
Wolfgang Ahrendt
Heike Wehrheim (Eds.)

LN
CS

 1
21

65

14th International Conference, TAP 2020
Held as Part of STAF 2020
Bergen, Norway, June 22–23, 2020, Proceedings

Tests and Proofs

Lecture Notes in Computer Science 12165

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Wolfgang Ahrendt • Heike Wehrheim (Eds.)

Tests and Proofs
14th International Conference, TAP 2020
Held as Part of STAF 2020
Bergen, Norway, June 22–23, 2020
Proceedings

123

Editors
Wolfgang Ahrendt
Chalmers University of Technology
Gothenburg, Sweden

Heike Wehrheim
Paderborn University
Paderborn, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-50994-1 ISBN 978-3-030-50995-8 (eBook)
https://doi.org/10.1007/978-3-030-50995-8

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5671-2555
https://orcid.org/0000-0002-2385-7512
https://doi.org/10.1007/978-3-030-50995-8

Preface

This volume contains the papers accepted for the 14 International Conference on Tests
and Proofs (TAP 2020), originally to be held during June 22–23, 2020, in Bergen,
Norway, as part of Software Technologies: Applications and Foundations (STAF), a
federation of some of Europe’s leading conferences on software technologies. Due to
the outbreak of the corona virus pandemic, STAF and TAP had to be postponed and
will be held 2021. The TAP conference promotes research in verification and formal
methods that targets the interplay of proofs and testing: the advancement of techniques
of each kind and their combination, with the ultimate goal of improving software and
system dependability. Research in verification has recently seen a steady convergence
of heterogeneous techniques and a synergy between the traditionally distinct areas of
testing (and dynamic analysis) and of proving (and static analysis). Formal techniques
for counter-example generation based on, for example, symbolic execution,
SAT/SMT-solving, or model checking, furnish evidence for the potential of a com-
bination of test and proof. The combination of predicate abstraction with testing-like
techniques based on exhaustive enumeration opens the perspective for novel techniques
of proving correctness. On the practical side, testing offers cost-effective debugging
techniques of specifications or crucial parts of program proofs (such as invariants). Last
but not least, testing is indispensable when it comes to the validation of the underlying
assumptions of complex system models involving hardware or system environments.
Over the years, there is growing acceptance in research communities that testing and
proving are complementary rather than mutually exclusive techniques. TAP takes this
insight one step further, and puts the spotlight on combinations (understood in a broad
sense) of the complementary techniques.

TAP 2020 received 20 submissions out of which we accepted 10 papers after
reviewing and discussion with the Program Committee (PC) members, with 2 tool
papers and 1 short paper. The submissions came from the following countries (in
alphabetical order): Austria, Canada, Czech Republic, France, Germany, Italy, Japan,
The Netherlands, Portugal, Russia, Singapore, Spain, Sudan, Sweden, Tunisia, the UK,
and the USA. We thank the PC members and reviewers for doing an excellent job!

For the second time, TAP featured an artifact evaluation (AE) and three papers were
awarded with AE badges. We thank the AE chairs Daniel Dietsch (University of
Freiburg, Germany) and Marie-Christine Jakobs (TU Darmstadt, Germany) for orga-
nizing artifact submission and evaluation, and the AE Committee members for thor-
oughly evaluating all artifacts.

This volume also contains two short abstracts: an abstract of the talk of our invited
speaker Mohammad Mousavi (University of Leicester, UK) on “Conformance Testing
of Cyber-Physical Systems: From Formal Foundations to Automotive Applications,”
and an abstract of our invited tutorial on Runtime Verification by Martin Leucker
(University of Lübeck, Germany). Both invited talk and invited tutorial are planned to
be given next year. We thank the organizing team of STAF in Bergen, in particular

Adrian Rutle who had to deal with a very difficult situation. We also thank Alfred
Hofmann and his publication team at Springer for their support.

We hope that you will enjoy reading the volume.

May 2020 Wolfgang Ahrendt
Heike Wehrheim

vi Preface

Organization

Program Committee

Wolfgang Ahrendt
(PC Chair)

Chalmers University of Technology, Sweden

Heike Wehrheim (PC Chair) University of Paderborn, Germany
Bernhard Beckert Karlsruhe Institute of Technology, Germany
Dirk Beyer LMU Munich, Germany
Jasmin Blanchette Vrije Universiteit Amsterdam, The Netherlands
Koen Claessen Chalmers University of Technology, Sweden
Brijesh Dongol University of Surrey, UK
Catherine Dubois ENSIIE, France
Gordon Fraser University of Passau, Germany
Chantal Keller LRI, Université Paris-Sud, France
Nikolai Kosmatov CEA, France
Martin Leucker University of Lübeck, Germany
Karl Meinke KTH Royal Institute of Technology, Sweden
Stephan Merz Inria Nancy, France
Corina Pasareanu CMU/NASA, USA
François Pessaux ENSTA ParisTech, France
Alexandre Petrenko CRIM, Canada
Jan Tretmans TNO - Embedded Systems Innovation,

The Netherlands

Artifact Evaluation Committee (AEC)

Daniel Dietsch (AEC Chair) University of Freiburg, Germany
Marie-Christine Jakobs

(AEC Chair)
TU Darmstadt, Germany

Sadegh Dalvandi University of Surrey, UK
Simon Dierl TU Dortmund, Germany
Mathias Fleury Johannes Kepler University Linz, Austria
Ákos Hajdu Budapest University of Technology and Economics,

Hungary
Marcel Hark RWTH Aachen University, Germany
Sven Linker The University of Liverpool, UK
Marco Muñiz Aalborg University, Denmark
Kostiantyn Potomkin The Australian National University, Australia
Virgile Robles CEA, France
Martin Sachenbacher University of Lübeck, Germany
Christian Schilling IST Austria, Austria

Steering Committee

Bernhardt K. Aichernig TU Graz, Austria
Achim D. Brucker University of Sheffield, UK
Catherine Dubois (Chair) ENSIIE, France
Martin Gogolla University of Bremen, Germany
Nikolai Kosmatov CEA, France
Burkhart Wolff LRI, France

Additional Reviewers

Avellaneda, Florent
Blanchard, Allan
Khosrowjerdi, Hojat
Nair, Aravind
Nguena Timo, Omer
Papadakis, Mike
Pessaux, François
Soulat, Romain

viii Organization

Abstracts of Invited Events

Conformance Testing of Cyber-Physical
Systems: From Formal Foundations

to Automotive Applications:
Invited Talk TAP 2020

Mohammad Reza Mousavi

University of Leicester, School of Informatics, Leicester, UK

Conformance testing is a structured and model-based approach to testing. It aims to
establish conformance between a model and a black-box implementation by running
several test cases. Cyber-physical systems feature a tight integration of discrete com-
putations, continuous dynamics, and (asynchronous) communications in cyber-physical
systems; hence, applying conformance testing to them involves models that allow for
specifying the integration and interaction of these phenomena.

In this talk, we review a few notions of conformance relations that are suitable for
the purpose of testing cyber-physical systems. We present intensional representations
of these notions of conformance, in terms of mathematical relations on hybrid systems
trajectories, as well as a logical characterisation using Metric Temporal Logic.

Subsequently, we present a test-case generation algorithm and its implementation,
in terms of an open-source Matlab toolbox for conformance testing cyber-physical
systems. We present a number of case-studies we have conducted in the automotive
domain, including a case-study on platooning and another one on doping detection
concerning diesel car emissions.

The work presented in this talk are the result of my collaboration with several
people including: Arend Aerts, Hugo Araujo, Sebastian Biewer, Gustavo Carvalho,
Rayna Dimitrova, Maciej Gazda, Holger Hermanns, Morteza Mohaqeqi, Bruno
Oliveira, Michel A. Reniers, Augusto Sampaio, Masoumeh Taromirad, and Bryan
Tong Minh.

Testing, Runtime Verification
and Automata Learning:
Invited Tutorial TAP 2020

Martin Leucker

University of Lübeck, Institute for Software Engineering and Programming
Languages, Lübeck, Germany

Testing and runtime verification are both verification techniques for checking whether a
system is correct. The essential artefacts for checking whether the system is correct are
actual executions of the system, formally words. Such a set of words should be rep-
resentative for the systems behavior.

In the field of automata learning (or grammatical inference) a formal model of a
system is derived based on exemplifying behavior. In other words, the question is
addressed what model fits to a given set of words.

In testing, typically, the system under test is examined on a finite set of test cases,
formally words, which may be derived manually or automatically. Oracle-based testing
is a form of testing in which an oracle, typically a manually developed piece of code, is
attached to the system under test and employed for checking whether a given set of test
cases passes or fails.

In runtime verification, typically, a formal specification of the correct behavior is
given from which a so-called monitor is synthesised and used for examining whether
the behavior of the system under test, or generally the system to monitor, adheres to
such a specification. In a sense, the monitor acts as a test oracle, when employed in
testing.

From the discussion above we see that testing, runtime verification, and learning
automata share similarities but also differences. The main artefacts used for the different
methods are formal specifications, models like automata, but especially sets of words,
on which the different system descriptions are compared, to eventually obtain a verdict
whether the system under test is correct or not.

In this tutorial we recall the basic ideas of testing, oracle-based testing, model-based
testing, conformance testing, automata learning and runtime verification and elaborate
on a coherent picture with the above mentioned artefacts as ingredients. We mostly
refrain from technical details but concentrate on the big picture of those verification
techniques.

Contents

Regular Research Papers

Benchmarking Combinations of Learning and Testing Algorithms
for Active Automata Learning . 3

Bernhard K. Aichernig, Martin Tappler, and Felix Wallner

Mutation Testing of Smart Contracts at Scale . 23
Pieter Hartel and Richard Schumi

Deductive Binary Code Verification Against
Source-Code-Level Specifications . 43

Alexander Kamkin, Alexey Khoroshilov, Artem Kotsynyak,
and Pavel Putro

Spatio-Temporal Model-Checking of Cyber-Physical Systems
Using Graph Queries . 59

Hojat Khosrowjerdi, Hamed Nemati, and Karl Meinke

SAT Modulo Differential Equation Simulations . 80
Tomáš Kolárik and Stefan Ratschan

Verified Runtime Assertion Checking for Memory Properties 100
Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

Testing for Race Conditions in Distributed Systems via SMT Solving 122
João Carlos Pereira, Nuno Machado, and Jorge Sousa Pinto

Tool Demonstration Papers

SASA: A SimulAtor of Self-stabilizing Algorithms . 143
Karine Altisen, Stéphane Devismes, and Erwan Jahier

A Graphical Toolkit for the Validation of Requirements
for Detect and Avoid Systems . 155

Paolo Masci and César A. Muñoz

Short Paper

ScAmPER: Generating Test Suites to Maximise Code Coverage
in Interactive Fiction Games . 169

Martin Mariusz Lester

Author Index . 181

Regular Research Papers

Benchmarking Combinations of Learning
and Testing Algorithms for Active

Automata Learning

Bernhard K. Aichernig1, Martin Tappler1,2(B), and Felix Wallner1

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{aichernig,martin.tappler}@ist.tugraz.at, felix.wallner@student.tugraz.at

2 Schaffhausen Institute of Technology, Schaffhausen, Switzerland
mt@sit.org

Abstract. Active automata learning comprises techniques for learning
automata models of black-box systems by testing such systems. While
this form of learning enables model-based analysis and verification, it
may also require a substantial amount of interactions with considered
systems to learn adequate models, which capture the systems’ behaviour.

The test cases executed during learning can be divided into two cat-
egories: (1) test cases to gain knowledge about a system and (2) test
cases to falsify a learned hypothesis automaton. The former are selected
by learning algorithms, whereas the latter are selected by conformance-
testing algorithms. There exist various options for both types of algo-
rithms and there are dependencies between them. In this paper, we
investigate the performance of combinations of four different learning
algorithms and seven different testing algorithms. For this purpose, we
perform learning experiments using 39 benchmark models. Based on
experimental results, we discuss insights regarding the performance of
different configurations for various types of systems. These insights may
serve as guidance for future users of active automata learning.

Keywords: Active automata learning · Conformance testing ·
Model-based testing · Model learning · LearnLib

1 Introduction

Using active automata learning it is possible to automatically generate automata
models of black-box systems through testing those systems. This enables the
application of model-based verification techniques, such as model checking [10]
and model-based regression testing [3]. Successful applications range from com-
munication protocols [10,11,23,29], through embedded systems [2,25], to cyber-
physical systems [1,18].

Generally, active automata learning repeatedly alternates between two phases
of learning involving two types of queries. Membership queries are test cases that
are executed to gain knowledge about the system under learning (SUL) to build
c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 3–22, 2020.
https://doi.org/10.1007/978-3-030-50995-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-50995-8_1

4 B. K. Aichernig et al.

hypothesis automata, while equivalence queries check whether a hypothesis con-
forms to the SUL. The former are selected by the used learning algorithm, while
the latter are usually implemented through conformance testing. The selection of
test cases for both types of queries affects the learning runtime. Since the domi-
nant factor in active automata learning is usually the test execution time [23,29],
it is paramount to minimise the number and length of tests.

Various approaches have been suggested for minimising the number of tests
required for membership queries [15,22] and for equivalence queries [4,14]. In
this paper, we empirically analyse the interaction between these approaches. We
examine the learning performance of combinations of various learning algorithms
and conformance-testing algorithms implementing equivalence queries. Our goal
is to provide data on the relative performance of different learning setups by
determining the testing budget required for correct learning. Such data may sup-
port practitioners in choosing a particular learning setup. Our analysis focuses
on communication protocols and is based on 39 benchmark models1 from the
field of active automata learning [20]. These models have between three and 58
states, which is sufficient to model systems, such as transmission control protocol
(TCP) servers [10]. Parts of this paper have been included in the doctoral thesis
of one of the authors [28]. The presented experiments have been performed as
part of the Bachelor’s thesis project of one of the authors [32].

Structure. The rest of this paper is structured as follows. In Sect. 2, we discuss
related work. In Sect. 3, we discuss active automata learning in more detail.
Section 4 introduces the experimental setup and briefly discusses the examined
learning and conformance-testing techniques. Section 5 presents the results of
our performance measurements. We provide a summary in Sect. 6 and conclude
with a discussion of our findings in Sect. 7.

2 Related Work

The Zulu challenge [9] addressed the problem of implementing automata learning
without equivalence queries and a limited number of membership queries. Put
differently, it called for solutions to test-based automata learning, where equiv-
alence queries need to be implemented via conformance testing with a limited
testing budget. Howar et al. reviewed their experience gained in this challenge
and noted that it is necessary to find counterexamples to equivalence with only
few tests for automata learning to be practically applicable [14]. Here, we apply
existing learning and conformance-testing algorithms and compare those combi-
nations with respect to the required testing budget. In previous work, we pre-
sented a fault-based approach to conformance testing in automata learning [4].
We performed similar measurements to evaluate this approach, but considered
only four testing algorithms and a single learning algorithm.

Berg et al. [6] performed early work on the practical evaluation of the perfor-
mance of L∗-based learning. The authors studied the impact of various system

1 Available online at http://automata.cs.ru.nl/, accessed: February 2, 2020.

http://automata.cs.ru.nl/

Benchmarking Active Automata Learning Configurations 5

properties on the learning performance, including the alphabet size, the num-
ber of states, and prefix-closedness of the target language. Smetsers et al. [26]
presented an efficient method for finding counterexamples in active automata
learning that applies mutation-based fuzzing. In their evaluation, they compared
four learning configurations with respect to learning performance, measured in
terms of the size of learned models and the required number of queries. They
considered combinations of the L∗ algorithm [5] and the TTT algorithm [15]
with their proposed method and the W-method [8,31].

Groz, Brémond and Simão applied concepts from finite-state-machine-based
testing to implement an efficient algorithm for active learning of Mealy machines
without resets [7,13]. The authors evaluated various active learning configura-
tions, including L∗-based configurations with and without resets.

3 Preliminaries

In this section, we define Mealy machines, provide an overview of active learning
of Mealy-machine models of black-box systems and discuss test-case selection
for this kind of learning.

3.1 Mealy Machines

We use Mealy machines as modelling formalism, as they have successfully been
used in contexts combining learning and verification [10,19,23,29]. Addition-
ally, the Java-library LearnLib [16] provides algorithms for both learning and
conformance testing of Mealy machines.

Mealy machines are finite-state machines with inputs and outputs. Their
execution starts in an initial state and they change their state by executing
inputs. During execution, they produce exactly one output in response to each
input. Formally, Mealy machines can be defined as follows.

Definition 1 (Mealy Machines). A Mealy machine M is a 6-tuple M =
〈Q, q0, I, O, δ, λ〉 where

– Q is a finite set of states,
– q0 is the initial state,
– I and O are finite sets of input and output symbols,
– δ : Q × I → Q is the state transition function, and
– λ : Q × I → O is the output function.

We require Mealy machines to be input enabled and deterministic. This
means that outputs and successor states must be defined for all inputs in all
states. A Mealy machine is deterministic if their is at most one output and one
successor state for every pair of input and source state.

We extend λ to sequences of inputs in the standard way. For s ∈ I∗ and
q ∈ Q, the output function λ(q, s) = t ∈ O∗ returns the outputs produced in
response to s executed in state q and we define λ(s) = λ(q0, s). We say that

6 B. K. Aichernig et al.

Teacher

Model-Based
Testing Tool

System Under
Learning

Learning
Algorithm

Equivalence Query (Hypothesis)

Yes / Counterexample

Perform Tests
(Compare SUL and Hyp.)

All Pass /
Failing Test

Membership Query

Query Output

Inputs

Outputs

Outputs Inputs

Fig. 1. The interaction between a learner and a teacher communicating with a SUL to
learn a Mealy machine [30]

two Mealy machines over the same alphabets are equivalent if they produce the
same outputs in response to all possible inputs. Let M1 and M2 be two Mealy
machine with output functions λ1 and λ2, respectively. They are equivalent,
denoted M1 ≡ M2, iff

∀s ∈ I∗ : λ1(s) = λ2(s). (1)

3.2 Active Automata Learning

We apply learning algorithms in the minimally adequate teacher (MAT) frame-
work introduced by Angluin for the L∗ algorithm [5]. While L∗ has originally
been proposed for deterministic finite automata (DFA), it has been extended to
other types of automata, such as Mealy machines [19,21,24]. For the following
discussion of learning, we assume that we interact with a MAT to learn a Mealy
machine producing the same outputs as a black-box SUL. In this context, the
MAT basically wraps the SUL, which is assumed to behave like a Mealy machine.

A MAT is usually required to answer two types of queries that are posed
learning algorithms. These queries are commonly called membership queries
and equivalence queries; see Fig. 1 for a schematic depiction of the interaction
between a learning algorithm, also called learner, and a MAT, also called teacher.

In membership queries (also called output queries [24]), the learner provides
a sequence of inputs and asks for the corresponding outputs. The teacher usu-
ally implements this by performing a single test on the SUL, while recording the
observed outputs. In equivalence queries, the learner provides a learned hypoth-
esis automaton and asks whether this automaton is correct, i.e., if it is equivalent
to the SUL. This is commonly implemented through conformance testing, i.e.,
the teacher generates a test suite from the hypothesis and executes it on the SUL.
If a test case reveals a difference between SUL and hypothesis, it is returned as
a counterexample to equivalence. Otherwise, the teacher returns yes, signalling
that SUL and hypothesis are considered to be equivalent. Put differently, con-
formance testing approximates equivalence checking between the hypothesis and

Benchmarking Active Automata Learning Configurations 7

the Mealy machine underlying the SUL. It basically checks Eq. (1) while sam-
pling only a finite set of input sequences from I∗.

Active automata learning operates in rounds by performing the two types
queries in alternation. In every round, the learner performs some membership
queries until there is sufficient information to build a hypothesis. After that, the
learner issues an equivalence query, asking whether the hypothesis is correct and
learning can stop. If the teacher returns a counterexample, the learner integrates
it into its knowledge and starts a new round of learning. Otherwise, learning stops
with the correctly learned hypothesis as output.

Test-Case Selection for Learning. There are several factors influencing the test-
case selection in the learning process outlined above. First, learning algorithms
differ in the amount of membership queries required for creating hypotheses. This
largely depends on the used internal data structures, such as observation tables
used in L∗ [5]. Tree-based learners often require fewer membership queries per
round [15,17]. The second factor concerns counterexample processing, which may
also require testing. There are different ways to extract information from coun-
terexamples, affecting the content stored in data structures and consequently
future membership queries. Third, the test-case selection for conformance testing
depends on the applied testing technique. Since test cases revealing differences
serve as counterexamples, conformance testing affects subsequent counterexam-
ple processing and selection of membership queries. Therefore, we investigate
which combinations of learners and testing techniques are the most efficient
overall, i.e., which combinations require the lowest testing budget for learning.

4 Experimental Setup

We evaluate the performance of combinations of four learning algorithms and
seven conformance-testing algorithms. For this purpose, we determine the lowest
conformance-testing budget for learning to be successful, i.e., for learning cor-
rect models. In order to determine whether a given testing budget is sufficient
to learn correctly, we “re-learn” known models of network protocols, which are
part of a benchmark suite for learning and testing [20]. We treat these models as
black boxes during learning by simulating them to generate outputs in response
to input sequences. Once learning terminates, we compare the learned to the
true model. We deem learning successful, if the correct model has been learned
once with a configuration involving deterministic testing. In experiments involv-
ing randomised testing, we repeat learning runs ten times and deem learning
successful if all runs produce the correct model. To ensure reproducibility, we
use fixed seed values for random number generators.

The setup for the learning experiments and the measurement results from
these experiments can be found in the supplementary material [33]. The results
include all relevant data, such as system resets (executions of test cases) and
test steps (executions of test inputs) for equivalence and membership queries.
Here, we present statistics computed from these data. In our target application

8 B. K. Aichernig et al.

Table 1. Evaluated learning and testing algorithms

Learning algorithm Testing algorithm

L∗ [5,24] W-method [8,31]

RS [22] partial W-method [12]

KV [17] random words

TTT [15] random walks

mutation [4]

transition coverage [4]

random Wp-method

of network protocols, we consider test steps to be the most relevant performance
measure, as resets often can be implemented efficiently by simply reconnecting.
Since we are interested in the overall performance of learning, we generally con-
sider the combined number of test steps required for equivalence queries and
membership queries.

Selection of Algorithms. The evaluated learning algorithms are listed in
the first column of Table 1 and the testing techniques are listed in the second
column of Table 1. These lists include various popular algorithms available in
LearnLib [16]. Hence, our evaluation, e.g., considers the performance of L∗ [5]
combined with the partial W-method [12].

In the following, we provide a brief discussion of the most important features
of the applied algorithms. Generally, we apply the implementations of these
algorithms available in LearnLib 0.14 [16]. In some cases, we slightly adapted
the testing techniques to be able to control the number of test cases executed
during equivalence queries.

L∗ and RS. Angluin established the basis for active automata learning by intro-
ducing the L∗ algorithm and the MAT framework [5]. L∗ stores information in
so-called observation tables and processes counterexamples by adding all pre-
fixes of a counterexample to the table. Rivest and Schapire improved L∗ by
maintaining smaller observation tables [22]. This is achieved through advanced
counterexample processing that extracts a distinguishing suffix from a counterex-
ample. Such a suffix distinguishes two SUL states corresponding to a single state
in the current hypothesis. We refer to this improved version as RS algorithm.

The advanced counterexample processing of RS affects the membership query
complexity. Angluin’s L∗ requires O(kmn2) membership queries [22], where k
is the (input) alphabet size, m is the length of the longest counterexample and
n is the size of the learned automaton, while RS requires O(kn2 + n log(m))
membership queries. Hence, the number of test cases performed for membership
queries depends only logarithmically on the counterexample length.

KV and TTT. Kearns and Vazirani presented an active automata learning algo-
rithm that stores queried data in trees [17]. We refer to this algorithm as KV

Benchmarking Active Automata Learning Configurations 9

algorithm. Without going into details, the original KV algorithm required one
round of learning for each state of the final hypothesis, thus conformance testing
needs to be performed more often. However, we have observed that each round
requires fewer membership queries. The TTT algorithm [15] also stores infor-
mation in trees, but improves upon KV in various ways. It, e.g., also processes
counterexamples by extracting distinguishing suffixes. Additionally, counterex-
ample prefixes are processed as well.

Analogously to L∗, the number of membership queries performed by KV
depends linearly on the counterexample length [17]. TTT in contrast has the
same worst-case membership query complexity as RS [15]. We can expect TTT
and RS to perform better than KV and L∗ in the presence of long counterexam-
ples.

Random Testing. Random-words-based testing and random-walks-based testing
generate random sequences of inputs. Both select inputs completely randomly
and differ only in the distribution of the test-case length. The length of random
words is uniformly distribution within some range, whereas random walks have
a geometrically distributed length.

Variations of the W-Method. The W-method [8,31] is a deterministic confor-
mance testing technique, which requires a bound m on the number of SUL
states. Given such an m, it can prove equivalence between hypothesis and SUL
up to m. Hence, if all generated test cases pass, then we know that either SUL
and hypothesis are equivalent, or the SUL has strictly more than m states.
LearnLib [16] uses a depth parameter to define m, which specifies the difference
between the number of hypothesis states and m. The partial W-method [12],
also called Wp-method, improves upon the W-method by requiring fewer test
cases, while providing the same guarantees. However, the number of test cases
generated by both techniques is exponential in the bound m, thus it usually
does not scale to large systems. The random Wp-method, as implemented in
LearnLib [16], uses the partial W-method as basis, but executes only a random
subset of all generated test cases, therefore it does not prove equivalence.

Since the W-method generally creates larger test suites than the partial W-
method, individual equivalence queries using the partial W-method are more
efficient. However, the partial W-method and the W-method may find different
counterexamples leading to different intermediate hypotheses. For this reason,
we included both testing algorithms in our evaluation.

Mutation and Transition Coverage. In our previous work, we developed two con-
formance testing techniques for active automata learning, which work similarly.
Both techniques start by generating a large set of test cases through random
walks on the hypothesis. The random walks alternate between completely ran-
dom sequences and paths to randomly chosen transitions. Afterwards a subset of
the generated test cases is selected and executed. The mutation-based technique
selects test cases based on mutation coverage, where mutants model potential
successor hypotheses. The transition-coverage-based technique selects test cases
with the goal covering all hypothesis transitions.

10 B. K. Aichernig et al.

Configuration of Testing Techniques. We apply the same configuration of every
testing technique for all considered models. The configurations have been chosen
to enable learning of system with up to approximately 50 states. For instance, we
configured random-words-based testing such that all generated test cases have a
length between 10 and 50. The parameter configurations are as follows.

– random words: minimum length: 10 and maximum length: 50.
– random walks: test stop probability: 1

30 . This setting ensures that the
expected length of random walks is the same as of random words.

– random Wp-method: we set the minimal length of the middle sequences in
test cases to 0 and the expected length to 4.

– transition coverage: maximum test-case length: 50, maximum length of ran-
dom sequences: 4, retry and stop probability for test-case generation: 29

30 and
pstop = 1

30 , respectively. For more information on the parameters, we refer to
our previous work [4].

– mutation: we used the same test-case generation settings as for transition
coverage. For test-case selection, we generated mutants with distinguishing
sequences of length two and applied mutation sampling such that at most
10,000 mutants are considered.

The only parameter of the deterministic algorithms, the W-method and the
partial W-method, is the depth parameter. In the remainder of this paper, we
write testing techniques in italics.

Search for Required Testing Budget. While learning with deterministic confor-
mance testing, we increase the depth parameter linearly until learning correctly.
In case of randomised testing techniques, we control the number of test cases
that are executed during each individual equivalence query to find a counterex-
amples to equivalence. We apply a binary search to find the minimum number of
test cases to reliably learn correct models, i.e., to learn correctly in ten repeated
learning runs.

In our analysis, we consider the testing budget in terms of test steps. This
quantity is more difficult to control uniformly across the different testing tech-
niques, but it is clearly correlated with the number of test cases. For this reason,
we deem the search appropriate. The exact relation between the number of test
cases and test steps depends on the applied test-case generation algorithm.

Benchmark Models. We consider a subset of the benchmark models from
the automata-learning benchmark models collected at the Radboud University
Nijmegen [20]2. In particular, we use all six TCP models, including both server
and client models of the TCP stacks of Ubuntu, Windows, and BSD, learned
by Fiterău-Broştean et al. [10]. We consider all 32 Message Queuing Teleme-
try Transport (MQTT) models, created in our previous work on learning-based
testing of MQTT [29]. Finally, we also consider a simple coffee machine that is
similar to a model used by Steffen et al. [27]. We have chosen this selection to
cover system models of different categories, which are defined below.
2 Available online at http://automata.cs.ru.nl/, accessed: February 2, 2020.

http://automata.cs.ru.nl/

Benchmarking Active Automata Learning Configurations 11

Fig. 2. The score s1 computed over all experiments for all learner-tester combinations,
grouped by testing technique

Categories. Certain behavioural aspects of communication-protocol models may
favour a particular learner-tester combination, while other aspects may favour
different combinations. For this reason, we grouped the benchmark models into
categories based on the following properties:

– small: a model is small if it has less than or equal to 15 states
– large: a model is large if it has more than 15 states
– sink-state: a model satisfies the property sink-state if there exists a (sink)

state q such that all outgoing transitions from q reach q
– strongly-connected: a model satisfies the property strongly-connected if its

underlying directed graph is strongly connected, i.e., for each ordered pair of
nodes exists a directed path between these nodes.

The above categories have been chosen with common application scenarios
in mind. Given a concrete application scenario, learned models can often be
expected to have certain properties. For instance, we may want to learn a
behavioural model capturing a single session of an application protocol. In this
case, learned models are likely to have a sink state that is reached after closing
a session. On the contrary, if restarting of sessions is allowed during learning,
learned models can be expected to be strongly connected. The size of models
depends on the abstraction. Harsh abstraction leads to small models and is often
applied when testing is expensive. Hence, such assumptions on model categories
are reasonable and do not require sacrificing our black-box view of systems.
Therefore, we have, for instance, examined which learner-tester combinations
perform best for small models that have a sink state.

5 Experimental Results

Altogether we performed 39 learning experiments with each of the 28 learner-
tester combinations. We present selected results from these experiments in the
following, focusing on the number of test steps required for both equivalence

12 B. K. Aichernig et al.

muta
tio

n

ran
dom

wa
lks

ran
dom

wo
rds

ran
dom

Wp

tra
nsi

tio
n c.

W-m
eth

od

Wp-m
eth

od

0

5

10

15

20

25
s 2

L*

RS

KV

TTT

Fig. 3. The score s2 computed over all experiments for all learner-tester combinations,
grouped by testing technique

queries and membership queries. In particular, we consider the maximum and
mean number of test steps required to learn reliably. Due to the large amount
of learning experiments, we present aggregated results for learner-tester com-
binations in (1) cactus plots and (2) bar plots. Additional information and the
complete results can be found in the accompanying supplementary material [33].

The cactus plots show how many experiments can be finished successfully,
such that learning is reliable, given a maximum number of test steps. The bar
plots show two different scores, s1 and s2, computed for the learner-tester combi-
nations lt. The actual scores are not important, but they allow for comparisons,
where a lower value means better performance. The scores are given by

s1(lt) =
∑

b∈B

meanSteps(lt, b) and s2(lt) =
∑

b∈B

meanSteps(lt, b)
maxlt′∈LT meanSteps(lt′, b)

,

where B is the set of considered benchmark models, LT is the set of all learner-
tester combinations, and meanSteps(lt, b) returns the mean number of steps to
reliably learn models of the benchmark b with the combination lt. The first score
s1(lt) simply sums up the average number of test steps required in all experi-
ments, whereas s2(lt) is normalised, through dividing by the worst-performing
combination of each benchmark. Hence, s1 allows to analyse which combinations
perform best, when learning all 39 models consecutively and under the assump-
tion that test steps require the same amount of time in every benchmark experi-
ment. The normalised score s2 accounts for the large variation in terms of model
complexity across the different benchmarks. Normalisation ensures that individ-
ual performance outliers do not severely affect the overall score of a learner-tester
combination. As information about outliers is useful, it is represented in the cac-
tus plots.

5.1 Overview

First, we want to provide a rough overview. Figure 2 shows the score s1(lt) for
each learner-tester combinations computed over all experiments. Due to large

Benchmarking Active Automata Learning Configurations 13

1 5 10 15 20 25 30 35 39
102

103

104

105

106

107

experiments

m
ax

.
te
st

st
ep

s
RS-mutation
RS-random words
RS-random Wp
RS-transition c.
RS-Wp-method

L∗-mutation

L∗-random words

L∗-random Wp

L∗-transition c.

L∗-Wp-method
TTT-mutation
TTT-random words
TTT-random Wp
TTT-transition c.
TTT-Wp-method

Fig. 4. A cactus plot showing how many learning experiments can be completed suc-
cessfully with a limited number of test steps

variations in the required test steps, it uses logarithmic scale. Figure 3 shows
the normalised score s2(lt). Similar to observations in previous work [4], we see
that mutation, transition coverage, and random Wp perform well in comparison
to other techniques. In Fig. 2, we can observe that the relative gap between
mutation and the worst-performing techniques is very large. This is caused by a
few outliers. In particular, the TCP server models required a very large number
of test steps for random walks and random words to learn reliably. For this
reason, we see a smaller gap between those test techniques and mutation in
Fig. 3, because s2 is less affected by outliers.

Furthermore, we see that the W-method indeed generally performs worse
than the partial W-method. Random words and random walks perform similarly
well. Figure 3 shows that, using the same testing algorithm, KV and L∗ per-
form similarly efficient. For these reasons and to ease readability, we will ignore
certain combinations in the following. In the remainder of this section, we will

14 B. K. Aichernig et al.

muta
tio

n

ran
dom

wo
rds

ran
dom

Wp

tra
nsi

tio
n c.

Wp-m
eth

od

105

106

s 1
L∗

RS

TTT

Fig. 5. The score s1 computed for experiments involving small models with a sink state

muta
tio

n

ran
dom

wo
rds

ran
dom

Wp

tra
nsi

tio
n c.

Wp-m
eth

od

0
1
2
3
4
5
6

s 2

L∗

RS

TTT

Fig. 6. The score s2 computed for experiments involving small models with a sink state

not show performance plots for combinations involving the W-method, random-
walks-based testing, or the KV algorithm.

Figure 4 shows a cactus plot describing how many learning experiments can
reliably be completed with a limited number of test steps. For instance, with
RS-mutation we are able to learn about 28 models with at most approximately
10,000 test steps, whereas L∗-mutation requires about 100,000 test steps to learn
only 25 models. We see a steep increase in the required test steps for random-
words-based testing to learn three of the 39 models. This explains the discrep-
ancy between the s1-score and the s2-score of random-words-based testing. It is
interesting to note that L∗ combinations require a very low number of test steps
to learn eight of the models. In general, L∗ combinations perform worst, though.

5.2 Selected Findings

Next, we discuss a few selected findings related to features of the examined
techniques and benchmark categories.

Counterexample Processing. In Figs. 2 and 3, we see that mutation combined
with RS and mutation combined with TTT perform best overall. In contrast to

Benchmarking Active Automata Learning Configurations 15

1 3 5 7 9 10

103

104

105

106

107

experiments

m
ax

.
te
st

st
ep

s
RS-mutation
RS-random words
RS-random Wp
RS-transition c.
RS-Wp-method

L∗-mutation

L∗-random words

L∗-random Wp

L∗-transition c.

L∗-Wp-method
TTT-mutation
TTT-random words
TTT-random Wp
TTT-transition c.
TTT-Wp-method

Fig. 7. A cactus plot showing how many learning experiments involving small models
with a sink state can be completed successfully with limited test steps

that, mutation combined with KV and mutation combined with L∗ perform sub-
stantially worse, whereas random Wp shows uniform performance across different
combinations with learning algorithms. Similar observations as for mutation can
be made for transition coverage.

This can be explained by considering the counterexample-processing tech-
niques of different learning algorithms. RS processes counterexamples by extract-
ing distinguishing suffixes [22], like TTT which also performs additional process-
ing steps [15]. This reduces the length and number of sequences that are added to
the learning data structures. L∗ and KV do not apply such techniques, therefore
the performance of these learning algorithms suffers from long counterexam-
ples. We have chosen the parameters for mutation conservatively to create long
test cases, which leads to long counterexamples, explaining our observations.
In contrast to this, random Wp generates much shorter test cases. Therefore,
we see uniform performance in combination with different learning algorithms.
Hence, mutation and transition coverage should be combined with either RS or
TTT. In such combinations, mutation-based testing performs efficient equiva-
lence queries, while sophisticated counterexample processing ensures that a low
number of short membership queries is performed. Comparing RS and TTT
combined with mutation, there is no clear winner; both combinations performed
similarly well in our experiments.

16 B. K. Aichernig et al.

q0

start

q1q2
q3

q4 q5

clean/ok

water/ok pod/ok pod/ok

water/ok

button/error

clean/ok

water/ok
pod/ok

button/error

clean/ok

{water, pod}/
ok

button/coffee

clean/ok

{button, pod,
water}/error

clean/ok

{pod, clean,water,
button}/error

button/error

Fig. 8. A Mealy-machine model of a coffee machine [27]

Small Models with Sink State. We evaluated the learner-tester combinations on
ten small models that have a sink state. Small models may result from harsh
abstraction. Sink states may be created if learning focuses on individual sessions
in a communication protocol, where the sink state is reached upon session ter-
mination. Hence, this is an important class of systems that we can identify prior
to learning. Therefore, it makes sense to analyse which active automata learning
configurations work well in such scenarios.

Figure 5 and Fig. 6 show scores computed for this kind of models. The non-
normalised score s1 shows that transition-coverage-based testing may be very
inefficient for such models. In particular, the combinations with RS and TTT
are the two worst-performing with respect to s1. However, the normalised score
s2 is in a similar range as the s2 score of random-words-based testing. This
suggests that the s1 score is affected by a few experiments for which transition
coverage performs very poorly. The cactus plot shown in Fig. 7 demonstrates
that this is indeed the case. There is a steep increase in the test steps required
to reliably learn in seven or more experiments. Thus, four benchmark models
seem to be difficult to learn with transition coverage.

We analysed one of these models in more detail to determine the reason for
the poor performance of transition coverage. It is a coffee-machine model similar
to the model used as an illustrative example by Steffen et al. [27]. Figure 8 shows
the corresponding Mealy machine. Two properties of the coffee machine cause
the poor performance of transition-coverage-based testing. First, many input
sequences reach the sink state q5 that only produces error outputs. Second, other
states require very specific input sequences. In experiments, we observed that
learning frequently produced incorrect models with 5 states that did not include
q1 or q2. The transition-coverage heuristic does not help to detect these states.

Benchmarking Active Automata Learning Configurations 17

muta
tio

n

ran
dom

wo
rds

ran
dom

Wp

tra
nsi

tio
n c.

Wp-m
eth

od

106
107
108
109
1010

s 1
L∗

RS

TTT

Fig. 9. The score s1 computed for experiments involving large models

muta
tio

n

ran
dom

wo
rds

ran
dom

Wp

tra
nsi

tio
n c.

Wp-m
eth

od

0
1
2
3
4
5
6
7

s 2

L∗

RS

TTT

Fig. 10. The score s2 computed for experiments involving large models

In fact, it is even detrimental. To reach q1 or q2, we need to reach the initial
state q0 first. Consequently, covering any known hypothesis transition other than
the water (pod) transition in q0 leads away from reaching and detecting q2 (q1).
Random testing from q0 is necessarily more effective. Moreover, the transition-
coverage heuristic generates very long test cases. For this reason, most suffixes
of these test cases merely execute the self-loop transitions in q5, because the
probability of reaching q5 is high. This worsens the performance of transition
coverage even more.

It is interesting to note that mutation-based conformance testing performs
well on the coffee machine, although it applies the same test-case generation
strategy as transition coverage. In contrast to transition coverage, mutation
applies mutation-coverage-based test-case selection. Hence, this form of test-
case selection is able to drastically improve performance, as can be seen in Fig. 7.
This can be explained by considering the same situation as outlined above. Sup-
pose that an intermediate hypothesis with five states has been learned. In this
scenario, the true model is a mutant of the hypothesis that can be generated
through the used split-state mutation [4]. By covering that mutant, it is possible
to detect the last remaining state and learn the true model.

18 B. K. Aichernig et al.

1 3 5 7 9 11
103

104

105

106

107

108

experiments

m
ax

.
te
st

st
ep

s
RS-mutation
RS-random words
RS-random Wp
RS-transition c.
RS-Wp-method

L∗-mutation

L∗-random words

L∗-random Wp

L∗-transition c.

L∗-Wp-method
TTT-mutation
TTT-random words
TTT-random Wp
TTT-transition c.
TTT-Wp-method

Fig. 11. A cactus plot showing how many learning experiments involving large models
can be completed successfully with a limited number of test steps

Large Models. Finally, we examine the learning performance on large models. In
our classification, models are large if they have more than 15 states. Our bench-
mark set includes 11 such models. Figure 9 and Fig. 10 show scores computed
for learning these models. Figure 11 shows the corresponding cactus plots.

We can observe that both random words and the Wp-method show poor
performance. Their detailed performance characteristics is different, though. On
the one hand, we see in Fig. 11 that the Wp-method combined with any learning
algorithm performs bad over the whole range of experiments. On the other hand,
random words is able to efficiently learn eight of 11 models, but it requires a very
large amount of test steps for the remaining three models. These are the TCP-
server models, which are much larger than the other considered models. Hence,
random-words-based testing is only feasible for moderately large models. We
can also observe that the combinations RS-mutation and RS-transition coverage
perform very well for large models. This is in line with findings from our previous
work on the mutation-based testing technique [4].

Benchmarking Active Automata Learning Configurations 19

6 Summary

We examined the performance of 28 combinations of learning and conformance
testing algorithms in the context of learning Mealy machines of black-box sys-
tems. After an initial analysis, we identified 15 representative combinations that
we analysed in more detail. Since the learning runtime in practical applications is
usually dominated by the time required for interacting with systems, we generally
quantify learning performance in terms of required test steps for correct learn-
ing. The performed experimental evaluation is based on 39 benchmark models
including models of implementations of TCP and MQTT. It focuses on learning
and testing techniques available in LearnLib [16] and also includes two testing
algorithms developed in our previous work. We presented measurement results
and discussed selected insights with respect to overall learning performance and
specific properties of systems. The results and insights may serve as guidance
for practitioners seeking to apply active automata learning.

7 Conclusion

Our results regarding the performance of learning algorithms are in line with
their asymptotic query complexity. The TTT algorithm [15] and L∗ extended
with improvements by Rivest and Schapire [22] have the same membership query
complexity and they performed similarly well. It is interesting to note that the
TTT algorithms generally performs more equivalence queries, but requires a
similar amount of test steps overall.

Our measurements demonstrate that neither deterministic conformance test-
ing nor pure random testing scales. Deterministic conformance testing showed
especially poor performance for large models. Random-words-based testing also
cannot reliably learn large models with a limited number of test steps. Hence, it
is not efficient to guarantee conformance up to some bound and it is not efficient
to test completely blind. Transition coverage showed weaknesses for small mod-
els with sink states, an important class of system models. However, transition
coverage combined with RS performed very well for large models. In general,
we have observed that the counterexample processing implemented by RS and
TTT may have a large impact on efficiency. This is especially true if test cases
are long, as is the case in transition-coverage-based testing.

The random Wp-method and mutation-based testing [4] performed well for
all types of benchmarks. Both techniques benefit from learned hypotheses and
add variability through randomisation. While random Wp showed uniform per-
formance for different learners, mutation combined with RS performed best over-
all. Mutation-based testing requires a low number of test cases for equivalence
queries, while the counterexample processing by RS keeps the number and length
of membership queries low. In conclusion, mutation or random Wp combined
with RS or TTT should be chosen to efficiently learn automata.

20 B. K. Aichernig et al.

References

1. Aichernig, B.K., et al.: Learning a behavior model of hybrid systems through com-
bining model-based testing and machine learning. In: Gaston, C., Kosmatov, N.,
Le Gall, P. (eds.) ICTSS 2019. LNCS, vol. 11812, pp. 3–21. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31280-0 1

2. Aichernig, B.K., Bloem, R., Ebrahimi, M., Tappler, M., Winter, J.: Automata
learning for symbolic execution. In: Bjørner, N., Gurfinkel, A. (eds.) 2018 Formal
Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October
30–November 2, 2018, pp. 1–9. IEEE (2018). https://doi.org/10.23919/FMCAD.
2018.8602991

3. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits.
LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8 3

4. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mutation test-
ing. J. Autom. Reason. 63(4), 1103–1134 (2019). https://doi.org/10.1007/s10817-
018-9486-0

5. Angluin, D.: Learning regular sets from queries and counter examples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

6. Berg, T., Jonsson, B., Leucker, M., Saksena, M.: Insights to Angluin’s learning.
Electron. Notes Theor. Comput. Sci. 118, 3–18 (2005). https://doi.org/10.1016/j.
entcs.2004.12.015

7. Brémond, N., Groz, R.: Case studies in learning models and testing without reset.
In: 2019 IEEE International Conference on Software Testing, Verification and Val-
idation Workshops, ICST Workshops 2019, Xi’an, China, April 22–23, 2019, pp.
40–45. IEEE (2019). https://doi.org/10.1109/ICSTW.2019.00030

8. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496

9. Combe, D., de la Higuera, C., Janodet, J.-C.: Zulu: an interactive learning com-
petition. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP
2009. LNCS (LNAI), vol. 6062, pp. 139–146. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14684-8 15

10. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

11. Fiterău-Broştean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Ver-
leg, P.: Model learning and model checking of SSH implementations. In: Erdogmus,
H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, July
10–14, 2017, pp. 142–151. ACM (2017). https://doi.org/10.1145/3092282.3092289

12. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603
(1991). https://doi.org/10.1109/32.87284

13. Groz, R., Brémond, N., Simão, A.: Using adaptive sequences for learning non-
resettable FSMs. In: Unold, O., Dyrka, W., Wieczorek, W. (eds.) Proceedings of
the 14th International Conference on Grammatical Inference, ICGI 2018, Wroc�law,
Poland, September 5–7, 2018. Proceedings of Machine Learning Research, vol. 93,
pp. 30–43. PMLR (2018). http://proceedings.mlr.press/v93/groz19a.html

https://doi.org/10.1007/978-3-030-31280-0_1
https://doi.org/10.23919/FMCAD.2018.8602991
https://doi.org/10.23919/FMCAD.2018.8602991
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/j.entcs.2004.12.015
https://doi.org/10.1016/j.entcs.2004.12.015
https://doi.org/10.1109/ICSTW.2019.00030
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/978-3-642-14684-8_15
https://doi.org/10.1007/978-3-642-14684-8_15
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1109/32.87284
http://proceedings.mlr.press/v93/groz19a.html

Benchmarking Active Automata Learning Configurations 21

14. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16558-0 55

15. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

16. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib - a framework
for active automata learning. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4 32

17. Kearns, M.J., Vazirani, U.V.: An Introduction to Compu-
tational Learning Theory. MIT Press, Cambridge (1994).
https://mitpress.mit.edu/books/introduction-computational-learning-theory

18. Khosrowjerdi, H., Meinke, K.: Learning-based testing for autonomous systems
using spatial and temporal requirements. In: Perrouin, G., Acher, M., Cordy, M.,
Devroey, X. (eds.) Proceedings of the 1st International Workshop on Machine
Learning and Software Engineering in Symbiosis, MASES@ASE 2018, Montpel-
lier, France, September 3, 2018, pp. 6–15. ACM (2018). https://doi.org/10.1145/
3243127.3243129

19. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model gener-
ation for legacy reactive systems. In: Ninth IEEE International High-Level Design
Validation and Test Workshop 2004, Sonoma Valley, CA, USA, November 10–
12, 2004, pp. 95–100. IEEE Computer Society (2004). https://doi.org/10.1109/
HLDVT.2004.1431246

20. Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for automata
learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.)
Models, Mindsets, Meta: The What, the How, and the Why Not?. LNCS, vol.
11200, pp. 390–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22348-9 23

21. Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis, Dort-
mund University of Technology (2003). https://d-nb.info/969717474/34

22. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993). https://doi.org/10.1006/inco.1993.1021

23. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In:
Jung, J., Holz, T. (eds.) 24th USENIX Security Symposium, USENIX Security
15, Washington, D.C., USA, August 12–14, 2015, pp. 193–206. USENIX Asso-
ciation (2015). https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/de-ruiter

24. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti, A., Dams,
D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3 14

25. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying automata
learning to embedded control software. In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 67–83. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25423-4 5

26. Smetsers, R., Moerman, J., Janssen, M., Verwer, S.: Complementing model learning
with mutation-based fuzzing. CoRR abs/1611.02429 (2016). http://arxiv.org/abs/
1611.02429

https://doi.org/10.1007/978-3-642-16558-0_55
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://doi.org/10.1145/3243127.3243129
https://doi.org/10.1145/3243127.3243129
https://doi.org/10.1109/HLDVT.2004.1431246
https://doi.org/10.1109/HLDVT.2004.1431246
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23
https://d-nb.info/969717474/34
https://doi.org/10.1006/inco.1993.1021
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5
http://arxiv.org/abs/1611.02429
http://arxiv.org/abs/1611.02429

22 B. K. Aichernig et al.

27. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4 8

28. Tappler, M.: Learning-based testing in networked environments in the presence
of timed and stochastic behaviour. Ph.D. thesis, Graz University of Technology
(2019)

29. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, Tokyo, Japan, March 13–17, 2017,
pp. 276–287. IEEE Computer Society (2017). https://doi.org/10.1109/ICST.2017.
32

30. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017). https://
doi.org/10.1145/2967606

31. Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics 9(4), 653–665 (1973).
https://doi.org/10.1007/BF01068590

32. Wallner, F.: Benchmarking active automata learning configurations. Bachelor’s
thesis, Graz University of Technology (2019)

33. Wallner, F.: Learn-combinations: evaluation framework for combinations of
learning and testing algorithms (2019). https://gitlab.com/felixwallner/learn-
combinations. Accessed 2 Feb 2020

https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1007/BF01068590
https://gitlab.com/felixwallner/learn-combinations
https://gitlab.com/felixwallner/learn-combinations

Mutation Testing of Smart
Contracts at Scale

Pieter Hartel1,2(B) and Richard Schumi3

1 Singapore University of Technology and Design, Singapore, Singapore
2 Delft University of Technology, Delft, The Netherlands

pieter.hartel@tudelft.nl
3 Singapore Management University, Singapore, Singapore

rschumi@smu.edu.sg

Abstract. It is crucial that smart contracts are tested thoroughly due to
their immutable nature. Even small bugs in smart contracts can lead to
huge monetary losses. However, testing is not enough; it is also important
to ensure the quality and completeness of the tests. There are already
several approaches that tackle this challenge with mutation testing, but
their effectiveness is questionable since they only considered small con-
tract samples. Hence, we evaluate the quality of smart contract mutation
testing at scale. We choose the most promising of the existing (smart con-
tract specific) mutation operators, analyse their effectiveness in terms of
killability and highlight severe vulnerabilities that can be injected with
the mutations. Moreover, we improve the existing mutation methods by
introducing a novel killing condition that is able to detect a deviation
in the gas consumption, i.e., in the monetary value that is required to
perform transactions.

Keywords: Mutation testing · Ethereum · Smart contracts · Solidity ·
Gas limit as a killing criterion · Vulnerability injection · Modifier issues

1 Introduction

Smart contracts are programs designed to express business logic for managing the
data or assets on a blockchain system. Although smart contracts already exist for
some years, they still suffer from security vulnerabilities, which can lead to huge
monetary losses [2]. Hence, it is crucial to make sure that smart contracts do
not contain such vulnerabilities. The most important method for finding both
vulnerabilities and semantic errors is testing. Testing smart contracts is even
more essential than testing regular programs, since their source is often publicly
available, which makes them an easy target, and updating them is cumbersome
due to their immutable nature. Moreover, it is critical to ensure the quality of
the tests. There are a few quality metrics, like code coverage, i.e., the percentage
of the source code that is executed by a test, but code coverage is not able to
measure the error detection capability of tests and it is rarely a good indicator

c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 23–42, 2020.
https://doi.org/10.1007/978-3-030-50995-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_2&domain=pdf
http://orcid.org/0000-0002-0411-0421
http://orcid.org/0000-0002-9278-162X
https://doi.org/10.1007/978-3-030-50995-8_2

24 P. Hartel and R. Schumi

for the number of faults in a software [28]. A technique that can perform such
measurements is mutation testing, which injects faults into a program to check
if the tests can detect these faults. A program with an injected fault is called a
mutant, and detcting a fault is called killing the mutant.

There have already been a number of publication that showed mutation
approaches for Solidity1 smart contracts [1,3,4,6,8,12,25,29,30,32]. Solidity is
a JavaScript like language2 with several special features to interact with the
underlying Ethereum blockchain. The blockchain stores code and data, and it
is managed by the owners of the Ethereum peer-to-peer network. Many of the
related mutation testing approaches introduced interesting smart contract spe-
cific mutations, but they only performed small evaluations with a few contracts.
We selected the most promising mutation operators of the related work, gen-
eralized them, and performed a large scale evaluation with about a thousand
contracts for a meaningful quality assessment of the operators. There is no gen-
erally accepted benchmark of smart contracts. Hence we use replay tests down-
loaded from Truffle-tests-for-free [10] that are automatically produced from his-
toric transaction data on the blockchain. The achieved mutation score can serve
as a baseline for testing other, more sophisticated testing methods.

