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Abstract This chapter studies the delivery problem in which a distribution center
delivers goods to customers periodically. Each customer has a specified delivery
frequency. The deliveries to the same customer must be spaced over time as evenly
as possible. The objective is to minimize the fleet size. We start from the special
version with customers requiring the same delivery frequency, and propose a
routing-then-scheduling approach: a routing problem for making one delivery to
every customer is first solved and the resulting routes are then scheduled over the
period. The study mainly focuses on the scheduling of the routes. Feasibility and
optimality of the solution are analyzed. Based on the analysis, we develop a general
integer programming model and a two-stage method for the problem with different
delivery frequencies. Numerical experiments show that both methods solve the
problem quickly. However, the delivery patterns generated by the two-stage models
are more stable.

Keywords Periodical vehicle routing problem · Delivery frequency · Fleet size ·
Routing then scheduling

1 Introduction

In many real life physical distribution systems, the delivery orders are periodic. In
these systems, the distribution firm delivers goods to a fixed set of customers. In a
given T-day period, each customer must be visited at least once, with some cus-
tomers requiring several visits for which minimum and maximum intervals
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are imposed on any two successive deliveries. The distribution firm is interested in
developing a set of daily delivery routes for the T-day period so that a certain
criterion is optimized, while guaranteeing that each customer receives deliveries at
the required frequency (the number of deliveries). This kind of problem is called
periodic vehicle routing problem (PVRP). PVRP arises in various settings such as
waste collection (Beltrami and Bodin 1974, Bommisetty et al. 1998; Coene et al.
2010), industrial gas distribution (Bell et al. 1983; Dror and Ball 1987), soft drink
and beer distribution (Golden and Wasil 1987) and linen deliveries in hospitals
(Banerea-Brodeur et al. 1998). Our study was motivated by the problem faced by a
distribution center that delivers frozen food to restaurants. Each restaurant needs two
deliveries a week. While they may accept deliveries on any days of the week, they
require that the deliveries should be spaced over time as evenly as possible consid-
ering the freshness of the food and the storage capacity limit.

The subject of PVRP is the integration, in a unified model, of some related
components of the decision making process in managing the distribution activities
of a firm, such as the fleet size determination, the scheduling of the deliveries and the
routing of vehicles. It is thus a multilevel combinatorial optimization problem. The
periodicity requirement sets links between the deliveries of different days. Therefore,
the decision problem for the deliveries of 1 day cannot be solved separately from
those for other days in the period.

PVRP is often viewed as an extension of the classical vehicle routing problem
(VRP) from 1 day to a T-day period with the objective of minimizing the total
distance traveled over the period. Classical formulations of PVRP can be found in
Christofides and Beasley (1984) and Ball (1988). Francis et al. (2007) considered
service flexibility in the problem including the choice of customer delivery frequen-
cies. Archetti et al. (2017) introduced a flexible PVRP to minimize the total routing
cost, where each customer has a total demand for the planning period and there is a
limit on the maximum delivery quantity at each visit instead of having a fixed
delivery frequency. Michallet et al. (2014) addressed a highly constrained PVRP
where visits to each customer must be within the customer’s time window, no
waiting is allowed and the arrival times of any two visits to the same customer
must be separated by at least a minimum time interval.

Most of the solution methodologies for classical PVRP follow the line of an
assigning-then-routing approach. That is, the customers are assigned to days of the
T-day period first and the resulting VRP for each day is then solved. After this an
improvement stage follows to exchange the customers between days or between the
routes of the same day to minimize the total travel distance over the period. For any
assignment of customers to the days in the period, the subproblem for each day is a
classical VRP problem which is NP-hard implying that it is unlikely to have an
efficient method to solve it optimally. In search for a good assignment of customers
to different days, a large number of VRPs need to be solved. To make it computa-
tionally feasible, heuristics are used for the decisions.

Different heuristics have been developed to solve PVRP. Christofides and
Beasley (1984) proposed two heuristics in which different relaxations of the VRP
subproblem ( p-median relaxation problem and traveling salesman relaxation

160 J. Liu and A. Rong



problem) for each day was solved. Tan and Beasley (1984) developed heuristics
based on the generalized assignment relaxation problem in which K�T seed points
were chosen, where K is the number of vehicles for each day and T is the number of
days in the period. Russell and Gribbin (1991) gave a four-stage heuristic to evaluate
the results of different combinations for each day. Chao et al. (1995) tried to first
balance the total amount of customer demand in each day by solving an integer
programming problem that minimizes the maximum total amount of demand deliv-
ered in a single day, and then to form vehicle delivery routes for each day. Following
this, a one-point movement method was adopted to make further improvement.
Metaheuristics such as tabu search (Cordeau et al. 1997) and genetic algorithm
(Drummond et al. 2001), and scatter search (Alegre et al. 2007) have also been
applied for solving PVRP. Alonso et al. (2008) studied a PVRP allowing multiple
trips for each vehicle and considering the accessibility constraints. They used an
assigning-then-routing heuristic to generate an initial solution and then used tabu
search for improvement to minimize total travel cost. Rahimi-Vahed et al. (2013)
solved a multi-depot PVRP problem using a path relinking algorithm while Nguyen
et al. (2014) proposed a hybrid genetic algorithm for PVRP with time windows.
Cacchiani et al. (2014) presented a hybrid algorithm embedding both heuristic and
exact components, and used it to solve PVRP where each customer needs to be
served on a combination of days chosen from a set of valid day combinations. The
objectives of the problems in the above three studies are also to minimize the total
travel cost.

