball B ⊂ R
n with BZ 	= ∅, BZ is (n − 1)-connected.

3 Main Result

In this section we prove the following theorem.

Theorem 1. Let X ⊂ R
n, n ≥ 2, be a set such that Cl(X) is connected. Then

the following hold:

1. Δr(X) is (n − 1)-connected for all r >
√

n/2.
2. Δr(X) is at least 0-connected for all r >

√
n − 1/2.

These bounds are the best possible which always respectively guarantee (n − 1)
and 0 connectedness of Δr(X).

Proof. The proof of the theorem is based on the following fact.

Claim. Let X ⊆ R
n be an arbitrary (possibly unbounded) set, such that Cl(X)

is connected. Let W (X) denote the (possibly infinite) set of voxels intersected
by X. Then W (X) can be ordered in a sequence {v1, v2, . . . } with the property
that

Cl(X) ∩
(

vk ∩
k−1⋃
i=1

vi

)
	= ∅, ∀k ≥ 2. (1)

Proof. To simplify the notation, let
⋃

F stand for the union of a family of sets
F . Let W ′(X) be a maximal by inclusion subset of W (X), such that it has a
voxel ordering satisfying Property (1). In particular, W ′(X) can be constructed
as follows. Let W (X) have an arbitrary initial enumeration in which v1 is the
first element (since v1 is intersected by X, it satisfies Property (1)). One can
iteratively re-enumerate W (X) (thus obtaining the desired subsequence W ′(X))
in the following manner. At any step k ≥ 1, if the voxels v1, v2, . . . , vk satisfy
Property (1), then move to the next step. Otherwise swap vk with a voxel v ∈
W (X), if any, such that voxels v1, v2, . . . , vk = v satisfy Property (1). Thus v is
added to the sequence W ′(X) as its kth term, vk. (Respectively, voxel vk from
W (X) receives the index of voxel v from W (X)). Then, in the case of unbounded
X and infinite W (X), a voxel that is not in the resulting new enumeration will
not satisfy Property (1) for any k since it has been swapped infinitely many
times.

Assume for contradiction that W ′(X) 	= W (X). By the maximality of W ′(X)
it follows that X1 := Cl(X) ∩ ⋃

W ′(X) does not intersect the closed set Y1 :=⋃
(W (X) \ W ′(X)), and X2 := Cl(X) ∩ ⋃

(W (X) \ W ′(X)) does not intersect
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the closed set Y2 :=
⋃

W ′(X). Note that Y1 and Y2 are possibly infinite unions
of closed sets, and each of them satisfies the local finiteness property; it is well-
known that any set (finite or infinite) with that property is closed (cf. [13,23]).
Then we have that Cl(X) is the union of the nonempty sets X1 and X2, and each
of them is disjoint from a closed superset of the other (Y1 and Y2, respectively),
which is impossible if Cl(X) is connected. �

To establish the claimed connectedness of the offset discretization of the
set X, in the proof of both parts of the theorem we use induction on k. Let
W (X) = {v1, v2, . . . } be defined as in Claim 3, with a voxel ordering satisfying
Property (1). After handling the base case, in the induction step we show that for
each next voxel vk+1 of the sequence W (X), the current (n−1)-connected (resp.
0-connected) offset discretization Δr(X ∩ ⋃k

i=1 vi) is locally incremented by the
(n − 1)-connected (resp. 0-connected) set Δr(X ∩ vk+1), as the obtained offset
discretization of X ∩⋃k+1

i=1 vi is (n−1)-connected (resp. 0-connected). Finally, in
Part 3, we extend this argument to an unbounded set X, and hence an infinite
sequence W (X). This implies the (n − 1)- (resp. 0-) connectedness of Δr(X).

Part 1. Let k = 1. In this case the considered set Δr(X ∩ ⋃k
i=1 vi) is defined

only by the part of X which is contained in the first voxel of the sequence. This
also covers the eventuality when X is contained in a single voxel which is the
only element of the ordered set W (X).

Denote for brevity X1 = X ∩ v1 and D = Δr(X1). By Fact 1 we have that
D 	= ∅. Assume for contradiction that D has at least two (n − 1)-connected
components. Let D1 and D2 be two of these components. Let D1 = Δr(X1

1 )
and D2 = Δr(X2

1 ), X1
1 ∪ X2

1 ⊆ X1. Since Cl(X1) is connected, there exists a
point x ∈ Cl(X1), for which there are points both from X1

1 and from X2
1 which

are arbitrarily close to x. We consider the extreme case where x is at the center
of the voxel v1, the considerations otherwise being analogous. Since r >

√
n/2,

all vertices of v1 are in its interior. Let p be one of these. Then we can choose
points x1 ∈ X1

1 and x2 ∈ X2
1 to be at a sufficiently small distance from x to

necessitate that the balls B(x1, r) and B(x2, r) centered at these points contain
p. (If x ∈ X1, then it can be used as one of the points x1 or x2).

Since x1, x2 ∈ X1, we have that B(x1, r)Z ⊆ D1 and B(x2, r)Z ⊆ D2. Each
of these two sets is (n − 1)-connected by Fact 4 and p belongs to both. Thus
the intersection of D1 and D2 is non-empty and Fact 3 implies that D1 ∪ D2

is (n − 1)-connected, which contradicts the assumption that D1 and D2 are
(n − 1)-connected components.

Now suppose that Δr(X ∩ ⋃k
i=1 vi) is (n − 1)-connected for some k ≥ 1. We

have

X ∩
k+1⋃
i=1

vi = (X ∩ vk+1) ∪ (X ∩
k⋃

i=1

vi).
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Since the closed r-neighborhood of a union of two sets equals the union of their
r-neighborhoods, it follows that

Δr(X ∩
k+1⋃
i=1

vi) = Δr(X ∩ vk+1) ∪ Δr(X ∩
k⋃

i=1

vi).

Let us denote by f a common face of voxel vk+1 ∈ W (X) and the polyhedral
complex composed by the voxels v1, v2, . . . , vk, i.e., f ⊂ vk+1 ∩⋃k

i=1 vi. W.l.o.g.,
we can consider the case where f is a facet of vk+1 (i.e., a cell of topological
dimension n − 1), the cases of lower dimension faces being analogous. Let H be
the hyperplane in R

n which is the affine hull of f . Let Zn−1
H be the subset of the

set of grid-points Z
n contained in H.

By Claim 3, there is a point x ∈ Cl(X) ∩ f . Consider the n-ball Bn(x, r).
Then Bn−1(x, r) = Bn(x, r) ∩ H is an (n − 1)-ball with the same center and
radius. Applying Fact 1 to Bn−1(x, r) in the (n − 1)-dimensional hyperplane H,
we obtain that Bn−1(x, r) contains in its interior at least one grid point p ∈ Z

n−1
H ,

which is a vertex of facet f . Since x ∈ Cl(X) is a limit point of X, there exists
a point y ∈ X, such that the ball Bn−1(y, r) contains p, too. By construction,
p is common for the sets Δr(X ∩ vk+1) and Δr(X ∩ ⋃k

i=1 vi). The former is
(n − 1)-connected by the same argument used in the induction basis, while the
latter is (n − 1)-connected by the induction hypothesis. Then by Fact 3, their
union Δr(X ∩ ⋃k+1

i=1 vi) is (n − 1)-connected, as well. This establishes Part 1.
Part 2. The proof of this part is similar to the one of Part 1. Note that in

the special case where the set X is contained in a single voxel v1 (and thus
X1 = X ∩ v1 = X is contained in v1, too), and if

√
n − 1/2 < r <

√
n/2, then

it is possible to have Δr(X) = Δr(X1) = ∅ (for instance, if X consists of a
single point that is the center of v1). Then the statement follows immediately.
Suppose that this is not the case. By definition, Δr(X1) =

⋃
x∈X1

B(x, r)Z. For
any x ∈ X1, B(x, r)Z is (n − 1)-connected by Fact 4. We also have that any of
the nonempty sets B(x, r)Z contains a vertex of v1. Since any two vertices of a
grid cube are at least 0-adjacent, it follows that any subset of vertices of v1 is at
least 0-connected. Then by Fact 2, Δr(X1) is at least 0-connected.

The rest of the proof parallels the one of Part 1, with the only difference
that point q is common for the sets Δr(X ∩ vk+1) and Δr(X ∩ ⋃k

i=1 vi), each of
which is 0-connected (the former by an argument used in the induction basis,
and the latter by the induction hypothesis). Then Fact 3 implies that their union
Δr(X ∩ ⋃k+1

i=1 vi) is 0-connected, as stated.
Figure 1 illustrates that the obtained bounds for r are the best possible: if r

equals
√

n/2 (resp.
√

n − 1/2), then Δr(X) may not be (n− 1)-connected (resp.
0-connected). This completes the proof of the theorem. �

The proof of Theorem1 implies the following corollary.

Corollary 1. If X ⊆ R
n (n ≥ 2) is connected, then Δr(X) is (n−1)-connected

for all r ≥ √
n/2, and Δr(X) is at least 0-connected for all r ≥ √

n − 1/2.
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Fig. 1. Top: Offset radius r =
√

2/2, Bottom: offset radius r = 1/2. In both figures: X
is the thick line segment with missing midpoint marked by a hollow dot, the shaded
region is the offset, the offset discretization consists of the large thick dots, the hollow
dots on the offset boundary do not belong to the offset and to the discretization.

The above in turn implies:

Corollary 2. Let X ⊂ R
n (n ≥ 2) be such that U(X, r) is connected for some

r > 0. Then Δr+
√
n/2(X) is (n − 1)-connected, and Δr+

√
n−1/2(X) is at least

0-connected.

4 Concluding Remarks

In this note we obtained theoretical conditions for connectedness of offset dis-
cretizations of sets in higher dimensions. An important future task is seen in com-
puter implementation and testing the topological properties and visual appear-
ance of offset discretizations of varying radius. It would also be interesting to
study similar properties of other basic types of discretization.
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Abstract. In this study the Voronoi interpolation is used to interpolate
a set of points drawn from a topological space with higher homology
groups on its filtration. The technique is based on Voronoi tessellation,
which induces a natural dual map to the Delaunay triangulation. Advan-
tage is taken from this fact calculating the persistent homology on it after
each iteration to capture the changing topology of the data. The bound-
ary points are identified as critical. The Bottleneck and Wasserstein dis-
tance serve as a measure of quality between the original point set and the
interpolation. If the norm of two distances exceeds a heuristically deter-
mined threshold, the algorithm terminates. We give the theoretical basis
for this approach and justify its validity with numerical experiments.

Keywords: Interpolation · Persistent homology · Voronoi
triangulation

1 Introduction

Most interpolation techniques ignore global properties of the underlying topolog-
ical space of a set of points. The topology of an augmented point set depends on
the choice of interpolant. However, it does not depend on the topological struc-
ture of the data set. The Voronoi interpolation is a technique considering these
issues [3]. The algorithm has been invented by Sibson [21]. Using Voronoi trian-
gulation to determine the position of a new point respects the topology in terms
of simple-homotopy equivalence. For this an implicit restriction to a closed sub-
set of the embedded space is used, see Fig. 2. The closure of this subset depends
on the metric, in Euclidean space it is flat. This restriction, also called clipping,
leads to varying results for interpolation according to the choice of clip. The clip
does not represent the intrinsic geometry nor the topology of the data, but that
of the surrounding space. This leads to artifacts during interpolation.

Persistent homology encodes the topological properties and can be calcu-
lated in high dimensions. Thus, it is used as indicator for such artifacts [25]. In
particular, this measurement of topological properties behaves stable, i.e. small
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changes in the coordinate function value also cause small changes in persistent
homology [9]. Efficient data structures and algorithms have been designed to
compute persistent homology [24,25] and scalable ways to compare persistence
diagrams using the Wasserstein metric have been developed [8]. This paper uses
persistent homology to decide whether a topological change occurs or not.

Up to this point it is an open problem to detect these errors and to terminate
the algorithm in time. Our contribution to a solution is divided into three parts:

– We introduce persistent homology as a stopping-criterion for interpolation
methods. The distance between two persistence diagrams is an indicator of
topological changes during augmentation.

– We cover the connection of the Voronoi tessellation to the Delaunay triangu-
lation via duality. It is shown that the Delaunay complex is simple-homotopy
equivalent to the Čech complex. We further show that the Delaunay complex
is sufficient to compute persistence diagrams.

– We investigate the method on a signature data set. It provides interesting and
visually interpretable topological features due to the topography of letters.
Higher homology groups such as H1 and H2 may appear on the filtration of
a signature. This often represents an insurmountable hurdle for other inter-
polation techniques.

2 Simplicial Complexes and Filtrations

Taking into account the topology of data is beneficial for interpolation, due to
the assumption that the point set lies on a topological or even smooth manifold,
having a family of smooth coordinate systems to describe it. Another hypothesis
says, that the mutual arrangement of every dataset forms some ‘shape’ [25],
which characterizes the manifold. If the point set changes its shape, it is no
longer identifiable with this manifold.

Embedded simplicial complexes, build out of a set of simplices, are suitable
objects to detect such shapes, by computing their homology groups. Simplices,
denoted by σ, are the permuted span of the set X = {x0, x1, . . . , xk} ⊂ R

d with
k+1 points, which are not contained in any affine subspace of dimension smaller
than k [19]. A simplex forms the convex hull

σ :=

{
x ∈ X

∣∣∣∣
k∑

i=0

λixi with
k∑

i=0

λi = 1 and λi ≥ 0

}
. (1)

Simplices are well-defined embeddings of polyhedra. ‘Gluing’ simplices together
at their faces, we can construct simplicial complexes out of them. Faces are meant
to be h-dimensional simplices or h-simplices. Informally, the gluing creates a
series of k-simplices, which are connected by h-simplices, that satisfy h < k. A
finite simplicial complex denoted by K and embedded into Euclidean space is
a finite set of simplices with the properties, that each face of a simplex of K is
again a simplex of K and the intersection of two simplices is either empty or a
common face of both [19].
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We want to take into account the systematic development of a simplicial
complex upon a point cloud. This is called filtration and it is the decomposition
of a finite simplicial complex K into a nested sequence of sub-complexes, starting
with the empty set [10]:

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K, (2)

Kt+1 = Kt ∪ σt+1, for t ∈ {0, . . . , n − 1}. (3)

In practice a parameter r is fixed to determine the step size of the nested com-
plexes. This can be thought as a ‘lens’ zooming into a certain ‘granularity’ of
the filtration. In the following, we present four different simplicial complexes and
their theoretical connection.

2.1 Čech Complex

Let the radius r ≥ 0 be a real number and B(x, r) = {y ∈ R
d | ||x − y|| ≤ r}

the closed ball centered around the point x ∈ X ⊆ R
d. The Čech complex for a

finite set of points X is defined as

Čech(X, r) = {U ⊆ X |
⋂

x∈U

B(x, r) 	= ∅}. (4)

By ||·|| we denote consequently the L2-norm. In terms of abstract simplicial
complexes (see Sect. 7), the Čech complex is the full abstract simplex spanned
over X [2]. According to the Nerve lemma it is homotopy-equivalent to the
union of balls B(X, r) =

⋃
x∈U B(x, r) [7]. Spanning the simplicial complex for

r = supx,y∈U ||x−y||, we get the full simplex for the set U . For two radii r1 < r2
we get a nested sequence Čech(X, r1) ⊂ Čech(X, r2). This implies that the Čech
complex forms a filtration over U and therefore a filtration over the topological
space X if U = X [2]. These properties make the Čech complex a very precise
descriptor of the topology of a point set. The flip side of the coin is that the Čech
complex is not efficiently computable for large point sets. A related complex is
therefore presented next, which is slightly easier to compute.

2.2 Vietoris-Rips Complex

The Vietoris-Rips complex Rips(X, r) with vertex set X and distance threshold
r is defined as the set

Rips(X, r) =
{

U ⊆ X

∣∣∣∣ ||x − y|| ≤ r, for all x, y ∈ U

}
. (5)

The Vietoris-Rips complex requires only the comparison of distance measures
to be obtained. It spans the same 1-skeleton as the Čech complex and fulfills
for an embedding into any metric space the following relationship [5, p. 15]:
Rips(X, r) ⊆ Čech(X, r) ⊆ Rips(X, 2r). To see this, we choose a simplex
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Fig. 1. Four of five geometric complexes appearing in the collapsing sequence of the
Čech-Delaunay Collapsing Theorem [2]. From left to right : a high dimensional Čech
complex projected onto the plane, the Čech-Delaunay complex, the Delaunay complex,
the Witness complex, which is an outlier in the row due to the changing shape by
different Witness sets (white bullets) and the Wrap complex.

σ = {x0, x1, . . . , xk} ∈ Rips(X, r). The point x0 ∈ ⋂k
i=0 B(xi, r) must be within

the intersection of closed balls with radius r of all points. Now we choose a
σ = {x0, x1, . . . , xk} ∈ Čech(X, r), then there is a point y ∈ R

d within the inter-
section y ∈ ⋂k

i=0 B(xi, r), which is the desired condition d(xi − y) ≤ r for any
i = 0, . . . , k. Therefore, for all i, j ∈ {0, . . . , k} the following (in)equality applies:
d(xi − xj) ≤ 2r and σ ∈ Rips(X, 2r) (Fig. 1).

The calculation time for the Vietoris-Rips complex is better than for the
Čech complex, with a bound of O(n2) for n points [24]. As a third complex
we introduce the α-complex or Delaunay complex, for which the definition of
Voronoi cells and balls are prerequisite.

2.3 Delaunay Complex

If X ⊂ R
d is a finite set of points and x ∈ X, then the Voronoi cell or also

Voronoi region of a point x ∈ X is given by

Vor(x) =
{

y ∈ R
d

∣∣∣∣ ||y − x|| ≤ ||y − z||, for all z ∈ X

}
. (6)

The Voronoi ball of x with respect to X is defined as the intersection of
the Voronoi region with the closed ball of given radius around this point, i.e.
VorBall(x, r) = B(x, r) ∩ Vor(x) [2]. The Delaunay complex on a point set X is
defined as

Del(X, r) =

{
U ⊆ X

∣∣∣∣ ⋂
x∈U

VorBall(x, r) 	= ∅
}

. (7)

There is a fundamental connection between the union of all Voronoi balls over X
and the Delaunay complex. The idea is to find a good cover that does represent
the global topology. Taking the topological space X and U =

⋃
i∈I Ui being an

open cover, we define the Nerve of a cover as its topological structure. Therefore,
the empty set ∅ ∈ N(U) is part of the Nerve and if

⋂
j∈J Uj 	= ∅ for a J ⊆ I,

then J ∈ N(U). We consider U to be a good cover, if for each σ ⊂ I the set
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⋂
i∈σ Ui 	= ∅ is contractible, or in other words if it has the same homotopy type

as a point. In this case the Nerve N(U) is homotopy equivalent to
⋃

i∈I Ui.
Most interestingly, the Delaunay complex Delr(X) of a point set X is iso-

morphic to the Nerve of the collection of Voronoi balls. To see this, we con-
struct Voronoi regions for two different sets. Thus, we denote the Voronoi region
Vor(x, r, U) of a point within a set U . Be Vor(x, r, U) ⊆ Vor(x, r, V ) for each
open set U ⊆ V ⊆ X and all x ∈ X. We obtain the largest Voronoi ball for
U = ∅ and the smallest Voronoi ball for U = X. In the first case each region is a
ball with radius r and in the second case the Voronoi balls form a convex decom-
position of the union of balls. We select a subset U and restrict the Delaunay
complex to it by taking into account only the Voronoi balls around the points in
U . It is called selective Delaunay complex and contains the Delaunay and Čech
complex in its extremal cases:

Del(X, r, U) =

{
V ⊆ X

∣∣∣∣ ⋂
x∈V

VorBall(x, r, U) 	= ∅
}

. (8)

Since the union of open balls does not depend on U , the Nerve lemma implies,
that for a given set of points X and a radius r all selective Delaunay complexes
have the same homotopy type. This also results in Del(X, r, V ) ⊆ Del(X, s, U)
for all r ≤ s and U ⊆ V . The proof has been given first by [2, §3.4].

2.4 Witness Complex

Through the restriction of the faces to randomly chosen subsets of the point
cloud the filtration is carried out on a scalable complex, which is suitable for
large point sets. We call these subsets Witnesses W ⊂ R

d and L ⊂ R
d landmarks.

The landmarks can be part of the Witnesses L ⊆ W , but do not have to. Then
σ is a simplex with vertices in L and some points w ∈ W . We say that w is
Witnessed by σ if ||w −p|| ≤ ||w − q||, for all p ∈ σ and q ∈ L\σ. We further say
it is strongly Witnessed by σ if ||w − p|| ≤ ||w − q||, for all p ∈ σ and q ∈ L. The
Witness complex Wit(L,W ) consists of all simplices σ, such that any simplex
σ̃ ⊆ σ has a Witness in W and the strong Witness complex analogously.

The homology groups of the Witness complex depend strongly on the land-
marks. In addition to equally distributed initialization, strategies such as sequen-
tial MaxMin can lead to a more accurate estimate of homology groups [22]. Its
time bound for construction is O (|W |log|W | + k|W |) [5].

3 Persistent Homology Theory

We are particularly interested in whether a topological space can be continu-
ously transformed into another. For this purpose its k-dimensional ‘holes’ play
a central role. Given two topological spaces M and N we say that they have the
same homotopy type, if there exists a continuous map h : M × I → N , which
deforms M over some time interval I into N . But it is very difficult to obtain
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homotopies. An algebraic way to compute something strongly related is homol-
ogy. The connection to homotopy is established by the Hurewicz Theorem. It
says, that given πk(x,X), the k-th homotopy group of a topological space X in
a point x ∈ X, there exists a homomorphism h : πk(x,X) → Hk(x,X) into the
k-th homology group at x. It is an isomorphism if X is (n − 1)-connected and
k ≤ n when n ≥ 2 with abelianization for n = 1 [17]. In this particular case, we
are able to use an easier to calculate invariant to describe the topological space
of the data up to homotopy. Further we need to define what a boundary and
what a chain is, respectively. We want to describe the boundary of a line segment
by its two endpoints, the boundary of a triangle, or 2-simplex by the union of
the edges and the boundary of a tetrahedron, or 3-simplex by the union of the
triangular faces. Furthermore, a boundary itself shall not have a boundary of
its own. This implies the equivalence of the property to be boundaryless to the
concept of a ‘loop’, i.e. the possibility to return from a starting point to the same
point via the k-simplices, by not ‘entering’ a simplex twice and not ‘leaving’ a
simplex ‘unentered’.

Let σk be a k-simplex of a simplicial complex K := K(X) over a set of points
X. Further, let k ∈ N. The linear combinations of k-simplices span a vector
space Ck := Ck(K) = span

(
σk
1 , . . . , σk

n

)
. This vector space is called k-th chain

group of K and contains all linear combinations of k-simplices. The coefficients
of the group lie in Z and the group structure is established by (Ck,+), with
eCk

= 0 being the neutral element and addition as group operation. A linear
map ∂ : Ck → Ck−1 is induced from the k-th chain group into the (k − 1)-th.
The boundary operator ∂k(σk) : Ck → Ck−1 is defined by

∂k(σk) =
k∑

i=0

(−1)i (v0, . . . , v̂i, . . . , vk) . (9)

The vertex set of the k-simplex is v0, . . . , vk. This group homomorphism contains
an alternating sum, thus for each oriented k-simplex (v0, . . . , vk) one element v̂i

is omitted. The boundary operator can be composed ∂2 := ∂◦∂. We observe, that
every chain, which is a boundary of higher-dimensional chains, is boundaryless.
An even composition of boundary maps is zero ∂2Z = 0 [17].

The kernel of (Ck,+) is the collection of elements from the k-th chain group
mapped by the boundary operator to the neutral element of (k − 1)-th: ker ∂k =
∂−1

k (eCk−1) = {σk ∈ Ck | ∂k(σk) = eCk−1}. A cycle should be defined by having
no boundary. From this we get a group of k-cycles, denoted by Zk, which is
defined as the kernel of the k-th boundary operator Zk := ker ∂k ⊆ Ck. Every
k-simplex mapped to zero by the boundary operator is considered to be a cycle
and the collection of cycles is the group of k-cycles Zk. The k-boundaries are
therefore Bk = Im∂k+1 ⊂ Zk. The k-th homology group Hk is the quotient

Hk := Zk/Bk = ker ∂k/Im∂k+1. (10)

We compute the k-th Betti numbers by the rank of this vector space, i.e. βk =
rankHk. In a certain sense the Betti numbers count the amount of holes in a
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topological space, i.e. β0 counts the connected components, β1 the tunnels, β2

voids and so forth. Using Betti numbers, the homology groups can be tracked
along the filtration, representing the ‘birth’ and ‘death’ of homology classes.
The filtration of a simplicial complex defines a sequence of homology groups
connected by homomorphisms for each dimension. The k-th homology group
over a simplicial complex Kr with parameter r is denoted by Hr

k = Hk(Kr).
This gives a group homomorphism gr,r+1

k : Hr
k → Hr+1

k and the sequence [15]:

0 = H0
k

g0,1
k−−→ H1

k

g1,2
k−−→ · · · gn,r

k−−−→ Hr
k

gr,r+1
k−−−−→ Hr+1

k = 0. (11)

The image Imgr,r+1
k consists of all k-dimensional homology classes which are

born in the Kr-complex or appear before and die after Kr+1. The dimension k
persistent homology group is the image of the homomorphisms Hn,r

k = Imgn,r
k ,

for 0 ≤ n ≤ r ≤ r + 1 [15]. For each dimension there is an index pair n ≤
r. Tracking the homology classes in this way yields a multi set, as elements
from one homology group can appear and vanish several times for a certain
parametrization. Thus, we get the following multiplicity:

μn,r
k = (βn,r−1

k − βn,r
k )︸ ︷︷ ︸

Birth in Kr−1, death at Kr.

− (βn−1,r−1
k − βn−1,r

k )︸ ︷︷ ︸
Birth before Kr, death at Kr.

(12)

The first difference counts the homology classes born in Kr−1 and dying when
Kr is entered. The second difference counts the homology classes born before
Kr−1 and dying by entering Kr. It follows that μn,r

k counts the k-dimensional
homology classes born in Kn and dying in Kr [15].

The persistence diagram for the k-th dimension, denoted as P(dimk)
K , is the

set of points (n, r) ∈ R̄
2 with μn,r

k = 1 where R̄ := R ∪ +∞. We define the
general persistent diagram as the disjoint union of all k-dimensional persistence
diagrams PK =

⊔
k∈Z

P(dimk)
K . In this paper we consider H0,H1 and H2. We

now introduce distances for comparison of persistence diagrams. In particular, it
is important to resolve the distance between multiplicities in a meaningful way.
Note that they are only defined for n < r and that no values appear below the
diagonal. This is to be interpreted such that a homology class can’t disappear
before it arises.

4 Bottleneck Distance

Let X be a set of points embedded in Euclidean space and K1
r ,K2

r two simplicial
complexes forming a filtration over X. Both are finite and have in all their sub-
level sets homology groups of finite rank. Note, that these groups change due
to a finite set of homology-critical values. To define the bottleneck distance we
use the L∞-norm ||x − y||∞ = max {|x1 − y1|, |x2 − y2|} between two points
x = (x1, x2) and y = (y1, y2) for x ∈ PK1 and y ∈ PK2 . By convention, it is
assumed that if x2 = y2 = +∞, then ||x − y||∞ = |x1 − y1|. If PK1 and PK2
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are two persistence diagrams and x := (x1, x2) ∈ PK1 and y := (y1, y2) ∈ PK2 ,
respectively, their Bottleneck distance is defined as

dB(PK1 ,PK2) = inf
ϕ

sup
x∈PK1

||x − ϕ(x)||∞, (13)

where ϕ is the set of all bijections from the multi set PK1 to PK2 [5].

4.1 Bottleneck Stability

We consider a smooth function f : R → R as a working example. A point x ∈ R

of this function is called critical and f(x) is called critical value of f if dfx = 0.
The critical point is also said to be not degenerated if d2fx 	= 0. Imf(x) is a
homology critical value, if there is a real number y for which an integer k exists,
such that for a sufficiently small α > 0 the map Hk

(
f−1 ((−∞, y − α])

) →
Hk

(
f−1 ((−∞, y + α])

)
is not an isomorphism. We call the function f tame

if it has a finite number of homology critical values and the homology group
Hk

(
f−1 ((−∞, y])

)
is finite-dimensional for all k ∈ Z and y ∈ R. A persistence

diagram can be generated by pairing the critical values with each other and
transferring corresponding points to it.

The Bottleneck distance of the persistence diagram of two tame functions f, g
is restricted to a norm between a point and its bijective projection. Therefore,
not all points of a multi set can be mapped to the nearest point in another [12].
To see this, we consider f to be tame. The Hausdorff distance dH(X,Y ) between
two multi sets X and Y is defined by

max
{

sup
x∈X

inf
y∈Y

||x − y||∞, sup
y∈Y

inf
x∈X

||y − x||∞
}

. (14)

From the results of [9] it is known that the Hausdorff (in)equality dH(Pf ,Pg) ≤
||f −g||∞ = α holds and that there must exist a point (x1, x2) ∈ Pf which has a
maximum distance α to a second point (y1, y2) ∈ Pg. In particular, (y1, y2) must
be within the square [x1 −α, x1 +α]× [x2 −α, x2 +α]. Let x1 ≤ x2 ≤ x3 ≤ x4 be
points in the extended plane R̄

2. Further, let R = [x1, x2] × [y1, y2] be a square
and Rα = [x1 + α, x2 − α] × [y1 + α, y2 − α] another shrinked square by some
parameter α. Thus, we yield

# (Pf ∩ Rα) ≤ #(Pg ∩ R) . (15)

We need the inequality to find the smallest α such that squares of side-length
2α centered at the points of one diagram cover all off-diagonal elements of the
other diagram, and vice versa with the diagrams exchanged [12]. The persistence
diagrams Pf and Pg satisfy for two tame functions f, g : X → R:

dB (Pf ,Pg) ≤ ||f − g||∞. (16)
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We take two points x = (x1, x2), y = (y1, y2) ∈ Pf and look at the infinite norm
between them in the persistence diagram of f outside the diagonal Δ. In case
that there is no such second point we consider the diagonal itself:

δf = min {||x − y||∞ | Pf − Δ � x 	= y ∈ Pf} . (17)

We choose a second tame function g, which satisfies ||f −g||∞ ≤ δf/2. We center
a square Rα(x) at x with radius α = ||f − g||∞. Applying Eq. 15 yields

μ ≤ #(Pg ∩ Rα(x)) ≤ #(Pf ∩ R(x)2α). (18)

Since g was chosen in such a way, that ||f − g||∞ ≤ δf/2 applies, we conclude
that 2α ≤ δf . Thus, x is the only point of the persistence diagram Pf that is
inside R2α and the multiplicity μ is equal to #(Pg ∩R(x)α). We can now project
all points from Pg in R(x)α onto x. As dH(Pf ,Pg) ≤ α holds, the remaining
points are mapped to their nearest point on the diagonal.

5 Wasserstein Distance

The Wasserstein distance is defined for separable completely metrizable topolog-
ical spaces. In this particular case between the two persistence diagrams PK1 and
PK2 . The Lp-Wasserstein distance W p is a metric arising from the examination
of transport plans between two distributions and is defined for a p ∈ [1,∞) as

dWp(PK1 ,PK2) =

⎛
⎝inf

ϕ

∑
x∈PK1

||x − ϕ(x)||p∞

⎞
⎠

1/p

. (19)

Then ϕ : PK1 → PK2 is within the set of all transportation plans from PK1

to PK2 over PK1 × PK2 . We use the L1-Wasserstein distance. The Wasserstein
distance satisfies the axioms of a metric [23, p. 77]. The transportation problem
can be stated as finding the most economical way to transfer the points from
one persistence diagram into another. We assume that these two persistence
diagrams are disjoint subsets of R̄

2 × R̄
2. The cost of transport is given by

d : R̄2 × R̄
2 → [0,∞), so that ||x − ϕ(x)|| indicates the length of a path. The

transport plan is then a bijection ϕ : PK1 → PK2 from one persistence diagram
to the other. The Wasserstein distance of two persistence diagrams is the optimal
cost of all transport plans. Note, that the L∞-Wasserstein distance is equivalent
to the Bottleneck distance, i.e. dB is the limit of dWp as p → ∞.

5.1 Wasserstein Stability

The distance dWp is stable in a trianguliable compact metric space, which
restricts it to Lipschitz continuous functions for stable results. A function
f : X → Y is called Lipschitz continuous, if one distance (X, dX) is bounded
by the other (Y, dY ) times a constant, i.e. dY (f(x1) − f(x2)) ≤ c · dX(x1 − x2),
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for all x1, x2 ∈ X. For two Lipschitz functions f, g constants b and c exist [13],
which depend on X and the Lipschitz constants of f and g, such that the p-th
Wasserstein distance between the two functions satisfies

dWp(f, g) ≤ c · ||f − g||1−b/p
∞ . (20)

For small enough perturbations of Lipschitz functions their p-th Wasserstein
distance is bounded by a constant. In Fig. 3 the topological development of
handwritings through interpolation is visualized. Equally colored lines represent
the same user and each line represents a signature. The equally colored lines
show very similar behavior and represent the small perturbations, which are
caused by the slight change of letter shape when signing multiple times.

Fig. 2. From left to right : Clipped tessellation. For other manifolds the curvature
should be considered; Tessellation with added point creates a new Voronoi region steal-
ing area from the neighboring regions; The determined weights by the fractional amount
of occupied area; Tessellation with added point.

6 The Natural Neighbor Algorithm

The algorithm re-weights the coordinates of a new point in the convex hull of
a point cloud by the change of Voronoi regions relative to the Voronoi regions
without the additional point, i.e. x̂• =

∑L
l=1 λlx•l. For a set of points X ⊂ R

d

distributed over an embedded manifold M natural neighbors behave like a local
coordinate system for M with their density increasing [4].

The Voronoi tessellation is dual to the Delaunay triangulation, thus we use
the latter for our computation [6, pp. 45–47]. This duality gives a bijection
between the faces of one complex and the faces of the other, including incidence
and reversibility of operations. Both have the same homotopy type. A Voronoi
diagram dgmVor(X) is defined by the union of the Voronoi regions dgmVor(X) :=⋃

x∈X Vor(x), for all x ∈ X and assigns a polyhedron to each point, see Fig. 2.
This interpolation method generalizes to arbitrary dimensions.

The combinatorial complexity of the Voronoi diagram of n points of Rd is at
most the combinatorial complexity of a polyhedron defined as the intersection
of n half-spaces of R

d+1. Due to duality the construction of dgmVor(X) takes
O(n log n + nd/2) [6].
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6.1 Voronoi Tessellation

The Voronoi cells have no common interior, intersect at their boundaries and
cover the entire R

d. The resulting polygons can then be divided into Voronoi
edges and vertices. The natural neighbors of a point are defined by the points of
the neighboring Voronoi polygons [21].

The natural neighbor is the closest point x to two other points y and z
within X. To yield the position of the added point we have to calculate the
Voronoi diagram of the original signature dgmVor(X) and one with an added
point dgm•

Vor(X ∪ x•) =
⋃

x∈X∪x• Vor(x). The latter consists of one Voronoi
region more than the primer, see Fig. 2 (a) and (c). This polygon is part of
dgm•

Vor(X ∪ x•) and contains a certain amount of its ‘area’.
The Voronoi regions sum up to one

∑L
l=1 λl = 1. The Voronoi interpolation

is repeated until the topological stopping condition is met, measured through
the W p-distances of the persistence diagrams PK and PK• . The weights of the
coordinate representation of x• are determined by the quotient of the ‘stolen’
Voronoi regions and the total ‘area’ of the Voronoi diagram with the additional
point according to Eq. 21 [1].

λl =

{
vol(Vor(xl)∩Vor•(x•))

vol(Vor•(x•))
if x ≥ 1,

0 otherwise.
(21)

But to what extent are homology groups preserved if persistent homology is
computed on the Delaunay triangulation?

7 The Simplicial Collapse

The Delaunay triangulation avoids the burden of an additional simplicial struc-
ture for persistent homology. We determine how accurate the persistent homol-
ogy is on this filtration. We use results from simplicial collapse [2], which show
the simple-homotopy equivalence of the Čech and Delaunay complex among
other related simplicial complexes. Simple-homotopy equivalence is stronger than
homotopy equivalence. An elementary simplicial collapse determines a strong
deformation retraction up to homotopy. Hence, simple-homotopy equivalence
implies homotopy equivalence [11, §2]. Under the conditions of the Hurewicz
Theorem we can draw conclusions about the homotopy groups of the data
manifold.

The simplicial collapse is established using abstract simplicial complexes
denoted by K̃. A family of simplices σ of a non-empty finite subset of a set
K̃ is an abstract simplicial complex if for every set σ′ in σ and every non-empty
subset σ′′ ⊂ σ′ the set σ′′ also belongs to σ. We assume σ and σ′ are two sim-
plices of K̃, such that σ ⊂ σ′ and dimσ < dim σ′. We call the face σ′ free, if
it is a maximal face of K̃ and no other maximal face of K̃ contains σ. A sim-
ilar notion to deformation retraction needs to be defined for the investigation
of homology groups. This leads to the simplicial collapse ↘ of K̃, which is the
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removal of all σ′′ simplices, where σ ⊆ σ′′ ⊆ σ′, with σ being a free face. Now we
can define the simple-homotopy type based on the concept of simplicial collapse.
Intuitively speaking, two simplicial complexes are ‘combinatorial-equivalent’, if it
is possible to deform one complex into the other with a finite number of ‘moves’.
Two abstract simplicial complexes K̃ and G̃ are said to have the same simple-
homotopy type, if there exists a finite sequence K̃ = K̃0 ↘ K̃1 ↘ · · · ↘ K̃n = G̃,
with each arrow representing a simplicial collapse or expansion (the inverse oper-
ation). If X is a finite set of points in general position in R

d, then

Čech(X, r) ↘ DelČech(X, r) ↘ Del(X, r) ↘ Wrap(X, r) (22)

for all r ∈ R. For the proof we refer to [2]. The connection in Eq. 22 establishes the
simple-homotopy equivalence of the Čech- and Delaunay complex. We deduce,
that if the underlying space follows the condition of a Hurewicz isomorphism,
all four complexes are suitable for calculating persistent homology as a result of
the simplicial collapse up to homotopy equivalence.
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Fig. 3. Bottleneck and L1-Wasserstein distances between the persistence diagrams in
iteration t and t+1. The persistent homology has been computed on the Čech complex,
Vietoris-Rips complex and the witness complex, respectively. A total of 250 samples
from a signature collection are represented [18]. Each line corresponds to a single sample
and the lines are colored corresponding to one of six selected users in • gray, • black,
• blue, • yellow, • orange and • red. (Color figure online)

8 Numerical Experiments

All source code is written in Python 3.7. The GUDHI [16] library is used for
the calculation of simplicial complexes, filtrations and persistent homology. We
investigate 83 users, considering 45 signatures per user from the MOBISIG sig-
nature database [18], which show the same letters, but are independent writings.
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For each user we have a set of 45 persistence diagrams and a set of 45 correspond-
ing handwritings. In every iteration as many new points are added as are already
in the respective example of a signature. We inserted the points uniformly within
the convex hull of the initial point set, see Fig. 2.

8.1 Experimental Setting

Rips(X) is expanded up to the third dimension. The maximum edge length is
set to the average edge length between two points within the data set. We use
the same r for Čech(X, r) and Rips(X, r), so that Rips(X, r) differs topologically
more from the union of closed balls around each point, but is faster to compute.
Finding an optimal radius as distance threshold is considered open [25], thus we
use r = maxx,y∈X ||x − y|| as empirical heuristic.

The strong Wit(X, r), embedded into R
d, is recalculated for each sample at

each interpolation step. We select uniformly 5% of the points as landmarks. We
set α = 0.01, γ = 0.1 and p = 1.

We assume that the persistence diagrams are i.i.d. A free parameter α quan-
tifies a tolerance to topological change, thus a decision must be made on the
following hypotheses about the distributions of the persistence diagrams:

(a) H0 : Pt
K and Pt+1

K have different underlying distributions and
(b) H1 : Pt

K and Pt+1
K have the same underlying distribution.

We use an asymptotic solution for testing by trimmed Wasserstein distance [14]:

Γ̂ p
γ (Pt

K ,Pt+1
K ) =

1
(1 − 2γ)

⎛
⎝ m∑

j=1

||(Pt
K)j − Pt+1

K )j ||p∞Δγ

⎞
⎠

1/p

. (23)

The trimming bound α ∈ [0, 1/2) results from the integral for the continuous
case as a difference in a finite weighted sum. It is computed using the expected
value of the persistence diagrams and is exact in the limit

∫ 1−γ

γ
f(x)dx =

limΔγ→0

∑
x∈X f(x)Δγ. The critical region for our hypothesis H0 against H1 is

(
nm

n + m

) 1
p Γ̂ p

γ − αp

σ̂γ
≤ zγ , (24)

where zγ denotes the γ-quantile of the standard normal distribution and n = m,
with n being the number of samples. The initial problem can be rephrased as

(a) H0 : Γ p
γ (Pt

K ,Pt+1
K ) > α and

(b) H1 : Γ p
γ (Pt

K ,Pt+1
K ) ≤ α.
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8.2 Evaluation

In Fig. 3, seventh diagram, elementary statistics are computed for the entire
data set such as mean μX , standard deviation σX , variation σX

μX
and dW1 =

dW1(Xorg,X
t). The statistics are also computed for the interpolated data with

topological stop, respectively, marked with ∼.
We achieved an improvement for each measured statistic at each iteration

step using topological stop. In Fig. 3 the topological similarity between the indi-
vidual users are made visual. Rips(X, r) and Del(X, r) seem suitable to estimate
the homology groups, whereas Wit(L,W ) produced far less stable results, due
to the small selection of landmarks.

9 Conclusions

We have discussed the connection of Voronoi diagrams to the Delaunay complex
and its connection to other complexes, which should serve as a basis to explore
related algorithms to the Voronoi interpolation. We investigated into metrics
to measure differences in persistent homology and could visualize the changing
homology groups of the users signatures during interpolation, see Fig. 3. Our
result is a stopping-criterion with a hypothesis test to determine whether the
persistent homology of an interpolated signature still originates from the same
distribution as the source. Our measurements show an improvement of statistics
compared to vanilla Voronoi interpolation. We demonstrated, that – under mild
conditions – the Delaunay complex, Čech-Delaunay complex and Wrap com-
plex can also be used for filtration up to homotopy equivalence. Following open
research questions arose during our investigations:

– The intrinsic geometry of the data points is often not the Euclidean one. On
the other hand side the frequently used embedding of the Voronoi tessella-
tion is. This causes unwanted artifacts. Is there a geometrically meaningful
clipping for general metric spaces, for example using geodesics in a smooth
manifold setting? In which manifold should Del(X) be embedded?

– To our knowledge there is no evidence known that the Voronoi tessellation
obtains the homology groups. According to [20], the Voronoi tessellation is
stable. However, the experiments show that for increasing iterations addi-
tional homology groups appear. Does the Voronoi tessellation preserve homol-
ogy groups and homotopy groups in general metric spaces?
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Abstract. We consider the problem of reconstructing a nanocrystal at
atomic resolution from electron microscopy images taken at a few tilt
angles. A popular reconstruction approach called discrete tomography
confines the atom locations to a coarse spatial grid, which is inspired by
the physical a priori knowledge that atoms in a crystalline solid tend to
form regular lattices. Although this constraint has proven to be powerful
for solving this very under-determined inverse problem in many cases, its
key limitation is that, in practice, defects may occur that cause atoms to
deviate from regular lattice positions. Here we propose a grid-free discrete
tomography algorithm that allows for continuous deviations of the atom
locations similar to super-resolution approaches for microscopy. The new
formulation allows us to define atomic interaction potentials explicitly,
which results in a both meaningful and powerful incorporation of the
available physical a priori knowledge about the crystal’s properties. In
computational experiments, we compare the proposed grid-free method
to established grid-based approaches and show that our approach can
indeed recover the atom positions more accurately for common lattice
defects.

Keywords: Electron tomography · Discrete tomography ·
Mathematical super-resolution · Molecular dynamics · Crystallographic
defects

1 Introduction

Electron tomography is a powerful technique for resolving the interior of nano-
materials. After preparing a microscopic sample, a series of projection images (so
called tilt-series) is acquired by rotating the specimen in the electron microscope,
acquiring data from a range of angles. In recent years, electron tomography has
been successfully applied to reconstruct the 3D positions of the individual atoms
in nanocrystalline materials [14,29,31].

Since the first demonstration of atomic resolution tomography of nanocrystals
in 2010 by discrete tomography [30], a range of tomographic acquisition tech-
niques and reconstruction algorithms have been applied to reconstruct nanocrys-
tals of increasing complexity. In the discrete tomography approach, atoms are
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assumed to lie on a regular lattice and the measured projections can be con-
sidered as atom counts along lattice lines. A key advantage of this approach is
its ability to exploit the constraints induced by the discrete domain and range
of the image. As a consequence, a small number of projection angles (typically
less than 5) can already lead to an accurate reconstruction [7,8]. The theoretical
properties of the discrete reconstruction problem have been studied extensively
with results on algorithm complexity, uniqueness, and stability [4,6,19]. A key
drawback of the discrete lattice assumption when considering real-world appli-
cations to nanocrystal data is that in many interesting cases the atoms do not lie
on a perfect lattice due to defects in the crystal structure or interfaces between
different crystal lattices. In such cases the atoms do not project perfectly into
columns, forming a mismatch with the discrete tomography model.

As an alternative, it has been demonstrated that a more conventional tomo-
graphic series consisting of hundreds of projections of a nanocrystal can be
acquired in certain cases. An image of the nanocrystal is then reconstructed
using sparsity based reconstruction techniques on a continuous model of the
tomography problem. This approach does not depend on the lattice structure
and allows one to reconstruct defects and interfaces [21]. As a downside, the num-
ber of required projections is large and to accurately model the atom positions
the reconstruction must be represented on a high-resolution pixel grid resulting
in a large-scale computational problem. This raises the question if a reconstruc-
tion problem can be defined that fills the gap between these two extremes and
can exploit the discrete nature of the lattice structure while at the same time
allowing for continuous deviations of atom positions from the perfect lattice.

In this paper we propose a model for the atomic resolution tomography prob-
lem that combines these two characteristics. Inspired by the algorithm proposed
in [11], our model is based on representing the crystal image as a superposition
of delta functions with continuous coordinates and exploiting sparsity of the
image to reduce the number of required projections. We show that by incorpo-
rating a physical model for the potential energy of the atomic configuration, the
reconstruction results can be further improved.

2 Problem Setting

In this section we formulate a mathematical model of the atomic resolution
tomography problem and discuss several approaches to solve it. Some of these
approaches assume that the atom locations are restricted to a perfect grid, the
crystal lattice, which corresponds to only one possible local minimum of the
potential energy of the atomic configuration. To overcome certain limitations of
this assumption, we propose an alternative formulation where the atom locations
are allowed to vary continuously and an explicit model of the potential energy
of their configuration is used to regularize the image reconstruction.

An atomic configuration is characterized by a positive measure μ on a
bounded subset X of R

d. We denote the space of such measures by M(X).
The measure represents the electron density, which is the probability that an
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electron is present at a given location. The electron density around an atomic
configuration is highest in regions where atoms are present. In electron tomogra-
phy, electron density is probed by irradiating a sample with a beam of electrons.
The beam undergoes absorption and scattering due to its interactions with the
electrons of the atomic configuration. The transmitted or scattered signal can
then be used to form an image. The Radon transform provides a simplified math-
ematical model of this ray-based image formation process. For d = 2, the Radon
transform Rμ can be expressed as integrals taken over straight rays

R[μ](r, θ) :=
∫

l(r,θ)

dμ, (1)

l(r, θ) = {(x1, x2) ∈ R
2 |x1 cos θ + x2 sin θ = r}, (2)

where we parametrized the rays by the projection angle θ and the distance on
the detector r. The corresponding inverse problem is to recover μ from noisy
observations of y = Rμ + ε. One way to formulate a solution to this problem is
via the following optimisation over the space of measures:

minimize
μ∈M(X)

‖Rμ − y‖22, (3)

which is an infinite dimensional non-negative linear least-squares problem. In
the following, we will introduce a series of discretisations of this optimisation
problem. Numerical schemes to solve them will be discussed in Sect. 3.

In situations where we only have access to data from a few projection angles,
introducing a suitable discretisation of (3) is essential for obtaining a stable
reconstruction. One way to achieve this is to restrict the atom locations to a
spatial grid with n nodes, xn

i=1, and model their interaction zone with the elec-
tron beam by a Gaussian with known shape G. The atom centres are then delta
peaks δxi

on the gridded image domain. The Gaussian convolution of atom cen-
tres can be viewed as the “blurring” produced by thermal motion of atoms.
In fact, it is known from lattice vibration theory that, for large configurations,
the probability density function of an atom around its equilibrium position is a
Gaussian, whose width depends on temperature, dimensionality and interatomic
forces [24]. The discretized measure μ can then be written as

μgrid =
n∑

i=1

wi(G ∗ δxi), (4)

where n is the total number of grid points and weights wi ≥ 0 were introduced
to indicate confidence in the presence or absence of an atom at grid location i.
If we insert (4) in (3) and introduce the forward projection of a single atom as
ψi := R(G ∗ δxi

) we get

‖Rμgrid − y‖22 = ‖R
n∑

i=1

wi(G ∗ δxi) − y‖22

= ‖
n∑

i=1

wiR(G ∗ δxi
) − y‖22 =: ‖

n∑
i=1

ψiwi − y‖22 =: ‖Ψw − y‖22
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The corresponding optimisation problem is given by

minimize
w∈R

n
+

‖Ψw − y‖22, (5)

which is a finite dimensional linear non-negative least squares problem.
The choice of the computational grid in (4) is unfortunately not trivial. Only

in certain situations, one can assume that all atoms lie on a lattice of known
grid size and orientation, and directly match this lattice with the computational
grid. In general, one needs to pick a computational grid of much smaller grid
size. With the data y given, the grid admits multiple solutions of (5) and most
efficient computational schemes tend to pick a blurred, artefact-ridden solution
with many non-zero weights far from the true, underlying μ, as we will demon-
strate in Sect. 4. To obtain a better reconstruction, one can choose to add spar-
sity constraints which embed our physical a priori knowledge that μ originates
from a discrete configuration of atoms. In our model (4), this corresponds to a
w ∈ R

n
+ with few non-zeros entries. To obtain such a sparse solution we can add

a constraint on �0 norm of the weights to the optimisation problem:

minimize
w∈R

n
+

‖Ψw − y‖22
subject to |w|0 ≤ K.

However, this problem is NP-hard [16]. An approximate solution can be found by
replacing the �0 norm with the �1 norm and adding it to the objective function:

minimize
w∈R

n
+

‖Ψw − y‖22 + λ‖w‖1, (6)

where λ is the relative weight of the sparsity-inducing term. This particular
choice of formulation is not always best and alternative formulations of the same
problem exist [16].

For atomic configurations where only one type of atom is present, the weights
can be considered to be one where an atom is present and zero everywhere else.
This corresponds to discretising the range of the reconstructed image. The fully
discrete optimisation problem then becomes:

minimize
w∈{0,1}n

‖Ψw − y‖22. (7)

With image range discretisation, a constraint on the number of atoms is typically
no longer needed because adding an additional atom with weight 1 after all atoms
have been found leads to an increase in the objective function.

Although the optimisation problems (5), (6) and (7) allow for the recovery
of atomic configurations without solving (3), all of them rely crucially on dis-
cretisation of the domain of the reconstructed image, i.e. the assumption that
atoms lie on a grid. However, this assumption is not always true. In particu-
lar, atomic configurations often contain defects where atom positions deviate
from the perfect lattice. Figure 1 shows examples of common lattice defects.
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Fig. 1. Atomic configurations with (a) an interstitial point defect, (b) a vacancy and
(c) an edge dislocation.

In order to resolve these defects correctly, the image domain must be discretized
to higher resolutions, i.e. the grid of possible atom positions must be made finer.
This introduces two main problems: First, making the grid finer for the same
data makes the inverse problem more ill-posed. Second, the computational time
increases significantly even for modestly sized configurations.

In order to overcome these difficulties, we revisit (4) and remove the require-
ment for xi to lie on a grid. The projection of a single atom now becomes a
function of its location x ∈ R

d, ψ(x) := R(G ∗ δx). We keep the image range
discretisation introduced above by requiring wi ∈ {0, 1}. Now, (7) becomes

minimize
x∈Xn,w∈{0,1}n

∥∥∥
n∑

i=1

wiψ(xi) − y
∥∥∥2

2
. (8)

The minimisation over x is a non-linear, non-convex least-squares problem which
has been studied extensively in the context of mathematical super-resolution
[11–13]. In these works, efficient algorithms are derived from relating it back to

Fig. 2. The normalized Lennard-Jones pair potential as a function of normalized inter-
atomic separation.
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the infinite dimensional linear least-squares problem on the space of measures
(3). For instance, for applications such as fluorescence microscopy [11] and ultra-
sound imaging [3], an alternating descent conditional gradient (ADCG) algo-
rithm has been proposed, which we will revisit in the next section. Compared
to these works, we have a more complicated non-local and under-determined
inverse problem and the minimisation over w adds a combinatorial, discrete fla-
vor to (8). To further tailor it to our specific application, we will incorporate
physical a priori knowledge about atomic configurations of crystalline solids by
adding a functional formed by the atomic interaction potentials. This will act as
a regularisation of the underlying under-determined inverse problem.

2.1 Potential Energy of the Atomic Configuration

The total energy of an atomic configuration is the sum of its potential energy
and kinetic energy. As we consider only static configurations, the kinetic energy
of the configuration is zero and the total energy is equal to the potential energy.
In order to compute the potential energy of the atomic configuration, we must
prescribe the interaction between atoms. In this paper, we use the Lennard-
Jones pair potential, which is a simplified model of interatomic interactions.
The Lennard-Jones potential VLJ as a function of interatomic separation r is
given by [18]

VLJ(r) =

⎧⎨
⎩

4ε
[(σ

r

)12

−
(σ

r

)6]
, r < rcut

0, r ≥ rcut
(9)

where ε is the depth of the potential well and σ is the interatomic separation
at which the potential is zero. The separation at which the potential reaches
its minimum is given by rm = 21/6σ. The parameter rcut denotes a cut-off
separation beyond which the potential is inactive. Figure 2 shows the form of
the Lennard-Jones pair potential as a function of interatomic separation. The
potential energy of the atomic configuration is computed by summing over the
pairwise interaction between all pairs of atoms

Vtot(x1,x2, ...,xN ) =
∑
i>j

VLJ(xi − xj). (10)

Adding this energy to the objective in (8) leads to

minimize
x∈C,w∈{0,1}n

∥∥∥
n∑

i=1

wiψ(xi) − y
∥∥∥2

2
+ αVtot(x). (11)

The regularisation parameter, α, adjusts the relative weight of the energy term,
so that by tuning it we are able to move between atomic configurations that are
data-optimal and those that are energy-optimal. The constraint set C ⊂ Xn is
defined by a minimum distance rmin, such that |xi − xj | > rmin, ∀i > j. The
minimum distance, rmin, is chosen to be smaller than the optimal interatomic
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separation rm and allows us to set α to 0 and still avoid configurations where
atoms are placed exactly at the same position. For small separations, the energy
is dominated by the

(
σ
r

)12 term and increases sharply for separations less than
rm. Thus, for non-zero α, configurations where atoms have a separation less than
rm are highly unlikely.

