
Mutation Testing of Smart
Contracts at Scale

Pieter Hartel1,2(B) and Richard Schumi3

1 Singapore University of Technology and Design, Singapore, Singapore
2 Delft University of Technology, Delft, The Netherlands

pieter.hartel@tudelft.nl
3 Singapore Management University, Singapore, Singapore

rschumi@smu.edu.sg

Abstract. It is crucial that smart contracts are tested thoroughly due to
their immutable nature. Even small bugs in smart contracts can lead to
huge monetary losses. However, testing is not enough; it is also important
to ensure the quality and completeness of the tests. There are already
several approaches that tackle this challenge with mutation testing, but
their effectiveness is questionable since they only considered small con-
tract samples. Hence, we evaluate the quality of smart contract mutation
testing at scale. We choose the most promising of the existing (smart con-
tract specific) mutation operators, analyse their effectiveness in terms of
killability and highlight severe vulnerabilities that can be injected with
the mutations. Moreover, we improve the existing mutation methods by
introducing a novel killing condition that is able to detect a deviation
in the gas consumption, i.e., in the monetary value that is required to
perform transactions.

Keywords: Mutation testing · Ethereum · Smart contracts · Solidity ·
Gas limit as a killing criterion · Vulnerability injection · Modifier issues

1 Introduction

Smart contracts are programs designed to express business logic for managing the
data or assets on a blockchain system. Although smart contracts already exist for
some years, they still suffer from security vulnerabilities, which can lead to huge
monetary losses [2]. Hence, it is crucial to make sure that smart contracts do
not contain such vulnerabilities. The most important method for finding both
vulnerabilities and semantic errors is testing. Testing smart contracts is even
more essential than testing regular programs, since their source is often publicly
available, which makes them an easy target, and updating them is cumbersome
due to their immutable nature. Moreover, it is critical to ensure the quality of
the tests. There are a few quality metrics, like code coverage, i.e., the percentage
of the source code that is executed by a test, but code coverage is not able to
measure the error detection capability of tests and it is rarely a good indicator

c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 23–42, 2020.
https://doi.org/10.1007/978-3-030-50995-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_2&domain=pdf
http://orcid.org/0000-0002-0411-0421
http://orcid.org/0000-0002-9278-162X
https://doi.org/10.1007/978-3-030-50995-8_2


24 P. Hartel and R. Schumi

for the number of faults in a software [28]. A technique that can perform such
measurements is mutation testing, which injects faults into a program to check
if the tests can detect these faults. A program with an injected fault is called a
mutant, and detcting a fault is called killing the mutant.

There have already been a number of publication that showed mutation
approaches for Solidity1 smart contracts [1,3,4,6,8,12,25,29,30,32]. Solidity is
a JavaScript like language2 with several special features to interact with the
underlying Ethereum blockchain. The blockchain stores code and data, and it
is managed by the owners of the Ethereum peer-to-peer network. Many of the
related mutation testing approaches introduced interesting smart contract spe-
cific mutations, but they only performed small evaluations with a few contracts.
We selected the most promising mutation operators of the related work, gen-
eralized them, and performed a large scale evaluation with about a thousand
contracts for a meaningful quality assessment of the operators. There is no gen-
erally accepted benchmark of smart contracts. Hence we use replay tests down-
loaded from Truffle-tests-for-free [10] that are automatically produced from his-
toric transaction data on the blockchain. The achieved mutation score can serve
as a baseline for testing other, more sophisticated testing methods.

We are particularly interested in smart contract specific mutations that sim-
ulate common mistakes made by smart contract developers. An example is a
forgotten or wrong function modifier [12]. A modifier can express conditions that
have to be fulfilled for the execution of a function, e.g., that the caller of the
function is the owner of the contract. Since modifiers are often concerned with
access control, omitting a modifier can have catastrophic effects. For example
management functions of a smart contract can become publicly available.

Another smart contract specific aspect is the gas consumption of transactions.
Everything on Ethereum costs some units of gas [31]. For example, executing
an ADD bytecode costs 3 gas. Storing a byte costs 4 or 68 gas, depending on the
value of the byte (zero or non-zero). The price of gas in Ether varies widely3,
and the market determines the exchange rate of Ether. The cost of a transaction
can be anything from less than a cent to several US$. Executing smart contracts
is therefore not just a matter of executing the code with the right semantics
but also of cost control. Therefore, all transactions have a gas limit to make
sure that the cost is managed. Executing smart contracts with a gas limit is
comparable to executing code on a real time system with a deadline [19]. This
opens up new possibilities for killing mutants, over and above the standard killing
conditions. Similar to detecting mutants on real-time systems with a different
timing behaviour, we measure the gas consumption of tested transactions to
find deviations to reference executions of these transactions. This allows us to
kill mutants that consume a significantly greater amount of gas.

1 Solidity documentation https://solidity.readthedocs.io.
2 On the differences between Solidity and Javascript https://vomtom.at/whats-the-

difference-between-javascript-solidity-and-ethereum.
3 Gas price tracking https://etherscan.io/chart/gasprice.

https://solidity.readthedocs.io
https://vomtom.at/whats-the-difference-between-javascript-solidity-and-ethereum
https://vomtom.at/whats-the-difference-between-javascript-solidity-and-ethereum
https://etherscan.io/chart/gasprice


Mutation Testing of Smart Contracts at Scale 25

Our major contributions are: (1) We propose a set of mutation operators on
the basis of related work and evaluate these operators at scale. (2) To further
improve the mutation score, we introduce a novel killing condition based gas
limits for smart contract transactions.

2 Background

Mutation testing [15,23,24] is an evaluation technique for assessing the quality of
a set of test cases (i.e., a test suite). It works by introducing faults into a system
via source code mutation and by analysing the ability of the test suite to detect
these faults. The idea is that the mutation should simulate common mistakes
by developers. Hence, when a test suite is able to find such artificial faults, it
should also find real faults that can occur through programming mistakes.

Developers are likely to make mistakes with standard language features, but
because Ethereum is relatively young, they are more likely to confuse Solidity
specific features. For example, Solidity offers two different types of assertions:
require(.) is used to check external consistency, and assert(.) is used to check
internal consistency. Both terminate the contract but with a different status.

Developers also have trouble with the qualifiers that Solidity offers, for exam-
ple external is for functions that can be called from other contracts and via
transactions, but not internally, and public is for functions that can either be
called internally or via transactions.

Finally, the addresses of contracts and externally owned accounts play such
an important role in smart contracts that there are several ways of specify-
ing addresses that may confuse the developer. For example msg.sender is the
address of the sender of a message, and tx.origin is the address of the exter-
nally owned account that sent a transaction. They are the same for a short call
chain but not for a longer call chain.

Mutation testing is an old technique, but it has still open challenges, like the
equivalent mutant problem, which occurs when a mutation does not change the
original program, e.g., when a fault is injected in dead code. There are methods
to detect equivalent mutants [9,11,21,22], but it is still not possible to remove
all equivalent mutants. Hence, this limits the usability of mutation testing, since
a high manual effort is required to identify equivalent mutants.