Shih and Lin (1999) and Shih and Chang (2001) used a routing-then-scheduling
approach to solve the problem of collecting infectious wastes from hospitals. The
problem is quite special where collection needs to be made only once in each 1-week
period from every hospital. They first solved a standard vehicle routing problem to
determine a set of individual routes for the collection. Mixed integer programming
was then used to assign the routes to particular days of the week with the objective of
minimizing either the maximal daily travel or the difference between the maximal
and the minimal daily travels.

Although the objective to minimize the total distance traveled is important as it
reduces the fuel costs, minimization of the fleet size (the maximum number of
vehicles used for any 1 day) is often the primary objective for many delivery
firms. This is because the fixed costs associated with the number of vehicles (capital
investment, maintenance, wages, insurance, etc.) often outweigh the costs related to
mileage. The exact settings of a PVRP may be different for different applications.
Gaudioso and Paletta (1992) studied a PVRP with the objective of minimizing the
fleet size and presented a model assuming that the planning horizon is divisible by
the delivery frequencies of all customers. They proposed a heuristic algorithm that
allocates deliveries of one customer at a time. Since there is no limit on daily travel
distance or time, a bin-packing problem is solved for each day to determine the
number of vehicles needed to serve the customers assigned to that day. When
assigning the deliveries of each customer, the objective is to minimize the fleet
size increase. Rahimi-Vahed et al. (2015) addressed a multi-depot PVRP to mini-
mize fleet size. They considered a list of allowable visit patterns for each customer,
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as well as vehicle capacity, route duration and budget constraints. A modular
heuristic algorithm was proposed to solve the problem.

Most previous studies on PVRP tried to minimize traveling cost. Only a few
considered minimizing fleet size as objective. In addition, the majority of the PVRP
studies assume that each customer has a given list of possible delivery patterns. In
many practical situations such as the frozen food delivery problem mentioned
earlier, the actual delivery days to a customer can be flexible but the deliveries
need to be evenly spaced considering freshness of the food and storage capacity of
the customer. In this chapter we study the PVRP with these features and allow
different delivery frequencies for different customers.

Our problem is stated as follows. A distribution center delivers goods to a fixed
set of customers periodically. One period includes T days. A customer needs at most
one delivery on any day. If a customer requires E deliveries over the T-day period,
we say that the delivery frequency of this customer is E. For all the customers, there
is a total of n different delivery frequencies, E1, . . ., En. Without loss of generality,
we assume 1 � E1 < E2 <, . . . , < En � T. The required delivery amount (the
demand) for the same customer is the same for every delivery. The delivery days for
the same customer must be distributed in the period as evenly as possible. That is,
any two successive deliveries must be spaced at least bT/Eic days and at most dT/Eie
days for a delivery frequency Ei. We will refer to this requirement as evenly-spacing
requirement. Homogeneous vehicles are used to make the deliveries. The problem is
to assign, over a delivery period T, a feasible combination of delivery days to each
customer and to schedule the deliveries for every day in the period in order to
minimize the fleet size.

The evenly-spacing requirement for the delivery days is consistent with the
practice of many delivery problems, such as the problem of food delivery to
restaurants in the example mentioned earlier. Moreover, to make practical imple-
mentation of the solution easier, we further make the assumption below.

Assumption 1
While customers can be grouped with any other customers in a delivery route, it is
required that every delivery of any particular customer is made in a route with the
same set of other customers.

Solutions under this assumption have practical advantages. The delivery route for
every delivery to a customer is always the same. Therefore the customer can expect
delivery around the same time on every delivery day and thus can be better prepared
for receiving. This assumption can also make the delivery team more familiar with
the routes and make the fleet management in the delivery firm easier.

The periodical nature of the delivery orders makes the daily delivery orders
change in a cyclical pattern. Our task is therefore to schedule deliveries for one
period. Then the schedule can be followed in every period.

In the remaining parts of this chapter, we first study the periodical delivery
problem with the same delivery frequency, propose a routing-then-scheduling
approach for the problem and analyze the performance of the solution. The method
can be used to solve the problem in situations where the delivery frequencies
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required by all customers are the same. Based on the above analysis, the general
problem with different delivery frequencies is studied. A general integer program-
ming model is formulated and a two-stage method using two smaller integer
programming models is proposed for more stable and efficient solution. An extended
routing-then-scheduling approach is also presented to solve problems without
assumption 1. Computational experiments testing the performance of the methods
are then reported. Finally conclusion remarks are given.