3 Algorithms

In this section we discuss several algorithms to solve the optimisation problems
introduced in Sect. 2.

3.1 Projected Gradient Descent

The non-negative least-squares problem (5) can be solved with a simple iterative
first-order optimisation scheme. At each step of the algorithm, the next iterate
is computed by moving in the direction of the negative gradient of the objective
function. Non-negativity of the weights is enforced by projecting negative iterates
to zero. Mathematically, each iterate is given by

wk+1 =
∏

+

(
wk + tΨT (Ψwk − y)

)
, (12)

where t is the step size and the projection operator is given by∏
+

(·) = max(·, 0). (13)

In the numerical experiments in Sect. 4, we used the SIRT algorithm [23] as
implemented in the tomographic reconstruction library ASTRA [1], which is
based on a minor modification of the iteration described above.

3.2 Proximal Gradient Descent

If we add the non-smooth �1 regularizer and obtain problem (6), we need to
extend (12) to a proximal gradient scheme [27]

wk+1 = proxh

(
wk + tΨT (Ψwk − y)

)
, (14)

where the projection operator (13) is replaced by the proximal operator of the
convex function

h(x) :=

{
λ‖x‖1 x ≥ 0
0 elsewhere

, (15)

which is given by the non-negative soft-thresholding operator

proxh(x) =

{
x − λ, x ≥ λ

0, elsewhere
.

In the numerical experiments in Sect. 4, we used the fast iterative soft-
thresholding algorithm (FISTA) [9] as implemented in the Python library ODL
[2], which is based on a slight modification of the iteration described above.



52 P. S. Ganguly et al.

Algorithm 1. Discrete simulated annealing
1: while β < βmax do
2: Select new atom location: w̃k ∈ arg mink∈C Ψwk − y
3: Add new atom to current configuration: w̃k+1 ← {wk, w̃k}
4: Accept new configuration with a certain probability:
5: if β‖Ψw̃k+1 − y‖2

2 < β‖Ψwk − y‖2
2 then

6: wk+1 ← w̃k+1

7: else
8: Generate random number: t ∈ rand[0, 1)

9: if t < e−β‖Ψw̃k+1−y‖2
2/e−β‖Ψwk−y‖2

2 then
10: wk+1 ← w̃k+1

11: end if
12: end if
13: Move atom: wk+1 ← random move(wk+1)
14: Run acceptance steps 5–13
15: Increase β
16: end while

3.3 Simulated Annealing

For solving the fully discrete problem (7), we used a simulated annealing algo-
rithm as shown in Algorithm1, which consists of two subsequent accept-reject
steps carried out with respect to the same inverse temperature parameter β. In
the first one, the algorithm tries to add a new atom to the existing configuration.
In the second one, the atom locations are perturbed locally. As β is increased
towards βmax, fewer new configurations are accepted and the algorithm converges
to a minimum.

In the atom adding step at each iteration k, the algorithm tries to add an
atom at one of the grid location i where the residual Ψwk − y is minimal (this
corresponds to flipping wk

i from 0 to 1 in (7)). The allowed grid locations belong
to a constraint set C, such that no two atoms are closer than a pre-specified
minimum distance rmin. To perturb the atom positions locally, the algorithm
selects an atom at random and moves it to one of its 4 nearest neighbor locations
at random.

3.4 ADCG with Energy

Variants of the Frank-Wolfe algorithm (or conditional gradient method) [17,22]
have been proposed for solving problems of the form (8) [3,15] without discrete
constraints for w and are commonly known as alternating descent conditional
gradient (ADCG) schemes (see [28] for an analysis specific to multidimensional
sparse inverse problems). Here, we modify the ADCG scheme to

1. incorporate binary constraints on w
2. handle the singularities of the atomic interaction potentials
3. avoid local minima resulting from poor initialisations
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The complete algorithm is shown in Algorithm 2. Essentially, the scheme also
alternates between adding a new atom to the current configuration and optimis-
ing the positions of the atoms.

In the first step, the image domain is coarsely gridded and the objective
function after adding an atom at each location is computed. Locations closer to
existing atoms than rmin are excluded. In the second step, the atom coordinates
are optimized by a continuous local optimisation method. Here, the Nelder-Mead
method [25] implemented in SciPy [32] was used.

Algorithm 2. ADCG with energy
1: for k = 1 : kmax do
2: Compute next atom in grid g:

xnew ∈ arg minxnew∈g,(xk,xnew)∈C ‖ ∑k
i=1 ψ(xi)−y+ψ(xnew)‖+αVtot(x

k,xnew)

3: Update support: xk+1 ← {xk,xnew}
4: Locally move atoms:

xk+1 ← minx∈X ‖Ψμ(xk+1) − y‖2
2 + αV (xk+1)

5: Break if objective function is increasing:
6: if ‖Ψμ(xk+1) − y‖2

2 + αV (xk+1) > ‖Ψμ(xk) − y‖2
2 + αV (xk) then break

7: end if
8: end for

A continuation strategy is used to avoid problems resulting from poor ini-
tilisations: Algorithm2 is run for increasing values of α, starting from α = 0.
The reconstruction obtained at the end of a run is used as initialisation for the
next. In the following section, we demonstrate the effect of increasing α on the
reconstructions obtained and discuss how an optimal α was selected. In the fol-
lowing section, we refer to Algorithm 2 as “ADCG” when used for α = 0 and as
“ADCG with energy” otherwise.

4 Numerical Experiments

We conducted numerical experiments by creating 2D atomic configurations with
defects and using the algorithms discussed in Sect. 3 to resolve atom positions.
In this section we describe how the ground truth configurations were generated
and projected, and compare the reconstruction results of different algorithms.

4.1 Ground Truth Configurations

We generated ground truth configurations using the molecular dynamics software
HOOMD-blue [5,20]. We created perfect square lattices and then induced defects
by adding or removing atoms. The resulting configuration was then relaxed to an
energy minimum using the FIRE energy minimizer [10] to give the configurations
shown in Fig. 1. The following parameter values were used in (9) for specifying
the Lennard-Jones pair potential between atoms.
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Defect type ε σ rcut

Interstitial defect 0.4 0.15 0.4

Vacancy 0.4 0.14 0.4

Edge dislocation 0.4 0.13 0.17

4.2 Discretized Projection Data

We generated two 1D projections for each ground truth atomic configuration
at projection angles θ = 0◦, 90◦. As discussed in Sect. 2, the projection of a
single atom centre is given by a Gaussian convolution followed by the Radon
transform. The Radon transform of a Gaussian is also a Gaussian. Therefore,
we interchanged the two operations in the forward transform to speed up the
computations. The sum over individual projections of atom centres was used as
the total (noise-free) projection. Using the Radon transform in (1), each atom
centre was projected onto a 1D detector, following which it was convolved with
a 1D Gaussian of the form G(z) = e−(z−z0)/ς2 , where z0 is the position of the
atom centre on the detector and ς controls the width of the Gaussian. Finally,
the continuous projection was sampled at a fixed number of points to give rise
to a discrete projection. For our experiments, the ς of the Gaussian function was
taken to be equal to the discretisation of the detector given by the detector pixel
size d. Both were taken to be 0.01.

4.3 Discretisation of Reconstruction Volume

For SIRT, FISTA and simulated annealing (described in Subsects. 3.1, 3.2 and
3.3, respectively), each dimension of the reconstruction area was discretized using
the detector pixel size d. Therefore, there were 1/d × 1/d grid points in total.

Gridding is required for our variant of ADCG (Subsect. 3.4, Algorithm 2) at
the atom adding step. We found that a coarse discretisation, with less than 1/9th

the number of grid points, was already sufficient.

4.4 Comparison Between Reconstructions

The reconstructions obtained with the different algorithms are shown in Fig. 3.
For each reconstruction, data from only two projections were used. Note that two
projections is far from sufficient for determining the correct atomic configuration
and several different configurations have the same data discrepancy.

In the SIRT reconstructions, atom positions were blurred out and none of the
defects were resolved. In all cases, the number of intensity peaks was also different
from the true number of atoms. Although FISTA reconstructions, which include
sparsity constraints on the weights, were less blurry, atoms still occupied more
than one pixel. For both these algorithms, additional heuristic post-processing is
required to output atom locations. In the edge dislocation case, both algorithms
gave rise to a configuration with many more atoms than were present in the
ground truth.
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Fig. 3. Reconstructions of atomic configurations with (a)–(f) an interstitial point
defect, (g)–(l) a vacancy and (m)–(r) an edge dislocation from two projections. For
the simulated annealing, ADCG and ADCG with energy reconstructions, atoms are
colored according to their Euclidean distance from the ground truth. The ground truth
positions are marked with red crosses. In (j)–(l) an extra atom (shown in red) was
present in the reconstructions but not in the ground truth. (Color figure online)
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Fig. 4. Reconstructions of a vacancy defect from three projections. For the simulated
annealing, ADCG and ADCG with energy reconstructions, atoms are colored according
to their Euclidean distance from the ground truth. Ground truth positions are marked
with red crosses. (Color figure online)

Table 1. Number of atoms and mean Euclidean distance from ground truth atoms for
reconstructions obtained with different algorithms. Thresholding was used to compute
the number of atoms detected in the SIRT and FISTA reconstructions.

Interstitial defect Vacancy (3 projs.) Edge dislocation

Number
of atoms

Mean
distance

Number
of atoms

Mean
distance

Number
of atoms

Mean
distance

Ground truth 37 0.0000 48 0.0000 39 0.0000

SIRT 36 – 49 – 66 –

FISTA 36 – 49 – 66 –

Simulated annealing 37 0.0184 48 0.0164 39 0.0159

ADCG 37 0.0138 48 0.0130 39 0.0049

ADCG with energy 37 0.0018 48 0.0024 39 0.0048

The discrete simulated annealing algorithm performed better for all config-
urations. For the interstitial point defect and edge dislocation, the number of
atoms in the reconstruction matched that in the ground truth. The positions of
most atoms, however, were not resolved correctly. Moreover, the resolution, like
in previous algorithms, was limited to the resolution on the detector. We ran the
simulated annealing algorithm for comparable times as the ADCG algorithms
and picked the solution with the least data discrepancy.

Already the ADCG algorithm for α = 0 performed far better than all the
previous algorithms. For the configurations with an interstitial point defect and
edge dislocation, all but a few atom locations were identified correctly. For the
configuration with a vacancy, all atoms were correctly placed. However, an addi-
tional atom at the centre of the configuration was placed incorrectly.
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Adding the potential energy (ADCG with energy) helps to resolve atom
positions that were not identified with α = 0. For the interstitial point defect
and edge dislocation, these reconstructions were the closest to the ground truth.
Adding the energy to the configuration with a vacancy moved the atoms near
the defect further apart but was not able to correct for the extra atom placed.
For this case, we performed an additional experiment with three projections at
0◦, 45◦ and 90◦. These results are shown in Fig. 4. Taking projections at different
angles (e.g. 0◦, 22.5◦ and 90◦) did not improve results. The defect was still not
resolved in the SIRT and FISTA reconstructions. However, the number of atoms
in the simulated annealing, ADCG and ADCG with energy reconstructions was
correct. Once again, the reconstruction obtained with our algorithm was closer
to the ground truth than all other reconstructions, with all but one atom placed
correctly. Reconstructions with 3 projections for the interstitial point defect and
edge dislocation were not significantly different from those with 2 projections.
In Table 1, we report the number of atoms detected and (where applicable)
the mean Euclidean distance of atoms from the ground truth. Note that for
computing the mean distance, we required that the number of atoms detected
in the reconstruction matched that in the ground truth. Thresholding with a
pre-defined minimum distance between peaks was used to detect atoms in the
SIRT and FISTA reconstructions.

4.5 Effect of Adding Energy to Optimisation

To resolve atom positions using Algorithm 2, the contribution of the potential
energy was increased gradually by increasing α. In Fig. 5, we show the effect of
adding energy to the optimisation problem. For α = 0, an initial guess for the
true configuration was obtained. This configuration, though data optimal, was
not the ground truth. A quantitative measure of this mismatch is the Euclidean
distance between the reconstructed atom locations and those in the ground truth.
As α was increased, the reconstructions evolved from being data-optimal to
being energy-optimal. At a certain value of α, the Euclidean distance between
reconstructed and ground truth atom locations decreased to zero. Increasing α
beyond this point led to a large increase in the data discrepancy term due to the
addition of more atoms. For very high values of α, the configurations obtained
were essentially global minima of the potential energy, such as the honeycomb
configuration in Fig. 5(e) for α = 100.0. An optimal value of the regularisation
parameter was selected by increasing α to the point at which more atoms were
added to the configuration and a jump in the data discrepancy was observed.
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Fig. 5. (a)–(d): Increasing the weighting of the energy term from α = 0.0 to α = 10.0
helps to resolve the correct atomic configuration. The reconstructed atoms are colored
according to their Euclidean distance from the atoms in the ground truth. (e) At high
values of α, the reconstructions have a high data discrepancy and correspond to one
of the global minima of the potential energy. (f) From the plots of potential energy
and data discrepancy, an optimal value of α (indicated by the grey line) is selected.
Increasing α beyond this optimal value leads to a large increase in the data discrepancy
due to addition of more atoms.

5 Discussion

The results of our numerical experiments demonstrate that algorithms like
ADCG, which do not rely on domain discretisation, are better at resolving the
defects in the atomic configurations shown in Fig. 1. Moreover, the output from
ADCG is a list of coordinates and not an image like that of SIRT or FISTA,
which requires further post-processing steps to derive the atom locations. Direct
access to coordinates can be particularly useful because further analysis, such as
strain calculations, often require atom positions as input.

Adding the potential energy of the atomic configuration to the optimisa-
tion problem resulted in reconstructions that were closer to the ground truth.
One challenge of the proposed approach (with or without adding the potential
energy) is that the resulting optimisation problem is a non-convex function of
the atom locations. The numerical methods we presented are not intentionally
designed to escape local minima and are therefore sensitive to their initialisation.
To improve this, one important extension would be to also remove atoms from
the current configuration, which might make it possible to resolve the vacancy
defect in Fig. 3 with two projections. More generally, one would need to include
suitable features of global optimisation algorithms [26] that do not compromise
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ADCG’s computational efficiency (note that we could have adapted simulated
annealing to solve (11) but using a cooling schedule slow enough to prevent get-
ting trapped in local minima quickly becomes practically infeasible). A related
problem is to characterize local and global minimizers of (11) to understand
which configurations can be uniquely recovered by this approach and which can-
not. To process experimental data, it may furthermore be important to analyze
the impact of the error caused by the approximate nature of the mathematical
models used for data acquisition (R, G) and atomic interaction (VLJ).

6 Conclusions

In this paper we proposed a novel discrete tomography approach in which the
locations of atoms are allowed to vary continuously and their interaction poten-
tials are modeled explicitly. We showed in proof-of-concept numerical studies
that such an approach can be better at resolving crystalline defects than image
domain discretized or fully discrete algorithms. Furthermore, in situations where
atom locations are desired, this approach provides access to the quantity of inter-
est without any additional post-processing. For future work, we will extend our
numerical studies on this atomic super-resolution approach to larger-sized sce-
narios in 3D, featuring realistic measurement noise, acquisition geometries, more
suitable and accurate physical interaction potentials and different atom types.
This will require additional computational effort to scale up our algorithm and
will then allow us to work on real electron tomography data of nanocrystals.
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Abstract. A frequently investigated problem in various applications of
binary image processing is to ensure the topology preservation of image
operators, where the concept of simple points plays a key role. The lit-
erature primarily focuses on 2D and 3D images that are sampled on the
conventional square and cubic grids, respectively. This paper presents
some new characterizations of simple points on the body-centered cubic
grid.

Keywords: BCC grid · Reduction · Topology preservation · Simple
point

1 Introduction

3D digital pictures are mostly sampled on the cubic grid, whose voxel representa-
tion is based on the tessellation of the Euclidean space into unit cubes. However,
an alternate structure, the body-centered cubic grid (BCC grid), which tessellates
the space into truncated octahedra, also attracted a remarkable scientific interest
in digital image processing and digital geometry due to its advantages over the
cubic model [2,9,13,14,16,17]. First, the BCC grid proves to be more efficient
in the sampling of 3D images, as its packing density (i.e., the ratio between the
volume of the largest ball completely enclosed in a voxel and the volume of the
voxel itself) is lower than for the conventional sampling scheme [13]. Another
benefit of the alternate tessellation lies in its less ambiguous connectivity struc-
ture. The 3D Jordan theorem states that a simple closed surface divides its
complement into two components [10]. In the cubic grid, where neighbors may
share a vertex, an edge, or a face, the discrete analog of the Jordan property
can be satisfied only if we use different connectivity relations for the foreground
and the background. However, in the BCC grid, there are only face-adjacencies,
therefore, no connectivity paradox arises when using this type of grid [13].

Topology preservation is a key issue of digital topology. Existing 3D topo-
logical algorithms are generally assuming the cubic grid, but some algorithms
working on non-standard grids have also been proposed [3,11,12,14]. The verifi-
cation of topology preservation is based on the notion of simple points: an object
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point is simple if its deletion does not alter the topology of the image [7]. Various
characterizations of simple points were proposed for 3D images on the cubic grid
[4,5,8], however, there was only one work specifically devoted to simplicity on
the BCC grid [15]. The purpose of this paper is to fill the gap by presenting
some visual characterizations of simple points on the mentioned non-standard
grid.

The rest of this paper is organized as follows. Section 2 reviews the basic
notions of 3D digital topology concerning the BCC grid. Section 3 gives some
point configurations for effective verification of simplicity and shows easily visu-
alized characterizations of simple points based on the concept of a so-called
attachment set introduced by Kong in [5]. Finally, some concluding remarks are
drawn.

2 Basic Notions

We apply fundamental concepts of digital topology as reviewed by Kong and
Rosenfeld [7].

The BCC grid is defined as the following subset of Z3:

B = {(x, y, z) ∈ Z
3| x ≡ y ≡ z (mod 2)}.

The elements of B are called points. We can define the following three kinds
of neighborhoods of a point p = (px, py, pz) ∈ B:

N6(p) = {q = (qx, qy, qz) ∈ Z
3 | |px − qx| + |py − qy| + |pz − qz| = 2},

N8(p) = {q = (qx, qy, qz) ∈ Z
3 | |px − qx| + |py − qy| + |pz − qz| = 3},

N14(p) = N6(p) ∪ N8(p).

Furthermore, let N∗
k (p) = Nk(p)\{p} (k ∈ {6, 8, 14}). Figure 1a shows the

points of N14(p), and an indexing scheme for these points is given in Fig. 1b,
too. The volumetric elements in the tessellation of B representing the grid points
are truncated octahedra, and we call them voxels (see Fig. 1c). Point p and
q ∈ N∗

14(p) are 14-adjacent.
Let X ⊂ B be a non-empty set of points. The sequence of distinct points in

X 〈x0, x1, . . . xs〉 is called a 14-path of length s from point x0 to point xs in X if
xi is 14-adjacent to xi−1 (i = 1, . . . , s). Note that a single point is a 14-path of
length 0. Two points p, q ∈ B are said to be 14-connected in X ⊆ B if there is a
14-path from p to q in X. The set X is 14-connected in the set of points Y ⊇ X
if any two points in X are 14-connected in Y . The set X is a 14-component in
the set of points Y ⊇ X if X is 14-connected in Y , but the set X ∪ {y} is not
14-connected in Y for any y ∈ Y \X (i.e., X is a maximal 14-connected set of
points in Y ). The number of elements in a set S of points is denoted by |S|.

Following the concept of digital pictures in [7], we define the (14, 14) binary
digital picture as a quadruple P = (B, 14, 14, B). Each point in B ⊆ B is called
a black point and has a value of 1 assigned to it. Picture P is finite if it contains
finitely many black points. Each point in B\B is called a white point and has a
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Fig. 1. Elements of N14(p) in B (a). The set N6 of the central point p ∈ B contains p
and the six points marked “♣”. The set N8 contains p and the eight points marked “�”.
Indexing scheme for the points of N∗

14(p) (b). Voxel representation of these points (c).

value of 0 assigned to it. 14-adjacency is associated with both black and white
points. A black component or an object is a 14-connected set of points in B, while
a white component is a 14-connected set of points in B\B. Here we assume that
a picture contains finitely many black points. A black point is called a border
point in a picture if it is 14-adjacent to at least one white point. A black point
p is an isolated pixel in picture (B, k, k̄, B) if it forms a singleton object (i.e.,
N∗

14(p) ∩ B = ∅). In a finite picture, there is a unique white component that is
called the background . A finite white component is called a cavity .

A reduction transforms a binary picture only by changing some black points
to white ones (which is referred to as the deletion of 1’s). There are some generally
agreed conditions in [5] to verify the topological correctness of such a transform:
A 3D reduction does not preserve topology [5] if

• any object is split or is completely deleted,
• any cavity is merged with another cavity or with the background,
• a new cavity is created, or
• a hole/tunnel (that a donut has) is eliminated or created.

The above conditions can be mathematically confirmed by investigating topo-
logical invariants such as the Betti numbers or the genus [1].

A simple point is a black point whose deletion is a topology preserving
reduction [7].

3 Characterizations of Simple Points

For 3D pictures sampled on the cubic grid, it was earlier proved that simplicity is
a local property that can be decided by investigating the 3×3×3 neighborhood
[5]. Later, Strand and Brunner adapted this result for the BCC grid:
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Theorem 1. [15] Let p be a border point in a (B, 14, 14, B) picture. Then p is
a simple point if and only if the following conditions hold:

1. Point p is 14-adjacent to just one 14-component of N∗
14(p) ∩ B.

2. Point p is 14-adjacent to just one 14-component of N14(p)\B.

Figure 2 shows some illustrative examples for Theorem 1.
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Fig. 2. Examples for simple and non-simple points. The positions marked “•” and
“◦” represent black and white points, respectively. Black point p is simple only in
configuration (a), where both Conditions 1 and 2 of Theorem 1 are satisfied. In example
(b), p is an isolated black point, while in (c) we can find two 14-components in N∗

14(p) ∩
B, hence in both cases Condition 1 of Theorem 1 is violated. Configuration (d) depicts a
case where there exist two 14-components in N14(p)\B, thus Condition 2 of Theorem 1
does not hold.

A straightforward consequence of Theorem 1 is the following duality theorem:

Proposition 1. Point p is simple in picture (B, 14, 14, B) if and only if it is
simple in picture (B, 14, 14, B ∪ {p}).
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To make the verification of the conditions in Theorem 1 easier, this paper
introduces here some configurations, so-called matching templates. A black point
is simple if at least one template in the set of templates matches it. We can group
the possible cases for the simplicity of point p by the number of black points in
N∗

8 (p). For an easier discussion, let us refer to such black points as the strong
black neighbors of p, and the white points in N∗

8 (p) as the strong white neighbors
of p. We call a template as a base template, if it depicts at most four strong black
neighbors.

The base matching templates are presented in Fig. 3. Let us denote T the
set of templates composed by the base matching templates and all their rotated,
reflected, and inverted versions. By inversion of a template, we mean that we
change the color of all their points but p from black to white and from white
to black. Thus, by inverting some base templates we can also get further tem-
plates where p contains at least five strong black neighbors (i.e., at most three
white strong neighbors). Note that if p has four strong black neighbors in a base
template, then the inversion results in another base template.

The following notations are used: Each “•” matches a black point; each “◦”
matches a white point; the position marked “.” depicts either a black or a white
point, which we call a “don’t care” point. The central position denoted by p
represents a black point in P. In order to reduce the number of templates,
additional notations are also used. If a configuration contains elements marked
b and w, then b matches a black point or w matches a white point. (Note that if
we invert such a template, then b and w switch their position.) Positions s and
t yield two points of different colors.

Now we show that the introduced templates indeed characterize simple
points.

Theorem 2. A black point p is simple in a (14, 14) picture, if and only if it
matches an element of the set of matching templates T .

Proof. It can be readily seen that in each base matching template the following
properties hold:

– There is at least one black point and one white point in it.
– Any two black points are 14-connected, and also any two white points are

14-connected. (This also holds for the points marked b, w, s, and t, if we
consider choosing their color as described above.)

– Each “don’t care” point is 14-adjacent to both a black and a white point, but
it is not 14-adjacent to any other “don’t care” point.

Therefore, by Theorem 1, each base matching template depicts a simple
point, and the same can be obviously said for its rotated and reflected versions.
Furthermore, note that if we invert a template, then by Proposition 1, the result-
ing template also matches a simple point.

It is also easy to verify that if we change the color of some points in any
template, then either we get another template of T , or the connectedness of
some points of the same color will be broken. Hence, if p does not match any of
the templates of T , then p is not simple by Theorem 1. �
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Fig. 3. Base matching templates of T for characterizing simple points in (14, 14)
pictures. All their rotated, reflected, and inverted versions match simple points, too.
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Kong proposed another easily visualized characterization of simple points on
conventional orthogonal images by using the concept of an attachment set [5].
In the remaining part of this section, two possible adaptations of his model for
the BCC grid will be provided, and for this aim, we follow some notions in [5].

Let UO(p) = {f1, . . . , f14} denote the boundary of voxel p that is the union
of its fourteen faces, where voxels p and pi share face fi (i = 1, . . . , 14) (see
Fig. 1b). Two faces in the universe set UO(p) are adjacent if they share an edge.
A set of n faces (1 ≤ n ≤ 14) F ⊆ UO(p) is connected, if its elements can be
arranged in a sequence 〈fi1 , . . . , fin〉 such that fik and fik+1 are adjacent for
each k = 1, . . . , n − 1.

Let us suppose that p is an object voxel in picture P = (B, 14, 14, B). Then
the PO-attachment set of p is defined as follows:

AO(p) = { fi | fi ∈ U(p) and pi ∈ B }.

Its complement A(p) is defined as

AO(p) = U(p) \ A(p).

(In the above notation, letter O refers to the “octahedron-based” type of
attachment sets, which makes a distinction from the other proposed adaptation,
as we shall see later in this chapter.)

The next proposition points to a straightforward property of attachment sets:

Proposition 2. Let p be an object voxel in picture (B, 14, 14, B), and let pi, pj ∈
N14 ∩ B be two 14-adjacent voxels. Then, fi, fj ∈ AO(p) are adjacent faces.

Using the above terminology, we can formulate the following theorem, simi-
larly to the orthogonal case in [5]:

Theorem 3. Let P = (B, 14, 14, B), p ∈ B, and let AO(p) be the PO-
attachment set of p. Then, p is simple in P if and only if both AO(p) and its
complement, AO(p) are non-empty and connected.

Proof. Let us suppose that p is simple. Then, from Theorem 1 follows that both
sets N∗

14(p) ∩ B and N∗
14(p) ∩ B are non-empty and connected.

The non-emptiness of N∗
14(p) ∩ B and N∗

14(p) ∩ B implies that at least one
object voxel and one background voxel shares a face each with p, which means
that both AO(p) and AO(p) are non-empty.

If |N∗
14(p) ∩ B| = 1, then AO(p) contains only one face, therefore AO(p) is

trivially connected. Let us assume that |N∗
14(p) ∩ B| ≥ 2. The connectedness of

N∗
14(p) ∩ B means that between any two points pi, pj ∈ N∗

14(p) ∩ B, there is a
sequence 〈pi = pl1 , pl2 . . . , pln = pj〉 such that plk and plk+1 are adjacent for each
k = 1, . . . , n−1. By Proposition 2 and the definition of connectedness in AO(p),
we can also conclude that the elements of AO(p) can be arranged in a sequence
〈fl1 , . . . , fln〉 such that flk and flk+1 are adjacent for each k = 1, . . . , n − 1.
Hence, AO(p) is connected, which, together with Proposition 1 also concludes
that AO(p) is connected.
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If p is not simple, then, based on the equivalence given in Theorem 1, it can
be shown similarly to the previous case that at least one of the sets AO(p) or
AO(p) is not connected or empty. �

Although the voxels in the BCC grid do not form cubes, we can also give
a “cube-based” adaptation of attachment sets in B, similarly to the model pro-
posed for the cubic grid in [5]. For this purpose, we consider a unit cube C in
the Euclidean space whose center is a point p in B and whose vertices, edges,
and faces are the elements of the following sets, respectively:

V = {vi | vi coincides with pi ∈ N∗
8 (p)},

E = {ei,j | ei,j connects vi and vj in C},
F = {fi |fi intersects the line segment between p and pi+8 ∈ N∗

6 (p)}.

Let UC(p) = V ∪{ei,j\V | ei,j ∈ E}∪{fi\E | fi ∈ F} , i.e., this set contains
altogether twenty-six elements in the boundary of the cube: eight vertices, twelve
open edges (without vertices), and six open faces (without edges and vertices).
We say that edge ei,j (with its vertices) is the closure of open edge ei,j\V , and
face fi (with its edges and vertices) is the closure of open face fi\E. Elements
x, y ∈ UC(p) are adjacent if y ∈ UC(p)\V (i.e. y is an open edge or an open
face) and the closure of y contains x or vice versa.

A set S ⊆ UC(p) is connected, if its elements can be arranged in a sequence
〈si1 , . . . , sin〉 such that sik and sik+1 are adjacent for each k = 1, . . . , n − 1. We
must introduce some further notations to refer to the special subsets of UC(p):

– U1 = {vi | pi ∈ N8(p) ∩ B},
– U2 = {ei,j | pi, pj ∈ N8(p) ∩ B},
– U3 = {fi\E | pi+8 ∈ N6(p) ∩ B}.

Now we proceed to define the PC-attachment set of p and it’s complement :

AC(p) = U1 ∪ U2 ∪ U3,

AC(p) = UC(p) \ AC(p).

(Here, the letter C refers to the “cube-based” type of attachment sets.)
By examining the possible configurations of two 14-adjacent points, we can

formulate the following two observations.

Proposition 3. Two points pi, pj ∈ N8(p)∩B are 14-adjacent in B, if and only
if vi, vj, and the open edge ei,j are all elements of AC(p).

Proposition 4. Two points pi ∈ N6(p) and pj ∈ N8(p) are 14-adjacent in B, if
and only if pi and the open face fj−8 are adjacent elements in AC(p).

The next theorem states a similar equivalence as Theorem 3.

Theorem 4. Let P = (B, 14, 14, B), p ∈ B, and let AC(p) be the PC-
attachment set of p. Then, p is simple in P if and only if both AC(p) and its
complement, AC(p) are non-empty and connected.
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Proof. The proof can be done in an analogous way to that given for the previ-
ous theorem. The only critical difference lies in the verification of whether the
adjacency of two points pi, pj ∈ N∗

14(p) ∩ B implies the connectedness of the
corresponding subset of AC(p):

– If pi, pj ∈ N8(p) ∩ B, then by Proposition 3, these points are connected by
the open edge ei,j in AC(p).

– If pi ∈ N6(p) ∩ B and pi ∈ N8(p) ∩ B, then by Proposition 4, pi is adjacent
to the open face fj−8 in AC(p). �

Figure 4 gives some illustrative examples for Theorems 3 and 4. The drawback
of the 3D representations of attachment sets is that we cannot see all faces of
the voxel on them. In order to get rid of this problem, Kong proposed the
use of Schlegel diagrams, which are special n − 1 dimensional projections of
n dimensional polyhedra, thereby we can get a planar representation of the
boundary of voxels [6]. Figure 5 depicts the Schlegel diagrams associated with

•
◦ ◦

◦ •
◦

◦ p ◦
•
◦ ◦

• ◦
◦

(a)
◦

◦ ◦
• ◦

◦
◦ p •

•
◦ ◦

• ◦
◦

(b)

Fig. 4. Examples for PO(p)- and PC(p)-attachment sets. Point p is simple in (a),
but it is not simple in (b) as AO(p) and AC(p) are not connected. The gray faces of
the truncated octahedron represent elements of AO(p), while its white faces belong
to AO(p). The gray faces, thick line segment, and black vertices of the cubes at the
right side represent elements of AC(p), while the white faces, dashed line segments,
and white vertices are members of AC(p).
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the attachment sets depicted in Fig. 4. Note that in each case one face of the
voxel is not shown in the interior of the diagrams: that face is considered to
correspond to the outside of the diagram.

Fig. 5. The Schlegel diagrams representing the voxels in Fig. 4. The gray faces in the
left diagrams show elements of AO(p), while the white faces belong to AO(p). The gray
faces, thick line segment, and black vertices in the right diagrams depict elements of
AC(p), while the white faces, dashed line segments, and white vertices are members of
AC(p).

4 Conclusion and Future Work

This work discusses some new characterizations to verify the simplicity of points
in (14, 14) pictures. First, simple points were illustrated with some matching
templates. In addition, an “octahedron-based” and a “cube-based” adaptation of
Kong’s attachment set were also proposed.

It should be pointed out that, although the concept of simple points helps us
to validate topology preservation, simplicity in itself is generally not sufficient to
ensure the topological correctness of parallel operators. Therefore, future work
will focus on the establishment of some sufficient conditions for reductions to
preserve topology on the BCC grid.
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Abstract. In this paper, we prove that the two flavours of well-compo-
sedness called Continuous Well-Composedness (shortly CWCness), stat-
ing that the boundary of the continuous analog of a discrete set is a
manifold, and Digital Well-Composedness (shortly DWCness), stating
that a discrete set does not contain any critical configuration, are not
equivalent in dimension 4. To prove this, we exhibit the example of a con-
figuration of 8 tesseracts (4D cubes) sharing a common corner (vertex),
which is DWC but not CWC. This result is surprising since we know
that CWCness and DWCness are equivalent in 2D and 3D. To reach our
goal, we use local homology.

Keywords: Well-composed · Topological manifolds · Critical
configurations · Digital topology · Local homology

1 Introduction

Digital well-composedness (shortly DWCness) is a nice property in digital topol-
ogy, because it implies the equivalence of 2n and (3n − 1) connectivities [3] in a
subset of Zn and in its complement at the local and global points of view. A well-
known application of this flavour of well-composedness is the tree of shapes [7,9]:
usual natural or synthetic images generally contain many critical configurations
and this way we cannot ensure that the hierarchy induced by the inclusion rela-
tionship between these shapes does not draw a graph without cycles. On the
contrary, when an image is DWC, no cycle is possible and then we obtain a tree,
called the tree of shapes [7,9,16].

On the other side, continuously well-composed (shortly CWC) images are
known as “counterparts” of n-dimensional manifolds in the sense that the bound-
ary of their continuous analog does not have singularities (called “pinches”),
which is a very strong topological property. The consequence is that some geo-
metric differential operators can be computed directly on the discrete sets, which
simplifies or makes specific algorithms faster [12,13].
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These two flavours of well-composednesses, known to be equivalent in 2D
and in 3D, are not equivalent in 4D, and this is what we are going to prove
in this paper. Section 2 recalls the material relative to discrete topology and
local homology necessary to the proof detailed in Sect. 3. Section 4 concludes the
paper.

Fig. 1. Examples of primary and secondary critical configurations in 2D/3D/4D blocks
S. Black bullets correspond to the points of the digital set X and the white bullets
correspond to the points of S \ X .

2 Discrete Topology

As usual in discrete topology, we will only work with digital sets, that is, finite
subsets of Zn or subsets X of Zn whose complementary set X c = Z

n \X is finite.

2.1 Digital Well-Composedness

Let n ≥ 2 be a (finite) integer called the dimension. Now, let B = {e1, . . . , en} be
the (orthonormal) canonical basis of Zn. We use the notation vi, where i belongs
to �1, n� := {i ∈ Z ; 1 ≤ i ≤ n}, to determine the ith coordinate of a vector
v ∈ Z

n. We recall that the L1-norm of the vector v ∈ Z
n is denoted by ‖ · ‖1

and is equal to
∑

i∈�1,n� |vi| where | · | is the absolute value. Also, the L∞-norm
is denoted by ‖ · ‖∞ and is equal to maxi∈�1,n� |vi|.

For a given point p ∈ Z
n, the 2n-neighborhood in Z

n, denoted by N2n(p),
is equal to {q ∈ Z

n ; ‖p − q‖1 ≤ 1}. Also, the (3n − 1)-neighborhood in Z
n,

denoted by N3n−1(p), is equal to {q ∈ Z
n ; ‖p − q‖∞ ≤ 1}. Let ξ be a value in

{2n, 3n − 1}. The starred ξ-neighborhood of p ∈ Z
n is noted N ∗

ξ (p) and is equal
to Nξ(p) \ {p}. An element of the starred ξ-neighborhood of p ∈ Z

n is called a
ξ-neighbor of p in Z

n. Two points p, q ∈ Z
n such that p ∈ N ∗

ξ (q) or equivalently
q ∈ N ∗

ξ (p) are said to be ξ-adjacent. A finite sequence (p0, . . . , pk) of points in
Z

n is a ξ-path if and only if p0 is ξ-adjacent only to p1, pk is ξ-adjacent only to
pk−1, and if for i ∈ �1, k − 1�, pi is ξ-adjacent only to pi−1 and to pi+1. A digital
set X ⊂ Z

n is said ξ-connected if for any pair of points p, q ∈ X , there exists a
ξ-path joining them into X . A ξ-connected subset C of X which is maximal in
the inclusion sense, that is, there is no ξ-connected subset of X which is greater
than C, is said to be a ξ-component of X .
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For any p ∈ Z
n and any F = (f1, . . . , fk) ⊆ B, we denote by S(p,F) the set:
{

p +
∑

i∈�1,k�

λif
i ; λi ∈ {0, 1},∀i ∈ �1, k�

}
.

We call this set the block associated with the pair (p,F); its dimension, denoted
by dim(S), is equal to k. More generally, a set S ⊂ Z

n is said to be a block if there
exists a pair (p,F) ∈ Z

n × P(B) such that S = S(p,F). We say that two points
q, q′ ∈ Z

n belonging to a block S are antagonists in S if the distance between
them equals the maximal distance using the L1 norm between two points in S;
in this case we write q = antagS(q′). Note that the antagonist of a point q in a
block S containing q exists and is unique. Two points that are antagonists in a
block of dimension k ≥ 0 are said to be k-antagonists; k is then called the order
of antagonism between these two points. We say that a digital subset X of Zn

contains a critical configuration in a block S of dimension k ∈ �2, n� if there
exists two points {q, q′} ∈ Z

n that are antagonists in S such that X ∩S = {q, q′}
(primary case) or such that S \ X = {q, q′} (secondary case). Figure 1 depicts
examples of critical configurations.

Definition 1 (Digital Well-Composedness [3]). A digital set X ⊂ Z
n is

said to be digitally well-composed (DWC) if it does not contain any critical
configuration.

This property is self-dual : for any digital set X ⊂ Z
n, X is digitally well-

composed iff X c is digitally well-composed.

2.2 Basics in Topology and Continuous Well-Composedness

Let (X,U) be a topological space [1,11]. The elements of the set X are called the
points and the elements of the topology U are called the open sets. In practice,
we will abusively say that X is a topological space, assuming it is supplied with
U . An open set which contains a point of X is said to be a neighborhood of
this point. Let X be a topological space, and let T be a subset of X. A set
T ⊆ X is said closed if it is the complement of an open set in X. A function
f : X → Y between two topological spaces X and Y is continuous if for every
open set V ⊂ Y , the inverse image f−1(V ) = {x ∈ X ; f(x) ∈ V } is an
open subset of X. The function f is a homeomorphism if it is bicontinuous
and bijective. The continuous analog CA(p) of a point p ∈ Z

n is the closed
unit cube centered at this point with faces parallel to the coordinate planes
CA(p) = {q ∈ R

n ; ‖p − q‖∞ ≤ 1/2}. The continuous analog CA(X ) of a
digital set X ⊂ Z

n is the union of the continuous analogs of the points belonging
to the set X , that is, CA(X ) =

⋃
p∈X CA(p). Then, we will denote bdCA(X )

the topological boundary of CA(X ), that is, bdCA(X ) = CA(X ) \ Int(CA(X )),
where Int(CA(X )) is the union of all open subsets of CA(X ).

Definition 2 (Continuous Well-Composedness [14,15]). Let X ⊂ Z
n be a

digital set. We say that X is continuously well-composed (CWC) if the boundary
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of its continuous analog bdCA(X ) is a topological (n − 1)-manifold, that is, if
for any point p ∈ X , the (open) neighborhood of p in bdCA(X ) is homeomorphic
to R

n−1.

This property is self-dual : for any digital set X ⊂ Z
n, bdCA(X ) = bdCA(X c)

and then X is continuously well-composed iff X c is continuously well-composed.

2.3 Homomorphisms

Recalls about Abelian groups and homomorphisms can be found in [10]. A homo-
morphism f is called an isomorphism if it is bijective. Two free Abelian groups
are said isomorphic if there exists an isomorphism between them; for A and B
two free Abelian groups, we write A � B when A and B are isomorphic. Let A
be a free Abelian group and B a subgroup of A. For each a ∈ A, defined the
equivalence class [a] := {a + b ; b ∈ B}. The quotient group A/B is defined as
A/B := {[a] ; a ∈ A}.

Theorem 1 (First Isomorphism Theorem [10]). Let A and B be two free Abelian
groups and f : A → B a homomorphism. Then A/ ker f � im f .

2.4 Cubical Sets

An elementary interval is a closed subinterval of R of the form [l, l+1] or {l} for
some l ∈ Z. Elementary intervals that consist of a single point are degenerate,
while those of length 1 are non-degenerate. An elementary cube h is a finite
product of elementary intervals, that is, h = h1 × · · · × hd = ×i∈�1,d�hi ⊂
R

d where each hi is an elementary interval. The set of elementary cubes in
R

d is denoted by Kd. The set of all elementary cubes is K :=
⋃∞

d=1 Kd. Let
h = ×i∈�1,d�hi ⊂ R

d be an elementary cube. The elementary interval hi is
referred to as the ith component of h. The dimension of h is defined to be the
number of non-degenerate components in h and is denoted by dim(h). Also,
we define Kk := {h ∈ K ; dim(h) = k} and Kd

k := Kk ∩ Kd. A set X ⊂ R
d

is cubical if X can be written as a finite union of elementary cubes. If X is a
cubical set, we adopt the following notation K(X) := {h ∈ K ; h ⊆ X} and
Kk(X) := {h ∈ K(X) ; dim(h) = k}.

2.5 Homology

Let X ⊆ R
d be a cubical set. The k-chains of X, denoted by Ck(X), is the

free Abelian group generated by Kk(X). The boundary homomorphism ∂X
k :

Ck(X) → Ck−1(X) is defined on the elementary cubes of Kk(X) and extended
to Ck(X) by linearity (see [10]). The chain complex C(X) is the graded set
{Ck(X), ∂X

k }k∈Z. A k-chain z ∈ Ck(X) is called a cycle in X if ∂X
k z = 0.

The set of all k-cycles in X, which is denoted by Zk(X), is ker ∂X
k and forms

a subgroup of Ck(X). A k-chain z ∈ Ck(X) is called a boundary in X if there
exists c ∈ Ck+1(X) such that ∂X

k+1c = z. Thus the set of boundary elements in
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Ck(X), which is denoted by Bk(X), consists of the image of ∂X
k+1. Since ∂X

k+1

is a homomorphism, Bk(X) is a subgroup of Ck(X). Since ∂X
k ∂X

k+1 = 0, every
boundary is a cycle and thus Bk(X) is a subgroup of Zk(X). We say that two
cycles z1, z2 ∈ Zk(X) are homologous and write z1 ∼ z2 if z1 − z2 is a boundary
in X, that is, z1 − z2 ∈ Bk(X). The equivalence classes are then the elements of
the quotient group Hk(X) = Zk(X)/Bk(X) called the k-th homology group of X.
The homology of X is the collection of all homology groups of X. The shorthand
notation for this is H(X) := {Hk(X)}k∈Z. Given z ∈ Zk(X), [z] is the homology
class of z in X. A sequence of vertices V0, . . . , Vn ∈ K0(X) is an edge path in X
if there exists edges E1, . . . , En ∈ K1(X) such that Vi−1, Vi are the two faces of
Ei for i = 1, . . . , n. For V, V ′ ∈ K0(X), we write V ∼X V ′ if there exists an edge
path V0, . . . , Vn ∈ K0(X) in X such that V = V0 and V ′ = Vn. We say that X
is edge-connected if V ∼X V ′ for any V, V ′ ∈ K0(X). For V ∈ K0(X) we define
the edge-connected component of V in X as the union of all edge-connected
cubical subsets of X that contain V . We denote it eccX(V ). The following result
states that in the context of cubical sets, edge-connectedness is equivalent to
(topological) connectedness1.

Theorem 2 (Theorem 2.55 of [10]). Let X be a cubical set. Then H0(X) is a
free Abelian group. Furthermore, if {Vi ; i ∈ �1, n�} is a collection of vertices in
X consisting of one vertex from each component of X, then

{
[V̂i] ∈ H0(X) ; i ∈ �1, n�

}

forms a basis for H0(X) (where V̂i is the algebraic element associated to Vi).

This way, edge-connected components of X are (topologically) connected
components of X and conversely.

2.6 Relative Homology

Now, we recall some background in matter of relative homology. A pair of cubical
sets X and A with the property that A ⊆ X is called cubical pair and is denoted
by (X,A). Relative homology is used to compute how the two spaces A,X differ
from each other. Intuitively, we want to compute the homology of X modulo A:
we want to ignore the set A and everything connected to it. In other words, we
want to work with chains belonging to C(X)/C(A), which leads to the following
definition.

Definition 3 (Definition 9.3 of [10]). Let (X,A) be a cubical pair. The relative
chains of X modula A are the elements of the quotient groups Ck(X,A) :=
Ck(X)/Ck(A). The equivalence class of a chain c ∈ C(X) relative to C(A)
is denoted by [c]A. Note that for each k, Ck(X,A) is a free Abelian group.
The relative chain complex of X modulo A is given by

{
Ck(X,A), ∂(X,A)

k

}
k∈Z

1 A set X is said connected if it is not the union of two disjoint open non-empty sets.
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where ∂
(X,A)
k : Ck(X,A) → Ck−1(X,A) is defined by ∂

(X,A)
k [c]A := [∂X

k c]A.
Obviously, this map satisfies that ∂

(X,A)
k ∂

(X,A)
k+1 = 0. The relative chain com-

plex gives rise to the relative k-cycles: Zk(X,A) := ker ∂
(X,A)
k , the relative k-

boundaries Bk(X,A) := im ∂
(X,A)
k+1 , and finally the relative homology groups:

Hk(X,A) := Zk(X,A)/Bk(X,A).

Proposition 4 (Proposition 9.4 of [10]). Let X be an (edge-)connected cubical
set and let A be a nonempty cubical set of X. Then, H0(X,A) = 0.

2.7 Exact Sequences

A sequence of groups and homomorphisms · · · → G3
ψ3−→ G2

ψ2−→ G1 → . . .
is said exact at G2 if im ψ3 = ker ψ2. It is an exact sequence if it is exact at
every group. If the sequence has a first or a last element, then it is automatically
exact at that group. A short exact sequence is an exact sequence of the form
0 → G3

ψ3−→ G2
ψ2−→ G1 → 0. A long exact sequence is an exact sequence with

more than three nonzero terms.

Example 5 (Example 9.21 of [10]). The short exact sequence of the pair (X,A)
is:

0 −→ Ck(A) ιk−→ Ck(X) πk−→ Ck(X,A) −→ 0

where ιk is the inclusion map and πk is the quotient map.

Lemma 6 (Exact homology sequence of a pair [10]). Let (X,A) be a cubical
pair. Then there is a long exact sequence

· · · → Hk+1(A) ι∗−→ Hk+1(X) π∗−→ Hk+1(X,A) ∂∗−→ Hk(A) → . . .

where ι : C(A) ↪−→ C(X) is the inclusion map and π : C(X) → C(X,A) is the
quotient map.

2.8 Manifolds and Local Homology

A subset X of Rn is said to be a (n-dimensional) homology manifold if for any
x ∈ X the homology groups

{
Hi(X,X \ {x})

}
i∈Z

satisfy:

Hi(X,X \ {x}) =
{
Z when i = n,
0 otherwise.

Theorem 7 ([17]). A topological manifold is a homology manifold.
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2.9 Homotopical Equivalence

Let X,Y be two topological spaces, and f, g be two continuous functions from
X to Y . We say that f and g are homotopic if there exists a continuous function
H : X × [0, 1] → Y such that for any x ∈ X, H(x, 0) = f(x) and H(x, 1) = g(x).
Furthermore, we say that X and Y are homotopically equivalent if there exist
f : X → Y and g : Y → X such that g ◦ f is homotopic to IdX and f ◦ g is
homotopic to IdY .

3 DWCness Does Not Imply CWCness

It is well-known that DWCness and CWCness are equivalent in 2D and 3D (see,
for example, [4]). In this section, we prove that there exists at least one set
X ⊂ Z

4 which is DWC but not CWC.
To this aim, we will start with the definition of the set X and we will check

that X is DWC. Then, to prove that X is not CWC, we will prove that X =
bdCA(X ) (up to a translation) is not a homology manifold and conclude that
it is not a topological manifold by Theorem7. To compute the homology groups
{Hi(X,X \ {x0}}i∈Z, where x0 is a particular point in X (detailed hereafter),
we need to compute {Hi(X \ {x0})}i∈Z and {Hi(X)}i∈Z. However, X \ {x0} is
not a cubical set, then we need to find a cubical set X̃(x0) which is homotopy
equivalent to X\{x0} to compute its homology groups using the CHomP software
package [8]. After having defined X̃(x0) and having proven that it is a cubical
set, we will show that X \ {x0} and X̃(x0) are homotopically equivalent. Then,
we will compute the homology groups of X̃(x0) and of X; this way we will deduce
{Hi(X,X \ {x0})}i∈Z using the long exact sequence of the pair (X,X \ {x0}).
At this moment, we will see that X is not a homology 3-manifold, which will
make us able to conclude that X is not CWC since the boundary of its continuous
analog is not a topological 3-manifold. This way, we will conclude that DWCness
does not imply CWCness in 4D.

3.1 Choosing a Particular DWC Set X ⊂ Z
4

Fig. 2. A set X ⊂ Z
4 depicted by blue points which is DWC and not CWC. Blue lines

show that the blue points are 2n-connected (n = 4). (Color figure online)
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We recall that it is well-known in the community of discrete topology that
CWCness and DWCness are equivalent in 2D and 3D as developed in [2,4]. For
this reason, we chose a digital set X in Z

4 to study the relation between these
two flavours of well-composedness in higher dimensions.

As depicted in Fig. 2, we can define the digital subset of Z4:

X := {{0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 1}, {0, 1, 1, 1},

{1, 1, 1, 1}, {1, 1, 1, 0}, {1, 1, 0, 0}, {1, 0, 0, 0}}.

Let us check that X is DWC (see Fig. 2). It is easy to observe that it does not
contain any 2D critical configuration. Now, to observe that there is no primary
or secondary 3D critical configuration, we can simply look at the eight 3-faces
(including the interior and the exterior cubes): since each one contains exactly
four points of X , they contain neither a primary critical configuration (made of
two points) nor a secondary critical configuration (made of six points in the 3D
case). Finally, we observe that the only 4D block that we have to consider is
{0, 1}4 which contains eight points of X , and eight points of X c, concluding that
X contains neither a primary nor a secondary 4D critical configuration.

Property 8. The digital set X is DWC.

3.2 Finding a Cubical Set X̃(x0) Homotopy Equivalent to X \ {x0}
Let us start with the following proposition.

Proposition 9. Let X be a cubical set in R
n and x0 be a point of X∩Z

n. Then,
the set:

X̃(x0) := {x ∈ X \ {x0} ; ‖x − x0‖∞ ≥ 1}
is cubical.

Proof. Our aim is to prove that X̃(x0) is equal to
⋃{h ∈ K(X) ; x0 �∈ h}. This

way, we will be able to conclude that X̃(x0) is equal to
⋃{h ∈ K(X \ {x0})} and

then it is a cubical set (since it is made of cubes and closed under inclusion).
First, let us prove that:

X̃(x0) ⊆ ∪{h ∈ K(X) ; x0 �∈ h}.

Let x ∈ X \ {x0} be a point such that ‖x − x0‖∞ ≥ 1. Then, there exists
i∗ ∈ �1, n� such that ‖x − x0‖∞ = |xi∗ − x0

i∗ | ≥ 1. Then two cases are possible:

(1) xi∗ > x0
i∗ , then xi∗ ≥ x0

i∗ + 1,
(2) xi∗ < x0

i∗ , then xi∗ ≤ x0
i∗ − 1.

Since x ∈ X \ {x0} ⊂ X where X is a cubical set, there exists a smaller face
h∗ ∈ K(X) (in the inclusion sense) such that x ∈ h∗ := ×i∈�1,n�[�xi�, �xi�].
Then, x0 ∈ h∗ iff for each i ∈ �1, n�, x0

i ∈ [�xi�, �xi�]. However, since in case
(1), x0

i∗ ≤ xi∗ − 1 < �xi∗�, and in case (2), x0
i∗ ≥ xi∗ + 1 > �xi∗�, then x0 �∈ h∗.
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Obviously, h∗ ∈ K(X): otherwise, all the cubes containing h∗ do not belong to
K(X), and then x �∈ X \ {x0}. This way, there exists a cube h ∈ K(X) such that
x0 �∈ h and x ∈ h.

Second, let us prove that: X̃(x0) ⊇ ⋃{h ∈ K(X) ; x0 �∈ h}. Let p be
an element of

⋃{h ∈ K(X) ; x0 �∈ h}. In other words, p ∈ h ∈ K(X) and
x0 �∈ h. Since p ∈ h ∈ K(X) and x0 �∈ h then p ∈ X \ {x0}. Now, let us write
h = ×i∈�1,n�[hmin

i , hmax
i ], where hmin, hmax ∈ Z

n. Since x0 �∈ h, there exists
i∗ ∈ �1, n� such that x0

i∗ �∈ [hmin
i∗ , hmax

i∗ ]. Furthermore, we have:

(a) either x0
i∗ ≤ hmin

i∗ − 1,
(b) or x0

i∗ ≥ hmax
i∗ + 1.

