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This book is being dedicated to Professors
Simon Levin of Princeton University, Louis
Gross of the University of Tennessee and
Thomas Hallam, Professor Emeritus of the
University of Tennessee, for the seeds they
planted with the Ecology related workshops
they organized in the 1980s and 1990s in
Trieste, Italy. Their work generated a new
group of internationally based researchers
and is making significant impacts.



Foreword

It is with delight that we gratefully acknowledge the efforts of the editors and
contributors to this volume. We are flattered that the editors chose to dedicate
the volume in honor of our efforts to direct the series of courses and workshops
on mathematical ecology that were organized at what is now the Abdus Salam
International Centre for Theoretical Physics (ICTP) in Trieste, Italy. This series
began with a set of five courses and three workshops, sponsored at ICTP from
1982 to 2000, and was successful in introducing numerous developing-country
scientists and mathematicians to current research that applies mathematical and
computational methods to environmental problems. Many participants in these
courses have proceeded to develop training programs in their own regions, including
a wide array of courses and workshops in various countries in Latin America,
Asia, and Africa. They have also subsequently mentored many new researchers who
started work at these interfaces between quantitative and life sciences well after the
initial series ended. In this sense, we consider our involvement in this series to have
been one of the most significant contributions we have made to the development of
interdisciplinary scientific expertise and connections across the world, and we echo
the sentiments of Lord Robert May of Oxford who has stated that his involvement
in this series has been “some of the most important teaching I have done.” Through
these courses, the ICTP was instrumental in fostering a worldwide appreciation
for the benefits of mathematical analysis of environmental problems and provided
the mechanism for numerous collaborations between researchers from different
disciplines and countries.

It may be of interest to readers of this volume to be aware of some of the history
of the series at ICTP. The series grew out of discussions between Professor Giovanni
Vidossich of the Scuola Internazionale Superiore di Studi Avanzati (SISSA) and
ICTP and Tom Hallam during Professor Vidossich’s sabbatical at the University of
Tennessee in 1980. With strong support from ICTP Director Abdus Salam, Profes-
sors Hallam, Levin, and Vidossich organized the first major gathering of researchers
and instructors in mathematical ecology, to lecture extensively over a 2-week period
in November 1982. This was followed by an intensive two-week International
Research Symposium which brought to ICTP many of the world’s leaders in the

vii



viii Foreword

field. There were 21 lecturers for the course, 140 participants from 32 developing
countries and 14 developed countries, and 30 additional participants in the Research
Symposium. The participants mainly had strong physics and mathematics training,
though there were a few participants chosen who had mostly biological training.
The plan was to cover sufficient background material during the formal course
lectures so that participants would be able to follow with understanding the more
advanced talks presented during the Research Symposium. Topics covered during
the course included deterministic and stochastic population models, age-structured
models, bioeconomics, epidemiological models, and diffusion models. Two books
resulted from the 1982 experiences:

S.A. Levin and T.G. Hallam (editors). 1984. Mathematical Ecology, Proceedings,
Trieste 1982. Lecture Notes in Biomathematics, Vol. 54. Springer-Verlag, Berlin. (A
collection of papers presented during the Research Symposium.)

S.A. Levin and T.G. Hallam (editors). 1986. Mathematical Ecology. Biomath-
ematics, Vol. 17. Springer-Verlag, Berlin. (A collection of the lectures presented
during the course.)

Following on the success of the 1982 experiences, the three of us organized a
second course, with attendant Research Symposium, in November–December 1986.
This included four weeks of course lectures followed by a one-week Research Sym-
posium. The attendees were chosen specifically to be more broadly representative of
those carrying out research in mathematical ecology, with significantly higher num-
bers of participants chosen due to their biological backgrounds. Leading researchers
were invited to present talks on current research throughout the latter part of the
course as well as during the Research Symposium. There were 17 lecturers for the
course, 175 participants from 44 developing countries and 20 developed countries,
and 44 research lecturers. To foster interaction and potential collaborations among
participants, all were invited to present brief talks on their research, and these talks
were scheduled throughout the four weeks of the course. Topics covered during
the courses included: population and community modeling, demography, ecosystem
models, agricultural models, statistical ecology, bioeconomics, population genet-
ics, evolutionarily stable strategies, infectious disease models, and environmental
toxicology models. Thus, the topic coverage was considerably broader and more
oriented towards applications of models than those during the 1982 course. This was
the first course to integrate computer workshops with the formal course lectures.
There were 25 research talks presented by participants from developing countries
throughout the course. Two books resulted from the 1986 experiences:

T.G. Hallam, L.J. Gross and S.A. Levin (eds.). 1988. Mathematical Ecology:
Proceedings, Trieste 1986. World Scientific Publishing Co., Singapore.

S.A. Levin, T.G. Hallam and L.J. Gross (eds.). 1989. Applied Mathematical
Ecology. Biomathematics Series, Vol. 18. Springer-Verlag, Berlin. (a collection of
the lectures presented during the Course).

The series continued with two types of activities: formal courses, including
basic research background lectures similar to those in the 1982 and 1986 courses,
alternated every two years with shorter, more in-depth workshops that focused on a
few major research topics. The first workshop was held in November 1988, with
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subsequent courses in 1990, 1994, and 2000 and workshops in 1992 and 1996.
The total participants for each of these were considerably smaller than that of the
earlier courses. Leading researchers were invited to give research lectures that were
integrated throughout the courses. For all of these, computer workshops became an
integral part of the programs. One of our great pleasures was that attendees at the
later ICTP courses were often students of those who participated in earlier courses.

Formal research groups were implemented at the beginning of each course or
workshop, based upon the interests of the participants. Each participant was required
to be part of at least one of the research groups, some of which were organized
around problems of regional concern. These research groups met throughout the
course and made a formal presentation to all attendees at the end of the course. The
objective was to foster collaborative learning and potentially create collaborations
that would continue after the participants’ time at ICTP ended. A small number of
participants for each course and workshop were from developed countries, attending
at their own expense, with the majority of these from Italy. One measure of the
success of the sequence of courses is perhaps to note that 12 of the invited lecturers
for the 1988–2000 courses and workshops were developing-country scientists who
had previously attended a course or workshop as a participant, and one of these,
Graciela Canziani of the National University of Central Buenos Aires in Argentina,
joined us as a Director for the 1996 and 2000 courses. The 1988–2000 courses
and workshops had 456 participants from developing countries, 92 from developed
countries, and 112 lecturers many of whom were from developing countries. So, in
total the series involved over 1000 participants, most of whom were from developing
countries. The topic coverage of these ICTP activities directly aligns with those now
considered part of the Mathematics of Planet Earth, contributing to the worldwide
development of this major endeavor to apply mathematical methods to enhance the
sustainability of our planet.

While it was a tremendous pleasure to have been given the opportunity to direct
these activities over so many years, we have been even more honored by the many
invitations we received to participate in activities all over the world led by those who
had been participants in the initial series. While several follow-on activities were
hosted at ICTP, led by our colleagues and former students, we have been thrilled
by the growing capabilities to carry on these activities around the world due to a
fine cadre of trained educators in mathematical ecology and computational biology,
many of whom have been directly influenced by the sequence of ICTP courses.
The current collection is evidence of how far the graduates from the courses and
workshops have come in becoming leaders in their own right and a source of real
gratification for us. As we confront the new challenges in assuring the sustainability
of our planet and the new mathematics that will be necessary, our world is fortunate
to have a new generation of researchers eager and able to confront the issues.

Knoxville, TN, USA Louis J. Gross
Knoxville, TN, USA Thomas G. Hallam
Princeton, NJ, USA Simon A. Levin
July 2019



Preface

Book Focus The book is a collection of topical mathematical modeling works on
current topics in indirectly and directly transmitted infectious diseases of humans,
animals, and plants that characterize our planet.

Intended Audience
• Graduate students in the early phases of their research: Can serve as a source of

topical works and ideas in modeling infectious.
• Established researchers: Serves a career development for these researchers.
• Readers interested in understanding the dynamics of spread of infectious dis-

eases: It offers a broad range of models for these interested readers, who wish
to further their understanding of the dynamics of spread of infectious diseases or
gain insight into the modeling process.

Major Takeaways
• The book showcases the power of mathematical modeling in capturing the spread

and interaction dynamics of infectious diseases of our planet without recourse
to experimentation. For example, a laboratory experiment which detects that a
mosquito has taken a blood meal may not be able to predict the impact of the
blood meal on future population sizes of the mosquito.

• The book also showcases the power of mathematical models, by illustrating how
different evolutionary processes can interact to enhance diseases spread with the
goal being survival of the interacting populations.

• The book showcases the power of mathematical modeling of virulent infectious
diseases such as the Ebola virus disease, whose methods are extendable to the
currently spreading COVID-19 virus disease. The modeling process can inform
key parameters that may affect the spread of these diseases and the role effective
control might have in curbing transmission. An example is the role of media
coverage in educating a population that may affect control and how the disease
spreads.

• Control of the diseases that affect humans and animals in our planets requires an
understanding of all processes and interactions related to the disease. This book
showcases this well.

xi



xii Preface

• There are challenges with control for diseases with multiple transmission path-
ways. Questions about which pathways might be dominant become important
questions, and questions about whether less dominant pathways can tip a scale
are questions worth exploring for the future. This book highlights these.

Bethlehem, PA, USA Miranda I. Teboh-Ewungkem
Buea, Cameroon Gideon Akumah Ngwa
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Infectious Diseases and Our Planet

Miranda I. Teboh-Ewungkem and Gideon A. Ngwa

1 Introduction

The bio-diversity of our planet is incredibly rich and complex in its nature,
comprising a huge collection of bio-organisms. We use the term bio-organism
to refer to any biological entity that possess some or all the properties of life.
The definition of life (or being alive) in biology is mostly descriptive, however,
by life, we shall mean a characteristic for any entity on our planet that would
enable preservation of that entity and reinforce its existence. In this light we can
consider a bio-organism as having life if such an organism has the attribute of
being organized (in cells, unicellular or multicellular) and in addition, the ability
to perform some or all of the following functions: homeostasis (the ability to
regulate its internal environment to maintain a constant state), metabolism (being
able to feed and so can transform energy by decomposing organic matter into
cellular components and vice versa), growth (being able to maintain a higher rate
of anabolism/catabolism and be able to increase in size in all of its parts, rather
than simply accumulate matter), adaptation (having the ability to change over time
in response to the environment on our planet), responsive to stimuli (ability to
react, say via motion, when exposed to external chemicals or others probes), and
reproduction (the ability to produce new individual organisms, either asexually from
a single parent organism or sexually from two parent organisms). These complex
processes, called physiological functions, have underlying physical and chemical
bases, as well as signaling and control mechanisms that are essential to maintaining
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2 M. I. Teboh-Ewungkem and G. A. Ngwa

life. A bio-entity that is capable of performing only one of the listed functions
may not be classified as having life. We now discuss a few bio-entities under
consideration here: A virus (giant molecule of nucleic acid coated with protein),
for example, can replicate itself within a given environment, but because it neither
metabolizes nor grows, it does not qualify as being alive. However, being a bio-
entity, we would also consider virus in the discussion here. A fungus is another
bio-entity that will be considered and could fall in either the living or non-living
category, depending on the type. The last bio-entity to be considered is parasites,
considered living.

Given the broad range of possibilities available to biological entities, we note
that each bio-organism has its niche; the range of environmental conditions wherein
each member of the given species can survive and reproduce. Survivorship and
reproduction being key existential priorities for each of the bio-organisms that make
up our planet’s biosphere. Since there are several bio-organisms sharing the same
limited-sized biosphere, issues of co-existence come into play. We can think of
the many organisms co-existing in the same biosphere as being in some kind of
equilibrium whereby the domain of dependence, and/or range of influence, of the
activities of each bio-organism, even if overlapping, engenders some stability in the
population numbers of the particular organism that the biosphere can sustainably
sustain. Thus, this kind of equilibrium can be thought of as a scenario whereby each
living organism will live in tandem with its kind and with members of other species
in a co-existence framework. However, in some instances, there is a flare up of the
population numbers of one species breaking the equilibrium and causing undesirable
effects. For example, a parasite can conveniently survive and grow in a host if the
parasite’s numbers are within the host’s carrying capacity.1 It is important to think
of sustainability in the sense that the environment sustains the life of the organism,
without itself being destroyed. In the case where the parasite numbers become
larger than the host’s carrying capacity, the host then becomes sick (environmental
degradation) and in the extreme situation dies because of the parasite burden.
Incidentally, a dead host often goes down with the parasite, hence terminating the
parasites’ life cycle, such as in the case of malaria. In order for the parasite to
survive and maintain a continuous lineage, it must adapt to its hosts system and
find ways to function within the hosts evading the hosts’ fighting mechanisms, such
as its immune system, and live in tandem with the host, without killing the host,
sometimes changing forms in the process. On the other hand, however, a virus that
kills its hosts may terminate the transmission process in due time. However, even
with the death of the host, the virus’ potential to transmit may not be diminished
but be quite high, as, for example, in the case of the Ebola virus disease (EVD)
[1, 9], which is the disease discussed in the chapter entitled: Modeling Ebola

1The environmental carrying capacity, for any given biological species, is the maximum population
size of that species that the specific environment can sustainably sustain. It is the limiting
population size imposed by the available life sustaining determinants such as food, water, space,
etc., attributable to the particular biological niche or environment.
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Transmission Dynamics with Media Effects on Disease and Isolation Rates, by
the authors Oduniyi, Gibbons, Oh, and Agusto, in [14]. In some cases, though an
organism’s biological make-up may be suitable for the growth of another, that is, it
can serve as a host for the second organism, the carrying capacity of the host may
be such that it cannot support the presence of the second invading organism. In this
situation, inclusion of any quantity of the second organism will serve as a disease to
the host. Since invading parasites can kill their hosts, to ensure continued survival
of the species, the parasites have to find a way of transferring themselves from one
host to another in a process that we now understand as disease transmission.

2 Transmittable Infectious Disease Classification

Parasitic bio-entities that have attained the status of disease agents often possess
mechanism that enables their transfer from host to host. The process of transfer
from one host to another is known as disease spread, and a disease agent that has
the ability to spread within a given host population is said to be an infectious disease
agent. Infectious diseases may be classified into two broad categories: Directly
transmitted and indirectly transmitted infectious diseases. Directly transmitted
infectious diseases will not require a secondary medium to transmit the infection
from one host to another host. In this case it is sufficient that the susceptible
and infected hosts have a physical contact that is long enough for the infection
to pass from the infected host to the uninfected one. In this category, we can
mention human diseases such as HIV/AIDS, Ebola, etc., among directly transmitted
infectious diseases of humans (see [1, 9], as well as the chapters entitled: Modeling
Ebola Transmission Dynamics with Media Effects on Disease and Isolation Rates,
by Oduniyi, Gibbons, Oh, and Agusto, citation [14] and Reducing the global HIV
burden: The importance of uneven exposure to the results of HIV prevention trials,
by Moore, Boily, Donnell, and Dimitrov, as discussed in [7]). Some examples
of directly transmitted diseases of animals are Pseudorabies as discussed in the
chapter [6], entitled Evidence for Multiple Transmission Routes for Pseudorabies
in Wild Hogs, by Levy, Lenhart, Collins, and Stiver, and the fungal pathogen
Batrachochytrium Salamandrivorans as discussed in the chapter [5], entitled,
Identifying the dominant transmission pathway in a multi-stage infection model of
the emerging fungal pathogen Batrachochytrium Salamandrivorans on the Eastern
Newt, by Islam, Gray, and Peace.

On the other hand, indirectly transmitted infectious diseases will require a
secondary medium over which the infection can pass to the next host. These, that
is, indirectly transmitted infectious diseases, can again be divided into two broad
categories: Those that require a living bio-entity to help transmit the infection from
host to host and those that required non-biological entities to help transmit the
infectious pathogen from host to host. This classification becomes fuzzy when the
infectious disease can be picked up by another host because of a visitation to a
location that has been previously contaminated by an infectious host by leaving
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behind infectious diseases agent, and the very disease can be transmitted from
host to host simply because the infected and susceptible individuals are sharing a
common space at the same time. Examples may include Ebola virus disease (as
discussed in [14]), cholera, typhoid fever, and the recent Sars-Cov-2 virus, among
infectious diseases of humans, and as discussed in [5] and [6], Batrachochytrium
Salamandrivorans and Pseudorabies, among infectious diseases of animals. The
latter disease, Batrachochytrium Salamandrivorans, is discussed in the chapter,
entitled: Identifying the dominant transmission pathway in a multi-stage infection
model of the emerging fungal pathogen Batrachochytrium Salamandrivorans on
the Eastern Newt, by Islam, Gray, and Peace. It is worth mentioning that, in the
context of our discussions, some of the directly transmittable diseases are also
indirectly transmittable, transmitted via non-biological entity because they share
same physical space in which contacts can occur, such as the Ebola virus disease
(EVD) or the Batrachochytrium Salamandrivorans fungal infection, to name a few.

We shall also be interested in those infectious diseases that cannot be transmitted
from host to host by mere touch or sharing of the same physical space but must
require a second biological host within which the pathogen must grow and develop
before it is in a form that can be transmitted to the next human, animal, or plant. In
this category, we have malaria, yellow fever, leishmaniasis, etc., among infectious
diseases of humans, which will require a secondary bio-entity called the disease
vector, to help transmit the infection from one host to the other. See the chapters:
[16] entitled, A Multistage Mosquito-Centered Mathematical Model for Malaria
Dynamics that Captures Mosquito Gonotrophic Cycle Contributions to its Pop-
ulation Abundance and Malaria Transmission, by Teboh-Ewungkem, Ngwa, and
Fomboh-Nforba; [15] entitled, Charles Darwin meets Ronald Ross—A population-
genetic framework for the evolutionary dynamics of malaria, by Schneider; [12],
entitled The Effect of Demographic Variability and Periodic Fluctuations on Disease
Outbreaks in a Vector-Host Epidemic Model by Nipa and Allen and [2], entitled
Dynamic Regulation of T cell activation by coupled feedforward loops, by Buri,
Zelleke, and Ndifon. We also have the cassava mosaic virus diseases as plant
diseases, as discussed in the chapter [3], entitled Application of Mathematical
Epidemiology to Crop Vector-Borne Diseases. The Cassava Mosaic Virus Disease
Case, by Chapwanya and Dumont. Because this form of transmission requires
the interaction of at least two living organisms, say humans and mosquitoes, and
development of the pathogen within these interacting living organisms, we will
devote Sect. 4 to discuss further on vector-borne infections.

The pattern for disease transmission can be influenced by the spatial loca-
tion/state of the organism to be infected. So the pattern would be different depending
on whether we have a spatially distributed collection of host to be infected or we
have a spatially distributed collection of hosts and diseases vectors to be infected and
whether or not the infectious agent is spreading through the distributed hosts. Thus
there are several categories of host–pathogen–disease vector mediated interactive
mechanisms: In the one category, the host may be stationary over large time scales
and the vector distributes the infectious disease agent from host to host as in most
plants diseases, as discussed in the chapter [3]. In another category, both the host
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and the vector are mobile and the pathogen is transferred from host to host by the
vector as it follows the host from spatial location to spatial location, as is the case
with human diseases such as malaria. In yet another instance, it is the infected host
that carries the disease agent from one spatial location to other hosts in other spatial
locations as could be the case with infectious diseases of humans such as cholera,
HIV/AIDS, and Ebola virus disease to name but a few. Some of these classes of
disease shall be examined in the chapters that lay ahead cited as [2, 3, 5–7, 12, 14–
16]. As shall be seen, each type of transmission would require a specified type of
modeling assumptions to get the transmission dynamics approximately correct.

Irrespective of the mode of transmission of infectious disease agents from one
host to the other, it is important to note that each living organism has a natural
defense mechanism that is hard-wired into its genetic make-up that allows it to
fight invasion by parasites or death through exposure to toxins. These natural
defense mechanism for single cellular organisms, including most parasites, is
achieved via genetic mutations.2Mutations, when they occur can be advantageous
or disadvantageous to the particular organism whose genetic make-up has mutated.
Mutations are advantageous to the organism if such a mutation renders the bio-entity
fitter and better to survive in the environment. This is probably the situation that has
been observed for most pathogens that develop mutations that make them resistant
to certain chemical substances, such as medicines that are usually useful for the
elimination of the parasite within the host system. An example is the development
of drug resistance by the malaria parasite as well as the development of resistance
of insecticides by some mosquito species. This phenomenon of development of
resistance through mutations is an important evolutionary survival pathway and
therefore constitutes aspects to be considered when studying human diseases and
their potential control mechanism through use of drugs. Thus understanding genetic
mechanism, as discussed in the chapter [15], that can serve as plausible pathways
towards the onset or development of drug resistance by parasites is an important idea
in infectious disease modeling. Mutations that are detrimental to the particular living
organism render such mutated organism less competitive in their biological niche,
and in most extreme cases the mutated variants of the organism do not survive.
This is Darwinism whereby the concept of survival of the fittest gets manifested
through genetic mutations. We shall also consider at least one such model (see [15])
where Darwinism is considered towards a better understanding of the behavior of
the malaria parasite.

2A mutation is a change that occurs in the DNA sequence of a living organism, either due to
mistakes when the DNA is copied or as the result of environmental factors. In general, a mutation
is recognizable as having occurred if there is an alteration of the nucleotide sequence in the genome
of an organism, virus, or extrachromosomal DNA.
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3 Defense Mechanisms Against Infection

Complex and higher order organisms will require more sophisticated defense
mechanism to fight pathogens that can invade them, be it viruses, bacteria, or
parasites, for example. This type of defense mechanism is triggered when the cells
in the organism have the capacity to detect foreign objects in its system and/or
activate or trigger mechanisms to produce other types of cells that can mitigate
the invasion of a foreign object. The production of system cleansing cells (immune
cells) that target invading pathogen cells in order to destroy them, falls broadly under
the category of immune response. A properly functioning immune response system
must have the ability to kick into action once a foreign organism invades the system
(activation), the ability to produce killer cells that would target and kill the invading
organism (active immunization), and the ability to switch off and go quiescent
when the invading substance has been removed (deactivation). The understanding
of the proper mechanisms for the functioning of the immune system in humans
is still evolving. However, several hypotheses have been proposed for the better
understanding of the action of the immune system. One plausible mathematical
characterization would be to consider that the activation of the immune system
happens in a two-step process: production of activator precursors followed by
production of effector cells that then trigger the active immunization response. We
shall consider some models that have this characteristic as well as in [2].

In some cases, the degree of infestation is so severe that the human immune
system is overwhelmed such that in the absence of external assistance, be it
pharmaceutically-related or just supportive management of the infected system(s),
death is expected. For example, in malaria parasite infestation, if the parasite load
in the human host is at manageable levels, the human’s immune system (innate and
adaptive) will effectively control the infection [10], however, in the case of high
parasitemia, massive destruction of the red blood cells by the parasite would mean
that if external interventions are not employed, the human would die of anemia.
When it has been diagnosed that a malaria infection is present, anti-malarial drugs
are normally prescribed to help reduce the parasite load in the patient to levels where
the natural immune system can continue to offer protection to the human. For some
viruses, for example, the Ebola virus disease, help is in the form of supportive care
to help alleviate symptoms while allowing the body’s natural mechanisms to fight.
These supportive care, which may involve increased intake of electrolytes, can help
boost the immune system, giving the affected system an opportunity to recover.
Other supportive mechanisms involve oxygen therapy, treatment/management of
secondary disease-related infections.
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4 Vector-Borne Diseases: Vectors, Pathogen,
and Transmission

Any living organism that facilitates the transfer of a pathogen from one living host
to another living host (perhaps of the same species) will constitute a disease vector.
By disease transmission we shall mean an effective transfer of the disease pathogen
from one host to another. The disease pathogen is the infectious agent, usually
another living organism, that when present within the living tissue of another host
can cause sickness and possibly leading to the death of the infected host.

4.1 The Disease Vector

A living organism can serve as a possible (efficient or effective) disease vector if
it has a complete biological and genetic make-up that requires that, from time to
time, the organism will seek contact with the particular host (perhaps humans).
This contact can be for several biological reasons including the need to derive
determinants that it will require for growth and development. For example, the
Anopheles sp. mosquito’s biological make-up requires that the female interacts
with vertebrate host to draw blood which she needs for the maturation of her
eggs. The interaction between the disease vector and the host may therefore be
driven by a physiological and biological need for growth and development. Though
such interaction can also be to seek shelter, it can be safely assumed that where
the interaction is successful, the disease vector’s chances of survival as a species
are improved as it may live to reproduce. A step towards the study of indirectly
transmitted diseases could be to seek to understand the disease vectors themselves
(as in [8, 11, 13], for example), and as such we may seek to understand and quantify
the developmental and reproductive gains that would accrue to the vector after a
successful interaction with the particular host. For example, a female Anopheles sp.
mosquito that successfully acquires a blood meal from a vertebrate host (such as a
human or animal) and also survives the resting period that she needs after this blood
meal, will lay a batch of eggs that will hatch and eventually mature into more adult
mosquitoes in the future. The reproductive gain in foraging for blood meals, against
when weighed with risk of being killed by predators, is the successful maturation
and subsequent laying of eggs. It is true that in the absence of disease, bio-organisms
that have the appropriate biological and genetic make-up to feed on other organism
will always seek to interact with those organisms. Those that require plants as a
place to develop their next generation will also continue to interact with that plant.

Another step towards the study of indirectly transmitted diseases could be to
seek to understand disease transmission process and possibly quantify the role of
the vector in transmission and seek ways to prevent their success. The chapters by
Teboh-Ewungkem et al. [16], Chapwanya and Dumont [3] and [12], address these.
While [16] focuses on the malaria transmitting vectors’ interaction with humans,
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Table 1 Examples of some disease vectors and the diseases they carry. Note that other interacting
populations may exist, even though not mentioned

Disease vectors Species
Diseases
transmitted Pathogen transmitted

Example Interacting
population

Mosquito Anopheles sp. Malaria Plasmodium sp. Humans and
animals

Aedes aegypti Dengue Dengue virus Humans

Aedes aegypti Zika Zika virus Humans

Aedes sp. &
Mansonia sp.

Lymphatic
filariasis (ele-
phantiasis)

Parasitic filarial worms Humans

(Wuchereria bancrofti)

Tse-Tse fly Glossina sp. Sleeping
sickness

Trypanosoma brucei Humans

Cockcroach Periplaneta
sp.

Bacteria and
viruses

Salmonella, Polio virus Humans

Sand fly Phlebotominae
sp.

Leishmaniasis Leishmania parasites Humans

White fly Bemisia
tabaci

Cassava
mosaic
disease

Cassava mosaic virus Cassava plants

[3] looks at that of the white-flies, their interaction and disease transmission with
the cassava plants. Nipa and Allen in [12] study a general vector–host interaction
model. Table 1 summarizes some disease transmitting vectors and the diseases they
can transmit.

4.2 The Disease Transmission

Disease transmission for indirectly transmitted infections occurs when the pathogen
is passed from the host to the disease vector and again when it is passed from the
disease vector to the host. So, for these kinds of diseases, infection occurs twice:
In the first instance, the vector gets infected by the human host and the disease
then has time to mature within the vector and in the second case a second human
is infected by the vector. For such an infection to occur, there must be a successful
interaction between the disease vector and the host, as well as a successful transfer
of the pathogen from host to vector or from vector to host. Such double infections
would have to occur over distinct points in time that are separated by the length
of time equivalent to the maturation period of the infection in both organisms. In
this regard, one may regard the pathogen as an opportunist that only exploits the
life style of the disease vector, and see the vector as the active conduit that helps
transfer the infection from one human to another. The second step then, towards
a proper understanding of indirectly transmitted diseases of humans would then
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be to seek to understand the indices of transmissibility; that is the quantifiable
measurements of quantities that can be used to ascertain whether or not the disease
will spread between and within the different populations upon introduction of at
least one index case and factors that may facilitate this process, be it environmental
and/or evolutionary, as in the chapters [3, 12] and [16].

4.3 The Disease Pathogen

The disease pathogens in some instances are living organism while others are not,
and, normally could take advantage of the life style of the disease vector and
then could divide its life cycle and developmental pathway so that part of it is in
the host and the other part is in the disease vector. This type of division of life
cycle of the organism can, from an evolutionary standpoint, be beneficial to the
pathogen since at each time it has part of its progeny in two different biological
entities, thereby making extinction difficult. For example, the pathogen that causes
the disease malaria in humans has divided its life cycle such that one part of the life
cycle is in the human and the other part in the mosquito. One major characteristic
of a disease pathogen that has divided its life cycle to be able to survive in different
organism is that only certain forms of the pathogen can grow in the different hosts.
So there is a need to develop in essentially different ways, so as to produce the
forms of the organism that can be transferred from host to the disease vector and
vice versa. For example, the form of the malaria parasite than can be transmitted
from humans to mosquitoes and begin development within the mosquito are called
gametocytes and they are produced in the human. On the other hand, the form that
can be transmitted to humans by mosquitoes and begin development in the human
are called sporozoites and these are produced in the mosquito. Each of the hosts,
humans and vectors, offers a different biological niche to the disease pathogen and
the different parasite forms within these hosts introduce delays in the development
and maturation times of the infection both in the human and in the vector. A second
step, therefore, in the study of indirectly transmitted diseases would be to seek to
understand how the disease pathogen weaves its own life style into the life style of
its vector. In this case we may wish to understand how the disease agent affects the
behavior of both the disease vector and the host as well as factors that allow them
to survive and thrive, as in the chapters [2] and [15].

5 Discussion and Conclusion

The manuscripts published, herein, address different aspects of the diseases dis-
cussed. The results highlight the intricate interconnection between our planet and
infectious diseases. Mother nature plays a role as it can drive seasonal fluctuations
of diseases pathogens, as well as human factors. In [12], Nipa et al. used a stochastic
vector–host indirectly transmissible framework to show how seasonal patterns and
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variability in the demography of the vectors and host affect disease outbreaks for a
general vector-borne disease.

With malaria as a specific example, Teboh-Ewungkem et al. in [16] highlighted
one aspect of indirectly transmitted diseases, which has often been neglected in
mathematical models. They highlighted the fact that for an indirectly transmitted
infectious disease to spread within human populations each disease vector must
interact with two different humans at two different time periods in the following
way: In the first instance, the vector interacts with human A and may pick up the
infection. Then the vector, if it successfully picked the infection, survives through
the incubation period and becomes infectious and then interacts with human B �= A,
it can then pass on the infection to the human B. So, since it is the vector that
actively seeks the humans, the infected vector must interact with at least two
different humans at two different points in time (the length of this time difference
will be compared with the length of the incubation period in the vector to infer
infectiousness of the vector) to propagate the infection into the human population.
On the other hand, many vectors can pick up the infection from one human
simultaneously, which is an important aspect to consider when writing down models
for indirectly transmitted diseases. The authors noted that any realistic mathematical
model should take this aspect into consideration, as well as the fact that transmission
of the infection is contingent on effective interactive contact. Thus, the reasons
why disease vectors of humans are efficient vectors for human diseases are partly
because the need to interact with humans is hard-wired into the physiological make
of the disease vector as the interaction is tied to the survivability of the vectors next
generation. For example, the mosquito, the vector that transmits malaria interacts
with humans because the female adult needs to harvest blood from humans that she
needs for the maturation of her eggs. Understanding and capturing these aspects as
malaria continues to affect millions and kill many, especially children.

Instead of the human malaria disease, Chapwanya and Dumont [3] investigated
the cassava mosaic virus disease that is also transmitted by a vector, in this case
the white fly. The disease affects the cassava plant, a plant that forms an integral
perennial crop serving as an important staple food for millions in the African
continent on a regular basis and as food security against famine, since its roots
can last a long time in the ground. Thus, understanding the interactions between the
vectors that transmit the disease, the disease causing virus and the cassava plants are
essential to the health and survival status of a significant population on our planet,
those that rely on the cassava plant for nutrition. Thus controlling the disease and
minimizing infection transmission is important.

Diseases with multiple transmission pathways can introduce challenges espe-
cially with control. Thus questions about which pathway might be dominant are
important because they will impact how control measures are applied. Moreover,
how these transmission pathways are adapted to the environment, climate, and
our planet is important because a non-dominant pathway may potentially still
serve as a source allowing for the potentials of increased epidemic frequencies
and posing a challenge to disease control. In the chapter [6], where Levy et al.
studied the viral disease, Pseudorabies, in Wild Hog populations in the Smokey



Infectious Diseases and Our Planet 11

Mountains, they illustrated that the disease has multiple transmission routes: In
particular, they highlighted four transmission routes, namely: direct route though
density dependent contacts between wild hogs, or in the process of mating or during
nursing, from mothers to piglets, and the fourth being as a result of stress, with
carriers becoming re-infected. Notice that the first three routes are tied to the life
style and evolutionary need for survival and protection of the next generation. While
the fourth route, linked to stress factors, can be attributed to both natural causing
and man-made factors since stress could be generated as a result of many factors
including overcrowding, raised water levels, food shortage, etc. Regardless of the
transmission route, pseudorabies in wild hogs impacts other domestic and wild
animals in the regions inhabited by the diseased animals and has implications to
our planet. Hence finding ways to curtail the spread of this disease is important for
the ecosystems that interact with these wild hog populations.

In order to find effective and sustainable control measures for diseases with mul-
tiple transmission pathways, we must first understand the pathways and understand
what factors are the greatest propagators of the diseases for specific pathways or
how these pathways may be intricately tied to the demography of the populations
affected. Islam et al., in [5], examined the transmission dynamics Batrachochytrium
salamandrivorans (Bsal), an emerging fungal pathogen that affects the North
American salamander population. As noted in [4], salamanders play a significant
role in our ecosystem as they perform various ecological functions and provide
ecosystem services that benefit the human race. Noted examples include: their
service as pest controllers as they feed on mosquitoes; their service as nutrition
for other larger animals, hence maintaining a balance in the ecosystem; their service
as health indicators of the ecosystem due to their vulnerability and susceptibility
to environmental toxic substances and drought; their role in carbon cycling and
hence link to climate change, and their service as pets for humans, to name a
few. Thus, maintaining a healthy salamander population is tied to the health of
our planet. Thus models to investigate how to prevent and control any potential
Batrachochytrium salamandrivorans (Bsal) infection is important. In this light, the
authors Islam et al., in [5], investigated the invasion potential of the Bsal fungal
infection in a population of Eastern Newts and showed that population density was
a factor in the form of transmission that was dominant. In particular, for small
population densities, they showed that the dominant transmission pathway was the
direct host-to-host contact transmissions, meanwhile for larger population densities,
environmental transmission was the dominant transmission form. Hence, the form
of control should be tied to population density information in order to achieve a
greater success of inhibiting invasion.

Control of the diseases that affect the humans and animals in our planets requires
an understanding of all aspects tied to the disease. For malaria, for example, one
has to view the disease as a three component problem: the parasite component, the
human component, and the vector component, all interacting. The chapter in [16]
captures all three components, with the vector as diseases drivers and the human
serving as components infected by the malaria parasite. The chapters in [2] and [15]
focus on the parasite component in the human. When a parasite infects a human,
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it transforms and change forms with the end goal being survival in the human,
leading to the production of the transmissible forms of the parasites, the mature
gametocytes. However, during such an infection the body establishes a defense
mechanism, with T cells being part of the defense mechanism cells. For malaria
in particular, two types of immune response are reported—innate and adaptive,
developed due to repeated exposure to malaria. In [2], Buri et al. studied the
principles involved in the activation of T cells after a pathogen invasion. Their focus
was on the adaptive immune system T cells and its activation, a process that requires
that at least two signals be received before the T cells can be activated.

Within human host malaria parasites can respond positively to effective phar-
maceutical control measures, if there is no drug resistance to the parasite. This
is a primary method of disease control in a malaria-infected and sick patient. If,
however, the parasite form is resistant to the administered drugs, then there is
a problem and disease control and or eradication is not achieved. Schneider, in
the chapter [15], investigated the dynamics of resistance—conferring mutations
and their resulting impacts on genetic mutation. There, the author shows that the
multiplicity of infection (MOI), defined as the number of super infections during the
course of an infection, mediates the interplay between selection and recombination.

For diseases such as HIV/AID and Ebola, human factors are an integral aspects of
control, especially with no actual cure (even though for HIV, there are medications
that can decrease transmissibility). In [7], the authors highlighted that with the goal
to reduce the global HIV burden, uneven exposure between trial participants in
randomized controlled trials much be considered as they can affect the effectiveness
of the trial. In particular, their results showed that effectiveness decreased with
HIV exposure rate and trial length. In [14], Odunyi et al. studied media effects
on an Ebola model that incorporates isolated and non-isolated individuals, as well
as sexually infectious individuals. They showed that increased media effect is
correlated with lower Ebola disease epidemic peak and this peaks lags behind the
epidemic peak without media coverage.

In all, several factors contribute to the transmission of diseases within our planet.
Some aspects are enhanced by human factors like deforestation, etc., while others
by natural factors such as the climatic aspects of the regions affected by the specific
disease. Overall, understanding how to control these diseases, as well as the actions
we must take, are vital and require an understanding of the underlying process.
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The Effect of Demographic Variability
and Periodic Fluctuations on Disease
Outbreaks in a Vector–Host Epidemic
Model

Kaniz Fatema Nipa and Linda J. S. Allen

1 Introduction

Seasonal changes often impact disease incidence due to the effect on the dynamics
of the pathogen or the host. This is especially true for vector-transmitted diseases
such as malaria, dengue, Zika, Lyme disease, chikungunya, or leishmaniasis, but it is
also true for human and avian influenza, where changes in contacts such as in school
settings or seasonal changes in temperature impact transmission [4, 6, 10, 12, 23, 27,
28]. How climate change will impact seasonal variations in disease prevalence raises
some important public health questions, especially for vector-transmitted diseases
[9, 18]. Mathematical modeling is an important tool to help address some of these
questions.

Deterministic and stochastic epidemic models capture seasonal contact or other
types of seasonal behavior via periodic coefficients [4–6, 8, 11, 12, 16, 19, 20, 23, 26–
29]. Predicting the occurrence of disease outbreaks with periodic environments
is more complex than in a constant environment. Recent studies on deterministic
and stochastic epidemic models with periodic environments have shown that it is
not sufficient to consider the average of the basic reproduction number [4–6, 26].
In this investigation, we extend some of these stochastic studies to a stochastic
periodic vector–host epidemic model, a nonhomogeneous stochastic model, to
investigate how seasonality and demographic variability impact the probability of
a disease outbreak. In particular, a multitype branching process approximation is
used to calculate the probability of a disease outbreak [5]. The approximation
for probability of a disease outbreak is computed from a system of ordinary
differential equations which is derived from the backward Kolmogorov differential
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equations. The approximation shows that the risk of a disease outbreak is periodic
and depends on the particular time at which either an infected vector or an
infected host is introduced into entirely susceptible vector and susceptible host
populations. Numerical examples with periodic transmission rates for vector and
host illustrate the times at which there is the greatest probability of an outbreak
and also demonstrate how these times are related to the peak transmission rates for
vector or host.

2 Vector–Host ODE Model

We develop methods for a simple vector–host model. The host population is divided
into susceptible and infected individuals, where infected individuals either die or
recover. We assume there are no disease-related deaths. The vector population is
also divided into susceptible and infected individuals with births and deaths but
with no recovery and no disease-related deaths. The host model is an SIS model,
with the total population size equal to Ns = S + I , and vector population is an SI
model, where the variables for healthy and infected vectors are denoted by M and
V , respectively, with a total population size Nm = M + V . The host and vector
demography is modeled with parameter b equal to the birth and the natural death
rate of hosts, parameter c is equal to the birth and natural death rate of the vectors,
and γ is the recovery rate of the host. The transmission rate from host to vector is
βm(t) and from vector to host is βs(t) which are time-dependent periodic functions
with the same period. That is,

βi(t) = βi(t + p), i = m, s, t ∈ (−∞,∞), (1)

with period p > 0. The following compartmental diagram (Fig. 1) illustrates the
relation between vector and host.

Written as a system of ordinary differential equations (ODEs), the vector–host
model takes the following form:

Infected

{
İ = βs(t)

Ns
SV − γ I − bI

V̇ = βm(t)
Nm

MI − cV
(2)

Healthy

{
Ṡ = −βs(t)

Ns
SV + bNs − bS + γ I

Ṁ = −βm(t)
Nm

MI + cNm − cM.
(3)

The vector and host population sizes are constant, Ns and Nm, respectively, and
therefore the disease-free equilibrium (DFE) for host and vector is S̄ = Ns and
M̄ = Nm. The existence and stability of a periodic endemic equilibrium could also
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Fig. 1 Compartmental diagram for the vector–host model

be investigated as in [11] but we focus on the dynamics near the DFE to study the
probability of an outbreak in the more general stochastic setting.

In the special case when the transmission rates are constant, βm = β̄m and βs =
β̄s , it is straightforward to compute the basic reproduction number from the next
generation matrix as follows:

R̄0 =
√

β̄mβ̄s

c(b + γ )
. (4)

(See e.g. [25].) When this threshold parameter exceeds 1, a disease outbreak occurs.
A variety of alternate forms for the basic reproduction number have also been
defined known as type or target reproduction numbers [21, 22, 24]. For example,
the square of the basic reproduction number in (4), [R̄0]2, is defined as the type
reproduction number when control measures are applied only to the host or to the
vector populations [13, 21]. Control measures that reduce the basic reproduction
number also reduce the probability of an outbreak.

For nonautonomous systems of differential equations that model epidemics with
time-periodic coefficients, Wang and Zhao [26] and Bacaër and Guernaoui [6]
derived sufficient conditions for existence of the threshold parameter R0 (conditions
(A1)–(A7) in the Appendix). These conditions depend on the linearized differential
system for I and V at the DFE and the monodromy matrix (fundamental matrix)
[26]. The linearized periodic differential equation for I and V satisfies

İ = βs(t)V − γ I − bI

V̇ = βm(t)I − cV .
(5)

For X = (I, V )T , the linear system can be expressed as Ẋ = [F(t)−V(t)]X, where
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F(t) =
[

0 βs(t)

βm(t) 0

]
and V(t) =

[
γ + b 0

0 c

]
. (6)

The systems (2), (3), and (5) satisfy the assumptions (A1)-(A7) (see Appendix).
Only in special cases, does there exist an explicit solution for R0 [16, 17, 26, 29].
However, the value of R0 for the periodic system can be numerically approximated
by considering the system

Ẋ = [F(t)/λ − V(t)]X. (7)

The spectral radius of the fundamental matrix solution of this system, evaluated
at t = p, is unity when λ = R0, i.e., the dominant Floquet multiplier of the
monodromy matrix is unity. In particular, if �F/λ−V (t) is the monodromy matrix
and the spectral radius ρ(�F/λ−V (p)) = 1, then λ = R0 (Theorem 2.1 p. 704,
[26]). To find a numerical approximation for R0, we use an increasing sequence
λi, i = 1, 2, . . . with λi+1 − λi < 0.001 until a particular value λi is reached
whereby a nontrivial periodic solution is obtained satisfying |X(t) − X(t + p)| < ε

for ε sufficiently small and t sufficiently large. We apply this numerical method
in Sect. 5. Another numerical method to compute R0 was proposed by Posny
and Wang [20]. This method approximates the operator eigenvalue problem by a
matrix eigenvalue problem. Klausmeier proposed using a computer algebra system
to compute the Floquet multipliers [14].

3 Nonhomogeneous Process

The ODE model serves as a framework to formulate the infinitesimal transition
probabilities for a time-nonhomogeneous stochastic process. The variables are
discrete-valued and time is continuous, t ∈ [0,∞),

S(t), I (t) ∈ {0, 1, 2, 3, . . . , Ns} and M(t), V (t) ∈ {0, 1, 2, . . . , Nm}.
The ODE rates are used to define the infinitesimal transition probabilities and they
are summarized in Table 1. Denote the changes in the healthy and infected states
for a small interval of time as (�I (t),�V (t),�S(t),�M(t)), e.g., �I (t) = I (t +
�t) − I (t). Let 	(t) be the sum of all the transition rates,

	(t) = βs(t)

Ns

S(t)V (t)+b(I (t)+Ns +S(t))+γ I (t)+ βm(t)

Nm

M(t)I (t)+ c(V (t)+Nm +M(t)).

The transmission rates are time-periodic, as in (1), with period p > 0. Due to the
seasonal variation in the transmission rates, the process is nonhomogeneous in time.
Let Y (t) = (I (t), V (t), S(t),M(t)) and �Y(t) = Y (t + �t) − Y (t). For example,
the probability of a host infection in a small period of time �t is
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P{�Y(t) = (1, 0,−1, 0)|Y (t)} = βs(t)

Ns

S(t)V (t)�t + o(�t).

4 Branching Process Approximation

Approximation of the nonhomogeneous stochastic process near the DFE leads to a
nonhomogeneous multitype branching process in two variables, I (t) and V (t). The
events 1–5 in Table 1 when S(t) = Ns, M(t) = Nm, define a multitype branching
process for I (t) and V (t). The transition probabilities are linear in I (t) and V (t)

with periodic parameters βm(t) and βs(t). For the branching process, we will let the
initial time be τ and the final time be t . Then the transition probability from state
(i, v) at time τ to state (j, k) at time t is defined as follows:

p(i,v),(j,k)(τ, t) = P{(I (t), V (t)) = (j, k)|(I (τ ), V (τ)) = (i, v)}, (8)

where τ < t .
Bacaër and Dads recently verified that the basic reproduction number R0 from

the nonautonomous ODE model with periodic coefficients serves as a threshold for
disease extinction in the multitype branching process [5]. In particular, Bacaër and
Dads proved a general result for a multitype branching process consisting of n types.
Here, we state their assumptions and their results in terms of our system (5)–(6).

Let Pext be the asymptotic probability of disease extinction. Bacaër and Dads
showed that Pext is a p-periodic function of τ , where τ is the time at which an
infected individual is introduced into the population.

Theorem 4.1 (Proposition, p. 36 [5]) Assume the linear periodic system (5)–(6)
satisfies

Table 1 Infinitesimal transition probabilities for the stochastic vector–host model

Event Description (�I (t),�V (t),�S(t),�M(t)) Probabilities

1 Host infection (1, 0,−1, 0)
βs (t)
Ns

S(t)V (t)�t + o(�t)

2 Infected host death (−1, 0, 0, 0) bI (t)�t + o(�t)

3 Host recovery (−1, 0, 1, 0) γ I (t)�t + o(�t)

4 Vector infection (0, 1, 0,−1)
βm(t)
Nm

M(t)I (t)�t + o(�t)

5 Infected vector death (0,−1, 0, 0) cV (t)�t + o(�t)

6 Healthy host birth (0, 0, 1, 0) bNs�t + o(�t)

7 Healthy vector birth (0, 0, 0, 1) cNm�t + o(�t)

8 Healthy host death (0, 0,−1, 0) bS(t)�t + o(�t)

9 Healthy vector death (0, 0, 0,−1) cM(t)�t + o(�t)

10 No change (0, 0, 0, 0) 1 − 	(t)�t + o(�t)
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(H1) F(t) is nonnegative with at least one entry strictly positive for t ≥ 0.

(H2) K(t) = F(t) − V(t) is irreducible for all t ≥ 0.
(H3) F(t) and V(t) are piecewise continuous and p−periodic for t ≥ 0.
(H4) V(t) = (vij (t)) has nonpositive off-diagonal elements, vij (t) ≤ 0, i �=

j, t ≥ 0 and has positive diagonal elements, vii(t) ≥ A > 0, t ≥ 0.

If R0 ≤ 1, then the multitype branching process with the same periodic rates has
an asymptotic probability of extinction Pext = 1 and if R0 > 1, then the multitype
branching process has an asymptotic probability of extinction that is a p−periodic
function Pext satisfying 0 < Pext < 1.

The assumptions (H1)-(H4) hold for the linear periodic system (5)–(6). Most
important, in their proof of this result, Bacaër and Dads verified when R0 > 1
that the solution Pext (t) = p(i,v),(0,0)(τ, t) for the multitype branching process
converges to a unique nontrivial periodic solution Pext of period p > 0 [5].

In verifying Theorem 4.1, Bacaër and Dads applied the forward Kolmogorov
differential equations. The backward Kolmogorov differential equations are often
used in studying the extinction process as they provide a simpler method for
numerically computing the probability of an outbreak. We apply the events 1–5
in Table 1 with S(t) = Ns and M(t) = Nm to derive the backward Kolmogorov
differential equations for the two infectious groups I and V .

Let the initial time be τ with �τ > 0 a small time step and apply the rates from
Table 1. The following relation follows for the infinitesimal transition probabilities:

p(i,v),(j,k)(τ − �τ, t) = βs(τ − �τ)vp(i+1,v),(j,k)(τ, t)�τ

+ (γ + b)ip(i−1,v),(j,k)(τ, t)�τ

+ βm(τ − �τ)ip(i,v+1),(j,k)(τ, t)�τ + cvp(i,v−1),(j,k)(τ, t)�τ

+ [1 − (βs(τ − �τ)v + (γ + b)i + βm(τ − �τ)i + cv)�τ ]

× [
p(i,v),(j,k)(τ, t)

] + o(�τ).

Subtracting p(i,v),(j,k)(τ, t) from both sides, dividing by �τ , and letting �τ → 0,
the backward Kolmogorov differential equations are

−∂p(i,v),(j,k)(τ, t)

∂τ
= βs(τ )vp(i+1,v),(j,k)(τ, t) + (γ + b)ip(i−1,v),(j,k)(τ, t)

+ βm(τ)ip(i,v+1),(j,k)(τ, t) + cvp(i,v−1),(j,k)(τ, t)

− [βs(τ )v + (γ + b)i + βm(τ)i + cv]p(i,v),(j,k)(τ, t).

(9)
We also define offspring probability generating functions (pgfs) for an infected

host or an infected vector and a more general pgf for the entire population of infected
hosts and infected vectors at the DFE. Probability generating functions are power
series representations of random variables. For example, an offspring pgf for each
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of the two types of infectious stages, I and V , is a power series in the variables u1
and u2. It has the general form,

fk(u1, u2) =
∞∑
i=0

∞∑
v=0

Pk(i, v)ui
1u

v
2, ui ∈ [0, 1], i = 1, 2,

where k = I, V are the two types. For the random variable I , the value of PI (i, v)

is the probability that in a small period of time one I individual transmits the
infection to i individuals of the same type and to v individuals of type V . The
infected individual transmitting the disease is also counted as a new infection, as the
individual remains infectious after transmitting the infection. A similar definition
applies to the random variable V . In our model, the probabilities Pk(i, v) are
time-dependent. Also an infected host only transmits the infection to a vector
and an infected vector only transmits to a host. The probabilities come from the
assumptions in Table 1, where S ≈ Ns, M ≈ Nm, and initially either I = 1 or
V = 1.

Let τ be the initial time and let (I (τ ), V (τ)) = (1, 0) or (0, 1), denoted as e1
or e2, respectively. At the DFE, for an infected host, there are only three events that
occur in a small period of time �τ , either recovery or death of the host or infection
of a vector (other events have probability of order o(�τ) in Table 1). The offspring
pgf for the host I , given (I (τ ), V (τ)) = e1, is

fI (u1, u2, τ ) = βm(τ)u1u2 + γ + b

βm(τ) + γ + b
, ui ∈ [0, 1], i = 1, 2. (10)

That is, one infected host recovers with probability γ /(βm(τ) + γ + b) or dies with
probability b/(βm(τ)+ γ + b) or infects a vector with probability βm(τ)/(βm(τ)+
γ + b). Note the term u1u2 means one infected host generates one infected vector
(u2 raised to the power one) and remains infectious (u1 raised to the power one).
Similarly, the offspring pgf for a vector V , given there is one infected vector at time
τ, (I (τ ), V (τ)) = e2, is

fV (u1, u2, τ ) = βs(τ )u1u2 + c

βs(τ ) + c
, ui ∈ [0, 1], i = 1, 2. (11)

That is, one infected vector dies with probability c/(βs(τ )+c) or infects a host with
probability βs(τ )/(βs(τ ) + c).

We define another generating function for all hosts I and vectors V at the DFE,
to obtain differential equations for the probability of extinction. The generating
function for I and V , given (I (τ ), V (τ)) = (i, v), is the following expectation:

G(i,v)(u1, u2, τ, t) = E

[
u

I (t)
1 u

V (t)
2 |(I (τ ), V (τ)) = (i, v)

]
. (12)
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The generating function can be expressed in terms of the transition probability in (8),

G(i,v)(u1, u2, τ, t) =
∑

j,k≥0

p(i,v),(j,k)(τ, t)u
j

1u
k
2. (13)

For j = k = 0, the coefficient of the preceding sum is the probability of extinction,
p(i,v),(0,0)(τ, t) which is also equal to G(i,v)(0, 0, τ, t).

We assume independence of the random variables I and V in the branching
process approximation. This is a reasonable assumption when the size of the
total population is large and the number of infected hosts and vectors is small.
Mathematically, if initially (I (τ ), V (τ)) = (i, v), then the generating function
G(i,v) is the product of i and v generating functions beginning from e1 and e2,
respectively,

G(i,v)(u1, u2, τ, t) = [Ge1(u1, u2, τ, t)]i[Ge2(u1, u2, τ, t)]v. (14)

For initial data (I (τ ), V (τ)) = (i, v), the probability of extinction at time t is given
by

p(i,v),(0,0)(τ, t) = [pe1,(0,0)(τ, t)]i[pe2,(0,0)(τ, t)]v. (15)

The backward Kolmogorov differential equations lead to a simple system of
differential equations that can be solved numerically to compute the probability of
ultimate extinction as t → ∞.

For simplicity, let G(i,v) ≡ G(i,v)(u1, u2, τ, t) and p(i,v),(j,k) ≡ p(i,v),(j,k)(τ, t).
Taking the derivative of G(i,v) with respect to τ in (14) and applying the identities
G(i,0) = Gi

e1
and G(0,v) = Gv

e2
yield

∂Ge1

∂τ
= 1

i[G(i−1,0)]
∑
j,k

∂p(i,0),(j,k)

∂τ
u

j

1u
k
2

∂Ge2

∂τ
= 1

v[G(0,v−1)]
∑
j,k

∂p(0,v),(j,k)

∂τ
u

j

1u
k
2.

Substituting the backward Kolmogorov differential equations (9) into the right side,
applying the identity (14), the offspring pgfs (10) and (11) and simplifying, the
differential equation for Ge1 is given by

∂Ge1

∂τ
= − 1

G(i−1,0)

∑
j,k

[
(γ + b)p(i−1,0),(j,k)u

j

1u
k
2 + βm(τ)p(i,1),(j,k)u

j

1u
k
2

− (γ+b + βm(τ))p(i,0),(j,k)u
j

1u
k
2

]
= −γ − b − βm(τ)Ge1Ge2 + [γ + b + βm(τ)]Ge1

= −(βm(τ) + b + γ )[fI (Ge1 ,Ge2 , τ ) − Ge1 ]. (16)
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Similarly, the differential equation for Ge2 has the form

∂Ge2

∂τ
= −(βs(τ ) + c)[fV (Ge1,Ge2 , τ ) − Ge2 ]. (17)

The differential equations in (16) and (17) are also referred to as the backward
Kolmogorov differential equations for the branching process approximation for I

and V [15]. Differential equations for the time-homogeneous branching processes
are derived in a similar manner (see e.g., [1, 3]).