2 Problem with the Same Delivery Frequency for All
Customers

2.1 A Routing-then-Scheduling Approach

For the periodical delivery problem with the same delivery frequency E, two
successive deliveries to the same customer must be spaced at least bT/Ec days and
at most dT/Ee days. This special problem would not be solved effectively and
efficiently if we followed the conventional procedures for a general PVRP: assigning
customers to delivery days and then routing each day separately. In the improvement
stage of the conventional heuristic procedure, it is hard to choose which customers
should be moved because all the customers have the same delivery combination.

However, the special characteristics of this problem can be used to develop more
efficient algorithms. We propose a routing-then-scheduling approach to solve the
problem in two phases:

Phase 1. Solve a VRP to minimize fleet size, considering all the customers as if every
customer requires a delivery on the same day. We will call the set of customers
served by one vehicle in a day a route. Then the result of this VRP will be a set of
delivery routes.

Phase 2. Assign these routes to delivery days over the T-day period. Each route will
be assigned E times, spaced evenly over the period.

Here a route is viewed in a broad sense. It does not necessarily mean one physical
vehicle trip. In particular, given the vehicle capacity, multiple trips may be
performed by a vehicle within the limit of the working time in a day. A route here
refers to all the delivery work done by one vehicle for 1 day, which includes all the
trips of the vehicle and the associated loading and unloading activities in a day.

VRP has received extensive study. Many existing algorithms can be borrowed to
solve the above phase-one problem (e.g., Achuthan et al. 1998; Vanderbeck 1999).
In this chapter, we will not include this phase in the presentation of the algorithms.
Instead, we will concentrate on the phase-two problem of scheduling the routes over
the T-day period when the algorithms are developed.

In scheduling the delivery routes, any two successive deliveries of the same route
must be spaced at least bT/Ec days and at most dT/Ee days. Note that this restriction
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also applies to the last delivery in one period and the first in the next period. If T is a
multiple of E, any two successive deliveries of the same route are spaced exactly T/E
(¼ bT/Ec ¼ dT/Ee) days. If T is not a multiple of E, dT/Ee ¼ bT/Ec + 1.

2.2 An Algorithm for Route Scheduling

Let P denote the optimal number of routes, obtained in the routing phase, which
include all the customers exactly once. With the delivery frequency E, each route
must be delivered E times in the planning period. We refer to each delivery of a route
as a route-delivery. Then totally (E�P) route-deliveries are required in the period to
serve all the customers E times. On average, the number of routes delivered in each
day is (E�P/T ). Thus, to balance the workloads on different days and hence minimize
the fleet size, the number of routes delivered in each day should be either bE�P/Tc or
dE�P/Te routes.

We number the P different routes as 1, 2, . . ., P. We further number each of the
E�P route-deliveries uniquely as follows:

k ¼ jþ m � P, j ¼ 1, 2, . . . ,P, m ¼ 0, 1, . . . ,E � 1:

where j is route numbers, k is a route-delivery number. Therefore, j + m1 � P and j +
m2 � P (m1 6¼ m2, 0 � m1 � E – 1, 0 � m2 � E – 1) represent the same route
j delivered on different days. While each of the P routes will be delivered E times in
the T-day period, each of the E�P route-deliveries will be made exactly once in the T-
day period. For illustration, consider an example problem in which three deliveries
are required to each customer in a 5-day period and delivering to all customers once
needs four routes, i.e., T¼ 5, P¼ 4, E¼ 3. Table 1 presents a delivery schedule and
shows the relationship between the 4 routes and the 12 route-deliveries. To schedule
the E�P route-deliveries to the T days in the period, we need to determine which days
to have bE�P/Tc route-deliveries and which days to have dE�P/Te route-deliveries in
order to satisfy the delivery spacing requirement, because our approach does not
have the restriction in Gaudioso and Paletta (1992) that requiring the planning period
to be a multiple of the delivery frequency.

We present below a scheduling procedure that determines the assignment of the
route-deliveries to each day in the period. The procedure considers 1 day at a time. In
the procedure, i is the day number, fi is the number of routes assigned to day i, f0 is
the accumulated number of assigned route-deliveries up to day i, f is the fleet size.

Table 1 Routes and route-deliveries for an example problem with T ¼ 5, P ¼ 4, E ¼ 3.

Day 1 2 3 4 5

Route number (Route-delivery number) 1 (1) 3 (3) 1 (5) 4 (8) 2 (10)

2 (2) 4 (4) 2 (6) 1 (9) 3 (11)

3 (7) 4 (12)
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Algorithm 1

Step 1: f0 ¼ 0, f ¼ 0, i ¼ 1.
Step 2: fi ¼ bi�P�E/T – f0c; assign the next fi route-deliveries to day i; if fi > f,

then let f ¼ fi.
Step 3: If i < T, then f0 ¼ f0 + fi, i ¼ i + 1, go to step 2; otherwise, stop. f is the

fleet size.

This algorithm is computationally very efficient. Its computational complexity is O
(max{P�E, T}).

2.3 Properties of the Solution

Algorithm 1 addresses the evenly-spacing requirement for the deliveries of the same
route implicitly. We prove now the solution produced by this algorithm is indeed
feasible, i.e., satisfying this requirement.