Since p ∈ h, for each i ∈ �1, n�, we have pi ∈ [hmin
i , hmax

i ], and then pi∗ ∈
[hmin

i∗ , hmax
i∗ ]. Then, in case (a), x0

i∗ ≤ hmin
i∗ −1 ≤ pi∗ −1, which leads to pi∗ −x0

i∗ ≥
1, and in case (b), x0

i∗ ≥ hmax
i∗ + 1 ≥ pi∗ + 1, which leads to x0

i∗ − pi∗ ≥ 1. In
both cases, we obtain that ‖p − x0‖∞ ≥ 1. ��

Fig. 3. X \ {x0} is homotopy equivalent to ˜X(x0): From left to right, a cubical set X
(see the location of the central point x0 in red), X minus its central point x0 and the

new cubical set ˜X(x0) homotopy equivalent to X \ {x0}. (Color figure online)

Now, let us prove that X \ {x0} and X̃(x0) are homotopy equivalent (as
depicted on Fig. 3).

Proposition 10. Let X be a cubical set in R
n and x0 be a point of X ∩ Z

n.
Then, X \ {x0} is homotopy equivalent to X̃(x0).

Proof. Let f : X \ {x0} → R
n be the function defined such as:

f(x) :=

{
x when ‖x − x0‖∞ ≥ 1,

x0 + x−x0

‖x−x0‖∞
otherwise,

and let g : X̃(x0) → X \ {x0} be the map from X̃(x0) to X \ {x0} such that:

∀x ∈ X̃(x0), g(x) = x,

which is possible since X̃(x0) ⊆ X \ {x0}. Now, let us proceed step by step.

Step 1 : X \ {x0} and X̃(x0) are topological spaces. The sets X \ {x0} and
X̃(x0) are topological spaces since they are subsets of R

n supplied with the
usual Euclidian distance.
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Step 2 : f is a map from X \ {x0} to X̃(x0). Let x be an element of X \ {x0}.
When ‖x−x0‖∞ ≥ 1, f(x) = x. This way, f(x) ∈ X \ {x0} and ‖f(x)−x0‖∞ ≥
1, then f(x) ∈ X̃(x0). When ‖x − x0‖∞ < 1, f(x) = x0 + x−x0

‖x−x0‖∞
. This way,

‖f(x) − x0‖∞ = 1. Since x ∈ X \ {x0} ⊂ X with X a cubical set, there exists
a cube h ∈ K(X) such that x ∈ h. Furthermore, this cube h contains x0 since
all the cubes containing a point of ×i∈�1,n�]x0

i − 1, x0
i + 1[ contain also x0 (the

cubes are defined relatively to integral coordinates). Since h = ×i∈�1,n�hi, then
for each i ∈ �1, n�, xi ∈ hi, and

(f(x))i = x0
i +

xi − x0
i

‖x − x0‖∞
.

Let us prove that this last equality shows that f(x) ∈ h. Since n is finite, there
exists some i∗ ∈ �1, n� such that: ‖x − x0‖∞ = |xi∗ − x0

i∗ |, then:

(f(x))i = x0
i +

xi − x0
i

|xi∗ − x0
i∗ | (P1)

Let us assume without constraint that xi∗ > x0
i∗ , then (f(x))i∗ = x0

i∗ + 1.
However, xi∗ > x0

i∗ implies that hi∗ = [x0
i∗ , x0

i∗ + 1] since h contains x0. When
i �= i∗, since xi ∈ hi, and since h � x0 ∈ Z

n, hi = [x0
i , x

0
i +1] or hi = [x0

i −1, x0
i ].

Let us assume without constraint that xi > x0
i , then hi = [x0

i , x
0
i + 1]. Because

of (P1), it follows easily that (f(x))i ∈ hi since xi−x0
i

|xi∗ −x0
i∗ | ∈ [0, 1].

Then, we have proven that when ‖x−x0‖∞ < 1, there exists h ∈ K(X) such
that for any i ∈ �1, n�, (f(x))i ∈ hi, that is to say,

f(x) ∈ h. (P2)

Also, x �= x0, which is equivalent to f(x) �= x0. Then, f(x) ∈ X̃(x0).

Step 3 : g ◦ f is homotopic to IdX\{x0}.

– We can observe that g ◦ f : X \ {x0} → X \ {x0} is the continuous function
defined as:

g ◦ f =

{
x when ‖x − x0‖∞ ≥ 1,

x0 + x−x0

‖x−x0‖∞
otherwise.

– Let H : (X \ {x0}) × [0, 1] → R
n defined such that for any x ∈ X \ {x0} and

any λ ∈ [0, 1],
H(x, λ) := λx + (1 − λ)g ◦ f(x),

then:
• H is continuous as a composition of continuous functions,
• H is a function from (X \ {x0}) × [0, 1] to X \ {x0}:

∗ when ‖x − x0‖∞ ≥ 1, H(x, λ) = x ∈ X \ {x0},
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∗ when ‖x−x0‖∞ < 1, H(x, λ) = λx+(1−λ)f(x). However, we have
seen that in this case, cf. (P2), there exists a cube h ∈ K(X) such
that f(x) ∈ h. Since h is a cube, it is convex, and then H(x, λ) ∈ h.
Then, H(x, λ) ∈ X. Also, we can prove that H(x, λ) �= x0: the cases
λ = 0 and λ = 1 are obvious; in the case λ ∈]0, 1[, we can see that

H(x, λ) = λx + (1 − λ)
(

x0 +
x − x0

‖x − x0‖∞

)

and then, by assuming without constraints that x0 = 0 and that for
any i ∈ �1, n�, xi ≥ 0, we obtain that for any i ∈ �1, n�:

(H(x, λ))i = λxi + (1 − λ)
xi

‖x‖∞
= (λ(‖x‖∞ − 1) + 1)

xi

‖x‖∞
,

then, because (‖x‖∞ − 1) < 1 and xi

‖x‖∞
≥ 0, (H(x, λ))i is decreasing

relatively to λ, and then

xi ≤ (H(x, λ))i ≤ xi

‖x‖∞
.

Since x �= 0, there exists i∗ such that xi∗ �= 0, and then such that
(H(x, λ))i∗ > 0 since xi∗ > 0. Therefore, H(x, λ) �= 0, that is,
H(x, λ) �= x0. Then, H(x, λ) ∈ X \ {x0}.

– We can see that H(x, 0) = g ◦ f(x),∀x ∈ X \ {x0},
– We can also observe that H(x, 1) = x,∀x ∈ X \ {x0}.

Then g ◦ f is homotopic to IdX\{x0}.

Step 4 : f ◦ g is homotopic to Id
˜X(x0). Since f ◦ g is equal to Id

˜X(x0), they are
homotopic.

Step 5 : Conclusion. X \ {x0} and X̃(x0) are homotopically equivalent. ��
Corollary 11. Assuming the notations of Proposition 9, we can compute the
homology groups of X \ {x0} based on the ones of the cubical set X̃(x0). Indeed,
for each i ∈ Z, we have the following equality: Hi(X \ {x0}) = Hi

(
X̃(x0)

)
.

Proof. This follows from Propositions 9 and 10. ��

3.3 Defining the Cubical Set ϕd(X )

Let us define the mapping ϕ : Z/2 → K1:

∀x ∈ Z/2, ϕ(x) :=
{

[x, x + 1] when x ∈ Z,{
x + 1

2

}
otherwise.

Then we can define: ∀x ∈ (Z/2)d, ϕd(x) := ×d
i=1ϕ(xi) where, as usual, xi denotes

the ith coordinate of x; ϕd is then a bijection between (Z/2)d and Kd. Note that
the underlying polyhedron of ϕd(X ) is equal to CA(X ) up to a translation, and
in this way they are topologically equivalent.
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3.4 Choosing a Particular Point x0 in the Boundary X of ϕ4(X )

Let us begin with a simple property.

Property 12. The point x0 := (1, 1, 1, 1) belongs to the boundary X of ϕ4(X ).

Proof. Let us recall that ϕ4(X ) is a translation of the set CA(X ) by a vector
v := (12 , 1

2 , 1
2 , 1

2 ). Also, the point p := (12 , 1
2 , 1

2 , 1
2 ) ∈ R

4 belongs to CA(X ) and
does not belong to Int(CA(X )) since there does not exist any topological open
ball B(p, ε), ε > 0, in R

4 centered at p and contained in Int(CA(X )) since B(p, ε)
intersects Int(CA(X c)). This way, p belongs to bdCA(X ). Finally, we obtain that
the translation x0 = p + v of p by v belongs to the translation X of bdCA(X )
by v. ��

3.5 Computation of H(X, X \ {x0})
Let us compute the relative homology groups Hi(X,A) for each i ∈ Z.

Obviously, since Ck(X,X \ {x0}) = 0 for k ∈ Z \ �0, 4�, then
Hk(X,X \ {x0}) = 0. Also, thanks to Proposition 4, we know that
H0(X,X \ {x0}) = 0. To compute the other relative homology groups, we will
use the exact homology sequence of (X,X \ {x0}) discussed in Lemma 6: the
sequence

· · · → Hk+1(X \ {x0}) ι∗→ Hk+1(X)
π∗→ Hk+1(X,X \ {x0}) ∂∗→ Hk(X \ {x0}) → . . .

is exact, and then by computing the homology groups Hk(X) and Hk(X \ {x0})
and using the First Isomorphism Theorem, we will be able to compute the local
homology groups Hk(X,X \ {x0}) and to deduce if X is a homology 3-manifold
or not.

H4(X \ {x0}) = 0 H4(X) = 0 H4(X, X \ {x0})

H3(X \ {x0}) = 0 H3(X) = Z H3(X, X \ {x0})

H2(X \ {x0}) = 0 H2(X) = Z H2(X, X \ {x0})

H1(X \ {x0}) = Z H1(X) = 0 H1(X, X \ {x0})

H0(X \ {x0}) = Z H0(X) = Z H0(X,X \ {x0}) = 0

ι4 π4

∂4

ι3 π3

∂3

ι2 π2

∂2

ι1 π1

∂1

ι0 π0

Fig. 4. Long exact sequence of the cubical pair (X,X \ {x0}).
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Using CHomP [8], we compute the local homology groups H(X̃(x0)) and
Hi(X) for i ∈ �0, 4�. Using Corollary 11 we obtain Hi(X \ {x0}), and replacing
this information in the long exact sequence discussed in Lemma 6, we obtain
Fig. 4.

Let us compute H4(X,X \ {x0}). By exactness, im π4 = 0 = ker ∂4 and
H4(X,X \ {x0})/ ker ∂4 � im ∂4 = 0, then H4(X,X \ {x0}) = 0.

Now, let us compute H3(X,X \ {x0}). By exactness, im ι3 = 0 = ker π3, and
Z/ ker π3 � im π3 � Z, then im π3 = ker ∂3 = H3(X,X \ {x0}) � Z.

Concerning H2(X,X \ {x0}), by exactness, im ι2 = 0 = kerπ2, and
Z/ ker π2 � im π2 � Z � ker ∂2. Also, ker(ι1) = Z = im ∂2 and
H2(X,X \ {x0})/ ker ∂2 � im ∂2 imply that: H2(X,X \ {x0}) � Z

2.
Finally, let us compute H1(X,X \ {x0}). By exactness, im π1 = 0 = ker ∂1.

Also, ker π0 = Z � im ι0, and Z/ ker ι0 � im ι0 imply that ker ι0 = 0 = im ∂1.
Then, H1(X,X \ {x0}) = 0.

3.6 Our Final Observation

Fig. 5. Projection in the 3D space of the continuous analog of the 4D counter-example.
Each color corresponds to a same (projected) hypercube. Note that the pinch is not
observable in 3D.

Since we have H2(X,X \ {x0}) � Z
2 �= 0, X is not a homology 3-manifold,

and then it is not a topological 3-manifold, which implies that DWCness does not
imply CWCness in 4D, which contradicts the conjecture arguing that DWCness
and CWCness are equivalent in nD on cubical grids [2]. See Fig. 5 for some 3D
projections of the continuous analog of our 4D counter-example. Furthermore,
this counter-example shows that a digital set which is well-composed in the sense
of Alexandrov (AWC) [6,16] is not always CWC, since it has been proven in [5]
that AWCness and DWCness are equivalent in nD.

4 Conclusion

The counter-example presented in this paper shows that in 4D, DWCness does
not imply CWCness. It shows how much it is important to explicit which flavour
of well-composedness we consider when we work with nD discrete images.
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Furthermore, two questions arise in a natural way. First, is it possible to find a
generic counter-example showing that DWCness does not imply CWCness in any
dimension greater than 3 (like the product of the set X with {0, 1}n−4). Second,
does CWCness imply DWCness in nD? This last question seems intuitive but
we will show in a future report that it is far from being so simple.
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Abstract. The study of two-dimensional picture languages has a wide
application in image analysis and pattern recognition [5,7,13,17]. There
are various models such as grammars, automata, P systems and Petri
Nets to generate different picture languages available in the literature
[1–4,6,8,10–12,14,15,18]. In this paper we consider Petri Nets generating
tetrahedral picture languages. The patterns generated are interesting,
new and are applicable in floor design, wall design and tiling. We compare
the generative power of these Petri Nets with that of other recent models
[9,16] developed by our group.

Keywords: Petri Net · Tetrahedral tiles · P systems

1 Introduction

The art of tiling plays an important role in human civilization. A two-dimensional
pattern generating model called pasting system was introduced in the literature
which glues two square tiles together at the edges. Later on two isosceles right
angled triangular tiles are pasted together at the gluable edges and a new pasting
system called triangular tile pasting system was introduced in [3].

Petri Nets are mathematical models introduced to model dynamic systems
[15]. Tokens represented by black dots are used to simulate the dynamic activity
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of the system. Array token Petri Nets are models which generate array languages
[12]. Array Token Petri nets have applications in the following areas namely char-
acter recognition, generation and recognition of picture patterns, tiling pattern
and kolam patterns. Arrays are used as token. The transitions are associated
with catenation rules. Firing of transitions catenate arrays to grow in bigger
size.

The area of membrane computing is a new computability model called P sys-
tem introduced by Gh. Păun inspired by the functioning of living cells. Ceterchi
et al. [4] proposed a theoretical model of P -system called Array Rewriting P -
system for generating two-dimensional patterns. Motivated by these studies a
three-dimensional pattern generating model called tetrahedral tile pasting sys-
tem and tetrahedral tile pasting P system were introduced in [9] by gluing two
tetrahedral tiles at the glueable edges. In the literature the studies on mem-
brane computing generating picture languages is very limited. We have used
membrane computing to generate 3D Tetrahedral picture languages, in which
we can generate both rectangular and non rectangular 3D pictures like stars,
triangles, rhombuses, hexagons, octagons and some kolam patterns which are
some of the interesting patterns.

In this paper we introduce 3D-Array token Petri Nets generating three-
dimensional tetrahedral picture languages (3D-TetATPN) and this model is
compared with K-Tabled Tetrahedral Tile Pasting System (K-TTTPS), Tetra-
hedral Tile Pasting P System (TetTPPS), Regular Tetrahedral Array Languages
(RTAL) and Basic Puzzle Tetrahedral Array Languages (BPTAL) for generative
powers. The patterns generated by the Petri Nets are useful in floor design, wall
design and tiling.

2 Preliminaries

In this section we recall the notion of tetrahedral tiles, K-TTTPS and TetTPPS
.

Definition 1. [9] A tetrahedral tile is a polyhedral which has four vertices, four
faces and six edges. Each face is an equilateral triangle. f4 is the base of the
tetrahedron(Fig. 1).

Fig. 1. A Tetrahedron.
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We consider tetrahedral tiles of the following four types, named as

f4 is the base V1V2V3 of the tetrahedral tile.

Definition 2. [9] A K-Tabled Tetrahedral Tile Pasting System (K-TTTPS) is
a 4-tuple M = (Γ,E, P, t0), where Γ is a finite set of tetrahedral tiles of the
forms A and B. E is a set of edge labels of base of tetrahedral tiles A and B.
P is a finite set of tables {T1, T2, . . . TK} where T1, T2, . . . TK (k ≥ 1) are finite
sets of pasting rules. t0 is the axiom pattern.

A tiling pattern ti+1 is generated from a pattern ti in k stages. In each stage,
the rules of the table Ti (i = 1, 2, . . . k) are applied in parallel to the boundary
edges of the pattern obtained in the previous stage. When all the rules in P are
applied one after the other in succession the pattern ti+1 is generated from ti.
i.e. ti ⇒ ti+1. We write t0

∗⇒ tj if t0 ⇒ t1 ⇒ t2 ⇒ · · · ⇒ tj. The collection of
all patterns generated by K-TTTPS derived from the axiom t0 using the pasting
rules of the system M is denoted by T (M) = {tj ∈ Γ ∗∗∗ : t0

∗⇒ tj/j ≥ 0}, where
Γ ∗∗∗ represents the set of all three-dimensional tetrahedral patterns obtained by
gluing tetrahedral tiles of Γ .

The family of all three-dimensional patterns generated by K-TTTPS is
denoted as L(K-TTTPS).

Example 1. A one-tabled Tetrahedral Tile Pasting System, generating a
sequence of three-dimensional patterns whose boundaries are hexagons and stars
alternatively is given below:

M = (Γ,E, P, t0) where

E = {a1, a2, a3, b1, b2, b3};P = {T1};
T1 = {(a1, b1), (a2, b2), (a3, b3), (b1, a1), (b2, a2), (b3, a3)}
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The first three members of T (M) are shown in Fig. 2.
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Fig. 2. Hexagon and Star polyhedral.

Definition 3. [9] A Tetrahedral Tile Pasting P system (TetTPPS) Π =
(Γ, μ, F1, . . . , Fm, R1, R2, . . . , Rm, i0) where Γ is a finite set of labeled tetrahedral
tiles; μ is a membrane structure with m membranes, labeled in an one-to-one way
with 1, 2, . . . m; F1, F2, . . . Fm are finite sets of three-dimensional picture patterns
over tiles of Γ associated with the m regions of μ; R1, R2, . . . , Rm are finite sets
of pasting rules of the type (ti, (xi, yi), tar), 1 ≤ i ≤ n associated with the m
regions of μ and i0 is the output membrane which is an elementary membrane.

The computation process in TetTPPS is defined as, to each 3D-Picture pat-
tern present in the region of the system, the pasting rule associated with the
respective region should be applied in parallel to the boundary edges of the base of
the tetrahedral tile. Then the resultant tetrahedral 3D-pattern is moved (remains)
to another region (in the same region) with respect to the target indicator inj

(here) associated with the pasting rule. If the target indicator is out, then the
resultant tetrahedral 3D-pattern is sent immediately to the next outer region of
the membrane structure.

The computation is successful only if the pasting rules of each region are
applied. The computation stops if no further application of pasting rule is appli-
cable. The result of a halting computation consists of the 3D-picture patterns
composed only of tetrahedral tiles from Γ placed in the membrane with label i0
in the halting configuration.

The set of all such tetrahedral 3D-patterns computed or generated by
a TetTPPS Π is denoted by TetPL(Π). The family of all such languages
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TetPL(Π) generated by system Π with at most m membranes, is denoted by
TetPLm(TetTPPS).

Example 2. Consider the Tetrahedral Tile Pasting P System, TetTPPS

Π1 = (Γ, μ = [1[2[3]3]2]1, F1, F2, F3, R1, R2, R3, 3),

which generates a sequence of tetrahedral 3D-picuture patterns whose bound-
aries are hexagons, μ indicates that the system has three regions one within
another i.e. region 1 is the ‘skin’ membrane which contains region 2, which in
turn contains region 3, i0 = 3 indicates that region 3 is the output region.

R1 = {(B, (a1, b1), here), (A, (b1, a1), here), (B, (a2, b2), here),
(A, (b3, a3), here), (B, (a3, b3), here), (A, (b2, a2), in)}

R2 = {(B, (a1, b1), here), (A, (b1, a1), here), (B(a2, b2), here),
(A, (b3, a3), here), (B, (a3, b3), here), (A, (b2, a2), in), (A, (b2, a2), out)}

R3 = ∅.

Beginning with the initial object F1 in region 1, the pasting rule R1 is applied,
where the rules in R1 are applied in parallel to the boundary edges of the pic-
ture pattern present in region 1. Once the rule (A, (b2, a2), in) is applied, the
generated 3D-pattern is sent to the inner membrane 2, and in region 2, the rules
of R2 are applied in parallel to the boundary edges of the pattern generated
in region 1. If the rule (A, (b2, a2), out) is applied, the 3D-pattern generated is
sent to region 1, and the process continues. Whereas if the rule (A, (b2, a2), in)
is applied the 3D-pattern generated is sent to region 3, which is the output
region, wherein it is collected in the 3D-picture pattern language formed by
TetTPPSΠ1. TetTPPSΠ1 is the tetrahedral 3D-Picture language whose bound-
ary is the hexagon.

3 3D-Array Token Petri Nets

In this section we recall some notions of Petri Nets. For more details we refer
to [15]. Here we introduce catenation rules and firing rules for 3D-Array token
Petri Nets and Tetrahedral 3D-Array token Petri Nets structure.
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Definition 4. [11] A Petri Net structure is a four tuple C = (P, T, I,O) where
P = {P1, P2, . . . Pn} is a finite set of places, n ≥ 0, T = {t1, t2, . . . tm} is a
finite set of transitions m ≥ 0, P ∩ T = ∅, T → P∞ is the input function
from transitions to bags of places and O : T → P∞ is the output function from
transitions to bags of places.

Definition 5. [11] A Petri Net marking is an assignment of tokens to the places
of a Petri Net. The tokens are used to define the execution of a Petri Net. The
number and position of tokens may change during the execution of a Petri Net.
The marking can be defined as an n-vector μ = (μ1, μ2, μ3, . . . μn) where μi is
the number of tokens in the Pi, i = 1, 2, . . . , n. We can also write μ(Pi) = μi.

Definition 6. [11] A Petri Net C with initial marking μ is called a marked Petri
Net. A marked Petri Net M = (C, μ) can also be written as M = (P, T, I,O, μ).

When a transition is fired one token is removed from its input place and one
token is placed in each of its output place. For example when t1 is fired in the
following figure one token from place A is removed and one token is placed in
both B & C which are the output places of t1.

Now we turn our attention to define Tetrahedral 3D Array Token Petri Net.

Catenation Rules
The catenation rules which glue any two tetrahedral tiles at the glueable edges
are given below:
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Now let us consider the hexagonal polyhedral , which is made

up of gluing A-tetrahedral and B tetrahedral tiles. This H can be catenated to
A and B - tetrahedral tiles in the following manner.
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Firing Rules
The transitions of the Petri Net are associated with the catenation rules of
the form where P,Q ∈ {A,B,C,D,H} and is any one of the
above catenation rules. When transition fires, the array in the input place gets
catenated according to the catenation rule and the resultant array is placed in
the output place. The transitions will be enabled as per the following conditions.

(i) All the input places will have the same array as token.
(ii) If there is no label for the transition then the same array will be moved to

all the output places.
(iii) If there is a label i.e a catenation rule for the transition then the array

in the input place gets catenated according to the catenation rule and the
resultant array is moved to all the output places.

Example 3. If the input place of transition has the tetrahedral polyhedral

as token and the transition is attached to the rule then after the firing
the output places of the transition will have the tetrahedral picture
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The tetrahedral tile - B is catenated in parallel manner to all the A-tetrahedral

tiles in the right up direction. The 3D-array token Petri Net diagram is given
below for the above transition.

Definition 7. A 3D Tetrahedral Tile Array Token Petri Net (3D-TetATPN) is
a six tuple N = (Σ,C, μ, S, σ, F ) where Σ is an alphabet of tetrahedral tiles or
extended tetrahedral tiles (3D-picture made up of tetrahedral tiles), C is a Petri
Net structure, μ is an initial marking of 3D-pictures made up of tetrahedral tiles
or extended tetrahedral tiles kept in some places of the net, S is a set of catenation
rules, σ is a partial mapping which attaches rules to the various transitions of

the Petri Net of the form , F is a subset of the set of places of
the Petri Net where the final 3D-tetrahedral picture is stored after all the firing
of the various possible transitions of the Petri Net.

Definition 8. The language generated by 3D-TetATPN is the set of all 3D-
tetrahedral pictures stored in the final places of the Petri Net structure and is
denoted by L(N).

Example 4. Consider the 3D-TetATPN N1 = (Σ,C, μ, S, σ, F ) where Σ =

{R,A,B} where , C = (P, T, I,O) where P = {P1, P2, P3, P4, P5},
T = {t1, t2, t3, t4}. The initial marking μ is the rhombus polyhedral R in the

place of P1. σ the

mapping from the set of transitions to the set of rules is shown in Fig. 3 and
F = {P5}.

Starting with R, on firing the sequence t1t2t3t4, the rhombus polyhedral is
generated. The first two members of the language are shown in the following
Fig. 4.
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Fig. 3. The 3D - Array token Petri Net generating rhombus polyhedral.
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Fig. 4. Rhombus polyhedral.

Example 5. Consider the 3D-TetATPN N2 = (Σ,C, μ, S, σ, F ) where, Σ =
{H,A,B,C,D}, C = (P, T, I,O), P = {P1, P2, P3, . . . P8}, T = {t1, t2, t3, . . . t7}.
The initial marking μ is the hexagonal polyhedral H in the place of P1.

σ the mapping from the set of transitions to the set of rules is shown in Fig. 5
and F = {P8}

Starting with H on firing the sequence t1t2t3t4 the tetrahedral tiles B, A, D
and C are catenated to H according to the catenation rules respectively and the
resultant 3D-array is sent out to place P5. On firing the sequence t5t6 Hexagonal
polyhedrals are catenated to C-tetrahedral tile in parallel in the right up and
right down directions and then firing t7 hexagonal polyhedrals are catenated
to hexagonal polyhedrals in the right down direction in parallel and finally the
resultant sequence of hexagonal polyhedral language is sent to the final place P8.
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The first member of the language generated is shown in Fig. 6. In every
generation the hexagonal polyhedral tile catenated is increased by one. In the
first member two hexagonal polyhedral are catenated twice.

Example 6. Consider the 3D-TetATPN N3 = (Σ,C, μ, S, σ, F ) where, Σ =
{H,A,B}, C = (P, T, I,O), P = {P1, P2, P3, . . . P12}, T = {t1, t2, t3, . . . t12}.
The initial marking μ is the hexagonal polyhedral H in the place of P1.

σ the mapping from the set of transitions to the set of rules is shown in Fig. 7
and F = {P13}.

Starting with H on firing the sequence t1t2t3t4t5t6 the tetrahedral tiles A
and B are catenated to H according to the catenation rules respectively and the
resultant 3D-array is sent to place P7 on firing the sequence t7t8t9t10t11t12 the
tetrahedral tiles A and B are catenated according to the catenation rules and
the resultant star polyhedral is generated and it is sent to place P13 which is
the final place or the sequence of transitions t7t8t9t10t11t12 can be repeated any
number of times before reaching the final destination P13.

The first two members generated by N3 are shown in Fig. 8.

H
P1

P7

t7

t1

t6

P8 H ru B

B rd H

C rd H t5P6 C ru H P5

t4

t3 B rd D

D r C

H rd A

P3P2

t2

P4

Fig. 5. 3D-Array token Petri Net generating increasing sequence of hexagonal polyhe-
drals.
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Fig. 7. 3D-array token Petri Net generating sequence of star polyhedrals.
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4 Comparative Results

In this section, we compare 3D-TetATPN with K-TTTPS, TetTPPS, RTAL [16]
and BPTAL [16].

Theorem 1. The families of languages generated by 3D-TetATPN and K-
TTTPS are incomparable but not disjoint.

Proof. The families of languages generated by K-TTTPS and 3D-TetATPN are
by parallel mechanism. The constraint in K-TTTPS is that the pasting rules of
the tables are applied in parallel to the pattern obtained in the previous stage.
In 3D-TetATPN the catenation rules generate the family of languages where
extended tetrahedral tiles are also used.

The language of star and hexagonal polyhedrals in Example 1 cannot be
generated by 3D-TetATPN, since the catenation rules are applied in parallel
wherever applicable.

The language of increasing sequence of hexagonal polyhedrals given in Exam-
ple 5 cannot be generated by K-TTTPS, since extended tetrahedral tile, namely
hexagonal polyhedral, is used in the catenation rules.

The language of rhombus given in Example 4 can be generated by both sys-
tems. A 3-TTTPS generating the family of rhombuses is given below:

Consider a three tabled Tetrahedral Tile Pasting System generating a

sequence of rhombuses,

E = {a1, a2, a3, b1, b2, b3}, P = {T1, T2, T3}, T1 = {(a3, b3), (b1, a1)},

T2 = {(b2, a2), (b1, a1)}T3 = {(a2, b2)}.
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Theorem 2. The families of languages generated by 3D-TetATPN and
TetTPPS are incomparable but not disjoint.

Proof. In 3D-TetATPN the catenation rules are applied in parallel to generate
the language concerned and extended tetrahedral tiles are also used. In TetTPPS
the pasting rules are applied in parallel and the target indications permits the
array generated to transit within the regions.

The language of stars and hexagonal polyhedrals given in Example 2 gener-
ated by TetTPPS cannot be generated by 3D-TetATPN as the catenation rules
are applied in parallel wherever applicable.

The language of increasing sequence of hexagonal polyhedrals given in Exam-
ple 5 cannot be generated by TetTPPS, since extended tetrahedral tiles, namely
hexagonal polyhedral, is used in the catenation rules.

The language of rhombuses given in Example 4 is generated by both
systems. TetTPPS generating the language of rhombuses is given below.
Consider TetTPPS π2 = (Γ, μ = [1[2[3]3]2]1, F1, F2, F3, R1, R2, R3, 3). μ-
indicates that the system has three regions one within the another i.e
region 1 is the skin membrane which contains region 2, which in turn
contains region 3, i0 = 3 indicates that region 3 is the output region.

R1 = {(A, (b2, a2), here), (B, (a3, b3), here), (A, (b1, a1), in)}
R2 = {(B, (a2, b2), in), (B, (a2, b2), out)}, R3 = ∅.

Beginning with the initial object F1 in region 1, the pasting rule R1 is applied,
where the rules in region 1 are applied in parallel to the boundary edges of
the pattern present in region 1. Once the rule (B, (a3, b3), here) is applied, the
tetrahedral tile B is catenated to A and then, when the rule (A, (b1, a1), in) is
applied, the picture pattern generated is sent to the inner region 2. In region 2,
when the rule (B, (a2, b2), in) is applied the generated picture pattern is sent to
region 3, which is the output region, where there is no rule exits and the language
of rhombus is collected in region 3. Whereas if the rule (B, (a2, b2), out) is applied,
the generated picture pattern is sent to region 1 and the process continues. 	

Theorem 3. L(3D − TetATPN) − RTAL �= ∅.
Proof. We consider a tetrahedral language whose boundary is an equilateral
triangle. This language cannot be generated by any Regular Tetrahedral Array
Grammar (RTAG) [16]. Since the rules in RTAG are of the following forms:
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Similar rules can be given for the other two tetrahedral tiles C and D, where
A and B are non terminal symbols and a and b are terminal symbols. Starting
with a tetrahedral tile A, RTAG can generate at most three connected tiles. So

it cannot generate an equilateral triangle of the form but this language
can be generated by the following 3D-TetATPN.

Consider a 3D-TetATPN N4 = (Σ,C, μ, S, σ, F ), where Σ = {A,B}, C =
(P, T, I,O) where P = {P1, P2, P3, P4}, T = {t1, t2, t3}. The initial marking μ is
the tetrahedral tile A in place P1.

σ the mapping from the set of transitions to the set of rules is shown in Fig. 9,
F = {P4} and the language generated by N4 is shown in Fig. 10.

	


A

A ru Bt1
P1

P2 B u At2 t3 B rd A
P4

P3

Fig. 9. 3D-TetATPN of the language of equilateral triangle tetrahedral.

t1 t2 t3 t1 t2 t3

A

A A

A

B

A A A

A A

A

B

B B

Fig. 10. Language of equilateral triangle tetrahedral.
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Theorem 4. L(3DTetATPN) and BPTAL are incomparable but not disjoint.

Proof. Consider a tetrahedral language whose boundary is an equilateral triangle
of size 2. This language is generated by both systems Basic Puzzle Tetrahedral
Array Grammar (BPTAG) [16] as well as by 3D-TetATPN.

Consider a BPTAG, where P consists
of the following rules:

The language generated by G is an equilateral triangle tetrahedral of size 2 which
is shown in Fig. 11.

This language can be generated by the following 3D-TetATPN:
Consider a 3DTetATPN N5 = (Σ,C, μ, S, σ, F ), where Σ = {A,B}, C =

(P, T, I,O) where P = {P1, P2, P3, P4}, T = {t1, t2, t3}. The initial marking μ

is the tetrahedral tile A in place P1. , σ the

mapping from the set of transitions to the set of rules is shown in Fig. 12 and
F = {P4}

Equilateral triangle tetrahedral of size more than 2 cannot be generated by
BPTAG, whereas it can be generated by 3D-TetATPN (as in Theorem 3). On
the other hand the sequence of overlapping equilateral triangle tetrahedral can
be generated by the above BPTAG, whereas it cannot be generated by any
3D-TetATPN as the catenation rules are applied in parallel wherever possible.

	


a

a

b

a

Fig. 11. Equilateral triangle tetrahedral picture of size 2.
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A

A ru Bt1
P1

P2

B ru At2 t3 B rd A

P4P3

Fig. 12. 3D-TetATPN generating equilateral triangle tetrahedral of size 2.

5 Conclusion

This model is found to be useful in generating interesting patterns and is com-
pared with other recent models in terms of their generative powers. P systems
are by definition distributed parallel computing devices and they can solve com-
putationally hard problems in a feasible time. There are NP hard problems in
picture languages also. We will analyze whether these problems can be studied
using membrane computing. Also we propose to work on a more powerful model
of 3D-TetATPN using a concept called ‘inhibitor arc’ to generate further useful
patterns and closure properties of 3D-TetATPN. This is our future work.
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Abstract. The connection between picture languages and restarting
automata has been established in Otto (2014). An interesting class of
picture languages generated by parallel contextual array grammars was
studied with application in image generation and analysis in Subrama-
nian et al. (2008). In this paper, we introduce a variant of two dimensional
restarting automata that accepts a subclass of parallel internal contex-
tual array languages. We show that these automata can simulate parallel
internal column contextual array grammars in reverse order.

Keywords: Parallel internal column contextual array grammars ·
Membership problem · Restarting automaton

1 Introduction

Syntactic approaches, on account of their structure-handling capability, have
played an important role in the problem of description of picture patterns con-
sidered as connected digitized, finite arrays of symbols. Using the techniques of
formal string language theory, various types of picture or array grammars have
been introduced and investigated in [3,9,10,24,25]. Most of the array grammars
are based on Chomskian string grammars. Some recent results on picture lan-
guages can be found in [2,8,18]. Another interesting class of string grammars,
called the class of contextual grammars, was proposed by Marcus in [16]. A con-
textual grammar defines a string language by starting from a given finite set
of strings and adjoining iteratively pairs of strings (called contexts) associated
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to sets of words (called selectors), to the strings already obtained. These con-
textual grammars [6,23] are known to provide new approaches for a number of
basic problems in formal language theory. Recently, extension of string contex-
tual grammars to array structures has been attempted in [1,7,15,23]. A new
method of description of pictures of digitized rectangular arrays, through paral-
lel contextual array grammars, was introduced [4,26]. In this paper, we establish
a relationship between two dimensional restarting automata and parallel internal
column contextual array grammars.

The concept of restarting automaton was introduced in [14], in order to
model the ‘analysis by reduction’, which is a technique used in linguistics to
analyze sentences of natural languages. Analysis by reduction consists of step-
wise simplifications (reductions) of a given (lexically disambiguated) extended
sentence unless a correct simple sentence is obtained. A word is accepted until
an error is found - the process continues until either the automaton accepts or
an error is detected. Each simplification replaces a short part of the sentence by
an even shorter one. The one dimensional restarting automaton contains a finite
control unit, a head with a look-ahead window attached to a tape.

It has been shown in [12], that restarting automaton with delete (simply,
DRA) can represent the analyzer for characterizing the class of contextual gram-
mars with regular selector (CGR). Also [13] showed that restarting automata
recognize a family of languages which can be generated by certain type of con-
textual grammars, called regular prefix contextual grammars with bounded infix
(RPCGBI).

Here, we focus on two dimensional parallel restarting automata as we are
dealing with rectangular picture languages and bring the concept of multiple
windows in order to capture the parallel application of rules of parallel inter-
nal column contextual array grammars. A two dimensional parallel restarting
automaton can delete adjoined sub-arrays in a cycle and followed by restart
(DEL-RST). We exploit the DEL-RST operation to reverse the adjoining con-
texts that take place in a derivation of a parallel internal column contextual
array grammar. We use two dimensional parallel restarting automaton with mul-
tiple windows to simulate parallel internal column contextual array grammars
in reverse order.

The membership problem for a language asks whether, for a given grammar
G and a string w, w belongs to the language generated by G or not.

The remainder of this paper is organized as follows. Section 2 describes the
basic classes of contextual grammars in more detail which is followed by an
example in Subsect. 2.1. Section 3 presents the new variant of two dimensional
parallel restarting automata with multiple windows. In Sect. 4, we describe the
connection between parallel internal column contextual array grammars and
two dimensional parallel restarting automata with multiple windows, also an
example is given in Subsect. 4.1 for better understanding. Subsection 4.2 presents
some interesting properties of the proposed automata and in Subsect. 4.3 we
discuss about the complexity of membership problem for parallel internal column
contextual array languages, also we introduce some new definitions. Section 5
concludes the work and shows a future direction of work.
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2 Preliminaries

Let V be a finite alphabet. We write V ∗ for the set of all finite strings over V ,
which includes the empty string λ. An image or picture over V is a rectangular
m × n array of elements of V or in short [aij ]m×n. The set of all images over V
is denoted by V ∗∗. A picture language or two dimensional language over V is a
subset of V ∗∗. We define V m,n = {A ∈ V ∗∗ | A has m rows and n columns}.
If a ∈ V , then [am,n] is the array over {a} with m rows and n columns. In
this paper, Λ denotes any empty array. The notion of column concatenation is
defined as follows: if A and B are two arrays where

A =
[ a1,j ... a1,k

a2,j ... a2,k
... ... ...

al,j ... al,k

]
, B =

[
b1,m ... b1,n
b2,m ... b2,n
... ... ...

bl,m ... bl,n

]
then AΦB =

[
a1,j ... a1,k b1,m ... b1,n
a2,j ... a2,k b2,m ... b2,n
... ... ... ... ... ...

al,j ... al,k bl,m ... bl,n

]
.

If L1, L2 are two picture languages over an alphabet V , the column concatenation
L1ΦL2 of L1, L2 is defined by L1ΦL2 = {AΦB | A ∈ L1, B ∈ L2}. Column
concatenation is only defined for pictures that have the same number of rows.
Note that operation Φ is associative. If X is an array, the set of all sub-arrays
of X is denoted by sub(X). We now recall the notion of column array context
[4,26].

Definition 1. Let V be an alphabet. A column array context c over V is of the
form

c = [ u1
u2 ] ψ [ v1

v2 ] ∈ V ∗∗ψV ∗∗,

where u1, u2 are arrays of sizes 1 × p, and v1, v2 are arrays of sizes 1 × q, for
some p, q ≥ 1, and ψ is a special symbol not in V .

The next definition deals with the parallel internal column contextual operation.

Definition 2. Let V be an alphabet, C a finite set of column array contexts
over V , and ϕ : V ∗∗ → 2C a mapping, called choice mapping. For an array

A =
[ a1,j ... a1,k

a2,j ... a2,k
... ... ...

al,j ... al,k

]
, j ≤ k, aij ∈ V , we define ϕ̂ : V ∗∗ → 2V ∗∗ψV ∗∗

such that

LψR ∈ ϕ̂(A), where

L =

⎡
⎣

u1
u2

...
ul

⎤
⎦ , R =

⎡
⎣

v1
v2

...
vl

⎤
⎦ ,

and ci = [ ui
ui+1 ] ψ [ vi

vi+1 ] ∈ ϕ
[ ai,j ...ai,k

ai+1,j ...ai+1,k

]
, with ci ∈ C, (1 ≤ i ≤ l − 1) , not

all need to be distinct. Given an array X = [aij ] of size m × n, aij ∈ V,X =
X1ΦX2ΦX3 where

X1 =

⎡
⎣

a1,1 ... a1,p−1
a2,1 ... a2,p−1

...
...

...
am1 ... am,p−1

⎤
⎦ ,X2 =

⎡
⎣

a1,p ... a1,q
a2,p ... a2,q

...
...

...
am,p ... am,q

⎤
⎦ ,X3 =

⎡
⎣

a1,q+1 ... a1,n
a2,q+1 ... a2,n

...
...

...
am,q+1 ... am,n

⎤
⎦

and 1 ≤ p ≤ q ≤ n, we write X ⇒in Y if Y = X1ΦLΦX2ΦRΦX3 such that
LψR ∈ ϕ̂(X2). Here L and R are called left and right contexts respectively.
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We say that Y is obtained from X by parallel internal column contextual
operation (⇒).

Now we consider the notion of parallel internal column contextual array grammar
[4,26].

Definition 3. A parallel internal column contextual array grammar (PICCAG)
is an ordered system G = (V,A, C, ϕ), where V is an alphabet, A is a finite subset
of V ∗∗ called the axiom set, C is a finite set of column array contexts over V ,
ϕ : V ∗∗ → 2C is the choice mapping which performs the parallel internal column
contextual operation. When ϕ is omitted we call G a parallel internal contextual
array grammar without choice.
We already discussed the notion of X ⇒in Y in the previous definition. Here
we denote by ⇒∗

in the reflexive transitive closure of ⇒in. The parallel internal
column contextual array language (PICCAL) generated by G is defined as the
set Lin(G) = {Y ∈ V ∗∗ | ∃X ∈ A such that X ⇒∗

in Y }.

2.1 Example

Let G = (V,A, C, ϕ) be a parallel internal column contextual array grammar

(PICCAG) where V = {a, b}, A =
{

B =
[

a a b b
a a b b
b b a a
b b a a

]}
,

C =
{
[ a

b ] ψ [ b
a ] , [ a

a ] ψ
[

b
b

]
,
[

b
b

]
ψ [ a

a ]
}
, ϕ is a choice mapping satisfying

ϕ
[

a b
b a

]
= [ a

b ] ψ [ b
a ] , ϕ

[
a b
a b

]
= [ a

a ] ψ
[

b
b

]
, ϕ

[
b a
b a

]
=

[
b
b

]
ψ [ a

a ] .

Then,
Lin(G) =

{[
(an bn)m
(bn an)m

]
| n ≥ 2,m = 2

}
, where an = aa...a (n times) and

am =
a
...
a

, with m rows. A simple derivation of a member of Lin(G) is as follows:

B =
[

a a b b
a a b b
b b a a
b b a a

]
⇒

[
a a a b b b
a a a b b b
b b b a a a
b b b a a a

]
=

[
(a3 b3)2
(b3 a3)2

]
∈ Lin(G).

Now, if we consider a = white box and b = black box, we get a nice rectangular
picture, see Fig. 1 and Fig. 2.

3 Two Dimensional Parallel Restarting Automata with
Multiple Windows

It is interesting to find the connection between picture languages
with deterministic two-dimensional three-way ordered restarting automata
(det-2D-3W-ORWW) and deterministic two-dimensional extended two-way
ordered restarting automata (det-2D-x2W-ORWW) in [19,20].

In this section we present a variant of two dimensional restarting automaton
called a two dimensional parallel restarting automaton with multiple windows
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Fig. 1. A rectangular picture of size 4 × 4

Fig. 2. A rectangular picture of size 4 × 6

(2D-PRA-Wm) in order to simulate PICCAL in reverse order. Here we introduce
multiple windows to deal with the parallel application of rules of parallel internal
column contextual array grammars. This automaton works when PICCAG is
given.

We describe the basic working nature of 2D-PRA-Wm. It contains finite
control unit and multiple tapes and each tape is associated with individual head
and they work in a parallel way. At several points, it cuts-off sub-arrays from
each sub-window using DEL operation followed by restart (RST) operation, that
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is, DEL-RST. Here in each sub-window the same number of columns are deleted,
this happens in exactly the same positions.

All the heads move together right along the individual tape until it takes any
DEL-RST operation. RST implies that the restarting automaton places all the
windows over the left border of the individual tape and it completes one cycle.
After performing a DEL-RST operation, the restarting automaton is unable to
remember any step of computation that was performed already.

Let W be an array of size m × n, with m ≥ 2. Assume

W =

⎡
⎣

a1,1 ... a1,p−1
a2,1 ... a2,p−1

...
...

...
am1 ... am,p−1

⎤
⎦

Now W can be viewed as [W ]m,n =

⎡
⎢⎣

[Wi]
2,k

[Wi+1]
2,k

...
[Wf ]

2,k

⎤
⎥⎦where

[W1]2,n =
[ a1,1 ... a1,n

a2,1 ... a2,n

]
, [W2]2,n =

[ a2,1 ... a2,n
a3,1 ... a3,n

]
, [W3]2,n =

[ a3,1 ... a3,n
a4,1 ... a4,n

]
,

[Wm−1]2,n =
[ am−1,1 ... am−1,n

am,1 ... am,n

]
Now we present the concept of super window and sub-window.

[W ]f+1,k =

⎡
⎢⎣

[Wi]
2,k

[Wi+1]
2,k

...
[Wf ]

2,k

⎤
⎥⎦

where [W ]f+1,k is called the super window (array) of size ((f + 1) × k)
which contains sub-windows (arrays) [Wi]2,k of sizes (2 × k) where [Wi]2,k =
([�2,1]ΦV 2,k−1)∪(V 2,k)∪(V 2,k−1Φ[�2,1])∪([�2,1]ΦV 2,k−2Φ[�2,1]). Here f denotes
the number of sub-windows. The second row of each ith sub-window [Wi]2,k over-
laps with the first row of each (i+1)th sub-window [Wi+1]2,k. Now we show the
transition function δ of 2D-PRA-Wm for set of sub-windows. Here [�2,1], [�2,1]
denote one column and 2 rows of �, � marker respectively.

Suppose W =
[

a a a a b b b b
a a a a b b b b
b b b b a a a a
b b b b a a a a

]
.

Now W can be viewed in the following way with the help of sub window and
super window. The size of each sub window depends on the given grammar. Inter-
estingly, size of super window depends on the number of sub window. (Discussed
in detail in Theorem 1). We have shown below sub window [W1], [W2], [W3] and
the super window [W ] which contains [W1], [W2], [W3].

[W1] =
[

a a a a b b
a a a a b b

]
, [W2] =

[
a a a a b b
b b b b a a

]
, [W3] =

[
b b b b a a
b b b b a a

]
,

[W ] =
[
[W1]
[W2]
[W3]

]
,

Let G = PICCAG = (V,A, C, ϕ).
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Definition 4. A two dimensional parallel restarting automaton with multiple
window (2D-PRA-Wm), is given through a 6-tuple, M = (Q,V, �, �, q0, δ) where

– Q is a finite set of states,
– V is the input alphabet,
– �, � are left border, right border markers respectively,
– q0 ∈ Q is the initial state,

– δ : Q × [Wi]2,k → 2((Q×{MV R,DEL−RST})∪{Accept,Reject}) is the transition
function. This function describes four different types of transition steps:

• MVR: (q,MV R) ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)). Thus each sub-
window of M sees the sub-array of size 2 × k. Applying the transition
function δ, each sub-window of M moves through left to right using MV R
until it takes DEL-RST or � /∈ [Wi]2,k.

• DEL-RST: (q0,DEL − RST ) ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)) : For
possible contents of each sub-window, it deletes a subarray and causes M
to move its sub-window to the left border marker � and re-enters into the
initial state q0.

• ACCEPT: Accept ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)), it gets into an
accepting state.

• REJECT: Reject ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)) = ∅ (i.e., when δ
is undefined), then M will reject the input.

– Let P ∈ V r,s is accepted by 2D − PRA − Wm M , if there is a com-
putation, which starts from the initial configuration q0[�r,1]ΦPΦ[�r,1], and
reaching the Accept state. By L(M), we denote the language consisting
of all arrays accepted by M . In formal notation L(M) = {P ∈ V r,n |
q0[�r,1]ΦP r,sΦ[�r,1] 
∗ Accept}. Here [�r,1], [�r,1] denote one column and r
rows of �, � marker respectively.

In general, the 2D-PRA-Wm is nondeterministic, that is, there can be two or
more instructions with the same left-hand side. If this is not the case, the automa-
ton is deterministic.

Proposition 1 (Error preservation of 2D-PRA-Wm). If [W ]f+1,k
∗
M [W ′]f+1,k′

and [W ]f+1,k /∈ L(M) then [W ′]f+1,k′
/∈ L(M) where [W ]f+1,k, [W ′]f+1,k′ ∈

V ∗∗, k > k′.

4 2D-PRA-Wm and PICCAG

Before we analyze the relationship between 2D-PRA-Wm and PICCAG, which
is the objective of this section, we first need to understand the relationship of
DRA with string contextual grammars [12].

External contextual grammars were introduced by Marcus in 1969 [16]. Inter-
nal contextual grammars [22] produce strings starting from an axiom and in each
step left context and right context are adjoined to the string based on certain
string called selector present as a sub-string in the derived string. u, v are called
left context and right context respectively. For more details on contextual gram-
mars, we refer to [21].
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– The selector in a contextual grammar can be of arbitrary type in nature, like
regular, context-free etc, but the strings u, v are finite.

– Normal DRA works in the opposite way of contextual grammars in accepting
strings [12]. In a normal DRA M , w is given as an input, it checks the items
of the window with the contextual grammar G that any given rule has been
used or not.

– If it finds that any rule has been used then the automaton deletes the left
and right context u, v and takes the RST operation, otherwise takes MVR
and checks whether any rule in G can be applied.

– In this way, the automaton simulates the derivation of contextual grammar
in reverse order and if the input string can be reduced back to the axiom B1,
it implies that the string w can be generated using the given grammar G,
thus w ∈ L(G).

– Here the size of the tape of the automaton M is same as the size of the array
w. Step by step, the automaton M only deletes subarrays of w, so the size of
the tape becomes smaller and smaller.

In this paper, we adapt the working nature of DRA to solve membership prob-
lem for PICCAL. We show that the membership problem for PICCAL is solvable
by the introduced 2D-PRA-Wm. The paradigm of this version of 2D-PRA-Wm

is closely related to PICCAG. A PICCAG works just in the opposite direction of
2D-PRA-Wm. The connection is established based on the following observation.
For a PICCAG rule ϕ[xi] = LiψRi, now if we present that in two-dimensional
form-

ϕ[xi] =
[

li,1 ... li,m
li+1,1 ... li+1,m

]
ψ

[
Ri,1 ... Ri,n

Ri+1,1 ... Ri+1,n

]

where 2D-PRA-Wm has to delete the left context Li and right context Ri, that
is, ϕ[xi] = LiψRi is occurred as a subarray in the given input array. In that case,
we informally say that a PICCAG rule is found in the window as a subarray.

Let M be 2D-PRA-Wm. A reduction system induced by M is RS(M) =
(V ∗∗,
M ). For each PICCAG G, we define a reduction system induced by G
as RS(G) = (V ∗∗,⇒−1

G ) where ([W ]f+1,k 
−1
M [W ′]f+1,k′

) iff [W ′]f+1,k′ ⇒G

[W ]f+1,k.
With the above detail we will construct a 2D-PRA-Wm in such a way that

if B ⇒∗
G P then P 
∗

M B for P,B ∈ V ∗∗, B ∈ A, thus RS(G) = RS(M). Also
L2D-PRA-Wm denotes the class of languages accepted by 2D-PRA-Wm.

Theorem 1. For a PICCAG G, a 2D-PRA-Wm automaton M can be con-
structed in such a way that RS(G) = RS(M) and Lin(G) = L(M).

Proof. Given a PICCAG G = (V,A, C, ϕ) we have to construct a 2D-PRA-Wm

automaton M = (Q,V, �, �, q0, δ), that accepts Lin(G) where

– Q = {q0, q, Accept,Reject}
– V is the input alphabet

1 We consider A is a singleton axiom set and B ∈ A.
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– �, � are left and right borders respectively and �, � /∈ V
– q0 is the initial state.

[W ]f+1,k =

⎡
⎢⎣

[Wi]
2,k

[Wi+1]
2,k

...
[Wf ]

2,k

⎤
⎥⎦

– Here number of columns in each window of M will be k = max(Rulemax, kb+
2) where Rulemax is the maximum size given rule - Rulemax = max{|Rule1|c,
|Rule2|c, ..., |Rulen|c} where |Rulei|c denotes the number of columns in the
ith rule and 1 ≤ i ≤ n, n ≥ 1.

– Let kb be axiom size. 2 is added there for the left border � and the right border
�. The reason for 2 is added with kb is to satisfy the accepting condition -
ACCEPT - Accept ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)) where [W ]f+1,k =
[�f+1,1]ΦBΦ[�f+1,1] where B ∈ A.

– If the rule is Rulei = (ϕ[xi] = [Li]ψ[Ri]) where xi, Li, Ri are arrays of size
2 × k, k ≥ 1, then we define |Rulei|c = |xi|c + |Li|c + |Ri|c, Rulemax =
max{|Rule1|c, |Rule2|c, ..., |Rulen|c}

Lemma 1. If the input is Pm,n, then number of windows will be m − 1.

Proof. Each window will take care of each rule in a parallel way. According to
Definition 2, we know that if the input is P of size m × n then the number of
parallel rules will be m − 1, from this fact we can conclude this. (see example
for better understanding)

• DEL-RST: The DEL-RST instruction of the 2D-PRA-Wm for solving mem-
bership problem of PICCAL, works in the following manner:

– Now M works in a parallel way on, (q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k))
where i ≥ 1, and applies DEL-RST on each sub-window from state q to
arrive at ((q0, [W ′

i ]
2,k′

), (q0, [W ′
i+1]

2,k′
), ..., (q0, [W ′

f ]2,k′
)) and eventually

reaching (q0, ([W ′
i ]
2,k′

, [W ′
i+1]

2,k′
, ..., [W ′

f ]2,k′
)) where [W ′]f+1,k′

, [W ′
i ]
2,k′

are scattered sub-array of [W ]f+1,k, [Wi]2,k respectively and k > k′, imme-
diately followed by a RST instruction: RST ∈ δ(q, [Wi]2,k) for any possible
contents [Wi]2,k of the window. If no PICCAG rule does belong to win-
dow as a subarray and � does not belong to window (� /∈ [Wi]2,k) then
the automaton takes MV R operation.

• ACCEPT: Accept ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)) where [W ]f+1,k =
[�f+1,1]ΦBΦ[�f+1,1] where B ∈ A. Here [�f+1,1], [�f+1,1] denote one column
of �, � marker respectively, here we deal with singleton axiom set.

• REJECT: Reject ∈ δ(q, ([Wi]2,k, [Wi+1]2,k..., [Wf ]2,k)) = ∅. That is when δ is
undefined. In other words, when 2D − PRA − Wm is unable to take any of
the DEL-RST or MVR operation, then the transition becomes undefined.
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2D-PRA-Wm simulates the derivation of PICCAG in reverse order, in case
of any PICCAG rule it deletes the left and right contexts using DEL-RST
instruction which is defined already. For PICCAG, the derivation starts from
the axiom to the generated array, the automaton starts the reduction from the
generated array to the axiom. If B ⇒∗

G P then P 
∗
M B where P,B ∈ V ∗∗, B ∈

A is axiom, thus RS(G) = RS(M).