The differential equations in (16) and (17) do not depend explicitly on u1, u2 or
t . If each of these variables is set to zero, then the probability of extinction from (13)
and (14) in a time period of τ can also be written as

p(i,v),(0,0)(τ, 0) = [pe1,(0,0)(τ, 0)]i[pe2,(0,0)(τ, 0)]v. (18)

The expression (18) is equivalent to (15). Therefore, the asymptotic probability
of extinction can be approximated from the backward Kolmogorov differential
equations (16) and (17).

The partial differential equations in (16)–(17) are ordinary differential equations
when u1 = u2 = 0 and t = 0. Denote Gej

(0, 0, τ, 0) as Pj (τ), j = 1, 2,
respectively,

dP1

dτ
= −(βm(τ) + b + γ )[fI (P1, P2, τ ) − P1] = F1(P1, P2, τ ),

dP2

dτ
= −(βs(τ ) + c)[fV (P1, P2, τ ) − P2] = F2(P1, P2, τ ).

These equations are solved backward in time. Let τk = −k�τ , where �τ > 0. For
example, Euler’s method yields the approximation

Pj (τk+1) ≈ Pj (τk) − �τFj (P1(τk), P2(τk), τk), Pj (0) = 0, j = 1, 2.

For a large positive integer n, τ = −np 
 0 and small �τ , the solution for Pj

converges to a periodic solution on [−np, (1 − n)p]. To graph this solution forward
in time, a change of variable is made to the interval [0, p]. That is, the value Pj (τ +
p) = Pext (0) and the value Pj (τ) = Pext (p), so that the ultimate probability of
extinction when (I (t), V (t)) = ej and t ∈ [0, p] is approximated by Pj (τ + p − t)

and the probability of an outbreak by 1 − Pj (τ + p − t). Then for (I (t), V (t)) =
(i, v), the probability of an outbreak is approximated by

Poutbreak(t) = 1 − [P1(τ + p − t)]i[P2(τ + p − t)]v. (19)

In the special case of constant transmission rates, where the periodic transmission
rates βj (t) are replaced by their time average, there exists an explicit formula for the
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probability of an outbreak [2, 7]. It can be expressed in terms of the average basic
reproduction number [2], that is,

P̄outbreak = 1 − (qI )
i(qV )v, (20)

where the values of qI and qV are

qI = β̄m

β̄m + b + γ

(
1

R̄0

)2

+ b + γ

β̄m + b + γ
, (21)

qV = β̄s

β̄s + c

(
1

R̄0

)2

+ c

β̄s + c
. (22)

In this special case, the stochastic process is a time-homogeneous Markov chain.

5 Numerical Examples

Several numerical examples illustrate the results in the preceding sections. Three
sets of periodic transmission rates are assumed,

βs(t) = β̄s

(
1 + δs cos

(
2πt

p

))
,

βm(t) = β̄m

(
1 + δm cos

(
2πt

p

))
,

(23)

or

βs(t) = β̄s

(
1 + δs cos

(
2πt

p

))
,

βm(t) = β̄m

(
1 + δm sin

(
2πt

p

))
,

(24)

or

βs(t) = β̄s

(
1 + δs sin

(
2πt

p

))
,

βm(t) = β̄m

(
1 + δm cos

(
2πt

p

))
,

(25)

where the period p = 20, δm = δs = 0.9, and the average transmission rates are
β̄s = 0.04 and β̄m = 2. The period represents a length of 1 year. In the numerical
examples, the effects of vector death rate c and host recovery rate γ on probability of



Demographic Variability and Periodic Fluctuations on Disease Outbreaks 25

Table 2 Parameter values
for the vector–host model

Parameter Description Value

Ns Total number of hosts 100

Nm Total number of vectors 1000

β̄s Transmission rate from vector to host 0.04

β̄m Transmission rate from host to vector 2.0

γ Recovery rate of the host 0.05–0.4

b Birth and death rate of hosts 0.02

c Birth and death rate of vectors 0.05–0.4

δs Amplitude of transmission βs(t) 0.9

δm Amplitude of transmission βm(t) 0.9

p Period of transmission rate 20

an outbreak are considered. A summary of the parameter values for the numerical
examples is given in Table 2. The specific parameter values are hypothetical but
biologically meaningful. They are chosen for illustration purposes. For example, a
recovery rate γ = 0.2 implies an average of 5 units of time which is equal to 3
months. The birth and death rates in the host are assumed smaller than in the vector,
b ≤ c, because the population turnover is faster in the vector than in the host.
The average transmission rate from host to vector is chosen to be greater than the
average transmission rate from vector to host, β̄m > β̄s . Also, we use sine and cosine
functions to represent the periodic transmission rates. Such types of functions have
been used in the literature for vector-transmitted diseases [11, 20, 26]. The phase
shift between the two transmission rates in (24) and (25) is chosen to help identify
which of the two transmission rates have the greatest impact and how it affects the
probability of an outbreak. The value of R0 is computed from the solution of (7).

For each numerical example, we compare the multitype branching process
estimate Poutbreak(t) in (19) with the probability of an outbreak in the full nonlinear
nonhomogeneous stochastic model. To simulate the full nonlinear process, a Monte
Carlo approach is used with a time step �t chosen sufficiently small such that
during each time step only one of the 10 events in Table 1 occurs. The Monte Carlo
simulation was checked using a sequence of progressively smaller time steps to
ensure accuracy. For 	(t)�t < 1, each of the events occurs with the probability
given in Table 1, e.g., the probability of host infection is βs(t)S(t)V (t)�t/Ns and
the probability of no change is 1 − 	(t)�t . To approximate the probability of
an outbreak in the full nonhomogeneous stochastic process, 5000 sample paths
are simulated for a given set of initial conditions, (I (t), V (t)) = (I0, V0), t ∈
[0, p]. Each sample path continues until a time T > t is reached when either
I (T )+V (T ) = 0 or I (T )+V (T ) = 50. If the total infected population reaches 50,
then it is assumed that there is an outbreak. The proportion of sample paths q out of
5000 that hit zero is an estimate for the probability of extinction of both I and V and
the remaining proportion 1 − q that reach 50 is an estimate of the probability of an
outbreak. Other threshold values larger than or smaller than 50 were also checked.
Larger threshold values can be applied if the total population sizes are sufficiently
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Table 3 The average basic reproduction number and the probabilities of an outbreak P̄outbreak =
1 − (qI )

i (qV )v are computed for the time-homogeneous Markov process. The probability of an
outbreak depends on the initial number of infected hosts and infected vectors, (i, v) = (1, 0),
(0, 1) or (2, 2) but not on the time of introduction. The average transmission parameters are β̄s =
0.04, β̄m = 2, and b = 0.02

Parameters P̄outbreak

c γ R̄0 1 − qI 1 − qV 1 − (qI )
2(qV )2

0.05 0.1 3.65 0.87 0.41 0.99

0.1 0.1 2.58 0.80 0.24 0.98

0.2 0.1 1.83 0.66 0.12 0.91

0.4 0.1 1.29 0.38 0.036 0.64

0.1 0.05 3.38 0.88 0.26 0.99

0.1 0.2 1.91 0.65 0.21 0.92

0.1 0.4 1.38 0.39 0.14 0.72

0.05 0.05 4.78 0.92 0.425 0.998

0.2 0.2 1.35 0.41 0.075 0.698

large and R0 is not too close to 1. However, if both vector and host population sizes
are small on the order of 100 or less or when R0 is close to 1, then the branching
process approximation may have poor agreement with the numerical simulations.

The probability of an outbreak in the full nonhomogeneous stochastic process is
also compared to the time-homogeneous Markov process, where the transmission
parameters βj (t) are replaced by their time average, i.e., formula (20). Table 3 is
a summary of the average basic reproduction number R̄0 and probabilities of an
outbreak, P̄outbreak, for the time-homogeneous Markov process for a range of values
for the vector death rate c and the host recovery rate γ .

In the first example, the time-periodic transmission rates βs(t) and βm(t) are
modeled with cosine functions that have the same phase, Eqs. (23). Other parameter
values are in Table 2 with c = 0.1 = γ and a basic reproduction number
R0 = 2.58. Graphed in Fig. 2 are the ODE solution and two sample paths of the
nonhomogeneous stochastic process. In the nonhomogeneous stochastic process,
the probability of an outbreak depends on the time of introduction of an infected
host, either t = 0 or t = 10:

Poutbreak(0) = 0.87 and Poutbreak(10) = 0.63.

The effect of the transmission rates βs(t) and βm(t) on the probability of an
outbreak is illustrated in Figs. 3, 4, and 5. In Fig. 3, the transmission rates have the
same phase, Eqs. (23). In Fig. 4, there is a phase shift in host to vector transmission,
Eqs. (24) and in Fig. 5, there is a phase shift in vector to host transmission, Eqs. (25).
In each figure, the transmission rates are graphed in the top two panels and the
periodic probabilities of an outbreak Poutbreak(t) in the bottom two panels. The
branching process estimate is verified by checking five different introductions of
either one infected host or one infected vector at times t = 0, 5, 10, 15, 20 through
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Fig. 2 Graphs of the ODE solution are in the first column and two sample paths of the
nonhomogeneous stochastic process are in the second and third columns. The third column is a
close-up view of the sample paths in the second column. The initial conditions depend on the time
an infected host is introduced, either t = 0 in the top row or t = 10 in the bottom row. Three of the
sample paths illustrate outbreaks but one sample path for the initial condition at t = 10 illustrates
no outbreak. The transmission rates are given in (23) and parameter values are in Table 2 with
c = 0.1 = γ . The basic reproduction number for the ODE model is R0 = 2.58 and the branching
approximation estimates are Poutbreak(0) = 0.87 and Poutbreak(10) = 0.63

a Monte Carlo simulation of 5000 sample paths of the nonhomogeneous stochastic
process. The results from the Monte Carlo simulations show good agreement with
the branching process approximation.

Evident in Fig. 3 is the change in shape of the Poutbreak(t) as compared to the
transmission rates. What might be expected is that the time of the lowest probability
of an outbreak would correspond to the time of the smallest transmission rate and
similarly, the time of the greatest probability of an outbreak with the time of the
largest transmission rate. Instead the extrema of the probability of an outbreak are
shifted left of the extrema of the transmission rates. The graphs in Figs. 4 and 5
also illustrate a shift left that is primarily dependent on whether the host or the
vector initiates the outbreak. If an infected host initiates the outbreak, then the shift
left depends on the transmission rate from host to vector and if an infected vector
initiates the outbreak, then the shift depends on the transmission rate from vector to
host.

In the remaining examples, the host recovery rate γ and the vector death rate c

are varied (Fig. 6 and Tables 4, 5, and 6). Often vector control measures increase
the vector death rate c whereas host prophylactic treatments increase the recovery
rate γ . Figure 6 and Tables 4, 5, and 6 illustrate that increasing c or γ decreases the
value of R0 and the probability of an outbreak, Poutbreak(t). Increasing the number
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Fig. 3 The periodic transmission rates in Eqs. (23) are graphed in the top two panels and the
probabilities of an outbreak Poutbreak(t) in the bottom two panels. Five different introductions of
one infected host or one infected vector at times t = 0, 5, 10, 15, 20 are checked using the Monte
Carlo simulation of the full nonhomogeneous process (Num Sim, circles). The solid black curves
represent host to vector transmission and the probability of an outbreak for initial infection in
the host, whereas the dashed red curves represent vector to host transmission and probability of
an outbreak for initial infection in the vector. The initial conditions are either (I0, V0) = (1, 0) or
(0, 1). The parameter values are the same as in Fig. 2. The basic reproduction number is R0 = 2.58

of infected hosts or vectors that are introduced, also increases the probability of an
outbreak (Fig. 6 bottom panel).

The graphs of the periodic probabilities of an outbreak Poutbreak(t) in Fig. 6 can
be compared to the constant probabilities of an outbreak P̄outbreak. In Table 3, the
values of P̄outbreak = 1 − (qi)

i(qV )v are given for the time-homogeneous Markov
process with initial conditions (i, v) = (I0, V0) = (1, 0) and (0, 1).

In Tables 4, 5, and 6, the average values of the periodic probability of an outbreak
Poutbreak(t),

P̂outbreak = 1

p

∫ p

0
Poutbreak(t) dt,

are recorded for a range of values of c and γ and for the transmission rates in
Eqs. (23)–(25). The maximum and minimum values of Poutbreak(t) and the basic
reproduction numbers R0 are also recorded. Comparing the values of R0 and
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Fig. 4 The same parameters as in Fig. 3 are assumed, except that the transmission rates are given
in (24) with a phase shift in host to vector transmission. The basic reproduction number is R0 =
2.53

P̂outbreak, Tables 4, 5, and 6 columns 3–5, to the corresponding values in the time-
homogeneous Markov process, Table 3 columns 3–5, there are slight differences.
These differences increase when there is a phase shift in the time-dependent
transmission rates, in Tables 5 and 6 versus Table 3. For all transmission rates,
however, the average probabilities of an outbreak P̂outbreak are less than or equal to
probabilities of an outbreak in the homogeneous process. Also, the extrema for the
periodic probability of an outbreak Poutbreak(t) are shifted left of the corresponding
extrema of the transmission rates. For example, in Table 4 the times of the extrema
for the probability of an outbreak range from tM = 15.5−18.6 and from tm =
4.6−8.0, prior to the times of the extrema for the transmission rates at tM = 20 and
tm = 10.

Some general observations can be made from Tables 4, 5, and 6. The times at
which the extrema occur in the probabilities of an outbreak are in closer agreement
to those of the transmission rates when R0 is large and when infection begins with
the host, I0 = 1. This can be seen by comparing the extrema of Poutbreak(t) to the
host to vector transmission rate βm(t). For example, in Tables 4 and 6 for R0 = 4.78
and 4.68 and I0 = 1, the extrema of Poutbreak(t) occur at tM = 18.6 and 19.5 and
tm = 7.9 and 8.0, respectively, while the extrema of βm(t) occur at tM = 20 and
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Fig. 5 The same parameters as in Fig. 3 are assumed, except that the transmission rates are given
in (25) with a phase shift in vector to host transmission. The basic reproduction number is R0 =
2.49

tm = 10. In Table 5 for R0 = 4.79 and I0 = 1, the extrema for Poutbreak(t) occur at
tM = 3.7 and tm = 13.1 while the extrema of βm(t) occur at tM = 5 and tm = 15.

Another observation is related to the effect of increasing the parameters c or γ

on the probability of an outbreak. In Tables 5 and 6, there is a switch in the location
of the extrema when either c or γ increases. As the vector birth and death rate
c increases but γ is fixed, the extrema of Poutbreak(t) switch from dominance by
host to vector transmission to vector to host transmission. A similar switch takes
place if γ increases but c is fixed, but the dominance switches from vector to host
transmission to host to vector transmission. For example, in Table 5, when c = 0.4
the maxima of Poutbreak(t) occur at tM = 18.5 or 17.5 for I0 = 1 or V0 = 1,
respectively. This is a shift left of the maximum of βs(t) which occurs at tM = 20.
A similar type of switch occurs in Table 6 when γ = 0.4. The maxima of Poutbreak(t)

occur at tM = 18.2 or 18.7 for I0 = 1 or V0 = 1, respectively, a shift left of the
maximum of βm(t) which occurs at tM = 20.
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Fig. 6 The probability of an outbreak Poutbreak(t) in (19) and the full nonhomogeneous process
show good agreement when introduction of hosts or vectors at t = 0, 5, 10, 15, 20, based on 5000
sample paths (Num Sim, circles). In the top two panels, c = 0.05, γ = 0.1, and R0 = 3.73. In
the middle and bottom two panels, c = 0.2 = γ and R0 = 1.27. These panels differ in number
of infected vectors or infected hosts that are introduced. Initial number of infected hosts or vectors
is either (I0, V0) = (1, 0), (0, 1), (5, 0) or (0, 5), respectively. The transmission rates are given
in (24) with a phase shift in host to vector transmission and other parameter values are given in
Table 2

6 Conclusion

For a nonhomogeneous, time-periodic stochastic vector–host model, we have shown
that the backward Kolmogorov differential equations for the nonhomogeneous
multitype branching process approximation can be used to derive a system of
differential equations to approximate the asymptotic probability of an outbreak,
Poutbreak(t) for t ∈ [0, p] in (19). The periodic transmission rates lead to a periodic
probability of an outbreak which depends on the number of infected vectors or
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Table 4 The basic reproduction number R0, the average probability of outbreak P̂outbreak, the
maximum (tM,M) and the minimum (tm,m) of the probability of an outbreak Poutbreak(t) for t ∈
(0, 20] for initial conditions (I0, V0) = (1, 0) and (I0, V0) = (0, 1), respectively. The transmission
rates are defined in Eqs. (23) and the remaining parameter values are in Table 2

Parameters P̂outbreak Max (tM,M) Min (tm,m)

c γ R0 I0 = 1 V0 = 1 I0 = 1 V0 = 1 I0 = 1 V0 = 1

0.05 0.1 3.68 0.82 0.41 (18.6, 0.93) (15.8, 0.47) (8.0, 0.62) (5.4, 0.35)

0.1 0.1 2.58 0.75 0.24 (17.7, 0.89) (16.0, 0.31) (7.4, 0.54) (5.5, 0.17)

0.2 0.1 1.84 0.62 0.11 (16.6, 0.81) (16.2, 0.18) (5.9, 0.41) (6.0, 0.06)

0.4 0.1 1.36 0.41 0.039 (15.6, 0.58) (16.3, 0.07) (4.6, 0.25) (7.2, 0.012)

0.1 0.05 3.39 0.84 0.26 (17.8, 0.94) (16.1, 0.33) (7.2, 0.69) (5.8, 0.18)

0.1 0.2 1.94 0.59 0.21 (17.6, 0.80) (15.8, 0.28) (7.6, 0.33) (5.1, 0.14)

0.1 0.4 1.47 0.38 0.15 (17.3, 0.60) (15.5, 0.21) (8.0, 0.14) (4.7, 0.10)

0.05 0.05 4.78 0.88 0.42 (18.6, 0.96) (15.8, 0.48) (7.9, 0.75) (5.6, 0.36)

0.2 0.2 1.35 0.38 0.074 (16.1, 0.59) (15.6, 0.12) (6.1, 0.19) (5.2, 0.035)

Table 5 Similar to Table 4, except that the transmission rates are defined in Eqs. (24) with a phase
shift in host to vector transmission

Parameters P̂outbreak Max (tM,M) Min (tm,m)

c γ R0 I0 = 1 V0 = 1 I0 = 1 V0 = 1 I0 = 1 V0 = 1

0.05 0.1 3.73 0.82 0.40 (3.6, 0.92) (16.4, 0.46) (13.2, 0.63) (6.0, 0.34)

0.1 0.1 2.53 0.74 0.24 (1.9, 0.85) (16.8, 0.31) (12.8, 0.57) (6.4, 0.17)

0.2 0.1 1.70 0.58 0.11 (19.9, 0.71) (17.3, 0.17) (12.0, 0.46) (6.8, 0.05)

0.4 0.1 1.48 0.22 0.024 (18.5, 0.30) (17.5, 0.05) (6.5, 0.17) (7.5, 0.006)

0.1 0.05 3.26 0.84 0.25 (1.9, 0.91) (16.6, 0.33) (12.8, 0.72) (6.4, 0.18)

0.1 0.2 1.91 0.58 0.20 (1.7, 0.73) (17.0, 0.26) (13.0, 0.36) (6.4, 0.14)

0.1 0.4 1.40 0.33 0.13 (1.5, 0.48) (17.3, 0.18) (13.2, 0.14) (6.4, 0.09)

0.05 0.05 4.79 0.89 0.42 (3.7, 0.95) (16.2, 0.48) (13.1, 0.76) (6.0.0.36)

0.2 0.2 1.27 0.31 0.066 (19.7, 0.44) (17.3, 0.11) (12.2, 0.21) (6.7, 0.030)

infected hosts introduced into a susceptible population and on the time at which they
are introduced. It is also shown that the estimate for the probability of an outbreak
Poutbreak(t) is in good agreement with Monte Carlo simulations of the full nonlinear
nonhomogeneous stochastic model. The results of the analysis and the numerical
simulations indicate that the time at which the host or vector transmission is highest
does not coincide with the greatest risk for infection. The times of the extrema,
tM and tm, of the probability of an outbreak are shifted left of the extrema of the
transmission rates. In our model, the shift is smallest when the basic reproduction
number R0 is large and when infection begins in the host.

Some implicit assumptions in the multitype branching process approximation
may limit some of the applications of this method. The assumption of independence
of initial number infected restricts these results to a small number of initial infec-
tions and a large population size. If R0 < 1, the branching process approximation is
subcritical and all solutions approach zero (extinction). But if R0 > 1, the branching
process is supercritical, and solutions either approach zero (extinction) or they
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Table 6 Similar to Table 4, except that the transmission rates are defined in Eqs. (25) with a phase
shift in vector to host transmission

Parameters P̂outbreak Max (tM,M) Min (tm,m)

c γ R0 I0 = 1 V0 = 1 I0 = 1 V0 = 1 I0 = 1 V0 = 1

0.05 0.1 3.46 0.81 0.38 (19.4, 0.93) (0.15, 0.44) (8.1, 0.60) (10.3, 0.33)

0.1 0.1 2.49 0.73 0.21 (19.0, 0.89) (0.19, 0.27) (7.6, 0.50) (10.8, 0.16)

0.2 0.1 1.80 0.60 0.096 (18.4, 0.79) (0.27, 0.14) (7.1, 0.38) (11.6, 0.058)

0.4 0.1 1.30 0.36 0.03 (17.8, 0.52) (0.49, 0.049) (6.6, 0.22) (12.7, 0.012)

0.1 0.05 3.37 0.83 0.24 (19.2, 0.94) (0.61, 0.30) (7.6, 0.67) (11.0, 0.18)

0.1 0.2 1.75 0.55 0.16 (18.7, 0.78) (19.5, 0.21) (7.7, 0.28) (9.6, 0.13)

0.1 0.4 1.23 0.26 0.078 (18.2, 0.46) (18.7, 0.10) (8.0, 0.074) (6.7, 0.058)

0.05 0.05 4.68 0.88 0.41 (19.5, 0.96) (0.43, 0.46) (8.0, 0.74) (10.6, 0.35)

0.2 0.2 1.26 0.31 0.047 (17.7, 0.50) (19.3, 0.071) (7.0, 0.13) (11.2, 0.032)

grow without bound (outbreak). For the supercritical case, which is of interest, the
branching process approximation requires a sufficiently large population size. For
our numerical examples, the host population size Ns = 100 and vector population
size Nm = 1000 are sufficiently large to apply the branching process approximation.
When host and vector population sizes are both less than 100, then the branching
process approximation may not yield a good approximation.

These results have applications to other nonhomogeneous stochastic epidemic
models with periodic transition rates. Seasonality plays an important role in many
infectious diseases, including malaria, dengue, Zika, Lyme disease, chikungunya,
leishmaniasis, and influenza [4, 6, 10, 12, 23, 27, 28]. The roles of host, vector, and
pathogen responses to seasonal cues in the environment are important in defining the
periodic transition rates which in turn can be used to compute the time-dependent
risk of an outbreak by applying a branching process approximation. The effect of
climate change on seasonal variations and prevalence of vector-transmitted diseases
are important to public health [9, 18]. The models and methods presented here,
as well as more complex models, are useful in testing hypotheses and designing
experiments that will help identify the times at which vector control or prophylactic
measures are the most effective.

Acknowledgments We thank the two referees and the editors for their helpful suggestions.

Appendix

The following assumptions are taken from Wang and Zhao [26]. The ODE system
can be expressed as the following system:

ẋi = Fi (t, x) − Vi (t, x) ≡ fi(t, x), i = 1, . . . , 4,

where x = (x1, x2, x3, x4) = (I, V , S,M) and Vi = V+
i − V−

i .
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(A1) The functions Fi (t, x), V+
i (t, x), and V−

i (t, x) are nonnegative and contin-
uous on R × R

+
4 and continuously differential with respect to x.

(A2) The functions Fi (t, x), V+
i (t, x), and V−

i (t, x) are p-periodic in t, p > 0.
(A3) If xi = 0, then V−

i (t, x) = 0.
(A4) Fi (t, x) = 0 for i = 3, 4.
(A5) If I = V = 0, then Fi (t, x) = V +

i (t, x) = 0 for i = 1, 2.
(A6) The DFE is stable if I = 0 = V .
(A7) The spectral radius of matrix V is less than one.

Assumptions (A1)–(A7) hold for the ODE system (2) and (3).
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Evidence for Multiple Transmission
Routes for Pseudorabies in Wild Hogs

Benjamin Levy, Suzanne Lenhart, Charles Collins, and William Stiver

1 Introduction

Invasive species can be defined as living organisms that have established residence
in a non-native ecosystem. Typically an invasive species enters an ecosystem via
translocation, meaning the given species was entered into an ecosystem in which
it did not evolve which in some cases can result in a catastrophe. For instance, the
emerald ash borer is an invasive species in North America that has dramatically
decreased the total population of ash trees on the continent [8]. All taxa, geographic
locations, and even entire classes of animals such as reptiles can be threatened by
invasive species [18, 39]. To make matters worse, the impacts and costs associated
with an invasive species increase as the species becomes established in an area
[16]. With this in mind invasive species are among the world’s most pressing
environmental concerns [33].

European Wild Boar were (Sus scrofa) was brought to the United States in the
sixteenth century and poses a significant environmental threat [45]. A number of
studies have detailed the ecological and economic impacts of the species in the
United States [13–15, 33]. Here we focus on a specific sub-population that exists
in Great Smoky Mountains National Park (GSMNP). The population originated
from a hunting preserve in Hoopers Bald, North Carolina where escaped boars bred
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with pigs of domestic ancestry to produce a hybrid population [21]. We refer to
this hybrid population as wild hogs. This hybrid population exists throughout the
Park and surrounding area, and is the only established population of wild swine in
GSMNP.

The wild hog population has caused significant damage since entering GSMNP.
They are in direct competition with native species, and their rooting behavior
is extremely destructive resulting in altered nutrient cycles and disrupted forest
succession patterns [6, 20]. Moreover, the population is a vessel for a number
of diseases including porcine brucellosis, parvovirus, leptospirosis, toxoplasmosis,
and pseudorabies [9, 17, 32]. Some are a concern for wildlife and pets, such as
parvovirus and pseudorabies, while others are a concern for humans. Toxoplasmosis
is a parasitic infection that is the leading cause of death attributed to foodborne
illness in the United States [11]. Both brucellosis and leptospirosis are bacteria that
can spread to humans that have been in contact with wildlife [9, 10]. Since these
diseases impact humans and can even lead to death, understanding how they spread
in reservoir populations such as wild hogs is important.

Because of their negative impacts, GSMNP started a control program in the late
1950s. Through the control program traps are set within Park boundaries to collect
wild hogs, and they are also actively sought out by Park rangers in the backcountry.
In either case, once a ranger locates a hog they are shot and left to decay in the Park.
Throughout the paper we refer to these activities as “hunting,” and thousands of
hogs have been eliminated from GSMNP in this manner. This removal program has
successfully limited the population and produced a significant amount of useful data
[24]. One result of the control program was the formation of a disease monitoring
program for wild hogs in the Park [9, 37].

Wild hogs spread diseases that have serious implications for a large number
of domestic and wild animals throughout the region, especially the pseudorabies
virus (PRV). Clinical signs of PRV and impacts have been well documented in
commercial hog facilities but are less understood in wild hogs [28]. Since North
Carolina is one of the largest producers of pork in the United States, commercial
pig farmers and the state government are concerned about the potential presence
of pseudorabies in the state. Beginning in 2001, GSMNP partnered with the North
Carolina Department of Agriculture and Consumer Services (NCDACS), the Ten-
nessee Department of Agriculture (TDA), and the US Department of Agriculture,
Animal and Plant Health Inspection Service, Veterinary Services (APHIS) to begin
monitoring wild hogs in the Park for disease. Specifically, 42.5% of hogs that were
shot by rangers from 2001–2013 were tested for pseudorabies and brucellosis, as
they pose the greatest threat to humans and the domestic pig industry [9]. Though no
hogs have tested positive for brucellosis, the population has become a reservoir for
pseudorabies. From 2001–2004, all blood samples taken from hogs shot in GSMNP
tested negative for pseudorabies. However, hogs began testing positive for PRV
starting in 2005 with the prevalence increasing steadily reaching as high as 56.9%
(see Fig. 1 and Table 1) [9, 30, 37]. The total number of hogs that were caught as
part of the control program and tested for PRV ranged from as few as 58 in 2012 to
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Fig. 1 Map depicting the 42.5% of hogs shot as part of the control program that were tested for
pseudorabies from 2001–2013. Although the disease is concentrated in the Western half of the
Park, a small pocket of disease is present in the far eastern regions

Table 1 Results from ongoing disease survey of wild hogs in GSMNP from 2005–2013. Though
a relatively small number of samples were taken each year, a general trend of increasing prevalence
can be seen in the data [30]

Year 2005 2006 2007 2009 2009 2010 2011 2012 2013

Blood samples 150 208 64 106 155 105 90 58 69

Positive for pseudorabies 2 4 10 9 9 4 19 33 20

Prevalence 0.013 0.019 0.156 0.085 0.058 0.038 0.211 0.569 0.290

as many as 208 in 2006. The highest percentage of hogs that were tested was 82%
in 2006, while the lowest percentage was 22% in 2007.

Since PRV was first identified in the early twentieth century, a considerable
amount of research has been conducted to study the impact of the disease on pigs
[19, 27, 34–36, 43]. Results from such studies have shown that venereal transmission
is the primary way the disease spreads in domestic pig populations [29, 36]. Several
modeling studies have considered the experimental information. For instance, a
stochastic susceptible–infected–recovered (SIR) model was used to consider the
spread of PRV in domestic pigs, the results of which confirmed the transmission
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routes posed by experimental work in [44]. While disease dynamics in domestic pigs
is well understood, important disease characteristics in wild hogs remain unclear.
One thing that is known about the transmission of pseudorabies in wild hogs is
that venereal transmission alone cannot account for the observed prevalence of the
disease in the United States [41]. This implies more than one transmission route
may exist in wild hogs. While some of the aforementioned studies will be discussed
further in the next section, we mention them here to highlight the need for additional
research.

Disease in wildlife is only one feature in the broader One Health concept. The
health of our planet is linked with our environmental, wildlife, domestic animal,
and human health as well as the use of resources. The health (and ultimate survival)
of any one group is connected to the health of the others. Studying a disease in
wild hogs is an issue for the health of our planet. Mathematical models can aid in
understanding and managing biological systems.

Mathematical models can be used to better understand a biological system
including providing support for transmission routes of infectious diseases. For
example, [4] used an ODE model to show that aerosol transmission is the more
dominant transmission route in pandemic influenza compared to contact transmis-
sion, which can be used to reduce, and guide control of, future outbreaks. In a second
example researchers were able to understand spatial patterns of the Ebola virus
disease in humans only after incorporating bat movement patterns in their model
[23]. In another study, collected data were compared to various model structures for
cholera and the resulting information was used to determine the most accurate model
formulation [22]. When considering transmission routes for lumpy skin disease in
cattle, a mathematical model was used to determine that indirect transmission is
more likely to exist than direct transmission [26]. Another example of modeling
aiding the understanding of disease dynamics is when researchers in [7] found
that empirical results related to avian influenza could only be reproduced after
adding indirect transmission via environmental contamination, providing support
for this transmission route. Finally, modeling was used to show that preferential
sexual transmission could not reproduce observed pseudorabies prevalence in the
United States, which has implications for the spread of the disease in domestic
pig populations [41]. While the mathematical formulation, available data, and goal
of each model varied, they all shared the commonality of using mathematical
modeling to better understand transmission routes and observed disease dynamics
of an infectious disease. It is the aim of this study to model pseudorabies in the wild
hog population within GSMNP in order to better understand transmission routes,
consider how pseudorabies is spreading throughout GSMNP, and improve the
general understanding of disease dynamics in wild hogs, which is vitally important
to the viability of domestics pig production [29]. To this end, we extend an existing
population model for wild hogs that is discrete in time and space to include disease
dynamics to address these issues.

Each of the models mentioned in the previous paragraph is continuous in time
and/or space. In fact, most ecological models found in the literature are continuous
in time and/or space, as seen in the review presented by Arino and Van den Driessche
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[3] and further supported in [2]. Populations that have distinct movement, birth,
or growth patterns in different times of the year may be represented more clearly
with models that are discrete in time and possibly in space. For an introduction to
population modeling in discrete time, see the books by Allen and Edelstein-Keshet
[1, 12]. Note that in a model with continuous time (ordinary differential equations),
all of the events or actions occur at the same time, but the order of events is crucial
in models with discrete time [5]. In the modeling in this paper, the order of events
for actions of hogs is important, and data in different regions of the Park dictate the
use of discrete spatial components.

In addition to better understanding transmission routes and important dynamics
of pseudorabies, this study also contributes to the literature on discrete models.
In the sections to follow we describe what is known about disease dynamics of
Pseudorabies in wild hogs, extend a discrete population model to include disease
transmission, explain how we estimated parameters for the model, and discuss
results that support the existence of multiple transmission routes for PRV in wild
hogs.

2 Disease Dynamics

Pseudorabies, also known as Aujeszky’s Disease, was first identified in 1902. This
herpes viral infection is highly contagious in domestic pigs as it leads to respiratory
illness in adults and high mortality rate for piglets [29]. After an initial shedding
period of about 7 days, adults recover but carry the disease for life in a latent form.
Stress can occasionally cause recovered individuals to begin shedding the disease
and therefore become infectious once again [29]. Thus all hosts who contract PRV
will test positive for life. The decrease in birthrate caused by the disease poses a
serious threat to the domestic pig industry. Since the US pig industry became PRV-
free in 2004, wild hogs represent the reservoir for the disease which means there is
vested interest in limiting the spread of the PRV in wild hog populations [29, 41].
Although the disease has been well studied in domestic pigs due to its impact on
production, there have been few studies on the effects in wild hogs. What is clear is
that the disease has less of an impact on wild hogs as it does not decrease birthrates
and instead causes benign symptoms [27, 41]. However, in addition to the impact
on domestic pigs, the disease can be contracted by other animals such as bear and
coyotes, and is especially deadly in canines [9].

The primary transmission route in domestic pigs is venereal transmission,
though it is possible that several other less significant transmission routes exist
[29, 36]. However, the disease acts differently in populations of wild swine. Possible
transmission routes for pseudorabies in wild hog populations include nose-to-nose
or direct contact, venereal transmission, reinfection of a recovered carrier due
to stress during which individuals become infectious again, and transmission to
piglets during nursing [19, 29, 36, 41]. While the specific transmission route(s)
are unknown, a recent study determined that density-dependent transmission can
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account for the reported seroprevalence found in the United States, but venereal
transmission alone cannot [41]. Because of this, we consider each aforementioned
possible transmission route in our model of the disease and use available data to
determine which transmission route(s) are most likely to exist in the population.
Throughout the paper we use the term “direct transmission” in place of “density-
dependent transmission.” Density-dependent transmission uses the concept that
contact rates will increase with population density and thus so will transmission
rates. Direct transmission, therefore, encapsulates several transmission types includ-
ing nose-to-nose and venereal transmission.

3 Modeling Pseudorabies

Our approach is to extend an existing metapopulation model to include disease
dynamics for wild hogs in GSMNP. The metapopulation model is described in
detail in [24]. Here we summarize the model and highlight key features. Since oak
acorn abundance is believed to be the main driver of wild hog population dynamics,
detailed overstory vegetation information from [25] plays an important role in the
model. The data were used to partition GSMNP into 8 discrete spatial regions and
were integrated with yearly oak acorn data to populate each region with food in
the form of oak mast and other soft mast such as tubers and roots [31]. We use
the general term mast to refer to the sum of hard mast (acorns) as well as soft
mast (tubers and roots) that exist in our model. Calories available in each region
decline throughout the year, the specific values of which are used to adjust caloric-
dependent parameters such as survival rate, movement rate, and birthrate. Since
Park rangers actively hunt the population and have detailed records of this activity,
we also model this activity. Of the 8 regions in the model, 6 of them are inside Park
boundaries where rangers actively hunt, while 2 represent exterior regions where
hogs will not be subject to the control program. The model itself is also discrete
in time with 1-month time steps. After each time step hogs move between regions
based on the given season and food availability. Parameter values were estimated
using an optimization scheme that identified the set of values that most closely
matched the hunting data in [30]. The resulting model integrates what is known
about the population with available data to accurately represent population-level
wild hog births, death, and movement in GSMNP, and is therefore well suited to
model the spread of pseudorabies in the Park. The order of events in the spatially
and temporally discrete metapopulation model is described in more detail below.

Since the disease has an infectious period of 1 week, we first reduced the
metapopulation model described previously from a 1-month time step to a 1-week
time step. Since the movement rates cannot simply be scaled from a monthly value
to a weekly value, the authors decided to re-estimate all population parameters in
the same manner described in [24], the only difference being the size of the time
step and implementation of the hunting rate. In [24], authors used a 1-month time
step and varied hunting rates by region and year, whereas here we use constant
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Table 2 A description of estimated parameters found in the pseudorabies model with a time step
of 1 week

Name Value Description

Surv0 0.96 Survival factor if there is no mast

SurvMax 0.99 Survival factor as mast approaches a maximum level

BR0 0.10 Percent of population that give birth and whose piglets

survive given no mast

BRMax 0.13 Percent of population that give birth and whose piglets survive

as mast approaches a maximum level

Move0 0.14 Percent of feral hogs moving with no available mast

MoveMax 0.01 Percent of feral hogs moving as mast approaches a maximum level

HH 0.09 On-season hunting rate, from January through May

HL 0.06 Off-season hunting rate, from June through December

on- and off-season hunting rates each year and a 1-week time step. Parameters
estimated for the model with a 1-week time step are shown in Table 2. The resulting
model with a time step of 1 week almost identically mimics the model with a time
step of 1 month described in [24].

We consider three classes within the population: Susceptibles (S), Infected (I ),
and Carriers (C). Susceptible individuals have never contracted the disease and are
vulnerable to infection. Infected individuals are those who are symptomatic and
infectious. Carriers have recovered from the disease and are no longer infectious but,
since they still carry the virus in a latent form, could re-enter the infected class again
at rate φ, at which point they would once again be infectious and able to transmit the
disease [42]. Since each region has a different total area and will contain different
numbers of individuals in a given time step, we use a different transmission rate
in each region, denoted by βr . These βr values account for all direct transmission
between infecteds and susceptibles. Since βr includes venereal transmission, we
increase this rate by factor γ during mating season under the assumption that there
is increased contact between individuals during this time [36].

We carry out the same order of events as are described in [24], with the addition
of partitioning the population into three classes and a disease transmission event
taking place after births and before movement. The model from [24], therefore,
takes the following form:

1. Update the mast for the month since many of the parameters that govern feral
hog dynamics in GSMNP are driven by hard mast availability [38, 40]. The total
mast Mr,t in region r at time t is a function of the hard mast (HMr,t ) and soft
mast (SMr ) in the given region. Specifically, hard mast is set yearly in August
by the mast index value for the given year (MIr,y) and then declines throughout
the year as a result of decay (δ) and consumption (CP ) by the population in the
given region (Pr,t ):
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HMr,t+1 =
{

MIr,y m = 8
((1 − δ)HMr,t − CP Pr,t )

+ m �= 8,

Mr,t = HMr,t + SMr. (1)

Note that the rate of decay (δ) was scaled by 1/4 to account for the new weekly
time step.

2. Hogs are hunted in each region and time step (Hr,t ) at a rate determined by the
season. The Park applies a higher rate early in the year (HH ) and a lower rate
later in the year (HL):

Hr,t =
{

HH · Pr,t m = 1 − 5,

HL · Pr,t m = 6 − 12.

3. Compute the portion of the post-hunted population that survives in each region
(Survr,t ). We do this before adding births because only surviving adults can
reproduce. We record the number of surviving susceptibles (SS), surviving
infected (SI ), and surviving carriers (SC) that move on to the next event:

Survr,t = F(Mr,t , Surv0, SurvMax,Mh),

SSr,t = Sr,t · (1 − Hrate) · Survr,t ,

SIr,t = Ir,t · (1 − Hrate) · Survr,t ,

SCr,t = Cr,t · (1 − Hrate) · Survr,t ,

where the function F scales the given parameter based on food availability in the
given region and Hrate represents either the higher level hunting rate or lower
level hunting rate depending on the month.

4. If the month is January, we compute the number of births (BRr,t ) based on the
percent of the population that is a mature female (BF ), average litter size (LA),
surviving population, and mast supplies. A percent of piglets (α) will contract a
latent form of the infection via nursing and become members of the carrier class:

BRr,t =
{

BF · LA · F(Mr,t , BR0, BRMax,Mh) m = 1
0 m �= 1,

SSr,t = [Sr,t · (1 − Hrate) · Survr,t · (1 + BRr,t )]
+ [(Ir,t + Cr,t ) · (1 − α) · (1 − Hrate) · Survr,t · BRr,t ],

SIr,t = Ir,t · (1 − Hrate) · Survr,t ,

SCr,t = Cr,t · (1 − Hrate) · Survr,t

+ [(Ir,t + Cr,t ) · α · (1 − Hrate) · Survr,t · BRr,t ].
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5. Disease transmission:
Wild hogs in the Park mate during September which means there will be
more sexual contacts during this month resulting in an increased contact-based
transmission rate by a factor of γ :

βr =
{

β̂r m �= 9
γ β̂r m = 9

Additionally, carriers become reinfected at rate φ and hogs can contract the
disease as a result of contact with infected individuals:

SSr,t = SSr,t e
−βrSIr,t ,

SIr,t = SSr,t (1 − e−βrSIr,t ) + SCr,tφ,

SCr,t = SCr,t (1 − φ) + SIr,t .

6. Perform movement using either general movement or seasonal movement, which
is dependent upon the time of year. During seasonal movement hogs moving
up in elevation during the warmer months, down in elevation during the colder
month. In the absence of seasonal movement, hogs are more likely to leave a
region if there is inadequate food and less likely to leave a region if food is
abundant. This is carried out in our disease model exactly as described in [24] by
applying movement rates equally to each class. The total population of each class
that exist in each region at the beginning of the following time step (Sr,t+1, Ir,t+1,

and Cr,t+1) are recorded at the end of this event as determined by the number of
individuals that move into each region.

Pseudorabies was first detected in GSMNP in region 4 in February of 2005. We,
therefore, initialize the model in 2004, introduce 5 infected individuals into region
4 in February 2005, and run the model until 2013, which is the most recent year of
which we have disease data. The pseudorabies-related data and disease parameter
estimation process are detailed in the next section.

4 Parameter Estimation

Our pseudorabies model contains the following parameters that do not have known
values : β1, β2, β3, β4, β5, β6, α, γ , and φ. Regions 7 and 8 border regions 4 and
5, are exterior to the Park, and their purpose is to mimic reality by providing areas
where the hog population will not be subject to the control program. Since these
regions were created using the same area and overstory composition as regions 4
and 5, we assume that β7 = β4 and β8 = β5. The list of all unknown parameters is
described below in Table 3.
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Table 3 A list and description of new parameters and variables found in the pseudorabies model

Parameter Description

βr Direct transmission rate in region r for r = 1, . . . , 6

α Percent of piglets that become carriers as a result of

nursing from mothers that carry the virus

γ Percent increase in transmission rate during mating season

φ Percent of carrier class that becomes reinfected at each time step

To estimate parameters we formulate an optimization problem to provide
parameters that best match available prevalence data from [30]. Moreover, since the
specific transmission routes that exist in the population are unknown as discussed
previously, we use the available disease data to determine which transmission routes
are most likely to exist in the population. We achieve this by testing all possible
combinations of transmission routes in the model and seeing which combination
best matches the data.

Park officials began sampling hogs that were shot as part of the control program
for disease in 2001 and the first case of pseudorabies was detected in region 4 in
February 2005 [9]. The specific number of samples and geographic location of tests
varied greatly each year. The total number of individuals tested in a given year range
from as little as 64 to as many as 208 (see Table 1), and the vast majority of tests
were conducted on hogs found in regions 4 and 5 with very few hogs tested from
other regions (see Table 4).

To obtain the parameter values that produce hunting prevalence levels that best
match the available hunting prevalence data, we use data from 2005 through 2013
and implement an optimization scheme that relates model output with available
data. We only include data from regions 4 and 5 as the majority of tests were
conducted on hogs found in these regions. Additionally, since a consistent number
of disease tests were not conducted year-to-year within regions 4 and 5, we
weight prevalence values by the number of disease samples taken in each region.
Multiplying prevalence by the number of observations produces the estimated
number of seropositive hogs that were shot in from each region. With this in mind
the optimization procedure is essentially trying to reproduce the number of hogs
that were shot in each region that tested positive for pseudorabies. By only including
data from regions 4 and 5 while also weighting prevalence values by the number of
samples taken, our parameter estimates will best approximate the most reliable data.

Let sr represent a vector containing the number of hogs sampled for disease in
region r , let HIr represent the vector containing yearly prevalence of infected hogs
in the model hunted from region r , and let HI ∗

r represent the vector containing
yearly prevalence of infected hogs from region r in the hunting data. Each of these
vectors is 1 × 9 as the data we are using are from 2005 through 2013. Since both
recovered and actively infected hogs will test positive for the disease, the prevalence
data include individuals from both the infected and carrier classes. Thus,
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Table 4 Blood samples, detected cases, and resulting prevalence for pseudorabies in each region
of GSMNP

Disease samples from Region 1

2005 2006 2007 2008 2009 2010 2011 2012 2013

Total blood samples 0 3 1 1 6 1 7 5 1

Detected cases 0 0 0 0 0 0 1 2 1

Prevalence 0 0 0 0 0 0 0.14 0.4 1

Disease samples from Region 2

2005 2006 2007 2008 2009 2010 2011 2012 2013

Total blood samples 0 0 0 0 0 0 0 33 10

Detected cases 0 0 0 0 0 0 0 1 0

Prevalence 0 0 0 0 0 0 0 0.03 0

Disease Samples from Region 3

2005 2006 2007 2008 2009 2010 2011 2012 2013

Total blood samples 0 0 0 0 0 25 24 0 4

Detected cases 0 0 0 0 0 1 1 0 0

Prevalence 0 0 0 0 0 0.03 0.04 0 0

Disease samples from Region 4

2005 2006 2007 2008 2009 2010 2011 2012 2013

Total blood samples 19 49 71 39 26 36 53 63 35

Detected cases 2 4 6 2 1 3 11 15 12

Prevalence 0.11 0.082 0.085 0.052 0.038 0.083 0.21 0.24 0.34

Disease samples from Region 5

2005 2006 2007 2008 2009 2010 2011 2012 2013

Total blood samples 0 48 53 34 78 19 31 50 19

Detected cases 0 1 2 2 8 1 4 16 5

Prevalence 0 0.021 0.038 0.059 0.10 0.053 0.13 0.32 0.26

Disease samples from Region 6

2005 2006 2007 2008 2009 2010 2011 2012 2013

Total blood samples 10 13 11 35 26 16 18 22 21

Detected cases 0 1 2 7 4 2 0 1 2

Prevalence 0 0.077 0.18 0.2 0.15 0.13 0 0.045 0.095

HIr,t = Ir,t + Cr,t .

The optimization problem can be stated as

Minimize
x

J (x) = ||s4 · HI4 − s4 · HI ∗
4 ||2

||s4 · HI ∗
4 ||2 + ||s5 · HI5 − s5 · HI ∗

5 ||2
||s5 · HI ∗

5 ||2 , (2)

where x represents all possible values of β1, β2, β3, β4, β5, β6, α, γ , and φ that
are included in the model, and each term represents the relative error in the given
region.
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Additionally, we require that the parameters fall within a reasonable range. As a
result, the above problem is also restricted by the following linear constraints:

0 ≤α ≤ 1

0 ≤φ ≤ 1

γ ≥ 1.

(3)

As stated our model contains at least 6 unknown direct transmission rates (βr ),
which can increase to as many as 9 if all transmission routes are included in the
model. To reduce the number of parameters used in the estimation process we
also consider scaling transmission rates obtained from region 4 for use in other
regions by scaling β4 by the relative area of other regions. We chose to use the value
estimated for region 4 as this region contains the most removals and therefore has
the most reliable data. Specifically,

βr = β4
A4

Ar

,

for r = [1, 2, 3, 6, 7, 8], where Ar represents the area of region r . This relationship
will produce larger direct transmission rates in regions with a smaller area than
region 4. This approach allowed us to use a unique transmission rate for each region
while avoiding overfitting the model by reducing the number of parameters to be
estimated.

To solve the above optimization problem we used the Global Optimization Tool-
box from MATLAB. Specifically, we used the fmincon local solver in coordination
with the MultiStart Algorithm. The fmincon solver is a derivative-free solver that
accepts smooth, nonlinear objective functions, and enforces the linear constraints
given in (3). The MultiStart Algorithm generates uniformly distributed random
starting points within the given bounds and passes them one-by-one to the local
solver, fmincon, which attempts to find a local basin of attraction relative to each
given start values. Since fmincon only converges on local minimums, the MultiStart
Algorithm allowed us to test a large number of evenly distributed starting points
to ensure we identified the global minimum. In all instances we used 100 starting
points.

5 Results and Discussion

We estimated parameters by implementing the aforementioned optimization scheme
with the objective function in (2), which only includes data from regions 4
and 5. We also consider all combinations of transmission routes. This process
included estimating 6 transmission rates (one for each region), as well as estimating
transmission rates for just regions 4 and 5 and scaling β4 for use in other regions. To
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Table 5 Summary of parameters estimation results where different combinations of transmission
routes are considered. The objective function value used in the optimization scheme is given in
the column labeled “Regions 4 and 5,” while the performance of the model on the entire dataset
is seen in the right most column. The top half of the table displays results where a transmission
rate was estimated for each region. The bottom half shows results where transmission rates were
only estimated in regions 4 and 5 and were scaled for use in other regions, resulting in fewer total
parameters

Number of betas Relative error

6 (per region) 2 (scaled)
Trans. routes
included

Total # of
variables Regions 4 and 5 Aggregate all data

� D 6 0.99 1.03

� D , I 7 1.02 1.17

� D, V 7 0.62 0.69

� D, R 7 0.96 0.72

� D, I, V 8 0.62 0.69

� D, I, R 8 0.32 0.63

� D, V, R 8 1.16 0.90

� D, I, R, V 9 0.32 0.65

� D 2 1.96 1.05

� D, I 3 1.06 1.05

� D, V 3 1.18 0.88

� D, R 3 0.84 0.67

� D, I, V 4 1.06 1.05

� D, I, R 4 0.76 0.65

� D, V, R 4 0.44 0.50

� D, I, R, V 5 0.44 0.50

Transmission routes: D direct transmission (included in all cases), I increased contact during
mating season, V vertical transmission, R carriers becoming reinfected

view how well the estimated parameters match the entire dataset we also calculated
the relative error in the entire Park. We did this for each parameter combination by
aggregating available data in all regions and using the calculation seen in each of
the terms in (2). All results are presented in Table 5. Notice that there are instances
where the relative error in the entire Park is lower than in just regions 4 and 5, such
as in rows 4 and 7. This can be explained by the fact that data from all regions
were aggregated in these calculations. In these cases the number of infections in
one region was too low while the total infecteds in another region were too high so
that when the data were combined across all regions they balanced out to produce a
lower relative error.

The first characteristic we notice is how direct transmission alone cannot account
for the prevalence seen in the Park as evidenced by the objective function value
for both instances of D only in Table 5. This is also seen visually in Fig. 2
where model output is plotted against the data using parameters estimated by only
considering direct transmission in each region. The right column in Fig. 2 displays
model output plotted against the data, both of which have been weighted by the
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Fig. 2 Model output from estimating a direct transmission rate in each region and no additional
transmission routes. The right column displays model output and data that have been weighted by
the number of observations in the given year. The left column displays unweighted data and model
output

number of observations in the given year. The left-hand column displays unweighted
model output and data. Although the weighted model output matches a few of the
intermediate points resulting in a moderate fit, the earlier and later years do not fit
well and the prevalence in the model does not have the increasing trend seen in the
data. As a result, the overall fit of the data is poor in this case. This is especially
evident in the unweighted output and both graphs representing the fit relative to the
whole park. These results do not agree with previous findings that direct density-
dependent contact alone could account for seroprevalence of pseudorabies seen
in wild swine populations throughout the USA [41]. This discrepancy could be
explained by the scale at which the two studies were conducted, which implies local
population dynamics may play an important role in determining disease dynamics.

Including each subsequent transmission route individually does generally reduce
the objective function value compared to just the contact-based transmission.
Although the reinfection transmission route does not perform well with just contact-
based transmission, the objective function value decreases significantly when
reinfection is paired with at least one additional transmission route. Furthermore,
the lowest objective function values include reinfection as a transmission route. As
a result, individuals becoming reinfected due to stress may be the most viable addi-
tional transmission route that exists in this wild hog population, which agrees with
the relatively sparse pseudorabies literature [29]. However, we see conflicting results
when it comes to the transmission routes of vertical transmission and increased
contact during mating season. While including an increase in the transmission rate
during mating season with reinfection produces the lowest objective function value
when estimating six transmission rates, when estimating two transmission rates the
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Fig. 3 Model output from estimating a different transmission rate in each region, and including
increased contact during mating season, some individuals becoming reinfected, and vertical
transmission from mothers to piglets

smallest objective function value is obtained when including vertical transmission
with reinfection. This implies that there may be an important interaction between
transmission routes since the impact of some transmission routes in spreading the
disease appears to be dependent on the inclusion of others in our model. Until this
inconsistency is resolved we assume that each transmission route plays some role
in spreading pseudorabies. Objective function values when all transmission routes
were included in the model are seen in Table 5, rows 8 and 16, and model output
using these parameters is shown in Figs. 3 and 4. Parameter estimates used in these
two figures are shown in Tables 6 and 7. We note that in Table 6 the vertical
transmission rate α is essentially 0. This may be because vertical transmission is
a less relevant pathway for the disease, but we acknowledge that it also may be due
to having a larger number of parameters in that scenario.