There are 11 related papers that propose mutation testing operators for Solid-
ity. The number of introduced mutation operators in these publications varies
widely, since it is up to the tester to choose the scope or specificity of the oper-
ators. Some authors prefer to introduce a specific operator for every singular
change, others choose to group together similar changes into one operator, which
is more common and was also done by us.

Bond4 implements just one mutation operator from the Mothra set and does
not provide an evaluation. Burgrara [3] does not mutate Solidity, but manu-
ally mutates lower level EVM code, ABI encodings and public key operations.
4 There is no paper available on eth-mutants, but there is a GitHub page https://

github.com/federicobond/eth-mutants.

https://github.com/federicobond/eth-mutants
https://github.com/federicobond/eth-mutants


26 P. Hartel and R. Schumi

Chapman [4] proposes 61 mutation operators for Solidity and evaluates them
on a set of six DApps. Fu et al. [6] propose mutation testing for the implemen-
tation of the Ethereum Virtual Machine (EVM), but not for smart contracts.
Groce et al. [8] describe a generic mutation tool with a set of specific operators
for Solidity, but without an evaluation. Peng et al. [25] describe five mutation
operators and evaluate them on a set of 51 smart contracts. Wang et al. [30]
use some unspecified mutations from the Mothra set to study test coverage.
Wang et al. [29] do not mutate Solidity but transactions sequences.

Three papers are closely related to ours and served us as a basis for our
mutation operators: Andesta et al. [1] propose 57 mutation operators for Solid-
ity and evaluate them by investigating how the mutation operators are able to
recreate known attacks, such as the DAO attack [18]. The authors do not pro-
vide mutation scores, and they only evaluate to what extent they can reproduce
known vulnerabilities in a few contracts. Hence, they show no evaluation for
most of their operators. Honig et al. [12] describe two Solidity specific operators
and adopt four existing operators. They evaluate the operators on two popular
DApps that have extensive test suites with high code coverage. These test suites
allow them to achieve high mutation scores, but the scope of their mutations
is limited. Wu et al. [32] propose 15 Solidity specific operators, which were also
supported by their tool called MuSC5, and tested the operators on four DApps.
They evaluate their approach by comparing the effectiveness of a test suite that
was optimised based on the mutation score to one that was optimised based on
code coverage. Moreover, they point out vulnerabilities that can be simulated
with their operators. In contrast to our work, they have fewer operators concern-
ing access control and hence they cannot reproduce some severe vulnerabilities
regarding unauthorized access. There are other smart contract languages, like
Vyper6, Pact7, Simplicity [20], which would require their own mutation opera-
tors. In principle, our novel killing condition would also work for these languages,
but we focus on Solidity since it is the most popular smart contract language.

With our generalised mutation operators we are able to inject nearly all the
changes from related work, with a few minor exceptions. For example, we do not
mutate data types because it causes too many compilation errors. The evaluation
of related work is limited to just a few DApps, and the results vary. The research
question that follows from the analysis above is: How efficient are the standard
mutation operators as compared to Solidity specific operators?

To break this question down into its more manageable sub questions we
present a case study in mutation testing of a sample smart contract first, and
then list the sub questions.

5 There was a tool demo at ASE 2019 without a paper, but there is a GitHub page
https://github.com/belikout/MuSC-Tool-Demo-repo.

6 Vyper language documentation https://vyper.readthedocs.io.
7 Pact white paper https://www.kadena.io/kadena-pactwhitepaper.

https://github.com/belikout/MuSC-Tool-Demo-repo
https://vyper.readthedocs.io
https://www.kadena.io/kadena-pactwhitepaper


Mutation Testing of Smart Contracts at Scale 27

2.1 A Case Study in Mutation: Vitaluck

As a case study we use a lottery contract called Vitaluck [5]. The source of the
contract can be browsed on Etherscan8. The contract contains a main method
called Play and a number of management methods; Play contains the core of
the business logic of the lottery. Each call to Play draws a random number in
the range 1 to 1000 using the time stamp of the current block as a source of
entropy. If the random number is greater than 900, the player wins the jackpot,
and a percentage of each bet is paid to the owner of the contract.

Vitaluck is a relatively short contract (139 lines of source code excluding
comments). It has not been used extensively; there are only 27 historic trans-
actions that can also be browsed on Etherscan. The first transaction deploys
the contract, and the remaining historic transactions are all calls to the Play
method. None of management methods of the contract are ever called by the
historic transactions on the blockchain. However, the Play method occupies the
majority of the code and provides ample opportunities for using standard and
Solidity specific operators. We give a number of examples of mutations below.

Each example is labelled with the mutation operator and a brief description
of the operator. We indicate common known vulnerabilities, as described in
the smart contract weakness classification (SWC) registry [27], which can be
simulated with the mutation operators. Table 1 summarises the operators.

LR I - Literal Integer replacement Since Vitaluck is a lottery, any mutation
to the code that manages the jackpot has a high likelihood of causing a fault in
the contract. The first sample mutation (line 149) changes 900 to 1 This is shown
below, using an output format inspired by the Unix diff command. The range
of finalRandomNumber is 1 to 1000. If the condition in the if statement is true,
the jackpot will be paid out, which in the original code happens on average 10%
(1–900/1000=0.1) of the time. After the mutation, the jackpot will be paid out
99.9% (1−1/1000=0.999) of the time, which completely breaks the contract.
< if(_finalRandomNumber >= 900) {

> if(_finalRandomNumber >= 1 ) {

To determine if a replay test kills a mutant, we compare the output of the
original contract to the output of the mutant. The output of a contract consists
of the status and the emitted events of the transactions, and the outputs of the
pure functions called by the test. The mutant above does not affect the status of
any of the transactions of the test (they all succeed), but it does cause the event
NewPlay(address player, uint number, bool won); to be emitted 17 times
more with won=true than the original contract. Similarly, the mutant causes
the pure function GetWinningAddress() to return a different address than the
original contract. Both these differences are easy to detect from the output of
the replay test, thus supporting the conclusion that this particular mutant is
killed. For the remaining examples, we will not discuss the outputs.

