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1 Introduction

Many mathematical models for malaria transmission dynamics have been derived
and analysed since the pioneering work of Sir Ronald Ross [26]. Some of these
models are based on the assumption that the human and mosquito populations are
constant, while others attempt variable human and mosquito populations [9, 11, 15–
18, 20]. Other studies point to the fact that climatic factors will affect the global
malaria burden problem in the future [13, 24, 33]. However, very few models
exist where the demographic and reproducing life style of the malaria transmitting
vector, the Anopheles sp mosquito, are built into the model construction process. In
this paper, we consider a general mosquito–human–malaria interactive framework
where the mosquito is allowed to undergo up to N gonotrophic cycles1 during its
entire reproductive life, where N is a positive integer greater than unity.

The idea of studying mathematical models for malaria transmission that takes
into consideration the mosquito’s gonotrophic cycles was used in [22]. However,
given that the number of gonotrophic cycle counts was set to N = 3 in that paper,

1The cyclic path starting from the first episode of blood feeding to resting for egg maturation to
oviposition and then back to blood feeding that is repeated several times during the mosquito’s
entire reproductive life is referred to as the gonotrophic cycle. The length of the gonotrophic cycle
can be measured by calculating the average of the lengths of the intervals between successive
batches of eggs during the mosquito’s reproductive life.
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the authors had to consider a feedback mechanism whereby all vectors that were in
their k-th gonotrophic cycle where k > 3 were re-classed into gonotrophic cycle
three through a pull-back term. The main weakness of such a pull-back term meant
that some mosquitoes were given infinite life spans and that affected the size of
the equilibrium solutions and the threshold parameters. The main objective of the
current paper is to remove the truncation point in the gonotrophic cycle count of the
mosquito and then to mathematically study and assess the benefits that considering
the gonotrophic cycles bring into the model. The postulated benefits include:

(i) The ability to quantify the reproductive gains that accrue to the mosquito
population because of its interactions with the human. This reproductive
gain is captured by requiring that a mosquito that successfully completes
a gonotrophic cycle will lay eggs which will in turn contribute to the next
generation of adult mosquitoes and thus eventually lead to the increase of the
mosquito population through its normal developmental pathway. Thus for the
mosquito, the advantage of going out to quest for and harvest a blood meal
from humans outweighs the chance of death.

(ii) The ability to identify control points at different stages in the gonotrophic cycle
chain where vector control measures can be applied. For example, targeting the
breeding site, or the questing mosquitoes or the resting mosquitoes will reduce
the number of mosquitoes available to eventually quest for blood in human
populations or lay eggs for future adult mosquito populations. In fact, targeting
and reducing the questing mosquito’s population will be reducing chances of
transmitting malaria infections.

(iii) The ability to implicitly include the extrinsic incubation period of malaria
into a model that has the semblance of a susceptible-infectious model in the
mosquito population. This is achieved in this paper by allowing only those
mosquitoes that have completed at least two gonotrophic cycles from the time
of first infection to be infectious to humans.

(iv) The ability to assess how each blood meal episode contributes to the basic
offspring number of the mosquito insect as well as the reproduction number of
the malaria disease.

It has been difficult, if not impossible to capture these listed benefits in previous
mathematical models for malaria transmission which do not explicitly include the
gonotrophic cycle. The final objective of this paper is to produce a model that yields
what we may describe as an improved formula for the basic reproduction number
for malaria.

The rest of the paper is organized as follows: In Sect. 2, we show a detailed
derivation of the model we shall study in this paper. There, we describe the
compartmentalization in the human and mosquito populations and define the state
variables to be used. The flow rates in the model are explained and eventually the
general mathematical model is then derived. The derived model is scaled and its
properties examined. In Sect. 3, we present the mathematical analyses of both the
disease-free and epidemiological models. There, it is shown that the infection-free
model, which is a demographics model for mosquito populations, exhibits very rich
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and diverse dynamics than the disease-free system in many mathematical models
for malaria transmission. In that section, we compute the basic offspring number for
the model as well as the epidemiological model’s basic reproduction number. We
round up the paper with discussion on the results of our paper in Sect. 4.

2 Derivation of the Model Equations

2.1 The Compartmentalization Adopted in the Human and
Mosquito Populations

1. Disease dynamics within the human population. In the mathematical model
for the dynamics of malaria transmission described in [20], the authors divide
the human population into four compartments representing the disease status
of the human as explained in Table 1. The human compartments are (1) the
Susceptible humans Sh, (2) the Infected but not infectious humans (Exposed
humans) Eh, (3) the Infected, infectious and clinically ill humans Ih and (4) the
clinically recovered and partially immune but mildly infectious humans Rh. This
compartmentalization allows for the possibility of an infected, infectious and
clinically ill human to recover from clinical symptoms of the malaria infection
but still retain some form of mild infectivity to the mosquito through the class of
asymptomatic immune malaria carriers, Rh. The class of asymptomatic immune

Table 1 Types of human compartments and their description

Human type Description

Sh Density of susceptible humans at time t . These are humans who are not yet
infected with the malaria parasite but can become infected if bitten by an
infectious mosquito

Eh Density of humans who have been infected by the malaria parasite but they
are not yet infectious to mosquitoes and neither do they show any clinical
symptoms of being infected. In this state, the parasite is either lying quietly in
the liver or growing and multiplying in the red blood cells in the
non-transmissible form. In a continuous developmental process it will take
about 12 days for the parasite to develop and be in a state where it can be
transmitted to a mosquito or we can see clinical symptoms of being infected
in the human

Ih Density of infected, infectious and clinically ill humans at time t . This class
of humans can die of their infection if no treatment is taken. They are also
highly infectious to questing mosquitoes

Rh Density of recovered, partially immune and mildly infectious humans in the
human population at time t . Members in this class are created when recovery
from clinical symptoms from the Ih class is accompanied by the acquisition
of partial immunity. Members from this class are reduced when they lose their
immunity at a given rate to join the susceptible class. We will also refer to
them as the asymptomatic immune class
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carriers was identified as representing a substantial reservoir of infection in the
human population. We retain this compartmentalization here as it represents a
general form for an idealization of the different compartments that make up
the disease dynamics within the human population. So a susceptible human
who picks up the infection from an infectious bite, with a force of infection
g(Sh, IQ), from a questing female Anopheles sp mosquito drawn from the vector
IQ whose form will be described below, will become a human of type Eh and
will go through an incubation period before he/she can become a clinically ill and
infectious human of type Ih at the rate νh > 0, where 1

νh
is approximately the

length of the incubation period of the disease in the human. Afterwards, he/she
can recover both from clinical symptoms and from the infection, at the rate rh, to
join the susceptible class or he/she can recover only from clinical symptoms with
an acquisition of some form of immunity to further infection, while retaining
mild infectiousness, to join the partially immune class, of type Rh at the rate
σh. Individuals in the partially immune class lose immunity at rate. Death from
natural causes occurs, at rate μh, in each human compartment and natural births,
at rate λh, are also allowed to occur in each compartment. Vertical transmission
in humans is not allowed so that all newborn humans are susceptible. Additional
deaths due to disease can also be factored into the analysis by allowing some
of the clinically ill and infectious humans the possibility of dying from their
infection, at rate γh. The total human population at any time t , Nh, is then the
sum over all the compartments; Nh = Sh + Eh + Ih + Rh. The description of all
the compartments is shown in Table 1, while the general flow chart illustrating the
flow of infection within the human population is shown in Fig. 1. With the above
description, the equations that model the disease dynamics within the human
population take the form
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Fig. 1 Figure showing the flow of the infection within the human population. The force of
infection is denoted by g(Sh, IQ) where IQ is a vector containing the reservoir of infected
mosquito classes as explained in the text. Natural deaths occur in all classes at rate μh and births
in all classes that enter into the susceptible class occur at the same rate of λh per human
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dSh

dt
= λhNh + rhIh + δhRh − g(Sh, IQ) − μhSh; (1)

dEh

dt
= g(Sh, IQ) − (νh + μh)Eh; (2)

dIh

dt
= νhEh − (rh + σh + μh + γh) Ihł; (3)

dRh

dt
= σhIh − (δh + μh)Rh; (4)

with appropriate initial conditions at time t = 0. The model represented by
Eqs. (1)–(4) differs from the model in Ngwa and Shu [20] only in the form of
the force of infection, g(Sh, IQ). The nature of the vector IQ is discussed in
Sect. 2.2.

2. The mosquito’s population dynamics based on its gonotrophic cycle. In the
mosquito’s population, we shall approach the disease compartmentalization of
susceptible, exposed (infected) and infectious in an indirect route that passes via
a physiological compartmentalization of the mosquito’s population. That is, we
shall base the compartmentalization on the fact that the mosquito undergoes a
reproductive cycle called the gonotrophic cycle, so that at any one time each
adult female mosquito’s physiological state (well fed with a sugar meal, well
nourished with a blood meal, rested after blood feeding, oviposited, nulliparous,
mated/fertilized, etc.) on this cycle can be characterized. In what follows, we
consider only female adult Anopheles sp mosquitoes since the males only survive
on nectar and so, apart from the fact that they help in fertilizing the females,
they do not pose any immediate threat to humans. The very nature of the
gonotrophic cycle requires that a newly emerged adult female mosquito gets
fertilized, searches and takes a blood meal, searches for a resting place and rests,
and then searches for a breeding site where she lays eggs to complete the first
gonotrophic cycle. Given that she stores the spermatozoa in a special pouch
called a spermatheca, she does not need to mate again before the second and
subsequent egg laying episodes, [31, 32]. Thus, it is assumed that all subsequent
gonotrophic cycles starting from the second constitute only three main steps or
locations namely: (i) being at the breeding site (oviposition site), (ii) being at
human habitats site as questing mosquitoes and (iii) resting for egg maturation
after blood feeding. We can use directed arrows to represent the flow of the
mosquitoes as follows: from breeding site −→ human habitat site for questing
for blood meal −→ Resting for egg development −→ back to breeding site
to lay eggs −→ human habitat site for questing for blood · · · . So every egg
laying episode is preceded by blood feeding and resting episodes and the cycle
is repeated until the mosquito dies of old age if she is not killed at any of the
locations. The important point about these gonotrophic cycles is that every suc-
cessfully completed cycle culminates with the laying of eggs that mature through
the mosquito’s metamorphic pathway to eventually increase the population
density of the adult mosquitoes. An increase in the adult mosquito’s population
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density means the availability of more biting mosquitoes that can facilitate the
transmission of disease where malaria disease (or any other mosquito borne
disease of humans) transmission is also possible. We have captured here a natural
process whereby, in the presence of malaria disease, a successful mosquito–
human interaction may not only lead to transfer of the infection, but also means
an increase in the number of mosquitoes to subsequently take part in the disease
transmission process. This is why we have referred to the system studied in this
paper as the mosquito–human–malaria interactive framework. To complete the
characterization of the framework, we next describe how we can use the length
of the gonotrophic cycle as a timer to approximate the chronological age of the
mosquito and also identify mosquitoes that were infected early in their adult life
and which will most likely be the candidate infectious mosquitoes to humans if
they survive subsequent gonotrophic cycles.

3. Embedding the mosquito’s physiological age/disease status in its gonotrophic
cycle counter. The density of breeding site mosquitoes is denoted as type B

mosquitoes, that of questing mosquitoes as type Q and that of resting mosquitoes
as type R as explained in Table 2, and the general framework through which
the different classes of mosquitoes relate with each other is shown in Fig. 2.
In addition to the identification of the mosquitoes into the three broad types
of breeding site, questing and resting mosquitoes, as described in Table 2, we
subdivide each type into yet smaller classes indicating disease status, as well
as into distinct age stages based on the number of gonotrophic cycles that each
mosquito would have had. For example, for a given y ∈ {B,Q,R}, we write
Syk

, k ≥ 1, to denote a susceptible mosquito of type y at reproductive stage k,
and Iyk,j

, k ≥ j ≥ 1, to denote an infected mosquito at reproductive stage k

that first picked up the infection at reproductive stage j . By extension, all the
parameters of the system also have subscripted notation to capture its association
with the particular reproductive stage mosquito. For example, ρk is the flow rate
to the breeding site of susceptible rested mosquitoes at reproductive stage k, SRk

,
while that of IRk,j

would be ρk,j . We assume that mosquitoes of all types with a
higher gonotrophic cycle counter are older than mosquitoes of the all types but
at lower gonotrophic cycle counter. That is, at each cycle k ≥ 2, mosquitoes
of type Bk are older than mosquitoes of type Rk−1, while for each k ≥ 1, we
assume that mosquitoes of type Bk are younger than mosquitoes of type Rk . On

Table 2 Types of mosquitoes and their description

Mosquito type Description

Q Questing mosquitoes found at the human habitat site at time t

B Breeding site mosquitoes at time t . These constitute all newly emerged adult
mosquitoes together with any that have just returned to the breeding site to
lay eggs

R Resting mosquitoes at time t . These constitute all adult mosquitoes that
have successfully acquired a blood meal and are now resting in view of
returning to the breeding site to lay eggs after their resting period
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Fig. 2 Idealization of mosquito’s movement at each gonotrophic cycle. Breeding site mosquitoes
are attracted to human habitats at rate b(Nh), where they become questing mosquitoes of type
Q. Mosquitoes of type Q interact with humans Nh. Upon successful acquisition of a blood
meal through the interactive exposure rate β(Nh,Q), the mosquitoes of type Q become resting
mosquitoes of type R. After the requisite resting period, the mosquitoes of type R that survive
migrate again to the breeding site at rate ρ where they lay eggs that eventually contribute to the
new adult mosquito population through the new adult mosquitoes’ compartment. Upon successful
arrival at the breeding site to lay eggs, the returned mosquitoes become breeding site mosquitoes
of type B but with a higher gonotrophic cycle counter. qQ is the probability of successfully
completing a blood feeding episode to move into the resiting and egg maturation phase

the overall scale, we assume that mosquitoes of type B1 are the youngest while
mosquitoes of type RN , N > 1 are the oldest. The gonotrophic cycle counter is
thus used as a way to measure the adult mosquito’s chronological age. This is the
same compartmentalization as used in [22], but instead of ending the gonotrophic
cycle count at 3, we generalize and assume that each adult female mosquito will
undergo up to N reproductive cycles represented at each k, for k = 1, 2, · · · , N ,
by the idealization on Fig. 2. Note that N here will be determined by how
long a mosquito lives and how often it feeds and lays eggs, during its lifetime.
In [23], it is argued that in the wild, based on a conceptualization of days
and activities in the adult mosquito’s life for the possible number of times the
mosquito lays eggs during its reproductive life, the number N can be as large
as N = 4 for a mosquito that lives for 24 days. The detailed definition of each
of the compartments is shown in Table 3. The parameters of the system that
we shall derive are shown in Table 4. In Fig. 3 we display the flow chart for a
mosquito–human interactive system where each mosquito can undergo up to N

complete gonotrophic cycles. That is, for a disease-free system in which we have
mosquitoes interacting with humans and reproducing through the mechanisms
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Table 3 The compartmentalization of the mosquito vectors as a function of reproductive stages
k and j , for k = 1, 2, 3, · · · , N and j = 1, 2, 3, · · · , N , as well as according to disease status:
infected, I , or non-infected S. Only mosquitoes of type Q can interact with humans and so the
disease can be transmitted from a human to a mosquito and vice versa only through mosquitoes
of type Q. Furthermore, only infected mosquitoes of type IQk,j

with k − j ≥ 2 can be infectious
to humans

Mosquito type Description

SQk
Density of Susceptible questing mosquitoes at reproductive stage k at the
human habitat site at time t . This class of mosquitoes can be infected by
humans after a successful blood feeding episode