While we obtain the lowest objective function value in the case with the most
variables included in the model, the decreases cannot be attributed to overfitting as
similar results are obtained with far fewer parameters by scaling the transmission
rate from region 4. These facts can be seen by comparing rows 8 and 16 in Table 5
as well as Figs. 3 and 4. In other words, the decrease in objective function value is a
result of the transmission routes included in the model rather than simply the number
of parameters. There are several differences in results from fitting a transmission
rate in each region compared to fitting just two transmission rates. First, notice in
Figs. 3 and 4 how we obtain more dynamics in the unweighted output when we fit a
parameter value in each region compared to the relatively smooth curves produced
by fitting just two transmission rates. Additionally, estimating two transmission rates
and scaling β4 for use in other regions performs better on the entire park.
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Fig. 4 Model output from estimating two transmission routes and scaling them for use in
other regions, and including increased contact during mating season, some individuals becoming
reinfected, and vertical transmission from mothers to piglets

Table 6 Parameter estimates obtained from including a different transmission rate in each region,
and including increased contact during mating season, some individuals becoming reinfected, and
vertical transmission from mothers to piglets

Parameter β1 β2 β3 β4 β5 β6 α γ φ

Value 0.0010 0.0017 0.0686 0.0026 0.0019 0.0010 6.10 × 10−8 1.042 0.0040

Table 7 Parameter estimates obtained from using two transmission rates and scaling them for use
in other regions, and including increased contact during mating season, some individuals becoming
reinfected, and vertical transmission from mothers to piglets

Parameter β1 β2 α γ φ

Value 0.0019 0.0016 0.99 4.99 0.0044

A final outcome from this work is further development of the discrete spatial
disease modeling literature. By considering the performance of the model with
a different transmission rate in each region as well as the model that scales
transmission rates for use in other regions, we are able to evaluate the method of
scaling disease transmission rates by relative area. The performance of the model
on the entire park is most relevant to this discussion, which is located in the right
most column in Table 5. We can see that scaling parameter values by relative area
is comparable to all corresponding instances where a different parameter value was
fit in each region, and in some cases the scaled values performed better. It is also
worth noting that in each scenario when β4 is scaled for use in region 5, the values
are comparable to those estimated for use in region 5. This implies that contact-
based transmission of pseudorabies scales with the area of the region being modeled,
which can be used to scale pseudorabies transmission rates estimated from data
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obtained in one location for use in another location. Additionally, since this method
of scaling parameter values is found to be useful here, it can be considered as a
possible feature in any number of subsequent discrete spatial disease studies.

6 Conclusions

Transmission and dynamics of pseudorabies have been studied in domestic pigs
but are not well understood in wild hogs. Specifically, transmission routes for
the disease in wild populations are unknown [41]. In this project we use our
pseudorabies model to analyze potential transmission routes that exist in the wild
hog population in GSMNP. To achieve this, a metapopulation model that was
previously developed for the population was adapted to a 1-week time step to
accommodate a compartmental disease model for pseudorabies [24]. Parameters
for the model were estimated using the pseudorabies prevalence data sampled
from the Park from 2005–2013. In addition to basic contact-based transmission,
we considered all combinations of increased transmission during mating season,
transmission from mothers to piglets during nursing, and the possibility that carriers
become reinfected and therefore able to transmit the disease. In each instance, we
estimated different transmission rates for each region, as well as estimated different
rates for the two regions containing the most prevalence data and scaled one to use
in all other regions.

When parameters for a discrete spatial model are estimated from data, their
values only apply to the spatial scale of the data from which they were estimated.
This limits their use as they cannot reliably be applied to model dynamics in a
different location. By scaling the transmission rate obtained in region 4 by relative
area for use in other regions, we contribute to the relatively undeveloped literature
on discrete spatial disease modeling. Since we obtain comparable results when we
scaled transmission rates versus estimating a transmission rate in each region, this
method can be used to apply rates to future pseudorabies scenarios as well as other
discrete disease models in general.

Our work shows that our current knowledge of how pseudorabies spreads in a
wild hog population is incomplete. While our results provide evidence that increased
transmission during mating season, transmission from mothers to piglets, and
carriers becoming reinfected may all exist as a transmission route for pseudorabies
within GSMNP, the strongest evidence for an additional transmission route is in the
form of carriers becoming reinfected due to stress, as our objective function values
saw the largest decline when this transmission route was included in the model.
Since we see dramatic reductions in objective function values when at least three
transmission routes were included in the model, there may be a dependence of some
transmission routes on the existence of others. Such support for the existence of
numerous transmission routes for pseudorabies in wild hog populations encourages
empirical tests to clearly define transmission routes so we can better understand
disease dynamics, make future predictions, and consider intervention strategies.
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Our model with discrete spatial and temporal features provides results that
encourage further work in discrete modeling. Discrete modeling can contribute
greatly to studies of various systems on our planet, but further work is needed on
how to estimate transmission rates in distinct spatial regions, taking into account the
sizes, the boundaries, and resources that exist in each region.
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Application of Mathematical
Epidemiology to Crop Vector-Borne
Diseases: The Cassava Mosaic Virus
Disease Case

Michael Chapwanya and Yves Dumont

1 Introduction

Agriculture began from around 9000 BC independently in different places around
the world. Since then, humans have developed their knowledge to produce food
more efficiently and to increase crop yields, while promoting the development of
the human community. However, this is possible as long as Mother Earth has the
capacity to sustain all developments induced by humans. Looking ahead to the year
2050, approximately 9 billion people are expected to live in places where 10,000
years ago, only a few hundred thousands were living. In essence, there is a challenge
to provide food for people on (more and more) limited area of (arable) land. Even if
crop yields have drastically increased during the last century, crops have to face new
dangers in the form of diseases and pests. For a number of years, pesticides were
developed as a solution to combat the spread of pests and diseases. Unfortunately,
we now know that most of these pesticides have caused a lot of damage (like cancer,
loss in the biodiversity, etc.). Consequently, there is need to develop sustainable
approaches to maintain yields and reduce the use of chemical products as much
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as possible in order to protect the biodiversity, decrease the risk of cancer or other
diseases, and, also, to protect our Earth for the future generations.

While the first mathematical model on inoculation against smallpox was devel-
oped by Daniel Bernoulli around 1760, it is mostly acknowledged that Mathematical
Epidemiology and the first compartmental models were initiated, not by math-
ematicians, but by public health physicians, like Sir R.A. Ross, W.H. Hamer,
A.G. McKendrick, and W.O. Kermack between 1900 and 1935, [6] (see also
[4]). Since then, various epidemiological models have been developed and studied
mathematically. However, while mathematical models for vector-borne diseases in
humans and animals are well documented in the literature, very little work has been
done in modeling vector-borne diseases in plants.

The aim of this chapter is to present an example of crop–vector–virus interaction,
using cassava crop because it has become a very important crop for many people
in Africa. After rice and maize, it is now the third-largest source of food and
carbohydrates [17]. We will begin here in the introduction by giving a brief historical
background of crop diseases to emphasize that crop diseases are as old as human
diseases like malaria, and probably started with the neolithic revolution when
humans moved from a lifestyle of hunting and gathering to one of agriculture and
settlement. We then explain the importance of cassava and the impact of its main
disease, the cassava mosaic disease, and summarize previous modeling works.

1.1 Crop Diseases in the Past

Crop diseases are known since the ancient time (see, for instance, [32] and also [5]).
Plant diseases have been recorded in a few Egyptian writings, on Sumerian clay
tablets (1200 BC), and also in the Old Testament and in the Talmud. Even in the far
East, plant diseases were recognized, in particular, in India, Vedic literature (1500–
500 BC), and also some two thousands old works are available in China. In ancient
Greece, some diseases of trees, cereals, and vegetables have been reported by
Theophrastus (371–287 BC), also known as the “father of Botany.” He was student,
collaborator, and successor of Aristotle. Theophrastus and Pliny the Elder (23–79
AD) became the references in Europe until the end of the Middle Age. However,
between the eighth and thirteenth century, the Arab agricultural revolution occurred.
Ibn al-Awwam (Seville, late 12th) wrote one of the most important medieval book
on Agriculture and also about the symptoms of tree and vine diseases as well as
(more or less realistic) methods to cure. Aztec, Inca, and Mayas in the Americas
also faced diseases on maize and potatoes, that will be imported by conquistadors,
first, in Spain and in Portugal (in 1493, for maize, when Christopher Colombus went
back to Spain [20]; potatoes were only recorded in the literature in 1537 after the
Spaniards discovered high Andes of South America [22]), before their spreading
throughout Europe along the sixteenth–seventeenth centuries. They became major
crops in many countries in the “Old World.” Particularly potatoes, leading to one of
the most notable historical impacts of plant disease, the Irish potato famine of 1845,
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that was caused by late blight fungus, Phytophthora infestans. Approximately one
million people perished from starvation; around one million and a half more are
believed to have left Ireland and immigrated to the USA. The French vine industry
was devastated in 1878 by another fungal pathogen, the powdery mildew. This is the
first time where disease management was able to find a solution and produce the first
fungicide ever, the Bordeaux mixture (made with copper sulfate and lime mixture).
However, for the vine industry, the real disaster came with the phylloxera, a sap
sucking insect, that first devastated most of the vineyards in the continent before
spreading to the rest of the world, except some places, like Chile. In fact, the number
of diseases (and also pest attacks) has increased drastically since the nineteenth
century, with the increase in population mobility and also with the increase of
trade exchanges, including the importation of alien plants/plant products containing
diseases or insects (vectors of diseases). What is unusual with crop vector-borne
diseases is that in general one vector (aphids, for instance) is able to transmit several
to hundreds of viruses on many crops. So that several crops can be impacted on at
the same time by several virus causing more damages and eventually death. Since
the discoveries of new lands, the importation of new crops, the increase of trades and
population displacements, diseases and vectors have invaded or are invading areas
where plants are fully susceptible, such that, in the recent decades, pests and diseases
have become a major problem in many crops around the world, and, especially in
Africa.

1.2 About Cassava, Cassava Mosaic Disease, and Its Vector

This chapter focuses on cassava (Manihot esculenta Crantz) and the cassava mosaic
virus. Cassava was domesticated in the southwestern Amazon of Brazil and Bolivia
some 8,000–10,000 years ago (see [25] for further details). It was introduced from
the Americas onto Africa by Portuguese traders in the sixteenth century. Since then
it has spread on the African continent, such that, after rice and corn, it has become a
very important staple food for over 500 millions people in Africa alone. Cassava can
grow in places where other crops cannot. It is tolerant to drought and can grow on
soils with a low nutrient capacity. Cassava is a perennial crop. However the storage
roots can be harvested from 6 to 24 months after planting, depending on the cultivar
and the growing conditions. Moreover, the roots can be left in the ground without
harvesting for a long period of time, making it a very useful crop as a security against
famine. That is why cassava is considered as a food security crop. Its study and
its protection against bio-aggressors are of main importance. The current average
yields per hectare is around 12.5 tonnes, while the optimal yields can be as high as
80 tonnes under optimal conditions. This shows that there is potential for increase
in production. More than 1 million of small-scale farmers around the world are
producing cassava. See [18] for further information.

Cassava mosaic geminiviruses (CMGs) are the causal agents of cassava mosaic
disease (CMD), which is one of the most widespread and devastating diseases of
cassava in Africa. For instance, in the 1990s a severe form of the CMD lead to yield
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losses of 80 to 100% in Uganda and Kenya (FAO, 2015). Currently, nine distinct
CMG species (seven African and two Indian) have been found to infect cassava
[40].

CMD is now prevalent in many parts of Africa [42]. The geminiviruses and their
whitefly vector (Bemisia tabaci) have been studied extensively and much attention
has been given to possible control measures and their deployment since the 1990s.
CMD was first described in Tanzania in 1894. Till then, CMD became prevalent
in most of the countries of sub-Saharan Africa due to the continuous cultivation of
susceptible cultivars and the indiscriminate use of diseased propagation material. As
highlighted in [24] (and references therein), CMD is also propagated routinely from
stem cuttings coming from infected plants, such that the virus can be maintained
within the plant waiting for vectors to spread. Early studies found that some varieties
of cassava were less affected than others by CMD, so that resistance programs
were launched in the 1930s–1940s. In the 1980s and 1990s, many projects aimed
at controlling CMD were launched in Kenya, Ivory Coast, and Uganda, such that
CMD received more attention than any other crop disease and this also explains
why CMD is always so prominent in the literature on cassava. However, whatever
the research efforts done in the last thirty years, CMD is still a problem.

Cassava mosaic geminiviruses are transmitted in a persistent manner by white-
flies, B. tabaci (see [33] for a recent review). This was first showed in 1932 in the
Democratic Republic of Congo. Further studies showed that whiteflies are the sole
vectors. There are some vectors that can acquire the virus but are unable to transmit
it. The minimum time between acquisition and becoming infected is around 7 h.
However, the transmission efficiency is very low (0.15–1.7% for insect collected in
the field [14], to moderate (4–13%) for laboratory-reared insects [35]. The CMGs
spreading is mainly related to the susceptibility/resistance of the cassava varieties,
the phytosanitation measures, and if CMGs are systemic within the infected plants.
However, clearly, the mobility of the whiteflies is a key factor and in general higher
incidence due to severe CMD is mainly due to a high level of infestation by B.
tabaci. Last but not least B. tabaci also causes direct damages to cassava by feeding
on phloem or deposition of honeydew, which acts as a substrate for sooty molds
(a black, non-parasitic, superficial growth of fungi on plant surfaces), that reduces
both respiration and photosynthesis [38]. Surprisingly, as highlighted in [33], the
research effort on the ecology of these insects was very little compared to all
work done on the virus and resistant cassava cultivars. However, B. tabaci is a
polyphagous herbivore that can potentially use a wide range of different host plants
(more than 500) in cassava production landscape so that, in general, intercropping
cassava with other plants (maize, coffee, sweet potato, bean, etc.) may result in a
lower B. tabaci population abundance. However, the mechanisms resulting in the
decay are not necessarily related to host-preference. Coming back to the biology
of B. tabaci, published information suggests that its development period from egg
to adult emergence is between 19 and 29 days, and the species goes through four
nymphal instars before entering a pupal phase. However, in this paper, we will not
enter into such details since we mainly focus on B. tabaci as vector of the CMD.
Note also that B. tabaci is able to transmit more than 150 viruses, such that it has
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become a very serious pest, not only for cassava. In particular, another virus that
is really detrimental to cassava, also transmitted by B. tabaci, is the cassava brown
streak virus (CBSV) [31].

The symptoms of CMD are very well known. Common symptoms include
misshapen leaves, chlorosis, mottling, and mosaic. Less severe symptoms are ill-
defined mosaic patterns, green mosaic with slight or absence of leaf distortion.
Thus, in general, symptoms range from barely perceptible mosaic to stunting and
general decline of plants. The more severe the symptoms, the lower the yield. In
general young plants are more severely infected than old ones. Last but not least, the
symptoms are even more severe in the case of co-infection by two cassava strains,
like ACMV (African Cassava Mosaic Virus) and EACMV (Eastern-Africa Cassava
Mosaic Virus). There is a synergistic interaction between the two viruses.

Since the early CMD epidemics, phytosanitary strategies have been developed.
Of course, these control strategies should be sustainable, and preferably with no
use of pesticides. Following [42], three approaches to decrease losses due to a virus
disease have been proposed:

(i) decrease the proportion of infected plants;
(ii) delay infection to such a late stage of crop growth so that losses become

unimportant;
(iii) decrease the severity of damage sustained after infection in diverse ways.

These objectives can be achieved using phytosanitation, disease-resistant varieties,
good cultural practices, vector control, and mild-strain protection. All previous
control measures, combined or not, have been more or less studied. In this work, we
will particularly explore roguing (the removal of diseased/infected plants), that is a
very well-known means of virus disease control. It is now clear that whiteflies are
not easy to control by insecticides, such that vector control seems to be ineffective.
However, we will also explore other control approaches that are used by small-scale
farmers for other crops against whiteflies that are not necessarily used to protect
cassava.

1.3 On the Usefulness of Mathematical Modeling of Cassava
Mosaic Disease

The previous summary on Cassava and Cassava Mosaic Virus shows that despite
years of study, field investigations, and field experiments, the risk of severe
epidemics like in the 1990s cannot be excluded. We believe it is not enough to launch
new research programs based only on field experiments/observations and laboratory
experiments. We need to consider additional tools such as mathematical modeling
and computer simulations. Mathematical modeling offers a cheaper, convenient,
and powerful tool to explore the Cassava-CMD system and go further in order to
better understand the possible dynamics that can occur and to possibly point out
new ways worth investigating. Some mathematical models on CMD have already
been developed, see for instance [15, 24, 26], but they were mostly studied using
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numerical simulations, without providing the qualitative analysis of the proposed
mathematical models. Of course, here we distinguish compartmental models from
statistical models, which are, in general, based on data sets. The paper from Holt
et al. [24] provides many interesting results. However their models are mainly based
on the fact that B. tabaci population is limited by cassava individuals, which, in an
African context, is not really true since in the introduction, we emphasize that the
host range for B. tabaci is large and that in general cassava is inter-cropped with
other plants. Thus the vector population is modeled using a logistic-like equation
in the susceptible compartment, assuming some kind of skip-oviposition in the
birth-rate functional, but this is not clearly explained. They also assumed constant
replanting and additional mortality rate for infected plants. Both crop and vector
interact using mass-action principle. Since, it has been highlighted that B. tabaci
population size can be very large, the use of a simple mass-action function could
be questionable: in fact it is not the case here since the vector population is limited
by the number of cassava individuals (which is a restriction, as explained above).
However, the reader has to be aware that this is the way the modeling works: you
consider and/or give modeling assumptions to build your model(s), such that for the
same biological problem you can derive many different models, see for example
the discussion in [27]. Using their models [24], Holt and collaborators obtained
various results, mainly based on numerical simulations. Their study showed a range
of dynamics including cycles of infection. In their conclusions, clearly the selection
of cuttings and roguing are the main tools to lower the incidence of the disease.
In [46] and more recently in [23], authors included vector aggregation (and also
dispersal in [23]) in their models, through nonlinear acquisition and inoculation
rates. These previous works highlight the wide diversity and complexity of plant-
vector-virus modeling. However, among all these models and also many others in
crop epidemiology, plants are always considered as mature individuals, ignoring
their growth and the effect of vectors on them before and during outbreaks [9].

The structure of the chapter is as follows: in Sect. 2, we build the mathematical
model related to Cassava-CMVD interactions taking into account plant biomass
growth. In Sect. 3, a qualitative analysis is provided. In Sect. 4, a specific study
about the permanence of the disease is done. Finally, in Sect. 5, a sensitivity analysis
followed by numerical simulations are given to illustrate the theoretical results. In
particular, we discuss the usefulness of roguing and eventually other control options
that could be tested with our approach.

2 The Mathematical Model

The model is formulated by considering two compartments: the total plant biomass
P , and the vector population density V . The total biomass is further subdivided
into two disjoint epidemiological states: the susceptible healthy biomass Hp, and
the infectious biomass Ip, so that P = Hp + Ip. Similarly, the vector population
is divided into two disjoint analogous classes, the susceptible vectors Sv , and the
infectious vector Iv so that V = Sv +Iv . Based on the above knowledge, we propose
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Fig. 1 Schematic diagram of the model

the epidemiological structure represented by the compartmental diagram presented
in Fig. 1, p. 63, which leads to the following system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dHp

dt
= rp(V )Hp − mhPHp − βvpHpIv−kpHp,

dIp

dt
= rp(V )Ip + βvpHpIv − miP Ip − γ Ip−kpIp,

dSv

dt
= αv(Ip)V − (μ1 + μ2V ) Sv − βpvSvIp,

dIv

dt
= βpvSvIp − (μ1 + μ2V ) Iv,

(1)

with initial conditions

Hp(0) = H 0
p ≥ 0, Ip(0) = I 0

p ≥ 0, Sv(0) = S0
v ≥ 0, Iv(0) = I 0

v ≥ 0,

where all the parameters are positive. Let us now describe the formulation of
model (1) in detail.

Following [30] (see also [39]), the crop biomass growth is assumed to be a
nonlinear process, influenced by maintenance (respiration, etc.) and intra-specific
competition, while the biomass production (through photosynthesis, reproduction,
etc.) is assumed to be a linear process of the biomass. Thus, the total biomass P

follows a logistic-like equation

dP

dt
= (rp(V ) − kp)P − mh(P )P,
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where rp(V ) is the biomass production rate, kp is the harvest rate, and the function
mh(P ) represents the losses of biomass due to respiration, transpiration, and
maintenance. It is a positive increasing function of the biomass [30]. According to
[28], where the authors fit cassava (dry) biomass growth with a logistic equation, we
set mh(P ) = mhP . Our crop growth model is very “simple” compared to previous
process-based models (PBM) (like, for instance, GUMCAS [36], GUMCAS-
DSSAT [19], and SIMANIHOT [41]), but sufficient to explore the dynamics of
the disease, while keeping the model mathematically tractable. Last but not least,
the use of the previous PBM needs to estimate all the physiological parameters not
only on healthy plants but also on diseased plants. These data are in general never
available.

The function rp(V ) is assumed to be a decreasing and bounded function of V ,
i.e., r ′

p(V ) ≤ 0. This makes sense since the increase in the vector population may
negatively impact the production of new biomass.

According to whiteflies biology, and like in [9], we assume that the vector
population follows a logistic growth with αv − μ1 being the net growth rate, and
μ2 being the death rate due to the density effect. Contrary to [24], we do not rely the
dynamics on the presence/absence of cassava, since in the African context, many
other cultivated crops can host whiteflies. In fact, we follow [26], where the authors
revisited the Holt Cassava Model by considering a logistic equation to model the
whiteflies dynamic. However, we take into account that whiteflies have a negative
effect on Cassava growth rate, such that the growth rate function is decreasing with
increasing V , through a parameter φ, related to sap sucking. We also assume that all
vector newborns are susceptible and, according to the mean lifespan of whiteflies,
we assume that all infected vectors stay infected for the rest of their lives (the impact
of the viruliferous period can be very important within a spatio-temporal model [9]).

The presence of the virus in the host and in the vector populations has several
effects. We model only two known effects that were not necessarily developed in
previous models:

(i) First, infected plants grow less than susceptible plants: the maintenance of the
infected biomass, mi , is larger than mh, the maintenance parameter of healthy
plant, due to plant defense mechanisms.

(ii) Second, the vector growth rate, αv −μ1, can also be impacted positively by the
presence of diseased plants (see [10]), so that we consider αv(Ip) − μ1.

Infection between the plants and vectors is modeled by the mass-action principle.
The parameter βvp represents the contact rate between infectious vectors and
susceptible plants. Similarly, βpv represents the contact rate between infectious
plants and susceptible vectors. The assumption is that the environment is uniform,
homogeneous, and randomly mixed. In the model we also introduce the roguing
parameter γ , i.e., the rate at which infected biomass is removed. In addition, kp

is the rate at which the cassava is harvested for their tuberous roots. The model
assumes both the susceptible and infected biomass can be harvested. A summary
(and values) of all parameters is provided in Table 1, p. 65. Detailed explanations of
the given range of values is provided at the beginning of Sect. 5, p. 81.
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Table 1 Range of values for the parameters of system (1)

Parameters Name Range Unit Source

r Biomass maximal
growth rate

[0.01, 0.06] day−1 Estimated from [28]

φ Impact of sap sucking
per vector

[0, 0.02] vector−1 Assumed

mh Maintenance rate per
unit of biomass

[0.003, 0.01] biomass−1day−1 Estimated from [28]

mi≥mh Maintenance rate per
unit of biomass

[0.01, 0.1] biomass−1day−1 Assumed

when the biomass is
infected

βvp Infection rate [0.002, 0.032] vector−1day−1 [24]

γ Roguing rate [0, 1] day−1 Assumed

α Whitefly rate of increase [0.1, 1] day−1 Estimated from [26]

μ1 Average death rate [0.05, 0.2] day−1 Estimated from [26]

μ2 Average density death
rate

[0.0001, 0.01] vector−1day−1 Estimated from [26]

βpv Acquisition rate [0.01, 0.1] biomass−1day−1 Assumed

kp Mean harvest rate [0.0025, 0.0072] day−1 Estimated from [24]

δ Boost parameter related
to Ip

[0, 1] – Assumed

Following (1), when CMV is circulating, P and V satisfy the following
equations:

dP

dt
= (rp(V )−kp)P − (mhHp + miIp)P − γ Ip, (2)

and

dV

dt
= αv(Ip)V − (μ1 + μ2V )V . (3)

3 Qualitative Analysis

In this section we take rp(V ) = r/(1 + φV ), which satisfies the assumption above
for φ, r > 0 with rp(V ) ≤ rp(0) = r . In addition, a possible choice for αv is

αv(Ip) = α

(
1 + δIp

1 + Ip

)
which satisfies α′

v(Ip) > 0 and α ≤ αv(Ip) ≤ α(1 + δ)

for all Ip. We start with the well-posedness result which we state as follows.
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Theorem 1 Assume αv(0) > μ1 and rp(0) > kp. The system defines a dynamical
system on the biologically feasible region

� =
{
(Hp, Ip, Sv, Iv) ∈ R

4+ : Hp + Ip ≤ P †, Sv + Iv ≤ V †
}

,

where V † = α(1 + δ) − μ1

μ2
and P † = rp(0) − kp

mh

.

Proof We want to show that for any non-negative initial data, the system possesses
for all t ≥ 0, a unique solution which lies in the region �. We will provide the proof
in two steps.

First we want to show that � is a positively invariant set. In particular, we want
to show that no trajectory leaves � by crossing one of its faces, [7]. On the contrary,
let us assume there exist t1 > 0 such that Hp(t1) = 0, H ′

p(t1) < 0 with Hp(t) >

0, Ip(t) > 0, Sv(t) > 0, Iv(t) > 0 for all t ∈ (0, t1). The first equation gives

dHp(t1)

dt
= 0,

which is a contradiction. Therefore Hp(t) ≥ 0 for all t ≥ 0. Similarly for t2 > 0
with Ip(t2) = 0, I ′

p(t2) < 0 with Hp(t) > 0, Sv(t) > 0, Iv(t) > 0 for all
t ∈ (0, t2), we have

dIp(t2)

dt
= βvpHpIv > 0,

and t3 > 0 with Sv(t3) = 0, S′
v(t3) < 0 with Hp(t) > 0, Ip(t) > 0, Iv(t) > 0 for

all t ∈ (0, t3), we have

dSv(t3)

dt
= αv(Ip)Iv > 0,

and t4 > 0 with Iv(t4) = 0, I ′
v(t4) < 0 with Hp(t) > 0, Ip(t) > 0, Sv(t) > 0 for

all t ∈ (0, t4), we have

dIv(t4)

dt
= βpvSvIp > 0.

Therefore, in all cases the solution remains in � for any initial data in �.
In the second step, we use the a prior estimate derived below together with the

fact that the right-hand side of the system is a locally Lipschitz function.
From Eq. (2), assuming Ip ≥ 0 we have the inequality

dP

dt
≤ (rp(V )−kp) − P(mhHp + miIp) ≤ (rp(0) − kp) − mhP

2,
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so that lim
t→∞ sup P(t) ≤ rp(0) − kp

mh

, where we have used the assumption that

rp(V ) > kp. Similarly, from Eq. (3) we have lim
t→∞ sup V (t) ≤ α(1 + δ) − μ1

μ2
provided αv(0) > μ1. That is all the solutions are uniformly bounded. Combining
the above two steps we conclude that (1) defines a dynamical system on �. �

3.1 Computation of R0

In this section we use the next generation matrix approach described in [44] (see
also [12]), to compute the basic reproduction number R0, of the system. In our case,
this is defined as the number of secondary infections that an infectious crop or vector
could produce when introduced in a healthy population.

The system (1) has a disease-free equilibrium EDFE = (P ∗, 0, V ∗, 0). We
consider only the equations where the infection progress, namely

dX

dt
= F (X) − V(X), (4)

where, in this case X = (Ip, Iv)
t , and

F (X) =
(

rp(V )Ip + βvpHpIv,

βpvSvIp

)
and V(X) =

((
miP + γ+kp

)
Ip

(μ1 + μ2V ) Iv

)
.

Equation (4) distinguishes the rate of appearance of new infections F (X), from the
transfer into or out of the population by any other means, V(X). Then

JF (X) =
(

rp(V ) −r2
v (V )φ/rIp + βvpHp

βpvSv 0

)

and

JV (X) =
(

miIp + miP + γ+kp 0
0 μ1 + μ2V + μ2Iv

)
.

We set

F =
(

rp(V ∗) βvpP ∗
βpvV

∗ 0

)

and

V =
(

miP
∗ + γ+kp 0

0 μ1 + μ2V
∗
)

=
(

(mi − mh)P
∗ + γ + rp(V ∗) 0
0 αv(0)

)
,
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where P ∗ = rp(V ∗) − kp

mh

and V ∗ = αv(0) − μ1

μ2
. Then the next generation matrix

K is

FV −1 =
(

rp(V ∗) βvpP ∗
βpvV

∗ 0

)⎛
⎜⎝

1

(mi − mh)P ∗ + γ + rp(V ∗)
0

0
1

αv(0)

⎞
⎟⎠ ,

that is

FV −1 =

⎛
⎜⎜⎝

rp(V ∗)
(mi − mh)P ∗ + γ + rp(V ∗)

βvpP ∗

αv(0)
βpvV

∗

(mi − mh)P ∗ + γ + rp(V ∗)
0

⎞
⎟⎟⎠ .

From which we deduce that

R0 = 1

2

(
V0 +

√
V2

0 + 4H0

)
, (5)

where

V0 = rp(V ∗)
(mi − mh)P ∗ + γ + rp(V ∗)

,

represent a vertical transmission (transmission through the production of new plant
biomass), and

H0 = βpvβvpV ∗P ∗

αv(0)[(mi − mh)P ∗ + γ + rp(V ∗)] = βpvβvpV ∗P ∗

αv(0)[miP ∗ + γ + kp]
represent a horizontal transmission (through vectors).

Remark 1 Note also that when (mi − mh)P
∗ + γ = 0, that is when there is no

roguing, i.e., γ = 0, and mi = mh, we have V0 = 1, such that we always have
R0 > 1.

Remark 2 Instead of the complex expression given in (5), for the basic reproduction
ratio, it would be biologically more natural to consider V0 + √H0, with both ways
of transmission: the one-phase infectious process, from plant to plant, and the two-
phase infectious process, from vector to plant and from plant to vector. Indeed,
V0 + √H0 < 1 implies R0 < 1, and R0 > 1 implies V0 + √H0 > 1.

Finally, following [44], we deduce the following result

Theorem 2 When R0 < 1 the DFE is locally asymptotically stable, while unstable
when R0 > 1.
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3.2 Trivial Equilibria and Their Stabilities/Unstabilities

Several equilibria exist for model (1). In this section we focus on the following
equilibria:

E+ = (0, 0, V ∗, 0), E++ = (P †, 0, 0, 0),

with P † = rp(0) − kp

mh

> P ∗= rp(V ∗) − kp

mh

; the disease-free equilibrium

EDFE = (
P ∗, 0, V ∗, 0

)
.

Computing the Jacobian of system (1) leads to

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

f (Hp, Ip, Sv, Iv) −mhHp − rφHp

(1 + φV )2
− rφHp

(1 + φV )2
− βvpHp

βvpIv − miIp g(Hp, Ip, Sv, Iv) − rφIp

(1 + φV )2
− rφIp

(1 + φV )2
+ βvpHp

0 α′
v(Ip)V − βpvSv h(Hp, Ip, Sv, Iv) αv(Ip) − μ2Sv

0 βpvSv βpvIp − μ2Iv −μ2(Iv + V ) − μ1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where f (Hp, Ip, Sv, Iv) = rp(V )−mh(P +Hp)−βvpIv−kp, g(Hp, Ip, Sv, Iv) =
rp(V ) − mi(P + Ip) − γ−kp, and h(Hp, Ip, Sv, Iv) = αv(Ip) − (μ1 + μ2V ) −
βpvIp − μ2Sv . Thus at E+ we have

JE+ =

⎛
⎜⎜⎝

rp(V ∗)−kp 0 0 0
0 rp(V ∗) − γ−kp 0 0
0 α′

v(0)V ∗ − βpvV
∗ −αv(0) − μ2V

∗ αv(0) − μ2V
∗

0 βpvV
∗ 0 −μ2V

∗ − μ1

⎞
⎟⎟⎠ .

(6)
Expanding in terms of the first column, it is clear that at least one of the eigenvalues
is strictly positive, which implies that E+ is unstable. At E++ we have

JE++ =

⎛
⎜⎜⎝

rp(0) − kp −mhP
† −rφP † −P †(rφ + 1)

0 −γ−kp 0 βvpP †

0 0 αv(0) − μ1 αv(0)

0 0 0 −μ1

⎞
⎟⎟⎠ . (7)

JE++ being an upper triangular matrix, the eigenvalues are the diagonal terms. Since
αv(0) − μ1 is strictly positive, E++ is unstable.
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At the disease-free equilibrium, we have

JDFE=

⎛
⎜⎜⎜⎜⎝

−(rp(V ∗) − kp) −mhP
∗ −φP ∗r∗

p
2

r
−φP ∗r∗

p
2

r
− βvpP ∗

0 −(mi − mh)P
∗ − γ 0 βvpP ∗

0 α′
v(0) − βpvV

∗ −μ2V
∗ αv(0) − μ2V

∗
0 βpvV

∗ 0 −μ2V
∗ − μ1

⎞
⎟⎟⎟⎟⎠ .

Considering |JDFE − λI |, we expand in terms of the first column and this gives
λ1 = −(rp(V ∗)−kp) < 0 since rp(V ∗) > kp. We then expand the remaining matrix
in terms of the second column and λ2 = −μ2V

∗. The remaining two eigenvalues
are eigenvalues of the matrix

(−(mi − mh)P
∗ − γ βvpP ∗

βpvV
∗ −μ1 − μ2V

∗
)

,

or (− ((mi − mh)P
∗ + γ ) βvpP ∗

βpvV
∗ −αv(0)

)

after applying the definition of P ∗ and V ∗ to the diagonal entries of the reduced
matrix. Clearly the trace of this matrix is negative and the requirement for positive
determinant simplifies to ((mi − mh)P

∗ + γ ) αv(0) − βpvβvpP ∗V ∗ > 0, that is if

J0 = βpvβvpP ∗V ∗

((mi − mh)P ∗ + γ ) αv(0)
< 1. (8)

We summarize the previous results as follows

Proposition 1 Consider model (1):

• The equilibria E+ and E++ are always unstable.
• Assuming (mi − mh)P

∗ + γ > 0. The disease-free equilibrium, DFE, is locally
asymptotically stable when J0 < 1, and unstable otherwise.

Remark 3 When (mi − mh)P
∗ + γ = 0, according to the previous section, and

Remark 1, p. 68, we have R0 > 1, such that DFE is always unstable.

Remark 4 A remark is necessary here with regards to the basic reproduction
numbers defined in (5) and (8). They are mathematically equivalent: as indicated in
[11] it will depend on the choice of F . It is however important to have a biologically
relevant decomposition. Using the next generation matrix approach, if we choose
rp(V )Ip as part of V, then R2

0 = J0. However a direct computation shows that
since R0 = 1 so is J0. Indeed, following (5), R0 = 1 is equivalent to

√
V0 + 4H0 = 2 − V0,
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or equivalently H0 = 1 − V0, i.e.,

βpvβvpP ∗V ∗

[(mi − mh)P ∗ + γ + rp(V ∗)]αv(0)
= 1 − rp(V ∗)

(mi − mh)P ∗ + γ + rp(V ∗)
,

or

βpvβvpP ∗V ∗

αv(0)
= (mi − mh)P

∗ + γ,

that is exactly equivalent to have J0 = 1. More precisely, using the previous result,
we can show the following relationships:

R0 ≤ J0 ≤ 1, and 1 ≤ J0 ≤ R0.

3.3 Global Stability of the DFE

Next we improve on the previous result and show that the disease-free equilibrium
is globally asymptotically stable (GAS) when R0 ≤ 1. Following the work of [8],
we rewrite our system by splitting the uninfected compartments x = (Hp, Sv) from
the infected compartments y = (Ip, Iv). That is

⎧⎪⎨
⎪⎩

dx

dt
= f (x, y),

dy

dt
= g(x, y),

such that g(x, 0) = 0. Let us consider the system

dx

dt
= f (x, 0) =

⎛
⎝ rHp

1 + φSv

− mhH
2
p

αv(0)Sv − (μ1 + μ2Sv) Sv

⎞
⎠ . (9)

The second equation is the well-known logistic equation, for which we know that
V ∗ is GAS. Then, we deduce that P ∗ is GAS for the first equation. Altogether the
DFE x∗ = (P ∗, V ∗) is GAS for system (9). Now we consider

g(x, y) =
(

rp(V )Ip + βvpHpIv − (
miP + γ+kp

)
Ip

βpvSvIp − (μ1 + μ2V ) Iv

)

such that

Jg(x, y) =
⎛
⎝ rp(V ) − (

miP + miIp + γ+kp

) − rφIp

(1 + φV )2 + βvpHp

βpvSv − (μ1 + μ2V + μ2Iv)

⎞
⎠ ,
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and

Jg(dfe, 0) =
(

rp(V ∗) − (
miP

∗ + γ+kp

)
βvpP ∗

βpvV
∗ − (μ1 + μ2V

∗)

)
.

Then

g(x, y) =
(− ((mi − mh)P

∗ + γ ) βvpP ∗
βpvV

∗ −αv(0)

)
y −

(
βvp

(
P ∗ − Hp

)
βpv(V

∗ − Sv)

)
.

Now we have to show that ĝ(x, y) ≥ 0. This is true if Sv ≤ V ∗ (always verified),
and if Hp ≤ P ∗ (always verified).

In addition,

A =
(− ((mi − mh)P

∗ + γ ) βvpP ∗
βpvV

∗ −αv(0)

)

is a Metzler Matrix. Thus using the result from [8], we have the following result.

Theorem 3 Assume γ + (mi − mh)P
∗ > 0. The disease-free equilibrium, (DFE)

is globally asymptotically stable if J0 ≤ 1 and unstable for J0 > 1.

In the next section we investigate the permanence of system (1), p. 63, and,
potentially, the existence and stability of endemic equilibria.

4 Permanence of System (1): Endemic Equilibrium

Studying the existence (and the stability/instability) of endemic equilibria for
system (1) is not an easy task when α ≡ αv(Ip). However, in Annexe A, p. 91,
we show that two types of endemic equilibria may exist (under conditions): a full
endemic equilibrium (when the whole biomass is infected, i.e., Hp = 0), and an
endemic equilibrium (when healthy and infected biomasses co-exist).

Since αv(Ip) ≥ αv(0), for all Ip ≥ 0, we would like to show that a direct study
is not always necessary and that it is possible to consider the following subsystem
of (1) to derive interesting facts about the dynamics of system (1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dHp

dt
= rp(V )Hp − mhHpP − βvpHpIv−kpHp,

dIp

dt
= rp(V )Ip + βvpHpIv − miP Ip − γ Ip−kpIp,

dSv

dt
= αv(0)V − (μ1 + μ2V ) Sv − βpvSvIp,

dIv

dt
= βpvSvIp − (μ1 + μ2V ) Iv,

(10)
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Using the previous results, it is straightforward to show that system (10) admits a
unique non-negative solution, x. Let x be the solution of (1). Then, assuming that
x(0) = x(0), and using the comparison Theorem (see, for instance, Theorem 3.2,
p. 209, in [45]), we can deduce that x is a lower solution of system (1), that is
x(t) ≥ x(t), for all t > 0.

Thus, any sufficient conditions to show permanence of (10), i.e., x(t) > 0, will
ensure permanence of (1), x(t) > 0 for all t > 0.

Assuming the dynamics of the vector to be very fast compared to the dynamics of
the biomass, we assume quasi-steady state approximation such that V = V ∗. Then,
system (10) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dHp

dt
= r∗Hp − mhPHp − βvpHpIv−kpHp,

dIp

dt
= r∗Ip + βvpHpIv − miP Ip − γ Ip−kpIp,

dIv

dt
= βpv(V

∗ − Iv)Ip − αvIv,

(11)

where r∗ = r/(1 + φV ∗). For the equilibria we need to solve

r∗H ∗
p − mhP

∗H ∗
p − βvpH ∗

pI ∗
v −kpH ∗

p = 0,

r∗Ip + βvpH ∗
pI ∗

v − miP
∗I ∗

p − γ I ∗
p−kpI ∗

p = 0,

βpv(V
∗ − I ∗

v )I ∗
p − αvI

∗
v = 0.

(12)

Notice that the definition of P ∗ here is different from earlier results. Thus looking
for equilibria in Eq. (12) leads to

(
r∗−kp − mhHp − miIp

)
P ∗ = γ Ip, (13)

that is (
r∗−kp − mhP

∗ − (mi − mh)I
∗
p

)
P ∗ = γ I ∗

p, (14)

so that

r∗−kp − mhP
∗

(mi − mh)P ∗ + γ
P ∗ = I ∗

p, (15)

assuming either γ > 0 or mi > mh. Thus, if Ip = 0 then Pdfe = r∗−kp

mh

, and thus

Iv = 0 and Hp,dfe = Pdfe.
Now assume that 0 ≤ γ+kp < r∗, and Hp = 0, then from the second equation

and third equation we deduce,
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P # = I #
p = r∗ − γ−kp

mi

, I #
v = βpvP

#

αv + βpvP # V ∗.

The basic reproduction number for the reduced system (11) becomes

R0 = 1

2

(
r∗

(mi − mh)Pdfe + γ + r∗

+
√(

r∗
(mi − mh)Pdfe + γ + r∗

)2

+ 4
βpvβvpP ∗V ∗(

(mi − mh)Pdfe + γ + r∗)αv

)
.

Assume now that Hp > 0, Then, using the first equation, we have

r∗−kp − mhP
∗

βvp

= Iv.

Replacing Iv in the third equation leads to

βpv

(
V ∗− Iv

)
Ip−αvIv = βpv

(
V ∗ − r∗−kp − mhP

∗

βvp

)
Ip−αv

r∗−kp − mhP
∗

βvp

= 0.

Replacing Ip by
r∗−kp − mhP

∗

(mi − mh)P + γ
P leads to

βpv

(
V ∗ − r∗−kp − mhP

∗

βvp

)
r∗−kp − mhP

∗

(mi − mh)P ∗ + γ
P ∗ = αv

r∗−kp − mP ∗

βvp

.

Assuming that
(
r∗−kp − mP ∗) �= 0, we can simplify, such that

βpv

(
βvpV ∗ − r∗+kp + mhP

∗)P ∗ = αv

(
(mi − mh)P

∗ + γ )
)
,

that is

βpvmhP
∗2 − βpv

(
r∗−kp − βvpV ∗ − αv(mi − mh)

)
P ∗ − γαv = 0,

which is a quadratic equation in P . The discriminant of this equation is

� = (
βpv(r

∗−kp − βvpV ∗) − αv(mi − mh)
)2 + 4γαvβpvmh > 0,

such that there exists only one non-negative solution

P ∗ = 1

2βpvmh

(
βpv

(
r∗−kp − βvpV ∗ − αv(mi − mh)

) + √
�
)

.
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Then we can deduce

I ∗
p = r∗−kp − mhP

∗

(mi − mh)P ∗ + γ
P ∗, H ∗

p = P ∗
(

1 − r∗−kp − mhP
∗

(mi − mh)P ∗ + γ

)

and

I ∗
v = r∗−kp − mhP

∗

βvp

.

We summarize the previous results as follows

Proposition 2 System (11) always admits the following three (non-zero) equilib-
ria:

• The disease-free equilibrium DFE = (Pdfe, 0, 0), whatever γ ≥ 0.

• When 0 ≤ γ + kp < r∗, a Full Disease Equilibrium, FDE = (0, P #, I #
v ).

• When γ > 0, an endemic equilibrium EE = (H ∗
p, I ∗

p, I ∗
v ).

One way, to investigate the local (asymptotic) stability, is to compute the Jacobian

J (X) =
⎛
⎝ r∗ − kp − mhIp − 2mhHp − βvpIv −mhHp −βvpHp

βvpIv − miIp r∗ − miP − miIp − γ−kp βvpHp

0 βpv (V ∗ − Iv) −βpvIp − αv

⎞
⎠

=
⎛
⎝ r∗ − kp − mhIp − 2mhHp − βvpIv −mhHp −βvpHp

r∗ − kp − mhP − miIp r∗ − miP − miIp − γ−kp βvpHp

0 βpv (V ∗ − Iv) −βpvIp − αv

⎞
⎠ .

The stability of the disease-free equilibrium follows from the definition of R0.
However, in the particular case of FDE = (0, P #, I #

v ), we obtain the following
Jacobian Matrix:

J (FDE)=
⎛
⎝r∗ − kp − mhP

# − βvpV # 0 0
r∗−kp − (mi + mh)P

# r∗ − 2miP
# − γ−kp 0

0 βpv

(
V ∗ − V #

) − (
βpvP

# + αv

)
⎞
⎠,

that is

J (FDE)=

⎛
⎜⎜⎝

r∗ − kp − mh

r∗ − γ−kp

mi

− βvpV # 0 0

γ − mhP
# −r∗ + γ+kp 0

0 βpv

(
V ∗ − V #

) −βpvP
# − αv

⎞
⎟⎟⎠,
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or

J (FDE) =

⎛
⎜⎜⎜⎝
(
r∗ − kp

) (
1 − mh

mi

)
+ γ

mh

mi
− βvpV # 0 0

γ − mhP # −r∗ + γ+kp 0

0 βpv

(
V ∗ − V #

)
−βpvP # − αv

⎞
⎟⎟⎟⎠

Clearly, the eigenvalues are the terms in the diagonal. They are negative if γ +
kp < r∗ (this is the condition to have existence of FDE), and γ + P ∗ (mi − mh) <
mi

mh

βvpV #. After manipulation, and using (8), the last condition is equivalent to

J0 >
P ∗

P #

(
1 + βvpP #

αv

)
> 1. In other words, when J0 is sufficiently large, the

whole crop can become infected.
Now we consider EE = (H ∗

p, I ∗
p, I ∗

v ). We obtain

J (EE)=
⎛
⎜⎝ −mhH

∗
p −mhH

∗
p −βvpH ∗

p

r∗ − kp − mhP
∗ − miIp r∗ − miP

∗ − miIp − γ−kp βvpH ∗
p

0 βpv

(
V ∗ − I ∗

v

) −βpvI
∗
p − αv

⎞
⎟⎠.

In that case, we know that γ+kp > r∗, such that the characteristic polynomial
becomes

p(x) = x3 + a2x
2 + a1x + a0, (16)

where, clearly,

a2 = −trace(J (X∗)) = mhH
∗
p + miP

∗ + miI
∗
p − r∗ + γ + kp + βpvI

∗
p + αv > 0.

The coefficient a1 is given by

a1 =
∑
i

i < j

∣∣∣∣∣ aii aij

aji ajj

∣∣∣∣∣
=
∣∣∣∣∣ −mhH∗

p −mhH∗
p

r∗ − kp − mhP ∗ − miIp r∗ − miP
∗ − miIp − γ − kp

∣∣∣∣∣
+
∣∣∣∣∣−mhHp −βvpHp

0 −βpvIp − αv

∣∣∣∣∣ +
∣∣∣∣∣ r

∗ − miP
∗ − miIp − γ − kp βvpHp

βpv

(
V ∗ − Iv

) −βpvIp − αv

∣∣∣∣∣ .
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It is clear that∣∣∣∣∣ −mhH∗
p −mhH∗

p

r∗ − kp − mhP ∗ − miI
∗
p r∗ − miP

∗ − miIp − γ − kp

∣∣∣∣∣ = mH∗
p((mi−mh)P ∗+γ ) > 0,

∣∣∣∣∣−mhHp −βvp

0 −βpvIp − αv

∣∣∣∣∣ = mhH∗
p

(
βpvIp + αv

)
> 0,

and∣∣∣∣∣ r
∗ − miP

∗ − miIp − γ − kp βvpH ∗
p

βpv (V ∗ − Iv) −βpvIp − αv

∣∣∣∣∣
= (

miP
∗ + miIp + γ + kp − r∗) (βpvI

∗
p + αv

)
− βpvβvpH ∗

p

(
V ∗ − I ∗

v

)
.

However, from (12), p. 73 we have

βpvβvpHpV ∗ = (
miP

∗ + γ − r∗ − kp

) (
αv + βpvI

∗
p

)
such that∣∣∣∣∣ r

∗ − miP
∗ − miIp − γ − kp βvpH ∗

p

βpv (V ∗ − Iv) −βpvIp − αv

∣∣∣∣∣ = miI
∗
p(βpvI

∗
p + αv) + βpvβvpH ∗

pI ∗
v > 0.

In fact

a1 = mhH
∗
p((mi −mh)P

∗+γ )+(mhH
∗
p +miI

∗
p)(βpvI

∗
p +αv)+βpvβvpH ∗

pI ∗
v > 0.

Thus we deduce that a1 > 0. Finally

a0 = −
∣∣∣∣∣∣

−mhHp −mhHp −βvpHp

r∗ − kp − mhP
∗ − miI

∗
p r∗ − miP

∗ − miIp − γ − kp βvpHp

0 βpv (V ∗ − Iv) −βpvIp − αv

∣∣∣∣∣∣
= mhH

∗
p

∣∣∣∣ r∗ − miP
∗ − miIp − γ − kp βvpHp

βpv (V ∗ − Iv) −βpvIp − αv

∣∣∣∣
+
(
r∗ − kp − mhP

∗ − miI
∗
p

) ∣∣∣∣βpv (V ∗ − Iv) −βpvIp − αv

−mHp −βvpHp

∣∣∣∣ .
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We have, as given above,

mhH
∗
p

∣∣∣∣ r∗ − miP
∗ − miIp − γ − kp βvpHp

βpv (V ∗ − Iv) −βpvIp − αv

∣∣∣∣
= mhH

∗
p

(
miI

∗
p

(
βpvI

∗
p + αv

)
+ βvpH ∗

pβpvI
∗
v

)
> 0,

and

(
r∗ − kp − mhP

∗ − miI
∗
p

) ∣∣∣∣βpv (V ∗ − Iv) −βpvIp − αv

−mhHp −βvpHp

∣∣∣∣
= −

(
mhP

∗ + miI
∗
p − r∗+kp

) (
βpvβvpHp

(
V ∗ − Iv

) + mhH
∗
P

(
βpvIp +αv

))
,

with

mhH
∗
p

(
miI

∗
p

(
βpvI

∗
p + αv

))
−
(
mhP

∗ + miI
∗
p − r∗+kp

)
mhH

∗
P

(
βpvIp + αv

)
= − (

mhP
∗ − r∗ + kp

)
mhH

∗
P

(
βpvIp + αv

)
such that

a0 = mhH
∗
pβvpH ∗

pβpvI
∗
v − (

mhP
∗ − r∗+kp

)
mhH

∗
P

(
βpvIp + αv

)
−
(
mhP

∗ + miI
∗
p − r∗+kp

)
βpvβvpHp

(
V ∗ − Iv

)
a0 = βpvβvpHpIv

(
mhH

∗
p + mhP

∗ + miI
∗
p − r∗ + kp

)
− (

mhP
∗ − r∗+kp

)
mhH

∗
P

(
βpvIp + αv

)
−
(
mhP

∗ + miI
∗
p − r∗+kp

)
βpvβvpH ∗

pV ∗.

However, using the fact that

r∗−kp − mhP
∗ = βvpI ∗

v ,

and

H ∗
p

(
βvpIv − miIp

) = (
miIp + [

γ + kp − r∗]) Ip > 0,

we have

a0 = βpvβvpH ∗
pI ∗

v

(
mhH

∗
p + mhP

∗ + miI
∗
p − r∗ + kp

)
+ βvpIvmhH

∗
p

(
βpvIp + αv

) + βpvβvpH ∗
pV ∗ (βvpIv − miI

∗
p

)
,
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i.e.,

a0 = βpvβvpHpIv

(
mhH

∗
p + mhP

∗ + miI
∗
p − r∗ + kp

)
+ βvpIvmhH

∗
P

(
βpvIp + αv

) + βpvβvpV ∗ (miIp + γ − r∗+kp

)
Ip > 0.

Thus the first assumption of Rough–Hurwitz is verified: ai > 0.
We now consider γ , the roguing parameter, as a bifurcation parameter. Let us

define

�(γ ) = a1a2 − a0 = [mhH
∗
p((mi − mh)P

∗ + γ ) + (mhH
∗
p + miI

∗
p)βpvI

∗
p + αv)

+ βpvβvpH ∗
pI ∗

v ] × [mhH
∗
p + miP

∗ + miI
∗
p − r∗ + γ + kp + βpvI

∗
p + αv]

− βpvβvpH ∗
pI ∗

v

(
mhH

∗
p + mhP

∗ + miI
∗
p − r∗ + kp

)
+ βvpIvmhH

∗
p

(
βpvIp + αv

) + βpvβvpH ∗
pV ∗ (βvpIv − miI

∗
p

)
.

In order to show LAS of the endemic equilibrium, we need to show that
�(γ ) > 0. However, due to the complexity of the formula, this will be investigated
numerically. In addition, it is well known that if �(γ ) = 0 for some values of γ ,
it means that the polynomial (16) has pure imaginary conjugate roots and one real
root. However, it is straightforward to show that this real root is simply −a2 (because
a1a2 − a0 = 0).

In fact, if the polynomial defined in (16) has a pair of complex conjugate roots,
a ± bi where a, b ∈ R, which cross the real axis as γ passes through γ ∗, then �(γ )

changes sign as γ passes through γ ∗. This can be showed very easily because we
have the following relationship:

�(γ ) = −2a
(
b2 + r2

)
− 2a3. (17)

Similarly, if we assume that �(γ ) changes sign, then according to the previous
formula a(γ ) will change sign too. However, in order to derive a Hopf Bifurcation
(see, for instance, Theorem 3.4.2 in [21]), we have an additional property to verify,
the so-called transversality condition that indicates that the eigenvalues cross the
x-axis with a non-zero velocity. In other words

da

dγ
(γ ∗) = a′(γ ∗) �= 0. (18)

However, using (17), we have that

�′(γi) = −2a′(γ ∗)(b2 + r2)
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Table 2 Parameters values

r φ mh mi βvp γ αv μ1 μ2 βpv kp δ

0.04 0 0.01 0.01 0.008 [0, 1] 0.2 0.12 0.0002 0.02 0.005 0

Table 3 Hopf bifurcation points coordinates and first Lyapunov coefficient estimate for several
harvesting rates (based on Table 1, p. 65)

kp Hi Ip Iv γ ∗
i l1

0.0025 H2 0.561818 0.097525 3.863322 0.208952 −2.953532e−05

H1 0.030780 0.113949 4.506589 0.045791 −1.590897e−05

0.005 H2 0.524541 0.090960 3.605623 0.195185 −3.069432e−05

H1 0.031325 0.106193 4.203102 0.043544 −1.620631e−05

0.0072 H2 0.490470 0.085230 3.380376 0.182667 −1.659246e−05

H1 0.031934 0.099374 3.935864 0.041605 −1.659246e−03

such that verifying (18) is equivalent to verifying �′(γ ∗) �= 0. Finally, we deduce
that a Hopf Bifurcation related to the roguing parameter γ may occur at (EE, γ ∗)
if

• there exists a value γ ∗ such that �(γ ∗) = 0, such the Jacobian JEE has a simple
pair of pure imaginary eigenvalues and one real negative eigenvalue, −a2,

• and �′(γ ∗) �= 0.