We are particularly interested in smart contract specific mutations that sim-
ulate common mistakes made by smart contract developers. An example is a
forgotten or wrong function modifier [12]. A modifier can express conditions that
have to be fulfilled for the execution of a function, e.g., that the caller of the
function is the owner of the contract. Since modifiers are often concerned with
access control, omitting a modifier can have catastrophic effects. For example
management functions of a smart contract can become publicly available.

Another smart contract specific aspect is the gas consumption of transactions.
Everything on Ethereum costs some units of gas [31]. For example, executing
an ADD bytecode costs 3 gas. Storing a byte costs 4 or 68 gas, depending on the
value of the byte (zero or non-zero). The price of gas in Ether varies widely3,
and the market determines the exchange rate of Ether. The cost of a transaction
can be anything from less than a cent to several US$. Executing smart contracts
is therefore not just a matter of executing the code with the right semantics
but also of cost control. Therefore, all transactions have a gas limit to make
sure that the cost is managed. Executing smart contracts with a gas limit is
comparable to executing code on a real time system with a deadline [19]. This
opens up new possibilities for killing mutants, over and above the standard killing
conditions. Similar to detecting mutants on real-time systems with a different
timing behaviour, we measure the gas consumption of tested transactions to
find deviations to reference executions of these transactions. This allows us to
kill mutants that consume a significantly greater amount of gas.

1 Solidity documentation https://solidity.readthedocs.io.
2 On the differences between Solidity and Javascript https://vomtom.at/whats-the-

difference-between-javascript-solidity-and-ethereum.
3 Gas price tracking https://etherscan.io/chart/gasprice.

https://solidity.readthedocs.io
https://vomtom.at/whats-the-difference-between-javascript-solidity-and-ethereum
https://vomtom.at/whats-the-difference-between-javascript-solidity-and-ethereum
https://etherscan.io/chart/gasprice

Mutation Testing of Smart Contracts at Scale 25

Our major contributions are: (1) We propose a set of mutation operators on
the basis of related work and evaluate these operators at scale. (2) To further
improve the mutation score, we introduce a novel killing condition based gas
limits for smart contract transactions.

2 Background

Mutation testing [15,23,24] is an evaluation technique for assessing the quality of
a set of test cases (i.e., a test suite). It works by introducing faults into a system
via source code mutation and by analysing the ability of the test suite to detect
these faults. The idea is that the mutation should simulate common mistakes
by developers. Hence, when a test suite is able to find such artificial faults, it
should also find real faults that can occur through programming mistakes.

Developers are likely to make mistakes with standard language features, but
because Ethereum is relatively young, they are more likely to confuse Solidity
specific features. For example, Solidity offers two different types of assertions:
require(.) is used to check external consistency, and assert(.) is used to check
internal consistency. Both terminate the contract but with a different status.

Developers also have trouble with the qualifiers that Solidity offers, for exam-
ple external is for functions that can be called from other contracts and via
transactions, but not internally, and public is for functions that can either be
called internally or via transactions.

Finally, the addresses of contracts and externally owned accounts play such
an important role in smart contracts that there are several ways of specify-
ing addresses that may confuse the developer. For example msg.sender is the
address of the sender of a message, and tx.origin is the address of the exter-
nally owned account that sent a transaction. They are the same for a short call
chain but not for a longer call chain.

Mutation testing is an old technique, but it has still open challenges, like the
equivalent mutant problem, which occurs when a mutation does not change the
original program, e.g., when a fault is injected in dead code. There are methods
to detect equivalent mutants [9,11,21,22], but it is still not possible to remove
all equivalent mutants. Hence, this limits the usability of mutation testing, since
a high manual effort is required to identify equivalent mutants.

There are 11 related papers that propose mutation testing operators for Solid-
ity. The number of introduced mutation operators in these publications varies
widely, since it is up to the tester to choose the scope or specificity of the oper-
ators. Some authors prefer to introduce a specific operator for every singular
change, others choose to group together similar changes into one operator, which
is more common and was also done by us.

Bond4 implements just one mutation operator from the Mothra set and does
not provide an evaluation. Burgrara [3] does not mutate Solidity, but manu-
ally mutates lower level EVM code, ABI encodings and public key operations.
4 There is no paper available on eth-mutants, but there is a GitHub page https://

github.com/federicobond/eth-mutants.

https://github.com/federicobond/eth-mutants
https://github.com/federicobond/eth-mutants

26 P. Hartel and R. Schumi

Chapman [4] proposes 61 mutation operators for Solidity and evaluates them
on a set of six DApps. Fu et al. [6] propose mutation testing for the implemen-
tation of the Ethereum Virtual Machine (EVM), but not for smart contracts.
Groce et al. [8] describe a generic mutation tool with a set of specific operators
for Solidity, but without an evaluation. Peng et al. [25] describe five mutation
operators and evaluate them on a set of 51 smart contracts. Wang et al. [30]
use some unspecified mutations from the Mothra set to study test coverage.
Wang et al. [29] do not mutate Solidity but transactions sequences.

Three papers are closely related to ours and served us as a basis for our
mutation operators: Andesta et al. [1] propose 57 mutation operators for Solid-
ity and evaluate them by investigating how the mutation operators are able to
recreate known attacks, such as the DAO attack [18]. The authors do not pro-
vide mutation scores, and they only evaluate to what extent they can reproduce
known vulnerabilities in a few contracts. Hence, they show no evaluation for
most of their operators. Honig et al. [12] describe two Solidity specific operators
and adopt four existing operators. They evaluate the operators on two popular
DApps that have extensive test suites with high code coverage. These test suites
allow them to achieve high mutation scores, but the scope of their mutations
is limited. Wu et al. [32] propose 15 Solidity specific operators, which were also
supported by their tool called MuSC5, and tested the operators on four DApps.
They evaluate their approach by comparing the effectiveness of a test suite that
was optimised based on the mutation score to one that was optimised based on
code coverage. Moreover, they point out vulnerabilities that can be simulated
with their operators. In contrast to our work, they have fewer operators concern-
ing access control and hence they cannot reproduce some severe vulnerabilities
regarding unauthorized access. There are other smart contract languages, like
Vyper6, Pact7, Simplicity [20], which would require their own mutation opera-
tors. In principle, our novel killing condition would also work for these languages,
but we focus on Solidity since it is the most popular smart contract language.

With our generalised mutation operators we are able to inject nearly all the
changes from related work, with a few minor exceptions. For example, we do not
mutate data types because it causes too many compilation errors. The evaluation
of related work is limited to just a few DApps, and the results vary. The research
question that follows from the analysis above is: How efficient are the standard
mutation operators as compared to Solidity specific operators?

To break this question down into its more manageable sub questions we
present a case study in mutation testing of a sample smart contract first, and
then list the sub questions.

5 There was a tool demo at ASE 2019 without a paper, but there is a GitHub page
https://github.com/belikout/MuSC-Tool-Demo-repo.

6 Vyper language documentation https://vyper.readthedocs.io.
7 Pact white paper https://www.kadena.io/kadena-pactwhitepaper.

https://github.com/belikout/MuSC-Tool-Demo-repo
https://vyper.readthedocs.io
https://www.kadena.io/kadena-pactwhitepaper

Mutation Testing of Smart Contracts at Scale 27

2.1 A Case Study in Mutation: Vitaluck

As a case study we use a lottery contract called Vitaluck [5]. The source of the
contract can be browsed on Etherscan8. The contract contains a main method
called Play and a number of management methods; Play contains the core of
the business logic of the lottery. Each call to Play draws a random number in
the range 1 to 1000 using the time stamp of the current block as a source of
entropy. If the random number is greater than 900, the player wins the jackpot,
and a percentage of each bet is paid to the owner of the contract.

Vitaluck is a relatively short contract (139 lines of source code excluding
comments). It has not been used extensively; there are only 27 historic trans-
actions that can also be browsed on Etherscan. The first transaction deploys
the contract, and the remaining historic transactions are all calls to the Play
method. None of management methods of the contract are ever called by the
historic transactions on the blockchain. However, the Play method occupies the
majority of the code and provides ample opportunities for using standard and
Solidity specific operators. We give a number of examples of mutations below.

Each example is labelled with the mutation operator and a brief description
of the operator. We indicate common known vulnerabilities, as described in
the smart contract weakness classification (SWC) registry [27], which can be
simulated with the mutation operators. Table 1 summarises the operators.

LR I - Literal Integer replacement Since Vitaluck is a lottery, any mutation
to the code that manages the jackpot has a high likelihood of causing a fault in
the contract. The first sample mutation (line 149) changes 900 to 1 This is shown
below, using an output format inspired by the Unix diff command. The range
of finalRandomNumber is 1 to 1000. If the condition in the if statement is true,
the jackpot will be paid out, which in the original code happens on average 10%
(1–900/1000=0.1) of the time. After the mutation, the jackpot will be paid out
99.9% (1−1/1000=0.999) of the time, which completely breaks the contract.
< if(_finalRandomNumber >= 900) {

> if(_finalRandomNumber >= 1) {

To determine if a replay test kills a mutant, we compare the output of the
original contract to the output of the mutant. The output of a contract consists
of the status and the emitted events of the transactions, and the outputs of the
pure functions called by the test. The mutant above does not affect the status of
any of the transactions of the test (they all succeed), but it does cause the event
NewPlay(address player, uint number, bool won); to be emitted 17 times
more with won=true than the original contract. Similarly, the mutant causes
the pure function GetWinningAddress() to return a different address than the
original contract. Both these differences are easy to detect from the output of
the replay test, thus supporting the conclusion that this particular mutant is
killed. For the remaining examples, we will not discuss the outputs.

MORD* - Modifier Replacement or Deletion The sample mutation below (line
257) deletes the modifier onlyCeo from the method that installs the address of a

8 Vitaluck on Etherscan https://etherscan.io/address/0xef7c7254c290df3d1671823
56255cdfd8d3b400b.

https://etherscan.io/address/0xef7c7254c290df3d167182356255cdfd8d3b400b
https://etherscan.io/address/0xef7c7254c290df3d167182356255cdfd8d3b400b

28 P. Hartel and R. Schumi

new CEO. This allows anyone to set the payout address to his own, rather than
just the CEO. This behaviour also corresponds to the vulnerability SWC-105,
which can occur when the access control for functions is insufficient. The oper-
ator can further cause vulnerabilities, like the SWC-106 Unprotected SELFDE-
STRUCT Instruction, or SWC-123 Requirement Violation. Note that adequate
tests for such faults would try to call these functions with unauthorized users in
order to check if the expected error message occurs.
< function modifyCeo(address _newCeo) public onlyCeo {

> function modifyCeo(address _newCeo) public {

BOR - Boolean Operator Replacement The last sample mutation (line 93)
replaces the Boolean operator = in the second statement of the function Play.
< if(totalTickets = 0) { ... return; }

> if(totalTickets != 0) { ... return; }

Most smart contracts use the constructor to initialise the state of the con-
tract. For some unknown reason, Vitaluck does not have a constructor. Instead,
the contract relies on the first call to Play to initialise the state, including the
jackpot. This is poor coding style, and it may be a security problem too. The
mutant above allows us to discover the problem as follows. The first Play trans-
action executes the then branch, for which it needs 62347 gas out of a gas limit
of 93520. However, the mutant skips the then branch and executes the rest of
the Play method. This takes 272097 gas, which is about 3 times the gas limit.
This suggests that using the gas limit to kill mutants might be of interest.

2.2 Sub Questions

Based on the Vitaluck case study we formulate subsidiary research questions.

Discarding Stillborn Mutants. We created a simple tool (ContractMut) that
makes maximum use of existing state-of-the-art tools, such as the Truffle frame-
work9 and the Solidity compiler. In particular, the tool relies heavily on the
Solidity compiler to read the source file and to generate the abstract syntax
tree (AST). It would also be possible to mutate at the bytecode-level, but this
would make it more difficult to understand what a mutant is doing. The AST
approach has the advantages that the amount of bespoke tooling to be built
is limited. The disadvantage is that the compiler has more information than it
exposes via the AST. Our mutation tool does not have semantic information
about the original code or the mutant as it works on the AST generated by
the Solidity compiler. This means that some mutants are generated that do not
compile. For example, when replacing * by - in an expression such as 1 * 9 /
10000000000000000000, an error occurs because a rational constant cannot be
subtracted from an integer. This raises the sub question: To what extent does
the tool generate stillborn mutants?

Discarding Duplicate and Equivalent Mutants. Duplicate and equivalent
mutants distort the mutation score. The next sub question is therefore: How to
detect duplicate and equivalent mutants?
9 Truffle framework documentation https://www.trufflesuite.com.

https://www.trufflesuite.com

Mutation Testing of Smart Contracts at Scale 29

Mutation Score. The purpose of generating mutants is to assess the quality of a
test. If too few mutants are killed by a test, the usual course of action is to develop
more tests, which is labour-intensive. However, for a smart contract like Vitaluck
that has already been deployed on the blockchain, all historic transactions are
available and can be decompiled into a test. A test then consists of replaying the
sequence of historic transactions. We can control the size of the test by varying
the number of transactions executed by the mutant. As the size of the test
increases, we expect the mutation score to increase. Unfortunately, most historic
transactions execute the same method calls, so the increase in mutation score
should tail off rapidly. The sub question then is: What is the relation between
the mutation score and the length of the test?

Efficiency of the Mutation Operators. We follow the competent program-
mer hypothesis [34] by mutating a subtle variant of a program fragment that
could have been created by mistake. The sub question is: What is the relative
success of standard mutation operators as compared Solidity specific operators?

Using Outputs in a Mutant Killing Condition. To determine whether a
mutant is killed, a test compares the output of the original to the output of the
mutant and kills the mutant if there are difference. The next sub question is:
Which observable outputs can be used in the killing condition?

Using Gas in a Mutant Killing Condition. A tight limit on the amount of
gas reduces the risk of having to pay too much for a transaction. However, if the
limit is too tight, some method calls may fail unexpectedly. Deciding on the gas
limit is therefore a non-trivial problem. This raises the following sub question:
To what extent is killing mutants based on exceeding the gas limit efficient?

Table 1. Mutation operators for Solidity programs. Operators marked with an asterisk
are Solidity specific.

Mothra operator Our operator Description SWC ID

AOR/LCE/ROR AOR Assignment Operator Replacement 129

AOR/LCR/ROR BOR Binary Operator Replacement 129

SDL ESD Expression Statement Deletion

SVR ITSCR Identifier with same Type, Scope, and Constancy

Replacement

105,106

RSR JSRD Jump Statement Replacement/Deletion

- LR A* Literal Address Replacement 115

CRP/CSR/SCR/SRC LR {B,I,S} Boolean, Int, String Replacement

- MORD* Modifier Replacement/Deletion 105,106,123

- QRD* Qualifier for storage local or state mutability

Replacement/Deletion

100,108

- RAR* R-Value Address Replacement 115

AOR/LCR/ROR UORD Unary Operator Replacement/Deletion 129

SVR VDTSCS Variable Declaration with same Type Scope and

Constancy Swap

30 P. Hartel and R. Schumi

3 Method

We describe an experiment in mutation testing of smart contracts on Ethereum.
The experiments have been conducted on a uniform random sample of 1,120
smart contracts with tests from Truffle-tests-for-free that can also be down-
loaded from the replication package of this paper. We removed 157 contracts
from the set because either they were non-deterministic or they did not have a
test with 50 transactions. These 963 contracts are representative for the entire
collection of 50,000+ verified smart contracts on Etherscan [10], and the sample
is relatively large [24]. The tests are replay tests and relatively short, with an
average bytecode coverage of 51.4% [10]. Our results are therefore a baseline.

A test for a contract begins by compiling and re-deploying the contract on a
pristine blockchain. We use the Truffle framework for this with the exact same
time stamps and transaction parameters as the historic deployment on the public
Ethereum blockchain. All mainnet addresses are replaced by testnet addresses
and all externally owned accounts have a generous balance. After re-deployment,
the first 50 historic transactions are re-played, also with the historic time stamps
and transaction parameters [10]. After each transaction all pure methods of a
contract are called, with fuzzed parameters. This is intended to simulate any
actions by a Distributed Application (DApp) built on top of the contract.

To detect whether a mutant is killed, we compare the outputs of a trans-
action generated by the original contract to the outputs of the corresponding
transaction generated by the mutant contract. We compare only observable out-
puts of a transaction, which means that we consider only strong mutants that
propagate faults to the outputs.

Discarding Stillborn Mutants. ContractMut uses the Solidity compiler to
compile all the mutants it generates. If the compilation fails, the mutant is
discarded. Smart contracts are usually relatively small, hence the time wasted
on failed compilations is limited.

Discarding Duplicate and Equivalent Mutants. ContractMut implements
the trivially equivalent mutant detection method [17] to discarded duplicate and
equivalent mutants. Each new mutant is compiled and the bytecode of the new
mutant is compared to the bytecode of the original and the bytecode of all
previously generated mutants. If there is a match, the new mutant is discarded.

Mutation Score. Since the tests are machine generated, they are consistent
in the sense that all sample contracts are tested by making 50 transactions.
The advantage of using machine-generated tests is that this scales well to large
numbers of contracts. The disadvantage is that the tests are not necessarily
representative for handcrafted tests. For example, the bytecode coverage of the
tests varies considerably, from 6% to 98% [10].

Efficiency of the Mutation Operators. ContractMut implements the core
of the Mothra set [16], which is considered the minimum standard for mutation
testing [24], as well as the essence of recently proposed Solidity specific operators.
Table 1 lists the operators in alphabetical order. The first column of the table
indicates the correspondence with the Mothra operators, and operators marked
with an asterisk are Solidity specific. The next two columns give the name of the

Mutation Testing of Smart Contracts at Scale 31

operator, and a description. The last column shows the relation of the operators
to known vulnerabilities based on the smart contract weakness classification
(SWC) registry [27].

We have implemented 84.8% of all 191 mutation operators from related work
as a manageable set of 14 operators. We have not implemented object oriented
operators (5.2%), and leave this for future work. Signed integers are rare in con-
tracts; hence we have not implemented related operators (1.6%). We did not
insert mutations at random locations in the code (6.8%), or type level muta-
tions (1.0%), because these would generate mostly stillborn mutants. Our BOR
operator covers 30.4% of the operators from related work, followed by QRD
(18.3%), and ITSCR (11.0%). The replication package of this paper provides a
table (comparison.xslx) mapping the operators from related work onto ours.

Mutants are created as follows. Each node in the AST represents a program
fragment that could in principle be mutated. Therefore, all relevant AST nodes
are collected in a candidate list. This includes simple statements, literals, identi-
fiers, function parameters, and operators. Compound statements, methods, and
even entire contracts are not in the candidate list, because mutations to such
large program fragments are not consistent with the competent programmer
hypothesis. Once the candidate list has been built, the tool repeatedly selects
a mutation candidate uniformly at random from the list [33] and applies the
appropriate mutation operator from Table 1.

Table 2. Gas used by the historic transaction as a percentage of the historic gas limit
versus gas used by the replayed transaction as a percentage of the calculated gas limit.

% gas used of limit Historic Replay

(count) (%) (count) (%)

≥ 0% & < 20% 5062 11.3% 4292 12.3%

≥ 20% & < 40% 6893 15.4% 5439 15.6%

≥ 40% & < 60% 6405 14.3% 4314 12.4%

≥ 60% & < 80% 9847 21.9% 7522 21.6%

≥ 80% & < 100% 9564 21.3% 9119 26.2%

= 100% 7127 15.9% 4171 12.0%

Tx success 44898 100.0% 34857 100.0%

Tx failed 6032 16073

Total Tx 50930 50930

Minimum gas limit 21000 21000

Maximum gas limit 8000029 15279099

Mean gas limit 397212 416350

Std. deviation gas limit 1002691 1071615

Using Outputs in a Mutant Killing Condition. To determine whether a
mutant is killed the outputs of the original contract are compared to the outputs

32 P. Hartel and R. Schumi

of the mutant while executing each transaction of the test. TxEvMeth indicates a
comparison of all observable outputs of a transaction as follows. Tx compares the
transaction status (i.e., success, failure, or out of gas). Ev compares all outputs
of all events emitted by a transaction. Meth compares all outputs of all pure
methods called by the DApp simulation after each transaction. The combination
TxEvMeth is the standard mutant killing condition.

Using Gas in a Mutant Killing Condition. To assess how tight the gas limits
on historic transactions are, we have analysed the statistics of all N = 50, 930
historic transactions downloaded from Truffle-tests-for-free. Columns two and
three of Table 2 show that 15.9% of the sample use exactly the gas limit, and
11.3% use less than 20% of the gas limit. The minimum gas limit is 21,000 and the
maximum is 8,000,029, which represents a large range. The standard deviation
is also relatively large (1,002,691). Hence, there is considerable variance in how
developers estimate the limit on transactions.

There are two reasons why the gas limit is often loose. Firstly, the standard
tool estimateGas (from web3.eth) has to work out which EVM instructions a
transaction will execute. Since each instruction costs a known amount of gas [31],
the total gas cost of the transaction can then be calculated. However, for any
non-trivial transaction the exact list of EVM instructions depends on the data
in storage, and the data passed as parameters etc. This makes the estimates
unreliable. 10

Secondly, since gas costs real money, ultimately the developer has to decide on
the basis of the gas estimate what the gas limit of the transaction should be. For
example, setting the gas limit lower than the estimate reduces the risk of losing
money via gas-based attacks, but also increases the risk of failing transactions.

For every transaction of a mutant, we could have called estimateGas to
obtain an up-to-date gas estimate. However, we cannot go back to the developer
and ask him to decide whether to increase or decrease the gas limit. In general,
we do not even know who the developer might be. Therefore, we have developed
a heuristic that transfers the developers decision on the gas limit of the historic
transaction to the gas limit of the mutant transaction.

Assume that the limit as provided by a historic transaction, glh, is a hard
limit on the amount of gas that the developer is prepared to use. Then, in
principle we can use this limit to kill all mutants executing the same transaction
that exceed the limit. However, since we are replaying each historic transaction
on the Truffle framework, the amount of gas used by replaying the transaction
may be slightly different. To compensate for this, we propose to calculate the
gas limit on replaying a transaction, glr , as the maximum of the gas limit of
the historic transaction, and the scaled gas limit of the historic transaction. The
scaling applied is the ratio of gur , the gas used by the replay, and guh, the gas
used by the historic transaction:

glr = max (glh,
gur
guh

glh)

10 What are the limitations to estimateGas and when would its estimate be considerably
wrong? https://ethereum.stackexchange.com/questions/266.

https://ethereum.stackexchange.com/questions/266

Mutation Testing of Smart Contracts at Scale 33

Here glh, and guh are both obtained from historic transaction on the blockchain.
gur is obtained by replaying the historic (i.e. not mutated) transaction on the
Truffle framework, with the maximum gas limit.

With this heuristic the last sample mutant of Sect. 2 will be killed. If we had
used web3.eth.estimateGas instead of the heuristic, the mutation would not
have been killed. However, this would go against the intention of the developer,
who had anticipated that the first call of the Play method should just initialise
the contract, thus never taking a large amount of gas.

The last two columns of Table 2 show the statistics of glr calculated according
to the formula above. The distribution is similar to that of the gas used by the
historic transaction, but there is more variance. The max operation in particular
makes the limit on the gas used by the replay less tight than the gas limit on
the historic transaction. In the next section, we will investigate to what extent
glr is efficient as a killing condition. We will call this the Limit condition, and
apply it on its own, and in combination with the other two conditions.

4 Results

This section describes the results of our experiment in mutation testing of smart
contracts on Ethereum. For each smart contract with a test we tried to generate
exactly 50 non-equivalent mutants. Since each attempt requires a call to the
Solidity compiler, we set an upper limit of 1,000 on the number of attempts
to generate a mutant. For 18 smart contracts fewer than 50 trivially non-
equivalent mutants were generated, but for the remaining 98.3% of the contracts
we obtained 50 non-equivalent mutants. In total, we generated 71,314 mutants,
of which 47,870 were compilable and not trivial equivalent [17] or duplicate.
For each contract we then executed the tests against all trivially non-equivalent
mutants on the Truffle framework. We ran 47,870 × 50 = 2,393,500 transactions,
which took over a week to run on 14 Linux virtual machines (Xeon dual core,
2.4 GHZ, with 16 GB RAM).

Discarding Stillborn Mutants. Of the generated 71,314 mutants, 11,252
(15.8%) could not be compiled. As expected the QRD* operator generates the
most stillborn mutants: 63.3% of the mutants with this operator did not com-
pile. We take this as an indication that using the limited amount of semantic
information available in the Solidity AST is an acceptable approach towards
building a baseline mutation tool. The percentage of stillborn mutants can be
reduced to zero if the full power of various semantics analyses of the compiler
could be leveraged, but the cost of building such a mutation tool just to reduce a
relatively small percentage of failed compilations alone would not be justifiable.

Discarding Duplicate and Equivalent Mutants. Of the 71,314 generated
mutants, 12,192 (17.1%) were trivially equivalent to the original or a duplicate
of another mutant. The trivial equivalent detection method [17] that we used is
therefore reasonably effective, especially since often about 40–45% of the mutants
can be equivalent [9,26].

34 P. Hartel and R. Schumi

Fig. 1. Percentage of non-equivalent mutants killed as a function of the length of the
test. The error bars correspond to a confidence interval of 95%.

Mutation Score. Fig. 1 shows how the mutation score increases with the test
size. The error bars for a 95% confidence interval are small. The standard mutant
killing condition TxEvMeth has most success early on, whereas the success of
the Limit condition increases more gradually. This difference can be explained
as follows. All tests execute the constructor method in transaction 0 and one
regular method in transaction 1. A large fraction of the tests only execute these
two methods, hence most of the opportunity for killing a mutant on regular
outputs occurs during transactions 0 and 1.

Since in general size matters [13], we fixed the size of the tests to 50 trans-
actions. However, we could not fix the size of the smart contracts. To study the
influence of contract size we have calculated the rank correlation of the size of the
bytecode and the mutation score. For the combined killing condition TxEvMeth-
Limit, we found Kendall’s τ = −0.11 (p = 0.01, 2-tailed). This means that the
mutation score is not correlated with the size of the test. We also calculated
the correlation between the mutation score and the fraction of bytecodes that
was executed by the test and found the correlation to be moderate: Kendall’s
τ = 0.45 (p = 0.01, 2-tailed). The literature reports similar figures [7].

Efficiency of the Mutation Operators. Table 3 shows to what extent the
mutation operators from Table 1 have been successful. The first column gives
the name of the mutation operator. The next two columns indicate how many
mutants were not killed, and how many were killed. The fourth column gives the
total number of trivially non-equivalent mutants. The last two columns give the
percentages related to the numbers in columns two and three.

Mutation Testing of Smart Contracts at Scale 35

Table 3. Contingency table of the mutation operators against the mutation score with
the TxEvMethLimit mutant killing condition.

Mutation operator Non-equivalent mutants Percentage

Not killed Killed Total Not killed Killed

AOR 2178 1039 3217 67.7% 32.3%

BOR 3549 2245 5794 61.3% 38.7%

ESD 5246 2595 7841 66.9% 33.1%

ITSCR 7796 4085 11881 65.6% 34.4%

JSRD 1866 1090 2956 63.1% 36.9%

LR A* 46 58 104 44.2% 55.8%

LR B 973 225 1198 81.2% 18.8%

LR I 1526 1089 2615 58.4% 41.6%

LR S 158 329 487 32.4% 67.6%

MORD* 921 143 1064 86.6% 13.4%

QRD* 1041 1761 2802 37.2% 62.8%

RAR* 3002 1158 4160 72.2% 27.8%

UORD 297 189 486 61.1% 38.9%

VDTSCS 2215 1050 3265 67.8% 32.2%

Total 30814 17056 47870 64.4% 35.6%

χ2 = 1759.6, df = 13, p < 0.001

Table 4. Comparison of the effectiveness of all mutants versus the manually analysed
mutant after test bootstrapping.

Mutation operator All mutants Stratified sample

Killed Total Killed Total Equivalent Killable

Mothra 35.1% 39740 41.3% 223 3.1% 96.9%

Solidity 38.4% 8130 48.1% 27 3.7% 92.6%

Total 35.6% 47870 42.0% 250 3.2% 96.4%

χ2 = 32.2, df = 1, p < 0.001 χ2 = 8.3, df = 2, p = 0.016

Table 3 shows that of the four Solidity specific operators (marked with an
asterisk) QRD* is the most efficient when it comes to being easily killed. This is
because subtle changes to the qualifiers, such as removing the payable attribute
from a method completely breaks the contract. The standard LR S operator
is the most efficient operator overall, because strings in Solidity are typically
used for communication with the DApp built on top of a smart contract. This
means that even the smallest change to a string will be detected by compar-
ing event parameters or method results. The MORD* operator has the lowest
efficiency (13.4%), because relatively few historic transactions try to violate the
access control implemented by the modifiers. The RAR* operator also has a low
efficiency, for the same reason: few historic transactions try to exploit bugs in
address checking.

36 P. Hartel and R. Schumi

Table 5. Comparison of coverage and mutation scores with related work.

Related work Average
mutation score

Average statement
coverage

DApps or smart contracts

[12] 96.0% 99.5% Aragon OS,
Openzeppelin-Solidity

[32] 43.9% 68.9% Skincoin, SmartIdentity,
AirSwap, Cryptofin

[4] 40.3% 95.4% MetaCoin, MultiSigWallet,
Alice

This 35.5% 47.6%∗ 963 Verified smart contracts

bootstr. 96.4% DBToken, MultiSigWallet,
NumberBoard, casinoProxy,
mall

∗ Average bytecode coverage

To assess the effect of using a replay test suite on the mutation score, we
have analysed by hand all 250 mutants generated for 5 carefully selected smart
contracts. The analysis meant that for each mutant we looked at whether the
test could be extended in such a way that the output could kill the test. We
call this test bootstrapping: a method that uses the replay tests to systematically
create proper tests. Each contract took us about one day to analyse, hence we
had to limit the number of contracts to a small number like 5.

We used a stratified sampling method, taking one contract for the top 5%
contracts by mutation score, one contract from the bottom 5%, and one contract
each from 25 ± 2.5%, 50 ± 2.5% and 75 ± 2.5%. In selecting the contracts from
the five ranges, we tried to avoid analysing the same type of contract more than
once. We analysed: DBToken11, MultiSigWallet12, the auction NumberBoard13,
the game casinoProxy14, and the asset manager mall15.

Table 4 shows that the key statistics of the 250 manually analysed mutants
and all 47,870 mutants are comparable, which suggests that the results we obtain
for the 250 mutants are representative for all mutants. The left and right half
of Table 4 show a contingency table for the mutation operator types versus the
status of the different mutation results. The Mothra operators generate more
semantically equivalent mutants than the solidity operators, but overall the per-

11 DBToken on Etherscan https://etherscan.io/address/0x42a952Ac23d020610355
Cf425d0dfa58295287BE.

12 MultiSigWallet on Etherscan https://etherscan.io/address/0xa723606e907bf842
15d5785ea7f6cd93a0fbd121.

13 NumberBoard on Etherscan https://etherscan.io/address/0x9249133819102b2
ed31680468c8c67F6Fe9E7505.

14 casinoProxy on Etherscan https://etherscan.io/address/0x23a3db04432123ccdf
4459684329cc7c0b022.

15 mall on Etherscan https://etherscan.io/address/0x3304a44aa16ec40fb53a5b8f086
f230c237f683d.

https://etherscan.io/address/0x42a952Ac23d020610355Cf425d0dfa58295287BE
https://etherscan.io/address/0x42a952Ac23d020610355Cf425d0dfa58295287BE
https://etherscan.io/address/0xa723606e907bf84215d5785ea7f6cd93a0fbd121
https://etherscan.io/address/0xa723606e907bf84215d5785ea7f6cd93a0fbd121
https://etherscan.io/address/0x9249133819102b2ed31680468c8c67F6Fe9E7505
https://etherscan.io/address/0x9249133819102b2ed31680468c8c67F6Fe9E7505
https://etherscan.io/address/0x23a3db04432123ccdf6ef4459684329cc7c0b022
https://etherscan.io/address/0x23a3db04432123ccdf6ef4459684329cc7c0b022
https://etherscan.io/address/0x3304a44aa16ec40fb53a5b8f086f230c237f683d
https://etherscan.io/address/0x3304a44aa16ec40fb53a5b8f086f230c237f683d

Mutation Testing of Smart Contracts at Scale 37

centage of semantically equivalent mutants in the stratified sample is only 3.2%.
This indicates that semantically equivalent mutants do not inflate the base line
statistics by more than a few per cent points. The second conclusion that can be
drawn from Table 4 is that almost 100% mutation scores are possible with boot-
strapped versions the replay tests. A mutation score of 100% is not achievable
with the current implementation because it cannot detect the success or failure
of an internal transaction.

Of the 3,304,002 bytecode instructions of all original contracts together, the
replay tests execute 1,574,239 instructions, giving an average bytecode cover-
age of 47.6%. This makes achieving a high mutation score more difficult, as a
mutation to code that is not executed will never be killed. Our results are thus
a baseline, and to explore how far removed the base line is from results with
hand-crafted tests we compare our results to related work in Table 5. The first
column lists the citation to all related work that we aware of that report muta-
tion scores for smart contracts. The next two columns give the average mutation
score, and the statement (bytecode) coverage. The last column lists the DApps
tested.

High statement coverage does not necessarily lead to a high mutation score,
because the effect of the mutant may not be visible in the outputs. Honig et al.
[12] propose a small set of highly efficient mutants. Chapman [4] has about the
same code coverage as Honig et al. but he proposes a large set of mutants; this
reduces his mutation score. Our main result is comparable to that of Wu et al.
[32], but we have also shown that by taking the replay tests as a basis and
improving them by test bootstrapping leads to the same high mutation scores
that others have found.

Using Outputs in a Mutant Killing Condition. The mutation score for
TxEvMethLimit reaches 35.6%, for TxEvMeth 30.2%, and for Limit 8.3%. These
mutation scores are low compared to state-of-the-art approaches [24]. However,
this figure is useful as a baseline for other approaches that use realistic tests
instead of replay tests, and our aim was not to achieve a high mutation score,
but to evaluate the applicability of mutation operators for a high number of
contracts. Moreover, even such a small score is helpful to show what kind of
tests are missing and what has to be done to improve the tests.

Using Gas in a Mutant Killing Condition. The contribution of the gas
limit as killing condition is 35.6%−30.2%= 5.4%, which seems rather small, but
since it can require a huge manual effort to analyse the surviving mutant, even
such a small fraction can save hours or days of manual work.

5 Discussion and Limitations

We put the results in a broader context and answer the research question.

Discarding Stillborn Mutants We believe that the percentage of the gener-
ated mutants that do not compile was relatively small and that it was accept-
able in the exploratory context. A production tool would have to implement

38 P. Hartel and R. Schumi

more sophisticated mutations and would therefore have more knowledge of the
semantics of smart contracts.

Discarding Duplicate and Equivalent Mutants. A simple but state-of-the-
art approach has been used to address the equivalent mutant problem. What we
have not investigated is to what extent gas usage can be leveraged to discard
more equivalent mutants; we suggest this as a topic for future work.

Mutation Score. By leveraging the historic data available on the Ethereum
blockchain we have been able to generate tests that can be truncated to explore
the relationship between test strength and the mutation score. As expected, the
efficiency of the mutation operators tails off quickly.

Efficiency of the Mutation Operators. One of the Solidity specific muta-
tion operators was found to be more effective in producing mutants that have
a high chance of being killed than most of the standard mutation operators.
We take this as an indication that further research is needed to develop more
sophisticated Solidity specific mutation operators. Another, important aspect
of mutation operators is to which extent they can introduce common or severe
bugs. To assess this quality, we inspected the ability of our operators to introduce
known vulnerabilities that can have severe consequences. The associated vulner-
abilities as (specified by the SWC) are shown in Table 1. It should be noted that
we are able to simulate most vulnerabilities, which are related to simple mistakes
in the source code. Additionally, it can be seen that the specific operators are
concerned with more vulnerabilities and that they are more severe compared to
the standard operators. For example, MORD* can trigger three different kinds
of access control related vulnerabilities, which would not be possible with the
standard operators. This allowed us to discover a vulnerability in one of the con-
tracts, which we have reported to the owners by way of responsible disclosure:
the modifier onlyOwner is missing on one of the methods.

Our mutation score is lower than the scores reported by related work but this
is not due to the choice of mutation operators but caused by the use of replay
tests. Bootstrapped replay tests are comparable to hand crafted tests.

Using Outputs in a Mutant Killing Condition. Comparing the observable
outputs of a transaction of mutant and original is an efficient killing condition.

Using Gas in a Mutant Killing Condition. We have shown that using the
gas consumption as a killing condition can improve the mutation score and hence
the effectiveness of the mutation approach in general. The contribution of the
gas limit as a killing condition is small because gas limits are usually not tight.
We suggest as future work an exploration of alternative heuristics to determine
a tighter gas limit.

We are now able to answer the main research question: Our Solidity specific
mutation operators are more efficient than the standard operators, and they also
are able to introduce more and more severe vulnerabilities. Table 4 shows that
the difference in efficiency is 3.3% point, which is modest, but also statistically
significant at (p < 0.001).

Mutation Testing of Smart Contracts at Scale 39

5.1 Limitations and Threats to Validity

A threat to the validity of our evaluation might be that we only consider a replay
test suite that is less powerful than other testing techniques, which might obtain
a higher mutation score. Although there are better testing techniques, the focus
of this work was not to find them, but to build a mutation-based test quality
assurance method that can also serve as a baseline for other testing techniques.

Another argument regarding the validity of our method might be that it is
not wise to kill a mutant only based on a different gas usage since it could still be
semantically equal. However, we believe that a different gas usage is still a valid
reason to kill a mutant, because it represents a change in the monetary cost of a
transaction. Moreover, there are other comparable cost factors, like energy [14]
or execution time [19] that have been used as killing condition in the past.

The replication package of this paper presents the recently proposed checklist
[24] for research on mutation testing to analyse our work.

6 Conclusions and Future Work

From almost 200 mutation operators from related work, we have generalized a
compact set of 14 operators and tested them on a large scale. Our Solidity specific
operators were able to produce nearly all the mutations that were proposed in
the related work, with only a few minor exceptions.

To achieve scale, we used replay tests that were automatically generated from
the Ethereum blockchain. To the best of our knowledge there is no related work
that performs mutation testing for smart contracts at scale.

The average mutation scores that we achieved with our replay tests were not
as good as the scores from the best handwritten tests, but also various studies
with manual tests have comparable scores. It should be pointed out that the
score can depend strongly on the choice of the mutation operators, and manual
tests often undergo many iterations to improve the score. We have also shown
that the replay tests can be improved manually, such that a score close to 100%
can be reached.

Using our novel killing condition based on the gas limit allowed us to improve
the mutation score by a maximum of 5.5%. This does not sound like much, but
it can save a lot of manual effort for the analysis of surviving mutants.

Four of the 14 operators have been specifically developed for Solidity and
the others originate form the core of the Mothra set. The Solidity-specific oper-
ators are on average more efficient than the standard Mothra operators. We
have shown that serious vulnerabilities can be detected with the help of specific
operators; this shows that tailor-made mutation operators are useful.

It would be interesting to study errors made by Solidity developers at scale
to validate the mutation operators. Another area of future work would be to use
the gas limit on transactions to detect equivalent mutants.

Acknowledgments. This work was supported in part by the National Research Foun-
dation (NRF), Prime Minister’s Office, Singapore, under its National Cybersecurity

40 P. Hartel and R. Schumi

R&D Programme (Award No. NRF2016NCR-NCR002-028) and administered by the
National Cybersecurity R&D Directorate.

We thank Maarten Everts, Joran Honig, Sun Jun, and the anonymous reviewers
for their comments on our work.

The replication package for the experiments can be found at https://doi.org/10.
5281/zenodo.3726691.

References

1. Andesta, E., Faghih, F., Fooladgar, M.: Testing smart contracts gets smarter. Tech-
nical report, Department of Electrical and Computer Engineering University of
Tehran, December 2019. https://arxiv.org/abs/1912.04780

2. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

3. Bugrara, S.: User experience with language-independent formal verification. Tech-
nical report, ConsenSys, December 2019. https://arxiv.org/abs/1912.02951

4. Chapman, P.: Deviant: a mutation testing tool for Solidity smart contracts. Mas-
ter thesis 1593, Boise State University, August 2019. https://doi.org/10.18122/td/
1593/boisestate

5. Chia, V., et al.: Rethinking blockchain security: position paper. In: Atiquzzaman,
M., Li, J., Meng, W. (eds.) Confs on Internet of Things, Green Computing and
Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain,
Computer and Information Technology, Congress on Cybermatics, pp. 1273–1280.
IEEE, Halifax, Canada, July 2018. https://doi.org/10.1109/Cybermatics 2018.
2018.00222

6. Fu, Y., Ren, M., Ma, F., Jiang, Y., Shi, H., Sun, J.: Evmfuzz: differential fuzz
testing of Ethereum virtual machine. Technical report, Tsinghua University, China,
April 2019. https://arxiv.org/abs/1903.08483

7. Gopinath, R., Jensen, C., Groce, A.: Code coverage for suite evaluation by develop-
ers. In: 36th International Conference on Software Engineering (ICSE), pp. 72–82.
ACM, New York, Hyderabad, India, May 2014. https://doi.org/10.1145/2568225.
2568278

8. Groce, A., Holmes, J., Marinov, D., Shi, A., Zhang, L.: An extensible, regular-
expression-based tool for multi-language mutant generation. In: 40th International
Conference on Software Engineering: Companion Proceeedings (ICSE), pp. 25–
28. ACM, New York, Gothenburg, Sweden, May 2018. https://doi.org/10.1145/
3183440.3183485

9. Grün, B.J.M., Schuler, D., Zeller, A.: The impact of equivalent mutants. In: Second
International Conference on Software Testing Verification and Validation, ICST
2009, Denver, Colorado, USA, 1–4 April 2009, Workshops Proceedings, pp. 192–
199. IEEE Computer Society (2009). https://doi.org/10.1109/ICSTW.2009.37

10. Hartel, P., van Staalduinen, M.: Truffle tests for free - replaying Ethereum smart
contracts for transparency. Technical report, Singapore University of Technology
and Design, Singapore, July 2019. https://arxiv.org/abs/1907.09208

11. Hierons, R.M., Harman, M., Danicic, S.: Using program slicing to assist in the
detection of equivalent mutants. Softw. Test. Verif. Reliab. 9(4), 233–262 (1999).
https://doi.org/10.1002/(sici)1099-1689(199912)9:4〈233::aid-stvr191〉3.0.co;2-3

https://doi.org/10.5281/zenodo.3726691
https://doi.org/10.5281/zenodo.3726691
https://arxiv.org/abs/1912.04780
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://arxiv.org/abs/1912.02951
https://doi.org/10.18122/td/1593/boisestate
https://doi.org/10.18122/td/1593/boisestate
https://doi.org/10.1109/Cybermatics_2018.2018.00222
https://doi.org/10.1109/Cybermatics_2018.2018.00222
https://arxiv.org/abs/1903.08483
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1109/ICSTW.2009.37
https://arxiv.org/abs/1907.09208
https://doi.org/10.1002/(sici)1099-1689(199912)9:4<233::aid-stvr191>3.0.co;2-3

Mutation Testing of Smart Contracts at Scale 41

12. Honig, J.J., Everts, M.H., Huisman, M.: Practical mutation testing for smart con-
tracts. In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) DPM/CBT -2019. LNCS, vol. 11737, pp. 289–303. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31500-9 19

13. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test
suite effectiveness. In: 36th International Conference on Software Engineering
(ICSE), pp. 435–445. ACM, New York, Hyderabad (2014). https://doi.org/10.
1145/2568225.2568271

14. Jabbarvand, R., Malek, S.: μdroid: an energy-aware mutation testing framework
for android. In: Bodden, E., Schäfer, W., van Deursen, A., Zisman, A. (eds.) Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, Paderborn, Germany, 4–8 September 2017. pp. 208–219. ACM
(2017). https://doi.org/10.1145/3106237.3106244

15. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011). https://doi.org/10.1109/
TSE.2010.62

16. King, K.N., Offutt, A.J.: A fortran language system for mutation-ased software
testing. Softw.-Pract. Experience 21(7), 685–718 (1991). https://doi.org/10.1002/
spe.4380210704

17. Kintis, M., Papadakis, M., Jia, Y., Malevris, N., Traon, Y.L., Harman, M.: Detect-
ing trivial mutant equivalences via compiler optimisations. IEEE Trans. Softw.
Eng. 44(4), 308–333 (2018). https://doi.org/10.1109/TSE.2017.2684805

18. Mehar, M.I., et al.: Understanding a revolutionary and flawed grand experiment
in blockchain: the dao attack. J. Cases Inf. Technol. 21(1), 19–32 (2019). https://
doi.org/10.4018/JCIT.2019010102

19. Nilsson, R., Offutt, J., Mellin, J.: Test case generation for mutation-based testing
of timeliness. Electron. Notes Theor. Comput. Sci. 164(4), 97–114 (2006). https://
doi.org/10.1016/j.entcs.2006.10.010

20. O’Connor, R.: Simplicity: a new language for blockchains. In: Proceedings of the
2017 Workshop on Programming Languages and Analysis for Security, PLAS@CCS
2017, Dallas, TX, USA, 30 October 2017. pp. 107–120. ACM (2017). https://doi.
org/10.1145/3139337.3139340

21. Offutt, A.J., Craft, W.M.: Using compiler optimization techniques to detect equiv-
alent mutants. Softw. Test. Verif. Reliab. 4(3), 131–154 (1994). https://doi.org/
10.1002/stvr.4370040303

22. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible
paths. Softw. Test. Verif. Reliab. 7(3), 165–192 (1997). https://doi.org/10.1002/
(sici)1099-1689(199709)7:3〈165::aid-stvr143〉3.0.co;2-u

23. Offutt, A.J., Untch, R.H.: Mutation 2000: uniting the orthogonal. In: Wong, E.W.
(ed.) Mutation Testing for the New Century, pp. 34–44. Springer, Boston (2001).
https://doi.org/10.1007/978-1-4757-5939-6 7

24. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Muta-
tion testing advances: an analysis and survey. Adv. Comput. 112, 275–378 (2019).
https://doi.org/10.1016/bs.adcom.2018.03.015. Elsivier

25. Peng, C., Rajan, A.: Sif: a framework for Solidity code instrumentation and anal-
ysis. Technical report, University of Edinburgh, UK, May 2019. https://arxiv.org/
abs/1905.01659

26. Schuler, D., Zeller, A.: (un-)covering equivalent mutants. In: Third International
Conference on Software Testing, Verification and Validation, ICST 2010, Paris,
France, 7–9 April 2010, pp. 45–54. IEEE Computer Society (2010). https://doi.
org/10.1109/ICST.2010.30

https://doi.org/10.1007/978-3-030-31500-9_19
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/3106237.3106244
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.4018/JCIT.2019010102
https://doi.org/10.4018/JCIT.2019010102
https://doi.org/10.1016/j.entcs.2006.10.010
https://doi.org/10.1016/j.entcs.2006.10.010
https://doi.org/10.1145/3139337.3139340
https://doi.org/10.1145/3139337.3139340
https://doi.org/10.1002/stvr.4370040303
https://doi.org/10.1002/stvr.4370040303
https://doi.org/10.1002/(sici)1099-1689(199709)7:3<165::aid-stvr143>3.0.co;2-u
https://doi.org/10.1002/(sici)1099-1689(199709)7:3<165::aid-stvr143>3.0.co;2-u
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1016/bs.adcom.2018.03.015
https://arxiv.org/abs/1905.01659
https://arxiv.org/abs/1905.01659
https://doi.org/10.1109/ICST.2010.30
https://doi.org/10.1109/ICST.2010.30

42 P. Hartel and R. Schumi

27. SmartContractSecurity: Smart contract weakness classification registry (2019).
https://github.com/SmartContractSecurity/SWC-registry/

28. Tengeri, D., et al.: Relating code coverage, mutation score and test suite reducibility
to defect density. In: Ninth IEEE International Conference on Software Testing,
Verification and Validation Workshops, ICST Workshops 2016, Chicago, IL, USA,
11–15 April 2016, pp. 174–179. IEEE Computer Society (2016). https://doi.org/
10.1109/ICSTW.2016.25

29. Wang, H., Li, Y., Lin, S.W., Artho, C., Ma, L., Liu, Y.: Oracle-supported dynamic
exploit generation for smart contracts. Technical report, Nanyang Technological
University, Singapore, September 2019. https://arxiv.org/abs/1909.06605

30. Wang, X., Xie, Z., He, J., Zhao, G., Ruihua, N.: Basis path coverage criteria for
smart contract application testing. Technical report, School of Computer Science,
South China Normal University Guangzhou, China, Noveember 2019. https://
arxiv.org/abs/1911.10471

31. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger - EIP-
150 revision. Technical report 759dccd, Ethcore.io, August 2017. https://ethereum.
github.io/yellowpaper/paper.pdf

32. Wu, H., Wang, X., Xu, J., Zou, W., Zhang, L., Chen, Z.: Mutation testing for
Ethereum smart contract. Technical report, Nanjing University, China, August
2019. https://arxiv.org/abs/1908.03707

33. Zhang, L., Hou, S.S., Hu, J.J., Xie, T., Mei, H.: Is operator-based mutant selection
superior to random mutant selection? In: 32nd International Conference on Soft-
ware Engineering (ICSE), pp. 435–444. ACM, New York, Cape Town, May 2010.
https://doi.org/10.1145/1806799.1806863

34. Zhu, Q., Panichella, A., Zaidman, A.: A systematic literature review of how muta-
tion testing supports quality assurance processes. J. Softw. Test. Verif. Reliab.
28(6), e1675:1–e1675:39 (2018). https://doi.org/10.1002/stvr.1675

https://github.com/SmartContractSecurity/SWC-registry/
https://doi.org/10.1109/ICSTW.2016.25
https://doi.org/10.1109/ICSTW.2016.25
https://arxiv.org/abs/1909.06605
https://arxiv.org/abs/1911.10471
https://arxiv.org/abs/1911.10471
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://arxiv.org/abs/1908.03707
https://doi.org/10.1145/1806799.1806863
https://doi.org/10.1002/stvr.1675

Deductive Binary Code Verification
Against Source-Code-Level Specifications

Alexander Kamkin1,2,3,4(B), Alexey Khoroshilov1,2,3,4, Artem Kotsynyak1,
and Pavel Putro1,4

1 Ivannikov Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

{kamkin,khoroshilov,kotsynyak,pavel.putro}@ispras.ru
2 Lomonosov Moscow State University, Moscow, Russia

3 Moscow Institute of Physics and Technology, Moscow, Russia
4 National Research University – Higher School of Economics, Moscow, Russia

Abstract. There is a high demand in practical methods and tools to
ensure total correctness of critical software components. A usual assump-
tion is that the machine code (or binary code) generated by a compiler
follows the semantics of the programming language. Unfortunately, mod-
ern compilers such as GCC and LLVM are too complex to be thoroughly
verified, and bugs in the generated code are not uncommon. As an alter-
native approach, we suggest proving that the generated machine code
still satisfies the functional properties expressed at the source code level.
The suggested approach takes an ACSL-annotated C function along with
its binary code and checks that the binary code meets the ACSL annota-
tions. The main steps are as follows: (1) disassembling the machine code
and extracting its semantics; (2) adapting the annotations to the machine
level and generating the verification conditions. The implementation uti-
lizes MicroTESK, Frama-C, Why3, and other tools. To illustrate the
solution, we use the RISC-V microprocessor architecture; however, the
approach is relatively independent of the target platform as it is based
on formal specifications of the instruction set. It is worth noting that the
presented method can be exploited as a test oracle for compiler testing.

Keywords: Binary code analysis · Deductive verification · Equivalence
checking · Formal instruction set specification · Compiler testing

1 Introduction

The role of software in safety- and security-critical infrastructure grows contin-
uously and at an ever-increasing speed. As a result, there is a high demand in
practical methods and tools to ensure correctness of the most important software
components. There are a number of research projects in the area: some of them
confine themselves to checking the absence of specific kinds of bugs (e.g. run-
time errors), while the others try to prove total correctness of the software under
analysis. The total correctness typically means that each possible execution of
c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 43–58, 2020.
https://doi.org/10.1007/978-3-030-50995-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-50995-8_3

44 A. Kamkin et al.

the software component terminates and meets the functional contract expressed
in the form of pre- and postconditions on the component’s interfaces. To prove
such kind of properties, deductive verification methods are usually applied.

While the first ideas of the methods appeared in the works of R.W. Floyd [1]
and C.A.R. Hoare [2] at the end of 1960s (inductive assertions, axiomatic seman-
tics, etc.), deductive verification of production software became realistic just
recently [3–7]. All the examples of deductive verification tools for the imperative
programming paradigm follow the similar approach:

– all statements of the programming language get formal semantics;
– functional requirements to the software component are formalized as pre- and
postconditions of the functions (or methods) in a specification language;

– additional hints to a verification framework such as loop invariants and vari-
ants, ghost code, and lemma functions are provided by a user;

– verification conditions are generated by the framework and are discharged
either automatically with a solver or with an interactive proof assistant ;

– proof of all the verification conditions means that all possible executions of
the software component satisfy the functional requirements under a set of
assumptions on execution environment, development tools, etc.

A usual assumption is that the machine code (or binary code) generated by a
compiler follows the formal semantics of the programming language defined by
the verification framework. It would be reasonable if the compiler transforma-
tions were formally verified. Though there is ongoing research and development
of such tools (a good example is CompCert [8]), the industry is still bound to
high-end optimizing compilers, like GCC and Clang/LLVM. Unfortunately, they
are too complex to be thoroughly verified, and bugs in the generated machine
code are not uncommon [9].