MORD* - Modifier Replacement or Deletion The sample mutation below (line
257) deletes the modifier onlyCeo from the method that installs the address of a

8 Vitaluck on Etherscan https://etherscan.io/address/0xef7c7254c290df3d1671823
56255cdfd8d3b400b.

https://etherscan.io/address/0xef7c7254c290df3d167182356255cdfd8d3b400b
https://etherscan.io/address/0xef7c7254c290df3d167182356255cdfd8d3b400b


28 P. Hartel and R. Schumi

new CEO. This allows anyone to set the payout address to his own, rather than
just the CEO. This behaviour also corresponds to the vulnerability SWC-105,
which can occur when the access control for functions is insufficient. The oper-
ator can further cause vulnerabilities, like the SWC-106 Unprotected SELFDE-
STRUCT Instruction, or SWC-123 Requirement Violation. Note that adequate
tests for such faults would try to call these functions with unauthorized users in
order to check if the expected error message occurs.
< function modifyCeo(address _newCeo) public onlyCeo {

> function modifyCeo(address _newCeo) public {

BOR - Boolean Operator Replacement The last sample mutation (line 93)
replaces the Boolean operator = in the second statement of the function Play.
< if(totalTickets = 0) { ... return; }

> if(totalTickets != 0) { ... return; }

Most smart contracts use the constructor to initialise the state of the con-
tract. For some unknown reason, Vitaluck does not have a constructor. Instead,
the contract relies on the first call to Play to initialise the state, including the
jackpot. This is poor coding style, and it may be a security problem too. The
mutant above allows us to discover the problem as follows. The first Play trans-
action executes the then branch, for which it needs 62347 gas out of a gas limit
of 93520. However, the mutant skips the then branch and executes the rest of
the Play method. This takes 272097 gas, which is about 3 times the gas limit.
This suggests that using the gas limit to kill mutants might be of interest.

2.2 Sub Questions

Based on the Vitaluck case study we formulate subsidiary research questions.

Discarding Stillborn Mutants. We created a simple tool (ContractMut) that
makes maximum use of existing state-of-the-art tools, such as the Truffle frame-
work9 and the Solidity compiler. In particular, the tool relies heavily on the
Solidity compiler to read the source file and to generate the abstract syntax
tree (AST). It would also be possible to mutate at the bytecode-level, but this
would make it more difficult to understand what a mutant is doing. The AST
approach has the advantages that the amount of bespoke tooling to be built
is limited. The disadvantage is that the compiler has more information than it
exposes via the AST. Our mutation tool does not have semantic information
about the original code or the mutant as it works on the AST generated by
the Solidity compiler. This means that some mutants are generated that do not
compile. For example, when replacing * by - in an expression such as 1 * 9 /
10000000000000000000, an error occurs because a rational constant cannot be
subtracted from an integer. This raises the sub question: To what extent does
the tool generate stillborn mutants?

Discarding Duplicate and Equivalent Mutants. Duplicate and equivalent
mutants distort the mutation score. The next sub question is therefore: How to
detect duplicate and equivalent mutants?
9 Truffle framework documentation https://www.trufflesuite.com.

https://www.trufflesuite.com


Mutation Testing of Smart Contracts at Scale 29

Mutation Score. The purpose of generating mutants is to assess the quality of a
test. If too few mutants are killed by a test, the usual course of action is to develop
more tests, which is labour-intensive. However, for a smart contract like Vitaluck
that has already been deployed on the blockchain, all historic transactions are
available and can be decompiled into a test. A test then consists of replaying the
sequence of historic transactions. We can control the size of the test by varying
the number of transactions executed by the mutant. As the size of the test
increases, we expect the mutation score to increase. Unfortunately, most historic
transactions execute the same method calls, so the increase in mutation score
should tail off rapidly. The sub question then is: What is the relation between
the mutation score and the length of the test?

Efficiency of the Mutation Operators. We follow the competent program-
mer hypothesis [34] by mutating a subtle variant of a program fragment that
could have been created by mistake. The sub question is: What is the relative
success of standard mutation operators as compared Solidity specific operators?

Using Outputs in a Mutant Killing Condition. To determine whether a
mutant is killed, a test compares the output of the original to the output of the
mutant and kills the mutant if there are difference. The next sub question is:
Which observable outputs can be used in the killing condition?

Using Gas in a Mutant Killing Condition. A tight limit on the amount of
gas reduces the risk of having to pay too much for a transaction. However, if the
limit is too tight, some method calls may fail unexpectedly. Deciding on the gas
limit is therefore a non-trivial problem. This raises the following sub question:
To what extent is killing mutants based on exceeding the gas limit efficient?

Table 1. Mutation operators for Solidity programs. Operators marked with an asterisk
are Solidity specific.

Mothra operator Our operator Description SWC ID

AOR/LCE/ROR AOR Assignment Operator Replacement 129

AOR/LCR/ROR BOR Binary Operator Replacement 129

SDL ESD Expression Statement Deletion

SVR ITSCR Identifier with same Type, Scope, and Constancy

Replacement

105,106

RSR JSRD Jump Statement Replacement/Deletion

- LR A* Literal Address Replacement 115

CRP/CSR/SCR/SRC LR {B,I,S} Boolean, Int, String Replacement

- MORD* Modifier Replacement/Deletion 105,106,123

- QRD* Qualifier for storage local or state mutability

Replacement/Deletion

100,108

- RAR* R-Value Address Replacement 115

AOR/LCR/ROR UORD Unary Operator Replacement/Deletion 129

SVR VDTSCS Variable Declaration with same Type Scope and

Constancy Swap



30 P. Hartel and R. Schumi

3 Method

We describe an experiment in mutation testing of smart contracts on Ethereum.
The experiments have been conducted on a uniform random sample of 1,120
smart contracts with tests from Truffle-tests-for-free that can also be down-
loaded from the replication package of this paper. We removed 157 contracts
from the set because either they were non-deterministic or they did not have a
test with 50 transactions. These 963 contracts are representative for the entire
collection of 50,000+ verified smart contracts on Etherscan [10], and the sample
is relatively large [24]. The tests are replay tests and relatively short, with an
average bytecode coverage of 51.4% [10]. Our results are therefore a baseline.

A test for a contract begins by compiling and re-deploying the contract on a
pristine blockchain. We use the Truffle framework for this with the exact same
time stamps and transaction parameters as the historic deployment on the public
Ethereum blockchain. All mainnet addresses are replaced by testnet addresses
and all externally owned accounts have a generous balance. After re-deployment,
the first 50 historic transactions are re-played, also with the historic time stamps
and transaction parameters [10]. After each transaction all pure methods of a
contract are called, with fuzzed parameters. This is intended to simulate any
actions by a Distributed Application (DApp) built on top of the contract.

To detect whether a mutant is killed, we compare the outputs of a trans-
action generated by the original contract to the outputs of the corresponding
transaction generated by the mutant contract. We compare only observable out-
puts of a transaction, which means that we consider only strong mutants that
propagate faults to the outputs.

Discarding Stillborn Mutants. ContractMut uses the Solidity compiler to
compile all the mutants it generates. If the compilation fails, the mutant is
discarded. Smart contracts are usually relatively small, hence the time wasted
on failed compilations is limited.

Discarding Duplicate and Equivalent Mutants. ContractMut implements
the trivially equivalent mutant detection method [17] to discarded duplicate and
equivalent mutants. Each new mutant is compiled and the bytecode of the new
mutant is compared to the bytecode of the original and the bytecode of all
previously generated mutants. If there is a match, the new mutant is discarded.