Proposition 1
The schedule generated by Algorithm 1 is a feasible solution to the problem, i.e., any
two successive deliveries of a route in the schedule are bT/Ec or dT/Ee days apart.
Proof
Consider any route R1 that is scheduled on day i, and its position on that day is r (it is
the rth route among those assigned to that day). Then its route-delivery number is
b(i – 1)�P�E/Tc + r. Let k be the first day on which route R1 is scheduled after day i,
and the position of route R1 on day k is s. Then the route-delivery number can be
represented as b(k – 1)�P�E/Tc + s. Based on the algorithm procedure, we have the
following relations.

(i) b(i – 1)�P�E/Tc + r + P ¼ b(k – 1)P�E/Tc + s � k�P�E/T
) (i – 1)�P�E/T – 1 + r + P < k�P�E/T
) (i – 1)�P�E/T + P < k�P�E/T
) P – P�E/T < (k – i)P�E/T
) T/E – 1 < k – i
) bT/Ec � k – i.

(ii) b(k – 1)P�E/Tc + s ¼ b(i – 1)�P�E/Tc + r + P � i�P�E/T + P

) (k – 1)P�E/T – 1 + s < i�P�E/T + P
) (k – 1)P�E/T < i�P�E/T + P
) (k – i)P�E/T < P + P�E/T
) k – i < T/E + 1
) k – i � dT/Ee.
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Therefore, any two successive deliveries of a route in the schedule are bT/Ec
or dT/Ee days apart, i.e., the schedule is feasible. □

In the following the optimality of Algorithm 1 is analyzed.

Proposition 2
In the solution generated by Algorithm 1, the number of routes delivered in each
day is either bE�P/Tc or dE�P/Te. The fleet size required for the delivery is therefore
dP�E/Te.
Proof
For any day i in the schedule, the number of vehicles needed (number of routes
scheduled) is fi ¼ bi�P�E/T – b(i – 1)P�E/Tc c < bi�P�E/T – (i – 1)P�E/T + 1c ¼ bP�E/
T + 1c. This implies that fi � dP�E/Te.

Similarly, fi ¼ bi�P�E/T – b(i – 1)P�E/Tc c � bi�P�E/T – (i – 1)P�E/T c ¼ bP�E/T c.
Therefore, bP�E/T c � fi � dP�E/Te.
That is, the number of routes delivered in each day is either bE�P/Tc or dE�P/Te.

As the number of routes to be delivered is at most dE�P/Te, the fleet size required is
dP�E/Te. □

Proposition 3
Under Assumption 1, the solution generated by Algorithm 1 is optimal provided that
the VRP considering deliveries to all customers once is solved optimally.

Proof
P is the minimum number of routes for one delivery to all customers resulted from
the VRP. Under the Assumption 1, the total number of deliveries needed for all
routes in the period is E�P. The minimum fleet size required to cover these routes in
the T-day period is then dE�P/Te. According to Proposition 2, the number of routes
assigned by Algorithm 1 to any day is at most dE�P/Te. Therefore, the solution is
optimal. □

The customer orders are delivered E times in the period. Due to the requirement
for delivery days of any order being evenly distributed, a new round of delivery will
not start on a day if previous round has not completed on that day or the day before.
Orders from two successive rounds may only be delivered on the same day for 1 day.
Similar to the above proof, it can be shown that if customers of one round cannot be
mixed with those of next round within a route, then the solution is optimal even
without Assumption 1. In practice, the routing problem may be solved heuristically.
In this case the final solution may not be optimal. The solution quality will depend on
the quality of routing problem solution.

2.4 Alternative Schedules with the Same Fleet Size

Algorithm 1 generates one feasible schedule for the same-frequency problem with
optimal fleet size. If (P�E)/T is integer then every day is assigned (P�E)/T routes and
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this optimal solution is unique. If (P�E)/T is not integer, there exist alternative
feasible optimal solutions. In practice, the distribution company may be interested
in these alternative solutions so that they have freedom to choose on which days of
the period the number of bE�P/Tc or dE�P/Te vehicles are scheduled based on
availability of resources (vehicles, drivers). Furthermore, the alternative solutions
will be useful when we deal with the problem with different delivery frequencies.
The proposition below provides properties based on which we can generate alterna-
tive optimal feasible solutions.

Proposition 4
Given that the route-deliveries are assigned day-by-day sequentially according to
their numbering and that every day is assigned at least bP�E/Tc and at most dP�E/Te
route-deliveries, any schedule with the following property is feasible:

Case 1, T is a multiple of E: Exactly P routes are assigned in the first T/E-day
sub-period with each day assigned at most d(P�E)/Te routes, and the same pattern
repeats in each of the following T/E-day sub-periods;

Case 2, T is not a multiple of E: Any two successive d(P�E)/Te-route days are spaced
either bT/Rc or dT/Re days, and at most d(dT/Ee – 1)R/Te days are assigned
d(P�E)/Te routes in any (dT/Ee – 1) days and at least bdT/EeR/Tc days are
assigned d(P�E)/Te routes in any dT/Ee days, where R ¼ mod (P�E, T ) and thus
P�E ¼ T bP�E/Tc + R ¼ R d(P�E)/Te + (T – R) bP�E/Tc.