As an alternative approach dismissing the unwarranted trust to a compiler,
we propose to prove that the produced binary code still satisfies the functional
properties expressed in the pre- and postconditions of the source code functions.
The idea looks attractive because it should be much easier to check the correct-
ness of one particular code transformation than to verify the entire compiler (in
a sense, this is a test oracle that determines whether the compiler behavior is
correct or not). Moreover, it makes it possible to enable aggressive optimiza-
tions that are unsafe in general but are acceptable for a given component and its
functional contract. At the same time, there are a lot of difficulties to overcome:

– the target instruction set architecture (ISA) – the registers, the memory, the
addressing modes, and the instructions – should be formally specified (there
is no other way to reason about the machine code’s semantics);

– the source-code-level specifications should be adapted to the binary code level
(in particular, one needs to find a correspondence between the variables in
the source code and the registers and memory locations in the machine code);

– the verification hints, including loop invariants and variants, ghost code, and,
probably, lemma functions, should be reused at the binary code level or there
should be an alternative way to provide them for the machine code.

Deductive Binary Code Verification Against Source Code Specifications 45

Our contributions are as follows (references to the languages mentioned here will
be given in Sect. 3):

– we have developed a tool to extract machine code’s semantics based on the
ISA specifications in nML: given a binary, the result is the control flow graph
(CFG) whose basic blocks contain operations over bit vectors and bit-vector
arrays representing the registers and the memory;

– we have proposed a technique for adapting functional contracts and verifica-
tion hints to the binary code level (unless the code is optimized): given an
ACSL-annotated C source and the generated binary, the result is a set of
ISA-aware assertions and verification conditions in SMT-LIB;

– we have applied the suggested approach to a number of small C functions
supplied with ACSL annotations and have automatically verified the total
correctness of their non-optimized RISC-V code by proving the extracted
verification conditions with an SMT solver.

The rest of this paper is organized as follows. Section 2 overviews the works
addressing deductive verification of software components at the machine code
level. Section 3 describes the proposed approach in details. Namely, the following
steps are considered: formalizing the target ISA; disassembling the binary code
and extracting the SMT-LIB implementation model; translating the ACSL anno-
tations to the SMT-LIB specification model; adapting the specification model
to the machine code and generating the verification conditions. All the steps
are illustrated by the example of the memset library function being compiled
to the RISC-V ISA. Section 4 contains experimental evaluation of the approach.
Finally, Sect. 5 concludes the paper and outlines future work directions.

2 Related Work

In the Why3-AVR project [10], the deductive verification approach is applied
to prove correctness of branch-free assembly programs for the AVR microcon-
trollers. The AVR ISA is formally specified in the WhyML language. A pro-
grammer is allowed to annotate assembly code with pre- and postconditions and
check its correctness by using the Why3 platform [11] along with external solvers
and proof assistants. The approach seems to be useful for low-level development
as Why3 has rich capabilities for code analysis and transformation. Our goal is
a bit different: we would like to reuse the source-code-level specifications at the
binary code level. It is also unclear if the approach scales to more complex ISAs.

In [12], the HOL4 proof assistant [13] is used to verify machine-code pro-
grams for subsets of ARM, PowerPC, and x86 (IA-32). The mentioned ISAs
were specified independently: the ARM and x86 models [14,15] were written
in HOL4, while the PowerPC model [16] was written in Coq [17] (as a part of
the CompCert project [8]) and then manually translated to HOL4. The author
distinguishes four levels of abstraction. Machine code (level 1) is automatically
decompiled into the low-level functional implementation (level 2). A user manu-
ally develops a high-level implementation (level 3) as well as a high-level speci-
fication (level 4). By proving the correspondence between those levels, he or she

46 A. Kamkin et al.

ensures that the machine code complies with the high-level specification. The
advantage of the solution is that it allows reusing verification proofs between
different ISAs. In our opinion, automation can be increased by using specialized
ISA description languages such as nML [18].

An interesting approach aimed at verifying machine code against ACSL speci-
fications [19] is presented in [20]. The workflow is as follows: first, the ACSL anno-
tations are rewritten as an inline assembly code; second, the modified sources
are compiled into the assembly language; third, the assembly code is translated
into WhyML; finally, the Why platform generates the verification conditions and
discharges them with an external solver. The approach looks similar to the pro-
posed one; however, there are some distinctions. For example, there are separate
primitives for loading and storing variables of different types (32- and 64-bit
integers, single and double floating-point numbers, etc.), which leads to certain
limitations in dealing with pointers. More importantly, verification at the assem-
bly level does not allow abandoning the compiler correctness assumption as the
assembly code is an intermediate form and needs further translation.

In [21], there have been demonstrated the possibility of reusing proofs of
source code correctness for verifying the machine code. The approach is illus-
trated on the example of a Java-like source language and a bytecode target
language for a stack-based abstract machine. The paper describes how to use
such a technology in the context of proof-carrying code (PCC) and shows (in a
particular setting) that non-optimizing compilation preserves proof obligations,
i.e. source code proofs (built either automatically or interactively) can be trans-
formed to the machine code proofs. Although the ideas of the approach may
be useful, the problem we are solving is different. Moreover, one of our goals is
to minimize dependence on the target architecture and the compiler, while that
solution is tied to a specific platform.

3 Suggested Approach

This section describes our approach to deductive machine code verification
against high-level specifications. The primary input is an ACSL-annotated C
function [19]. It is assumed that the total correctness is formally proved by
a verification tool, e.g. Frama-C/AstraVer [6,22]. The source code is compiled
(without optimizations) for a given platform by a compiler, e.g. GCC [23]. The
generated object code (usually in the ELF format [24]) serves as a secondary
input. Provided that the target ISA is formalized, the approach does the follow-
ing steps (see Fig. 1):

– disassembling the machine code (input 2):
• extracting the CFG;
• building the SMT-LIB [25] implementation model;

– translating the ACSL annotations (input 1):
• building the SMT-LIB specification model;

– adapting the specification model:
• binding the specification model to the machine code;
• generating the verification conditions.

Deductive Binary Code Verification Against Source Code Specifications 47

Fig. 1. The scheme of the suggested approach

To illustrate the proposed method, we will use the C library function memset,
which fills a given block of memory with a specified byte value. The ACSL-
annotated source code of memset is shown in Listing 1.1. Being a part of the
VerKer project, the function has been formally verified by Frama-C/AstraVer [6].
As a target platform, we will use RISC-V, a free and open ISA based on the
reduced instruction set computer (RISC) principles [26].

/*@ requires \typeof(s) <: \type(char*);
requires \valid((char*)s + (0..count-1));
assigns ((char*)s)[0..count-1];
ensures \forall char *p;

(char*)s <= p < (char*)s + count ==> *p == (char)c;
ensures \result == s;

*/
void *memset(void *s, int c, size_t count) {

char *xs = s;
//@ ghost ocount = count;
/*@ loop invariant \valid((char*)s + (0..ocount-1));

loop invariant 0 <= count <= ocount;
loop invariant (char*)s <= xs || xs <= (char*)s + ocount;
loop invariant xs - s == ocount - count;
loop invariant \forall char *p;

(char *)s <= p < xs ==> *p == (char)c;
loop assigns count, ((char*)s)[0..ocount-1];
loop variant count;

*/

48 A. Kamkin et al.

while(count--)
*xs++ = (char)c;

return s;
}

Listing 1.1. The ACSL-annotated source code of memset

The remainder of this section begins with a description of how we formalize
microprocessor ISAs (note that in this paper we deal only with the user-mode
capabilities). Then the three method steps mentioned above are considered.

3.1 Formalizing Target Architecture

Reasoning about machine code as well as analysis of interaction between hard-
ware and software implies deep knowledge of the target ISA. We use the nML lan-
guage [18] to specify a microprocessor architecture: registers, memory, addressing
modes, and operations (instructions and their parts). A specification serves as a
configuration for the MicroTESK framework [27] responsible for disassembling
machine code and capturing its semantics (see the next subsection).

Listing 1.2 below (a fragment of the RISC-V specification) shows the follow-
ing definitions: a constant (XLEN), a type (XWORD), registers (XREG and PC), a
temporary variable (prev PC), an addressing mode (X), an operation (addi), a
group of operations (Op), and the root operation (instruction). All necessary
explanations are given directly in the code in the form of comments.

// Machine word size (configuration dependent)
let XLEN = 64
// Machine word type (unsigned integer of size XLEN)
type XWORD = card(XLEN)
// General-purpose registers (32 registers of type XWORD)
reg XREG[32, XWORD]
// Program counter (stores the current instruction address)
reg PC[XWORD]
// Temporary variable (used to track jumps)
var prev_PC[XWORD]

// Addressing mode for the XREG registers
mode X(i: card(5)) = XREG[i] // Semantics

// Assembly syntax (mnemonics)
syntax = format("%s", if i == 0 then "zero"

elif i == 1 then "ra"
elif i == 2 then "sp" ... endif)

// Binary encoding
image = format("%5s", i)

// Adds a register’s value with a signed 12-bit immediate
op addi(rd: X, rs1: X, imm: int(12))

syntax = format("addi %s, %s, %d",
rd.syntax, rs1.syntax, imm)

image = format("%12s%5s000%5s0010011",
imm, rs1.image, rd.image)

Deductive Binary Code Verification Against Source Code Specifications 49

action = { // Semantics
rd = rs1 + sign_extend(XWORD, imm);

}

op Op = ... | addi | ... // Group of operations

// Root operation (microprocessor instruction)
op instruction(operation: Op)

syntax = operation.syntax
image = operation.image
action = {

XREG[0] = 0; // Hardwire XREG[0] to zero
prev_PC = PC; // Save the previous PC value
operation.action; // Execute the operation action
if PC == prev_PC then // Update the program counter

PC = PC + 4;
endif;

}

Listing 1.2. A fragment of the RISC-V specification in nML

More information on the RISC-V specification in nML can be found in [28].
Based on the specification, MicroTESK builds some useful tools: the test program
generator (the primary purpose of the framework), the instruction set simula-
tor (a part of the test program generator), the disassembler, and the symbolic
executor. In this work, the last two are of importance.

3.2 Disassembling Machine Code

The initial step of the verification process is to disassemble the input ELF file.
First, a script based on GNU Binutils [29] extracts the endian-independent
machine code of the function. Then, MicroTESK’s disassembler matches the
machine code against the specified images and reconstructs the sequence of
instruction calls. Each call is an instantiation tree (in other words, a ground
term) describing how to construct the root instruction object from the specifi-
cation primitives (operations, addressing modes, and immediates).

For example (see Table 1), the word 0xfc010113 is decoded to the instruc-
tion call instruction(addi(X(2),X(2),-64)), i.e. addi sp,sp,-64,
where sp is an assembly mnemonics for X(2). Table 2 shows the machine code,
the restored instruction calls (instruction is omitted for brevity), and the
related assembly code of the memset function.

Table 1. Decoding 0xfc010113 to instruction(addi(X(2),X(2),-64))

111111000000 00010 000 00010 0010011

-64 X(2) — X(2) addi

imm rs1 — rd op

50 A. Kamkin et al.

Table 2. The machine code, the instruction calls, and the assembly code of memset

Machine Code Instruction Calls Assembly Code

fc01 0113
0281 3c23
0401 0413
fca4 3c23
0005 8793
fcc4 3423
fcf4 2a23
fd84 3783
fef4 3423
fc84 3783
fef4 3023
01c0 006f
fe84 3783
0017 8713
fee4 3423
fd44 2703
0ff7 7713
00e7 8023
fc84 3783
fff7 8713
fce4 3423
fc07 9ee3
fd84 3783
0007 8513
0381 3403
0401 0113
0000 8067

addi(X(2),X(2),-64)
sd(X(8),X(2),56)
addi(X(8),X(2),64)
sd(X(10),X(8),-40)
addi(X(15),X(11),0)
sd(X(12),X(8),-56)
sw(X(15),X(8),-44)
ld(X(15),X(8),-40)
sd(X(15),X(8),-24)
ld(X(15),X(8),-56)
sd(X(15),X(8),-32)
jal(X(0),14))
ld(X(15),X(8),-24)
addi(X(14),X(15),1)
sd(X(14),X(8),-24)
lw(X(14),X(8),-44)
andi(X(14),X(14),255)
sb(X(14),X(15),0)
ld(X(15),X(8),-56)
addi(X(14),X(15),-1)
sd(X(14),X(8),-56)
bne(X(15),X(0),-18)
ld(X(15),X(8),-40)
addi(X(10),X(15),0)
ld(X(8),X(2),56)
addi(X(2),X(2),64)
jalr(X(0),X(1),0)

addi sp, sp, -64
sd s0, 56(sp)
addi s0, sp, 64
sd a0, -40(s0)
addi a5, a1, 0
sd a2, -56(s0)
sw a5, -44(s0)
ld a5, -40(s0)
sd a5, -24(s0)
ld a5, -56(s0)
sd a5, -32(s0)
jal zero, 14
ld a5, -24(s0)
addi a4, a5, 1
sd a4, -24(s0)
lw a4, -44(s0)
andi a4, a4, 255
sb a4, 0(a5)
ld a5, -56(s0)
addi a4, a5, -1
sd a4, -56(s0)
bne a5, zero, -18
ld a5, -40(s0)
addi a0, a5, 0
ld s0, 56(sp)
addi sp, sp, 64
jalr zero, ra, 0

The next task is to extract the machine code’s CFG. MicroTESK searches for
branch instructions, such as bne (branch if not equal), jal (jump [and link]),
and jalr (jump [and link] register), and splits the sequence into the preliminary
basic blocks: direct branches, e.g. bne a5,zero,-18, are resolved along the
way, while indirect ones, e.g. jalr zero,ra,0, require extra effort. The tool
propagates constants and tries to derive the indirect targets; jumps into the
middle of the basic blocks refine the code structure. Branches with unresolved
targets and branches whose targets are out of the sequence range are considered
to be external calls (or the function’s returns). It is assumed that each external
call returns and execution continues. Finally, the produced CFG is annotated
with additional data gathered from the specification, e.g. the branch conditions.
The extracted CFG for the given example is shown in Fig. 2.

Deductive Binary Code Verification Against Source Code Specifications 51

addi sp, sp, -64
sd s0, 56(sp)
addi s0, sp, 64
sd a0, -40(s0)
addi a5, a1, 0
sd a2, -56(s0)
sw a5, -44(s0)
ld a5, -40(s0)
sd a5, -24(s0)
ld a5, -56(s0)
sd a5, -32(s0)
jal zero, 0xe

ld a5, -56(s0)
addi a4, a5, -1
sd a4, -56(s0)
bne a5, zero, -18

ld a5, -24(s0)
addi a4, a5, 1
sd a4, -24(s0)
lw a4, -44(s0)
andi a4, a4, 255
sb a4, 0(a5)

 a5 != 0

ld a5, -40(s0)
addi a0, a5, 0
ld s0, 56(sp)
addi sp, sp, 64
jalr zero, ra, 0

 a5 == 0

Fig. 2. The control flow graph of memset

Then, the CFG is translated to the SMT-LIB implementation model. For each
basic block, MicroTESK constructs the internal representation (IR) by substi-
tuting each instruction call with the corresponding nML action. For example,
the instruction call instruction(addi(X(2),X(2),-64)) is replaced with
the code shown in Listing 1.3 (note that the IR language differs from nML used
in the example).

XREG[0] = 0;
prev_PC = PC;
XREG[2] = XREG[2] + sign_extend(XWORD, -64);
if PC == prev_PC then

PC = PC + 4;
endif;

Listing 1.3. Inline expansion of instruction(addi(X(2),X(2),-64))

The IR is transformed to the gated single-assignment (GSA) form [30] with
the conventional techniques [31]. Generally, GSA distinguishes three types of
φ-functions (i.e. functions at CFG join points that merge the incoming vari-
able versions to create new ones); namely, γ-functions (used in forward jumps)
and μ- and η-functions (used in loops). Since nML does not support loops,
only γ-functions, which serve as guarded φ-functions, are in use. During the
transformation, IR optimizations, such as constant propagation and dead code
elimination, are applied. Finally, the GSA is printed as an SMT-LIB formula.

52 A. Kamkin et al.

The process is straightforward as every IR operation has its counterpart in SMT-
LIB, while γ-functions are represented as if-then-else expressions. Listing 1.4
shows the SMT-LIB form of instruction(addi(X(2),X(2),-64)) pre-
ceded by the necessary declarations (x!n stands for the nth version of the vari-
able x).

(declare-const XREG!1 (Array (_ BitVec 5) (_ BitVec 64)))
(declare-const XREG!2 (Array (_ BitVec 5) (_ BitVec 64)))
(declare-const XREG!3 (Array (_ BitVec 5) (_ BitVec 64)))
(declare-const PC!1 (_ BitVec 64))
(declare-const prev_PC!2 (_ BitVec 64))
(declare-const %1 (_ BitVec 64))
(declare-const %2 (_ BitVec 64))
(declare-const %3 (_ BitVec 64))

;; XREG[0] = 0
(assert (= XREG!2 (store XREG!1 #b00000 #x0000000000000000)))
;; prev_PC = PC
(assert (= prev_PC!2 PC!1))
;; XREG[2] = XREG[2] + sign_extend(XWORD, -64)
(assert (= %3 (select XREG!2 #b00010)))
(assert (= %2 (bvadd %3 #xffffffffffffffc0)))
(assert (= XREG!3 (store XREG!2 #b00010 %2)))
;; PC = PC + 4
(assert (= %1 (bvadd PC!1 #x0000000000000004)))

Listing 1.4. A fragment of the SMT-LIB implementation model of memset

The generated SMT-LIB formulae for the basic blocks are linked to the CFG
along with the tables that map the microprocessor state elements (the registers
and the memory locations) to the input and output versioned variables.

3.3 Translating ACSL Annotations

The second step of the verification process is to translate the input ACSL anno-
tations to the SMT-LIB specification model. Our implementation is based on the
Frama-C and Why3 platforms for program analysis and verification. Frama-C
parses the ACSL-annotated C function and builds the C Intermediate Language
(CIL) [32] representation, an abstract syntax tree (AST). Then, a Frama-C plu-
gin developed by us as a part of the MicroVer project [33] translates the CIL
AST into the WhyML language used in Why3. The latter converts the WhyML
model into SMT-LIB. Listing 1.5 displays a part of the WhyML representation of
memset’s annotations. It contains selected clauses of the pre- and postconditions
(usmemset {pre,post}) and loop invariant (memset inv 1).

Deductive Binary Code Verification Against Source Code Specifications 53

(* The precondition: \valid((char*)s + (0..count-1)) *)
predicate usmemset_pre mem r64 r32 r64
axiom usmemset_pre_axiom:
forall memory:mem,s:r64,c:r32,count:r64.

usmemset_pre memory s c count <->
valid memory s (sub count (of_int 1))

(* The postcondition: \result == s &&
* \forall char *p;
* (char*)s <= p < (char*)s + count ==> *p == (char)c *)

predicate usmemset_post mem mem r64 r32 r64 r64
axiom usmemset_post_axiom:
forall pmemory:mem,memory:mem,s:r64,c:r32,count:r64,result:r64.

usmemset_post pmemory memory s c count result <->
eq result s /\

(forall p:r64. ule s p /\ ult p (add s count) ->
eq1 (load8 pmemory p) (toSmall c))

(* The loop invariant: 0 <= count <= ocount *)
predicate memset_inv_1 (count:r64) (ocount:r64) =

ule (of_uint 0) count /\ ule count ocount

Listing 1.5. A fragment of the WhyML specification model of memset

The same part of the SMT-LIB specification model is shown in Listing 1.6.
;; The precondition: \valid((char*)s + (0..count-1))
(declare-fun usmemset_pre ((Array (_ BitVec 64) (_ BitVec 8))

(_ BitVec 64) (_ BitVec 32) (_ BitVec 64)) Bool)
(assert

(forall ((memory (Array (_ BitVec 64) (_ BitVec 8)))
(s (_ BitVec 64))
(c (_ BitVec 32))
(count (_ BitVec 64)))

(= (usmemset_pre memory s c count)
(valid memory s (bvsub count (_ bv1 64))))))

;; The postcondition: \result == s &&
;; \forall char *p;
;; (char*)s <= p < (char*)s + count ==> *p == (char)c
(declare-fun usmemset_post ((Array (_ BitVec 64) (_ BitVec 8))

(Array (_ BitVec 64) (_ BitVec 8)) (_ BitVec 64)
(_ BitVec 32) (_ BitVec 64) (_ BitVec 64)) Bool)

(assert
(forall ((pmemory (Array (_ BitVec 64) (_ BitVec 8)))

(memory (Array (_ BitVec 64) (_ BitVec 8)))
(s (_ BitVec 64))
(c (_ BitVec 32))
(count (_ BitVec 64))
(result (_ BitVec 64)))

(= (usmemset_post pmemory memory s c count result)
(and (= result s)

(forall ((p (_ BitVec 64)))
(=> (and (bvule s p) (bvult p (bvadd s count)))

(= (select pmemory p) ((_ extract 7 0) c))))))))

54 A. Kamkin et al.

;; The loop invariant: 0 <= count <= ocount
(declare-fun memset_inv_1 ((_ BitVec 64) (_ BitVec 64)) Bool)
(assert

(forall ((count (_ BitVec 64)) (ocount (_ BitVec 64)))
(= (memset_inv_1 count ocount)

(and (bvule (_ bv0 64) count) (bvule count ocount)))))

Listing 1.6. A fragment of the SMT-LIB specification model of memset

It should be emphasized that the ACSL-to-SMT-LIB translation handles not
only pre- and postconditions and loop invariants but also axiomatics, lemmas,
and other verification hints, thus enabling their reuse at the binary code level.

3.4 Adapting Specification Model

The final step of the verification process is to reformulate the specification model
in terms of the target ISA, link it to the implementation model, and generate the
verification conditions. The function contract is bound to the machine code by
connecting the function arguments and return value with the registers and the
memory locations. Having knowledge of the application binary interface (ABI),
this is easily automated. Such bindings for memset are shown in Listing 1.7
(XREG!n stands for the nth version of the XREG register array).

(declare-const _arg_s (_ BitVec 64)) ;; void *s
(declare-const _arg_c (_ BitVec 32)) ;; int c
(declare-const _arg_count (_ BitVec 64)) ;; size_t count
(declare-const _func_res (_ BitVec 64)) ;; void *memset

;; Binding: void *s == XREG[10] (a0 in assembly syntax)
(assert (= _arg_s (select XREG!1 (_ bv10 5))))
;; Binding: int c == XREG[11] (a1 in assembly syntax)
(assert (= ((_ sign_extend 32) _arg_c)

(select XREG!1 (_ bv11 5))))
;; Binding: size_t count == XREG[12] (a2 in assembly syntax)
(assert (= _arg_count (select XREG!1 (_ bv12 5))))
;; Binding: void *memset == XREG[10] (a0 in assembly syntax)
(assert (= _func_res (select XREG!48 (_ bv10 5))))

Listing 1.7. The ABI-based bindings for memset’s arguments and return value

It is usually enough for loop-free programs. In practice, however, this is rare;
the majority of programs contain loops, and we have to adapt the loop invariants
(as well as variants) to the binary code level. This is the most tricky part of the
job, implying that we know answers to the following three questions:

1. Which points of the machine code the loop invariants should be applied to?
We recognize the loop hierarchy by finding the strongly connected components
(SCCs) – and, recursively, the nested SCCs – in the CFG. For each SCC, the
entry and backward edges are identified, to which we attach respectively the
loop invariant’s initialization and preservation conditions [34].

Deductive Binary Code Verification Against Source Code Specifications 55

2. How to bind the source code variables to the machine registers and locations?
Restoring the bindings goes together with finding correspondence between the
loops and the invariants. We use heuristics for the both tasks. For example,
to match an invariant with a loop, we correlate the number of the invariant
arguments with the number of locations modified in the loop body [34].

3. What if a compiler optimizes the loops and transforms the control flow?
Many loop optimizations, such as fission/fusion and reversal, make the source
code invariants not working for the machine code. Our idea is to verify non-
optimized code and then to prove its equivalence to the optimized one. We
are experimenting with the equivalence checking techniques, such as [35,36].

As soon as the loop invariants are attached to the binary code and the bind-
ings between the source code variables and the machine registers and locations
are restored, the verification conditions are generated as in Floyd’s method [1].
Their negations represented in the SMT-LIB format are discharged with an SMT
solver, e.g. CVC4 [37]. The input function’s machine code is considered to be
fully verified if for every verification condition the unsat verdict is returned.

4 Case Study

The approach described in this paper has been implemented in a tool prototype
called MicroVer [33]. It includes such components as the machine code extractor,
the CIL-to-WhyML translation plugin, and the verification condition generator
(see Fig. 1). Besides MicroVer, we used RISC-V GNU Compiler Toolchain [38],
MicroTESK [27], Frama-C [22], Why3 [11], and CVC4 [37]. The solution has
been applied to a number of small C functions (2–8 lines of code) supplied with
ACSL annotations and has allowed us to proof the total correctness of the non-
optimized binary code. Information on the functions is summarized in Table 3.

Table 3. The summary information on the verified functions

Function C, LOC Instructions ACSL, LOC Description

abs 2 22 3 Absolute value

swap 3 19 3 Swapping two pointers

x2 4 24 4 Multiplication by 2 in a loop

min 4 32 8 Index of minimum value

max 4 32 8 Index of maximum value

sum 5 26 9 Sum of integers from 0 to N

memset 5 27 7 Näıve implementation

memcpy 6 30 13 Näıve implementation

memchr 7 30 17 Näıve implementation

memscan 8 31 22 Näıve implementation

56 A. Kamkin et al.

5 Conclusion

There are many methods and tools for source code verification. Unfortunately,
most of compilers cannot be trusted; therefore, safety- and security-critical soft-
ware needs to be verified at the binary code level. In this work, we have sug-
gested an approach to deductive verification of (non-optimized) machine code
that allows reusing source-code-level specifications. Being based on ISA specifi-
cations, the approach is relatively independent of the target platform. To date,
several popular ISAs have been specified, including RISC-V, ARM, MIPS, and
Power.

The work is in progress, and, obviously, many things are subject to improve-
ment. Future work directions are as follows. First, we are planning to trans-
late machine code (as well as the target ISA specification) into WhyML and/or
Isabelle/HOL. This will allow us to reuse ACSL annotations in a more convenient
way. Second, we are thinking on how to transform high-level loop invariants (and
other verification hints) to fit binary code with modified control flow structure.
It seems that it can be automated by providing bindings between the high- and
low-level variables and by deriving additional invariants for the machine code
entities (registers, stack locations, etc.). Finally, we are working on equivalence
checking of optimized and non-optimized machine programs.

Acknowledgment. The authors would like to thank Russian Foundation for Basic
Research (RFBR). The reported study was supported by RFBR, research project No17-
07-00734.

References

1. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Symposia in
Applied Mathematics, Mathematical Aspects of Computer Science, vol. 19, pp.
19–32 (1967). https://doi.org/10.1090/psapm/019/0235771

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–585 (1969). https://doi.org/10.1145/363235.363259

3. Klein, G., et al.: Comprehensive formal verification of an OS microkernel. ACM
Trans. Comput. Syst. (TOCS) 32(1), 21–270 (2014). https://doi.org/10.1145/
2560537

4. Cohen, E., Paul, W., Schmaltz, S.: Theory of multi core hypervisor verification.
In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.)
SOFSEM 2013. LNCS, vol. 7741, pp. 1–27. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-35843-2 1

5. Philippaerts, P., Mühlberg, J.T., Penninckx, W., Smans, J., Jacobs, B., Piessens,
F.: Software verification with verifast: industrial case studies. Sci. Comput. Pro-
gram. 82, 77–97 (2014). https://doi.org/10.1016/j.scico.2013.01.006

6. Efremov, D., Mandrykin, M., Khoroshilov, A.: Deductive verification of unmodified
Linux kernel library functions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018.
LNCS, vol. 11245, pp. 216–234. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03421-4 15

https://doi.org/10.1090/psapm/019/0235771
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2560537
https://doi.org/10.1145/2560537
https://doi.org/10.1007/978-3-642-35843-2_1
https://doi.org/10.1007/978-3-642-35843-2_1
https://doi.org/10.1016/j.scico.2013.01.006
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15

Deductive Binary Code Verification Against Source Code Specifications 57

7. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

8. CompCert Project. http://compcert.inria.fr
9. Sun, C., Le, V., Zhang, Q., Su, Z.: Toward understanding compiler bugs in

GCC and LLVM. In: International Symposium on Software Testing and Analy-
sis (ISSTA), pp. 294–305 (2016). https://doi.org/10.1145/2931037.2931074

10. Schoolderman, M.: Verifying branch-free assembly code in Why3. In: Paskevich,
A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp. 66–83. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72308-2 5

11. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

12. Myreen, M.O.: Formal Verification of Machine-Code Programs. Ph.D. Thesis. Uni-
versity of Cambridge (2009). 131 p

13. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

14. Fox, A.: Formal specification and verification of ARM6. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 25–40. Springer, Heidelberg (2003).
https://doi.org/10.1007/10930755 2

15. Crary, K., Sarkar, S.: Foundational Certified Code in a Metalogical Framework.
Technical report CMU-CS-03-108. Carnegie Mellon University (2003). 19 p

16. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Principles of Programming Languages (POPL), pp. 42–
54 (2006). https://doi.org/10.1145/1111037.1111042

17. Bertot, Y.: A short presentation of coq. In: Mohamed, O.A., Muñoz, C., Tahar,
S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 12–16. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71067-7 3

18. Freericks, M.: The nML Machine Description Formalism. Technical report TR SM-
IMP/DIST/08, TU Berlin CS Department (1993). 47 p

19. Baudin, P., et al.: ACSL: ANSI/ISO C Specification Language. Version 1.13 (2018).
114 p

20. Nguyen, T.M.T., Marché, C.: Hardware-dependent proofs of numerical programs.
In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 314–329.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25379-9 23

21. Barthe, G., Rezk, T., Saabas, A.: Proof obligations preserving compilation. In:
Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2005.
LNCS, vol. 3866, pp. 112–126. Springer, Heidelberg (2006). https://doi.org/10.
1007/11679219 9

22. Frama-C Platform. http://frama-c.com
23. GCC, the GNU Compiler Collection. https://gcc.gnu.org
24. Tool Interface Standard (TIS) Executable and Linking Format (ELF), version 1.2

(1995)
25. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard Version 2.6. Release

18 July 2017. 104 p
26. RISC-V Foundation. https://riscv.org
27. MicroTESK Framework. http://www.microtesk.org

https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
http://compcert.inria.fr
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1007/978-3-319-72308-2_5
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/10930755_2
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1007/978-3-540-71067-7_3
https://doi.org/10.1007/978-3-642-25379-9_23
https://doi.org/10.1007/11679219_9
https://doi.org/10.1007/11679219_9
http://frama-c.com
https://gcc.gnu.org
https://riscv.org
http://www.microtesk.org

58 A. Kamkin et al.

28. Chupilko, M., Kamkin, A., Kotsynyak, A., Protsenko, A., Smolov, S., Tatarnikov,
A.: Test Program Generator MicroTESK for RISC-V. In: International Workshop
on Microprocessor and SOC Test and Verification (MTV) (2018). 6 p. https://doi.
org/10.1109/MTV.2018.00011

29. GNU Binutils. https://www.gnu.org/software/binutils
30. Ottenstein, K., Ballance, R., MacCabe, A.: The program dependence web: a repre-

sentation supporting control-, data-, and demand-driven interpretation of impera-
tive languages. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pp. 257–271 (1990). https://doi.org/10.1145/93542.
93578

31. Havlak, P.: Construction of thinned gated single-assignment form. In: Banerjee,
U., Gelernter, D., Nicolau, A., Padua, D. (eds.) LCPC 1993. LNCS, vol. 768, pp.
477–499. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57659-2 28

32. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 16

33. MicroVer Project. https://forge.ispras.ru/projects/microver
34. Putro, P.A.: Applying high-level function loop invariants for machine code deduc-

tive verification. Proc. ISP RAS 31(3), 123–134 (2019). https://doi.org/10.15514/
ISPRAS-2019-31(3)-10

35. Churchill, B.R., Padon, O., Sharma, R., Aiken, A.: Semantic program alignment
for equivalence checking. In: ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pp. 1027–1040 (2019). https://doi.org/
10.1145/3314221.3314596

36. Dahiya, M., Bansal, S.: Black-box equivalence checking across compiler optimiza-
tions. In: Asian Symposium on Programing Languages and Systems (APLAS), pp.
127–147 (2017). https://doi.org/10.1007/978-3-319-71237-6 7

37. CVC4 Solver. https://github.com/CVC4/CVC4
38. RISC-V GNU Compiler Toolchain. https://github.com/riscv/riscv-gnu-toolchain

https://doi.org/10.1109/MTV.2018.00011
https://doi.org/10.1109/MTV.2018.00011
https://www.gnu.org/software/binutils
https://doi.org/10.1145/93542.93578
https://doi.org/10.1145/93542.93578
https://doi.org/10.1007/3-540-57659-2_28
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16
https://forge.ispras.ru/projects/microver
https://doi.org/10.15514/ISPRAS-2019-31(3)-10
https://doi.org/10.15514/ISPRAS-2019-31(3)-10
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1007/978-3-319-71237-6_7
https://github.com/CVC4/CVC4
https://github.com/riscv/riscv-gnu-toolchain

Spatio-Temporal Model-Checking
of Cyber-Physical Systems

Using Graph Queries

Hojat Khosrowjerdi1(B), Hamed Nemati2, and Karl Meinke1

1 KTH Royal Institute of Technology, Stockholm, Sweden
hojatk@kth.se

2 Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany

Abstract. We explore the application of graph database technology to
spatio-temporal model checking of cooperating cyber-physical systems-
of- systems such as vehicle platoons. We present a translation of spatio-
temporal automata (STA) and the spatio-temporal logic STAL to seman-
tically equivalent property graphs and graph queries respectively. We
prove a sound reduction of the spatio-temporal verification problem to
graph database query solving. The practicability and efficiency of this
approach is evaluated by introducing NeoMC, a prototype implementa-
tion of our explicit model checking approach based on Neo4j. To evaluate
NeoMC we consider case studies of verifying vehicle platooning models.
Our evaluation demonstrates the effectiveness of our approach in terms
of execution time and counterexample detection.

1 Introduction

In cooperating cyber-physical systems-of-systems (CO-CPS) such as vehicle pla-
toons, with hard real-time and spatial requirements, even the slightest failure of a
service may be catastrophic and endanger lives. Severe consequences of such fail-
ures reinforce the need for developing rigorous analysis techniques to increase
the safety of CO-CPS. Recently, spatio-temporal verification [1–3] appears as
a promising technique to verify advanced autonomous services that incorporate
temporal and physical features to safely interact with the environment. The high
complexity of such systems, however, makes scalable static analysis computation-
ally challenging in practice. Therefore, to make safety certification practical, the
analysis of CO-CPS also needs dynamic techniques for ensuring correct and safe
functionality, such as model-based and learning-based testing.

There has been a large body of work related to specifying and verifying
real-time systems. Examples include Timed Automata [4] and Duration Calcu-
lus [5]. None of these formalisms, however, are sufficient for problems with spa-
tial requirements. We propose a new model checking approach based on spatio-
temporal automaton logic (STAL) [1] to analyze systems having both temporal
and spatial characteristics, e.g. CO-CPS. While several other works have also
addressed this problem [2,3,6,7], a distinguishing feature of our approach is
c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 59–79, 2020.
https://doi.org/10.1007/978-3-030-50995-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-50995-8_4

60 H. Khosrowjerdi et al.

the adoption of graph databases and graph queries [8] for model checking. This
enables us to gain advantages in terms of counterexample detection, analysis time
and memory consumption.

In [1], STAL was introduced as a requirements modeling language for sys-
tems of distributed dynamic objects, such as autonomous vehicles. (See Sect. 4).
STAL is based on a restricted subset of first-order linear temporal logic (FOLTL)
with dedicated real-valued spatial functions. To avoid undecidability problems
associated with infinite state spaces, STAL semantics is based on finite spatio-
temporal automata (STA) models. These properties of STAL make it a poten-
tially practicable logic for modeling safety requirements on CO-CPS such as
collision avoidance and safety envelopes.

A finite state STA can be machine learned (ML) using techniques of finite
automaton learning [9]. By combining ML with the model checking methods for
STAL presented here, we can implement learning-based testing (LBT) [10,11]
as a dynamical safety assurance method for CO-CPS.

However, there are several problems with using off-the-shelf model checkers
to check STAL properties. Most existing model checkers do not support FOLTL
which is essential to verify spatial properties directly on the model and without
manually crafting new model features. Additionally, ML-generated STA models
are large, flat and unstructured. This prevents many model checkers from opti-
mizing the search computation, or using compact internal representations of the
state space. We try to address these issues and show how the STAL model check-
ing problem can be soundly implemented by graph database search (Sect. 6). We
show the practicability of this approach (Sect. 7) by developing an explicit state
model checker, called NeoMC, using the graph database Neo4j and its declar-
ative query language Cypher [12,13] (Sect. 5). We apply our model checker to
large case studies and report the results in Sect. 7. Our benchmarking results
show the practicability and effectiveness of our approach in terms of counterex-
ample detection and execution time. Most importantly, NeoMC has enabled us
to model check requirements and models that are otherwise not efficiently struc-
tured to be verified using other available model checkers.

2 Overview

Figure 1 depicts an application of STAL model checking in a dynamical safety
assurance toolchain based on learning-based testing (LBT) [11]. LBT uses
active automaton learning [14] to reverse engineer a state machine model of
an SUT that can be guaranteed to be both complete and correct. This model is
learned iteratively as a sequence of increasingly larger and more accurate models
M0,M1, . . ., by alternating between active learning, model checking and equiv-
alence checking queries. After each iteration, the current model Mi is checked
to find potential discrepancies with respect to functional requirements on the
SUT. If each Mi is an STA then these requirements can be spatio-temporal
requirements formalized in STAL [1].

In LBT, requirements testing is implemented by the model checker to eval-
uate whether an inferred model Mi complies with the given requirements.

Spatio-Temporal Model-Checking of Cyber-Physical Systems 61

Fig. 1. LBT using graph queries. Fig. 2. Example property graph show-
ing part of a platoon state machine.

In this way, the model checker functions as the test oracle to generate pass
or fail verdicts.

One of our main goals in implementing a dedicated model checker for STAL
was to try to improve the performance of model checking for LBT. For this
purpose we can represent an STA model M as a property graph data model
GM in Neo4j [12] and we can model a STAL requirement φ using the high level
graph query language Cypher [13]. We can then use graph queries to search for
potential counterexamples in GM that falsify φ in M . Thus we can reduce model
checking to a query matching problem.

Neo4j is a high-performance graph database that stores data in graphs (rep-
resented as a key-value database) rather than in tables. Using graph represen-
tation, Neo4j is able to capture the inherent graph structure of data appear-
ing in applications such as geographic information systems (GIS), where data
paths and navigational patterns are important [15]. The data processing engine
in Neo4j utilizes index-free adjacency [16]. In this approach each node keeps
micro-indexing of its adjacent nodes, thus reducing the query response time
and making it independent of the total graph size. Neo4j is a fully transac-
tional directed graph database and allows assigning attributes (key/value pairs)
to nodes (vertices) and relationship (edges). It can efficiently handle connected
data and supports various data-types (e.g. floating point, integer, strings). This
makes Neo4j well suited for storing various types of automata models including
STA, since nodes can represent states and edges naturally represent transitions.

Cypher [12,13] is a graph query language capable of specifying graph patterns
between nodes that may span over arbitrary-length paths. Cypher is a declarative
language allowing users to express queries without a deeper understanding of the
underlying system. However, it is expressive enough to support complex query
patterns related to graph analytics [17]. A Cypher query takes a property graph
as the input and performs various computations on it, returning a table of values.

62 H. Khosrowjerdi et al.

3 Preliminaries

A Property Graph Model (PGM) is a directed labeled graph in which nodes and
edges have attributes, also called properties. A property is a pair of the form
(key,value). Values can be basic data types, such as strings and integers, or
composite, such as lists, maps and paths.

Let Σ be an alphabet, then Σ∗ denotes the set of all strings over the alphabet.
We let K ⊂ Σ∗ denote a finite set of property keys, and A ⊆ Σ∗ denotes a
possibly infinite set of variable names. We define node labels L and edge types
T as countably infinite sets of strings from Σ∗. Also, V is the set of values and
it contains:

– Node and edge identifiers.
– Base types: integers Z, real numbers R, and strings Σ∗.
– Booleans: B = {true, false}.
– null: denoting an undefined value.
– Lists: an empty or non-empty list of values list(v1, v2, ..., vm).
– Maps: an empty or non-empty set of (key, value) pairs.
– Paths: a sequence of node and edge identifiers (n0, e0, n1, ..., nk−1, ek−1, nk).

A property graph is an 8-tuple G = (N ,E,L,T, λ,Lab,Typ, Pnode, Pedge) consist-
ing of a set N ⊆ Σ∗ of node identifiers, and a set E ⊆ Σ∗ of directed edge
identifiers. We associate a label set to each node by the function Lab : N → 2L.
Similarly, we assign a type t ∈ T (or possibly null) to each edge by the function
Typ : E → T ∪{null}. Furthermore, λ : E → N ×N is the function which yields
the source and the target nodes for a given edge. Note that two edge identifiers
may have the same source/target nodes.

By a property we mean a pair p = (k, v) ∈ K × V consisting of a key k and
a value v. Then Pnode : N × K → V ∪ {null} is the property labelling function
for nodes which maps each node n and key k to the corresponding value (that
could be null). Similarly, Pedge : E × K → V ∪ {null} is the property labelling
function for edges which maps each edge e and key k to the corresponding value
(possibly null).

Example 1. Figure 2 exemplifies a property graph. In this example, there are
two nodes and one edge, namely n1, n2 and e1. The node’s label is “State” and
the edge type is “Next”. Node property keys are “Id”, “Name”, “Speed” and
“Distance” and the edge property keys are “Id” and “Pedal”. The value of the
each property is given below.

Spatio-Temporal Model-Checking of Cyber-Physical Systems 63

L = {State}
N = {n1, n2} Lab(n1) = {State} Lab(n2) = {State}

Pnode(n1, Id) = 21708 Pnode(n2, Id) = 21712

Pnode(n1, Name) = “S0” Pnode(n2, Name) = “S4”

Pnode(n1, Speed) = 0 Pnode(n2, Speed) = 4

Pnode(n1, Distance) = 5.0 Pnode(n2, Distance) = 6.0

T = {Next}
E = {e1} λ(e1) = (n1, n2) Typ(e1) = {Next}

Pedge(e1, Id) = 450 Pedge(e1, Pedal) = “a1”

Having defined a property graph, we define a path in such a graph as follows.
Let ni, nk ∈ N and ej ∈ E be node and edge identifiers of a property graph G.
A path w from ni to nk denoted by w = (ni →∗ nk) is a finite sequence of nodes
and edges (nieini+1...nk−1ek−1nk) such that ∀i ≤ j < k : λ(ej) = (nj , nj+1).

We use
∏size

type(G) to denote the set of all paths in G of length size and a
specific type in the input model. Then

∏
(G) denotes the set of all paths in

G (of any finite length). If w1 = (n0e0n1...ek−1nk) and w2 = (nkek...ei−1ni),
then we denote the order-preserving concatenation of w1 and w2 by w1.w2 =
(n0e0n1...ek−1nkek...ei−1ni).

In a graph database, to create, read and update property graphs, graph
queries are executed. A query μ ∈ Q takes a graph G as an input and returns a
table t ∈ T. This table provides parameter bindings that match the query to a
solution in the graph.

Let u = {a1 : v1, ..., an : vn} be an assignment(record) from variable names
{a1, ..., an} ⊂ A to values {v1, ..., vn} ⊂ V , and dom(u) denotes the domain of
u, i.e. dom(u) = {a1, ..., an}. A table t ∈ T is a multiset (bag) of assignments
that have a common domain A. In other words, tables are partial mappings from
names (columns) to values, without any specific ordering.

4 Spatio-Temporal Automaton Logic (STAL)

In [1] we presented a modal logic STAL suitable for describing the spatio-
temporal behavior of a spatially distributed dynamical system of objects, such
as autonomous vehicles or drones. Such systems have many dynamically chang-
ing properties such as object locations, distances and velocities. These properties
may be expressed using relative or absolute coordinates. Following classical New-
tonian physics, such properties are usually resolved into their vector components
along 1, 2 or 3 spatial dimensions as appropriate.

Formally, STAL is a quantifier-free fragment1 of first-order linear temporal
logic (FOLTL). The semantics of STAL can therefore be defined in a similar

1 To ensure decidability, STAL is syntactically restricted so that quantification over
data types is not allowed.

64 H. Khosrowjerdi et al.

way to FOLTL, in terms of a spatio-temporal automaton (STA) that interprets
the spatial operators of the logic. A key requirement for learning-based testing
(LBT) [11] is that spatio-temporal automata are amenable to machine learning
in finite time in much the same way as finite automata [9]. Successful LBT also
requires the existence of a decidable model checking problem and an efficient
model checking algorithm such as the one presented in this work.

STAL can be used to describe a dynamically changing environment of spa-
tially distributed objects by relativising spatio-temporal measurements to a dis-
tinguished object called the ego object. The ego object provides an origin and
point of reference in each dimension for every relative spatio-temporal property
(e.g. relative distance). Thus FOLTL provides an implicit temporal reference
to now, while the ego object provides the corresponding spatial reference to
here. Furthermore, by supporting the measurement of bounded relative prop-
erties, STA allow us to avoid infinite state automata models in many practical
situations. This means that both machine learning and model checking of spatio-
temporal automata can be achieved in finite time using regular inference and
explicit state space search methods.

Taking the common case of 2 orthogonal spatial dimensions, the x and y axes,
we can define a 2-dimensional2 STA to be the following algebraic structure:

A = (Σ,Q,Obj, q0, egoObj,
δ : Σ × Q → Q, angle : Q → [0, .., 360),
distx, disty, velx, vely : Obj × Q → R).

Here Σ = {σ1, . . . , σm} is a finite input alphabet, consisting of ordered key-
value pairs3 p = (k, v) ∈ K × V, Q = {q0, . . . , qn} is a finite set of states,
Obj = {o1, . . . , ok} is a finite set of objects, q0 ∈ Q is the distinguished initial
state, egoObj ∈ Obj is the distinguished ego object, δ : Σ × Q → Q is the
state transition function, angle : Q → [0, .., 360) gives the ego object orientation
relative to the x, y axes, distx, disty : Obj×Q → R are the relative object distance
functions along the x, y axes measured from the ego object for each state, and
velx, vely : Obj × Q → R are the absolute object velocity functions4 measured
along the x, y axes for each state.

Example 2. Figure 3 shows a simple STA consisting of three states q0, q1, q2. It
describes the movements of two vehicles in a platoon, namely leader and follower.
The leader is controlled by a driver using gas and brake pedals. Then, the input
alphabet Σ is a set consisting of σ0 = (Pedal, “gas”) and σ1 = (Pedal, “brake”).
Both vehicles are driving along the x axis. The follower object, which is the ego
object, tries to adapt its distance and speed to the leader object motion. This
example STA is two dimensional and all distances are measured along x and y
axes with respect to follower as the ego object. For all states of the automaton,
2 This definition clearly generalises to the n-dimensional case.
3 denoted as “(key,value)”.
4 Note: we can derive relative velocity from absolute velocity, and both measurements

are always bounded in practise.

Spatio-Temporal Model-Checking of Cyber-Physical Systems 65

the angle of the ego vehicle, the inter-vehicle distance along the y axis of the
ego object and the absolute vehicle velocities in the y dimension are zero. The
transition function δ is defined as follows. Initially (in state q0), the leader is 50
meters ahead of the follower along its x axis. This distance will be reduced to
20 and 10 meters if the leader accelerates (Pedal, gas) or brakes (Pedal, brake)
respectively. If the driver pushes the gas pedal, the speed of the leader increases
from zero to 50 km/h along the x axis. Should the brake pedal be pressed, the
leader speed drops to 30 km/h. At the same time, the ego vehicle tries to follow
this speed pattern at 48 km/h and 29 km/h.

The formal syntax of STAL is summarized in Fig. 4. In this Figure exp,
exp1 and exp2 are arithmetic expressions, and φ, φ1 and φ2 are arbitrary STAL
formulas. Let S denote the set of all STAL formulas.

Fig. 3. An example of an STA.

Fig. 4. Syntax of STAL.

For a given object o ∈ Obj, a STAL expression exp is either a floating
point constant c, a distance expression Distancex(o) or Distancey(o), a speed
expression Speedx(o) or Speedy(o), an angle expression Angle or a binary arith-
metic operation (+, −, ∗, /) applied to two subexpressions exp1, exp2.

An atomic STAL formula is either an input expression (input = σ) for σ ∈ Σ
or a pair of arithmetic expressions connected by an arithmetic relation (<, >, ≤,

66 H. Khosrowjerdi et al.

≥). A compound STAL formula φ may be built up from subformulas by means
of boolean operations (i.e. ¬, ∧, ∨, or →), and linear temporal operators (i.e.
next X, eventually F , or always G).

The semantics of STAL is defined in Fig. 5. To define the satisfiability relation
|= we write w = (α0, α1, ...) ∈

∏∞(A) to denote an infinite path in A and
we write its suffixes as wi = (αi, αi+1, ...) for i ≥ 0. Note that a path in a
spatio-temporal automaton is a sequence of input (σ) and state (q) pairs, i.e.
αi = (σi, qi). We use (αi →∗ αk) to indicate a path from qi to qk if ∀i ≤ j < k :
qj+1 = δ(σj , nj) and the last input σk = ε is an empty string.

Fig. 5. STAL semantics and its satisfiability relation over a path w of an STA A.

Fig. 6. Core syntax of Cypher for model checking

5 Cypher Syntax and Semantics

In this section we present a subset of the Cypher language which is sufficient for
interpreting STAL formulas. Cypher includes expressions, patterns, clauses, and

Spatio-Temporal Model-Checking of Cyber-Physical Systems 67

queries, which allow it to represent a data model represented as values, graphs
and tables. The syntax of Cypher is depicted in Fig. 6. We present keywords in
blue. The main concepts in Cypher are the notions of “pattern” and “pattern
matching”. The underlying data set for a query in Cypher is a property graph and
the response is a table providing bindings for all query parameters representing
solutions found in the property graph.

The MATCH clause denotes a matching function from tables to tables and may
introduce new rows (synonymous with records) with bindings of the matched
instances of the pattern in the queried graph. Similar to other query languages,
the WHERE clause in Cypher filters the results of this matching based on the valid
filter predicates. These predicates can be defined based on the properties of query
elements. For example, Match (n) WHERE n.k = value is a query to match all
nodes in a graph that satisfy the attribute restriction k = value for a property
p : (k, value) of a node n. The binary operations, bop, are the standard ones
and we use them to express the relation between two properties or properties
and literals. The keyword RETURN expresses the projection of the result.

For model checking purposes, Cypher expressions are used in the WHERE clause
to apply predicate conditions and filter search results. They also appear in the
RETURN statement, e.g., to define how a counterexample should be structured
and returned properly. Expressions can also be used in patterns to parameterize
node and edge properties during a pattern matching search.

Fig. 7. Cypher expression semantics.

68 H. Khosrowjerdi et al.

5.1 Cypher Patterns

Syntax. Cypher supports three types of patterns: node (χ), edge (ρ) and path
(π) patterns. In a path-based temporal logic such as FOLTL, path patterns can
be used to describe a counterexample as a path to a node or group of nodes
where some desired properties are violated. Patterns can be recursively defined
using the derivation rules in Fig. 6. In this figure f is any m-ary function in F
from values to values, e.g., All and Any, and exp.k returns a pair from a map
with a matching key k, i.e. vi = map((k1, v1), . . . , (ki, vi), . . .).ki. We use “?”
to denote optional (or “nullable”) types, for which null represents missing (or
None) values. Also “∗” denotes a range [d1, d2] with d1, d2 ∈N specified by the
optional len for the edge pattern ρ. The range is equal to [1,∞] if len is null or
[d, d], [d1,∞], [1, d2], [d1, d2] if other derivation rules are applied, respectively.

Definition 1 (Node Pattern). A node pattern χ has the form χ =
(a L? {P}?) where a ∈ N is a node name, L is an optional finite set of node
labels, and {P} is an optional partial mapping from property keys k to expres-
sions exp. For example (x), (x :State) and (x{Name : “S0”}) are node patterns.

Definition 2 (Edge Pattern). An edge pattern ρ has the form ρ = (a T ? I?
{P}? dir) where a ∈ E is an edge name, T is an optional edge type, I indicates
an optional range for the length of the edge between source/target nodes, P is
an optional partial mapping from property keys to expressions and dir ∈ {�,�}
indicates the direction.

Definition 3 (Path Pattern), A path pattern π is a concatenation of node
and edge patterns of the form χ1ρ1χ2ρ2...χn.

Henceforth we write π = (n1) [e]��(n2) where n1, n2∈N and e∈E, instead of
π = χ1ρχ2 to denote the syntactic category pattern defined in Fig. 6. Using this
notation, patterns can encode paths as nodes and edges with arrows between
them to indicate the direction of a transition.

Semantics. The semantics of a pattern is the set of nodes, edges or paths
which satisfy its conditions. For example, the semantics of a path pattern π is
the path value �π�G,u ∈ V . Figure 7 shows the semantics of cypher expressions
where the semantics of an expression exp is a value �exp�G,u ∈ V determined
by G and u. For example, for a constant v ∈ V , a variable name a ∈ A and an
m-array function f ∈ F , the semantic values are �v�G,u = v, �a�G,u = u(a) and
�f(exp1, ..., expm)�G,u = f(�exp1�G,u, ..., �expm�G,u) respectively. The complete
semantics is given in [18].