Corollary 1. The membership problem for PICCAL can be solved by
2D-PRA-Wm.

Proof. We conclude this important result from Theorem 1.

4.1 Example

Consider the PICCAG G given in Example 2.1. Suppose P =
[

a a a a b b b b
a a a a b b b b
b b b b a a a a
b b b b a a a a

]

is given as an input and we note that P ∈ Lin(G). Now we can construct a
2D-PRA-Wm automaton M = (Q,V, �, �, q0, δ), that accepts P where

– Q = {q0, q, Accept,Reject}
– V is the input alphabet
– �, � are left and right borders respectively and �, � /∈ V
– q0 is the initial state
– The number of columns in each window is k = 6 and the number of windows

is 3 respectively.
– In the first cycle, rule and � are not found in the window and so it takes

MV R: (q,MV R) ∈ δ(q, ([W1]2,6, [W2]2,6, [W3]2,6)), where

[W1]2,6 =
[

� a a a a b
� a a a a b

]
, [W2]2,6 =

[
� a a a a b
� b b b b a

]
, [W3]2,6 =

[
� b b b b a
� b b b b a

]
,

– After taking the MV R operation the elements of windows get changed and
M takes DEL − RST : (q0, ([W ′

1]
2,4, [W ′

2]
2,4, [W ′

3]
2,4)) ∈ δ(q, [W1]2,6, [W2]2,6,

[W3]2,6)), where [W ′
i ]
2,4 is the scattered sub-array of [Wi]2,6, i ≥ 1 and

[W ]4,6 =

[
[W1]

2,6

[W2]
2,6

[W3]
2,6

]
, [W ′]4,4 =

[
[W ′

1]
2,4

[W ′
2]

2,4

[W ′
3]

2,4

]

[W1]2,6 =
[

a a a a b b
a a a a b b

]
, [W ′

1]
2,4 =

[
a a a b
a a a b

]
[W2]2,6 =

[
a a a a b b
b b b b a a

]
, [W ′

2]
2,4 =

[
a a a b
b b b a

]
[W3]2,6 =

[
b b b b a a
b b b b a a

]
, [W ′

3]
2,4 =

[
b b b a
b b b a

]
– In the next cycle, again M can take DEL − RST : (q0, ([W ′

1]
2,4,

[W ′
2]

2,4, [W ′
3]

2,4)) ∈ δ(q0, [W1]2,6, [W2]2,6, [W3]2,6)) where [W ′
i ]
2,4 is the scat-

tered sub-array of [Wi]2,6, i ≥ 1 and
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[W ]4,6 =

[
[W1]

2,6

[W2]
2,6

[W3]
2,6

]
, [W ′]4,4 =

[
[W ′

1]
2,4

[W ′
2]

2,4

[W ′
3]

2,4

]

[W1]2,6 =
[

� a a a b b
� a a a b b

]
, [W ′

1]
2,4 =

[
� a a b
� a a b

]
[W2]2,6 =

[
a a a a b b
b b b b a a

]
, [W ′

2]
2,4 =

[
� a a b
� b b a

]
[W3]2,6 =

[
b b b b a a
b b b b a a

]
, [W ′

3]
2,4 =

[
� b b a
� b b a

]
– In the next cycle, Accept ∈ δ(q0, [W1]2,6, [W2]2,6, [W3]2,6) where

[W ]4,6 =
[

� a a b b �
� a a b b �
� b b a a �
� b b a a �

]

In this way, every member of Lin(G) is accepted by M . Now we consider the

input P ′ =
[

a a a a b b b
a a a a b b b
b b b b a a a
b b b b a a a

]
and we note that P ′ /∈ Lin(G).

In the first cycle, rule and � are not found in the window, so it takes MV R:
(q,MV R) ∈ δ(q, ([W1]2,6, [W2]2,6, [W3]2,6)), where

[W1]2,6 =
[

� a a a a b
� a a a a b

]
, [W2]2,6 =

[
� a a a a b
� b b b b a

]
, [W3]2,6 =

[
� b b b b a
� b b b b a

]
,

– Now M takes DEL − RST : (q0, ([W ′
1]

2,4, [W ′
2]

2,4, [W ′
3]

2,4)) ∈ δ(q, ([W1]2,6,
[W2]2,6, [W3]2,6)), where [W ′

i ]
2,4 is the scattered sub-array of [Wi]2,6, i ≥ 1

and

[W ]4,6 =

[
[W1]

2,6

[W2]
2,6

[W3]
2,6

]
, [W ′]4,4 =

[
[W ′

1]
2,4

[W ′
2]

2,4

[W ′
3]

2,4

]

[W1]2,6 =
[

a a a a b b
a a a a b b

]
, [W ′

1]
2,4 =

[
a a a b
a a a b

]
[W2]2,6 =

[
a a a a b b
b b b b a a

]
, [W ′

2]
2,4 =

[
a a a b
b b b a

]
[W3]2,6 =

[
b b b b a a
b b b b a a

]
, [W ′

3]
2,4 =

[
b b b a
b b b a

]
In the next cycle, again M can take DEL − RST : (q0, ([W ′

1]
2,4, [W ′

2]
2,4,

[W ′
3]

2,4)) ∈ δ(q0, ([W1]2,6, [W2]2,6, [W3]2,6)) where [W ′
i ]
2,4 is the scattered sub-

array of [Wi]2,6, i ≥ 1 and

[W ]4,6 =

[
[W1]

2,6

[W2]
2,6

[W3]
2,6

]
, [W ′]4,4 =

[
[W ′

1]
2,4

[W ′
2]

2,4

[W ′
3]

2,4

]

[W1]2,6 =
[

� a a a b b
� a a a b b

]
, [W ′

1]
2,4 =

[
� a a b
� a a b

]
[W2]2,6 =

[
a a a a b b
b b b b a a

]
, [W ′

2]
2,4 =

[
� a a b
� b b a

]
[W3]2,6 =

[
b b b b a a
b b b b a a

]
, [W ′

3]
2,4 =

[
� b b a
� b b a

]
In the next cycle, it rejects because this time transition function is undefined.
Reject ∈ δ(q0, ([W1]2,6, [W2]2,6, [W3]2,6)) where

[W ]4,6 =
[

� a a b �
� a a b �
� b b a �
� b b a �

]
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4.2 Properties of 2D-PRA-Wm

In this section, we introduce some important properties of 2D-PRA-Wm.

Lemma 2. The language class L(2D-PRA-Wm) is closed under 180◦ rotation.

Proof. Let 2D-PRA-Wm be M = (Q,V, �, �, q0, δ), that accepts a lan-
guage L ⊆ V ∗,∗ where Q = {q0, q, Accept,Reject}, V is the input alpha-
bet, �, � are left and right borders respectively and �, � /∈ V , q0 is
the initial state, Accept ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)), Reject ∈
δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)) = ∅ (i.e., when δ is undefined), then M will
reject.

Now, from M we can construct MR (after 180◦ rotation of M) where MR =
(Q,V, �, �, q0, δ), that accepts a language L ⊆ V ∗,∗ where Q = {q0, q, Accept′,
Reject}, V is the input alphabet, �, � are left and right borders respectively and
�, � /∈ V , q0 is the initial state, Accept′ ∈ δ(q, ([Wi]

2,k
R , [Wi+1]

2,k
R , ..., [Wf ]2,k

R ))
where [Wi]

2,k
R is the ith sub-window after 180◦ rotation of [Wi]2,k and 1 ≤ i ≤ f ,

Reject ∈ δ(q, ([Wi]
2,k
R , [Wi+1]

2,k
R , ..., [Wf ]2,k

R )) = ∅ (i.e., when δ is undefined),
then M will reject the input.

Lemma 3. The language class L(2D-PRA-Wm) is closed under complement.

Proof. Let M be a 2D-PRA-Wm, that accepts a language L ⊆ V ∗,∗. Now, from
M we can construct Mc (complement of M) by interchanging undefined and
accepting transitions.

Lemma 4. The language class L(2D-PRA-Wm) is closed under column con-
catenation.

Proof. Let M1 be a 2D-PRA-Wm, on V , that accepts a language L1 ⊆ V ∗,∗

where Accept ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)). Consider M2 be another
2D-PRA-Wm which accepts a language L2 ⊆ V ∗,∗ where Accept ∈ δ(q, ([W ′′

i ]2,k,
[W ′′

i+1]
2,k, ..., [W ′′

f ]2,k)). Now, we can construct M which can accept L1ΦL2 by
modifying the accepting state, that is, Accept ∈ δ(q, ([Wi]2,kΦ[W ′′

i ]2,k, [Wi+1]2,k

Φ[W ′′
i+1]

2,k, ..., [Wf ]2,kΦ[W ′′
f ]2,k)).

Lemma 5. The language class L(2D-PRA-Wm) with auxiliary special symbol is
closed under intersection.

Proof. Let 2D-PRA-Wm be a M1 = (Q1, V, Γ1, �, �, q′
0, δ1) with auxiliary special

symbols. Let M2 = (Q2, V, Γ2, �, �, q′′
0 , δ2) be another 2D-PRA-Wm with special

symbols where Γ1, Γ2 ⊇ V . Now we can construct M = (Q,V, Γ, �, �, q0, δ) such
that L(M) = L(M1)

⋂
L(M2). Essentially, M will work as follows:

– M first simulates M1, that is, it behaves exactly like M1. If M1 should get
stuck on the given input, that is, M1 does not accept, then neither does M . If,
however, M1 accepts, then instead of accepting, M marks the position (i, j)
at which M1 accepts, using a special symbol.
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– Now only M should start simulating M2. So, it is understood that we need to
mark the last position by special symbol and because of that we introduced
Γ = V ∪ T is the tape alphabet, Γ ⊇ V .

Lemma 6. The language class L(2D-PRA-Wm) is not closed under
transposition.

Proof. Let G = (V,A,C, ϕ) be a parallel internal column contextual array gram-
mar where V = {a, b},

A =
{

B =
[

a a a a b
a b a b b
a b a b b

]}
, C =

{
[ a

b ] ψ [ a
b ] ,

[
b
b

]
ψ

[
b
b

]}
,

where B ∈ A, ϕ is a choice mapping,

ϕ [ a a a
b a b ] = [ a

b ] ψ [ a
b ] , ϕ

[
b a b
b a b

]
=

[
b
b

]
ψ

[
b
b

]

We can construct 2D-PRA-Wm such that L(M) = L(G) where the configuration
of acceptance , ACCEPT- [W ]3,7 = [�]3,1B[�]3,1. where B ∈ A. Now, if we
consider the transposition of B, we obtain

BT =

[
a a a
a b b
a a a
a b b
b b b

]
.

Clearly, BT /∈ L(M) because in this case we cannot construct MT . If
BT ∈ L(M) then the content of each sub-window wj in each cycle ci should
be transposed to wjT such that ∀i∀j Transpose(wj , wjT ). In order to do that,
the working procedure of our M for given G, needs to be changed.

4.3 Complexity of Membership Problem for PICCAL

In this section, we discuss the complexity of solving the membership problem for
PICCAL. Let us start with internal contextual string languages with finite choice
(ICSL(FIN)). ICSL(FIN) is contained in the family of languages generated
by growing context-sensitive grammars (GCSG), and from this scenario we will
comment on the time complexity of solving membership problem for PICCAL.
So here, first we recall the definition of ICSL(FIN) and GCSG.

Definition 5 [17]. For an alphabet Σ, we denote by Σ∗ the free monoid gen-
erated by Σ, by λ its identity, and Σ+ = Σ∗ − {λ}. The family of finite
languages is denoted by FIN . Contextual grammar is a construct, G =
(Σ,A, (sel1, C1), (sel2, C2), ..., (selk, Ck)), for some k ≥ 1, where Σ is an alpha-
bet, A ⊂ Σ∗ is a finite set, called the axiom set, seli ⊆ Σ∗, 1 ≤ i ≤ k, are
the sets of selectors, and Ci ⊂ Σ∗ × Σ∗ where 1 ≤ i ≤ k, and Ci is a finite
set of contexts. There are two basic modes of derivation, the internal mode of
derivation as follows. For two words x, y ∈ Σ∗, we have the internal mode of
derivation:
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x =⇒in y iff x = x1x2x3, y = x1ux2vx3, x2 ∈ seli, (u, v) ∈ Ci, for some
1 ≤ i ≤ k.
The language generated by internal mode of derivation is: Lin(G) = {w ∈ Σ∗ |
x ∈ A, x =⇒∗

in w}, where =⇒∗
in denotes the reflexive - transitive closure of

=⇒in.
If the sets sel1, sel2, ..., selk are languages in a given family FIN , then G

is said to be with FIN choice. The family of languages generated by contextual
grammars with FIN choice in the internal mode of derivation is denoted by
ICSL(FIN).

Now we recall the definition from [11].

Definition 6. A context-sensitive grammar (CSG) is a tuple G = (V, T, P, S),
where V is a set of alphabets, T is a finite set of terminal symbols, P is a finite
set of production rules, and S is the starting symbol. We say that G is growing
if S does not appear on the right and |α| < |β| for any (α → β), with α �= S,
from P .

Definition 7. A CSG G = (V, T, P, S) is QGCSG if there exists a function
f : (V ∪ T )∗ �→ Z

+ such that, for all p ∈ P , f(α) > f(β).

Lemma 7. ICSL(FIN) ⊂ GCSG

Proof. G = (Σ,A, (sel1, C1), (sel2, C2), ..., (selk, Ck)) be ICSL(FIN). We can
assume that (λ, λ) /∈ Ci for all 1 ≤ i ≤ k. The problem in developing a QGCSG,
is to simulate an insertion step x ⇒in y if x = x1x3, λ ∈ Si, y = x1uvx3, and
(u, v) ∈ Ci for some 1 ≤ i ≤ k. In order to avoid this, we do as follows:
We define homomorphism h : Σ∗ → Σ′∗ where Σ′ = {a′ | a ∈ Σ} such that
Σ ∩ Σ′ = φ and h(a) = a′ for a ∈ Σ. Now we are ready to construct QGCSG
G′ = (Σ′ ∪ S,Σ, P, S) where S /∈ Σ′, the P is given below.
P = {S → h(x) | x ∈ A} ∪ {S → h(u, v) | λ ∈ A ∩ Si, (u, v) ∈ Ci, 1 ≤ i ≤ k} ∪
{h(x) → h(uxv) | x ∈ Si \ {λ}, (u, v) ∈ Ci, 1 ≤ i ≤ k} ∪ {h(a) → h(uva), h(a) →
h(auv) | a ∈ Σ,λ ∈ Si, (u, v) ∈ Ci, 1 ≤ i ≤ k} ∪ {h(a) → a | a ∈ Σ} with the
valuation f(S) = 1 and f(h(a)) = 2, f(a) = 3, if a ∈ Σ. So, here the constructed
grammar is QGCSG and L(G′) = Lin(G).

Since QGCSG = GCSG, we can state that ICSL(FIN) ⊂ GCSG. Here the
inclusion is strict because the cross-dependency language Lcross−dependency =
{anbmcndm | n,m ≥ 1} /∈ ICSL(FIN) but Lcross−dependency ∈ GCSL.

Lemma 8 [11]. The membership problem for internal contextual string lan-
guages with finite choice (ICSL(FIN)) is LOG(CFL) − hard.

Proof. From Lemma 7, we concluded that ICSL(FIN) ⊂ GCSG. In [5], it is
shown that GCSL family of languages, is contained in LOG(CFL). This shows
that the upper bound for membership problem for ICSL(FIN) is LOG(CFL).

Lemma 9. The membership problem for parallel internal column contextual
array languages (PICCAL) is contained in NP .
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Proof. Let V ERIFIER(W,C) be a procedure where W,C are given inputs and
denote a word and certificate respectively. Here C is a certificate, i.e., a deriva-
tion. The procedure V ERIFIER(W,C) returns “YES” if the given certificate
C is correct, otherwise “NO”. In other words, V ERIFIER(W,C) verifies the
correctness of C. Moreover the running time of V ERIFIER(W,C) is bounded
by a polynomial in |W | where |W | denotes the size of W . See Algorithm 1.

Algorithm 1. Polynomial Time Verifier
1: procedure Verifier(W, C)
2: Initialize wi ← Axiom � wi stores the Axiom
3: Initialize k ← |W | � k stores the length of W
4: Initialize N ← |C| � Nstores the length of C
5: for i = 1 to N do
6: wi ⇒ithstep wi+1

7: if wi+1 == W then � ith step of the derivation
8: print YES return � C is correct
9: else
10: i ← i + 1
11: end if
12: end for
13: if |wi| > k then
14: Print NO � C is incorrect
15: end if
16: end procedure

Corollary 2. The membership problem for PICCAL is at least LOG(CFL) −
hard and is contained in NP.

Proof. From Lemma 8 and Lemma 9, we can easily conclude this Corollary 2.

5 Conclusion and Future Work

In this paper, we have introduced a non-deterministic 2D-PRA-Wm to solve the
membership problem of PICCAL. Here we have introduced multiple windows in
order to capture the parallel application of the parallel column contextual array
rules. Also we discussed some of the important properties of 2D-PRA-Wm and
commented on the complexity of membership problem for PICCAL.

Here our focus was on column concatenation only. We can extend our work
to take care of row concatenation too. In terms of future direction of work, it
could be also interesting, if we can define a powerful subclass of PICCAG and
solve the membership problem using deterministic 2D-PRA-Wm.

Acknowledgement. Supported by NWOTOP project 612.001.852 Grey-box learning
of Interfaces for Refactoring Legacy Software (GIRLS).
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Abstract. In some cases of tomography, the projection acquisition pro-
cess has limits, and thus one cannot gain enough projections for an exact
reconstruction. In this case, the low number of projections leads to a lack
of information, and uncertainty in the reconstructions. In practice this
means that the pixel values of the reconstruction are not uniquely deter-
mined by the measured data and thus can have variable values. In this
paper, we provide a theoretically proven uncertainty measure that can be
used for measuring the variability of pixel values in grayscale reconstruc-
tions. The uncertainty values are based on linear algebra and measure
the slopes of the hyperplane of solutions in the algebraic formulation
of tomography. The methods can also be applied for any linear equation
system, that satisfy a given set of conditions. Using the uncertainty mea-
sure, we also derive upper and lower limits on the possible pixel values
in tomographic reconstructions.

Keywords: Uncertainty · Computed tomography · Algebraic
reconstruction

1 Introduction

In Computed Tomography (CT) [4], X-ray radiation is used to produce the pro-
jections of an object. The projections themselves represent the attenuation of
the beams passing through the object, giving information about the density of
the material. By gathering these projections from different angles one can recon-
struct the interior of the subject of investigation. In contrast to CT, Discrete
Tomography (DT) [5,6] uses the prior information that the cross-section image
to be reconstructed contains only a few different intensities which are known
in advance. Binary Tomography (BT) is a more restricted variant of discrete
tomography. In this case every single pixel of the image to be reconstructed can
take only two different intensities. In practice, objects corresponding to these
images must be made (or must consist) of a homogeneous material.

In an ideal case, having the reconstruction is performed using a large number
of projections. This, however, is not always possible and the low number of pro-
jections turn the reconstruction task into an ill-posed problem, having various
c© Springer Nature Switzerland AG 2020
T. Lukić et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 123–138, 2020.
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possible solutions. This lack of information produces errors in the reconstruc-
tions, because we do not have enough information for determining exact pixel
values.

Two research groups simultaneously investigated the theory of pixel uncer-
tainty in discrete reconstructed images. They gave two different approaches for
measuring the variability of reconstructions [2,11]. While [11] could be used in
binary cases, [2] presents a way to apply uncertainty in Discrete Tomography.
Unfortunately, these previous measures do not consider the uncertainty of a
reconstructed image in continuous CT.

This field has a wide range of applications. It was shown that entropy based
uncertainty could be efficiently used in projection selection [3,8,9]. [8] adapts the
global uncertainty presented in [11] to select the most informative angles through
an offline method. [1] presents an improved pixel update strategy by introducing
a probability map that measures the classification accuracy of each pixel based
on its grey value evolution throughout the iterations, which can be applied also
in the case of Discrete Tomography, but it still does not give information about
the uncertainty of the projection sets and their geometry.

Although several different types of uncertainty descriptors have been invented
during the last decades, they mostly focus on discrete tomography, or the direct
application of descriptors. The reconstruction uncertainty of the projection
geometry and the variability pixels on grayscale reconstructions - to the best
of our knowledge - has never been discussed yet. Such tools could be used to
analyse complex CT sinograms and reconstructed CT slices to tell how stable
or accurate their reconstructions are.

The aim of this paper is to define grayscale uncertainty and to examine
its behavior with different projection sets. First, we provide a measure for the
variability of the reconstructed pixels based only on the projection geometry.
Then we used this variability measure to give theoretically proven upper and
lower bounds for the pixel values in the reconstructions.

The structure of the paper is the following. In Sect. 2 we give a brief expla-
nation of the reconstruction problem and its algebraic formulation. In Sect. 3 we
propose our new findings in three theorems and in the same time prove them. In
Sect. 4 we give details about the experimental frameset used for investigating the
practical properties of our methods, while in Sect. 5 we present the experimental
results. Finally, Sect. 6 is for the conclusions.

2 The Reconstruction Problem

We use the algebraic formulation of computed tomography (see, e.g., chapter 7
of [7]), and assume that the object to be reconstructed is represented in a two
dimensional image. The idea is to describe the connections between projections
and pixels using equations. Assuming that the size of the image to be recon-
structed is n × n (N will denote the n × n product), the reconstruction problem
can be described as a system of equations

Ax = b, A ∈ R
m×N
≥0 , x ∈ R

N
≥0, b ∈ R

m
≥0, (1)
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where x is the vector of all n2 unknown image pixels, m is the total number of
projection lines used, b is the vector of all m measured projection values and
A describes the projection geometry with all ai,j elements giving the length of
the line segment of the i-th projection line through the j-th pixel (see Fig. 1 for
illustration).

We must note, that the basic formulation is given for the 2D case of tomog-
raphy. However, the results are directly applicable to the 3D case of tomography
as well.

One can note, that the stability of the reconstruction is connected to the
condition number of the A matrix. Unfortunately, classical tools for analyzing
the condition number are hard to carry out due to the large size of projection
matrices, therefore alternative approaches are needed.

Some of our proposed methods strongly rely on that the projection matrix,
the projection values and the reconstructed pixels are all non-negative. This
assumption can be made in transmission tomography since there are no materials
with negative density or projection rays with line segments of negative lengths.
We also use that the plane of solutions is a linear hyperplane in R

N
≥0.

There are various methods for tomographic reconstructions. When we needed
an actual reconstruction, we approximated a solution of Eq. (1) with the
Bounded version of the Simultaneous Iterative Reconstruction Technique (SIRT)
[4,7,10] and the Conjugate Gradient Least Squares (CGLS) technique [10]. Both
SIRT and CGLS are iterative processes capable of approximating the correct
reconstruction by iteratively subtracting the back-projected error of the interme-
diate state from itself. In general, these methods give continuous reconstructions
with real pixel values and (with the proper setup) can produce images which are
the closest one (in the Euclidean sense) to the initial image. We used the SIRT
and CGLS methods because their advantages and drawbacks made them suit-
able for various purposes. The CGLS for example has a faster convergence then
the SIRT method (see, e.g., Theorem 6.23 of [10]) that means in practice it gives
an accurate unconstrained solution for a general reconstruction in significantly
less iterations. The SIRT on the other hand is easy to modify into a projected
gradient method and it can be used for solving the reconstruction problem with
a xi ≥ 0 lower bound.

3 Proposed Methods

Before getting to the formulation of the uncertainty measure we need some
definitions.

Definition 1. Let 1N be a column vector such that

(1N )k = 1 , ∀k ∈ {1, . . . , N} . (2)

Definition 2. Let 0N be a column vector such that

(0N )k = 0 , ∀k ∈ {1, . . . , N} . (3)
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Fig. 1. Equation system-based representation of the parallel-beam projection geometry
on a discrete image.

Definition 3. Let eN,i be a column vector such that

(eN,i)k =
{

1, if k = i ,
0, if k �= i

∀k ∈ {1, . . . , N} . (4)

When it does not lead to confusion we will omit the size of 0N and 1N by
just writing, 0 and 1.

Now we can define the core concept of the uncertainty measure.

Definition 4. For any A projection matrix let the i-th perturbed reconstruction
of A be

PA(i) = arg min
x

(‖x − eN,i‖ | Ax = 0N , x ∈ RN
)
. (5)

In practice, the PA(i) can be calculated by the SIRT algorithm, or the CGLS
method.

Technically, the Ax = 0N is the Ax = b hyperplane of reconstructions
shifted into the origin. The PA(i) point is a reconstruction on this plane, that is
the closest to eN,i. These perturbed reconstructions will be used to calculate the
uncertainty. In the following sections we will highlight some properties of PA(i).

For a convenience we will denote by N and M the sets

N = {1, 2, . . . , N} , (6)

and
M = {1, 2, . . . ,m} , (7)

Definition 5. Let GA(i) be the largest gradient of the solutions of Ax = 0N

with respect to xi, i.e.,

GA(i) = max(xi | Ax = 0N ,
∑

k∈N\{i}
(x2

k) = 1) . (8)
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In a more intuitive manner, the GA(i) is a point that gives us information on
the slope of the hyperplane of solutions on the xi axis. This gives a vector along
which the xi value can change the fastest within the hyperplane of solutions.

3.1 The Variability of the Reconstructed Pixels

Theorem 1. For any A projection matrix if (PA(i))i �= 0 and (PA(i))i �= 1,
then there is a c ∈ R

+ constant such that

GA(i) = c · PA(i) . (9)

Proof. Given a fixed i pixel index, denote

p = PA(i) (10)

We stated that pi �= 0. We can also state that pi > 0 because if Ax = 0N

then
A(−p) = −0N = 0N , (11)

and also if xi < 0 then

(1 − xi)2 > (1 − (−xi))2 , (12)

leading to

‖ei − p‖2 =
√ ∑

k∈N\{i}
(0 − pk)2 + (1 − pi)2

=
√ ∑

k∈N\{i}
p2k + (1 − pi)2

>

√ ∑
k∈N\{i}

p2k + (1 − (−pi))2

=
√ ∑

k∈N\{i}
(0 − (−pk))2 + (1 − (−pi))2

= ‖ei − (−p)‖2 .

(13)

This would mean that ‖ei −p‖2 > ‖ei − (−p)‖2 that is a contradiction with the
definition of p.

We can also state that 0 < pi < 1. This is because the p, 0N and eN,i points
form a right-angled triangle in space having the (0N , eN,i) hypotenuse of length
1. For an illustration see Fig. 2.

Now let δ be
δ =

√ ∑
k∈N\{i}

p2k . (14)
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Fig. 2. Illustration of the PA(i) perturbed reconstruction.

Furthermore, we will denote v the vector such that

v = δ · GA(i) (15)

This way, we know that√ ∑
k∈N\{i}

p2k = δ =
√ ∑

k∈N\{i}
δ2 · (GA(i))2k =

√ ∑
k∈N\{i}

v2
k (16)

Also, from the definition of GA(i) we get that

vi = max(xi | Ax = 0 ,
∑

k∈N\{i}
x2

k = δ2) . (17)

Assume, that vi > pi and there is an α ∈ R>0 such that

vi = pi + α . (18)

Now we have two cases. (For an illustration see, Fig. 3.)

1. First, if 0 < vi < 1 (left side of Fig. 3) then we have

vi = pi + α > pi . (19)

This gives us

‖ei − v‖2 =
√ ∑

k∈N\{i}
(0 − vk)2 + (1 − vi)2 =

√ ∑
k∈N\{i}

v2
k + (1 − vi)2

=
√

δ2 + (1 − (pi + α))2 <
√

δ2 + (1 − pi)2

= ‖ei − p‖2 .

(20)

that is a contradiction with the definition of p = PA(i).
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Fig. 3. Two cases of vi > pi. On the left: 0 < vi < 1; On the right: vi ≥ 1.

2. In the second case, assume, that vi ≥ 1. In this case let

w = v/vi . (21)

Now we have

√ ∑
k∈N\{i}

w2
k =

√√√√ ∑
k∈N\{i}

(
vk

vi

)2

=

√∑
k∈N\{i} v2

k

vi
=

δ

vi
≤ δ (22)

and by definition wi = 1 therefore

1 − wi = 0 . (23)

This leads to

‖ei − w‖2 =
√ ∑

k∈N\{i}
(0 − wk)2 + (1 − wi)2

=
√ ∑

k∈N\{i}
w2

k + (1 − 1)2 =

√(
δ

vi

)2

+ 02

<
√

δ2 + (1 − pi)2 = ‖ei − p‖2 ,

(24)

This also contradicts the definition of p.

Furthermore, p = PA(i) is unique and GA(i) is also unique if the conditions
of the theorem hold. We also have that pi cannot be greater than vi (as it would
contradict the definition of vi), therefore, we have that pi = vi. Together with
(16), this means that (9) can only hold if v = p and c = 1/δ. �
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This means that PA(i) can directly be used for the simple and relatively easy
calculation of GA(i). This way, we can get an upper bound for the slope of the xi

variable in the space of solutions, that leads us to a local uncertainty measure.
�

Definition 6. Given a projection matrix A, let the Uncertainty of the xi pixel
be

UA(i) =
‖PA(i)‖2

‖eN,i − PA(i)‖2 . (25)

Note, that there are two special cases that we did not discuss yet:

– If pi = 0, then the hyperplane of solutions is perpendicular to the xi axis,
meaning that vi = 0. In this case we also get an uncertainty value of UA(i) = 0
meaning that the xi pixel is uniquely determined by the A matrix.

– If pi = 1, then the hyperplane of solutions is parallel to the xi axis, meaning
that either vi = ∞, or vi does not exist. In this case we get an uncertainty
value UA(i) = ∞ meaning that the xi pixel can take any values independent
of the other variables.

Using the above results we can also find an interesting connection between
UA(i) and the GA(i) vectors.

Lemma 1. Let g be a vector for a fixed i such that

g = GA(i) , (26)

then,
UA(i) = gi . (27)

Proof. Let ĝ be a vector such that

ĝk =
{

gk if i �= k
0 if i = k

(28)

By definition ‖ĝ‖2 = 1. Also, let p = PA(i) as in (10). This way we can get two
triangles. The first is determined by the (0n,g, ĝ) points, and the other one is
determined by (eN,i,p,0n) (for an illustration, see Fig. 4).

The (0n,g, ĝ) and (eN,i,p,0n) triangles are similar, and we get

UA(i) =
‖PA(i)‖2

‖eN,i − PA(i)‖2 =
‖p‖2

‖eN,i − p‖2 =
gi

1
= gi . (29)

� �

According the the previous results, the UA(i) is an upper bound for the slope
of space of solutions on the xi axis. It was also shown, that the uncertainty values
can be calculated in three different ways, i.e.,

UA(i) =
‖PA(i)‖2

‖eN,i − PA(i)‖2 =
pi

δ
= gi . (30)
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Fig. 4. Connection between the UA(i) uncertainty value and the GA(i) vector.

This means that there are more possible formulations and either PA(i) or GA(i)
could be used for calculating the uncertainty. The reason of the current definition
of UA(i) is that this form is less effected by the quantization error of floating-
point numbers when the uncertainty is small. We must also note, that GA(i) was
only used for theoretical purposes, as it is useful for showing the properties of
the uncertainty. In practice the calculation of the PA(i) is computationally more
effective, and sufficient for determining the uncertainty.

There is also an important property of the uncertainty coming from the fact
that the space of solutions is a linear hyperplane.

Corollary 1. Let A be a projection matrix, b a set of projection values, and x
and y two vectors such that

Ax = b , Ay = b , x,y ∈ R
N
≥0 . (31)

If √ ∑
k∈N\{i}

(xk − yk)2 = 1 , (32)

then
|xi − yi| ≤ UA(i) . (33)

This later Corollary only says that the upper bound on the slopes of Ax = 0N

also apply for Ax = b.

3.2 Bounds of Pixel Values

Using the bound on the slopes of the hyperplane of solutions we can give bounds
on the pixel values in the reconstructions. In this section, we will give two possible
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bounds. The first one is only based on the equation system of the projections,
while the second one on using the first bound and the uncertainty together for
giving upper and lower limits on the pixel values.

Let us start with the first upper limit.

Lemma 2. For any xk variable

xi ≤ min
j∈M

bj

aj,i
. (34)

Proof. For any (i, j) ∈ ({1, ..,m}, {1, .., N})

0 ≤ xj , 0 ≤ ai,j , (35)

therefore
0 ≤ ai,jxj . (36)

�

We also know that for any i ∈ N and j ∈ M

xi =
bj − ∑

k∈N\{i}(aj,kxj)

aj,i
(37)

and from this we have

xi =
bj − ∑

k∈N\{i}(aj,kxj)

aj,i
≤ bj − ∑

k∈N\{i} 0

aj,i
=

bj

aj,i
, (38)

Taking the minima of this upper bound for all the equations we have the upper
bound for the theorem.

�
Now using this limit, we can get a different bound on the pixel values by also

using the uncertainty values.

Definition 7. Let LA(i) be a value such that

LA(i) = min
j∈M

bj

aj,i
. (39)

Definition 8. Let DA(i) be a value that is

DA(i) =
√ ∑

k∈N\{i}
(LA(k))2 (40)

Theorem 2. Given an A projection matrix, a b set of projections, and an x̂ ∈
R

N
≥0 reconstruction such that

Ax̂ = b , x̂ ∈ R
n
≥0 . (41)

For any y ∈ R
n
≥0 reconstruction and any i ∈ N index

x̂i − UA(i) · DA(i) ≤ yi ≤ x̂i + UA(i) · DA(i) . (42)
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Proof. Let us have a fixed i value. Let γ be

γ =
√ ∑

k∈N\{i}
(xk − yk)2 (43)

and define z as a vector such that

z =
y − x

γ
. (44)

Form Lemma 2 we have that if Ax = b then for any i ∈ N

0 ≤ xi ≤ LA(k) = min
j∈M

bj

aj,k
. (45)

This also means that the space of solutions is an N -dimensional hyperrectangle
with and for any x,y pair of solutions

γ =
√ ∑

k∈N\{i}
z2k =

√ ∑
k∈N\{i}

(yk − xk)2

≤ min
j∈{1..m}

√ ∑
k∈{1..M}\i

(LA(k))2 = DA(k)
(46)

We also have that UA(i) = (GA(i))i. By definition√ ∑
k∈N\{i}

z2k =
√ ∑

k∈N\{i}
(xk − yk)2 = 1 , (47)

Therefore, from Corollary 1 we have

zi = yi − xi ≤ UA(i) . (48)

This gives us

yi = xi + γ · zi ≤ xi + DA(k)zi ≤ xi + DA(k) · UA(i) , (49)

and as the hyperplane of solutions is symmetric we also have

yi ≥ xi − DA(k) · UA(i) . (50)

� �
Regarding the relation between the upper bounds we can say the following.

As the upper bounds in Lemma 2 rely on mostly the upper limit on the projection
values, in practice, this bound will get to its minima after a few projections and
will not get significantly lower by increasing the number of projections.

On the other hand, the bounds in Theorem 2 work differently. The DA value
is practically a huge constant in the upper bounds giving very loose limits with a
low number of projections. However, when increasing the number of projections,
the UA values in the bound will reach towards zero making the bound more-
and-more strict.

This means that in practice the bounds of Lemma 2 are more useful with
a low projection number, and Theorem 2 is more strict with higher projection
counts.
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4 Test Data and Experimental Settings

To further investigate the uncertainty and the limits from a practical point of
view, we performed experimental tests on a set of different images. Our database
consisted of 7 phantoms with different structural complexity, each with a size
of 64 × 64 pixels and an intensity range of [0,1]. These images can be seen on
Fig. 5. We used parallel beam geometry for the acquisitions of the projections.
In every projection we set the distance of the beams and detector elements to 1
pixel and used 64 ·√2 of them to cover the whole image. The rotation center was
placed into the center of the image. The reconstructions were performed using
7 different number of projections: 2, 4, 8, 16, 32, 64 and 128.

P1 P2 P3 P4

P5 P6 P7

Fig. 5. Images used for testing. P1: Lena, P2: Cameraman, P3: a head CT slice, P4:
Shepp-Logan phantom, P5: a random binary shape, P6: the same phantom with a hole,
P7: homogeneous image with value 0.5 in every pixel.

The Bounded SIRT was implemented in C++, using the CUDA sdk1, with
GPU acceleration. The reconstructions were performed on a machine powered
with 4 NVIDIA Tesla K10 K2 8 GB GPUs. During the reconstruction process,
the iterations of SIRT terminated if the difference between two consecutive itera-
tions was less than 0.000001 or the number of iterations reached 1000000. In the
case of CGLS, we used a MATLAB implementation. The number of iterations
was set to 10000.

5 Results

Let there be a given ΩA,b set of reconstructions such that

ΩA,b =
{
x | x ∈ R

n
+,Ax = b

}
. (51)

1 https://www.developer.nvidia.com/cuda-zone.

https://www.developer.nvidia.com/cuda-zone
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Let E(ΩA,b, i) be the expected value of xi in ΩA,b, i.e.,

E(ΩA,b, i) =

∑
x∈ΩA,b

(xi)

|ΩA,b| (52)

Let σ(ΩA,b, i) be the standard deviation of xi in ΩA,b, i.e.,

σ(ΩA,b, i) =

√∑
x∈ΩA,b

|xi − E(ΩA,b, i)|2
|ΩA,b| − 1

(53)

Furthermore, let Min(ΩA,b, i) and Max(ΩA,b, i) be the minimum and max-
imum of xi in ΩA,b,

Min(ΩA,b, i) = min
x∈ΩA,b

(xi) (54)

Max(ΩA,b, i) = max
x∈ΩA,b

(xi) (55)

First, we investigated the correlation between σ(ΩA,b, i) and UA(i), created
with CGLS. The Pearson correlations and the Fisher z-transformations with 95%
confidence interval can be seen in Table 1. In both cases, we concatenated all the
standard deviation and uncertainty maps (belonging to a given phantom) with
different number of projections into one matrix and calculated the correlation
between them. This way, 7 comparisons were made (because of the 7 test images).
The concatenated uncertainty map belonging to P1 can be seen in Fig. 6.

Table 1. The correlation between the concatenated σ(ΩA,b, i) and UA(i) values gen-
erated from all the different number of projections using the test images in Fig. 5.

Phantoms Pearson Corr. Fisher z-trans.

P1 0.8062 [ 0.8021, 0.8102 ]

P2 0.8062 [ 0.8021, 0.8102 ]

P3 0.8068 [ 0.8028, 0.8108 ]

P4 0.8062 [ 0.8021, 0.8102 ]

P5 0.8064 [ 0.8023, 0.8104 ]

P6 0.8063 [ 0.8022, 0.8103 ]

P7 0.8067 [ 0.8016, 0.8098 ]

The correlation values around 0.8 indicate a reliable correspondence between
the uncertainty measure and the deviation of pixel values in reconstructions.
We argue that the correlation is not higher only because the pixel values in our
random reconstructions are not from uniform distribution. As the generation of
random reconstructions is not the goal of this paper, an extended evaluation
could be subject to further studies.

Using one random reconstruction from all the phantoms with different num-
ber of projections (created with Bounded SIRT), we also analyzed the range of
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Fig. 6. UA(i) of P1 in case of different number of projections.

the bounds given in Lemma 2 and Theorem 2. In Fig. 7, one can see the pro-
files of the upper limits (LA(i)) from Lemma 2. It can clearly be seen that as
the projection number increases, the limits are getting closer and closer to the
x-axis. The distance between the averages can also give us information about
the intensity ranges of the phantoms.

Figure 8 shows the profiles of the upper and the lower limits defined in
Theorem 2. In the case of a low number of projections the bounds are far from
each other and as the projection number increases the bounds are approximating
each other.

Taking under consideration the results of Figs. 7 and 8, in the case of small
amount of projections, using the upper bound of Lemma 2 seems to be a good
choice to limit the reconstruction. As we increase the number of projections it
may be increasingly useful to apply the bounds provided by Theorem 2, as they
converge to a unique reconstruction.

0 20 40 60 80 100 120 140
Number of Projections

0

5

10

15

20

25

30

35

Av
er

ag
e 

up
pe

r l
im

its
 fr

om
 L

em
m

a 
2.

P1
P2
P3
P4
P5
P6
P7

Fig. 7. Average upper limits from Lemma 2 in the case of different number of projec-
tions.
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Fig. 8. Average limits from Theorem 2 in the case of different number of projections.

6 Conclusions

We provided a measure for the variability of the reconstructed pixels based
only on the projection geometry. Then we used this variability measure to give
theoretically proven upper and lower bounds for the pixel values in the recon-
structions. We gave a practical analysis to the results evaluating the correlations
between the local uncertainties given in Theorem 1 and the standard devia-
tion of a set of reconstructed images. The bounds of Lemma 2 and Theorem 2
are also investigated by comparing them to each other with randomly selected
reconstructed images.

As a future work, we are planning to further examine the practical usability of
our methods and to evaluate our concepts on real-world data. Another possibility
is giving a sophisticated extension of the local uncertainty measure into a global
one. Also, the connection of the present work to other numerical tools – like the
condition number of matrices – would give interesting insight into the analysis
of reconstructions.
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Abstract. An annulus is basically a ring-shaped region between two
concentric disks on the same plane. However, it can be defined on any
other geometrical shapes, for example, a rectangular annulus is defined as
the area between two rectangles with one rectangle enclosing the other.
The area of the annulus is the area of the region between the two shapes.
An axis-parallel rectangular annulus is an annulus where the sides of the
rectangles are parallel to the co-ordinate axes. This paper presents a
combinatorial technique to find the largest empty axis-parallel rectan-
gular annulus from a given set of n points and runs in O(n logn) time.
It uses two balanced binary search trees to store the points and reduces
the complexity of the existing algorithm in the literature.

Keywords: Annulus · Rectangular annulus · Axis-parallel annulus

1 Introduction

Geometric covering is a well known problem in computational geometry and a
special sub-case of this is finding the largest empty annulus of different shapes.
Annulus of different shapes has importance in many domains such as field of
modern industrial design, VLSI design, robotics etc. Details about the potential
applications of largest empty annulus of different shapes can be found in [3,7]. In
2002, Banez et al. [4], proposed an algorithm to locate the largest width annulus
in between two concentric circles. In their work, they mentioned two variations
of the problem, the first variation does not allow the annulus to contain any
point and the second variation restricts k ∈ O(n) number of points in the inner
circle. The first variation takes O(n3 log n) time and O(n) space, the second
variation also requires O(n3 log n) time and O(n) space but if the value of k is
small, i.e, a fixed constant, then it takes O(n log n) time and O(n) space. There
are few more works on finding square/rectangular annulus in the literature.
P. Mahapatra [5] presented an algorithm to find axis parallel maximum width
empty rectangular annulus from a given set of n points. The proposed algorithm
c© Springer Nature Switzerland AG 2020
T. Lukić et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 139–146, 2020.
https://doi.org/10.1007/978-3-030-51002-2_10
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is simple in nature and runs in O(n2) time. Mukherjee et al. [6] proposed an
algorithm to find the rectangular annulus of arbitrary orientation from a given
set of n points in O(n2 log n) time and O(n) space. Sang Won Bae [2] studied the
problem of finding minimum width square or rectangular annulus problem with
k outliers, i.e, the annulus contains at least n − k points out of n points. The
k points which are excluded in the process are called outliers. He reported that
the k-SquareAnnulus problem can be solved in O(k2n log n+k3n) time, and the
k-RectAnnulus problem in O(nk2 log k+k4 log3 k) time. Bae [1] also proposed an
algorithm to compute minimum width square annulus in arbitrary orientation
that runs in O(n3 log n) time. He showed that when the orientation θ ∈ [0, π/2)
and the center, c ∈ R2, a unique minimum width θ-aligned square annulus
containing the points can be obtained. However, the algorithm proposed in this
work is an improvement over Mahapatra’s algorithm. The proposed algorithm
runs in O(n log n) time as compared to Mahapatra’s algorithm which runs in
O(n2) time. The improvement in the proposed work is achieved with the use of
balanced binary tree to store the points. Figure 2(a) shows a set of point, for
which the maximum empty annulus is shown in Fig. 2(b).

The rest of the paper is organized as follows. Section 2 presents a few def-
initions and preliminaries that are related to the work. The proposed method
along with algorithms and running time and proof of correctness are described
in Sect. 3. Finally, the paper is concluded in Sect. 4 with future directions.

2 Definitions and Preliminaries

This section contains few definitions and observations that are required to
explain the proposed work.

Definition 1 (Annulus). Mathematically an annulus is defined as a plane figure
consisting of the region between a pair of concentric circles.

For example, the shaded region as shown in Fig. 1(a) is an annulus.

Definition 2 (Rectangular Annulus). It is defined to be the closed region
between two rectangles on the same plane with one enclosing the other.

As shown in Fig. 1(b), the region bounded by outer rectangle R1 and inner
rectangle R2 is the rectangular annulus. It is to be noted that unlike circular
annulus the rectangular annular region may not be uniform meaning that it may
be of different width along four different directions.

Definition 3 (Axis-Parallel Annulus). Axis-parallel annulus is a rectangular
annulus where the sides of the rectangles defining the annulus are axis parallel.
The width of a rectangular annulus is the maximum distance between correspond-
ing sides of rectangles in question. An axis parallel empty rectangular annulus of
maximum width is said to be maximum empty axis parallel rectangular annulus.

Figure 1(c) represents an maximum empty axis parallel rectangular annulus with
w as the width of the annulus.
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(a)

R1
R2

(b)

w

R1

R2

(c)

Fig. 1. (a) Annulus, (b) Rectangular annulus, (c)Maximum-width axis parallel annulus.

Definition 4 (Bounding Rectangle). Bounding Rectangle (BR) R is defined as
the rectangle of a fixed orientation in a plane that encloses all the points of the
given point set P and there is no other rectangle R′ of minimum area that can
enclose all the points of P .

3 Proposed Method

This section discusses the procedure to find the maximum empty axis-parallel
annulus from a given set of points. As defined, an annulus is the closed region
between two axis-parallel rectangles R1 and R2 such that R2 ⊆ R1 and the
closed region does not contain any points. So, the algorithm needs to compute
the aforementioned rectangles R1 and R2. Initially, the bounding rectangle (BR)
that encloses the entire point set is the first potential outer rectangle R1. The
inner rectangle R2 corresponding to this initial R1 would give us the first annu-
lus. To find the width of this particular annulus, its top width (tw), bottom
width (bw), left width (lw) and right width (rw) needs to be calculated and
the maximum of these four widths would give us the width of the annulus. To
perform the above mentioned operation efficiently, the points are stored in two
AVL trees Tx and Ty. The tree Tx stores the point in a lexicographically sorted
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order with x as the primary key and y as the secondary key, similarly the tree
Ty stores the point in a lexicographically sorted order with y as the primary key
and x as the secondary key. A pointer from each point in the array points to
corresponding node in the tree. This allows the nodes in the tree to be directly
accessed from any points. The entire data structure is shown in Fig. 3 for the
point set in Fig. 2. The bounding rectangle BR (the rectangle R1 in this case)
is formed by the maximum and minimum of x-coordinates and y-coordinates
which can be obtained from the tree. It is to be observed that, maximum of
four points may lie on the boundary of the outer rectangle R1. Let pt, pl, pb, pr
be the points on the top (t(R1)), left (l(R1)), bottom (b(R1)) and right (r(R1))
boundary (side) of R1. The nodes corresponding to pt, pl, pb, pr are marked by
a flag in both the trees to mean that they are the boundary points of R1. This
helps us to find the boundary points of R2 since, these points can not form the
boundary of R2. Let qt, ql, qb and qr be the nearest point from the pt, pl, pb,
pr respectively, then these points form the respective boundary (t(R2)), (l(R2)),
(b(R2)) and (r(R2)) of the rectangle R2. The points qt and qb can be found out
by inorder traversal of the tree Ty, as predecessor of the point pt will be the point
qt and successor of the point pb will be the point qb. Similarly, inorder traversal
of the tree Tx would give us ql and qr; ql is the predecessor of the point pl and qr
is the successor of the point pr. The region between R1 and R2 defines an annu-
lus whose width are as follows. The top-width tw is the perpendicular distance
between the top of R1 and R2, i.e. |tw| = |d(t(R1) − t(R2))|, the right-width is
|rw| = |d(r(R1)−r(R2))|, the bottom-width is |bw| = |d(b(R1)−b(R2))|, and the
left-width |lw| = |d(l(R1)− rl(R2))|. This distance can be calculated in constant
time as the coordinates of points passing through each of the boundaries are
known. The maximum distance between corresponding sides of inner rectangle
R2 and outer rectangle R1 defines the width of an annulus. Thus the width of
the above annulus is |wi| = max(tw, rw, bw, lw) as shown in Fig. 1(c). The above
steps are repeated n − 4 times excluding one point from any boundary of R1.
The node corresponding to the excluded point is also deleted from the tree to
keep the tree updated and the location of the point in the array is marked deleted
instead of actually deleting it from the array for efficiency. In each iteration the
outer rectangle R1 and the corresponding inner rectangle R2 are constructed
and width of the annulus thus formed by them is calculated. Maximum of all wi

for i = 1, 2 . . . n − 4 would give us the maximum width annulus of the given set
of points.

3.1 Observation and Theorem

Observation 1. Atleast four distinct points are required to form the annulus.

It is to be observed that minimum two points are required to form a rectangle.
This happens when points are in diagonal position. So to form the outer and
inner rectangle minimum of four points are required as shown in Fig. 4.

Lemma 1. There will be maximum of n − 4 annuli.
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Fig. 2. (a) A sample point set P (b) Maximum Annulus for the point set P .

Fig. 3. AVL tree Tx and Ty for the point set in Fig. 2.

Proof. From Observation 1 minimum four points are required to get an annulus.
Every time a point is deleted a new rectangle R1 and its corresponding R2 can
be constructed giving a new annulus. So, there can be maximum of n4 annuli.

Theorem 1. Maximum Width Empty Annulus can be calculated in O(n log n)
time.

Proof. From Lemma 1, it is proved that there can be a maximum of n−4 annuli
and each annulus is a result of a unique outer rectangle R1 and corresponding
inner rectangle R2. In each iteration, algorithm constructs R1 by finding the
boundary points from the AVL trees Tx and Ty which takes 4 · log n time. The
inner rectangle R2 corresponding to R1 are formed by searching the AVL trees
mentioned above which also takes 4 · log n time. It is to be noted that one point
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Fig. 4. Annulus formed by 4 points.

from the boundary of R1 is deleted and the node corresponding to that point
in the trees are also deleted. This deletion takes 2 · log n time. The construction
of the trees Tx and Ty takes 2 · n log n time. Since the maximum width annulus
is the maximum of all n − 4 annuli, the total running time of the algorithm is
2 · n log n + (n − 4)(4 · log n + 4 · log n + 2 · log n) � O(n log n).

3.2 Algorithm

The outline of the proposed algorithm is shown in Algorithm 1. The algorithm
takes a set P of n points as input and returns the width of the maximum width
annulus. In step 1 and step 2, the algorithm draws two AVL trees viz. Tx and Ty

on x and y coordinate as primary keys respectively. L[index].p contains pointer
pointing to the nodes of both the trees. In step 6, function FindOuR() finds
the outer rectangle R1 (explained in Sect. 3). Function FindOuR() takes the
updated trees set as input in each iteration. In Step 7, FindInR() finds the inner
rectangle corresponding to the outer rectangle R1 (explained in Sect. 3). The
outer rectangle R1 and remaining points are sent as parameter to the function
FindInR(). Maximum width of the annulus is calculated in step 8, which is the
maximum of the widths viz. top width (tw), left width (lw), bottom width (bw)
and right width (rw). After this a point lying on the boundary of R1 is deleted
and Tx, Ty and L is updated in Step 11. Steps 5–12 are repeated until cardinality
of P is less than or equal to n − 4. Finally, Step 12 returns the maximum of all
the widths.



Maximum Empty Rectangular Annulus 145

Algorithm 1: Find MAX Annulus

Input: P : set of n points
Output: Maximum Width Annulus

1 Tx ← P ; //AVL tree on x
2 Ty ← P ; //AVL tree on y
3 L[index].p → Tx, Ty

4 max = 0;
5 while |P | ≥ (n − 4) do
6 R1 ← FindOuR();
7 R2 ← FindInR();
8 maxw = max (tw, lw, bw, rw);
9 if maxw > max then

10 max = maxw;

11 DeletePoint(Tx, Ty, L);

12 return max;

3.3 Proof of Correctness

To prove the correctness of the algorithm, we have to prove that the algorithm
constructs all the possible annuli, and then returns the maximum annulus after
comparing all the annuli. Lemma1 proves that there can be at most n − 4 annuli.
In each iteration, the algorithm constructs one of the annuli and reports its
width. The maximum width of these n − 4 annuli is the resultant maximum width
annulus. The iteration terminates when all of the n − 4 annuli are considered
and hence the proof.

4 Conclusion

This paper presents a simple algorithm to find the maximum empty axis-parallel
rectangular annulus, that runs in O(n log n) time. Maximum empty annulus has
it’s application in the field of VLSI design, robotics, industrial design etc. This
algorithm is a modification of the existing algorithm by Mahapatra [5] that
runs in O(n2) time. Our algorithm uses two AVL trees Tx and Ty and runs in
O(n log n) time. It is to be noted that the annulus constructed is not unique, i.e,
there may be more than one maximum empty annulus, the proposed algorithm
reports one of the maximum annulus.
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Abstract. Siromoney et al. introduced Siromoney matrix grammars
(1973) which are of sequential-parallel type in the sense that first a hori-
zontal string of nonterminals is derived sequentially by applying the hor-
izontal production rules and then vertical productions are applied in par-
allel to get the intended two-dimensional picture. In 1999, Radhakrishnan
et al. introduced and studied a variant of Siromoney matrix grammars
called (X:Y)MG where X,Y ∈ {Context − Free(CF ), Regular(R)}.
James et al. in 2018 introduced Parallel Contextual Array Insertion
Deletion Grammar (PCAIDG) to generate two-dimensional array lan-
guages using insertion and deletion operations and parallel contextual
mappings. In this paper, we prove that this family of languages gener-
ated by PCAIDGs properly includes the family (CF : CF) ML.

Keywords: Rectangular array · Parallel contextual array grammar ·
Insertion · Deletion

1 Introduction
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and parallel type in that order in the sense that first a horizontal string of non-
terminals is derived and then vertical production rules are applied in parallel to
get the desired pictures. A. Rosenfeld [14] introduced array grammars that gen-
erate or parse set of connected arrays with an emphasis on their relationship to
array acceptors. Pattern recognition and image processing field was surveyed by
King-Sun Fu and A. Rosenfeld [9] in 1976 and the areas to which these disciplines
have been applied include business (e.g., character recognition), medicine (diag-
nosis, abnormality detection), automation (robot vision), military intelligence,
communications (data compression, speech recognition), and many others.