Proof
Case 1: With the property specified, it can be seen that two successive deliveries of
the same route are always spaced T/E days, i.e., two successive deliveries for any
customer are always T/E days apart. So the schedule is feasible.

Case 2: In any (dT/Ee – 1) days the number of route-deliveries is at most

ðdT=Ee � 1ÞbP � E=Tc þ dðdT=Ee � 1ÞR=Te
¼ dðdT=Ee � 1ÞbP � E=Tc þ ðdT=Ee � 1ÞR=Te
¼ dðdT=Ee � 1ÞðbP � E=Tc þ R=TÞe
¼ dðdT=Ee � 1ÞP � E=Te
< dðT=EÞP � E=Te ¼ P

In any dT/Ee days the number of route-deliveries is at least

T=Ed e � P � E=Tb c þ T=Ed e � R=Tb c
¼ T=Ed e � P � E=Tb c þ T=Ed e � R=Tb c
¼ T=Ed e � P � E=Tb c þ R=Tð Þb c
¼ T=Ed e � P � E=Tb c > T=Eð Þ � P � E=Tb c ¼ P

Two successive deliveries to any customer are in two route-deliveries that are
P apart. The above relations indicate that the two routes are assigned at least bT/Ec
days apart and at most dT/Ee days apart. Therefore, the schedule is feasible. □
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Corollary 1
The evenly-spacing requirement is satisfied if the number of route-deliveries does
not exceed P in any successive bT/Ec days and does not fall below P in any
successive dT/Ee days.

3 Problem with Different Delivery Frequencies

Under Assumption 1, customers with different delivery frequencies cannot be mixed
in the same route. To solve the problem with different delivery frequencies, we can
still take the two-phase routing-then-scheduling approach. In phase 1, we first solve
a VRP for each delivery frequency Ei to obtain the number of routes needed, Pi, for
one delivery to all the customers with this frequency. The total number of route-
deliveries for this frequency is then Ei�Pi. The remaining task in phase 2 is then to
make feasible assignments of all the route-deliveries for all frequencies to the days in
the T-day period so that the fleet size is minimized. In the following two subsections,
we present two methods for solving the phase-2 problem.

3.1 A General Integer Programming Model

We define the following variables.

yij ¼ the number of route-deliveries for frequency Ei assigned on day j, i ¼ 1,. . .,
n, j ¼ 1, . . ., T.

FZ ¼ the fleet size.

Then the problem can be formulated as the integer programming model below.

IP0ð ÞMinimize FZ ð1Þ

Subject to

FZ �
Xn
i¼1

yij, j ¼ 1, . . . , T ð2Þ

XT
j¼1

yij ¼ Pi � Ei, i ¼ 1, . . . , n ð3Þ

Xhþ T=Eib c�1

j¼h

yi,mod j�1,Tð Þþ1 � Pi, i ¼ 1, . . . , n; h ¼ 1, . . . , T;Ei 6¼ 1 ð4Þ
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Xhþ T=Eid e�1

j¼h

yi,mod j�1,Tð Þþ1 � Pi, i ¼ 1, . . . , n; h ¼ 1, . . . , T;Ei 6¼ 1 ð5Þ

yij � 0 and integer, i ¼ 1, . . . , n, j ¼ 1, . . . ,T ð6Þ

In the model, the objective (1) is to minimize the fleet size required. Constraints
(2) ensure that the number of routes delivered on each day does not exceed the fleet
size. Constraints (3) guarantee that all the orders for each frequency are delivered.
Constraints (4) and (5) guarantee that the schedule is feasible, i.e., any two succes-
sive deliveries of a route for a frequency (the two deliveries are numbered Pi apart)
are delivered on 2 days that are either dT/Eie or bT/Eic apart. Note that these
constraints are unnecessary for frequency 1 because orders with frequency 1 can
be delivered on any 1 day in the period. Constraints (6) are nonnegative and integer
constraints.

3.2 A Two-Stage Method

The above model minimizes the fleet size. In an optimal solution, however, the
number of routes for a particular frequency assigned on different days can be
significantly different. Therefore, yij may take any value from 0 to Pi. This implies
that the delivery patterns (the number of routes delivered each day for each fre-
quency) are sensitive to both adding (removing) a delivery frequency and the route
variation for existing frequencies. For example, adding a new delivery frequency or
reducing one route for a certain delivery frequency can cause the delivery patterns
for other frequencies change greatly. To alleviate this drastic change, we limit the
number of routes assigned to a day for delivery frequency Ei (Ei 6¼ 1) to be either
dPiEi/Te or bPi�Ei/T c. Then we can use the following binary variable, rather than a
general integer variable, to represent the assignment of routes for a frequency to a
day.

xij ¼
1, if PiEi=Td e routes for frequency Ei are assigned on day j

0, if PiEi=Tb c routes for frequency Ei are assigned on day j

�
, i

¼ 1, . . . , n, j ¼ 1, . . . ,T ,Ei 6¼ 1:

Then we can obtain a solution in two stages.
The first stage tries to minimize the fleet size requirement FZ1, considering the

routes with frequencies other than 1. The following 0-1 integer programming model
does this using the above defined binary variables.
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IP1ð ÞMinimize FZ1 ð7Þ

Subject to

FZ1 �
Xn
i¼1

Ei 6¼1

xij þ
Xn
i¼1

Ei 6¼1

PiEi=Tb c, j ¼ 1, . . . ,T ð8Þ

XT
j¼1

xij ¼ mod PiEi,Tð Þ, i ¼ 1, . . . , n;Ei 6¼ 1 ð9Þ

Xhþ T=Eib c�1

j¼h

xi,mod j�1,Tð Þþ1 � T=Eib cmod PiEi,Tð Þ=Td e, i ¼ 1, . . . , n; h

¼ 1, . . . ,T ;Ei 6¼ 1 ð10Þ
Xhþ T=Eid e�1

j¼h

xi,mod j�1,Tð Þþ1 � T=Eid emod PiEi,Tð Þ=Tb c, i ¼ 1, . . . , n; h

¼ 1, . . . ,T ;Ei 6¼ 1, ð11Þ
xij ¼ 0, 1f g, i ¼ 1, . . . , n; j ¼ 1, . . . ,T;Ei 6¼ 1 ð12Þ

The meanings of the constraints are similar to the corresponding constraints in the
earlier IP (integer programming) model. Note that feasibility constraints (10) and
(11) use the property given in Proposition 4. After solving this model, we can get the
total number of routes assigned to each day, Fj, j ¼ 1,. . .,T, for all the frequencies
other than 1.

The second stage is to assign the routes with frequency 1 on those days with fewer
routes based on the solution to the first stage model so that the total fleet size can be
minimized. Let P1 denote the total number of routes for frequency 1. Define variable
yj as the number of routes for frequency 1 assigned to each day j ¼ 1,. . .,T. The
second stage problem can then be formulated as the small IP model below.

IP2ð ÞMinimize FZ ð13Þ

Subject to

FZ � F j þ y j, j ¼ 1, . . . ,T ð14Þ
XT
j¼1

y j ¼ P1 ð15Þ
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y j � 0 and integer, j ¼ 1, . . . ,T : ð16Þ

Constraints (14) ensure that the fleet size is sufficient to cover all routes assigned
to each day including those with frequency 1. Constraint (15) requires that all routes
with frequency one are assigned. Constraints (16) are nonnegative and integer
constraints.

Both the general IP model (IP0) and the two-stage models (IP1 and IP2) are
standard IP models, which can be solved using a standard software package.

3.3 An Extended Routing-then-Scheduling Approach

Assumption 1 allows us to schedule routes rather than individual customers in the
scheduling phase. This makes the problem simpler and the model size much smaller.
Even in the situation where Assumption 1 does not holds, if the numbers of routes
for different frequencies generated in phase 1 are large and the routes are all close to
the vehicle’s capacity of a day, then there may not be much room left for improve-
ment by reorganizing the routes. Therefore the solution obtained under the assump-
tion will be a close-to-optimal solution for the problem in this situation. If the
number of routes is small and they are not close to the vehicle’s capacity, then a
better solution may be obtained using the following extended routing-then-schedul-
ing approach.

Phase 1. Solve a VRP for each delivery frequency Ei to obtain the number of routes
needed, Pi, for one delivery to all the customers with this frequency. While
keeping the number of routes needed to a minimum, try to minimize the workload
of the last route.

Phase 2. Use the two-stage method to schedule the Ei deliveries of the first (Pi – 1)
routes, and the Pith route if it is close to full capacity, for every frequency.

Phase 3. Schedule the Ei deliveries for individual customers in the unscheduled
routes of all frequencies so that the total fleet size is minimized. The evenly-
spacing requirement should be observed. Although the customers here are con-
sidered individually, the number of such customers is small given the objective of
Phase 1. Therefore the problem of this phase is much simpler than the original
problem.

4 Computational Experiments

4.1 Testing the Route Assignment Models

To test the performance of the models presented in the last section, we carry out
numerical experiments on a variety of test problems with the planning period T set to
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7, 14 and 30 days, which correspond to the common practice of weekly, bi-weekly
and monthly delivery schedules respectively. For each T value, we consider several
delivery frequencies in the delivery problem. For a delivery frequency, the number
of routes required to make one delivery to all customers with this frequency is
generated randomly from a uniform distribution [1, 2T]. Table 2 shows the param-
eter settings for the test problems.

For each value of the planning period T, we generate 10 problem instances. We
solve each problem instance using both the general IP model (IP0) and the two-stage
method with the first stage model (IP1) and the second stage model (IP2). The IP
models are solved using ILOG CPLEX 10.2. Both methods take a very short time
(in seconds) to solve a problem. For each problem instance, the fleet sizes obtained
by the two methods are the same.