Definition 4 (Path Value). A path value for a pattern π in G given the assign-
ment u which provides name bindings for π and G, is a set of paths w in G such
that, �π�G,u = {w ∈

∏
(G) | (w,G, u) |= π}.

For example, the pattern π = (n) [e]��(m) indicates a set of paths
{(n0e0n1)|n0, n1 ∈ N, e0 ∈ E} of length one in the graph G using the assignment

Spatio-Temporal Model-Checking of Cyber-Physical Systems 69

u = (n : n0, e : e0,m : n1), and n0, e0, n1 are any node and edge identifiers in
G with the relation λ(e0) = (n0, n1). Note that n0, n1 and e0 can be any nodes
and edges within the graph that satisfy this edge pattern.

Property 1. Let ρ be an edge pattern (a T ? I? {P}? dir), χ be a node pattern
(a L? {P}?), d1 ≤ i ≤ d2 and j ∈ {1, ..., i}, then a path w in a graph G satisfies
a pattern π (i.e., (w,G, u) |= π) if:

(n,G, u) |= χ ⇔ (n1...eini+1.w,G, u) |= χρπ ⇔

⎧
⎪⎪⎨

⎪⎪⎩

u(a) = n
L ⊆ Lab(n)
∀k ∈ K. and

�Pnode(n, k) = {P}.k�G,u = true

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n1,G, u) |= χ
(w,G, u) |= π
u(a) = list(e1, ..., ei)
Typ(ej) ∈ T
∀k ∈ K.

�Pedge(ej , k) = {P}.k�G,u = true

λ(ej) ∈
{

{(nj , nj+1)}; if dir is �

{(nj+1, nj)}; if dir is �

Example 3. Take the property graph G from Fig. 2 and assume a Cypher pattern
(x{Name : “S0”}) [y{Pedal:“a1”}]��(z), which is equivalent to:

π =

χ1
︷ ︸︸ ︷
(x null {Name :“S0”})

ρ
︷ ︸︸ ︷
(y null null {Pedal :“a1”} �)

χ2
︷ ︸︸ ︷
(z null null)

where χ1, χ2 and ρ are the node and edge patterns. Say u = (x :n1, y :e1, z :n2),
then one can show that (n1,G, u) |= χ1, (e1,G, u) |= ρ and (n2,G, u) |= χ2. Also,
for the path w = (n1e1n2) it holds that (w,G, u) |= π where π = χ1ρχ2.

Pattern Matching. Central to query satisfiability for a graph database is pattern
matching, which is the problem of finding all subgraphs that match a given
pattern. A match for a pattern is a function that maps variables to constants such
that when applied to the pattern, the result is in the original graph database.

For a node pattern χ = (a,L?, {P}?), let free(χ) = {a} be the set
of free variables of χ. Similarly, we define free variables of an edge pattern
ρ = (a, T ?, I?,P?, dir) by free(ρ) = {a}. Then, the free variables of a path pat-
tern π = χ1ρ1χ2ρ2...χn is defined to be the union of all free variables of individual
node and edge patterns occurring in it, i.e., free(π) = free(χ1)∪free(ρ1)∪ ...∪
free(χn). We define pattern matching as the function which searches a graph G
to find all paths p that satisfy a pattern π given a variable assignment u from
values to variables for the free variables of π, i.e. match(π,G, u) = �π�G,u.

For brevity, we drop u and write match(π,G) in the sequel. A Cypher match-
ing query μ ∈ Q can be defined as μ:: = MATCH pattern WHERE exp RETURN ret.
The semantics of this query is to call match(π,G), apply the predicate conditions
of WHERE to filter the search results and project the results:

�μ�G = �MATCH π WHERE exp�G = {w ∈ match(π,G) | �exp�G = true}

70 H. Khosrowjerdi et al.

Definition 5. We say a graph G satisfies a query μ if and only if there exists a
path w in G that is in the semantics of the query. That is:

G |= μ ⇐⇒ ∃w ∈
∏

(G) such that w ∈ �μ�G .

Graph pattern matching is a canonical NP-complete problem. Cypher allows
pattern definitions with infinitely many matches (e.g., loops). This makes Cypher
impractical in a homomorphism-based semantics [19]. For example, if G is a graph
consisting of a single node n, a single edge e from n to n (n → n), then patterns
like π = (n) [*]��(n) match G infinitely many times by iteratively traversing over
e if there is no restriction on the number of iterations. Thus, for i ≥ 0 there
exists a match that iterates i times over e in G. Cypher avoids this by using
an isomorphism-based semantics [8] to disallow repeating edges while traversing
edges in pattern matching. Hence, in the above example, the match function
only returns two matches, one for i = 0 and one for i = 1.

6 Spatio-Temporal Model Checking

Spatio-temporal model checking is a variant of classical model checking that
combines spatial reasoning with temporal reasoning. Given an STA model A, a
STAL formula φ ∈ S, and a path w ∈

∏
(A), model checking analyses whether

A,w |= ¬φ holds. If it does, the path w is returned as a counterexample to φ in
A. If no counterexample w can be found then model checking returns true, i.e.,
φ holds for all possible paths of A.

In traditional explicit state space model checking we usually construct a
product automaton from the automaton model and the requirement formula
and check this for voidness. By contrast, NeoMC uses pattern matching to find
counterexamples. For this we translate the requirement into a graph query (pat-
tern) and perform pattern matching on a graph model of the automaton to find
matches (i.e. counterexamples).

Since STAL is an extension of FOLTL, its model checking problem is similar
to that of FOLTL. Recalling the validity relation for an automaton and an LTL
formula we define validity for STAL formulas as follows.

Definition 6. A |= φ ⇐⇒ � ∃w ∈
∏

(A) such that A,w |= ¬φ

So STAL formulas are interpreted over infinite linear sequences of states
(paths) and have linear counterexamples [20]. It follows that a counterexample
of a specification φ ∈ S is an infinite path w ∈

∏∞(A) such that A,w �|= φ or
A,w |= ¬φ. One can show that w, as a counterexample to φ, can, w.l.o.g, be
restricted to paths of the form x.yω [21]. Such a path is called a “lasso” and
denoted by � in this paper. A lasso consists of a finite prefix path x followed by
an infinite loop over a finite suffix path y [20].

Lasso counterexamples are mainly counterexamples to liveness properties [22]
which have a close relationship with infinite words over finite automata [23].

Spatio-Temporal Model-Checking of Cyber-Physical Systems 71

(i) Node property keys are “Id”, “Name”, “Angle”, “Speed x” oi, “Speed y” oi,
“Distance x” oi and “Distance y” oi for all oi ∈ Obj .

(ii) For all property keys ki of σi ∈ Σ pairs, edge property keys are “Id” and “input” ki.
(iii) For all qi ∈ Q there exists ni ∈ N such that Pnode(ni, “Name”) = “qi”.
(iv) For all key-value pair (ki, vi) of σi ∈ Σ, qi and qi+1=δ(σi, qi) there exists ei ∈E such

that λ(ei) = (ni, ni+1) and Pedge(ei, “input” ki) = vi.
(v) For all qi and oi ∈ Obj then:

-Pnode(ni, “Speed x” oi) = velx(oi, qi),
-Pnode(ni, “Speed y” oi) = vely(oi, qi),
-Pnode(ni, “Distance x” oi) = distx(oi, qi)
-Pnode(ni, “Distance y” oi) = disty(oi, qi)
- and Pnode(ni, “Angle”) = angle(qi).

Fig. 8. Translation rules to convert an STA model A to its corresponding property
graph GA.

For example, the formula GF (φ) specifies that the state property φ must hold
infinitely often along an infinite path w. Clearly, a counterexample to this formula
is an infinite path on which from some point on, φ does not hold. Intuitively, for
a lasso counterexample w = x.yω, this means φ never holds in the loop suffix,
i.e., A, yω �|= φ.

As with FOLTL, not all STAL counterexamples are infinite. Certain formulas
have finite length counterexamples, i.e. satisfiability depends only on a finite
prefix of a path. Examples are safety properties [22] which specify unsafe behavior
that should never happen. An invariant is the simplest example of a safety
property, i.e. a formula of the form G(φ), where φ has no modal operators. For
invariants, a counterexample is a finite path where the last state violates φ. We
can model check an STA A against a STAL formula φ ∈ S as follows:

1) Translate A to a property graph G.
2) Negate the requirement formula φ and translate this into a path pattern

compatible with the target representation, e.g., a lasso pattern.
3) Execute a query to find matches for the pattern inside the property graph,

i.e., a MATCH query in Cypher.
4) Return the results of pattern matching, if these exist, as paths, otherwise

return true.

6.1 Soundness of Model Checking

The expressiveness of Cypher as a declarative query language is equivalent to
a subset of first-order logic with transitive closure [18,24]. This enables Cypher
to capture complex structural conditions and dependencies of STAL, and makes
Neo4j a powerful platform for model checking. Thus we can translate a given
STAL formula into a lasso graph query such that when evaluated over a graph
representation of an STA model A, the query matches identify counterexamples.

Let GA = (N ,E,L,T, λ,Lab,Typ, Pnode, Pedge) be a graph representation of
an STA A = (Σ,Q,Obj, q0, egoObj, δ, angle, distx, disty, velx, vely) obtained by

72 H. Khosrowjerdi et al.

applying the rules in Fig. 85. For any path w ∈
∏

(A) in A we let w ∈
∏

(GA)
denote the isomorphic copy6 of w in the property graph GA.

Then Theorem 1 establishes the soundness of our model checking approach.

Theorem 1. For any STAL formula φ there exists a Cypher query μφ =
Trans(φ) such that for every lasso path w = x.yω ∈

∏
(A) A,w |= φ ⇔ w ∈

�μφ�G.

To prove Theorem 1, we first define the translation function Trans : S → Q
that converts a STAL formula φ ∈ S to a Cypher query μφ. Since our approach
to STAL model checking is to search for lasso counterexamples, Trans coverts a
given STAL formula into a lasso query which is composed of a lasso pattern

π� = (n{Name:“q0”}) [e1*0..]��(m) [e2*1..]��(m)

and a WHERE condition, i.e.

μφ = Trans(φ) = MATCH π� WHERE condition(w, φ).

In the condition condition(w,φ) the path w is a generic solution to the struc-
tural lasso pattern π� that must be further filtered by the WHERE condition to
satisfy the formula φ. Thus from Sect. 5.1, it follows that �μφ�G ⊆ �π��G . Since
the Cypher structure of the lasso pattern is fixed, we need only define the Cypher
expression condition(w,φ) inductively based on the structure of the STAL for-
mula φ. The base case is where φ is atomic and does not include any modal
operators.

Let w = (α0, α1...) and wi = (αi, αi+1...) where αi = (σi, qi) and σi = (ki, vi)
for i ≥ 0. Notice that if w is a lasso then so is each wi. Suppose A,w |= φ then
we define Trans as follows:

Base Case. Since no modality is involved, the condition of φ must hold for
the initial state α0 ∈w, i.e., A, (null, q0) |= φ. Similarly in w ∈ �Trans(φ)�G , the
condition of φ must hold for the initial state n0 of w. We define condition(w, φ)
for an atomic φ below.

A,w |= (exp1bopexp2) ⇐⇒ �exp1�α0
bop �exp2�α0

≡
w ∈ �μφ = MATCH π� WHERE condition(w, (exp1bopexp2))�G

where condition(w, (exp1bopexp2)) = (n0.exp1bop n0.exp2)

A,w |= (input = σ) ⇐⇒ �input = σ�α0 ≡
w ∈ �μφ = MATCH π� WHERE condition(w, (input = σ))�G

where condition(w, (input = σ)) = (e0.input k = v)

Inductive Case. For arbitrary formulas φ, ψ ∈ S such that w |= φ, w ∈
�Trans(φ)�G , we define below Trans for ¬φ, φ∧ψ, φ∨ψ, X(φ), F (φ), G(φ) cases.

5 In this figure, ni ∈ N , ei ∈ E, L = { “State”}, T = {“Next”}, Lab(ni) = “State” and
Typ(ei) = “Next”.

6 By the construction rules of Fig. 8, GA is essentially structurally isomorphic to A.

Spatio-Temporal Model-Checking of Cyber-Physical Systems 73

• cases (¬φ), (φ ∧ ψ) and (φ ∨ ψ):

Trans(¬φ) ≡ MATCH π� WHERE NOT condition(w, φ)
Trans(φ ∧ ψ) ≡ MATCH π� WHERE condition(w, φ) AND condition(w, ψ)
Trans(φ ∨ ψ) ≡ MATCH π� WHERE condition(w, φ) OR condition(w, ψ)

• case X(φ): According to the semantics of STAL,

A,w |= X(φ) ⇐⇒ A,w1 |= φ ≡
w ∈ �μφ = MATCH π� WHERE condition(w1, φ)�G

• case F (φ): The semantic of the eventually operator F concerns a finite path
from a state qi to a reachable state qj where φ holds. Therefore,

A,w |= F (φ) ⇐⇒ ∃j ∈ N : A,wj |= φ ≡
w ∈ �μφ = MATCH π� WHERE Any(ni, ei in �π��G WHERE condition(wi, φ))�G

The Any function is a list predicate with boolean output which ensures that
at least one element of a given list satisfies the conditions of its WHERE clause.
Note that the index i of Any(ni, ei . . .) is a position index and the Any function
is actually a loop that breaks when the condition is satisfied.

• case A,w |= G(φ): Evaluating an always operator G requires to verify φ on an
infinite path and for a lasso path w = x.yω, φ must be valid for all states and
transitions of the lasso. Therefore all nodes of a lasso path w should satisfy
the WHERE conditions of φ. In Cypher, the All function is a list predicate
with boolean output which ensures that all elements of a given list satisfy
the conditions of its WHERE clause. Note that the index i of All(ni, ei . . .) is
a position index and the All function is actually a loop without any break
condition.

A,w |= G(φ) ⇐⇒ ∀i ∈ N : A,wi |= φ ≡
w ∈ �μφ = MATCH π� WHERE All(ni, ei in �π��G WHERE condition(wi, φ))�G

Example 4. To clarify the translation procedure, below we provide two examples.

(i) A,w |= GF (φ) → GF (ψ): This is a conjunction of GF and FG operators.
If this formula is satisfiable by a lasso path w = x.yω, then either all states
of y must not satisfy φ, or at least one state of y must satisfy ψ.

A, w |= GF (φ) → GF (ψ) ≡ FG(¬φ) ∨ GF (ψ)
⇐⇒ (i, j ∈ N, ∃i. ∀j, i ≤ j. wj �|= φ) ∨ (i, j ∈ N, ∀i. ∃j, i ≤ j. wj |= ψ) ≡
w ∈ �μφ = MATCH π� WHERE

Any(ni, ei in �π��G WHERE All(nj , ej in �π��G WHERE NOT condition(wi+j , φ)))
OR All(ni, ei in �π��G WHERE Any(nj , ej in �π��G WHERE condition(wi+j , φ)))�G

(ii) A,w |= GFX(φ): One of the complex structures is the combination of the
liveness GF and the next X operators. However, the translation to a lasso
query is straightforward.

A, w |= GFX(φ) ⇐⇒ i, j ∈ N, ∀i. ∃j, i ≤ j. wj+1 |= φ ≡
w ∈ �μφ = MATCH π� WHERE All(ni, ei in �π��G WHERE Any(nj , ej in �π��G WHERE

condition(wi+j+1, φ)))�G

74 H. Khosrowjerdi et al.

Having defined the translation Trans, the proof of Theorem 1 is straightfor-
ward and relies on the definition of w, w ∈ �μφ�G .

7 NeoMC Implementation and Evaluation

Figure 9 shows the architecture of our Neo4j-based model checker NeoMC that
checks STAL formulas against STA models. As we have seen in Sect. 6, to check a
STAL formula, NeoMC first converts an STA model to a Neo4j property graph.
Then, it negates the formula and converts it into a Cypher pattern and uses
this to perform a pattern matching query. If the query matches any paths in the
graph, counterexamples are returned. Otherwise the verdict true is returned.

The Neo4j database (DB) is a stand-alone Java application that can be
instantiated through the Neo4j API. It is responsible for performing all database
queries and populating the results. The communication between NeoMC and the
database is carried out over a TCP connection known as a “Bolt url”.

Fig. 9. Architecture of NeoMC integrated with Neo4j DB

To evaluate NeoMC we constructed a number of large STAs by machine
learning using the platooning simulator of [25] to simulate a distributed multi-
object dynamical system. These STAs ranged in size from 1 K to 71 K states.
The largest STA had about 1.5 million transitions.

Our specific case study is a two vehicle platoon consisting of a leader (the
ego object) and a follower. The leader is under manual control, and the follower
is autonomously controlled using a cooperative adaptive cruise control (CACC)
algorithm [25] for longitudinal control. The simulator accepts two input signals to
control the brake and throttle of the lead vehicle. These continuous inputs were
discretized to 10 different levels. In total, there were 21 discretized input values,
called Pedal values. The outputs of the simulator used to construct the STA
models were the speed of the leader and the relative distance between leader and
the follower in the x dimension only, i.e., Speedx(leader) and Distancex(follower),
denoted by Speedx and Distancex.

To benchmark NeoMC on the STAs derived from the platooning simula-
tion, we defined a set of spatio-temporal requirements on the platooning vehicles

Spatio-Temporal Model-Checking of Cyber-Physical Systems 75

themselves using STAL. Some of these requirements are presented in Table 1. A
positive Pedal value in the table means pressing the lead vehicle gas pedal and
a negative value means braking pedal level. Case (1) is to capture a near colli-
sion and means: “The distance between the follower and the lead vehicles should
never be less than five meters. Case (2) means: “Gassing up the lead vehicle
should eventually result in a speed greater than 30 km/h”, and Case (3) means
that, “Eventually the leader speed should stay at a high speed value greater than
70 km/h if the gas pedal is nearly fully pressed infinitely often”.

Benchmarking tests of NeoMC were performed on an Ubuntu 16.4 LTS
machine with Intel Core i5-6260U ×4 running at 1.80 GHz and 16Gb available
RAM.

Table 2 summarizes our benchmark results for NeoMC model checking based
on 10 different sized STA models and 7 different STAL requirements. Table 2
shows both the number of counterexamples found (lhs) and the execution time

Table 1. Platoon requirements in STAL.

Req STAL formula φ Cypher query μ = Trans(¬φ)

(1) G¬(Distancex < 5) WHERE m.Distance x < 5

(2) FG(Pedal > 0) → FG(Speedx > 30) WHERE Any(ni, ei in �π��G WHERE

All(nj , ej in �π��G WHERE ei+j.input Pedal>0))

AND All(ni, ei in �π��G WHERE Any(nj , ej in �π��G
WHERE NOT ni+j.Speed x>30))

(3) GF (Pedal > 7) → GF (Speedx > 70) WHERE All(ni, ei in �π��G WHERE

Any(nj , ej in �π��G WHERE ei+j.input Pedal>7))

AND Any(ni, ei in �π��G WHERE All(nj , ej in �π��G
WHERE NOT ni+j.Speed x>70))

(4) G(Pedal > 0 → X(acc∗ > 0)) WHERE Any(ni, ei in �π��G WHERE ei.input Pedal>0

AND NOT ni+1.Speed x - ni.Speed x>0)

(5) G(Pedal < 0 → X(acc < 0)) WHERE Any(ni, ei in �π��G WHERE ei.input Pedal<0

AND NOT ni+1.Speed x - ni.Speed x<0)

(6) G¬(Pedal = −10 → WHERE Any(ni, ei in �π��G WHERE NOT ei.input Pedal=-10

(Next(Speedx) − Speedx) > 0) OR ni+1.Speed x - ni.Speed x < 20))

(7) G¬(Speedx > 120) WHERE m.Speed > 120

∗ The Leader acceleration.

Table 2. Number of identified counterexamples and the execution time for model
checking of requirements in Table 1 for different model sizes (1.1 K–71 K states). Here
ε means the execution time is less than 0.5 s.

Req #Counterexamples on K-state models Execution Time∗ (in seconds)

1.1 1.7 2.1 2.5 3.4 4 7.8 12.6 25 71 1.1 1.7 2.1 2.5 3.4 4 7.8 12.6 25 71

(1) 8 4 2 5 7 7 28 28 100 35 ε ε ε ε ε ε 1 1 3 1

(2) 0 0 0 0 0 0 0 0 0 0 3 4 5 6 8 9 39 40 102 784

(3) 0 0 0 0 0 15 1 1 16 0 2 3 4 5 7 9 25 41 107 793

(4) 1 1 1 1 1 2 6 6 11 1 ε ε ε ε ε ε ε ε 1 1

(5) 27 32 43 64 98 100 100 100 100 57 ε ε ε ε ε ε ε ε ε 1

(6) 0 0 0 0 0 0 0 2 0 8 ε ε ε ε ε ε ε ε 1 1

(7) 0 0 0 0 0 0 0 0 0 0 ε ε ε ε ε ε ε ε 1 ε

76 H. Khosrowjerdi et al.

in each case (rhs). We limited the maximum number of counterexamples to 100
to make the table concise and readable. In general, as the learned model grows
in size, more violations of a requirement can be observed, because the model
captures more execution paths with bad sequences of states. Table 2 shows that
the execution time increases linearly with respect to model size.

We were unable to easily compare NeoMC performance with existing model
checkers. One reason is that we could not find an efficient and scalable rep-
resentation of large STA models for tools such as NuXMV [26], Spin [27] and
LTSmin [28]. These tools parse the input models into their internal data rep-
resentation and as the models grow in size, they either fail to read the files or
construct the state space efficiently. Even for a medium size STA of 4k states,
the model parsing times of Spin and the model checking time of NuXMV are
beyond any acceptable figures. The memory usage of NuXMV is huge, of the
order of tens of Gigabytes. Spin also consumes a lot of memory to generate
its internal verifier. Only the built-in symbolic format (i.e. ETF) of LTSmin
matches the STA models and quickly performs the model checking. However,
the ETF format only works for symbolic datatypes and does not support FO
STAL expressions and formulas.

8 Related Work

There is a large body of work on spatio-temporal logic. A rather complete list
of related work in this area is provided in [1]. Verification of spatial and tem-
poral modalities is studied in different domains such as in biochemistry [29],
biology [30,31] and air traffic management [32]. Research on spatio-temporal
model checking is often tailored to specific applications. SpaTeL [6] uses statis-
tical model checking to estimate the probability of events in networked systems
that relate different regions of space at different times. Statistical model checking
has also been applied to collective adaptive systems where spatio-temporal prop-
erties expressed in STLCS [33] are verified against discrete, geographical models
of a smart public transportation system [34]. In [7] a shape calculus based spatio-
temporal model checking is introduced for the verification of a real-time railroad
crossing system. A second order model checker is used to perform reachability
checks on BDDs representing transition relations.

Verification of vehicle platooning is also studied by Kamali et al. [2] where
timed and untimed automata models of a spatial controller are model checked
using AJPF and UPPAAL. Schwammberger [3] introduced MLSL logic to verify
safety of traffic maneuvers. Similarly to STAL, MLSL is using the snapshot con-
cept which captures the state of objects at a given moment in time. However,
our work differs from [2,3]. While they tried to verify safety of controller algo-
rithms using timed-automata models in UPPAAL, our model checking technique
is developed to verify a learned behavior of CO-CPSs using graph queries. Also,
AJPF does not support temporal analysis and is resource-heavy, whereas graph
databases scale with ease. The most closely related work to ours is [24] which
used declarative graph queries for the verification of CPSs. They developed a

Spatio-Temporal Model-Checking of Cyber-Physical Systems 77

runtime monitoring for railway systems against spatial requirements expressed in
a 3-valued logic, but, this work lacks exhaustive verification and model checking.

9 Conclusions

We have proposed an approach to spatio-temporal model checking based on
using the graph database Neo4j and its declarative query language Cypher. We
have established the theoretical soundness of this approach, and implemented
and evaluated it on a large case study. NeoMC shows that query solving for
Cypher is an efficient way to implement model-checking. To the best of our
knowledge, our work is the first attempt to apply graph database technology to
model checking. Furthermore, Neo4j enabled us to quickly prototype a model
checker for STAL that was scalable to large models. The efficiency of NeoMC is
partly due to efficient search algorithms employed in modern graph databases,
and also the fact that we could avoid constructing large product automata.

Acknowledgments. This research has been supported by KTH ICT-TNG project
STaRT (Spatio-Temporal Planning at Runtime), as well as the German Federal Min-
istry of Education and Research (BMBF) through funding for the CISPA-Stanford
Center for Cybersecurity (FKZ: 13N1S0762).

References

1. Khosrowjerdi, H., Meinke, K.: Learning-based testing for autonomous systems
using spatial and temporal requirements. In: Proceedings of the 1st Interna-
tional Workshop on Machine Learning and Software Engineering in Symbiosis,
MASES@ASE 2018, Montpellier, France, 3 September 2018, pp. 6–15 (2018).
https://doi.org/10.1145/3243127.3243129

2. Kamali, M., Linker, S., Fisher, M.: Modular verification of vehicle platooning with
respect to decisions, space and time. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS
2018. CCIS, vol. 1008, pp. 18–36. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-12988-0 2

3. Schwammberger, M.: An abstract model for proving safety of autonomous urban
traffic. Theor. Comput. Sci. 744, 143–169 (2018). https://doi.org/10.1016/j.tcs.
2018.05.028

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

5. Chaochen, Z., Hoare, C., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40(5), 269–276 (1991). http://www.sciencedirect.com/science/article/pii/
002001909190122X

6. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel
spatial-temporal logic and its applications to networked systems. In: Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control,
HSCC 2015, Seattle, WA, USA, 14–16 April 2015, pp. 189–198 (2015). https://
doi.org/10.1145/2728606.2728633

https://doi.org/10.1145/3243127.3243129
https://doi.org/10.1007/978-3-030-12988-0_2
https://doi.org/10.1007/978-3-030-12988-0_2
https://doi.org/10.1016/j.tcs.2018.05.028
https://doi.org/10.1016/j.tcs.2018.05.028
https://doi.org/10.1016/0304-3975(94)90010-8
http://www.sciencedirect.com/science/article/pii/002001909190122X
http://www.sciencedirect.com/science/article/pii/002001909190122X
https://doi.org/10.1145/2728606.2728633
https://doi.org/10.1145/2728606.2728633

78 H. Khosrowjerdi et al.

7. Quesel, J.-D., Schäfer, A.: Spatio-temporal model checking for mobile real-time
systems. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS,
vol. 4281, pp. 347–361. Springer, Heidelberg (2006). https://doi.org/10.1007/
11921240 24

8. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Founda-
tions of modern query languages for graph databases. ACM Comput. Surv. 50(5),
68:1–68:40 (2017). http://doi.acm.org/10.1145/3104031

9. Bennaceur, A., Hähnle, R., Meinke, K. (eds.): Machine Learning for Dynamic Soft-
ware Analysis: Potentials and Limits. LNCS, vol. 11026. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8

10. Meinke, K., Niu, F.: A learning-based approach to unit testing of numerical soft-
ware. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS,
vol. 6435, pp. 221–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16573-3 16

11. Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems.
In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21768-5 11

12. Webber, J.: A programmatic introduction to neo4j. In: Conference on Systems, Pro-
gramming, and Applications: Software for Humanity, SPLASH 2012, Tucson, AZ,
USA, 21–25 October 2012, pp. 217–218 (2012). https://doi.org/10.1145/2384716.
2384777

13. Francis, N., et al.: Cypher: an evolving query language for property graphs. In: Pro-
ceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, 10–15 June 2018, pp. 1433–1445 (2018).
http://doi.acm.org/10.1145/3183713.3190657

14. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, (2010). iv + 417 pages, Machine Translation, vol. 24,
no. 3–4, pp. 291–293, 2010. https://doi.org/10.1007/s10590-011-9086-9

15. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 11–139 (2008). https://doi.org/10.1145/1322432.1322433

16. Robinson, I., Webber, J., Eifrem, E.: Graph Databases: New Opportunities for
Connected Data, 2nd edn. O’Reilly Media Inc., Sebastopol (2015)

17. Hölsch, J., Schmidt, T., Grossniklaus, M.: On the performance of analytical and
pattern matching graph queries in neo4j and a relational database. In: Proceedings
of the Workshops of the EDBT/ICDT 2017 Joint Conference (EDBT/ICDT 2017),
Venice, Italy, 21–24 March 2017 (2017). http://ceur-ws.org/Vol-1810/GraphQ
paper 01.pdf

18. Francis, N., et al.: Formal semantics of the language cypher. CoRR, vol.
abs/1802.09984 (2018). http://arxiv.org/abs/1802.09984

19. Junghanns, M., Kießling, M., Averbuch, A., Petermann, A., Rahm, E.: Cypher-
based graph pattern matching in gradoop. In: Proceedings of the Fifth
International Workshop on Graph Data-management Experiences & Systems,
GRADES@SIGMOD/PODS 2017, Chicago, IL, USA, 14–19 May 2017, pp. 3:1–3:8
(2017). http://doi.acm.org/10.1145/3078447.3078450

20. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

21. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths
(extended abstract). In: 24th Annual Symposium on Foundations of Computer
Science, Tucson, Arizona, USA, 7–9 November 1983, pp. 185–194 (1983). https://
doi.org/10.1109/SFCS.1983.51

https://doi.org/10.1007/11921240_24
https://doi.org/10.1007/11921240_24
http://doi.acm.org/10.1145/3104031
https://doi.org/10.1007/978-3-319-96562-8
https://doi.org/10.1007/978-3-642-16573-3_16
https://doi.org/10.1007/978-3-642-16573-3_16
https://doi.org/10.1007/978-3-642-21768-5_11
https://doi.org/10.1145/2384716.2384777
https://doi.org/10.1145/2384716.2384777
http://doi.acm.org/10.1145/3183713.3190657
https://doi.org/10.1007/s10590-011-9086-9
https://doi.org/10.1145/1322432.1322433
http://ceur-ws.org/Vol-1810/GraphQ_paper_01.pdf
http://ceur-ws.org/Vol-1810/GraphQ_paper_01.pdf
http://arxiv.org/abs/1802.09984
http://doi.acm.org/10.1145/3078447.3078450
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1109/SFCS.1983.51
https://doi.org/10.1109/SFCS.1983.51

Spatio-Temporal Model-Checking of Cyber-Physical Systems 79

22. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985). https://doi.org/10.1016/0020-0190(85)90056-0

23. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Proceedings of the Symposium on Logic in
Computer Science (LICS 1986), Cambridge, Massachusetts, USA, June 16–18,
1986, pp. 332–344 (1986)

24. Búr, M., Szilágyi, G., Vörös, A., Varró, D.: Distributed graph queries for runtime
monitoring of cyber-physical systems. In: Russo, A., Schürr, A. (eds.) FASE 2018.
LNCS, vol. 10802, pp. 111–128. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89363-1 7

25. Meinke, K.: Learning-based testing of cyber-physical systems-of-systems: a pla-
tooning study. In: Reinecke, P., Di Marco, A. (eds.) EPEW 2017. LNCS, vol.
10497, pp. 135–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66583-2 9

26. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9 22

27. Holzmann, G.J.: The SPIN Model Checker - Primer and Referencemanual.
Addison-Wesley, Boston (2004)

28. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

29. Chiarugi, D., Falaschi, M., Hermith, D., Olarte, C.: Verification of spatial and
temporal modalities in biochemical systems. Electr. Notes Theor. Comput. Sci.
316, 29–44 (2015). https://doi.org/10.1016/j.entcs.2015.06.009

30. Parvu, O., Gilbert, D.R.: Automatic validation of computational models using
pseudo-3D Spatio-temporal model checking. BMC Syst. Biol. 8, 124 (2014).
https://doi.org/10.1186/s12918-014-0124-0

31. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci,
E.: Learning and detecting emergent behavior in networks of cardiac myocytes.
Commun. ACM 52(3), 97–105 (2009). https://doi.org/10.1145/1467247.1467271

32. de Oliveira, Í.R., Cugnasca, P.S.: Checking safe trajectories of aircraft using hybrid
automata. In: Anderson, S., Felici, M., Bologna, S. (eds.) SAFECOMP 2002. LNCS,
vol. 2434, pp. 224–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45732-1 22

33. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-49224-6 24

34. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. STTT
20(3), 289–311 (2018). https://doi.org/10.1007/s10009-018-0483-8

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/978-3-319-89363-1_7
https://doi.org/10.1007/978-3-319-89363-1_7
https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1016/j.entcs.2015.06.009
https://doi.org/10.1186/s12918-014-0124-0
https://doi.org/10.1145/1467247.1467271
https://doi.org/10.1007/3-540-45732-1_22
https://doi.org/10.1007/3-540-45732-1_22
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/s10009-018-0483-8

SAT Modulo Differential Equation
Simulations

Tomáš Kolárik1 and Stefan Ratschan2(B)

1 Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

2 Institute of Computer Science of the Czech Academy of Sciences,
Prague, Czech Republic

stefan.ratschan@cs.cas.cz

Abstract. Differential equations are of immense importance for model-
ing physical phenomena, often in combination with discrete modeling for-
malisms. In current industrial practice, properties of the resulting models
are checked by testing, using simulation tools. Research on SAT solvers
that are able to handle differential equations has aimed at replacing tests
by correctness proofs. However, there are fundamental limitations to such
approaches in the form of undecidability, and moreover, the resulting
solvers do not scale to problems of the size commonly handled by simula-
tion tools. Also, in many applications, classical mathematical semantics of
differential equations often does not correspond well to the actual intended
semantics, and hence a correctness proof wrt. mathematical semantics
does not ensure correctness of the intended system.

In this paper, we head at overcoming those limitations by an alterna-
tive approach to handling differential equations within SAT solvers. This
approach is usually based on the semantics used by tests in simulation
tools, but still may result in mathematically precise correctness proofs
wrt. that semantics. Experiments with a prototype implementation con-
firm the promise of such an approach.

1 Introduction

The design of cyber-physical systems is more and more being based on mod-
els that can be simulated before the actual system even exists. Here, the most
natural way of modeling the physical part is based on differential equations.
The resulting models can then be simulated using numerical solvers for ordi-
nary differential equations (ODEs), or tools such as Xcos or Simulink. However,
the computational support for automatically analyzing (e.g., testing, verifying)
such models is still far from satisfactory.

This has been addressed by SAT solvers [10,11] that do not only offer efficient
discrete (i.e., Boolean) reasoning, but that, in addition, are also able to han-
dle differential equations by integrating interval ODE solvers [17,19]. Handling
ODEs in such a way is extremely difficult, and most related verification prob-
lems are undecidable [5]. The resulting SAT modulo ODE solvers can handle
c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 80–99, 2020.
https://doi.org/10.1007/978-3-030-50995-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_5&domain=pdf
http://orcid.org/0000-0003-1710-1513
https://doi.org/10.1007/978-3-030-50995-8_5

SAT Modulo Differential Equation Simulations 81

benchmark examples that are impressive, but still quite far away from the size
of the problems that may occur in industrial practice.

A further reason why such tools are a poor fit to the needs coming from
industrial applications is the fact that classical mathematical solutions usually
do not correctly represent the intended behavior of industrial models [16], since
the design process is based on the results of numerical simulations, and not on
a mathematical analysis of the underlying differential equations. The numer-
ical simulations differ from mathematical solutions due to discretization and
floating-point computation. Hence, the output of the used simulation tool is the
authoritative description of the behavior of the model, not traditional mathe-
matical semantics. This holds even in cases when the model was designed based
on ODEs corresponding to physical laws (“from first principles”), because even
in such cases, the parameters of the model are estimated based on simulations.
This is becoming all the more important due to the increasing popularity of data
driven modeling approaches, for example, based on machine learning.

Therefore, the existing SAT modulo ODE approaches prove correctness wrt.
semantics that differs from the notion of correctness used during simulation and
testing. We overcome this mismatch by formalizing the semantics of SAT modulo
ODE based on numerical simulations. We prove decidability of the resulting
problem, and design a simple solver. We provide a syntactical characterization
of the kind of inputs for which one can expect an efficient solution from such
a solver, and support this by experiments using a prototype implementation.

We also address another restriction of existing SAT modulo ODE approaches.
Their support for differential equations has the form of monolithic building
blocks that contain a full system of ordinary differential equations within which
no Boolean reasoning is allowed. In contrast to that, in this paper we provide a
direct integration of ODEs into a standard SAT modulo theory (SMT) frame-
work [3], which results in a tight integration of the syntax of the theory into
Boolean formulas, as usual for theories in SMT-LIB [1].

The problem of verifying differential equations wrt. simulation semantics has
been addressed before [4,16], but not in a SAT modulo theory context. Also
floating point arithmetic has been realized to be an important domain for veri-
fication tools [6,14], resulting in a floating point theory in SMT-LIB. However,
this concentrates on the intricacies of floating point arithmetic, which we largely
ignore here, and concentrate instead on the handling of ODEs.

In the next section, we will introduce an illustrative toy example. Then we
will present our integration of ODEs into SMT, first using classical mathematical
semantics (Sect. 3), then using simulation semantics (Sect. 4). In the next three
sections, we prove decidability of the resulting theory, design a simple solver, and
study its theoretical properties. In Sect. 8, we present some computational exper-
iments with a prototype implementation, and in Sect. 9, we conclude the paper.

2 Example

For explaining the intuition behind the syntax of our language and the structure
of formulas that we expect to handle, we describe an illustrative toy example.

82 T. Kolárik and S. Ratschan

Fig. 1. Example Trajectories

The example corresponds to a bounded model checking problem for a bouncing
ball with linear drag—Fig. 1 shows the height of the ball on the left-hand side
and its speed on the right-hand side.

g = 9.81 ∧ K = 0.9 ∧ ¬up1 ∧ init(x1) = 10 ∧ init(v1) = 0 ∧
ẋ1 = v1 ∧ (

up1 ⇒ v̇1 = −g − v1
100

) ∧ (¬up1 ⇒ v̇1 = −g + v1
100

) ∧
x1 ≥ 0 ∧ (up1 ⇒ v1 ≥ 0) ∧ (¬up1 ⇒ v1 ≤ 0) ∧
up1 ⇒ (final(v1) ≤ 0 ∧ ¬up2 ∧ init(x2) = final(x1) ∧ init(v2) = 0) ∧
¬up1 ⇒ (final(x1) ≤ 0 ∧ up2 ∧ init(x2) = 0 ∧ init(v2) = −Kfinal(v1)) ∧
ẋ2 = v2 ∧ (

up2 ⇒ v̇2 = −g − v2
100

) ∧ (¬up2 ⇒ v̇2 = −g + v2
100

) ∧
x2 ≥ 0 ∧ (up2 ⇒ v2 ≥ 0) ∧ (¬up2 ⇒ v2 ≤ 0) ∧
up2 ⇒ (final(v2) ≤ 0 ∧ ¬up3 ∧ init(x3) = final(x2) ∧ init(v3) = 0) ∧
¬up2 ⇒ (final(x2) ≤ 0 ∧ up3 ∧ init(x3) = 0 ∧ init(v3) = −Kfinal(v2)) ∧
. . .
final(x23) ≥ 8

In the example, the variables up1, . . . range over the Booleans, the variables
K and g range over real numbers, and the variables xi, vi, i ∈ {1, . . . , 23} range
over functions from corresponding intervals [0, τi] to the real numbers, where the
lengths τi are not fixed a priori. The example does not provide this information
explicitly—we will introduce notation to do so, later. Also, all constraints on
those variables (i.e., all invariants) are intended to hold for all elements of those
intervals. Again we will introduce formal details later.

The dot operator denotes differentiation, init denotes the value of the argu-
ment function at 0 and final the value at τi. Note that the example uses the
Boolean variables up1, . . . to activate different differential equations and bounds
on the variables x1, v1, x2, v2,

The ball starts at height 10 with speed zero, and for each xi, vi, i ∈ {1, . . . , 23}
the pair xi, vi models one falling or rising phase of the ball (the figure shows 7 of
those). The update init(vi+1) = −Kfinal(vi) results in a non-continuous change
between the last point of vi and the initial point of vi+1. The example checks
whether a state with height greater or equal 8 is reached after falling and rising
a certain number of times. For illustrative purposes, the modeled behavior is
completely deterministic, although our method can also handle non-determinism.

SAT Modulo Differential Equation Simulations 83

We want to check whether there are values for the variables that satisfy
such formulas when interpreting the differential equations using simulation tools.
Before going into details we will analyze the structure of the above formula.

First of all, the variables have indices 1, 2, and 3 corresponding to stages
of a bounded model checking problem. The indices are just part of the names
of the corresponding variables, but still, they clarify the fact that the variables
in the formulas also occur in stages. Especially, the variables with the same index
belong to the same stage, and within stage i, each functional variable, that is,
xi and vi, is determined by a differential equation.

Further, understanding that xi models the height of a bouncing ball, we
see that if the ball is moving down, the constraints xi ≥ 0 eventually must be
violated, bounding the length of the functional variables. If the ball is moving
up, this is ensured by the constraints vi ≥ 0.

And finally, the stages also define a specific order on how one can assign values
to variables: The first line of the formula assigns values to the variables g and K,
and initial values of x1 and v1. Then it states differential equations describing
the evolution of x1 and v1. Moreover, it states invariants that should hold on
those solutions. Next, it describes how the initial value of x2 and v2 depends on
the final value of x1 and v1. Then it analogously repeats the above statements for
x2 and v2, and so on. In other words, solving the real part of the above formula
may proceed in stages, avoiding any circular reasoning.

3 Formalization: SAT Modulo ODE

In this section, we will tightly integrate ODEs into SAT, roughly following
the SMT framework of Barrett and Tinelli [3]. Note that SMT uses first-
order predicate logic as its basis, while here we want to reason about functions
(the solutions of ODEs). We overcome this seeming mismatch by simply handling
those functions as first-order objects1.

The signature of our theory contains the sort symbols R and (Fk)k∈κ

for a finite index set κ. Intuitively, the sort R corresponds to real numbers,
and each sort symbol Fk, k ∈ κ to real functions, with the argument modeling
time over a certain time interval. In the illustrative example, the variables x1,
v1 belong to the same sort (e.g., F1), the variables x2, v2 to another one (e.g.,
F2), and so on.

The allowed predicate symbols are {=,≥} and the function symbols include
{0, 1,+,−, ·, exp, log, sin, cos, tan}, all of the usual arity. All of those predicate
and function symbols are defined on all sorts (i.e., not only on R, but also
on (Fk)k∈κ). Still, we always require all arguments and results to be from
the same sort.

We will have additional function symbols that we will also call functional
operators: The function symbols initk : Fk → R and finalk : Fk → R, k ∈ κ

1 While this is new in the context of SAT modulo ODE, this is quite common in math-
ematics. For example, Zermelo-Fraenkel set theory uses such an approach to define
sets, relations, etc. within first-order predicate logic.

84 T. Kolárik and S. Ratschan

model the initial and final value of the argument function. The function symbol
diff k : Fk → Fk, k ∈ κ, models differentiation, and hence we will usually write
diff (z) as ż. We also assume the function symbols embedk : R → Fk, k ∈ κ,
that convert real numbers to functions. However, we will not write the function
symbols embedk, k ∈ κ explicitly, but implicitly assume them whenever an argu-
ment from Fk is expected and an argument from R present. In the example,
this is the case in the differential equation v̇2 = −g which would actually read
v̇2 = −embed2(g), or v̇2 = embed2(−g). For all functional operators we will not
write the index, if clear from the context.

Since we do not allow quantifiers, we will not work with a separate set
of variables, but simply call 0-ary predicate symbols Boolean variables, 0-ary
function symbols from R numerical variables, and 0-ary function symbols from
Fk, k ∈ κ, k-function variables and often just function variables. We denote
the set of Boolean variables by VB, and for every sort S, we denote the cor-
responding set of variables by VS . We also define the set of all such variables
V := VB ∪ VR ∪ ⋃

k∈κ VFk
.

Definition 1. An atomic formula is either a Boolean variable or an atomic
theory formula. An atomic theory formula is of one of the three following kinds:

– An atomic real-valued formula is a formula of the form p(η1, . . . , ηn) where p
is an n-ary predicate symbol from R and η1, . . . , ηn are terms built in the usual
way using function symbols from R and the functional operators init and
final, whose argument is allowed to be a function variable.

– An atomic k-differential formula is a differential equation of the form ż = η
where z is a function variable from Fk, and η is a term of type Fk not
containing any functional operator except for embedk.

– An atomic k-function formula is a formula of the form p(η1, . . . , ηn), where
p is an n-ary predicate symbol from Fk and η1, . . . , ηn are terms built in
the usual way using function symbols from Fk, and not containing any func-
tional operators except for embedk.

A literal is either an atomic formula or the negation of an atomic formula.
A formula is an arbitrary Boolean combination of literals. A theory formula is
a formula without Boolean variables.

For example, g = 9.81 and init(v2) = −Kfinal(v1) are examples of atomic
real-valued formulas, ẋ1 = v1 is an example of an atomic differential formula,
and x1 ≥ 0 is an example of an atomic function formula.

The resulting formulas have the usual mathematical semantics where we
interpret the sort R over the real numbers R and Fk, k ∈ κ over smooth functions
in [0, τk] → R, where τk ∈ R

≥0. Hence the length τk will be the same for all
elements belonging to the same sort Fk. These functions will usually arise as
solutions of differential equations, hence the domain [0, τk] usually models time.

We interpret all symbols in R according to their usual meaning over the real
numbers. To extend this to arithmetical predicate and function symbols with

SAT Modulo Differential Equation Simulations 85

function arguments, that is, with arguments from Fk, we simply lift their mean-
ing over the reals to the whole domain [0, τk] of our functions in [0, τk] → R.
For example, the constant 1 in Fk is the function that assigns to each ele-
ment of [0, τk] the constant 1. The atomic function formula z ≥ 1 expresses
the fact that the k-function variable z is greater or equal than the constant
function 1 at every element of [0, τk]. In general, for a function symbol f of type
Fk × · · ·×Fk → Fk, its interpretation fFk

is such that for z1, . . . , zn : [0, τk], for
all t ∈ [0, τk], fFk

(z1, . . . , zn)(t) = fR(z1(t), . . . , zn(t)), where fR is the interpre-
tation of the corresponding function symbol f of type R × · · · × R → R. For
a predicate symbol p of type Fk × · · · × Fk, its interpretation pFk

is such that
pFk

(z1, . . . , zn) iff for all t ∈ [0, τk], pR(z1(t), . . . , zn(t)), where again pR is the
interpretation of the corresponding predicate symbol p of type R × · · · × R.

Note that, as a result, ¬z ≥ 1 is not equivalent to z < 1: The former means
that not all the time z is greater or equal one, whereas the latter means that all
the time z is less than one. Due to this, we will also call such atomic function
formulas invariants.

Finally, we interpret the function operators as follows: The interpretation
of initk takes a function z : [0, τk] → R and returns z(0), whereas the interpre-
tation of finalk returns z(τk). The interpretation of embedk takes a real number
x, and returns the constant function that takes the value x on its whole domain
[0, τk]. Finally, we interpret diff k as the usual differential operator from mathe-
matical analysis.

We call a function that assigns values of corresponding type to all ele-
ments of V, and the above meaning to all other function and predicate symbols,
an ODER-interpretation. Based on this, we get the usual semantical notions from
predicate logic. The main problem is to check, for a given formula, whether it is
satisfiable by an ODER-interpretation.

4 Formalization: SAT Modulo ODE Simulations

In this section, we will introduce alternative semantics to formulas based on float-
ing point arithmetic. Since there are various variants of floating point arith-
metic (e.g., 32 and 64 bit IEEE 754 arithmetic), including different formaliza-
tions [6,14], and moreover, a plethora of methods for solving differential equa-
tions [12], the resulting semantics will be parametric in the used variant of float-
ing point arithmetic and ODE solver.

Now we interpret the R-variables over the floating point numbers F, and
the Fk-variables over functions from {tΔ | t ∈ {0, . . . , τk

Δ }} → F (trajectories),
for a given k ∈ κ. Here, we require τk to be a multiple of the step size Δ. We inter-
pret all function and predicate symbols—including the functional operators—
in the obvious floating point analogue to the formalization from the previous
section, with the usual rounding to the nearest floating point number. Espe-
cially, we interpret function symbols on Fk, k ∈ κ point-wise on the elements
of {tΔ | t ∈ {0, . . . , τk

Δ }}. However, when lifting predicates to type Fk, we only
require the lifted predicate to hold for t ∈ {0, . . . , τk

Δ − 1}, that is, without the

86 T. Kolárik and S. Ratschan

final point. For explaining why we refer to the illustrative example. If ¬up, it
uses an invariant x ≥ 0. At the same time it allows switching to up if and only if
x ≤ 0. When interpreting x as a continuous function, this makes perfect sense:
the switch occurs exactly when both x ≥ 0 and x ≤ 0, that is, when x = 0. This
does not work in our approximate interpretation because it is highly unlikely
that, after discretization, a point is reached for which precisely x = 0. To cir-
cumvent this problem, we allow the invariant to be violated at the very final
point of x which at the same time is the first point that allows switching.

To concentrate on our main point, we will ignore special floating point values
modeling overflow and similar intricacies of floating point arithmetic. Still, our
approach is compatible with such values, since we do not require that every
floating point number have a corresponding real number.

Before turning to differential equations, we first describe how they are usu-
ally solved in practice [12]. The input to such a solver is a system of differ-
ential equations which, in our terminology, is a conjunction of n atomic k-
differential formulas in n variables. Solvers then compute a solution for the
whole system, using discrete steps in time. For example, writing the system
of differential equations as ż = F (z), where boldface indicates vectors, Euler’s
method—the most widely known explicit solution method for ODEs—uses the
rule z(t + Δ) = z(t) +F (z(t))Δ. As a result, the solution satisfies this equality
at each point in time.

Since in our case, differential equations do not directly occur in systems, but
in individual atomic formulas, we separate this rule into conditions for the indi-
vidual formulas, instead of conditions for the individual time steps. In the case
of Euler’s method, denoting the individual Fk-variables by z1, . . . , zn, for a dif-
ferential formula żi = f(z1, . . . , zn), the resulting condition is

∀t ∈ {0, . . . ,
τk

Δ
− 1} . zi((t + 1)Δ) = zi(tΔ) + f(z1(tΔ), . . . , zn(tΔ))Δ.

In general, the rules used by explicit solvers are based on an equality with left-
hand side z(t+Δ) which allows an analogical natural separation into conditions
on the individual components of the solution.

We call a function that assigns Boolean values to the elements of VB, floating
point numbers to the elements of VR, trajectories to the elements of VFk

, k ∈ κ
and the above meaning to all other function and predicate symbols, an ODEF-
interpretation. This again defines all the usual semantical notions from predicate
logic using the same notation as in the previous section. For any interpretation I
we denote by I(η) the value of the term η in I, by I |= φ the satisfiability of φ in
I, and so on. For the rest of the paper we assume a floating point interpretation
IF for V = ∅ that we will extend with values for a non-empty set V.

In the rest of the paper, we design and analyze tools for checking whether
a given formula is satisfiable by an ODEF-interpretation, in which case we will
also simply say that it is satisfiable.

SAT Modulo Differential Equation Simulations 87

5 Theory Solver

The common SMT approaches use separate solvers for handling the Boolean
part and the specific logical theory, respectively. In this section we concentrate
on the latter. So, for a given theory formula φ (i.e., formula without Boolean
variables), we want to check whether φ is satisfiable by an ODEF-interpretation.

As an example consider the formula g = 9.81∧init(v) = 10∧v ≥ 0∧final(v) ≤
0 ∧ v̇ = −g − v

100 which is satisfiable by an interpretation that assigns to g the
value 9.81 and to v a trajectory that starts with the value 10, then decreases
according to the given differential equation, and stays non-negative, except for
the very last step which is non-positive.

We first prove that unlike ODER, in our case there is no fundamental theo-
retical hurdle caused by undecidability.

Theorem 1. ODEF-satisfiability is algorithmically decidable.

Proof. Assume a theory formula φ. W.l.o.g. we assume φ to be a conjunction. Let
|F| be the cardinality of the set of floating point numbers. The key observation
is that |F| is finite. The problem is that ODEF-interpretations satisfying φ may
assign trajectories of arbitrary length to function variables. However, if there is
an interpretation that satisfies φ then there is also an interpretation satisfying
φ that has length smaller than |F|max{ τk

Δ |k∈κ}: Assume an interpretation I sat-
isfying φ that for some k ∈ κ assigns trajectories longer than this bound to the
variables in Fk. Due to the finite cardinality of |F|, there must be t, t′ s.t. t �= t′

and for every z ∈ Vk, I(z)(t) = I(z)(t′). This means that the interpretation
that coincides with I, but for every z ∈ Vk, the section between t + 1 and t′

is removed, also satisfies φ. We can repeat this process until the interpretation
satisfying φ is short enough.

Due to this we can check the satisfiability of φ using brute force search,
checking whether the finite set of interpretations assigning trajectories of length
smaller than |F|max{ τk

Δ |k∈κ} contains an element that satisfies φ. �
This proof is based on the fact that the set of floating point numbers has

finitely many elements. However, due to the sheer number of those elements, the
algorithm used in the proof is far from practically useful.

In the rest of the section we will design a solver that is able to solve theory
formulas that arise from the specific structure identified in Sect. 2 much more
efficiently. This structure will allow each step of the solver to assign a value to a
variable. Since we will also want to compute initial values of function variables,
we introduce a set Vinit := {init(z) | z ∈ VFk

, k ∈ κ} each ranging over the
floating point numbers F. We can represent the computed values as follows:

Definition 2. A state σ is a function that assigns to each element of VR ∪VF ∪
Vinit either an object of the corresponding type or the special value undef .