In addition, the stability of the periodic solutions is given by the sign of the first
Lyapunov coefficient of the dynamics, l1(EE, γ ∗). If l1(EE, γ ∗) < 0, then these
solutions are stable limit cycles and the Hopf bifurcation is supercritical, while if
l1(EE, γ ∗) > 0 the Hopf bifurcation is subcritical [29]. l1 being very difficult to
obtain theoretically, we may use MatCont software [13] to estimate it.

We consider the parameters values provided in Table 2, p. 80, to illustrate Hopf
Bifurcations. These values were chosen thanks to the (range of) values given in
Table 1, p. 65.

In Table 3, p. 80, we present Hopf bifurcation results related to different values
of kp. In fact, it is clear that if kp ≥ k∗

p, then there is no Hopf Bifurcation.
To illustrate the Hopf Bifurcation property, we focus on kp = 0.005, in Table 3,

when δ = 0, for simplicity. In Fig. 2, p. 81, we show the bifurcation analysis of
system (11) done with MatCont [13], when γ ∈ [0.02, 0.12]: we show that two
values, γ ∗

1 and γ ∗
2 , exist where a Hopf bifurcation occurs.

However, these two values can be obtained by solving �(γ ∗) = 0. This is
illustrated in Figs. 3, p. 81, and 9, p. 88.

Last but not least, since we know that the Hopf bifurcation points are super-
critical, we can estimate the periods for different values of γ ∈ [γ ∗

1 , γ ∗
2 ], using

MatCont. See Fig. 4, p. 82. Surprisingly, the period belongs to a large interval, i.e.,
in [130, 445]. This period might certainly be linked to the crop growth parameters.
The period is large except for values of γ closed to γ ∗

2 . However, the maximum
period, 445 days, is reached at γ = 0.05. This period is almost 15 months, barely
impossible to detect it in the field.
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Fig. 2 Bifurcation analysis made with MatCont—kp = 0.005
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Fig. 3 The Hopf Bifurcation values γ ∗
1 and γ ∗

2 , obtained with MatCont ( Fig. 2), are recovered by
solving �(γ ) = 0 such that �′(γ ∗

i ) �= 0 - kp = 0.005

5 Numerical Simulations

For the sensitivity analysis and the numerical simulations, we first discuss the
parameters values given in Table 1, p. 65. Some of them are based on the values used
in [24, 26, 28], and some of them are estimated based on the available knowledge
on the virus and the cassava crops. In fact, despite so much work and published
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Fig. 4 Period estimate of the periodic solution according to γ ∈ [γ ∗
1 , γ ∗

2 ], using MatCont, for
kp = 0.005

papers on cassava and CMV, parameter estimation has always been a critical issue.
Thus, after carefully checking the literature on cassava and CMD, we have tried to
provide “realistic” estimates for all parameters used in our model. It is important to
note that here we consider cassava biomass and not individual plants, hence some
adjustments to the literature values were necessary.

In fact, it is not easy to get information about cassava growth: among all the
work done on cassava, surprisingly, only one study from Australia was found
about cassava biomass growth, [28]. These are not exactly the same environmental
conditions found in Africa, but in any case, at the plants level, this study shows that
a logistic equation can represent well the (dry) biomass growth. We will consider
the values obtained in [28] to estimate the range of values of r and mh. In Africa,
the range of planting density can be rather large. However, for the sake of simplicity,
we will consider a standard density of 10,000 plants per ha, or 1 plant per m2.

According to (FAOSTAT2019), the average productivity between 2010 and
2017 is around 9 tons per ha in Africa, this leads to a mean productivity of 0.9
kg per m2. Then assuming a harvest index (root weight divided by total plant
weight) between 0.5 and 0.7, these leads to a total biomass weight per square
meter between 1.3kg and 1.8 kg. Typically, harvest can start 8 months (250 days)
after planting, so that the harvest rate kp ranges from 1.3/250 to 1.8/250, that is
kp ∈ [0.0052, 0.0072] roughly. If the harvest starts later, say 500 days after planting,
then kp ∈ [0.0026, 0.0036], so that we can choose the interval [0.0025, 0.0072] for
the harvesting rate in our model.

Last, but not least, the estimate of acquisition and inoculation rates is also
another issue. Only two old studies have been done (see, for instance, [16]) on
the transmission efficiency and it is in general very low (from 0.17% to 2%) for
the vectors. Surprisingly, we did not find information related to the number of
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plants visited by vectors, or the number of feeding bites, such that estimate of
acquisition and inoculation rates is rather difficult. According to the literature, it
seems that the transmission rate, from the infected vector to the susceptible host,
βvp, is rather low; in contrary, thanks to the fact that the feeding time is long (couple
of hours), the inoculation rate from the infected plant to the susceptible vector,
βpv , can be high. Thus, without detailed information available in the literature,
we will use the estimates of k1 and k2 given in [24], to estimate βvp and βpv .
However, due to the fact that they have been estimated for individual plants and
not for biomass we have to divide by the total biomass weight per square meter
given above, since we consider a density of one individual per square meter. Thus
βvp ∈ [0.0011, 0.0246], while for βpv , we will not consider the same range, but a
larger range, say [0.0056, 0.23].

5.1 Sensitivity Analysis of Model (1)

To gain insight into the correct strategies for control of the crop vector-borne disease
as described by model (1), we perform a sensitivity analysis.

The most important parameter is the basic reproduction number, J0. In the
current context it represents the amount of new infections per unit of plant biomass
(vector) by the introduction of one unit of infected plant biomass (vector). In this
section we aim to find out how the basic reproduction ratio responds to changes
in the selected parameters. Mathematically, the sensitivity of J0 with respect to a
parameter p is given by

FJ0
p = ∂J0

∂p
.

However, we will consider the sensitivity index. This measures the change in J0
with respect to the percentage change in parameter p. The normalized sensitivity
index of a variable J0, that depends differentiably on a parameter p, is defined as

E J0
p = ∂J0

∂p

p

J0
.

The sensitivity index of J0 with respect to the parameter p is positive if J0 is
increasing with respect to p and negative if J0 is decreasing with respect to p.
For convenience, and following the discussion in Remark 4, we present the local
sensitivity analysis on J0. Straightforward calculation leads to the following results:
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E J0
r = γ r

[(mi − mh)P ∗ + γ ]P ∗mh(1 + φV ∗)
,

E J0
φ = − γφ

[(mi − mh)P ∗ + γ ]P ∗mh(1 + φV ∗)2 ,

E J0
kp

= − γφ

[(mi − mh)P ∗ + γ ]P ∗mh

, E J0
mh

= − γφ(rp(V ∗) − kp)

[(mi − mh)P ∗ + γ ]P ∗m2
h

,

E J0
mi

= − P ∗mi

(mi − mh)P ∗ + γ
, E J0

α = μ1

μ2V ∗ , E J0
μ1

= − μ1

μ2V ∗ ,

E J0
μ2

= −1, E J0
βpv

= 1, E J0
βvp

= 1,

E J0
γ = − γ

(mi − mh)P ∗ + γ
.

However, the sensitivity index gives us only partial information because we
consider only the sensitivity for one parameter only and also only on J0. We
will now consider an additional sensitivity analysis considering that all parameters
are changing. We will also focus on the system’s variables Hp, Ip, Sv , and Iv .
Using Table 1, p. 65, we derive some global sensitivity analysis using two well-
known methods: the eFast and the LHS-PRCC methods. The eFast method given
in Fig. 5, p. 85, highlights first-order effects (main effects) and total effects (main
and all interaction effects) of the parameters on the Model Outputs. We also derive
a LHS-PRCC sensitivity analysis given in Fig. 6, p. 86. LHS-PRCC stands for
Latin Hypercube Sampling and PRCC for Partial rank correlation coefficient. These
two methods give complementary information. Indeed the PRCC method provides
mainly information about how the outputs are impacted if we increase (or decrease)
the inputs of a specific parameter while the eFast indicates which parameter
uncertainty has the greatest impact on the output variability (see, for instance,
[34] for further explanations). Clearly here, the LHS-PRCC method provides the
most interesting sensitivity analysis in terms of the contribution of each parameter
that may depend on the chosen variable. However, some parameters, related to the
whiteflies dynamics (αv , μ2) or the transmission (βvp and βpv or the plant growth (r ,
φ, γ ) may have a strong effect on the system dynamics. The values for the intervals
used for the sensitivity analysis are given in Table 1, p. 65.

In Figs. 7, p. 87, and 8, p. 87, we show the LHS-PRCC sensitivity analysis of both
Basic reproduction numbers, R0 and J0. Since they are mathematically equivalent,
it make sense that their sensitivity analysis are almost similar. The results are in
agreement with what we expect: when some parameters increase, then either R0 or
J0 increases or decreases. The thresholds are more sensitive to some parameters,
like βvp, βpv , rp, or φ. However, we can see that the roguing parameter, γ , has a
strong negative effect, like kp, the harvest rate. As we have seen earlier, very little
is known about the values taken by βvp and βpv , such that additional studies would
be welcome to conduct.
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Fig. 5 eFAST sensitivity analysis. White bar:first-order effects; Sum of white and gray bars: total
effect

Table 4 Parameters values with δ ≥ 0

r φ mh mi βvp γ αv δ μ1 μ2 βpv kp

0.04 0 0.01 0.01 0.008 [0, 1] 0.2 [0, 1] 0.12 0.0002 0.02 0.005

5.2 Numerical Simulations

The above system of ordinary differential equations is highly nonlinear, hence in
this section we present numerical simulations to support the results of the previous
sections. In addition, we also present simulations to illustrate the model behavior
with respect to the given parameters. We begin with the basic model where all
parameters are chosen according to the baseline values provided in Table 1, p. 65.
The system is integrated using MatLab’s ode solvers and we adjust the solver’s
RelTol and AbsTol until the simulations have converged. The rest of the simulation
were then performed using these baseline tolerance values.

The following simulations are done using parameters values given in Table 4,
p. 85, and chosen using Table 1, p. 65.
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Fig. 6 LHS-PRCC sensitivity analysis

In particular, when δ = 0, Fig. 9, p. 88, explores the impact of the roguing
parameter, γ and also of R0 on the Healthy crop biomass, through the Hopf
bifurcation. Thus, we consider either γ (Fig. 9a) or R0 (Fig. 9b) as bifurcation
parameter and the vertical axis shows the values of the Healthy plant biomass. In
Fig. 9a, an increase in γ , correspond to a large amount of healthy plant biomass at
equilibrium. Then, with R0 we obtain the opposite: when R0 is large, then Hp = 0
and the Full Disease equilibrium is reached.

Clearly, thanks to the plot of the stability function � in Fig. 3, the endemic
equilibrium loses stability as R0 decreases when oscillatory solutions appear.

In Fig. 10, p. 88, we provide the same simulations with δ > 0, namely δ = 0.2.
Clearly, Hopf bifurcation occurs for smaller and larger values of γ , compared to
the case when δ = 0. In Fig. 11, p. 89, we consider the case when δ ≥ 0, for a
given value of γ , here 0.1, where Hopf bifurcation occurs. Here we need to solve
the full system as given in (1). Interestingly, MatLab solvers struggled to solve the
full system and adjustments of RelTol and AbsTol were again necessary. First, in
Fig. 11, p. 89, with (a), γ = 0.1, and (b), γ = 0.2, we show that the oscillatory
behavior is amplified as δ grows. Thus δ > 0 not only increases the interval, for
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γ , where Hopf bifurcation can take place, but also amplifies the amplitude of the
oscillations. Last but not least, these numerical results confirm that our approach in
the theoretical part, i.e., studying subsystem (10), p. 72, was appropriate to show
that a Hopf bifurcation can occur.

So far, roguing seems to be the best way to control the Cassava Mosaic Disease.
However, as our study shows, roguing can amplify a possible periodic behavior in
the system. It means that, at some moment, the disease seems to almost disappear,
such the decision of stopping the roguing can be taken prematurely. Similar
oscillatory behavior has been observed in plant epidemiological models, see for
example [24, 43]. However, it is important to notice that the model presented here is
different from these works. In particular, their investigations are based on numerical
simulations.
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However, thanks to the sensitivity analysis provided in the previous subsection,
some additional control strategies could be taken into account. For instance,
reducing βvp and βpv is possible. In fact, in Kenya, tomato crops are protected
against whiteflies using eco-friendly nets [37]. The results are very promising and
this control approach seems to be suitable and also sustainable. However, the use
of nets is only possible with young cassava plants, less than 1.5m high. The nets
also may change locally the environmental parameters (temperature, humidity) of
the plants, and thus may have an impact on their (photosynthetic) growth, and
eventually, foster other kind of diseases, e.g., fungi. In fact, there exists several
other control strategies, including the use of natural enemies, natural pesticides
or pesticides extracted from plants, fungi like Beauveria bassiana, etc., and traps.
Indeed, traps are widely used around the world, using pheromones or food to attract
and catch insects [1], and/or for mating disruption [2].

Of course, additional bio-control strategies could be considered in our model:
for example, adding resistant plants (and find, like in [3], the right percentage
of resistant cassava variety to plant to reduce the impact of the disease), use
entomopathogenic fungi or mycoinsecticides to kill whiteflies, etc. Last but not
least, traps, using pheromones, either to catch the insects [1], and/or to disrupt
mating [2]. In fact, they are many control strategies that could be tested using
modeling and simulations, but also field experiments.

6 Conclusion

In this chapter, we presented a modeling example of a crop vector-borne disease
with particular focus on cassava and the cassava mosaic virus disease. We showed
that interesting mathematical models can be built that require various mathematical
tools to be studied. Our model is relatively generic and could be applied to other
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plant–vector–virus interactions, and, of course, could be improved, taking into
account vector aggregation and dispersal, like in [23], or include explicitly the
spatial component, like in [9].

As alluded earlier, many other control measures may be used, but the proposed
model suggests roguing is the most effective way to control the disease. This
involves the uprooting of infected plants from the field. However, it has also been
reported, see [31], that roguing is unpopular among farmers due to the resulting
reduction in plant population. Our modeling effort suggests that the induced cycles
may be misleading as the farmers may prematurely stop the roguing process.

In addition to roguing, it could be interesting to consider a proportion of a
new variety of cassava, less susceptible to the virus or eventually resistant (like
in [3]), and then estimate theoretically the proportion needed, in a plot to reduce the
epidemiological risk.

However, our interest is not only in the development and the study of new
biological control models, but also in the questions highlighted by the modeling
process, the analytical results and the numerical simulations. Indeed, despite a
comprehensive literature review, various biological processes seem to be partially
known, for instance, the transmission rates of the virus from the plant to the whitefly
and from the whitefly to the plant. The plant biomass growth rates were only
rigorously studied through experiments in Australia. Surprisingly, such rates were
not estimated in Africa or South America despite several projects on the production
of several cassava varieties under various conditions. Certainly, these rates may
change, in particular, for diseased plants (i.e., estimate for mi), and for plants
infested by susceptible whiteflies (i.e., estimate for φ). In contrast, very complex
plant models have been calibrated, but only on healthy plants. However, the reader
has to be aware that field experiments can be very difficult to conduct, sometimes
with uncertainty in the outputs. That is why the use of models (even theoretical
ones) can be useful in designing the appropriate experiments in order to feed the
models and/or to improve the knowledge on the biological system. Models are not
there to replace the field expert, but to support him/her in decision-making. Last
but not least, models can also help to test hypothesis about unknown processes and
to focus on more specific experiments. However, whatever the models, it is always
important to have in mind that they are only approximation of the reality, such that
their predictability will always subject to some uncertainty.

We hope that this study on Cassava Mosaic Disease has highlighted some of
the challenges to face when dealing with crop (vector-borne) diseases. That is
why, to conclude, we strongly believe that crop diseases modeling can be a new
field of research in Mathematical Epidemiology, and, more generally, in Applied
Mathematics.
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Annexe A

Existence of a Full Endemic Equilibrium for Model (1)

To determine the endemic equilibria, we have to solve the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rpH #
p

1 + φV # − mhH
#
pP # − βvpH #

pI #
v − kpH #

p = 0,

rpI #
p

1 + φV # + βvpH #
pI #

v − miP
#I #

p − (
γ + kp

)
I #
p = 0,

αv

(
1 + δ

I #
p

1 + I #
p

)
V # − (

μ1 + μ2V
#
)
S#

v − βpvS
#
v I #

p = 0,

βpvS
#
v I #

p − (
μ1 + μ2V

#
)
I #
v = 0,

(19)

where the # denote the value at equilibrium. However we can study different cases,
like H #

p > 0 and, in particular, H #
p = 0, corresponding to the Full Disease

Equilibrium, FDE.
Thus, assuming H #

p = 0 leads to

P # = I #
p = 1

mi

(
rp

1 + φV # − (
γ + kp

))
,

with

V # = 1

μ2

(
αv

(
1 + δ

I #
p

1 + I #
p

)
− μ1

)
. (20)

Thus using (19)2, we deduce

miI
#
p + (

γ + kp

) = rp

1 + φV # =
rpμ2

(
1 + I #

p

)
μ2

(
1 + I #

p

)
+ φ

(
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1 + I #

p + δI #
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− μ1

(
1 + I #
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)) .

Reducing to the same denominator, we derive

(
miI

#
p + (

γ + kp

)) ((
1 + I #

p

)
(μ2 + φ (αv − μ1)) + δφαvI

#
p

)
= rpμ2

(
1 + I #

p

)
,
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that is(
miI

#
p + (

γ + kp

)) (
(μ2 + φ (αv − μ1)) + (μ2 + φ (αv − μ1) + δφαv) I #

p

)
= rpμ2

(
1 + I #

p

)
.

Expanding all terms in the previous equality, we obtain a second order equation

(
mi (μ2 + φ (αv − μ1)) + (

γ + kp

)
(δφαv + (μ2 + φ (αv − μ1))) − rpμ2

)
I #
p

+mi ((μ2+φ (αv−μ1)+δφαv))
(
I #
p

)2 + ((
γ + kp

)
(μ2 + φαv − μ1) − rpμ2

)= 0

that is
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I #
p
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φαvδ

)
I #
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with
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(μ2+φ (αv−μ1)) −rpμ2+φ
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μ2,

B = mi (μ2 + φ (αv − μ1)) > 0.
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(
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)
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rpμ2
< 1,

then A < 0. Then, we compute

� = (
B + A + (

γ + kp

)
φαvδ

)2 − 4A (B + δmiφαv) > 0,

such that, we deduce the following real positive root

I #
p = 1

2 (B + δmiφαv)

(
− (

B + A + (
γ + kp

)
φαvδ

) + √
�
)

> 0. (21)

Since we always assume that r > γ +kp, we can consider the following two cases:

• when φ = 0 (no impact of the vectors on the plant growth rate), FDE always
exists. Using (21), we deduce

I #
p = −A

B
= rp − (

γ + kp

)
mi

> 0.

Then, the other values V # (using (20)), S#
v (using (193)), and I #

v follow.
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• When φ > 0 and such that

φ <

(
rp − (

γ + kp

))
μ2(

γ + kp

)
(αv − μ1)

, (22)

then, according to (21), FDE always exists.
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A Multistage Mosquito-Centred
Mathematical Model for Malaria
Dynamics that Captures Mosquito
Gonotrophic Cycle Contributions to Its
Population Abundance and Malaria
Transmission

Miranda I. Teboh-Ewungkem, Gideon A. Ngwa, and Mary Y. Fomboh-Nforba

1 Introduction

Many mathematical models for malaria transmission dynamics have been derived
and analysed since the pioneering work of Sir Ronald Ross [26]. Some of these
models are based on the assumption that the human and mosquito populations are
constant, while others attempt variable human and mosquito populations [9, 11, 15–
18, 20]. Other studies point to the fact that climatic factors will affect the global
malaria burden problem in the future [13, 24, 33]. However, very few models
exist where the demographic and reproducing life style of the malaria transmitting
vector, the Anopheles sp mosquito, are built into the model construction process. In
this paper, we consider a general mosquito–human–malaria interactive framework
where the mosquito is allowed to undergo up to N gonotrophic cycles1during its
entire reproductive life, where N is a positive integer greater than unity.

The idea of studying mathematical models for malaria transmission that takes
into consideration the mosquito’s gonotrophic cycles was used in [22]. However,
given that the number of gonotrophic cycle counts was set to N = 3 in that paper,

1The cyclic path starting from the first episode of blood feeding to resting for egg maturation to
oviposition and then back to blood feeding that is repeated several times during the mosquito’s
entire reproductive life is referred to as the gonotrophic cycle. The length of the gonotrophic cycle
can be measured by calculating the average of the lengths of the intervals between successive
batches of eggs during the mosquito’s reproductive life.
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the authors had to consider a feedback mechanism whereby all vectors that were in
their k-th gonotrophic cycle where k > 3 were re-classed into gonotrophic cycle
three through a pull-back term. The main weakness of such a pull-back term meant
that some mosquitoes were given infinite life spans and that affected the size of
the equilibrium solutions and the threshold parameters. The main objective of the
current paper is to remove the truncation point in the gonotrophic cycle count of the
mosquito and then to mathematically study and assess the benefits that considering
the gonotrophic cycles bring into the model. The postulated benefits include:

(i) The ability to quantify the reproductive gains that accrue to the mosquito
population because of its interactions with the human. This reproductive
gain is captured by requiring that a mosquito that successfully completes
a gonotrophic cycle will lay eggs which will in turn contribute to the next
generation of adult mosquitoes and thus eventually lead to the increase of the
mosquito population through its normal developmental pathway. Thus for the
mosquito, the advantage of going out to quest for and harvest a blood meal
from humans outweighs the chance of death.

(ii) The ability to identify control points at different stages in the gonotrophic cycle
chain where vector control measures can be applied. For example, targeting the
breeding site, or the questing mosquitoes or the resting mosquitoes will reduce
the number of mosquitoes available to eventually quest for blood in human
populations or lay eggs for future adult mosquito populations. In fact, targeting
and reducing the questing mosquito’s population will be reducing chances of
transmitting malaria infections.

(iii) The ability to implicitly include the extrinsic incubation period of malaria
into a model that has the semblance of a susceptible-infectious model in the
mosquito population. This is achieved in this paper by allowing only those
mosquitoes that have completed at least two gonotrophic cycles from the time
of first infection to be infectious to humans.

(iv) The ability to assess how each blood meal episode contributes to the basic
offspring number of the mosquito insect as well as the reproduction number of
the malaria disease.

It has been difficult, if not impossible to capture these listed benefits in previous
mathematical models for malaria transmission which do not explicitly include the
gonotrophic cycle. The final objective of this paper is to produce a model that yields
what we may describe as an improved formula for the basic reproduction number
for malaria.

The rest of the paper is organized as follows: In Sect. 2, we show a detailed
derivation of the model we shall study in this paper. There, we describe the
compartmentalization in the human and mosquito populations and define the state
variables to be used. The flow rates in the model are explained and eventually the
general mathematical model is then derived. The derived model is scaled and its
properties examined. In Sect. 3, we present the mathematical analyses of both the
disease-free and epidemiological models. There, it is shown that the infection-free
model, which is a demographics model for mosquito populations, exhibits very rich
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and diverse dynamics than the disease-free system in many mathematical models
for malaria transmission. In that section, we compute the basic offspring number for
the model as well as the epidemiological model’s basic reproduction number. We
round up the paper with discussion on the results of our paper in Sect. 4.

2 Derivation of the Model Equations

2.1 The Compartmentalization Adopted in the Human and
Mosquito Populations

1. Disease dynamics within the human population. In the mathematical model
for the dynamics of malaria transmission described in [20], the authors divide
the human population into four compartments representing the disease status
of the human as explained in Table 1. The human compartments are (1) the
Susceptible humans Sh, (2) the Infected but not infectious humans (Exposed
humans) Eh, (3) the Infected, infectious and clinically ill humans Ih and (4) the
clinically recovered and partially immune but mildly infectious humans Rh. This
compartmentalization allows for the possibility of an infected, infectious and
clinically ill human to recover from clinical symptoms of the malaria infection
but still retain some form of mild infectivity to the mosquito through the class of
asymptomatic immune malaria carriers, Rh. The class of asymptomatic immune

Table 1 Types of human compartments and their description

Human type Description

Sh Density of susceptible humans at time t . These are humans who are not yet
infected with the malaria parasite but can become infected if bitten by an
infectious mosquito

Eh Density of humans who have been infected by the malaria parasite but they
are not yet infectious to mosquitoes and neither do they show any clinical
symptoms of being infected. In this state, the parasite is either lying quietly in
the liver or growing and multiplying in the red blood cells in the
non-transmissible form. In a continuous developmental process it will take
about 12 days for the parasite to develop and be in a state where it can be
transmitted to a mosquito or we can see clinical symptoms of being infected
in the human

Ih Density of infected, infectious and clinically ill humans at time t . This class
of humans can die of their infection if no treatment is taken. They are also
highly infectious to questing mosquitoes

Rh Density of recovered, partially immune and mildly infectious humans in the
human population at time t . Members in this class are created when recovery
from clinical symptoms from the Ih class is accompanied by the acquisition
of partial immunity. Members from this class are reduced when they lose their
immunity at a given rate to join the susceptible class. We will also refer to
them as the asymptomatic immune class
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carriers was identified as representing a substantial reservoir of infection in the
human population. We retain this compartmentalization here as it represents a
general form for an idealization of the different compartments that make up
the disease dynamics within the human population. So a susceptible human
who picks up the infection from an infectious bite, with a force of infection
g(Sh, IQ), from a questing female Anopheles sp mosquito drawn from the vector
IQ whose form will be described below, will become a human of type Eh and
will go through an incubation period before he/she can become a clinically ill and
infectious human of type Ih at the rate νh > 0, where 1

νh
is approximately the

length of the incubation period of the disease in the human. Afterwards, he/she
can recover both from clinical symptoms and from the infection, at the rate rh, to
join the susceptible class or he/she can recover only from clinical symptoms with
an acquisition of some form of immunity to further infection, while retaining
mild infectiousness, to join the partially immune class, of type Rh at the rate
σh. Individuals in the partially immune class lose immunity at rate. Death from
natural causes occurs, at rate μh, in each human compartment and natural births,
at rate λh, are also allowed to occur in each compartment. Vertical transmission
in humans is not allowed so that all newborn humans are susceptible. Additional
deaths due to disease can also be factored into the analysis by allowing some
of the clinically ill and infectious humans the possibility of dying from their
infection, at rate γh. The total human population at any time t , Nh, is then the
sum over all the compartments; Nh = Sh + Eh + Ih + Rh. The description of all
the compartments is shown in Table 1, while the general flow chart illustrating the
flow of infection within the human population is shown in Fig. 1. With the above
description, the equations that model the disease dynamics within the human
population take the form
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Fig. 1 Figure showing the flow of the infection within the human population. The force of
infection is denoted by g(Sh, IQ) where IQ is a vector containing the reservoir of infected
mosquito classes as explained in the text. Natural deaths occur in all classes at rate μh and births
in all classes that enter into the susceptible class occur at the same rate of λh per human
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dSh

dt
= λhNh + rhIh + δhRh − g(Sh, IQ) − μhSh; (1)

dEh

dt
= g(Sh, IQ) − (νh + μh)Eh; (2)

dIh

dt
= νhEh − (rh + σh + μh + γh) Ihł; (3)

dRh

dt
= σhIh − (δh + μh)Rh; (4)

with appropriate initial conditions at time t = 0. The model represented by
Eqs. (1)–(4) differs from the model in Ngwa and Shu [20] only in the form of
the force of infection, g(Sh, IQ). The nature of the vector IQ is discussed in
Sect. 2.2.

2. The mosquito’s population dynamics based on its gonotrophic cycle. In the
mosquito’s population, we shall approach the disease compartmentalization of
susceptible, exposed (infected) and infectious in an indirect route that passes via
a physiological compartmentalization of the mosquito’s population. That is, we
shall base the compartmentalization on the fact that the mosquito undergoes a
reproductive cycle called the gonotrophic cycle, so that at any one time each
adult female mosquito’s physiological state (well fed with a sugar meal, well
nourished with a blood meal, rested after blood feeding, oviposited, nulliparous,
mated/fertilized, etc.) on this cycle can be characterized. In what follows, we
consider only female adult Anopheles sp mosquitoes since the males only survive
on nectar and so, apart from the fact that they help in fertilizing the females,
they do not pose any immediate threat to humans. The very nature of the
gonotrophic cycle requires that a newly emerged adult female mosquito gets
fertilized, searches and takes a blood meal, searches for a resting place and rests,
and then searches for a breeding site where she lays eggs to complete the first
gonotrophic cycle. Given that she stores the spermatozoa in a special pouch
called a spermatheca, she does not need to mate again before the second and
subsequent egg laying episodes, [31, 32]. Thus, it is assumed that all subsequent
gonotrophic cycles starting from the second constitute only three main steps or
locations namely: (i) being at the breeding site (oviposition site), (ii) being at
human habitats site as questing mosquitoes and (iii) resting for egg maturation
after blood feeding. We can use directed arrows to represent the flow of the
mosquitoes as follows: from breeding site −→ human habitat site for questing
for blood meal −→ Resting for egg development −→ back to breeding site
to lay eggs −→ human habitat site for questing for blood · · · . So every egg
laying episode is preceded by blood feeding and resting episodes and the cycle
is repeated until the mosquito dies of old age if she is not killed at any of the
locations. The important point about these gonotrophic cycles is that every suc-
cessfully completed cycle culminates with the laying of eggs that mature through
the mosquito’s metamorphic pathway to eventually increase the population
density of the adult mosquitoes. An increase in the adult mosquito’s population



102 M. I. Teboh-Ewungkem et al.

density means the availability of more biting mosquitoes that can facilitate the
transmission of disease where malaria disease (or any other mosquito borne
disease of humans) transmission is also possible. We have captured here a natural
process whereby, in the presence of malaria disease, a successful mosquito–
human interaction may not only lead to transfer of the infection, but also means
an increase in the number of mosquitoes to subsequently take part in the disease
transmission process. This is why we have referred to the system studied in this
paper as the mosquito–human–malaria interactive framework. To complete the
characterization of the framework, we next describe how we can use the length
of the gonotrophic cycle as a timer to approximate the chronological age of the
mosquito and also identify mosquitoes that were infected early in their adult life
and which will most likely be the candidate infectious mosquitoes to humans if
they survive subsequent gonotrophic cycles.

3. Embedding the mosquito’s physiological age/disease status in its gonotrophic
cycle counter. The density of breeding site mosquitoes is denoted as type B

mosquitoes, that of questing mosquitoes as type Q and that of resting mosquitoes
as type R as explained in Table 2, and the general framework through which
the different classes of mosquitoes relate with each other is shown in Fig. 2.
In addition to the identification of the mosquitoes into the three broad types
of breeding site, questing and resting mosquitoes, as described in Table 2, we
subdivide each type into yet smaller classes indicating disease status, as well
as into distinct age stages based on the number of gonotrophic cycles that each
mosquito would have had. For example, for a given y ∈ {B,Q,R}, we write
Syk

, k ≥ 1, to denote a susceptible mosquito of type y at reproductive stage k,
and Iyk,j

, k ≥ j ≥ 1, to denote an infected mosquito at reproductive stage k

that first picked up the infection at reproductive stage j . By extension, all the
parameters of the system also have subscripted notation to capture its association
with the particular reproductive stage mosquito. For example, ρk is the flow rate
to the breeding site of susceptible rested mosquitoes at reproductive stage k, SRk

,
while that of IRk,j

would be ρk,j . We assume that mosquitoes of all types with a
higher gonotrophic cycle counter are older than mosquitoes of the all types but
at lower gonotrophic cycle counter. That is, at each cycle k ≥ 2, mosquitoes
of type Bk are older than mosquitoes of type Rk−1, while for each k ≥ 1, we
assume that mosquitoes of type Bk are younger than mosquitoes of type Rk . On

Table 2 Types of mosquitoes and their description

Mosquito type Description

Q Questing mosquitoes found at the human habitat site at time t

B Breeding site mosquitoes at time t . These constitute all newly emerged adult
mosquitoes together with any that have just returned to the breeding site to
lay eggs

R Resting mosquitoes at time t . These constitute all adult mosquitoes that
have successfully acquired a blood meal and are now resting in view of
returning to the breeding site to lay eggs after their resting period
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Fig. 2 Idealization of mosquito’s movement at each gonotrophic cycle. Breeding site mosquitoes
are attracted to human habitats at rate b(Nh), where they become questing mosquitoes of type
Q. Mosquitoes of type Q interact with humans Nh. Upon successful acquisition of a blood
meal through the interactive exposure rate β(Nh,Q), the mosquitoes of type Q become resting
mosquitoes of type R. After the requisite resting period, the mosquitoes of type R that survive
migrate again to the breeding site at rate ρ where they lay eggs that eventually contribute to the
new adult mosquito population through the new adult mosquitoes’ compartment. Upon successful
arrival at the breeding site to lay eggs, the returned mosquitoes become breeding site mosquitoes
of type B but with a higher gonotrophic cycle counter. qQ is the probability of successfully
completing a blood feeding episode to move into the resiting and egg maturation phase

the overall scale, we assume that mosquitoes of type B1 are the youngest while
mosquitoes of type RN , N > 1 are the oldest. The gonotrophic cycle counter is
thus used as a way to measure the adult mosquito’s chronological age. This is the
same compartmentalization as used in [22], but instead of ending the gonotrophic
cycle count at 3, we generalize and assume that each adult female mosquito will
undergo up to N reproductive cycles represented at each k, for k = 1, 2, · · · , N ,
by the idealization on Fig. 2. Note that N here will be determined by how
long a mosquito lives and how often it feeds and lays eggs, during its lifetime.
In [23], it is argued that in the wild, based on a conceptualization of days
and activities in the adult mosquito’s life for the possible number of times the
mosquito lays eggs during its reproductive life, the number N can be as large
as N = 4 for a mosquito that lives for 24 days. The detailed definition of each
of the compartments is shown in Table 3. The parameters of the system that
we shall derive are shown in Table 4. In Fig. 3 we display the flow chart for a
mosquito–human interactive system where each mosquito can undergo up to N

complete gonotrophic cycles. That is, for a disease-free system in which we have
mosquitoes interacting with humans and reproducing through the mechanisms



104 M. I. Teboh-Ewungkem et al.

Table 3 The compartmentalization of the mosquito vectors as a function of reproductive stages
k and j , for k = 1, 2, 3, · · · , N and j = 1, 2, 3, · · · , N , as well as according to disease status:
infected, I , or non-infected S. Only mosquitoes of type Q can interact with humans and so the
disease can be transmitted from a human to a mosquito and vice versa only through mosquitoes
of type Q. Furthermore, only infected mosquitoes of type IQk,j

with k − j ≥ 2 can be infectious
to humans

Mosquito type Description

SQk
Density of Susceptible questing mosquitoes at reproductive stage k at the
human habitat site at time t . This class of mosquitoes can be infected by
humans after a successful blood feeding episode

IQk,j
Density of infected questing mosquitoes at reproductive stage k that were
first infected with the malaria parasite at reproductive stage j . This class of
mosquitoes can be infectious to humans only if k − j ≥ 2

SRk
Density of susceptible resting mosquitoes at reproductive stage k at time t .
These were susceptible mosquitoes at reproductive stage k-1 that succeeded
in their blood feeding quest without picking up the parasite and arrived at
the breeding site to breed becoming susceptible breeding site mosquitoes of
a higher reproductive stage

IRk,j
Density at time t of infected resting mosquitoes at reproductive stage k that
were first infected with the malaria parasite at reproductive stage j . If they
successfully arrive at the breeding site to breed, they become infected
breeding site mosquitoes at reproductive stage k + 1

SBk
Density of susceptible breeding site mosquitoes at reproductive stage k at
time t . These are vectors that will leave the breeding site to human habitats
in search of a blood meal

IBk,j
Density of breeding site infected mosquitoes at reproductive stage k that
were first infected with the malaria parasite at reproductive stage j

explained above. This is the conceptualization of the system studied in [23].
Counting the number of compartments for this disease-free system gives 3N

mosquito compartments. In the presence of malaria, the number of compartments
in the mosquito populations grows considerably and so it will be important to
carefully examine how each of these compartments come about and how they
contribute to the general mosquito–human–malaria interactive framework.

From the compartmentalization adopted, only mosquitoes of type Q interact with
humans so that the infection can pass from humans to mosquitoes only through the
interaction of type SQ mosquitoes interacting with either infectious humans of type
(Ih) or the mildly infectious recovered and partially immune humans of type (Rh).
Figure 4 shows the full flow of the infection within the mosquito population for a
mosquito–human–malaria interactive framework where each mosquito can undergo
up to a maximum of three gonotrophic cycles. The figure clearly indicates the points
where the infection can be passed from the human population into the mosquito
population. The first column of compartments, comprising only the S∗ variables
constitute the material shown in Fig. 3. New infections can pass from mosquitoes to
humans only through an interaction between a susceptible human of type (Sh) with
an infected questing mosquito that is infectious. That is, mosquitoes of type IQk,j

,
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Table 4 The parameters of the system and their quasi-dimension. Time in days (T), Bites (b),
Vectors (V). All parameters are non-negative. Quasi-dimension of a parameter is its unit of
measurement

Parameter Description Quasi-dimension

Lk Carrying capacity (see Remark 2(e)) of vectors of type SRk
V

Lk,j Carrying capacity of vectors of type IRk,j
V

λk Function measuring the rate of oviposition by vectors of type SRk
.

Here, λ0k
is the limiting rate of oviposition when the population

size of resting mosquitoes is small compared with the carrying
capacity of the environment Lk at reproductive stage k

T −1

λk,j Function measuring the rate of oviposition by vectors of type
IRk,j

. Here, λ0k,j
is the limiting rate of oviposition when the

population size of resting mosquitoes is small compared with the
carrying capacity of the environment Lk,j at reproductive stage k

T −1

ρk Flow rate of reproducing and rested susceptible mosquitoes at
reproductive stage k to the breeding site

T −1

ρk,j Flow rate of rested infected mosquitoes at reproductive stage k

that where first infected at reproductive stage j

T −1

ak Rate of flow of breeding site vectors from the breeding site. As
noted in Sect. 2.2 item 1, ak is weighted with the quantity Nh

(Nh+κ

to produce the parameter bk(Nh) = ak
Nh

(Nh+κ
ak is weighted to defined the rate bk as explained in the text

T −1

μ∗ Natural death rate of variable ∗. For example, μh is the natural
death rate of the humans, and μSQk

is the natural death rate of
susceptible questing mosquito at reproductive stage k and μIRk,j

is the natural death rate of a resting infected vector at reproductive
stage k that was first infected at stage j

T −1

bQk
Biting rate of questing mosquito at reproductive stage k V b−1T −1

qQk
Probability of a successful blood meal upon an effective contact
between questing mosquitoes at reproductive stage k and humans

1

pQkh Infectivity of mosquitoes to humans. pQkh ∈ [0, 1] is a measure
of the chance that an infectious questing mosquito at reproductive
stage k will transfer the infection to the human after a successful
blood feeding encounter

bV −1

phQk
Infectivity of infectious humans to questing mosquitoes.
phQk

∈ [0, 1] is a measure of the chance that a susceptible
questing mosquito at reproductive stage k will pick up the
infection from an infectious human after a successful blood
feeding encounter

bV −1

p̃hQk
Infectivity of asymptomatic partially immune humans to questing
mosquitoes. p̃hQk

∈ [0, 1] is a measure of the chance that a
susceptible questing mosquito at reproductive stage k will pick up
the infection from an asymptomatic partially immune human
malaria carrier after a successful blood feeding encounter

bV −1

λh Natural birth rate for humans T −1

νh Rate of onset of human infectiousness. 1
νh

is the incubation period T −1

δh Rate of loss of acquired immunity in humans T −1

σh Rate of acquisition of immunity by humans T −1

rh Rate of recovery in humans T −1

γh Disease induced death rate in humans T −1
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Fig. 3 Idealization of mosquito’s movement according to gonotrophic cycles showing the
mosquito only flows. Breeding site mosquitoes at reproductive stage k are attracted to human
habitats at rate bk(Nh), where they become questing mosquitoes of type Qk . Mosquitoes of type
Qk interact with humans Nh with exposure rate βk(Nh,Qk). Upon successful acquisition of a
blood meal through the interactive exposure rate qQk

βk(Nh,Qk), the mosquitoes of type Qk

become resting mosquitoes of type Rk . After the requisite resting period, the mosquitoes of type
Rk that survive migrate again to the breeding site at rate ρk where they lay eggs that eventually
contribute to the new adult mosquito population through the new birth term. Upon successful
arrival at the breeding site to lay eggs, the Rk mosquitoes become breeding site mosquitoes of
type Bk+1 and the cycle continues. The Mosquitoes of type R at reproductive stage N , RN , lay
their final batch of eggs and then die of old age and no longer enter the cycle

k ≥ j + 2. The insistence that k ≥ j + 2 ensures that we capture the minimum
extrinsic incubation period; that is, the minimum time period required by an infected
mosquito for the disease to mature to a level that the mosquito can now be infectious
to humans. Here, we are assuming that each mosquito will spend approximately the
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Fig. 4 The full mosquito–human–malaria interactive framework for n = 3 showing the flow of
infection and movement of mosquitoes within the mosquito population. In the mosquito–human–
malaria interactive framework used in this paper, only mosquitoes of type Q can interact with
humans and infection can pass from human to mosquito only through the successful interaction
between a susceptible mosquito of type Q, at reproduction stage k, SQk

, and an infectious human.
This is the source of the new infected mosquito compartment IRk,k

, k = 1, 2, 3 shown. Each new
infected mosquito compartment starts a new branch of infected mosquitoes’ path that eventually
contribute to the source of infectious mosquitoes within the mosquito population as explained in
the text. Contributions into the new adult mosquito pool after each blood meal episode by a fed
and rested mosquito of type R are shown by the brown dotted lines. Additional infection of already
infected mosquitoes is not considered

same length of time to complete each gonotrophic cycle. Although this can be an
unrealistic assumption, given the perilous environment in which the mosquito must
live and search for blood meals, we continue to use 2 as the minimum number of
gonotrophic cycles whose cumulative time length is equivalent to the time lapse
required for the infection to mature in the mosquito.2

2We cannot use N = 1, i.e. the length of one gonotrophic cycle to be equivalent to the length of
the extrinsic incubation period for malaria in mosquitoes, as N = 1 may be too short.
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The total adult mosquito population implicated in the model constitutes only
those anthropophilic mosquitoes that consistently seek for blood meals within the
human population. If Nv is the total mosquito population size, then Nv = NR +
NQ + NB where NR , NB and NQ are respectively the sizes of the total resting,
breeding site and questing mosquitoes, given by

NR =
N∑

k=1

SRk
+

N∑
j=1

N∑
k=j

IRk,j
, NQ =

N∑
k=1

SQk
+

N−1∑
j=1

N∑
k=j+1

IQk,j
,

NB =
N∑

k=1

SBk
+

N−1∑
j=1

N∑
k=j+1

IBk,j
, (5)

where S∗k
and I∗k,j

for ∗ ∈ {R,B,Q}, are as defined in Table 3. In this formulation,
k tracks the reproductive stage of the adult mosquito, and hence the age, meanwhile
j tracks the reproductive stage at which the adult mosquito was first infected with
the malaria parasite.

Taking into consideration the full breadth of possible number of gonotrophic
cycles and considering that disease dynamics adds to the complexity of the problem,
we believe that it will be informative to have an idea of the size of the system. We
already know that in the human population there are four compartments representing
disease status with two of these compartments potentially infectious to mosquitoes.
This gives us up to about a 50% chance of having an infectious human compartment
in the modelling framework. We now work out the size of the system by calculating
the total number of possible compartments in the mosquito population within the
current framework. We state and prove the following result:

Lemma 1 (On the Size of the System) Let there be given a mosquito–human–
malaria dynamical system interactive framework whereby the mosquito can undergo
up to N gonotrophic cycles during its entire reproductive life. Assume that at each
gonotrophic cycle, there are three possible compartments: Q, B and R representing
the three phases of breeding, questing and resting as conceived above. If in addition
a mosquito in each of the compartments can be in any one of the disease states of
infected (infectious) or susceptible, and if M(N) is the total number of mosquito
compartments for the system, then M(N) = N

2 (5 + 3N) where N is the maximum
number of gonotrophic cycles possible for each adult mosquito.

Proof At gonotrophic cycle one, we have the three starting susceptible compart-
ments SB1 , SQ1 and SR1 . At this cycle, a questing mosquito can become infected
to give the additional infected resting compartment IR1,1 . This gives a maximum
number of 4 possible compartments at reproductive or gonotrophic cycle 1. The
two possible R compartments from gonotrophic cycle 1 each give rise to three
compartments at gonotrophic cycle 2 as follows: vectors from the susceptible
compartment SR1 migrate to the breeding site as susceptible vectors of type B at
gonotrophic cycle 2, SB2 which eventually follow the mosquito behavioural pattern
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to produce SQ2 and SR2 . The infected resting mosquitoes, IR1,1 migrate to the
breeding site to become infected breeding site mosquitoes at reproductive stage
2, IB2,1 . These, also following the mosquito’s behavioural pattern, produce IQ2,1

and IR2,1 . The susceptible questing mosquitoes at reproductive stage 2 can become
infected to produce infected resting mosquitoes at reproductive stage 2; IR2,2 .

All mosquitoes that enter the next stage as infected mosquitoes do not add
additional new infections into the mosquito sub-system. So we have a total of
only 7 mosquito compartments at reproductive stage 2. Thus in general, each R

compartment at the current level will produce three new compartments in the
next level with a possibility of generating one additional new R compartment at
that new level whenever new infections pass from the humans into the mosquito
population. We thus have the sequence (ck)k≥1 where each ck = 3k + 1 is the
number of compartments at the k-th gonotrophic cycle. Thus, the total number of
compartments after all N gonotrophic cycles is

M(N) =
N∑

k=1

ck =
N∑

k=1

(3k + 1) = 1

2
N(5 + 3N); (6)

as required. See illustration of compartment count in Fig. 5 for N = 4. �

2.2 The Exposure, Flow, Contact, Infectivity and Recruitment
Rates

1. The mosquito flow rate from breeding site to human habitat sites. The flow rate
from breeding site to human habitat is derived by considering the blood factor
index for the mosquito and accounting for those mosquitoes that eventually
choose to take a blood meal from the human population. If ak is the rate of
flow of vectors from breeding site to vertebrate habitat sites, then ak is weighted
by the quantity Nh

Nh+κ
where κ is a measure of the existence of an alternative

blood source for the mosquito [22], so that bk(Nh) = ak
Nh

Nh+κ
is a measure of the

effective rate of flow of breeding site mosquitoes at reproductive stage k to the
human habitats. It is understood that the fraction 1 − Nh

Nh+κ
of ak constitutes that

fraction that searches for blood meals from non-human sources.
2. The flow rate of resting/rested vectors to the breeding site. After the acquisition

of a blood meal, the adult female mosquito finds a suitable resting place where
she rests for her eggs to mature. After a successful completion of the rest period,
the rested mosquito that is ready to lay her eggs must migrate to the breeding
site. Two states of vectors are considered and their flow rates differentiated
accordingly: The flow rate to the breeding site of susceptible rested mosquitoes
at reproductive stage k, denoted by ρk and the flow rate of rested infected
adult mosquitoes at reproductive stage k, that were first infected (with malaria)
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IR4,2

IB4,1

IQ4,1 Nh

IR4,1

f1(SQ1 , Ih, Rh)

f2(SQ2 , Ih, Rh)

f3(SQ3 , Ih, Rh)

f4(SQ4 , Ih, Rh)

Fig. 5 Illustration of the gonotrophic cycle flow chart for N = 4. The cycles are demarcated with
dashed lines. At gonotrophic cycles 1, 2, 3 and 4 there are respectively 4, 7, 10 and 13 possible
mosquito compartments. So that at gonotrophic cycle n there will be 3n+1 mosquito compartments
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at reproductive stage j , ρk,j . A resting mosquito at reproductive stage k that
successfully arrives at the breeding site to lay its eggs shall become a breeding
site mosquito now at reproductive stage k + 1.

3. Exposure rate of humans to questing mosquitoes. As in [22], the exposure rate
of humans of a general type, say Yh, Y ∈ {S,E, I, R}, when interacting with
questing mosquitoes of type Q at reproductive stage k, represented generally

as XQ ∈ {SQk
, IQk,j

}, is denoted βk and takes the form βk(Yh,XQ) = bQk
XQYh

Nh

where bQk
is the human biting rate of the mosquito at reproductive stage k and Nh

is the total human population available to the questing mosquitoes. To be specific,
if XQ is a susceptible questing mosquito at reproductive stage k, SQk

, then we
have βk(Yh,XQ) = βk(Yh, SQk

). If the questing mosquito is already infected,
the infected mosquito is identified with its current reproductive stage and the
reproductive stage where infection first took place through the double subscript
notation so that XQ = IQk,j

, a questing mosquito of type I at reproductive stage
k, that was first infected at reproductive stage j and βk(Yh,XQ) = βk(Yh, IQk,j

).
This double subscript notation allows us to track the chronological age of the
mosquito through its gonotrophic cycles counter as well as from when it first
picked up the infection from the human. This way, the incubation period of the
disease within the mosquito population is implicitly built into the modelling
framework by assuming that the equivalent of at least two gonotrophic cycles
episodes must elapse from time of first infection to the time when the questing
mosquito is infectious to humans.

4. Effective contact rates. We consider two levels of having an effective contact
between the humans and the mosquitoes: In the first instance, we consider an
interactive contact that is effective in the sense that the contact leads to the
transfer of infection from the human to the mosquito or from mosquito to human,
and in the second instance, we consider a contact which is effective in the sense
that the mosquito ingests enough blood to be able to satisfy its reproductive
need. In the current formulation, we assume that when a mosquito engages in
an interaction and fails to get the required blood meal, it is assumed killed in the
process. In a more realistic setting, we would consider a case where a fraction of
the mosquitoes that fail to get the required blood meal lives to try again as many
times as it is required. We do not consider this in the present formulation, but
only the following possibilities:

(a) The questing mosquito at reproductive stage k that successfully takes a blood
meal with probability qQk

shall become a resting mosquito of type R at
reproductive stage k. So, it fails to take the blood meal upon trying with
probability 1−qQk

which, in this case, is the probability of certain death. Two
types of resting mosquitoes are identified in this work: susceptible resting
mosquitoes at reproductive stage k whose density is denoted by SRk

and
infected mosquitoes at reproductive stage k that first picked up the infection
at reproductive stage j , whose density is denoted by IRk,j

.
(b) A susceptible questing mosquito at reproductive stage k that successfully

takes a blood meal with probability qQk
from an infectious human and
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also succeeds in picking up an infection from human with probability phQk

shall become an infected resting mosquito and the time counter to measure
the length of the period of it being infected starts from the counter of the
reproductive stage where it first got infected. So, for emphasis, we use the
notation IRk,j

to denote the density of infected resting vectors at reproductive
stage k that first picked up the malaria infection at reproductive stage j .

(c) An infectious questing mosquito at reproductive stage k that was first
infected at reproductive stage j that successfully takes a blood meal from
a susceptible human with probability qQk

and also transfers the infection to
the human with probability pQkh shall become a resting infected mosquito
at reproductive stage k that was first infected at reproductive stage j .

(d) Where the mosquito or human is already infected, further infection is not
considered. That is, we do not consider super-infection. However, every
successful blood meal episode leads to oviposition by the mosquito which in
turn leads to the eclosion of new adult mosquitoes that go to increase the total
adult mosquito population. Where infection is present and not transferred,
the probability of failure to transfer is 1 − phQk

or 1 − pQkh, respectively.

5. Infectivity of humans to mosquitoes. The incubation period of the disease in
humans, when caused by Plasmodium falciparum, has been estimated to be
about 12 (9–14) days. This incubation period can be longer for other Plasmodium
species of the parasite [27]. So, from the time of first infection with Plasmodium
falciparum parasites, it takes about 12 days for the disease to develop in the
human to the level where the human can become infectious to the mosquito.
This fact is captured in the model by including a compartment of the human
population wherein the humans are exposed to the infection but not yet infec-
tious to mosquitoes. After the incubation period, the human can then become
infectious where the rate of onset of infectiousness is inversely proportional
to the residence time in the incubation phase. Infectious humans can recover
without gain of immunity to join the susceptible class, or they can recover from
clinical illness with a substantial gain of immunity to enter a partially immune
class wherein members of that class are immune to clinical symptoms of malaria
but are still mildly infectious to mosquitoes. This phenomenon of incomplete
immunity permitting disease transmission has been known for some time now
[2–4], and represents one of the main reasons why malaria eradication is difficult,
among others; the reservoir of infection in the human population includes both
symptomatic and asymptomatic immune carriers. To derive the expression for the
infectivity of the human to the mosquito, we simply multiply the exposure rate of
the mosquitoes to human, as derived above, with the probability of an effective
contact between the questing susceptible mosquito at reproductive stage k, qQk

with the probability of the infectious human infecting the reproductive stage k

questing mosquito, phQk
if the human is from class Ih and p̃hQK

, if the human
is from class Rh. Therefore, if fk(SQ, Ih, Rh) is the force of infection for the
stage k questing mosquitoes, that is the rate of change of new infections into
reproductive stage k questing mosquitoes, then
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fk(SQk
, Ih, Rh) = phQk

qQk
βk(Ih, SQk

) + p̃hQk
qQk

βk(Rh, SQk
). (7)

These new infections will enter the IRk,k
compartment as a starting point of

each new infection entering the mosquito population. Formula (7) captures the
fact that asymptomatic immune malaria carriers can be infective to mosquitoes;
however, we must expect that phQk

> p̃hQk
to capture the fact that infectivity of

the type Rh humans is less than that of the Ih humans and that the reservoir of
infection in the human population includes both symptomatic and asymptomatic
immune malaria carriers.

6. Infectivity of mosquitoes to humans. The incubation period of the disease in
mosquitoes can be as low as 10 days, [5, 27, 29] but can be made shorter in
higher temperatures [5]. The length of the incubation period in mosquitoes can
also be different for different species of the malaria parasite. So, from the moment
the mosquito first picks up the infection we have to wait at least 10 days for
the disease to mature in the mosquito before the mosquito can bring back the
infection into the human population. During these 10 days, the reproductive cycle
activities of blood feeding and egg laying continue as they will still continue
after the 10 days incubation period. We implicitly model the incubation period
of the disease in the mosquito population by requiring that an equivalent time
length, measured by a cumulative time lapse equivalent to the length of at least
two gonotrophic cycles, be completed by the mosquito before it can become
infectious to the human. Thus, a questing mosquito at gonotrophic cycle k, that
picked up the infection as a questing mosquito at gonotrophic cycle j , IQk,j

,
is considered infectious to humans only if k − j ≥ 2. Therefore only older
mosquitoes that were infected much earlier in their gonotrophic cycle count, and
which have undergone at least two gonotrophic cycle counts since first infection,
shall be infectious to humans.