IQk,j
Density of infected questing mosquitoes at reproductive stage k that were
first infected with the malaria parasite at reproductive stage j . This class of
mosquitoes can be infectious to humans only if k − j ≥ 2

SRk
Density of susceptible resting mosquitoes at reproductive stage k at time t .
These were susceptible mosquitoes at reproductive stage k-1 that succeeded
in their blood feeding quest without picking up the parasite and arrived at
the breeding site to breed becoming susceptible breeding site mosquitoes of
a higher reproductive stage

IRk,j
Density at time t of infected resting mosquitoes at reproductive stage k that
were first infected with the malaria parasite at reproductive stage j . If they
successfully arrive at the breeding site to breed, they become infected
breeding site mosquitoes at reproductive stage k + 1

SBk
Density of susceptible breeding site mosquitoes at reproductive stage k at
time t . These are vectors that will leave the breeding site to human habitats
in search of a blood meal

IBk,j
Density of breeding site infected mosquitoes at reproductive stage k that
were first infected with the malaria parasite at reproductive stage j

explained above. This is the conceptualization of the system studied in [23].
Counting the number of compartments for this disease-free system gives 3N

mosquito compartments. In the presence of malaria, the number of compartments
in the mosquito populations grows considerably and so it will be important to
carefully examine how each of these compartments come about and how they
contribute to the general mosquito–human–malaria interactive framework.

From the compartmentalization adopted, only mosquitoes of type Q interact with
humans so that the infection can pass from humans to mosquitoes only through the
interaction of type SQ mosquitoes interacting with either infectious humans of type
(Ih) or the mildly infectious recovered and partially immune humans of type (Rh).
Figure 4 shows the full flow of the infection within the mosquito population for a
mosquito–human–malaria interactive framework where each mosquito can undergo
up to a maximum of three gonotrophic cycles. The figure clearly indicates the points
where the infection can be passed from the human population into the mosquito
population. The first column of compartments, comprising only the S∗ variables
constitute the material shown in Fig. 3. New infections can pass from mosquitoes to
humans only through an interaction between a susceptible human of type (Sh) with
an infected questing mosquito that is infectious. That is, mosquitoes of type IQk,j

,



A Multistage Mosquito-Centred Mathematical Model for Malaria Dynamics. . . 105

Table 4 The parameters of the system and their quasi-dimension. Time in days (T), Bites (b),
Vectors (V). All parameters are non-negative. Quasi-dimension of a parameter is its unit of
measurement

Parameter Description Quasi-dimension

Lk Carrying capacity (see Remark 2(e)) of vectors of type SRk
V

Lk,j Carrying capacity of vectors of type IRk,j
V

λk Function measuring the rate of oviposition by vectors of type SRk
.

Here, λ0k
is the limiting rate of oviposition when the population

size of resting mosquitoes is small compared with the carrying
capacity of the environment Lk at reproductive stage k

T −1

λk,j Function measuring the rate of oviposition by vectors of type
IRk,j

. Here, λ0k,j
is the limiting rate of oviposition when the

population size of resting mosquitoes is small compared with the
carrying capacity of the environment Lk,j at reproductive stage k

T −1

ρk Flow rate of reproducing and rested susceptible mosquitoes at
reproductive stage k to the breeding site

T −1

ρk,j Flow rate of rested infected mosquitoes at reproductive stage k

that where first infected at reproductive stage j

T −1

ak Rate of flow of breeding site vectors from the breeding site. As
noted in Sect. 2.2 item 1, ak is weighted with the quantity Nh

(Nh+κ

to produce the parameter bk(Nh) = ak
Nh

(Nh+κ
ak is weighted to defined the rate bk as explained in the text

T −1

μ∗ Natural death rate of variable ∗. For example, μh is the natural
death rate of the humans, and μSQk

is the natural death rate of
susceptible questing mosquito at reproductive stage k and μIRk,j

is the natural death rate of a resting infected vector at reproductive
stage k that was first infected at stage j

T −1

bQk
Biting rate of questing mosquito at reproductive stage k V b−1T −1

qQk
Probability of a successful blood meal upon an effective contact
between questing mosquitoes at reproductive stage k and humans

1

pQkh Infectivity of mosquitoes to humans. pQkh ∈ [0, 1] is a measure
of the chance that an infectious questing mosquito at reproductive
stage k will transfer the infection to the human after a successful
blood feeding encounter

bV −1

phQk
Infectivity of infectious humans to questing mosquitoes.
phQk

∈ [0, 1] is a measure of the chance that a susceptible
questing mosquito at reproductive stage k will pick up the
infection from an infectious human after a successful blood
feeding encounter

bV −1

p̃hQk
Infectivity of asymptomatic partially immune humans to questing
mosquitoes. p̃hQk

∈ [0, 1] is a measure of the chance that a
susceptible questing mosquito at reproductive stage k will pick up
the infection from an asymptomatic partially immune human
malaria carrier after a successful blood feeding encounter

bV −1

λh Natural birth rate for humans T −1

νh Rate of onset of human infectiousness. 1
νh

is the incubation period T −1

δh Rate of loss of acquired immunity in humans T −1

σh Rate of acquisition of immunity by humans T −1

rh Rate of recovery in humans T −1

γh Disease induced death rate in humans T −1
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Fig. 3 Idealization of mosquito’s movement according to gonotrophic cycles showing the
mosquito only flows. Breeding site mosquitoes at reproductive stage k are attracted to human
habitats at rate bk(Nh), where they become questing mosquitoes of type Qk . Mosquitoes of type
Qk interact with humans Nh with exposure rate βk(Nh,Qk). Upon successful acquisition of a
blood meal through the interactive exposure rate qQk

βk(Nh,Qk), the mosquitoes of type Qk

become resting mosquitoes of type Rk . After the requisite resting period, the mosquitoes of type
Rk that survive migrate again to the breeding site at rate ρk where they lay eggs that eventually
contribute to the new adult mosquito population through the new birth term. Upon successful
arrival at the breeding site to lay eggs, the Rk mosquitoes become breeding site mosquitoes of
type Bk+1 and the cycle continues. The Mosquitoes of type R at reproductive stage N , RN , lay
their final batch of eggs and then die of old age and no longer enter the cycle

k ≥ j + 2. The insistence that k ≥ j + 2 ensures that we capture the minimum
extrinsic incubation period; that is, the minimum time period required by an infected
mosquito for the disease to mature to a level that the mosquito can now be infectious
to humans. Here, we are assuming that each mosquito will spend approximately the
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Fig. 4 The full mosquito–human–malaria interactive framework for n = 3 showing the flow of
infection and movement of mosquitoes within the mosquito population. In the mosquito–human–
malaria interactive framework used in this paper, only mosquitoes of type Q can interact with
humans and infection can pass from human to mosquito only through the successful interaction
between a susceptible mosquito of type Q, at reproduction stage k, SQk

, and an infectious human.
This is the source of the new infected mosquito compartment IRk,k

, k = 1, 2, 3 shown. Each new
infected mosquito compartment starts a new branch of infected mosquitoes’ path that eventually
contribute to the source of infectious mosquitoes within the mosquito population as explained in
the text. Contributions into the new adult mosquito pool after each blood meal episode by a fed
and rested mosquito of type R are shown by the brown dotted lines. Additional infection of already
infected mosquitoes is not considered

same length of time to complete each gonotrophic cycle. Although this can be an
unrealistic assumption, given the perilous environment in which the mosquito must
live and search for blood meals, we continue to use 2 as the minimum number of
gonotrophic cycles whose cumulative time length is equivalent to the time lapse
required for the infection to mature in the mosquito.2

2We cannot use N = 1, i.e. the length of one gonotrophic cycle to be equivalent to the length of
the extrinsic incubation period for malaria in mosquitoes, as N = 1 may be too short.
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The total adult mosquito population implicated in the model constitutes only
those anthropophilic mosquitoes that consistently seek for blood meals within the
human population. If Nv is the total mosquito population size, then Nv = NR +
NQ + NB where NR , NB and NQ are respectively the sizes of the total resting,
breeding site and questing mosquitoes, given by

NR =
N∑

k=1

SRk
+

N∑

j=1

N∑

k=j

IRk,j
, NQ =

N∑

k=1

SQk
+

N−1∑

j=1

N∑

k=j+1

IQk,j
,

NB =
N∑

k=1

SBk
+

N−1∑

j=1

N∑

k=j+1

IBk,j
, (5)

where S∗k
and I∗k,j

for ∗ ∈ {R,B,Q}, are as defined in Table 3. In this formulation,
k tracks the reproductive stage of the adult mosquito, and hence the age, meanwhile
j tracks the reproductive stage at which the adult mosquito was first infected with
the malaria parasite.

Taking into consideration the full breadth of possible number of gonotrophic
cycles and considering that disease dynamics adds to the complexity of the problem,
we believe that it will be informative to have an idea of the size of the system. We
already know that in the human population there are four compartments representing
disease status with two of these compartments potentially infectious to mosquitoes.
This gives us up to about a 50% chance of having an infectious human compartment
in the modelling framework. We now work out the size of the system by calculating
the total number of possible compartments in the mosquito population within the
current framework. We state and prove the following result:

Lemma 1 (On the Size of the System) Let there be given a mosquito–human–
malaria dynamical system interactive framework whereby the mosquito can undergo
up to N gonotrophic cycles during its entire reproductive life. Assume that at each
gonotrophic cycle, there are three possible compartments: Q, B and R representing
the three phases of breeding, questing and resting as conceived above. If in addition
a mosquito in each of the compartments can be in any one of the disease states of
infected (infectious) or susceptible, and if M(N) is the total number of mosquito
compartments for the system, then M(N) = N

2 (5 + 3N) where N is the maximum
number of gonotrophic cycles possible for each adult mosquito.

Proof At gonotrophic cycle one, we have the three starting susceptible compart-
ments SB1 , SQ1 and SR1 . At this cycle, a questing mosquito can become infected
to give the additional infected resting compartment IR1,1 . This gives a maximum
number of 4 possible compartments at reproductive or gonotrophic cycle 1. The
two possible R compartments from gonotrophic cycle 1 each give rise to three
compartments at gonotrophic cycle 2 as follows: vectors from the susceptible
compartment SR1 migrate to the breeding site as susceptible vectors of type B at
gonotrophic cycle 2, SB2 which eventually follow the mosquito behavioural pattern
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to produce SQ2 and SR2 . The infected resting mosquitoes, IR1,1 migrate to the
breeding site to become infected breeding site mosquitoes at reproductive stage
2, IB2,1 . These, also following the mosquito’s behavioural pattern, produce IQ2,1

and IR2,1 . The susceptible questing mosquitoes at reproductive stage 2 can become
infected to produce infected resting mosquitoes at reproductive stage 2; IR2,2 .

All mosquitoes that enter the next stage as infected mosquitoes do not add
additional new infections into the mosquito sub-system. So we have a total of
only 7 mosquito compartments at reproductive stage 2. Thus in general, each R

compartment at the current level will produce three new compartments in the
next level with a possibility of generating one additional new R compartment at
that new level whenever new infections pass from the humans into the mosquito
population. We thus have the sequence (ck)k≥1 where each ck = 3k + 1 is the
number of compartments at the k-th gonotrophic cycle. Thus, the total number of
compartments after all N gonotrophic cycles is

M(N) =
N∑

k=1

ck =
N∑

k=1

(3k + 1) = 1

2
N(5 + 3N); (6)

as required. See illustration of compartment count in Fig. 5 for N = 4. �

2.2 The Exposure, Flow, Contact, Infectivity and Recruitment
Rates

1. The mosquito flow rate from breeding site to human habitat sites. The flow rate
from breeding site to human habitat is derived by considering the blood factor
index for the mosquito and accounting for those mosquitoes that eventually
choose to take a blood meal from the human population. If ak is the rate of
flow of vectors from breeding site to vertebrate habitat sites, then ak is weighted
by the quantity Nh

Nh+κ
where κ is a measure of the existence of an alternative

blood source for the mosquito [22], so that bk(Nh) = ak
Nh

Nh+κ
is a measure of the

effective rate of flow of breeding site mosquitoes at reproductive stage k to the
human habitats. It is understood that the fraction 1 − Nh

Nh+κ
of ak constitutes that

fraction that searches for blood meals from non-human sources.
2. The flow rate of resting/rested vectors to the breeding site. After the acquisition

of a blood meal, the adult female mosquito finds a suitable resting place where
she rests for her eggs to mature. After a successful completion of the rest period,
the rested mosquito that is ready to lay her eggs must migrate to the breeding
site. Two states of vectors are considered and their flow rates differentiated
accordingly: The flow rate to the breeding site of susceptible rested mosquitoes
at reproductive stage k, denoted by ρk and the flow rate of rested infected
adult mosquitoes at reproductive stage k, that were first infected (with malaria)
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IR3,3

IR4,4
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Fig. 5 Illustration of the gonotrophic cycle flow chart for N = 4. The cycles are demarcated with
dashed lines. At gonotrophic cycles 1, 2, 3 and 4 there are respectively 4, 7, 10 and 13 possible
mosquito compartments. So that at gonotrophic cycle n there will be 3n+1 mosquito compartments
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at reproductive stage j , ρk,j . A resting mosquito at reproductive stage k that
successfully arrives at the breeding site to lay its eggs shall become a breeding
site mosquito now at reproductive stage k + 1.