Mutation Score. Since the tests are machine generated, they are consistent
in the sense that all sample contracts are tested by making 50 transactions.
The advantage of using machine-generated tests is that this scales well to large
numbers of contracts. The disadvantage is that the tests are not necessarily
representative for handcrafted tests. For example, the bytecode coverage of the
tests varies considerably, from 6% to 98% [10].

Efficiency of the Mutation Operators. ContractMut implements the core
of the Mothra set [16], which is considered the minimum standard for mutation
testing [24], as well as the essence of recently proposed Solidity specific operators.
Table 1 lists the operators in alphabetical order. The first column of the table
indicates the correspondence with the Mothra operators, and operators marked
with an asterisk are Solidity specific. The next two columns give the name of the



Mutation Testing of Smart Contracts at Scale 31

operator, and a description. The last column shows the relation of the operators
to known vulnerabilities based on the smart contract weakness classification
(SWC) registry [27].

We have implemented 84.8% of all 191 mutation operators from related work
as a manageable set of 14 operators. We have not implemented object oriented
operators (5.2%), and leave this for future work. Signed integers are rare in con-
tracts; hence we have not implemented related operators (1.6%). We did not
insert mutations at random locations in the code (6.8%), or type level muta-
tions (1.0%), because these would generate mostly stillborn mutants. Our BOR
operator covers 30.4% of the operators from related work, followed by QRD
(18.3%), and ITSCR (11.0%). The replication package of this paper provides a
table (comparison.xslx) mapping the operators from related work onto ours.

Mutants are created as follows. Each node in the AST represents a program
fragment that could in principle be mutated. Therefore, all relevant AST nodes
are collected in a candidate list. This includes simple statements, literals, identi-
fiers, function parameters, and operators. Compound statements, methods, and
even entire contracts are not in the candidate list, because mutations to such
large program fragments are not consistent with the competent programmer
hypothesis. Once the candidate list has been built, the tool repeatedly selects
a mutation candidate uniformly at random from the list [33] and applies the
appropriate mutation operator from Table 1.

Table 2. Gas used by the historic transaction as a percentage of the historic gas limit
versus gas used by the replayed transaction as a percentage of the calculated gas limit.

% gas used of limit Historic Replay

(count) (%) (count) (%)

≥ 0% & < 20% 5062 11.3% 4292 12.3%

≥ 20% & < 40% 6893 15.4% 5439 15.6%

≥ 40% & < 60% 6405 14.3% 4314 12.4%

≥ 60% & < 80% 9847 21.9% 7522 21.6%

≥ 80% & < 100% 9564 21.3% 9119 26.2%

= 100% 7127 15.9% 4171 12.0%

Tx success 44898 100.0% 34857 100.0%

Tx failed 6032 16073

Total Tx 50930 50930

Minimum gas limit 21000 21000

Maximum gas limit 8000029 15279099

Mean gas limit 397212 416350

Std. deviation gas limit 1002691 1071615

Using Outputs in a Mutant Killing Condition. To determine whether a
mutant is killed the outputs of the original contract are compared to the outputs



32 P. Hartel and R. Schumi

of the mutant while executing each transaction of the test. TxEvMeth indicates a
comparison of all observable outputs of a transaction as follows. Tx compares the
transaction status (i.e., success, failure, or out of gas). Ev compares all outputs
of all events emitted by a transaction. Meth compares all outputs of all pure
methods called by the DApp simulation after each transaction. The combination
TxEvMeth is the standard mutant killing condition.

Using Gas in a Mutant Killing Condition. To assess how tight the gas limits
on historic transactions are, we have analysed the statistics of all N = 50, 930
historic transactions downloaded from Truffle-tests-for-free. Columns two and
three of Table 2 show that 15.9% of the sample use exactly the gas limit, and
11.3% use less than 20% of the gas limit. The minimum gas limit is 21,000 and the
maximum is 8,000,029, which represents a large range. The standard deviation
is also relatively large (1,002,691). Hence, there is considerable variance in how
developers estimate the limit on transactions.

There are two reasons why the gas limit is often loose. Firstly, the standard
tool estimateGas (from web3.eth) has to work out which EVM instructions a
transaction will execute. Since each instruction costs a known amount of gas [31],
the total gas cost of the transaction can then be calculated. However, for any
non-trivial transaction the exact list of EVM instructions depends on the data
in storage, and the data passed as parameters etc. This makes the estimates
unreliable. 10

Secondly, since gas costs real money, ultimately the developer has to decide on
the basis of the gas estimate what the gas limit of the transaction should be. For
example, setting the gas limit lower than the estimate reduces the risk of losing
money via gas-based attacks, but also increases the risk of failing transactions.

For every transaction of a mutant, we could have called estimateGas to
obtain an up-to-date gas estimate. However, we cannot go back to the developer
and ask him to decide whether to increase or decrease the gas limit. In general,
we do not even know who the developer might be. Therefore, we have developed
a heuristic that transfers the developers decision on the gas limit of the historic
transaction to the gas limit of the mutant transaction.

Assume that the limit as provided by a historic transaction, glh, is a hard
limit on the amount of gas that the developer is prepared to use. Then, in
principle we can use this limit to kill all mutants executing the same transaction
that exceed the limit. However, since we are replaying each historic transaction
on the Truffle framework, the amount of gas used by replaying the transaction
may be slightly different. To compensate for this, we propose to calculate the
gas limit on replaying a transaction, glr , as the maximum of the gas limit of
the historic transaction, and the scaled gas limit of the historic transaction. The
scaling applied is the ratio of gur , the gas used by the replay, and guh, the gas
used by the historic transaction:

glr = max (glh,
gur
guh

glh)

10 What are the limitations to estimateGas and when would its estimate be considerably
wrong? https://ethereum.stackexchange.com/questions/266.

https://ethereum.stackexchange.com/questions/266


Mutation Testing of Smart Contracts at Scale 33

Here glh, and guh are both obtained from historic transaction on the blockchain.
gur is obtained by replaying the historic (i.e. not mutated) transaction on the
Truffle framework, with the maximum gas limit.

With this heuristic the last sample mutant of Sect. 2 will be killed. If we had
used web3.eth.estimateGas instead of the heuristic, the mutation would not
have been killed. However, this would go against the intention of the developer,
who had anticipated that the first call of the Play method should just initialise
the contract, thus never taking a large amount of gas.

The last two columns of Table 2 show the statistics of glr calculated according
to the formula above. The distribution is similar to that of the gas used by the
historic transaction, but there is more variance. The max operation in particular
makes the limit on the gas used by the replay less tight than the gas limit on
the historic transaction. In the next section, we will investigate to what extent
glr is efficient as a killing condition. We will call this the Limit condition, and
apply it on its own, and in combination with the other two conditions.