From the forgoing, we deduce that not all infected mosquito compartments
contain infectious mosquitoes. So, it will be informative to work out the size of
the reservoir of infection (ROIV ) in the mosquito population. Let M < M(N) be
the number of compartments containing infectious questing mosquitoes. We seek
to quantify the number of infectious questing mosquito compartments, IQk,j

, 3 ≤
k < N , 1 ≤ j ≤ N − 2, k ≥ j + 2. We can state and prove the following result
on the actual size of M(N) for a dynamical system where the total number of
reproductive cycles possible is N .

Lemma 2 (On the Number of the Infectious Questing Mosquito Compart-
ments) Consider a system where the total number of gonotrophic cycles is N .
Suppose that an infected mosquito at reproductive stage k that was first infected
at reproductive stage j , IQk,j

, requires at least two gonotrophic cycles before it
can become infectious to humans. If M is the number of infectious compartments
in the vector population, then M = 1

2 (N − 1)(N − 2).

Proof If each infected mosquito requires at least two gonotrophic cycles from
time of first infection to the onset of infectiousness, then a mosquito that picked
up the infection in its first gonotrophic cycle will become infectious to humans
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as from its third gonotrophic cycle. We thus have IQk,1 , for k = 3, 4, 5, · · · , N ,
giving a total of N − 2 infectious questing compartments. Next, a mosquito
that picked up the infection during its second gonotrophic cycle will become
infectious to humans as from the 4th gonotrophic cycle. We thus have in this
case IQk,2 , for k = 4, 5, · · · , N , giving a total of N − 3 infectious questing
compartments. Continuing in this way, we find that a mosquito that picked
up the infection during its N − 2 gonotrophic cycle will become infectious at
gonotrophic cycle N , giving only one infectious questing compartment, IQN,N−2 .
Questing mosquitoes that pick up the infection either at the N − 1 or N

gonotrophic cycles shall die before the maturation of the disease, and so this class
of infected vectors will not play a part in the spread of the infection, although they
will contribute to the size of the total mosquito population. Thus the total number
of infectious questing compartments can be obtained by summing up the number
of compartments associated with infectious questing and is

M(N) =
N−2∑
i=1

i = 1

2
(N − 2)(N − 1), (8)

as required. �
Remark 1 (Generalization of Lemma 2) We can attempt a generalization of the
result of Lemma 2 as follows: If n is the number of cycles that must elapse from
time of first infection to time of onset of infectiousness of the mosquito, then from
the biology of the Anopheles mosquito and the incubation period of the malaria
infection in the mosquito, we deduce that n ≥ 2, every thing being equal. Thus in
this general case, M the number of infectious compartments would be given by
M = ∑N−n

i=1 i = 1
2 (N −n)(N −n+1), n ≥ 2. We must conclude, therefore, that

M so calculated by Lemma 2 is the largest realistic integer that may be used as an
indicator of the size of the number of infectious questing mosquito compartments
in this framework.

The importance of Lemma 2 lies in the fact that we can combine its results
with those of Lemma 1 to work out the probability of finding an infectious
mosquito compartment in the entire mosquito sub-system, which result can be
used to work out the chances of passing the infection from mosquito to human.
In trying to understand the issue of chances of finding an infected mosquito in
the system as well as the number of possible mosquito compartments of the
system, we must settle two important parameters of the compartmental modelling
process: (i) The number of compartments in the mosquito demographic frame-
work and (ii) the length of the incubation period of the disease in a mosquito as
captured by gonotrophic cycle count. Bearing these two facts it mind, we start by
noting that the total number of mosquito compartments that eventually arise will
be linked to the number of compartments originally conceived for the mosquito
demographics model framework at each gonotrophic cycle. In the derivation of
the result of Lemma 1, the demographic model has three compartments to capture



A Multistage Mosquito-Centred Mathematical Model for Malaria Dynamics. . . 115

the breeding, questing and resting phases of the adult mosquito’s reproductive
life and shown in Fig. 2. It is possible to adjust the demographic model’s
compartmentalization to include other important steps in the adult mosquito’s life
such as searching for first sugar meal after adult eclosion, swarming, mating, first
rest after mating, etc. This will drastically increase the number of compartments
in the demographic model’s compartmentalization framework. However, we do
not think that the chances of finding an infected mosquito compartment in the
system are equivalent to the probability of finding an infectious mosquito, unless
the assumption can be made that the proportion of mosquitoes within each of
the defined compartments are same or close to being the same. In the second
instance, we also note that the number of compartments containing infected and
infectious mosquitoes that shall be found in the system will be determined by a
parameter equal to the number of gonotrophic cycles whose cumulative length
of time is equivalent to the length of the incubation period of the disease in the
mosquitoes. In the derivation of the results of Lemma 2, this number was set to
2, and is the number used in this manuscript, but was later generalized to n ≥ 2
as in Remark 1. We can now state and prove the following result:

Lemma 3 (On the Probability of Finding an Infectious Mosquito Com-
partment) Let there be given a mosquito–human–malaria dynamical system
interactive framework in which the mosquito can undergo up to a maximum of
N gonotrophic cycles during its entire reproductive life. Assume that to complete
one gonotrophic cycle, the mosquito must pass through m distinct compartments
where only one of these compartments represent interaction with humans and
through which infection can pass into (or out of) the mosquito population. Let
Mm(N) be the total number of compartments that this system can generate,
and Mn(N) the total number of infectious mosquito compartments in the system,
where n is the number of cycles that must elapse from time of first infection to
time of onset of infectiousness of the mosquito. Let Pm,n(k) be the probability of
finding an infectious compartment at gonotrophic cycle k. Then,

Pm,n(k) =
{

0, 0 ≤ k ≤ n;
(k−n)(k−n+1)
k(mk+m+2)

, n ≤ k ≤ N,
and lim

k→∞ Pm,n(k) = 1

m
(9)

Proof Given that of the m compartments, infection can pass through only one
of them, only one new infected mosquito compartment can be produced at each
gonotrophic cycle level. Following the same argument as used in Lemma 1, we
find that given m compartments at the start, at gonotrophic cycle k we have ck =
mk + 1 compartments and so the total for all cycles, Mm(N) is given by

Mm(N) =
N∑

k=1

ck =
N∑

k=1

(mk + 1) = 1

2
N(mN + m + 2). (10)
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From Remark 1 we have that if Mn(k) is the number of infected and infectious
compartments in the system at gonotrophic cycle k, where we require at least n

gonotrophic cycles before infected vectors can become infectious, then

Mn(k) =
{

0, 0 ≤ k ≤ n;
1
2 (k − n)(k − n + 1), n ≤ k ≤ N.

(11)

Therefore from standard probabilistic arguments we have that,

Pm,n(k) = Mn(k)

Mm(k)
=
{

0, 0 ≤ k ≤ n;
(k−n)(k−n+1)
k(mk+m+2)

, n ≤ k ≤ N,
and lim

k→∞ Pm,n(k) = 1

m

as required. �
So while the probability of finding an infected compartment increases with

increasing number of gonotrophic cycles, the rate of increase is decreasing. So
we should not expect to get more infectious compartments from the system just
by allowing the mosquitoes to undergo more gonotrophic cycles. We conjecture
that this is linked to the fact that the infection must mature in the mosquito before
being available for transmission as well as to the fact that the “bottleneck” requir-
ing that the infection must pass through the questing mosquito compartment
limits the possibilities. In Fig. 3, we illustrate the behaviour of the probability
of finding an infectious mosquito compartment in the system for different values
of m and n. The shape of the graph is similar for various m and k values as
described in formula (9).

By considering the limiting behaviour of the probability Pm,n(k), we deduce
that the chances of finding an infectious compartment in the human population
are higher (up to 50%) than that of finding an infectious compartment in the
mosquito population (less than 33% for the case m = 3 and 25% for the case
m = 4). This information may be useful in determining the infectivity of the
biting mosquito if the assumption is that the population sizes of mosquitoes in
these compartments are about the same. Formula (9) shows that even though the
length of the incubation period is important in determining when a compartment
is infectious, this parameter’s effect, once set, diminishes as the number of
gonotrophic cycles increases. On the other hand, the parameter m is more
important if we make the assumption that the population of mosquitoes within
each mosquito compartments is about the same. However, if the population
of mosquitoes in the infectious classes is smaller than the population size in
the other compartments, then the importance of m is diminished. Perhaps we
should not expect better results with more compartments in the demographic
compartmentalization framework, but more on the distribution of the mosquitoes
within these compartments. In what follows we continue to use the case m = 3
and n = 2 (Fig. 6).
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Fig. 6 The probability, Pm,n(k), of finding an infectious mosquito compartment in the entire
mosquito–human system is plotted as a function of the number of gonotrophic cycles reached for
the cases (m, n) = (3, 2) and (3, 4), illustrated by the black and red solid curves, and also the cases
(m, n) = (4, 2) and (4, 4), illustrated by the black and red dashed curves. The probability changes
very rapidly in a narrow range of values of gonotrophic cycles. As the number of gonotrophic
cycles increases further, the probability approaches 1

3 for the cases when m = 3 and illustrated

by the solid light pink line, and it approaches 1
4 when m = 4 as illustrated by the dashed light

pink line. If the number of compartments in the demographic model framework is increased, the
chances of finding an infected mosquito compartment reduce. This result is only as important as the
assumption that in the compartmentalization choices, the proportion of mosquitoes in the various
compartments will be close or as close to being the same

The number of infectious mosquito compartments may be displayed in a
vector IQ ∈ R

M where M is given by Eq. (8) and IQ = (IQk,j
, 3 ≤ k ≤

N, 1 ≤ j ≤ N − 2, k > j) ∈ R
M . We shall refer to IQ as the reservoir of

infection vector (ROIV ). We now use the entries of ROIV to derive the force
of infection in the human population. Let g(Sh, IQ) be the force of infection in
the human population. Then g is modelled by considering all those interactions
between susceptible humans Sh and all the infected and infectious questing
mosquitoes found in the mosquito’s ROIV . As mentioned above, employing the
convention that each infected mosquito must go through at least two gonotrophic
cycles before becoming infectious will implicitly build the incubation period of
the disease into the mosquito population. The force of infection in the human
population is therefore a sum over all those human-mosquito effective contacts,
βk(Sh, IQk,j

), that lead to acquisition of blood meal with probability qQk
together

with the probability of transferring the infection to the human with probability
pQkh. Thus multiplying and summing up we have the expression
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g(Sh, IQ) =
N−2∑
j=1

N∑
k=j+2

pQkhqQk
βk(Sh, IQk,j

). (12)

The force of infection so constructed takes into consideration all those infected
and infectious anthropophilic mosquitoes that are participating actively in the
dynamics.

7. The rate of recruitment of new adult mosquitoes. The actual existence of
mosquitoes to continue to the next generations depends on the fact that
mosquitoes of type R find suitable breeding sites to lay their eggs. It may
be that a mosquito will choose a particular breeding site over another depending
on several factors that could include the absence of predators, presence of
other larvae at that breeding site or proximity from the resting place. Thus, the
relationship between the mosquitoes of type R and the newly emerging adults
cannot simply be assumed to be a linear response. This perhaps necessitates an
assumption that the adult mosquito eclosion rate is density dependent. Some
sources, for example [7], use a delay modelling argument, to derive a formula for
the rate of emergence of new adults in a delayed differential equation framework.
Others, see for example [1, 12], approach the problem of modelling the rate of
new adult mosquito eclosion by including at least one (or more) state variable
to represent the aquatic stages of the mosquito and then evoke the idea that the
limitation of the carrying capacity of the aquatic pond will introduce competition
within the aquatic stages of the mosquito’s population as a source of nonlinearity
and density dependence on the dynamics. Here, we simply assume that the
net effect of the activities of the adult mosquitoes of type R is to contribute
to the density of adult mosquito in the next generation through a birth term at
a rate whose size is quantified by the birth rate function λR : [0,∞) → R.
The function λR , so described and fixed, in general, is assumed to depend in a
nonlinear way on the size of the mosquitoes of type R that eventually survive
the resting phase and then are in a position to lay eggs when they return to
the breeding sites. Here, we assume that the form of the real valued function λR

must satisfy desired properties, which among others, will guarantee the continued
existence of a buoyant adult mosquito population so that the growth dynamics
of the mosquitoes, in the absence of malaria infection, is internally stable from a
mathematical and physical stand point. We write down the following definition:

Definition 1 (Recruitment Functions) For the sake of mathematical and bio-
logical realism, a function λR : [0,∞) → R is a suitable recruitment rate
function if λR is smooth and in addition should satisfy the following:

(1) λR(0+) > 0, where λR(0+) = limx→0+ λR(x).

(2) λ′
R(x) exists with λ′

R(x) < 0, ∀x ≥ 0.

(3) lim
x→+∞ λR(x) < lim

x→0+ λR(x).

(4) The function xλR(x) is continuously differentiable, bounded above and
unimodal so that there exists x̂ > 0 such that for 0 < x < x̂, xλR(x) is
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strictly monotone increasing and for x > x̂, xλR(x) is strictly monotone
decreasing.

Remark 2 (Consequences of the Assumptions on λR) Each of the conditions
considered in the above has consequences on the expectations of the behaviour
of the function λR as follows:

(a) Condition (1) ensures that λR is non-negative for small values of its argument
and represents the rate of production of new x, per x, per time so that the
quantity xλR(x) represents the net rate of production of new x per time.

(b) Condition (2) ensures that λR is a monotone decreasing function of its
argument.

(c) Condition (4) ensures that xλR(x) has a positive maximum value given by
x̂λR(x̂), where x̂ ∈ [0,∞) satisfies the equation λR(x̂) + x̂λ′

R(x̂) = 0.
(d) Condition (3) ensures that the equation x′(t) = x(t)λR(x(t)) − μvx(t),

where μv > 0 can be seen as a natural death rate parameter per x, and
which represents a form of the equation for the dynamics of mosquitoes in
the absence of infection, has a non-zero steady state solution x∗ satisfying
the equation x∗λR(x∗)−μvx

∗ = 0 which is stable. Observe that such a non-
zero steady state, x∗, will be found through the formula x∗ = λ−1

R (μv),
which exists and is positive owing to the monotonicity of λR whenever
limx→∞ λR(x) < μv < λ(0+).

(e) All conditions put together ensure the existence of a carrying capacity3 L

such that for x < L, dx
dt

> 0 and thus the population x(t) is increasing
with time and for x > L, dx

dt
< 0 and thus x(t) is decreasing with time

t . Examples of birth functions found in the biological literature that satisfy
(1)-(4) may be found in Brännström and Sumpter [6].

In a general analysis, we may wish to investigate the effect and outcome of
different birth functions on the dynamics of the system.

In the context of the generalized model presented in this paper, mosquitoes
of type R can be in one of two states: Susceptible mosquitoes of type R at
reproductive stage k; SRk

, or infected mosquitoes of type R at reproductive stage
k that were first infected at reproductive stage j ; IRk,j

. Each of these do contribute
to the next generation of adult mosquitoes upon successful completion of resting
period.4 To differentiate the contributions, from each type R mosquito, to the
next generation of the new adult mosquito’s population, we write λk(SRk

) =
λSRk

(SRk
) and λk,j (IRk,j

) = λIRk,j
(IRk,j

). Then, we set λ0k
= λk(0+) =

3The carrying capacity of a biological species in an environment is the maximum population size
of the species that the environment can sustain indefinitely, given the food, habitat, water, and other
necessities available in the environment.
4Here, the subscript R in the definition of λR shall be replaced with either SRk

or IRk,j
as the case

maybe when we want to consider contributions from the different types of R mosquitoes into the
function λR .
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limSRk
→0 λSRk

(SRk
) and λ0k,j

= λk,j (0+) = limIRk,j
→0 λk,j (IRk,j

). To be
specific, we use a simple density dependent form of the birth function that
satisfies conditions (1)–(4) above and define, at each reproductive stage k the
linear functions

λk(SRk
) = λ0k

(
1 − SRk

Lk

)
, and λk,j (IRk,j

) = λ0k,j

(
1 − IRk,j

Lk,j

)
(13)

where λ0k
> 0 and λ0k,j

> 0 are constants measuring the limiting size
of the oviposited egg cluster by rested mosquitoes at reproductive stage k

when population numbers of those mosquitoes are small, and Lk and Lk,j are
parameters linked to the environmental carrying capacity5 for stage k vectors of
type R. The form of λk or λk,j prescribed by Eq. (13) can go negative when
SRk

> Lk or IRk,j
> Lk,j which will then show that for these values of SRk

and IRk,j
, the rate of oviposition is negative signifying declining population

numbers. This behaviour actually represents a realistic mathematical idealization
of the population growth process and so represents a good starting point in
considering nonlinear dynamics for the mosquito’s population. Other advantages
in using these forms are that they are linear and could serve as the first
linear approximation for any nonlinear function that satisfies conditions and
assumptions of Definition 1. The main reason we continue to use the linear birth
rate is because of mathematical tractability of the resulting equations based on
this linear birth rate model. More nonlinear functions have been used in malaria
modelling. See, for example, [17, 21].

The functional response of the resting mosquitoes in contributing to the
general mosquito population size will be determined by the way in which we
model inter-specific competition (if any) between the members of the rested/egg
laying mosquitoes. Two formulations are possible:

(a) In the first instance we can assume that λk and λk,j are a functions of the
total size of the resting mosquitoes NR where NR is given by (5) so that we
have the expression

New adults =
N∑

k=1

ρkλk(NR)SRk
+

N∑
j=1

N∑
k=j

ρk,j λk,j (NR)IRk,j
. (14)

5While λ0k
and λ0k,j

may be different for different values of k and j because the size of the
brood of eggs gets smaller with increasing number of gonotrophic cycles [27, page 68], it may
be reasonable to assume that Lk and Lk,j may be the same for all values of k and j since the
carrying capacity of the environment is determined by external environmental factors such as
temperature and precipitation, which once set will not change during the breeding season. However,
we continue to differentiate these in what we write here for the sake of generalization adopted so
far.
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(b) In the second instance, we assume that each mosquito specifically lives a
separate life style so that we can consider a rate of recruitment of new adult
mosquitoes into the system to come from contributions from the independent
classes of resting mosquitoes and write down an expression of the form

New adults =
N∑

k=1

ρkλk(SRk
)SRk

+
N∑

j=1

N∑
k=j

ρk,j λk,j (IRk,j
)IRk,j

. (15)

Note: if Lk → ∞, Lk,j → ∞ so that
SRk

Lk
→ 0,

IRk,j

Lk,j
→ 0 and λk =

λk,j = λ0k
= λ0k,j

= L, the constant function, as in [22], Eqs. (14) and (15)
will give the same results. However, it is reasonable to note that because of
environmental variability and evolutionary stochasticity, the rate of oviposition
of all the rested and egg laying mosquitoes need not be the same and use the
simple linear function prescribed by (13). For the actual form of the expression
for new adults we shall prefer the form (15) over the form (14) simply by
advancing the argument that each adult mosquito lives an independent life and
its rate of oviposition will not be determined by the availability and presence
of other mosquitoes of that type; though it is fairly reasonable to assume that
the rate of survival of offspring after egg laying will be determined by the
environmental carrying capacity of the breeding site where the mosquitoes go to
breed. So nonlinearity in the adult mosquito eclosion rate is captured by evoking
the limitations imposed by the size of the breeding site through the form of
formula (13). Therefore in what follows we model the rate of new adult mosquito
eclosion by the expression

New adults =
N∑

k=1

ρkλ0k

(
1 − SRk

Lk

)
SRk

+
N∑

j=1

N∑
k=j

ρk,j λ0k,j

(
1 − IRk,j

Lk,j

)
IRk,j

.

(16)

The terms in the right of formula (16) show the contributions from the different
types of vectors: the susceptible rested vectors at reproductive stage k, SRk

, and
the rested vectors at reproductive stage k that were infected at reproductive stage
j , IRk,j

. We do not, in general, expect each of these types of vectors to contribute
equally to the size of the next generation mosquitoes.

2.3 The Mathematical Equations

The form of the flow chart showing the flow in the mosquito dynamics is illustrated
in Fig. 5, for N = 4. In that figure, the different gonotrophic cycle levels are
clearly demarcated with the dashed lines and each lower level feeds into the higher
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level while the points where human interactions with mosquitoes are possible
are shown by the attached Nh-box. The number of mosquito compartments for
each gonotrophic cycle level is determined by the number of possible susceptible
and infected mosquito compartments and follows an arithmetic sequence whose
first term is 4 and common difference 3. Thus, if ck is the number of mosquito
compartments at gonotrophic cycle k, then ck = 1+3k. New adult mosquitoes enter
the system through the SB1 compartment as new births, and contributions to the new
births’ state come about as a result of eggs laid by type R mosquitoes according
the formula shown in (14) or (15). Thus, only mosquitoes of type Q can interact
with humans and only mosquitoes that have successfully interacted with humans
can change status to mosquitoes of type R and eventually enter the next gonotrophic
cycle. The arrows show the flows in and out of each compartment. Using standard
rate of chemical reaction framework, we can write down the following equations:

dSB1

dt
= New adults − (

b1(Nh) + μSB1

)
SB1 ; (17)

dSBk

dt
= ρk−1SRk−1 − (

bk(Nh) + μSBk

)
SBk

, k = 2, 3, · · · , N; (18)

dSQk

dt
= bk(Nh)SBk

− (
βk(Sh, SQk

) + βk(Eh, SQk
) + βk(Ih, SQk

) + βk(Rh, SQk
)
)

−μSQk
SQk

, k = 1, 2, 3, · · · , N; (19)

dSRk

dt
= qQk

βk(Sh, SQk
) + qQk

βk(Eh, SQk
) + (1 − phQk

)qQk
βk(Ih, SQk

)

+(1 − p̃hQk
)qQk

βk(Rh, SQk
) − (ρk + μSRk

)SRk
, k = 1, 2, 3, · · · , N; (20)

dIRk,k

dt
= fk(SQk

, Ih, Rh) − (ρk,k + μIRk,k
)IRk,k

, k = 1, 2, 3, · · · , N; (21)

dIBk,j

dt
= ρk−1,j IRk−1,j

− (bk(Nh) + μIBk,j
)IBk,j

, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1;

(22)

dIQk,j

dt
= bk(Nh)IBk,j

−
(
βk(Sh, IQk,j

) + βk(Eh, IQk,j
) + βk(Ih, IQk,j

) + βk(Rh, IQk,j
)
)

−μIQk,j
IQk,j

, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1; (23)

dIRk,j

dt
=

(
qQk

βk(Sh, IQk,j
) + qQk

βk(Eh, IQk,j
) + qQk

βk(Ih, IQk,j
) + qQk

βk(Rh, IQk,j
)
)

−
(

ρk,j + μIRk,j

)
IRk,j

, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1; (24)

dSh

dt
= λhNh + rhIh + δhRh − g(Sh, IQ) − μhSh; (25)

dEh

dt
= g(Sh, IQ) − (νh + μh)Eh; (26)

dIh

dt
= νhEh − (rh + σh + μh + γh) Ih; (27)
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dRh

dt
= σhIh − (δh + μh) Rh; (28)

Where fk(SQk
, Ih, Rh) and g(Sh, IQ) are given respectively by (7) and (12) and

all the parameters are as described in Table 4. From the form of βk(Xh, YQk
) =

bQk

XhYQk

Nh
derived in Sect. 2.2 (item 3) earlier, the system of equations then takes

the definite form

dSB1

dt
= New adults − (

b1(Nh) + μSB1

)
SB1 ; (29)

dSBk

dt
= ρk−1SRk−1 − (

bk(Nh) + μSBk

)
SBk

, k = 2, 3, · · · , N; (30)

dSQk

dt
= bk(Nh)SBk

−
(
bQk

+ μSQk

)
SQk

, k = 1, 2, 3, · · · , N; (31)

dSRk

dt
= qQk

bQk
SQk

− fk(SQk
, Ih, Rh) − (ρk + μSRk

)SRk
, k = 1, 2, 3, · · · , N; (32)

dIRk,k

dt
= fk(SQk

, Ih, Rh) − (ρk,k + μIRk,k
)IRk,k

, k = 1, 2, 3, · · · , N; (33)

dIBk,j

dt
= ρk−1,j IRk−1,j

− (bk(Nh) + μIBk,j
)IBk,j

, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1;

(34)

dIQk,j

dt
= bk(Nh)IBk,j

− (bQk
+ μIQk,j

)IQk,j
, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1;

(35)

dIRk,j

dt
= qQk

bQk
IQk,j

−
(

ρk,j + μIRk,j

)
IRk,j

, k = 2, 3, · · · , N, j = 1, 2, · · · , N − 1;

(36)

dSh

dt
= λhNh + rhIh + δhRh − g(Sh, IQ) − μhSh; (37)

dEh

dt
= g(Sh, IQ) − (νh + μh) Eh; (38)

dIh

dt
= νhEh − (rh + σh + μh + γh) Ih; (39)

dRh

dt
= σhIh − (δh + μh) Rh; (40)

for a given set of initial conditions at time t = 0. An appropriate form of initial
conditions would be those that start off the process with some initial density of the
form

SBk
(0) = S0

Bk
, SRk

(0) = S0
Rk

, SQk
(0) = S0

Qk
(41)

IBk,j
(0) = I 0

Bk,j
, IRk,j

(0) = I 0
Rk,j

, IQk,j
(0) = I 0

Qk,j
(42)
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Sh(0) = S0
h, Eh(0) = E0

h, IH (0) = I 0
H , Rh(0) = R0

h, (43)

where the variables with superscript 0 are typical variables at time t = 0 whose
values will be provided as initial conditions. We should be careful to differentiate
the epidemiologically realistic initial conditions with the system where there is no
disease in the system. It is informative to note that the continuous dependence of
the system on initial conditions means that if we start off this system with a set
of initial conditions for which all the disease variables are set to zero, the system
will continue to be disease-free for all subsequent time. An anticipated result in
the analysis that we shall report in this paper shall be to find conditions in the full
epidemiological model whereby starting the system with non-zero disease variables
will lead to the eventual establishment of the infection in the population. This
combined demographic and epidemiological model thus offers us a unique pathway
for studying epidemiological and ecological parameters concurrently.

Though we have indicated the absence of a conservation argument to conserve
the number of mosquitoes leaving the breeding site through the restriction of
considering only anthropophilic mosquitoes, we can appreciate the size of the total
active mosquito populations in the dynamics by adding up the relevant equations
in the derived system. Studying the size of the total populations will give us an
indication on the boundedness of the system under consideration, as well as provide
a way of comparing the model with existing results in the literature. Recall that the
total breeding site, questing and resiting mosquitoes are denoted respectively by NB ,
NQ and NR and their size is calculated by computing the sum (5). Thus we have the
following equations for the rate of change of the respective subtotals:

dNB

dt
=

N∑
k=1

dSBk

dt
+

N−1∑
j=1

N∑
k=j+1

dIBk,j

dt

= New adults +
N∑

k=2

ρk−1SRk−1 +
N−1∑
j=1

N∑
k=j+1

ρk−1,j IRk,j

−
N∑

k=1

(bk(Nh) + μSBk
)SBk

−
N−1∑
j=1

N∑
K=j+1

(bk(Nh) + μIBk,j
)IBk,j

. (44)

Similarly, we calculate the rate of change of the total questing mosquito population
as

dNQ

dt
=

N∑
k=1

dSQk

dt
+

N−1∑
j=1

N∑
k=j+1

dIQk,j

dt

=
N∑

k=1

bk(Nh)SBk
+

N−1∑
j=1

N∑
k=j+1

bk(Nh)IBk,j
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−
N∑

k=1

(bQk
+ μSQk

)SQk
−

N−1∑
j=1

N∑
K=j+1

(bQk
+ μIQk,j

)IQk,j
. (45)

and for the resting mosquitoes we have

dNR

dt
=

N∑
k=1

dSRk

dt
+

N∑
j=1

N∑
k=j

dIRk,j

dt

=
N∑

k=1

(bQk
qQk

SQk
− (ρk + μSRk

)SRk
− (ρk,k + μIRk,k

)IRk,k
)

+
N−1∑
j=1

N∑
k=j+1

(qQk
bQk

IQk,j
− (ρk,j + μIRk,j

)IRk,j
). (46)

The rate of change of the total human population, N ′
h(t), is found by adding up the

relevant equations to have

dNh

dt
= (λh − μh)Nh − γhIh. (47)

Equation (47) shows the dependence of the size of the population on disease
related deaths. Now, if we set γh = 0 and λh = μh, as in [22], the total human
population will be constant. In this example, we would have a reduced system where
our analysis will focus on understanding disease spread in a constant human and
variable mosquito populations. Considering a constant total human population also
allows us to reduce the dimension of our system by one as one of the states in the
human compartment can be obtained once the other three states are known.

In general, however, from Eqs. (44)–(47), we can write down some bounds for
the total population as follows:

1. Bounds within the total human population: For a realistic population demograph-
ics model, the functions λh, μh : [0,∞) → R will have desired properties
that ensure that in the absence of the disease we have a bounded non-zero
human population as a basis for the modelling exercise. In [20], the natural
birth rate in the human population, here λh, was assumed to be constant while
the natural death rate in the human population, here μh was assumed to be a
linear monotone increasing function of Nh. Here, we simply assume that λh is a
non-zero monotone non-increasing function of its argument, while μh is a non-
zero monotone non-decreasing function of its arguments. In fact, any nonlinear
functional form for λh satisfying the conditions required by Assumption 1 will
serve as a suitable natural birth rate function for the human population. All what
we will require is that the form of the birth and death rates be such that the
Eq. (47) has a bounded non-zero solution at all times. If we select the forms
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λh(Nh) = λ1 − λ2Nh where λ1 > 0 and λ2 ≥ 0, and μh(Nh) = μ1 + μ2Nh

where μ1 > 0 and μ2 ≥ 0, then for a non-zero λ2 and μ2, Eq. (47) will
experience exponential decay at all times if λ1 ≤ μ1, unbounded exponential
growth whenever λ1 > μ1 and μ2 = λ2 = γh = 0, and bounded growth
whenever max{λ2, μ2} > 0 and λ1 > μ1. In any of the circumstances, we
deduce that for the appropriate forms for the birth and death rates λh and μh,
we will have the bound

dNh

dt
≤ (λh(Nh) − μh(Nh))Nh, (48)

as a bound for Eq. (47).
2. Bounds within the mosquito populations: For the variables within the mosquito

population, we can write down some bounds as well by taking into considerations
the definitions of the parameters of the system as shown in Table 4. Let,

ρv = max
1≤k,j≤N

{ρk, ρk,j }, μv = max
1≤k,j≤N

{μSϕk
, μIϕk,j

},

bv = max
1≤k≤N

{bk(Nh)}; (49)

bQ = max
1≤k≤N

{bQk
}, pQ = max

1≤k≤N
{pQk

}, qQ = max
1≤k≤N

{qQk
}. (50)

Using these bounds in the equations for the total mosquito populations given by
Eqs. (44)–(46), and using the definitions for NR , NQ and NB defined by Eq. (5),
we have the following bounds:

dNB

dt
≤ New adults + ρvNR − (μv + bv)NB;

dNQ

dt
≤ bvNB − (μv + bQ)NQ; (51)

dNR

dt
≤ bQqQNQ − (ρv + μv)NR.

The solution of system (51) bounds the solutions of Eqs. (44)–(46). If Nv = NB +
NQ + NR is the total active mosquito population, we have the bound

dNv

dt
≤ New adults − bQ(1 − qQ)NQ − μvNv. (52)

Inequality (52) shows the dependence of the total size of the active mosquito
population on bQ and qQ and most importantly the size of the questing mosquitoes
NQ. If qQ is close to zero, many of the questing mosquitoes die and affect the final
size of the mosquito population. On the other hand, if qQ is very near unity, many
of the questing mosquitoes do not die during feeding. We have here a mechanism
for controlling the total mosquito population. For acceptable forms of the mosquito
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birth rate function λR satisfying conditions of Definition 1, the expression for new
adults is bounded and we can then easily establish that the solutions of Eq. (52) are
bounded. This in turn will show that the equations in system (51) are indeed bounded
thus establishing the boundedness of the solutions of the derived system given by
Eqs. (29)–(40). We make the following remark on the nature of the solutions of the
bounding system:

Remark 3 The inequalities in system (51) are sharp in the sense that there exists a
choice of parameters of the original system where we have equality. In the particular
case where it is assumed that the respective death rates, the respective biting rates,
the respective successful feeding probabilities across all gonotrophic cycles are
equal, we will have equality in (51) and the system is equivalent to the system
derived and studied in [19].

We also situate the types of solutions that are of interest to us in the following
definition.

Definition 2 In line with the biological relevance, a solution of any differential
equation involving a state variable of the system studied herein is called realistic
if it is non-negative and bounded.

In the absence of infection the system reduces to the infection-free model
whose mathematical equations are then obtained simply be setting all infected and
infectious compartments to zero in system (29)–(40). The result is a demographic
model for the dynamics of populations of anthropophilic mosquitoes that takes into
consideration the blood feeding and reproductive cycles of the female mosquitoes.
The infection-free model clearly shows the dependence of the dynamics of the
populations of the mosquitoes on their ability to successfully acquire blood from
humans, in this case susceptible humans. The infection-free model is given by the
system

dSB1

dt
=

N∑
k=1

ρkλ0,k

(
1 − SRk

Lk

)
SRk

− (
b1(Nh) + μSB1

)
SB1; (53)

dSBk

dt
= ρk−1SRk−1 − (

bk(Nh) + μSBk

)
SBk

, k = 2, 3, · · · , N; (54)

dSQk

dt
= bk(Nh)SBk

− (
bQk

+ μSQk

)
SQk

, k = 1, 2, 3, · · · , N; (55)

dSRk

dt
= qQk

bQk
SQk

− (ρk + μSRk
)SRk

, k = 1, 2, 3, · · · , N; (56)

dSh

dt
= λhNh − g(Sh, 0) − μhSh = (λh − μh)Sh; (57)

for a given set of initial conditions at time t = 0. Appropriate form for the initial
conditions for the infection-free model would be those that start off the process with
some initial density of the form
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SB1(0) = S0
B1

, SBk
(0) = 0, SRk

(0) = 0, SQk
(0) = 0, Sh(0) = S0

h. (58)

We note that in the infection-free model , Nh = Sh leading to the simplification
indicated for the Sh equation. Additionally, system (53)–(56) is a version of the
reproductive stage structured model for the dynamics of malaria vector derived and
studied in [23]. In [23], a mass action incidence function was used to model contacts
between questing mosquitoes and humans which, if used here, would have yielded
the inflow term qQk

bQk
SQk

Nh in Eq. (56), as opposed to the inflow term qQk
bQk

SQk

as shown, obtained as a result of the use of a standard incidence function to model
contacts as in this manuscript. Though the notation is altered and the exposure rates
are derived differently, the two systems are essentially identical in form and so the
following results carry over.

Theorem 1 The system (53)–(56) with λR given by (13) is well posed from a
mathematical and physical stand point in the sense that a solution exists for each
given set of initial conditions that is unique, non-negative and bounded.

Proof See section 2.3 of [23]. �
Thus the system derived in this paper generalizes the systems studied earlier. We

shall start the analysis by considering a scaling and non-dimensionalization.

2.4 Scaling and Non-dimensionalization

In the model derived above, the main physical dimension of the system is that of
time. However, we have parameters and rates that are defined in terms of other
parameters. In fact, a state variable or parameter that measures the number of
individuals of certain type has a dimension-like quality (or quasi-dimensional unit)
associated with it, [14]. To remove the dimension-like character on the parameters
and variables, we make the following change of variables:

S̃Bk
= SBk

S0
Bk

, S̃Qk
= SQk

S0
Qk

, S̃Rk
= SRk

S0
Rk

, ĨBk,j
= IBk,j

I 0
Bk,j

,

ĨQk,j
= IQk,j

I 0
Qk,j

, ĨRk,j
= IRk,j

I 0
Rk,j

, τ = t

T 0 , (59)

where the quantities with superscript zero are reference variables. Since we are
considering a constant human population, we scale the human variables with Nh

to have the system

S̃h = Sh

Nh

, Ẽh = Eh

Nh

, Ĩh = Ih

Nh

, R̃h = Rh

Nh

, (60)
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so that S̃h + Ẽh + Ĩh + R̃h = 1 since Sh + Eh + Ih + Rh = Nh. From here, we then
have Ẽh = 1 − S̃h − Ĩh − R̃h and then set

S0
Bk

= ρk−1S
0
Rk−1

bk(Nh)+μSBk

; k ≥ 2, S0
Qk

=bk(Nh)S
0
Bk

bQk
+μSQk

; k ≥ 1, S0
Rk

=qQk
bQk

S0
Qk

ρk+μSRk

; k ≥ 1

I 0
Rk,k

= qQk
bQk

S0
Qk

ρk,k+μIRk,k

; k ≥ 1, I 0
Bk,j

=
ρk−1,j I

0
Rk−1,j

bk(Nh)+μIBk,j

; k ≥ 2, j ≥ 1, k > j, (61)

I 0
Qk,j

=
bk(Nh)I

0
Bk,j

bQk
+ μIQk,j

, I 0
Rk,j

=
qQk

bQk
I 0
Qk,j

ρk,j + μIRk,j

; k ≥ 2, j ≥ 1, k > j.

The scaling of time will affect the time scales in the problem under consideration.
In the current modelling problem under consideration, we have the following time
scales:

1. The incubation periods: The length of the incubation period of the disease in
the mosquito, also termed the extrinsic incubation period, under favourable
conditions of the vector is dependent on ambient temperature and humidity. It
has been reported that optimum conditions for sporogony are between 25◦C and
30◦C and it ceases below 16◦C, and that, above 35◦C, sporogony slows down
considerably and it is also delayed by intermittent low temperatures, [27]. The
actual length of the incubation period depends on the species of Plasmodium
involved. The incubation period in humans is dependent on the general health
and immune status of the person concerned and on the species of Plasmodium
involved. The incubation periods are summarized in Table 5, which shows an
average minimum incubation period of 12 days in humans and 10 days in
mosquitoes. This time scale is short when compared with the life span of the
human.

2. The life span of the adult female Anopheles sp mosquito. The average life
expectancy of vectors of human malaria is 20–25 days and the average daily
death rate is 4–5%, [27]. Taking into consideration the dangers that the
mosquitoes go through in order to reproduce, it is normal to expect that many
mosquitoes will die before completing their full life span; which for some species

Table 5 The lengths of the intrinsic and extrinsic incubation periods of malaria in humans and
Anopheles sp mosquitoes for different species of Plasmodium sp parasites. Adapted from [27]

Type of
plasmodium

Incubation days in humans
(intrinsic mean)

Incubation days in mosquito
(extrinsic mean) at 25◦C

P. falciparum 9–14 (12) 10

P. malariae 18–40 (28) or longer 28

P. vivax 12–17 (15) or up to 6–12 months 10

P. ovale 16–18 (17) or longer 16
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can go up to a month. However, in the model derived here where we have used
the gonotrophic cycle count to measure the physical age of the mosquito at each
time, we have established that mosquitoes at higher gonotrophic cycle counter
are older than the ones at the start of the gonotrophic cycle counter. In [23],
a procedure was developed for calculating the death rates of the mosquito at
each gonotrophic cycle level. The formula captured the fact that mosquitoes
of type RN will be oldest adults in the system and thus will have the highest
death rate while mosquitoes of type B1 will be the youngest and as such will
have the smallest death rate. We approximate death rate simply by calculating
the reciprocal of remaining life days. We note, however, that the time frame
representing the life span of any of the adult mosquitoes is short when compared
with the life span of a human.

3. The duration of each gonotrophic cycle. The duration of the gonotrophic cycle
is dependent on temperature and, in the tropics, at temperatures above 23◦C, it
usually lasts 2–4 days, but in the colder temperate climates it may take many
days or even weeks. The time scale for this cycle is short when compared
with the life span of the human. However, it has also been reported that a
female Anopheles sp mosquito in the wild may eventually successfully complete
about 4–5 gonotrophic cycles during its entire reproductive life. For the purpose
of modelling, we can therefore estimate a time period of 5–6 days for each
gonotrophic cycle to be completed. This length of time is also short, when
compared with the life span of the human.

The above points show that there are several time scales in the problem under study
and so in scaling time, we should be careful to capture the features modelled. Here
we scale time with the death rate of the resting mosquitoes at reproductive stage N ,
RN so as to be able to capture the gonotrophic cycles in our modelling. This will
also justify our constant human population approximation in the sense that one time
unit is then small enough to track the gonotrophic cycles as well as allow us to work
with short enough time frames to warrant a constant human approximation. Thus
we set

T 0 = 1

ρN + μSRN

, (62)

and then define the dimensionless parameter groupings

αk = λ0k
ρkS

0
Rk

S0
B1

(b1(Nh)+μSB1
)
, αk,j=

λ0k,j
ρk,j I

0
Rk,j

S0
B1

(b1(Nh)+μSB1
)
, L̃k= Lk

S0
Rk

, Lk,j= Lk

I 0
Rk,j

b̃k = (bk(Nh) + μSBk
)T 0, b̃k,j=(bk(Nh)+μIBk,j

)T 0, ρ̃k=(ρk+μSRk
)T 0, (63)

ρ̃k,j = (ρk,j+μIRk,j
)T 0, τk=(bQk

+μSQk
)T 0, τk,j=(bQk

+μIQk,j
)T 0

λ̃ = λhT
0, δ̃ = δhT

0, σ̃=σhT
0, ν̃ = νhT

0,
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r̃ = rhT
0, gk,j=

pQkhqQk
bQk

I 0
Qk,j

T 0

Nh

;

where S0
B1

is the initial size of the susceptible breeding site mosquito population,

and the terms S0
Rk

, I 0
Bk,j

are as defined in Eq. (61). This then leads to the scaled
system

dS̃B1

dτ
= b̃1

⎛
⎝ N∑

k=1

αk

(
1 − S̃Rk

L̃k

)
S̃Rk

+
N∑

j=1

N∑
k=j

αk,j

(
1 − ĨRk,j

Lk,j

)
ĨRk,j

− S̃B1

⎞
⎠ ;

(64)

dS̃Bk

dτ
= b̃k

(
S̃Rk−1 − S̃Bk

)
, k = 2, 3, · · · , N; (65)

dS̃Qk

dτ
= τ̃k

(
S̃Bk

− S̃Qk

)
, k = 1, 2, 3, · · · , N; (66)

dS̃Rk

dτ
= ρ̃k

(
S̃Qk

− (phQk
Ĩ + p̃hQk

R̃)S̃Qk
− S̃Rk

)
, k = 1, 2, 3, · · · , N; (67)

dĨRk,k

dτ
= ρ̃k,k

(
(phQk

Ĩ + p̃hQk
R̃)S̃Qk

− ĨRk,k

)
, k = 1, 2, 3, · · · , N; (68)

dĨBk,j

dτ
= b̃k,j

(
ĨRk−1,j

− ĨBk,j

)
, k = 2, 3, · · · , N − 1, j = 1, 2, · · · , N, k > j ;

(69)

dĨQk,j

dτ
= τ̃k,j

(
ĨBk,j

− ĨQk,j

)
, k = 2, 3, · · · , N − 1, j = 1, 2, · · · , N, k > j ;

(70)

dĨRk,j

dτ
= ρ̃k,j

(
ĨQk,j

− ĨRk,j

)
, k = 2, 3, · · · , N − 1, j = 1, 2, · · · , N, k > j ;

(71)

dS̃h

dτ
= λ̃(1 − S̃h) + r̃ Ĩh + δ̃R̃h −

N−2∑
j=1

N∑
k=j+2

gk,j S̃hĨQk,j
(72)

dĨh

dτ
= ν̃(1 − S̃h − Ĩh − R̃h) − (λ̃ + σ̃ + r̃)Ĩh (73)

dR̃h

dτ
= σ̃ Ĩh − (δ̃ + λ̃)R̃h. (74)
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3 Mathematical Analyses

We now analyse the model’s equations and starting with the infection-free model.
In what follows, for notational simplicity, we drop the tilde on each of the notations.

3.1 The Infection-Free Model: Existence and Stability of
Steady States

As indicated above the infection-free model is obtained simply by setting the disease
variables to zero in the scaled system (64)–(74). This gives the system

dSB1

dτ
= b1

(
N∑

k=1

αk

(
1 − SRk

Lk

)
SRk

− SB1

)
; (75)

dSBk

dτ
= bk

(
SRk−1 − SBk

)
, k = 2, 3, · · · , N; (76)

dSQk

dτ
= τk

(
SBk

− SQk

)
, k = 1, 2, 3, · · · , N; (77)

dSRk

dτ
= ρk

(
SQk

− SRk

)
, k = 1, 2, 3, · · · , N; (78)

dSh

dτ
= λ(1 − Sh), 0 = νh(1 − Sh). (79)

The fact that we have a constant human population shows up very clearly in the last
equation, Eq. (79).

Theorem 2 (On the Existence of Steady States for the Infection-Free Model)
The disease-free system (75)–(79) admits a trivial steady state solution 0 for the
mosquito population with Sh = 1, which always exists for all parameter values of
the system. In addition, there is a possibility for the existence of a non-trivial steady
state solution, whose existence and size are determined by the size of a threshold
parameter N in the sense that if N ≤ 1, the only steady state is the trivial steady
state and when N > 1, the non-trivial steady state exists and can be computed.

Proof The steady states for the infection-free model, when they exist, are solutions
of the equations when the time derivatives are set to zero. This gives the steady state
solutions

S∗
Bk

= S∗
Rk

= S∗
Qk

, k = 1, 2, 3, · · · , N, S∗
B1

= 0 or S∗
B1

=
∑N

k=1 αk − 1∑N
k=1

(
αk

Lk

) , (80)
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with Sh = 1. Let SBk
= (SB1 , SB2 , · · · , SBN

), SQk
= (SQ1 , SQ2 , · · · , SQN

) and
SRk

= (SR1 , SR2 , · · · , SRN
). Then, we can use this notation to write down the form

of the two steady state solutions:

(SBk
, SQk

, SRk
) = (0, 0, 0); the trivial steady state, (81)

(SDFE
Bk

, SDFE
Qk

, SDFE
Rk

) = (S∗
B1

,S∗
B1

,S∗
B1

); the persistence steady state, (82)

where SDFE
Bk

∈ R
N , SDFE

Qk
∈ R

N and SDFE
Rk

∈ R
N are N -tupples or vectors in R

N

each of whose coordinates is exactly S∗
B1

given by (80). Notice that in Eq. (80) the
non-zero solution S∗

B1
exists as a realistic steady state of the system in the sense of

Definition 2 only if the quantity N > 1 where

N =
N∑

k=1

αk =
N∑

k=1

(
λ0,kρkS

0
Rk

S0
B1

(b1(Nh) + μSB1
)

)
, (83)

and the case N = 1 reducing the non-zero solution to the zero solution. �
We note that N is a unique threshold parameter for the system. When N ≤ 1,

the mosquito population goes extinct and only a contact thriving susceptible human
population exists. The conditions for the existence of the persistence steady state
solution, namely N > 1, translate to the conditions for the establishment of a non-
zero mosquito population in the environment whenever the persistence steady state
is stable. We shall identify the quantity N so constructed with the basic offspring
number.

Definition 3 (Basic Offspring Number) The basic offspring number is the num-
ber of new adult mosquitoes that arise from one adult female reproducing mosquito
during its entire period of reproductivity in the absence of density dependence.

The basic offspring number is a threshold parameter analogous to the basic
reproduction number in epidemiological modelling. It offers a control criterion for
mosquito population as we expect that when this quantity is strictly less than unity,
the trivial equilibrium solution where S∗

Bk
= 0 is globally and asymptotically stable

as the only steady state of the system. In fact we can state and prove the following
result:

Theorem 3 (On the Global Stability of the Trivial Steady State) The steady state
solution given by S∗

Bk
= S∗

Rk
= S∗

Qk
= 0 for all k = 1, 2, · · · , N , with Sh =

1, which always exists for values of the parameters of the system, is globally and
asymptotically stable whenever N ≤ 1.

Proof We use the direct method of Lyapunov. We construct the Lyapunov function.
Let V : R3N → R be real valued linear function. For positive constants Ak , Ck and
Dk , k = 1, 2, 3 · · · , N , define V by



134 M. I. Teboh-Ewungkem et al.

V (SBk
, SQk

, SRK ) =
N∑

k=1

(
AkSBk

+ CkSQk
+ DkSRk

,
)

(84)

then V (0, 0, 0) = 0 and V (SBk
, SQk

, SRK ) > 0 for non-zero values of arguments.
We show that there exists a choice of constants Ak , Ck and Dk , k = 1, 2, 3 · · · , N ,
for which the orbital derivative of V is always negative near the zero state. To do
this, calculate the total derivative of V

dV

dτ
=

N∑
k=1

(
Ak

dSBk

dτ
+ Ck

dSQk

dτ
+ Dk

dSRk

dτ

)

= A1b1

(
N∑

k=1

αk

(
1 − SRk

Lk

)
SRk

− SB1

)
+

N∑
k=2

Akbk

(
SRk−1 − SBk

)

+
N∑

k=1

(
Ckτk

(
SBk

− SQk

) + Dkρk

(
SQk

− SRk

))
,

where the derivatives on the right hand side as given by (75)–(79) have been
substituted. Rearranging the terms we have

dV

dτ
=

N−1∑
k=1

(b1A1αk + bk+1Ak+1 − ρkDk) SRk
+ (b1A1αN − ρNDN) SRN

+
N∑

k=1

(
(Ckτk − Akbk) SBk

+ (ρkDk − Ckτk) SQk

) −
N∑

k=1

(
A1b1

αk

L̃k

S2
Rk

)
.

To proceed, choose the constants Ck,Dk and AK , for k = 1, 2, 3, · · · , N so that

Ckτk = Akbk = ρkDk, ρNDN = b1A1αN. (85)

Applying these, we have the relation

dV

dτ
=

N−1∑
k=1

(b1A1αk + bk+1Ak+1 − ρkDk) SRk
−

N∑
k=1

(
A1b1

αk

L̃k

S2
Rk

)
. (86)

Let us examine the coefficients of SRk
in (86): When k = N − 1, we have that the

coefficient of the variable SRN−1 is b1A1αN−1 + bNAN − ρN−1DN−1. Using the
relation (85), we find that bNAN = ρNDN = b1A1αN so that the coefficient of
SRN−1 is b1A1αN−1 + b1A1αN − ρN−1DN−1. So if we chose b1A1(αN−1 + αN) =
ρN−1DN−1, this coefficient will be zero. Similarly, if k = N − 2, the coefficient of
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SRN−2 in (86) is b1A1αN−2 +bN−1AN−1 −ρN−2DN−2 which on using the relations
in (85) and the value of ρN−1DN−1 just computed, we have that the coefficient of
SRN−2 in that expression is b1A1(αN−2 + αN−1 + αN) − ρN−2DN−2. Again the
choice ρN−2DN−2 = b1A1(αN−2 +αN−1 +αN) will make the coefficient SRN−2 in
the expression in (86), to also vanish. We continue like this and set up the recurrence
relation

ρN−iDN−i = b1A1

i∑
j=0

αN−j , i = 0, 1, 2 · · · , N − 2. (87)

which in turn, knocks out the coefficients of SRk
, k = N−1, N−2, N−3, · · · , 3, 2.

The coefficient of SR2 is eventually eliminated by setting i = N − 2 in (87) to have
the final expression

dV

dτ
=
(

b1A1

N∑
k=1

αk − ρ1D1

)
SR1 −

N∑
k=1

(
A1b1

αk

L̃k

S2
Rk

)
. (88)

The choice of ρ1D1 = b1A1 leads to the orbital derivative

dV

dτ
= b1A1(N − 1)SR1 −

N∑
k=1

(
A1b1

αk

L̃k

S2
Rk

)
, (89)

where N is given by (83) and A1 is an arbitrary positive real number. It is now clear
from (89) that V ′(τ ) < 0,∀τ whenever N ≤ 1. When N ≤ 1, the Lyapunov–
LaSalle Theorem, [10], assures us that all paths in the positive orthant R3N+ \ {0}
approach the largest compact invariant subset {0} ⊂ R

3N+ wherein V ′(τ ) = 0. Hence
SBk

→ 0, SQk
→ 0 and SRk

→ 0, ∀k as τ → ∞ whenever N ≤ 1, since {0} is the
only omega limit point of any orbit starting in the interior of R3N+ whenever N ≤ 1.
�
Remark 4 The parameter N so identified in (83) is the unique threshold parameter
for the disease-free system with the property that for 0 ≤ N ≤ 1, the only
steady state of the system is the trivial steady state solution which is globally
and asymptotically stable and as N increases beyond unity, there is transcritical
bifurcation at N = 1 leading to the birth of the non-trivial steady state, given
by (82).

The stability of the persistent vector steady state solution derived above may
be determined, starting from its linear stability, by looking for the sign of the
eigenvalues of the Jacobian matrix evaluated at the steady states. So, if λ is an
eigenvalue of the Jacobian matrix at the vector persistent steady state, and we denote
the Jacobian matrix at the steady state by J (S∗), where S∗ = (S∗

Bk
,S∗

Qk
,S∗

Rk
) ∈

R
3N is the vector of steady state values. Then we have
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J (S∗) =
⎛
⎜⎝−B O R(S∗

Rk
)

T −T O

O P −P

⎞
⎟⎠ , and |λI 3N − J (S∗)| = 0, (90)

where B, P , T , O and R are N × N matrices defined by

B = diag{bk}, T = diag{τk}, P = diag{ρk}, k = 1, 2, 3, · · · N

R(S∗
Rk

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1α1

(
1 − 2S∗

R1
L1

)
b1α2

(
1 − 2S∗

R2
L2

)
· · · b1αN

(
1 − 2S∗

RN

LN

)
b2 0 · · · 0
0 b3 · · · 0
...

...
. . .

...

0 0 · · · bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and for a general ck , diag{ck}, for k = 1, 2, · · · , N is the N × N diagonal matrix
whose kth entry is ck . Computation of the determinant shown in the second term
of equation (90) yields a polynomial of degree 3N whose form and structure can
be completely determined as has been derived in [23]. In fact the following results
about the disease-free system have been studied and established in [23]:

1. The basic offspring number N , also known as the vectorial basic reproduction
number for this system, can be computed as the dominant eigenvalue of the
positive linear operator by deriving the next generation operator of the system
based on ideas from epidemiological models in [8, 30].

2. The computations of the 3N ×3N determinant previewed by (90) can be reduced
to the computation of an N × N determinant through the use of block matrices
as proved in [25, 28].

3. The persistent steady state of the system is locally and asymptotically stable for
a range of values of N and can be driven to instability with growing oscillations
as N further passes through a critical value Nc whose value can be determined
in a set of calculations dependent on N , the total number of gonotrophic cycles
that the system would have undergone (Theorem 9 in [23]).

4. The initial period of the oscillations, at the point where the system undergoes
a Hopf bifurcation, can be computed in terms of the parameters of the system
(Lemma 3 in [23]).