3. Exposure rate of humans to questing mosquitoes. As in [22], the exposure rate
of humans of a general type, say Yh, Y ∈ {S,E, I, R}, when interacting with
questing mosquitoes of type Q at reproductive stage k, represented generally

as XQ ∈ {SQk
, IQk,j

}, is denoted βk and takes the form βk(Yh,XQ) = bQk
XQYh

Nh

where bQk
is the human biting rate of the mosquito at reproductive stage k and Nh

is the total human population available to the questing mosquitoes. To be specific,
if XQ is a susceptible questing mosquito at reproductive stage k, SQk

, then we
have βk(Yh,XQ) = βk(Yh, SQk

). If the questing mosquito is already infected,
the infected mosquito is identified with its current reproductive stage and the
reproductive stage where infection first took place through the double subscript
notation so that XQ = IQk,j

, a questing mosquito of type I at reproductive stage
k, that was first infected at reproductive stage j and βk(Yh,XQ) = βk(Yh, IQk,j

).
This double subscript notation allows us to track the chronological age of the
mosquito through its gonotrophic cycles counter as well as from when it first
picked up the infection from the human. This way, the incubation period of the
disease within the mosquito population is implicitly built into the modelling
framework by assuming that the equivalent of at least two gonotrophic cycles
episodes must elapse from time of first infection to the time when the questing
mosquito is infectious to humans.

4. Effective contact rates. We consider two levels of having an effective contact
between the humans and the mosquitoes: In the first instance, we consider an
interactive contact that is effective in the sense that the contact leads to the
transfer of infection from the human to the mosquito or from mosquito to human,
and in the second instance, we consider a contact which is effective in the sense
that the mosquito ingests enough blood to be able to satisfy its reproductive
need. In the current formulation, we assume that when a mosquito engages in
an interaction and fails to get the required blood meal, it is assumed killed in the
process. In a more realistic setting, we would consider a case where a fraction of
the mosquitoes that fail to get the required blood meal lives to try again as many
times as it is required. We do not consider this in the present formulation, but
only the following possibilities:

(a) The questing mosquito at reproductive stage k that successfully takes a blood
meal with probability qQk

shall become a resting mosquito of type R at
reproductive stage k. So, it fails to take the blood meal upon trying with
probability 1−qQk

which, in this case, is the probability of certain death. Two
types of resting mosquitoes are identified in this work: susceptible resting
mosquitoes at reproductive stage k whose density is denoted by SRk

and
infected mosquitoes at reproductive stage k that first picked up the infection
at reproductive stage j , whose density is denoted by IRk,j

.
(b) A susceptible questing mosquito at reproductive stage k that successfully

takes a blood meal with probability qQk
from an infectious human and
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also succeeds in picking up an infection from human with probability phQk

shall become an infected resting mosquito and the time counter to measure
the length of the period of it being infected starts from the counter of the
reproductive stage where it first got infected. So, for emphasis, we use the
notation IRk,j

to denote the density of infected resting vectors at reproductive
stage k that first picked up the malaria infection at reproductive stage j .

(c) An infectious questing mosquito at reproductive stage k that was first
infected at reproductive stage j that successfully takes a blood meal from
a susceptible human with probability qQk

and also transfers the infection to
the human with probability pQkh shall become a resting infected mosquito
at reproductive stage k that was first infected at reproductive stage j .

(d) Where the mosquito or human is already infected, further infection is not
considered. That is, we do not consider super-infection. However, every
successful blood meal episode leads to oviposition by the mosquito which in
turn leads to the eclosion of new adult mosquitoes that go to increase the total
adult mosquito population. Where infection is present and not transferred,
the probability of failure to transfer is 1 − phQk

or 1 − pQkh, respectively.

5. Infectivity of humans to mosquitoes. The incubation period of the disease in
humans, when caused by Plasmodium falciparum, has been estimated to be
about 12 (9–14) days. This incubation period can be longer for other Plasmodium
species of the parasite [27]. So, from the time of first infection with Plasmodium
falciparum parasites, it takes about 12 days for the disease to develop in the
human to the level where the human can become infectious to the mosquito.
This fact is captured in the model by including a compartment of the human
population wherein the humans are exposed to the infection but not yet infec-
tious to mosquitoes. After the incubation period, the human can then become
infectious where the rate of onset of infectiousness is inversely proportional
to the residence time in the incubation phase. Infectious humans can recover
without gain of immunity to join the susceptible class, or they can recover from
clinical illness with a substantial gain of immunity to enter a partially immune
class wherein members of that class are immune to clinical symptoms of malaria
but are still mildly infectious to mosquitoes. This phenomenon of incomplete
immunity permitting disease transmission has been known for some time now
[2–4], and represents one of the main reasons why malaria eradication is difficult,
among others; the reservoir of infection in the human population includes both
symptomatic and asymptomatic immune carriers. To derive the expression for the
infectivity of the human to the mosquito, we simply multiply the exposure rate of
the mosquitoes to human, as derived above, with the probability of an effective
contact between the questing susceptible mosquito at reproductive stage k, qQk

with the probability of the infectious human infecting the reproductive stage k

questing mosquito, phQk
if the human is from class Ih and p̃hQK

, if the human
is from class Rh. Therefore, if fk(SQ, Ih, Rh) is the force of infection for the
stage k questing mosquitoes, that is the rate of change of new infections into
reproductive stage k questing mosquitoes, then
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fk(SQk
, Ih, Rh) = phQk

qQk
βk(Ih, SQk

) + p̃hQk
qQk

βk(Rh, SQk
). (7)

These new infections will enter the IRk,k
compartment as a starting point of

each new infection entering the mosquito population. Formula (7) captures the
fact that asymptomatic immune malaria carriers can be infective to mosquitoes;
however, we must expect that phQk

> p̃hQk
to capture the fact that infectivity of

the type Rh humans is less than that of the Ih humans and that the reservoir of
infection in the human population includes both symptomatic and asymptomatic
immune malaria carriers.

6. Infectivity of mosquitoes to humans. The incubation period of the disease in
mosquitoes can be as low as 10 days, [5, 27, 29] but can be made shorter in
higher temperatures [5]. The length of the incubation period in mosquitoes can
also be different for different species of the malaria parasite. So, from the moment
the mosquito first picks up the infection we have to wait at least 10 days for
the disease to mature in the mosquito before the mosquito can bring back the
infection into the human population. During these 10 days, the reproductive cycle
activities of blood feeding and egg laying continue as they will still continue
after the 10 days incubation period. We implicitly model the incubation period
of the disease in the mosquito population by requiring that an equivalent time
length, measured by a cumulative time lapse equivalent to the length of at least
two gonotrophic cycles, be completed by the mosquito before it can become
infectious to the human. Thus, a questing mosquito at gonotrophic cycle k, that
picked up the infection as a questing mosquito at gonotrophic cycle j , IQk,j

,
is considered infectious to humans only if k − j ≥ 2. Therefore only older
mosquitoes that were infected much earlier in their gonotrophic cycle count, and
which have undergone at least two gonotrophic cycle counts since first infection,
shall be infectious to humans.

From the forgoing, we deduce that not all infected mosquito compartments
contain infectious mosquitoes. So, it will be informative to work out the size of
the reservoir of infection (ROIV ) in the mosquito population. Let M < M(N) be
the number of compartments containing infectious questing mosquitoes. We seek
to quantify the number of infectious questing mosquito compartments, IQk,j

, 3 ≤
k < N , 1 ≤ j ≤ N − 2, k ≥ j + 2. We can state and prove the following result
on the actual size of M(N) for a dynamical system where the total number of
reproductive cycles possible is N .

Lemma 2 (On the Number of the Infectious Questing Mosquito Compart-
ments) Consider a system where the total number of gonotrophic cycles is N .
Suppose that an infected mosquito at reproductive stage k that was first infected
at reproductive stage j , IQk,j

, requires at least two gonotrophic cycles before it
can become infectious to humans. If M is the number of infectious compartments
in the vector population, then M = 1

2 (N − 1)(N − 2).

Proof If each infected mosquito requires at least two gonotrophic cycles from
time of first infection to the onset of infectiousness, then a mosquito that picked
up the infection in its first gonotrophic cycle will become infectious to humans
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as from its third gonotrophic cycle. We thus have IQk,1 , for k = 3, 4, 5, · · · , N ,
giving a total of N − 2 infectious questing compartments. Next, a mosquito
that picked up the infection during its second gonotrophic cycle will become
infectious to humans as from the 4th gonotrophic cycle. We thus have in this
case IQk,2 , for k = 4, 5, · · · , N , giving a total of N − 3 infectious questing
compartments. Continuing in this way, we find that a mosquito that picked
up the infection during its N − 2 gonotrophic cycle will become infectious at
gonotrophic cycle N , giving only one infectious questing compartment, IQN,N−2 .
Questing mosquitoes that pick up the infection either at the N − 1 or N

gonotrophic cycles shall die before the maturation of the disease, and so this class
of infected vectors will not play a part in the spread of the infection, although they
will contribute to the size of the total mosquito population. Thus the total number
of infectious questing compartments can be obtained by summing up the number
of compartments associated with infectious questing and is

M(N) =
N−2∑

i=1

i = 1

2
(N − 2)(N − 1), (8)

as required. �
Remark 1 (Generalization of Lemma 2) We can attempt a generalization of the
result of Lemma 2 as follows: If n is the number of cycles that must elapse from
time of first infection to time of onset of infectiousness of the mosquito, then from
the biology of the Anopheles mosquito and the incubation period of the malaria
infection in the mosquito, we deduce that n ≥ 2, every thing being equal. Thus in
this general case, M the number of infectious compartments would be given by
M = ∑N−n

i=1 i = 1
2 (N −n)(N −n+1), n ≥ 2. We must conclude, therefore, that

M so calculated by Lemma 2 is the largest realistic integer that may be used as an
indicator of the size of the number of infectious questing mosquito compartments
in this framework.

The importance of Lemma 2 lies in the fact that we can combine its results
with those of Lemma 1 to work out the probability of finding an infectious
mosquito compartment in the entire mosquito sub-system, which result can be
used to work out the chances of passing the infection from mosquito to human.
In trying to understand the issue of chances of finding an infected mosquito in
the system as well as the number of possible mosquito compartments of the
system, we must settle two important parameters of the compartmental modelling
process: (i) The number of compartments in the mosquito demographic frame-
work and (ii) the length of the incubation period of the disease in a mosquito as
captured by gonotrophic cycle count. Bearing these two facts it mind, we start by
noting that the total number of mosquito compartments that eventually arise will
be linked to the number of compartments originally conceived for the mosquito
demographics model framework at each gonotrophic cycle. In the derivation of
the result of Lemma 1, the demographic model has three compartments to capture
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the breeding, questing and resting phases of the adult mosquito’s reproductive
life and shown in Fig. 2. It is possible to adjust the demographic model’s
compartmentalization to include other important steps in the adult mosquito’s life
such as searching for first sugar meal after adult eclosion, swarming, mating, first
rest after mating, etc. This will drastically increase the number of compartments
in the demographic model’s compartmentalization framework. However, we do
not think that the chances of finding an infected mosquito compartment in the
system are equivalent to the probability of finding an infectious mosquito, unless
the assumption can be made that the proportion of mosquitoes within each of
the defined compartments are same or close to being the same. In the second
instance, we also note that the number of compartments containing infected and
infectious mosquitoes that shall be found in the system will be determined by a
parameter equal to the number of gonotrophic cycles whose cumulative length
of time is equivalent to the length of the incubation period of the disease in the
mosquitoes. In the derivation of the results of Lemma 2, this number was set to
2, and is the number used in this manuscript, but was later generalized to n ≥ 2
as in Remark 1. We can now state and prove the following result:

Lemma 3 (On the Probability of Finding an Infectious Mosquito Com-
partment) Let there be given a mosquito–human–malaria dynamical system
interactive framework in which the mosquito can undergo up to a maximum of
N gonotrophic cycles during its entire reproductive life. Assume that to complete
one gonotrophic cycle, the mosquito must pass through m distinct compartments
where only one of these compartments represent interaction with humans and
through which infection can pass into (or out of) the mosquito population. Let
Mm(N) be the total number of compartments that this system can generate,
and Mn(N) the total number of infectious mosquito compartments in the system,
where n is the number of cycles that must elapse from time of first infection to
time of onset of infectiousness of the mosquito. Let Pm,n(k) be the probability of
finding an infectious compartment at gonotrophic cycle k. Then,

Pm,n(k) =
{

0, 0 ≤ k ≤ n;
(k−n)(k−n+1)
k(mk+m+2)

, n ≤ k ≤ N,
and lim

k→∞ Pm,n(k) = 1

m
(9)

Proof Given that of the m compartments, infection can pass through only one
of them, only one new infected mosquito compartment can be produced at each
gonotrophic cycle level. Following the same argument as used in Lemma 1, we
find that given m compartments at the start, at gonotrophic cycle k we have ck =
mk + 1 compartments and so the total for all cycles, Mm(N) is given by

Mm(N) =
N∑

k=1

ck =
N∑

k=1

(mk + 1) = 1

2
N(mN + m + 2). (10)
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From Remark 1 we have that if Mn(k) is the number of infected and infectious
compartments in the system at gonotrophic cycle k, where we require at least n

gonotrophic cycles before infected vectors can become infectious, then

Mn(k) =
{

0, 0 ≤ k ≤ n;
1
2 (k − n)(k − n + 1), n ≤ k ≤ N.

(11)

Therefore from standard probabilistic arguments we have that,

Pm,n(k) = Mn(k)

Mm(k)
=

{
0, 0 ≤ k ≤ n;
(k−n)(k−n+1)
k(mk+m+2)

, n ≤ k ≤ N,
and lim

k→∞ Pm,n(k) = 1

m

as required. �
So while the probability of finding an infected compartment increases with

increasing number of gonotrophic cycles, the rate of increase is decreasing. So
we should not expect to get more infectious compartments from the system just
by allowing the mosquitoes to undergo more gonotrophic cycles. We conjecture
that this is linked to the fact that the infection must mature in the mosquito before
being available for transmission as well as to the fact that the “bottleneck” requir-
ing that the infection must pass through the questing mosquito compartment
limits the possibilities. In Fig. 3, we illustrate the behaviour of the probability
of finding an infectious mosquito compartment in the system for different values
of m and n. The shape of the graph is similar for various m and k values as
described in formula (9).