For a state σ, we denote the extension of IF with the values defined by
σ on VR ∪ VF (ignoring the values for Vinit) by Iσ. Our theory solver will

88 T. Kolárik and S. Ratschan

use inference rules to fill the state σ with values until those values allow us to
evaluate the given formula. For this we define for a term η, evσ(η) to be undef ,
if the term η contains a variable v for which σ(v) = undef , and the result of
term evaluation Iσ(η), otherwise. For example, for a state σ = {K �→ 0.5, v1 �→
undef }, evσ(−Kfinal(v1)) = undef , but for σ = {K �→ 0.5, v1 �→ ρ}, where ρ is
a trajectory whose final value is 2.0, evσ(−Kfinal(v1)) = −1.0.

In a similar way, for an atomic formula A we define evσ(A) = undef , if
σ assigns undef to a variable in A, and otherwise evσ(A) = �, if Iσ |= A,
and evσ(A) = ⊥, if Iσ �|= A. For example, for the state σ just mentioned,
evσ(−Kfinal(v1) ≥ 0) = ⊥.

Based on the usual extension of the Boolean operators ¬,∧,∨ to three values,
in our case {⊥, undef ,�}, this straightforwardly extends to formulas, in general.
For example, ev{x�→0,y �→undef }(x = 1 ∧ y = 1) = ev{x�→0,y �→undef }(x = 1) ∧
ev{x�→0,y �→undef }(y = 1) = ⊥ ∧ undef = ⊥. This implies that whatever value
y has, the formula will not be satisfiable.

Theorem 2. φ is ODEF-satisfiable iff there is a state σ with evσ(φ) = �.

Proof. If evσ(φ) = � then Iσ |= φ and hence φ is satisfiable. In the other
direction, if φ is satisfiable by an ODEF-interpretation I, then for the state
σ with σ(x) = I(x), for x ∈ VR ∪ VF , and σ(init(z)) = I(z)(0), for every
z ∈ VFk

, k ∈ κ, evσ(φ) = �. �
The question is, how to find such a state efficiently, if φ is satisfiable, and

how to decide that it does not exist in the case where it is unsatisfiable. We will
assume the input formula to be a conjunction of literals, since disjunctions will
be handled by the Boolean solver (see Sect. 7). By misuse of notation we will
also view φ as the set of its literals.

As already discussed, we will use inference rules on states. The first rule uses
the fact that both sides of an equality have to evaluate to the same value in σ:

Definition 3. For two states σ and σ′, σ →R σ′ iff

– there is a literal of the form x = η or η = x in φ with x ∈ VR ∪ Vinit,
– σ(x) = undef ,
– evσ(η) �= undef , and

– σ′ is s.t. for all v ∈ VR ∪ VF ∪ Vinit, σ′(v) =
{

evσ(η), if v = x, and
σ(v), otherwise.

For example, if σ = {K �→ 0.5, v1 �→ ρ, init(v2) �→ undef }, with ρ again a tra-
jectory with final value 2.0, and the input formula contains the literal init(v2) =
−Kfinal(v1), then σ →R σ′, where σ′ = {K �→ 0.5, v1 �→ ρ, init(v2) �→ −1.0}.

The second inference solves differential equations. For a state σ and k ∈ κ
we define IVPφ(σ, k) (for “initial value problem”) as the formula

∧

ż=η ∈ φ,z∈VFk

ż = η ∧
∧

z∈VFk

init(z) = σ(init(z)) ∧
∧

x∈VR,σ(x) �=undef

x = σ(x).

SAT Modulo Differential Equation Simulations 89

Here we assume for all z ∈ Fk, σ(init(z)) �= undef , and for all x ∈ VR occurring
in a k-differential equation in φ, σ(x) �= undef . Then one can find an assignment
to the variables in VFk

satisfying the formula IVPφ(σ, k) using a numerical
ODE solver whose method corresponds to the one used for defining formula
semantics. This assignment is unique up to the length of the assigned trajectories.
In practice, the solver might fail, e.g. due to floating point overflows, but we
ignore this complication for simplicity of exposition.

Definition 4. For two states σ and σ′, k ∈ κ and t ∈ N≥0, σ →Fk,t σ′ iff

– for every variable z ∈ VFk
, σ(z) = undef ,

– for every variable z ∈ VFk
, σ(init(z)) �= undef ,

– for every variable x ∈ VR occurring in a k-differential equation in φ, σ(x) �=
undef

– for every variable z ∈ VFk
, φ contains exactly one literal of the form ż = η

– σ′ is identical to σ except that it assigns to the variables z ∈ VFk
the corre-

sponding trajectories of length t satisfying IVPφ(σ, k).

It would not be difficult to also handle the case when φ contains more than
one differential literal with the same left-hand side. But usually this is not prac-
tically useful, and hence the rules does not consider this case.

Now we can apply several inference steps in a row, starting from the every-
where undefined state σundef . This always terminates, since every inference step
creates a state with less undefined elements and VR ∪ VF ∪ Vinit is finite.

Remember that our goal is to use the inference rules to arrive at a state σ,
for which evσ(φ) = � or to decide that no such state exists. Since the inferences
do not introduce new undefined values, it does not make sense to do further
inferences on a state σ, for which evσ(φ) �= undef .

If we arrive at a state σ for which evσ(φ) = ⊥, can we conclude that φ is
unsatisfiable? Certainly not: A different sequence of inferences might have found
a state that evaluates to �, showing satisfiability. For example, for the formula
init(z) = 0 ∧ ż = 1 ∧ final(z) ≥ 10, one inference step from σundef wrt. →R
results in the state {init(z) �→ 0, z �→ undef }, but from this state, an inference
wrt. →F,t only results in a state that evaluates to �, if t is big enough for the
final state of the assigned trajectory to be larger of equal 10.

Still, for given fixed lengths t of inferences →F,t, the order of inferences does
not matter.

Theorem 3. Let λ : κ → N≥0. Let σ1 and σ2 be the final states of two sequences
of inferences using →R and →Fk,λ(k), k ∈ κ s.t. neither from σ1 nor from σ2,
further inferences are possible. Then evσ1(φ) = evσ2(φ).

So it may be necessary to try different trajectory lengths for arriving at a
state that evaluates to �, showing satisfiability. We represent this search using
a tree:

Definition 5. An inference tree is a tree whose vertices are formed by states,
where the root is σundef , and every vertex state σ that is no leaf either has

90 T. Kolárik and S. Ratschan

– precisely one successor vertex σ′ with σ →R σ′ or
– successor vertices σ′

0, σ
′
1, . . . , σ

′
n s.t. for an arbitrary, but fixed k ∈ κ

• for every i ∈ {0, . . . , n}, σ →Fk,i σ′
i, , and

• there is an m < n s.t. for all z ∈ VFk
, σ′

n(z)(m) = σ′
n(z)(n).

For example, for the formula init(v) = 10 ∧ v ≥ 0 ∧ final(v) ≤ 0 ∧ v̇ =
−9.81 − v

100 , and the tree root σundef , the inference rule →R, results in the
successor state σ = {init(v) �→ 10, v �→ undef }. Now we use the second inference
rule which branches the tree. For the successor state wrt. →Fk,0, the final state
of the trajectory computed for v is equal to its initial state 10, which violates
the condition final(v) ≤ 0, and hence this successor state evaluates to ⊥. The
successor states wrt. →Fk,1, →Fk,2, . . . will have longer trajectories with the
respective final states getting smaller and smaller, until—at the point when the
trajectory has become long enough—the final state will finally satisfy final(v) ≤
0. The resulting successor state then evaluates to � which shows satisfiability of
the formula.

Even if we would not find a state that evaluates to �, we would not have to
search infinitely many successors, since an inference tree includes only a finite
subset of the infinite set of possible inferences wrt. →Fk,t, t ∈ N0. The ter-
mination condition σ′

n(z)(m) = σ′
n(z)(n) must be satisfied for some m, again

due to the finite cardinality of the set of floating point numbers. Still, inference
trees cover the search space completely, allowing us to conclude the input to be
unsatisfiable in some cases:

Theorem 4. Assume an inference tree such that for all leaves σ, evσ(φ) = ⊥.
Then φ is unsatisfiable.

The theorem follows from two facts: First, for states σ and σ′
1, σ

′
1, . . . s.t.

σ →Fk,1 σ′
1, σ →Fk,2 σ′

2, . . . , and φ is satisfiable by an ODEF-interpretation
that coincides with a state σ on its defined elements, there is an i ∈ N0 s.t. φ
is satisfiable by σ′

i. Second, due to the same reasoning as used in the proof of
Theorem 1, if this is the case for an arbitrary i ∈ N0 then this is also the case
for an i < n, since σ′

n(z)(m) = σ′(z)(n).
Now an algorithm can simply check all leaves of such an inference tree to

check satisfiability. There is various possibilities to do so, for example using
simple recursive depth-first search:

ODESAT (σ)
let Σ be the set of successor vertices of σ in an inference tree.
if Σ = ∅ then return evσ(φ)
else if there is a σ′ ∈ Σ s.t. ODESAT (σ′) = � then return �
else if for all σ′ ∈ Σ s.t. ODESAT (σ′) = ⊥ then return ⊥
else return undef

The initial call should be ODESAT (σundef), and the result � can be interpreted
as SAT, the result undef as UNKNOWN, and the result ⊥ as UNSAT.

We call any such algorithm that returns its result based on application of
Theorems 4 and 2 to the leaves of an inference tree an evaluation based ODEF-
solver. Here we may encounter two problems:

SAT Modulo Differential Equation Simulations 91

– The tree might have some leaves σ with evσ(φ) = undef , resulting in the
answer UNKNOWN.

– The tree may be huge, resulting in a long run-time of the algorithm.

The first problem may happen, for example, if a numerical variable is con-
strained by an equation such as x2 = 1 that cannot be solved by our rules (of
course, such an equation can be easily solved, for example by methods for solv-
ing polynomial equations, but here we are interested in getting as far as possible
without such techniques). In such a case, one can fall back to brute-force search
of Theorem 1. Of course, this is inefficient, and we want to avoid it, which leads
us back to the second problem, the problem of a large search tree.

One possibility is to simply give up on completeness by not exploring the full
search space. For example, as usual for SAT modulo ODE solvers [10,11], we
might only search for trajectories up to a certain length, that is, use the strategy
of bounded model checking. In this case, the solver will not decide satisfiability,
but satisfiability by trajectories up to a certain length.

Also, in some cases, we might have good heuristics available. Especially, for a
given inference tree, finding a vertex σ with evσ(φ) = � is a tree search problem
which enables the usage of well-known tree search algorithms [9], allowing us to
efficiently find a leaf that shows satisfiability of the input.

In any case, we will see in the next section, that for formulas having a struc-
ture similar to the toy example, these problems can be avoided.

6 Formula Structure

In the previous section we identified a search tree that allows us to replace
brute-force search by inferences. In this section we show how to use syntactical
restrictions on the input formula to

– ensure that the inference tree does not end in undefined leaves, and to
– restrict the size of the inference tree.

First we will show how to avoid undefined leaves by ensuring that the value
of every non-Boolean variable be deducible from the value of another variable
without the need for circular reasoning.

Definition 6. A formula φ is orientable iff there is a total order r1, . . . ,
r|VR∪VF | on the variables in VR ∪ VF s.t. for every i ∈ {1, . . . , |VR ∪ VF |},
– if ri ∈ VR, then there is a literal in φ that is of the form ri = η or η = ri,

where η does not contain any variable from ri, . . . , r|VR∪VF |, and
– if ri ∈ VF , then

• there is a literal in φ that is of the form init(ri) = η or η = init(ri),
where η does not contain any variable from ri, . . . , r|VR∪VF | and

• there is exactly one literal in φ that has the form ṙi = η, and the term η
does not contain any variable that is both in VR and in ri, . . . , r|VR∪VF |.

92 T. Kolárik and S. Ratschan

Note that the non-circularity condition for atomic differential formulas only
includes variables in VR but not variables in VF , allowing the formulation of
systems of ordinary differential equations. For illustration of Definition 6, con-
sider the formula x = sin y ∧ y = 2x ∧ ż1 = z1 + z2 ∧ ż2 = z1 − z2 ∧ init(z1) =
10 ∧ init(z2) = 10 that is not orientable, but Ψ ∧ x = 0, where Ψ is the previous
formula, is orientable using the order x, y, z1, z2.

Theorem 5. Assume a formula φ that is orientable, and a corresponding infer-
ence tree Ω whose leaves do not allow further inferences. Then for every state σ
at a leaf of Ω, for every variable v ∈ VR ∪ VF , σ(v) �= undef .

Hence, in such a case, we can decide satisfiability of the input formula using
inferences alone, never returning UNKNOWN.

Theorem 6. Every evaluation based ODEF-solver that is based on an inference
tree whose leaves do not allow further inferences, is a decision procedure for all
orientable ODEF-formulas.

Still, the inference tree may be huge, since we might have to search for
extremely long trajectories. To avoid this, we analyze the example from Sect. 2
once more. Here, the invariant x1 ≥ 0 ensures, that the ball will eventually stop
falling. In a similar way, the invariant v1 ≥ 0 detects that the ball stops rising.
As soon as those two invariants stop to hold, we do not have to search for longer
trajectories. The following theorem generalizes this.

Theorem 7. If φ contains an atomic k-functional formula A with evσ(A) = ⊥
then for every state σ′ s.t. for every function variable z, σ′(z) is at least as long
as σ(z), and σ′ is equal to σ for all elements defined in σ, including function
variables up to their length, evσ′(A) = ⊥.

Hence, as soon as the application of the inference rule σ →Fk,t σ′ results in
a state σ′ such that evσ′(A) = ⊥, we do not have to expand further successors
of σ using the same rule with bigger t.

7 Solver Integration

Now we also allow disjunctions and Boolean variables in the input formula φ. We
follow the common architecture [18] of SMT solvers where a SAT solver handles
the Boolean structure, a theory solver (in our case the one from Sect. 5) handles
conjunctions of non-Boolean literals, and the integrating SMT solver handles
communication between the two.

We include the case where either the Boolean solver or the theory solver is
incomplete, in which the combination may return UNKNOWN. Even though many
SMT schemes expect the underlying theory solver to be complete, one can usually
use an incomplete solver, as well, by letting the theory solver return UNSAT in
the place of UNKNOWN. If this happens during execution of the SMT solver, it
should return UNKNOWN when it would otherwise have returned UNSAT. In any

SAT Modulo Differential Equation Simulations 93

case, if the input is identified to be satisfiable, the solver still can reliably return
SAT as the final result.

The usual SMT solvers proceed by replacing all atomic formulas from the
theory by elements of a set of fresh Boolean variables VA, and finding a Boolean
assignment α : VB ∪ VA → {⊥,�} satisfying the resulting purely Boolean for-
mula. Denoting by γ(A) the atomic formula in φ corresponding to the variable
A ∈ VA one can then use the theory solver to check whether the formula

Σ(α) :=
∧

A∈VA,α(A)=

γ(A) ∧

∧

A∈VA,α(A)=⊥
¬γ(A)

is satisfiable. If this is the case, the original input formula φ is satisfiable, as
well.

If we want to ensure that Σ(α) fulfills the syntactical restrictions of Sect. 6, we
have to ensure that for every such Boolean assignment the formula Σ(α) fulfills
those restrictions. Returning to the illustrative example from Sect. 2, the order
g,K, x1, v1, x2, v2, x3, v3 ensures that Σ(α) is always orientable. Here, the vari-
ables up1, up2 always activate the necessary atomic formulas.

In the case of our theory, in practically reasonable formulas, in a similar way
as in our illustrative example, atomic differential and function formulas occur
positively, without a negation. If a Boolean assignment satisfies the abstraction
of such a formula, then also any Boolean assignment that assigns � instead of ⊥
to a Boolean variable in VA that corresponds to a differential or function literals.
Hence, whenever the SMT solver asks the theory solver to check satisfiability
of a formula where such a literal occurs negatively, then the theory solver may
ignore those, and check the rest of the formula for satisfiability.

When integrating the theory solver into SMT [18], several levels of integration
are possible. Following the classification of Nieuwenhuis et. al. [18], the lowest
level is the naive lazy approach. Here a SAT solver finds a satisfiable Boolean
assignment α of the Boolean abstraction of the input formula, and the theory
solver checks the formula Σ(α). If the answer is SAT, the input formula is satis-
fiable. If the answer is UNSAT, the solver should identify a sub-formula of Σ(α)
that is still unsatisfiable. The negation of the abstraction of this formula is
formed (a so-called conflict clause) and added to the original input formula.
Then the whole process is repeated with restarting the SAT solver from scratch.
All of this can be easily supported by our theory solver described in Sect. 5 by
recording inference in the usual way into a so-called implication graph.

A further level of integration is to use an incremental theory solver. This
means that in the case where the theory solver answers either SAT or UNKNOWN
for some input formula φ, the SMT solver may later ask us to check satisfiability
of an extended formula φ∧ψ. Later, the SMT solver might ask the theory solver
to backtrack to an earlier state. Again, it is no problem for our theory solver to
support all of this. The new part ψ of the extended formula may allow additional
inferences and the algorithm can simply continue from the state where it finished
the analysis of the original formula φ.

Note that here the SMT solver might associate a certain strength with
the query [18, Section 4.1], asking for a definitive answer only in the situation

94 T. Kolárik and S. Ratschan

when the formula will not further be extended. Here it makes sense to wait with
using the →Fk

-inferences until all k-function literals appear in the formula to
check since those literals may play an essential role in keeping the inference tree
small by applying Theorem 7. Ideally, the SMT solver supports this by adding
such literals always together with the corresponding differential equations.

So-called online SMT solvers do not restart the SAT solver from scratch in
further iterations, but only backtrack to an earlier point that did not yet result
into an unsatisfiable theory formula.

A further feature of advanced SMT solvers is theory propagation. In this case,
the SMT solver not only asks the theory solver to check satisfiability of some
formula φ but, in addition, to also identify elements from a set of literals that
are entailed by φ. This is easy to do in the case of inferences that have only one
successor state, especially, inferences wrt. →R, but will probably not pay off for
inferences that require search.

8 Computational Experiments

In this section we will study the behavior of a prototype implementation of
the techniques introduced in this paper. Especially, we are interested in how
far our theoretical finding that the SAT modulo ODE problem is easier for
simulation semantics than for classical mathematical semantics (Theorem 1) also
holds in practice. Our solver (UN/SOT) is based on the naive lazy approach
to SMT, the simplest possible one described in Sect. 7, using the SAT solver
Minisat2 and our theory solver implementation which currently uses the ODE
solver Odeint3. It avoids the full evaluation of its input formula after each
inference step: Instead it cycles through all literals in the input formula, handling
all k-differential literals and k-function literals for each k ∈ κ as one block.
Whenever the current literal or k-block allows an inference, the corresponding
inference rule is applied, and whenever the current literal can be evaluated based
on the current state, it is evaluated. As soon as a literal evaluates to ⊥ or all
literals evaluate to �, the corresponding result is returned to the SMT solver. If
no more inferences are possible, and no result has been found up to this point, the
solver returns UNKNOWN. This happens only in cases not following the structure
identified in Sect. 6. In the case where the answer is UNSAT, the theory solver
forms conflict clauses from the sub-formula involved in the inferences necessary
to arrive at the answer. We only do simple backtracking, no backjumping.

As a solver with classical mathematical semantics we used dReal4, that is
based on the ODE solver CAPD5 that builds on decades of research on validated
ODE integration [15,17,19]. But again, the goal of this section is not to measure
the efficiency of the used algorithms, but rather, the inherent practical difficulty
of the respective problems.
2 http://minisat.se
3 http://www.odeint.com
4 http://dreal.github.io
5 http://capd.ii.uj.edu.pl

http://minisat.se
http://www.odeint.com
http://dreal.github.io
http://capd.ii.uj.edu.pl

SAT Modulo Differential Equation Simulations 95

We present experiments based on a hybrid system model of inpatient glycemic
control of a patient with type 1 diabetes [7]. The patient is represented by 18 spe-
cific parameters and by initial values of the insulin system (5 function variables)
and the glucose system (2 function variables). The whole process is divided into
two phases. In the first phase, the patient is being monitored to ensure his or
her stability for the surgery. If this fails, the surgery is canceled and the process
ends. Otherwise, the second phase (and the surgery) follows, where the controller
starts operating—it drives insulin and glucose inputs—wrt. observed condition
of the patient. The patient’s condition is sampled approximately every 30 min
(using 1 min timing jitter). We have two verification tasks, safety—surgery starts,
and the glucose level stays in a certain set of safe states, and unsafety—surgery
starts, and the set of safe states is left.

For translating the hybrid system to an SMT problem, we unrolled it wrt.
its discrete transitions. We did two types of experiments for both solvers, first
with fixing a certain initial state, and second with intervals of initial states. For
experiments of the second type we equidistantly cover the initial states with a
number of sample points and specify the initial state using a disjunction over
these sample points. For dReal, we use the original interval. The same applies
also for modeling the timing jitter (for both types of experiments), where, in
the case of our solver, the equidistance is an input parameter.

The results of the first case, with a fixed initial state, can be seen in the fol-
lowing tables. We examined two different scenarios, where satisfiability amounts
to the terminal state being safe and unsafe, respectively. The tables on the top
show a variant with an initial state for which the system stays within the safe
states, the tables at the bottom a variant where it reaches an unsafe state after
the fifth unrollment, and stays there. The column N lists the number of unroll-
ments, s the equidistance of the timing jitter, and the column headed by the tool
names the run-time in seconds. The time-ratio should not serve for any efficiency
comparison between the two tools but across different test cases.

“S
af
e”

in
it
.
st
at
e

Verifying safety
N s Result UN/SOT dReal Ratio
3 1 sat 0.15 26 172
3 1

4
sat 0.13 26 197

6 1 sat 0.88 50000 56804
6 1

4
sat 1.51 50000 33101

12 1 sat 4.71 × ×
12 1

4
sat 7.12 × ×

Verifying unsafety
N s Result UN/SOT dReal Ratio
3 1 unsat 0.14 6 44.1
3 1

4
unsat 0.33 6 18

6 1 unsat 4.04 52119 12911
6 1

4
unsat 363 52119 143

8 1 unsat 28 × ×
8 1

4
unsat 36761 × ×

“U
ns
af
e”

in
it
.
st
at
e N s Result UN/SOT dReal Ratio

3 1 sat 0.18 26.2 145
3 1

4
sat 0.11 26.2 230

6 1 unsat 0.78 107980 138809
6 1

4
unsat 8.95 107980 12064

12 1 unsat 0.87 × ×
12 1

4
unsat 10.2 × ×

N s Result UN/SOT dReal Ratio
3 1 unsat 0.14 5.8 40.8
3 1

4
unsat 0.31 5.8 18.6

6 1 sat 0.65 5428 8296
6 1

4
sat 1.19 5428 4545

8 1 sat 1.00 × ×
8 1

4
sat 1.07 × ×

96 T. Kolárik and S. Ratschan

Here, not unexpectedly, our approach scales quite well against the parame-
ter N . This contrasts the behavior of methods based on interval computation,
that have to fight with the so-called dependency problem that tends to blow up
intervals over long time horizons.

The results of the second case, with intervals of initial points, are shown
in the following tables. This time, the tables on the top show a variant with
smaller ranges of possible initial states, and the tables at the bottom a variant
with larger ones.

Sm
al
le
r
in
te
rv
al
s

Verifying safety
N s Result UN/SOT dReal Ratio
3 1 sat 0.2 24045 122261
3 1

2
sat 5.04 24045 4770

6 1 sat 2.38 × ×
6 1

2
sat 2.17 × ×

12 1 sat 5.83 × ×
12 1

2
sat 8.28 × ×

Verifying unsafety
N s Result UN/SOT dReal Ratio
3 1 unsat 4455 6.3 0.001
3 1

2
unsat 7776 6.3 0.001

4 1 unsat 25042 124 0.005
4 1

2
unsat > 36000 124 ×

5 1 unsat > 36000 2478 ×
5 1

2
unsat × 2478 ×

L
ar
ge
r
in
te
rv
al
s N s Result UN/SOT dReal Ratio

3 1 sat 29.9 > 82800 ×
3 1

2
sat 28.2 > 82800 ×

6 1 sat 1.04 × ×
6 1

2
sat 70.6 × ×

12 1 sat 58.9 × ×
12 1

2
sat 6.96 × ×

N s Result UN/SOT dReal Ratio
3 1 unsat overflow 9.3 ×
3 1

2
unsat × 9.3 ×

4 1 ? > 36000 > 54000 ×
4 1

2
? × > 54000 ×

5 1 sat 887 > 86400 ×
5 1

2
sat 8598 > 86400 ×

Here, in the case with intervals, the unsafe state can be reached only with
the larger ranges. Also, of course, with the intervals and with the unsatisfiable
result, the performance of our tool degrades heavily, when choosing more sample
points in the interval. In the worst case, it has to check the finite set of all floating
point numbers in the interval, while dReal uses more sophisticated techniques.
The result “overflow” means that the program crashed due to restrictions of our
implementation.

All experiments were performed on a personal laptop machine with CPU
Intel R© i7-4702MQ, 8GB memory, running on OS Arch Linux with 4.19.60 Linux
kernel.

Note that the original model [7] contains a few mistakes, which we had to
correct. The main problem is that the dynamics can block switching between
adjacent modes, leading to unintended UNSAT results.

We showed that the (corrected) model is not safe. This contradicts the orig-
inal results [7] that proved the model to be safe, apparently only due the
mentioned modeling mistakes. To support our statement, we attach a trajec-
tory of a concrete counterexample in Fig. 2. Here, a dangerous glucose level is
reached (variable Gp, the dotted curve) for the initial values Ip(0) = 29,X(0) =
290, I1(0) = 120, Id(0) = 144, Il(0) = 10, Gp(0) = 238, Gt(0) = 50.

SAT Modulo Differential Equation Simulations 97

Fig. 2. Unsafety witness for the glucose model

We refer curious readers to our experimental report [13] for more details.
The input data of these and many further experiments, along with the source
code of the tool, are available on the website of the tool6.

Finally, we would like to mention that we found the dReal immensely useful
for developing, tuning, and debugging our own tool.

9 Conclusion

In this paper we introduced an alternative approach to handling differential
equations in a SAT context. Motivated by industrial practice, the approach uses
the semantics of simulation tools instead of classical mathematical semantics as
its basis. Also, the approach allows inputs that integrate ODEs more tightly into
SAT problems than was the case for existing methods. Computational experi-
ments with a simple prototype implementation indicate that this problem for-
mulation allows the efficient solution of problems that are highly difficult for
start-of-the-art tools based on classical mathematical semantics, especially in
satisfiable cases.

In the future, we intend to work on a tighter algorithmic integration between
the Boolean and the theory solver [2,8,18], on search techniques for efficient
handling of satisfiable inputs, and on deduction techniques to prune the inference
tree for unsatisfiable inputs. Finally, it will be important to support advanced
ODE solving techniques such as root finding (for locating events happening
between two simulation steps) and adaptive step sizes.

Acknowledgements. This work was funded by institutional support of the Institute
of Computer Science (RVO:67985807) and by CTU project SGS20/211/OHK3/3T/18.

6 https://gitlab.com/Tomaqa/unsot, subdirectory doc/experiments/v0.7

https://gitlab.com/Tomaqa/unsot

98 T. Kolárik and S. Ratschan

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

2. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in
SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006). https://doi.org/10.
1007/11916277 35

3. Barrett, C., Tinelli, C.: Satisfiability modulo theories. Handbook of Model Check-
ing, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
10575-8 11

4. Bouissou, O., Mimram, S., Chapoutot, A.: Hyson: set-based simulation of hybrid
systems. In: 23rd IEEE International Symposium on Rapid System Prototyping
(RSP), pp. 79–85. IEEE (2012)

5. Bournez, O., Campagnolo, M.L.: A survey on continuous time computations. In:
Cooper, S., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 383–423.
Springer, New York (2008)

6. Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An automatable formal semantics
for IEEE-754 floating-point arithmetic. In: 22nd IEEE Symposium on Computer
Arithmetic, pp. 160–167. IEEE (2015)

7. Chen, S., O’Kelly, M., Weimer, J., Sokolsky, O., Lee, I.: An intraoperative glu-
cose control benchmark for formal verification. In: Analysis and Design of Hybrid
Systems ADHS, vol. 48 of IFAC-PapersOnLine, pp. 211–217. Elsevier (2015)

8. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: 14th
International Conference on Verification, Model Checking, and Abstract Interpre-
tation, VMCAI, Rome, Italy (2013)

9. Edelkamp, S., Schroedl, S.: Heuristic Search: Theory and Applications. Morgan
Kaufmann, Burlington (2012)

10. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: a direct SAT approach to
hybrid systems. In: Automated Technology for Verification and Analysis, vol. 5311,
LNCS (2008)

11. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: 2013 Formal
Methods in Computer-Aided Design, pp. 105–112. IEEE (2013)

12. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I.
Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-78862-1

13. Kolárik, T.: UN/SOT v0.7 experiments report. https://gitlab.com/Tomaqa/
unsot/blob/master/doc/experiments/v0.7/report.pdf (2020)

14. Melquiond, G.: Floating-point arithmetic in the Coq system. Inf. Comput. 216,
14–23 (2012)

15. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. In:
SIAM (2009)

16. Mosterman, P.J., Zander, J., Hamon, G., Denckla, B.: A computational model
of time for stiff hybrid systems applied to control synthesis. Control Eng. Pract.
20(1), 2–13 (2012)

17. Nedialkov, N.S.: Implementing a rigorous ODE solver through literate program-
ming. In: Rauh, A., Auer, E. (eds.) Modeling Design and Simulation of Sys-
tems with Uncertainties, pp. 3–19. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-15956-5 1

www.SMT-LIB.org
https://doi.org/10.1007/11916277_35
https://doi.org/10.1007/11916277_35
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-540-78862-1
https://gitlab.com/Tomaqa/unsot/blob/master/doc/experiments/v0.7/report.pdf
https://gitlab.com/Tomaqa/unsot/blob/master/doc/experiments/v0.7/report.pdf
https://doi.org/10.1007/978-3-642-15956-5_1
https://doi.org/10.1007/978-3-642-15956-5_1

SAT Modulo Differential Equation Simulations 99

18. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM (JACM) 53(6), 937–977 (2006)

19. Wilczak, D., Zgliczyński, P.: Cr-Lohner algorithm. Schedae Informaticae 20, 9–46
(2011)

Verified Runtime Assertion Checking
for Memory Properties

Dara Ly1,4(B), Nikolai Kosmatov1,2 , Frédéric Loulergue3,4 ,
and Julien Signoles1

1 CEA, LIST, Software Security and Reliability Laboratory, Palaiseau, France
{dara.ly,nikolai.kosmatov,julien.signoles}@cea.fr,

nikolaikosmatov@gmail.com
2 Thales Research & Technology, Palaiseau, France

3 School of Informatics Computing and Cyber Systems, Northern Arizona University,
Flagstaff, USA

frederic.loulergue@nau.edu
4 INSA Centre Val de Loire, Université d’Orléans, LIFO EA 4022, Orléans, France

Abstract. Runtime Assertion Checking (RAC) for expressive specifi-
cation languages is a non-trivial verification task, that becomes even
more complex for memory-related properties of imperative languages
with dynamic memory allocation. It is important to ensure the soundness
of RAC verdicts, in particular when RAC reports the absence of failures
for execution traces. This paper presents a formalization of a program
transformation technique for RAC of memory properties for a repre-
sentative language with memory operations. It includes an observation
memory model that is essential to record and monitor memory-related
properties. We prove the soundness of RAC verdicts with regard to the
semantics of this language.

1 Introduction

Runtime assertion checking (RAC) [7] is a well-established verification technique
whose goal is to evaluate specified program properties (assertions, or more gen-
erally, annotations) during a particular program run and to report any detected
failures. It is particularly challenging for languages like C, where memory-related
properties (such as pointer validity or variable initialization) cannot be directly
expressed in terms of the language, while their evaluation is crucial to ensure the
soundness of the program and to avoid the numerous cases of undefined behav-
ior [12]. Indeed, memory-related errors, such as invalid pointers, out-of-bounds
memory accesses, uninitialized variables and memory leaks, are very common.
C is still widely used, e.g. in embedded software, and a study from IBM [29]
reports that about 50% of detected software errors were related to pointers and
array accesses.

Recent tools addressing memory safety of C programs, such as Valgrind and
MemCheck [23,26], DrMemory [5] or AddressSanitizer [25], have become very pop-
ular and successful in detecting bugs. However, their soundness is usually not
c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 100–121, 2020.
https://doi.org/10.1007/978-3-030-50995-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_6&domain=pdf
http://orcid.org/0000-0003-1557-2813
http://orcid.org/0000-0001-9301-7829
https://doi.org/10.1007/978-3-030-50995-8_6

Verified Runtime Assertion Checking 101

formally established, and often does not hold, since most of them rely on very
efficient but possibly unsound heuristics [31]. While for a reported bug, it can
be possible—at least, in theory—to carefully analyze the execution and check
whether an error is correctly reported, the soundness of the “no-bug” verdict
cannot be checked.

For runtime assertion checking, soundness becomes a major concern: because
this technique is used to verify the absence of failures, often in complement to
sound deductive verification on parts of annotated code which were not (yet)
proved, ensuring the soundness of tools implementing it is crucial. E-ACSL1 is
one of these tools [28], as part of the Frama-C verification platform [16] for static
and dynamic analyses of C programs. A formal proof of soundness for E-ACSL is
highly desirable with regard to the complexity of verification of memory-related
properties, that requires numerous instrumentation steps to record memory
related operations—often in a complex, highly optimized observation memory
model [13,17,32]—and to evaluate them thanks to this record. In this context,
the proof of soundness is highly non-trivial: it requires to formalize not only the
semantics of the considered programming and specification languages, but also
the program transformation and the observation memory.

The purpose of the present work is to formalize and prove the soundness of
a runtime assertion checker for memory-related properties. We consider a sim-
ple but representative imperative programming language with dynamic memory
allocation and a specification language with a complete set of memory-related
predicates, including pointer validity, variable initialization, as well as pointer
offset, base address and size of memory blocks. We define their semantics and
formalize a runtime assertion checker for these languages, including the under-
lying program transformation and observation memory model. Finally, we state
and prove the soundness result ensuring that the resulting verdicts are correct
with respect to the semantics.
The contributions of the paper include:
– a formalization of all major steps of a runtime assertion checker for a simple

but representative language;
– a definition of a dedicated memory model for RAC with an observation mem-

ory, suitable for a modular definition and verification of program transforma-
tions injecting non-interfering code, and an associated proof technique;

– a proof of soundness of a runtime verifier for memory properties.

Outline. Section 2 gives an overview of the work and a motivating example.
Section 3 defines the considered languages. The runtime assertion checker is for-
malized in Sect. 4, while Sect. 5 states and proves the soundness result. Finally,
Sects. 6 and 7 give some related work and conclusion.

2 Overview and Motivating Example

At a first glance, runtime assertion checking might be considered as an easy task:
just directly translate each logic term and predicate from the source specification
1 Available as open-source software at https://frama-c.com/eacsl.html.

https://frama-c.com/eacsl.html

102 D. Ly et al.

1 int search (int ∗t , int len , int x) { // search x in array t of s i z e len
2 int l o = 0 , h i = len − 1 ; // i n i t i a l search i n t e r v a l bounds
3 while (l o <= hi) { // whi le search i n t e r v a l non empty
4 int mid = lo + (hi − l o) / 2 ; // take the middle va lue
5 /∗@ asser t (\ va l i d (t + mid)) ; ∗/
6 i f (t [mid] == x) return mid ; // element found
7 else i f (t [mid] < x) l o = mid + 1 ;
8 else hi = mid − 1 ; // reduce the search i n t e r v a l
9 }

10 return −1; // element not found
11 }
12

13 int main (void) {
14 int t [5] = { −3, 2 , 4 , 7 , 10 } ;
15 return search (t , 5 , 7) ;
16 }

Fig. 1. Binary search annotated with a memory-related property.

language to the corresponding expression of the target programming language
and that’s it. In that spirit, Barnett et al. [2] explain how they enforce Spec#
contracts, but only a short paragraph is dedicated to their runtime checker (all
the others being dedicated to static verifications). Here it is in extenso:

The run-time checker is straightforward: each contract indicates some par-
ticular program points at which it must hold. A run-time assertion is gen-
erated for each, and any failure causes an exception to be thrown.

However, this statement is not true for complex properties such as memory
properties. Consider for instance the C function implementing binary search in
Fig. 1. It contains an assertion at line 5, written in the E-ACSL specification lan-
guage [9,27], stating that t+mid of type int* refers to a “valid memory location”,
ensuring that it is safe to dereference it at lines 6 and 7. For this program, the
assertion is satisfied and runtime assertion checking of this program with the
E-ACSL tool will not detect any failure.

To illustrate a failure, let us assume that search is called at line 15 with an
erroneous length argument, say, 10 instead of 5. Then during the first iteration
of the loop, mid would take the value 5 (at line 4) and the assertion at line 5
would fail because t+ 5 is out of t’s bounds (as defined on line 14). In this case,
runtime assertion checking of this program with the E-ACSL tool would halt the
program execution and report the failure.

Checking such a property at runtime is not trivial: in particular, it requires
to know at the annotation’s program point (line 5) whether the sizeof(int)

bytes starting from the address t+mid have been properly allocated by the pro-
gram earlier in the execution, in the same memory block, without being freed
in the meantime. For that purpose, runtime memory checkers (also called mem-
ory debuggers) need to store at runtime pieces of information about program
memory in a disjoint memory space, named observation memory in this paper.
For instance, the instrumented version of Fig. 1 created by the E-ACSL runtime
assertion checker [28] is 111-lines long (when deactivating its static optimization
described in [21]) for tracking the program’s memory manipulation. In particu-

Verified Runtime Assertion Checking 103

e ::= n integer constant
| x variable
| ∗e dereference
| &e address
| † e unary operator
| e ‡ e binary operator

t ::= e expression
| ∗̄t dereference
| &̄t address
| †̄ t unary operator
| t ‡̄ t binary operator
| \base address(t) base address
| \offset(t) pointer offset
| \block length(t) block length

p ::= \true | \false true, false
| t �̄� t comparison
| p ∧ p conjunction
| p ∨ p disjunction
| p ⇒ p implication

| ¬ p negation
| \valid(t) pointer validity
| \initialized(t) initialization

s ::= skip; noop
| e = e; assignment
| e = malloc(e); allocation
| free(e); deallocation
| logical assert(p); log. assertion
| s s sequence
| if(e) then s else s branching
| while(e) s loop
| {�d s} code block

d ::= τ x; var. declaration

τ ::= sgn sz integer type
| τ∗ pointer type

sgn ::= unsigned | signed
sz ::= int | long

Fig. 2. Syntax of the source language, with expressions e, logical terms t, predicates
p, statements s, declarations d, types τ , signedness sgn and size sz.

lar, for the block t created and initialized at line 14, E-ACSL adds the following
lines of code (assuming that sizeof(int)= 4, so t is 20-byte long):

__e_acsl_store_block((void *)(t),(size_t)20); //record new block
__e_acsl_full_init((void *)(& t)); //mark it as initialized

Optimized implementations of such functions are also pretty complex, as
explained by Vorobyov et al. [32]. In this work, assuming their correct implemen-
tation, we formalize the whole instrumentation performed by a RAC tool, and
prove its soundness. For that purpose, we provide a model for such functions.

Moreover, RAC often has to manipulate additional variables, e.g. to evaluate
annotations. We also prove that the instrumentation has no effect on the func-
tional behavior of the input program as long as no annotation is violated. For
that purpose, we add a new memory space, named instrumentation (or monitor)
memory, that helps to prove non-interference in a modular way.

3 The Considered Languages

We model the instrumentation operated by RAC as a program transformation
from a source language with logical assertions to a destination one with program
assertions and observation memory primitives. We describe both languages in
this section, before defining the program transformation in the next section.

3.1 Source Language

Our source language is a small C-like imperative language extended with formal
annotations. It focuses on memory-related constructs and properties.

104 D. Ly et al.

Syntax. Figure 2 presents the syntax of this source language. Expressions are
(integer) constants, variables and operators (e.g. arithmetic operators), as well
as the distinguished reference (&) and dereference (∗) operators. Variables are
implicitly type-annotated, and all programs are supposed well-typed with respect
to a type system that we do not detail here.

Statements include assignment of a value to a memory location (variable or
dereferenced pointer) and basic control flow (sequence, conditional branching,
loop). Beside these, notable constructs are primitives for dynamic memory allo-
cation and deallocation, the logical_assert(p); statement (which does noth-
ing if predicate p evaluates to true and halts the execution otherwise), and code
blocks with (possibly multiple) local variable declarations (denoted �d).

Predicates form a propositional calculus (with the usual conjunction, disjunc-
tion, negation, and implication connectives), whose atoms are pointer validity,
pointed value initialization, and logical term comparison. Terms are a superset of
C expressions, extended with block-level memory attributes such as the length of
the block containing the pointer, the base address of the pointer (i.e. the address
of the first byte of its block), or the offset of the pointer with regards to the base
address. To express this extension, terms have to include syntactical constructs
mapping those of expressions, denoted with an overline: for instance ∗̄ denotes
pointer dereferencing for terms.

Semantics Overview. We give our language a big-step operational semantics
adapted from that of CompCert’s Clight [4]. The choice of this style (rather than,
say, small-step operational semantics) is motivated by its ease of use when rea-
soning about program transformations. Moreover, the semantics is blocking [8]:
in case of an error, the evaluation cannot evolve.

The evaluation context is composed of a variable environment ̂E (mapping
variables’ names to memory block identifiers) and a memory state ̂M (mapping
memory locations to values, as explained below). Five inductive relations define
our semantics:

– ̂E, ̂M �̂e e ⇒ v, evaluation of an expression e in the context of a variable
environment ̂E and a memory state ̂M , yielding a value v;

– ̂E, ̂M �̂lv e ⇒ b, δ, evaluation of an expression e as a left-value, yielding a
memory location (b, δ) in a memory block b with an offset δ;

– ̂E, ̂M �̂t t ⇒ v, evaluation of a logical term t, similarly yielding a value v;
– ̂E, ̂M �̂p p ⇒ b, evaluation of predicate p to a Boolean truth value b;
– ̂E, ̂M1 �̂s s ⇒ ̂M2, evaluation of statement s in the context of a variable envi-

ronment ̂E and an initial memory state ̂M1; the evaluation results in a final
memory state ̂M2, while the environment ̂E remains the same.

As later theorems and proofs in this paper involve both source and destination
language constructs, and in order to visually differentiate them, we take the
convention to write objects related to a source program—such as environments,
memory states or values—with a hat; as of destination language constructs, they
are written normally, without a hat. For instance, a variable environment ̂E could

Verified Runtime Assertion Checking 105

appear in a source program evaluation, while a memory state M would be used
in a destination program evaluation. Readers should keep in mind that this is
a pure convention, and this notation bears no formal meaning: in particular, ̂E
and E (for example) have the same type. The inference symbol (�̂ or �) is also
written with a hat for the source language and without it for the destination one
(where its usage will be slightly different).

Memory Model. In accordance with our choice of using CompCert as an inspi-
ration for our semantics, we reuse the (first) memory model of CompCert [20],
based on the notion of memory blocks. In this model, a memory location is a
couple (b, δ) where b is an abstract block identifier (or block for short), and δ ∈ N

an offset within the associated block. Blocks have a size defined at allocation
time, which determines the maximum possible offset (starting from 0) where a
value may actually be stored.

Following [20], the type of such a memory state is left abstract. However, it
may be thought of as a map from blocks to their content, which is itself a map
from offsets to values, resulting in the following type:

mem : block → N → value.

This type supports four axiomatized operations, which we describe informally
below using the following notations: M (or ̂M) denotes a memory state, b a block,
δ an offset, v a value, and τ a type. As some memory operations may fail, their
return value has an option type, meaning that such a value is either ε (no return
value) or �v� (some value v).

Thus, alloc(M,n) = (b,M ′) means that the allocation of a new block in
memory state M returns its identifier b, along with the new memory state M ′;
in M ′, b is allocated with a size of n bytes. Data in the new block is uninitialized,
i.e. the values stored in the block are Undef. length(M, b) returns the byte size
recorded for b.

Conversely, free(M, b) deallocates a block b from M . If b was allocated in M
and not previously deallocated, a new memory state �M ′� is returned. Otherwise,
the deallocation fails and returns ε.

store(τ,M, b, δ, v) stores value v with type τ at location (b, δ) in M , returning
a new memory state �M ′� if it succeeds. The store fails and returns ε if the block
does not exist, or if the attempt is made to store data out of b’s bounds.

Finally, load(τ,M, b, δ) reads from M at (b, δ) a value of type τ , returning a
value �v� upon success and ε upon failure. A failure occurs when loading from
a non-existing block or from an existing block, but out of its bounds. Notice
that a value v may be Undef despite being successfully loaded: for instance
load(τ,M, b, 0) = �Undef� when b is a newly allocated block, containing unini-
tialized data, or more generally, when a value of the same type2 was not previ-
ously stored at the same offset (or was completely or partially overwritten since
it was stored).
2 For simplicity, we do not allow type conversion here and refer the reader to [20] for

a more general definition with type conversion.

106 D. Ly et al.

̂E3 and ̂E4:

variable block
t �→ b2
len �→ b3
x �→ b4
lo �→ b5
hi �→ b6
mid �→ b7

̂M3 and ̂M4:

block content byte size

b1 �→ −3 2 4 7 10 20

b2 �→ Ptr(b1, 0) 4

b3 �→ 5 4

b4 �→ 7 4

b5 �→ 0 4

b6 �→ 4 4

b7 �→ 2 4

Fig. 3. Environment ̂E3 and memory state ̂M3 (above the single line) show the context
at line 3 at the start of the binary search (cf. Fig. 1). Environment ̂E4 and memory
state ̂M4 show the context after line 4 and contain in addition the elements below the
single line. The Int constructor is omitted around integer values in the content column.

We say that accesssing (b, δ) with type τ is valid, and we write M � τ @ b, δ,
if data of type τ may be safely accessed at (b, δ) in M , that is, load(τ,M, b, δ)
would return some value �v� (possibly with v = Undef).

Memory Model Usage. Let us consider the example code from Fig. 1. We detail
memory operations performed during the first iteration of the loop (lines 3 to 9),
when search is called from main (line 15). At the beginning of the loop (line 3),
the program has variable environment ̂E3 and memory state ̂M3, represented in
Fig. 3. Let us illustrate that after line 4, the program has variable environment
̂E4 and memory state ̂M4, having both an additional line as shown in Fig. 3.

Line 4 contains a declaration of mid followed by an assignment: let us denote
by ̂E′

3 and ̂M ′
3 the variable environment and memory state between them.

The loop body introduces a local variable mid, which requires an allocation:
alloc(̂M3, sizeof(int)) = (b7, ̂M ′

3), where ̂M ′
3 is equal to ̂M4 except that, as no

data has yet been stored to b7 in this state, ̂M ′
3 contains Undef at each offset

δ ∈ [0; 4[. Variable mid is also added into the variable environment ̂E′
3 accord-

ingly (as shown on the last line of ̂E′
3 = ̂E4, cf. Fig. 3).

Then, lo + (hi − lo)/2 is evaluated (line 4). This requires reading lo’s value:
load(int, ̂M ′

3, b5, 0) = �Int(0)�. hi’s value is read similarly.
After evaluation of the right-hand side expression, its result is written to mid:

store(int, ̂M ′
3, b7, 0, Int(2)) = � ̂M4�. The resulting memory state ̂M4 is shown in

Fig. 3, where the Int constructor is omitted for short.
Thereafter, in this first loop iteration, the condition on line 6 (i.e., t[2] = 5)

is false, and that on line 7 (t[2] < 5) is true, so the then branch on line 7 is
executed. Similar load and store operations occur at lines 6 and 7, bringing the

Verified Runtime Assertion Checking 107

E int:

̂E, ̂M �̂e n ⇒ Int(n)

E var:
̂E(x) = b

̂E, ̂M �̂lv x ⇒ b, 0

E deref:
̂E, ̂M �̂e e ⇒ Ptr(b, δ)

̂E, ̂M �̂lv ∗e ⇒ b, δ

E addr:
̂E, ̂M �̂lv e ⇒ b, δ

̂E, ̂M �̂e &e ⇒ Ptr(b, δ)

E lval:
̂E, ̂M �̂lv e ⇒ b, δ typeof(e) = τ

load(τ, ̂M, b, δ) = �v� v �= Undef
̂E, ̂M �̂e e ⇒ v

Fig. 4. Semantics of expressions.

memory into some state ̂M7, equal to ̂M4 except for the line for b5 where 0 is
replaced by 3, the new value of lo. Finally, as the control flow reaches the end of
this loop iteration, mid is deallocated: free(̂M7, b7) = � ̂M9�, where ̂M9 is equal to
̂M3 except for the line for b5 where 0 is replaced by 3. The variable environment
at the end of the block is equal to that before the block, i.e. ̂E9 = ̂E3: local
variable mid is removed.

Semantics Inference Rules. The relations expressing the semantics of our source
language are defined by a set of inference rules. Expressions (see Fig. 4) evaluate
either to a value, or, as left-values, to a memory location. A value is either an
integer, a pointer to a memory location (that is, in our memory model, a block
and an offset), or an undefined value: v ::= Int(n) | Ptr(b, δ) | Undef.

Figure 5 defines the semantics of statements. Rule E_assign is an example
of use of the memory model: the right-hand side of the assignment is evaluated
to a value v, while the left-hand side is evaluated to a memory location (b, δ). A
store() operation is then performed to write v into ̂M1 at location (b, δ), and must
lead to a final memory state ̂M2 (recall our semantics is blocking). Selected rules
defining the semantics of predicates and terms are given in Fig. 6. The reader
can see how these rules are applied following the steps in the Memory Model
Usage example above, illustrated on Fig. 3.

3.2 Destination Language

The destination language is quite close to the source language: it has the same
expressions, and mostly the same statements (see Fig. 7). The first difference is
the absence of assertions over logical predicates, therefore removing the need for
terms and predicates. These are substituted with a weaker, program assertion
over expressions, similar to the C assert macro. The other difference is the
addition of a set of primitives to interact with an additional observation memory.
In order to give these primitives a semantics, we extend the evaluation relation
with the state of the observation memory (denoted M). Consequently, evaluation
relations for the destination language take the following shapes:

108 D. Ly et al.

E assign:
̂E, ̂M1 �̂e e2 ⇒ v

̂E, ̂M1 �̂lv e1 ⇒ b, δ typeof(e2) = τ

store(τ, ̂M1, b, δ, v) = � ̂M2�
̂E, ̂M1 �̂s e1 = e2;⇒ ̂M2

E malloc:
̂E, ̂M1 �̂e e2 ⇒ Int(n)

alloc(̂M1, n) = (b′, ̂M2)
̂E, ̂M1 �̂lv e1 ⇒ b, δ typeof(e1) = τ∗
store(τ∗, ̂M2, b, δ,Ptr(b′, 0)) = � ̂M3�

̂E, ̂M1 �̂s e1 = malloc(e2);⇒ ̂M3

E free:
̂E, ̂M1 �̂e e ⇒ Ptr(b, 0)
free(̂M1, b) = � ̂M2�

̂E, ̂M1 �̂s free(e);⇒ ̂M2

E logical assert:
̂E, ̂M �̂p p ⇒ true

̂E, ̂M �̂s logical assert(p);⇒ ̂M

E seq:
̂E, ̂M1 �̂s s1 ⇒ ̂M2

̂E, ̂M2 �̂s s2 ⇒ ̂M3

̂E, ̂M1 �̂s s1 s2 ⇒ ̂M3

E if false:
̂E, ̂M1 �̂e e ⇒ Int(0)
̂E, ̂M1 �̂s s2 ⇒ ̂M2

̂E, ̂M1 �̂s if (e) then s1 else s2 ⇒ ̂M2

E if true:
̂E, ̂M1 �̂e e ⇒ Int(n)

n �= 0 ̂E, ̂M1 �̂s s1 ⇒ ̂M2

̂E, ̂M1 �̂s if (e) then s1 else s2 ⇒ ̂M2

E while false
̂E, ̂M �̂e e ⇒ Int(0)

̂E, ̂M �̂s while (e) s ⇒ ̂M

E while true:
̂E, ̂M1 �̂e e ⇒ Int(n) n �= 0

̂E, ̂M1 �̂s s ⇒ ̂M2
̂E, ̂M2 �̂s while (e) s ⇒ ̂M3

̂E, ̂M1 �̂s while (e) s ⇒ ̂M3

E block:
̂E2, ̂M2 = alloc vars(�d, ̂E1, ̂M1) ̂E2, ̂M2 �̂s s ⇒ ̂M3

̂M4 = dealloc vars(�d, ̂E2, ̂M3)
̂E1, ̂M1 �̂s {�d s} ⇒ ̂M4

Fig. 5. Semantics of the source language statements, where alloc_vars() allocates
memory for the list of local variable declarations �d using the alloc() operation, and
adds the corresponding bindings into the environment. dealloc_vars() is the converse
function.

– E,M �e e ⇒ v, evaluation of an expression (unchanged);
– E,M �lv e ⇒ b, δ, evaluation of an expression as a left-value (unchanged);
– E,M1,M1 �s s ⇒ M2,M2, evaluation of a statement; in addition to the final

execution memory M2, it also returns a final observation memory M2.