However, the delivery patterns generated by the two methods differ greatly.
Especially, the delivery patterns generated by the two-stage method are less sensitive
to problem parameter changes (changes in delivery frequency and route) than those
by the general IP model. In the following, we illustrate the effects of parameter
changes on the delivery patterns of the general IP model and the two-stage method
using a problem instance with T ¼ 7. The original problem has seven routes to be
delivered once, nine routes to be delivered twice, ten routes to be delivered three times
and one route to be delivered seven times in the 7-day period. Table 3 shows these data
for the original problem and the numbers of routes for three variations of the problem.

For the data in Table 3, the number of routes for frequencies 1, 2 and 7 remain
unchanged for all the variations considered. Because the frequency-7 route needs to be
delivered every day and there is only one pattern for this, the delivery patterns for
frequencies 1 and 2 are the best indicators to demonstrate the solution robustness of the
models. Figures 1 and 2 show the delivery patterns generated by the general IP model
and two-stage models, respectively, for the example problem instance and its variations.

Based on Fig. 1, we can see that the delivery patterns generated by the general IP
model change significantly whenever there is a change in delivery frequency or in
the number of routes for a delivery frequency. That is, to guarantee the minimization
of the fleet size, the number of delivery routes for the other frequencies (frequency
1 and frequency 2) must be adjusted significantly to accommodate the disturbances.
However, the delivery patterns generated by the two-stage method (Fig. 2) are much
more robust. For each frequency, the maximum variation of delivered routes for each
day is 1, as the constraints of the model (IP1) show.

In summary, the two-stage method solves the route scheduling problem very effec-
tively. It gives optimal solutions for all the problems tested and the delivery patterns
generated are more robust than those generated by the general IP model. In addition, the

Table 2 Parameter settings for the test problems

Planning period T 7 14 30

Delivery frequencies 1, 2, 3, 7 1, 2, 7, 14 1, 2, 3, 6, 15, 30

Number of routes needed to make one delivery U[1, 14] U[1, 28] U[1, 60]
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models in the two-stage method are much simpler and can solve large problems when
the planning period is long and there are more different delivery frequencies.

4.2 Test on Benchmark Examples

Detailed data for three standard VRPs with 50, 75 and 100 customers respectively
were provided in Christofides and Eilon (1969) and in Eilon et al. (1971).
Christofides and Beasley (1984) generated ten instances of PVRPs from these data
by setting periodical patterns for customer demand. The feasible periodical demand
patterns in these PVRPs match with our problem setting which requires the

Table 3 Number of routes for a problem instance with T ¼ 7 and its variations

Delivery frequencies 1 2 3 7 4

The original problem 7 9 10 1 –

Adding a new frequency 4 7 9 10 1 2

Changing routes for frequency 3 7 9 8 1 –

Changing frequency 3–4 7 9 – 1 10
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Fig. 1 Delivery patterns generated by the general IP model

Deliver frequency = 1

0

1

2

0 1 2 3 4 5 6 7 8
Day

D
el

iv
er

ed
 ro

ut
es

Original

Adding a frequency

Route variation

Frequency variation

Delivery frequency = 2

0

1

2

3

4

0 1 2 3 4 5 6 7 8
Day

D
el

iv
er

ed
 ro

ut
es Original

Adding a frequency

Route variation

Frequency variation

Fig. 2 Delivery patterns generated by the two-stage models
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deliveries to each customer to be spaced over time as evenly as possible. Gaudioso
and Paletta (1992) tested their method on some of these PVRPs in which all
customers have a delivery frequency of 1. Six of the ten problems are PVRPs with
delivery frequency of 1, labeled as 50a, 50c, 75a, 75c, 100a, 100c in Christofides and
Beasley (1984). We solved these six problems using our routing-then-scheduling
approach and obtained solutions with the same fleet sizes as in the solutions by
Christofides and Beasley (1984) and Gaudioso and Paletta (1992). The total dis-
tances traveled depend on the method used in the routing phase. In the routing phase
we used a location-allocation model to cluster the customers into routes heuristically
and then use a traveling salesman problem model to determine the actual trip of each
route. The resulting routes are then scheduled to the days in the period using
Algorithm 1. Table 4 shows the results on these problems by our approach (L&R)
together with those by Christofides and Beasley (1984) (C&B) and by Gaudioso and
Paletta (1992) (G&P). Since our objective is to minimize the fleet size, the distance
in our solution could be longer than that in the C&B solution in some cases.
However, the results in Table 4 show that in terms of distance our solution is also
comparable to the C&B solution.

The rest four PVRPs in Christofides and Beasley (1984) are multi-frequency
problems (labeled as 50b, 75b, 100b and 100d), all with a planning period of
5, generated by splitting the customers in the VRPs in Eilon et al. (1971) in groups
requiring different delivery frequencies. These problems cannot be handled by the
heuristic in Gaudioso and Paletta (1992). We applied our approach on these prob-
lems. Under Assumption 1, our method obtained solutions with the same fleet sizes
as in the C&B solutions for problems 75b, 100b and 100d. For problem 50b, the
solution with Assumption 1 needs a fleet size of 4, one more than in the C&B
solution, while our extended routing-then-scheduling approach gives a solution with
the same fleet size as in the C&B solution. This problem is an ideal example to
illustrate the effect of Assumption 1 in an extreme situation, and hence worthy to
discuss in detail. The planning period of the problem is 5 days. There are 50 cus-
tomers in total, 17 of them with small demands need a delivery frequency of 1, 26
with medium demands need a delivery frequency of 2, and 7 with large demand need
a delivery frequency of 5.