By considering the limiting behaviour of the probability Pm,n(k), we deduce
that the chances of finding an infectious compartment in the human population
are higher (up to 50%) than that of finding an infectious compartment in the
mosquito population (less than 33% for the case m = 3 and 25% for the case
m = 4). This information may be useful in determining the infectivity of the
biting mosquito if the assumption is that the population sizes of mosquitoes in
these compartments are about the same. Formula (9) shows that even though the
length of the incubation period is important in determining when a compartment
is infectious, this parameter’s effect, once set, diminishes as the number of
gonotrophic cycles increases. On the other hand, the parameter m is more
important if we make the assumption that the population of mosquitoes within
each mosquito compartments is about the same. However, if the population
of mosquitoes in the infectious classes is smaller than the population size in
the other compartments, then the importance of m is diminished. Perhaps we
should not expect better results with more compartments in the demographic
compartmentalization framework, but more on the distribution of the mosquitoes
within these compartments. In what follows we continue to use the case m = 3
and n = 2 (Fig. 6).
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Fig. 6 The probability, Pm,n(k), of finding an infectious mosquito compartment in the entire
mosquito–human system is plotted as a function of the number of gonotrophic cycles reached for
the cases (m, n) = (3, 2) and (3, 4), illustrated by the black and red solid curves, and also the cases
(m, n) = (4, 2) and (4, 4), illustrated by the black and red dashed curves. The probability changes
very rapidly in a narrow range of values of gonotrophic cycles. As the number of gonotrophic
cycles increases further, the probability approaches 1

3 for the cases when m = 3 and illustrated

by the solid light pink line, and it approaches 1
4 when m = 4 as illustrated by the dashed light

pink line. If the number of compartments in the demographic model framework is increased, the
chances of finding an infected mosquito compartment reduce. This result is only as important as the
assumption that in the compartmentalization choices, the proportion of mosquitoes in the various
compartments will be close or as close to being the same

The number of infectious mosquito compartments may be displayed in a
vector IQ ∈ R

M where M is given by Eq. (8) and IQ = (IQk,j
, 3 ≤ k ≤

N, 1 ≤ j ≤ N − 2, k > j) ∈ R
M . We shall refer to IQ as the reservoir of

infection vector (ROIV ). We now use the entries of ROIV to derive the force
of infection in the human population. Let g(Sh, IQ) be the force of infection in
the human population. Then g is modelled by considering all those interactions
between susceptible humans Sh and all the infected and infectious questing
mosquitoes found in the mosquito’s ROIV . As mentioned above, employing the
convention that each infected mosquito must go through at least two gonotrophic
cycles before becoming infectious will implicitly build the incubation period of
the disease into the mosquito population. The force of infection in the human
population is therefore a sum over all those human-mosquito effective contacts,
βk(Sh, IQk,j

), that lead to acquisition of blood meal with probability qQk
together

with the probability of transferring the infection to the human with probability
pQkh. Thus multiplying and summing up we have the expression
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g(Sh, IQ) =
N−2∑

j=1

N∑

k=j+2

pQkhqQk
βk(Sh, IQk,j

). (12)

The force of infection so constructed takes into consideration all those infected
and infectious anthropophilic mosquitoes that are participating actively in the
dynamics.

7. The rate of recruitment of new adult mosquitoes. The actual existence of
mosquitoes to continue to the next generations depends on the fact that
mosquitoes of type R find suitable breeding sites to lay their eggs. It may
be that a mosquito will choose a particular breeding site over another depending
on several factors that could include the absence of predators, presence of
other larvae at that breeding site or proximity from the resting place. Thus, the
relationship between the mosquitoes of type R and the newly emerging adults
cannot simply be assumed to be a linear response. This perhaps necessitates an
assumption that the adult mosquito eclosion rate is density dependent. Some
sources, for example [7], use a delay modelling argument, to derive a formula for
the rate of emergence of new adults in a delayed differential equation framework.
Others, see for example [1, 12], approach the problem of modelling the rate of
new adult mosquito eclosion by including at least one (or more) state variable
to represent the aquatic stages of the mosquito and then evoke the idea that the
limitation of the carrying capacity of the aquatic pond will introduce competition
within the aquatic stages of the mosquito’s population as a source of nonlinearity
and density dependence on the dynamics. Here, we simply assume that the
net effect of the activities of the adult mosquitoes of type R is to contribute
to the density of adult mosquito in the next generation through a birth term at
a rate whose size is quantified by the birth rate function λR : [0,∞) → R.
The function λR , so described and fixed, in general, is assumed to depend in a
nonlinear way on the size of the mosquitoes of type R that eventually survive
the resting phase and then are in a position to lay eggs when they return to
the breeding sites. Here, we assume that the form of the real valued function λR

must satisfy desired properties, which among others, will guarantee the continued
existence of a buoyant adult mosquito population so that the growth dynamics
of the mosquitoes, in the absence of malaria infection, is internally stable from a
mathematical and physical stand point. We write down the following definition:

Definition 1 (Recruitment Functions) For the sake of mathematical and bio-
logical realism, a function λR : [0,∞) → R is a suitable recruitment rate
function if λR is smooth and in addition should satisfy the following:

(1) λR(0+) > 0, where λR(0+) = limx→0+ λR(x).

(2) λ′
R(x) exists with λ′

R(x) < 0, ∀x ≥ 0.

(3) lim
x→+∞ λR(x) < lim

x→0+ λR(x).

(4) The function xλR(x) is continuously differentiable, bounded above and
unimodal so that there exists x̂ > 0 such that for 0 < x < x̂, xλR(x) is
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strictly monotone increasing and for x > x̂, xλR(x) is strictly monotone
decreasing.

Remark 2 (Consequences of the Assumptions on λR) Each of the conditions
considered in the above has consequences on the expectations of the behaviour
of the function λR as follows:

(a) Condition (1) ensures that λR is non-negative for small values of its argument
and represents the rate of production of new x, per x, per time so that the
quantity xλR(x) represents the net rate of production of new x per time.

(b) Condition (2) ensures that λR is a monotone decreasing function of its
argument.

(c) Condition (4) ensures that xλR(x) has a positive maximum value given by
x̂λR(x̂), where x̂ ∈ [0,∞) satisfies the equation λR(x̂) + x̂λ′

R(x̂) = 0.
(d) Condition (3) ensures that the equation x′(t) = x(t)λR(x(t)) − μvx(t),

where μv > 0 can be seen as a natural death rate parameter per x, and
which represents a form of the equation for the dynamics of mosquitoes in
the absence of infection, has a non-zero steady state solution x∗ satisfying
the equation x∗λR(x∗)−μvx

∗ = 0 which is stable. Observe that such a non-
zero steady state, x∗, will be found through the formula x∗ = λ−1

R (μv),
which exists and is positive owing to the monotonicity of λR whenever
limx→∞ λR(x) < μv < λ(0+).

(e) All conditions put together ensure the existence of a carrying capacity3 L

such that for x < L, dx
dt

> 0 and thus the population x(t) is increasing
with time and for x > L, dx

dt
< 0 and thus x(t) is decreasing with time

t . Examples of birth functions found in the biological literature that satisfy
(1)-(4) may be found in Brännström and Sumpter [6].

In a general analysis, we may wish to investigate the effect and outcome of
different birth functions on the dynamics of the system.

In the context of the generalized model presented in this paper, mosquitoes
of type R can be in one of two states: Susceptible mosquitoes of type R at
reproductive stage k; SRk

, or infected mosquitoes of type R at reproductive stage
k that were first infected at reproductive stage j ; IRk,j

. Each of these do contribute
to the next generation of adult mosquitoes upon successful completion of resting
period.4 To differentiate the contributions, from each type R mosquito, to the
next generation of the new adult mosquito’s population, we write λk(SRk

) =
λSRk

(SRk
) and λk,j (IRk,j

) = λIRk,j
(IRk,j

). Then, we set λ0k
= λk(0+) =

3The carrying capacity of a biological species in an environment is the maximum population size
of the species that the environment can sustain indefinitely, given the food, habitat, water, and other
necessities available in the environment.
4Here, the subscript R in the definition of λR shall be replaced with either SRk

or IRk,j
as the case

maybe when we want to consider contributions from the different types of R mosquitoes into the
function λR .
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limSRk
→0 λSRk

(SRk
) and λ0k,j

= λk,j (0+) = limIRk,j
→0 λk,j (IRk,j

). To be
specific, we use a simple density dependent form of the birth function that
satisfies conditions (1)–(4) above and define, at each reproductive stage k the
linear functions

λk(SRk
) = λ0k

(
1 − SRk

Lk

)
, and λk,j (IRk,j

) = λ0k,j

(
1 − IRk,j

Lk,j

)
(13)

where λ0k
> 0 and λ0k,j

> 0 are constants measuring the limiting size
of the oviposited egg cluster by rested mosquitoes at reproductive stage k

when population numbers of those mosquitoes are small, and Lk and Lk,j

are parameters linked to the environmental carrying capacity5 for stage k

vectors of type R. The form of λk or λk,j prescribed by Eq. (13) can go
negative when SRk

> Lk or IRk,j
> Lk,j which will then show that for these

values of SRk
and IRk,j

, the rate of oviposition is negative signifying declining
population numbers. This behaviour actually represents a realistic mathematical
idealization of the population growth process and so represents a good starting
point in considering nonlinear dynamics for the mosquito’s population. Other
advantages in using these forms are that they are linear and could serve as the
first linear approximation for any nonlinear function that satisfies conditions and
assumptions of Definition 1. The main reason we continue to use the linear birth
rate is because of mathematical tractability of the resulting equations based on
this linear birth rate model. More nonlinear functions have been used in malaria
modelling. See, for example, [17, 21].

The functional response of the resting mosquitoes in contributing to the
general mosquito population size will be determined by the way in which we
model inter-specific competition (if any) between the members of the rested/egg
laying mosquitoes. Two formulations are possible:

(a) In the first instance we can assume that λk and λk,j are a functions of the
total size of the resting mosquitoes NR where NR is given by (5) so that we
have the expression

New adults =
N∑

k=1

ρkλk(NR)SRk
+

N∑

j=1

N∑

k=j

ρk,j λk,j (NR)IRk,j
. (14)

5While λ0k
and λ0k,j

may be different for different values of k and j because the size of the
brood of eggs gets smaller with increasing number of gonotrophic cycles [27, page 68], it may
be reasonable to assume that Lk and Lk,j may be the same for all values of k and j since the
carrying capacity of the environment is determined by external environmental factors such as
temperature and precipitation, which once set will not change during the breeding season. However,
we continue to differentiate these in what we write here for the sake of generalization adopted so
far.
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(b) In the second instance, we assume that each mosquito specifically lives a
separate life style so that we can consider a rate of recruitment of new adult
mosquitoes into the system to come from contributions from the independent
classes of resting mosquitoes and write down an expression of the form

New adults =
N∑

k=1

ρkλk(SRk
)SRk

+
N∑

j=1

N∑

k=j

ρk,j λk,j (IRk,j
)IRk,j

. (15)

Note: if Lk → ∞, Lk,j → ∞ so that
SRk

Lk
→ 0,

IRk,j

Lk,j
→ 0 and λk =

λk,j = λ0k
= λ0k,j

= L, the constant function, as in [22], Eqs. (14) and (15)
will give the same results. However, it is reasonable to note that because of
environmental variability and evolutionary stochasticity, the rate of oviposition
of all the rested and egg laying mosquitoes need not be the same and use the
simple linear function prescribed by (13). For the actual form of the expression
for new adults we shall prefer the form (15) over the form (14) simply by
advancing the argument that each adult mosquito lives an independent life and
its rate of oviposition will not be determined by the availability and presence
of other mosquitoes of that type; though it is fairly reasonable to assume that
the rate of survival of offspring after egg laying will be determined by the
environmental carrying capacity of the breeding site where the mosquitoes go to
breed. So nonlinearity in the adult mosquito eclosion rate is captured by evoking
the limitations imposed by the size of the breeding site through the form of
formula (13). Therefore in what follows we model the rate of new adult mosquito
eclosion by the expression

New adults =
N∑

k=1

ρkλ0k

(
1 − SRk

Lk

)
SRk

+
N∑

j=1

N∑

k=j

ρk,j λ0k,j

(
1 − IRk,j

Lk,j

)
IRk,j

.

(16)

The terms in the right of formula (16) show the contributions from the different
types of vectors: the susceptible rested vectors at reproductive stage k, SRk

, and
the rested vectors at reproductive stage k that were infected at reproductive stage
j , IRk,j

. We do not, in general, expect each of these types of vectors to contribute
equally to the size of the next generation mosquitoes.