In the same way as the execution memory model is a prerequisite to the
definition of the source language semantics, the observation memory must be
defined prior to the semantics of the above primitives. The observation memory
is basically a data structure for the runtime monitor to store metadata about the
(execution) memory of the program under monitoring. As for the execution mem-
ory model, we define it with an abstract type, a set of functions over this type,
and an axiomatization of these functions. Four of them are the observation coun-
terparts of the execution memory operations. store_block(M, b, n) records block

Verified Runtime Assertion Checking 109

b as being allocated with byte size n, returning an updated observation mem-
ory state. delete_block(M, b) marks b as deallocated and returns an updated
observation memory. initialize(τ,M, b, δ) marks the data with type τ at location
(b, δ) as initialized and returns an updated observation memory. Conversely,
is_initialized(τ,M, b, δ) returns 1 if location (b, δ) with type τ is marked as ini-
tialized in M , and 0 otherwise. Two other functions provide information about
metadata stored in the memory state: is_valid(τ,M, b, δ) returns 1 if accessing
data with type τ at location (b, δ) is legal, and 0 otherwise, while length(M, b)
returns the size that was recorded for b with store_block(). Vorobyov et al.
explain how all these operations can be implemented [32].

Figure 8 presents the semantics of the destination language’s additional state-
ments, and their relation with the observation memory operations. Evaluation
rules for the statements already present in the source language are omitted, as
they are similar and only adapted to include observation memory states, which
remain unchanged in these evaluation rules.

E or1:
̂E, ̂M �̂p p1 ⇒ true

̂E, ̂M �̂p p1 ∨ p2 ⇒ true

E or2:
̂E, ̂M �̂p p1 ⇒ false ̂E, ̂M �̂p p2 ⇒ b

̂E, ̂M �̂p p1 ∨ p2 ⇒ b

E init true:
̂E, ̂M �̂t t ⇒ Ptr(b, δ) typeof(t) = τ∗

load(τ, ̂M, b, δ) = �v� v �= Undef
̂E, ̂M �̂p \initialized(t) ⇒ true

E init false:
̂E, ̂M �̂t t ⇒ Ptr(b, δ) typeof(t) = τ∗

load(τ, ̂M, b, δ) = �Undef�
̂E, ̂M �̂p \initialized(t) ⇒ false

E valid true:
̂E, ̂M �̂t t ⇒ Ptr(b, δ)

typeof(t) = τ∗ ̂M � τ @ b, δ

̂E, ̂M �̂p \valid(t) ⇒ true

E valid false:
̂E, ̂M �̂t t ⇒ Ptr(b, δ)

typeof(t) = τ∗ ̂M � τ @ b, δ

̂E, ̂M �̂p \valid(t) ⇒ false

E base addr:
̂E, ̂M �̂t t ⇒ Ptr(b, δ)

̂E, ̂M �̂t \base address(t) ⇒ Ptr(b, 0)

E ofs:
̂E, ̂M �̂t t ⇒ Ptr(b, δ)

̂E, ̂M �̂t \offset(t) ⇒ Int(δ)

E block length:
̂E, ̂M �̂t t ⇒ Ptr(b, δ) length(̂M, b) = �n�

̂E, ̂M �̂t \block length(t) ⇒ Int(n)

E expr:
̂E, ̂M �̂e e ⇒ v

̂E, ̂M �̂t e ⇒ v

Fig. 6. Semantics of predicates and terms.

s ::= . . . source lang. stmts
| logical assert(p); no assert. over pred.
| assert(e); assert. over exp.
| store block(e, e); record new block
| delete block(e); remove recrorded bl.
| e = is valid(e); is e valid

| e = is initialized(e); is (∗e) initialized
| initialize(e); mark ∗e as initialized
| e = base address(e); e’s block base address
| e = offset(e); get pointer offset
| e = block length(e); e’s block length

Fig. 7. Additional statements of the destination language.

110 D. Ly et al.

4 Program Transformation

We now turn to the implementation of a runtime monitor by program transfor-
mation. This transformation has two purposes: first, translating logical predi-
cates (and terms) into chunks of executable code evaluating them; and second,
inserting statements into the original code, in order to track the state of the exe-
cution memory; that is, updating the observation memory whenever a memory
related operation occurs.

The general idea underlying this transformation is the following: atomic pred-
icates and terms are translated into dedicated primitives of the target language,
while composite ones (logical connectors, comparison operators. . .) are encoded
with non-logical constructs of the source language. The translation of each term
and predicate introduces a specific variable res that stores its results for later
use by subsequent computations.

Formally, we express the transformation as a set of three recursive functions
over statements (denoted �·�s), predicates (�·�p) and terms (�·�t). Notice that
indices s, p, t are here part of notation (and not a reference to a specific state-
ment s, predicate p or term t). These functions have the following types: �·�s :
statement → statement; �·�p : predicate → {code : statement; res : variable};
�·�t : term → {code : statement; res : variable}. While �·�s is a straightforward
translation from statement to statement, the other two translation functions

E storeblock:
E, M1 �e p ⇒ Ptr(b, 0) E, M1 �e e ⇒ n

store block(M1, b, n) = �M2�
E, M1, M1 �s store block(p, e); ⇒ M1, M2

E deleteblock:
E, M1 �e p ⇒ Ptr(b, 0)

delete block(M1, b) = �M2�
E, M1, M1 �s delete block(p); ⇒ M1, M2

E isvalid:
E, M1 �lv e1 ⇒ b1, δ1 E, M1 �e e2 ⇒ Ptr(b2, δ2) typeof(e2) = τ∗

is valid(τ, M1, b2, δ2) = n store(int, M1, b1, δ1, n) = �M2�
E, M1, M1 �s e1 = is valid(e2); ⇒ M2, M1

E isinitialized:
E, M1 �lv e1 ⇒ b1, δ1 E, M1 �e e2 ⇒ Ptr(b2, δ2) typeof(e2) = τ∗

is initialized(τ, M1, b2, δ2) = n store(int, M1, b1, δ1, n) = �M2�
E, M1, M1 �s e1 = is initialized(e2); ⇒ M2, M1

E initialize:
typeof(e) = τ∗

E, M1 �e e ⇒ Ptr(b, δ)
initialize(τ, M1, b, δ) = �M2�

E, M1, M1 �s initialize(e); ⇒ M1, M2

E baseaddr:
E, M1 �lv e1 ⇒ b1, δ1

E, M1 �e e2 ⇒ Ptr(b2, δ2) typeof(e1) = τ∗
store(τ∗, M1, b1, δ1, Ptr(b2, 0)) = �M2�

E, M1, M1 �s e1 = base address(e2); ⇒ M2, M1

E blocklength:
E, M1 �lv e1 ⇒ b1, δ1

E, M1 �e e2 ⇒ Ptr(b2, δ2)
length(M1, b2) = �n�

store(int, M1, b1, δ1, n) = �M2�
E, M1, M1 �s e1 = block length(e2); ⇒ M2, M1

E offset:
E, M1 �lv e1 ⇒ b1, δ1

E, M1 �e e2 ⇒ Ptr(b2, δ2)
store(int, M1, b1, δ1, δ2) = �M2�

E, M1, M1 �s e1 = offset(e2); ⇒ M2, M1

Fig. 8. Semantics of destination-specific statements.

Verified Runtime Assertion Checking 111

Fig. 9. Translation of statements.

Fig. 10. Translation of predicates, where p denotes the currently translated predicate
for short. Omitted cases are similar to those displayed.

return records; their fields are a statement (the code field of the record type)
performing computation of the translated term or predicate, and distinguished
variable res to store the result of the computation.

4.1 Statement Translation

The statement translation (see Fig. 9) is the top-level transformation function. It
simply follows the structure of the source program, only adding observation mem-
ory manipulation primitives where execution memory operations occur. There-
fore, besides logical assertions, the only statements actually transformed are
assignements, memory allocation, deallocation, and code blocks (to account for
automatic allocation and deallocation of local variables).

112 D. Ly et al.

Fig. 11. Translation of terms, where t denotes the currently translated term for short.

When translating a logical assertion over a predicate p, a block of code is
generated, ending with a C-like assertion over a local variable, �p�p.res, that
will receive the result of p’s translation. Its declaration is generated from its
name (and, implicitly, type) using a dedicated function mkdecl. As for the code,
�p�p.code, it is inserted just before the final assertion. The execution of such a
block therefore follows these steps: first, the control enters the block and �p�p.res
is allocated; then �p�p.code executes, computing p’s truth value and writing
the result (0 or 1) into �p�p.res; finally, the assertion is evaluated, halting the
program if �p�p.res is zero (meaning that p is false in the source program), and
resuming otherwise; in the latter case, the control exits the block and �p�p.res
is automatically deallocated, returning the memory to its previous state.

4.2 Predicate Translation

The predicate translation is the main component of the program transformation
as a whole. Its purpose is to convert a logical predicate into code reflecting
the evaluation of this predicate. Figure 10 presents the definition of �p�p.code,
inductively defined on the structure of p. Regarding the result variable (�p�p.res),
we only require the transformation to generate a fresh name for each predicate.
The code field of the resulting record is expected to be inserted at a program
point at which its result variable, the res field, has already been declared and
allocated with an adequate memory block.

Our translation introduces many intermediate variables (cf. Fig. 10). To min-
imize the impact of these variables, we introduce them only when needed, and
deallocate them as soon as they are no longer used. Therefore, in all but the
most simple cases (\true, \false, and ¬p), code is a block that limits the scope
of the intermediate variable(s) res.

Verified Runtime Assertion Checking 113

4.3 Term Translation

The translation function for terms (see Fig. 11) is quite similar to that of pred-
icates, the main difference being that the type of the result variable depends
on the translated term, while it is always a Boolean for predicates. As with
predicates, the only requirement for generated variables is freshness.

5 Soundness

Preliminary Notation Convention. Statements in the source language evaluate
in some evaluation context ̂C = (̂E, ̂M), consisting of a variable environment ̂E

and an execution memory state ̂M . In the destination language, an evaluation
context C = (E,M,M) has an additional third component: the observation
memory M . By abuse of notation, we also write C = (C,M) with C = (E,M).
In both languages, statement evaluation only affects memory states, and does
not alter environments. Therefore, an evaluation such as ̂Ci �̂s s ⇒ ̂Mf actually
links the initial context ̂Ci = (̂Ei, ̂Mi) to a final context ̂Cf = (̂Ef , ̂Mf), where
̂Ef = ̂Ei. For the sake of conciseness, we assume that any memory state ̂Mk

at some program point k is implicitly extended to a context ̂Ck by the current
environment ̂Ek. Reciprocally, any context ̂Ck may implicitly be decomposed
into its components ̂Ek and ̂Mk. The same holds for the destination language.

5.1 Definitions

Let us elaborate a notion of semantics preservation for our program transforma-
tion. Assume a source program s sucessfully evaluates from the initial evaluation
context ̂Ci: we have ̂Ci �̂s s ⇒ ̂Mf . We want to relate this evaluation of s and
that of its associated transformed program �s�s. The preservation property states
that if the initial evaluation context of the source program ̂Ci and that of the
transformed program Ci are related according to a certain relation R, then eval-
uating �s�s in Ci should succeed and terminate in a final context Cf that is
also related to ̂Cf by R. More formally, our transformation soundness theorem
states:

∀s, ̂Ci,Ci, ̂Cf ,

{

̂Ci �̂s s ⇒ ̂Cf

̂Ci R Ci

=⇒ ∃ Cf ,

{

Ci �̂s �s�s ⇒ Mf ,Mf

̂Cf R Cf

We now have to define an appropriate relation R between a source context
̂C and an associated destination context C . They have the following differences.
First, the content of the destination execution memory M is larger than its source
counterpart ̂M , because in addition to the memory of the source program, it
also stores the intermediate variables introduced by the instrumentation (those
generated by predicates and terms translation). M can thus be divided into two
distinct regions, the original program memory Mp and the monitor memory Mm,

114 D. Ly et al.

such that no pointer value stored in Mp points to a location in Mm (because
the monitored program should not refer to the memory of the monitor). We call
this property separation and extend it to contexts.

Definition 1 (Context separation). A context C is separated into two sub-
contexts Cp and Cm (denoted C = Cp
 Cm) if:

– E is the disjoint union of maps Ep and Em;
– the set of valid blocks in M is the disjoint union of those of Mp and Mm;
– any valid block in M , which is also valid in either Mp or Mm, has the same

content in Mp or Mm as in M ;
– no value in Mp is a pointer to a block in Mm.

Second, the destination context C includes an observation memory M .
Assuming context separation, the requirement for M is to be an accurate descrip-
tion of the monitored program memory Mp. M is then said to represent Mp.

Definition 2 (Representation). An observation memory M represents an
execution memory M (denoted M � M) if:
⎧

⎨

⎩

∀τ, b, δ, M � τ @ b, δ =⇒ is_valid(τ, M, b, δ) = true

∀τ, b, δ, load(τ, M, b, δ) = �v� ∧ v �= Undef =⇒ is_initialized(τ, M, b, δ) = true

∀b, length(M, b) = length(M, b)

Third, in our memory model, blocks are identifiers. Therefore two memory
states (or environments) may have the same content up to block permutation.

Definition 3 (Isomorphism). Two execution memories M1 and M2 are iso-
morphic (denoted M1 ∼ M2) if there is a permutation σ on the set of blocks
such that ∀τ, b, δ, σ̃(load(τ,M1, b, δ)) = load(τ,M2, σ(b), δ), where σ̃ is the func-
tion over values (more precisely over value options) that applies σ to pointers:
Ptr(b, δ) �→ Ptr(σ(b), δ), and leaves other values unchanged. Environments E1

and E2 are isomorphic (denoted E1 ∼ E2) if x �→ b ∈ E1 ⇔ x �→ σ(b) ∈ E2.
Contents C1 and C2 are isomorphic (denoted C1 ∼ C2) if E1 ∼ E2 and M1 ∼ M2

with the same permutation σ.

Definition 4 (Context monitoring). The monitoring relation R between a
source context ̂C and a destination context C = (C,M) is defined as follows:
̂C R C iff ∃Cp, Cm s.t. C = Cp
 Cm and ̂C ∼ Cp and Mp � M .

5.2 Soundness Theorem

Theorem 1 (Soundness of program transformation). Let ̂Ci �̂s s ⇒ ̂Cf

be the evaluation of a source program s, from initial context ̂Ci to final context
̂Cf , and Ci a destination context that monitors ̂Ci, i.e. ̂Ci R Ci. Then �s�s

evaluates from Ci to a final destination context Cf that monitors ̂Cf , that is,
∃Cf , Ci �s �s�s ⇒ Mf ,Mf and ̂Cf R Cf .

Verified Runtime Assertion Checking 115

Proof. We proceed by induction on the evaluation of s. The proof is straight-
forward for all cases but that of logical_assert(), which requires a specific
lemma. To give a flavor of the proof, we present the case of assignments. Through-
out the proof, we manipulate various execution contexts and their components
(execution and observation memories, and environments). In order to help relat-
ing them together, we index them according to the intuitive notion of program
point: the initial context Ci is also C0; after execution of an atomic statement,
the next one is C1, etc. We simply write ̂E for ̂Ei (resp., E for Ei) if it does not
change.

Case E_assign. If s is an assignement e1 = e2; then its translation �s�s is
e1 = e2; initialize(&e1); (cf. Fig. 9), and its evaluation (cf. Fig. 5) is:

̂E, ̂Mi �̂e e2 ⇒ v ̂E, ̂Mi �̂lv e1 ⇒ ̂b, ̂δ typeof(e2) = τ store(τ, ̂Mi,̂b, ̂δ, v) = �̂Mf�
̂E, ̂Mi �̂s e1 = e2;⇒ ̂Mf

We want to prove the existence of a destination evaluation context Cf such
that Ci �̂s e1 = e2; initialize(&e1);⇒ Mf ,Mf and ̂Cf R Cf . Let us build an
evaluation derivation for �s�s and then prove preservation of R. We want to
build, for suitable memory states, a derivation ending by:

E, Mi �e e2 ⇒ v E, Mi �lv e1 ⇒ b, δ
typeof(e2) = τ store(τ, Mi, b, δ, v) = �M1�

Ci �s e1 = e2; ⇒ M1, M1

. . .

initialize(τ, M1, b, δ) = �M2�
C1 �s initialize(&e1); ⇒ M2, M2

Ci �s e1 = e2; initialize(&e1); ⇒ M2, M2

where M1 = Mi and M2 = M1 remain unchanged (cf. Fig. 5, 8, Sect. 3.2).
Thus, in destination context C1 = (E,M1,M1) only M1 is changed w.r.t Ci =
(E,Mi,Mi), and in context Cf = C2 = (E,M2,M2), only M2 is new w.r.t C1.

Since ̂Ci R Ci, Ci may be separated into Cp
i
 Cm

i , with ̂Ci ∼ Cp
i . As a con-

sequence e2 evaluates to the same value in Ci as in ̂Ci: Ci �e e2 ⇒ v. Now, let
(b, δ) be the result of the left-value evaluation of e1 in the destination program:
Ci �lv e1 ⇒ b, δ. Define �M1� = store(τ,Mi, b, δ, v); this store operation is valid
for Mi, because the corresponding store is valid in the source memory ̂Mi, and
̂Mi is isomorphic to Mp

i , which is a subpart of Mi. Then C1 can be separated
as Cp

1
 Cm
1 , with Cm

1 = Cm
i (since the only memory operation was performed

in the Mp part), and the isomorphism ̂Ci ∼ Cp
i was preserved since the same

store operation (up to isomorphism) was performed in both contexts. There-
fore ̂Cf ∼ Cp

1 . The representation property, however, no longer holds: indeed
(b, δ) now contains initialized data, but this was not reported to the observation
memory M1 = Mi. Now, if we define M2 by �M2� = initialize(τ,M1, b, δ), the
representation property is restored: ̂Cf R Cf .

Case E_logical_assert. If s is a logical assertion, the evaluation judgement
is ̂Ci �̂s logical_assert(p);⇒ ̂Mf , with premise ̂Ci �̂p p ⇒ true.

The generated code is: {mkdecl (�p�p.res); �p�p.code; assert(�p�p.res); }. Let
Ci be an initial destination evaluation context, and C1 the context after allocation

116 D. Ly et al.

of �p�p.res. By applying Lemma2 we get ∃C2 s.t. C1 �s �p�p.code ⇒ M2,M and
C2 �̂e �p�p.res ⇒ int(true). The evaluation derivation may then be completed by
using the rules for C-like assertion and for code block. Preservation of R follows
from Lemma 1. ��
Lemma 1 (Preservation of context monitoring by predicate transla-
tion). Let p be a predicate, ̂C a source context, and Ci and Cf destination
contexts. If Ci �s �p�p ⇒ Mf and ̂C R Ci, then ̂C R Cf .

Proof (sketch). The code generated by predicate translation does not modify
the observation memory Mi (it only reads from it). Moreover, since the only
assignments performed in the generated code write to result variables, any mod-
ification of the execution memory takes place in the monitoring part of the
execution memory (Mm in the definition of R), leaving the program part (Mp)
untouched. This ensures preservation of R. ��
Lemma 2 (Soundness of predicates translation) . Let ̂C �̂p p ⇒ b be the
evaluation of a predicate p; let C, Ci and M be such that ̂C R (C,M) and
Ci = (Ei,Mi) = alloc_vars(�p�p.res, C). Let Mi = M and Ci = (Ei,Mi,Mi).
Then ∃Cf = (Ei,Mf) s.t. Ci �s �p�p.code ⇒ Mf ,M and Cf �e �p�p.res ⇒ int(b)
(where int() encodes Booleans by mapping false on 0 and true on 1).

Proof. We prove the lemma by induction on p’s evaluation. Base cases of the
induction correspond to predicates such as validity, initialization, or term com-
parison; these cases are proved using a lemma expressing the soundness of terms
translation, which is very similar to Lemma2 both conceptually and technically.
Therefore, we do not prove it here. To give an intuition of the proof on other
cases (logical connectives), we present one of the two cases for disjunction.

Case E_or2. The considered predicate evaluation is ̂C �̂p p1 ∨ p2 ⇒ b, with
assumptions ̂C �̂p p1 ⇒ false and ̂C �̂p p2 ⇒ b. Let us build an evaluation
for �p1 ∨ p2�p.code (defined in Fig. 10). We start from context Ci as defined
by the lemma’s hypothesis, and build step by step every memory state the
generated code is going through. Let C1 = alloc_vars(�p1�p.res, Ci). By
induction hypothesis on p1 (instantiating Ci with C1), there exists C2 s.t.
C1 �s �p1�p.code ⇒ M2,M and C2 �e �p1�p.res ⇒ 0 (since p1 evaluates to false).

Now, let C5 = alloc_vars(�p2�p.res, C2). By induction on p2, there exists
C5 = (E5,M6) s.t. C5 �s �p2�p.code ⇒ M6,M and C6 �e �p2�p.res ⇒ int(b).
Finally, let us define the following memories and associated contexts:

M7 = store(int,M6, E6(�p�p.res), 0, int(b))

C8 = dealloc_vars(�p2�p.res, C7) C9 = dealloc_vars(�p1�p.res, C8)

Let us prove that C9 satisfies the expected properties for the Cf of the proof
goal. Using the above definition, we can derive the following derivation for

Verified Runtime Assertion Checking 117

�p1 ∨ p2�p.code (in this derivation tree, for lack of space, the res field is abbre-
viated to r, code to c, and M—that remains unchanged—is omitted):

All that is left to do now is to prove C9 �e �p�p.res ⇒ int(b). This follows
from the definitions of M7, C8 and C9: M7 results from storing int(b) at location
(E6(�p�p.res), 0) therefore C7 �e �p�p.res ⇒ int(v); since C8 and C9 are obtained
by deallocating variables other than �p�p.res, this evaluation also holds for C9:
C9 �e �p�p.res ⇒ int(b). ��

6 Related Work

More and more languages include a notion of contract. Design-by-contract is
one of the main features of Eiffel [22], contracts have been introduced in Java
through JML [18] in 1999, in Ada 2012 [1], and the C++ standardization commit-
tee considered contracts for C++ 20, although this new feature has been finally
deferred to a later standard. In Eiffel, assertions are Boolean expressions written
in the programming language. In Ada 2012, it is also the case, but the language
has been extended with quantified expressions to allow bounded universal and
existential quantification. These new expressions have been inspired by Spark, a
well-defined subset of Ada, extended to express contracts for static and dynamic
verification.

Zhang et al. [33] studies verified runtime checking in the context of Spark:
the checks to be performed are however not explicitly stated as assertions in the
source language, but are implicit (e.g. division by zero). The authors provide a
formalization and proofs using the Coq proof assistant [3]. Cheon [6] formalizes
runtime assertion checking of JML, but provides no proof of soundess, while
Lehner [19] formalizes the semantics of a large subset of JML and proves in
Coq an algorithm that checks assignable clauses at runtime. Such clauses are
memory properties that do not require memory observation. As our work focuses
on memory observation, it is related but complementary to these works. Indeed,
in the context of Java and Ada, even runtime checks for out-of-bounds accesses
are related to arithmetic inequalities. In the case of C, however, as the bounds
of an array are not attached to the array itself, out-of-bound access corresponds
to an invalid access to the memory, and is therefore handled in ACSL by the
predicate \valid. More generally, the formal verification efforts on languages
such as Eiffel, Java, Ada and Spark do not consider such properties because the

118 D. Ly et al.

design of the language prevents most memory problems that can arise in the
context of C.

As runtime checking is costly, most approaches rely on an optimization phase,
based on static analysis. Zhang et al. propose and verify such a phase. It is also
the case for our approach and prior work [21]. Such optimizations are thus related
to the verification of static analysis [14].

Our contribution targets the C language, the Frama-C framework, the ACSL
specification language and the E-ACSL plug-in. In particular we focus on mem-
ory properties. In Frama-C, the plug-in RTE [11] generates ACSL assertions for
runtime errors, and the E-ACSL plug-in can translate these assertions into C
code. As C++ includes C, in the long term, the work presented in this paper
could contribute to the verified compilation of a future standard of C++ includ-
ing contracts. It is interesting to note that a recent language, Rust, that aims
at combining the high-efficiency of C with strong guarantees, does not include
contracts. As there is an interest in formally verifying that the type system of
Rust indeed provides strong guarantees [15], that the Rust language also provides
unsafe pointers, and there exist Rust libraries to provide rudimentary support to
express contracts, our contribution may be interesting in the context of future
iterations of Rust.

We aim at extending the proposed approach to consider a larger subset of
E-ACSL, such as support of mathematical integers and their translation using
a library such as GMP. It makes the correctness of such a library a related
topic [24]. One strength of Frama-C is the use of the common ACSL language by
all plug-ins. For the verification of RAC, it means reusing existing formalizations
of ACSL designed in the context of the verification of deductive verification [10]
for our extended source language. Finally, the E-ACSL plug-in currently does not
support the translation of axiomatized predicates. A possible verified extension
of E-ACSL could be based on the work of Tollitte et al. [30].

7 Conclusion

Runtime assertion checking of memory related properties for a mainstream lan-
guage like C is a complex task involving various program transformation steps
with additional recording of memory block metadata in a non-trivial dedicated
observation memory model. This work makes a significant step toward a for-
mally proved runtime assertion checker. We have presented a formalization of
the underlying program transformation for a representative programming lan-
guage with dynamic memory allocation and proved the soundness of the resulting
verification verdicts. Future work includes an extension of the present proof to
a real-life language like C, as well as a formalization and a mechanized proof of
the runtime assertion checker in the Coq proof assistant [3].

Acknowledgment. The authors thank the Frama-C team for providing the tool and
support, as well as the anonymous reviewers for their helpful comments. The first
author was partially funded by a grant of the French Ministry of Defense.

Verified Runtime Assertion Checking 119

References

1. Ada Reference Manual, 2012 Edition. http://www.ada-auth.org/standards/ada12.
html

2. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter,
H.: Specification and verification: the spec# experience. Commun. ACM (2011).
https://doi.org/10.1145/1953122.1953145

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. TTCS. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-662-07964-5

4. Blazy, S., Leroy, X.: Mechanized semantics for the clight subset of the C language.
J. Autom. Reasoning 43(3), 263–288 (2009). https://doi.org/10.1007/s10817-009-
9148-3

5. Bruening, D., Zhao, Q.: Practical memory checking with Dr. Memory. In: Proceed-
ings of the CGO 2011, The 9th International Symposium on Code Generation and
Optimization, Chamonix, France, 2–6 April 2011, pp. 213–223. IEEE Computer
Society (2011). https://doi.org/10.1109/CGO.2011.5764689

6. Cheon, Y.: A runtime assertion checker for the Java Modeling Language. Ph.D.
thesis, Iowa State University (2003)

7. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. ACM SIGSOFT Softw. Eng. Not. 31(3), 25–37 (2006).
https://doi.org/10.1145/1127878.1127900

8. Correnson, L., Signoles, J.: Combining analyses for C program verification. In:
Formal Methods for Industrial Critical Systems - Proceedings of the 17th Inter-
national Workshop, FMICS 2012, Paris, France, 27–28 August 2012, pp. 108–130
(2012). https://doi.org/10.1007/978-3-642-32469-7_8

9. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for static
and dynamic analysis of C programs. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC 2013, Coimbra, Portugal, 18–22 March
2013, pp. 1230–1235 (2013). https://doi.org/10.1145/2480362.2480593

10. Herms, P.: Certification of a tool chain for deductive program verification. (Cer-
tification d’une chaine de vérification déductive de programmes). Ph.D. thesis,
University of Paris-Sud, Orsay, France (2013). https://tel.archives-ouvertes.fr/tel-
00789543

11. Herrmann, P., Signoles, J.: Annotation generation: Frama-C’s RTE plug-in. http://
frama-c.com/download/frama-c-rte-manual.pdf

12. ISO/IEC 9899:1999: Programming languages - C (1999)
13. Jakobsson, A., Kosmatov, N., Signoles, J.: Fast as a shadow, expressive as a tree:

optimized memory monitoring for C. Sci. Comput. Program. 132, 226–246 (2016).
https://doi.org/10.1016/j.scico.2016.09.003

14. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified
C static analyzer. SIGPLAN Not. 50(1), 247–259 (2015). https://doi.org/10.1145/
2775051.2676966

15. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: securing the foun-
dations of the rust programming language. Proc. ACM Program. Lang. 2(POPL)
(2017). https://doi.org/10.1145/3158154

16. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Form. Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

http://www.ada-auth.org/standards/ada12.html
http://www.ada-auth.org/standards/ada12.html
https://doi.org/10.1145/1953122.1953145
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1109/CGO.2011.5764689
https://doi.org/10.1145/1127878.1127900
https://doi.org/10.1007/978-3-642-32469-7_8
https://doi.org/10.1145/2480362.2480593
https://tel.archives-ouvertes.fr/tel-00789543
https://tel.archives-ouvertes.fr/tel-00789543
http://frama-c.com/download/frama-c-rte-manual.pdf
http://frama-c.com/download/frama-c-rte-manual.pdf
https://doi.org/10.1016/j.scico.2016.09.003
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/3158154
https://doi.org/10.1007/s00165-014-0326-7

120 D. Ly et al.

17. Kosmatov, N., Petiot, G., Signoles, J.: An optimized memory monitoring for run-
time assertion checking of C programs. In: Legay, A., Bensalem, S. (eds.) RV 2013.
LNCS, vol. 8174, pp. 167–182. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40787-1_10

18. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. ACM SIGSOFT Softw. Eng. Not. 31(3),
1–38 (2006). https://doi.org/10.1145/1127878.1127884

19. Lehner, H.: A formal definition of JML in Coq and its application to runtime
assertion checking. Ph.D. thesis, ETH Zurich (2011)

20. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses
for verifying program transformations. J. Autom. Reasoning 41(1), 1–31 (2008).
https://doi.org/10.1007/s10817-008-9099-0

21. Ly, D., Kosmatov, N., Loulergue, F., Signoles, J.: Soundness of a dataflow analysis
for memory monitoring. In: Workshop on Languages and Tools for Ensuring Cyber-
Resilience in Critical Software-Intensive Systems (HILT). ACM (2018)

22. Meyer, B.: Eiffel: The Language. Prentice-Hall, Upper Saddle River (1991)
23. Nethercote, N., Seward, J.: How to shadow every byte of memory used by a pro-

gram. In: Proceedings of the 3rd International Conference on Virtual Execution
Environments, VEE 2007, San Diego, California, USA, 13–15 June 2007, pp. 65–74
(2007). https://doi.org/10.1145/1254810.1254820

24. Rieu-Helft, R., Marché, C., Melquiond, G.: How to get an efficient yet verified
arbitrary-precision integer library. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017.
LNCS, vol. 10712, pp. 84–101. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-72308-2_6

25. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: a fast
address sanity checker. In: 2012 USENIX Annual Technical Conference, Boston,
MA, USA, 13–15 June 2012, pp. 309–318 (2012)

26. Seward, J., Nethercote, N.: Using Valgrind to detect undefined value errors with
bit-precision. In: USENIX Annual Technical Conference, pp. 17–30. USENIX
(2005)

27. Signoles, J.: E-ACSL: executable ANSI/ISO C specification language. http://
frama-c.com/download/e-acsl/e-acsl.pdf

28. Signoles, J., Kosmatov, N., Vorobyov, K.: E-ACSL, a runtime verification tool for
safety and security of C programs (tool paper). In: RV-CuBES 2017. An Interna-
tional Workshop on Competitions, Usability, Benchmarks, Evaluation, and Stan-
dardisation for Runtime Verification Tools, 15 September 2017, Seattle, WA, USA,
pp. 164–173 (2017). http://www.easychair.org/publications/paper/t6tV

29. Sullivan, M., Chillarege, R.: A comparison of software defects in database manage-
ment systems and operating systems. In: Digest of Papers: FTCS-22, The Twenty-
Second Annual International Symposium on Fault-Tolerant Computing, Boston,
Massachusetts, USA, 8–10 July 1992, pp. 475–484 (1992). https://doi.org/10.1109/
FTCS.1992.243586

30. Tollitte, P.-N., Delahaye, D., Dubois, C.: Producing certified functional code from
inductive specifications. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol.
7679, pp. 76–91. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
35308-6_9

31. Vorobyov, K., Kosmatov, N., Signoles, J.: Detection of security vulnerabilities in
C code using runtime verification: an experience report. In: Dubois, C., Wolff, B.
(eds.) TAP 2018. LNCS, vol. 10889, pp. 139–156. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92994-1_8

https://doi.org/10.1007/978-3-642-40787-1_10
https://doi.org/10.1007/978-3-642-40787-1_10
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/1254810.1254820
https://doi.org/10.1007/978-3-319-72308-2_6
https://doi.org/10.1007/978-3-319-72308-2_6
http://frama-c.com/download/e-acsl/e-acsl.pdf
http://frama-c.com/download/e-acsl/e-acsl.pdf
http://www.easychair.org/publications/paper/t6tV
https://doi.org/10.1109/FTCS.1992.243586
https://doi.org/10.1109/FTCS.1992.243586
https://doi.org/10.1007/978-3-642-35308-6_9
https://doi.org/10.1007/978-3-642-35308-6_9
https://doi.org/10.1007/978-3-319-92994-1_8
https://doi.org/10.1007/978-3-319-92994-1_8

Verified Runtime Assertion Checking 121

32. Vorobyov, K., Signoles, J., Kosmatov, N.: Shadow state encoding for efficient mon-
itoring of block-level properties. In: Proceedings of the 2017 ACM SIGPLAN Inter-
national Symposium on Memory Management, ISMM 2017, Barcelona, Spain, 18
June 2017, pp. 47–58 (2017). https://doi.org/10.1145/3092255.3092269

33. Zhang, Z., Robby, Hatcliff, J., Moy, Y., Courtieu, P.: Focused certification of an
industrial compilation and static verification toolchain. In: Cimatti, A., Sirjani, M.
(eds.) Software Engineering and Formal Methods. SEFM 2017. LNCS, vol. 10469,
pp. 17–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66197-1_2

https://doi.org/10.1145/3092255.3092269
https://doi.org/10.1007/978-3-319-66197-1_2

Testing for Race Conditions
in Distributed Systems via SMT Solving

João Carlos Pereira1(B) , Nuno Machado2 , and Jorge Sousa Pinto1

1 HASLab - INESC TEC & U. Minho, Braga, Portugal
joao.c.pereira@inesctec.pt, jsp@di.uminho.pt

2 Teradata Iberia, Madrid, Spain
nuno.machado@teradata.com

Abstract. Data races, a condition where two memory accesses to the
same memory location occur concurrently, have been shown to be a major
source of concurrency bugs in distributed systems. Unfortunately, data
races are often triggered by non-deterministic event orderings that are
hard to detect when testing complex distributed systems.

In this paper, we propose Spider, an automated tool for identify-
ing data races in distributed system traces. Spider encodes the causal
relations between the events in the trace as a symbolic constraint model,
which is then fed into an SMT solver to check for the presence of conflict-
ing concurrent accesses. To reduce the constraint solving time, Spider
employs a pruning technique aimed at removing redundant portions of
the trace.

Our experiments with multiple benchmarks show that Spider is effec-
tive in detecting data races in distributed executions in a practical
amount of time, providing evidence of its usefulness as a testing tool.

1 Introduction

Distributed systems are at the core of a wide range of applications nowadays,
namely large-scale processing and storage, service synchronization, and cluster
management [18]. Unfortunately, their inherent heterogeneity and complexity
renders testing and debugging notoriously hard. As a consequence, bugs often
surface in production, hampering the availability of services that are used every-
day by millions of people which leads to huge economic costs [28,32].

A recent study has shown that, among the different types of distributed
system bugs, data races are particularly challenging to find and debug, as they are
non-deterministic and rarely manifest [18]. A data race consists in two concurrent
accesses to the same memory location, where at least one access is a write. Such
races in distributed systems typically stem from unpredictable message arrivals
that violate the order or the atomicity of the protocols [18,20].

Over the last years, there have been multiple efforts to test and debug
data races, although prior work has mostly focused on multithreaded programs
[7,10,13,19]. Alongside, there has also been an increasing interest in applying

c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 122–140, 2020.
https://doi.org/10.1007/978-3-030-50995-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_7&domain=pdf
http://orcid.org/0000-0003-4671-4132
http://orcid.org/0000-0003-1531-1875
http://orcid.org/0000-0002-0892-3577
https://doi.org/10.1007/978-3-030-50995-8_7

Testing for Race Conditions in Distributed Systems via SMT Solving 123

formal verification techniques to prove correctness properties of distributed pro-
tocols, including the absence of race conditions [9,35]. However, these techniques
are not yet suitable for mainstream usage because they require writing lengthy
correctness proofs, which becomes a daunting task for complex systems [36].

More recently, Liu et al. proposed DCatch [20], a tool to discover distributed
concurrency bugs that operates by employing a happens-before (HB) analysis
on traces captured at runtime. DCatch was effective in finding races in popular
applications, such as Apache Cassandra and ZooKeeper, even when monitor-
ing correct executions. To keep the trace analysis tractable, DCatch relies on
static analysis and hints provided manually by the programmer to capture solely
events that lead to explicit failures. Despite that, its approach scales poorly, as
the experimental results in the paper revealed that DCatch consumes GBs of
memory for processing traces with a few MBs.

In this paper, we make the observation that distributed protocols typically
involve inter-node communication steps that occur repeatedly along the exe-
cution (e.g. the leader election protocol in Zookeeper or the node heartbeats
in Cassandra). Such redundant patterns, although useful to accurately under-
stand the behavior of the system, not only produce large event traces that are
prohibitively expensive to process, but also typically do not contribute to the
occurrence of new data races. We thus believe that removing redundant events
from traces can improve the performance and scalability of distributed system
testing solutions without compromising their accuracy.

This paper proposes Spider, an automated approach to detect data races in
distributed systems using redundancy pruning and symbolic constraint solving.
Given a trace of a distributed system under test, Spider starts by perform-
ing a trace analysis aimed at eliminating events that appear recurrently in the
execution and whose absence does not lead to any missed races. To this end,
we leverage prior work on redundancy pruning for single-machine multithreaded
applications [11] and extend it to message-passing systems.

After trimming the trace, Spider builds a causality model by encoding the
HB relationships between events into a system of constraints over logical order
variables. Finally, Spider resorts to an off-the-shelf SMT solver to compute the
pairs of conflicting events that can run concurrently and, thus, form a data race.

Prior work has shown that SMT constraint solving can be successfully applied
to reproduce [12], expose [24], and isolate [23,31] concurrency bugs in multi-
threaded programs. Alongside, SMT solving has also been employed to detect
message races in models of distributed systems that are partially synchronous
[33] or written as BPEL processes [5]. However, to the best of our knowledge,
this is the first application of SMT solvers for race detection in arbitrarily large
traces of distributed executions captured when testing unmodified source code.

We conducted an experimental evaluation of Spider using multiple bench-
marks with distributed data races. Our results show that Spider is effective
in detecting the bugs and that our redundancy pruning algorithm dramati-
cally reduces the size of the traces (especially for distributed protocols based
on rounds of message exchanges), which is paramount to scale our constraint

124 J. C. Pereira et al.

solving approach. In fact, our redundancy pruning strategy was able to remove
between 22% and 48% of the total amount of events in our experiments
(Sect. 4.3).

In summary, this paper makes the following contributions.

– We present an algorithm, which draws on prior work [11], to eliminate redun-
dant events from distributed system traces without hampering the race detec-
tion accuracy.

– We propose Spider, a tool that leverages redundancy pruning and SMT
constraint solving for finding data races in distributed systems.

– We assess the performance and effectiveness of Spider on several benchmarks
and show that our tool is capable of finding distributed races in a practical
amount of time, even for executions with thousands of events.

The rest of the paper is organized as follows. Section 2 discusses some back-
ground concepts relevant to this work. Section 3 presents Spider and details
both its architecture and modus operandi. Section 4 describes the experimen-
tal evaluation of Spider. Section 5 overviews the related work. Finally, Sect. 6
concludes the paper by summarizing its main findings.

2 Background

This section discusses some background aspects relevant to this paper, namely
the types of data races in distributed systems and Satisfiability Modulo Theories.

2.1 Data Races in Distributed Systems

In general, a data race occurs when two accesses compete for the same resource
in a non-synchronized fashion and at least one is modifying the resource. Since
there is no causal relationship enforced between the two accesses, their ordering
can vary across executions, which in some cases leads to failures.

Addressing data races in multithreaded applications has been the subject
of extensive research over the years [7,10,13,19]. Unfortunately, data races in
distributed systems are much more challenging than their single-machine coun-
terparts. A distributed system comprises multiple nodes that interact with each
other by exchanging messages, therefore concurrency occurs not only at the
thread level but also at the node level and in a much larger scale. As message
handlers often change the node’s local state and trigger additional actions (e.g.
sending a new message to another node), the timing in which messages are deliv-
ered and processed plays a decisive role in the correct execution of distributed
protocols. In fact, most concurrency bugs in real-world distributed systems stem
from the untimely delivery of messages [20]. Since those problematic execution
interleavings are typically rare, they go unnoticed during testing and only surface
in production with serious consequences.

According to the TaxDC study [18], distributed data races can be classified
into two categories based on their message timing conditions:

Testing for Race Conditions in Distributed Systems via SMT Solving 125

– Order violation: An order violation occurs when the correct execution of a
protocol in a node N requires that two events e1 and e2 run in a determined
order (say, e1 should execute before e2) but the program code wrongly permits
an execution interleaving in which e2 occurs before e1, thus causing an error.
At one node, order violations can occur due to races between: i) two message
arrivals, ii) a message arrival and a message sending, and iii) a message arrival
and a local computation. In turn, across multiple nodes, they are caused by
races between two message arrivals at different nodes.

– Atomicity violation: An atomicity violation occurs when the correct exe-
cution of a protocol in a node N requires that a critical region of events,
denoted as e1, e2, ..., en, executes atomically but the program code wrongly
permits an execution interleaving in which an external event x executes in-
between e1 and en, thus causing an error. The error would not manifest if x
happens either before or after the critical region.
At one node, atomicity violations can occur due to data races between a
message arrival and an atomic local computation, whereas across multiple
nodes they stem from races between a message arrival and an atomic global
computation.

Figure 2 illustrates several of the aforementioned scenarios of order and atom-
icity violations, which were implemented as micro-benchmarks for the experi-
mental evaluation conducted in this paper.

We now discuss SMT constraint solving, which is at the heart of our approach
to detect distributed data races.

2.2 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the decision problem of determining
whether a first-order logical formula is satisfiable with respect to a background
theory. A background theory provides interpretations for function and predicate
symbols. For example, the theory of integers TZ provides interpretations for the
symbols 0, 1, +, − and ≤. It is possible to devise theories to reason about varied
kinds of objects, from real numbers to data structures such as arrays [30].

The SMT problem can be seen as a generalization of the SAT [3] problem
where, in the place of propositional boolean variables, formulas may have pred-
icates over non-binary variables (i.e. binary-valued functions of non-binary vari-
ables) whose interpretations are given by a background theory. As an example,
consider the following two formulas:

x + y ≤ z ∧ z ≤ x − y (1)

x ≤ 0 ∧ 1 ≤ x (2)

Assuming the TZ theory (also called Presburger arithmetic), formula (1) is
satisfiable, for example with the assignment {x = 1, y = −1, z = 1}. In turn,

126 J. C. Pereira et al.

formula (2) is unsatisfiable because there is no assignment of variables that eval-
uates the formula to true.

Programs which take as input a set of first-order formulas written in the con-
text of a background theory and determine the satisfiability of the set are called
SMT solvers. Modern SMT solvers, like Z3 [25], are already capable of solv-
ing formulations with thousand of constraints in a timely manner. Nevertheless,
there is extensive ongoing research aimed at further improving their performance
and features. SMT solvers have been employed in a wide range of applications,
from program synthesis [6] to testing and debugging [10,12,23,24,31], as seen
on this paper.

3 SPIDER

This section details Spider, a scalable approach to detect data races in dis-
tributed systems via SMT solving. We start by providing an overview of the
solution, then describe the redundancy pruning algorithm and the happens-
before SMT constraint model.

3.1 Overview

Spider assumes the existence of a trace with events captured from the execution
of a distributed system either during testing or in production. We assume that
traces contain the following events of interest, already considered in previous
work [21,26]:

– Intra-node thread events: fork, join, start and end events which respec-
tively represent the spawn of a new thread in a node, the termination of a
thread, and the start and end of a thread’s execution;

– Inter-node communication events: events send or receive representing
respectively the sending and receiving of a message through sockets;

– Intra-node events: read or write accesses to shared variables, as well as lock
and unlock events;

– Message handling region delimiters: events signaling the beginning and
the end of a message handler.

Given an execution trace, Spider operates in three steps (see Fig. 1):

1. Redundancy Pruning: Spider employs a trace analysis to identify patterns
of shared-memory accesses and message exchanges that appear replicated in
the trace. These events, once removed, do not affect the causal dependencies
of the remaining ones. In other words, these events are not relevant to the
occurrence of new races and, therefore, can be safely excluded from the trace
in order to reduce the size of the search space.

2. HB Model Generation: The pruned trace is then used to generate an SMT
model that represents the events’ logical clocks as symbolic variables and
encodes the causality dependencies as constraints over those variables. This
way, Spider is able to search for races over the entire set of possible logical
time orderings of events, regardless of the execution recorded at runtime.

Testing for Race Conditions in Distributed Systems via SMT Solving 127

Fig. 1. Execution flow of Spider.

3. Race Detection: Once the HB model is generated, Spider produces a list
of potential data race candidates. For each candidate, Spider then resorts
to an off-the-shelf SMT solver to check whether the two accesses can have
the same logical clock, meaning they execute concurrently and thus form an
actual race. The list of valid data races is output at the end of the verification
procedure.

The next sections describe each step in more detail, starting with a definition
of the system model and its terminology.

3.2 System Model

For the purposes of this paper, a distributed system is modeled as a set of nodes,
with at least one thread running at each node. Different threads communicate
through message sending, with no further assumptions on message losses and
network delays. Each thread can be viewed as a sequence of events of different
types as defined in Sect. 3.1.

Spider is able to model multiple distributed execution orderings from the
same event trace by leveraging the Happens-Before (HB) ≺hb relationship
between events. This relationship states that, for two events e1 and e2 in the
trace, if e1 ≺hb e2 then event e1 occurs before event e2 at runtime [16]. In
other words, the ≺hb relation encodes event causal dependencies in a strict par-
tial order, which means that it has the following properties: i) irreflexivity – no
event can happen before itself; ii) transitivity – if an event a happens before
an event b and b happens before another event c, then a happens before c; iii)
asymmetry – no event a can simultaneously happen before and after another
event b.

The HB relation is commonly captured by means of logical clocks (also known
as Lamport clocks) [16], which are integer values that indicate the logical time in
which events occur in the execution. If an event e1 happens-before an event e2,
then their respective logical clocks C(e1) and C(e2) will reflect that dependency:
e1 ≺hb e2 → C(e1) < C(e2).

Spider casts the problem of assigning logical clocks to events as an SMT con-
straint solving problem. However, since the time necessary to solve an SMT for-
mulation increases proportionally to its number of constraints, it is of paramount
importance to reduce them as much as possible in order to obtain a solution in a
practical amount of time. In the next section, we describe how Spider employs
redundancy pruning to achieve this goal.

128 J. C. Pereira et al.

3.3 Redundancy Pruning

The performance of Spider’s constraint solving approach is mainly determined
by the number of events present in the trace. Thus, by reducing the trace length,
one is able to decrease the time necessary to discover data races. Alas, blindly
removing events can affect the causality originally present in the execution and
lead to both false negatives and false positives during race detection [11].

To address this issue, we leverage the ReX algorithm proposed by Huang
et al. [11], which allows eliminating redundancy in multithreaded traces. In this
context, a memory access is deemed redundant if its removal from the trace does
not hamper the soundness or precision of race detectors.

ReX identifies redundant events using the concept of concurrential-subsume
equivalence. Let ei and ej be two memory accesses made by a thread t, then ei
concurrentially-subsumes ej when the following three conditions hold:

i) Lexical Equivalence: ei and ej originate from the same program instruction
and have the same access type (i.e., both are reads or both are writes);

ii) Memory Equivalence: ei and ej access the same dynamic memory location;
iii) HB-subsume: for every event ek such that tek �= tei ∧ tek �= tej : ek ≺hb ei →

ek ≺hb ej and ei ≺hb ek → ej ≺hb ek.

According to this concept, an event is considered redundant if the trace
contains one concurrential-subsuming event from the same thread or two
concurrential-subsuming events from different threads. ReX’s redundancy prun-
ing algorithm thus consists of checking, for each event in the trace, whether it is
concurrential-subsumed by other events already in the trace and, if so, the event
is eliminated.

To improve the efficiency of the analysis (especially for assessing condition
iii), ReX computes the concurrency context for each thread while processing the
trace in a stream-based fashion. The concurrency context of a thread consists
in the sequence of send and unlock events observed up to a certain point. Since
these events are the ones generating inter-thread HB dependencies, one can
easily check whether condition iii) holds for ei and ej simply by comparing
their threads’ concurrency context. If the concurrency contexts match, then ej
is concurrential-subsumed by ei, otherwise, it is not. We defer further details on
the ReX algorithm to the original paper by Huang et al. [11].

Inspired by this work, we have implemented a redundancy pruning strategy
that improves the performance of Spider’s data race detection approach while
maintaining its accuracy. Our strategy consists in a sequence of two passes over
the traces that filter redundant events.

First, we apply a version of the ReX algorithm adapted to our system’s
model, namely by augmenting the concurrency context with fork events.1 After
this pass, the trace will be left with all but redundant read and write events.

1 The original ReX algorithm does not take into consideration the existence of fork
and join events signaling the creation and joining of threads.

Testing for Race Conditions in Distributed Systems via SMT Solving 129

We then perform a second pass on the trace designed to filter out redundant
message handlers and redundant threads. These two terms can be defined by gen-
eralizing the redundancy criterion for a block of events: a block β of contiguous
events occurring in the same thread is redundant if the removal of every event
in β from the trace does not change the number of unique races detected. This
means that, in order to be redundant, β must exhibit the following properties:

i) it does not contain non-redundant read or write events2;
ii) it does not contain send or receive events;
iii) it does not contain fork events that spawn non-redundant child threads;
iv) all locks acquired in the block are released within its boundaries.

Based on the definition of redundant block, we can now define a redundant
message handler as a redundant block that starts (resp. ends) with an event sig-
naling the beginning (resp. the end) of a message handler. Alongside, a redundant
thread is defined as a redundant block comprising all events of a thread.

Note that the second pass does not remove any memory access nor does it
modify the HB relation between non-redundant events. As such, the number of
unique data races computed by an HB-based race detector after applying the
two filters will not differ from those obtained using the full original trace.

3.4 Happens-Before Model Generation

After pruning the trace, Spider builds the HB model, denoted Φhb, by i) repre-
senting each event’s logical clock as a symbolic integer variable and ii) encoding
their causal dependencies ≺hb as constraints over those symbolic variables. Con-
sidering the types of the events, the Φhb model can be defined as a conjunction
of following sub-formulae:

– Program Order: Let E1 and E2 be the logical clocks of two events e1 and
e2 occurring in the same thread context (meaning that either e1 and e2 are
outside of any message handler or both are inside the same handler). If e1
appears before e2 in the trace, then: E1 < E2.

– Thread Synchronization: assuming that Forkt, Startt, Endt, and Joint

represent, respectively, the logical clocks of the creation, beginning, end, and
join operations of a thread t, then:

Forkt < Startt (3)
Endt < Joint (4)
Startt < Endt (5)

– Message Exchange: let Sndm,l1 and Rcvm,l2 represent the logical clocks of
the events of sending a message m on location l1 and receiving m on location
l2, respectively. Then:

2 Note that the second pass is performed after ReX, so any memory access existing
in the block is guaranteed to be non-redundant. Thus, condition i) is automatically
satisfied when block β does not contain any memory accesses.

130 J. C. Pereira et al.

Sndm,l1 < Rcvm,l2 (6)

Simply put, a message can only be received if it was previously sent.
– Message Handling: let Rcvm,l denote the event logical clock for receiving

m on location l, and let H Beginm and H Endm represent, respectively, the
logical clocks signaling the beginning and the end of m’s message handler.
Then:

Rcvm,l = H Beginm (7)
H Beginm < H Endm (8)

Assuming that the handler is the region of the program responsible for processing
the message, the first constraint states that a message m cannot be processed
before it was received, as m’s handler can only begin when m arrives. Moreover,
the constraint also guarantees that no other message m′ can be processed in-
between Rcvm,l and H Beginm.

The second constraint ensures that the event signaling the beginning of an
handler occurs before the event signaling its end.

– Mutual Exclusion: let Lockt,v,l1 and Unlockt,v,l2 represent, respectively,
the logical clocks of the lock acquisition and release operations by thread t
on a synchronization variable v at locations l1 and l2. Then:

Lockt,v,l1 < Unlockt,v,l2 (9)

Moreover, when different threads compete to execute the same critical region,
we need additional constraints to ensure mutual exclusion, i.e., that only one
thread at a time accesses the variables encompassed by the lock.

Let P denote the set of locking pairs on a synchronization variable and let
(L,U) and (L′, U ′) be any two different locking pairs in P . The constraint encod-
ing the mutual exclusion between locking pairs is as follows:

∀(L,U),(L′,U ′)∈P : U < L′ ∨ U ′ < L (10)

Solving the constraint model thus consists in assigning an integer value to
each symbolic variable (i.e. to each logical clock), such that all constraints are
satisfied. In other words, by solving the model, Spider is able to obtain a feasible
execution interleaving, in which events are guaranteed to be ordered according
to their happens-before relations.

3.5 Race Detection via SMT Solving

The last step of Spider’s approach consists in using an SMT solver to identify
race conditions. Let (e1, e2) represent a pair of conflicting accesses (i.e., read-
write events to the same variable on the same node, with at least one write),
and let E1 and E2 be the respective logical clocks of e1 and e2. The pair (e1, e2)
is considered a data race iff it verifies the following race property:

Testing for Race Conditions in Distributed Systems via SMT Solving 131

race(e1, e2) ≡ Φhb ∧ (E1 = E2) (11)

The data race property Φrace requires that the logical clocks E1 and E2 to
have identical values while satisfying all other constraints in Φhb, which can only
occur when the events e1 and e2 are not causally ordered. In other words, e1 and
e2 form a data race because they do not have a happens-before relationship.