Contextual grammars of Marcus [11] generate a language in an iterative
manner by juxtaposing new strings to the current strings based on the pair of
strings (called contexts) associated to a set of strings (called selectors), begin-
ning with a finite set of strings (called axiom set). Several variants of contextual
grammars were not only available but also studied from mathematical perspec-
tive. Many attempts have been made to extend contextual string grammars to
the grammars of two-dimensional picture languages [5,19]. Of these, the par-
allel contextual array grammars capitalize on the use of both row as well as
column contexts alternatively. Inspired by these ideas, Thomas et al. [6] have
combined the contextual notion of Marcus and insertion deletion idea of Kari [8]
and introduced a new grammar called Parallel Contextual Array Insertion Dele-
tion Grammar (PCAIDG) and have proved that PCAIDG has more generative
power by showing that the family of languages generated by PCAIDG properly
includes the families of languages like LOC [3,4], REC [3,4], and L(CSML) [15].

So far as the string languages are concerned there is a definite hierarchy in
place in the form of Chomskian hierarchy whereas for two-dimensional picture
languages there is a dearth of definite hierarchy. Pictures generated by PCAIDG
have applications in floor designs and kolam pattern generation [17]. Motivated
by these, an attempt has been made to know the position of the family of lan-
guages generated by PCAIDG in two-dimensional languages.

Kamala et al. [12] have introduced a variant of Siromoney matrix grammars
(X:Y)MG where X, Y ∈ {Context − free(CF ), Regular(R)} and went on to
prove that emptiness problem for (CF : CF )ML is decidable and membership
testing problem for (CF : CF )MG are decidable.

In this paper it is proved that the family of languages generated by
PCAIDGs [6] properly includes the family (CF:CF)ML. This paper is orga-
nized as follows: In Sect. 2, necessary preliminaries are given. In Sect. 3, defini-
tion of PCAIDG is given along with examples of picture languages generated
by PCAIDG which are also generated by the grammars (X:Y)MG where X,
Y ∈ {Context − free(CF ), Regular(R)}. Finally, in Sect. 4, it is proved that
(CF : CF )ML � L(PCAIDG).

Through out this paper the terms matrix, image, picture all mean rectangular
array of terminals. This allows very naturally for description of color, texture
etc.
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2 Preliminaries

In this section we recall some notions related to formal language theory [1] and
matrix grammars [12].

Definition 1. Let V be an alphabet set - a finite non-empty set of symbols. A
matrix (or an image) over V is an m × n rectangular array of symbols from V
where m,n ≥ 0. The set of all matrices over V including Λ is denoted by V ∗∗

and V ++ = V ∗∗ \ {Λ}, where Λ is the empty image.

Definition 2. Let V ∗ denote the set of horizontal sequences of letters from V
and V + = V ∗ \ {λ}, where λ is the identity element (of length zero). V∗ denotes
the set of all vertical sequences of letters over V , and V+ = V∗ \ {λ}. A string
s can be a horizontal or vertical sequence of letters, let

∣
∣s
∣
∣ denote its length. It

can also be interpreted as matrix: if s ∈ V + then its length coincides with C(s)
the number of columns of the matrix, and if s ∈ V+ then

∣
∣s
∣
∣ = R(s) the number

of its rows.

For strings x and y, x = a1 . . . an, y = b1 . . . bm, the concatenation (product)
of x and y is defined by x · y = a1 . . . anb1 . . . bm. For matrices we define two
types of concatenations, namely, column concatenation and row concatenation
(column product and row product).

Definition 3. The column concatenation of A =

⎡

⎢
⎣

a11 · · · a1p

...
. . .

...
am1 · · · amp

⎤

⎥
⎦ and B =

⎡

⎢
⎣

b11 · · · b1q

...
. . .

...
bn1 · · · bnq

⎤

⎥
⎦ is defined only when m = n and is given by

A©|| B =

⎡

⎢
⎣

a11 · · · a1p b11 · · · b1q

...
. . .

...
...

. . .
...

am1 · · · amp bn1 · · · bnq

⎤

⎥
⎦. Similarly, the row concatenation of A and

B, defined only when p = q, is given by A©=B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 · · · a1p

...
. . .

...
am1 · · · amp

b11 · · · b1q

...
. . .

...
bn1 · · · bnq

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. The empty

matrix Λ acts as the identity for column and row concatenation of matrices of
arbitrary dimensions.

Definition 4. For any matrix x (also called image) defined over V , we define
its horizontal and vertical products iteratively for any natural n ≥ 1 as follows:

(x)1 = x, (x)1 = x, and (x)n+1 = (x)n ‖©x, (x)n+1 = (x)n =©x
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Definition 5. For any string s = a1a2 . . . an ∈ V + , χ is defined by a mapping

χ : V + → V+ such that χ(s) =

a1

a2

...
an

i.e., χ transforms a horizontal string to a

vertical string.
Formally if s = a1a2 . . . an ∈ V +, χ(s)= a1©=a2©= . . . an.

Definition 6. Let c1, c2, . . . cn ∈ V + be strings of same length. Then I =
c1
⊙

c2
⊙ · · ·⊙ cn is the matrix (or an image) represented by the image

χ(c1)©|| χ(c2)©|| . . . ©|| χ(cn).

We now recall the notion of (CF : CF )MG [12].

Definition 7 (Matrix Grammars). Let M = 〈G,G′〉 where G = 〈N,T, P, S〉
is a grammar in Chomskian hierarchy, T = {A1, A2, . . . , Ak}, G′ =
{G1, G2, . . . , Gk−1, Gk} where each Gi is a Chomskian grammar corresponding
to the symbol Ai, defined on Σ, the alphabet set of M. A grammar M is said to
be (CF : CF )MG if both G and every Gi ∈ G′ are context free grammars. Other
combinations are defined in a similar way.

Let I = c1
⊙

c2
⊙

. . . ,
⊙

cn be an image defined over Σ. I ∈ L(M) if and
only if there exists Ax1Ax2 . . . Axn

∈ L(G) such that cj ∈ L(Gxj
), 1 ≤ j ≤ n.

The string Ax1Ax2 . . . Axn
is said to be an intermediate string deriving I with

respect to M. It is to be noted that there can be more than one intermediate
string deriving I. The family of languages generated by (X : Y )MG is denoted
as (X : Y )ML where X,Y ∈ {CF,R}, where CF stands for context free and R
stands for regular.

Remark 1. The nonterminals in each Gi, i = 1.2, . . . k are assumed to be disjoint.
Hence the choice of a vertical production rule for a particular column at any stage
is fixed by the initial symbol of that column determined by the horizontal string.
In other words, if the number of columns is n, the vertical production is chosen
from the k CFG grammars determined by the horizontal string.

Remark 2. The rules in the k CFG grammars are assumed to be of the form
A → BCD or A → X,B,D,X ∈ Ti, i = 1, 2, . . . k so that at each stage, a single
terminal is generated in each column.

Remark 3. For every column, a rule from one of G′
is in G′, i = 1, 2, . . . k (which

are assumed to be λ free) must be applied at each stage. In other words, no cell
in any column is blank or empty. Thus, combining with Remark 2, it means that
one and only one element is generated in each column at every stage and all the
columns terminate simultaneously.
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Example 1. Consider the array language L=

{
X X X X X
X • X • X
X X X X X
X • X • X
X X X X X

,

X X X X X
X • X • X
X • X • X
X X X X X
X • X • X
X • X • X
X X X X X

,

X X X X X X X
X • • X • • X
X X X X X X X
X • • X • • X
X X X X X X X

,

X X X X X X X
X • • X • • X
X • • X • • X
X X X X X X X
X • • X • • X
X • • X • • X
X X X X X X X

,

X X X X X X X
X • • X • • X
X • • X • • X
X • • X • • X
X X X X X X X
X • • X • • X
X • • X • • X
X • • X • • X
X X X X X X X

,

X X X X X X X X X
X • • • X • • • X
X • • • X • • • X
X X X X X X X X X
X • • • X • • • X
X • • • X • • • X
X X X X X X X X X

,

X X X X X X X X X
X • • • X • • • X
X • • • X • • • X
X • • • X • • • X
X X X X X X X X X
X • • • X • • • X
X • • • X • • • X
X • • • X • • • X
X X X X X X X X X

, . . .

}

.

L is a (CF : CF )ML. The corresponding (CF : CF )MG is M = (G,G′) where
G = 〈N,T, P, S〉 with

– N = {S,A,B}
– T = {S1, S2}
– P = {S → S1AS1, A → S2BS2, B → S1, B → S2BS2}
and

G′ = {G1, G2} with G1 = 〈N1, T1, P1, S1〉 and G2 = 〈N2, T2, P2, S2〉. Here
– N1 = {S1}
– T1 = {X}
– P1 = {S1 → XS1X,S1 → X}
and

– N2 = {S2, C,D}
– T2 = {•,X}
– P1 = {S2 → XCX,C → •D•, D → •D•, D → X}

A sample derivation of a picture given in Example 1 using the above (CF :
CF )MG is given as follows:

S ⇒ S1AS1 ⇒ S1S2BS2S1 ⇒ S1S2S2BS2S2S1 ⇒ S1S2S2S1S2S2S1 ⇒



152 S. Jayasankar et al.

X X X X X X X
S1 C C S1 C C S1

X X X X X X X
⇒

X X X X X X X
X • • X • • X
S1 D D S1 D D S1

X • • X • • X
X X X X X X X

⇒

X X X X X X X
X • • X • • X
X • • X • • X
S1 D D S1 D D S1

X • • X • • X
X • • X • • X
X X X X X X X

⇒

X X X X X X X
X • • X • • X
X • • X • • X
X X X X X X X
X • • X • • X
X • • X • • X
X X X X X X X

.

3 Parallel Contextual Array Insertion Deletion Grammar

In this section we recall the definition of parallel contextual array insertion dele-
tion grammar [6] and give an example.

Definition 8. Let V be a finite alphabet. A column array context over V is of

the form c =
[
u1

u2

]

∈ V ∗∗, u1, u2 are of size 1 × p, p ≥ 1.

A row array context over V is of the form, r =
[
u1 u2

] ∈ V ∗∗, u1, u2 are of
size p × 1, p ≥ 1.

Definition 9. The parallel column contextual insertion (deletion) operation is
defined as follows: Let V be an alphabet, C be a finite subset of V ∗∗ whose
elements are the column array contexts and ϕi

c(ϕ
d
c) : V ∗∗ × V ∗∗ → 2C be a

choice mapping.

We define ϕi
c(ϕ

d
c) : V ∗∗ × V ∗∗ → 2V ∗∗

such that, for arrays

A =
[

a1j ··· a1(k−1)...
. . .

...
amj ··· am(k−1)

]

, B =
[

a1k ··· a1(l−1)...
. . .

...
amk ··· am(l−1)

]

, j < k < l, aij ∈ V ,
(

B =
[

a1(k−p) ··· a1(l−1)...
. . .

...
am(k−p) ··· am(l−1)

])

, Ic ∈ ϕi
c(A,B)(ϕd

c(A,B)), Ic(Dc) =
[ u1

u2...
um

]

, if ci =

[ ui
ui+1 ] ∈ ϕi

c

( aij ··· ai(k−1)
a(i+1)j ··· a(i+1)(k−1) ,

aik ··· ai(l−1)
a(i+1)k ··· a(i+1)(l−1)

)

(

ϕd
c

( aij ··· ai(k−1)
a(i+1)j ··· a(i+1)(k−1) ,

ai(k+p) ··· ai(l−1)
a(i+1)(k+p) ··· a(i+1)(l−1)

))

, ci ∈ C, 1 ≤ i ≤ m − 1, not all
need to be distinct.

Given an array X = [aij ]m×n, aij ∈ V , X = X1©|| A©|| B©|| X2 (X =
X1©|| A©|| Dc©|| B©|| X2),
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X1 =
[

a11 ··· a1(j−1)...
. . .

...
am1 ··· am(j−1)

]

, A =
[

a1j ··· a1(k−1)...
. . .

...
amj ··· am(k−1)

]

, B =
[

a1k ··· a1(l−1)...
. . .

...
amk ··· am(l−1)

]

,

X2 =
[ a1l ··· a1n...

. . .
...

aml ··· amn

]

, 1 ≤ j ≤ k < l ≤ n + 1 (or) 1 ≤ j < k ≤ l ≤ n + 1, we write

X ⇒coli(cold) Y if Y = X1©|| A©|| Ic©|| B©|| X2 (Y = X1©|| A©|| B©|| X2), such that
Ic ∈ ϕi

c(A,B) (Dc ∈ ϕd
c(A,B)). Ic(Dc) is called the inserted (deleted) column

context. We say that Y is obtained from X by parallel column contextual insertion
(deletion) operation. The following 4 special cases for X = X1©|| A©|| B©|| X2 are
also considered,

1. For j = 1 we have X1 = Λ.
2. For j = k, we have A = Λ. If j = k = 1, then X1 = Λ and A = Λ.
3. For k = l (For k + p = l), we have B = Λ.
4. For l = n + 1, we have X2 = Λ. If k = l = n + 1 (If (k + p) = l = n + 1),

then B = Λ and X2 = Λ.

The case j = k = l is not considered for parallel column contextual insertion
(deletion) operation.

Similarly, we can define parallel row contextual insertion (deletion) opera-
tion by inserting (deleting) row context Ir(Dr) in between two sub-arrays A
and B with the help of row operation ©= and set of row array contexts R.
We have X ⇒rowi(rowd) Y if X = X1©=A©=B©=X2(X1©=A©=Dr©=B©=X2) and
Y = X1©=A©=Ir©=B©=X2 (X1©=A©=B©=X2).

Definition 10. A parallel contextual array insertion deletion grammar is
defined by G = (V, T,M,C,R, ϕi

c, ϕ
i
r, ϕ

d
c , ϕ

d
r), where V is an alphabet, T ⊆ V is

a terminal alphabet, M is a finite subset of V ∗∗ called the base of G, C is a finite
subset of V ∗∗ called column array contexts, R is a finite subset of V ∗∗ called row
array contexts, ϕi

c : V ∗∗×V ∗∗ → 2C , ϕi
r : V ∗∗×V ∗∗ → 2R, ϕd

c : V ∗∗×V ∗∗ → 2C ,
ϕd

r : V ∗∗ × V ∗∗ → 2R, are the choice mappings which perform the parallel col-
umn contextual insertion, row contextual insertion, column contextual deletion
and row contextual deletion operations, respectively.

The insertion derivation with respect to G is a binary relation ⇒i on V ∗∗ and
is defined by X ⇒i Y , where X,Y ∈ V ∗∗ if and only if X = X1©|| A©|| B©|| X2,
Y = X1©|| A©|| Ic©|| B ©|| X2 or X = X3©=A©=B©=X4, Y = X3©=A©=Ir©=B©=X4

for some X1,X2,X3,X4 ∈ V ∗∗ and Ic, Ir are inserted column and row contexts
obtained by the parallel column or row contextual insertion operations according
to the choice mappings.

The deletion derivation with respect to G is a binary relation ⇒d on
V ∗∗ and is defined by X ⇒d Y , where X,Y ∈ V ∗∗ if and only if X =
X1©|| A©|| Dc©|| B©|| X2, Y = X1©|| A©|| B ©|| X2 or X = X3©=A©=Dr©=B©=X4,
Y = X3©=A©=B©=X4 for some X1,X2,X3,X4 ∈ V ∗∗ and Dc,Dr are deleted
column and row contexts with respect to the parallel column or row contextual
deletion operations according to the choice mappings.

The direct derivation with respect to G is a binary relation ⇒i,d on V ∗∗ which
is either ⇒i or ⇒d.
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Definition 11. Let G = (V, T,M,C,R, ϕi
c, ϕ

d
r , ϕ

d
c , ϕ

d
r) be a parallel contextual

array insertion deletion grammar. The language generated by G, denoted by L(G)
is defined by,

L(G) =
{

Y ∈ T ∗∗|∃X ∈ M with X ⇒∗
i,d Y

}

.

The family of all array languages generated by parallel contextual array inser-
tion deletion grammars (PCAIDGs) is denoted by L(PCAIDG).

Example 2. We now give a PCAIDG G1 = (V, T,M,C,R, ϕi
c, ϕ

d
r , ϕ

d
c , ϕ

d
r) to gen-

erate L ∈ (CF:CF)ML given in Example 1. Here,

V =
{

X,Y,Z, •}, T =
{

X, •}, M =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X X X X X
X • X • X
X X X X X
X • X • X
X X X X X

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

C =
{

X Y X Z
• Y X Z

,
• Y X Z
X Y X Z

,
• Y X Z
• Y X Z

,
X
X

,
X X
X • ,

X •
X X

,
X •
X •,

Y X Z
Y X Z

}

,

R =

⎧

⎪⎪⎨

⎪⎪⎩

X •
Y Y
X X
Z Z

,

• •
Y Y
X X
Z Z

,

• X
Y Y
X X
Z Z

, X X ,
X X
X • ,

X X
• • ,

X X
• X

,
Y Y
X X
Z Z

⎫

⎪⎪⎬

⎪⎪⎭

.

The insertion rules are given by

(IR1) ϕi
c

[
X
• ,

X
X

]

=
{

X Y X Z
• Y X Z

}

, ϕi
c

[ •
X

,
X
X

]

=
{ • Y X Z

X Y X Z

}

,

ϕi
c

[•
• ,

X
X

]

=
{• Y X Z

• Y X Z

}

.

(IR2) ϕi
c

[
Z
Z

,
X
•
]

=
{

X X
X •

}

, ϕi
c

[
Z
Z

,
•
X

]

=
{

X •
X X

}

, ϕi
c

[
Z
Z

,
•
•
]

=
{

X •
X •

}

.

(IR3) ϕi
r

[

X • ,
X X
X •

]

=

⎧

⎪⎪⎨

⎪⎪⎩

X •
Y Y
X X
Z Z

⎫

⎪⎪⎬

⎪⎪⎭

, ϕi
r

[

• • ,
X X
• •

]

=

⎧

⎪⎪⎨

⎪⎪⎩

• •
Y Y
X X
Z Z

⎫

⎪⎪⎬

⎪⎪⎭

,

ϕi
r

[

• X ,
X X
• X

]

=

⎧

⎪⎪⎨

⎪⎪⎩

• X
Y Y
X X
Z Z

⎫

⎪⎪⎬

⎪⎪⎭

.

(IR4) ϕi
r

[
Z Z,X •] =

{
X X
X •

}

, ϕi
r

[
Z Z, • •] =

{
X X
• •

}

,

ϕi
r

[
Z Z, • X

]

=
{

X X
• X

}

.

The deletion rules are given by

(DR1) ϕd
c

[
Z
Z

,
X
•
]

=
{

X
X

}

, ϕd
c

[
Z
Z

,
•
X

]

=
{

X
X

}

, ϕd
c

[
Z
Z

,
•
•
]

=
{

X
X

}

.
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(DR2) ϕd
c

[
X
• ,

X
X

]

=
{

Y X Z
Y X Z

}

, ϕd
c

[•
• ,

X
X

]

=
{

Y X Z
Y X Z

}

,

ϕd
c

[ •
X

,
X
X

]

=
{

Y X Z
Y X Z

}

.

(DR3) ϕd
r

[
Z Z,X •] =

{

X X

}

, ϕd
r

[
Z Z, • •] =

{

X X

}

,

ϕd
r

[
Z Z, • X

]

=
{

X X

}

.

(DR4) ϕd
r

[
X •,X X

]

=
{Y Y

X X
Z Z

}

, ϕd
r

[• •,X X
]

=
{Y Y

X X
Z Z

}

,

ϕd
r

[• X,X X
]

=
{Y Y

X X
Z Z

}

.

A sample derivation to obtain a 7 × 7 picture of L is as follows:

M =

X X X X X
X • X • X
X X X X X
X • X • X
X X X X X

⇒φc
i

IR1

X X X Y X Z X X X
X • • Y X Z X • X
X X X Y X Z X X X
X • • Y X Z X • X
X X X Y X Z X X X

=

X X X Y X Z X X X
X • • Y X Z X • X
X X X Y X Z X X X
X • • Y X Z X • X
X X X Y X Z X X X

⇒φc
d

DR1

X X X Y X Z X X
X • • Y X Z • X
X X X Y X Z X X
X • • Y X Z • X
X X X Y X Z X X

⇒φc
i

IR2

X X X Y X Z X X X X
X • • Y X Z X • • X
X X X Y X Z X X X X
X • • Y X Z X • • X
X X X Y X Z X X X X

=

X X X Y X Z X X X X
X • • Y X Z X • • X
X X X Y X Z X X X X
X • • Y X Z X • • X
X X X Y X Z X X X X

⇒φc
d

DR2

X X X X X X X
X • • X • • X
X X X X X X X
X • • X • • X
X X X X X X X

⇒φr
i

IR3

X X X X X X X
X • • X • • X
X • • X • • X
Y Y Y Y Y Y Y
X X X X X X X
Z Z Z Z Z Z Z
X X X X X X X
X • • X • • X
X X X X X X X

=

X X X X X X X
X • • X • • X
X • • X • • X
Y Y Y Y Y Y Y
X X X X X X X
Z Z Z Z Z Z Z
X X X X X X X
X • • X • • X
X X X X X X X

⇒φr
d

DR3
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X X X X X X X
X • • X • • X
X • • X • • X
Y Y Y Y Y Y Y
X X X X X X X
Z Z Z Z Z Z Z
X • • X • • X
X X X X X X X

⇒φr
i

IR4

X X X X X X X
X • • X • • X
X • • X • • X
Y Y Y Y Y Y Y
X X X X X X X
Z Z Z Z Z Z Z
X X X X X X X
X • • X • • X
X • • X • • X
X X X X X X X

=

X X X X X X X
X • • X • • X
X • • X • • X
Y Y Y Y Y Y Y
X X X X X X X
Z Z Z Z Z Z Z
X X X X X X X
X • • X • • X
X • • X • • X
X X X X X X X

⇒φr
d

DR4

X X X X X X X
X • • X • • X
X • • X • • X
X X X X X X X
X • • X • • X
X • • X • • X
X X X X X X X

.

Example 3. We now give another PCAIDG G2 = (V, T,M,C,R, ϕi
c, ϕ

d
r , ϕ

d
c , ϕ

d
r)

to generate the following (CF:CF)ML:

L1 =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

• X •
X X X
• X •

,
• • X • •
X X X X X
• • X • •

,

• X •
• X •
X X X
• X •
• X •

,

• • X • •
• • X • •
X X X X X
• • X • •
• • X • •

, . . .

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧

⎨

⎩

( (•)n X (•)n )m
(X)n X (X)n

( (•)n X (•)n )m

/

n,m ≥ 1

⎫

⎬

⎭
.

Here V =
{

X,Y, •}, T =
{

X, •}, M =

⎧

⎨

⎩

• X •
X X X
• X •

⎫

⎬

⎭
,

C =

{

• Y
• Y

,
• Y
X Y

,
X Y
• Y

,
Y •
Y • ,

Y •
Y X

,
Y X
Y • ,

X
X

,
Y X Y
Y X Y

}

,

R =

{

• •
Y Y

,
• X
Y Y

,
X •
Y Y

,
Y Y
• • ,

Y Y
• X

,
Y Y
X • , X X ,

Y Y
X X
Y Y

}

.

The insertion rules are given by

(IR1) ϕi
c

[ •
X

,
X
X

]

=
{ • Y

X Y

}

, ϕi
c

[
X
• ,

X
X

]

=
{

X Y
• Y

}

, ϕi
c

[•
•,

X
X

]

=
{• Y

• Y

}

.

(IR2) ϕi
c

[
X
X

,
•
X

]

=
{

Y •
Y X

}

, ϕi
c

[
X
X

,
X
•
]

=
{

Y X
Y •

}

, ϕi
c

[
X
X

,
•
•
]

=
{

Y •
Y •

}

.
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(IR3) ϕi
c

[ •
X

,
Y X Y
Y X Y

]
=

{
X
X

}
, ϕi

c

[
X
• ,

Y X Y
Y X Y

]
=

{
X
X

}
, ϕi

c

[•
•,

Y X Y
Y X Y

]
=

{
X
X

}
.

(IR4) ϕi
r

[• X, X X
]
=

{ • X
Y Y

}
, ϕi

r

[
X •, X X

]
=

{
X •
Y Y

}
, ϕi

r

[• •, X X
]
=

{ • •
Y Y

}
.

(IR5) ϕi
r

[
X X, • X

]
=

{
Y Y
• X

}
, ϕi

r

[
X X, X •] =

{
Y Y
X •

}
, ϕi

r

[
X X, • •] =

{
Y Y
• •

}
.

(IR6) ϕi
r

⎡

⎣• X,
Y Y
X X
Y Y

⎤

⎦ =
{

X X

}

, ϕi
r

⎡

⎣X •,
Y Y
X X
Y Y

⎤

⎦ =
{

X X

}

,

ϕi
r

⎡

⎣• •,
Y Y
X X
Y Y

⎤

⎦ =
{

X X

}

.

(DR1) ϕd
c

[
X
X

,
•
X

]
=

{
Y X Y
Y X Y

}
, ϕd

c

[
X
X

,
X
•

]
=

{
Y X Y
Y X Y

}
, ϕd

c

[
X
X

,
•
•
]
=

{
Y X Y
Y X Y

}
.

(DR2) ϕd
r

[
X X, • X

]
=

{Y Y
X X
Y Y

}
, ϕd

r

[
X X, X •] =

{Y Y
X X
Y Y

}
. ϕd

r

[
X X, • •] =

{Y Y
X X
Y Y

}
.

A sample derivation to obtain a 5 × 5 picture of L1 using G2 is as follows:

M =
• X •
X X X
• X •

⇒φi
c

IR1

• • Y X •
X X Y X X
• • Y X •

=
• • Y X •
X X Y X X
• • Y X •

⇒φi
c

IR2

• • Y X Y • •
X X Y X Y X X
• • Y X Y • •

=
• • Y X Y • •
X X Y X Y X X
• • Y X Y • •

⇒φi
c

IR3

• • X Y X Y • •
X X X Y X Y X X
• • X Y X Y • •

=

• • X Y X Y • •
X X X Y X Y X X
• • X Y X Y • •

⇒φd
c

DR1

• • X • •
X X X X X
• • X • •

⇒φi
r

IR4

• • X • •
• • X • •
Y Y Y Y Y
X X X X X
• • X • •

=

• • X • •
• • X • •
Y Y Y Y Y
X X X X X
• • X • •

⇒φi
r

IR5

• • X • •
• • X • •
Y Y Y Y Y
X X X X X
Y Y Y Y Y
• • X • •
• • X • •

=

• • X • •
• • X • •
Y Y Y Y Y
X X X X X
Y Y Y Y Y
• • X • •
• • X • •

⇒φi
r

IR6

• • X • •
• • X • •
X X X X X
Y Y Y Y Y
X X X X X
Y Y Y Y Y
• • X • •
• • X • •

=
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• • X • •
• • X • •
X X X X X
Y Y Y Y Y
X X X X X
Y Y Y Y Y
• • X • •
• • X • •

⇒φd
r

DR2

• • X • •
• • X • •
X X X X X
• • X • •
• • X • •

.

The corresponding (CF : CF )MG generating L1 is M = (G,G′) where
G = 〈N,T, P, S〉 with

– N = {S,A}
– T = {S1, S2}
– P = {S → S1AS1, A → S1AS1, A → S2}
and

G′ = {G1, G2} with G1 = 〈N1, T1, P1, S1〉 and G2 = 〈N2, T2, P2, S2〉. Here
– N1 = {S1 , B}
– T1 = {•}
– P1 = {S1 → •B • , B → •B • , B → X}
and

– N2 = {S2 , C}
– T2 = {X}
– P1 = {S2 → XCX , C → XCX , C → X}

A sample derivation of a picture given in L1 using the above (CF : CF )MG
is given as follows:

S ⇒ S1AS1 ⇒ S1S1AS1S1 ⇒ S1S1S2S1S1 ⇒
• • X • •
B B C B B
• • X • •

⇒

• • X • •
X X X X X
• • X • •

.

4 Main Result

In this section we show our main result that L(PCAIDG) includes (CF :
CF )ML. For proving this, we make use of the Chomosky normal form (CNF)
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of a context-free grammar. This implies that any context free language without
λ is generated by a grammar in which all productions are of the form A → BC
or A → a where A, B and C are non-terminals and a is a terminal [1].

To prove (CF : CF )ML � L(PCAIDG) we write the production rules of
both horizontal and vertical CFGs of (CF : CF )MG in Chomsky Normal Form.
For example, the rules of CFG G of M = (G,G′), of Example 1, in CNF are
given by

S → CD, C → S1 , D → AE , E → S1, A → FG, F → S2, G → BH,
H → S2, B → IJ , I → S2, J → BK, K → S2, B → S1.

Theorem 1. (CF : CF )ML � L(PCAIDG)

Proof. The (CF : CF ) matrix grammar is given by MG = (G,G′), where
G = 〈N, I, P, S〉, is a context-free grammar in Chomsky normal form, I =
{A1, A2, . . . , Ak}, G′ = {G1, G2, . . . , Gk}, where each Gj = 〈Nj , Σ, Pj , Aj〉
where 1 ≤ j ≤ k is a context free grammar in Chomsky normal form.

The parallel contextual array insertion deletion grammar corresponding to
the (CF : CF )MG is given by

GID = (V, T,M,C,R, φi
r, φ

i
c, φ

d
r , φ

d
c) where

V = N ∪ I ∪ Σ ∪ {#}.
T = Σ.

M =
{
# #
# S

/

S ∈ N is the start symbol in G

}

C =
{
#
A

,
# #
B C

/

A → BC ∈ P,A,B,C ∈ N

}

∪
{
#
A

,
#
Ai

/

A → Ai ∈ P,A ∈ N,Ai ∈ I

}

∪
{
#
#

}

.

R =
{

# Ai ,
# Bi

# Ci

/

Ai → BiCi ∈ Pi, Ai, Bi, Ci ∈ Ni

}

∪
{

# Ai , # ai

/

Ai → ai ∈ Pi, Ai ∈ Ni, ai ∈ Σ

}

∪
{

Ai Aj ,
Bi Bj

Ci Cj

/

Ai → BiCi ∈ Pi, Aj → BjCj ∈ Pj , Ai, Bi, Ci ∈

Ni, Aj , Bj , Cj ∈ Nj

}

∪
{

Ai Aj , ai aj

/

Ai → ai ∈ Pi, Aj → aj ∈ Pj , Ai ∈ Ni, Aj ∈ Nj , ai, aj ∈ Σ

}

∪
{

# #
}

.

The column insertion deletion rules (horizontal productions) for horizontal

growth: φi
c

[
#
S

,
λ
λ

]

=
{
# #
A B

/

S → AB ∈ P

}

, φd
c

[
#
# ,

# #
A B

]

=
{
#
S

/

S →

AB ∈ P

}

φi
c

[
#
A

,
λ
λ

]

=
{
# #
B C

/

A → BC ∈ P

}

,
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φd
c

[
#
D

,
# #
B C

]

=
{
#
A

/

A → BC ∈ P,D ∈ N ∪ I

}

,

φi
c

[
#
A

,
#
D

]

=
{
# #
B C

/

A → BC ∈ P,D ∈ N ∪ I

}

,

φd
c

[
#
# ,

# #
B C

]

=
{
#
A

/

A → BC ∈ P

}

,

φi
c

[
#
S

,
λ
λ

]

=
{
#
Ai

/

S → Ai ∈ P

}

,

φd
c

[
#
# ,

#
Ai

]

=
{
#
S

/

S → Ai ∈ P

}

,

φi
c

[
#
A

,
λ
λ

]

=
{
#
Ai

/

S → Ai ∈ P

}

,

φd
c

[
#
D

,
#
Ai

]

=
{
#
A

/

A → Ai ∈ P,D ∈ N ∪ I

}

,

φi
c

[
#
A

,
#
D

]

=
{
#
Ai

/

A → Ai ∈ P,D ∈ N ∪ I

}

,

φd
c

[
#
# ,

#
Ai

]

=
{
#
A

/

A → Ai ∈ P

}

.

The row insertion deletion rules (vertical productions) for vertical growth:

φi
r

[

Ai Aj , λ λ

]

=
{

Bi Bj

Ci Cj

/

Ai → BiCi ∈ Pi, Aj → BjCj ∈ Pj

}

,

φd
r

[

# # ,
Bi Bj

Ci Cj

]

=
{

Ai Aj

/

Ai → BiCi ∈ Pi, Aj → BjCj ∈ Pj

}

.

φi
r

[

Ai Aj , Di Dj

]

=
{

Bi Bj

Ci Cj

/

Ai → BiCi ∈ Pi, Aj → BjCj ∈ Pj ,

Di ∈ Ni ∪ Σ,Dj ∈ Nj ∪ Σ

}

,

φd
r

[

Di Dj ,
Bi Bj

Ci Cj

]

=
{

Ai Aj

/

Ai → BiCi ∈ Pi, Aj → BjCj ∈ Pj ,

Di ∈ Ni ∪ Σ,Dj ∈ Nj ∪ Σ

}

.

φi
r

[

# Ai , λ λ

]

=
{
# Bi

# Ci

/

Ai → BiCi ∈ Pi

}

,

φd
r

[

# # ,
# Bi

# Ci

]

=
{

# Ai

/

Ai → BiCi ∈ Pi

}

.

φi
r

[

# Ai , # Di

]

=
{
# Bi

# Ci

/

Ai → BiCi ∈ Pi,Di ∈ Ni ∪ Σ

}

,

φd
r

[

# Di ,
# Bi

# Ci

]

=
{

# Ai

/

Ai → BiCi ∈ Pi,Di ∈ Ni ∪ Σ

}

.

φi
r

[

Ai Aj , λ λ

]

=
{

ai aj

/

Ai → ai ∈ Pi, Aj → aj ∈ Pj

}

,

φd
r

[

# # , ai aj

]

=
{

Ai Aj

/

Ai → ai ∈ Pi, Aj → aj ∈ Pj

}

.
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φi
r

[

Ai Aj , Di Dj

]

=
{

ai aj

/

Ai → ai ∈ Pi, Aj → aj ∈ Pj ,

Di ∈ Ni ∪ Σ,Dj ∈ Nj ∪ Σ

}

,

φd
r

[

Di Dj , ai aj

]

=
{

Ai Aj

/

Ai → ai ∈ Pi, Aj → aj ∈ Pj ,

Di ∈ Ni ∪ Σ,Dj ∈ Nj ∪ Σ

}

.

φi
r

[

# Ai , λ λ

]

=
{

# ai

/

Ai → ai ∈ Pi

}

,

φd
r

[

# # , # ai

]

=
{

# Ai

/

Ai → ai ∈ Pi

}

,

φi
r

[

# Ai , # Di

]

=
{

# ai

/

Ai → ai ∈ Pi,Di ∈ Ni ∪ Σ

}

,

φd
r

[

# Di , # ai

]

=
{

# Ai

/

Ai → ai ∈ Pi,Di ∈ Ni ∪ Σ

}

,

φd
r

[

λ λ , ai aj

]

=
{

# #
/

ai, aj ∈ Σ

}

,

φd
r

[

λ λ , # ai

]

=
{

# #
/

ai ∈ Σ

}

,

φd
c

[
λ
λ

,
ai

bi

]

=
{
#
#

/

ai, bi ∈ Σ

}

.

The working of the PCAIDG is as follows: Depending upon the starting

symbol S of the grammar (CF : CF )MG, the array of the axiom set M,
# #
# S

is chosen accordingly. For the horizontal growth of pictures, appropriate parallel
column contextual insertion deletion operations are applied alternatively accord-
ing to the horizontal production rules of the grammar (CF : CF )MG. After the
successful completion of application of horizontal production rules, parallel row
contextual insertion deletion rules are applied alternatively corresponding to the
vertical production rules of the grammar (CF : CF )MG. Finally, using parallel
contextual row/column deletion operations, the #’s along the boundaries of the
picture are deleted accordingly so that the resulting picture language belongs to
the family of picture languages L(PCAIDG).

We now prove the proper inclusion. James et al. [6] have proved that the
language

L =

⎧

⎨

⎩

⎛

⎝

(•)n
(X)n
(•)n

⎞

⎠

n⎛

⎝

(X)n
(X)n
(•)n

⎞

⎠

n⎛

⎝

(•)n
(•)n
(•)n

⎞

⎠

n/

n ≥ 1

⎫

⎬

⎭
can be generated by a

PCAIDG but not by any CSMG as can be seen in [16]. Hence it cannot be
generated by any (CF : CF )MG and hence (CF : CF )ML is properly included
in the family of L(PCAIDG).
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5 Applications

We now give few applications of the grammar PCAIDG:

1. In one of the pictures generated by PCAIDG in Example 1,

X X X X X
X • X • X
X X X X X
X • X • X
X X X X X

if we replace each X by ��, we get the following image

�� �� �� �� ���� • �� • ���� �� �� �� ���� • �� • ���� �� �� �� ��
.

2. Since James et al. [6] have proved that L(CSML) � L(PCAIDG), where
CSMGs generate wide varieties of pictures like kolam patterns, geometric
patterns and other patterns [15–17], PCAIDGs do the same and more.

6 Conclusion

In this paper, it is proved that the family of languages generated by the parallel
contextual array insertion deletion grammars properly includes (CF:CF)ML. It
can be shown that REC [3], CSML [6], (CF : RIR) [7] and (CF : CF )ML
[12] are incomparable but not disjoint. It is worth to investigate the position
of L(PCAIDG) in the hierarchy of families of two dimensional languages.
An attempt has been made in this paper towards this direction. It should be
noted that tabled matrix grammars [18] have higher generative capacity than
Siromoney matrix models considered by us. It is interesting to compare the power
of PCAIDG with tabled matrix grammars and many other models available in
the literature and would be carried out as our future work.

Acknowledgment. We are grateful to the reviewers whose comments made to refine
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LORIA, Université de Lorraine, Nancy, France
hoai-diem-phuc.ngo@loria.fr

Abstract. This paper addresses the hyperplane fitting problem of dis-
crete points in any dimension (i.e. in Z

d). For that purpose, we consider
a digital model of hyperplane, namely digital hyperplane, and present a
combinatorial approach to find the optimal solution of the fitting prob-
lem. This method consists in computing all possible digital hyperplanes
from a set S of n points, then an exhaustive search enables us to find
the optimal hyperplane that best fits S. The method has, however, a
high complexity of O(nd), and thus can not be applied for big datasets.
To overcome this limitation, we propose another method relying on the
Delaunay triangulation of S. By not generating and verifying all possible
digital hyperplanes but only those from the elements of the triangula-

tion, this leads to a lower complexity of O(n� d
2 �+1). Experiments in 2D,

3D and 4D are shown to illustrate the efficiency of the proposed method.

Keywords: Optimal consensus · Exact computation · Discrete
optimization · Optimal fitting · dD Delaunay triangulation

1 Introduction

Data fitting is the process of matching a set of data points with a model, possibly
subject to constraints. This is an essential task in many applications of computer
vision and image analysis; e.g. shape approximation [23,32], image registration
[31,33], image segmentation [19,21]. In this context, the mostly considered mod-
els are the geometric ones such as a line, a circle in 2D or a plane, a surface in
3D. Among the models, the linear one has received greatest attention in theory
and practice as many nonlinear models can be rearranged to a linear form by a
suitable transformation of the model formulation [17,30]. In this paper, we are
interested in the fitting problem of hyperplane – a linear model – for a set of
discrete points S in any dimension; i.e. S ⊂ Z

d for d is the dimension of space.
Then, this problem can be formulated as an optimization problem in which we
find the parameters of the hyperplane that best fits S, namely optimal solution.
It is clear that this problem depends on how we define the hyperplane model
and the criteria for the best fitting, namely cost function of the optimization
process. In practice, hyperplane fitting has a great interest in applications of
classification for object detection and recognition [9].

Several works have been proposed in this context. We can mention, for
instance, the methods based on regression [4,11,29,30]; e.g. least squares,
c© Springer Nature Switzerland AG 2020
T. Lukić et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 164–180, 2020.
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weighted least-squares, least-absolute-value regression and least median of
squares (LMS). Generally, these approaches consider a hyperplane in the
Euclidean space R

d and find the model that minimizes the sum of the geometric
distance from all given points to the model. However, the provided solution is
known to be unstable and sensitive to large deviant data points, namely outliers
[24]. Other well-known approaches for fitting hyperplane using voting scheme
include the Hough Transform (HT) [15,18], the RANdom SAmple Consensus
(RANSAC) [16] and associated variations [12]. More precisely, HT considers a
dual space, namely Hough parameter space of the input set S. This space is
discretized into cells and used as an accumulator of votes from points of S. Typ-
ically, for each point x ∈ S, a vote is added to cell in the accumulator that could
generate from x. Then, the optimal solution is computed from the cell having the
maximal of votes. RANSAC method chooses d points from S at random to form
a candidate hyperplane passing through these points. Then, it calculates the
distance of every points of S to the candidate hyperplane, and the points within
a threshold distance are considered to be in the consensus set of the hyper-
plane. A score associated to the hyperplane is computed based on its consensus
set; e.g. the size of the consensus set. This process is iterated a certain times
and reports the hyperplane of maximal score as the optimal solution; i.e. the
best-fitting hyperplane for S. Both HT and RANSAC are simple, efficient and
robustness to outliers. They, however, have a computational complexity grow-
ing with the number of model parameters [12,15,16,18]. In addition, the above
approaches were originally designed for points in R

d using the Euclidean hyper-
plane model. Of course, the discrete space of Zd is a subspace of Rd, then the
fitting problem can be solved using these approaches. However, because of their
continuous consideration, applying them for points of Z

d requires the use of
floating point numbers which may induce the numerical error. Furthermore, due
to the discrete nature of points in Zd, computing an actually optimal solution
of discrete points is practically impossible in a continuous space as there is an
infinity of solutions.

Under the assumption of input points in discrete space of Z
d, this paper

addresses the problem of hyperplane fitting in a fully discrete context. More
specifically, we consider the digital model of hyperplane of Z

d, namely digital
hyperplane, and propose methods for digital hyperplane fitting using exact com-
putation. For that purpose, we first present a combinatorial approach for solving
this problem. The method consists in generating all the possible digital hyper-
planes associated to a set of n point S ⊂ Z

d. Contrarily to R
d, this set –despite a

potentially high complexity– remains finite and thus allows an explicit exploration
to find the optimal solution via a discrete optimization scheme. The method guar-
antees the global optimality, it has however a computational complexity of O(nd).
In practice, it is unsolvable for n = 106 in 3D1. This high complexity practically
forbids its use for big dataset.

1 Supposing it needs 1µs for generating and testing one hyperplane, then it takes about
3 ∗ 107 years to find the optimal solution.
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In order to solve this fitting problem in a practical context, we propose a
new method to find locally optimal solution. The method is based on a heuristic
involving the Delaunay triangulation [13,27]. Basically, it consists in comput-
ing the Delaunay triangulation of the input points, then using the triangulated
elements to generate hyperplanes and find an optimal solution for the fitting
problem stated above. It should be mentioned that Delaunay triangulations are
used in numerous applications of computational geometry [8], geometric mod-
elling [6] and computer graphics [3,14]. It is not only well-known for its optimal
properties [2,22,27] but also for its advantage to be incrementally computed in
O(n� d

2 �+1) complexity [7,10].

Fig. 1. Digital hyperplanes in 2D and 3D. Left: a digital line and right: a digital plane.

2 Preliminaries

2.1 Digital Hyperplane

An affine hyperplane in Euclidean space R
d of dimension d ≥ 2 is defined by the

set of points x = (x1, x2, . . . , xd) ∈ R
d satisfying the following equation:

H = {x ∈ R
d :

d∑

i=1

aixi + ad+1 = 0}, (1)

with ai ∈ R are coefficients of the hyperplane, w.l.o.g. H can be unambiguously
represented by its parameters and denoted by H = (ai)d+1

i=1 . In other words, a
hyperplane is the solution of a single linear equation (Eq. 1). Lines and planes
are respectively hyperplanes in 2 and 3 dimensions.

The digitization of hyperplane in the discrete space of Z
d is called digital

hyperplane, and defined as follows. Note that this definition is similar to the one
in [28] with a slight difference at the double less than or equal to (≤) in Eq. 2.
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Definition 1. A digital hyperplane in Z
d, d ≥ 2, is defined by the set of discrete

points x = (x1, x2, . . . , xd) ∈ Z
d satisfying the inequalities:

DHω = {x ∈ Z
d : 0 ≤

d∑

i=1

aixi + ad+1 ≤ ω}, (2)

with ai ∈ Z are coefficients of the digital hyperplane, and ω ∈ Z a given constant.

Such a digital plane DHω can be represented by its parameters and denoted by
DHω = (ai)d+1

i=1 . Geometrically, DHω is a set of discrete points lying in between
two parallel hyperplanes

∑d
i=1 aixi + ad+1 = 0 and

∑d
i=1 aixi + ad+1 = ω;

these two parallel hyperplanes are called the support hyperplanes, and the points
that are on the support hyperplanes are called support points of DHω. The dis-
tance between the two hyperplanes is ε = w√∑d

i=1 a2
i

which refers to the euclidean

thickness of DHω, while w refers to arithmetical thickness of DHω [28]. An exam-
ple in 2D and 3D is given in Fig. 1.

From linear algebra, a hyperplane in dimension d is a (d − 1)-dimensional
subspace; i.e. it is defined by (d − 1) linearly independent vectors. These (d − 1)
vectors can be created from d distinct points of H. In other words, given any
d points in the hyperplane in general linear position, i.e. they are all (d − 1)
linearly independent, there is a unique hyperplane of Rd passing through them.
In case of Z

d, from Eq. 2, we also need d linearly independent support points
to determine a digital hyperplane. However, contrarily to the Euclidean space,
for a given set of d support points and a value ω, the digital hyperplane DHω

passing though these points is not unique. This is illustrated in Fig. 2.

Fig. 2. Different digital lines of thickness ω passing through two points (in black).

2.2 Delaunay Triangulation

The Delaunay triangulation was introduced by Boris Delaunay in [13]. It is
initially defined for a given set of n points S = {xi ∈ R

2 | i = 1..n} as a
triangulation DT (S) such that the circumcircle associated to any triangle in
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DT (S) does not contain any other points of S in its interior. In other words, a
Delaunay triangulation fulfills the empty circle property (also called Delaunay
property): the circumscribing circle of any triangle of the triangulation encloses
no other data point. Such a triangulation can be seen as a partition of the convex
hull of S into triangles whose vertices are the points of S, and it maximizes the
minimum angle of all the angles of the triangles in DT (S). An illustration is
given in Fig. 3(a). It should be mentioned that in some degenerate cases, the
Delaunay triangulation is not guaranteed to exist or be unique; e.g. for a set of
linear points there is no Delaunay triangulation, for four or more points on the
same circle the Delaunay triangulation is not unique.

(a) (b)

Fig. 3. Illustration of Delaunay triangulation in (a) 2D and (b) 3D.

By considering circumscribed spheres, the Delaunay triangulation extends
to three and higher dimensions, namely dD Delaunay triangulation [27] for d is
the dimension of space (see Fig. 3(b) for an example in 3D). Then, we call an
i-face for i ∈ [0, d] is an element of DT (S) containing i + 1 vertices of S. Then,
a vertex is a 0-face, an edge is a 1-face, a triangle is 2-face, a tetrahedron is a
3-face, a ridge is a (d − 2)-face, a facet is a (d − 1)-face and a full cell is a d-
face. In [22,27], discussions on optimal properties of DT (S) in d dimension have
been presented such as the maximum min-containment radius, uniformity of size
and shape. In particular, as mentioned in [27] the dD Delaunay triangulation
can be transformed into a convex-hull problem in dimension d + 1. Henceforth,
convex-hull algorithms can be used to obtain the Delaunay triangulation. In
this context, there exist efficient and incremental algorithms [5,10,27] to con-
struct the Delaunay triangulation. Furthermore, it is shown in [26] that the dD
Delaunay triangulation of n points in R

d contains O(n� d
2 �) faces.

In this paper, we consider the dD Delaunay triangulation for the set of dis-
crete points S = {xi ∈ Z

d | i = 1..n}, and use the implementation of Delaunay
triangulation proposed in CGAL [10] because of its robustness, efficiency, ease
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of use and flexibility. It is shown in [7] that the worst case complexity, without
spatial sort of input points, of the method is O(n� d

2 �+1). With spatial sort and
random points, one can expect a much better complexity of O(n log n).

3 Digital Hyperplane Fitting

From Definition 1, we can describe our fitting problem for a set of discrete points
S as finding a digital hyperplane DHω = (ai)d+1

i=1 of given ω that encloses the
most number of points of S. Such a hyperplane is called optimal hyperplane, the
points of S belonging to DHω, i.e. xi ∈ S ∩ DHω, are called inliers, the other
points of S are called outliers. In other words, the digital hyperplane fitting aims
to solve an optimization problem being expressed as maximizing the number of
inliers.

Definition 2. Given S = {xi ∈ Z
d | i = 1..n, for n ≥ d} and a constant ω ∈ Z.

The best fitting hyperplane of S is defined as

DH∗
ω = arg max

DHω∈F(S)

{S ∩ DHω}

where F(S) is the search space and it contains the set of all hyperplanes of given
ω generated from S.

Due to the discrete nature of the problem, it should be mentioned that the
search space F(S) can be huge but finite as S is finite and the points xi ∈ S
have finite coordinates. Roughly speaking, a brute-force search within F(S) would
lead to a globally optimal solution for the digital hyperplane fitting of S in
Definition 2. Finding F(S) in 2D (resp. 3D) case is solved in [34]. More specifi-
cally, using rotation and translation techniques, it is proved that a digital lines
(resp. planes) can be determined with at least 2 (resp. 3) support points. There-
fore, the whole search space F(S) can be constructed from all possible pairs (resp.
triplets) of points in S for digital line (resp. plane) fitting.

Property 1 ([34]). Given a set of points S ⊂ Z
2 (resp. Z3), and a set of inliers,

namely consensus set, for a given digital line (resp. plane). It is possible to find
a new digital line (resp. plane) with the same consensus set, such that it has at
least 2 (resp. 3) inliers as support points.

This is clearly understandable as a digital line (resp. plane) can be computed
from two (resp. three) support points. This result can be extended to higher
dimension thanks to the very definition of digital hyperplane (see Definition 1).

Property 2. Given a set of points S ⊂ Z
d, and a set of inliers for a given digital

hyperplane. There exists an other hyperplane with the same inlier set such that
it has at least d inliers as support points.

From Property 2, by taking all possible d-uplet of points in S as support
points, one can construct the whole search space F(S) of S for digital hyperplane
fitting.
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Proposition 1. Given S = {xi ∈ Z
d | i = 1..n} and a value ω, the number of

digital hyperplanes DHω generated from S is O(nd).

Proof. From Definition 1 and Property 2, we need d linearly independent points
as support points to determine a digital hyperplane DHω. In order to select d
points in S, we need a complexity of O(nd) since there are n points in S and the
linearly independent test of these points is O(1).

Let consider the two support hyperplanes of DHω:

d∑

i=1

aixi + ad+1 = 0 (3)

d∑

i=1

aixi + ad+1 = ω (4)

It should be recalled that, for a given set of d support points, the digital
hyperplane DHω passing though them is not unique. Different cases may appear
to the d selected support points of DHω. Typically, there are i points on the
support hyperplane in Eq. 3, and d − i points on the one in Eq. 4, for i = 0, .., d.
In particular, i = 0 or i = d mean all points belong respectively to Eq. 3 or
Eq. 4. Due to the symmetry of selecting points, e.g. having i points on Eq. 3 and
d − i points on Eq. 4 is equivalent to d − i points on Eq. 3 and i points on Eq. 4,
the total number of possible hyperplanes DHω passing though these d support

points is
(
d
0

)
+ 1

2

d−1∑
i=1

(
d
i

)
+

(
d
d

)
= 1 + 2d−1. This leads to the final complexity of

O(2d−1nd) for generating all digital hyperplanes of a given set S. For a fixed
dimension space d, this complexity becomes O(nd). �

From Proposition 1, one can generate the whole search space F(S) from S.
Then, by verifying the inliers of each hyperplane in F(S), we can find the optimal
hyperplane as the one that maximizes the number inliers. In this context, some
solutions have been proposed for the specific cases of 2D and 3D, for instance in
[34] a combinatorial approach using dual space is presented for digital line and
plane fitting which a time complexity of O(nd log n) for d = 2, 3, and an improved
algorithm for 2D cases with O(n2) time-complexity using a topological sweep
method in [20]. In [1], a study for efficient digital hyperplane fitting in Z

d with
bounded error is investigated. Still in [1], a conjecture of optimal computational
complexity for this problem in any dimension is provided, and it is O(nd).

4 Hyperplane Fitting Using dD Delaunay Triangulation

The combinatorial approach in the previous section, by generating all possible
digital hyperplanes from S, allows to find the optimal solution for digital hyper-
plane fitting. It has, however, a high complexity of O(nd) with n is the number
of discrete points in S and d is the dimension space of points in S. This forbids
the use of the method in many applications with big datasets.
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Faced with this dilemma, a new approach of digital hyperplane fitting is
proposed in this section. The approach is based on a heuristic involving the dD
Delaunay triangulation. Roughly speaking, the method uses the triangulated
elements to filter the admissible combinations of discrete points and to generate
digital hyperplanes for the considered fitting problem.

One of the interesting aspect of the Delaunay triangulation is that it implic-
itly presents an information of distribution/density of points in the space; i.e. the
points being close to each other form small and thin cells, while those being far
create excessively large and long cells (see Fig. 4 for an illustration in 2D). This
enables us to relate and to recognize points belonging to the same hyperplane;
i.e. points appearing to lie reasonably on a hyperplane are close and arranged
in a linear form. Roughly speaking, the fitting problem can be solved using the
dD Delaunay triangulation, according to two criteria: (1) the candidate hyper-
planes should be on d-faces whose width is smaller than ω and (2) the best fitted
hyperplane is the one containing the most number of inliers.

Fig. 4. A set of points (left) and its Delaunay triangulation (right). Points appearing to
lie reasonably on a line are close and arranged in a linear form and their corresponding
triangles by the Delaunay triangulation are smaller than the others.

Let S = {xi ∈ Z
d | i = 1..n} be the input set of points and DT (S) be the dD

Delaunay triangulation of S. Let t be a d-face in DT (S) such that t is formed
by the vertices y0, ..., yd ∈ S, w.l.o.g. t can be denoted by t = (y0, ..., yd). We
define the width –or height– of t as the minimal euclidean distance of a vertex
of t to the hyperplane passing through all other vertices in t.

w(t) = min {||yj ,H(fj)||22 for j = 0, ..., d}

where fj = (y0, ..., yj−1, yj+1, ..., yd) is the hyperplane opposite to yj in t. We
call a d-face t ∈ DT (S) is admissible for the digital hyperplane fitting of S with
a given ω if w(t) ≤ ω. This is called the width condition and will be used in
the fitting method to filter the points and to generate the digital hyperplane for
examination.
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Fig. 5. Flowchart of the proposed method.