2.3 The Mathematical Equations

The form of the flow chart showing the flow in the mosquito dynamics is illustrated
in Fig. 5, for N = 4. In that figure, the different gonotrophic cycle levels are
clearly demarcated with the dashed lines and each lower level feeds into the higher
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level while the points where human interactions with mosquitoes are possible
are shown by the attached Nh-box. The number of mosquito compartments for
each gonotrophic cycle level is determined by the number of possible susceptible
and infected mosquito compartments and follows an arithmetic sequence whose
first term is 4 and common difference 3. Thus, if ck is the number of mosquito
compartments at gonotrophic cycle k, then ck = 1+3k. New adult mosquitoes enter
the system through the SB1 compartment as new births, and contributions to the new
births’ state come about as a result of eggs laid by type R mosquitoes according
the formula shown in (14) or (15). Thus, only mosquitoes of type Q can interact
with humans and only mosquitoes that have successfully interacted with humans
can change status to mosquitoes of type R and eventually enter the next gonotrophic
cycle. The arrows show the flows in and out of each compartment. Using standard
rate of chemical reaction framework, we can write down the following equations:

dSB1

dt
= New adults − (

b1(Nh) + μSB1

)
SB1 ; (17)

dSBk

dt
= ρk−1SRk−1 − (

bk(Nh) + μSBk

)
SBk

, k = 2, 3, · · · , N; (18)

dSQk

dt
= bk(Nh)SBk

− (
βk(Sh, SQk

) + βk(Eh, SQk
) + βk(Ih, SQk

) + βk(Rh, SQk
)
)

−μSQk
SQk

, k = 1, 2, 3, · · · , N; (19)

dSRk

dt
= qQk

βk(Sh, SQk
) + qQk

βk(Eh, SQk
) + (1 − phQk

)qQk
βk(Ih, SQk

)

+(1 − p̃hQk
)qQk

βk(Rh, SQk
) − (ρk + μSRk

)SRk
, k = 1, 2, 3, · · · , N; (20)

dIRk,k

dt
= fk(SQk

, Ih, Rh) − (ρk,k + μIRk,k
)IRk,k

, k = 1, 2, 3, · · · , N; (21)

dIBk,j

dt
= ρk−1,j IRk−1,j

− (bk(Nh) + μIBk,j
)IBk,j

, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1;

(22)

dIQk,j

dt
= bk(Nh)IBk,j

−
(
βk(Sh, IQk,j

) + βk(Eh, IQk,j
) + βk(Ih, IQk,j

) + βk(Rh, IQk,j
)
)

−μIQk,j
IQk,j

, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1; (23)

dIRk,j

dt
=

(
qQk

βk(Sh, IQk,j
) + qQk

βk(Eh, IQk,j
) + qQk

βk(Ih, IQk,j
) + qQk

βk(Rh, IQk,j
)
)

−
(

ρk,j + μIRk,j

)
IRk,j

, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1; (24)

dSh

dt
= λhNh + rhIh + δhRh − g(Sh, IQ) − μhSh; (25)

dEh

dt
= g(Sh, IQ) − (νh + μh)Eh; (26)

dIh

dt
= νhEh − (rh + σh + μh + γh) Ih; (27)
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dRh

dt
= σhIh − (δh + μh) Rh; (28)

Where fk(SQk
, Ih, Rh) and g(Sh, IQ) are given respectively by (7) and (12) and

all the parameters are as described in Table 4. From the form of βk(Xh, YQk
) =

bQk

XhYQk

Nh
derived in Sect. 2.2 (item 3) earlier, the system of equations then takes

the definite form

dSB1

dt
= New adults − (

b1(Nh) + μSB1

)
SB1 ; (29)

dSBk

dt
= ρk−1SRk−1 − (

bk(Nh) + μSBk

)
SBk

, k = 2, 3, · · · , N; (30)

dSQk

dt
= bk(Nh)SBk

−
(
bQk

+ μSQk

)
SQk

, k = 1, 2, 3, · · · , N; (31)

dSRk

dt
= qQk

bQk
SQk

− fk(SQk
, Ih, Rh) − (ρk + μSRk

)SRk
, k = 1, 2, 3, · · · , N; (32)

dIRk,k

dt
= fk(SQk

, Ih, Rh) − (ρk,k + μIRk,k
)IRk,k

, k = 1, 2, 3, · · · , N; (33)

dIBk,j

dt
= ρk−1,j IRk−1,j

− (bk(Nh) + μIBk,j
)IBk,j

, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1;

(34)

dIQk,j

dt
= bk(Nh)IBk,j

− (bQk
+ μIQk,j

)IQk,j
, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1;

(35)

dIRk,j

dt
= qQk

bQk
IQk,j

−
(

ρk,j + μIRk,j

)
IRk,j

, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1;

(36)

dSh

dt
= λhNh + rhIh + δhRh − g(Sh, IQ) − μhSh; (37)

dEh

dt
= g(Sh, IQ) − (νh + μh) Eh; (38)

dIh

dt
= νhEh − (rh + σh + μh + γh) Ih; (39)

dRh

dt
= σhIh − (δh + μh) Rh; (40)

for a given set of initial conditions at time t = 0. An appropriate form of initial
conditions would be those that start off the process with some initial density of the
form

SBk
(0) = S0

Bk
, SRk

(0) = S0
Rk

, SQk
(0) = S0

Qk
(41)

IBk,j
(0) = I 0

Bk,j
, IRk,j

(0) = I 0
Rk,j

, IQk,j
(0) = I 0

Qk,j
(42)
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Sh(0) = S0
h, Eh(0) = E0

h, IH (0) = I 0
H , Rh(0) = R0

h, (43)

where the variables with superscript 0 are typical variables at time t = 0 whose
values will be provided as initial conditions. We should be careful to differentiate
the epidemiologically realistic initial conditions with the system where there is no
disease in the system. It is informative to note that the continuous dependence of
the system on initial conditions means that if we start off this system with a set
of initial conditions for which all the disease variables are set to zero, the system
will continue to be disease-free for all subsequent time. An anticipated result in
the analysis that we shall report in this paper shall be to find conditions in the full
epidemiological model whereby starting the system with non-zero disease variables
will lead to the eventual establishment of the infection in the population. This
combined demographic and epidemiological model thus offers us a unique pathway
for studying epidemiological and ecological parameters concurrently.

Though we have indicated the absence of a conservation argument to conserve
the number of mosquitoes leaving the breeding site through the restriction of
considering only anthropophilic mosquitoes, we can appreciate the size of the total
active mosquito populations in the dynamics by adding up the relevant equations
in the derived system. Studying the size of the total populations will give us an
indication on the boundedness of the system under consideration, as well as provide
a way of comparing the model with existing results in the literature. Recall that the
total breeding site, questing and resiting mosquitoes are denoted respectively by NB ,
NQ and NR and their size is calculated by computing the sum (5). Thus we have the
following equations for the rate of change of the respective subtotals:

dNB

dt
=

N∑

k=1

dSBk

dt
+

N−1∑

j=1

N∑

k=j+1

dIBk,j

dt

= New adults +
N∑

k=2

ρk−1SRk−1 +
N−1∑

j=1

N∑

k=j+1

ρk−1,j IRk,j

−
N∑

k=1

(bk(Nh) + μSBk
)SBk

−
N−1∑

j=1

N∑

K=j+1

(bk(Nh) + μIBk,j
)IBk,j

. (44)

Similarly, we calculate the rate of change of the total questing mosquito population
as

dNQ

dt
=

N∑

k=1

dSQk

dt
+

N−1∑

j=1

N∑

k=j+1

dIQk,j

dt

=
N∑

k=1

bk(Nh)SBk
+

N−1∑

j=1

N∑

k=j+1

bk(Nh)IBk,j
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−
N∑

k=1

(bQk
+ μSQk

)SQk
−

N−1∑

j=1

N∑

K=j+1

(bQk
+ μIQk,j

)IQk,j
. (45)

and for the resting mosquitoes we have

dNR

dt
=

N∑

k=1

dSRk

dt
+

N∑

j=1

N∑

k=j

dIRk,j

dt

=
N∑

k=1

(bQk
qQk

SQk
− (ρk + μSRk

)SRk
− (ρk,k + μIRk,k

)IRk,k
)

+
N−1∑

j=1

N∑

k=j+1

(qQk
bQk

IQk,j
− (ρk,j + μIRk,j

)IRk,j
). (46)

The rate of change of the total human population, N ′
h(t), is found by adding up the

relevant equations to have

dNh

dt
= (λh − μh)Nh − γhIh. (47)

Equation (47) shows the dependence of the size of the population on disease
related deaths. Now, if we set γh = 0 and λh = μh, as in [22], the total human
population will be constant. In this example, we would have a reduced system where
our analysis will focus on understanding disease spread in a constant human and
variable mosquito populations. Considering a constant total human population also
allows us to reduce the dimension of our system by one as one of the states in the
human compartment can be obtained once the other three states are known.

In general, however, from Eqs. (44)–(47), we can write down some bounds for
the total population as follows:

1. Bounds within the total human population: For a realistic population demograph-
ics model, the functions λh, μh : [0,∞) → R will have desired properties
that ensure that in the absence of the disease we have a bounded non-zero
human population as a basis for the modelling exercise. In [20], the natural
birth rate in the human population, here λh, was assumed to be constant while
the natural death rate in the human population, here μh was assumed to be a
linear monotone increasing function of Nh. Here, we simply assume that λh is a
non-zero monotone non-increasing function of its argument, while μh is a non-
zero monotone non-decreasing function of its arguments. In fact, any nonlinear
functional form for λh satisfying the conditions required by Assumption 1 will
serve as a suitable natural birth rate function for the human population. All what
we will require is that the form of the birth and death rates be such that the
Eq. (47) has a bounded non-zero solution at all times. If we select the forms
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λh(Nh) = λ1 − λ2Nh where λ1 > 0 and λ2 ≥ 0, and μh(Nh) = μ1 + μ2Nh

where μ1 > 0 and μ2 ≥ 0, then for a non-zero λ2 and μ2, Eq. (47) will
experience exponential decay at all times if λ1 ≤ μ1, unbounded exponential
growth whenever λ1 > μ1 and μ2 = λ2 = γh = 0, and bounded growth
whenever max{λ2, μ2} > 0 and λ1 > μ1. In any of the circumstances, we
deduce that for the appropriate forms for the birth and death rates λh and μh,
we will have the bound

dNh

dt
≤ (λh(Nh) − μh(Nh))Nh, (48)

as a bound for Eq. (47).
2. Bounds within the mosquito populations: For the variables within the mosquito

population, we can write down some bounds as well by taking into considerations
the definitions of the parameters of the system as shown in Table 4. Let,

ρv = max
1≤k,j≤N

{ρk, ρk,j }, μv = max
1≤k,j≤N

{μSϕk
, μIϕk,j

},

bv = max
1≤k≤N

{bk(Nh)}; (49)

bQ = max
1≤k≤N

{bQk
}, pQ = max

1≤k≤N
{pQk

}, qQ = max
1≤k≤N

{qQk
}. (50)

Using these bounds in the equations for the total mosquito populations given by
Eqs. (44)–(46), and using the definitions for NR , NQ and NB defined by Eq. (5),
we have the following bounds:

dNB

dt
≤ New adults + ρvNR − (μv + bv)NB;

dNQ

dt
≤ bvNB − (μv + bQ)NQ; (51)

dNR

dt
≤ bQqQNQ − (ρv + μv)NR.

The solution of system (51) bounds the solutions of Eqs. (44)–(46). If Nv = NB +
NQ + NR is the total active mosquito population, we have the bound

dNv

dt
≤ New adults − bQ(1 − qQ)NQ − μvNv. (52)

Inequality (52) shows the dependence of the total size of the active mosquito
population on bQ and qQ and most importantly the size of the questing mosquitoes
NQ. If qQ is close to zero, many of the questing mosquitoes die and affect the final
size of the mosquito population. On the other hand, if qQ is very near unity, many
of the questing mosquitoes do not die during feeding. We have here a mechanism
for controlling the total mosquito population. For acceptable forms of the mosquito



A Multistage Mosquito-Centred Mathematical Model for Malaria Dynamics. . . 127

birth rate function λR satisfying conditions of Definition 1, the expression for new
adults is bounded and we can then easily establish that the solutions of Eq. (52) are
bounded. This in turn will show that the equations in system (51) are indeed bounded
thus establishing the boundedness of the solutions of the derived system given by
Eqs. (29)–(40). We make the following remark on the nature of the solutions of the
bounding system:

Remark 3 The inequalities in system (51) are sharp in the sense that there exists a
choice of parameters of the original system where we have equality. In the particular
case where it is assumed that the respective death rates, the respective biting rates,
the respective successful feeding probabilities across all gonotrophic cycles are
equal, we will have equality in (51) and the system is equivalent to the system
derived and studied in [19].

We also situate the types of solutions that are of interest to us in the following
definition.

Definition 2 In line with the biological relevance, a solution of any differential
equation involving a state variable of the system studied herein is called realistic
if it is non-negative and bounded.

In the absence of infection the system reduces to the infection-free model
whose mathematical equations are then obtained simply be setting all infected and
infectious compartments to zero in system (29)–(40). The result is a demographic
model for the dynamics of populations of anthropophilic mosquitoes that takes into
consideration the blood feeding and reproductive cycles of the female mosquitoes.
The infection-free model clearly shows the dependence of the dynamics of the
populations of the mosquitoes on their ability to successfully acquire blood from
humans, in this case susceptible humans. The infection-free model is given by the
system

dSB1

dt
=

N∑

k=1

ρkλ0,k

(
1 − SRk

Lk

)
SRk

− (
b1(Nh) + μSB1

)
SB1; (53)

dSBk

dt
= ρk−1SRk−1 − (

bk(Nh) + μSBk

)
SBk

, k = 2, 3, · · · , N; (54)

dSQk

dt
= bk(Nh)SBk

− (
bQk

+ μSQk

)
SQk

, k = 1, 2, 3, · · · , N; (55)

dSRk

dt
= qQk

bQk
SQk

− (ρk + μSRk
)SRk

, k = 1, 2, 3, · · · , N; (56)

dSh

dt
= λhNh − g(Sh, 0) − μhSh = (λh − μh)Sh; (57)

for a given set of initial conditions at time t = 0. Appropriate form for the initial
conditions for the infection-free model would be those that start off the process with
some initial density of the form
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SB1(0) = S0
B1

, SBk
(0) = 0, SRk

(0) = 0, SQk
(0) = 0, Sh(0) = S0

h. (58)

We note that in the infection-free model , Nh = Sh leading to the simplification
indicated for the Sh equation. Additionally, system (53)–(56) is a version of the
reproductive stage structured model for the dynamics of malaria vector derived and
studied in [23]. In [23], a mass action incidence function was used to model contacts
between questing mosquitoes and humans which, if used here, would have yielded
the inflow term qQk

bQk
SQk

Nh in Eq. (56), as opposed to the inflow term qQk
bQk

SQk

as shown, obtained as a result of the use of a standard incidence function to model
contacts as in this manuscript. Though the notation is altered and the exposure rates
are derived differently, the two systems are essentially identical in form and so the
following results carry over.

Theorem 1 The system (53)–(56) with λR given by (13) is well posed from a
mathematical and physical stand point in the sense that a solution exists for each
given set of initial conditions that is unique, non-negative and bounded.

Proof See section 2.3 of [23]. �
Thus the system derived in this paper generalizes the systems studied earlier. We

shall start the analysis by considering a scaling and non-dimensionalization.