4 Results

This section describes the results of our experiment in mutation testing of smart
contracts on Ethereum. For each smart contract with a test we tried to generate
exactly 50 non-equivalent mutants. Since each attempt requires a call to the
Solidity compiler, we set an upper limit of 1,000 on the number of attempts
to generate a mutant. For 18 smart contracts fewer than 50 trivially non-
equivalent mutants were generated, but for the remaining 98.3% of the contracts
we obtained 50 non-equivalent mutants. In total, we generated 71,314 mutants,
of which 47,870 were compilable and not trivial equivalent [17] or duplicate.
For each contract we then executed the tests against all trivially non-equivalent
mutants on the Truffle framework. We ran 47,870 × 50 = 2,393,500 transactions,
which took over a week to run on 14 Linux virtual machines (Xeon dual core,
2.4 GHZ, with 16 GB RAM).

Discarding Stillborn Mutants. Of the generated 71,314 mutants, 11,252
(15.8%) could not be compiled. As expected the QRD* operator generates the
most stillborn mutants: 63.3% of the mutants with this operator did not com-
pile. We take this as an indication that using the limited amount of semantic
information available in the Solidity AST is an acceptable approach towards
building a baseline mutation tool. The percentage of stillborn mutants can be
reduced to zero if the full power of various semantics analyses of the compiler
could be leveraged, but the cost of building such a mutation tool just to reduce a
relatively small percentage of failed compilations alone would not be justifiable.

Discarding Duplicate and Equivalent Mutants. Of the 71,314 generated
mutants, 12,192 (17.1%) were trivially equivalent to the original or a duplicate
of another mutant. The trivial equivalent detection method [17] that we used is
therefore reasonably effective, especially since often about 40–45% of the mutants
can be equivalent [9,26].



34 P. Hartel and R. Schumi

Fig. 1. Percentage of non-equivalent mutants killed as a function of the length of the
test. The error bars correspond to a confidence interval of 95%.

Mutation Score. Fig. 1 shows how the mutation score increases with the test
size. The error bars for a 95% confidence interval are small. The standard mutant
killing condition TxEvMeth has most success early on, whereas the success of
the Limit condition increases more gradually. This difference can be explained
as follows. All tests execute the constructor method in transaction 0 and one
regular method in transaction 1. A large fraction of the tests only execute these
two methods, hence most of the opportunity for killing a mutant on regular
outputs occurs during transactions 0 and 1.

Since in general size matters [13], we fixed the size of the tests to 50 trans-
actions. However, we could not fix the size of the smart contracts. To study the
influence of contract size we have calculated the rank correlation of the size of the
bytecode and the mutation score. For the combined killing condition TxEvMeth-
Limit, we found Kendall’s τ = −0.11 (p = 0.01, 2-tailed). This means that the
mutation score is not correlated with the size of the test. We also calculated
the correlation between the mutation score and the fraction of bytecodes that
was executed by the test and found the correlation to be moderate: Kendall’s
τ = 0.45 (p = 0.01, 2-tailed). The literature reports similar figures [7].

Efficiency of the Mutation Operators. Table 3 shows to what extent the
mutation operators from Table 1 have been successful. The first column gives
the name of the mutation operator. The next two columns indicate how many
mutants were not killed, and how many were killed. The fourth column gives the
total number of trivially non-equivalent mutants. The last two columns give the
percentages related to the numbers in columns two and three.



Mutation Testing of Smart Contracts at Scale 35

Table 3. Contingency table of the mutation operators against the mutation score with
the TxEvMethLimit mutant killing condition.

Mutation operator Non-equivalent mutants Percentage

Not killed Killed Total Not killed Killed

AOR 2178 1039 3217 67.7% 32.3%

BOR 3549 2245 5794 61.3% 38.7%

ESD 5246 2595 7841 66.9% 33.1%

ITSCR 7796 4085 11881 65.6% 34.4%

JSRD 1866 1090 2956 63.1% 36.9%

LR A* 46 58 104 44.2% 55.8%

LR B 973 225 1198 81.2% 18.8%

LR I 1526 1089 2615 58.4% 41.6%

LR S 158 329 487 32.4% 67.6%

MORD* 921 143 1064 86.6% 13.4%

QRD* 1041 1761 2802 37.2% 62.8%

RAR* 3002 1158 4160 72.2% 27.8%

UORD 297 189 486 61.1% 38.9%

VDTSCS 2215 1050 3265 67.8% 32.2%

Total 30814 17056 47870 64.4% 35.6%

χ2 = 1759.6, df = 13, p < 0.001

Table 4. Comparison of the effectiveness of all mutants versus the manually analysed
mutant after test bootstrapping.

Mutation operator All mutants Stratified sample

Killed Total Killed Total Equivalent Killable

Mothra 35.1% 39740 41.3% 223 3.1% 96.9%

Solidity 38.4% 8130 48.1% 27 3.7% 92.6%

Total 35.6% 47870 42.0% 250 3.2% 96.4%

χ2 = 32.2, df = 1, p < 0.001 χ2 = 8.3, df = 2, p = 0.016

Table 3 shows that of the four Solidity specific operators (marked with an
asterisk) QRD* is the most efficient when it comes to being easily killed. This is
because subtle changes to the qualifiers, such as removing the payable attribute
from a method completely breaks the contract. The standard LR S operator
is the most efficient operator overall, because strings in Solidity are typically
used for communication with the DApp built on top of a smart contract. This
means that even the smallest change to a string will be detected by compar-
ing event parameters or method results. The MORD* operator has the lowest
efficiency (13.4%), because relatively few historic transactions try to violate the
access control implemented by the modifiers. The RAR* operator also has a low
efficiency, for the same reason: few historic transactions try to exploit bugs in
address checking.



36 P. Hartel and R. Schumi

Table 5. Comparison of coverage and mutation scores with related work.

Related work Average
mutation score

Average statement
coverage

DApps or smart contracts

[12] 96.0% 99.5% Aragon OS,
Openzeppelin-Solidity

[32] 43.9% 68.9% Skincoin, SmartIdentity,
AirSwap, Cryptofin

[4] 40.3% 95.4% MetaCoin, MultiSigWallet,
Alice

This 35.5% 47.6%∗ 963 Verified smart contracts

bootstr. 96.4% DBToken, MultiSigWallet,
NumberBoard, casinoProxy,
mall

∗ Average bytecode coverage

To assess the effect of using a replay test suite on the mutation score, we
have analysed by hand all 250 mutants generated for 5 carefully selected smart
contracts. The analysis meant that for each mutant we looked at whether the
test could be extended in such a way that the output could kill the test. We
call this test bootstrapping: a method that uses the replay tests to systematically
create proper tests. Each contract took us about one day to analyse, hence we
had to limit the number of contracts to a small number like 5.

We used a stratified sampling method, taking one contract for the top 5%
contracts by mutation score, one contract from the bottom 5%, and one contract
each from 25 ± 2.5%, 50 ± 2.5% and 75 ± 2.5%. In selecting the contracts from
the five ranges, we tried to avoid analysing the same type of contract more than
once. We analysed: DBToken11, MultiSigWallet12, the auction NumberBoard13,
the game casinoProxy14, and the asset manager mall15.