The main idea of the proposed method is as follows. We first compute the dD
Delaunay triangulation DT (S) of S, and then generate the digital hyperplanes
from the admissible d-faces in DT (S); i.e. those that satisfy the width condi-
tion. For each computed digital hyperplane, we verify the inliers and report the
optimal solution for the digital hyperplane fitting of S as the one maximizing
the number of inliers. The algorithm is summarized in Algorithm1, and Fig. 5
illustrates the method in 2D (the idea is exactly the same in any dimension).
It is stated in [26] the total number of faces in DT (S) is O(n� d

2 �). In other
words, the d-faces in DT (S) being finite, this process has a guaranteed termi-
nation. Furthermore, the computations in Algorithm1 can be performed using
only integer/rational numbers since all inputs are given in integer numbers.

By not generating and verifying all digital hyperplanes from S but only from
the admissible d-faces in DT (S), this method leads to a much lower algorithmic
complexity. More precisely, the worst-case complexity to compute the dD Delau-
nay triangulation of S is O(n� d

2 �+1), finding admissible d-faces and generating
the corresponding digital hyperplanes cost O(n� d

2 �), and the inliers verification
of each hyperplane is computed in O(n). Therefore, the final computing com-
plexity of Algorithm1 is O(n� d

2 �+1) for n is the number of points in S and d is
the dimension space of the points.
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Algorithm 1: Digital hyperplane fitting with fixed thickness
1 Algorithm HyperplaneFitting

Input: A set S = {xi ∈ Z
d | i = 1..n} of n points and a value ω

Output: The best fitted digital hyperplane
Variables : DT (S): the set of d-faces of the Delaunay Triangulation of S

C: the set of d-faces satisfying width condition
2 DT (S) = {ti = (yj)

d
j=0 for i = 1..m | yj ∈ S}

/* Finding d-faces ti satisfying the width condition */

3 C = ∅
4 foreach ti ∈ DT (S) do
5 foreach yj ∈ ti do
6 fj = (y0, ..., yj−1, yj+1, ..., yd) // the (d − 1)-face opposite to

vertex yj in ti

7 H(fj) = (ai)
d+1
i=0 // the hyperplane passing through d points

of fj (see Eq. 1)

8 d = distance(yj , H(fj)) // the distance of yj to H(fj)

9 if d2 ≤ w2
∑d

i=1 a2
i

then

10 DHω(ti) = (ai)
d+1
i=0 // the digital hyperplane associated

to ti (see Eq. 2)

11 C = C ∪ DHω(ti)

/* Computing the best fitted digital hyperplane */

12 max = 0
13 DH∗

ω = (0, ..., 0)

14 foreach DHi
ω ∈ C do

15 ni = CountInliers(S, ω, DHi
ω) // (see the below Procedure)

1616 if ni > max then
17 max = ni

18 DH∗
ω = DHi

ω

19 return DH∗
ω

1 Procedure CountInliers

Input: A set S = {xi ∈ Z
d | i = 1..n} of n points, a value ω and a digital

hyperplane DHω = (ai)
d+1
i=0

Output: The number of inliers of S w.r.t DHω

2 count = 0
3 foreach x = (x0, x1, ..., xd) ∈ S do

4 v =
∑d

i=1 aixi + ad+1

5 if v ≥ 0 and v ≤ ω then
6 count = count + 1

7 return count
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5 Experimental Results

We have implemented in C++ the proposed method of fitting hyperplanes
described in Sect. 4 using the Triangulations and Delaunay Triangulations pack-
age in CGAL [10]. This package provides functions to compute Delaunay tri-
angulation of points in dimension 2, 3 and d. In particular, the dD Delaunay
triangulation is computed by constructing convex hull in d+1 dimensions. This
makes the method flexible and can handle any dimension. It is, however, much
slower than the libraries specifically designed for 2D and 3D Delaunay Triangu-
lation. As mentioned, the computation of dD Delaunay triangulation for n input
points is at most O(n� d

2 �+1), and it is O(n) and O(n2) in 2D and 3D, respec-
tively. In other words, the proposed algorithm is computationally more efficient
in 2D and 3D with the specific implementations in CGAL. The source code is
also available for testing at https://github.com/ngophuc/HyperplaneFitting.

In the following, we present the some experimental results in dimension 2,
3 and 4 to demonstrate the validity and efficiency of our method. It should be
noticed that the proposed method is general and could work in any dimension,
as well as its implementation remains conceptually unchanged in any dimension.
Furthermore, the fitting problem in 3D and 4D is relatively expensive to solve as
the runtime complexity is O(n3). All experiments are performed on a standard
PC usinng Intel Core i5 processor.

5.1 2D Case: Digital Line Fitting

At first, the experiments are carried out on 2D data points generated with the
digital lines of equation

0 ≤ 2x1 + 3x2 − 12 ≤ ω (5)

with ω = 1, 2 and 3. For each line, we randomly generate, according to Eq. 5,
100 inliers and 100k outliers with k = 1, ..., 10; i.e. 30 test datasets with ground-
truth (see Fig. 6 for some examples). All data points are generated in a window
of [−100, 100]2. We report the inliers of the fitted line for each experiment and
compare with the ground-truth by Eq. 5. Results are given in Tables 1 and 2.

Table 1. Results of fitted digital lines by the proposed method in Fig. 6.

Figure Thickness #Points #Inliers Runtime

Figure 6(a) ω = 1 1100 100 62.175ms

Figure 6(b) ω = 2 200 103 20.531ms

Figure 6(c) ω = 3 800 108 165.905ms

https://github.com/ngophuc/HyperplaneFitting
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(a) #Points=1100 (b) #Points=200 (c) #Points=800

(d) ω = 1,#Inliers=100 (e) ω = 2,#Inliers=103 (f) ω = 3,#Inliers=108

Fig. 6. Evaluation on 2D synthetic data. First row: input points with 100 inliers,
different numbers of outliers and different thickness ω. Second row: results of fitting
digital lines obtained by the proposed method.

Table 2. Measured performance of the proposed method on 2D synthetic data. S is the
set of all ground-truth inliers, D the set of all inliers detected by the proposed method.

Measures Results

Runtime (on average) 71.69 ms

Precision (%): P = #(D ∩ S)/#D 96.99 ± 4.1

Recall (%): R = #(D ∩ S)/#S 100

F-measure (%): F = 2 × P × R/(P + R) 98.42 ± 2.2

5.2 3D Case: Digital Plane Fitting

Next experiments are on volume data points which are generated as follows. We
consider digital planes of equation

0 ≤ 2x1 + 3x2 + x3 − 9 ≤ ω (6)

with ω = 1, 3 and 5. Similarly to 2D, we randomly generate, for each plane, the
100 inliers and 100k outliers with k = 1, ..., 10. That makes 30 test datasets with
ground-truth (see Fig. 7 for some examples). All data points are generated in a
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window of [−100, 100]3. We report the inliers of the fitted planes and compare
with the ground-truth by Eq. 6. Results are shown in Tables 3 and 4.

(a) #Points=200 (b) #Points=400 (c) #Points=500

(d) ω = 1,#Inliers=60 (e) ω = 3,#Inliers=104 (f) ω = 5,#Inliers=140

Fig. 7. Evaluation on 3D synthetic data. First row: input points with 100 inliers,
different numbers of outliers and different thickness ω. Second row: results of fitting
digital planes obtained by the proposed method.

Furthermore, the proposed method allows to work with large datasets in an
efficient way. As illustrated in Fig. 8 and Table 3, the algorithm takes around 23 s
to deal with 2989 input points.

Table 3. Results of fitted digital planes by the proposed method on Fig. 7 and Fig. 8

Figure Thickness #Points #Inliers Runtime

Figure 7(a) ω = 1 200 60 35.291ms

Figure 7(b) ω = 3 400 104 172.838ms

Figure 7(c) ω = 5 800 140 1063.31ms

Figure 8(a) ω = 1 2989 578 21718.1ms

Figure 8(a) ω = 3 2989 1040 23328.6ms
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(a) #Points=2989 (b) ω = 1,#Inliers=578 (c) ω = 3,#Inliers=1040

Fig. 8. Evaluation on 3D data: (a) input points, (b) and (c) are fitting digital planes
of (a) obtained by the proposed method for ω = 1 and 3, respectively.

Table 4. Measured performance of the proposed method on 3D synthetic data. S is the
set of all ground-truth inliers, D the set of all inliers detected by the proposed method.

Measures Results

Runtime (on average) 533.68 ms

Precision (%): P = #(D ∩ S)/#D 81.28 ± 15.92

Recall (%): R = #(D ∩ S)/#S 77.7 ± 22.75

F-measure (%): F = 2 × P × R/(P + R) 76.16 ± 16.26

5.3 4D Case: Digital Hyperplane Fitting

Next experiments are on 4D data points generated with the following digital
hyperplanes:

0 ≤ 2x1 + 3x2 + x3 + 7x4 − 9 ≤ ω (7)

with ω = 1, 3 and 5. Then, we randomly generate, for each hyperplane, the 100
inliers and 100k outliers with k = 1, ..., 10. That makes 30 test datasets with
ground-truth. All data points are generated in a window of [−100, 100]4. We
report the inliers of the fitted hyperplane for each experiment and compare with
the ground-truth by Eq. 7. Results are shown in Table 5.

Overall, the experiments demonstrate the efficiency and effectiveness of the
proposed method. It is robust to the number of outliers and has a good perfor-
mance in term of runtime. In particular, the proposed method can be applied
to large datasets and in high dimensions, which are difficult with traditional
methods. However, the experiment was conducted mostly with synthetic data.
This allows us to evaluate the behaviour of the proposed method. In practice,
the sets of input points – particularly, in 2D and 3D – can be obtained by feature
extraction or segmentation algorithm.
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Table 5. Measured performance of the proposed method on 4D synthetic data. S is
the set of all the ground-truth inliers, D the set of all the detected inliers.

Measures Results

Runtime (on average) 11582.41 ms

Precision (%): P = #(D ∩ S)/#D 73.84 ± 20.54

Recall (%): R = #(D ∩ S)/#S 69.58 ± 31.3

F-measure (%): F = 2 × P × R/(P + R) 67.62 ± 24.04

6 Conclusion

This paper presented methods of digital hyperplane fitting in Z
d of given thick-

ness ω. Two strategies have been proposed. The first one consists of generating
all possible digital hyperplanes from a set S of n points. Then, performing an
exhaustive search overall generated hyperplanes allows to find the global opti-
mum of the fitting problem. However, this approach costs O(nd) which is a
polynomial complexity of degree equal to the dimension of the problem. This
limits its use in practical contexts. To overcome this issue, we proposed another
method with a heuristic based on Delaunay triangulation to find a local optimum
of digital hyperplane fitting problem. More precisely, instead of examining all
digital hyperplanes generated from S, we verify only the hyperplanes generated
from the d-cells of the Delaunay triangulation of S whose width is smaller than
ω. This method leads to a much lower algorithmic complexity of O(n� d

2 �+1) and
it is efficient in dealing with large datasets. Furthermore, the presented method
can be applied to points in R

d with no special change.
Experiments have been conducted to validate the feasibility of the proposed

method. Nonetheless, it is mostly with synthetic data. In future works, we would
like to test the proposed method on real data and to provide comparisons with
other methods in the literature such as [1,16,18,34]. Another perspective is the
application of the proposed method for shape fitting problem. As it is shown in
[25], by a transformation of the model formulation, the digital plane fitting can
be used to solve digital annulus fitting.

References

1. Aiger, D., Kenmochi, Y., Talbot, H., Buzer, L.: Efficient robust digital hyperplane
fitting with bounded error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret,
B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 223–234. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19867-0 19

2. Amenta, N., Attali, D., Devillers, O.: A tight bound for the delaunay triangulation
of points on a polyhedron. Discrete Comput. Geom. 48, 19–38 (2012)

3. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic
surface reconstruction. Int. J. Comput. Geom. Appl. 2(01n02), 213–222 (2000)

4. Arlinghaus, S.L.: Practical Handbook of Curve Fitting. CRC Press, Boca Raton
(1994)

https://doi.org/10.1007/978-3-642-19867-0_19


Digital Hyperplane Fitting 179

5. Barber, C.B., Dobkin, D.P., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm
for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

6. Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Lecture
Notes Series on Computing. Computing in Euclidean Geometry, pp. 47–123 (1995)

7. Boissonnat, J.D., Devillers, O., Hornus, S.: Incremental construction of the Delau-
nay graph in medium dimension. In: Annual Symposium on Computational Geom-
etry, pp. 208–216 (2009)

8. Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press,
Cambridge (1998)

9. Cevikalp, H.: Best fitting hyperplanes for classification. IEEE Trans. Pattern Anal.
Mach. Intell. 39(6), 1076–1088 (2016)

10. CGAL-Team: CGAL: the computational geometry algorithms library (2019).
http://www.cgal.org

11. Chernov, N.: Circular and Linear Regression: Fitting Circles and Lines by Least
Squares. CRC Press, Boca Raton (2010)

12. Chum, O.: Two-view geometry estimation by random sample and consensus. PhD
thesis, Czech Technical University, Prague, Czech Republic (2005)

13. Delaunay, B.: Sur la sphère vide. Bulletin de l’Académie des Sciences de l’URSS,
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Abstract. A 2D binary image is well-composed if it does not contain a
2×2 configuration of two diagonal black and two diagonal white squares.
We propose a simple repairing algorithm to construct two well-composed
images I4 and I8 starting from an image I, and we prove that I4 and
I8 are homotopy equivalent to I with 4- and 8-adjacency, respectively.
This is achieved by passing from the original square grid to another one,
rotated by π/4, whose pixels correspond to the original pixels and to
their vertices. The images I4 and I8 are double in size with respect to
the image I. Experimental comparisons and applications are also shown.

Keywords: Digital topology · Well-composed images · Repairing 2D
digital binary images

1 Introduction

In 2D, an image I in the square grid is well-composed if it does not contain blocks
of 2 × 2 squares with alternating colors in chessboard configuration [2,3,18,19].
The process of transforming a given image into a well-composed one, that is in
some sense similar to the original, is called repairing. Many image processing
algorithms are simpler and faster when applied on well-composed images, mak-
ing image repairing and study of different types of well-composedness a vivid
research area [4–6,9,10].

Here, we address 2D image repairing by passing to another square grid,
rotated by π/4 with respect to the original one and scaled by factor 1/

√
2,

in which each diamond (rotated square) corresponds either to a square or to a
vertex in the original grid. In the rotated grid, we construct two well-composed
images I4 and I8, homotopy equivalent to I with 4- and 8-adjacency, respectively.

The advantages of our approach are that the two repaired images are still in
the square grid, so they can be processed with classical methods, in a simplified
way thanks to well-composedness; we can choose between two types of adjacency
in repairing; and the size of the resulting image in the diamond (rotated square)
grid is just double that of the original one.

c© Springer Nature Switzerland AG 2020
T. Lukić et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 183–198, 2020.
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184 L. Čomić and P. Magillo

The contributions of this paper are:

– A simple repairing procedure, which results in two well-composed images I4
and I8, each of which is twice as large as the initial image I.

– A proof that the two repaired images I4 and I8 are well-composed and homo-
topy equivalent to the image I with 4- and 8-adjacency, respectively.

– Comparison with the state-of-the-art, showing the usefulness or our approach.

2 Background Notions

The square grid is the tessellation of the plane into Voronoi regions associated
with points with integer coordinates. Each region (pixel) is a unit square, with
sides parallel to the coordinate x and y axes [16,17]. (For a set S of points in
the plane, the Voronoi region associated with a point p in S contains all points
in the plane that are closer to p than to any other point in S [1,22].) Given a
square P , the four squares sharing an edge with P are said to be 4-adjacent to
P ; the eight squares sharing a vertex with P are said to be 8-adjacent to P , and
the four of them which are not 4-adjacent are called strictly 8-adjacent.

A 2D binary digital image I is a finite set of squares in the square grid. The
squares in I are called black (object) squares. The squares in the complement
Ic of I are called white (background). Connectedness is an equivalence relation
obtained as the reflexive and transitive closure of adjacency. The classes of the
image I with respect to α-connectedness are called connected α-components, for
α ∈ {4, 8}. Finite connected components of the complement of I are called holes.
To maintain some similarity between the digital and continuous topology, the
components and holes of I are defined with opposite types of adjacency.

A 2D image I has a gap at a vertex v if v is incident to two strictly 8-adjacent
white squares (and two strictly 8-adjacent black ones) [7,8,11]. A gap-free image
is called well-composed [18].

Depending on the chosen adjacency relation, two cell complexes can be nat-
urally associated with a given image I. Recall that a cell complex Q is a col-
lection of cells (homeomorphic images of the unit ball, that fit nicely together:
the boundary of each cell and the intersection of any two cells (if nonempty) is
composed of cells of lower dimension). In the plane, the underlying space |Q| of
a complex Q is the set of points in R

2 that belong to some cell in Q.
For an image with 8-adjacency, the associated complex Q8 is cubical and

consists of the squares in I and all their edges and vertices. For an image with
4-adjacency, the associated polygonal complex Q4 can be obtained from Q8

by inserting a vertex at the center of each edge incident to a critical vertex,
duplicating the critical vertices, and moving the two copies slightly towards
the interior of the two incident black squares. The difference between the two
complexes around a critical vertex is illustrated in Fig. 1.

A formal definition of homotopy [15] is out of the scope of this paper. Intu-
itively, if one shape can be continuously deformed into the other then the two
shapes are homotopy equivalent. Two 2D homotopy equivalent shapes have the
same number of connected components and holes, with the same containment
relations among them.
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v2v1
v

(a) (b)

Fig. 1. Complexes Q4 (a) and Q8 (b) in the neighborhood of a critical vertex v. The
transformation in (a) affects only one quarter of each pixel incident to v.

3 Related Work

Several repairing algorithms have been proposed in the literature, each with its
features (regarding size, topology preservation, choice of adjacency and type of
the output complex), as well as its benefits and drawbacks. We review briefly
the repairing algorithm proposed for 2D images [24], and the 2D versions of the
algorithms proposed for 3D images [12,25,26].

The method by Rosenfeld et al. [24] for 2D binary images uses a rescaling
by factor 3 in both x and y directions of the square grid. In the rescaled grid,
changing all black squares involved in a critical configuration to white squares,
or vice versa, removes all critical configurations, without creating other ones (see
Fig. 2). The repaired image is homotopy equivalent to the initial image with the
appropriate adjacency relation.

The randomized algorithm by Siqueira et al. [25] iteratively changes white
squares to black ones, until a well-composed image is obtained. The grid resolu-
tion of the repaired image is the same as that of the input image, but there is
no guarantee that the topology (homotopy) of the input image is preserved.

The algorithm by Gonzalez-Diaz et al. [12] creates a polygonal well-composed
complex homotopy equivalent to the input image with 8-adjacency by increas-
ing the grid resolution four times in each coordinate direction, thickening the
neighborhood of critical vertices and subdividing it into polygons. The idea of the
method is illustrated in Fig. 3. Later [13], the rescaling factor was reduced to 2.

OR

Fig. 2. Repairing process according to Rosenfeld et al. [24]. Each square becomes a
block of 3 × 3 squares, which become black or white according to 8-adjacency or 4-
adjacency (last two images).
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(a) (b)

Fig. 3. Repairing process according to González-Dı́az et al. [12]. The square com-
plex becomes a polygonal complex, original squares become 2-cells of different shapes,
depending on how many of their vertices are critical. (a) Geometry, (b) matrix repre-
sentation, where blue, red and green squares correspond to 0-, 1- and 2-dimensional
cells, as in [12]. (Color figure online)

OR

Fig. 4. Repairing process according to Stelldinger et al. [26]. Each square, edge and
vertex becomes a square, which becomes black or white according to 8-adjacency or
4-adjacency (last two images).

The algorithm by Stelldinger et al. [26] increases the grid resolution twice in
both coordinate directions, by creating an additional square for each edge and
each vertex in the grid. If 4-adjacency is considered for I, the squares corre-
sponding to the edges and vertices in Q are black only if all the incident squares
in I are black. If 8-adjacency is considered, then the squares corresponding to
the edges and vertices in the associated complex Q (edges and vertices incident
to some black square in I) are also black (see Fig. 4).

The algorithms by Čomić and Magillo [9,10] repair 3D images by passing
from the cubic to the body centered cubic (BCC) or the face centered cubic
(FCC) grid, respectively. These grids are defined by the Voronoi tessellation of
R

3 associated with the centers and the vertices, or the centers and the midpoints
of the edges of each unit cube. The 2D repairing algorithm proposed here uses
the same basic idea of passing from the square to an alternative (2D diamond)
grid, but is necessarily different, due to specific properties of this grid.

4 Repairing Algorithm

We propose to pass from the square to the 2D diamond grid, by extending the
set Z2 of square centers with the set (Z+1/2)2 of square vertices and tessellating
the plane into Voronoi regions associated with the extended set. Each region is
a rotated square (a diamond) with sides parallel to the lines x ± y = 0. We call
even diamonds the ones associated with square centers, and odd diamonds the
ones associated with square vertices.
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(a) (b) (c) (d) (e) (f)

Fig. 5. All possible configurations at a vertex in the square grid, and corresponding
repaired configurations in the diamond grid. The four incident squares of the vertex
can be: (a) all white, (b) one black and three white, (c) and (d) two black and two
white, (e) three black and one white, (f) all black. The diamond corresponding to the
vertex is added in the two upper cases of (c), in (e), in (f) and, for the second version
of the algorithm, in (d). Note that y-axis points downwards, as usual for images.

We create two well-composed images I4 and I8 in the diamond grid, homotopy
equivalent to the image I with 4- and 8-adjacency, respectively. We include in the
repaired images I4 and I8 all even diamonds corresponding to the black squares.
We include also all odd diamonds corresponding to

1. the vertices incident to four black squares;
2. the vertices incident to three black and one white square;
3. the vertices incident to two vertically (horizontally) 4-adjacent black squares

and two white ones, if the vertex is in the direction of the positive x axis (y
axis) of the shared edge.

In the repaired image I8, we include also the odd diamonds corresponding to

4. the critical vertices,

while we do not include those diamonds in the image I4.
There are 16 different types of vertices in the square grid, depending on

the configuration of the black and white incident squares. We show these con-
figurations and the corresponding black diamonds in Fig. 5. Figure 6 presents
the pseudocode of the repairing algorithm. Figure 7 shows the effect of the two
versions of the repairing algorithm on a sample image.

5 Well-Composedness and Homotopy Equivalence

We show that our repairing algorithm produces well-composed images homotopy
equivalent to the given image I with the chosen adjacency relation.
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Repair(Image Q, int a, Image D)
// Q is the input image, a is the adjacency type ∈ {4, 8},
// D is the output image (rotated 90 degrees), given as all white
1 for each black pixel (x, y) in Q
2 // (x, y) is a square, (x − y, x+ y) the corresponding even diamond
3 set (x − y, x+ y) as black in D
4 for each black pixel (x, y) in Q
5 // v will contain the odd diamonds corresponding to the vertices of the square (x, y)
6 v[0..3] = Get4Adj(x − y, x+ y)
7 for i = 0..3 // for each vertex
8 if MustFill(v[i], D, a)
9 set v[i] as black in D

MustFill(int x, int y, Image D, int a)
// (x, y) is an odd diamond, a is the adjacency type ∈ {4, 8},
// D is the output image where black even pixels have been set,
// the function checks if (x, y) must be filled
1 p[0..3] = Get4Adj(x, y) // even diamonds
2 c = the number of black diamonds among p[0..3]
3 if (c ≤ 1) return false
4 if (c ≥ 3) return true
5 // c = 2, check configuration
6 if (a = 4) // 4-adjacency
7 return (v[0] is black) and (v[2] is white)
8 // 8-adjacency
9 return (v[0] is black) or ((v[1] is black) and (v[3] is black))

Get4Adj(int x, int y)
// (x, y) is a diamond, the function returns its four 4-adjacent diamonds
1 return [(x, y − 1), (x+ 1, y), (x, y + 1), (x − 1, y)]

Fig. 6. Pseudocode of the repairing algorithm and of auxiliary functions used in it.

Fig. 7. (a) An image I in the square grid and the two repaired images I4 (b) and I8
(c) in the rotated grid (red diamonds) with the two versions of the algorithm. (Color
figure online)
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5.1 Well-Composedness

Proposition 1. The two images I4 and I8 produced by our repairing algorithm
are well-composed.

Proof: A critical vertex in the diamond grid is incident to exactly two black
diamonds that are both even or both odd. Our rules prevent the creation of
either type of criticality:

– For each pair of 8-adjacent black even diamonds, corresponding to a pair of
4-adjacent squares in I, the odd diamond (4-adjacent to both) in the conven-
tional direction, corresponding to a vertex incident to both squares in I, is
in I4 and I8, thus preventing the creation of critical vertices incident to two
even black diamonds.

– For each pair of 8-adjacent black odd diamonds, corresponding to two adja-
cent vertices (incident to the same edge e) in the square grid, the two even
diamonds, corresponding to the two squares incident to e, cannot be both
white. Since a filled vertex has always at least two incident black squares, the
only possible configuration would be an array of 2×3 or 3×2 squares, where
the two central ones are white, and the remaining four are black. In this case,
thanks to the choice of the conventional direction, rule 3 of our algorithm
would not fill both vertices. ��

5.2 Homotopy Equivalence

Proposition 2: The spaces |I4| and |I8| are homotopy equivalent to the spaces
|Q4| and |Q8|, respectively.
Proof: For i ∈ {4, 8}, we construct simplicial complexes ΣQi and ΣIi that
triangulate Qi and Ii, respectively. Recall that a k-simplex is the convex hull
of k + 1 affinely independent points. In 2D, simplexes are vertices, edges and
triangles. A simplicial complex Σ is a finite set of simplexes, such that

– for each simplex in Σ, all its faces are in Σ and
– the intersection of two simplexes in Σ is either empty or composed of their

common faces.

We show that |Qi| and |Ii|, i ∈ {4, 8}, are homotopy equivalent by constructing
a sequence of collapses and expansions [27] that transform ΣQi to ΣIi. In 2D,
an elementary collapse removes from a simplicial complex Σ

– a triangle t and a (free) edge e, if t is the only triangle incident to e, or
– an edge e and a (free) vertex v, if e is the only edge incident to v.

Expansion is inverse to collapse, it introduces into Σ a pair of simplexes such
that one is a free face of another. Both operations preserve the homotopy type
of |Σ| [27].
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(a) (b) (c)

Fig. 8. Triangulation of (a) squares and (b) polygonal cells (for i = 4) in Qi, and (c)
of diamonds in Ii.

We triangulate Qi by introducing a vertex at the midpoint of each edge,
inscribing the corresponding even diamond in each square C in Qi (for i = 4, in
the corresponding polygonal cell if some vertex of C is critical), and connecting
the center c of each diamond to the four diamond vertices. We triangulate Ii by
introducing the center c of each diamond and connecting c to the four diamond
vertices. The triangulations ΣQi and ΣIi are illustrated in Fig. 8.

The two triangulations ΣQi and ΣIi coincide on |Qi|∩|Ii|. We will transform
ΣQi into ΣIi through a process that first collapses extra triangles of ΣQi, and
then creates the missing triangles through expansion.
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Fig. 9. (a) Superposition of the triangulations ΣQi and ΣIi for an example without
critical configurations (there is no difference between i = 4 and i = 8). Red triangles
belong to both triangulations, yellow triangles belong to ΣQi only, and cyan triangles
belong to ΣIi only. Yellow and cyan triangles are labeled with their type. (b) Triangles
of ΣQi, which are not in ΣIi, are removed through collapse. (c) Triangles of ΣIi, which
are not in ΣQi, are created through expansion. (Color figure online)

We collapse the triangles in ΣQi that are outside ΣIi. They are contained
in odd diamonds centered at the vertices in I incident to

1. exactly one black square,
2. exactly two edge-adjacent black squares and are not in the conventional direc-

tion, or
3. (for i = 4) exactly one of the two polygonal 2-cells corresponding to the two

strictly vertex-adjacent black squares (these are the two copies of the critical
vertices).

For each triangle t of type 1 or 3, we collapse t with one of its two free edges, and
we collapse the remaining edge with its unique free vertex. Triangles of type 2
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come in pairs. We collapse the two triangles, each with its unique free edge, and
we collapse their shared edge with its unique free vertex. This stage is illustrated
in Figs. 9 (b) and 10 (b), (d).
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Fig. 10. (a) Triangle types of ΣQ4 and ΣI4 for a critical configuration of 2× 2 pixels.
(b) Transformation of ΣQ4 into ΣI4. (c) Triangle types of ΣQ8 and ΣI8 for the same
configuration. (d) Transformation of ΣQ8 into ΣI8. In (b) and (d), arrows with letters
C and E denote collapsing of extra triangles and expansion to create missing triangles.
In (b) expansion is not needed.

We expand the triangles in ΣIi outside of ΣQi. They are contained in odd
diamonds centered at the vertices in I incident to

1’. exactly two edge-adjacent black squares and are in the conventional direc-
tion,

2’. exactly three black squares, or
3’. (for i = 8) exactly two strictly vertex-adjacent black squares (critical ver-

tices).

We expand each triangle t of type 2’ or 3’ by adding t together with its unique
free edge. Triangles of type 1’ come in pairs. We expand first their shared edge
together with its unique free vertex, and we expand the two triangles, each with
its unique free edge. This stage is illustrated in Figs. 9 (c) and 10 (d).

6 Experimental Comparisons and Results

We implemented our image repairing algorithm and, for comparison purposes,
the algorithm in [26]. We have chosen this algorithm as our competitor because
it is the one using the least additional memory among those which are able to
preserve image homotopy and which produce an image in the square grid. Both
algorithms have been implemented in the two versions, i.e., producing a repaired
image homotopy equivalent to the given one with both 4- and 8-adjacency.

We tested the algorithms on several gray-scale images from the pixabay
repository (https://pixabay.com/en/photos/grayscale/) after converting them

https://pixabay.com/en/photos/grayscale/
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acid (960 × 625) birch (960 × 639) car (960 × 602)

chess (960 × 560) fog (960 × 353) hands (889 × 720)

Fig. 11. Our binary versions of original images, with the size of bounding box.

to binary images by applying a threshold equal to 128 (where gray values are
from 0 to 255). The used images are shown in Fig. 11. In order to analyze a
possible dependency of the results from image resolution, for each image we pro-
duced two lower resolutions by resizing it to 1/2 and 1/4 of the original size (in
both x and y direction).

All algorithms are implemented in C language and executed on a PC
equipped with an Intel CPU i7-2600K CPU at 3.4 GHz with 32 Gbyte of RAM.

Table 1 shows the sizes of the input images, the number of critical configu-
rations in them, the sizes of the repaired images, and the execution times. As
expected, our repaired image has half the size of the one produced by our com-
petitor [26]. The time taken by our algorithm is from 67% to 75% that of the
competitor algorithm in the case of repairing with 8-adjacency, and from 55%
to 62% with 4-adjacency.

Figure 12 shows a repaired image. From the point of quality, the result pro-
duced by our competitor [26] is lighter than the original with 4-adjacency and
darker with 8-adjacency. We analyze this behavior in detail on toy inputs in
Fig. 13. The input images have black and white lines of the same width. This
property is maintained in the images repaired by our algorithm. The competi-
tor algorithm [26], instead, shrinks black lines and expands white lines with
4-adjacency, and does the opposite with 8-adjacency. This may be a problem
when preserving the area of black zones is important.

Getting back to Fig. 12, the original image has 72964 black pixels. Our
repaired images have 142434 and 150106 black pixels, and the pixel size is 1/2
of the original one. Thus, the areas of black zones in our repaired images are
71217 (97.6% of the original) and 75053 (102.9% of the original), respectively.
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The difference in areas with respect to the original image is below 3%. Images
repaired with our competitor [26] have 198640 and 384452 black pixels, and the
size of each pixel is 1/4 of the original one. Thus, the areas of black zones in
the repaired images are 49660 (68.0% of the original) and 96113 (131.7% of the
original), respectively. Here, the difference with respect to the original is more
than 30%.

On the other side, our algorithm tends to smooth right angles, as we see
in Fig. 13 (b), and is not completely symmetric in the four cardinal directions.
Another evident feature of our results is rotation. This is a problem when the
image is seen by human users (where well-composedness is not relevant), while
it does not affect computations made on images (where well-composedness may
be important).

As the diamond grid is a (rotated) square grid, all classical image processing
algorithms can be applied to the two repaired images. Moreover, some algorithms
are simpler on well-composed images. Of course, execution time increases with
image size. In the following, we analyze the impact of the size of the repaired
image on the performance of image processing algorithms, since our repaired
images are half in size, with respect to the ones repaired by our best competi-
tor [26] (as we have just shown). As meaningful examples, we consider contour
extraction and shrinking, i.e., a very simple and a rather complex task.

Table 1. The table shows: number of black squares (size) of input images and of
output repaired images obtained by our method (our) and by the competitor one
in [26] (comp.); number of critical vertices in the input images; execution times (in
milliseconds); ratio between running times of our method and of the competitor one
[26]. Images have been repaired according to 4- and 8-adjacency.

Input image 4-adjacency 8-adjacency

Image Critical Our Comp. [26] Time Our Comp. [26] Time

Size Vertices Size Time Size Time % Size Time Size Time %

Acid 1 234K 1308 466K 122 870K 204 60 467K 122 999K 167 73

Acid 1/2 58K 387 115K 31 208K 51 61 115K 31 253K 42 74

Acid 1/4 14K 218 28K 7 48K 13 54 28K 7 65K 10 70

Birch 1 340K 22K 678K 206 1038K 330 62 700K 203 1665K 274 74

Birch 1/2 88K 4485 176K 51 288K 83 60 181K 50 414K 68 74

Birch 1/4 23K 574 46K 12 79K 21 57 47K 12 105K 17 71

Car 1 448K 2239 896K 230 1697K 386 59 898K 229 1880K 316 72

Car 1/2 112K 540 225K 57 424K 97 59 225K 57 473K 79 72

Car 1/4 28K 103 56K 14 106K 24 58 56K 14 119K 19 74

Chess 1 213K 180 425K 105 834K 179 59 426K 105 867K 146 72

Chess 1/2 53K 29 106K 26 205K 45 58 106K 26 219K 36 72

Chess 1/4 13K 6 26K 6 50K 11 55 26K 6 56K 9 67

Fog 1 196K 700 391K 98 758K 166 58 392K 97 805K 135 72

Fog 1/2 49K 146 98K 24 190K 41 59 98K 24 202K 34 71

Fog 1/4 12K 22 25K 6 47K 10 60 25K 6 51K 8 67

Hands 1 422K 1030 845K 209 1659K 356 59 846K 209 1720K 290 72

Hands 1/2 106K 280 212K 52 414K 89 58 212K 52 433K 73 71

Hands 1/4 27K 33 53K 13 103K 22 59 53K 13 110K 18 72
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4−adjacency

our algorithm
8−adjacency

our algorithm

4−adjacency
competitor algorithm

8−adjacency
competitor algorithm

original

Fig. 12. A portion of test image “birch” with its repaired versions.

Fig. 13. Two toy images and their repaired versions. From left to right: input image,
output images by competitor algorithm [26] with 4- and 8-adjacency, output images by
our algorithm with 4- and 8-adjacency. Image (b) is well-composed and our algorithm
gives the same output with both adjacencies.
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Finding the contours of an image means finding sequences of black border
squares bounding each connected component and each hole of the image I. Con-
nected components and holes can be considered with either 4- or 8-adjacency. For
a well-composed image, the adjacency type makes no difference, and 4-connected
contours can be extracted: each contour is a circular list of black squares where
each square is 8-adjacent to at least one white square, and 4-adjacent to the pre-
vious square in the list. We implemented the extraction of 4-connected contours
on well-composed images by means of the classical contour following approach
[14,21]. We have a current border square at each step, and we decide how to
extend the contour based on the configuration (black or white) of the eight
squares adjacent to it. We adopt a compressed representation of the contour,
from [20], that is, we do not record all squares of the contour, but just the ones
corresponding to the corners. This saves space and allows easy rescaling of the
contour when the image is enlarged or shrunk.

Table 2 (a) compares the times for contour extraction from images repaired
with our algorithms and with the competitor one [26]. As image sizes are halved,
execution times on our repaired images are almost halved, with more gain for
8-adjacency. The ratio is from 0.44 to 0.55 for 8-adjacency and from 0.5 to 0.75
for 4-adjacency, and there is no specific trend with image resolution.

The aim of shrinking is to reduce each connected component C of an image
I to a single pixel if C is homotopy equivalent to a disk, to a simple closed
chain of pixels if C is homotopy equivalent to a circle, etc. This is commonly
achieved by iteratively removing squares from the image, i.e., changing their
status from black to white. Squares can only be removed if their removal does not
change either the number of components or the number of holes according to the
chosen (4- or 8-) adjacency. The process is iterated until no more squares may be
removed. We consider shrinking of a well-composed image, with 4-adjacency. The
decision whether a square is removable or not only depends on the status of the
eight squares in its neighborhood (see [16,23] for details and algorithms). Squares
with disjoint neighborhoods do not affect the removability of each other. In the
method we implemented, black squares are classified into four subsets according
to the parity of their (x, y) coordinates. The algorithm performs a cycle on the
four subsets, examining one of them at a time. Removable squares of the current
subset do not interfere and are removed together. Table 2 (b) compares the times
for shrinking images repaired with our algorithms and with the competitor one
[26]. Here running time also depends heavily on image characteristics, besides
input size, but we can see that execution times are roughly halved also in this
case. Ratios are a bit smaller than for contour extraction, ranging from 0.34
to 0.5 with 8-adjacency and from 0.32 to 0.6 with 4-adjacency, and present no
specific trend with resolution.
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Table 2. Running times for (a) contour extraction and (b) shrinking, applied on images
repaired by our approach and by the competitor one [26] (in milliseconds). From top
to bottom: full resolution, scaled 1/2, and scaled 1/4.
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7 Summary

We have proposed a simple method to transform a given 2D binary image into
two homotopy equivalent well-composed images (depending on the chosen adja-
cency) by using the 2D diamond grid. The resulting images are just double in size
with respect to the original one, and this improves the best existing homotopy
preserving method [26], where the image size is doubled in both coordinate direc-
tions (leading to a factor 4). The diamond grid is a rotated square grid, thus all
known image processing algorithms can be applied to our repaired images, and
their smaller size, with respect to the state-of-the-art of homotopy equivalent
image repairing, saves processing time.
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cation and Science of the Republic of Serbia within the Project No. 34014.
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Abstract. Computed Tomography (CT) is a widely used x-ray based
imaging modality in radiodiagnostics and non-destructive testing. For
medical considerations as well as for economical and environmental rea-
sons, it is desirable to reduce the dose of radiation and to optimize energy
used for acquiring x-ray projection images. Especially, in case of elon-
gated objects, using a constant energy spectrum radiation may not pro-
vide realistic information about the interior of the examined object. In
this paper we provide an adaptive tube voltage selection method, which
determines the proper amount of radiation energy on-the-fly, during the
acquisition, based on projection information. By experiments on software
phantom images we show that this adaptive approach can produce CT
images of better quality, and in the same time, by consuming less energy.

Keywords: Tube voltage selection · Online method · Non-destructive
testing · Radiation dose optimization

1 Introduction

In Computed Tomography (CT) [3], x-ray radiation is used to produce the
projections of an object. Gathering these projections from different angles one
can reconstruct the interior of the subject of investigation. CT is one of the
most frequently used modalities in radiodiagnostics and non-destructive testing
(NDT). However, undergoing multiple high radiation dose examinations may
cause adverse health effects, even lethal diseases in human body [10]. Besides,
high radiation costs high energy. In both human studies and NDT, it is a rea-
sonable goal to use as low energy and radiation as possible for the acquisition
of projections, while still preserving the required reconstruction quality. When
using a constant energy spectrum, the investigation of elongated objects may be
problematic. Using too low energy, the photons cannot penetrate the object in
the direction of elongation. On the other hand, too high energy can cause the
photons to traverse the object without significant attenuation, in the direction
perpendicular to the elongation of the object. A solution could be to use different
energy levels when producing projections from different directions.
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T. Lukić et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 199–208, 2020.
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Automatic Tube Current Modulation (ATCM) and Automatic Tube Voltage
Selection (ATVS) are well-researched areas. In most of the cases, the CT scanners
contain intelligent scanning technologies, which can automatically recommend
tube current and voltage settings to provide the lowest radiation dose and a
high image quality. For this purpose, widely used scanners are CARE kV and
CARE Dose4D from Siemens Medical Solutions, Forcheim, Germany [7], and
the scanners of GE Healthcare, with the previously mentioned similar embedded
technologies. Papers [1,2,8,19] show examples for using ATCM and/or ATVS
combining with novel iterative reconstruction techniques to achieve good image
quality with low dose.

In [9], a detailed list is given about the CT parameters that influence the
radiation dose. There, the author claims that variations in tube potential should
not be considered for pure dose reduction purposes except in the case of CT
angiography. However, numerous articles investigate the effects of using only low
tube voltage level or ATVS for different radiation tasks (see, e.g., [16–18,20,21]).
They prove that optimizing tube voltage itself can reduce the radiation dose and
it can increase the image contrast for structures with a high effective atomic
number, such as calcium and iodine. Moreover, with low voltage level more
energy efficient acquisitions could be performed. From the viewpoint of lifetime
of the x-ray tube, it is also beneficial to use lower energies.

Several studies focus on CT parameter optimization using different qual-
ity measures like transmission, linearity, signal-to-noise ratio, contrast-to-noise
ratio, sharpness, etc [6,14,15]. Using the proper combination of these measures
could lead to even better optimized CT parameters.

The aim of this paper is to provide an adaptive tube voltage selection method.
In this context “adaptive” means that the tube voltage will be re-selected dur-
ing the acquisition, projection-by-projection. To our knowledge, this is the first
approach that attempts to select tube voltage on-the-fly based on projection
(sinogram) information. This approach could be effectively used, especially in
case of elongated objects.

The structure of the paper is the following. In Sect. 2 we describe our pro-
posed voltage selection method. In Sect. 3 we give details about the experimental
frameset, while in Sect. 4 we present the experimental results. Finally, Sect. 5 is
for the conclusions.

2 Proposed Method

First, we need a figure of merit to quantitatively evaluate the radiation used,
more precisely, the projection images produced. For that aim we use transmis-
sion, which describes the ratio between the minimal and the maximal x-ray
intensity at the detector. CT standards, which are still in development, suggest
transmission values of 14% (ISO 15708) or 10% (prEN 16016) at the path of
highest absorption for optimal scan quality. However, depending on the scan-
ning and reconstruction problem, optimal transmission can be even lower or
higher. In our experiments, 20% proved to be a good choice.
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Our proposed voltage selection method is described in Algorithm 1. In the
beginning, we define a couple of parameters. The optimal transmission is 0.2
(20%) as we mentioned before. Furthermore, a tolerance value is associated with
this optimum. By empirical investigations we set this value to 0.25, meaning
that the transmission is still acceptable if it is not lower than 0.2 · 0.75 and not
greater than 0.2 ·1.25. We also need to define tube voltage levels and an angle set
for the acquisitions (see more details in the experimental section). As a first part
(Steps 2–7 of Algorithm1), we acquire the first projection on all the different
energy levels. Then the energy level with the closest transmission value to the
optimum will be chosen for further acquisitions. In the second part (Steps 9–19
of Algorithm 1), we acquire a projection on the previously chosen energy level. If
its transmission value is in a tolerance distance to the optimum then we stay on
the current energy level. Otherwise, if it is out of the acceptable range then we
step to a higher/lower energy level for the next projection. This second part is
repeated until the predefined number of projections is reached. This way, based
on the shape of the object, the resulting sinogram may contain projections from
different energy levels. Thus, one can collect the most informative projections
(energy levels) belonging to the given angles. We will refer to the sinogram
obtained this way as the adaptive sinogram.

Algorithm 1: Voltage selection
Require: tropt - optimal transmission; trtol - tolerance for the transmission level;

TVL - set of predefined tube voltage levels; A - set of predefined angles

1: tropt ← 0.2, trtol ← 0.25

2: for all lvl ∈ TVL do

3: acquire projection from starting angle on lvl

4: closestlvl ← lvl with the closest transmission value to tropt

5: closestpr ← projection acquired on closestlvl
6: closesttr ← transmission value of closestpr
7: end for

8: sinogramopt ← sinogramopt ∪ closestpr
9: for all angle θ ∈ A do

10: actualpr ← acquire projection from angle θ on closestlvl
11: sinogramopt ← sinogramopt ∪ actualpr
12: if |tropt − closesttr| ≥ tropt · trtol then
13: if tropt − closesttr < 0 then

14: closestlvl ← decrease closestlvl to the closest lower level in TVL

15: else

16: closestlvl ← increase closestlvl to the closest higher level in TVL

17: end if

18: end if

19: end for

It would be ideal if the sum of intensities at the detectors were equal for all indi-
vidual projections. However, since we are using different energy levels for different
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projections, this is not always the case. This can be an issue, during the reconstruc-
tion, since reconstruction algorithms typically assume a constant energy spectrum
for acquiring the projections. To resolve this issue, in Algorithm2, we propose a
sinogram equalization method. In the pseudo code, � and � stands for the point-
wise product and division, respectively. First, we create a mask, which covers the
region(s) of the sinogram where the shadow of the object is present (Step 1). Then,
we take the sum of the pixels covered by the mask and determine its maximum
value (Steps 2–3). A scaling vector is created by taking the ratio between the max-
imum value and the previous pixel sum (Step 4). Finally, the scaling vector is used
to re-scale the adaptive sinogram (Step 5). After applying Algorithm2, the sum
of the intensities will be close to each other, in all projections, and thus, with this
approach one can approximate the ideal case. We will refer to the sinogram created
by Algorithm 2 as the corrected sinogram.

Algorithm 2: Sinogram equalization
Require: sinogramadapt

1: sinogrambw ← thresholded sinogramadapt

2: vectorobj ← column sum of (sinogramopt � sinogrambw)
3: vectormax ← column maximums of vectorobj
4: vectorscale ← vectormax � vectorobj
5: sinogramcorr ← sinogramadapt � vectorscale

3 Test Data and Experimental Settings

To conduct experiments, we used the GATE simulation software [4,5], an
advanced open source software developed by the international OpenGATE col-
laboration and dedicated to numerical simulations in medical imaging and radio-
therapy. During the simulations, we used polychromatic source. To simulate a
perfect energy spectrum, we used Spekcalc [11–13] which is an executable for
calculating the x-ray emission spectra from tungsten anodes such as those used
in diagnostic radiology and kV radiotherapy x-ray tubes. In our experiments, the
difference between the peak and minimum energy was set to 30 keV (the default
of the software) for each energy level, except on the ones, where the peak energy
was too low to set the minimum to be 30 keV smaller.

We studied 6 different phantom models shown in Fig. 1. P1 is a perfect sphere
on which we show how the transmission behaves if an object is not elongated,
P2–P5 are elongated binary objects and P6 is a self-made approximation of the
well-known Forbild hip phantom1. For the reconstructions, we took the middle
slices of these objects (see Fig. 4).

During the simulations in GATE, parallel geometry was assumed. The length
of the simulated detector line was 72 mm and its height was 0.1 mm. The width

1 http://www.imp.uni-erlangen.de/phantoms/index.htm.

http://www.imp.uni-erlangen.de/phantoms/index.htm
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of one single detector was set to 0.4 mm. This ensures a precision of 0.4 mm on
the x-axis and 0.1 mm on the y-axis. Equivalently, it means 180 projection rays
in each direction which suitably covers images of size 128 × 128, in each direc-
tion. We collected 285 projections on the 0◦–179◦ interval, based on the Nyquist–
Shannon sampling theorem. The rotation time was 1 s/projection. In GATE, the
tube current cannot be controlled, only the number of photons to emit, which
was set to 200000 in our case. A simulation could take a long time depend-
ing on the number of the simulated photons. We chose the value 200000 based
on empirical tests, it provided an acceptable consensus between running time
and quality. After acquiring the projections, the reconstructions were performed
using the Filtered Backprojection (FBP) technique, implemented in C++, using
the CUDA sdk2 with GPU acceleration.

The quality of the reconstructions was evaluated by SNR (signal-to-noise
ratio). The SNR is given as the ratio of the mean gray value inside the object
μo, and its standard deviation σo:

SNR =
μo

σo
. (1)

P1 P2 P3

P4 P5 P6

Fig. 1. The 3D models of the used phantoms. P1: a sphere, P2: an elongated cuboid,
P3: a wider cuboid, P4: a P2 sized cuboid with one small hole in it, P5: a P2 sized
cuboid with five small (equal sized) holes in it, P6: an approximation of the Forbild
hip phantom.

2 https://www.developer.nvidia.com/cuda-zone.

https://www.developer.nvidia.com/cuda-zone
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4 Results

We predefined 15 different energy levels. Based on their polychromatic spectra,
their mean energies could also be determined. In Table 1 we present the SNR val-
ues of the reconstructed images belonging to sinograms of the 15 different energy
levels. To ensure a fair and realistic comparison with the corrected sinogram later,
Algorithm 2 was executed also on these 15 sinograms. The highest (best) SNR val-
ues are highlighted in every row to indicate which energy levels provided the best
quality. We will refer to the sinograms of these reconstructions as the original best
sinograms. The last row shows the SNR values of the reconstructed images belong-
ing to the corrected sinograms (created using Algorithms 1 and 2). In the case of
P1, one can see that the corrected and the original best SNRs are the same, since
the sphere is the perfect opposite of an elongated object. It means that tube voltage
selection is unnecessary in this case. The corrected SNRs of P2–P5 are better than
that of the optimal best reconstructions. Taking P6 under examination, the SNR
of the corrected reconstruction is almost as good as that the original best sinogram
can provide.

Table 1. The SNR values of the reconstructed slices on different energy levels [keV] and
(in the last row) the SNR values of the reconstructed slices of the corrected sinograms.

Energy Mean E. P1 P2 P3 P4 P5 P6

2–20 15.7 1.874 3.204 2.604 3.309 3.593 1.074

3–25 19.3 3.156 4.900 4.080 5.033 5.373 1.095

3–30 22.1 4.550 8.880 6.782 8.697 9.392 1.110

5–35 24.5 5.236 9.820 7.544 10.021 9.894 1.119

10–40 26.8 6.162 11.236 8.756 11.018 10.719 1.124

15–45 28.8 6.310 10.648 8.796 10.335 9.924 1.119

20–50 31.7 6.548 11.149 9.242 10.889 10.689 1.042

25–55 35.6 7.357 12.728 10.290 12.376 11.412 0.957

30–60 40.1 7.797 13.237 10.598 12.875 11.051 0.883

35–65 44.9 7.157 10.621 9.634 10.298 9.417 0.803

40–70 49.9 6.178 8.896 7.994 8.835 7.872 0.722

45–75 54.9 5.321 7.387 6.567 7.291 6.658 0.632

50–80 59.9 4.408 5.992 5.337 5.987 5.451 0.540

55–85 64.4 3.742 5.125 4.414 5.073 4.618 0.462

60–90 60.3 3.049 4.082 3.481 4.023 3.640 0.378

Corrected Corrected 7.797 14.175 10.729 13.757 11.610 1.111

In Fig. 2, we present the transmission values of P2 on the different energy
levels. The Opt. trans. line shows where the transmission should be for an opti-
mal sinogram. In this case, Algorithm 1 chose the 9th energy level (30–60 keV)
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first, then it decreased to the 5th energy level (10–40 keV), and then increased
back to the 9th. In the case of P1, this diagram would contain almost straight
lines. Figure 3 shows the difference between the sinograms of P2. Figure 3a is the
original best of P2 acquired on the energy level highlighted in Table 1, Fig. 3b
is the adaptive sinogram created with Algorithm 1, and Fig. 3c is the corrected
sinogram after applying Algorithm2 on Fig. 3b. The reconstructed phantoms
can be seen in Fig. 4, using the corrected sinograms.

Fig. 2. The transmission values of the scan of P2.

Beside the slightly improved SNR values, another advance of the adaptive
voltage selection strategy is lower energy consumption, based on the fact that
from certain angles even a lower energy level could ensure optimal transmission.
In the first and second row of Table 2, one can see the cumulated energies for cre-
ating the original best and the adaptive (and corrected) sinogram, respectively.
Note that sinogram correction is simply achieved by executing Algorithm 2, i.e.,
it does not affect cumulated energy. As we mentioned before, P1 is the perfect
opposite of an elongated object, therefore, the cumulated energy is the same in
both cases. In all the other cases, the used energy for acquiring the adaptive
(corrected) sinograms is lower than it is needed for the original best sinograms.
The saved energy in percentage is shown in the third row. A significant energy
reduction can be observed.
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Fig. 3. The sinograms of P2. (a) the original best, (b) the adaptive and (c) the corrected
one.

Fig. 4. The reconstructed middle slices of the phantoms.

Table 2. The cumulated energies needed for the original best and the corrected sino-
grams, and the percentage of the saved energies, respectively.

P1 P2 P3 P4 P5 P6

Orig. Best [keV] 11428.5 11428.5 11428.5 11428.5 10146 7638

Corrected [keV] 11428.5 8930.4 10395 8930.4 8776.7 6906.1

Saved energy [%] 0 21.86 9.04 21.86 13.5 9.58
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5 Conclusions

In this paper, we proposed an adaptive Automatic Tube Voltage Selection
method complemented with a sinogram equalization algorithm for Computed
Tomography. The method adjusts the tube voltage on-the-fly during the acqui-
sition based on the transmission value of the previous projection. This method
relies only on the projection data and does not require any further information.
After producing the adaptive sinogram, an equalization is performed. By experi-
mental tests on software simulated phantoms using the GATE toolbox, we found
that our method is able to produce optimized sinograms and by that ensuring
lower energy consumption and slightly better reconstruction quality. The pre-
sented method could be utilized in industrial non-destructive testing and it has
potential even in medical cases.
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1 Introduction

Microscopy is a widespread method without which it is impossible to imagine
the operation of any laboratory in the world [11]. In the last decade, some oper-
ations previously performed by human operators have begun to be performed by
advanced algorithms based on machine learning methods. Training of artificial
intelligence algorithms requires enormous size datasets that contain not only the
data itself but also the relevant annotations. The rapid development of computer
vision, which has been brought about by progress in the area of convolutional
neural networks in recent years, has highlighted this problem.

Creating data annotations is time-consuming and requires the full attention of
the operator. Whole Slide Imaging brings the ability to distribute digitized glass
slides and increase reproducibility [3], but also the need to process large amounts
of image data. There are tools to address such tasks, such as Amazon Mechanical
Turk which allows you to distribute an extensive task cheaply. Paolacci et al. [13],
addressed potential concerns by presenting demographic data about subject popu-
lation and offered advice on how to manage a common subject pool. However, this
type of service is suitable for simple tasks that do not require extensive knowledge
and training. Describing microscopy images is beyond such limitations. Extensive
expertise is required from the operator performing such a description. The time of
such an expert is very expensive and often not even available. Therefore,we decided
to design a tool that makes the annotation of microscopic images as efficient as pos-
sible. Such a suitable tool allows creating datasets for training machine learning
algorithms in a short time with minimal costs.