2.4 Scaling and Non-dimensionalization

In the model derived above, the main physical dimension of the system is that of
time. However, we have parameters and rates that are defined in terms of other
parameters. In fact, a state variable or parameter that measures the number of
individuals of certain type has a dimension-like quality (or quasi-dimensional unit)
associated with it, [14]. To remove the dimension-like character on the parameters
and variables, we make the following change of variables:

S̃Bk
= SBk

S0
Bk

, S̃Qk
= SQk

S0
Qk

, S̃Rk
= SRk

S0
Rk

, ĨBk,j
= IBk,j

I 0
Bk,j

,

ĨQk,j
= IQk,j

I 0
Qk,j

, ĨRk,j
= IRk,j

I 0
Rk,j

, τ = t

T 0 , (59)

where the quantities with superscript zero are reference variables. Since we are
considering a constant human population, we scale the human variables with Nh

to have the system

S̃h = Sh

Nh

, Ẽh = Eh

Nh

, Ĩh = Ih

Nh

, R̃h = Rh

Nh

, (60)
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so that S̃h + Ẽh + Ĩh + R̃h = 1 since Sh + Eh + Ih + Rh = Nh. From here, we then
have Ẽh = 1 − S̃h − Ĩh − R̃h and then set

S0
Bk

= ρk−1S
0
Rk−1

bk(Nh)+μSBk

; k ≥ 2, S0
Qk

=bk(Nh)S
0
Bk

bQk
+μSQk

; k ≥ 1, S0
Rk

=qQk
bQk

S0
Qk

ρk+μSRk

; k ≥ 1

I 0
Rk,k

= qQk
bQk

S0
Qk

ρk,k+μIRk,k

; k ≥ 1, I 0
Bk,j

=
ρk−1,j I

0
Rk−1,j

bk(Nh)+μIBk,j

; k ≥ 2, j ≥ 1, k > j, (61)

I 0
Qk,j

=
bk(Nh)I

0
Bk,j

bQk
+ μIQk,j

, I 0
Rk,j

=
qQk

bQk
I 0
Qk,j

ρk,j + μIRk,j

; k ≥ 2, j ≥ 1, k > j.

The scaling of time will affect the time scales in the problem under consideration.
In the current modelling problem under consideration, we have the following time
scales:

1. The incubation periods: The length of the incubation period of the disease in
the mosquito, also termed the extrinsic incubation period, under favourable
conditions of the vector is dependent on ambient temperature and humidity. It
has been reported that optimum conditions for sporogony are between 25◦C and
30◦C and it ceases below 16◦C, and that, above 35◦C, sporogony slows down
considerably and it is also delayed by intermittent low temperatures, [27]. The
actual length of the incubation period depends on the species of Plasmodium
involved. The incubation period in humans is dependent on the general health
and immune status of the person concerned and on the species of Plasmodium
involved. The incubation periods are summarized in Table 5, which shows an
average minimum incubation period of 12 days in humans and 10 days in
mosquitoes. This time scale is short when compared with the life span of the
human.

2. The life span of the adult female Anopheles sp mosquito. The average life
expectancy of vectors of human malaria is 20–25 days and the average daily
death rate is 4–5%, [27]. Taking into consideration the dangers that the
mosquitoes go through in order to reproduce, it is normal to expect that many
mosquitoes will die before completing their full life span; which for some species

Table 5 The lengths of the intrinsic and extrinsic incubation periods of malaria in humans and
Anopheles sp mosquitoes for different species of Plasmodium sp parasites. Adapted from [27]

Type of
plasmodium

Incubation days in humans
(intrinsic mean)

Incubation days in mosquito
(extrinsic mean) at 25◦C

P. falciparum 9–14 (12) 10

P. malariae 18–40 (28) or longer 28

P. vivax 12–17 (15) or up to 6–12 months 10

P. ovale 16–18 (17) or longer 16
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can go up to a month. However, in the model derived here where we have used
the gonotrophic cycle count to measure the physical age of the mosquito at each
time, we have established that mosquitoes at higher gonotrophic cycle counter
are older than the ones at the start of the gonotrophic cycle counter. In [23],
a procedure was developed for calculating the death rates of the mosquito at
each gonotrophic cycle level. The formula captured the fact that mosquitoes
of type RN will be oldest adults in the system and thus will have the highest
death rate while mosquitoes of type B1 will be the youngest and as such will
have the smallest death rate. We approximate death rate simply by calculating
the reciprocal of remaining life days. We note, however, that the time frame
representing the life span of any of the adult mosquitoes is short when compared
with the life span of a human.

3. The duration of each gonotrophic cycle. The duration of the gonotrophic cycle
is dependent on temperature and, in the tropics, at temperatures above 23◦C, it
usually lasts 2–4 days, but in the colder temperate climates it may take many
days or even weeks. The time scale for this cycle is short when compared
with the life span of the human. However, it has also been reported that a
female Anopheles sp mosquito in the wild may eventually successfully complete
about 4–5 gonotrophic cycles during its entire reproductive life. For the purpose
of modelling, we can therefore estimate a time period of 5–6 days for each
gonotrophic cycle to be completed. This length of time is also short, when
compared with the life span of the human.

The above points show that there are several time scales in the problem under study
and so in scaling time, we should be careful to capture the features modelled. Here
we scale time with the death rate of the resting mosquitoes at reproductive stage N ,
RN so as to be able to capture the gonotrophic cycles in our modelling. This will
also justify our constant human population approximation in the sense that one time
unit is then small enough to track the gonotrophic cycles as well as allow us to work
with short enough time frames to warrant a constant human approximation. Thus
we set

T 0 = 1

ρN + μSRN

, (62)

and then define the dimensionless parameter groupings

αk = λ0k
ρkS

0
Rk

S0
B1

(b1(Nh)+μSB1
)
, αk,j=

λ0k,j
ρk,j I

0
Rk,j

S0
B1

(b1(Nh)+μSB1
)
, L̃k= Lk

S0
Rk

, Lk,j= Lk

I 0
Rk,j

b̃k = (bk(Nh) + μSBk
)T 0, b̃k,j=(bk(Nh)+μIBk,j

)T 0, ρ̃k=(ρk+μSRk
)T 0, (63)

ρ̃k,j = (ρk,j+μIRk,j
)T 0, τk=(bQk

+μSQk
)T 0, τk,j=(bQk

+μIQk,j
)T 0

λ̃ = λhT
0, δ̃ = δhT

0, σ̃=σhT
0, ν̃ = νhT

0,
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r̃ = rhT
0, gk,j=

pQkhqQk
bQk

I 0
Qk,j

T 0

Nh

;

where S0
B1

is the initial size of the susceptible breeding site mosquito population,

and the terms S0
Rk

, I 0
Bk,j

are as defined in Eq. (61). This then leads to the scaled
system

dS̃B1

dτ
= b̃1

⎛

⎝
N∑

k=1

αk

(
1 − S̃Rk

L̃k

)
S̃Rk

+
N∑

j=1

N∑

k=j

αk,j

(
1 − ĨRk,j

Lk,j

)
ĨRk,j

− S̃B1

⎞

⎠ ;

(64)

dS̃Bk

dτ
= b̃k

(
S̃Rk−1 − S̃Bk

)
, k = 2, 3, · · · , N; (65)

dS̃Qk

dτ
= τ̃k

(
S̃Bk

− S̃Qk

)
, k = 1, 2, 3, · · · , N; (66)

dS̃Rk

dτ
= ρ̃k

(
S̃Qk

− (phQk
Ĩ + p̃hQk

R̃)S̃Qk
− S̃Rk

)
, k = 1, 2, 3, · · · , N; (67)

dĨRk,k

dτ
= ρ̃k,k

(
(phQk

Ĩ + p̃hQk
R̃)S̃Qk

− ĨRk,k

)
, k = 1, 2, 3, · · · , N; (68)

dĨBk,j

dτ
= b̃k,j

(
ĨRk−1,j

− ĨBk,j

)
, k = 2, 3, · · · , N − 1, j = 1, 2, · · · , N, k > j ;

(69)

dĨQk,j

dτ
= τ̃k,j

(
ĨBk,j

− ĨQk,j

)
, k = 2, 3, · · · , N − 1, j = 1, 2, · · · , N, k > j ;

(70)

dĨRk,j

dτ
= ρ̃k,j

(
ĨQk,j

− ĨRk,j

)
, k = 2, 3, · · · , N − 1, j = 1, 2, · · · , N, k > j ;

(71)

dS̃h

dτ
= λ̃(1 − S̃h) + r̃ Ĩh + δ̃R̃h −

N−2∑

j=1

N∑

k=j+2

gk,j S̃hĨQk,j
(72)

dĨh

dτ
= ν̃(1 − S̃h − Ĩh − R̃h) − (λ̃ + σ̃ + r̃)Ĩh (73)

dR̃h

dτ
= σ̃ Ĩh − (δ̃ + λ̃)R̃h. (74)
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3 Mathematical Analyses

We now analyse the model’s equations and starting with the infection-free model.
In what follows, for notational simplicity, we drop the tilde on each of the notations.

3.1 The Infection-Free Model: Existence and Stability of
Steady States

As indicated above the infection-free model is obtained simply by setting the disease
variables to zero in the scaled system (64)–(74). This gives the system

dSB1

dτ
= b1

(
N∑

k=1

αk

(
1 − SRk

Lk

)
SRk

− SB1

)
; (75)

dSBk

dτ
= bk

(
SRk−1 − SBk

)
, k = 2, 3, · · · , N; (76)

dSQk

dτ
= τk

(
SBk

− SQk

)
, k = 1, 2, 3, · · · , N; (77)

dSRk

dτ
= ρk

(
SQk

− SRk

)
, k = 1, 2, 3, · · · , N; (78)

dSh

dτ
= λ(1 − Sh), 0 = νh(1 − Sh). (79)

The fact that we have a constant human population shows up very clearly in the last
equation, Eq. (79).

Theorem 2 (On the Existence of Steady States for the Infection-Free Model)
The disease-free system (75)–(79) admits a trivial steady state solution 0 for the
mosquito population with Sh = 1, which always exists for all parameter values of
the system. In addition, there is a possibility for the existence of a non-trivial steady
state solution, whose existence and size are determined by the size of a threshold
parameter N in the sense that if N ≤ 1, the only steady state is the trivial steady
state and when N > 1, the non-trivial steady state exists and can be computed.

Proof The steady states for the infection-free model, when they exist, are solutions
of the equations when the time derivatives are set to zero. This gives the steady state
solutions

S∗
Bk

= S∗
Rk

= S∗
Qk

, k = 1, 2, 3, · · · , N, S∗
B1

= 0 or S∗
B1

=
∑N

k=1 αk − 1
∑N

k=1

(
αk

Lk

) , (80)
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with Sh = 1. Let SBk
= (SB1 , SB2 , · · · , SBN

), SQk
= (SQ1 , SQ2 , · · · , SQN

) and
SRk

= (SR1 , SR2 , · · · , SRN
). Then, we can use this notation to write down the form

of the two steady state solutions:

(SBk
, SQk

, SRk
) = (0, 0, 0); the trivial steady state, (81)

(SDFE
Bk

, SDFE
Qk

, SDFE
Rk

) = (S∗
B1

,S∗
B1

,S∗
B1

); the persistence steady state, (82)

where SDFE
Bk

∈ R
N , SDFE

Qk
∈ R

N and SDFE
Rk

∈ R
N are N -tupples or vectors in R

N

each of whose coordinates is exactly S∗
B1

given by (80). Notice that in Eq. (80) the
non-zero solution S∗

B1
exists as a realistic steady state of the system in the sense of

Definition 2 only if the quantity N > 1 where

N =
N∑

k=1

αk =
N∑

k=1

(
λ0,kρkS

0
Rk

S0
B1

(b1(Nh) + μSB1
)

)
, (83)

and the case N = 1 reducing the non-zero solution to the zero solution. �
We note that N is a unique threshold parameter for the system. When N ≤ 1,

the mosquito population goes extinct and only a contact thriving susceptible human
population exists. The conditions for the existence of the persistence steady state
solution, namely N > 1, translate to the conditions for the establishment of a non-
zero mosquito population in the environment whenever the persistence steady state
is stable. We shall identify the quantity N so constructed with the basic offspring
number.

Definition 3 (Basic Offspring Number) The basic offspring number is the num-
ber of new adult mosquitoes that arise from one adult female reproducing mosquito
during its entire period of reproductivity in the absence of density dependence.

The basic offspring number is a threshold parameter analogous to the basic
reproduction number in epidemiological modelling. It offers a control criterion for
mosquito population as we expect that when this quantity is strictly less than unity,
the trivial equilibrium solution where S∗

Bk
= 0 is globally and asymptotically stable

as the only steady state of the system. In fact we can state and prove the following
result:

Theorem 3 (On the Global Stability of the Trivial Steady State) The steady state
solution given by S∗

Bk
= S∗

Rk
= S∗

Qk
= 0 for all k = 1, 2, · · · , N , with Sh =

1, which always exists for values of the parameters of the system, is globally and
asymptotically stable whenever N ≤ 1.

Proof We use the direct method of Lyapunov. We construct the Lyapunov function.
Let V : R3N → R be real valued linear function. For positive constants Ak , Ck and
Dk , k = 1, 2, 3 · · · , N , define V by
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V (SBk
, SQk

, SRK ) =
N∑

k=1

(
AkSBk

+ CkSQk
+ DkSRk

,
)

(84)

then V (0, 0, 0) = 0 and V (SBk
, SQk

, SRK ) > 0 for non-zero values of arguments.
We show that there exists a choice of constants Ak , Ck and Dk , k = 1, 2, 3 · · · , N ,
for which the orbital derivative of V is always negative near the zero state. To do
this, calculate the total derivative of V

dV

dτ
=

N∑

k=1

(
Ak

dSBk

dτ
+ Ck

dSQk

dτ
+ Dk

dSRk

dτ

)

= A1b1

(
N∑

k=1

αk

(
1 − SRk

Lk

)
SRk

− SB1

)
+

N∑

k=2

Akbk

(
SRk−1 − SBk

)

+
N∑

k=1

(
Ckτk

(
SBk

− SQk

) + Dkρk

(
SQk

− SRk

))
,

where the derivatives on the right hand side as given by (75)–(79) have been
substituted. Rearranging the terms we have

dV

dτ
=

N−1∑

k=1

(b1A1αk + bk+1Ak+1 − ρkDk) SRk
+ (b1A1αN − ρNDN) SRN

+
N∑

k=1

(
(Ckτk − Akbk) SBk

+ (ρkDk − Ckτk) SQk

) −
N∑

k=1

(
A1b1

αk

L̃k

S2
Rk

)
.