Table 4 shows that the key statistics of the 250 manually analysed mutants
and all 47,870 mutants are comparable, which suggests that the results we obtain
for the 250 mutants are representative for all mutants. The left and right half
of Table 4 show a contingency table for the mutation operator types versus the
status of the different mutation results. The Mothra operators generate more
semantically equivalent mutants than the solidity operators, but overall the per-

11 DBToken on Etherscan https://etherscan.io/address/0x42a952Ac23d020610355
Cf425d0dfa58295287BE.

12 MultiSigWallet on Etherscan https://etherscan.io/address/0xa723606e907bf842
15d5785ea7f6cd93a0fbd121.

13 NumberBoard on Etherscan https://etherscan.io/address/0x9249133819102b2
ed31680468c8c67F6Fe9E7505.

14 casinoProxy on Etherscan https://etherscan.io/address/0x23a3db04432123ccdf
4459684329cc7c0b022.

15 mall on Etherscan https://etherscan.io/address/0x3304a44aa16ec40fb53a5b8f086
f230c237f683d.

https://etherscan.io/address/0x42a952Ac23d020610355Cf425d0dfa58295287BE
https://etherscan.io/address/0x42a952Ac23d020610355Cf425d0dfa58295287BE
https://etherscan.io/address/0xa723606e907bf84215d5785ea7f6cd93a0fbd121
https://etherscan.io/address/0xa723606e907bf84215d5785ea7f6cd93a0fbd121
https://etherscan.io/address/0x9249133819102b2ed31680468c8c67F6Fe9E7505
https://etherscan.io/address/0x9249133819102b2ed31680468c8c67F6Fe9E7505
https://etherscan.io/address/0x23a3db04432123ccdf6ef4459684329cc7c0b022
https://etherscan.io/address/0x23a3db04432123ccdf6ef4459684329cc7c0b022
https://etherscan.io/address/0x3304a44aa16ec40fb53a5b8f086f230c237f683d
https://etherscan.io/address/0x3304a44aa16ec40fb53a5b8f086f230c237f683d


Mutation Testing of Smart Contracts at Scale 37

centage of semantically equivalent mutants in the stratified sample is only 3.2%.
This indicates that semantically equivalent mutants do not inflate the base line
statistics by more than a few per cent points. The second conclusion that can be
drawn from Table 4 is that almost 100% mutation scores are possible with boot-
strapped versions the replay tests. A mutation score of 100% is not achievable
with the current implementation because it cannot detect the success or failure
of an internal transaction.

Of the 3,304,002 bytecode instructions of all original contracts together, the
replay tests execute 1,574,239 instructions, giving an average bytecode cover-
age of 47.6%. This makes achieving a high mutation score more difficult, as a
mutation to code that is not executed will never be killed. Our results are thus
a baseline, and to explore how far removed the base line is from results with
hand-crafted tests we compare our results to related work in Table 5. The first
column lists the citation to all related work that we aware of that report muta-
tion scores for smart contracts. The next two columns give the average mutation
score, and the statement (bytecode) coverage. The last column lists the DApps
tested.

High statement coverage does not necessarily lead to a high mutation score,
because the effect of the mutant may not be visible in the outputs. Honig et al.
[12] propose a small set of highly efficient mutants. Chapman [4] has about the
same code coverage as Honig et al. but he proposes a large set of mutants; this
reduces his mutation score. Our main result is comparable to that of Wu et al.
[32], but we have also shown that by taking the replay tests as a basis and
improving them by test bootstrapping leads to the same high mutation scores
that others have found.

Using Outputs in a Mutant Killing Condition. The mutation score for
TxEvMethLimit reaches 35.6%, for TxEvMeth 30.2%, and for Limit 8.3%. These
mutation scores are low compared to state-of-the-art approaches [24]. However,
this figure is useful as a baseline for other approaches that use realistic tests
instead of replay tests, and our aim was not to achieve a high mutation score,
but to evaluate the applicability of mutation operators for a high number of
contracts. Moreover, even such a small score is helpful to show what kind of
tests are missing and what has to be done to improve the tests.

Using Gas in a Mutant Killing Condition. The contribution of the gas
limit as killing condition is 35.6%−30.2%= 5.4%, which seems rather small, but
since it can require a huge manual effort to analyse the surviving mutant, even
such a small fraction can save hours or days of manual work.

5 Discussion and Limitations

We put the results in a broader context and answer the research question.

Discarding Stillborn Mutants We believe that the percentage of the gener-
ated mutants that do not compile was relatively small and that it was accept-
able in the exploratory context. A production tool would have to implement



38 P. Hartel and R. Schumi

more sophisticated mutations and would therefore have more knowledge of the
semantics of smart contracts.

Discarding Duplicate and Equivalent Mutants. A simple but state-of-the-
art approach has been used to address the equivalent mutant problem. What we
have not investigated is to what extent gas usage can be leveraged to discard
more equivalent mutants; we suggest this as a topic for future work.

Mutation Score. By leveraging the historic data available on the Ethereum
blockchain we have been able to generate tests that can be truncated to explore
the relationship between test strength and the mutation score. As expected, the
efficiency of the mutation operators tails off quickly.

Efficiency of the Mutation Operators. One of the Solidity specific muta-
tion operators was found to be more effective in producing mutants that have
a high chance of being killed than most of the standard mutation operators.
We take this as an indication that further research is needed to develop more
sophisticated Solidity specific mutation operators. Another, important aspect
of mutation operators is to which extent they can introduce common or severe
bugs. To assess this quality, we inspected the ability of our operators to introduce
known vulnerabilities that can have severe consequences. The associated vulner-
abilities as (specified by the SWC) are shown in Table 1. It should be noted that
we are able to simulate most vulnerabilities, which are related to simple mistakes
in the source code. Additionally, it can be seen that the specific operators are
concerned with more vulnerabilities and that they are more severe compared to
the standard operators. For example, MORD* can trigger three different kinds
of access control related vulnerabilities, which would not be possible with the
standard operators. This allowed us to discover a vulnerability in one of the con-
tracts, which we have reported to the owners by way of responsible disclosure:
the modifier onlyOwner is missing on one of the methods.

Our mutation score is lower than the scores reported by related work but this
is not due to the choice of mutation operators but caused by the use of replay
tests. Bootstrapped replay tests are comparable to hand crafted tests.

Using Outputs in a Mutant Killing Condition. Comparing the observable
outputs of a transaction of mutant and original is an efficient killing condition.

Using Gas in a Mutant Killing Condition. We have shown that using the
gas consumption as a killing condition can improve the mutation score and hence
the effectiveness of the mutation approach in general. The contribution of the
gas limit as a killing condition is small because gas limits are usually not tight.
We suggest as future work an exploration of alternative heuristics to determine
a tighter gas limit.

We are now able to answer the main research question: Our Solidity specific
mutation operators are more efficient than the standard operators, and they also
are able to introduce more and more severe vulnerabilities. Table 4 shows that
the difference in efficiency is 3.3% point, which is modest, but also statistically
significant at (p < 0.001).