Spider resorts to an SMT solver to check whether Eq. 11 holds for each
candidate pair (e1, e2). If the solver returns satisfiable, then (e1, e2) is considered
an actual data race. Conversely, if the formula is unsatisfiable, then e1 and e2
cannot execute concurrently, hence (e1, e2) is not reported as a race.

After validating all candidate pairs of conflicting accesses, Spider outputs
the list with the data races detected in the execution trace. It should be noted
that the checking procedure is embarrassingly parallel, as each pair can be
checked independently from the others.

Handling Intra-thread Data Races. Contrary to shared-memory programs on a
single machine, in which data races can only occur in the presence of multiple
threads, distributed systems can suffer from race conditions in a single thread.
This scenario happens when there is an order violation due to a race between
the arrival of two messages processed by the same thread, where at least one of
the message handlers changes the node’s state (see Fig. 2b for an example).

Spider addresses these type of data races in a two-fold fashion. First, it
identifies message races in each thread. This is done by applying Eq. 11 to pairs
of send events. Let m1 and m2 be two different messages processed by thread
t and let Sndm1 and Sndm2 be the logical clocks of their sending events. If
race(Sndm1 , Sndm2) is satisfiable, then both messages are racing.

Second, Spider detects conflicting accesses in the message handlers by com-
puting the intersection of their read-write sets. Let rw1 and rw2 be two events
belonging to the handlers of m1 and m2, respectively, that access the same vari-
able and at least one is to write. If m1 and m2 are racing, then (rw1, rw2) form
a intra-thread data race.

4 Evaluation

To assess the benefits and limitations of Spider, we conducted an experimental
evaluation focused on answering the following four questions:

– How effective is Spider in finding data races in distributed executions?
(Sect. 4.2)

– How does the Spider’s efficiency vary with the size of the execution trace?
(Sect. 4.3)

– How does redundancy pruning affect Spider’s effectiveness and efficiency?
(Sect. 4.3)

– Is Spider sound and precise? (Sect. 4.4).

Our prototype of Spider was implemented in Java in around 1.9K lines of
code and is publicly available at https://github.com/jcp19/SPIDER.

https://github.com/jcp19/SPIDER

132 J. C. Pereira et al.

In the experiments, we used testing framework Minha [21] to collect the
execution traces, and the SMT solver Z3 (version 4.4.1) to solve the constraints.
We assumed a timeout of 2 h for constraint solving, after which the Z3 process
was killed. All the experiments were ran on commodity hardware equipped with
an Intel Core i7-8550U CPU and 16 GB of RAM.

The next sections describe the benchmarks used to evaluate Spider and
discuss the results obtained.

4.1 Benchmarks

We used the following test cases to evaluate Spider’s race detection approach.

TaxDC Micro-benchmarks. We designed five micro-benchmarks that were
inspired by real-world races on popular distributed systems, namely HBase [2]
and Hadoop MapReduce [1], as described in the TaxDC database [18]. These
micro-benchmarks contain different types of data races (see Sect. 2) and are

Fig. 2. Overview of the TaxDC micro-benchmarks with distributed data races. Boxes
on the left describe the steps of the failing executions, as well as how the bugs are
prevented. Message diagrams containing, respectively, the failing and correct executions
are depicted on the right of the figure. Data races detected by Spider are represented
by red dashed boxes. (Color figure online)

Testing for Race Conditions in Distributed Systems via SMT Solving 133

publicly available [22], therefore we believe they can be useful for the community
to evaluate similar testing tools in the future.

Figure 2 depicts the distributed data races considered in our micro-
benchmarks. Following TaxDC’s notation, in Fig. 2, each race condition is asso-
ciated with a label that indicates the real-world bug on which the test case is
inspired: the starting letter indicates the system (H stands for HBase, whereas
M stands for MapReduce) and the number denotes the issue identifier (e.g.
H5780 represents the issue 5780 in HBase’s issue tracking system). In turn, the
node subscript indicates the system component present in the original buggy
scenario: ZK stands for ZooKeeper, RS for region server, Master for master
node, AM for application master, RM for resource manager, and NM for node
manager.

Since the purpose of these benchmarks is to allow evaluating Spider’s abil-
ity to automatically detect different types of distributed data races rather than
mimicking real-world workloads and code complexity, we developed them focus-
ing solely on the aspects that contribute to the occurrence of the bug. As such,
we represent local state queries and updates respectively as reads and writes on
shared variables, and confine the behavior of each node to its message handlers.

a) Message-message race between arrival/sending (H5780). BRS

attempts to join the cluster by sending CMaster a JOIN message. However,
since it does so before receiving the security-key message from AZK , the value
null is sent to CMaster, thus causing an error.

b) Message-message race at one node (M3724). BRM schedules a con-
tainer for CNM to work on a reduce task by sending the message CONTNR.
Concurrently, AAM sends a KILL message to CNM in order to preempt the
reduce task. Since the two messages race with each other, the KILL message
can arrive before CONTNR and be ignored by CNM because no container
exists yet (i.e. container = null). This untimely message arrival will cause
CNM to later reply to AAM with a task-completion message, instead of the
expected ACK.

c) Message-message race across two nodes (M5358). AAM assigns a task
to CNM1 along with a backup speculative task to BNM2. When receiving
the success confirmation from CNM1, AAM changes the state of the task to
succeeded (tState = OK) and sends a KILL message to BNM2. However, if
BNM2 manages to finish the task and also send the confirmation message
OK to AAM prior to receiving the KILL signal, AAM will consider BNM2’s
message as a wrong state transition and throw an exception.

d) Message-compute race (M4157). In the original bug, after finishing the
task, AAM unregisters itself to BRM and starts removing its local temporary
files. Concurrently to the local cleanup, BRM sends a KILL message to AAM

for stopping its execution. As a consequence, AAM does not finish removing
all files, which might cause storage space issues in the future.
This error is illustrated in our benchmark by means of a flag isCleaning
in AAM . In particular, AAM spawns a worker thread to perform the local
cleanup. This thread sets flag isCleaning to true (resp. true) at the beginning

134 J. C. Pereira et al.

(resp. end) of the cleaning task. If AAM receives BRM ’s KILL before its
working thread completes the cleanup, an error will occur.

e) Atomicity violation (M5009). After finishing a reduce task, BNM starts
committing the results to CAM (which sets the flag commit to true). Simul-
taneously, ARM sends a KILL message to BNM , thus preempting the task
without resetting the commit states on CAM . As a result, when later BNM

reruns the task and attempts to initiate a new commit transaction, CAM fails
due to a double-commit exception. The error does not manifest if the KILL
message arrives either before or after the transaction.

Peer Sampling Service. To assess how Spider’s constraint solving time varies
with the increase in the number of events in the execution, we used the imple-
mentation of a popular peer sampling service (PSS), named Cyclon [34], already
used by prior work [21]. The goal of a PSS is to provide a gossip-based application
with a churn-tolerant logical overlay for message dissemination.

Briefly, the Cyclon protocol operates as follows. For each node of the system,
Cyclon maintains a view, which is a set of references to other nodes in the network
associated with a timestamp. To ensure that this view remains consistent with
the nodes alive at each moment, Cyclon performs periodic shuffle cycles, in
which a node A sends a subset of randomly sampled peers to another node B,
and receives a random subset of B’s entries in return. Upon receiving a shuffle
response, A replaces the oldest entries in its view by those received from B.

As noted by Machado et al. [21], the atomicity of the shuffle operation is
not guaranteed by the original description of the Cyclon. This scenario happens
when a node A requests a shuffle to a node B and, before receiving the response
from B, A receives a shuffle request from another node C. As a result, the
state of A’s view upon receiving the references from B will not be the expected,
as it was already updated with the entries sent by C. In the long term, this
atomicity violation may generate corrupted views and break the connectivity of
the dissemination overlay provided by Cyclon.

We picked the Cyclon PSS to evaluate Spider due to the possibility of obtain-
ing arbitrarily large traces simply by changing the number of nodes and cycles
used by the protocol. Moreover, we note that Cyclon is an adversarial example
for race detection, as the message race scenario described above might not man-
ifest in every the execution of the protocol and, when it does, the nodes involved
and the cycles in which the violation occurs might vary across test runs.

4.2 Effectiveness

Table 1 reports the results of running Spider over traces captured from the
benchmarks’ execution. The experiments show that Spider successfully found all
the pairs of racing instructions that caused the concurrency bugs. In particular,
for test case H5780, Spider detects that there is a data race between the read
of and the write to variable code, in steps 2 and 4. For M3724, Spider finds the
data race on variable container. For M5358, Spider is able to detect that the
state of variable tState can be concurrently modified by the message handlers of

Testing for Race Conditions in Distributed Systems via SMT Solving 135

Table 1. Race detection results without redundancy pruning. Column “Actual Races
(Unique)” reports the number of data race candidate pairs that were confirmed by
the SMT solver (the value within parenthesis indicates the amount of data races with
unique code locations). Benchmarks whose names are of the form Cyclon-XN-Y C indi-
cate that the trace was obtained from runs of the protocol with X nodes and Y cycles.
“-” means that Spider did not output any results due to timeout.

Benchmark Trace size #Trace events #Constraints #Race

candidates

#Actual

races

(unique)

Solving time

h5780 3KB 15 12 3 1 (1) <1 s

m3274 3KB 18 14 1 1 (1) <1 s

m5358 5KB 27 19 2 2 (2) <1 s

m4157 2KB 12 11 4 2 (2) <1 s

m5009 4KB 19 14 2 2 (2) <1 s

Cyclon-5N-5C 74KB 420 488 325 121 (1) <1 s

Cyclon-5N-10C 145KB 820 1464 1150 481 (1) 1.8 s

Cyclon-5N-100C 1433KB 8020 104505 101500 49835 (1) 1 h 43m

Cyclon-10N-5C 147KB 840 976 650 243 (1) <1 s

Cyclon-10N-10C 290KB 1640 2920 2300 969 (1) 7.8 s

Cyclon-10N-100C 2869KB 16040 6031 203000 - Timeout

Cyclon-100N-5C 1486KB 8401 9800 6500 2394 (1) 2min 53 s

Cyclon-100N-10C 2934KB 16401 29298 23000 9651 (1) 1 h 03min

Cyclon-100N-100C 29076KB 160400 60301 2030000 - Timeout

CNM1 and BNM2. For M4157, Spider correctly signals the flag set in the worker
thread and the flag check in the message handler as a data race. Alongside, for
M5009, Spider warns that the write to flag commit on step 2 and the read of
the same variable on step 5 are not causally ordered (because they occur on two
independent message handlers) and thus form a data race.

Finally, for Cyclon test cases, Spider is also effective in discovering problem-
atic data races in the different execution scenarios. We note, however, that all
of the races actually refer to the same unique pair of instructions in the source
code. The reason why Spider reports them individually is that they correspond
to events on different nodes and at different cycles. As shown in previous work
[11], not all data race candidates with lexical equivalence are true data races.

4.3 Efficiency

We assessed the efficiency of Spider’s data race detection technique by mea-
suring its time and space overhead, respectively in terms of constraint solving
time and trace sizes. To this end, we executed Spider with multiple configu-
rations of Cyclon, varying the number of nodes in the system and the number
of cycles of the protocol between the values {5, 10, 100}. The different config-
urations show how the constraint solving approach scales with the increase in
the number of events in the execution and, consequently, the constraints in the

136 J. C. Pereira et al.

Table 2. Race detection results with redundancy pruning.

Benchmark #Redundant

events

#Constraints #Candidate

data races

#Actual

races

(unique)

Solving time (speed up)

Cyclon-5N-5C 122 (29%) 196 62 27 (1) <1 s

Cyclon-5N-10C 296 (36%) 339 99 45 (1) <1 s

Cyclon-5N-100C 3875 (48%) 2179 135 65 (1) 8.0 s (↓ 777.5x)

Cyclon-10N-5C 207 (24%) 446 173 78 (1) <1 s

Cyclon-10N-10C 520 (32%) 838 348 149 (1) <1 s (↓ 7.8x)

Cyclon-10N-100C 7466 (47%) 5180 1028 509 (1) 4min 44 s

Cyclon-100N-5C 1980 (24%) 4437 1668 753 (1) 30.3 s (↓ 5.7x)

Cyclon-100N-10C 3719 (22%) 11893 6615 3134 (1) 22min 25 s (↓ 2.8x)

Cyclon-100N-100C 47800 (30%) 47601 350202 - Timeout

model. Table 1 reports the results of our experiments. The columns of the table
indicate, respectively, the benchmark name, the size of the trace, the number of
events in the trace, the number of constraints in the SMT model, the number
of candidate data race pairs (i.e. the number of pairs of events with conflicting
memory accesses in the trace), the number of confirmed pairs of events which
contain data races, and the time the SMT solver took to check all candidate
pairs.

The results show that, as expected, the constraint solving time increases with
the number of events in the trace. From our experiments, it also became clear
that the traces contain a large portion of redundant events, varying between
22% and 48% of the total number of events. Table 2 summarizes our observa-
tions. The columns of the table indicate, respectively, the benchmark that was
run, the number of redundant events and its percentage of the total trace, the
number of constraints in the generated SMT model after removing redundant
events, the number of candidate data race pairs, the number of confirmed pairs
of instructions which contain data races, and the time the SMT solver took to
check all candidate pairs. Table 2 shows that removing redundant events before
looking for data races can lead to big speedups in the time that the analysis
takes. Despite this fact, there’s still a timeout when Spider runs with the largest
benchmark (Cyclon-100N-100C). We believe that this problem can be mitigated
in future versions of Spider by optimizing the number of queries that are per-
formed: instead of determining wether the events are concurrent for all pairs of
candidates, we can analyse only the pairs whose corresponding code locations
haven’t yet been shown to produce concurrent events. Finally, we observe that
even though the elimination of redundancy causes a decrease in the number of
data race candidate pairs that were confirmed by the SMT solver, the number
of data races with unique code locations remains unchanged and thus, no race
was missed by removing redundant events.

Testing for Race Conditions in Distributed Systems via SMT Solving 137

4.4 Discussion About the Soundness and Precision of the Approach

In this section, we discuss why the results of data race analysis using Spider are
to be trusted. First, we observe that Spider is sound in the sense that, given any
trace, Spider is always able to find all pairs of instructions which lead to data
races present in the trace. The analysis performed by Spider always terminates
because, for each trace, there is a finite number of data race candidates, and the
SMT constraints used to encode the causality model, and to find which pairs
of instructions are concurrent, are encoded in Quantifier-Free Integer Difference
Logic (QF IDFL), a decidable fragment of first-order logic.

Furthermore, we claim, without giving a formal proof, that redundant events
are indeed of no importance for data race detection. As such, the redundancy
pruning algorithm does not affect the soundness of Spider.

Assuming that the tracing mechanism captures all relevant synchronization
events, no false positives will be reported by Spider, i.e. Spider will only report
pairs of instructions if they can indeed produce non-synchronized (and thus,
concurrent) memory accesses. Given that the redundancy pruning algorithm
does not modify the HB relation between non-redundant events, it cannot lead
to false positives being introduced in the results. As such, the elimination of
redundant events does not affect the precision of the results.

It is important to stress that Spider should be used with traces captured
during executions which exercise as much code as possible from the traced pro-
gram, since Spider can only detect a race between two instructions if there are
events in the trace pertaining to both instructions. Alternatively, Spider can be
used with multiple traces to achieve a considerable coverage of the code of the
traced program.

5 Related Work

SMT constraint solving has been successfully employed in the past to test and
debug concurrent programs. For instance, CLAP [12] uses SMT solving to replay
failing interleavings, MCR [10] and Cortex [24] to uncover latent concurrency
bugs, and Symbiosis [23,31] to isolate their root cause.

Prior research efforts have also shown that SMT constraint solving can be
useful to find races in distributed systems. However, contrary to Spider, these
solutions assume that the system is either partially synchronous [33] or modeled
as BPEL processes [5].

Like Spider, DCatch [20] also aims at detecting distributed concurrency
bugs based on an HB model. This work abstracts the causality of events into
HB rules and builds a graph representing the timing relationships of several
distributed concurrency and communication mechanisms. However, DCatch does
not attempt to remove redundant portions of the state space, thus incurring
unnecessary slowdowns during the analysis of the trace.

Another approach for testing distributed systems is model checking. Model
checkers, such as MaceMC [14], Demeter [8], MoDist [37], dBug [29] and SAMC

138 J. C. Pereira et al.

[17], systematically explore different execution orderings by permuting message
arrivals and injecting node crashes and timeouts. Despite being effective in dis-
covering failures, this approach falls short for large distributed systems due to
the exponential increase of the state space [17].

The verification of the correctness of distributed systems can also be achieved
through formal methods, typically through soundness proofs based on the notion
of inductive invariant [9,27]. Coq [4] and TLA+ [15] are frameworks that have
been used to build formal models of distributed systems and prove their correct-
ness. Verdi [35] is another verification framework based on Coq, that supports
automatic transformation of soundness proofs to assume different fault network
models. Verification techniques are useful to prove the absence of errors in exe-
cutions. Alas, they require a thorough formal model of the system, which may be
time-consuming to write and significantly longer than the implementation code.

6 Conclusion

In this paper, we propose Spider, a tool that relies on SMT constraint solving to
detect data races in execution traces captured during the testing of distributed
systems. To reduce the time necessary to solve the constraints and scale to
executions with thousands of events, Spider employs a redundancy pruning
step aimed at eliminating portions of the trace that are not relevant to the
occurrence of new races.

Our experiments with multiple benchmarks show that Spider is capable of
discovering different types of distributed data races in a timely fashion and that
our redundancy pruning algorithm is effective at reducing the size of the trace
with no consequences to the accuracy of our tool.

Acknowledgements. This work is financed by the ERDF - European Regional
Development Fund through the North Portugal Regional Operational Programme -
NORTE2020 Programme and by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia within project NORTE-01-
0145-FEDER-028550-PTDC/EEI-COM/28550/2017.

References

1. Apache Hadoop. http://hadoop.apache.org
2. Apache HBase. http://hbase.apache.org
3. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC 1971. ACM

(1971)
4. The Coq proof assistant. https://coq.inria.fr/
5. Elwakil, M., Yang, Z., Wang, L., Chen, Q.: Message race detection for web services

by an SMT-based analysis. In: Xie, B., Branke, J., Sadjadi, S.M., Zhang, D., Zhou,
X. (eds.) ATC 2010. LNCS, vol. 6407, pp. 182–194. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16576-4 13

6. Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program synthesis using conflict-
driven learning. In: Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2018. ACM (2018)

http://hadoop.apache.org
http://hbase.apache.org
https://coq.inria.fr/
https://doi.org/10.1007/978-3-642-16576-4_13

Testing for Race Conditions in Distributed Systems via SMT Solving 139

7. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection.
In: PLDI 2009 (2009)

8. Guo, H., Wu, M., Zhou, L., Hu, G., Yang, J., Zhang, L.: Practical software model
checking via dynamic interface reduction. In: SOSP 2011 (2011)

9. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
SOSP 2015. ACM (2015)

10. Huang, J.: Stateless model checking concurrent programs with maximal causality
reduction. In: PLDI 2015. ACM (2015)

11. Huang, J., Rajagopalan, A.K.: What’s the optimal performance of precise dynamic
race detection? - a redundancy perspective. In: ECOOP (2017)

12. Huang, J., Zhang, C., Dolby, J.: CLAP: recording local executions to reproduce
concurrency failures. In: PLDI 2013. ACM (2013)

13. Kasikci, B., Zamfir, C., Candea, G.: Data races vs. data race bugs: telling the
difference with portend. In: ASPLOS 2012. ACM (2012)

14. Killian, C., Anderson, J.W., Jhala, R., Vahdat, A.: Life, death, and the critical
transition: finding liveness bugs in systems code. In: NSDI 2007. USENIX Associ-
ation (2007)

15. Lamport, L.: The TLA+ home page. https://lamport.azurewebsites.net/tla/tla.
html. Accessed 10 Oct 2019

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

17. Leesatapornwongsa, T., Hao, M., Joshi, P., Lukman, J.F., Gunawi, H.S.: SAMC:
semantic-aware model checking for fast discovery of deep bugs in cloud systems.
In: OSDI 2014. USENIX Association (2014)

18. Leesatapornwongsa, T., Lukman, J.F., Lu, S., Gunawi, H.S.: TaxDC: a taxon-
omy of non-deterministic concurrency bugs in datacenter distributed systems. In:
ASPLOS 2016. ACM (2016)

19. Li, G., Lu, S., Musuvathi, M., Nath, S., Padhye, R.: Efficient scalable thread-
safety-violation detection: finding thousands of concurrency bugs during testing.
In: SOSP 2019. ACM (2019)

20. Liu, H., et al.: DCatch: automatically detecting distributed concurrency bugs in
cloud systems. SIGOPS Oper. Syst. Rev. 51(2), 677–691 (2017)

21. Machado, N., Maia, F., Neves, F., Coelho, F., Pereira, J.: Minha: large-scale dis-
tributed systems testing made practical. In: OPODIS 2019. Leibniz International
Proceedings in Informatics (LIPIcs) (2019)

22. Machado, N.: TaxDC Micro-benchmarks Repository (2018). https://github.com/
jcp19/micro-benchmarks

23. Machado, N., Lucia, B., Rodrigues, L.: Concurrency debugging with differential
schedule projections. In: PLDI 2015. ACM (2015)

24. Machado, N., Lucia, B., Rodrigues, L.: Production-guided concurrency debugging.
In: PPoPP 2016. ACM (2016)

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. Neves, F., Machado, N., Pereira, J.: Falcon: a practical log-based analysis tool for
distributed systems. In: DSN 2018 (2018)

27. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifica-
tion by interactive generalization. SIGPLAN Not. 51(6), 614–630 (2016). https://
doi.org/10.1145/2980983.2908118

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html
https://github.com/jcp19/micro-benchmarks
https://github.com/jcp19/micro-benchmarks
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2980983.2908118
https://doi.org/10.1145/2980983.2908118

140 J. C. Pereira et al.

28. Popper, N.: The stock market bell rings, computers fail, wall street
cringes (2015). https://www.nytimes.com/2015/07/09/business/dealbook/new-
york-stock-exchange-suspends-trading.html. Accessed 06 Aug 2019

29. Simsa, J., Bryant, R., Gibson, G.: DBug: Systematic evaluation of distributed
systems. In: Proceedings of the 5th International Conference on Systems Software
Verification, SSV 2010, p. 3. USENIX Association, Berkeley (2010)

30. SMT-LIB: Logics. http://smtlib.cs.uiowa.edu/logics.shtml
31. Terra-Neves, M., Machado, N., Lynce, I., Manquinho, V.: Concurrency debugging

with MaxSMT. In: AAAI 2019. AAAI Press (2019)
32. Summary of the Amazon EC2 and Amazon RDS Service Disruption in the US

East Region (2011). https://aws.amazon.com/message/65648/. Accessed 03 Mar
2019

33. Tekken Valapil, V., Yingchareonthawornchai, S., Kulkarni, S., Torng, E., Demirbas,
M.: Monitoring partially synchronous distributed systems using SMT solvers. In:
Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 277–293. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 17

34. Voulgaris, S., Gavidia, D., van Steen, M.: CYCLON: inexpensive membership man-
agement for unstructured P2P overlays. J. Netw. Syst. Manag. 13(2), 197–217
(2005)

35. Wilcox, J.R., et al.: Verdi: A framework for implementing and formally verifying
distributed systems. In: PLDI 2015. ACM (2015)

36. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.: Planning
for change in a formal verification of the Raft consensus protocol. In: CPP 2016.
ACM (2016)

37. Yang, J., et al.: MODIST: transparent model checking of unmodified distributed
systems. In: NSDI 2009. USENIX Association (2009)

https://www.nytimes.com/2015/07/09/business/dealbook/new-york-stock-exchange-suspends-trading.html
https://www.nytimes.com/2015/07/09/business/dealbook/new-york-stock-exchange-suspends-trading.html
http://smtlib.cs.uiowa.edu/logics.shtml
https://aws.amazon.com/message/65648/
https://doi.org/10.1007/978-3-319-67531-2_17

Tool Demonstration Papers

SASA: A SimulAtor of Self-stabilizing
Algorithms

Karine Altisen, Stéphane Devismes,

and Erwan Jahier(B)

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG,
Grenoble 38000, France

{Karine.Altisen,Stephane.Devismes,
Erwan.Jahier}@univ-grenoble-alpes.fr

Abstract. In this paper, we present SASA, an open-source SimulAtor of Self-
stabilizing Algorithms. Self-stabilization defines the ability of a distributed algo-
rithm to recover after transient failures. SASA is implemented as a faithful repre-
sentation of the atomic-state model. This model is the most commonly used in the
self-stabilizing area to prove both the correct operation and complexity bounds
of self-stabilizing algorithms.

SASA encompasses all features necessary to debug, test, and analyze self-
stabilizing algorithms. All these facilities are programmable to enable users to
accommodate to their particular needs. For example, asynchrony is modeled by
programmable stochastic daemons playing the role of input sequence generators.
Algorithm’s properties can be checked using formal test oracles.

The design of SASA relies as much as possible on existing tools: OCAML, DOT,
and tools developed in the Synchrone Group of the VERIMAG laboratory.

Keywords: Simulation · Debugging · Reactive programs · Synchronous
languages · Distributed computing · Self-stabilization · Atomic-state model

1 Introduction

Starting from an arbitrary configuration, a self-stabilizing algorithm [8] makes a dis-
tributed system eventually reach a so-called legitimate configuration from which every
possible execution suffix satisfies the intended specification. Self-stabilization is defined
in the reference book of Dolev [9] as a conjunction of two properties: convergence,
which requires every execution of the algorithm to eventually reach a legitimate con-
figuration; and correctness, which requires every execution starting from a legitimate
configuration to satisfy the specification. Since an arbitrary configuration may be the

This study was partially supported by the French ANR projects ANR-16-CE40-0023
(DESCARTES) and ANR-16 CE25-0009-03 (ESTATE).

c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 143–154, 2020.
https://doi.org/10.1007/978-3-030-50995-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-50995-8_8

144 K. Altisen et al.

result of transient faults,1 self-stabilization is considered as a general approach for tol-
erating such faults in a distributed system.

The definition of self-stabilization does not directly refer to the possibility of (tran-
sient) faults. Consequently, proving or simulating a self-stabilizing system does not
involve any failure pattern. Actually, this is mainly due to the fact that, in contrast with
most of existing fault tolerance (a.k.a., robust) proposals, self-stabilization is a non-
masking approach: it does try to hide effects of faults, but to repair the system after
faults. As a result, only the consequences of faults, modeled by the arbitrary initial con-
figuration, are treated. Hence, the actual convergence of the system is guaranteed only
if there is a sufficiently large time window without any fault, which is the case when
faults are transient.

Self-stabilizing algorithms are mainly compared according to their stabilization
time, i.e., the maximum time, starting from an arbitrary configuration, before reach-
ing a legitimate configuration. By definition, the stabilization time is impacted by worst
case scenarios which are unlikely in practice. So, in many cases, the average-case time
complexity may be a more accurate measure of performance assuming a probabilis-
tic model. However, the arbitrary initialization, the asynchronism, the maybe arbitrary
network topology, and the algorithm design itself often make the probabilistic analy-
sis intractable. In contrast, another popular approach consists in empirically evaluating
the average-case time complexity via simulations. A simulation tool is also of prime
interest since it allows testing to find flaws early in the design process.

Contribution. We provide to the self-stabilizing community an open-source, versatile,
lightweight (in terms of memory footprint), and efficient (in terms of simulation time)
simulator, called SASA,2 to help the design and evaluate average performances of self-
stabilizing distributed algorithms written in the atomic-state model (ASM). The ASM is
a locally shared memory model in which each process can directly read the local states
of its neighbors in the network. This computational model is the most commonly used
in the self-stabilizing area.3

The SASA programming interface is simple, yet rich enough to allow a direct encod-
ing of any distributed algorithm described in the ASM. All important concepts used in
this model are available: simulation can be run and evaluated in moves, atomic steps,
and rounds; the three main time units used in the ASM. Classical execution schedulers,
a.k.a. daemons, are available: the central, locally central, distributed, and synchronous
daemons. All levels of anonymity can be modeled, such as fully anonymous, rooted, or
identified. Finally, distributed algorithms can be either uniform (all nodes execute the
same local algorithm), or non-uniform.

SASA can perform batch simulations that use test oracles to check expected proper-
ties. For example, one can check that the stabilization time in rounds is upper bounded
by a given function. SASA can also be run in an interactive mode, to ease algorithms
debugging. During the simulator development, a constant guideline has been to take,

1 A transient fault occurs at an unpredictable time, but does not result in a permanent hard-
ware damage. Moreover, as opposed to intermittent faults, the frequency of transient faults is
considered to be low.

2 http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/sasa.
3 To the best of our knowledge, this model is exclusively used in the self-stabilizing area.

http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/sasa

SASA: A SimulAtor of Self-stabilizing Algorithms 145

as much as possible, advantage of existing tools. In particular, SASA heavily relies on
the Synchrone Reactive Toolbox [19] and benefits from its supporting tools, e.g., for
testing using formal oracles and debugging. Another guideline has been to make all
SASA’s facilities easily configurable and programmable so that users can define specific
features tailored for their particular needs.

Related Work. Only few simulators dedicated to self-stabilization in locally shared
memory models, such as the ASM, have been proposed [11,15,21]. Overall, they all
have limited capabilities and features, and are not extensible since not programmable.
Using these simulators, only few pre-defined properties, such as convergence, can be
checked on the fly.

In more detail, Flatebo and Datta [11] propose a simulator of the ASM to evaluate
leader election, mutual exclusion, and �-exclusion algorithms on restricted topologies,
mainly rings. This simulator is not available today. It proposes limited facilities includ-
ing classical daemons and evaluation of stabilization time in moves only.

Müllner et al. [21] present a simulator (written in Erlang) of the register model, a
computational model which is close to the ASM. This simulator does not allow to eval-
uate stabilization time. Actually, it focuses on three fault tolerance measures, initially
devoted to masking fault-tolerant systems (namely, reliability, instantaneous availabil-
ity, and limiting availability [24]) to evaluate them on self-stabilizing systems. How-
ever, these measures are still uncommon today in analyses of self-stabilizing algorithms.
Moreover, this simulator is heavy in terms of memory footprint. As an illustrative exam-
ple, it simulates the same spanning tree constructions as we do: while they need up to
1 gigabits of memory for simulating a 256-node random network, we only need up to
235 megabits for executing the same algorithms in the same settings.

The simulator (written in Java) proposed by Har-Tal [15] allows to run self-
stabilizing algorithms in the register model on small networks (around 10 nodes). It
only proposes a small amount of facilities, i.e., the execution scheduling is either syn-
chronous, or controlled step by step by the user. Only the legitimacy of the current con-
figuration can be tested. Finally, it provides neither batch mode, nor debugging tools.

Roadmap. Section 2 is a digest of the ASM. SASA is presented in Sect. 3. We give
experimental results in Sect. 4; an artifact to reproduce these results is available in
appendix. We conclude in Sect. 5 with future work.

2 An Example: Asynchronous Unison in the Atomic-State Model

We present the atomic-state model (ASM) using the asynchronous unison algorithm
of [7] as a running example: a clock synchronization problem which requires the differ-
ence between clocks of every two neighbors to be at most one increment at each instant.

146 K. Altisen et al.

Algorithm 1. Asynchronous Unison, local algorithm for each node p

Constant Input: Np, the set of p’s neighbors

Variable: p.c ∈ {0, ..., K − 1}, where K > n2, and n is the number of nodes

Predicate: behind(a, b) = ((b.c − a.c) mod K) ≤ n

Actions:
I(p) :: ∀q ∈ Np, behind(p, q) ↪→ p.c ← (p.c + 1) mod K
R(p) :: p.c �= 0 ∧ (∃q ∈ Np, ¬behind(p, q) ∧ ¬behind(q, p)) ↪→ p.c ← 0

Distributed Algorithms. A distributed algorithm consists of a collection of local algo-
rithms, one per node. The local algorithm of each node p (see Algorithm 1) is made of
a finite set of variables and a finite set of actions (written as guarded commands) to
update them.

Some of the variables, like Np in Algorithm 1, may be constant inputs in which case
their values are predefined. Actually, here, Np represents the local view of the network
topology at each node p: Np is the set of p’s neighbors in the network. Algorithm 1
assumes the network is connected and bidirectional, so q ∈ Np if and only if p ∈ Nq.
Then, each node holds a single writable variable, noted p.c and called its local clock.
Each clock p.c is actually an integer with range 0 to K−1, where K > n2 is a parameter
common to all nodes, and n denotes the number of nodes. Communication exchanges
are carried out by read and write operations on variables: a node can read its variables
and those of its neighbors, but can write only to its own variables. For example, in
Algorithm 1, each node p can read the value of p.c and that of q.c, for every q ∈ Np,
but can only write to p.c. The state of a node is defined by the values of its variables. A
configuration is a vector consisting of the states of each node.

Each action is of the following form: 〈label〉 :: 〈guard〉 ↪→ 〈statement〉. Labels
are only used to identify actions. A guard is a Boolean predicate involving the variables
of the node and those of its neighbors. The statement is a sequence of assignments on
the node’s variables. An action can be executed only if its guard evaluates to true, in
which case, the action is said to be enabled. By extension, a node is enabled if at least
one of its actions is enabled. In Algorithm 1, we have two (locally mutually exclusive)
actions per node p, I(p) and R(p).

Steps and Executions. Nodes run their local algorithm by atomically executing actions.
Asynchronism is modeled by a nondeterministic adversary called daemon. Precisely, an
execution is a sequence of configurations, where the system moves from a configuration
to another as follows. Assume the current configuration is γ. If no node is enabled in
γ, the execution is done and γ is said to be terminal. Otherwise, the daemon activates
a non-empty subset S of nodes that are enabled in γ; then every node in S atomically
executes one of its action enabled in γ, leading the system to a new configuration γ′,
and so on. The transition from γ to γ′ is called a step. Usual daemons include: (1) the
synchronous daemon which activates every enabled node at each step, (2) the central
daemon which activates exactly one enabled node at each step, (3) the locally central
daemon which never activates two neighbors at the same step, and (4) the distributed
daemon which activates at least one, maybe more, node at each step.

SASA: A SimulAtor of Self-stabilizing Algorithms 147

Fig. 1. Five steps of Algorithm 1 for K = 257 on a 16-node grid (from SASA). “pi : j” means
that pi.c = j. Enabled nodes are in orange and green. Moreover, orange nodes are activated
within the next step. (Color figure online)

Self-stabilization of Algorithm 1. Let p be any node. When the clock of p is at most
n increments behind the clock values of all its neighbors, p is enabled to increment
its clock modulo K by Action I(p); see, e.g., node p4 in Configuration 5 of Fig. 1. In
contrast, if the clock of p is not equal to 0 and p has a neighbor q such that p.c is more
than n increments behind q.c and q.c more than n increments behind p.c, then p should
reset its clock to 0 using Action R(p); see, e.g., node p1 in Configuration 1. The legiti-
mate configurations of Algorithm 1 are those where for any two neighbors p and q, we
have p.c ∈ {(q.c − 1) mod K, q.c, (q.c+1) mod K}. Algorithm 1 is a self-stabilizing
algorithm under the distributed daemon in the sense that starting from an arbitrary con-
figuration, every asynchronous execution of Algorithm 1 eventually reaches a legitimate
configuration from which every possible execution suffix satisfies the following specifi-
cation: (1) in each configuration, the difference between clocks of every two neighbors
is at most one (Safety); and (2) each clock is incremented infinitely often (Liveness).

Time Complexity Units. Three main units are used for counting time: steps, moves,
and rounds. Steps simply refer to atomic steps of the execution. A node moves when it
executes an action in a step. Hence, several moves may occur in a step. Rounds capture
the execution time according to the speed of the slowest node. The first round of an
execution e is the minimal prefix e′ of e during which every node that is enabled in
the first configuration of e either executes an action or becomes disabled (due to some
neighbor actions) at least once. The second round of e starts from the last configuration
of e′, and so on.

These notions are illustrated by Fig. 1. The second step (from Configuration 2 to 3)
contains two moves (by p2 and p4). The first round ends in Configuration 3. Indeed,
there are two enabled nodes, p1 and p4 in Configuration 1. Node p1 moves in the first
step, however in Configuration 2, the round is not done since p4 has neither moved

148 K. Altisen et al.

nor become disabled. The first round terminates after p4 has moved in the second step.
Consequently, the second round starts in Configuration 3. This latter actually terminates
in Configuration 6.

3 The SASA Simulator

3.1 SASA Features

This Section surveys the SASA main features. More information is available online as
SASA tutorials [16].

Batch Simulations. They are useful to perform simulation campaigns, e.g., to evaluate
the average-case complexity of an algorithm on wide families of networks, including
random graphs. They can also be used to study the influence on some parameters.

Interactive Graphical Simulations. It is possible to run a simulation step by step,
or round by round, forward or backward, while visualizing the network as well as
the enabled and activated nodes; see snapshots in Fig. 1. New commands can be also
programmed so that users can navigate through the simulation according to their spe-
cific needs.

Predefined and Custom Daemons. The daemon, which parameterizes the simulation,
can be configured. First, SASA provides several predefined daemons, including the
synchronous, central, locally central, or distributed daemon; for such daemons, non-
determinism is resolved uniformly at random. But, the user can also build its own cus-
tom daemon: this is useful to experiment new activation heuristics, or explore worst
cases. Indeed, the daemon can be interactively controlled using a graphical widget: at
each step, the user selects the nodes to be activated among the enabled ones. The dae-
mon can also be programmed; such a program can take advantage of the simulation
history to guide the simulation into particular directions.

Test Oracles. Expected (safety) properties of algorithms can be formalized and used
as test oracles. Typically, they involve the number of steps, moves, or rounds that is
necessary to reach a (user-defined) legitimate configuration. In order to define such
properties, one has access to node state values and activation status [16]. Properties are
checked on the fly at every simulation step.

3.2 The Core of SASA

Fig. 2. The SASA Core simulator architecture

SASA: A SimulAtor of Self-stabilizing Algorithms 149

The core of SASA is a stand-alone simulator; see Fig. 2. The user has to define both a
network and a self-stabilizing algorithm following the API given in Sect. 3.3. The algo-
rithm is written as an OCAML program: the interface has been designed in such a way
that the OCAML program implementing the algorithm is as close as possible to guarded
commands, the usual way to write algorithms in the ASM. The network topology is
specified using the DOT language [12] for which many support exists such as visualiza-
tion tools and graph editors. The OCAML algorithm is compiled into a dynamic library
which is used, together with the DOT network file, by SASA to generate simulation data.
A simulation data file contains an execution trace made of the sequence of configura-
tions. That trace also contains the enabled and activated action history. Such traces can
be visualized using chronograms viewers.

3.3 The SASA Algorithm Programming Interface

SASA algorithms are defined using a simple programming interface specified in the
37 lines OCAML file, algo.mli, which is presented below.

Local States. Node states are defined by the polymorphic type ’st which can represent
any data the designer needs, e.g., integers, arrays, or structures. Nodes can access their
neighbor states using the abstract type ’st neighbor (the “’st” part means that the
type neighbor is parameterized by the type ’st). The access to neighboring states
is made by Function state which takes a neighbor as input and returns its state; see
Listing 1.1.

type ’st neighbor
val state: ’st neighbor -> ’st

Listing 1.1. Access to neighbors’ states

Algorithms. To define an instance of the local algorithm of each node, SASA requires:

1. a list of action names;
2. an enable function, which encodes the guards of the algorithm;
3. a step function, that triggers an enabled action;
4. a state initialization function, used if no initial configuration is provided in the DOT

file. Indeed, even if self-stabilization does not require it, initialization is mandatory
to begin the simulation. For example, pseudo-random functions can be used to obtain
an arbitrary initial configuration.

type action = string
type ’st enable_fun = ’st -> ’st neighbor list -> action list
type ’st step_fun = ’st -> ’st neighbor list -> action -> ’st
type ’st state_init_fun = int -> ’st

Listing 1.2. The step, enable, and initialization function types

150 K. Altisen et al.

The enable function takes the current state of the node and the list of its neighbors
as arguments. It returns a list of enabled actions. The step function takes the same argu-
ments plus the action to activate, and returns an updated state. The initial configuration
can be set using an initialization function that takes as argument the node’s number
of neighbors.

Topological Information. Algorithms usually depend on parameters relative to the net-
work topology. For example, Algorithm 1 uses the number n of nodes. SASA provides
access to those parameters through various functions that the algorithms can use.

val card: unit -> int
val diameter: unit -> int
val min_degree : unit -> int
val max_degree: unit -> int
val is_connected : unit -> bool

Listing 1.3. Some of the topological parameters provided by the API

Example. Listing 1.4 shows the implementation of Algorithm 1 in SASA: notice that we
obtain a faithful direct translation of Algorithm 1.

open Algo
let n = Algo.card()
let k = n * n + 1
let (init_state: int state_init_fun) = fun _ -> (Random.int k)
let modulo x n = (* for it to return positive values *)

if x < 0 then n+x mod n else x mod n
let behind pc qc = (modulo (qc-pc) k) <= n
let (enable_f: int enable_fun) = fun c nl ->

if List.for_all (fun q -> behind c (state q)) nl
then ["I(p)"] else
if List.exists (fun q -> not (behind c (state q)) &&

not (behind (state q) c)) nl
&& c <> 0

then ["R(p)"] else []
let (step_f: int step_fun) = fun c nl a ->

match a with
| "I(p)" -> modulo (c + 1) k
| "R(p)" -> 0
| _ -> assert false

let actions = Some ["I(p)"; "R(p)"]

Listing 1.4. Implementation of Algorithm 1

3.4 Connection to the Synchrone Reactive Toolbox

In SASA, a simulation is made of steps executed in a loop. Each step consists of two
successive stages. The first stage is made of the atomic and synchronous execution of all

SASA: A SimulAtor of Self-stabilizing Algorithms 151

activated nodes (1-a), followed by the evaluation of which nodes are enabled in the next
step (1-b).4 At the second stage, a daemon non-deterministically chooses among the
enabled nodes which ones should be activated at the next step (2). Overall, this can be
viewed as a reactive program (Stage (1)) that runs in closed-loop with its environment
(Stage (2)), where the outputs (resp. the inputs) of the program are the inputs (resp. the
outputs) of its environment.

Thus, we could enlarge the functionalities offered by SASA by connecting our sim-
ulator to the Synchrone Reactive Toolbox [19], which targets the development and val-
idation of reactive programs. The LUTIN language [23], which was designed to model
stochastic reactive systems, is used to program daemons that take the feedback-loop
into account. The synchronous language LUSTRE [14] is used to formalize the expected
properties. Indeed, this language is well-suited for the definition of such properties,
as they involve the logical time history of node states. Such Lustre formalizations are
used as oracles to automate the test decision [18]. Finally, RDBG [17], a programmable
debugger for reactive programs, provides the ability to perform interactive simulations,
visualize the network, and implement user tailored features.

4 Experimental Results

To validate the tool, we have implemented and tested classical algorithms using var-
ious assumptions on the daemon and topology. Below, we give our methodology and
some results.

Algorithms Under Test. We have implemented the following self-stabilizing algo-
rithms: a token circulation for rooted unidirectional rings assuming a distributed dae-
mon (DTR [8]); a breadth first search spanning tree construction for rooted networks
assuming a distributed daemon (BFS [2]); a depth first search spanning tree construc-
tion for rooted networks assuming a distributed daemon (DFS [6]); a coloring algorithm
for anonymous networks assuming a locally central daemon (COL [13]); a synchronous
unison for anonymous networks assuming a synchronous daemon (SYN [3]); and Algo-
rithm 1 (ASY [7]). All these algorithms can be found in the SASA gitlab repository (see
footnote 2).

Methodology. For each algorithm of the above list, we have written a direct implemen-
tation of the original guarded-command algorithm. Such implementations include the
running assumptions, e.g., the topology and daemon. Then, we have used the interac-
tive graphical feature of SASA through the debugger RDBG to test and debug them on
well-chosen small corner-case topologies. Finally, we have implemented test oracles
to check known properties of these algorithms, including correctness from (resp. con-
vergence to) a legitimate configuration, as well as bounds on their stabilization time
in moves, steps, and rounds, when available. Testing all those properties is a way to
check the implementation of the algorithms. But, as these properties are well-known
results, this is, above all, a mean to check whether the implementation of SASA fits the
computational model and its semantics.

4 At the first step, the simulation loop starts in (1-b).

152 K. Altisen et al.

Performances. The results, given in Table 1, have been obtained on an Intel(R) Xeon(R)
Gold 6 138 CPU at 2.00 GHz with 50 GB of RAM. We are interested in compar-
ing the performances of the simulator on the above algorithms, according to differ-
ent topologies. Note that every algorithm assumes an arbitrary topology, except DTR
which requires a ring network. Hence we perform measurements on every algorithm,
except DTR. We have ran simulations on several kinds of topologies: two square
grids, noted grid.dot and biggrid.dot, of 100 nodes (180 links) and 10 000
nodes (19 800 links), respectively; as well as two random graphs, noted ER.dot and
bigER.dot, built using the Erdös-Rényi model [10] with 256 nodes (9 811 links,
average degree 76) and 2 000 nodes (600 253 links, average degree 600), respectively.
Every simulation, launched automatically, lasts up to 10 000 steps, except for the two
big graphs (biggrid.dot and bigER.dot). For these latter, we have only per-
formed 10 steps. For fair evaluation, we provide the execution time elapsed per step
(Time/Step). Note that the DFS algorithm has been implemented using two different
data structures to encode the local states, namely lists and arrays. This leads to different
performances; see DFS-l for list implementation and DFS-a for array implementation.

Table 1. Performance evaluation of SASA on the benchmark algorithms. Time elapsing is mea-
sured in user+ system time in seconds or milliseconds, and has been divided by the number of
simulation steps. Memory consumption is given in MegaBytes, and has been obtained using the
“Maximum resident set size” given by the GNU time utility.

grid.dot ER.dot biggrid.dot bigER.dot

Time/step Memory Time/step Memory Time/step Memory Time/step Memory

BFS 0.6 ms 10 MB 12 ms 22 MB 2 s 59 MB 2 s 922 MB

DFS-l 0.8 ms 11 MB 66 ms 31 MB 3 s 67 MB 14 s 953 MB

DFS-a 0.6 ms 12 MB 70 ms 112 MB 8 s 7464 MB 64 s 30808 MB

COL 0 ms 10 MB 12 ms 21 MB 18 s 59 MB 7 s 941 MB

SYN 0.4 ms 11 MB 12 ms 31 MB 826 s 898 MB 12 s 1019 MB

ASY 0.1 ms 10 MB 5 ms 31 MB 0 s 67 MB 2 s 953 MB

The results in Table 1 show that SASA can handle dense networks of huge size.
Hence, it allows to measure the evolution of time complexity of algorithms using a wide
size variety of networks. Note that every simulation has been performed without data
file (.rif, see Fig. 2) generation. Indeed, for large networks, this would produce huge
files and the simulator would use most of its time writing the data file. For example,
a 10 000 steps simulation of DFS-a on bigER.dot generates 2 GB of data and takes
several days (instead of 15 min). Indeed, 100 millions values are generated at each step.
For such examples, being able to generate inputs and check oracles on the fly is a real
advantage.

5 Conclusion and Future Work

This article presents an open-source SimulAtor of Self-stabilizing Algorithms, called
SASA. Its programming interface is simple, yet rich enough to allow a direct encoding

SASA: A SimulAtor of Self-stabilizing Algorithms 153

of any distributed algorithm written in the atomic-state model, the most commonly used
model in the self-stabilizing area.

In order to limit the engineering effort, SASA relies on existing tools such as, the
OCAML programming environment to define the algorithms, DOT to define the net-
works, and the Synchrone Reactive Toolbox [19] to carry out formal testing and inter-
active simulations.

In the spirit of TLA+ [20], an interesting future work consists in connecting SASA

to tools enabling formal verification of self-stabilizing algorithms. By connecting SASA

to model-checkers [5,22], the expected properties specified as LUSTRE oracles could be
verified on some particular networks. This would imply to provide a LUSTRE version
of the OCAML API to encode algorithms.

Furthermore, SASA could be connected to the PADEC framework [1], which pro-
vides libraries to develop mechanically checked proofs of self-stabilizing algorithms
using the Coq proof assistant [4]. Since Coq is able to perform automatic OCAML pro-
gram extraction, we should be able to simulate the certified algorithms using the same
source. During the certification process, it could be useful to perform simulations in
order to guide the formalization into Coq theorems, or find flaws (e.g., into technical
lemmas) early in the proof elaboration.

A Artifact

We have set up a zenodo entry that contains the necessary materials to reproduce the
results given in this article: https://doi.org/10.5281/zenodo.3753012. This entry con-
tains:

– a zip file containing an artifact based on the (public) TAP 2020 Virtual Machine
(https://doi.org/10.5281/zenodo.3751283). It is the artefact that has been validated
by the TAP 2020 evaluation committee.

– a zip file made out of a public git repository containing the same set of scripts; the
differences are that it is much smaller, and that the top-level script uses docker to
replay the experiments. The entry also contains a link to this git repository.

– a zip file containing the raw data produced by the experiment scripts via a Gitlab CI
pipeline of the git repository.

In more details, the artefact contains instructions to install the necessary tools, to
replay the interactive session described in Sect. 2 of the present paper, and to automat-
ically generate the data contained in Table 1 of Sect. 4. The objective of this artifact is
only to let one reproduce the results. If you want to learn more about the tool-set, we
advice the reader to look at the documentation and tutorials online [16].

References

1. Altisen, K., Corbineau, P., Devismes, S.: A framework for certified self-stabilization. Log.
Methods Comput. Sci. 13(4) (2017)

2. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to Distributed Self-Stabilizing
Algorithms. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Pub-
lishers, New York (2019)

https://doi.org/10.5281/zenodo.3753012
https://doi.org/10.5281/zenodo.3751283

154 K. Altisen et al.

3. Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step. Parallel Process. Lett.
1, 11–18 (1991)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art:
The Calculus of Inductive Constructions. TTCS. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-662-07964-5

5. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The KIND 2 model checker. In: Chaud-
huri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 29

6. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Inf. Process. Lett. 49(6), 297–301
(1994)

7. Couvreur, J.-M., Francez, N., Gouda, M.G.: Asynchronous unison (extended abstract). In:
Proceedings of the 12th International Conference on Distributed Computing Systems, pp.
486–493 (1992)

8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM
17(11), 643–644 (1974)

9. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
10. Erdös, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen. 6, 290 (1959)
11. Flatebo, M., Datta, A.K.: Simulation of self-stabilizing algorithms in distributed systems. In:

Proceedings of the 25th Annual Simulation Symposium, pp. 32–41. IEEE Computer Society
(1992)

12. Gansner, E.R., North, S.C.: An open graph visualization system and its applications to soft-
ware engineering. Softw. Pract. Exp. 30(11), 1203–1233 (2000)

13. Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration and arbitrary graphs. In:
Butelle, F. (ed.) Proceedings of the 4th International Conference on Principles of Distributed
Systems (OPODIS). Studia Informatica Universalis, pp. 55–70 (2000)

14. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow programming
language Lustre. Proc. IEEE 79(9), 1305–1320 (1991)

15. Har-Tal, O.: A simulator for self-stabilizing distributed algorithms (2000). https://www.cs.
bgu.ac.il/∼projects/projects/odedha/html/. Distributed Computing Group at ETH Zurich

16. Jahier, E.: Verimag tools tutorials: tutorials related to SASA. https://verimag.gricad-pages.
univ-grenoble-alpes.fr/vtt/tags/sasa/

17. Jahier, E.: RDBG: a reactive programs extensible debugger. In: International Workshop on
Software and Compilers for Embedded Systems (2016)

18. Jahier, E., Halbwachs, N., Raymond, P.: Engineering functional requirements of reactive
systems using synchronous languages. In: International Symposium on Industrial Embedded
Systems (2013)

19. Jahier, E., Raymond, P.: The synchrone reactive tool box. http://www-verimag.imag.fr/
DIST-TOOLS/SYNCHRONE/reactive-toolbox

20. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley Longman Publishing Co. Inc., Boston (2002)

21. Müllner, N., Dhama, A., Theel, O.E.: Derivation of fault tolerance measures of self-
stabilizing algorithms by simulation. In: Proceedings of the 41st Annual Simulation Sym-
posium, pp. 183–192. IEEE Computer Society (2008)

22. Ratel, C., Halbwachs, N., Raymond, P.: Programming and verifying critical systems by
means of the synchronous data-flow programming language LUSTRE. In: ACM-SIGSOFT
1991 Conference on Software for Critical Systems, New Orleans, December 1991

23. Raymond, P., Roux, Y., Jahier, E.: Lutin: a language for specifying and executing reactive
scenarios. EURASIP J. Embed. Syst. 2008, 1–11 (2008)

24. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer Science
Applications, 2nd edn. Wiley, Hoboken (2002)

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-41540-6_29
https://www.cs.bgu.ac.il/~projects/projects/odedha/html/
https://www.cs.bgu.ac.il/~projects/projects/odedha/html/
https://verimag.gricad-pages.univ-grenoble-alpes.fr/vtt/tags/sasa/
https://verimag.gricad-pages.univ-grenoble-alpes.fr/vtt/tags/sasa/
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/reactive-toolbox
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/reactive-toolbox

A Graphical Toolkit for the Validation
of Requirements for Detect and Avoid

Systems

Paolo Masci1(B) and César A. Muñoz2

1 National Institute of Aerospace, Hampton, VA, USA
paolo.masci@nianet.org

2 NASA Langley Research Center, Hampton, VA, USA
cesar.a.munoz@nasa.gov

Abstract. Detect and Avoid (DAA) systems are safety enhancement
software applications that provide situational awareness and maneu-
vering guidance to aid aircraft pilots in avoiding and remaining well
clear from other aircraft in the airspace. This paper presents a graph-
ical toolkit, called DAA-Displays, designed to facilitate the assessment
of compliance of DAA software implementations to formally specified
functional and operational requirements. The toolkit integrates simula-
tion and prototyping technologies allowing designers, domain experts,
and pilots to compare the behavior of a DAA implementation against
its formal specification. The toolkit has been used to validate an actual
software implementation of DAA for unmanned aircraft systems against
a standard reference algorithm that has been formally verified.