From the above, we deduce that the disease-free model exhibits more dynamic
variability than is the case with the disease-free state in mathematical models for
malaria that do not include a demographic component in the population dynamics
of the mosquito. This dynamic nature will then be used to study the epidemiological
model in the next section. The main result of this section is the identification of the
number N such that for N ≤ 1 the population size of the mosquitoes decays to
zero and for N > 1, this population establishes itself in the environment. N > 1
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will therefore serve as a logical starting point for the analysis of the epidemiological
model derived in this paper.

3.2 The Epidemiological Model

In this subsection, we analyse the epidemiological model under the simplifying
assumption that the probabilities phQk

, p̃hQk
and pQkh are the same at each

epidemiological gonotrophic cycle level. That is phQk
= phQ, p̃hQk

= p̃hQ and
pQkh = pQh for all k. This assumption reduces to the fact that all mosquitoes
transmit the infection with the same efficiency, irrespective of the physiological
age of the insect. It may eventually be informative to allow all these probabilities
to be different to study differential infectivity of infectious questing mosquitoes
based on the idea that older infectious questing mosquitoes may be more infectious
than younger ones. We note, however, that from the definition in Eq. (12), we did
capture the fact that only questing mosquitoes at a certain gonotrophic stage may be
infectious. We start with the following theorem:

Theorem 4 (On the Existence of Steady States for the Epidemiological Model)
The system defined by Eqs. (64)–(74) has at least three steady states: the trivial
steady state where all variables are zero, the disease-free steady state where
all disease variables are zero and the endemic steady state where disease and
demographic variables co-exist.

Proof The steady state solutions are obtained by setting the right hand side of each
of Eqs. (64)–(74) to zero. From the scaling done we easily deduce that all steady
state solutions can be written in terms of S∗

Q1
as follows: Set ξ = phQI ∗

h + p̃hQR∗
h

to have

S∗
Qk

= S∗
Bk

= (1 − ξ)k−1S∗
Q1

, S∗
Rk

= (1 − ξ)kS∗
Q1

, k = 1, 2, 3, · · · , N.

I ∗
Rk,k

= ξ(1 − ξ)k−1S∗
Q1

, k = 1, 2, · · · , N.

For any integer m > 1, we have

I ∗
Qj+m,j

= I ∗
Bj+m,j

= I ∗
Rj+m−1,j

= · · · = I ∗
Rj,j

= ξ(1 − ξ)j−1S∗
Q1

, j = 1, 2, · · · , N

this establishes the steady state values

S∗
Q1

= S∗
B1

, S∗
Qk

= S∗
Bk

= S∗
Rk−1

, S∗
Rk

= (1 − ξ)kS∗
Q1

, k = 2, 3, · · · , N (91)

I ∗
Qk,j

= I ∗
Bk,j

= I ∗
Rk−1,j

, IRk,j
= ξ(1 − ξ)j−1S∗

Q1
, k ≥ j, j = 1, 2, 3, · · · , N (92)
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where all the expressions are given in terms of S∗
Q1

. Setting and substituting these
into the equation for SB1 (Eq. (64)) when the time derivative is set to zero, we get
the equation

N∑
k=1

αk

(
1 − (1 − ξ)kS∗

Q1

Lk

)
(1 − ξ)kS∗

Q1

+
N∑

j=1

N∑
k=j

αk,j

(
1 − ξ(1 − ξ)j−1S∗

Q1

Lk,j

)
ξ(1 − ξ)j−1S∗

Q1
− S∗

Q1
= 0,

leading to the two solutions:

S∗
Q1

= 0 and S∗
Q1

= A1(ξ)

A2(ξ)
, (93)

where

A1(ξ) =
⎛
⎝ N∑

k=1

αk(1 − ξ)k +
N∑

j=1

N∑
k=j

αk,j ξ(1 − ξ)j−1

⎞
⎠ − 1, and

A2(ξ) =
N∑

k=1

(
αk(1 − ξ)2k

Lk

)
+

N∑
j=1

N∑
k=j

(
αk,j ξ

2(1 − ξ)2(j−1)

Lk,j

)
.

When these solutions are substituted into the corresponding equations for S∗
h, I ∗

h

and R∗
h, we have equations from which we can work out the value of the endemic

steady states. We note that the non-zero solution is given in terms of ξ , and ξ is the
weighted combination of the steady state proportions Ih and Rh which are both less
than 1. Therefore 0 ≤ ξ < 1 with the case ξ = 0 corresponding to when there is no
disease in the human population. In fact, when ξ = 0, we recover the disease-free
steady state solution which we have studied above, and when 0 < ξ < 1 we enter the
endemic steady state zone and there is a steady state solution for all variables both
in the human and mosquito populations and the result of the theorem is established.
�
Remark 5 The existence of the endemic steady state solution, S∗

Q1
�= 0, as a positive

steady state solution of the system depends on the sign of A1(ξ) and, in turn, on the

relative size of the quantity
(∑N

k=1 αk(1 − ξ)k + ∑N
j=1

∑N
k=j αk,j ξ(1 − ξ)j−1

)
when compared with unity. In this regard, we can deduce some results as follows:

1. We, at this stage, can start by accepting this quantity as a threshold parameter that
determines whether or not there shall be a flow of infection within the mosquito
population in the full epidemiological model, especially as its size determines
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the existence of non-zero densities of infected mosquitoes in the system at
equilibrium. In fact, a non-zero distribution of infected vectors at equilibrium
can exists only when the quantity R defined by

R(ξ) =
⎛
⎝ N∑

k=1

αk(1 − ξ)k +
N∑

j=1

N∑
k=j

αk,j ξ(1 − ξ)j−1

⎞
⎠ (94)

is such that R > 1. We then define this quantity as the number of secondary
infections that will arise from one primary infectious mosquito in the full
epidemiological model during the entire period of infectiousness of the primary
infected mosquito when placed in a completely susceptible population. This
quantity so defined depends on the size of Ih and Rh and increases with these
quantities.

2. The quantity R so identified may be seen as being related to the epidemiological
model’s basic reproduction number R0 which we shall determine below. R
clearly has the threshold character of the reproduction number in the vector
population.

3. When ξ = 0, there is no disease in the human population but there is a thriving
susceptible population of mosquitoes coexisting with susceptible humans, and
R reduces to the basic offspring number which we have computed in Sect. 3.1
above and given by Eq. (83). That is, R(0) = N . In general, however, whenever
0 < ξ < 1, we have that N (1 − ξ) < R(ξ) <

∑N
k=1 αk + ∑N

j=1
∑N

k=j αk,j =
N + ∑N

j=1
∑N

k=j αk,j . R may therefore serve as a parameter that extends the
demographic model’s results on existence of steady states to those of the full
epidemiological model.

3.3 The Epidemiological Model’s Basic Reproduction Number

The full epidemiological model has been shown to possess the following equi-
librium solutions: a trivial equilibrium solution 0 (81), which corresponds to the
existence of a susceptible human population without disease infection and an extinct
mosquito population; the disease-free equilibrium solution, which corresponds
to a susceptible human population interacting with a disease-free (susceptible)
mosquito population, with equilibrium solution given by Eq. (82); and the endemic
equilibrium given by the second of Eq. (93), parameterized with the parameter ξ .
From an epidemiological perspective, all what we want to establish is whether there
does exist a parameter that determines the existence of the endemic equilibrium
alluded to in Remark 5. To this effect we calculate the basic reproduction number
of the system.
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To compute the basic reproduction number we use the standard procedure as
explained in [8, 30] wherein the basic reproduction number is calculated as the
dominant eigenvector of a linear operator. In this case we can consider only the
equations where the disease is in progression and by considering the equations in
the sub-system

dĨRk,k

dτ
= ρk,k

(
(phQk

Ĩ + p̃hQk
R̃)SQk

− ĨRk,k

)
, k = 1, 2, 3, · · · , N; (95)

dĨBk,j

dτ
= bk,j

(
ĨRk−1,j

− ĨBk,j

)
, k−2, 3, · · · , N−1, j = 1, 2, · · · , N, k > j ;

(96)

dĨQk,j

dτ
= τk,j

(
ĨBk,j

− ĨQk,j

)
, k−2, 3, · · · , N − 1, j = 1, 2, · · · , N, k > j ;

(97)

dĨRk,j

dτ
= ρk,j

(
ĨQk,j

− ĨRk,j

)
, k−2, 3, · · · , N − 1, j = 1, 2, · · · , N, k > j ;

(98)

dẼh

dτ
=

N−2∑
j=1

N∑
k=j+2

gk,j ShĨQk,j
− (ν̃h+λ̃h)Ẽh, (99)

dĨh

dτ
= ν̃hẼh − (λ̃h+σ̃h + r̃h)Ĩh, (100)

dR̃h

dτ
= σ̃hĨh − (δ̃h + λ̃h)R̃h. (101)

To set up the local drift matrix that determines the flow of infection within the
infectious compartments, we let x = (IRk,j

, IBk,j
, IQk,j

)T ∈ R
M(N)−3N for

k, j ∈ 1, 2, · · · , N, k ≥ j , and then write the reduced sub-system containing
only disease progression variables in the form

dx

dτ
= F(x) − V(x),

where
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F(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1,1

(
phQ1 Ĩ + p̃hQ1 R̃

)
SQ1

ρ2,2

(
phQ2 Ĩ + p̃hQ2 R̃

)
SQ2

.

.

.

ρN,N

(
phQN

Ĩ + p̃hQN
R̃
)

SQN

0
0
.
.
.

0
0
0
.
.
.

0
0
0
.
.
.

0∑N−2
j=1

∑N
k=j+2 gk,j ShĨQk,j

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1,1 ĨR1,1

ρ2,2 ĨR2,2

.

.

.

ρN,N ĨRN,N

−ρ2,1

(
ĨQ2,1 − ĨR2,1

)
−ρ3,2

(
ĨQ3,2 − ĨR3,2

)
.
.
.

−ρN,N−1

(
ĨQN,N−1 − ĨRN,N−1

)
−b2,1

(
ĨR1,1 − ĨB2,1

)
−b3,2

(
ĨR2,2 − ĨB3,2

)
.
.
.

−bN,N−1

(
ĨRN−1,N−1 − ĨBN,N−1

)
−τ2,1

(
ĨB2,1 − ĨQ2,1

)
−τ3,2

(
ĨB3,2 − ĨQ3,2

)
.
.
.

−τN,N−1

(
ĨBN,N−1 − ĨQN,N−1

)
(ν̃h + λ̃h)Ẽh

−ν̃hẼh + (λ̃h + σ̃h + r̃h)Ĩh

−σ̃hĨh + (δ̃h + λ̃h)R̃h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We then derive the local drift matrices F and V from F and V by comput-
ing Fi,j = ∂Fi

∂xj
(DFE) and Vi,j = ∂Vi

∂xj
(DFE) and R0(N) = maxλ{|λ| :

λ is an eigenvalue of FV −1}. To be in a position to state the formula for the basic
reproduction number for an arbitrary N , we use an inductive approach on N to
calculate the value of R0(N),N = 3, 4, · · · , where R0(N) is the basic reproduction
number when the total number of gonotrophic cycles that the mosquito can complete
during its entire reproductive life is N > 2.

For N = 3 we find that

R0(3) =
√

ν

√
SDFE

h

√
g3,1S

DFE
Q1

√
(δ + λ)phQ + p̃hQσ

√
δ + λ

√
λ + ν

√
γ + λ + r + σ

. (102)

Thus ending the process at N = 3, we notice that only susceptible questing vectors
infected at gonotrophic cycle 1 would have contributed to the value of R0. This
is indeed the expected result since we allow at least two gonotrophic cycles to
pass before the vector can become infectious to humans. For N = 4, we have the
expression

R0(4)=
√

ν

√
SDFE

h

√
(g3,1+g4,1)S

DFE
Q1

+g4,2S
DFE
Q2

√
(δ+λ)phQ+p̃hQσ

√
δ+λ

√
λ+ν

√
γ+λ+r+σ

. (103)
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For N = 4, we see the contributions to the value of the reproduction number from
susceptible questing vectors first infected at gonotrophic cycles 1 and 2, with the
appropriate weighting factors. At N = 5 we have

R0(5) =
√

ν

√
SDFE

h

√
(δ + λ)phQ + p̃hQσ

√
(g3,1 + g41 + g5,1)S

DFE
Q1

+ (g4,2 + g5,2)S
DFE
Q2

+ g5,3S
DFE
Q3√

δ + λ
√

λ + ν
√

γ + λ + r + σ
,

(104)

showing contributions from susceptible questing vectors first infected at
gonotrophic cycles 3, 4 and 5. Continuing with the calculation, we can then derived
the general formula for the basic reproduction number by combining these together
and deducing. We have thus proved the following result.

Theorem 5 (On the General Formula for the Basic Reproduction Number) Let
the assumptions of Lemma 1 continue to hold. Let R0(N) be the basic reproduction
number for the epidemiological model built on the human–mosquito interactive
framework. Then R0(N) is given by the formula

R0(N) =
√

ν

√
SDFE

h

√
(δ + λ)phQ + p̃hQσ

√∑N−2
j=1

∑N
k=j+2 gk,j S

DFE
Qj√

δ + λ
√

λ + ν
√

γ + λ + r + σ
. (105)

Remark 6 We note that from the scaling used herein, SDFE
Qk

= S∗
B1

for all k =
1, 2, · · · , N as computed in (80) and so the expression for the formula for R0(N)

simplifies accordingly and we can, using the fact that for non-negative values of
R0(N), R0(N) > 1 ⇔ R0(N)2 > 1 and 0 ≤ R0(N) < 1 ⇔ R0(N)2 < 1, to then
consider R2

0 as the basic reproduction number and use R0 = R0(N)2 as the basic
reproduction number for our system, where

R0 =
ν
(
(δ + λ)phQ + p̃hQσ

) (∑N−2
j=1

∑N
k=j+2 gk,j

)
SDFE

h SDFE
Q1

(δ + λ)(λ + ν)(γ + λ + r + σ)
. (106)

This expression clearly shows the form and dependence of the system and repro-
duction number on the disease parameters.

To appreciate the contributions into the two threshold parameters N and R0 we
have computed and displayed in formulas (83) and (106), we return to the original
variables, passing through the scaled variables and parameter groupings (61), (62)
and (63). We define the quantities

wk = bQk

bQk
+ μSQk

bk(Nh)

bk(Nh) + μSBk

ρk

ρk + μSRk

qQk
, k = 1, 2, · · · , N (107)

zk = bQk−1

bQk
+μSQk

bk(Nh)

bk(Nh)+μSBk

ρk−1

ρk−1+μSRk−1

qQk−1 , k=2, · · · , N (108)
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wk,j = bQk

bQk
+ μIQk,j

bk(Nh)

bk(Nh) + μIBk,j

ρk,j

ρk,j + μIRk,j

qQk
, k > j (109)

zk,j = bQk−1

bQk
+ μIQk,j

bk(Nh)

bk(Nh) + μIBk,j

ρk−1,j

ρk−1,j + μIRk−1,j

qQk−1 , k > j, (110)

then, for any p ≥ 1, we have

I 0
Qj+p,j

=
p∏

i=1

zj+i,j S
0
Qj

, S0
Qj

=
j∏

i=2

zj S
0
Q1

, j = 2, 3, · · · , N, and S0
Q1

= b1(Nh)

bQ1 + μSQ1

S0
B1

.

(111)

It is straightforward to see that b1(Nh)
bQ1+μSQ1

∏N
k=2 zk = ∏N

k=1 wk after rearrangement

of terms. Similar rearrangements can be made to write down the products involving
zk,j in terms of the products wk,j . With these characterizations, we have

αk = λ0,k

k∏
i=1

wi ⇒ N =
N∑

k=1

(
λ0,k

k∏
i=1

wi

)
, (112)

written in terms of the original parameters. Thus for any integer p ≥ 1, we have the
expression

gj+p,j = pQj+phqQj+p
bQj+p

Nh(ρN + μSRN
)

I 0
Qj+p,j

, (113)

using the expression for I 0
Qj+p,j

computed in (111). The expressions in (112)
and (113) completely demonstrate how we can write down the basic offspring
number N and the epidemiological model’s basic reproduction number R0 given
in (83) and (106) respectively in terms of the original parameters of the system. We
note that the terms in the sum for (112) and (113) are ever decreasing in size since
each of the weights wi < 1 and wk,j < 1. This captures the fact that contributions
to the new mosquito population from each egg laying is decreasing with increasing
number of gonotrophic cycle. These results confirm the results earlier reported
in [22] for a limited form on this model where the gonotrophic cycle count was
truncated at N = 3. This result is biologically consistent with the biology of the
Anopheles sp mosquito, as it is known that depending on the species, and on the
quality and size of the blood meal, a female Anopheles lays 50–200 eggs during a
single oviposition, usually at night. Successive egg batches tend to decrease in size
and there may be seasonal variations in the number of eggs laid per batch [27].
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4 Results and Discussions

We set out to derive and study a model that takes into account the demography
of mosquito populations, its reproductive life and gonotrophic cycles’ count. The
model was derived based on a restricted form of homogeneous mixing contingent
on the idea that the mosquito has a human biting habit. Though consideration was
made on the possibility that the mosquito can seek for blood meals from alternative
blood sources, this zoophilic characteristic of the mosquito’s life traits was not
fully integrated into the model equations. We ended up with a system of equations
governing the dynamics of a human–mosquito–human interactive framework where
the mosquito can undergo up to N gonotrophic cycles: the cycle that starts at
egg laying, followed by blood meal questing within human populations, resting
for maturation of eggs and again ending with egg laying. In the model we used
the gonotrophic cycle counter as a measure of physical age of the mosquito, so
that a mosquito that has undergone the largest number of gonotrophic cycles in
the system is considered to be among the oldest mosquitoes, while those that are
still in the first gonotrophic cycle are considered to be among the young ones. In
the presence of malaria disease in the model, the length of the gonotrophic cycle
was fixed and used as a means to measure and capture the incubation period of the
disease within the mosquito population. This was set by requiring that a mosquito
that picks up the malaria infection after a successful interaction with humans will
have to wait for at least two gonotrophic cycles before bringing back the infection
to the human population. All mosquitoes in the system are assumed to complete the
requisite number of gonotrophic cycles unless they dies during the interaction with
the humans.

The size of the entire system was computed by explicitly counting the total
number of mosquito compartments in the system. The probability of finding
an infected/infectious compartment in the mosquito system was computed by
comparing the total number of infectious mosquito compartments with the total
number of mosquito compartments by explicitly calculating the disease reservoir of
infection in the mosquito population, ROIV . The results show that this probability is
determined by the number of susceptible mosquito compartments that the disease-
free system can have at each gonotrophic cycle. In any event it was seen that the
probability can be as large as 50% in the case where we have only one susceptible
compartment and one infected/infectious compartment.

We do not believe the results presented above is equivalent to the result of
finding an infectious mosquito, unless there is a one-to-one correspondence between
the number of compartments considered and the distribution of the mosquitoes
in the various compartments. For example, if there are M compartments at each
gonotrophic cycle k, and a total of Nmk

> M mosquitoes at each corresponding
gonotrophic cycle k, then the results so obtained could be used as a proxy for
the probability of finding an infectious mosquito if the M proportions M

Nmk
is the

same and a constant and sums up to 1. However, if this is not the case, then
increasing the number of compartments does not necessarily produce any more
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interesting results. However, the flows from the susceptible compartments to the
infectious compartments are important as they will play a part in determining the
size of the questing mosquito populations, susceptible or infectious. However, from
a biological and ecological standpoint, it is worth asking the question: what is
the maximum number of compartments required that would capture the human–
mosquito interaction system and approximates as close as possible the number of
mosquitoes (in our case questing mosquitoes) interacting with humans?

The disease-free model was analysed and the results show that there exists a
threshold parameter, N , which we identified as the basic offspring number, with the
property that for N ≤ 1 the system has only the zero or trivial steady state solution
which is globally and asymptotically stable. We note that this is the state in which
the mosquito population is extinct; however, there is a thriving population of only
susceptible humans. Our analysis also shows that when N > 1, the trivial steady
state which always exists for all forms of the parameters, loses stability, giving rise
to a non-trivial steady state via a transcritical bifurcation. These results have been
observed before [19, 22, 23]. They are again echoed here in this general model where
the number of gonotrophic cycles is arbitrary.

A study of the epidemiological model also reveals the existence of a basic
reproduction number whose nature and form has been completely determined in
terms of the original parameters of the system. These results were obtained by
assuming that the human population is constant and that disease induced death rate
is zero. These simplifications facilitated the parameterization of the steady states
in the epidemiological model in terms of the infectious proportions in the human
population Ih and Rh. It was satisfying to notice that when there is no infection in the
system, the system collapses to the disease-free model whose form has been studied
in earlier works. The novelty in the work done in this paper lies in its complete
characterization of the contributions from each mosquito from each gonotrophic
cycle count and the ability to build in the incubation period of the disease within the
mosquito population using the gonotrophic cycle counter.

The length of the extrinsic incubation period was measured here by allowing
two gonotrophic cycles to elapse before the infected mosquito becomes infectious.
This choice was deemed realistic by rationalizing that for a mosquito to pass the
infection from one human to another, it must bite two humans at two different and
distinct periods of time and the assumption is that the second bite will already be
infectious. Since the choice of 2 may not be true in general, especially in regions
with extended dry or wet period where this value could be higher (see for example
[27]), a better option to be considered in future research, would be to set the number,
n, of gonotrophic cycles whose cumulative time length is equivalent to the length
of the extrinsic incubation period as one of the parameters of the system, and even
allow this parameter to vary with temperature and rainfall. However, since it is clear
that such a parameter must be at least 2, we decided to use n = 2 in the analyses.
In this paper, we discussed how this arbitrary parameter can affect the size of the
number of infectious compartments of the system.

From the point of view of control, three control points are clearly possible from
the modelling framework used here. (i) On the one hand, we can block human–
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mosquito contact by preventing the questing mosquitoes from taking blood meals.
This will certainly prevent the passage of the infection from mosquito to humans
and vice versa and at the same time reduce the population sizes of the anthropophilic
mosquitoes in the system. (ii) One could identify resting places of the mosquitoes
and spray these with insecticide. This will kill the resting mosquitoes and cut the
link between current adult and next generation adults, as the resting blood fed
mosquitoes will be prevented from laying eggs. (iii) One could use larvicides or
other control measures to kill the breeding site mosquitoes and aquatic forms. Each
of the enumerated control strategies is mechanical and has the net effect of reducing
the size of the epidemiological model’s basic reproduction number which will in
turn control the spread of the malaria disease.

We believe that we have achieved the primary objective of the current paper
which was to derive a malaria transmission model for a human–mosquito interactive
framework where the mosquito is allowed to undergo up to N gonotrophic
cycles during its entire reproductive life, and then calculate the different threshold
parameters of the derived system; namely, the basic offspring number in the vector
demographic model and the basic reproduction number in the epidemiological
model. The analysis of the model derived here is not complete as we need to
study the mathematical form and structure of the solutions of the entire system of
equations as well as the explicit forms of the steady state solutions. The nature of the
rate of production of new adult mosquitoes, given here as λR , needs to be studied
from a general nonlinear function analytic point of view. The full model represented
here offers us a unique opportunity to conduct a global sensitivity analysis of the
system on its parameters. These and other aspects of the model shall be subject of
subsequent work.
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Charles Darwin Meets Ronald Ross: A
Population-Genetic Framework for the
Evolutionary Dynamics of Malaria

Kristan A. Schneider

1 Introduction

Aside tuberculosis and HIV/AIDS, malaria ranks among the most important
infectious diseases. It continues to be a major burden to reach global development,
rendering its control and elimination a public-health priority. Half of the world’s
population lives at risk of malaria, and, although a substantial decline in cases and
deaths have been achieved since 2010, it still causes annually over 200 million
infections and half a million deaths [36]. After years of achievements in control
and prevention the trend of reducing malaria burden reversed in 2018 [36].

Malaria is a vector-borne infectious disease, pathogenic to humans and animals,
caused by haploid, unicellular, eukaryotic parasites belonging to the group of
Plasmodium. Several species of Anopheles mosquitoes serve as disease vectors—
a discovery for which Sir Ronald Ross was awarded the Nobel Prize in 1902.
Plasmodium species are well-adapted to their hosts, five of which are pathogenic
to humans with P. falciparum being the most important in terms of morbidity and
mortality, followed by P. vivax. Other human malaria species include P. ovale, P.
malariae, and P. knowlesi. Although progress has been made over the last years
in vaccine development, with the first vaccine currently undergoing pilot trials,
the levels of immunization are still relatively low [9] and vaccine development is
hampered by the parasite’s ability to hide from the immune system.

Malaria control relies heavily on drug treatments for radical cure and prophy-
laxis, as well as on vector control measures, such as indoor-residual insecticide
spraying and the use of insecticide-treated bednets. Control efforts are challenged by
the spread of insecticide and drug resistance as well as HRP2/3 gene deletions in P.
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falciparum causing false negative rapid diagnostic test (RDT) results—all particular
instances of Darwinian evolution.

Resistance against chloroquine (CQ), sulfadoxine-pyrimethamine (SP), meflo-
quine (MQ) are widespread in P. falciparum, rendering these drugs inefficient
[2, 31]. Currently the spread of artemisinin resistance is a source of concern. In
fact, 13 non-synonymous mutations in the k13 gene of P. falciparum have been
associated with slow parasite clearance [12, 37]. While CQ resistance evolved
decades ago in P. falciparum, CQ remains the drug of choice to treat P. vivax
malaria—however, resistance is becoming more widespread [23]. The emergence
of insecticide resistance is an evolutionary process occurring in the vector species.
On the contrary, evolution of drug resistance, HRP2/3 deletions, and adaptations to
hide from immune recognition are evolutionary processes happening in the parasite
population. The topic to which this chapter is devoted to.

A general evolutionary-genetic framework for malaria is introduced, applicable
to all (human) malaria species. The complex transmission cycle (Fig. 1) shapes the
evolutionary dynamics of malaria. The framework is an abstraction of the complex
malaria transmission cycle based on biological facts rather than assumptions, while
capturing the organism’s characteristics and removing unnecessary complexity. The
framework generalizes the models of [29, 30] and is capable to model the spread
of drug resistance, HRP2/3 deletions or other evolutionary processes. The model is

Fig. 1 Transmission cycle of human malaria. All species have the same cycle, but parasites life
stages have different morphology (illustrated here for P. falciparum). In P. vivax and P. ovale
dormant hypnozoites remain in the liver
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applicable to all (human) malaria species, however, it does not model hypnozoites
as they occur in P. vivax and P. ovale.

The presence of multiple genetically distinct haplotypes of the pathogen infecting
the same individual host is properly addressed (as it is subsumed by MOI),
which is an important feature of malaria correlating with transmission intensities.
Particularly, this allows formalizing the differences between haplotype frequencies
and prevalences—the former being more relevant in an evolutionary, the latter in an
epidemiological or clinical context. These terms are often used synonymously in the
empirical literature leading to wrong inferences.

In Sect. 3, the focus shifts to the evolution of drug resistance, assuming a single
locus at which multiple mutations act synergistically to confer increasing levels
of drug resistance, as it occurs, for instance, at codons 51, 59, 108, 164 in the
Pfdhfr gene or 436, 437, 613 in the Pfdhps gene in P. falciparum to confer SP
resistance. These results generalize those of [29]. The evolutionary dynamics of
drug-resistant haplotype frequencies—unlike haplotype prevalences—are shown to
be independent of transmissions intensities (if intra-host competition of parasites
is neglected). Furthermore, the effect of genetic hitchhiking at neutral genetic
markers flanking the target of drug resistance is studied, generalizing the results
of [30]. The hitchhiking pattern is similar as in standard population-genetic theory
[13], but the processes of selection and recombination cannot be decoupled due
to the characteristics of malaria transmission. Although, the spread of resistance
is independent of transmission intensities, the effect of genetic hitchhiking is not.
Importantly, the reduction in genetic variation surrounding the target of selection
can be genomewide if transmission intensities are low (due to increased inbreeding
immanent in the malaria transmission cycle), as explained by Eq. (21) in Sect. 3.3.

Section 4 is devoted to employ the framework for estimating transmission
intensities, more precisely MOI, allele frequencies, and selection parameters from
molecular data. The methods are illustrated by a hypothetical example. Notably,
they have been previously applied to empirical data [16, 27].

An explanation why drug-resistance evolution is faster in P. falciparum than in
P. vivax is given in Sect. 5. Namely, a formal argument how differences in the life
histories of the two species, particularly the onset of gametogenesis and longevity
of gametocytes, translate into more efficient selection in P. falciparum.

The topics covered in this chapter are by far not comprehensive. Rather they com-
pile work that has been done previously, while generalizing the results and deriving
new ones. While the framework is mathematically not trivial, the presentation tries
to reach out to a less mathematically sophisticated audience, by motivating and
verbally describing the model. Because the beauty of the mathematical structure
might not be obvious to all readers, proofs are shifted to the appendices.
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2 Evolutionary Dynamics

Malaria is a complex disease involving the pathogen, the vector, and the human or
animal host linked together by a complex transmission cycle (cf. Fig. 1).

The evolutionary dynamics of malaria are tightly linked to the malaria transmis-
sion cycle. During this cycle Plasmodium undergoes several steps of multiple fission
in the human host and mosquito vector including merogony, gametogony, and sporo-
gony. It starts with sporozoites in a female mosquito’s salivary glands. A handful of
sporozoites is inoculated into the human blood stream during a mosquito’s blood
meal (notably such an infectious contact is not necessarily infective), starting the
exo-erythrocytic cycle. Sporozoites travel through the blood vessels into the liver,
where they infect hepatocytes (liver cells) and mature into schizonts. When these
rupture they release merozoites into the blood stream initiating the erythrocytic
cycle. Merozoites invade erythrocytes starting a series of asexual replications cycles.
First, merozoites form ring stage trophozoites within the red blood cells that mature
into schizonts that rupture and release new merozoites. Some of the parasites
differentiate into sexual gametocytes, which no longer reproduce in the human
host. However, ingestion of male and female gametocytes by a mosquito starts the
sporogonic cycle. In the mosquito’s gut, gametocytes release gametes that fertilize
to form a zygote. These develop into ookinetes that burrow into the mosquito’s
midgut wall to develop into oocysts. Growth and division of each oocyst produces
thousands of sporozoites that move into the salivary glands.

This chapter is concerned with the evolutionary dynamics of the pathogen itself,
i.e., with the temporal change in the distribution of parasite haplotypes (charac-
terized by alleles at loci under consideration) under the influence of mutation,
selection, and recombination. Notably these evolutionary forces occur at different
stages in the life history of the parasite. While selection, e.g., for drug-resistance-
conferring haplotypes or for strategies to hide from human immune recognition,
occurs in the human host, recombination happens during sporogony inside the
mosquito vector, and mutations might occur at all life stages inside the host or
vector. To tailor a mathematical model to the malaria transmission cycle, it is crucial
to clearly define at which life-stage the haplotype distribution is considered.

A convenient census point is the end of the sporogonic cycle (cf. Fig. 2), i.e.,
the distribution of haplotypes in the population of sporozoites in the mosquitoes’
salivary glands, ready to be injected into human hosts, is considered. In fact,
sporozoites of the whole mosquito population are pooled together to form the
parasite population. As this population is large, it is sufficient to describe it by their
relative haplotype frequencies. This setup follows to follow the parasite population
in steps of sexual reproduction. Namely, with a full transmission cycle only one
step of sexual reproduction occurs, namely inside the mosquito vector, while several
steps of asexual reproduction occur inside the human host.

Clearly, the sporozoite population is changing constantly as mosquitoes die
and new ones become infected. However, after a mosquito’s blood meal it would
typically rest to breed and not participate in transmission for a while. Moreover,
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Fig. 2 Idealized transmission cycle: illustration of the idealized transmission cycle for the
evolutionary model. Four haplotypes (two biallelic) loci and two strata (treated and untreated
hosts) are illustrated. Each host is infected by randomly drawing haplotypes from generation
t . With probability α a host receives treatment. Selection occurs differently within treated and
untreated hosts. Recombination occurs exclusively between haplotypes exiting the same host. After
recombination, haplotypes in the mosquitoes are pooled together to derive their distribution in
generation t + 1

Anopheles is night active and the mosquito population size undergoes seasonal
changes. Finally, there is a time delay between mosquitoes becoming infected
and becoming infectious. For these reasons modeling the sporozoites’ haplotype
distribution on a continuous time scale—although mathematically tempting—would
be inaccurate. The important changes in the haplotype distribution occur because
mosquitos infect new hosts and new mosquitoes become infected. As a step of
idealization, all mosquitoes are assumed to take their blood meals at the same time.
It is therefore appropriate to follow the haplotype distribution in discrete time units
corresponding to full transmission cycles (cf. Fig. 2). The number of transmission
cycles per year depends on transmission intensities. Furthermore, these are not
uniformly distributed over the year, especially in regions with seasonal malaria.

2.1 Idealizing the Transmission Cycle

Haplotypes are characterized by their allelic expressions at one or several loci. Let
H be the number of possible haplotypes and denote their frequencies in generation
t by P1(t), . . . , PH (t) or collectively by the vector PPP(t). To calculate the change
in haplotype frequencies from one generation to the next, the transmission cycle is
followed in the steps described below, corresponding to the idealization depicted in
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Fig. 2. Throughout this chapter the terms “haplotypes” and “clones” will be used
synonymously.

2.1.1 Vector-Host Transmission

As an idealization, a large (infinite) number of hosts is assumed. Clearly, hosts
exhibit heterogeneity in exposure to vectors, levels of natural and acquired immu-
nity, access to treatment, and malaria treatment itself (e.g., different treatment
policies apply to children, pregnant women, severe cases, different treatment
compliance). This is idealized as hosts falling into discrete strata (classes). In
generation t , a given host falls into class k (k = 1, 2, . . .) with probability αk(t).
This distribution is modeled time-dependently and thus may subsume changes
in treatment policies or other interventions. In the following, if not necessary,
dependence on time t is omitted to simplify notation.

Hosts might be infected by one or several mosquitoes (roughly) at the same time
(super-infection), i.e., within a few days. At each infectious contact the mosquito
transmits exactly one parasite haplotype to the host (cf. Figs. 2 and 4). Hence,
transmission of several parasite haplotypes from one mosquito (co-infection) is
ignored. In generation t , a host belonging to class k is (super-) infected exactly m

times with probability κ
(k)
m (t),

( ∞∑
m=1

κ
(k)
m (t) = 1

)
. The distribution (κ

(k)
m ) describes

multiplicity of infection (MOI; cf. Figs. 3 and 4), depending on time and the stratum
to which the host belongs. Typical choices for (κ

(k)
m ) are discussed below. Note

that—unlike here—MOI is often referred to as the number of different clones
(haplotypes) within an infection. The former is rather a matter of convenience,
as it describes observable information, while neglecting the possibility of multiple
infections with the same haplotypes, which is unobservable. The problem with this
definition is that the number of different clones does not just depend on transmission
intensities but on the haplotype distribution. Further note that ignoring co-infections
effectively implies that parasites transmitted during co-infections are randomly
mixed (independent) and can be hence subsumed as super-infections. Properly
modeling co-infections requires knowledge of the distribution of different haplotype
combinations in the mosquitoes salivary glands, besides that it is largely unknown
how many different co-infection haplotypes successfully arrive in the liver and lead
to merozoite offspring at detectable levels—however, it is believed to be just a
handful.

If a host is super-infected by m haplotypes, these are drawn with replacement
from the mosquito pool, i.e., according to a multinomial distribution with parame-
ters m and P1, . . . , PH .

Given that a host is super-infected m times, the probability of transmitting
haplotype i exactly mi times (i = 1, . . . , H ) is
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recomb. generates 
new genetic variation

single infection (MOI=1)

x

4 super-infections (MOI=4)

vector-host transmission infection host-vector transmission
& recombination

x

x

Fig. 3 Illustration of relationship between inbreeding and MOI. Top: A single-clone infection
(MOI = 1) results in effectively no recombination. Bottom: different haplotypes exiting a multi-
clone infection can generate new genetic variation by recombination. The illustration shows MOI
= 4, with three different haplotypes. Note that in principal the same haplotype could infect four
times—also effectively resulting in no recombination. However, this happens only with small
probability

(
m

mmm

)
PPPmmm, (1)

where the vector mmm = (m1, . . . , mH ) indicates how many times the host was

super-infected with the respective haplotypes, satisfying |mmm| :=
H∑

i=1
mi = m,

(
m
mmm

) = m!
H∏

i=1
mi !

is a multinomial coefficient, and PPPmmm :=
H∏

i=1
P

mi

i . All infecting

sporozoite haplotypes are assumed to successfully migrate into the human liver. This
is no loss of generality, as sporozoites not migrating to the liver can be subsumed by
MOI m.
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Fig. 4 Illustration of infections (top tow) and information assayed from blood samples. Top row
shows three infections with MOI 3, 3, and 6, respectively, infecting with one, two, and four
haplotypes (characterized by alleles at one locus). This information gets lost when looking at
parasites in patients’ blood samples. Only the absence and presence of haplotypes (alleles) can
be detected, coded by 0 and 1

2.1.2 Intra-Host Dynamics: Exo-Erythrocytic and Erythrocytic Cycle

Arrived in the liver, sporozoites form schizonts that rupture and finally release
merozoites into the blood stream. These invade red blood cells, replicate clonally
inside them until they rupture and release new merozoites, determined to further
infect red blood cells. A relatively small fraction of merozoites develop gameto-
cytes. These are sexual forms that do not further reproduce inside the host but
are responsible for further disease transmission (see Fig. 1). Importantly, no step
of sexual reproduction or recombination occurs inside the human host. In the
blood stream, anti-malarial drugs clear out merozoites. Most drugs do not affect
gametocytes. The reproduction and clearance rates of merozoites, the latter due
to anti-malarial drugs or human immune response, are haplotype specific. Drug-
tolerant or drug-resistant parasites have a slower clearance rate than drug-sensitive
haplotypes but are usually associated with metabolic costs, manifesting in a lower
reproduction rate. This results in different selection pressures for sensitive and
resistant parasites.

Because all steps of parasite replication inside the human host are asexual,
selection acting on parasites inside the host can be modeled as a single step (cf.
Fig. 2). Selection pressures naturally vary between hosts as these depend on drug
treatment, levels of natural and acquired immunity, etc., which is modeled as hosts
belonging to different strata, i.e., a host falls into class k with probability αk . The
“absolute” frequency of haplotype i within a host belonging to class k with MOI m,
which was super-infected mj times with haplotype j (j = 1, . . . , H ), is mi

m
W

(k)
mmm,i .

The fitness W
(k)
mmm,i is interpreted as the expected number of gametocyte descendants

of one copy of an infecting sporozoite haplotype i in a host within class k at the time
of a mosquito bite (see Sect. 5 for a comprehensive discussion).

Notably, mathematically less-skilled readers are encouraged to read through this
section but shall feel free to skip the formulae or proceed directly to Sect. 3.
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2.1.3 Host-Vector Transmission

At its blood meal, a mosquito ingests a fraction γ of female and male gametocytes,
proportional to the haplotype frequencies within the host. (An equal sex ratio is
assumed in the description, but this assumption is not necessary.) Hence, a mosquito
picks up γ

mi

m
W

(k)
mmm,i male and female haplotype-i gametocytes from a host in class k,

which was super-infected by m parasites containing exactly mi i-haplotypes.

2.1.4 Sporogonic Cycle

In the gut of the mosquito, gametocytes release gametes, between which recombina-
tion occurs immediately after the blood meal (see Fig. 1). Particularly, only parasites
descending from the same host might recombine (see Fig. 3). If the mosquito took
its blood meal from a host in stratum k originally infected with mi haplotypes i

(i = 1, . . . , H , |mmm| = m), the probability that a female j -gamete fertilizes a male
l-gamete is

γ
mj

m
W

(k)
mmm,j

γW
(k)
mmm

· γ
ml

m
W

(k)
mmm,l

γW
(k)
mmm

= mjW
(k)
mmm,jmlW

(k)
mmm,l

m2W
(k)
mmm

2 ,

where

γW
(k)
mmm := γ

H∑
i=1

mi

m
W

(k)
mmm,i

is the frequency of parasite haploids in the gut of the mosquito. The above
probability is the relative frequency of j -haplotypes times that of l-haplotypes
within the mosquito’s gut. Multiplying the above with γW

(k)
mmm gives the absolute

number of such fertilizations, i.e.,

γ
mjW

(k)
mmm,jmlW

(k)
mmm,l

m2W
(k)
mmm

.

Therefore, the absolute frequency of sporozoite haplotype i in the mosquito
population descending from gametocytes from hosts belonging to stratum k that
were infected with m parasites is

P
∗(k,m)
i =

∑
|mmm|=m

(
m

mmm

)
PPPmmm

H∑
j,l=1

γmjW
(k)
mmm,jmlW

(k)
mmm,l

m2W
(k)
mmm

R(jl → i) ,
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where R(jl → i) is the probability that fusion of male and female gametes of
haplotypes j and l, respectively, results in an offspring sporozoite of haplotype i.

2.1.5 Sporozoite Population

Averaged over the MOI distributions and all strata, the absolute frequency of
haplotype i in the next generation’s sporozoite population is

P ∗
i = γ

∞∑
k=1

αk

∞∑
m=1

κ(k)
m

H∑
j,l=1

f
(m,k)
j,l R(j l → i),

where

f
(m,k)
j,l =

∑
|mmm|=m

(
m

mmm

)
PPPmmm

mjmlW
(k)
mmm,jW

(k)
mmm,l

m2W
(k)
mmm

.

The relative frequency of haplotype i in the next generation’s sporozoite population
is thus

P ′
i = P ∗

i

H∑
j=1

P ∗
j

. (2)

Formulating the dynamics in terms of generation time t yields

Pi(t + 1) = P ∗
i (t)

H∑
j=1

P ∗
j (t)

(3a)

with

P ∗
i (t) = γ

∞∑
k=1

α
(t)
k

∞∑
m=1

κ(k,t)
m

H∑
j,l=1

f
(m,k,t)
j,l R(j l → i) (3b)

and

f
(m,k,t)
j,l =

∑
|mmm|=m

(
m

mmm

)
PPP(t)mmm

mjmlW
(k)
mmm,jW

(k)
mmm,l

m2W
(k)
mmm

, (3c)

where the potential time dependence of the parameters is indicated by the super-
script t .
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Note that it is not necessary to model fitness time-dependently, reflecting, e.g.,
changes in treatment policies, as this is subsumed by the change in probability of
belonging to the different strata over time.

If the distribution of MOI remains constant over time, vector competence
and transmission intensities are implicitly assumed to remain constant in each
stratum. The distribution of MOI, (κ

(k)
m ), varies across strata. By assuming the same

distribution of MOI in all strata, i.e., by replacing (κ
(k)
m ) by (κm), it is implicitly

assumed that the pattern of infection is the same across all strata, i.e., in statistical
terms the distributions (κm) and (αk) are independent.

2.2 MOI Distributions

As mentioned earlier, typical examples for the distribution of MOI are the condi-
tional Poisson or conditional negative-binomial distributions.

First, consider only one stratum. MOI following a Poisson distribution can be
regarded as a null model. It emerges from assuming infective mosquito bites to
be rare and independent events and hosts having the same (small) probability of
becoming infected. Hence, within a given time window, the number of super-
infections follows a Poisson distribution. As only infected hosts are considered, one
needs to condition on at least one infection, resulting in the conditional Poisson
distribution

κm = 1

eλ −1

λm

m! , where λ > 0 and m = 1, 2, . . . . (4)

Its probability generating function, to be used later, is given by

U(t) := E(tm) =
∞∑

m=1

κmtm = 1

eλ −1

∞∑
m=1

(tλ)m

m! = etλ −1

eλ −1
. (5)

The function U(t) can be used to calculate the mean and variance of MOI, since
U(et ) is the moment generating function. Namely, by differentiation at t = 0 one
obtains

E m = λ eλ

eλ −1
(6a)

and

Var m = eλ
(
eλ −λ − 1

)
λ(

eλ −1
)2 . (6b)
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Hosts being infected with the same probability (heterogeneous hosts) might not
always be justified. Groups of hosts might experience different biting rates, etc.
Considering several strata, with MOI following conditional Poisson distributions in
each of them, MOI follows a mixture of Poisson distributions, which is no longer a
Poisson distribution. The mean MOI is

E m =
∞∑

k=1

αk

λk eλk

eλk −1
(7a)

while its variance becomes

Var m =
∞∑

k=1

αk

λk(λk + 1) eλk

eλk −1
−
( ∞∑

k=1

αk

λk eλk

eλk −1

)2

. (7b)

Clearly, the model is hopelessly over-parameterized if the number of strata is large
and MOI follows a different Poisson distribution in every stratum.

An alternative to modeling discrete strata is to assume a continuum of strata.
In the limit of infinitely many groups, with the Poisson parameters being Gamma-
distributed across groups, the negative-binomial distribution emerges. (Note that
the negative-binomial distribution has alternative definitions that are less general
than the one as a Gamma–Poisson mixture.) The conditional negative-binomial
distribution is defined as

κm = �(η + m)

(1 − νη)m!�(η)
(1 − ν)mνη, whereν ∈ (0, 1)andη ∈ R

+. (8)

Its probability generating function (cf. Appendix 1 for a derivation) is given by

U(t) =
((

1 − t (1 − ν)
)−η − 1

) νη

1 − νη
. (9)

Mean and variance of MOI are given by

E m = η(1 − ν)

ν (1 − νη)
(10a)

and

Var m = η(ν − 1)
(
(η + 1)νη − ηνη+1 − 1

)
ν2 (νη − 1)2

. (10b)

Assuming a negative-binomial distribution allows reducing the number of MOI
parameters as compared to a mixture of Poisson distributions. However, the
negative-binomial assumption does not remedy the need to model different strata,
as also fitness differs among groups. Anyhow, fewer strata need to be modeled.
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2.3 Haplotype Frequencies and Prevalences

The dynamics of malaria derived above can be adapted for evolutionary-genetic
analyses as discussed in the following sections. Clearly, the changes in haplotype
frequencies are the quantities of interest. However, in malaria many considerations
revolve around clinical and epidemiological aspects. For instance, in the case of drug
resistance the frequency change of resistance-conferring haplotype frequencies over
time is irrelevant for the medical sector. Of interest is the probability of infections
with haplotypes causing delayed treatment success or even failure. Similarly,
epidemiologists are more interested in the current exposure to potential resistance-
conferring haplotypes on a spatial scale. Obviously, the evolutionary dynamics
are intertwined with epidemiological and clinical observations, and it is crucial to
understand the connection between quantities of interest in different fields. This
leads to the definition of “haplotype prevalence.”

Haplotype i’s prevalence is the probability of “observing” this haplotype in an
infection, more precisely, the probability of an infection carrying this haplotype. If
every infection was infected by exactly one haplotype, frequency and prevalence
would coincide. However, super-infections occur, distorting this argument.

Therefore, the prevalence of haplotype j , i.e., the probability of being infected
with j , is derived in Appendix 2 to be

qj := 1 −
∞∑

k=1

αkUk(1 − Pj ). (11)

This implies that haplotype j ’s prevalence always exceeds its frequency (if super-
infections occur with positive probability; cf. Appendix 2). The above is a rather
general expression, which simplifies for particular choices of MOI distributions.

The simplest assumption is MOI following the same conditional Poisson distri-
bution in all strata. In this case, prevalences become

qj = 1 − e−λPj

1 − e−λ
. (12)

Assuming the same negative-binomial distribution across strata yields

qj = 1 − νη(ν − νPj + Pj )
−η

1 − νη
. (13)

The relationship between frequency and prevalence is illustrated in Fig. 5. Preva-
lence exceeding frequency is obvious, with the amount of excess being mediated
by the mean MOI (cf. Eqs. (6a) and (10a)). Whereas frequency and prevalence are
similarly in low transmission areas (mean MOI ∼1), their discrepancy is striking
in high-transmission areas (mean MOI >2), where a frequency of 0.8 leads to a
prevalence of almost 0.95.
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Fig. 5 (a, b) Prevalence vs. frequency: shown are the prevalence (solid) and relative prevalence
(dashed) of haplotype 1 corresponding to frequency P1 = 0.8 (a) and P1 = 0.05 (b) as a
function of mean MOI following either (6a) or (10a). Prevalence depends only on the frequency
P1 and the MOI distribution. To derive relative prevalences, which depends additionally on the
whole haplotype distribution, a second haplotype with frequencies P2 = 1 − P1 was assumed.
Colors correspond to different MOI distributions. The conditional Poisson and negative-binomial
distributions were used, such that the latter has 10, 50, and 90% higher variance than the Poisson
distribution given by (6b) or (10b). (c, d) Similar as in panels (a, b) but shown are only relative
prevalences corresponding to P1. (c) Solid lines for frequency distribution PPP = (0.8, 0.19, 0.01),
dashed lines for PPP = (0.8, 0.1, 0.1). (d) Solid lines for distribution PPP = (0.6, 0.4), dashed lines
for PPP = (0.6, 0.2, 0.2)

This exposes the problems of confusing frequency with prevalence, particularly
in the context of drug resistance, in which the chances to contain resistance might
be underestimated when the two quantities are treated synonymously. Notably,
comparison between low- and high-transmission areas should always be done with
respect to frequency rather than prevalence.

Sometimes prevalences are easier to estimate than frequencies. In this case
frequencies are sometimes estimated as relative prevalences, i.e., as

xj := qj

H∑
l=1

ql

. (14)

These estimates are far from optimal, because they lack a clear interpretation, and
depend not only on the actual haplotype frequency and MOI distributions, but
also on the prevalences of all other haplotypes. Figure 5a, b shows that although
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prevalences always exceed frequency, relative prevalences might exceed or fall
below frequency. While the relation between frequency and prevalence can be
deduced quite generally from (11), the relationship between relative prevalences
and frequency is unclear because it depends on the haplotype distribution as a
whole as illustrated in Fig. 5c, d. Relative prevalences are particular unfortunate
frequency estimates in the cases of seasonal malaria. Namely, assuming that
haplotype frequencies (Pj ) remain constant, changes in MOI due to dry and wet
seasons result in oscillations in xj (cf. also Sects. 3 and 4). Such changes were
reported, e.g., in [1], at several mutations at the drug-resistance-associated genes
Pfmdr1, Pfcrt, Pfdhfr, Pfdhps in P. falciparum. Some of the seasonal fluctuations
were reported to be significant, with a trend of higher relative prevalence in the
dry season, but a reversed trend for a low-frequency mutation at Pfdhps. These
observations can be conveniently explained by Fig. 5 and attributed to changes in
MOI without the need to hypothesize about the underlying evolutionary process.

Finally, it should be mentioned that haplotype prevalence must not be confused
with disease prevalence. Disease prevalence is the relative frequency of infected
individuals within the host population, hence diseases prevalence is a feature of the
human population. Haplotypes’ prevalences are attributed only to the population of
currently infected individuals, whereas haplotype frequencies are properties of the
parasite population.

3 Evolutionary Dynamics: Selection for Drug Resistance

The framework of the last section can be adapted to model selection for drug
resistance as in [29, 30]. The following derivations assume absence of intra-host
competition. Consequently, the fitness of haplotype i in stratum k is independent of
the distribution of parasites super-infecting the host, i.e., W

(k)
mmm,i = W

(k)
i .

3.1 Selection at a Single Locus

Further assume that alleles conferring drug resistance are segregating only at the
first locus, while all other loci are neutral. Assume that n alleles are segregating at
the selected locus, where each allele codes for a different level of drug resistance,
as it occurs, for instance, at the Pfdhfr or Pfdhps loci (where point mutations at,
respectively, codons 51, 59, 108, and 164, or 436, 437, 540, 581, and 613 act
synergistically to increasing levels of resistance [cf. 5, 8, 16, 21, 33]. Hence, the
number of possible haplotypes is a multiple of n, i.e., H = nL. By appropriate
labeling, haplotypes (u − 1)L + 1, . . . , uL carry the same allele at the resistance-
conferring locus (u = 1, . . . , L). The fitnesses of these haplotypes are denoted by
w

(k)
u . The frequency of the u-th allele at the resistance-conferring locus is
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pu =
uL∑

i=(u−1)L+1

Pi.

As shown in Appendix 3 the evolutionary dynamics are given by

pu(t) = wt
upu(0)

n∑
v=1

wt
vpv(0)

, wherewv =
∞∑

k=1

αkw
(k)
v (15)

is the average fitness of allele v across all strata.
This frequency dynamics depend on average fitnesses and initial frequencies, but

they are independent of MOI and hence transmission intensities (in a deterministic
model without intra-host competition). Importantly, generation time t is counted in
transmission cycles not in calendar years. In high-transmission areas many more
cycles occur per year. Thus, if, e.g., 20 transmission cycles (holo-endemic) occur
instead of 4 (seasonal malaria), the same selection pressures lead to a five times
faster real-time spread of resistance. In addition, stochastic events, e.g., random
drift and bottlenecks, affect the evolutionary dynamics differently in low vs. high-
transmission areas. Namely, the probability of initial occurrence and spread of
resistance depend on parasite population size, which correlates with transmission
intensities and hence also MOI. Furthermore, fitnesses vary across transmission
areas, as levels of host-acquired and natural immunity (modeled by the distribution
αk) as well as treatment policies (modeled by w

(k)
j ) change.

The dynamics (15) are illustrated in Fig. 6 for n = 4 alleles, corresponding to a
drug-sensitive wildtype and accumulated point mutations as it occurs in the Pfdhfr
or Pfdhps genes conferring SP resistance. Resistance is associated with metabolic
costs, c, while the probability to clear parasites, d, is depleted by a factor 1 − s for
each point mutation. Both costs and delayed parasite clearance act multiplicatively.
Hence, fitnesses are given by

w(1)
u = (1 − c)u−1 and w(2)

u = (
(1 − d(1 − s)u−1)(1 − c)u−1

resulting in

wu = α1(1 − c)u−1 + (1 − α1)
(
1 − d(1 − s)u−1)(1 − c)u−1. (16)

Note that in reality mutations occur at different time points in the evolutionary
process, and initially only one copy of the mutation occurs. In the dynamics (15) this
can be approximated by choosing the initial frequencies sufficiently small, so they
reach the desired frequency at the appropriate time. The limiting behavior of (15)
is straightforward: the mutation with the largest selective advantage will ultimately
become fixed. However, in drug-resistance evolution, one is typically concerned
with ongoing evolutionary processes rather than those in the past, which emphasizes
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Fig. 6 (a, b) Evolutionary dynamics (15) for one selected locus with one sensitive and three
resistance-conferring alleles as described in the text. Parameters are at the top of the plot panels.
The initial frequencies of the mutant alleles were p2(0) = 5 × 10−4, p3(0) = 3 × 10−10 and
p4(0) = 1 × 10−17 (A) and p2(0) = 4 × 10−4, p3(0) = 10−10 and p4(0) = 5 × 10−17 (b).
(c) Prevalences, according to (12), corresponding to the dynamics in panel (a) for a narrower time
window, assuming MOI to follow a Poisson distributions with seasonally changing parameters,
corresponding to dry (λ = 0.5) and wet (λ = 1.5) seasons. (d) Like (c) but for relative prevalences
according to (14)

both qualitative and quantitative behavior of (15). They depend not only on selection
coefficients, which will differ across endemic regions, but also on the random
process underlying the occurrence of mutations. Fig. 6a, b illustrate two realizations
of (15) with the same selection coefficients but different initial frequencies, resulting
in quite different dynamics. From Fig. 6 it becomes clear that some mutations will
never reach high frequencies, if mutations conferring stronger resistance already
spread. The observation depends on the selective pressures, the time points at which
the mutations occur and the time point of the cross-sectional survey. In reality
stochastic effects will further confound the dynamics. Therefore, the observation of
differences in frequency distributions from cross-sectional samples from separate
endemic areas must not per se be attributed to different selective environments.