Mutation Testing of Smart Contracts at Scale 39

5.1 Limitations and Threats to Validity

A threat to the validity of our evaluation might be that we only consider a replay
test suite that is less powerful than other testing techniques, which might obtain
a higher mutation score. Although there are better testing techniques, the focus
of this work was not to find them, but to build a mutation-based test quality
assurance method that can also serve as a baseline for other testing techniques.

Another argument regarding the validity of our method might be that it is
not wise to kill a mutant only based on a different gas usage since it could still be
semantically equal. However, we believe that a different gas usage is still a valid
reason to kill a mutant, because it represents a change in the monetary cost of a
transaction. Moreover, there are other comparable cost factors, like energy [14]
or execution time [19] that have been used as killing condition in the past.

The replication package of this paper presents the recently proposed checklist
[24] for research on mutation testing to analyse our work.

6 Conclusions and Future Work

From almost 200 mutation operators from related work, we have generalized a
compact set of 14 operators and tested them on a large scale. Our Solidity specific
operators were able to produce nearly all the mutations that were proposed in
the related work, with only a few minor exceptions.

To achieve scale, we used replay tests that were automatically generated from
the Ethereum blockchain. To the best of our knowledge there is no related work
that performs mutation testing for smart contracts at scale.

The average mutation scores that we achieved with our replay tests were not
as good as the scores from the best handwritten tests, but also various studies
with manual tests have comparable scores. It should be pointed out that the
score can depend strongly on the choice of the mutation operators, and manual
tests often undergo many iterations to improve the score. We have also shown
that the replay tests can be improved manually, such that a score close to 100%
can be reached.

Using our novel killing condition based on the gas limit allowed us to improve
the mutation score by a maximum of 5.5%. This does not sound like much, but
it can save a lot of manual effort for the analysis of surviving mutants.

Four of the 14 operators have been specifically developed for Solidity and
the others originate form the core of the Mothra set. The Solidity-specific oper-
ators are on average more efficient than the standard Mothra operators. We
have shown that serious vulnerabilities can be detected with the help of specific
operators; this shows that tailor-made mutation operators are useful.

It would be interesting to study errors made by Solidity developers at scale
to validate the mutation operators. Another area of future work would be to use
the gas limit on transactions to detect equivalent mutants.

Acknowledgments. This work was supported in part by the National Research Foun-
dation (NRF), Prime Minister’s Office, Singapore, under its National Cybersecurity



40 P. Hartel and R. Schumi

R&D Programme (Award No. NRF2016NCR-NCR002-028) and administered by the
National Cybersecurity R&D Directorate.

We thank Maarten Everts, Joran Honig, Sun Jun, and the anonymous reviewers
for their comments on our work.

The replication package for the experiments can be found at https://doi.org/10.
5281/zenodo.3726691.

References

1. Andesta, E., Faghih, F., Fooladgar, M.: Testing smart contracts gets smarter. Tech-
nical report, Department of Electrical and Computer Engineering University of
Tehran, December 2019. https://arxiv.org/abs/1912.04780

2. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

3. Bugrara, S.: User experience with language-independent formal verification. Tech-
nical report, ConsenSys, December 2019. https://arxiv.org/abs/1912.02951

4. Chapman, P.: Deviant: a mutation testing tool for Solidity smart contracts. Mas-
ter thesis 1593, Boise State University, August 2019. https://doi.org/10.18122/td/
1593/boisestate

5. Chia, V., et al.: Rethinking blockchain security: position paper. In: Atiquzzaman,
M., Li, J., Meng, W. (eds.) Confs on Internet of Things, Green Computing and
Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain,
Computer and Information Technology, Congress on Cybermatics, pp. 1273–1280.
IEEE, Halifax, Canada, July 2018. https://doi.org/10.1109/Cybermatics 2018.
2018.00222

6. Fu, Y., Ren, M., Ma, F., Jiang, Y., Shi, H., Sun, J.: Evmfuzz: differential fuzz
testing of Ethereum virtual machine. Technical report, Tsinghua University, China,
April 2019. https://arxiv.org/abs/1903.08483

7. Gopinath, R., Jensen, C., Groce, A.: Code coverage for suite evaluation by develop-
ers. In: 36th International Conference on Software Engineering (ICSE), pp. 72–82.
ACM, New York, Hyderabad, India, May 2014. https://doi.org/10.1145/2568225.
2568278

8. Groce, A., Holmes, J., Marinov, D., Shi, A., Zhang, L.: An extensible, regular-
expression-based tool for multi-language mutant generation. In: 40th International
Conference on Software Engineering: Companion Proceeedings (ICSE), pp. 25–
28. ACM, New York, Gothenburg, Sweden, May 2018. https://doi.org/10.1145/
3183440.3183485

9. Grün, B.J.M., Schuler, D., Zeller, A.: The impact of equivalent mutants. In: Second
International Conference on Software Testing Verification and Validation, ICST
2009, Denver, Colorado, USA, 1–4 April 2009, Workshops Proceedings, pp. 192–
199. IEEE Computer Society (2009). https://doi.org/10.1109/ICSTW.2009.37

10. Hartel, P., van Staalduinen, M.: Truffle tests for free - replaying Ethereum smart
contracts for transparency. Technical report, Singapore University of Technology
and Design, Singapore, July 2019. https://arxiv.org/abs/1907.09208

11. Hierons, R.M., Harman, M., Danicic, S.: Using program slicing to assist in the
detection of equivalent mutants. Softw. Test. Verif. Reliab. 9(4), 233–262 (1999).
https://doi.org/10.1002/(sici)1099-1689(199912)9:4〈233::aid-stvr191〉3.0.co;2-3

https://doi.org/10.5281/zenodo.3726691
https://doi.org/10.5281/zenodo.3726691
https://arxiv.org/abs/1912.04780
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://arxiv.org/abs/1912.02951
https://doi.org/10.18122/td/1593/boisestate
https://doi.org/10.18122/td/1593/boisestate
https://doi.org/10.1109/Cybermatics_2018.2018.00222
https://doi.org/10.1109/Cybermatics_2018.2018.00222
https://arxiv.org/abs/1903.08483
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1109/ICSTW.2009.37
https://arxiv.org/abs/1907.09208
https://doi.org/10.1002/(sici)1099-1689(199912)9:4<233::aid-stvr191>3.0.co;2-3


Mutation Testing of Smart Contracts at Scale 41

12. Honig, J.J., Everts, M.H., Huisman, M.: Practical mutation testing for smart con-
tracts. In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) DPM/CBT -2019. LNCS, vol. 11737, pp. 289–303. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31500-9 19

13. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test
suite effectiveness. In: 36th International Conference on Software Engineering
(ICSE), pp. 435–445. ACM, New York, Hyderabad (2014). https://doi.org/10.
1145/2568225.2568271