2 Methods

Supervised Machine Learning methods with a teacher require different types of
datasets. To solve the classification task, it is necessary to assign discrete values
to the image or part of the image to indicate the target class. Our main goal,
however, was to create a tool to support the creation of annotations for the
task of regression. In such cases, the part of the microscopic image or the entire
microscopic image is assigned a numerical value that represents a qualitative
description of the parameter under investigation.

2.1 Region Selection

The first step called “Region Selection” is to prepare the image data by selecting
an image area. It is done by using free Hamamatsu NDP.view 2 Application [6]
and its Free Hand Region Annotation tool. Outputs are stored in proprietary
file format and it is separated into two files. The image .ndpi is used to store
image pyramid bitmap data. It is similar to TIFF format with some custom TIFF
tags which makes it incompatible with standard tiff-reader. The file format is
discussed in [4,10].
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The annotation is stored in .ndpa file. There are four important properties
of the region stored in .ndpa file and used in our algorithm:

– shape
– color
– title
– detail

Application MicrAnt is open-source software written in Python [15] and the
repository [8] is hosted on the GitHub server. The packages Scipy [9], Numpy [12]
used for general purpose and the Scikit-image [16] is used for image processing.
Image data are read by the Open Slide package described in [5].

MicrAnt is dependent on particular software in the “Region Selection” step.
The .ndpi image format is widely used in microscopy. The use of open-source
packages allows us to easily use another format by implementing an image reader
for each specific image format.

2.2 Image Data and Metadata

When the annotation with specified color 1 is loaded from .ndpa file the image
area is read from .ndpi file according to annotation position, width, height
and selected level of details. When the annotator’s decision should be based
on a wider image area the additional black color region can be added to input
annotation data. In that case, the image view size is given by the surrounding
black annotation region.

2.3 Annotation

In the Initial Annotation step, the goal is to provide the first numerical anno-
tation to all microscopy image regions. The annotation parameter name is set
by the operator. Then all the images are randomly organized and the operator
is asked to set the value of the parameter for every region. Alternatively, this
can be done also by using details property in NDP.view 2. All collected data
are stored in the Open XLS file and can be used for regression tasks by using
floating-point number values and classification tasks by using discrete values.

In the next step, the annotation parameter is fine-tuned for the regression task.
The goal of this step is to increase the precision of annotation. The image regions
are sorted by the annotation parameter collected in the Initial Annotation step. A
couple of imageswith a small difference in the applicationparameter is shown to the
operator. By visual examination of this couple, the operator selects the image with
a higher value of the examined parameter. Screenshot of MicrAnt application can
be seen on Fig. 2. The fine-tune procedure is inspired by the bubble-sort algorithm.
It changes just the order of the elements. To allow the evolution of the values of the
parameter we designed the update procedure. The order and value of the examined
parameters are not changed if the value of the examinedparameter on the left image
is lower than the value on the right image. The update procedure is applied if the
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Fig. 1. H&E stained image of the porcine liver. On the left image is region selection.
Magenta and red closed curves are used as a region selection. The black curve can be
used for defining a larger view around the colored selection. The right image shows the
lobule detail (Color figure online).

Fig. 2. Screenshot of MicrAnt application. The user selects the image with higher value
of the examined parameter.
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value on the right image is lower. Then the new value for both images is calculated
according to the Eqs. 1, 2 and 3.

P ∈ (p0, p1, . . .) (1)

pi = pi + rnd(0, 0.5) · (pj − pi) (2)

pj = pj + rnd(0, 0.5) · (pi − pj) (3)

where pi and pj are the annotation parameters and P is the family of all anno-
tations. Equations 2 and 3 represent the updates. The output is stored in the
open XLS file.

2.4 Intensity Rescale

The intensity of the color channels of each pixel is dependent on the specific
staining performance. Sometimes the contrast may be below the optimal level.
To increase readability, a method of normalization of intensities was introduced.

k =
i0 − i1
q5 − q95

(4)

q = yi − kq95 (5)

io = sgn (kii + q) (6)

The input intensities (ii) are transformed to output intensities (io) so that the
5th and 95th percentiles (q5 and q95) of the intensity values are mapped between
−0.9 and 0.9 (i0 and i1). The range of target values is then limited by the
sigmoidal function. This limits the outflow of intensities outside the range. See
Fig. 3.

3 Results and Discussion

Two experiments were prepared to prove two different aspects of our approach.
We used H&E (Haemotoxylin and Eosin) stained images of decellularized porcine
liver scaffolds (Fig. 1). This type of tissue consisting of extracellular matrix pro-
teins after cell removal has great potential in tissue engineering because of the
possibility of artifical organ preparation [1]. Scaffolds are produced by our decel-
lularization method.

After thawing the frozen livers slowly at 4 ◦C and rinsing with saline solution,
scaffolds were generated by circulating perfusion with two types of detergent
solutions (1% Triton X-100 followed by 1% sodium dodecyl-sulphate (SDS)).
Decellularization procedure was stopped when the livers turned homogenously
white. Scaffolds were washed with saline to remove residual detergent solution.
Tissue samples were fixed in 10% neutral-buffered formalin, embedded in paraf-
fin, sectioned and stained in H&E.
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Fig. 3. Intensity Normalization. The top image shows the intensity transformation
function. The input image is the bottom left; the bottom right image shows the image
after intensity transformation.

The quality estimation of the scaffold is based on fragmented criteria and
concentrate mainly on bulk properties. Morphological evaluation is mostly qual-
itative and superficial. In the future we would like to prepare the scaffold quality
measurement based on texture properties. The data annotation is the first step.

The intralobular network represents the network of sinusoidal vessels; thus
we introduced the Sinusoidal Integrity parameter (SNI) to quantify the level of
preservation of these fine ECM structures after decellularization. SNI is describ-
ing the quality of preserved liver sinusoid. This parameter is related to the quality
of the decellularization procedure. SNI is zero when no structure is preserved in
liver lobule after decellularization and it is two for perfectly preserved sinusoid
on the H&E image.
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Table 1. Time consumed for annotation.

Step Lobule selection Annotation Annotation

Application NDP.view 2 NDP.view 2 MicrAnt

Time 6:14 11:03 10:11

Number of samples 30 30 100

Time [s] 374 663 611

Time per sample [s] 12.46 22.10 6.11

In the first experiment, the annotation time was measured. There are three
steps in the annotation procedure: Lobuli selection, initial annotation, and fine
annotation. Our work is focused on the second and third steps. The lobule selec-
tion is done by the NDP. view 2. The second step can be done with both appli-
cations (NDP. view 2 and MicrAnt) while the refinement can be done only with
MicrAnt.

We used H&E stained images of liver scaffolds. Time consumed by annota-
tion of 30 regions in NDP.view 2 was measured. The operator used standard
procedure to select lobules in the image by the Freehand Region drawing tool.
Then the initial annotation was done by inserting SNI values into the Annotation
Details window. Both times were measured. In MicrAnt the operator annotated
100 regions with lobules. The time required for this operation was measured.
Refinement and the initial annotation in MicrAnt are comparable from the time
requirements point of view. Data can be found in Table 1.

The second experiment is focused on the calculation of the correlation
between parameter SNI and texture features extracted from the region. We used
21 H&E stained whole slide scans of liver scaffolds with 293 selected lobules.

Fig. 4. GLCM correlation texture feature and SNI initial annotation. Manual annota-
tion is shown on the left image and the annotation after MicrAnt refinement step is
shown on the right image.
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We compared the correlation of texture features with the initial annotation and
with the refined annotation. We used the Correlation (Fig. 4) and Correlation
Variance (Fig. 5) feature from a group of Gray Level Co-occurrence Matrix tex-
ture features described by Haralick in [7] and Tuceryan in [14]. The Spearman
correlation coefficient was measured after the Initial Annotation step and then
after refinement with MicrAnt. The calcuated data can be found in Table 2.

Fig. 5. GLCM correlation variance texture feature and SNI parameter annotated man-
ually and by MicrAnt. Left and right images show the manual annotation and MicrAnt
refined annotation respectively.

In the second part of the second experiment, the regression based on the
texture features was prepared. We compared the regression trained with init
annotation and finetuned annotation. The output can be found in Fig. 6. The
mean absolute error was measured and it is 0.2638 and 0.2402 for the initial
annotation and the refined annotation respectively.

An example of MicrAnt practical use can be a significant simplification of the
whole scan analysis done by ScaffAn tool which was recently developed for qual-
ity assessment of decellularized scaffolds suitable for in vitro tissue engineering
[17]. The MicrAnt application’s code is open-source and the repository is hosted
on GitHub [8]. In the last decade, Continuous Integration has become a global
phenomenon and the best practice of modern software engineering. The auto-
matic tests were implemented and we use Travis CI [2] and GitHub integration
to trigger the build.

Table 2. Spearman Correlation Coeficient between GLCM features and SNI annota-
tion.

Texture Feature NDP.view 2 MicrAnt

GLCM Correlation 0.259785 0.325264

GLCM Correlation var 0.409871 0.432594
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Fig. 6. Prediction of SNI parameter based on GLCM texture features. The left image
shows the prediction based on init annotation while the right image shows the predic-
tion trained with finetuned annotation.

4 Conclusion

We introduced a new open-source application MicrAnt for fast annotation of
microscopy image data. Annotation is a three-step procedure. The first step is
region selection and it is done by the external free application. In the following
step, the initial annotation is done in MicrAnt by setting a numeric value to
choose the annotation parameter. Most important is the third step. Here the
annotation is made more precisely by comparing a couple of regions.

By the first experiment we showed that the annotation refinement with
MicrAnt is faster than the reannotation of all data in the external application.
The annotation refinement had also positive consequences for machine learning
algorithms trained by this data, as it was shown in the second experiment.

In the future, we would like to prepare import plugin for Zeiss .czi image
format. We also plan to use a quicksort algorithm scheme in the initial annotation
step to make the procedure faster.
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Abstract. The topic of this paper includes graph cuts based tomog-
raphy reconstruction methods in binary and multi-gray level cases. A
energy-minimization based reconstruction method for binary tomogra-
phy is introduced. This approach combines the graph cuts and a gradient
based method, and applies a shape orientation as an a priori informa-
tion. The new method is capable for reconstructions in cases of limited
projection view availability. Results of experimental evaluation of the
considered graph cuts type reconstruction methods for both binary and
multi level tomography are presented.

Keywords: Discrete tomography · Shape orientation · Energy
minimization methods

1 Introduction

The word tomography comes from Greek words tomos which means slice and
graphein which means to write and it denotes an area in image processing that
deals with reconstructing images from the given projection data. Its main focus
usually are the objects which are not easily accessible or visible.

A wave penetrates through an unknown object and collects the projection
data from the object. In order to gather enough data for a successful reconstruc-
tion, waves usually need to penetrate the object from large number of directions.
The unknown object that tomography pursues to restore is identified as a func-
tion with a domain that can be discrete or continuous and a range that is a
given set of (usually) real numbers. Therefore, in order to obtain the image of
the unknown object, it is needed to reconstruct this function based on the known
data (integrals or sums over subsets of its domain). In Discrete Tomography (DT)
[11,12] the range of the function is a finite set. DT that deals with the problem
of reconstruction of binary images is named binary tomography (BT). If DT
deals with the reconstruction of digital images which consist of numerous gray
levels, it is referenced as multi-level discrete tomography.

Although problems of multi-level discrete tomography image reconstruction
can occur frequently in the application, to the best of our knowledge, there are
only few reconstruction algorithms that deal with such problems. Discrete Alge-
braic Reconstruction Technique (DART) [1], Multi-Well Potential based method
c© Springer Nature Switzerland AG 2020
T. Lukić et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 219–235, 2020.
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(MWPDT) [17], a combination of non-local projection constraints with a con-
tinuous convex relaxation of the multilabeling problem [25] and the Non-Linear
Discretization function based reconstruction algorithm (NLD) [24] are among
them. A recently introduced method (GCDT) [20], which combines a gradi-
ent based algorithm with a graph cuts type optimization method, showed good
performance for this type of problem. This paper gives an overview and exper-
imental evaluation of most often used algorithms for multi-level tomography
reconstruction problem.

The good performance of the GCDT algorithm for multi-level case motivate
us to make a step further and apply and adjust this approach to an other interest-
ing problem: binary tomography for limited projection availability. We propose
a new method which incorporates an a prior knowledge about the solution into
the reconstruction process. The smooth solution is determined by the regular-
ized gradient based SPG algorithm [4] which is subsequently binarized applying
a max-flow type graph cut algorithm, introduced in [9] and further analyzed in
[7,10,15]. The added prior information is the shape orientation descriptor [26].
Our motivation for the selection of this type of prior information is lies in the
fact that it shows excellent performance in combination with convex-concave
and gradient based approaches, see the reconstruction method (BTO) [18].

The paper has the following structure. Section 2 gives the description of the
basic reconstruction problem. In Sect. 3 the new reconstruction method is pre-
sented. Experimental results are provided in Sect. 4. Finally, the conclusion is
given in the Sect. 5.

2 Reconstruction Problem

In this paper we consider the DT reconstruction problem, represented by a linear
system of equations

Au = b, A ∈ R
M×N , u ∈ ΛN , b ∈ R

M , Λ = {λ1, λ2, ..., λk}, k ≥ 2 (1)

where k is the number of different gray level values. The set Λ is given by the
user. The matrix A is a so-called projection matrix, whose each row corresponds
to one projection ray. The corresponding components of the vector b contain
the detected projection values, while the vector u represents the unknown image
to be reconstructed. The i-th row entries ai,· of A represent the length of the
intersection of the pixels and the i-th projection ray passing through them. The
projection value measured by a projection ray is calculated as a sum of prod-
ucts of the pixel’s intensity and the corresponding length of the projection ray
through that pixel. Projections are taken from different directions. For each pro-
jection direction a number of parallel projection rays are taken (parallel beam
projection). The projection direction is determined by the angle β. The distance
between two adjacent parallel projection rays can vary depending on the recon-
struction problem, we set this distance to be equal to the side length of pixels.
The reconstruction problem means finding the solution image u of the linear
system of Eq. (1), where the projection matrix A and the projection vector b are
given. This system is often undetermined (N > M).
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3 Graph Cuts Reconstruction Method Assisted by Shape
Orientation

A directed, weighted graph G = (X, ρ), consists of a set of nodes X and a set of
directed edges ρ that connect them. The nodes,in image processing interpreta-
tions, mostly correspond to pixels or voxels in 3D. All edges of graph are assigned
some weight or cost.

Let G = (X, ρ) be a directed graph with non-negative edge weights that has
two special nodes or terminals, the source A and the sink B. An a−b-cut (which
is referred informally as a cut) C = A,B is a partition of the terminals in X
into two disjoint sets A and B so that a ∈ A and b ∈ B. The cost of the cut is
the sum of costs of all edges that go from A to B:

c(A,B) =
∑

x∈A,y∈B,(x,y)∈ρ

c(x, y).

The minimum a−b-cut problem is to find a cut C with the minimum cost among
all cuts. Algorithms to solve this problem can be found in [7].

The approach that uses graph cuts for energy minimization has, as basic
technique, construction of a specialized graph for the energy function to be
minimized such that the minimum cut on the graph also minimizes the energy.
The form of the graph depends on the exact form of X and on the number of
labels. The minimum cut, in turn, can be computed very efficiently by max flow
algorithms.

These methods have been successfully used in the last 20 years for a wide
variety of problems, naming image restoration [8,9], stereo and motion [2,14],
image synthesis [16], image segmentation [6] and medical imaging [5,13].

The Potts model in graph cuts theory is based on the minimization of the
following energy

E(d) =
∑

p∈P
D(p, dp) +

∑

(p,q)∈N
K(p,q) · (1 − δdp,dq

), (2)

where d = {dp|p ∈ P} represents the labelling of the image pixels p ∈ P.
By D(p, dp) we denote the data cost term, where D(p, dp) is a penalty or cost
for assigning a label dp to a pixel p. K(p,q) is an interaction potential between
neighboring pairs p and q, N is a set of neighboring pairs. Function δdp,dq

is
Kronecker delta function.

3.1 Shape Orientation

In this section we give a short description and a calculation method of the shape
orientation.

The geometrical moment of a digitize image u is defined by

mp,q(u) =
∑

(i,j)∈Ω

u(i, j)ipjq,

where Ω ⊆ R
2 denotes the image domain.
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The center of gravity (or centroid) of an image (or a shape) u is defined by

(Cx(u), Cy(u)) =
(

m1,0(u)
m0,0(u)

,
m0,1(u)
m0,0(u)

)
.

The centroid enables the definition of the centralized moment which is transla-
tion invariant. The centralized moment of an image u of order p + q is given by

mp,q(u) =
∑

(i,j)∈Ω

u(i, j)(i − Cx(u))p(j − Cy(u))q.

The shape orientation is an often used and well known shape descriptor [26].
The orientation is determined by the angle α, which represents the slope of the
axis of the second moment of inertia (orientation axis) of the considered shape
[23]. The orientation (angle α) for the the given image u can be calculated by
the following equation:

sin(2α)
cos(2α)

=
2 · m̄1,1(u)

m̄2,0(u) − m̄0,2(u)
. (3)

Moments in (3) are translation invariant, making the orientation invariant to
translation transformations, for more details see [18,26].

3.2 The Proposed Method

Our tomography reconstruction approach is a combination of the graph cuts
method and a gradient based minimization method. In the first step, we deter-
mine the data cost values for each image pixels. The data cost values are deter-
mined as intensity values of the continuous or smooth approximation (solution)
of the final reconstruction image. The smooth solution is obtained by the fol-
lowing energy-minimization problem

min
u∈[0,1]N

EQ(u) := wP ‖Au − b‖22 + wH

N∑

i=1

∑

j∈Υ (i)

(ui − uj)2

+wO (φ(u) − α∗)2 + μ 〈u, τ − u〉 ,

(4)

where τ = [1, 1, . . . , 1]T is a vector of size N . Parameter wP regulates the influ-
ence of the data fitting term, wH controls the second term, whose role is to
enhance the homogeneity or compactness of the solution. By Υ (i) two neighbor
pixel indexes (in x and y axis directions) of pixel i is denoted. The orientation of
the solution u is denoted by φ(u), while α∗ is given true orientation. Parameter
wO determines the impact of the orientation regularization. The task of the con-
cave regularization term 〈u, τ − u〉 (inner product of vectors u and 1 − u) is to
push pixel intensities toward binary values. Parameter μ regulates the influence
of this binarization term and its value is gradually increased during the recon-
struction process. The problem (4), for each fixed μ, is solved by the Spectral
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Projected Gradient (SPG) iterative optimization algorithm, originally proposed
by Birgin et al. [3]. Motivation for application of this algorithm is supported
by its successful application in similar problems, see [19,21,22]. The reconstruc-
tion process (4) is terminated before the fully binary solution is achieved. The
termination criterion is given by

〈u, τ − u〉 < Ebin,

where Ebin regulates the degree of binarization of the solution u. In our experi-
ments its value is set as 100. This partially binarization of the smooth solution
is applied in order to improve the determination of data cost terms for graph
cuts method.

In the next step we have to fully binarize the smooth solution of the problem
(4), obtained by the SPG algorithm. For this task we apply the graph cuts
method based on the Potts model, described in Sect. 3. The data cost term D
in (2) is determined using information provided by the smooth solution u. More
precisely, we define it in the following way

D(p, 0) = u(p),
D(p, 1) = 1 − u(p),

where u(p) represents the intensity of a pixel p. The idea is to make data cost
small or cheap in the vicinity of the given gray values. The neighbor pairs are
defined based on 1-neighboring system, i.e., (p, q) ∈ N if the image coordinates
of p and q differ for one value only. The interaction potential K(p,q) (see (2))
in our experiments is set as a constant and its value is 1. Now, the energy
function in (2) is determined and ready to be minimized. For this task we use
the GCO graph cuts based optimization algorithm, introduced in [9] and further
analyzed in [7,10,15]. The GCO algorithm determines the label values dp for
each pixel p. Each label value is assigned to one predefined gray level in the
following way: dp = 0 → 0 and dp = 1 → 1. Therefore, the obtained label values
also determine intensities of pixels in the final (binary) solution, therefore the
reconstruction process is terminated. We denote this method by Graph Cuts
Tomography Assisted by the Orientation prior (GCORIENTBT) reconstruction
method. If in the Eq. 4 we set values of parameters wo, wH and μ as 0, and solve
it using the combination of SPG and GCO algorithms, we are getting algorithm
introduced in [20] and denoted by GCDT.

4 Experimental Results

In this section we experimentally evaluate the proposed graph cuts based recon-
struction methods, denoted by GCDT and GCORIENTBT. In the experiments
for multi gray level tomography we use 6 test images (phantoms), as originals
in reconstructions, presented in Fig. 1. Phantoms PH1, PH2 and PH3 contain 3
gray levels, while phantoms PH4, PH5 and PH6 contain 6 gray levels. In addi-
tion, GCDT was also tested on binary images using phantoms PH7, PH8, PH9
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as well as on two medical images: binary segmented CT image of a bone implant,
inserted in a leg of a rabbit (PH10) and a Binary segmented florescence image
of Calcein stained Chinese hamster ovary cell (PH11). We consider reconstruc-
tions of these images obtained from different projection directions. A total of 128
parallel rays are taken for each projection direction for multi gray level images
and 64 projection rays for binary images. In all cases, the projection directions
are uniformly selected between 0 and 180◦. The obtained results are compared
with two reconstruction methods suggested for multi level discrete tomography,
so far: 1) Multi Well Potential based method (MWPDT) proposed in [17] (this
method is developed and used only for phantoms with 3 gray levels); and 2)
DART method, proposed in [1]. We also include into the evaluation process
a simple method based on classical threshold, denoted by TRDT. Addition-
ally, binary images are compared with similar reconstruction method for binary
tomography introduced in [18] and denoted by BTO. All reconstruction methods
(BTO, DART, GCORIENTBT, MWPDT, GCDT and TRDT) are implemented
completely in Matlab.

PH1 PH2 PH3

PH4 PH5 PH6

PH7 PH8 PH9 PH10 PH11

Fig. 1. Original test images (128x128). Phantoms PH1, PH2 and PH3 contain 3 differ-
ent gray levels (0,0.5,1), PH4, PH5 and PH6 contain 6, while PH7, PH8, PH9, PH10,
PH11 present binary images.
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PE=272 (1.66%)PE=255 (1.55%)PE=412 (2.51%)
PH1

PE=225 (1.37%)PE=209 (1.28%)PE=143 (0.87%)
PH2

PE=367 (2.24%)PE=655 (3.99%)PE=519 (3.16%)
PH3

GCDT MWPDT TRDT

Fig. 2. Reconstructions of the test images using data from 6 projection directions.

In the evaluation process, we analyze the quality of the reconstructions and
required running times. The quality of the reconstructions are expressed by the
pixel error (PE), i.e., the absolute number of the misclassified pixels, and by
the misclassification rate (m.r.), i.e., the pixel error measure relative to the
total number of image pixels. Also, as a qualitative error measure, we consider
the projection error, defined by PRE = ‖Aur − b‖, where ur represents the
reconstructed image. This error express the accordance of the reconstruction
with the given projection data.

In Table 1 we present pixel errors for reconstructions of three phantom images
(PH1, PH2 and PH3) obtained from different number of projections by three
different methods (MWPDT, GCDT and TRDT). From total of 12 different
reconstruction problems, GCDT method provided best results in 10 cases, while
in 2 cases the dominant was the MWP method. Regrading the PRE values, see
Table 2, the proposed GCDT method dominated in 8 cases, while MWP in 4
cases.
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PE=1976 (12.06%)PE=2435 (14.86%)PE=1695 (10.34%)
PH4

PE=219 (1.34%) PE=1364 (8.33%) PE=488 (2.98%)
PH5

PE=727 (4.44%) PE=889 (5.43%) PE=649 (3.96%)
PH6

GCDT TRDT DART

Fig. 3. Reconstructions of the test images using data from 6 projection directions.

Best running times in all experiments were achieved by the MWP method.
GCDT and TRDT methods use the smooth solution/reconstruction as a first
step, before the “discretization process” starts.

The smooth solution is achieved as a final termination, with high precision,
which requires significantly higher number of iterations compared to MWPDT
method in total, thus resulting in greater consumption of time. In Figs. 2 and 4
reconstructions from 6 and 15 projection directions of images containing 3 gray
level are presented.

Reconstruction results of phantoms with 6 different gray levels (Table 3) show
that, compared to TRDT and DART, GCDT method prevails in 10 out of 12
cases, whilst DART performes the best in 2 cases. In Figs. 3 and 5 reconstructions
from 6 and 15 projection directions respectively are presented.

In addition to multi level discrete tomography, we have tested our algorithm
on binary images. It can be noticed on the Fig. 6 that GCDT method gives
poor results in the cases of the reconstruction from two projections. On the
other hand, already from higher number of projections, GCDT shows competi-
tive performance. We have tried to avoid this drawback by adding orientation as
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PE=5 (0.03%) PE=35 (0.21%) PE=28 (0.17%)
PH1

PE=12 (0.07%) PE=17 (0.10%) PE=18 (0.11%)
PH2

PE=9 (0.05%) PE=174 (1.06%) PE=41 (0.25%)
PH3

GCDT MWPDT TRDT

Fig. 4. Reconstructions of the test images using data from 15 projection directions.

a priori information to GCDT method, thus building the GCORIENTBT algo-
rithm. Later, we have compared the GCORIENTBT algorithm with three other
reconstruction methods (BTO, DART, GCDT) (Tables 4 and 5). In 12 out of 15
cases, GCORIENTBT gives the best reconstruction (smallest PE/m.r.). It can be
noticed that, as expected, by adding the orientation prior to GCDT method, sig-
nificantly better results for BT are obtained. The advantage of GCORIENTBT
is in running time as well. Execution time of GCORIENTBT is in most of the
cases even more than 50% shorter compared to its best competitor BTO.

Summarizing the results obtained by the total of 24 multi- gray level ana-
lyzed reconstruction tasks, see Tables 1 and 3, the quality of the reconstruction,
indicated by m.r.for the proposed GCDT method was the best in 20 cases, i.e., in
83% of the analyzed cases. We emphasize that the results of the GCDT method,
in cases when they are the best, are significantly better (in the most of the cases
more than 50% better). Farther, GCORIENTBT performed better in 80% of the
cases.
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PE=399 (2.44%) PE=998 (6.09%) PE=1089 (6.65%)
PH4

PE=28 (0.17%) PE=1274 (7.78%) PE=319 (1.95%)
PH5

PE=192 (1.17%) PE=552 (3.37%) PE=707 (4.32%)
PH6

GCDT TRDT DART

Fig. 5. Reconstructions of the test images using data from 15 projection directions.

Table 1. Experimental results for PH1, PH2 and PH3 images, using three different
reconstruction methods. The abbreviation d indicates the number of projections. The
best performance is bold fonted.

d PH1 PH2 PH3

6 9 12 15 6 9 12 15 6 9 12 15

(PE) 255 159 59 35 143 138 20 18 655 456 275 174

MWP (m.r. %) 1.55 0.97 0.36 0.21 0.87 0.84 0.12 0.11 3.99 2.78 1.67 1.06

(PE) 412 175 48 28 209 141 17 17 412 301 101 41

TRDT (m.r. %) 2.51 1.06 0.29 0.17 1.28 0.86 0.10 0.10 2.51 1.83 0.61 0.25

(PE) 272 69 8 5 225 124 12 12 272 116 20 9

GCDT (m.r. %) 1.66 0.42 0.04 0.03 1.37 0.76 0.07 0.07 1.66 0.70 0.12 0.05
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PE=646 (15.17%) PE=660 (16.11%)PE=726 (17.72%)
PH7

PE=448 (10.94%) PE=452 (11.04%) PE=107 (2.61%)
PH8

PE=574 (14.01%) PE=604 (14.75%)PE=757 (18.48%)
PH9

353 (8.62%) PE=337 (8.23%) PE=74 (1.81%)
PH10

PE= 478 (11.67%)PE=452 (11.04%)PE=676 (16.50%)
PH11

GCDT TRDT DART

Fig. 6. Reconstructions of the binary test images using data from 2 projection direc-
tions.
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PE=466 (11.38%)PE=813 (19.85%)PE=929 (22.68%)PE=464 (11.32%)
e.t.= 227 e.t.= 0.87 e.t.= 0.46 e.t.= 82.61

PH7

PE=669(16.33%) PE=817 (19.95%)PE=817 (19.95%) PE=652(15.92%)
e.t.= 32 e.t.=0.84 e.t.= 0.47 e.t.= 31.95

PH8

PE=970 (23.68%)PE=564 (13.77%)PE=990 (24.17%) PE=976(23.83%)
e.t.= 177 e.t.= 0.5 e.t.= 0.69 e.t.= 60.17

PH9

PE=672 (16.41%)PE=722 (17.63%)PE=722 (17.63%)PE=657 (16.04%)
e.t.= 328 e.t.= 0.54 e.t.= 0.41 e.t.= 60.44

PH10

PE=209 (5.10%) 720 (17.58%) PE=720 (17.58%) PE=180 (4.39%)
e.t.= 280 e.t.= 0.44 e.t.= 0.42 e.t.= 66.89

PH11
BTO DART GCDT GCORIENTBT

Fig. 7. Reconstructions of the binary test images using data from 1 projection direction,
α = 0◦. The abbreviation e.t. means elapsed time in seconds.
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PE=378 (9.93%) PE=435 (10.62%) PE=812 (19.82%) PE=283 (6.91%)
e.t.= 275 e.t.= 2.5 e.t.= 2.7 e.t.= 108.92

PH7

PE=166 (4.05%) PE=218 (5.32%) PE=364 (8.89%) PE=162 (3.96%)
e.t.= 300 0.94 e.t.= 0.94 e.t.= 2.91 e.t.= 130.75

PH8

PE=1132 (27.64%)PE=1284 (31.35%)PE=1131 (27.61%) PE=1127(27.51%)
e.t.= 222 e.t.= 1.19 e.t.= 2.59 e.t.= 216.88

PH9

PE=573 (13.99%) PE=1235 (30.15%) PE=722 (17.63%) PE=658(16.06%)
e.t.= 503 e.t.= 0.71 e.t.= 0.33 e.t.= 219

PH10

PE=1367 (33.37%)PE=1438 (35.11%) PE=720 (17.58%) PE=1389 (33.91%)
e.t.= 394 e.t.=1.06 e.t.= 3.22 e.t.= 112.26

PH11
BTO DART GCDT GCORIENTBT

Fig. 8. Reconstructions of the binary test images using data from 1 projection direction,
α = 45◦. The abbreviation e.t. means elapsed time in seconds.
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Table 2. Experimental results for PH1, PH2 and PH3 images, using three different
reconstruction methods. The abbreviation e.t. means elapsed time in minutes and d
indicates the number of projections. The best performance is bold fonted.

d PH1 PH2 PH3

6 9 12 15 6 9 12 15 6 9 12 15

(PRE) 14.70 12.19 9.96 9.08 14.11 18.94 6.08 7.71 19.83 18.77 18.80 16.43

MWPDT (e.t.) 1.76 2.63 3.17 4.06 5.34 8.17 6.36 11.62 2.19 2.87 4.30 4.66

(PRE) 18.66 14.72 10.61 8.87 17.98 17.30 7.09 7.09 23.64 17.87 13.66 10.61

TRDT (e.t.) 7.73 12.58 14.55 17.77 6.24 10.82 16.01 17.74 7.28 11.07 13.39 16.00

(PRE) 23.24 11.12 6.52 4.39 26.77 21.04 6.01 6.00 25.87 14.96 7.59 5.60

GCDT (e.t.) 7.73 12.58 14.55 17.77 6.25 10.82 16.01 17.74 7.29 11.07 13.40 16.01

Table 3. Experimental results for PH4, PH5 and PH6 images, using three different
reconstruction methods. The abbreviation d indicates the number of projections. The
best performance is bold fonted.

d PH4 PH5 PH6

6 9 12 15 6 9 12 15 6 9 12 15

(PE) 1976 804 551 399 219 134 42 28 727 473 251 192

GCDT (m.r. %) 12.06 4.91 3.36 2.44 1.34 0.82 0.26 0.17 4.44 2.89 1.53 1.17

(PE) 2435 1415 1188 998 1364 1330 1286 1274 889 807 587 552

TRDT (m.r. %) 14.86 8.64 7.25 6.09 8.32 8.12 7.85 7.78 5.43 4.92 3.58 3.37

(PE) 1695 1242 1177 1089 488 379 288 319 649 836 596 707

DART (m.r. %) 10.34 7.58 7.18 6.65 2.98 2.31 1.76 1.95 3.96 5.10 3.64 4.32

Table 4. Experimental results for PH7, PH8 and PH9 images, using three different
reconstruction methods. α indicates the direction of projections. The best performance
is bold fonted.

α PH7 PH8 PH9

0◦ 45◦ 90◦ 0◦ 45◦ 90◦ 0◦ 45◦ 90◦

(PE) 466 378 383 669 166 362 970 1132 369

BTO (m.r. %) 11.38 9.23 9.35 16.33 4.06 8.84 23.68 27.64 9.01

(PE) 813 435 935 817 218 817 564 1284 670

DART (m.r. %) 19.85 10.62 22.83 19.95 5.32 19.95 13.77 31.35 16.36

(PE) 929 812 935 817 364 817 990 1131 1180

GCDT (m.r. %) 22.68 19.82 22.83 19.95 8.89 19.95 24.17 27.61 28.81

(PE) 464 283 378 652 162 324 976 1127 373

GCORIENTBT (m.r. %) 11.32 6.91 9.23 15.93 3.96 7.91 23.83 27.51 9.11

According to the above presented results, we conclude that experiments con-
firm the capability of the proposed methods to provide high quality reconstruc-
tions both for gray-level (GCDT) and binary (GCORIENTBT) images.
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Table 5. Experimental results for PH10 and PH11 using three different reconstruction
methods. α indicates the direction of projections. The best performance is bold fonted.

α PH10 PH11

0◦ 45◦ 90◦ 0◦ 45◦ 90◦

(PE) 672 573 597 209 1367 379

BTO (m.r. %) 16.41 13.99 14.58 5.10 33.37 9.25

(PE) 722 1235 414 720 1438 720

DART (m.r. %) 17.63 30.15 17.63 17.58 35.11 17.58

(PE) 722 722 534 720 720 720

GCDT (m.r. %) 17.63 17.63 13.04 17.58 17.58 17.58

(PE) 657 658 377 180 1389 340

GCORIENTBT (m.r. %) 16.04 16.06 9.20 4.39 33.91 8.30

5 Conclusions

In this paper we presented an approach for solving problem posed by discrete
tomography. The approach uses a gradient based method to obtain a smooth
reconstruction of an image and then uses graph cuts optimization method for
discretization. In cases of lowered projection directions, the method uses ori-
entation as an a priori information. Conducted experiments gave priority in
reconstruction quality to the proposed methods compared to the formerly pub-
lished reconstruction methods. Based on the obtained experimental results and
analysis presented in this paper, we have concluded that the combination of a
gradient based method with the graph cuts optimization method is suitable for
providing high quality reconstructions in discrete tomography.

Acknowledgement. Authors acknowledge the Ministry of Education and Sciences of
the R. of Serbia for support via projects OI-174008 and III-44006. T. Lukić acknowl-
edges support received from the Hungarian Academy of Sciences via DOMUS project.
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Abstract. Cluster Pattern Interface (CLUSPI) [6] is an original 2D
encoding and a related technology for direct point-and-click interfaces.
It allows determining the objects printed on a surface pointed out by
the user. The surface is covered by a layer of code composed of tiny
dots, which blends with the original surface texture. In practice, how-
ever, some of the dots of the code may be damaged or obscured, which
creates decoding challenges. In this work we develop theoretical solutions
to some of the challenges related to decoding noisy patterns.

Keywords: Cluster pattern interface CLUSPI · Primitive
polynomial · Shift-register Σ-sequence · Noisy pattern

1 Introduction

When interacting with humans, we often refer to nearby objects by pointing
gestures. The pointing functionality is also used for interacting in VR (Virtual
Reality), AR (Augmented Reality), and MR (Mixed Reality) models where both
physical and virtual components are integrated and simultaneously presented
on the screen. One of the main issues with the AR and MR implementations
is the synchronization of the real and the virtual components. While a lot of
research aiming at efficient methods for recognition and tracking of physical
objects appearing in AR/MR is being done, a highly reliable practical solution
is still to come.

In this work we focus on a different approach facilitating the recognition and
tracking of the target physical objects by applying specialized digital codes to
their surfaces. In this way, instead of complex scene analysis and object recog-
nition, just extracting and decoding of the embedded digital information will
suffice for the object identification and tracking.

A well-known technology, widely applied for identifying objects, is based on
optical scanners that recognize codes printed on the surface of the objects, such
c© Springer Nature Switzerland AG 2020
T. Lukić et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 236–244, 2020.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51002-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-51002-2_17


Dealing with Noise in Cluster Pattern Interface 237

as barcodes and QR-codes [13]. Note that the code must be oriented properly
with respect to the scanner and be in close proximity to it in order to be rec-
ognized. It should also be noted that these codes must have certain minimal
size and thus they cover part of the surface on which they are printed. The
scanning of the optical code results in extracting an identifier, which correspond
to a record stored in a database. This could be the name of the object, some
attributes such as its price, or a related URL link.

Obviously, in the frameworks of the VR, AR, and MR models it would be
very useful to be able to directly point to a physical object and get its identifier
irrespectively of its position and orientation. For this, instead of a single barcode,
some encoding that covers the entire object surface must be applied. In addition
to the identifier that corresponds to the barcode, this approach would bring
information about the orientation of the object with respect to the scanner
that can also be extracted and employed, for example, for spatial queries. It is
desirable that the encoding consists of small elements and blends with the object
surface so that it does not obstruct the other information printed on it and does
not disrupt the aesthetic of its appearance.

Fig. 1. A sample Data Matrix barcode (a) and a proportionally enlarged D-touch code
pattern (b) based on dots. The rectangle denotes the code block size.

A code with such desired properties should obviously be based on dots, instead
of squares. (See Fig. 1.) However, most of the existing dot codes [3,12,14,15]
still produce dense overlays that make the encoded surface appear grayish and
often require specialized reading equipment. With respect to this, we focus on
the CLUSPI technology, which has been co-invented by one of the authors of this
paper [5,6] and addresses the issues discussed above. It is based on pixels with a
specific color, which form 2-dot groups corresponding to the binary pairs (0,0),
(0,1), (1,0), and (1,1). A multiplicity of such pairs is then employed for encoding
of the absolute coordinates over the surface.

The idea to enumerate the positions on the surface with dots has been used
in other coding schemes that cover the surface of the physical object with a rela-
tively thick encoding layers. In order to avoid this, CLUSPI applies two innova-
tive ideas. Firstly, the code of the coordinates of a point on the surface depends
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on the coordinates of the adjacent points and second, the code representing the
coordinates of a point is not written linearly, but rather as a two-dimensional
sequence. In this way, the code becomes a sparse layer of dots that cover the
surface of the physical object in an unobtrusive way.

For details about the encoding and decoding scheme we refer the readers to
some previous publications [2,6,7]. We only mention here that it is based on Σ
sequences, which will be explained in the next section.

An important issue of the printed code recognition is the case when part of
the code is damaged or obscured. For example, a barcode cannot be recognized
properly if entire bars are missing. However, decoding based on partially visible
bars is still possible, since the code is printed as a 2D picture, although it is
essentially a 1D code. When we minimize the number of the dots in the code to
make the layer blend with the surface texture, we face the problem that a small
damage to the surface could make it unreadable.

In the sequel we investigate this problem from mathematical perspective and
consider solutions.

The paper is structured as follows. In the next section we provide the neces-
sary preliminaries about the Σ-sequences on which the code of CLUSPI is based.
In Sect. 3 we consider how the noise can be handled when we have gaps in the
pattern. We conclude in Sect. 4 with some remarks and plans for further work.

2 Preliminaries

We start with some definitions from the theory of sequences. Let’s denote by A+

the free semigroup generated by an alphabet A. Let A∗ = A+ ∪ {λ}, where λ is
the empty word. An element of A∗ is called a sequence (alternatively, a string
or word). A sequence s with terms s1, s2, . . . , sn will alternatively be written as
s = s1s2 . . . sn and s = s[1 . . . n]. The number n is the length of s, denoted |s|.
A sequence of length m will be called an m-sequence.

Let s = uvw where u, v, and w are sequences. Then v is a subsequence of s
with a starting position in s the integer |u|+1, and u and w are the respectively
prefix and suffix of s. s[j] is the j’th term of s, 1 ≤ j ≤ n, and s[p . . . q] is the
subsequence of s starting at the p’th position and ending at the q’th position
of s, 1 ≤ p < q ≤ n. A sequence s that consists of k consecutive copies of a
subsequence w is denoted s = wk; w is a period of s if s is a prefix of wk for some
k ≥ 1. Whenever no confusion arises, “period” of a sequence s may also refer to
the length |w| of a period w of s. A sequence s may have different periods, as the
shortest one is called the period of the sequence. A sequence is always a period
of itself, called the trivial period. A sequence that has only the trivial period is
called aperiodic. For more details on theory of words see [1].

CLUSPI technology has as a theoretical background a special class of 0/1
sequences, commonly known as Σ-sequences. Such a sequence is generated from
a polynomial of a certain degree, called a generator polynomial and has the
property that all subsequences, called patterns, of certain lengths are unique
within the sequence. These patterns are the basis of encoding the coordinates on
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the surface. In what follows we briefly explain the construction of Σ-sequences
(see [4] for further details).

Let P (x) = amxm +am−1x
m−1+ · · ·+a1x+a0, m ≥ 2, be a polynomial with

coefficients 0’s or 1’s. All operations on such polynomials are performed modulo
2. P (x) is called irreducible (or prime), if it cannot be factored into a product of
a number of polynomials with coefficients equal to 0 or 1 and of degree greater
than or equal to one. P (x) is primitive if it is irreducible and is a factor of xN +1,
where N = 2m − 1.

For a primitive polynomial P (x) of degree m ≥ 2, let xα1 , xα2 , . . . , xαk , xαk+1

be its nonzero monomials, i.e., those with coefficients aα1(= am) = aα2 = · · · =
aαk

= αk+1 = 1. The indexes α1, α2, . . . , αk+1 are called degree positions. Since
P (x) is irreducible and of degree m, it follows that a0 = 1, i.e., αk+1 = 0,
and am = 1, i.e., α1 = m. For simplicity, this last coefficient αk+1 is always
excluded from the description of Σ-sequence construction. Thus the remaining
degree positions are α1 = m,α2, . . . , αk ≥ 1. We will be concerned with these
degree positions, sometimes called taps.

A polynomial P (x) is used to build a binary sequence S of length |S| = 2m +
m−2 with the property that every subsequence of S of length m is unique within
S. Given a binary sequence y1y2 . . . ym, define an Exclusive OR (XOR) operator
relative to the indexes the taps α1, α2, . . . , αk by XORα1,α2,...,αk

(y1y2 . . . ym) =
XOR(yα1 , yα2 , . . . , yαk

). (Note that the XOR-operator applied to a number of
binary values returns 1 if the number of 1’s among these values is odd, and 0
otherwise.)

The recursive construction of a shift-register Σ-sequence S starts from an
arbitrary binary sequence a1a2 . . . am, ai = 0 or 1 for 1 ≤ i ≤ m, such that
not all ai’s are 0’s. This m-tuple is a prefix of S. Then the next element
of S is found as am+1 = XORα1,α2,...,αk

(a1, a2, . . . , am). More in general, let
a1, a2, . . . , am, . . . , aj be the first j elements of S, where m ≤ j < 2m + m − 2.
Then

aj+1 = XORα1,α2,...,αk
(aj−m+1, aj−m+2, . . . , aj). (1)

The generation of S ends after performing 2m − 2 iterations.
It follows that, under the assumption for primitiveness of P (x), the period

of the so-constructed sequence S is 2m − 1 and every m-subsequence of S is
met in S only once; moreover, if another 2m + m − 1’th element a2m+m−1 is
concatenated to S, then the m-prefix of the obtained sequence S|a2m+m−1 will
be the same subsequence of symbols as the m-suffix of S.

Example 1. Consider the primitive polynomial P (x) = x3 + x + 1. In terms of
the denotations used above, we have α1 = m = 3 and α2 = α3 = 1. Starting,
e.g., from the binary sequence 001 of length m = 3, after six iterations of the
described generation process, we obtain the shift-register Σ-sequence 001110100.

3 Handling Noise

As we discussed in Sect. 1, a problem, which often appears in practice is that
some of the dots, of which the code is composed, are either damaged or obscured
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and thus the code cannot be deciphered. In other words, there is noise in the
input sequence. In this section we obtain some theoretical results about searching
noisy patterns in Σ-sequences.

3.1 Decoding Patterns with Gaps

As we mentioned in Sect. 1, CLUSPI code is based on folded patterns. At one
reading instance, the camera captures an input in the form of a rectangle popu-
lated by binary elements. We can think of it as a row-wise matrix representation
of a pattern of length m = p × q, where p and q are integer numbers.

In order to decode the coordinates encoded by the pattern, it is searched for
occurrence in the Σ-sequence and the position of its (unique) occurrence is the
key of the coordinates.

Obviously, the length of the pattern should be at least m so that it has a
unique occurrence in the Σ-sequence. However, in practice, the length of the
pattern is longer as the camera captures more points. This fact may be used to
solve the important problem of having some of the dots in the pattern obscured
or noisy.

As an illustration, let us consider the sequence in Example 1. The pattern 1
* 0, where * denotes the unreadable element, has two possible occurrences: as
110 and as a 100.

In other words, if the pattern has length m, but one of its elements is unread-
able – that is, the pattern has a gap its occurrence in the Σ-sequence won’t be
unique anymore. However, in practice the captured pattern has length longer
than m and these additional sequence elements could be used to ensure the
uniqueness of the pattern in the Σ-sequence.

A major question is: if we assume that the pattern has no more than k
gaps, what the length of the captured sequence should be, so that we ensure
uniqueness.

The following theorem gives an answer to this question.

Theorem 1. Let S be a Σ-sequence generated by a primitive polynomial of
degree m ≥ 2. Let P be an m-pattern that has gaps (∗’s) at positions
j∗
1 , j∗

2 , . . . , j∗
k . Let j′

1 = 1, j′
2, . . . , j

′
k be the closest degree positions to the left of the

j∗
i ’s (1 ≤ i ≤ k). Denote J = mini=1,...,k{j∗

i −j′
i : S[k1+j∗

i −1] �= S[k2+j∗
i −1]},

where k1 and k2 are the positions within S where two different occurrences of
P start. Then all patterns that have P as their prefix and are of length greater
than m + J − 1, are unique.

Proof. Consider two occurrences P1 = S[k1, k1+m−1] and P2 = S[k2, k2+m−1]
of pattern P in S, with k1 and k2 being the positions within S where P1 and P2

start.
If k = 1, as already discussed above, the gaps in P1 and P2 must have different

unknown values.
If k > 1, it is possible that gaps at identical positions in P1 and P2 had fea-

tured identical (unknown, or “deleted”) values. However, since by construction
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of S each m-pattern in S is unique, for at least one i, 1 ≤ i ≤ k, the values at
corresponding gap positions in P1 and P2 must be different.

For an arbitrary such i, let us perform a series of operations O1, O2, . . . of
type (1) to both patterns, thus extending them to the right. One can observe that
after performing an operation Oi, the corresponding elements which are added
to P1 and to P2, respectively, will be the same as long as no degree position
interferes with the values at positions k1 + j∗

i −1 and k2 + j∗
i −1. This is because

the newly computed values are obtained by performing the same operation Oi

of type (1) on identical inputs.
After performing a number of operations causing a number of shifts, k1+j∗

i −1
and k2+j∗

i −1 will simultaneously become degree positions. Since S[k1+j∗
i −1] �=

S[k2 + j∗
i − 1] (by the choice of index i), the next values in the sequence S will

certainly be different. It is clear that such a difference will first occur for the
value of i for which J is obtained. ��

The following corollary provides a simpler (although, in general, less precise)
bound on the length of the unique patterns with gaps.

Corollary 1. Under the terms of Theorem 1, denote J0 = mini=1,...,k{j∗
i − j′

i}.
Then all patterns that have P as their prefix and are of length greater than
m + J0 − 1, are unique.

Follows from the obvious inequality J0 ≥ J .
Theorem 1 implies a simple way of identifying the shortest unique pattern

that contains P as a prefix. For this, after detecting the positions of the gaps
in P (which requires O(m) arithmetic operations), one has to locate the closest
degree positions to the left of all gaps. This can be accomplished with other
O(m) arithmetic operations, i.e., one should perform O(m) operations overall.
Then, the required dimension is implied by Theorem 1.

3.2 Reconstructing Patterns with Gaps

In the previous section we showed that if a pattern with gaps is sufficiently long,
then it may be unique within the Σ-sequence. In this section we show that if
a pattern with a certain number of gaps is sufficiently long, then the unknown
values can be recovered.

The shift-register Σ-sequence S constructed in Sect. 2 has a number of prop-
erties that make it a useful tool for various applications. Here we list one of them
for future references.

Lemma 1. [4] The set of taps for any Σ-sequence has an even number of ele-
ments.

Here are two more facts to be used in the sequel.

Lemma 2. Let P be an (m + 1)-subsequence of S with an unknown value P [i]
at a tap-position i, 1 ≤ i < m + 1. Then P [i] can be determined with O(m)
operations.
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Proof. By construction of S (see Eq. (1)), if the number of 1’s at tap-positions
different than i is even, then P [i] = 1 if P [m+1] = 1 and P [i] = 0 if P [m+1] = 0.
If the number of 1’s at those tap-positions is odd, then P [i] = 1 if P [m + 1] = 0
and P [i] = 0 if P [m + 1] = 1. ��
Lemma 3. Let P with |P | > m be a subsequence of S which contains gaps at
certain positions. If P contains an m-subsequence w all elements of which are
known, then the whole subsequence P can be restored with O(|P |) operations.

Proof. By Eq. (1), any m consecutive values determine the value at the position
next to them, thus one can compute all unknown values to the right of w. The
unknown values to the left of w can be found using Lemma 2. ��

Now we can prove the following theorem.

Theorem 2. Let P be a subsequence of a Σ-sequence generated by a primitive
polynomial of degree m ≥ 2, and let P have g gaps, 1 ≤ g ≤ |P |. If |P | ≥
ω(g,m) = (g+1)m−1, then the whole P can be restored with O(|P |) operations.

Proof. Consider the extreme (worst) case where |P | = ω(g,m). Partition P
into g + 1 subsequences:

P = P0P1P2 . . . Pg, where |P0| = m − 1, |P1| = m, |P2| = m, . . . , |Pg| = m.

If P0 contains at least one gap, by the pigeonhole principle there will be a Pi,
i �= 0, without a gap. Then, by Lemma 3, the entire pattern P can be restored
with O(|P |) operations.

Let P0 have no gaps. If P1[1] �= ∗, then the subsequence P0P1[1] is of length m
and has no gaps. Once again, by Lemma 3 the entire pattern P can be recovered.

Now let P1[1] = ∗. If P1 has another gap, then some Pi, i �= 0, 1, will contain
no gap and we fall within a case already considered. Therefore, suppose that
P [1] = ∗ is the only gap in P1.

By Lemma 1, a shift-register sequence has an even number of taps, i.e., at
least two, for any m ≥ 2. Hence, if the leftmost tap is placed at the first position
of P0 (and thus also of P ), the position of the rightmost tap will be greater than
or equal to two. Therefore, after no more than m − 2 shifts, P1[1] will feature
the rightmost tap position since there is at least one more to the left of it which
is with a known value. Then the result stated follows from Lemma 2. ��

The above theorem provides a necessary condition for a pattern length so
that a pattern with a number of gaps to be restorable. This is a “worst-case”
bound. The following example shows that it is also achievable.

Example 2. Consider the primitive polynomial P (x) = x2 + x + 1. We have
m = 2. Starting from sequence 01, this polynomial generates the Σ-sequence
0110. For g = 1, the bound of Theorem 2 is ω(1, 2) = 3. Obviously, a gap in any
3-pattern can be filled in. This, however, is not possible for a pattern of length
two.
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It is not hard to realize that the possibility to successfully determine a gap value
depends on the specific pattern and polynomial used. This is illustrated by the
following example.

Example 3. Consider the primitive polynomial P (x) = x5+x2+1. Starting from
the 5-pattern 00001, it generates the Σ-sequence

S = 00001010111011000111110011010010000.

Consider the underlined pattern P = 0110100 and first assume that it has a
gap in its third position, i.e., let P ′ =01 ∗ 0100. Clearly, the value of ∗ cannot
be found. Consider now the same pattern with two gaps at its first and last
positions, i.e., let P ′′ =0 ∗ 101 ∗ 0. It’s easy to see that the values for both gaps
can be determined, although the pattern has a length 7 which is twice less than
ω(2, 5) = 14.

4 Concluding Remarks

The Cluster Pattern Interface technology has numerous applications [8–11]. In
this paper we presented some theoretical results related to coping with the prob-
lem of a noisy input. Some open questions remain as to how to optimally calibrate
the camera for a given Σ-sequence, so that on the one hand it captures enough
dots to be able to recognize even noisy patterns, but on the other hand it can be
positioned at a reasonable distance. Another direction of the theoretical results
is aiming at utilizing the information about the angle of the camera towards the
encoded surface to implement additional functionality. We are also planning to
extend the results into higher dimensions.

Acknowledgements. The work was partly supported by a Cooperative Research
Project of RIE, Shizuoka University, Japan.
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Abstract. In this paper we propose a novel local shape descriptor based
on Q-convexity histograms. We investigate three different variants: (1)
focusing only on the background points, (2) examining all the points
and (3) omitting the zero bin. We study the properties of the variants
on a shape and on a texture dataset. In an illustrative example, we
compare the classification accuracy of the introduced local descriptor to
its global counterpart, and also to a variant of Local Binary Patterns
which is similar to our descriptor in the sense that its histogram collects
frequencies of local configurations. We show that our descriptor can reach
in many cases higher classification accuracy than the others.

Keywords: Quadrant-convexity · Local shape descriptor ·
Classification · Shape analysis

1 Introduction

The measure of convexity is a frequently used shape descriptor in digital image
analysis. Numerous convexity measures have been proposed in the past years
based on different approaches. There are, among others, boundary-based [15],
area-based [12], direction-based [9], as well as probability-based methods [11]
to express the degree of convexity of a shape. Recently, in [2,3] the authors
introduced a convexity measure that relies on the concept of so-called Quadrant-
convexity (shortly, Q-convexity) [4,5]. The measure is global in the sense that it
describes the degree of Q-convexity of the entire image by a single scalar value.