To proceed, choose the constants Ck,Dk and AK , for k = 1, 2, 3, · · · , N so that

Ckτk = Akbk = ρkDk, ρNDN = b1A1αN. (85)

Applying these, we have the relation

dV

dτ
=

N−1∑

k=1

(b1A1αk + bk+1Ak+1 − ρkDk) SRk
−

N∑

k=1

(
A1b1

αk

L̃k

S2
Rk

)
. (86)

Let us examine the coefficients of SRk
in (86): When k = N − 1, we have that the

coefficient of the variable SRN−1 is b1A1αN−1 + bNAN − ρN−1DN−1. Using the
relation (85), we find that bNAN = ρNDN = b1A1αN so that the coefficient of
SRN−1 is b1A1αN−1 + b1A1αN − ρN−1DN−1. So if we chose b1A1(αN−1 + αN) =
ρN−1DN−1, this coefficient will be zero. Similarly, if k = N − 2, the coefficient of
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SRN−2 in (86) is b1A1αN−2 +bN−1AN−1 −ρN−2DN−2 which on using the relations
in (85) and the value of ρN−1DN−1 just computed, we have that the coefficient of
SRN−2 in that expression is b1A1(αN−2 + αN−1 + αN) − ρN−2DN−2. Again the
choice ρN−2DN−2 = b1A1(αN−2 +αN−1 +αN) will make the coefficient SRN−2 in
the expression in (86), to also vanish. We continue like this and set up the recurrence
relation

ρN−iDN−i = b1A1

i∑

j=0

αN−j , i = 0, 1, 2 · · · , N − 2. (87)

which in turn, knocks out the coefficients of SRk
, k = N−1, N−2, N−3, · · · , 3, 2.

The coefficient of SR2 is eventually eliminated by setting i = N − 2 in (87) to have
the final expression

dV

dτ
=

(
b1A1

N∑

k=1

αk − ρ1D1

)
SR1 −

N∑

k=1

(
A1b1

αk

L̃k

S2
Rk

)
. (88)

The choice of ρ1D1 = b1A1 leads to the orbital derivative

dV

dτ
= b1A1(N − 1)SR1 −

N∑

k=1

(
A1b1

αk

L̃k

S2
Rk

)
, (89)

where N is given by (83) and A1 is an arbitrary positive real number. It is now clear
from (89) that V ′(τ ) < 0,∀τ whenever N ≤ 1. When N ≤ 1, the Lyapunov–
LaSalle Theorem, [10], assures us that all paths in the positive orthant R3N+ \ {0}
approach the largest compact invariant subset {0} ⊂ R

3N+ wherein V ′(τ ) = 0. Hence
SBk

→ 0, SQk
→ 0 and SRk

→ 0, ∀k as τ → ∞ whenever N ≤ 1, since {0} is the
only omega limit point of any orbit starting in the interior of R3N+ whenever N ≤ 1.
�
Remark 4 The parameter N so identified in (83) is the unique threshold parameter
for the disease-free system with the property that for 0 ≤ N ≤ 1, the only
steady state of the system is the trivial steady state solution which is globally
and asymptotically stable and as N increases beyond unity, there is transcritical
bifurcation at N = 1 leading to the birth of the non-trivial steady state, given
by (82).

The stability of the persistent vector steady state solution derived above may
be determined, starting from its linear stability, by looking for the sign of the
eigenvalues of the Jacobian matrix evaluated at the steady states. So, if λ is an
eigenvalue of the Jacobian matrix at the vector persistent steady state, and we denote
the Jacobian matrix at the steady state by J (S∗), where S∗ = (S∗

Bk
,S∗

Qk
,S∗

Rk
) ∈

R
3N is the vector of steady state values. Then we have
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J (S∗) =
⎛

⎜⎝
−B O R(S∗

Rk
)

T −T O

O P −P

⎞

⎟⎠ , and |λI 3N − J (S∗)| = 0, (90)

where B, P , T , O and R are N × N matrices defined by

B = diag{bk}, T = diag{τk}, P = diag{ρk}, k = 1, 2, 3, · · · N

R(S∗
Rk

) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b1α1

(
1 − 2S∗

R1
L1

)
b1α2

(
1 − 2S∗

R2
L2

)
· · · b1αN

(
1 − 2S∗

RN

LN

)

b2 0 · · · 0
0 b3 · · · 0
...

...
. . .

...

0 0 · · · bN

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

and for a general ck , diag{ck}, for k = 1, 2, · · · , N is the N × N diagonal matrix
whose kth entry is ck . Computation of the determinant shown in the second term
of equation (90) yields a polynomial of degree 3N whose form and structure can
be completely determined as has been derived in [23]. In fact the following results
about the disease-free system have been studied and established in [23]:

1. The basic offspring number N , also known as the vectorial basic reproduction
number for this system, can be computed as the dominant eigenvalue of the
positive linear operator by deriving the next generation operator of the system
based on ideas from epidemiological models in [8, 30].

2. The computations of the 3N ×3N determinant previewed by (90) can be reduced
to the computation of an N × N determinant through the use of block matrices
as proved in [25, 28].

3. The persistent steady state of the system is locally and asymptotically stable for
a range of values of N and can be driven to instability with growing oscillations
as N further passes through a critical value Nc whose value can be determined
in a set of calculations dependent on N , the total number of gonotrophic cycles
that the system would have undergone (Theorem 9 in [23]).

4. The initial period of the oscillations, at the point where the system undergoes
a Hopf bifurcation, can be computed in terms of the parameters of the system
(Lemma 3 in [23]).

From the above, we deduce that the disease-free model exhibits more dynamic
variability than is the case with the disease-free state in mathematical models for
malaria that do not include a demographic component in the population dynamics
of the mosquito. This dynamic nature will then be used to study the epidemiological
model in the next section. The main result of this section is the identification of the
number N such that for N ≤ 1 the population size of the mosquitoes decays to
zero and for N > 1, this population establishes itself in the environment. N > 1
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will therefore serve as a logical starting point for the analysis of the epidemiological
model derived in this paper.

3.2 The Epidemiological Model

In this subsection, we analyse the epidemiological model under the simplifying
assumption that the probabilities phQk

, p̃hQk
and pQkh are the same at each

epidemiological gonotrophic cycle level. That is phQk
= phQ, p̃hQk

= p̃hQ and
pQkh = pQh for all k. This assumption reduces to the fact that all mosquitoes
transmit the infection with the same efficiency, irrespective of the physiological
age of the insect. It may eventually be informative to allow all these probabilities
to be different to study differential infectivity of infectious questing mosquitoes
based on the idea that older infectious questing mosquitoes may be more infectious
than younger ones. We note, however, that from the definition in Eq. (12), we did
capture the fact that only questing mosquitoes at a certain gonotrophic stage may be
infectious. We start with the following theorem:

Theorem 4 (On the Existence of Steady States for the Epidemiological Model)
The system defined by Eqs. (64)–(74) has at least three steady states: the trivial
steady state where all variables are zero, the disease-free steady state where
all disease variables are zero and the endemic steady state where disease and
demographic variables co-exist.

Proof The steady state solutions are obtained by setting the right hand side of each
of Eqs. (64)–(74) to zero. From the scaling done we easily deduce that all steady
state solutions can be written in terms of S∗

Q1
as follows: Set ξ = phQI ∗

h + p̃hQR∗
h

to have

S∗
Qk

= S∗
Bk

= (1 − ξ)k−1S∗
Q1

, S∗
Rk

= (1 − ξ)kS∗
Q1

, k = 1, 2, 3, · · · , N.

I ∗
Rk,k

= ξ(1 − ξ)k−1S∗
Q1

, k = 1, 2, · · · , N.

For any integer m > 1, we have

I ∗
Qj+m,j

= I ∗
Bj+m,j

= I ∗
Rj+m−1,j

= · · · = I ∗
Rj,j

= ξ(1 − ξ)j−1S∗
Q1

, j = 1, 2, · · · , N

this establishes the steady state values

S∗
Q1

= S∗
B1

, S∗
Qk

= S∗
Bk

= S∗
Rk−1

, S∗
Rk

= (1 − ξ)kS∗
Q1

, k = 2, 3, · · · , N (91)

I ∗
Qk,j

= I ∗
Bk,j

= I ∗
Rk−1,j

, IRk,j
= ξ(1 − ξ)j−1S∗

Q1
, k ≥ j, j = 1, 2, 3, · · · , N (92)
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where all the expressions are given in terms of S∗
Q1

. Setting and substituting these
into the equation for SB1 (Eq. (64)) when the time derivative is set to zero, we get
the equation

N∑

k=1

αk

(
1 − (1 − ξ)kS∗

Q1

Lk

)
(1 − ξ)kS∗

Q1

+
N∑

j=1

N∑

k=j

αk,j

(
1 − ξ(1 − ξ)j−1S∗

Q1

Lk,j

)
ξ(1 − ξ)j−1S∗

Q1
− S∗

Q1
= 0,

leading to the two solutions:

S∗
Q1

= 0 and S∗
Q1

= A1(ξ)

A2(ξ)
, (93)

where

A1(ξ) =
⎛

⎝
N∑

k=1

αk(1 − ξ)k +
N∑

j=1

N∑

k=j

αk,j ξ(1 − ξ)j−1

⎞

⎠ − 1, and

A2(ξ) =
N∑

k=1

(
αk(1 − ξ)2k

Lk

)
+

N∑

j=1

N∑

k=j

(
αk,j ξ

2(1 − ξ)2(j−1)

Lk,j

)
.

When these solutions are substituted into the corresponding equations for S∗
h, I ∗

h

and R∗
h, we have equations from which we can work out the value of the endemic

steady states. We note that the non-zero solution is given in terms of ξ , and ξ is the
weighted combination of the steady state proportions Ih and Rh which are both less
than 1. Therefore 0 ≤ ξ < 1 with the case ξ = 0 corresponding to when there is no
disease in the human population. In fact, when ξ = 0, we recover the disease-free
steady state solution which we have studied above, and when 0 < ξ < 1 we enter the
endemic steady state zone and there is a steady state solution for all variables both
in the human and mosquito populations and the result of the theorem is established.
�
Remark 5 The existence of the endemic steady state solution, S∗

Q1
�= 0, as a positive

steady state solution of the system depends on the sign of A1(ξ) and, in turn, on the

relative size of the quantity
(∑N

k=1 αk(1 − ξ)k + ∑N
j=1

∑N
k=j αk,j ξ(1 − ξ)j−1

)

when compared with unity. In this regard, we can deduce some results as follows:

1. We, at this stage, can start by accepting this quantity as a threshold parameter that
determines whether or not there shall be a flow of infection within the mosquito
population in the full epidemiological model, especially as its size determines
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the existence of non-zero densities of infected mosquitoes in the system at
equilibrium. In fact, a non-zero distribution of infected vectors at equilibrium
can exists only when the quantity R defined by

R(ξ) =
⎛

⎝
N∑

k=1

αk(1 − ξ)k +
N∑

j=1

N∑

k=j

αk,j ξ(1 − ξ)j−1

⎞

⎠ (94)

is such that R > 1. We then define this quantity as the number of secondary
infections that will arise from one primary infectious mosquito in the full
epidemiological model during the entire period of infectiousness of the primary
infected mosquito when placed in a completely susceptible population. This
quantity so defined depends on the size of Ih and Rh and increases with these
quantities.

2. The quantity R so identified may be seen as being related to the epidemiological
model’s basic reproduction number R0 which we shall determine below. R
clearly has the threshold character of the reproduction number in the vector
population.

3. When ξ = 0, there is no disease in the human population but there is a thriving
susceptible population of mosquitoes coexisting with susceptible humans, and
R reduces to the basic offspring number which we have computed in Sect. 3.1
above and given by Eq. (83). That is, R(0) = N . In general, however, whenever
0 < ξ < 1, we have that N (1 − ξ) < R(ξ) <

∑N
k=1 αk + ∑N

j=1
∑N

k=j αk,j =
N + ∑N

j=1
∑N

k=j αk,j . R may therefore serve as a parameter that extends the
demographic model’s results on existence of steady states to those of the full
epidemiological model.

3.3 The Epidemiological Model’s Basic Reproduction Number

The full epidemiological model has been shown to possess the following equi-
librium solutions: a trivial equilibrium solution 0 (81), which corresponds to the
existence of a susceptible human population without disease infection and an extinct
mosquito population; the disease-free equilibrium solution, which corresponds
to a susceptible human population interacting with a disease-free (susceptible)
mosquito population, with equilibrium solution given by Eq. (82); and the endemic
equilibrium given by the second of Eq. (93), parameterized with the parameter ξ .
From an epidemiological perspective, all what we want to establish is whether there
does exist a parameter that determines the existence of the endemic equilibrium
alluded to in Remark 5. To this effect we calculate the basic reproduction number
of the system.
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To compute the basic reproduction number we use the standard procedure as
explained in [8, 30] wherein the basic reproduction number is calculated as the
dominant eigenvector of a linear operator. In this case we can consider only the
equations where the disease is in progression and by considering the equations in
the sub-system

dĨRk,k

dτ
= ρk,k

(
(phQk

Ĩ + p̃hQk
R̃)SQk

− ĨRk,k

)
, k = 1, 2, 3, · · · , N; (95)

dĨBk,j

dτ
= bk,j

(
ĨRk−1,j

− ĨBk,j

)
, k−2, 3, · · · , N−1, j = 1, 2, · · · , N, k > j ;

(96)

dĨQk,j

dτ
= τk,j

(
ĨBk,j

− ĨQk,j

)
, k−2, 3, · · · , N − 1, j = 1, 2, · · · , N, k > j ;

(97)

dĨRk,j

dτ
= ρk,j

(
ĨQk,j

− ĨRk,j

)
, k−2, 3, · · · , N − 1, j = 1, 2, · · · , N, k > j ;

(98)

dẼh

dτ
=

N−2∑

j=1

N∑

k=j+2

gk,j ShĨQk,j
− (ν̃h+λ̃h)Ẽh, (99)

dĨh

dτ
= ν̃hẼh − (λ̃h+σ̃h + r̃h)Ĩh, (100)

dR̃h

dτ
= σ̃hĨh − (δ̃h + λ̃h)R̃h. (101)

To set up the local drift matrix that determines the flow of infection within the
infectious compartments, we let x = (IRk,j

, IBk,j
, IQk,j

)T ∈ R
M(N)−3N for

k, j ∈ 1, 2, · · · , N, k ≥ j , and then write the reduced sub-system containing
only disease progression variables in the form

dx

dτ
= F(x) − V(x),

where
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F(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1,1

(
phQ1 Ĩ + p̃hQ1 R̃

)
SQ1

ρ2,2

(
phQ2 Ĩ + p̃hQ2 R̃

)
SQ2

.