14. Jabbarvand, R., Malek, S.: μdroid: an energy-aware mutation testing framework
for android. In: Bodden, E., Schäfer, W., van Deursen, A., Zisman, A. (eds.) Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, Paderborn, Germany, 4–8 September 2017. pp. 208–219. ACM
(2017). https://doi.org/10.1145/3106237.3106244

15. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011). https://doi.org/10.1109/
TSE.2010.62

16. King, K.N., Offutt, A.J.: A fortran language system for mutation-ased software
testing. Softw.-Pract. Experience 21(7), 685–718 (1991). https://doi.org/10.1002/
spe.4380210704

17. Kintis, M., Papadakis, M., Jia, Y., Malevris, N., Traon, Y.L., Harman, M.: Detect-
ing trivial mutant equivalences via compiler optimisations. IEEE Trans. Softw.
Eng. 44(4), 308–333 (2018). https://doi.org/10.1109/TSE.2017.2684805

18. Mehar, M.I., et al.: Understanding a revolutionary and flawed grand experiment
in blockchain: the dao attack. J. Cases Inf. Technol. 21(1), 19–32 (2019). https://
doi.org/10.4018/JCIT.2019010102

19. Nilsson, R., Offutt, J., Mellin, J.: Test case generation for mutation-based testing
of timeliness. Electron. Notes Theor. Comput. Sci. 164(4), 97–114 (2006). https://
doi.org/10.1016/j.entcs.2006.10.010

20. O’Connor, R.: Simplicity: a new language for blockchains. In: Proceedings of the
2017 Workshop on Programming Languages and Analysis for Security, PLAS@CCS
2017, Dallas, TX, USA, 30 October 2017. pp. 107–120. ACM (2017). https://doi.
org/10.1145/3139337.3139340

21. Offutt, A.J., Craft, W.M.: Using compiler optimization techniques to detect equiv-
alent mutants. Softw. Test. Verif. Reliab. 4(3), 131–154 (1994). https://doi.org/
10.1002/stvr.4370040303

22. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible
paths. Softw. Test. Verif. Reliab. 7(3), 165–192 (1997). https://doi.org/10.1002/
(sici)1099-1689(199709)7:3〈165::aid-stvr143〉3.0.co;2-u

23. Offutt, A.J., Untch, R.H.: Mutation 2000: uniting the orthogonal. In: Wong, E.W.
(ed.) Mutation Testing for the New Century, pp. 34–44. Springer, Boston (2001).
https://doi.org/10.1007/978-1-4757-5939-6 7

24. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Muta-
tion testing advances: an analysis and survey. Adv. Comput. 112, 275–378 (2019).
https://doi.org/10.1016/bs.adcom.2018.03.015. Elsivier

25. Peng, C., Rajan, A.: Sif: a framework for Solidity code instrumentation and anal-
ysis. Technical report, University of Edinburgh, UK, May 2019. https://arxiv.org/
abs/1905.01659

26. Schuler, D., Zeller, A.: (un-)covering equivalent mutants. In: Third International
Conference on Software Testing, Verification and Validation, ICST 2010, Paris,
France, 7–9 April 2010, pp. 45–54. IEEE Computer Society (2010). https://doi.
org/10.1109/ICST.2010.30

https://doi.org/10.1007/978-3-030-31500-9_19
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/3106237.3106244
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.4018/JCIT.2019010102
https://doi.org/10.4018/JCIT.2019010102
https://doi.org/10.1016/j.entcs.2006.10.010
https://doi.org/10.1016/j.entcs.2006.10.010
https://doi.org/10.1145/3139337.3139340
https://doi.org/10.1145/3139337.3139340
https://doi.org/10.1002/stvr.4370040303
https://doi.org/10.1002/stvr.4370040303
https://doi.org/10.1002/(sici)1099-1689(199709)7:3<165::aid-stvr143>3.0.co;2-u
https://doi.org/10.1002/(sici)1099-1689(199709)7:3<165::aid-stvr143>3.0.co;2-u
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1016/bs.adcom.2018.03.015
https://arxiv.org/abs/1905.01659
https://arxiv.org/abs/1905.01659
https://doi.org/10.1109/ICST.2010.30
https://doi.org/10.1109/ICST.2010.30


42 P. Hartel and R. Schumi

27. SmartContractSecurity: Smart contract weakness classification registry (2019).
https://github.com/SmartContractSecurity/SWC-registry/

28. Tengeri, D., et al.: Relating code coverage, mutation score and test suite reducibility
to defect density. In: Ninth IEEE International Conference on Software Testing,
Verification and Validation Workshops, ICST Workshops 2016, Chicago, IL, USA,
11–15 April 2016, pp. 174–179. IEEE Computer Society (2016). https://doi.org/
10.1109/ICSTW.2016.25

29. Wang, H., Li, Y., Lin, S.W., Artho, C., Ma, L., Liu, Y.: Oracle-supported dynamic
exploit generation for smart contracts. Technical report, Nanyang Technological
University, Singapore, September 2019. https://arxiv.org/abs/1909.06605

30. Wang, X., Xie, Z., He, J., Zhao, G., Ruihua, N.: Basis path coverage criteria for
smart contract application testing. Technical report, School of Computer Science,
South China Normal University Guangzhou, China, Noveember 2019. https://
arxiv.org/abs/1911.10471

31. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger - EIP-
150 revision. Technical report 759dccd, Ethcore.io, August 2017. https://ethereum.
github.io/yellowpaper/paper.pdf

32. Wu, H., Wang, X., Xu, J., Zou, W., Zhang, L., Chen, Z.: Mutation testing for
Ethereum smart contract. Technical report, Nanjing University, China, August
2019. https://arxiv.org/abs/1908.03707

33. Zhang, L., Hou, S.S., Hu, J.J., Xie, T., Mei, H.: Is operator-based mutant selection
superior to random mutant selection? In: 32nd International Conference on Soft-
ware Engineering (ICSE), pp. 435–444. ACM, New York, Cape Town, May 2010.
https://doi.org/10.1145/1806799.1806863

34. Zhu, Q., Panichella, A., Zaidman, A.: A systematic literature review of how muta-
tion testing supports quality assurance processes. J. Softw. Test. Verif. Reliab.
28(6), e1675:1–e1675:39 (2018). https://doi.org/10.1002/stvr.1675

https://github.com/SmartContractSecurity/SWC-registry/
https://doi.org/10.1109/ICSTW.2016.25
https://doi.org/10.1109/ICSTW.2016.25
https://arxiv.org/abs/1909.06605
https://arxiv.org/abs/1911.10471
https://arxiv.org/abs/1911.10471
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://arxiv.org/abs/1908.03707
https://doi.org/10.1145/1806799.1806863
https://doi.org/10.1002/stvr.1675

	Mutation Testing of Smart Contracts at Scale
	1 Introduction
	2 Background
	2.1 A Case Study in Mutation: Vitaluck
	2.2 Sub Questions

	3 Method
	4 Results
	5 Discussion and Limitations
	5.1 Limitations and Threats to Validity

	6 Conclusions and Future Work
	References