In the routing phase result, all the frequence-1 customers can be served in one
route with about 80% full of the vehicle capacity; serving all the frequency-2

Table 4 Results on the benchmark problems with delivery frequency of 1

Problem number No. of customers Planning horizon Fleet size

Distance

C&B G&P L&R

50a 50 2 3 558.4 601.6 541.7

50c 50 5 1 547.5 625.5 541.7

75a 75 2 5 855.4 949.4 920.1

75c 75 10 1 938.2 973.4 920.1

100a 100 2 4 839.2 902.2 886.5

100c 100 8 1 889.7 908.4 886.5
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customers once needs 3 routes (two nearly full and one 70% full); and serving all the
frequency-5 customers once needs two routes (one nearly full and one 36% full).
Under Assumption 1, the total number of route-deliveries will be
1 + 3 � 2 + 2 � 5 ¼ 17 and scheduling them in 5 days will need a fleet size of
4, even without considering the evenly-spacing requirement. Applying our extended
routing-then-scheduling approach, we can first schedule the deliveries of the close-
to-full routes: the frequency-1 route (let us call it Route 1), the two full frequency-2
routes (Routes 2 and 3) and the full frequency-5 route (Route 4). All these together
need a fleet size of 2. For the remaining customers, the customers in the 36% full
frequency-5 route (Route 5) need to be delivered every day. We can separate the
customers in the 70% full frequency-2 route into two groups and schedule them in
4 days, each group on 2 days spaced evenly. For each of these 4 days, these
customers can be delivered together with those in Route 5 on that day. Since the
customers are added to Route 5 on these days, the enlarged Route 5 on these days
will be renamed as Route 6 and Route 7 respectively. The complete route schedule is
shown in Table 5, while Assumption 1 is partially respected in the solution. The final
fleet size needed is 3.

For relating the result easily to the problem data in Eilon et al. (1971) and
Christofides and Beasley (1984), the customers in these routes are listed below.

Route 1: 1, 4, 10, 15, 17, 19, 21, 22, 24, 26, 29, 36, 37, 40, 45, 46, 50;
Route 2: 6, 13, 14, 23, 27, 43, 44, 47, 48;
Route 3: 5, 9, 11, 16, 30, 33, 38, 39, 42, 49;
Route 4: 12, 18, 25, 34, 41;
Route 5: 2, 20;
Route 6: 2, 20, 7, 8, 31, 32;
Route 7: 2, 20, 3, 28, 35.

The total distance travelled for the solution is 1967.1. If the customers in different
routes on the same day can be mixed, we can mix all customers in different routes of
each day together and solve a VRP to reorganize them into new routes. In this way
the total distance can be shortened to 1586.3.

The above test on the benchmark problems shows that our approach is effective.
We can also see that while Assumption 1 can simplify the problem and is convenient
for the delivery team, it does not significantly affect the solution quality in the
situation where this assumption is not required. In extreme cases where the assump-
tion affects the solution, the problem can be solved effectively using our extended
routing-then-scheduling approach to reduce the travel distance or cost while the fleet

Table 5 Route schedule given by our extended routing-then-scheduling approach for Problem 50b

Day 1 2 3 4 5

Delivery routes scheduled 1 2 3 2 3

4 4 4 4 4

5 6 7 6 7
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size remains the same or slightly improved. Managers can decide whether Assump-
tion 1 should be observed in the specific situations.

5 Conclusions

In this chapter, we studied the periodical delivery problem in which delivery
frequencies to different customers may be different, the deliveries to the same
customer need to be evenly distributed over time and the objective is to minimize
the fleet size. We first studied the problem with the same delivery frequency and
proposed a routing-then-scheduling approach. Analysis was then done on the feasi-
bility and optimality of the solution. Based on the result of the analysis, we then
developed a general integer programming model and a two-stage method, with a
smaller integer programming model for each stage, for the general problem with
different delivery frequencies. The approach guarantees the resulting delivery plan
satisfying the assumption that customers in the same route remain in the same route
in every delivery. Such a plan is convenient for management and the delivery team.
For the cases where this assumption is not necessary, we presented an extended
routing-then-scheduling approach that can reduce traveling distance. Numerical
experiments on problems with typical planning periods showed that both methods
could solve the problem quickly, but the delivery patterns generated by the two-stage
models were more robust than those generated by the general IP model. Numerical
test on benchmark problems showed that our approach could generate solutions with
the same fleet sizes as in previous studies. Our approach needs to solve much fewer
VRPs in the solution process and will be efficient and useful for solving problems
with long planning horizon and multiple frequencies.
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