.

.

ρN,N

(
phQN

Ĩ + p̃hQN
R̃

)
SQN

0
0
.
.
.

0
0
0
.
.
.

0
0
0
.
.
.

0∑N−2
j=1

∑N
k=j+2 gk,j ShĨQk,j

0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1,1 ĨR1,1

ρ2,2 ĨR2,2

.

.

.

ρN,N ĨRN,N

−ρ2,1

(
ĨQ2,1 − ĨR2,1

)

−ρ3,2

(
ĨQ3,2 − ĨR3,2

)

.

.

.

−ρN,N−1

(
ĨQN,N−1 − ĨRN,N−1

)

−b2,1

(
ĨR1,1 − ĨB2,1

)

−b3,2

(
ĨR2,2 − ĨB3,2

)

.

.

.

−bN,N−1

(
ĨRN−1,N−1 − ĨBN,N−1

)

−τ2,1

(
ĨB2,1 − ĨQ2,1

)

−τ3,2

(
ĨB3,2 − ĨQ3,2

)

.

.

.

−τN,N−1

(
ĨBN,N−1 − ĨQN,N−1

)

(ν̃h + λ̃h)Ẽh

−ν̃hẼh + (λ̃h + σ̃h + r̃h)Ĩh

−σ̃hĨh + (δ̃h + λ̃h)R̃h

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We then derive the local drift matrices F and V from F and V by comput-
ing Fi,j = ∂Fi

∂xj
(DFE) and Vi,j = ∂Vi

∂xj
(DFE) and R0(N) = maxλ{|λ| :

λ is an eigenvalue of FV −1}. To be in a position to state the formula for the basic
reproduction number for an arbitrary N , we use an inductive approach on N to
calculate the value of R0(N),N = 3, 4, · · · , where R0(N) is the basic reproduction
number when the total number of gonotrophic cycles that the mosquito can complete
during its entire reproductive life is N > 2.

For N = 3 we find that

R0(3) =
√

ν

√
SDFE

h

√
g3,1S

DFE
Q1

√
(δ + λ)phQ + p̃hQσ

√
δ + λ

√
λ + ν

√
γ + λ + r + σ

. (102)

Thus ending the process at N = 3, we notice that only susceptible questing vectors
infected at gonotrophic cycle 1 would have contributed to the value of R0. This
is indeed the expected result since we allow at least two gonotrophic cycles to
pass before the vector can become infectious to humans. For N = 4, we have the
expression

R0(4)=
√

ν

√
SDFE

h

√
(g3,1+g4,1)S

DFE
Q1

+g4,2S
DFE
Q2

√
(δ+λ)phQ+p̃hQσ

√
δ+λ

√
λ+ν

√
γ+λ+r+σ

. (103)
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For N = 4, we see the contributions to the value of the reproduction number from
susceptible questing vectors first infected at gonotrophic cycles 1 and 2, with the
appropriate weighting factors. At N = 5 we have

R0(5) =
√

ν

√
SDFE

h

√
(δ + λ)phQ + p̃hQσ

√
(g3,1 + g41 + g5,1)S

DFE
Q1

+ (g4,2 + g5,2)S
DFE
Q2

+ g5,3S
DFE
Q3√

δ + λ
√

λ + ν
√

γ + λ + r + σ
,

(104)

showing contributions from susceptible questing vectors first infected at
gonotrophic cycles 3, 4 and 5. Continuing with the calculation, we can then derived
the general formula for the basic reproduction number by combining these together
and deducing. We have thus proved the following result.

Theorem 5 (On the General Formula for the Basic Reproduction Number) Let
the assumptions of Lemma 1 continue to hold. Let R0(N) be the basic reproduction
number for the epidemiological model built on the human–mosquito interactive
framework. Then R0(N) is given by the formula

R0(N) =
√

ν

√
SDFE

h

√
(δ + λ)phQ + p̃hQσ

√∑N−2
j=1

∑N
k=j+2 gk,j S

DFE
Qj√

δ + λ
√

λ + ν
√

γ + λ + r + σ
. (105)

Remark 6 We note that from the scaling used herein, SDFE
Qk

= S∗
B1

for all k =
1, 2, · · · , N as computed in (80) and so the expression for the formula for R0(N)

simplifies accordingly and we can, using the fact that for non-negative values of
R0(N), R0(N) > 1 ⇔ R0(N)2 > 1 and 0 ≤ R0(N) < 1 ⇔ R0(N)2 < 1, to then
consider R2

0 as the basic reproduction number and use R0 = R0(N)2 as the basic
reproduction number for our system, where

R0 =
ν

(
(δ + λ)phQ + p̃hQσ

) (∑N−2
j=1

∑N
k=j+2 gk,j

)
SDFE

h SDFE
Q1

(δ + λ)(λ + ν)(γ + λ + r + σ)
. (106)

This expression clearly shows the form and dependence of the system and repro-
duction number on the disease parameters.

To appreciate the contributions into the two threshold parameters N and R0 we
have computed and displayed in formulas (83) and (106), we return to the original
variables, passing through the scaled variables and parameter groupings (61), (62)
and (63). We define the quantities

wk = bQk

bQk
+ μSQk

bk(Nh)

bk(Nh) + μSBk

ρk

ρk + μSRk

qQk
, k = 1, 2, · · · , N (107)

zk = bQk−1

bQk
+μSQk

bk(Nh)

bk(Nh)+μSBk

ρk−1

ρk−1+μSRk−1

qQk−1 , k=2, · · · , N (108)
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wk,j = bQk

bQk
+ μIQk,j

bk(Nh)

bk(Nh) + μIBk,j

ρk,j

ρk,j + μIRk,j

qQk
, k > j (109)

zk,j = bQk−1

bQk
+ μIQk,j

bk(Nh)

bk(Nh) + μIBk,j

ρk−1,j

ρk−1,j + μIRk−1,j

qQk−1 , k > j, (110)

then, for any p ≥ 1, we have

I 0
Qj+p,j

=
p∏

i=1

zj+i,j S
0
Qj

, S0
Qj

=
j∏

i=2

zj S
0
Q1

, j = 2, 3, · · · , N, and S0
Q1

= b1(Nh)

bQ1 + μSQ1

S0
B1

.

(111)

It is straightforward to see that b1(Nh)
bQ1+μSQ1

∏N
k=2 zk = ∏N

k=1 wk after rearrangement

of terms. Similar rearrangements can be made to write down the products involving
zk,j in terms of the products wk,j . With these characterizations, we have

αk = λ0,k

k∏

i=1

wi ⇒ N =
N∑

k=1

(
λ0,k

k∏

i=1

wi

)
, (112)

written in terms of the original parameters. Thus for any integer p ≥ 1, we have the
expression

gj+p,j = pQj+phqQj+p
bQj+p

Nh(ρN + μSRN
)

I 0
Qj+p,j

, (113)

using the expression for I 0
Qj+p,j

computed in (111). The expressions in (112)
and (113) completely demonstrate how we can write down the basic offspring
number N and the epidemiological model’s basic reproduction number R0 given
in (83) and (106) respectively in terms of the original parameters of the system. We
note that the terms in the sum for (112) and (113) are ever decreasing in size since
each of the weights wi < 1 and wk,j < 1. This captures the fact that contributions
to the new mosquito population from each egg laying is decreasing with increasing
number of gonotrophic cycle. These results confirm the results earlier reported
in [22] for a limited form on this model where the gonotrophic cycle count was
truncated at N = 3. This result is biologically consistent with the biology of the
Anopheles sp mosquito, as it is known that depending on the species, and on the
quality and size of the blood meal, a female Anopheles lays 50–200 eggs during a
single oviposition, usually at night. Successive egg batches tend to decrease in size
and there may be seasonal variations in the number of eggs laid per batch [27].
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4 Results and Discussions

We set out to derive and study a model that takes into account the demography
of mosquito populations, its reproductive life and gonotrophic cycles’ count. The
model was derived based on a restricted form of homogeneous mixing contingent
on the idea that the mosquito has a human biting habit. Though consideration was
made on the possibility that the mosquito can seek for blood meals from alternative
blood sources, this zoophilic characteristic of the mosquito’s life traits was not
fully integrated into the model equations. We ended up with a system of equations
governing the dynamics of a human–mosquito–human interactive framework where
the mosquito can undergo up to N gonotrophic cycles: the cycle that starts at
egg laying, followed by blood meal questing within human populations, resting
for maturation of eggs and again ending with egg laying. In the model we used
the gonotrophic cycle counter as a measure of physical age of the mosquito, so
that a mosquito that has undergone the largest number of gonotrophic cycles in
the system is considered to be among the oldest mosquitoes, while those that are
still in the first gonotrophic cycle are considered to be among the young ones. In
the presence of malaria disease in the model, the length of the gonotrophic cycle
was fixed and used as a means to measure and capture the incubation period of the
disease within the mosquito population. This was set by requiring that a mosquito
that picks up the malaria infection after a successful interaction with humans will
have to wait for at least two gonotrophic cycles before bringing back the infection
to the human population. All mosquitoes in the system are assumed to complete the
requisite number of gonotrophic cycles unless they dies during the interaction with
the humans.

The size of the entire system was computed by explicitly counting the total
number of mosquito compartments in the system. The probability of finding
an infected/infectious compartment in the mosquito system was computed by
comparing the total number of infectious mosquito compartments with the total
number of mosquito compartments by explicitly calculating the disease reservoir of
infection in the mosquito population, ROIV . The results show that this probability is
determined by the number of susceptible mosquito compartments that the disease-
free system can have at each gonotrophic cycle. In any event it was seen that the
probability can be as large as 50% in the case where we have only one susceptible
compartment and one infected/infectious compartment.

We do not believe the results presented above is equivalent to the result of
finding an infectious mosquito, unless there is a one-to-one correspondence between
the number of compartments considered and the distribution of the mosquitoes
in the various compartments. For example, if there are M compartments at each
gonotrophic cycle k, and a total of Nmk

> M mosquitoes at each corresponding
gonotrophic cycle k, then the results so obtained could be used as a proxy for
the probability of finding an infectious mosquito if the M proportions M

Nmk
is the

same and a constant and sums up to 1. However, if this is not the case, then
increasing the number of compartments does not necessarily produce any more
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interesting results. However, the flows from the susceptible compartments to the
infectious compartments are important as they will play a part in determining the
size of the questing mosquito populations, susceptible or infectious. However, from
a biological and ecological standpoint, it is worth asking the question: what is
the maximum number of compartments required that would capture the human–
mosquito interaction system and approximates as close as possible the number of
mosquitoes (in our case questing mosquitoes) interacting with humans?

The disease-free model was analysed and the results show that there exists a
threshold parameter, N , which we identified as the basic offspring number, with the
property that for N ≤ 1 the system has only the zero or trivial steady state solution
which is globally and asymptotically stable. We note that this is the state in which
the mosquito population is extinct; however, there is a thriving population of only
susceptible humans. Our analysis also shows that when N > 1, the trivial steady
state which always exists for all forms of the parameters, loses stability, giving rise
to a non-trivial steady state via a transcritical bifurcation. These results have been
observed before [19, 22, 23]. They are again echoed here in this general model where
the number of gonotrophic cycles is arbitrary.

A study of the epidemiological model also reveals the existence of a basic
reproduction number whose nature and form has been completely determined in
terms of the original parameters of the system. These results were obtained by
assuming that the human population is constant and that disease induced death rate
is zero. These simplifications facilitated the parameterization of the steady states
in the epidemiological model in terms of the infectious proportions in the human
population Ih and Rh. It was satisfying to notice that when there is no infection in the
system, the system collapses to the disease-free model whose form has been studied
in earlier works. The novelty in the work done in this paper lies in its complete
characterization of the contributions from each mosquito from each gonotrophic
cycle count and the ability to build in the incubation period of the disease within the
mosquito population using the gonotrophic cycle counter.

The length of the extrinsic incubation period was measured here by allowing
two gonotrophic cycles to elapse before the infected mosquito becomes infectious.
This choice was deemed realistic by rationalizing that for a mosquito to pass the
infection from one human to another, it must bite two humans at two different and
distinct periods of time and the assumption is that the second bite will already be
infectious. Since the choice of 2 may not be true in general, especially in regions
with extended dry or wet period where this value could be higher (see for example
[27]), a better option to be considered in future research, would be to set the number,
n, of gonotrophic cycles whose cumulative time length is equivalent to the length
of the extrinsic incubation period as one of the parameters of the system, and even
allow this parameter to vary with temperature and rainfall. However, since it is clear
that such a parameter must be at least 2, we decided to use n = 2 in the analyses.
In this paper, we discussed how this arbitrary parameter can affect the size of the
number of infectious compartments of the system.

From the point of view of control, three control points are clearly possible from
the modelling framework used here. (i) On the one hand, we can block human–
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mosquito contact by preventing the questing mosquitoes from taking blood meals.
This will certainly prevent the passage of the infection from mosquito to humans
and vice versa and at the same time reduce the population sizes of the anthropophilic
mosquitoes in the system. (ii) One could identify resting places of the mosquitoes
and spray these with insecticide. This will kill the resting mosquitoes and cut the
link between current adult and next generation adults, as the resting blood fed
mosquitoes will be prevented from laying eggs. (iii) One could use larvicides or
other control measures to kill the breeding site mosquitoes and aquatic forms. Each
of the enumerated control strategies is mechanical and has the net effect of reducing
the size of the epidemiological model’s basic reproduction number which will in
turn control the spread of the malaria disease.

We believe that we have achieved the primary objective of the current paper
which was to derive a malaria transmission model for a human–mosquito interactive
framework where the mosquito is allowed to undergo up to N gonotrophic
cycles during its entire reproductive life, and then calculate the different threshold
parameters of the derived system; namely, the basic offspring number in the vector
demographic model and the basic reproduction number in the epidemiological
model. The analysis of the model derived here is not complete as we need to
study the mathematical form and structure of the solutions of the entire system of
equations as well as the explicit forms of the steady state solutions. The nature of the
rate of production of new adult mosquitoes, given here as λR , needs to be studied
from a general nonlinear function analytic point of view. The full model represented
here offers us a unique opportunity to conduct a global sensitivity analysis of the
system on its parameters. These and other aspects of the model shall be subject of
subsequent work.
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