As many studies revealed, histograms built on local features can provide
much richer information on the geometry and structural properties of the shape
than single scalar descriptors do (see, e.g., the Histogram of Oriented Gradients
[7], the Speeded Up Robust Features [1] or variants of the Local Binary Patterns
[10]). In this paper we extend the abovementioned global Q-convexity measure
to histograms collecting Q-convexity values calculated under all possible posi-
tions of an image window of predefined size. In Sect. 2 we give the necessary
notions and definitions. Then, in Sect. 3 we present an experimental analysis of
the introduced descriptor and show its effectiveness in a classification problem.
Finally, in Sect. 4 we conclude our results.
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2 Definitions and Notation

We first recall the global Q-convexity measure from [2,3]. Consider a two-
dimensional non-empty lattice set F , i.e., a finite subset F ⊂ Z

2 defined up to
translation. Let R be the smallest discrete rectangle covering F and suppose it
is of size m × n. Without loss of generality we can assume that the bottom-left
corner of R is in the origin (0, 0), i.e., R = {0, . . . ,m − 1} × {0, . . . , n − 1}.
Alternatively, F can be viewed as a binary image, i.e., as a union of white unit
squares (foreground pixels) corresponding to points of F , and R \ F being the
union of black unit squares (background pixels).

Each position (i, j) in the rectangle R together with the horizontal and ver-
tical directions determines the following four quadrants:

Z0(i, j) = {(l, k) ∈ R : 0 ≤ l ≤ i, 0 ≤ k ≤ j},

Z1(i, j) = {(l, k) ∈ R : i ≤ l ≤ m − 1, 0 ≤ k ≤ j},

Z2(i, j) = {(l, k) ∈ R : i ≤ l ≤ m − 1, j ≤ k ≤ n − 1},

Z3(i, j) = {(l, k) ∈ R : 0 ≤ l ≤ i, j ≤ k ≤ n − 1}.

The number of object points (foreground pixels) of F in Zp(i, j) is denoted by
np(i, j), for p = 0, . . . , 3, i.e.,

np(i, j) = card(Zp(i, j) ∩ F ) (p = 0, . . . , 3). (1)

We say that a lattice set F is Q-convex if for each (i, j), (n0(i, j) >
0 ∧ n1(i, j) > 0 ∧ n2(i, j) > 0 ∧ n3(i, j) > 0) implies (i, j) ∈ F . If F is not
Q-convex, then there exists a position (i, j) violating the Q-convexity property,
i.e. np(i, j) > 0 for all p = 0, . . . , 3 and still (i, j) /∈ F . Figure 1 illustrates the
above concepts.

Fig. 1. A lattice set F (left) together with the four quadrants around the point M ,
and the corresponding binary image representation (right). F is not Q-convex since
np(M) > 0 for all p = 0, . . . , 3 and still M /∈ F .

Now, let (i, j) be an arbitrary point of R. The Q-concavity contribution of
(i, j) w.r.t. F is defined as

ϕF (i, j) = n0(i, j)n1(i, j)n2(i, j)n3(i, j)(1 − f(i, j)) , (2)
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where f(i, j) = 1 if (i, j) ∈ F , otherwise f(i, j) = 0. The sum of the contributions
of Q-concavities for each point in R is expressed as

ϕF =
∑

(i,j)∈R
ϕF (i, j). (3)

Our idea is to refine (2) and (3) to achieve a local and thus more informative
measure of Q-concavity. For this purpose, consider a (2w+1)×(2w+1) window.
The quadrants around (i, j) restricted to this window size can then be defined as

Zw
0 (i, j) = {(l, k) ∈ R : (i − w) ≤ l ≤ i, (j − w) ≤ k ≤ j},

Zw
1 (i, j) = {(l, k) ∈ R : i ≤ l ≤ (i + w), (j − w) ≤ k ≤ j},

Zw
2 (i, j) = {(l, k) ∈ R : i ≤ l ≤ (i + w), j ≤ k ≤ (j + w)},

Zw
3 (i, j) = {(l, k) ∈ R : (i − w) ≤ l ≤ i, j ≤ k ≤ (j + w)}.

The number of object points in Zw
p is

nw
p (i, j) = card(Zw

p (i, j) ∩ F ) (p = 0, . . . , 3), (4)

and the local Q-concavity contribution at the point (i, j) is

ϕw
F (i, j) = nw

0 (i, j)nw
1 (i, j)nw

2 (i, j)nw
3 (i, j)(1 − f(i, j)). (5)

Finally, the local Q-convexity histogram of F is a mapping histF,w : Z → Z which
we can define in different ways. The first approach focuses on the background
points in R. In this case

histF,w,background(r) = |(i, j) ∈ R \ F : ϕw(i, j) = r|, (6)

i.e., we take each background point, calculate its local Q-concavity value, and
increase (by 1) the value of the corresponding bin. Alternatively, we can take
into account all the points in R. Then,

histF,w,all(r) = |(i, j) ∈ R : ϕw(i, j) = r|. (7)

A third approach focuses exclusively on the points that truly violate local Q-
convexity. Then we get

histF,w,nonzero(r) = |(i, j) ∈ R : ϕw(i, j) = r > 0|, (8)

i.e., in this case the 0 bin is omitted.
Let F be an arbitrary binary image. With elementary combinatorics we get

that the theoretical maximum of ϕw
F (i, j) is ((w + 1)2 − 1)4. Moreover, ϕw

F (i, j)
is either equal to 0 or it is a product of four positive integers from the interval
[1, (w + 1)2 − 1]. Owing to the associative property of multiplication, using the
formula of k-combinations with repetition we get an upper bound on the possible
number of the necessary bins equals to

(
((w + 1)2 − 1) + 4 − 1

4

)
+ 1 =

(
(w + 1)2 + 2

4

)
+ 1. (9)
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Nevertheless, many of the bins are inherently empty, e.g. those having indices
obtained by multiplying five or more primes.

Figure 2 shows two binarized retina images of size 1000 × 1000 together with
their local Q-convexity histograms histF,2,nonzero processed for a 5 × 5 window.
Since the maximum of ϕw(i, j) can be 4096, we allocated 4096 bins to store the
values (remember that the 0 bin is omitted). The histograms histF,2,background

and histF,2,all would look the same except that in these cases the 0 bin is also
presented. For the image in Fig. 2a the value of this bin is 937 885 and 991 253,
in case of histF,2,background and histF,2,all, respectively. Concerning the image of
Fig. 2c the value of the 0 bin is 918 465 and 991 167, in case of histF,2,background

and histF,2,all, respectively. Thus, in these cases the 0 bin gives a significant
peak in the histograms, and all the other bins become negligible.

Fig. 2. Examples for local Q-convexity histograms.

For an other example, consider the bullseye image of Fig. 3 (of size 256×256),
and let the window be, again, of size 5 × 5. In this case all the bins excluding
the 0 bin will have 0 value, independently from the type of the histogram cal-
culated. This reveals an interesting behavior of the descriptor: the shape seems
to be locally Q-convex in each window position, even though, clearly, it is glob-
ally not Q-convex. For completeness, the value of the 0 bin for this image is
43 492 (the number of background points) and 63 504 (the number of positions
where the window entirely fit into the image), in case of histF,2,background and



Local Q-Convexity Histograms 249

histF,2,all, respectively. Naturally, for sufficiently large window sizes the shape
will be neither locally nor globally Q-convex.

Fig. 3. A globally non-Q-convex shape that is locally Q-convex in each window posi-
tion, e.g., with window size 5 × 5.

3 Experimental Results

3.1 Histogram Variants and the Effect of Window Size

To compare the three histogram variants introduced in Sect. 2 we took 22 binary
images of size 128 × 128 from [14] (see Fig. 4) and computed their local Q-
convexity histograms. Then, we calculated the Euclidean distances of the his-
togram vectors between all possible (distinct) image pairs. Table 1 collects the
maximal, minimal, and mean distance between the image pairs, as well as the
standard deviation of the distances for different window sizes and for all three
histogram approaches. From the entries of the table we deduce the following.
The minimum and maximum values of the approach that takes only the back-
ground points into account (Eq. 6, columns background in the table) stretches a
wider interval than those of the other two approaches and, in the same time,
with greater deviation. Furthermore, the histograms of Eqs. 7 and 8 (columns
all and nonzero, respectively) cannot distinguish two locally Q-convex images,
whereas that of Eq. 6 still can measure some difference, based on the number
of background points. Concerning this latter approach, we notice that, in gen-
eral, greater window sizes provide greater difference between the minimum and
maximum values, and thus also greater mean and deviance values.

In a second experiment, we investigated how different textures can be sepa-
rated by the local Q-convexity histograms. We took 6 texture images (see Fig. 5)
and cut 50-50 random patches of size 128×128 of them. Table 2 shows the mean
Euclidean distance between the representatives of different texture classes of
Fig. 5 (in other words, the mean interclass distance), whereas Table 3 gives the
intraclass standard deviation of the 6 classes. It is clearly seen that for the back-
ground approach the interclass Euclidean distances are typically greater than in
the case of the other two histogram variants. We also observe that taking an
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v)

Fig. 4. Images taken from [14].

Table 1. Statistics of Euclidean distances for images of Fig. 4.

3 × 3 3 × 3 3 × 3 5 × 5 5 × 5 5 × 5

background all nonzero background all nonzero

Min 16 0 0 15 0 0

Max 8 806 919 280 8 798 3 499 421

Mean 2 401 112 37 2 647 421 53

Deviation 1 749 265 81 1 924 999 118

7 × 7 7 × 7 7 × 7 9 × 9 9 × 9 9 × 9

background all nonzero background all nonzero

Min 12 0 0 34 0 0

Max 10 635 5 533 365 11 251 6 209 244

Mean 2 859 700 50 2 939 840 40

Deviation 2 210 1 568 101 2 318 1 742 66
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(a) (b) (c) (d) (e) (f)

Fig. 5. Texture image classes.

arbitrary image pair of Table 2 and checking the corresponding intraclass devi-
ation of their classes in Table 3, in general, this latter value is relatively smaller
(compared to the distance value, e.g., by taking the ratio of the two) for the
background variant than for the other two methods. Based on these two exper-
iments, in the sequel we prefer to use the histogram based on the background
points.

3.2 Classification of Retina Images

Experimental Setting. As a case study, to investigate the classification power
of the introduced shape descriptor, we repeated an experiment of [3,6] with
exactly the same dataset and classifier. In [3] the authors concluded that in
this experiment the global Q-convexity measure (using just two directions) can
ensure comparable or in some cases even better results than that obtained by
[6] employing many directions. Thus, the question is, if the local Q-convexity
histogram can even outperform the global Q-convexity measure.

We used public datasets of fundus photographs of the retina. The
CHASEDB1 [8] dataset is composed of 20 binary images with centered optic
disks (see Fig. 2a for one of them), while the DRIVE [13] dataset contains 20
images where the optic disk is shifted from the center (see Fig. 2c). All the images
are of the same size 1000 × 1000.

Following the strategy of [6], different types of random noise were added to
the images: Gaussian and Speckle noise were added with 10 increasing variances
σ2 ∈ [0, 2], while salt & pepper noise was added with 10 increasing amounts
in [0, 0.1]. We tried to classify the images into two classes (CHASEDB1 and
DRIVE) based on their local Q-convexity histograms using the background
points (Eq. 6), by the 5-nearest-neighbor classifier with inverse Euclidean dis-
tance. To avoid overfitting, we used leave-one-out cross validation.

Normalization. Since our aim was to compare the performance of our descrip-
tor to the global Q-convexity measure published in [3], we modified the formula
of local Q-concavity contribution at the point (i, j) (given in Eq. 5) to

ϕw
F,norm(i, j) =

nw
0 (i, j)nw

1 (i, j)nw
2 (i, j)nw

3 (i, j)(1 − f(i, j))
(α + hi + vj)4

, (10)
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Table 2. Mean interclass Euclidean distances of the texture classes in Fig. 5.

3 × 3 3 × 3 3 × 3 5 × 5 5 × 5 5 × 5

Figure Figure background all nonzero background all nonzero

5f 5a 5 861 374 191 5 489 439 177

5f 5b 2 524 26 18 2 332 169 83

5f 5c 77 1 1 996 992 267

5f 5d 9 105 240 97 8 809 209 60

5f 5e 511 257 181 2 078 2 689 722

5e 5a 5 386 302 269 7 469 2 306 724

5e 5b 2 052 231 162 4 340 2 550 728

5e 5c 584 259 182 1 250 1 806 766

5e 5d 8 629 216 213 10 781 2 497 722

5d 5a 3 251 193 164 3 327 263 168

5d 5b 6 582 224 100 6 480 134 124

5d 5c 9 182 241 96 9 773 802 271

5c 5a 5 937 375 191 6 454 637 315

5c 5b 2 600 27 19 3 302 856 282

5b 5a 3 340 359 193 3 162 328 207

7 × 7 7 × 7 7 × 7 9 × 9 9 × 9 9 × 9

Figure Figure background all nonzero background all nonzero

5f 5a 5 525 340 129 5 595 130 105

5f 5b 1 852 567 176 278 2 225 263

5f 5c 2 602 2 506 311 2 238 2 218 173

5f 5d 8 710 112 54 8 636 186 58

5f 5e 2 750 3 373 597 2 261 2 846 367

5e 5a 8 229 3 065 604 7 834 2 770 372

5e 5b 4 571 2 851 631 2 368 768 462

5e 5c 680 1 070 673 399 730 399

5e 5d 11 410 3 276 594 10 873 3 021 362

5d 5a 3 189 246 115 3 044 269 87

5d 5b 6 870 489 211 8 549 2 403 285

5d 5c 11 297 2 409 311 10 869 2 393 165

5c 5a 8 113 2 197 331 7 827 2 141 186

5c 5b 4 441 1 981 359 2 346 328 328

5b 5a 3 688 330 242 5 510 2 152 298
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Table 3. Intraclass deviation of the texture classes of Fig. 5.

3 × 3 3 × 3 3 × 3 5 × 5 5 × 5 5 × 5

Figure background all nonzero background all nonzero

5a 363 81 52 267 98 82

5b 74 6 4 58 20 12

5c 124 5 3 121 86 19

5d 301 46 26 253 41 19

5e 52 24 16 75 84 69

5f 125 3 2 123 6 4

7 × 7 7 × 7 7 × 7 9 × 9 9 × 9 9 × 9

Figure background all nonzero background all nonzero

5a 363 63 46 394 59 37

5b 61 19 17 48 36 30

5c 74 109 24 17 99 17

5d 342 62 12 294 58 4

5e 53 63 53 30 50 30

5f 130 12 4 140 36 7

where α denotes the number of points belonging to F in the current window, hi

is the number of points of F in the ith row, and vj is number of points of F in
the jth column, restricted for the window.

Remark 1. In [3], the normalizing denominator for the local Q-concavity con-
tribution at the point (i, j) is ((α + hi + vj)/4)4. However, the constant factor
1
4 can be omitted in case of local Q-convexity histograms as only the relative
values of the bins are important.

Quantization. The theoretical maximum value of ϕw
F,norm(i, j) is

max ϕw
F,norm =

1
44

= 0.00390625, (11)

independently on the size of the window (see also Remark 1). Since ϕw
F,norm(i, j)

is not an integer, the bins of the histogram are not straightforward to index. To
overcome this problem we do quantization. Let q be the number of quantization
levels, i.e., the number of bins to occur in the histogram. Then we get the bin
indices by the following formula:

bin index =
⌊
ϕw
F,norm(i, j)

/max ϕw
F,norm

q − 1

⌋
. (12)
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Results. Tables 4 and 5 show the classification accuracy for different window
sizes with quantization levels q = 2 and q = 10, respectively, together with
the classification results of the global Q-convexity descriptor of [3]. For fur-
ther reference the accuracy achieved by Shift Local Binary Patterns (SLBP) is
also presented. SLBP [10] is a visual descriptor mostly used for classification
in computer vision. It illustrates the relationship between the pixels and their

Table 4. Classification accuracy of retina images for q = 2.

Noise type Noise level SLBP 3 × 3 5 × 5 7 × 7 9 × 9 Global

Gaussian 0 1 0.9 0.9 0.725 0.725 0.925

Gaussian 1 0.825 0.825 0.85 0.775 0.775 0.775

Gaussian 2 0.825 0.9 0.8 0.875 0.85 0.575

Gaussian 3 0.9 0.875 1 0.95 0.95 0.425

Gaussian 4 0.775 0.7 0.75 0.725 0.875 0.65

Gaussian 5 0.675 0.7 0.8 0.75 0.85 0.475

Gaussian 6 0.725 0.75 0.825 0.8 0.725 0.65

Gaussian 7 0.65 0.725 0.675 0.775 0.75 0.725

Gaussian 8 0.65 0.7 0.7 0.575 0.625 0.675

Gaussian 9 0.65 0.525 0.6 0.675 0.275 0.35

S&P 0 1 0.975 0.95 0.875 0.825 0.925

S&P 1 1 0.925 0.875 0.85 0.825 0.9

S&P 2 1 0.95 0.875 0.95 0.95 0.925

S&P 3 1 0.85 0.775 0.85 0.925 0.925

S&P 4 1 0.85 0.825 0.875 0.875 0.9

S&P 5 1 0.9 0.8 0.85 0.875 0.9

S&P 6 1 0.75 0.9 0.925 0.95 0.925

S&P 7 1 0.9 0.8 0.875 0.85 0.9

S&P 8 1 0.85 0.925 0.925 0.975 0.875

S&P 9 1 0.8 0.775 0.875 0.875 0.9

Speckle 0 1 0.825 0.925 0.725 0.725 0.925

Speckle 1 0.775 0.875 0.775 0.8 0.775 0.9

Speckle 2 0.85 0.875 0.875 0.875 0.825 0.925

Speckle 3 0.925 0.95 0.9 0.875 0.875 0.925

Speckle 4 0.875 0.875 0.825 0.85 0.75 0.95

Speckle 5 0.9 0.925 0.875 0.825 0.825 0.925

Speckle 6 0.95 0.95 0.95 0.85 0.825 0.95

Speckle 7 0.9 0.975 0.95 0.85 0.825 0.925

Speckle 8 0.925 0.975 0.95 0.9 0.925 0.925

Speckle 9 0.9 0.925 0.9 0.9 0.875 0.95



Local Q-Convexity Histograms 255

neighbors (most often 8-neighbors) with a histogram (having 256 bins in case
of 8-neighbors). We chose this method as a reference being its approach simi-
lar to that of our local Q-convexity histograms. In the tables, the best values
achieved by the Q-convexity based approaches (i.e., not considering SLBP) are
highlighted.

Table 5. Classification accuracy of retina images for q = 10.

Noise type Noise level SLBP 3 × 3 5 × 5 7 × 7 9 × 9 Global

Gaussian 0 1 1 1 0.975 0.95 0.925

Gaussian 1 0.825 0.8 0.7 0.775 0.975 0.775

Gaussian 2 0.825 0.85 0.85 0.85 0.875 0.575

Gaussian 3 0.9 0.85 0.95 0.875 0.875 0.425

Gaussian 4 0.775 0.775 0.75 0.7 0.85 0.65

Gaussian 5 0.675 0.7 0.75 0.8 0.8 0.475

Gaussian 6 0.725 0.75 0.775 0.85 0.725 0.65

Gaussian 7 0.65 0.7 0.55 0.7 0.775 0.725

Gaussian 8 0.65 0.425 0.575 0.7 0.65 0.675

Gaussian 9 0.65 0.625 0.6 0.725 0.45 0.35

S&P 0 1 1 1 0.875 0.9 0.925

S&P 1 1 0.95 0.975 0.875 0.95 0.9

S&P 2 1 0.9 0.975 0.95 0.95 0.925

S&P 3 1 0.875 0.95 0.975 0.95 0.925

S&P 4 1 0.925 0.925 0.95 0.95 0.9

S&P 5 1 0.9 0.975 0.975 0.975 0.9

S&P 6 1 0.95 0.975 1 0.975 0.925

S&P 7 1 0.975 0.975 0.95 0.975 0.9

S&P 8 1 0.925 0.95 0.95 0.95 0.875

S&P 9 1 0.95 0.975 0.975 0.975 0.9

Speckle 0 1 1 1 0.975 0.925 0.925

Speckle 1 0.775 0.9 0.625 0.7 0.925 0.9

Speckle 2 0.85 0.75 0.85 0.725 0.875 0.925

Speckle 3 0.925 0.95 0.925 0.875 0.825 0.925

Speckle 4 0.875 0.85 0.725 0.7 0.775 0.95

Speckle 5 0.9 0.925 0.85 0.825 0.675 0.925

Speckle 6 0.95 0.925 0.9 0.825 0.7 0.95

Speckle 7 0.9 0.9 0.875 0.925 0.85 0.925

Speckle 8 0.925 0.95 0.95 0.825 0.825 0.925

Speckle 9 0.9 0.9 0.875 0.775 0.825 0.95
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We observe that in presence of Gaussian noise, in almost all cases, the local,
histogram-based method performs significantly better than the one based on
the global Q-convexity measure, and also better than SLBP, both for q = 2
and q = 10. For salt & pepper noise, SLBP is the best, however, especially for
q = 10 the local method is almost as good as SLBP. We stress that SLBP
is a 256-dimensional descriptor, whereas the histogram-based one uses only
10-dimensional vectors (when q = 10). In case of Speckle noise, the global
Q-convexity measure seems to be the best choice, although in some cases, and
especially for smaller window sizes the local approach as well as SLBP ensures
comparable accuracy.

Finding the proper window size and the appropriate number of quantization
levels for a classification problem is, of course, challenging for which one can
utilize feature selection methods from the field of machine learning. However,
this topic is out of scope of the paper.

4 Conclusions

In this research we introduced a Quadrant-convexity based local shape descriptor
which uses predefined windows to create histograms. We studied three different
variants of the approach (background, all, nonzero) on two datasets and found
that the histogram based on the background points is the most suitable for clas-
sification. We conducted an illustrative experiment to compare the classification
accuracy of our proposal to SLBP and a global Quadrant-convexity descriptor.
We deduced that our descriptor can ensure comparable accuracy and, in many
cases, it outperforms the others.

Currently, we have no general strategy to choose the proper window size
for a problem, which, of course may be different from task to task. One simple
strategy in classification tasks would be to try out different window sizes on
the train set and choose the one ensuring the highest classification accuracy on
a validation set. In addition, one could also combine histograms belonging to
different window sizes to gain more informative shape descriptors.
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Abstract. Thinning is a frequently used approach to produce all kinds
of skeleton-like shape features in a topology-preserving way. It is an iter-
ative object reduction: some border points of binary objects are deleted,
and the entire process is repeated until stability is reached. In the con-
ventional implementation of thinning algorithms, we have to investigate
the deletability of all border points in each iteration step. In this paper,
we introduce the concept of k-attempt thinning (k ≥ 1). In the case of
a k-attempt algorithm, if a border point ‘survives’ at least k successive
iterations, it is ‘immortal’ (i.e., it belongs to the produced feature). We
propose a computationally efficient implementation scheme for k-attempt
thinning. It is shown that an existing parallel thinning algorithm is 5-
attempt, and the advantage of the new implementation scheme over the
conventional one is also illustrated.

Keywords: Digital topology · Skeletonization · Thinning

1 Introduction

A binary picture [8] on a grid is a mapping that assigns a color of black or white
to each grid element that is called a point . A reduction [3] transforms a binary
picture only by changing some black points to white ones, which is referred to
as deletion. Parallel reductions can delete a set of black points simultaneously,
while sequential reductions traverse the black points of a picture, and focus on
the actually visited point for possible deletion at a time [3].

For digital pictures, skeletonization means extraction of skeleton-like shape
features from digital binary objects [19]. In 2D, two kinds of features are taken
into consideration: the centerline that approximates the continuous skeleton [1],
and the topological kernel that is a minimal set of points being topologically
equivalent [8] to the original object (i.e., if we remove any further point from
it, then the topology is not preserved). In the 3D case, there are three types of
skeleton-like shape features: the centerline (that is a concise representation of
tubular and tree-like objects), the medial surface (that provides an approxima-
tion to the continuous 3D skeleton, since it can contain 2D surface patches), and
the topological kernel (that is useful in representing or checking the topological
structure of the object to be described).

c© Springer Nature Switzerland AG 2020
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Thinning [3,10,20] is a skeletonization method: border points of binary
objects that satisfy certain topological and geometric constraints are deleted
in iteration steps. The entire process is then repeated until stability is reached.
Thinning is the fastest skeletonization technique, preserve the topology [6,8],
and can produce all kinds of skeleton-like shape features in 2D [13] and 3D [14].
One may think that thinning is an obsolete approach, but it remains a frequently
used skeletonization method in numerous applications, see for example [5,12].

In the conventional implementation of thinning, deletability of all border
points are to be investigated in each iteration step. It is a time-consuming process
for objects that contain also ‘thinner’ and ‘thicker’ parts (or images with ‘thinner’
and ‘thicker’ objects), since some elements in the produced features are formed
within ‘a few’ iterations, but the iterative object reduction is to be continued
until stability is reached. That is why we have investigated the fixpoints (i.e.,
survival points whose rechecking is not needed in the remaining iterations) of
some special iterated reductions [15,16].

In this paper, we propose another way to speed up the process by introducing
the notion of k-attempt thinning (k ≥ 1). In a k-attempt algorithm, if a border
point is not deleted in at least k successive iterations, it cannot be deleted later
(i.e., it belongs to the produced feature). We give a computationally efficient
implementation scheme for k-attempt thinning, and it is shown that the parallel
thinning algorithm proposed by Eckhardt and Maderlechner [2] is 5-attempt.
Lastly the advantage of the new implementation scheme over the conventional
one is instantiated.

2 Basic Notions and k-Attempt Thinning

Next, we apply the fundamental concepts of digital topology as reviewed by Kong
and Rosenfeld [8]. Despite the fact that there are other approaches based on
cellular/cubical complexes [9] or polytopal complexes [7], here we shall consider
the ‘conventional paradigm’ of digital topology.

An (m,n) (binary digital) picture on a grid V is a quadruple (V,m, n,B)
[8], where B ⊆ V denotes the set of black points; each point in V \ B is said
to be a white point ; adjacency relations m and n are assigned to B and V \ B,
respectively. In order to avoid connectivity paradoxes, it is generally assumed
that m �= n [8,11]. Since all studied relations are reflexive and symmetric, their
transitive closure form equivalence relations, and their equivalence classes are
called components. A black component or an object is an m-component of B,
while a white component is a n-component of V \ B.

For practical purposes, we assume that all pictures are finite (i.e. they contain
finitely many black points). In a finite picture there is a unique infinite white
component, which is called the background . A finite white component is said to
be a cavity . A cavity is isolated if it is formed by just one (white) point.

A point p ∈ B is an interior point if all further points being n-adjacent to
p are in B. A black point is a border point if it is not an interior point. Let δB
denote the set of all border points in B.
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Since the thinning algorithm taken into consideration in Sect. 4 acts on (8, 4)
pictures on the (2D) regular square grid S, 8- and 4-adjacency relations are given
by Fig. 1.

Fig. 1. The adjacency relations studied on the square grid S. The four points N , E,
S, and W are 4-adjacent to the central point p, and they are its 4-neighbors. The
4-neighbors and the four points marked ‘•’ are 8-adjacent to p, and they are its 8-
neighbors. Note that two points (i.e., square) are 4-adjacent if they share an edge,
and they are 8-adjacent if they share an edge or a vertex. The two opposite pairs of
4-neighbors of p are (N,S) and (E,W ).

A reduction [4] transforms a binary picture only by changing some black
points to white ones, which is referred to as deletion. Hence, if a reduction
with deletion rule R : 2V → 2V transforms picture (V,m, n,B) to picture
(V,m, n,R(B)), then R(B) ⊆ B.

Let us define deletion rules of iterated reductions as follows:

Rj(B) =
{

B if j = 0
R(Rj−1(B)) if j ≥ 1 .

We are now ready to define the main concept of this work:

Definition 1. Let R be the deletion rule of a thinning algorithm (i.e., iterated
reduction). This algorithm is k-attempt (k ≥ 1) if k is the smallest number such
that for any set of black points B and p ∈ δB, p ∈ Rk(B), implies p ∈ Rk+1(B).

In other words, if a border point ‘survives’ at least k successive iterations of
a k-attempt thinning algorithm, it is ‘immortal’ (i.e., it is an element of the final
result).

3 Implementations for Thinning Algorithms

Palágyi proposed a general and computationally efficient implementation scheme
for arbitrary sequential and parallel thinning algorithms [17,18]. This method
utilizes that only border points in the current picture are to be examined in
each iteration (i.e., we do not have to evaluate the deletion rules for interior
points). It uses a list for storing the border points in the current picture, thus
the repeated scans/traverses of the entire array (that stores the actual picture)
are avoided. The pseudocode of collecting border points in the input picture (i.e.,
the initialization step of the thinning process) is described by Algorithm 1.
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Algorithm 1. Collecting border points
1 Input: array A storing the picture to be thinned
2 Output: list border list storing the border points in that picture
3 border list ← < empty list >
4 foreach element p in array A do
5 if A[p] = 1 and p is a border point then
6 border list ← border list + < p >
7 A[p] ← 2

In input array A, the value ‘1’ corresponds to black points in the picture
to be thinned, and the value ‘0’ is assigned to white ones. In order to avoid
storing more than one copy of a border point in border list, a three-color picture
is assumed in which the value ‘2’ corresponds to border points to be checked in
the forthcoming (1st) iteration.

Algorithm 2 describes one iteration of arbitrary parallel thinning algorithm.

Algorithm 2. ‘Conventional’ parallel thinning iteration
1 Input: array A storing the (input or interim) (m,n) picture and
2 list border list storing the border points in that picture
3 Output: array A containing the result of the parallel reduction and
4 the updated border list
5 // collecting deletable points

6 deletable list ← < empty list >
7 foreach point p in border list do
8 if p is ‘deletable’ then
9 border list ← border list − < p >

10 deletable list ← deletable list + < p >

11 foreach point p in deletable list do
12 // deletion

13 A[p] ← 0
14 // updating the list of border points

15 foreach point q being n-adjacent to p do
16 if A[q] = 1 then
17 A[q] ← 2
18 border list ← border list + < q >

It is used a second list for storing the ‘deletable’ points of the current iteration
by Algorithm 2. Note that both the input and the output pictures of an iteration
can be stored in a single array, and the evaluation and the deletion phases are
separated: first all ‘deletable’ points are added to the deletable list, then they
are deleted and border list is updated accordingly.
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If a border point is deleted, all interior points that are n-adjacent to it become
border points. These brand new border points of the resulted picture are added
to the border list .

The thinning process terminates when no more points can be deleted (i.e.,
stability is reached). When it is completed, all points having a nonzero value in
array A belong to the produced skeleton-like feature.

Note that one iteration of sequential thinning algorithms can be implemented
accordingly. In the sequential case, we do not need to use the second list (i.e.,
deletable list).

Algorithm 3 describes one iteration of k-attempt parallel thinning. Note that
one iteration of sequential k-attempt thinning can be implemented accordingly.

Algorithm 3. k-attempt parallel thinning iteration
1 Input: array A storing the (input or interim) (m,n) picture,
2 number of attempts k, and
3 list border list storing the border points in that picture
4 Output: array A containing the result of the parallel reduction and
5 the updated border list
6 deletable list ← < empty list >
7 foreach point p in border list do
8 if p is ‘deletable’ then
9 // deletable point found

10 border list ← border list − < p >
11 deletable list ← deletable list + < p >

12 else
13 if A[p] = k + 2 then
14 // ‘safe’ point found

15 border list ← border list − < p >

16 else
17 // to be evaluated next time

18 A[p] ← A[p] + 1

19 foreach point p in deletable list do
20 // deletion

21 A[p] ← 0
22 // updating the list of border points

23 foreach point q being n-adjacent to p do
24 if A[q] = 1 then
25 A[q] ← 2
26 border list ← border list + < q >

Similarly to Algorithm 2, Algorithm 3 uses two lists, border list for storing the
potentially deletable border points and deletable list for storing the ‘deletable’
points of the current iteration. It concerns (k + 3)-color pictures in which value
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‘0’ corresponds to white points, value ‘1’ is assigned to interior (black) points,
values ‘2’, . . ., ‘k + 1’ correspond to potentially deletable border (black) points,
and value ‘k + 2’ is assigned to border points that cannot be deleted in the
remaining iteration steps.

The significant difference between Algorithm 2 and Algorithm 3 is illustrated
in Fig. 2.

white
(0)

border
(2)

interior
(1) .

.

.

white
(0)

border
(2)

interior
(1)

border
(3)

border
(4)

border
(k+1)

border
(k+2)

Fig. 2. Transition graphs associated with the ‘conventional’ (left) and the k-attempt
(right) thinning schemes. Numbers in parentheses correspond to the values present in
array that stores the (input or interim) picture, see Algorithm 2 and Algorithm 3.

4 An Existing 5-Attempt Thinning Algorithm

In this section, we show that the parallel thinning algorithm proposed by Eck-
hardt and Maderlechner [2] called EM1993 is 5-attempt. This algorithm falls
into the category of fully parallel [3] since it uses the same parallel reduction in
each iteration, and it acts on (8, 4) pictures (on the square grid S).

The deletion rule of algorithm EM1993 is given by the set of 16 matching
templates depicted in Fig. 3. A (black) point is said to be deletable if at least
one template (in Fig. 3) matches it. Otherwise, it is called non-deletable.

Let us notice some useful properties of the deletion rule of algorithm
EM1993 and the matching templates associated with it (see Fig. 3).
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Fig. 3. The set of 16 matching templates associated with the deletion rule of algorithm
EM1993. Notations: each black position is a black point; each white element is a white
point; each (don’t care) position depicted in grey matches either a black or a white
point; p indicates the central point of a pattern; each position marked ‘�’ is an interior
point. (Note that positions marked a, b, c, d, and e help us to prove the properties of
the algorithm.)

Proposition 1. Only border points are matched by templates in Fig. 3.

Proposition 2. If a point is matched by a template in Fig. 3, it has an opposite
pair of 4-neighbors (see Fig. 1) that contains a white point and an interior point.

Proposition 3. If point p is deletable, it is not matched by the four configura-
tions depicted in Fig. 4.

Proposition 4. Matching templates Ei, Si, and Wi are rotated versions of Ni

(i = 1, 2, 3, 4), where the rotation angles are 90◦, 180◦, and 270◦.

Proposition 5. Matching templates N3, E3, S3, and W3 are reflected versions
of N2, E2, S2, and W2, respectively.
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Fig. 4. Restoring configurations assigned to Proposition 3.

Let us now introduce the concept of a set of blocker points associated with
a non-deletable point.

Definition 2. Let us assume that a black point p is non-deletable in picture
(S, 8, 4, B ∪ D), but it is deletable in picture (S, 8, 4, B), where D is a nonempty
(sub)set of deletable points in picture (S, 8, 4, B ∪D). Then D is called a blocker
set associated with p.

By Propositions 1–5, the following three lemmas characterize blocker sets
associated with border points.

Lemma 1. If a deletable point is matched by template N1 (see Fig. 3) in the
current iteration, then it was not a non-deletable border point in the previous
iteration.

Proof. Let us assume that p is matched by template N1 in the current iteration,
and p was a non-deletable border point in the previous iteration. Then the
deletion of p was blocked by a set of deletable (black) points D ⊆ {a, b, c} in the
previous iteration.

The following cases are to be investigated:

– Assume that b ∈ D.
Since p was a border point in the previous iteration, b was not matched by
templates Ni and Si (i = 1, 2, 3, 4), by Proposition 2. Since a and c were
white points or border points in the previous iteration, b was not matched
by templates Ei and Wi (i = 1, 2, 3, 4), by Proposition 2. Thus b was non-
deletable in the previous iteration, and we arrive at a contradiction.

– Assume that D = {a}.
Since a was deletable and b was white in the previous iteration, d was black by
Proposition 3. Consequently, p was matched by template N3 in the previous
iteration. Since p was non-deletable, we arrive at a contradiction.

– Assume that D = {c}.
Since c was deletable and b was white in the previous iteration, e was black by
Proposition 3. Consequently, p was matched by template N2 in the previous
iteration. Since p was non-deletable, we arrive at a contradiction.

– Assume that D = {a, c}.
Since a and c were deletable and b was white in the previous iteration, d and e
were black by Proposition 3. Consequently, p was matched by template N4 in
the previous iteration. Since p was non-deletable, we arrive at a contradiction.

�	
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Lemma 2. If a deletable point p is matched by template N2 (or N3) in the
current iteration, and p was a non-deletable border point in the previous iteration,
then the only blocker set associated with p is {b} (see Fig. 3).

Proof. Let us assume that p is matched by template N2 in the current iteration,
and p was a non-deletable border point in the previous iteration. Then the
deletion of p was blocked by a set of deletable (black) points D ⊆ {a, b} in the
previous iteration.

The following cases are to be investigated:

– Assume that D = {a}.
Since a was deletable and b was white in the previous iteration, d was black by
Proposition 3. Consequently, p was matched by template N4 in the previous
iteration. Since p was non-deletable, we arrive at a contradiction.

– Assume that D = {a, b}.
Since p was a border point in the previous iteration, b was not matched by

templates Ni and Si (i = 1, 2, 3, 4), by Proposition 2. Since deletable point a
was a border point in the previous iteration, b was not matched by templates
Ei and Wi (i = 1, 2, 3, 4), by Proposition 2. Thus b was non-deletable, and we
arrive at a contradiction.

– Assume that D = {b}.
Since a was white in the previous iteration, b could be matched by templates
Wi (i = 1, 2, 3, 4) (if c was an interior point).

Consequently, D = {b} may be the only blocker set.
By Proposition 5, if a deletable point p is matched by template N3, D = {b}

may be the only blocker set. �	
Lemma 3. If a deletable point is matched by template N4 (see Fig. 3) in the
current iteration, then it was not a non-deletable border point in the previous
iteration.

Proof. Let us assume that p is matched by template N1 in the current iteration,
but the deletion of the border point p was blocked by the singleton subset of
deletable (black) points D = {b} in the previous iteration.

In this case p was an interior point. Since p was a border point, we arrive at
a contradiction. �	

We can summarize Lemmas 1–3 as follows:

Corollary 1. Only points matched by templates Ni, Ei, Si, and Wi, (i = 2, 3)
could be blocked in the previous iteration, and the blocker set associated with a
border point is always singleton (i.e., D = {b}, see Fig. 3).

We are now ready to state our main theorem.

Theorem 1. Thinning algorithm EM1993 is 5-attempt.
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Proof. We need to show that if a black point p is deletable in the current iteration
(i.e., the j-th thinning phase), p could be a non-deletable border point only in
the (j − 1)-th, the (j − 2)-th, the (j − 3)-th, and the (j − 4)-th iterations. In
other words, a longest chain of blocker sets can be expressed as follows:

{p} ⇐ {q} ⇐ {r} ⇐ {s} ⇐ {t} ⇐ ∅
in which the deletion of p can be blocked by set {q} in the (j − 1)-th iteration,
. . ., and the deletion of t cannot be blocked in the (j − 4)-th iteration. (Recall
that blocker sets associated with border points are singleton by Corollary 1.)

Let us construct the above mentioned chain of blocker sets.

– Without loss of generality, we can assume that p is matched by template N2

in the j-th iteration.
By Propositions 1–5 and Corollary 1, {q} could be the only blocker set asso-
ciated with p (see Fig. 5a).

– Point q was a deletable border point in the (j − 1)-th iteration, and it is
assumed that p was a (non-deletable) border point in that thinning phase.
Thus w was white (otherwise p would be an interior point), and it can be
readily seen that q could be matched only by template W2 (see Fig. 5b).
In addition, point x was white (otherwise p would be matched by template
W3 or template W4).
Let us continue to construct the chain of blocker sets. Since q could be
matched only by template W2 in the (j − 1)-th iteration, the only blocker
set associated with q could be {r} by Corollary 1 (see Fig. 5b).

– Let us deal with the blocker set {r}.
If r was a deletable (black) point in the (j − 2)-th iteration, it can be readily
seen that r could be matched by template S3 or template S4 (see Fig. 5c), or
template W2 (see Fig. 5d).
If r was matched by template S3 or template S4 (see Fig. 5c), {w} was not
the blocker set associated with r. Thus the chain of blocker sets ends.
If r was matched by template W2 in the (j − 2)-th iteration (see Fig. 5d), the
only blocker set associated with r could be {s} by Corollary 1. In this case,
point y was white (otherwise r was matched by template S3 in the (j − 3)-th
iteration (see Fig. 5d).

– Let us continue the chain of blocker sets from {s}.
If the deletion of s was blocked in the (j −4)-th iteration, s could be matched
only by template S2, and {t} was the only blocker set associated with s by
Corollary 1 (see Fig. 5e).

– Since w was white in the (j −4)-th iteration, t was not matched by templates
Wi (i = 1, 2, 3, 4). Since s was black in the (j − 4)-th iteration, t was not
matched by templates Ni (i = 1, 2, 3, 4). If t was a deletable point in the
(j − 4)-th iteration, point t was black by Proposition 3 (see Fig. 5f). Hence t
could be matched only by template E4, and the only white 8-neighbor of t
was w. Since {w} may not be the blocker set associated with t, the chain of
blocker sets ends with t.

�	
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Fig. 5. Input pictures of five iterations assigned to proof of Theorem 1.

Since longest chains of blocker sets end with black points that are 4-adjacent
to isolated cavities (see the proof of Theorem 1), we can state the followings:

Corollary 2. Thinning algorithm EM1993 is 4-attempt for pictures that are
free from isolated cavities.

5 The Advantage of the New Implementation Scheme

The ‘conventional’ implementation scheme (see Algorithm 2) and the proposed
‘advanced’ one (for k-attempt thinning, see Algorithm 3) were compared on the
5-attempt thinning algorithm EM1993 for numerous objects of different shapes.
For reasons of scope, we present the results only for six test images, see Fig. 6.
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Fig. 6. Centerlines produced by algorithm EM1993 for six test pictures. The extracted
features are superimposed on the original objects.

The advantage of the proposed ‘advanced’ implementation scheme over the
‘conventional’ one is illustrated in Table 1 for the selected six test images. Both
implementations under comparison were run on a usual PC under Linux (Fedora
30–64 bit), using a 3.30 GHz 4x Intel Core i5-2500 CPU. (Note that just the
iterative thinning process itself was considered here; reading the input image
and writing the output image were not taken into account but the processing
involved is not excessive.)

In spite of that the ‘conventional’ implementation scheme is computationally
efficient, the ‘advanced’ one speeds up the process considerably. Note that less
number of attempts involves the greater speed-up.
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Table 1. Computation times (in sec.) of thinning algorithm EM1993 for the six test
images shown in Fig. 6.

Number Number ‘conventional’ ‘5-attempt’ Speed-up
Test image Size of object of skeletal comp. time comp. time

points points C A C/A

667× 490 80 193 2 782 0.051 0.035 1.46

450× 350 117 086 5 183 0.032 0.021 1.52

1011 × 1000 154 104 4 963 0.132 0.085 1.55

290× 476 40 196 3 767 0.030 0.019 1.58

242× 616 33 856 3 139 0.024 0.014 1.71

725× 481 43 134 3 797 0.039 0.021 1.86

6 Conclusions

In this paper, we introduced the concept of k-attempt thinning. In the case of
a k-attempt algorithm, if a border point is not deleted in at least k successive
iterations, it belongs to the produced skeleton-like feature. We proposed a com-
putationally efficient implementation scheme for k-attempt thinning, show that
an existing parallel thinning algorithm is 5-attempt, and the advantage of the
proposed ‘advanced’ implementation (for k-attempt algorithms) over the ‘con-
ventional’ one is also illustrated.

Future research should be devoted to estimate the performance of the
‘advanced’ implementation, to prove that further existing thinning algorithms
are k-attempt (for some k), and to construct new (geometrically and topologi-
cally correct) 2D and 3D k-attempt thinning algorithms (for small attempts).
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Abstract. One of the most common methods for counterfeiting digital
images is copy-move forgery detection (CMFD). It implies that part of
the image is copied and pasted to another part of the same image. The
purpose of such changes is to hide certain image content, or to dupli-
cate image content. The aim of this paper is to propose a new clustering
algorithm for edited images. The image is divided into non-overlapping
blocks. New fuzzy metric is used to calculate the distance between the
blocks. In this research the metaheuristic method of the variable neigh-
bourhood search (VNS) is used for the classification of the block. The
aim of the classification is that the division should be on the changed and
unchanged blocks. The results of this research are compared with the lat-
est results from the literature dealing with this problem and it is shown
that the proposed algorithm gives better results. Publicly available image
databases were used. The proposed algorithm was implemented in the
Python programming language.

Keywords: Image processing · Clustering · Image forensics · Fuzzy
metrics · Copy-move forgery detection · VNS

1 Introduction

The methods for detecting the intentionally induced changes in the image content
can be divided into two categories: active and passive, depending on the presence
of additional information. The active methods involve the presence of additional,
retrofitted information in the content of an image, such as a watermark or a digi-
tal signature. However, the active methods mean that the additional information
is incorporated into the image when generating the image, or subsequently by
an authorized author. The passive methods, on the other hand, allow changes
to be detected in the images without the presence of additional retrofitted infor-
mation in the image. The passive methods reveal the manipulations of images
by extracting the natural characteristics of the images, as well as the charac-
teristics of the optical devices used to generate an image (noise characteristics).
These methods can be further divided into two categories: dependent and inde-
pendent. The dependent methods mean that a part of an image is copied and
c© Springer Nature Switzerland AG 2020
T. Lukić et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 273–281, 2020.
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pasted to a part within the same image or from another image. The other types
of image manipulations, such as compression, sub-selection, blurring, and the
like, are independent methods. As for the detection of the device that generated
the image, it is based on the regularities of the optical sensors of the device. [1,2]

The aim of this research is to propose a new algorithm that will give better
precision than existing methods in this field as well as a lower percentage of
“false detection”, i.e. more specifically detecting unmodified parts of an image
as well as the altered ones.

The paper is divided into several sections. Section 2 provides the methodology
used in this research. The results of the research as well as the conclusion are
given in the following Sects. 3 and 4.

2 Methodology

The proposed method is block-based method because it works on non-
overlapping blocks of an image of interest. The method is based on a fuzzy metric
that calculates the distances between blocks, and then applies the VNS to divide
those blocks into the ones where the change occurred and those unchanged.

2.1 Fuzzy Metrics

In the classical sense, the distances are most commonly defined by the functions
that were metrics, pseudo-metrics, semi-metrics and similarities, and they were
defined in the following way:

Definition 1. If X �= ∅, function d : X2 → R
+
0 to which the following charac-

teristics apply:

1. (∀x ∈ X) d(x, x) = 0,
2. (∀x, y ∈ X) d(x, y) = d(y, x),

we say that the distance, and the ordered pair (X, d) is a space with distance. If
only property 1. is valid, it is a quasi-distance. If

3. (∀x, y ∈ X) d(x, y) = 0 ⇒ x = y ,
4. (∀x, y, z ∈ X) d(x, z) � d(x, y) + d(y, z) ,

d is a metric and the ordered pair (X, d) is a metric space. If only properties 1,
2 and 4 are valid for d we say that it is a pseudo-metric. If only properties 1,
3 and 4 apply or d we say it is a quasi-metric. If 1st, 2nd and 3rd mapping are
valid d is called a semi-metric. For a semi-metric d : X2 → [0, 1] in which one
of the inequalities applies instead of an inequality of a triangle (property 4.):

4’. (∀x, y, z ∈ X) d(x, z) � T (d(x, y), d(y, z)),
4”. (∀x, y, z ∈ X) d(x, z) � S(d(x, y), d(y, z)),

(T is the t-norm, and S is the t-conorm) we say that there is a similarity.
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The fuzzy metrics have been used in a variety of applications and especially
recently to filter the color images, improving some filters when replacing the
classic metrics. Unfortunately, the use of the fuzzy metrics in the engineering
methods is severely limited, as there are only a few applications.

The fuzzy theory has become an active field of research in the last fifty years
and the concept of fuzzy metrics has evolved into two different perspectives.

In this research instead classic distance or metric we apply the class of map-
pings Mp : X2 → [0, 1] (see [5]), where X = R

+
0 :

Mp(x, y, t) =

{
p
√

xp+yp

2 + t

max{x,y}+ t , t > 0
0, t � 0

. (1)

Each of these mappings contains a parameter t whose meaning is the distance
Mp from point x to point y is one fuzzy number defined the domain of parameter
t. Especially if t is a constant then the value is distance a crisp number. If this
mapping satisfies certain characteristics (see [5]), then we say that it is a fuzzy
metric. The mapping (1), for p = 1, is fuzzy metric. For other question about
Mp is open.

2.2 Metaheuristics

The basic variable neighbourhood search (BVNS) is the most widespread variant
of the environment variable method because it provides more preconditions for
obtaining the better quality final solutions. For the basic VNS method, the basic
steps are contained in a loop in which we change the index of the environment
k, determine the random solution from that environment (function Shaking()),
perform the procedure of local search (function LocalSearch()) and check the
quality of the local minimum obtained. We repeat these steps until one of the
stopping criteria is satisfied. Each time we select an environment, k the initial
solutions are randomly generated to ensure that different regions are searched
the next time they are deployed. We distinguish the environments by the number
of transformations (distances) or by the type of transformations (metrics). The
pseudocode BVNS can be represented as follows:

Generate initial solution x
do {

k=1;
while(k <= k_max) {

x’=Shaking (x, k);
x’’=LocalSearch (x’);
if(f(x’’) < f(x)) {

x=x’’;
k=1;

}
else

k=k+1;
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}
} while(!STOP);

The reduced variable neighbourhood search method does not contain a local
search phase. It is method based solely on staging, which consists in system-
atically changing the environment and selecting one random solution in each
environment. The decision-making steps are based on that one random solution.
Its advantage is the speed of the execution as it avoids a detailed search, often
of extremely large environments. This method is useful the for large-scale exam-
ples or for obtaining the quality initial solutions for another variant of the VNS
method. Written in the pseudocode RVNS takes the following form:

Generate initial solution x
x_optimal = x;
f_optimal = f(x);
do{

k=1;
do{

x’=Shaking (x, k);
if(f(x’)<f(x_optimal)){

x_optimal=x’;
f(x_optimal)=f(x’);
k=1;

}
else

k=k+1;
}while(k!=kmax);

}while(!STOP);

The usual stop criterion (STOP) is the maximum number of iterations
between the two enhancements [6].

3 Results

We used metaheuristics, namely the VNS (BVNS and RVNS) method, which is
based on the fuzzy metric proposed in the section above. The size of the blocks,
as far as the algorithm is concerned, can be resized, and we worked at 8 × 8 and
16×16 pixels. We clustered into two groups and investigate the validity and the
quality of the clustering using false positive FP (False Positive) and false negative
FN (False Negative) detected blocks. When we load an image in the RGB format
then we divide it into non-overlapping blocks, squared shapes, fixed dimensions,
n × n, where n is 8 or 16. The block division is usually done to reduce the
computing time and the complexity required for the pixel matching process that
is, blocks. For testing purposes, all the images are 256×256 resolution, which does
not affect the generality of the method, but allows for greater transparency of the
method. The method can be applied to the images of the arbitrary resolution,
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say 2n × 2n. Given the resolution of 256 × 256, each image is divided into 128
dimensions 16 × 16 or 256 dimensions 8 × 8. The fuzzy distance from (1) is
then calculated and for p = 1 and p = 2. The distances are sorted and VNS is
applied. The RVNS and BVNS applied to the image block clustering problem
are implemented as follows [6]. First, the distances between the blocks were
calculated using the formula in (1). In the preprocessing stage, the types of
the distance matrices are sorted in descending order. Those data were used
to deploy the deployment operators more efficiently. Namely, as each solution is
characterized by a set of centroids, the deployment operator consists in replacing
the corresponding number of centroids. More specifically, a k-environment in k
means that the centroids (block) are replaced by the randomly selected non-
centroid objects. They are mostly k places a change. Each step considers the
replacement of all the centroids, with no replacement occurring if the randomly
selected object is closest to that centroid (in fact, it is the centroid itself). The
local search consists of systematically replacing one centroid with a non-centroid
object. It starts from the solution obtained by rolling and is executed on the
principle of best improvement as long as there are improvements [3].

The performance of the proposed methods is most often measured in terms
of precision and recall. The precision indicates the probability that the blocks
which have been changed, have really been detected. The revocation indicates
the probability (possibility) of detecting altered blocks in an image. The true
positive (TP) is the number of blocks that have been modified, which have been
classified as modified. The false positive (FP) represents the number of original
(authentic) blocks that have been classified as modified, while the false negative
(FN) represents the number of blocks that have been modified but classified as
original (authentic):

Precision = TP/(TP + FP) (2)

Revocation = TP/(TP + FN) (3)

Specifically, the precision is calculated as the quotient of the number of mod-
ified blocks that are classified as modified, and sums the number of blocks of
modified blocks that are classified as the modified and the number of original
blocks that are classified as modified. On the other hand, the recall is calculated
as a quotient of the number of the modified blocks that are classified as modified,
and sums the number of the modified blocks that are classified as modified and
the number of modified blocks that are classified as original.

The publicly available Image Manipulation Dataset database was used. The
Image Manipulation Dataset image database consists of 48 images1. In the paper,
nine images are shown from that base. The reason of that is the comparison
with the results of the other researchers. The resolution of the tested image
is 256 × 256. The images were modified so that a portion of the image was
copied and pasted to another part of the same image (copy move). The parts
of the image being copied can be geometrically transformed before applying,
applying rotation and scaling. The copied parts can also be of different sizes

1 https://www5.cs.fau.de/research/data/image-manipulation/.

https://www5.cs.fau.de/research/data/image-manipulation/
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(small, medium or large). This chapter presents the results for a single image
from a publicly available database that other authors have used. In each image
from that database, one or more regions are copied. Also, the size of the copied
regions varies from image to image. The original and modified image is shown
below.

Fig. 1. Images tested I, II, III, IV, V, VI, VII, VIII, IX.

The success of the proposed method is shown in Table 1 in comparison with
the results obtained in [4] for the blocks of dimensions 8 × 8. Table 2 shows the
results obtained for the same set of images, only for the blocks of dimensions
16 × 16.
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The tables above show the success of the proposed algorithm with respect
to the results achieved by others [4]. The superiority of our method, when it
comes to precision and revocation, is shown in almost all images. One can see
the movement of precision and revocation when changing p over the proposed
distance as well as dividing the image into blocks of different dimensions.

4 Conclusion

This paper describes the possibility of clustering images into different areas based
on the fuzzy metrics and metaheuristics. The results that are better than those
of the other authors who have dealt with the same problem in their research,
show the success of the proposed method.

The future research should consider using some image-related parameters to
reduce the computing speed. Attention should also be paid to examining the
success of the method under varying degrees of JPEG compression as well as in
detecting the other types of change in images.
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