Regarding Pfdhfr or Pfdhps, in the empirical literature different mutant frequency
distributions across endemic areas are mentioned, e.g., McCollum et al. [16]. These
reflect cross-sectional snapshots at different times in the evolutionary processes
in various locations. Additionally, the evolutionary processes exhibit quantitative
differences because mutations occur randomly at different time points, resulting in
changes as seen when comparing Fig. 6a with b.
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3.2 Frequency vs. Prevalence in a Time-Dynamical Context

The importance of distinguishing between frequency and prevalence was already
mentioned. In a time-dynamical rather than a cross-sectional context this becomes
even more important. Malaria-endemic areas are often characterized by dry and
wet seasons, with epidemic peaks during the latter. This obviously depends on
the increase in mosquito population size and hence transmission during the rainy
seasons. The change in transmission intensities leads to periodic changes in the MOI
distribution. While this is not affecting the evolutionary dynamics of the spread of
drug resistance, it affects the prevalence dynamics (cf. Fig. 6).

As an example, assume an endemic region with alternating rainy and dry malaria
seasons. Suppose further, MOI follows a conditional Poisson distribution among
all strata with parameters λr and λd in the rainy and dry seasons, satisfying
λd < λr . The evolutionary dynamics and corresponding prevalence dynamics (for
a shorter time range) are shown in Fig. 6. While the frequency dynamics in Fig. 6a,
b are relatively straightforward, the prevalence dynamics of Fig. 6c show oscillating
behavior, emphasizing that frequencies are the correct quantities to consider on an
evolutionary scale. Importantly, the amount of fluctuations depends on the allele
frequencies. Fig. 6 also shows corresponding relative prevalences, xj given by (14).
These quantities show fluctuations, which are less pronounced (compare Figs. 6c
with d). The relative prevalences underestimate the dominating allele frequency.
While the prevalence, i.e., the clinical occurrence, exceeds 80%, relative prevalence
stays below 80%. Also the oscillatory trend with higher values in the rainy and
lower in the dry season is reversed for the dominating alleles (this changes around
generation 5000), while the trend is identical for alleles at lower frequency. Such
oscillations have been observed in the empirical literature (e.g., [1, 3, 7, 20]).
Particularly, the observations in [1] discussed in Sect. 2.3 coincide with the patterns
of Fig. 6c, d. Sometimes even statistical test were employed in the literature to
support seasonal fluctuations. This is unfortunate, because the excess of oscillations
depend on the underlying frequencies, and might even vanish (see Fig. 6d around
generation 500), besides that the problem of multiple testing is encountered. The
correct way to test for seasonal fluctuations would be to estimate the MOI parameter
across seasons and test for significant differences as described in [27].

3.3 Genetic Hitchhiking

To study the effect of genetic hitchhiking, besides the resistance-associated locus, it
suffices to consider one additional neutral locus. As a simplifying assumption only
two alleles are segregating at the selected locus, one sensitive and one resistance-
conferring, denoted by A1 and A2, whereas L alleles (B1, . . . , BL) are segregating
at the neutral locus. (In the case of drug resistance these are interpreted as a drug-
sensitive wildtype and a resistance-conferring mutant allele.) This setup yields
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2L haplotypes, A1B1, . . . A1BL,A2B1, . . . , A2BL, labeled by 1, . . . , 2L. Hence,
haplotypes 1, . . . , L are called wildtype haplotypes, while L + 1, . . . , 2L are
referred to as mutant haplotypes. Only the selected locus determines fitness. Since
the absence of intra-host competition is assumed, i.e., W

(k)
mmm,i = W

(k)
i , it follows

that haplotypes 1, . . . , L (wildtypes) and L + 1, . . . , 2L (mutants) have the same
fitness, denoted by w

(k)
1 and w

(k)
2 , respectively, i.e., W

(k)
i = w

(k)
1 for i = 1, . . . , L

and W
(k)
i = w

(k)
2 for i = L + 1, . . . , 2L.

The frequencies of the neutral allele Bi conditioned on a wildtype or mutant
background are, respectively,

Ri = Pi

L∑
j=1

Pj

and Qi = PL+i

L∑
j=1

PL+j

. (17)

The dynamics of Qi(t) are derived in Appendix 4 (cf. Eq. (A.4)). In the limit t →
∞, Qi(t) approaches its limit Q̂i (given by Eq. (A.5) in Appendix 4), which is
approximated by

Q̂i ≈ Ri(0) − (
Ri(0) − Qi(0)

)
p

rϑ̃
w2(log w2−log w1)

0 (18)

(cf. Appendix 6).
From the equilibrium allele frequencies Q̂i the expected relative equilibrium

heterozygosity, i.e., the ratio of the expected equilibrium heterozygosity and
the initial heterozygosity, is calculated in Appendix 5 (cf. Eq. (A.6)), which is
approximated by

H̃ (r) = 1 − p

2rϑ̃
w2(log w2−log w1)

0 , (19)

where

ϑ̃ :=
∞∑

k=1

αk

∞∑
m=1

κ(k)
m ϑ̃(k,m) (20)

is an inbreeding adjustment (cf. Appendix 6). In the above equation the denominator
in the exponent corresponds to the strength of selection. By normalization, fitnesses
can be rewritten as w1 = 1 and w2 = 1 + s, where s is the selective advantage
of the resistance-conferring allele. Typically s is small (s ∈ [0, 0.1]), such that
w2(log w2 − log w1) ≈ s. Hence,

H̃ (r) ≈ 1 − p
2rϑ̃/s

0 . (21)

This has exactly the same form as the heterozygosity in a standard hitchhiking
model, except for the inbreeding adjustment ϑ̃ . Since, only parasites can recombine



168 K. A. Schneider

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5
r

re
l. 

he
te

ro
zy

go
si

ty
A

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5
r

re
l. 

he
te

ro
zy

go
si

ty

λ
0.1
0.5
0.9
1.3
1.7

B

Fig. 7 Expected relative heterozygosities as functions of the recombination rate. Solid lines show
exact solution, dashed lines approximations. (a) Three strata are assumed with fitness parameters
W11 = 1, W21 = 0.99, W12 = 0.5, W22 = 0.51, W13 = 0.5, W23 = 0.65, α1 = 0.15, α2 = 0.35,
α1 = 0.5, λ1 = 0.7, λ2 = 1.7, λ3 = 1.2, and p0 = 10−4. (b) Same parameters as in (a), but with
λ = λ1 = λ2 = λ3, as shown in the legend

that exited the same host, mating between parasites (in the total parasite population)
is not random (it is random within each mosquito). Single-clone infections (mk =
m for some k, mainly due to MOI = 1) lead effectively to no recombination
(recombining identical clones). MOI is therefore mediating the amount of recombi-
nation, with higher average MOI corresponding to more recombination (cf. Fig. 3).
The factor ϑ̃ is difficult to interpret as it involves fitness parameters and MOI.
Particularly, this factor shows that the process of selection and recombination cannot
be separated in malaria, a fact inherited from the transmission cycle.

Figure 7 illustrates the hitchhiking effect for different MOI distributions.
Strikingly, for low MOI the effect of reduce equilibrium heterozygosity can
be genomewide. This observation coincides with more pronounced hitchhiking
patterns in areas of low and intermediate transmission, compared with high
transmission [cf. 14–16]. Interpreting more pronounced hitchhiking patterns in
low/intermediate transmission areas as stronger selection could be incorrect, as this
is more likely attributed to different levels of transmission. Hence, estimates for
transmission intensities in terms of MOI are also important in correctly interpreting
population-genetic statistics.

4 Parameter Estimation

The population-genetic framework introduced here is parameterized in a way that
allows to estimate model parameters from molecular data and detect potential genes
under selection. Molecular data is obtained by taking blood samples from N infected
malaria patients, and assaying alleles at resistance-associated and neutral loci of
the parasites found in the blood samples. Typically several SNPs at resistance-
associated (selected) loci are assayed (e.g., at codons 51, 59, 108 at Pfdhfr or 436,
437, 613 at Pfdhps), as well as microsatellites (STR) at positions that will and
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will not be affected by genetic hitchhiking, i.e., at positions flanking resistance-
associated loci and at different chromosomes.

4.1 Distribution of Classes

The distribution of the different classes αk can be estimated from census data and
data on the implementation of healthcare policies and transmission interventions.
First, the classes need to be specified, e.g., age classes, particular population or risk
groups (e.g., pregnant women), treatment types, rural vs. urban populations, etc.
These estimates can be refined by household surveys asking patients about trans-
mission interventions, e.g., the use of insecticide-threaded bednets, the frequency of
indoor-residual spraying, compliance with chemotherapy and travel records.

4.2 Estimating MOI and Frequency Spectra

The distribution of MOI, κ
(k)
m , can be estimated for every class k. This requires

molecular data from the respective sub-populations. As the estimation procedure
will be the same for each stratum, it suffices to consider a single class and the
superscript k can be waived.

For rare and independent infections, the null model for MOI is the conditional
Poisson distribution (4) (cf. Sect. 2.2), characterized by a single parameter λ. The
aim is to estimate the Poisson parameter λ. Notably, if two sub-populations are
mixed up, with MOI following Poisson distributions with different parameters, MOI
in the joint population does not follow a Poisson distribution any longer (cf. Eq. (7)
in Sect. 2.2)—a fact to be considered in the sampling design.

Schneider and Escalante [27] and Schneider [25] refined the maximum-
likelihood approach by Hill and Babiker [10] to estimate λ from a single molecular
marker. Assume n alleles (SNPs, haplotypes in a short non-recombining region,
STR repeats) at the locus with frequencies p1, . . . , pn, collectively denoted by ppp.

In each blood sample, the absence and presence of the n alleles can be assayed
(Fig. 4). Clearly, several alleles might be present in a sample due to super-infections.
Note that the presence of only a single allele does not imply MOI = 1, as the patient
might have been super-infected several times with the same allele (Figs. 3 and 4).
Clearly, at least one allele must be present in each sample. In practice, however,
the molecular assay might fail resulting in missing data. Here, missing at random
is assumed, and N is the number of proper samples (no missing data). Let Nk

denote the number of blood samples that contain allele k. (Note that
n∑

k=1
Nk ≥ N ).

Here, Nk/N is the empirical prevalence of allele Nk . According to Schneider and
Escalante [27], (N1, . . . , Nn) are a sufficient statistic for the molecular data (absence
and presence of alleles per sample). The log-likelihood function is given by
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L = L(λ,ppp) = L(λ,ppp|N1, . . . , Nn) = −N log(eλ −1) +
n∑

k=1

Nk log(eλpk −1) .

(22)

Except in the cases
n∑

k=1
Nk = N (i.e., no sign of super-infections) or Nk = N for

some k (one allele is present in all samples) it was shown in Schneider and Escalante
[27] that the maximum-likelihood estimate exists and is unique. There is no explicit
formula but it can be calculated by a fast-converging iteration. Namely, except in
irregular situation, the maximum-likelihood estimate (MLE) θ̂θθ = (λ̂, p̂pp) is given by

p̂k = −1

λ̂
log

(
1 − Nk

N
(1 − e−λ̂)

)
, (23a)

where λ̂ is found by iterating

λt+1 = λt −
λt +

n∑
k=1

log
(

1 − Nk

N
(1 − e−λt )

)

1 −
n∑

k=1

Nk

N eλt −Nk(eλt −1)

, (23b)

which converges monotonically and at quadratic rate from any initial value λ1 ≥ λ̂.
Hence, it is guaranteed to find the MLE as long as the initial value λ1 is chosen to
be sufficiently large.

As shown in Schneider [25], the observed haplotype prevalences, Nk/N , are the
expected prevalences given the MLE, and the estimator has the typical desirable
asymptotic properties, i.e., it is asymptotically unbiased, strongly consistent and
efficient. Moreover, also the finite sample properties are good. Namely, frequency
estimates are almost unbiased, λ̂ has very low bias for N ≥ 150, and the Cramér–
Rao lower-bounds (i.e., the minimal possible variance among unbiased estimators;
cf. [25] for an explicit formula) is a good approximation for the estimator’s variance.
This bound can be employed for sample size determination to achieve given
precision goals. Furthermore, it is relatively robust against model violations. For
a discussion on profile-likelihood and asymptotic confidence intervals as well as
statistical tests, the reader is referred to Schneider and Escalante [28]. A convenient
R script to calculate MOI alongside a comprehensive description is available in the
supplemental materials of Schneider [25].

As an application, random samples of size N = 150 were generated according
to the Poisson model with parameters λ = 1, and six frequency distributions taken
from the dynamics in Fig. 6a, at generations t = 400, 410, 420, 430, 440, and
450. The true frequency distributions, the prevalence counts Nk , and the MLE are
summarized in Table 1.

While the frequency estimates are sufficiently accurate, the true MOI parameter
tends to be overestimated, except in two cases. This is due to the relatively skewed
frequency distributions (cf. [25]).
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Table 1 Frequency distributions p1, . . . , p4 of the dynamics of Fig. 6a at generations t = 400 +
τl (l = 1, . . . , 6). Shown are prevalence counts for a sample of size 150, randomly generated from
the conditional Poisson model, the MLE, i.e., p̂k and λ̂. The true MOI parameter is λ = 1

l τl p1 p2 p3 p4 N1 N2 N3 N4 p̂1 p̂2 p̂3 p̂4 λ̂

1 0 2.05 × 10−5 0.333 0.453 0.214 0 62 86 47 0 0.312 0.461 0.228 0.911

2 10 9.14 × 10−6 0.230 0.461 0.309 0 58 94 50 0 0.274 0.496 0.231 1.073

3 20 3.79 × 10−6 0.148 0.438 0.414 0 32 95 72 0 0.141 0.504 0.355 1.063

4 30 1.48 × 10−6 0.089 0.390 0.520 0 22 78 95 0 0.096 0.396 0.508 1.026

5 40 5.44 × 10−7 0.051 0.329 0.620 0 6 64 107 0 0.029 0.341 0.631 0.742

6 50 1.92 × 10−7 0.028 0.266 0.706 0 9 62 121 0 0.035 0.279 0.686 1.251

Next, it is shown how such estimates can be employed to infer selection
coefficients.

4.3 Estimating Selection Coefficients

The evolutionary dynamics (15) yield the frequency ratio of alleles k and l at time t

to be

pk(t)

pj (t)
= wt

kpk(0)

wt
jpj (0)

,

or

log
pk(t)

pj (t)
= t log

wk

wj

+ log
pk(0)

pj (0)
.

Particularly, if fitness is scaled such that w1 = 1, the above reduces to

log
pk(t)

p1(t)
= ak + tbk (24a)

with

ak := log
pk(0)

p1(0)
(24b)

and

bk := log
wk

w1
= log wk, (24c)
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which reveals the linear relationship of the log-ratio of allele frequencies and time.
Hence, the coefficients ak and bk are transformations of the frequencies at the
reference time point t = 0 and the fitnesses, respectively. Clearly, the parameters
ak and bk can be estimated by a linear regression. This idea was already pursued by
Nair et al. [19] and McCollum et al. [16] without formalizing the argument.

Assume allele frequency estimates from T cross-sectional samples at time points
τ1, . . . , τT are available. The frequency estimates are obtained as described in
Sect. 4.2. Let

yk,l := log
p̂k(τl)

p̂1(τl)
(24d)

denote the log-ratio of the frequencies of alleles k and 1 (k = 1, . . . , n) at the l-th
time point, collectively denoted by the T × (n − 1)-matrix YYY . Let

BBB =
(

a2 . . . an

b2 . . . bn

)
and XXX =

⎛
⎜⎝

1 τ1
...

...

1 τT

⎞
⎟⎠ .

Then, the linear model

YYY = XXXBBB + εεε (25)

emerges. A least-square fit yields the solution

B̂BB = (XXXT XXX)−1XXXT YYY . (26)

By denoting the column vectors of XXX by 111 and τττ , this is more concretely rewritten
as

âj = ‖τττ‖2
2〈111|yyyj 〉 − 〈τττ |111〉〈τττ |yyyj 〉
T ‖τττ‖2

2 − 〈τττ |111〉2
=

T∑
l=1

τ 2
l

T∑
l=1

yl,j −
T∑

l=1
τl

T∑
l=1

τlyl,j

T
T∑

l=1
τ 2
l −

( T∑
l=1

τl

)2
(27a)

and

b̂j = T 〈τττ |yyyj 〉 − ‖τττ‖2
2〈111|yyyj 〉

T ‖τττ‖2
2 − 〈τττ |111〉2

=
T

T∑
l=1

τlyl,j −
T∑

l=1
τ 2
l

T∑
l=1

yl,j

T
T∑

l=1
τ 2
l −

( T∑
l=1

τl

)2
. (27b)
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Fig. 8 Linear regression to
estimate fitness parameters
from six cross-sectional
samples according to Table 1.
Dots show estimates, triangle
exacts values. Point τ1 = 0
corresponds to generation
t = 400 of the dynamics of
Fig. 6a
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The fitnesses are then estimated as ŵj = Exp b̂j with w1 = 1. Such point estimates
do not properly address uncertainty in the data. Confidence intervals can be readily
constructed using bootstrap techniques. Clearly, more advanced approaches might
be chosen to estimate fitness.

Estimating fitness parameters for each stratum, i.e., w
(k)
j will be difficult.

By appropriate sample design, investigations can be restricted to homogeneous
population strata.

As an illustration take the frequency estimates from Sect. 4.2 summarized in
Table 1. Clearly, the first allele (sensitive allele) was not observed in the data,
and its frequency is hence estimated as 0. This is a common observation in real
applications. Thus, the dependent variable is defined as yk,l := log p̂k+1(τl )

p̂2(τl )
, and the

ratios w3
w2

= 1.0396 and w4
w2

= 1.0761 are estimated. One obtains the estimates
ŵ3
ŵ2

= 1.0415 and ŵ4
ŵ2

= 1.0801, being very close to the true values (see Fig. 8).

5 Fitness

So far fitnesses were unspecified model parameters. To ultimately control the evolu-
tionary dynamics of drug resistance, it is necessary to influence fitness parameters.
To do so, more involved considerations regarding fitness are indispensable. For
simplicity, a single locus under selection with a sensitive and a resistance allele
is considered. The average fitnesses w1 and w2 are the likelihoods of sensitive and
resistant sporozoites, respectively, to cause an infection, which leads to gametocytes
offspring picked up by a new mosquitoes, in which sporozoite offspring is produced.
In fact fitnesses are a convolution of events during the malaria life-cycle, called
fitness components (cf. [26]). In particular fitness depends on the average merozoite
and gametocyte dynamics, referred to as parasitemia and gametocytemia.

Following Schneider and Escalante [26], it is convenient to contrast P. falciparum
and P. vivax while assuming (qualitatively) the same (hypothetical) parasitemia.
While these two most relevant human malaria pathogens are more or less similar
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they also have important differences in their life history. In particular, gametogenesis
is initiated with the erythrocytic cycle’s onset in P. vivax, while it occurs in
P. falciparum with a delay of at least 6.5 days [4, 11, 17]. Moreover longevity
of gametocytes differs among species with approximate life spans of 2 days in
P. vivax as compared with 14–48 days in P. falciparum. Furthermore, P. vivax
infections involve liver-stage hypnozoites that can cause malaria relapses. In the end,
these differences in fitness components directly affect fitness and the evolutionary
dynamics, and explain the slow spread of P. vivax compared with P. falciparum. (A
detailed model description is found in Schneider and Escalante [26], here only a
brief summary is presented.)

Suppose average merozoite dynamics are given by the Holding Type III function
convoluted with an exponential decay function modeling drug treatment,

P (∗)∗ (τ ) = P
(∗)
max

1 + ξρ−τ∗
e−δ∗ max{0,τ−τ0}, (28)

where τ is the time, measured in days from the erythrocytic cycle’s onset, with τ0
being the onset of drug treatment. Furthermore, the asterisk in the superscript is
a placeholder for “f ” or “v” referring to P. falciparum or P. vivax, respectively,
while that in the subscript is a placeholder for 1 or 2 referring to the sensitive or
resistant allele, P

(∗)
max is the threshold parasitemia, ρ∗ the growth rate of parasitemia,

ξ a common scaling factor, and δ∗ is the parasite clearance rate imposed by drug
treatment. These dynamics are illustrated in Fig. 9a.

These dynamics are purely hypothetical and model a population average. It can
be replaced by more realistic dynamics. Importantly, P. falciparum and P. vivax
differ only quantitatively but not qualitatively, namely in the maximum parasite
counts, P

(f )
max and P

(v)
max, respectively. However, the dynamics of sensitive and

resistant parasites differ. Typically, resistant is associated with metabolic costs and
an associated slower replication of merozoites, reflected here by ρ2 < ρ1. But,
sensitive parasites are cleared faster than resistant ones, resulting in δ2 < δ1. In
the illustration in Fig. 9a, the differences between average intra-host parasitemia
dynamics of sensitive and resistant haplotypes are rather subtle.

Parasitemia dynamics determine the clinical episode of the diseases, but the
derived gametocytes dynamics are responsible for transmission. The latter are
derived from the former. Taking longevity of gametocytes, denoted by β(∗), and
the onset of gametogenesis, τ

(∗)
1 , into account, the number gametocytes are derived

from accumulating (integrating) gametocytes being produced proportionally to
parasitemia, by a constant ϕ(∗), namely by

G(∗)∗ (τ ) =
τ∫

max{0,τ−β(∗)}
ϕ(∗)P (∗)∗ (z)g(z − τ

(∗)
1 )dz, (29)
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where g(z) is a function to smooth out the discontinuity in the number of
gametocytes being produced. It is defined by

g(z) :=

⎧⎪⎪⎨
⎪⎪⎩

0 for z < 0,

64z3(1 − z)3 for 0 ≤ z < 0.5,

1 for z ≥ 0.5.

Gametocytemia for resistant and sensitive P. falciparum and P. vivax haplotypes
derived from their respective parasitemia dynamics are illustrated in Fig. 9b. While
the latter are qualitatively identical, their derived gametocytemia dynamics are
very different across species for two reasons. First, the onset of gametogenesis is
earlier in P. vivax, and there are more gametocytes derived from sensitive parasites
than from resistant ones—a trend that reverses after drug treatment starts. In P.
falciparum gametogenesis starts approximately at the same time as drug treatment,
thus—in contrast to P. vivax—only the resistant parasites’ advantage is captured by
gametocyte dynamics. Second, longevity of gametocytes is different among malaria
species. This amplifies the effect of later gametogenesis in P. falciparum, namely
the time span in which resistant P. vivax parasites are in excess of sensitive ones is
much shorter than in P. falciparum.

The probability of transmitting malaria depends on the abundance of gameto-
cytes, where the number of gametocytes need to exceed a threshold for successful
transmission. Hence, the fitness ratio w2/w1 corresponds to the ratio of the areas
under the curve of resistant and sensitive gametocyte dynamics, i.e.,

b
(∗)
2∫

a
(∗)
2

G
(∗)
2 (τ )dτ

b
(∗)
1∫

a
(∗)
1

G
(∗)
1 (τ )dτ

, (30)

where a
(∗)∗ and b

(∗)∗ are the time intervals in which gametocyte count surpasses
the transmission threshold (chosen to be 10 parasites per μL in the numerical
example). This ratio is different for P. falciparum and P. vivax. As clearly visible
from Fig. 9b that it is higher for P. falciparum. Numerical integration of the
dynamics from Fig. 9b yields 1.0671 for the fitness ratio in P. falciparum and
1.00332 in P. vivax, i.e., a twenty times stronger selective advantage for resistance-
conferring mutations in P. falciparum. (Note that these numbers are irrelevant as the
model is just mechanistically.) Plugging these ratios into the evolutionary dynamics
(15) clearly leads to a the much faster spread of resistance in P. falciparum. In
fact, the spread is ten times faster (cf. Fig. 9c). While this argument reflects the
worldwide observation of drug-resistant P. vivax parasites being absent or rare
[18, 22, 32, 34, 35], the concrete dynamics of Fig. 9c are just an illustration. Not
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Fig. 9 Illustration of parasitemia and gametocytemia for P. falciparum and P. vivax according to
(28) (a), (29) (b). Parameters are P

(v)
max = 104/μL, P

(f )
max = 5 × 105/μL, ξ = 105, ρ1 = 14.2857,

ρ2 = 13.3333, δ1 = 1.5, δ2 = 1.25, τ0 = 7, τ
(v)
1 = 0, τ

(f )

1 = 6.5, ϕ(v) = 0.01, ϕ(f ) = 0.0004,
β(v) = 2, and β(f ) = 8. (c) The resulting fitness rations were used in the model (15) with
p2(0) = 10−4. The vertical lines indicate fitness values

only are the dynamics and hence the fitnesses not derived from empirical evidence,
also the initial frequencies are somewhat arbitrary. In fact, the malaria species will
have very different population sizes, hence initial frequencies of the mutants, being
the reciprocal of the population sizes, will be different. Anyhow the mechanistic
model is derived from common knowledge and species-specific differences in the
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parasite life history, and explains the puzzling phenomenon of different speeds of
drug-resistance evolution in a simple manner.

6 Discussion

Since Darwin’s influential book “On the Origin of Species” [6] evolutionary
theory and the modern evolutionary synthesis in the 1920s, evolutionary genetics
evolved into a flourishing discipline. The advances in malaria research since
Ronalds Ross’s first mathematical model [24]—which most of his contemporaries
did not understand—are not less striking. However, the combination of both,
evolutionary genetics and mathematical modeling of malaria, has not yet reached
its full potential. While mathematical models of malaria are widespread, tailored
population-genetic models and their application to empirical data remain the
exception. The level of sophistication in research on standard population-genetic
organisms like Drosophila, to which theoretical knowledge and statistical methods
are tailored to, has not been reached the field of malaria. Namely, rather than
tailoring population-genetic theory to the characteristics of Plasmodium, standard
text-book methods are incorrectly applied.

Here, a general population-genetic framework to study the evolutionary genetics
of malaria was introduced, generalizing the work of Schneider and Kim [29, 30].
The model itself is applicable to all malaria species, and considers heterogeneity in
the host population, in transmission intensities, and selective regimes, notably, in a
time-dependent way. However, the full generality of the model was not exploited
fully here. Particularly, there was a focus on drug-resistance evolution, assuming
selection at a single locus, a restriction, which is per se not necessary. Other
evolutionary processes such as the spread of HRP2/3 deletions can be readily
modeled. However, hypnozoites are not explicitly incorporated, which might render
applications to P. vivax and P. ovale incorrect. Anyhow, the effect of relapses
occurring from hypnozoites can be approximated by host strata with different MOI
distributions.

The restriction to drug resistance being mediated by a single locus is both
illustrative and informative. It serves as a null model to understand this evolutionary
process. It was shown—however, for a more general setting than in Schneider
and Kim [29], who restricted themselves to two alleles—that the dynamics at the
selected locus (15) are independent of MOI and hence transmission intensities.
However, the real-time spread depends on transmission intensities, because the
number of generations per year scales with transmission. Indeed the dynamics (15)
are equivalent to the standard haploid selection model. These dynamics motivated
the procedure to estimate selection coefficients by a linear regression (27).

The independence of the dynamics from transmission intensities vanishes if
a second selected locus or even a neutral one is considered. Here, the effect of
genetic hitchhiking was studied in a more general way than in Schneider and Kim
[30]. The hitchhiking effect, i.e., the reduction in expected heterozygosity, was
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recursively derived (A.6) and an accurate approximation (21) established. The latter
has a similar form as in the standard hitchhiking model of Maynard Smith and
Haigh [13]. However, recombination is reduced by an inbreeding adjustment (20),
which is a complex convolute of MOI and selection coefficients. Particularly, the
process of selection and recombination cannot be decoupled in malaria. Importantly,
recombination is restricted in malaria, because only haplotypes exiting the same
host can recombine. Single-clone infections lead to effectively no recombination. If
selection is sufficiently strong and transmission is low, so that multi-clone infections
are the exception, the effect of genetic hitchhiking can be genomewide (cf. Fig. 7).
However, if transmission is not extremely low, the initial levels of genetic variation
are restored at unlinked loci, justifying the study of selection at a single locus for
drug resistance (because resistance-conferring loci are typically located on different
chromosomes).

The absence of intra-host competition is crucial for the independence of the
evolutionary dynamics at the selected locus and MOI. However, the importance
of intra-host competition might be overestimated. The observation of fluctuating
frequencies of resistance-conferring mutations in areas of seasonal malaria, with
alternating wet and dry seasons, led to the hypothesis of intra-host parasite compe-
tition playing an important role (e.g., [1, 3, 7, 20]). Namely, the counterintuitive
observation of lower frequencies/prevalences of resistance-conferring mutations
during the rainy seasons, during which malaria prevalence was clearly and correctly
shown to increase, led to the rational of higher intra-host competition between
resistance and sensitive parasites in patient with high MOI. However, these studies
used relative prevalences as frequency estimates (notably not all studies explain how
they derived their estimates). As shown here, the observations are just pathologies
arising from relative prevalences, which are a highly problematic statistic, par-
ticularly because they might severely underestimate the probability of infections
carrying resistant alleles (cf. Fig. 6). Hence, relative prevalences, which lack a clear
interpretation, are problematic in an epidemiological or clinical context as well as
in an evolutionary-genetic one. Prevalences would have a more intuitive behavior,
with an increase in the rainy and a decrease in the dry seasons (cf. Fig. 6). However,
in an evolutionary context, haplotype frequencies are the relevant quantities. These
considerations put the relevance of intra-host competition into perspective. Notably,
further explanations for temporally changing “frequencies” include different drug
pressures due to seasonality. Also this hypothesis is questionable, given the simple
explanation that improper statistics were used. Moreover, the importance of intra-
host competition could be overestimated from molecular assays, which might
behave differently in the presence of multiple haplotypes in an infection—with
parasites competing in the molecular assays rather than the host.

As a further advantage the framework allows to estimate MOI and allele (hap-
lotype) frequencies. This was exemplified by reporting on a maximum-likelihood
(ML) approach. However, it can be replaced by moment estimations or Bayesian
methods. Anyhow, the ML method has the usual desirable asymptotic properties and
also excellent finite sample properties as shown in Schneider [25]. These results can
also be used in study design to determine sample size. The MLE (assuming a Pois-
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son model) has an intuitive interpretation: the observed allele/haplotype prevalences
coincide with the true prevalences given the MLE was the true parameter vector.
Statistical tests for differences in MOI between seasons can be found in Schneider
and Escalante [27]. Testing for differences in the MOI parameter is more appropriate
than testing for differences in prevalences or even relative prevalences between
seasons. The reason is that the problem of multiple testing is not encountered.

Finally, the puzzling observation of the much faster spread of drug resistance
in P. falciparum compared with P. vivax was explained. Namely, even if both
species experience the same hypothetical drug pressure, differences in parasites’
life histories, especially the onset of gametogenesis and longevity of gametocytes,
lead to a more efficient translation of drug pressures in P. falciparum. Namely,
merozoite clearance rates in infections must not be mistaken with fitness. They
are just one of many fitness components that intertwine to shape fitness. The
mechanistic explanation is tempting as it is solely derived from obvious differences
in the two species. However, other factors not considered here presumably also
affect the evolutionary observations. For instance, the presence of hypnozoites in
P. vivax act like a seed-bank, which will slow down the evolutionary process.
Furthermore, P. vivax is more prevalent in areas of low transmission, in which P.
falciparum cannot be sustained. Therefore, P. vivax likely has fewer generation per
year than P. falciparum, which renders any evolutionary process slower in real time.

Because fitnesses enter the framework only as parameters, any intra-host model
or convolution of fitness components can be decoupled from the evolutionary
process. If necessary, they can be deduced from separate models and used as plug-
ins in the evolutionary framework.

In summary, the framework introduced here provides a formal foundation for
evolutionary-genetic research on malaria. Some of the pitfalls often encountered
in the literature were discussed—particularly pathologies, which are iconified
as relevant features, whose unfortunate mechanistic explanations resemble the
geocentric model of the universe. In the Olymp of malaria research the time has
finally arrived for Charles Darwin to meet Ronald Ross.
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Appendix 1

Generating Function of the Negative-Binomial Distribution

The probability generating function is defined as

U(t) = νη

(1 − νη)�(η)

∞∑
m=1

�(η + m)

m! (t − tν)m.

Its derivative is calculated from differentiation by component, which is justified by
absolute convergence, as

U(t)′ = νη(1 − ν)

(1 − νη)�(η)

∞∑
m=1

�(η + m)

m! m(t − tν)m−1

= νη(1 − ν)

(1 − νη)�(η)

∞∑
m=0

(η + m)�(η + m)

m! (t − tν)m

= νηη(1 − ν)

(1 − νη)�(η)

∞∑
m=0

�(η + m)

m! (t − tν)m

+t (1 − ν)
νη(1 − ν)

(1 − νη)�(η)

∞∑
m=1

�(η + m)

m! m(t − tν)m−1

= η(1 − ν)

(
U(t) + νη

1 − νη

)
+ t (1 − ν)U ′(t).

Consequently, U(t) satisfies the differential equation

U(t)′ = η(1 − ν)(
1 − t (1 − tν)

)(U(t) + νη

1 − νη

)
.

The solution of this differential equation satisfying U(0) = 0 is the generating
function (9).

Appendix 2

Prevalence

The probability that a host belonging to class k is infected with haplotype H is
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q
(k)
H :=

∞∑
m=1

κ(k)
m

∑
|mmm|=m
mH >0

(
m

mmm

)
PPPmmm.

By writing m̃mm = (m1, . . . , mH−1), P̃PP = (P1, . . . , PH−1), mmm = (m̃mm,mH ) and using
|P̃PP | = 1 − PH this becomes

q
(k)
H =

∞∑
m=1

κ(k)
m

m∑
mH =1

∑
|m̃mm|=m−mH

(
m

(m̃mm,mH )

)
PPP (m̃mm,mH )

=
∞∑

m=1

κ(k)
m

m∑
mH =1

∑
|m̃mm|=m−mH

(
m

mH

)(
m − mH

m̃mm

)
P̃PP

m̃mm
P

mH

H

=
∞∑

m=1

κ(k)
m

m∑
mH =1

(
m

mH

)
P

mH

H

∑
|m̃mm|=m−mH

(
m − mH

m̃mm

)
P̃PP

m̃mm

=
∞∑

m=1

κ(k)
m

m∑
mH =1

(
m

mH

)
P

mH

H (1 − PH )m−mH

=
∞∑

m=1

κ(k)
m

(
1 − (1 − PH )m

)
= 1 − Uk(1 − PH ),

where Uk(x) denotes the probability generating function of (κ
(k)
m ). Clearly, by

relabeling, the probability of a host, belonging to class k, being infected with
haplotype j is

q
(k)
j = 1 − Uk(1 − Pj ).

Therefore, the prevalence of haplotype j , i.e., the probability of being infected with
j , is

qj := 1 −
∞∑

k=1

αkUk(1 − Pj ).
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Appendix 3

Selection at a Single Locus

We calculate the frequency of the first allele at the resistance-conferring locus in the
next generation. It is calculated by marginalization of (2), i.e.,

p′
1 =

L∑
i=1

P ∗
i

nL∑
i=1

P ∗
i

.

Clearly, one obtains

L∑
i=1

P ∗
i =

∞∑
k=1

αk

∞∑
m=1

κ(k)
m

L∑
i=1

P
∗(k,m)
i .

Particularly, the last sum is

L∑
i=1

P
∗(k,m)
i =

L∑
i=1

nL∑
j,l=1

f
(m,k)
j,l R(j, l → i) =

nL∑
j,l=1

f
(m,k)
j,l

L∑
i=1

R(j, l → i).

Because R(j, l → i) = 0 for i ≤ L and j, l > L, and
L∑

i=1
R(j, l → i) = 1 for

i, j ≤ L or i, l ≤ L, by using the definition of W
(k)
mmm , the above can be rewritten as

L∑
i=1

P
∗(k,m)
i =

L∑
j=1

nL∑
l=1

f
(m,k)
j,l =

∑
|mmm|=m

(
m

mmm

)
PPPmmm 1

m2W
(k)
mmm

L∑
j=1

mjW
(k)
j

nL∑
l=1

mlW
(k)
l

=
∑

|mmm|=m

(
m

mmm

)
PPPmmm 1

m

L∑
j=1

mjW
(k)
j = w

(k)
1

m

L∑
j=1

∑
|mmm|=m

mj

(
m

mmm

)
PPPmmm.

Using the property that mj is binomially distributed with parameters m and Pj , this
reduced to

L∑
i=1

P
∗(k,m)
i = w

(k)
1

m

L∑
j=1

E(mj ) = w
(k)
1

m

L∑
j=1

mPj = w
(k)
1

L∑
j=1

Pj = w
(k)
1 p1.

(A.1)
This yields
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L∑
i=1

P ∗
i =

∞∑
k=1

αk

∞∑
m=1

κmw
(k)
1 p1

=
∞∑

k=1

αkw
(k)
1 p1

= w1p1,

where w1 is the fitness of the first allele at the selected locus averaged over all strata.
The frequencies of the other alleles are calculated similarly, so one obtains

p′
u = wupu

n∑
v=1

wvpv

, (A.2a)

where

wv =
∞∑

k=1

αkw
(k)
v (A.2b)

is the average fitness of allele v across all strata.
Thus, the frequency change from one generation to the next is given by

pu(t + 1) = wupu(t)
n∑

v=1
wvpv(t)

(A.3a)

implying the explicit solution is given by (15).

Appendix 4

Hitchhiking

If r denotes the recombination rate between the two loci, the absolute frequency of
haplotype i (i = 1, . . . , L) descending from hosts in stratum k, which were super-
infected m times is

P
∗(k,m)
i =

2L∑
j,l=1

f
(m,k)
j,l R(j l → i)
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=
L∑

l=1

f
(m,k)
i,l + r

L∑
l=1

f
(m,k)
i+L,l + (1 − r)
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f
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2L∑
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f
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i,l + r

( L∑
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f
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= γ
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PPPmmm 1
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miw
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1

2L∑
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+rw
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1 w

(k)
2

(
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ml − mi
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= γw
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.

The first term simplifies to γw
(k)
1 Pi , because mi is multinomial distributed with

parameters m and PPP .
Let PPP 1 = (P1, . . . , PL), PPP 2 = (PL+1, . . . , P2L), mmm1 = (m1, . . . , mL), and

mmm2 = (mL+1, . . . , m2L). Then, the above simplifies to
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In the limit t → ∞ this becomes
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Appendix 5

Equilibrium Heterozygosity

The equilibrium heterozygosity is derived to be
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E(Ĥe) = E
(
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Hence,

H (r) = 2A(r) − A(r)2. (A.6)

Appendix 6

Approximating the Hitchhiking Effect
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This yields the approximate equilibrium frequencies

Q̂i ≈ Qi(0) − (Qi(0) − Ri(0))Ã(r), (A.7)

which have the same form as eq. 60 in [30]. Following the calculations in section
4.2. of [30],

Ã(r) ≈ p

rϑ̃
w2(log w2−log w1)

0 (A.8)

the above equilibrium frequencies are approximated by

Q̂i ≈ Q̃i := Ri(0) − (Ri(0) − Qi(0))p

rϑ̃
w2(log w2−log w1)

0 (A.9)

and the expected relative heterozygosity at equilibrium is approximately

H (r) ≈ 2Ã(r) − Ã(r)2 ≈ 1 − p

2rϑ̃
w2(log w2−log w1)

0 =: H̃ (r). (A.10)
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Identifying the Dominant Transmission
Pathway in a Multi-stage Infection Model
of the Emerging Fungal Pathogen
Batrachochytrium Salamandrivorans on
the Eastern Newt

Md Rafiul Islam, Matthew J. Gray, and Angela Peace

1 Introduction

Emerging infectious diseases are a threat to biodiversity and fungal pathogens have
caused rapid declines in amphibian populations around the globe [18]. Gray et
al. [6] identify Batrachochytrium salamandrivorans (Bsal) as an emerging fungal
pathogen that caused rapid die-offs of naïve salamanders in Europe and predicts
North America will soon experience similar devastation if no policy actions are
taken and the pathogen emerges. Due to the fact that Bsal is such a recently
emerging pathogen, we currently lack epidemiological data on how it may spread
temporally and spatially across North America. Recent efforts have focused on
building mathematical models to gain insight on pathogen spread and identify
control strategies. Using Bsal as a case study, [8] employ Spatial Distribution
Models to highlight the difficulty in validating model predictions when available
data is limited, as well as the importance of appropriate model selection. Schmidt et
al. [23] present a compartmental population model incorporating direct transmission
and spatial diffusion that identified preventing emergence as the best strategy.

In order to better understand Bsal pathogen dynamics, we develop Susceptible-
Infected-Recovered-Susceptible (SIRS) type disease models for a population of
Eastern Newt adults. This particular species is widely distributed across eastern
North America and has been shown to be highly susceptible to Bsal [17, 21]. In
some cases, Bsal can lead to death in susceptible species within 2 to 3 weeks
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Fig. 1 Multiple transmission pathways

after exposure, but it has also been observed that some individuals can recover
and clear the infection [17]. Compared to the duration of infection, adult Eastern
Newts have a long lifespan potentially persisting >10 years [21, 22]. Unlike
previous models [23], here we incorporate two routes of pathogen transmission:
direct transmission via contact between infected and susceptible individuals and
environmental transmission via shed zoospores in the water (Fig. 1). Bsal produces
two types of zoospores that lead to environmental transmission, motile zoospores
with flagellum and encysted zoospores with cell walls. Motile zoospores actively
swim towards hosts, whereas encysted zoospores typically float on the surface [24].

We first present a base model that divides the host into four subpopulations
depending on disease status (susceptible, latently infected, infectious, and recov-
ered) as well as tracks the environmental loads of the two zoospores types. Epidemic
compartmental models are commonly used to characterize the epidemiology of
host–pathogen systems by providing means of estimating the invasion potential of
a pathogen and surviving host population [9]. SIRS type models commonly assume
that the duration of host infectiousness follows an exponential distribution [9],
however, the duration of host infectiousness has been shown to be realistically closer
related to a gamma-distributed [12, 25]. Following [25], we expand our base SIRS
model to a full model that includes multiple stages of infection, each exponentially
distributed so that the sum of the sequence of these independent exponentially
distributed random variables approaches a gamma-distribution.

Since Bsal has not invaded North America yet, several parameter estimates
remain unknown for eastern newts. For our simulations, we used a combination
of Bsal data from eastern newts and European fire salamanders (Salamandra
salamandra). We also used estimates of zoospore shedding from a closely related



Identifying the Dominant Transmission Pathway in a Multi-stage Infection. . . 195

chytrid species (B. dendrobatidis). We used sensitivity analyses to identify the
most parameters driving transmission. In addition, by investigating the invasion
probability (i.e., the basic reproduction number) we found that direct transmission is
likely to be the dominant driver of pathogen dynamics for low density populations,
whereas environmental transmission will dominate in high density populations.

2 Model Development

2.1 Base Model Development

We begin with a base model of ordinary differential equations where individuals
are divided into four subpopulations, susceptible S(t), latently infected but not
infectious L(t), infectious I (t), and Recovered R(t). Total population is denoted
as N(t) = S(t) + L(t) + I (t) + R(t). These state variables represent the density
of individuals in an aquatic environment (e.g., pond), with units of number of
individual per volume. Infected individuals shed two types of Bsal zoospores, Zm(t)

and Ze(t) into the environment. These state variables have units of zoospore per
volume. The schematic of the base model is shown in Fig. 2 and the equations take
the following form:

S L R I

Zm

Ze

cm f(Zm) 

m

e

g(I) 

ce f(Ze) 

Fig. 2 Structure of the base model (1). The model tracks individuals divided into four subpopu-
lations, susceptible S(t), latently infected L(t), infectious I (t), and recovered R(t), as well as the
zoospores in the environment Zm(t) and Ze(t). The different routes of transmission are depicted
using different colors, Direct transmission route is green, environmental transmission from Ze is in
blue, and from Zm is in red. Solids lines depict the movement of individuals between compartments
and dashed lines show the role of environmental zoospores
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dS

dt
= −g(I)S︸ ︷︷ ︸

direct
transmission

− ρ(cmf (Zm, κm) + cef (Ze, κe))S︸ ︷︷ ︸
waterborne

transmission

+ ηR︸︷︷︸
loss of

immunity

(1a)

dL

dt
= g(I) S︸ ︷︷ ︸

direct
transmission

+ ρ(cmf (Zm, κm) + cef (Ze, κe))S︸ ︷︷ ︸
waterborne

transmission

− εL︸︷︷︸
latent becomes

infectious

(1b)

dI

dt
= εL︸︷︷︸

latent becomes
infectious

− δI︸︷︷︸
Bsal induced

death

− γ I︸︷︷︸
Bsal

recovery

(1c)

dR

dt
= γ I︸︷︷︸

recovery

rate

− ηR︸︷︷︸
loss of

immunity

(1d)

dZm

dt
= ωmI︸︷︷︸

shed zoospores

type m

− ξmZm︸ ︷︷ ︸
Bsal degradation

for zoospores type m

(1e)

dZe

dt
= ωeI︸︷︷︸

shed zoospores
type e

− ξeZe.︸ ︷︷ ︸
Bsal degradation

for zoospores type e

. (1f)

Susceptible individuals can become latently infected after contact with an
infected individual following direct transmission rate given by function g(I). Here,
we consider both frequency-dependent and density-dependent direct transmission
rates:

g(I) = β
I

N
and g(I) = β̂I, (2)

where β is the frequency-dependent direct transmission rate and β̂ = β
S(0)

is
the density-dependent direct transmission rate. Susceptible individuals can also
become infected after contact with environmental zoospores by the environmental
transmission functions ρcmf (Zm, κm) and ρcef (Ze, κe) where cm and ce are the
contact rate coefficients between individuals and environmental zoospores of type
m and e, respectively, ρ is the percentage of these spores that successfully encyst,
and

f (Zi, κi) = Zi

Zi + κi

; i = m, e. (3)
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Here, κm and κe are the Bsal ID50s (the doses of each zoospore type needed to
infect 50% of a population). Latently infected individuals L(t) have an incubation
duration of 1/ε, after which they become infectious I (t). Infectious individuals have
a disease induced mortality rate of δ and recover at rate γ . Once recovered, we
assume that an individual becomes susceptible again at the loss of immunity rate
η. Infectious individuals shed zoospore type Zm at rate ωm and zoospore type Ze

at rate ωe. These environmental zoospores naturally degrade at rates ξm and ξe,
respectively.

2.1.1 Basic Analysis of the Base Model

We assume that the initial solution of system (1) are non-negative, i.e.,

(S(0), L(0), I (0), R(0), Zm(0), Ze(0)) ≥ (0, 0, 0, 0, 0). (4)

The model is of the form X′ = F(X),X(t0) = X0 where X0 ∈ R
n and F : Rn →

R
n is C1. Thus by the theorem 4.1 in [1] the solution exists and is unique.
The following lemmas show that the Base Model (1) with the assumed initial

conditions (4) is biologically meaningful, as solutions are positive and bounded.
The proofs are in Appendix 1.

Lemma 2.1 The solutions (S(t), L(t), I (t), R(t), Zm(t), Ze(t)) of system (1) are

nonnegative for all t ≥ 0 with the nonnegative initial conditions (4) in
(
R

+
0

)5
.

Lemma 2.2 Let

	H =
{
(S, L, I, R) ∈ (

R
+
0

)4 | 0 ≤ S(t) + L(t) + I (t) + R(t) ≤ N(0)
}

and

	Z =
{
(Zm,Ze) ∈ (

R
+
0

)2 | 0 ≤ Zm(t) + Ze(t) ≤ (ωm + ωe)N(0)

ξm + ξe

}
.

Define

	 = 	H × 	Z.

If Z(0) ≤ (ωm+ωe)N(0)
ξm+ξe

, then the region 	 is bounded for the model (1).

2.2 Full Model Development

Infectious individuals in the base model (1) recover at constant rate γ . However,
the probability of recovering from the infection should increase as an individual
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progresses through the disease. Here, we update the base model so the probability
of recovery increases the longer the individual resides in the infected compartment.
Following [25], we divide the infection compartment into n subcompartments,
where the rate of recovery to advance through each subcompartment is nγ . Here,
the full model breaks up the infectious stage into a sequence of n subcompartments,
each exponentially distributed with mean 1/(nγ ). The number of infectious stages
influences the distribution for the overall duration of the infectious period ranging
from and exponential distribution when n = 1 to resembling gamma distributions
when n > 1 [10]. This technique also allows for incorporating different parameters
for transmission and zoospore shedding rates throughout the infectious period. The
full model takes the following form:

dS

dt
= −

n∑
i=1

g(Ii) S

︸ ︷︷ ︸
direct

transmission

− ρ(cmf (Zm, κm) + cef (Ze, κe))S︸ ︷︷ ︸
waterborne

transmission

+ ηR︸︷︷︸
loss of

immunity

(5a)

dL

dt
=

n∑
i=1

g(Ii) S

︸ ︷︷ ︸
direct

transmission

+ ρ(cmf (Zm, κm) + cef (Ze, κe))S︸ ︷︷ ︸
waterborne

transmission

− εL︸︷︷︸
latent becomes

infectious

(5b)

dI1

dt
= εL︸︷︷︸

latent becomes
infectious

− δI1︸︷︷︸
disease induced

mortality

− nγ I1︸︷︷︸
infection
advances

(5c)

dI2

dt
= nγ I1︸︷︷︸

infection
advances

− δI2︸︷︷︸
disease induced

mortality

− nγ I2︸︷︷︸
infection
advances

(5d)

...

dIn

dt
= nγ In−1︸ ︷︷ ︸

infection
advances

− δIn︸︷︷︸
disease induced

mortality

− nγ In︸ ︷︷ ︸
infection
advances

(5e)

dR

dt
= nγ In︸ ︷︷ ︸

recovery
rate

− ηR︸︷︷︸
loss of

immunity

(5f)

dZm

dt
=

n∑
i=1

ωmiIi

︸ ︷︷ ︸
shed

zoospores m

− ξmZm︸ ︷︷ ︸
Bsal degradation
for zoospores m

(5g)
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dZe

dt
=

n∑
i=1

ωeiIi

︸ ︷︷ ︸
shed

zoospores e

− ξeZe,︸ ︷︷ ︸
Bsal degradation
for zoospores e

, (5h)

where we incorporate multiple stages of infection (Ii) with varying direct trans-
mission rates (βi) and varying zoospores shedding rates (ωmi, ωei) for i = 1, ..., n

stages of infection. Similar to the base model, direct transmission is either frequency
dependent or density dependent, where the ith stage direct transmission function
follows:

g(Ii) =
{

βi
Ii

N
for frequency-dependent transmission

βi
Ii

S0
= β̂iIi for density-dependent transmission.

(6)

The number of infectious stages, n, can play an important role in the model
predictions; however, this also depends on the parameterization of β1, ..., βn,
ωe1, ..., ωen, and ωm1, ..., ωmn. In order to compare how varying n influences the
predictions, we normalized these parameters between the different cases while
assuming that the transmission and zoospores shedding rates tend to increase as
time post exposure increases. Here we use the following for setting the parameter
values:

βi = βbase
2i

n(n + 1)
, ωei = ωebase

2i

n(n + 1)
, and ωmi = ωmbase

2i

n(n + 1)

(7)

for i = 1, 2, ...n, so that
∑n

i=1 βi = βbase,
∑n

i=1 ωei = ωebase, and
∑n

i=1 ωmi =
ωmbase.

2.3 Parameterization

While adequately parameterizing models remains a major challenge in epidemic
and ecology modeling, parameter sensitivity analyses help shed light on the relative
importance of the parameters. This requires baseline values, as well as ranges for the
parameter space. For our simulations, we used values from the eastern newt (when
available), European fire salamander, and some results from the related chytrid
fungus, B. dendrobatidis. Given the high transmission rates that have been reported
[24], we assume a baseline direct transmission rate of βbase = 2 per day. Martel et
al. [16] observed that infected salamanders died within 1 week after showing severe
symptoms, therefore we set the disease induced mortality rate to δ = 0.14 per day.
Martel et al. [17] investigated the susceptibility of 34 amphibian species to Bsal and
found in many species infection resulted in mortality of all infected animals and
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other infected species had the possibility of recovery. Here, we allow the possibility
of recovery and investigate a range of recovery rates γ ∈ (0.05 − 0.9) per day
with a waning immunity at rate η ∈ (0.05, 1) per day. Stegen et al. [24] observed
encysted zoospores persisted in the environmental for 1 month and were more
resistant to predation that motile zoospores. Therefore, we assumed the baseline
zoospore degradation rates of ξe = 0.03 per day and ξm = 0.05 per day. Zoospore
shedding rates are unknown for Bsal in eastern newts, however, shedding rates have
been measured for a similar fungal pathogen, Batrachochytrium dendrobatidis (Bd)
in frogs [14]. Using these measured ranges of Bd zoospore shedding rate averaged
across the frog species, we assumed ωmbase ∈ (8.6 − 345) thousand zoospores per
day. Additionally, we assumed that ωebase is half the value of ωmbase. In some cases,
parameter values are unknown, for example, contact rate coefficients with each type
of environmental zoospores (cm and ce) and the percentage of contacted spores that
successfully encyst (ρ). A summary of parameters and their assumed values is given
in Table 1. Given the uncertainty of several parameters for the eastern newt systems,
we focus our analyses on parameter sensitivity.

3 Full Model Analysis

Analysis of the above models includes parameter sensitivity analyses, numerical
simulations, and calculation of the basic reproductive number. These results assume
frequency-dependent transmission functions (Eqs. 2 and 6), however, density-
dependent led to similar qualitative predictions and figures are not shown.