Keywords: Validation · Verification · Requirements · Detect and
Avoid · Formal methods

1 Introduction

Aircraft pilots operating under visual flight rules, including pilots of remotely
operated vehicles, have the legal responsibility to see and avoid other aircraft
in the airspace [17,18]. In the case of manned aircraft operations, the ability to
remain well-clear and see and avoid other aircraft depends upon the perception
and judgement of the human pilot. In the absence of an on-board pilot, there is
a need for an objective definition of the notion of well-clear that is appropriate
for Unmanned Aircraft Systems (UAS). This need has motivated the develop-
ment of a Detect and Avoid (DAA) capability for UAS that provides situational
awareness and maneuver guidance to UAS operators, to aid them in avoiding
and remaining well-clear of other aircraft in the airspace [3].

Research by first author was supported by the National Aeronautics and Space Admin-
istration under NASA/NIA Cooperative Agreement NNL09AA00A.

c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 155–166, 2020.
https://doi.org/10.1007/978-3-030-50995-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-50995-8_9

156 P. Masci and C. A. Muñoz

The RTCA1 standard document DO-365 [15] specifies the minimum opera-
tional and functional DAA requirements for large UAS, e.g., those that fly in
Class A airspace. DAIDALUS (Detect and Avoid Alerting Logic for Unmanned
Systems) [11,13] is an open source software library2 that implements the func-
tional requirements specified in DO-365. The core algorithms in DAIDALUS,
including detection, alerting, and maneuver guidance logics, are formally ver-
ified in the Prototype Verification System (PVS) [14]. Similar standardization
efforts are currently under way for small UAS. In the case of general aviation,
the DAA in the Cockpit (DANTi) concept [1,2] developed at NASA leverages
advancements in DAA technologies for UAS as a safety enhancing capability for
pilots flying under visual flight rules and who are not receiving Air Traffic Con-
trol radar services. The DAIDALUS library can be configured to support DAA
capabilities for all those operational cases, i.e., small to large UAS and general
aviation aircraft.

DAA systems use aircraft state information, e.g., position and velocity
3-D vectors, to predict a loss of well-clear between the primary vehicle, known
as the ownship, and traffic aircraft, known as intruders. In case of a predicted
loss of well-clear between the ownship and an intruder aircraft, an alert level is
generated. The alert level is an indication of the severity of the predicted loss
assuming the ownship and the intruder do not maneuver. Depending on the
alert level maneuver guidance is provided to the ownship to avoid the intruders.
Maneuver guidance has the form of bands, i.e., ranges of heading, horizontal
speed, vertical speed, and altitude maneuvers that are predicted to be conflict
free. The determination of the well-clear status is based on a mathematical for-
mula that uses distance and time separation thresholds. The actual values of
these thresholds depend on the operational case. For instance, in DO-365, the
minimum separation is 4000 ft horizontally and 450 ft vertically. Furthermore,
there is a time component that accounts for encounters with a high closure rate.
That time component, which is an approximation of the time to closest point
of approach, is 35 s. These thresholds define a volume in space and time, called
well-clear volume, that has the shape of a cylinder elongated in the direction of
the relative velocity between the ownship and the intruder [10]. The thresholds
for small UAS are smaller and the definition does not include a time component.
For general aviation, the thresholds are slightly larger than for UAS.

In addition to minimum operational and functional requirements, DO-365
provides a set of test vectors intended to facilitate the validation of DAA imple-
mentations against these requirements. DAA developers may use DAIDALUS,
the reference implementation, to validate their DAA implementations against the
test vectors. If the two systems provide the same outputs for all test vectors, then
confidence is gained in the functional correctness of the implementation. While
this validation approach based on systematic comparison with a reference spec-
ification is conceptually simple, it poses some key challenges. One main hurdle
originates from round-off errors in machine arithmetic. In fact, DAA implemen-

1 RTCA was formerly known as Radio Technical Commission for Aeronautics.
2 https://shemesh.larc.nasa.gov/fm/DAIDALUS.

https://shemesh.larc.nasa.gov/fm/DAIDALUS

A Graphical Toolkit for the Validation of Requirements for DAA Systems 157

tations, including those developed for DAIDALUS, use floating-point arithmetic.
The verified algorithms used in DAIDALUS, on the other hand, are specified in
PVS, and use real arithmetic. When numeric computations are used in control
flows, round-off errors introduced by floating-point arithmetic may alter the logic
of a real-valued algorithm.

A precise characterization of all possible differences produced by round-off
errors is not trivial (see, for example, [16]). In the case of DAA functions, round-
off errors can introduce delays in the time when a maneuver guidance is provided,
or even change the alert level. The net result is that validation approaches based
on simple comparison of numerical values are often inconclusive, in the sense that
numerical differences between the output of a DAA implementation and that of
the reference specification do not necessarily flag problems in the implementa-
tion. It is also true that, depending on the considered scenario, small numerical
differences may flag actual implementation problems.

To assess compliance with the reference specification, a more empirical
method can be adopted in addition to numerical comparisons. The method
addresses the following question: “If domain experts look at the maneuver guid-
ances and alert levels provided by both the DAA implementation and the reference
specification, would they judge the information provided by the two systems to be
the same?” The work presented in this paper introduces a toolkit, DAA-Displays,
that can be used to answer such an empirical question.

Contribution. This paper introduces a toolkit, DAA-Displays, for the validation
of DAA implementations. The toolkit can be used by software developers to
validate a DAA implementation against a reference specification. It can also be
used by domain experts that design and develop DAA requirements for opera-
tional concepts, to validate DAA requirements. The toolkit is freely available on
GitHub3 under the NASA Open Source License Agreement.

2 DAA-Displays

DAA-Displays is a graphical toolkit for the design and analysis of DAA imple-
mentations and requirements. The toolkit provides three main functionalities:

1. Rapid prototyping of cockpit displays with DAA functions;
2. Split-view simulations for the validation of DAA implementations against

reference specifications;
3. 3D simulations of flight scenarios with aircraft using DAA functions.

2.1 Rapid Prototyping

The rapid prototyping functionalities allow formal methods experts to create
realistic simulations suitable to discuss DAA algorithms with a multi-disciplinary
team of developers. This feature is particularly useful when executable formal
3 https://github.com/nasa/daa-displays.

https://github.com/nasa/daa-displays

158 P. Masci and C. A. Muñoz

Fig. 1. DAA cockpit display. (Color figure online)

specifications of DAA functional requirements are available. In this case, DAA-
Displays enables the visualization of the behavior of the formal specifications
on concrete flight scenarios. This way, team members who may not be familiar
with formal methods can get a better understanding of the type of alerting and
maneuver guidance provided by a DAA logic.

An example prototype used for this purpose is in Fig. 1. This prototype was
created with the DAA-Displays toolkit to discuss different DAA configurations
with domain experts and pilots. The prototype reproduces the look and feel of
a real cockpit display. It includes the following elements:

– An interactive map showing the position and heading of the ownship in the
airspace (the blue chevron at the center of the map) as well as the position
and heading of traffic aircraft (the other chevrons in the map) relative to
the ownship. Color-coded chevrons are used to denote alert levels. These
colors are specified in standard documents. For example, in DO-365, a yellow
chevron denotes a corrective alert level between the ownship and the aircraft.
The color red denotes a warning alert level. Labels next to the chevrons show
the relative altitude of the aircraft with respect to the ownship in hundreds
of feet, e.g., 00 indicates co-altitude.

– A compass over the map indicates the heading of the ownship. Heading
maneuver guidance is displayed on the compass. For example, the yellow and
red bands shown on the compass in Fig. 1 indicate that the current heading,
220◦, is conflict free, but a small change to the right will potentially create
a conflict with the traffic aircraft. Similar to alert levels, these bands are
color-coded, where yellow denotes a corrective maneuver and red denotes a
warning maneuver. According to DAA requirements, bands and alert colors

A Graphical Toolkit for the Validation of Requirements for DAA Systems 159

should correspond in the sense that if a traffic aircraft is represented by a
chevron of a certain color, there should be a band, in the current trajectory
of the aircraft, of the same or higher level, e.g., warning is higher than cor-
rective. In Fig. 1, if the ownship maneuvers to the right, e.g., 230◦, the traffic
aircraft becomes yellow. If the ownship maneuvers to 260◦, the traffic aircraft
becomes red.

– Tape indicators at the two sides of the display provide information for air-
speed (indicator on the left) in knots, altitude in feet (large indicator on the
right), and vertical speed (small indicator on the right) in feet per minute
of the ownship. Maneuver guidance involving change of airspeed, altitude,
and vertical speed are represented by colored bands over these indicators.
For example, the yellow band shown in Fig. 1 for the airspeed indicator states
that airspeeds in the range 80 to 120 knots would create a potential conflict
with the traffic aircraft.

The display elements described above are available in the toolkit in the form
of a library of widgets. Additional details on the full set of widgets available in
the library are provided in the tool documentation.4

2.2 Split-View Simulations

Split-view simulations can be used to visually and systematically compare the
output of two DAA logics on the same encounter. The outputs can be from dif-
ferent implementations and executable formal models, or from the same imple-
mentation/formal model but with different configuration parameters.

An example split-view simulation used for this purpose is shown in Fig. 2.
The view includes the following elements:

– Cockpit displays show alert levels and maneuver guidance by two DAA imple-
mentations for a given encounter and selected configurations at a given
moment in time.

– Spectrogram plots show alert levels and maneuver guidance as they vary with
time; the x-axis in each plot represents time and the y-axis indicates alert
levels and maneuver guidance ranges.

The cockpit displays include information about the flight scenarios but focus on
single time instants. Spectrogram plots, on the other hand, focus on the temporal
behavior of the DAA logics, and give insights on the evolution of alert levels and
maneuver guidance over time for a given encounter. For example, with reference
to Fig. 2, visual inspection of the plot diagrams allows one to confirm that the two
DAA implementations under analysis generate maneuver guidance that, judged
by a domain expert, are “sufficiently similar,” even though the numerical values
produced by the two implementations are slightly different in all time instants
(as highlighted by the yellow markers at the bottom of the plots).

By inspecting the plot diagrams in Fig. 2, one can also notice a delay in
changing a red alert to a yellow alert at about 75 s. The relevance of these kinds
4 http://shemesh.larc.nasa.gov/fm/DAA-Displays.

http://shemesh.larc.nasa.gov/fm/DAA-Displays

160 P. Masci and C. A. Muñoz

Fig. 2. Example split-view simulation created with DAA-Displays. (Color figure online)

Fig. 3. Example 3D simulation created with DAA-Displays.

of differences may need careful assessment, and typically involves engaging with
pilots or DAA designers. This assessment can be carried out with this same split
view simulation, as the cockpit displays embedded in the view show the flight
scenario in a form that can be understood by both pilots and DAA designers.
The simulation is interactive, therefore one can easily jump to specific time
instants, and play back fragments of the scenario that are deemed important for
the assessment.

2.3 3D Simulations

The 3D simulation capability of the toolkit moves the focus of the analysis from
a cockpit-centric view to a scenario-centric view that includes the wider airspace
around the ownship. The viewport can be adjusted by tilting, panning, and
zooming the view. This capability can be used by developers to gain a better

A Graphical Toolkit for the Validation of Requirements for DAA Systems 161

Fig. 4. Architecture of the DAA-displays toolkit.

understanding of spatial information on the trajectories followed by the ownship
and traffic aircraft in a given scenario. This is useful, e.g., when assessing DAA
algorithms with computer-generated flight scenarios, as this view provides a
tangible idea of what the scenario is about.

An example 3D simulation realized to examine a computer-generated flight
scenario is showed in Fig. 3. It includes two drones flying over a terrain. The
ownship is flying at an altitude of 30 feet. The other drone is following the
ownship. The two drones are at the same altitude.

3 Architecture

The architecture of the toolkit is shown in Fig. 4. Three main views are used to
present the functionalities of the toolkit to developers. Underneath, a number
of components are used to implement the functionalities of the views. These
components can be customized and reused to create new views. A client-server
architecture is used to create a separation of concerns between visual components
necessary for interactive analysis of DAA functions, and functional components
necessary for the execution of DAA specifications and implementations.

Analysis Front-End. The analysis front-end constitutes the client side of the
architecture. It builds on Web technologies, as this makes it easier to deploy on
different platforms, including tablets and mobile devices. The front-end element
is implemented in TypeScript, a strict superset of JavaScript annotated with
type information. This element includes three main reusable components:

– A playback player providing interactive controls for navigating simulation
scenarios (e.g., jump to specific time instants and playback of scenarios);

– A widgets library containing a series of interactive display elements that can
be used to assemble realistic cockpit display simulations;

– A plot library providing functionalities for creating interactive plots suitable
for rendering alerts and maneuver guidance computed by a DAA implemen-
tation over time.

162 P. Masci and C. A. Muñoz

Fig. 5. Spectrogram plots for the analysis of alert flickering.

Execution Back-End. The execution back-end includes two main components:

– A DAA Server implementing communication mechanisms necessary to
exchange simulation events and data with the analysis front-end;

– An array of Execution Providers designed to connect the DAA Server to the
native execution environments necessary for the evaluation of DAA specifi-
cations and implementations. Each provider implements a standard interface
that enables the communication between a given execution environment and
the DAA Server. It also incorporates functions for automatic testing of prop-
erties that should always be true during the execution of DAA specifications
and implementations.

4 Use Cases

The toolkit is currently used to support the development of NASA’s DANTi
concept [1,2] and the development of operational and functional requirements
for large UAS in landing and departing operations. These latter requirements
are being defined by RTCA Special Committee 228 and will be included in the
upcoming revision of DO-365. Example analyses and findings are discussed in
the remainder of this section.

Alert Flickering. A number of parameters can be used to configure when and how
alerting and maneuver guidance are computed in DAIDALUS. The toolkit was
used to gather additional insights on corner cases identified for certain configura-
tions. An example corner case relates to alert flickering, i.e., situations where an

A Graphical Toolkit for the Validation of Requirements for DAA Systems 163

alert level intermittently changes from one second to the next. This unintended
behavior has been detected in certain scenarios for specific configurations.

Split-view simulations proved useful for the identification of these problems
and for the development of possible solutions. In particular, spectrogram plots
helped with the identification of flickering in alert levels and spikes in maneu-
ver guidance. An example split-view simulation carried out to evaluate a DAA
algorithm providing a possible solution to alert flickering is given in Fig. 5. The
simulation shows alerts and bands computed by the original algorithm (diagrams
on the left-hand side of the figure) against those computed by a new algorithm
that uses hysteresis (diagrams on the right side). As it can be seen in the Alert-
ing plot (first plot from the top), alerts are not toggling in the new algorithm.
This solution, however, does not mitigate all problems. In fact, altitude bands
are still toggling—this can be easily seen from the spikes in the altitude bands
plot at the bottom of Fig. 5.

Quick identification of these kinds of shortcomings at the early stage of design
of new algorithms is key to speed up development. The sheer use of simulation
and visualization technologies was sufficient to identify this issue on the spot.
It can be argued that this behavior would have been eventually discovered with
formal proofs. However, in this particular case, flickering is caused by small
numerical errors in the computation of alerts and maneuver guidance. These
kinds of errors are difficult to find and fix in a formal setting, as they often
require floating point round-off error analysis.

DANTi Display. The prototyping capabilities of the toolkit are currently being
used to support the development of a cockpit display for the DANTi concept.
Different prototypes have been developed in rapid succession to explore display
layouts and functionalities.

The initial DANTi prototype is shown in Fig. 1. The new version introduces
new visual elements on the display for changing the zoom level of the map (but-
tons at the bottom of the display) and for selecting the level of details shown for
traffic information (buttons at the top of the display). Future versions, currently
under development, include rendering of virtual regions in the airspace (geo-
fences) as well as aircraft trajectories. All these prototypes can be deployed on
portable electronic flight bags that can be carried by pilots and can be employed
for user evaluations, e.g., to perform acceptability studies where pilots are asked
to assess the utility of the display in enhancing their see-and-avoid capabilities.

Since the prototypes created with DAA-Displays can be driven by formal
specifications this opens the possibility to the use of formal models directly in
user evaluations, removing the burden of creating implementations that mimic
the formal specifications.

5 Related Work

PVSio-web [9] is a formal methods framework for modeling and analysis
of interactive systems. That framework has been extensively used for the

164 P. Masci and C. A. Muñoz

analysis of medical devices [8]. The toolkit presented in this work builds on
experiences with developing and using that framework. The main design aspect
inherited from PVSio-web is the architecture for linking interactive prototypes
to executable formal specifications. New design concepts are introduced in DAA-
Displays that are not present in PVSio-web such as split-view simulation compo-
nents, a widgets library of cockpit display elements, and 3D visualization capa-
bilities. SCADE Displays [7] is a prototyping tool for cockpit displays. The tool
can be used to create cockpit display prototypes suitable to visualize maneuver
recommendations. However, mechanisms are not provided for linking the pro-
totype to formal specifications. SCR [6] is a toolset for the analysis of software
requirements. Prototyping functionalities are supported, and the prototypes can
be linked to executable formal models. However, SCR does not support split-
view simulations facilitating systematic comparison of different implementations.
PVSioChecker [5] and MINERVA [12] are formal methods tools for comparative
analysis of PVS specifications and software code. These tools, however, focus on
checking numerical differences between the output produced by the implemen-
tation and the specification. As argued in this paper, this comparison method is
often inconclusive because of round-off errors.

Related to DAA algorithms, a comparative analysis between DAIDALUS and
ACAS-Xu, another well-known DAA algorithm for UAS, is presented in [4]. In
that work, plot diagrams similar to those used in DAA-Displays are employed
to present the results of the analysis. The development of analysis tools was,
however, not the main focus of their work. While some tools may have been
developed, they are not publicly available.

6 Conclusion

A toolkit, called DAA-Displays, has been presented that enables a systematic
comparison between DAA software implementations and reference specifications.
Because of round-off errors introduced in software implementations, such com-
parison cannot usually be done by checking numerical differences. The toolkit
provides specialized front-end views that enable comparison by simple visual
inspection of plot diagrams and interactive display prototypes. Future aspects
that will be incorporated into the toolkit include integration with hardware-in-
the-loop simulation tools for coupling simulations with hardware modules.

References

1. Carreño, V., Consiglio, M., Muñoz, C.: Analysis and preliminary results of a con-
cept for detect and avoid in the cockpit. In: Proceedings of the 38th Digital Avionics
Systems Conference (DASC 2019), San Diego, CA, US (September 2019)

2. Chamberlain, J.P., Consiglio, M.C., Muñoz, C.: DANTi: detect and avoid in the
cockpit. In: 17th AIAA Aviation Technology, Integration, and Operations Confer-
ence, p. 4491 (2017). https://doi.org/10.2514/6.2017-4491

https://doi.org/10.2514/6.2017-4491

A Graphical Toolkit for the Validation of Requirements for DAA Systems 165

3. Cook, S.P., Brooks, D., Cole, R., Hackenberg, D., Raska, V.: Defining well clear
for unmanned aircraft systems. In: Proceedings of the 2015 AIAA Infotech @
Aerospace Conference. No. AIAA-2015-0481, Kissimmee, Florida (January 2015).
https://doi.org/10.2514/6.2015-0481

4. Davies, J.T., Wu, M.G.: Comparative analysis of ACAS-Xu and DAIDALUS
detect-and-avoid systems. Tech. rep. (2018). https://ntrs.nasa.gov/search.jsp?
R=20180001564

5. Dutle, A.M., Muñoz, C.A., Narkawicz, A.J., Butler, R.W.: Software validation via
model animation. In: Blanchette, J.C., Kosmatov, N. (eds.) TAP 2015. LNCS,
vol. 9154, pp. 92–108. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21215-9 6

6. Heitmeyer, C., Kirby, J., Labaw, B., Bharadwaj, R.: SCR: a toolset for specifying
and analyzing software requirements. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 526–531. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0028775

7. Le Sergent, T.: SCADE: a comprehensive framework for critical system and soft-
ware engineering. In: Ober, I., Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 2–3.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25264-8 2

8. Masci, P., Oladimeji, P., Curzon, P., Thimbleby, H.: Using PVSio-web to demon-
strate software issues in medical user interfaces. In: Huhn, M., Williams, L. (eds.)
FHIES/SEHC - 2014. LNCS, vol. 9062, pp. 214–221. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63194-3 14

9. Masci, P., Oladimeji, P., Zhang, Y., Jones, P., Curzon, P., Thimbleby, H.: PVSio-
web 2.0: joining PVS to HCI. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 470–478. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4 30

10. Muñoz, C., Narkawicz, A., Chamberlain, J., Consiglio, M., Upchurch, J.: A family
of well-clear boundary models for the integration of UAS in the NAS. In: Proceed-
ings of the 14th AIAA Aviation Technology, Integration, and Operations (ATIO)
Conference. No. AIAA-2014-2412, Georgia, Atlanta, USA (June 2014). https://
doi.org/10.2514/6.2014-2412

11. Muñoz, C., Narkawicz, A., Hagen, G., Upchurch, J., Dutle, A., Consiglio, M.:
DAIDALUS: detect and avoid alerting logic for unmanned systems. In: Proceedings
of the 34th Digital Avionics Systems Conference (DASC 2015), Prague, Czech
Republic (September 2015). https://doi.org/10.1109/DASC.2015.7311421

12. Narkawicz, A., Muñoz, C., Dutle, A.: The MINERVA software development pro-
cess. In: Shankar, N., Dutertre, B. (eds.) Automated Formal Methods, vol. 5, pp.
93–108. Kalpa Publications in Computing. EasyChair (2018)

13. Narkawicz, A., Muñoz, C., Dutle, A.: Sensor uncertainty mitigation and dynamic
well clear volumes in DAIDALUS. In: Proceedings of the 37th Digital Avionics
Systems Conference (DASC 2018), London, England, UK (September 2018)

14. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

15. RTCA SC-1228: RTCA-DO-365, Minimum Operational Performance Standards for
Detect and Avoid (DAA) Systems (May 2017)

16. Titolo, L., Muñoz, C.A., Feliú, M.A., Moscato, M.M.: Eliminating unstable tests
in floating-point programs. In: Mesnard, F., Stuckey, P.J. (eds.) LOPSTR 2018.
LNCS, vol. 11408, pp. 169–183. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-13838-7 10

https://doi.org/10.2514/6.2015-0481
https://ntrs.nasa.gov/search.jsp?R=20180001564
https://ntrs.nasa.gov/search.jsp?R=20180001564
https://doi.org/10.1007/978-3-319-21215-9_6
https://doi.org/10.1007/978-3-319-21215-9_6
https://doi.org/10.1007/BFb0028775
https://doi.org/10.1007/BFb0028775
https://doi.org/10.1007/978-3-642-25264-8_2
https://doi.org/10.1007/978-3-319-63194-3_14
https://doi.org/10.1007/978-3-319-21690-4_30
https://doi.org/10.1007/978-3-319-21690-4_30
https://doi.org/10.2514/6.2014-2412
https://doi.org/10.2514/6.2014-2412
https://doi.org/10.1109/DASC.2015.7311421
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-030-13838-7_10
https://doi.org/10.1007/978-3-030-13838-7_10

166 P. Masci and C. A. Muñoz

17. US Code of Federal Regulations: Title 14 Aeronautics and Space; Part 91 General
operating and fight rules; Section 111 (1967)

18. US Code of Federal Regulations: Title 14 Aeronautics and Space; Part 91 General
operating and fight rules; Section 113 (1967)

Short Paper

ScAmPER: Generating Test Suites to
Maximise Code Coverage in Interactive

Fiction Games

Martin Mariusz Lester(B)

University of Reading, Reading, UK
m.lester@reading.ac.uk

Abstract. We present ScAmPER, a tool that generates test suites that
maximise coverage for a class of interactive fiction computer games from
the early 1980s. These games customise a base game engine with scripts
written in a simple language. The tool uses a heuristic-guided search
to evaluate whether these lines of code can in fact be executed during
gameplay and, if so, outputs a sequence of game inputs that achieves
this. Equivalently, the tool can be seen as attempting to generate a set
of test cases that maximises coverage of the scripted code. The tool also
generates a visualisation of the search process.

Keywords: Reachability · Coverage · Explicit state · Interactive
fiction

1 Introduction

A common complaint concerning tools in automated verification is that they
are inadequate for handling the complex software of today, written in modern
programming languages. What about the software of yesterday?

Interactive fiction or text adventure games are a genre of computer game
that peaked in popularity in the 1980s, although a small but active community
continues to create and play new games. The games take the form of a tex-
tual dialogue between a player, who gives commands, and the computer, which
executes the commands and describes their effect in a game world.

These games are conceptually easy to understand, but making progress
within them often involves a mixture of high-level planning (such as deciding
in which order to solve in-game puzzles) and low-level execution (such as mov-
ing objects to specific locations). For this reason, they present an appealing case
study for the application of automated verification tools.

An occasional complaint concerning research in automated verification is
that tools are sometimes benchmarked either against large, inaccessible, incom-
prehensible pieces of commercial software, or against unrealistic toy examples
that have been chosen to showcase the strengths of a tool. Using older software
as a benchmark addresses some of these concerns, as while it is still covered by

c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 169–179, 2020.
https://doi.org/10.1007/978-3-030-50995-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_10&domain=pdf
http://orcid.org/0000-0002-2323-1771
https://doi.org/10.1007/978-3-030-50995-8_10

170 M. M. Lester

copyright, it is often freely available and small enough to be comprehensible, yet
still realistic.

In terms of implementation detail, two aspects of interactive fiction games
make them relevant to modern software. Firstly, the structure of an interpreter
loop, which is used to execute scripted actions in many games, is commonly used
in software that features scripting. Secondly, the pattern of repeatedly reading
user input and responding by updating internal state or occasionally triggering
events is also used in GUI applications and some control software.

We investigated whether tools from automated verification and formal meth-
ods could be used to explore, test and solve interactive fiction games, considering
specifically the Scott Adams Grand Adventures (SAGA) series. When we dis-
covered that they were unsuccessful, we wrote a specialised tool to tackle this
problem.

Our tool, ScAmPER (Scott Adams exPlicitly Evaluating Reachability), is
an explicit-state on-the-fly model checker that uses a heuristic-guided search to
determine whether certain lines of script code within these games are reachable.
When it finds that they are, it outputs a sequence of game inputs to witness
this. Equivalently, this sequence of game inputs is a test for the reached line
of script code. Taken together, these tests form a suite that aims to maximise
both branch coverage and modified condition/decision coverage (MC/DC) of the
script code. In addition, the tool generates a visualisation of the search process.
The tool is available online [3,9].

Appendix A gives some background on SAGA games. Section 2 outlines our
initial attempts to analyse them with existing tools. Section 3 demonstrates how
our tool works, describes how it works and evaluates its performance. We con-
sider related work on interactive fiction games and more generally in Sect. 4,
concluding with lessons learned and suggestions for future work in Sect. 5.

2 Preliminary Investigation

We thought it was plausible to use automated tools on interactive fiction games
for two reasons. Firstly, measured by number of player actions, solutions to
interactive fiction games are often relatively short. A game might be solvable
with a hundred commands or under, compared with thousands of joystick inputs
for an arcade game. This limits the depth of search tree that must be considered,
although the range of possible commands means the branching factor may be
large. Secondly, many interactive fiction games published by the same company
consisted of a generic interpreter and a game-specific data file. Many of these
interpreters have now been rewritten in C, allowing the games to be played on
modern computers. This meant we could use off-the-shelf tools for C programs.

We initially attempted to use off-the-shelf tools for C programs to determine
reachability of scripted events within a game. Bounding loops with constants
allowed bounded model checkers such as CBMC to unroll them. We replaced the
input of commands with a nondeterministic choice of a sequence of verb/noun
pairs and tested reachability by adding an assertion that a line of script would not

ScAmPER: Generating Test Suites for Interactive Fiction Games 171

be executed. Then, a counterexample trace would give the inputs necessary to
reach the assertion. However, neither of the tools we tested could produce plays
of the game longer than a single command. We concluded that this was because
a single command involved executing every line of script, each of which executed
the script interpreter, meaning that the unrolled straight-line code could be tens
of thousands of lines per game command.

We also tried using the fuzzing tool American Fuzzy Lop (AFL). While its
genetic algorithms generated plays of reasonable length, most of the commands in
them did not progress through the game. Movement commands or commands to
pick up or drop objects usually fail if their sequence is changed, so combining two
interesting plays is unlikely to produce an interesting new play. AFL instruments
the code it is fuzzing to identify when it has found a new path of execution.
However, in an interpreter loop, almost all executions will pass through the same
lines of source code, just with different data, making this technique ineffective.

3 ScAmPER

Usage. ScAmPER takes as input the database that defines a game. It uses a
heuristic search to find sequences of commands that reach novel states. Novel
states are those in which, for the first time during play, the player enters a room,
triggers execution of a line of script (action), or sees a message. States where
the conditions in the guard of an action take on a new permutation of truth
values, thereby increasing MC/DC coverage, are also novel. The tool outputs the
commands needed to reach these novel states and a visualisation of the search
process. ScAmPER stops when it has explored an initial pre-defined number
of states and has not recently encountered any novel states. It prints statistics
showing what percentage of rooms, actions and messages it could reach, as well
as MC/DC coverage.

Figure 1 shows a still from a visualisation, which is rendered using GraphViz’s
dot and animated using gifsicle. The main part of the image shows the game
map, with rooms that have been reached filled in. The two grids show the IDs of

Fig. 1. Left: Still image from visualisation of Tutorial 4 of Scott Adams Compiler [14].
Right: A sample test input trace generated by ScAmPER to trigger action 4.

172 M. M. Lester

Game Rooms reached Messages shown Actions reached MC/DC Time (s) Mem (MB)
1 88 % / 34 80 % / 77 75 % / 170 76 % 209 431
2 77 % / 27 75 % / 90 66 % / 178 64 % 25 37
3 54 % / 24 65 % / 82 54 % / 162 64 % 18 32
4 92 % / 26 80 % / 100 83 % / 190 83 % 96 105
5 86 % / 23 89 % / 89 84 % / 220 78 % 39 51

Fig. 2. Benchmarks of ScAmPER on 5 SAGA games. For more benchmarks, see Fig. 5
in Appendix A.

the game’s scripted actions and messages. Again, those that have been reached
are filled in. Next to the still is an example of a sequence of input commands
needed to trigger a scripted action.

Benchmarks. We tested ScAmPER on the first 5 original SAGA games [1].
Results are shown in Fig. 2. By various metrics, coverage is typically 60–90%.
Timings are for an Intel Core i7-7500U at 2.70 GHz with 16 GB of RAM.

Architecture. Figure 3 shows the architecture of ScAmPER. In order to ensure
that it accurately models the behaviour of a game, it makes heavy use of the
existing ScottFree interpreter [2]. The first component of ScAmPER is a modified
version of the interpreter that, rather than running a game, loads its database,
then dumps it as a series of variable definitions in a C header file. The second
component, which actually performs the search, links against a modified version
of the interpreter that includes the header file, effectively hard-coding the game’s
database.

The second modified version of the interpreter is heavily optimised for use
in the search. All startup code and any code handling message display has been
removed. Code to get user input and parse it has also been removed. Instead, a

Fig. 3. The architecture of ScAmPER.

ScAmPER: Generating Test Suites for Interactive Fiction Games 173

“next state” function has been added that takes as arguments the game state and
the numeric IDs of a verb and a noun; these are passed directly to the code that
evaluates the user’s commands. In order to support this, the game’s mutable data
has been separated from its immutable data and bundled in a single, fixed-size
C struct. As the game’s database is hard-coded, variables referring to the sizes
of arrays of rooms, items and so on have been replaced with defined constants,
enabling more optimisation by the compiler.

Search Algorithm. Before the search starts, the tool uses a simple static analysis
to determine all possible commands accepted by the game. A few commands are
hard-coded into the game engine. These are navigation commands (“GO X”,
for any direction X) and commands to pick up or drop an item (“GET X” or
“DROP X”, for any movable item X). The possible directions are hardcoded
into the game engine and the movable items are marked with a flag in the
game database, so these are easy to determine. All other valid commands are
handled by scripted actions. These are also easy to determine, as the verb/noun
combination that triggers an action must be stored in a specific field in the game
database.

The search algorithm itself is relatively straightforward. A game tree is ini-
tialised with a node containing the starting state of the game. On each iteration
of the search, a state is picked (according to heuristics) to expand as follows.
Firstly, a breadth-first search using navigation commands finds all rooms acces-
sible using “GO X” only. From each of these rooms, the search tries: picking up
or dropping any item (“GET X” or “DROP X”); and any combination of verb
and noun that is listed as a trigger in the game’s scripts. This is sufficient to
solve a large number of in-game puzzles, many of which involve taking an item
to a certain location and entering a specific command.

Rather than attempting to determine in advance whether these commands
will be fruitful, ScAmPER simply tries them all, as that is likely to be faster.
Most of the commands will fail with an error, for example if the command
was “GO NORTH”, but there was no exit to the north, or the command was
“GET KEY”, but the key was not in the player’s current room. In order to
detect this, the interpreter has been instrumented with a flag that is set when a
command fails. If a command fails, the resulting state is discarded. Otherwise,
it is added to the game tree. If the command triggered a previously unseen
message or unexecuted line of script, this is recorded. Again, the interpreter is
instrumented with flags to detect this. The goal of this expansion strategy is to
find all currently accessible scripted actions, without wasting time moving back
and forth aimlessly between locations in the game’s map.

The interpreter is also instrumented to evaluate and record the value of all
conditions in the guards of scripted actions after every move. This is necessary
in order to determine MC/DC coverage, as if any condition in a guard is false,
the subsequent conditions would not normally be evaluated.

Explored states are stored in a hash table for easy lookup. If a duplicate state
is ever encountered, it is immediately discarded. This cuts out many pointless

174 M. M. Lester

Fig. 4. Average coverage over first 5 SAGA games with different search heuristics.

sequences of commands, such as returning to the room from which the player
just came, or dropping an object and immediately picking it up again.

A small number of scripted actions occur with random probability. For the
sake of reproducibility, we decided to use a simplified random number generator
and store its state as part of the game state. However, we ignore it when hashing
states or comparing them for equality in order to avoid filling the game tree with
many copies of the same state that differ only by random number generator
state. Similarly, we also ignore the state of the counter that records how much
longer a light source will last for. These simplifications aside, the search process
is complete, in the sense that it will eventually explore all possible states of a
game, although in practice this only happens within reasonable time/memory
limits for extremely small examples.

ScAmPER uses two main heuristics to pick the node to expand. Firstly,
novel states (as described above) are preferred. Secondly, new states encountered
during expansion are themselves immediately expanded, as are those encountered
during this second round of expansion; this ensures that paths from any state
chosen for expansion are explored to a reasonable depth. The rationale is that
games usually feature a number of dependent puzzles. Completion of one puzzle
grants access to a new item or location, or sets a flag, which enables other
puzzles to be completed. In order to complete the later puzzles (and execute
their associated lines of script), the search must focus on states where the earlier
puzzles have already been solved; these are more likely to be the novel states
and deeper in the game tree.

We evaluated both heuristics on the first 5 SAGA games, stopping the search
after 100,000 states had been explored. Our results are shown in Fig. 4. Both
heuristics improved coverage, but novelty was far more significant. For compar-
ison, we also evaluated a search strategy that randomly picks a state to explore
and tries all available commands when it does so. This performed acceptably
and was comparable to our expansion strategy without the novelty heuristic.

4 Related Work

Machine Learning for Playing Video Games. The successful application of
machine learning to playing old Atari video games [10,11] has captured the

ScAmPER: Generating Test Suites for Interactive Fiction Games 175

interest of both researchers and the general public. There are several key dif-
ferences in the problem we chose to tackle. Firstly, in many interactive fiction
games, there is no equivalent of the player’s score for assessing the success or
progress. Secondly, we allow tools to access the internal state and code of the
program we are analysing. Thirdly, the tree of game states has a higher degree
of branching (as there are more possible actions at any point), but successful or
interesting paths are shorter while potentially more intricate.

Narasimhan and others [12] investigated the use of deep learning to solve
interactive fiction using only the text output of the game. Its success was limited
in games without a score to guide play.

Model Checking for Solving Interactive Fiction Games. The idea of applying
model-checking to interactive fiction was first investigated by Pickett, Verbrugge
and Martineau [13]. They introduced the NFG (Narrative Flow Graph), a formal-
ism based on Petri nets, and the higher-level PNFG (Programmable Narrative
Flow Graph). They manually encoded some existing games as PNFGs, used a
compiler to translate those into NFGs, then used the model-checker NuSMV to
attempt to find solutions. They also discussed other properties of such games
that one might check, such as the player being unable to reach a state in which
the game had not been lost, yet was no longer winnable. Verbrugge and Zhang
later addressed the problem of scalability using a heuristic search [15], which
was able to solve several NFGs that were infeasibly large for NuSMV.

Our main criticisms of this work concern the choice to re-encode the games
as PNFGs. Firstly, the manual translation of games into PNFGs might not be
entirely accurate. Looking at the C code for the script interpreter in ScottFree,
the behaviour of some scripted events is quite subtle, and it is likely that a
manual translation would not capture all the details correctly. Secondly, it is
often the case that expressing a problem in a different format makes it easier for
automated tools to solve, as it reveals the high-level structure of the problem.
If the translation is done manually, the translator may have introduced this
structure, and it is not clear that it could be derived automatically.

Automated Test Case Generation. A key problem with automated test gener-
ation is generating tests that cover difficult-to-reach parts of a system, in par-
ticular when tests are generated randomly. Testar [16], a tool for automated
generation of GUI test cases, addresses this using Q-learning. The tool identi-
fies possible actions in a GUI application using its accessibility API. It runs the
program being tested and uses instrumented versions of GUI libraries to gather
information about the state of GUI widgets; it uses this to determine whether
an action caused the application to enter a new state. Q-learning is used to tune
the frequency with which different GUI actions are taken in order to maximise
the chances of reaching a new state. In contrast, as ScAmPER has access to
the internal state of the game and is not limited to constructing whole paths
of execution, tuning the frequency with which different actions are taken is less
important. All actions from a state of interest can be taken with ease. Nonethe-

176 M. M. Lester

less, this approach could lead to better heuristics for choosing which state to
expand.

Fuchs presents a tool [5] for generating test cases for Web applications written
in Java. These applications provide a user interface to a database, which is built
by combining and customising ready-made components. In that regard, they are
somewhat similar to SAGA games. The tool constructs tests using simulated
interactions with the application, making use of the compiled application code.
Their tool is augmented with a symbolic execution engine.

Julliand and others [8] consider test generation for abstracted event systems.
Their approach, called concrete exploration, is based on models written in B,
but applicable to other settings. The games we consider could be viewed as event
systems, with the obvious abstraction being to group concrete game states in
which the player is in the same room; the scripted actions in a game would cor-
respond to guarded actions in the event system. Their work proposes a strategy
for covering the abstract transitions of a system by trying to extend existing
concrete paths to cover new abstract transitions.

5 Future Work and Conclusions

Despite their relative simplicity, SAGA games were extremely popular and
ported to at least 10 different home computer systems. After source code for
two games and their interpreter were published in magazines in 1980, the style
of the interpreter was copied by other developers. This led to the creation of
game authoring packages such as The Quill and Graphic Adventure Creator.
Combined, over 500 games were published using these packages. We are highly
confident that our techniques are applicable to these engines too, but we leave
that for future work. We suspect that adapting our work to more complex and
dynamic game engines, such as Infocom’s Z-Machine, would prove much more
difficult.

Old computer and video games present an appealing challenge for program
analysis and automated verification, with relevance to current problems, such as
GUI test case generation. Explicit state methods have proven to be successful
in model-checkers such as SPIN [7] and FDR [6]. ScAmPER shows once again
that explicit state methods can beat symbolic methods when the “next state”
function of a system is complex, but can be evaluated cheaply.

One blind spot of ScAmPER is that it only finds when an action can be
executed; it never proves that it cannot. Our tool could be improved with better
heuristics, by using techniques from model-checking such as CEGAR, or by using
symbolic execution to gather constraints and help to guide the search. But we
are more interested in how to encode the problem so that it can be handled
better by existing tools, or in finding improvements for those tools.

Off-the-shelf verification tools cannot yet handle games from 40 years ago
without help, and even then they struggle. ScAmPER shows that a custom tool
can tackle these examples. It is unsurprising that a specialised tool should out-
perform a generic tool on a particular problem. However, it is not clear whether

ScAmPER: Generating Test Suites for Interactive Fiction Games 177

a clever generic tool or a stupid specialised tool, such as ours, is likely to per-
form better. Our work provides one datapoint to suggest that, for the moment,
a stupid specialised tool is better. We hope that it will motivate future develop-
ments in verification tools and that its performance on SAGA games will provide
a benchmark for others to beat.

A Scott Adams Grand Adventures

In an interactive fiction game, the computer displays a textual description of the
player’s location. The player types a command, such as “GO NORTH”, “GET
KEY” or “OPEN DOOR”. The computer parses the command, evaluates its
effect on the game world, and displays a textual description of any outcomes.
The process repeats until the player wins (for example, by defeating a monster
or finding a treasure) or loses (often by dying).

The most popular of the generic interactive fiction interpreters was Infocom’s
Z-Machine. However, its flexibility, which allows games to include their own cus-
tomised command parsers, makes it a difficult target for automated analysis.
Instead, we decided to tackle an earlier and simpler format, namely Scott Adams
Grand Adventures (SAGA) and the corresponding open-source interpreter Scot-
tFree [2]. This format supports only very limited scripting, which makes the
behaviour of the games far less dynamic.

Games consist of a fixed number of rooms and objects (usually 20–40 each).
Commands consist of one or two words (a verb and a noun), which are taken
from a fixed list. The player can move between rooms and pick up and drop
objects; this is hard-coded into the engine. A limited scripting system allows
the behaviour of each game to be customised. Scripts allow the player to trigger
special events by entering certain rooms or typing certain commands, provided
a guard consisting of a conjunction (AND) of conditions is satisfied. Examples
of conditions that can be checked include the location of a certain object or
the value of a finite number of flags and bounded counters. Examples of events
include moving objects, moving the player, displaying messages and adjusting
the values of flags and counters (Fig. 5).

Figure 6 shows pseudocode illustrating the structure of the game engine and
some possible scripted events. Despite the relatively simple structure of the

Fig. 5. Coverage achieved by ScAmPER with different metrics on SAGA games.

178 M. M. Lester

// Game engine
while (not game_over) {

print(current_room.description());
execute_automatic_scripts();
(verb, noun) = parse_player_input();
if (scripted_action(verb, noun)) {

execute_scripted_action(verb, noun);
}
else if (verb == "go") {

current_room = current_room.exit[noun];
}
else if (verb == "get" and items[noun].location == current_room) {

items[noun].location = carried;
}
else if (verb == "drop" and items[noun].location == carried) {

items[noun].location = current_room;
}

}

// Example scripted actions
// Action 0:
if (verb == "score") {

print_score();
}
// Action 1:
else if (verb == "inventory") {

print_inventory();
}
// Action 2:
else if (verb == "open" and noun == "door" and items["locked door"].location == current_room and

items["key"].location != carried and items["key"].location != current_room) {
print("It’s locked.");

// Action 3:
else if (verb == "open" and noun == "door" and items["locked door"].location == current_room) {

swap(items["locked door"].location, items["open door"].location);
}
// Action 4:
else if (verb == "go" and noun == "door" and items["open door"].location == current_room) {

current_room = rooms["cell"];
}

// Example automatic scripts
// Action 5:
if (items["vampire"].location == current_room and items["cross"].location != carried) {

print("Vampire bites me! I’m dead!);
exit();

}
// Action 6:
if (items["vampire"].location == current_room and items["cross"].location == carried) {

print("Vampire cowers away from the cross!);
}

Fig. 6. Pseudocode for the structure of the game engine and some scripted events.
Scripted events are taken from Tutorial 4 of Mike Taylor’s Scott Adams Compiler [14].
The functions invoked by actions 0 and 1, which display the player’s score and inventory
(list of items carried), are built into the game engine.

engine, the open source implementation ScottFree is around 1,500 lines of C, of
which around 600 implement an interpreter for the scripting language. Scripts
can check around 20 different kinds of condition and trigger around 40 different
kinds of event. The state space of a game is finite but too large to enumerate.
Its size is dominated by the potential for any movable object to be in any room,
ranging from roughly 240 combinations in adventure 11 to 2114 in adventure 9.

ScAmPER: Generating Test Suites for Interactive Fiction Games 179

References

1. Adams, S.: Scott adams grand adventures. http://www.msadams.com/downloads.
htm

2. Cox, A.: Scottfree interpreter. https://www.ifarchive.org/indexes/if-
archiveXscott-adamsXinterpretersXscottfree.html

3. Dietsch, D., Jakobs, M.C.: Tap 2020 virtual machine, April 2020. https://doi.org/
10.5281/zenodo.3751284

4. Dubois, C., Wolff, B. (eds.): TAP 2018. LNCS, vol. 10889. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-92994-1

5. Fuchs, A.: Automated test case generation for Java EE based web applications. In:
Dubois and Wolff [4], pp. 167–176. https://doi.org/10.1007/978-3-319-92994-1 10

6. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3—a mod-
ern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 13

7. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

8. Julliand, J., Kouchnarenko, O., Masson, P., Voiron, G.: Under-approximation gen-
eration driven by relevance predicates and variants. In: Dubois and Wolff [4], pp.
63–82. https://doi.org/10.1007/978-3-319-92994-1 4

9. Lester, M.M.: ScAmPER: Scott Adams exPlicitly Evaluating Reachability, March
2020. https://doi.org/10.5281/zenodo.3724977

10. Mnih, V., et al.: Playing atari with deep reinforcement learning. CoRR
abs/1312.5602 (2013). http://arxiv.org/abs/1312.5602

11. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

12. Narasimhan, K., Kulkarni, T.D., Barzilay, R.: Language understanding for text-
based games using deep reinforcement learning. In: Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon,
Portugal, 17–21 September 2015, pp. 1–11 (2015). http://aclweb.org/anthology/
D/D15/D15-1001.pdf

13. Pickett, C.J., Verbrugge, C., Martineau, F.: NFG: a language and runtime sys-
tem for structured computer narratives. In: Proceedings of the 1st Annual North
American Game-On Conference (GameOn’NA 2005), pp. 23–32 (2005)

14. Taylor, M.: Scott adams compiler (sac). http://www.miketaylor.org.uk/tech/
advent/sac/

15. Verbrugge, C., Zhang, P.: Analyzing computer game narratives. In: Yang, H.S.,
Malaka, R., Hoshino, J., Han, J.H. (eds.) ICEC 2010. LNCS, vol. 6243, pp. 224–
231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15399-0 21

16. Vos, T.E.J., Kruse, P.M., Condori-Fernández, N., Bauersfeld, S., Wegener, J.: TES-
TAR: tool support for test automation at the user interface level. IJISMD 6(3),
46–83 (2015). https://doi.org/10.4018/IJISMD.2015070103

http://www.msadams.com/downloads.htm
http://www.msadams.com/downloads.htm
https://www.ifarchive.org/indexes/if-archiveXscott-adamsXinterpretersXscottfree.html
https://www.ifarchive.org/indexes/if-archiveXscott-adamsXinterpretersXscottfree.html
https://doi.org/10.5281/zenodo.3751284
https://doi.org/10.5281/zenodo.3751284
https://doi.org/10.1007/978-3-319-92994-1
https://doi.org/10.1007/978-3-319-92994-1_10
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-319-92994-1_4
https://doi.org/10.5281/zenodo.3724977
http://arxiv.org/abs/1312.5602
http://aclweb.org/anthology/D/D15/D15-1001.pdf
http://aclweb.org/anthology/D/D15/D15-1001.pdf
http://www.miketaylor.org.uk/tech/advent/sac/
http://www.miketaylor.org.uk/tech/advent/sac/
https://doi.org/10.1007/978-3-642-15399-0_21
https://doi.org/10.4018/IJISMD.2015070103

Author Index

Aichernig, Bernhard K. 3
Altisen, Karine 143

Devismes, Stéphane 143

Hartel, Pieter 23

Jahier, Erwan 143

Kamkin, Alexander 43
Khoroshilov, Alexey 43
Khosrowjerdi, Hojat 59
Kolárik, Tomáš 80
Kosmatov, Nikolai 100
Kotsynyak, Artem 43

Lester, Martin Mariusz 169
Loulergue, Frédéric 100
Ly, Dara 100

Machado, Nuno 122
Masci, Paolo 155
Meinke, Karl 59
Muñoz, César A. 155

Nemati, Hamed 59

Pereira, João Carlos 122
Putro, Pavel 43

Ratschan, Stefan 80

Schumi, Richard 23
Signoles, Julien 100
Sousa Pinto, Jorge 122

Tappler, Martin 3

Wallner, Felix 3

	Preface
	Organization
	Abstracts of Invited Events
	Conformance Testing of Cyber-Physical Systems: From Formal Foundations to Automotive Applications: Invited Talk TAP 2020
	Testing, Runtime Verification and Automata Learning: Invited Tutorial TAP 2020
	Contents
	Regular Research Papers
	Benchmarking Combinations of Learning and Testing Algorithms for Active Automata Learning
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Mealy Machines
	3.2 Active Automata Learning

	4 Experimental Setup
	5 Experimental Results
	5.1 Overview
	5.2 Selected Findings

	6 Summary
	7 Conclusion
	References

	Mutation Testing of Smart Contracts at Scale
	1 Introduction
	2 Background
	2.1 A Case Study in Mutation: Vitaluck
	2.2 Sub Questions

	3 Method
	4 Results
	5 Discussion and Limitations
	5.1 Limitations and Threats to Validity

	6 Conclusions and Future Work
	References

	Deductive Binary Code Verification Against Source-Code-Level Specifications
	1 Introduction
	2 Related Work
	3 Suggested Approach
	3.1 Formalizing Target Architecture
	3.2 Disassembling Machine Code
	3.3 Translating ACSL Annotations
	3.4 Adapting Specification Model

	4 Case Study
	5 Conclusion
	References

	Spatio-Temporal Model-Checking of Cyber-Physical Systems Using Graph Queries
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Spatio-Temporal Automaton Logic (STAL)
	5 Cypher Syntax and Semantics
	5.1 Cypher Patterns

	6 Spatio-Temporal Model Checking
	6.1 Soundness of Model Checking

	7 NeoMC Implementation and Evaluation
	8 Related Work
	9 Conclusions
	References

	SAT Modulo Differential Equation Simulations
	1 Introduction
	2 Example
	3 Formalization: SAT Modulo ODE
	4 Formalization: SAT Modulo ODE Simulations
	5 Theory Solver
	6 Formula Structure
	7 Solver Integration
	8 Computational Experiments
	9 Conclusion
	References

	Verified Runtime Assertion Checking for Memory Properties
	1 Introduction
	2 Overview and Motivating Example
	3 The Considered Languages
	3.1 Source Language
	3.2 Destination Language

	4 Program Transformation
	4.1 Statement Translation
	4.2 Predicate Translation
	4.3 Term Translation

	5 Soundness
	5.1 Definitions
	5.2 Soundness Theorem

	6 Related Work
	7 Conclusion
	References

	Testing for Race Conditions in Distributed Systems via SMT Solving
	1 Introduction
	2 Background
	2.1 Data Races in Distributed Systems
	2.2 Satisfiability Modulo Theories

	3 SPIDER
	3.1 Overview
	3.2 System Model
	3.3 Redundancy Pruning
	3.4 Happens-Before Model Generation
	3.5 Race Detection via SMT Solving

	4 Evaluation
	4.1 Benchmarks
	4.2 Effectiveness
	4.3 Efficiency
	4.4 Discussion About the Soundness and Precision of the Approach

	5 Related Work
	6 Conclusion
	References

	Tool Demonstration Papers
	sasa: A SimulAtor of Self-stabilizing Algorithms
	1 Introduction
	2 An Example: Asynchronous Unison in the Atomic-State Model
	3 The sasa Simulator
	3.1 sasa Features
	3.2 The Core of sasa
	3.3 The sasa Algorithm Programming Interface
	3.4 Connection to the Synchrone Reactive Toolbox

	4 Experimental Results
	5 Conclusion and Future Work
	A Artifact
	References

	A Graphical Toolkit for the Validation of Requirements for Detect and Avoid Systems
	1 Introduction
	2 DAA-Displays
	2.1 Rapid Prototyping
	2.2 Split-View Simulations
	2.3 3D Simulations

	3 Architecture
	4 Use Cases
	5 Related Work
	6 Conclusion
	References

	Short Paper
	ScAmPER: Generating Test Suites to Maximise Code Coverage in Interactive Fiction Games
	1 Introduction
	2 Preliminary Investigation
	3 ScAmPER
	4 Related Work
	5 Future Work and Conclusions
	A Scott Adams Grand Adventures
	References

	Author Index