3.1 Parameter Sensitivity Analysis

Here, we use Latin hypercube sampling (LHS), developed by McKay et al. [19]
with the statistical partial rank correlation coefficient (PRCC) technique in order to
perform a sensitivity analysis of the parameter space of the full model (5). The
LHS/PRCC sensitivity analysis method globally explores the multi-dimensional
parameter space. LHS is a stratified Monte Carlo sampling without replacement
technique that gives unbiased estimates of modeling output measures subject to
combinations of varying parameters. The PRCC can be used to classify how
the output measures are influences by changes in a specific parameter value,
while linearly discounting the effects of the other parameters [15]. The PRCC
is appropriate since each parameter has a monotonic relationship with the output
measures, details given in the Appendix 3. Here, a positive PRCC has a positive
relationship with the output measure, whereas a negative PRCC value has an
inverse relationship with the output measure. Larger PRCC values do not necessarily
indicate more important parameters, however, we used a z test on transformed PRCC
values to rank model parameters in terms of relative sensitivity [15]. The number of
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Table 1 Model parameters

Parameter Unit Base value Range Source

βbase Base direct
transmission
rate

1/day 2 (0.1, 3) [24]a

cm Environmental
contact rate

1/day 0.02 (0.01, 0.05) Assumed

coefficient
with Zm

ce Environmental
contact rate

1/day 0.01 (0.005, 0.03) Assumed

coefficient
with Ze

η Loss of
immunity rate

1/day 0.1 (0.05, 1) [13, 17]b

1/ε Latency
period

Days 10 (7, 14) [13, 17]b

δ Disease
induced
mortality rate

1/day 0.14 (0.01, 0.5) [13, 16, 17]b

γ Bsal recovery
rate

1/day 0.1 (0.05, 0.9) [13, 17]b

n Number of
infected
stages

− 5 NA Assumed

ρ % of
contacted
spores that
encyst

− 0.75 (0.5, 1) Assumed

ωmbase Base
shedding rate
of Zm

1000Zoospores
day.individual

176 (8.6–345) [14]c

ωebase Base
shedding rate
of Ze

1000Zoospores
day.individual

88 (4.3–172) Assumed ωebase = 1
2 ωmbase

ξm Degradation
rate of Zm

1/day 0.05 (0.02, 2) [24]a

ξe Degradation
rate of Ze

1/day 0.03 (0.01, 1) [24]a

κm ID-50 Zoospore
V ol

245K (240K–250K) MJG, unpublished datab

κe ID-50 Zoospore
V ol

145K (140K–150K) Assumed κe < κm

aValues from Salamandra salamandra data
bValues from Notophthalmus viridescens data
cValues obtained from Bd (Batrachochytrium dendrobatidis) data
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model simulations (or runs = R) need to be 4
3 times greater than the number of

uncertain parameters k, i.e., R > 4
3k [2, 5]. Our parameter space consist of 26

parameters and we choose 5, 000 runs for our simulations. We used two output
measures to classify the sensitivity of the parameters which has the monotone
relation with our input variables;

1. The size of the Newt population after 150 days,
2. The maximum load of environmental zoospores at any time of the simulation 150

days.

The choice of using 150 days for the length of the simulations was to ensure
the environmental zoospores concentrations achieved their maximum during the
simulations. This duration also is within the expected duration to observe population
collapse due to Bsal invasion in highly susceptible species [24]. The PRCC values
for the Newt population density are shown in Fig. 3 and the PRCC values for the
maximum zoospore load are shown in Fig. 4.

Figure 3 illustrates the most sensitive parameters affecting the size of the newt
population. The Newt population increased significantly for increases in recovery
rate γ . The Newt population decreased for increases in the direct transmission rates
(βi), the loss of immunity (η), the rate an infected individual becomes infectious (ε,
inverse of the incubation period), as well as the disease induced mortality rate (δ).

Fig. 3 Partial rank correlation coefficient (PRCC) values for each parameter in the Latin hyper-
cube sampling (LHS) using the surviving Newt population density after 150 days as the output
measure. Values marked ns are non-significant (P > 0.05)
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Fig. 4 Partial rank correlation coefficient (PRCC) values for each parameter in the Latin hyper-
cube sampling (LHS) using maximum environmental zoospore load after 150 days as the output
measure. Values marked ns are non-significant (P > 0.05)

For the maximum environmental zoospore load (Fig. 4), the zoospores concen-
tration increased significantly for shorter incubation periods 1/ε (i.e., larger the
rate at which an infected individual becomes infectious, ε ) and high zoospore
shedding rates (ωmi and ωei for i = 1, ..., 5). The zoospore concentration decreased
significantly with larger disease induced mortality and recovery rates (δ, γ ) as well
as higher rates of environmental zoospore degradation (ξm and ξe).

3.2 Numerical Simulations

We varied the recovery rate (γ ) to study the effect on the total Newt population,
the final epidemic size, and the total maximum zoospores concentrations. The final
epidemic size was calculated as the total number of cases over the duration of the
simulation (150 days). As γ increased, a larger portion of the population survived
the outbreak (Fig. 5a) and total maximum zoospores concentration decreased
(Fig. 6). While an increase in γ increased survival of the population (Fig. 5a) it also
increased the final epidemic size (Fig. 5b).
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Fig. 5 (a) Eastern newt population and (b) endemic size for varying the recovery rate, γ and all
other parameters are set to the baseline values from Table 1

Fig. 6 Total maximum
zoopores concentration
varying the recovery rate, γ

and all other parameters are
set to the baseline values
from Table 1

Varying the incubation period (1/ε), the model predicted that the newt population
decreased only slightly for shorter period, however, the total maximum zoospores
concentration increased substantially (Figs. 7 and 8).

We also investigated the influence of disease induced mortality rates (δ). While
increases in δ decreased the newt population and the epidemic size (Fig. 9), it also
caused a decrease in the zoospore concentration (Fig. 10).

Variations in the degradation rates of zoopores (ξe, ξm) did not substantially
affect the newt population size (Fig. 11), however, it did play an important role in
environmental zoospore loads (Fig. 12).
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Fig. 7 (a) Eastern newt population and (b) epidemic size for varying the latency period, 1/ε and
all other parameter are set to the baseline values from Table 1

Fig. 8 Total maximum
zoospores concentration
varying the latency period,
1/ε and all other parameters
are set to the baseline values
from Table 1

Figure 13 showed how varying the number of infectious stages n influenced
model predictions. For smaller n the outbreak occurred earlier as the peak number
of infected cases occurred sooner and was higher in magnitude (Fig. 13a, b).
Additionally, for higher n the maximum zoospore concentration was delayed and
was lower in magnitude (Fig. 13c).



206 M. R. Islam et al.

Fig. 9 (a) Eastern newt population and (b) epidemic size for varying the disease induced mortality
rate δ and all other parameter are set to the baseline values from Table 1

Fig. 10 Total maximum
zoospores concentration
varying the disease induced
mortality rate, 1/δ and all
other parameters are set to the
baseline values from Table 1

Fig. 11 (a) Eastern newt population and (b) epidemic size for varying the degradation rates of
zoopores (ξe, ξm) and all other parameter are set to the baseline values from Table 1
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Fig. 12 Total maximum
zoospores concentration
varying the degradation rates
of zoopores (ξe, ξm) and all
other parameters are set to the
baseline values from Table 1

Fig. 13 (a) Eastern newt population (b) total infected eastern newt population, and (c) zoospores
concentration for varying number of infectious stages, n using equation (7) for βi , ωei , and ωmi

with all other parameters set to the baseline values in Table 1
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3.3 Basic Reproductive Number

The basic reproduction number R0 is the expected number of secondary infections
in a completely susceptible population produced by a single infectious individual
during its infectious period [3]. To derive the basic reduction number, R0 of Bsal,
we use the next-generation matrix approach for the system (5) following [4]. The
analytic expression of the basic reproduction number R0 is as follows and the details
are shown in the Appendix 2.

R0 =
n∑

i=1

βi

fraction survives
to the ith stage︷ ︸︸ ︷(

γ n

δ + γ n

)i−1

duration in
the ith stage︷ ︸︸ ︷

1

δ + γ n︸ ︷︷ ︸
direct

+
ρcmS0

n∑
i=1

ωmi(γ n)i−1(δ + γ n)n−i

(δ + γ n)nξmκm︸ ︷︷ ︸
environmental for zoospores m

+
ρceS0

n∑
i=1

ωei(γ n)i−1(δ + γ n)n−i

(δ + γ n)nξeκe︸ ︷︷ ︸
environmental for zoospores e

, (8)

where S0 is the initial number of susceptible individuals. All transmission pathways
contribute to the analytical expression of R0 which is a measure of potential
outbreak. The expression in Eq. (8) describes the relative contribution of each
pathway. We investigate the relative contributions of each pathway to R0 in order to
identify the dominant pathway.

The dominant pathway depends on the population size (Table 2, Fig. 14). Direct
transmission is the dominant pathway for small populations sizes (population
size <5). As the population size increases (population size >5), environmental
transmission for Zm becomes the dominant pathway, while the environmental
pathway for Ze remains subordinate. As populations sized continue to increase (>7)
then the directed transmission pathway becomes subordinate.

Table 2 Numerical values of R0 using parameter values from Table 1

S0 = 1 S0 = 5 S0 = 7 S0 = 30

Total R0 1.15 2.35 2.95 9.84

Direct contact transmission proportion of R0 0.74 0.36 0.29 0.09

Environmental transmission proportion of R0 (Zm) 0.16 0.39 0.43 0.55

Environmental transmission proportion of R0 (Ze) 0.10 0.25 0.28 0.36
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Fig. 14 Proportion of R0 for
each transmission pathway
given in Eq. (8) using
parameter values from
Table 1

4 Discussion

Infection disease models offer a powerful tool to better understand and predict
epidemics in human and ecological systems. Bsal is an emerging infectious
pathogen with potentially devastating biodiversity crisis in North America [26].
To better understand the dynamics, we developed and analyzed the first model of
the highly virulent emerging pathogen Bsal on a host population of Eastern Newts
that incorporates multiple transmission pathways with multiple stages of infection.
The model predicts significant declines in host population shown in Fig. 5. These
predictions are qualitatively consistent with empirical data captured by Stegen et al.
[24], which show a collapse of 90% of a population of salamander introduced to
Bsal within 6 months.

While varying key parameters can slow down population declines, the pathogen
will persist as the basic reproduction number is always greater than one (Table 2).
While previous models have concluded that mitigation during outbreaks is likely
to fail and control efforts should focus on preventing disease emergence [23],
once Bsal is established in an area, slowing the spread may help prevent nearby
populations from being exposed.

Model predictions are sensitive to the number of infectious stages incorporated
in the model structure (Fig. 13). Fitting the model to empirical data can help better
parameterize the number of stages. For example, [20] fit a similar model to empirical
data of Ranavirus cases in wood frogs Peace et al. [20].
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The analytical expression of the basic reproductive number R0 given in Eq. (8)
was used to identify the dominant transmission pathway. Our model and parameter
set predicts that direct transmission is the dominant pathway for small population
densities, however, environmental transmission is the dominant pathway for large
population densities. These results can help guide intervention strategies. For
example, in small density scenarios where direct transmission is the dominant
pathway, we suggest intervention strategies focus efforts on reducing the contact rate
between individuals. This can be done by increasing habitat complexity among them
such as aquatic plants. For larger population densities, the model suggests that more
efficient diseased control strategies would be to reduce environmental transmission.
Here, the parameters that have the largest influence the maximum environmental
zoospores concentrations (high PRCC values in Fig. 4) should be the main focus
of intervention strategies. For example, the degradation rate of the zoospores in the
environment have large influence on epidemic dynamics, which suggests the use of
intervention strategies to increase ξm and ξe such as increasing UV penetration or
number of zooplankton in the water [24] might reduce zoospore persistence.

The developed models consider a homogeneous population of Eastern Newts,
however, disease dynamics for each individual is like to depend on their life
stage (larvae, juvenile, adult). A future iteration of the model should consider a
heterogeneous population and include stage structure of the host population. While
our parameter sensitivity analysis highlights the important role that recovery rates
can have, many species may have very low or zero probabilities of recovering from
Bsal [17]. Given the hyper-susceptibility of eastern newts and fire salamanders to
Bsal chytridiomycosis [17], it is possible that our simulations represent plausible
scenarios in North America if Bsal in introduced. It is also possible that seasonal
variations can influence disease and population dynamics, hence future iterations of
the model should consider how temperature influences host contact rates, zoospore
persistence, and importance of transmission pathways.

Appendix 1: Proofs of Base Model Lemmas

Proof of Lemma 2.1:

Proof We have

dS

dt

∣∣∣
α(S)

= ηR > 0

dL

dt

∣∣∣
α(L)

= g(I) S + ρ(cmf (Zm, κm) + cef (Ze, κe))S > 0

dI

dt

∣∣∣
α(I)

= εL > 0
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dR

dt

∣∣∣
α(R)

= γ I > 0

dZm

dt

∣∣∣
α(Zm)

= ωmI > 0

dZe

dt

∣∣∣
α(Ze)

= ωeI > 0,

where α(x) = {x(t) = 0 and S,L, I, R,Zm,Ze ∈ C(R+
0 ,R+

0 )} and x ∈
{S,L, I, R,Zm,Ze}. Therefore, due to the Lemma (2) in [7], any solutions
(S(t), L(t), I (t), R(t), Zm(t), Ze(t)) of system (1) are nonnegative for all t ≥ 0

with the nonnegative initial conditions (4) in
(
R

+
0

)5
.

Proof of Lemma 2.2:

Proof We can divide our system (1) into two parts: the host population, N ′(t) =
S′(t) + L′(t) + I ′(t) + R′(t) and the zoospores population, Z(t) = Zm(t) + Ze(t).

Adding the first four equations of system (1) yields

N ′(t) = S′(t) + L′(t) + I ′(t) + R′(t) = −δI ≤ 0

which is a decreasing function of time. Therefore, N(t) ≤ N(0) and adding the last
two equations of system (1) yields

Z′(t) = Z′
m(t) + Z′

e(t) = (ωm + ωe)I (t) − (ξm + ξe)Z(t)

≤ (ωm + ωe)N(0) − (ξm + ξe)Z(t).

A standard comparison theorem in [11] can be used to show that

Z(t) ≤ Z(0)e−(ξm+ξe)t + (ωm + ωe)N(0)

(ξm + ξe)
(1 − e−(ξm+ξe)t )

= (ωm + ωe)N(0)

(ξm + ξe)
+
(

Z(0) − (ωm + ωe)N(0)

(ξm + ξe)

)
e−(ξm+ξe)t .

Therefore, if Z(0) ≤ (ωm+ωe)N(0)
(ξm+ξe)

, then Z(t) ≤ (ωm+ωe)N(0)
(ξm+ξe)

. Thus the region 	 is
bounded.
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Appendix 2: Basic Reproduction Number

The Jacobian matrix J of the system (5) is obtained from linearizing the system.
Model (5) has a disease-free equilibria at X0 = (S0, . . . , 0, 0), where S0 is the
initial population of susceptible individuals. Evaluating the Jacobian matrix at X0
yields

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −β1 −β2 . . . −βn−1 −βn η −ρcmS0
κm

−ρceS0
κe

0 −ε β1 β2 . . . βn−1 βn 0 ρcmS0
κm

ρceS0
κe

0 ε −nγ − δ 0 . . . 0 0 0 0 0
0 0 nγ −nγ − δ . . . 0 0 0 0 0
0 0 0 nγ . . . 0 0 0 0 0
0 0 0 0 . . . −nγ − δ 0 0 0 0
0 0 0 0 . . . nγ −nγ − δ 0 0 0
0 0 0 0 . . . 0 nγ −η 0 0
0 0 ωm1 ωm2 . . . ωm(n−1) ωmn 0 −ξm 0
0 0 ωe1 ωe2 . . . ωe(n−1) ωen 0 0 −ξe.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Near the X0, for small perturbations z = (L, I1, I2, . . . , In, R,Zm,Ze) the
linearized infected subsystem of (5) evolves according to the following system of
equations:

dz
dt

= M z,

where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε β1 β2 . . . βn−1 βn 0 ρcmS0
κm

ρceS0
κe

ε −nγ − δ 0 . . . 0 0 0 0 0
0 nγ −nγ − δ . . . 0 0 0 0 0
0 0 nγ . . . 0 0 0 0 0
0 0 0 . . . −nγ − δ 0 0 0 0
0 0 0 . . . nγ −nγ − δ 0 0 0
0 0 0 . . . 0 nγ −η 0 0
0 ωm1 ωm2 . . . ωm(n−1) ωmn 0 −ξm 0
0 ωe1 ωe2 . . . ωe(n−1) ωen 0 0 −ξe.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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We decompose the matrix M into transmission (T) and transition (�) matrices,
respectively, obtaining

dz
dt

= (T + �) z,

where

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 β1 β2 . . . βn−1 βn 0 ρcmS0
κm

ρceS0
κe

0 0 0 . . . 0 0 0 0 0
0 0 0 . . . 0 0 0 0 0
0 0 0 . . . 0 0 0 0 0
0 0 0 . . . 0 0 0 0 0
0 0 0 . . . 0 0 0 0 0
0 0 0 . . . 0 0 0 0 0
0 0 0 . . . 0 0 0 0 0
0 0 0 . . . 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε 0 0 . . . 0 0 0 0 0
ε −nγ − δ 0 . . . 0 0 0 0 0
0 nγ −nγ − δ . . . 0 0 0 0 0
0 0 nγ . . . 0 0 0 0 0
0 0 0 . . . −nγ − δ 0 0 0 0
0 0 0 . . . nγ −nγ − δ 0 0 0
0 0 0 . . . 0 nγ −η 0 0
0 ωm1 ωm2 . . . ωm(n−1) ωmn 0 −ξm 0
0 ωe1 ωe2 . . . ωe(n−1) ωen 0 0 −ξe.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The next-generation matrix with large domain is K = −T�−1. Since T has rank
1, the NGM K also has rank 1. Therefore, only the first row of K contains non-zero
entries. Consequently, the spectral radius of K is the first entry on the diagonal, i.e.,
K1,1 which is equivalent to R0, and it is the same for both frequency and density-
dependent direct transmission. Therefore,
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R0 =
n∑

i=1

βi

fraction survives
to the ith stage︷ ︸︸ ︷(

γ n

δ + γ n

)i−1

duration in
the ith stage︷ ︸︸ ︷

1

δ + γ n︸ ︷︷ ︸
direct

+
ρcmS0

n∑
i=1

ωmi(γ n)i−1(δ + γ n)n−i

(δ + γ n)nξmκm︸ ︷︷ ︸
environmental for zoospores m

+
ρceS0

n∑
i=1

ωei(γ n)i−1(δ + γ n)n−i

(δ + γ n)nξeκe︸ ︷︷ ︸
environmental for zoospores e

,

where S0 is the initial number of susceptible individuals.

Appendix 3: Monotonicity Test

Each subplot of the following Figs. 15 and 16 shows the monotonic relation
between the model parameters with the output variable Eastern Newt population and
maximum Zoospores concentrations, respectively, which is a required condition for
the PRCC-LHS test.

Fig. 15 Monotonicity plot of the model parameters vs. the output measure eastern newt population
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Fig. 16 Monotonicity plot of the model parameters vs. the output measure total maximum
zoospores concentration
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1 Introduction

Infectious diseases continue to have a substantial contribution to the loss of life due
to premature mortality and years lived with disability worldwide, especially in low-
and middle-income countries [1]. More than 30 years after HIV was identified as
the cause of AIDS, the HIV epidemic remains a significant public health burden
with an estimated 0.95 million deaths attributed to AIDS in 2017 and an estimated
36.8 million people living with HIV, up from 33.3 million 5 years prior [2]. The
increasing number of HIV infected worldwide is not only a result of persistent HIV
transmission but also of more people living significantly longer with HIV while on
antiretroviral treatment (ART). Although HIV testing capacity has increased over
time, enabling more people to learn their HIV status, about 3 in 10 of people with
HIV are still unaware they are infected. The stable number of new infections among
adults over the recent years emphasizes the importance of HIV prevention.
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An ambitious 95-95-95 strategy was announced by UNAIDS in 2014, aiming
to end the AIDS epidemic by 2030 by achieving 95% diagnosed among all people
living with HIV, 95% on ART among diagnosed, and 95% virally suppressed among
treated [3]. An intermediate goal of 90-90-90 was set for 2020. Although this strat-
egy is based on treatment, all major stakeholders understand that decisive reduction
in HIV incidence cannot be achieved without investment in HIV prevention. The
new national plan to end the HIV epidemic in the United States emphasizes the
importance of reducing new HIV cases through evidence-based HIV prevention [4].

A series of randomized controlled trials (RCTs) has demonstrated that dif-
ferent interventions, such as prevention of mother-to-child transmission, male
circumcision, ART as prevention, and pre-exposure prophylaxis (PrEP) reduce
HIV acquisition risk [5–13]. New biomedical products are under development
or currently being tested in RCTs including long-acting injectables, infusions
of broadly neutralizing antibodies, and multi-dose vaccines [14–18]. RCTs of
HIV biomedical prevention interventions are often designed assuming common
effectiveness at all levels of HIV risk. However, in a previous modeling analysis we
have demonstrated that the majority of participants in HIV prevention trials likely
remain unexposed to HIV even if the RCT takes place in a high-prevalence settings
[19].

Mathematics has a long history of contributions to understanding disease epi-
demics in humans and animals [20–24]. Mathematical models are frequently used
to investigate epidemic trends and evaluate biomedical interventions aiming to
curb or eliminate diseases transmission[25–29]. Models specific to HIV have been
employed to simulate epidemic dynamics among the general population and high-
risk groups in different geographic settings, to estimate the impact of various
combinations of prevention and treatment tools (medical male circumcision, pre-
exposure prophylaxis, treatment as prevention), and to inform the design of future
clinical trials testing new HIV prevention products [30–35]. Two recent studies
compared multiple HIV models used to evaluate the impact of ART scale-up and
HIV vaccination strategies [36, 37]. These studies show that: (i) deterministic
compartmental models are used more often (11 out of 20) than individual-based
microsimulation models (4 out of 12) when intervention effectiveness is an outcome;
(ii) Markov models (4 out of 20) and decision-tree models (1 out of 20) are prevalent
in cost-effectiveness analyses; and (iii) models are more often used to simulate
epidemic conditions in Africa (12 out of 20) where the majority of new HIV
infections occur, compared to settings in Asia (6 out of 20) and North America
(1 out of 20). In rare cases models are calibrated to multiple settings around the
world to assess the potential of an intervention in different conditions [38, 39].

A few modeling studies have already investigated problems related to hetero-
geneity in HIV risk and its importance for the HIV epidemic. Unequal exposure
to infection and differential susceptibility were shown to play a role in estimated
efficacy of HIV vaccines [40]. Desai et al. also demonstrated that traditional efficacy
measures, based on the hazard rate ratio or cumulative incidence ratio are sensitive
to population heterogeneities modifying HIV risks [41]. Wilson et al. used a
simple model to show that effectiveness of interventions depends on the number
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of exposures that each trial participant has [42]. Monte-Carlo simulations of clinical
trials showed that heterogeneity in risk can lead to underestimation of the efficacy
of HIV prevention and suggested that the crossover design may guarantee better
efficacy estimation and statistical power [43].

In this study we use compartmental mathematical models to analyze the uneven
HIV exposure as a driver of heterogeneity in risk and to explore its effects on the
efficacy observed in RCTs. More specifically, we define three characteristics of the
exposure to HIV (magnitude, concentration, and replacement) and investigate how
they create an imbalance between trial arms over time leading to attenuation of
the efficacy estimates of imperfect biological interventions. Our work expands on
previous modeling studies focusing on one exposure metric (magnitude) only [42]
which assigned individuals constant acquisition risk over time [43]. Although partial
protection can be conceptualized in different ways, we assume equal imperfect
efficacy for all people in every HIV exposure. For simplicity, we refer to this
protection as the “true efficacy per act” in this paper. In contrast, the “IRR
effectiveness” is calculated from the results of the simulated RCTs as one minus the
incidence rate ratio (IRR) of acquiring HIV, also commonly called just effectiveness.
In general, it is preferable to quantify the “true efficacy” as a measure that is more
likely to be time invariant and independent of the sexual behavior of each individual.

Regarded as a gold standard for effectiveness research, individually randomized
trials are possible only where there is ethical equipoise between the two arms,
typically when effectiveness of the new intervention is unproven. In this study we
also investigate the impact of uneven HIV exposure on the outcomes of trials with
step-wedge design which are preferred in situations when products with known
efficacy are tested under new conditions and therefore the assignment of participants
to placebo is unethical.

2 Model Description and Analysis

2.1 Metrics of HIV Exposure

We quantify the amount and distribution of HIV exposure in a population cohort
with three metrics (see Table 1). The proportion of participants who have sexual
contacts with infected partners over unit time determines the concentration of
exposure. If HIV exposure is distributed among a small proportion of individuals,
the exposure is highly concentrated. Conversely, if HIV exposure is distributed
among large proportion of individuals, then the exposure is less concentrated. The
average number of exposures of each exposed individual per unit time defines
the magnitude of exposure. If the annual HIV incidence in two cohorts is equal,
then the magnitude of exposure in the cohort with higher concentration must be
larger. Allowing to a fraction of the cohort (“replacement fraction”) to switch their
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Table 1 Metrics of HIV exposure and efficacy

Term Symbol Description

Concentration of exposure fE The fraction of the population at the start of the trial
exposed to HIV through sexual contacts with
HIV-positive partners

Magnitude of exposure r The rate of exposure among those exposed depending
on the frequency of sexual contacts with HIV-positive
partners

Replacement of exposure σ The rate at which people transition into (and out of)
the exposed class

Per-act (true) efficacy ε The percentage by which the intervention decreases
HIV infection risk for a given exposure. For example,
if the risk of HIV infection due to unprotected sex
with an HIV-positive individual is reduced from 1%
to 0.1% with PrEP, the true efficacy is 90%.

Incidence rate ratio (IRR) The ratio of incidence in the active arm to incidence
in the control arm.

IRR effectiveness E The percentage reduction of HIV incidence, defined
with (2), among individuals administered the
intervention compared to control population not using
the intervention. It is 1 − IRR.

Hazard ratio θ The ratio of the risk of infection due to the
introduction of the treatment, as estimated from a
linear model.

GLM effectiveness EGLM Measure of effectiveness in complex trial designs,
such as the step-wedge. It is computed from a
generalized linear model and related to the hazard
rate via EGLM = eθ .

exposure status (from exposed to unexposed and vice versa) each time period defines
the replacement of exposure.

2.2 Modeling the Traditional RCT Design Description

In the traditional RCT design each participant is randomly assigned to the treatment
(active) or placebo (control) group and treatment effectiveness is estimated by the
difference in the observed HIV incidence between these 2 groups (arms). We model
RCT using a compartmental model governed by ordinary differential equations,
which are common in epidemiology. We assume that the trial cohort only represents
a small subset of the general population and so any infections that occur during the
trial are due to contacts with individuals outside of the trial. We divide each arm of
the trial cohort into exposed and unexposed populations. Let Xi(t) and Ui(t) be the
number of participants at time t , where the index i ∈ {c, a} indicates the control
or active arm. Those in the exposed population have on average r exposures per
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period with a per-exposure risk of ρc in the control arm and ρa = (1 − ε)ρc in the
active arm, where ε is the per-act treatment efficacy. Trial participants are removed
from follow-up upon infection. Finally, individuals move from the exposed to the
unexposed population at per-capita rate κ and from the unexposed to the exposed
population at rate γ . The traditional RCT model is

Exposed
dXi

dt
= −ρirXi − κXi + γUi

Unexposed
dUi

dt
= κXi − γUi

Ui(0) = (1 − fE)N Xi(0) = fEN

(1)

where fE is the fraction of the population that is exposed to HIV and N is the
number of participants in each arm at enrollment. We assume that individuals update
their exposure status at a rate σ (for example, by changing sexual partners) with
a fraction fE of those individuals who change status entering (or re-entering) the
exposed class. As a result, exposure replacement rates are κ = σ(1 − fE) and
γ = σfE . This formulation allows us to adjust the concentration, magnitude, and
replacement of exposure independently via the parameters, fE , r , and σ . Note that
here we assume that the risk of infection is the same for all exposed individuals and
does not change over time. We use this simple set of assumptions in order to isolate
the effect of concentrating exposures in a fraction of the population.

The HIV incidence in each arm of the traditional RCT is estimated as the
recorded number of new infections among the arm cohort over the duration of the
trial τ , divided by the cumulative time that arm participants spent at risk for HIV
infection. It is given by

Trial Incidence Ii =
∫ τ

0 ρirXi(t) dt∫ τ

0 (Ui(t) + Xi(t)) dt
(2)

The IRR effectiveness of HIV prevention tested in RCT is measured as the
reduction in HIV incidence in the active arm compared to the control arm: 1−Ia/Ic.

The solution to (1) is given by

Xi(t) = X1ie
λ1i t + X2ie

λ2i t

Ui(t) = U1ie
λ1i t + U2ie

λ2i t

λ1,2 = −(ρir + σ) ± Bi

Bi =
√

(ρir − σ)2 + 4ρir(1 − fE)σ

X1,2i = fEN/2 ∓ (
σ(1 − 2fE) − (rρi + σ)

)
N/(2Bi)

U1,2i = (1 − fE)N/2 ± (
σ(1 − 3fE) + ρir(1 − fE)

)
N/(4Bi)

(3)
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which in the general case is cumbersome to study analytically. We will, therefore,
focus on two special cases: (1) when all individuals are equally exposed to HIV and
(2) when there is no switching between exposed and unexposed classes. We will
also study the asymptotic behavior for lengthy trials.

2.2.1 Analysis of Special Case: Even Exposure

If all trial participants are exposed to HIV (fE = 1), then model (1) simplifies to

dXa

dt
= −ρc(1 − ε)rXa

dXc

dt
= −ρcrXc

Xa(0) = Xc(0) = N

(4)

with solution Xa(t) = Ne−ρc(1−ε)rt and Xc(t) = Ne−ρcrt . The HIV incidences by
arm are Ia = ρcr(1 − ε) and Ic = ρc(1 − ε) so the effectiveness simplifies to ε, the
true efficacy. Therefore, in case of perfect adherence and homogeneously distributed
HIV risk, the true efficacy and the IRR effectiveness will match exactly.

2.2.2 Analysis of Special Case: Uneven Exposure with Stable Partners

If a highly efficacious prevention product is tested (1 > ε � 0), the risk of infection
is significantly reduced (but not eliminated) in the active arm. As a result, highly
exposed individuals become infected and removed from follow-up more quickly in
the placebo than in the active arm, leading to a faster depletion of the “exposed”
participants in the placebo arm. This creates a growing imbalance with respect to
HIV exposure between trial arms over time, even if the arms were perfectly balanced
at randomization.

To illustrate the effect of uneven exposure, we consider the simple case where
all participants have stable partners. In such a cohort, each participant is repeatedly
exposed to HIV or never exposed to HIV during follow-up, depending on the HIV
status of his/her partners. The governing equations are obtained by substituting κ =
γ = 0 into model (1).

Exposed
dXi

dt
= −ρirXi

Unexposed
dUi

dt
= 0

(5)

which has solution Xi(t) = NfEe−ρirt and Ui(t) = N(1 − fE).
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The trial incidence in each arm is

Ii = fEρir(1 − e−ρirτ )

τρir(1 − fE) + fE(1 − e−ρirτ )
(6)

which decreases as the length of the trial, τ , increases, provided that fE < 1. This
is not due to any change in risk magnitude over time, as r , ρa , and ρc are assumed
to be constant, but instead to a selective depletion of exposed individuals.

If the fraction of exposed individuals is quite low, then this depletion can happen
surprisingly rapidly. Suppose that we wish to perform an RCT in a population with
an annual incidence of 5%. If fE = 100%, then rρc = 5% and the observed trial
incidence will be 5% regardless of the trial duration (see Sect. 2.2.1). However, if
fE = 20%, then rρc = 25% to ensure 5% overall incidence at enrollment and the
trial incidence calculated via (6) will be only 4.5% for a 1-year RCT and 4.1% for a
2-year RCT.

This risk depletion, the selective removal of exposed individuals from the trial
population due to infection, happens more rapidly in the control than in the
treatment arm and creates growing imbalance over time. This is reflected in the
IRR effectiveness

IRR Effectiveness = 1 − ρa(1 − e−ρarτ )

ρc(1 − e−ρcrτ )

(
τρcr(1 − fE) + fE(1 − e−ρcrτ )

τρar(1 − fE) + fE(1 − e−ρarτ )

)
(7)

When the trial is short relative to risk (very small τ ), the expression (7) reduces
to ε = 1 − ρa/ρc, the true efficacy of the intervention in the exposed population.
However when the trial is long (τ → ∞), then the effectiveness drops to zero unless
all participants remain unexposed to HIV (fE = 0).

2.2.3 Asymptotic Behavior

To understand the long-term behavior of model (1) it is helpful to make the
following change of variables. Let Ni(t) = Xi(t) + Ui(t) be the cohort size of trial
arm i at time t , and let xi(t) = Xi(t)/Ni(t) be the proportion of the participants in
arm i who are in the exposed class at time t .

N ′
i = −ρirxiNi

x′
i = −ρirxi − κxi + γ (1 − xi) + ρirx

2
i

= −ρirxi(1 − xi) + σ(fE − xi)

Ni(0) = N xi(0) = fE

(8)
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If a trial lasts sufficiently long, the fraction xi(t) will approach its asymptotically
stable steady state

x∗
i = σ + ρir

2ρir

(
1 −

√
1 − 4ρirσfE

(σ + ρir)2

)
(9)

even though the total uninfected population size may still be far from the equilibrium
N∗

i = 0. We define instantaneous incidence Ii,inst(t) = rρipi to be the trial
incidence between time t and t + dt , and the instantaneous effectiveness to be
1 − Ia,inst/Ic,inst. The trial incidence is the mean of the instantaneous incidence
throughout the entire duration of the trial, weighted by the population size Na(t) +
Nc(t).

Initially, the instantaneous effectiveness is ε, the true efficacy. However for
trials that are lengthy compared to the timescale of exposure, i.e. an HIV trial of
several years during which individuals may change partners many times, the IRR
effectiveness will be dominated by the instantaneous effectiveness at steady state
E∗ = 1 − (1 − ε)x∗

a/x∗
c . Using the expression (9) we find that:

lim
fE→0

E∗ = 1 − (1 − ε)
σ + r

σ + r(1 − ε)

= ε
σ/r

σ/r + (1 − ε)

(10)

From the above expression, we should expect that the estimated efficacy is reduced
from the true efficacy when the HIV exposure is highly concentrated (small fE).
This loss of efficacy is mitigated if the magnitude of risk r is small relative to the
replacement of risk σ or if the true efficacy is very close to 100%.

2.3 Modeling Stepped-Wedge Design

The stepped-wedge trial is a group-randomized design that is particularly well suited
to testing the efficacy of an intervention during a roll out of a new prevention
strategy without completely withholding it from any of the participants. Groups
of participants are randomly selected to switch from standard of care to treatment
at regular intervals (steps) until all groups are treated during the last period.
Stepped-wedge trials are becoming increasingly popular in HIV research with more
combination strategies of indisputably efficacious components being tested under
new conditions [44–46].

For the stepped-wedge trials, simulated in this analysis, we divide our population
into nW cohorts. Let Xij and Uij be the number exposed and unexposed individuals
in cohort i ∈ {1 . . . nW } during time period j ∈ {0 . . . nW } where each period is of
length τ̂ = τ/(1 + nW). Then the time-evolution equations are
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Exposed
dXij

dt
= −ρc(1 − εTij )rXij − κXi + γUi

Unexposed
dUij

dt
= κXij − γUij

Uij (0) = Ui,j−1
(
τ̂
)

Xij (0) = Xi,j−1
(
τ̂
)

Ui0(0) = (1 − fE)N Xi0(0) = fEN

(11)

where exposure replacement rates are defined as in the traditional RCT while Tij

indicates whether the intervention was offered to cohort i during time period j :

Tij =
{

1 j ≥ i

0 j < i
(12)

In the stepped-wedge trial, the HIV incidence of the control and active arms is given
by

Ic =
∑

ij (1 − Tij )
∫ τ̂

0 ρcrXij (t) dt∑
ij (1 − Tij )

∫ τ̂

0 (Xij (t) + Uij (t)) dt

Ia =
∑

ij Tij

∫ τ̂

0 ρcrXij (t) dt∑
ij Tij

∫ τ̂

0 (Xij (t) + Uij (t)) dt

(13)

2.3.1 Estimating Effectiveness in Stepped-Wedge Trials

Due to the nature of stepped-wedge designs, effectiveness cannot be reliably
computed with the incidence rate ratio. For example, suppose that the epidemic
is becoming more intense over time. This means that when individuals start to
receive the intervention, they will be facing a higher likelihood of infection, which
will affect the estimate of effectiveness. Similarly, as randomization occurs at the
population level rather than the individual-level, it is likely that there are differences
in exposure rates between populations. If a high-risk population is among the first
to receive the intervention, this may artificially lower the effectiveness as measured
by IRR.

To account for these potential confounding effects, effectiveness is typically
calculated by fitting a generalized linear model with time and cohort-level effects
[47]. This formulation is equivalent to fitting the following differential equation to
the data.

dXij

dt
= hijX

ln hij = αi + βj + θTij

(14)
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where hij is the hazard rate or the risk of infection in cohort i during time interval j .
Note that in this formulation, all individuals in the population are considered equally
susceptible. The parameter θ is the log-odds-ratio of infection and can be used to
estimate effectiveness via EGLM = eθ . We will refer to this estimate of efficacy as
the GLM-derived effectiveness.

The parameters α and β are used to represent the force of infection in different
cohorts and at different times, respectively, and are necessary to adjust for potential
confounding in the step-wedge design. Many authors treat these parameters as
random effects, meaning that they are assumed to be sampled from a random
distribution, typically normal. This reduces the overall number of parameters that
need to be estimated—a mean and a variance for the α’s rather than each one
individually—and prevents overfitting in cases where there are small numbers of
observations. However we will assume that our trial is large enough that all α’s and
β’s can be reliably estimated as individual parameters, i.e. they are fixed effects. We
take this approach to show that the distortions due to exposure heterogeneity are
unrelated to small sample size.

The generalized linear model (14) is a descriptive or phenomenological model,
rather than an explanatory model. Its practical use is to quantify the difference
in infection risk of the simulated population in the presence or absence of the
treatment. In this section we outline some of the errors that can occur when this
model is fit to data generated via model (11). However, our intent is not to show
that model (14) is somehow inferior to model (11), as in a practical setting the true
underlying model is not known and model (14) is designed to be quite flexible to
account for this uncertainty. Instead our goal is to isolate the effect that exposure
heterogeneity can have on effectiveness estimates.

2.3.2 Increasing Exposure During a Stepped-Wedge Trial

Although the solutions to (11) are rather cumbersome to analyze, we can gain
some insight into the potential issues with the stepped-wedge design using the same
change of variables as in 2.2.3. Let xi be the proportion of individuals exposed in
wedge i, it’s time evolution is defined by

x′
i = −ρc(1 − εTi)rxi + σ(fE − xi) + ρc(1 − Ti)rx

2
i

Ti =
{

1 t ≥ iτ/(1 + nw)

0 t < iτ/(1 + nw)

xi(0) = fE

(15)

As shown in Sect. 2.2.3, in absence of treatment the proportion exposed xi will
initially decline towards the steady state, x∗

c ≈ σfE/(σ + rρc).
At the moment the treatment is introduced at t1 = iτ/(nW +1), the instantaneous

incidence will drop from ρcrxi(t1) to (1 − ε)ρcrxi(t1). As a result, the fraction of
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exposed individuals xi will start to approach a new equilibrium x∗
a ≈ σfE/(σ +

rρc(1 − ε)) > x∗
c . If xi(t1) < x∗

a , then the fraction of exposed individuals will start
to increase and with it the HIV incidence in the active arm. This might give the
false impression that either the force of infection is increasing or the effectiveness
of the intervention is declining. In reality, individuals who are exposed can remain
uninfected longer and therefore their proportion in the population increases.

2.4 Model Parameterization

We have informed the transmission and behavioral parameters in the models from
literature sources representative for South Africa [48, 49]. Simulated levels of HIV
incidence among the trial participants are comparable with the results observed in
the control arms of recently completed trials (see Table 2). Variables controlling the
level of heterogeneity are experimental and therefore explored over a wide range.
The exposed fraction of RCT participants in trials conducted among women in sub-
Saharan Africa was previously estimated at 20–30% in a published modeling study
[19].

Table 2 HIV incidence in prevention trials in sub-Saharan Africa. The list includes randomized
controlled studies conducted among uninfected people in the region. Some of the tested products
are based on Tenofovir (TDF) and Emtricitabine (FTC)

Study Population (Period) Product
HIV incidence
in control arm

HPTN 035 [50] Women, South Africa,
Tanzania, Uganda, and
Zambia (2005–2008)

Vaginal Gel PRO2000 4.3%

CAPRISA 004 [51] Women, South Africa
(2007–2010)

Vaginal Gel TDF 9.1%

TDF2 [11] Men and women,
Botswana (2007–2010)

Daily oral TDF–FTC 3.1%

FEM PreP [52] Women, Kenya, South
Africa, and Tanzania
(2009–2011)

Daily oral TDF–FTC 5.0%

VOICE [53] Women, South Africa,
Uganda, and Zimbabwe
(2009–2012)

Oral/Topical TDF–FTC 6.0%

ASPIRE [54] Women, Malawi, South
Africa, Uganda, and
Zimbabwe (2012–2015)

Dapivirine vaginal ring 4.5%
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3 Main Results

3.1 Heterogeneous Exposure Leads to Low Efficacy Estimates
in the Traditional RCT

As stated above, IRR effectiveness should theoretically match true efficacy in case of
perfect adherence. For example, consider a population in which all individuals have
an expected 40 exposures to HIV per year. If each exposure has a risk of infection
of 0.3%, then the annual incidence will be 12%. If we introduce a treatment with
50% efficacy, then the incidence will drop to 6%, yielding an effectiveness of also
50%.

Now suppose that only 50% of the population is exposed to HIV, but the
population as a whole has the same total number of exposures. Using the expression
(2), the incidence in this population is 11.2%, and drops to 5.6% with a 50% efficacy
treatment, an effectiveness of only 48%. This loss of effectiveness gets worse as the
exposures become concentrated in a smaller fraction of the population (Fig. 1a),
as the overall number of exposures increases (Fig. 1b), and the trial gets longer
(Fig. 1c).

An individual’s rate of exposure may change in time, especially, for example, if
the HIV status of their main partner changes. If we assume that trial participants
change from the exposed to unexposed class frequently, then the effectiveness
observed in the trial will more closely match the treatment efficacy (Fig. 1d).

3.2 Exposures Rates Become Imbalanced Between Trial Arms
over Time

The loss of effectiveness demonstrated in the previous section is due to a growing
imbalance in the rate of exposure between control and active arms in a clinical trial.
As the trial progresses, exposed individuals become infected, removed from follow-
up, and referred to ART. The remaining study population is, therefore, enriched
in unexposed individuals and the average rate of exposures per-capita decreases
(Fig. 2a,c) when only fraction of the participants are exposed to HIV.

In a traditional RCT trial, the exposed individuals in the control arm are removed
faster and therefore the exposure rate becomes increasingly lower than in the active
arm. Due to the growing imbalance in exposure rates between the two arms, the
incidence in the active arm may approach and eventually surpass the control arm if
the trial lasts long enough (Fig. 2b).

In a stepped-wedge trial, the fraction of exposed individuals may start to rebound
in the treated cohort. Figure 2c,d shows the exposure and incidence dynamics of a
single cohort within a 10 year-long trial assuming different levels of concentration
of exposure. The intervention is introduced into this cohort 5 years into the 10-year
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Fig. 1 Decrease in effectiveness in RCT due to concentrated exposure to HIV. Assuming 100%
adherence, effectiveness should match efficacy if risk is evenly distributed among all participants
(solid black line). Exposure heterogeneity leads to a decrease in effectiveness. This effect is
stronger if HIV exposure is more concentrated, i.e., the exposed fraction is smaller (panel a), the
magnitude (number) of exposures is higher (b), the trial is longer (c), and if the replacement of
exposed individuals is lower (d). Base parameters: exposures per year: r = 40, risk per infection:
ρc = 0.3%, exposed fraction: fE = 0.1, length of trial: τ = 10 years, annual exposure update rate:
A,B: σ = 0, C/D: σ = 0.5

period. These results demonstrate that an increase in HIV incidence may be expected
after the initial steep decrease after the intervention is introduced (Fig. 2d).

3.3 Stepped-Wedge Trial Design Can Both Over- and
Under-Estimate Efficacy

Stepped-wedge designs can lead to both over and underestimation of the effective-
ness, depending upon whether effectiveness is calculated from the incidence rate
ratio (IRR effectiveness) or, as is more typically done, deriving a hazard ratio from
a generalized linear model (GLM effectiveness).

When HIV exposure becomes concentrated in a smaller fraction of the popula-
tion, a stepped-wedge design can inflate IRR effectiveness (Fig. 3a). As with the
traditional RCT, the effect becomes stronger with increasing magnitude of exposure
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Fig. 2 Imbalances between trial arms due to concentrated exposure to HIV. When exposures
are concentrated in a small fraction of the population, the treatment and control arms become
imbalanced as the trial progresses. Panels a–b depict a traditional RCT with separate and
simultaneous control and treatment arms, panels c–d depict a single population cohort within a
stepped-wedge RCT, which receives the intervention at the same time. Replacement of risk, σ = 0
for panels a–b and σ = 0.50 for c–d. a/c: The number of exposures per person year. b/d: HIV
instantaneous incidence per 1000 person years. Black = 100% exposed (fE = 1), Blue = 50%
exposed (fE = 0.5), Red = 25% Exposed (fE = 0.25)

and trial duration but it is partially mitigated when individuals change their exposure
status more frequently (Fig. 3b–d). As the intervention is delayed for an initiation
period, many of the exposed individuals may be removed from the population cohort
before even gaining access to treatment. Therefore the population that receives the
intervention will have fewer exposures than the untreated population (Fig. 5).

3.3.1 Calculating Treatment Effect Using a Generalized Linear Model Is
Also Error Prone

In a stepped-wedge design, treatment is gradually introduced overtime, so any
changes in the underlying risk of infection (for example, improvements in linkage to
care for HIV-positive individuals) will confound the effectiveness of the treatment.
Therefore, researchers typically attempt to account for these effects, as well as
population effects, through a generalized linear model (14).
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Fig. 3 Increase in effectiveness in stepped-wedge trial due to concentrated HIV exposure.
Assuming 100% adherence, effectiveness should match efficacy if risk is evenly distributed among
all participants (solid black line). Heterogeneity in HIV exposure leads to both, an increase or a
decrease in trial effectiveness. This effect is stronger if the exposure is more concentrated (panel
a), the magnitude of exposure is higher (b), the trial is longer (c), and if the replacement of
exposed individuals is lower (d). Base parameters: exposures per year: r = 40, risk per infection:
ρc = 0.3%, exposed fraction: fE = 0.1, length of trial: τ = 6 years, annual exposure update rate:
σ = 0, number of populations NW = 5

Applying a generalized linear model to a theoretical study in which the treatment
is given to five populations over a 6-year period shows an attenuation of the GLM
effectiveness similar to the ERR effectiveness of the traditional RCT (Fig. 4).

Although we assume that the risk of infection is unchanged over time, the
incidence goes down during each period as infected individuals are removed from
the exposed group creating an illusion of decreasing risk (Fig. 5). This decreasing
risk over-corrects the GLM effectiveness resulting in an underestimation rather than
an overestimation of the intervention effect.

When individuals move between the exposed and unexposed class, another
spurious pattern emerges in a stepped-wedge design. After the introduction of
treatment, incidence initially drops, but thereafter rises as the number of people
in the exposed class starts to increase again. This spurious increase in incidence
could be falsely interpreted as a decreased adherence, drug resistance, or risk
compensation within the population even if none of these factors are occurring
(Fig. 5, lower panel).
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Fig. 4 The use of a linear model in stepped-wedge design restores the decrease in effectiveness. As
time and treatment effects are confounded in a stepped-wedge design, a linear model is necessary
to match the effectiveness observed in the traditional RCT design which is lower than true efficacy.
This effect is stronger if the exposed fraction is smaller (panel a), the population incidence is higher
(b), the trial is longer (c), and if the replacement of high-risk individuals is lower (d). Parameters
are the same as in Fig. 3

4 Discussion

HIV prevention is a critical component in any successful strategy to reduce the
global burden of AIDS. In this paper we use simple mathematical models to
demonstrate that the effectiveness observed in clinical trials testing novel HIV
prevention methods, depends on how evenly the exposure to HIV is distributed
among trial participants.

The RCT design is the gold standard for testing prevention effectiveness of novel
drugs. The intent-to-treat analysis yields an estimate of the average relative risk of
infection between trial arms in the enrolled cohort, typically in the context of a
very high standard of intervention delivery. Step-wedge designs were conceived in
the context of evaluating efficacy within an implementation framework, typically in
a situation where it is not ethical to withhold the treatment (e.g., implementation
following proof of effectiveness in an individually randomized trial). Initiation
of the treatment is planned for all groups/participants, however, by strategically
taking advantage of a plan to roll out implementation through a set of clinics or
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Fig. 5 Examples of stepped-wedge trial effectiveness distortion. A 6-year stepped-wedge trial
was simulated in a population with 40 exposures per person per year. The true efficacy was 50%.
Exposed fraction is 33% in the upper panel and 15% in the lower panel. Individuals never change
exposure level in the upper panel and change at a rate σ = 0.4 in the lower panel

communities, the step-wedge design makes it possible to estimate the effectiveness
of the intervention. As with all group-randomized trials, the total sample size is
larger than an individually randomized trials because of intracluster correlation
between groups.

Our analysis suggests that the traditional RCT design generally underestimates
the true efficacy of the tested HIV prevention with the effect being stronger for more
concentrated exposure (smaller fraction of participants having sex with infected
partners), for longer trials and for larger overall number of exposures in the trial
cohort. In comparison, the step-wedge design may either over- or underestimate the
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true efficacy depending on whether the incidence rate ratio or the linear regression
model is used to estimate effectiveness.

Our analysis aims to initiate discussion on at least two important questions. First,
how real is the problem with concentration of exposure and what is the estimated
proportion of participants in RCTs exposed to HIV? Multiple studies based on
data from different epidemic settings suggest that the majority of participants in
completed trials remain unexposed to HIV during their follow-up. Individual-based
mathematical model which simulates detailed sexual activity of the participants
in RCT among high-risk women in South Africa estimates that fewer than 30%
of the participants have been exposed to HIV at least once over 1-year follow-up
with up to 7% annual incidence projected [19]. Detection of HIV DNA in vaginal
swabs was proposed as biomarker of HIV exposure in women. However, when
tested in clinical studies it was not able to indicate exposure to HIV in uninfected
women, even if they acquired HIV later in the study [55, 56]. Second, what
are the possible ways to address the issue with uneven HIV exposure? Crossover
designs in which participants switch their arm assignment (active vs. placebo) in the
middle of the follow-up period have been suggested to alleviate the problem with
heterogeneity in risk [43]. However, these designs are only applicable when the
tested product is used repeatedly in the forms of pills, injections, topical gels, etc.,
but not for one-time or few-dose interventions such as male circumcision or HIV
vaccines. Limiting enrollment to participants who are regularly exposed to HIV,
such as serodiscordant couples, may reduce the effect of uneven exposure but poses
questions with transferability of the observed results to populations without clear
knowledge of their HIV risk [57].

Our results show that heterogeneity in exposure can decrease the effectiveness
observed in RCTs. This downward bias means that larger and more expensive
clinical trials may be needed in order to achieve the same power. In a recent
modeling study we demonstrated that enrolling different proportions of individuals
with uniformly high HIV exposure, such as female sex workers, will help reduce
trial duration and improve efficacy estimates [58]. The analysis here provides
additional rationale for these results and warrants further investigation of feasible
recruitment strategies limiting the effects of the concentration of HIV exposure.
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Dynamic Regulation of T Cell Activation
by Coupled Feedforward Loops

Gershom Buri, Girma Mesfin Zelleke, and Wilfred Ndifon

1 Introduction

The immune system serves to defend the body against attacks by both foreign and
internal threats. Lack of knowledge about the mechanisms of the immune system has
sometimes proved costly in terms of human morbidity and death, particularly, during
the pre-vaccination era. The discovery of vaccination motivated the quest for a
deeper understanding of the immune system in order to harness it to control various
life-threatening infections. The results were more effective disease treatments and
the successful prevention by vaccines of formerly fatal and disabling diseases like
polio, measles, whopping cough and many others. Most of these vaccines were,
however, based on the humoral component of the immune system, which has proven
less effective against diseases like malaria, HIV/AIDS and TB, protection against
which requires cellular immunity as well. This has prompted the search for T
cell-based vaccines to supplement existing humoral vaccines. To succeed at this,
however, an adequate understanding of T cell activation dynamics is necessary.

T cells are the main orchestrators of the adaptive immune response and, if not
well regulated, can have perilous consequences. Both a prolonged response and a
response to a wrong target can lead to destruction of body tissue and have been
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linked to pregnancy complications, stroke, heart attacks and blood clots [1]. In
addition, they can lead to wastage of resources such as energy used in the production
of cytokines [2, 3]. It is, therefore, imperative that T cells get activated only by the
right kind of signals and for the correct length of time. How is this achieved?

T cell activation is triggered by the binding of a T cell receptor (TCR) to its
cognate antigen. First reported in Yanagi et al. [4], the TCR is a specialised molecule
found on the surface of a T cell that confers the ability to recognise antigenic
peptides. However, in the absence of costimulation, TCR-mediated recognition of
antigen is generally not sufficient to produce the necessary T cell proliferation and
differentiation. Instead, it has been reported to cause a state of nonresponsiveness
called anergy [5]. The two-signal theory posits that T cell activation requires two
signals: one in the form of antigen recognition by the TCR and another in the form of
a secondary stimulus, now known as costimulation. The requirement of two signals
for lymphocyte activation was first proposed as a mechanism for distinguishing
the self from the non-self in B cells [6]. This model was later extended to T cell
activation by Lafferty and Cunningham [7], and supported by the identification of
the CD28 receptor, with the B7-1 molecule as its ligand [8, 9]. Studies in CD28
deficient mice revealed a diminished response to a variety of pathogens [10] even
though other signals could compensate for this absence to a limited extent [11].

Following the discovery of CD28, additional costimulatory molecules such
as ICOS, OX40 and 4-1BB were identified [12, 13]. The complexity of this
activation regulatory system, however, became more apparent with the discovery of
coinhibitory receptors such as CTLA-4, PD-1, LAG-3 and BTLA. These receptors
are expressed on the surfaces of activated T cells and downregulate T cell activation
using different mechanisms and at distinct times [14–16]. For example, CTLA-4
binds to B7 ligands and thus inhibits T cell activation through competition with
CD28 in addition to other intracellular signalling mechanisms [17]. These molecules
provide an important avenue to implement the regulatory mechanisms of T cells, and
their absence in mice has been associated with autoimmunity [18, 19].

Amongst the key cellular players of the immune system, with antagonistic roles,
are effector and regulatory T cells. Effector T cells serve to coordinate immune
responses and clear health threats, whilst regulatory T cells downregulate immune
responses effected by effector T cells. In doing so, regulatory T cells play a critical
role in maintaining peripheral tolerance by suppressing activation of self-reacting
effector T cells [20, 21]. With the uncertainty about the existence of regulatory
T cells in the beginning [22, 23], costimulation was initially defined solely with
respect to effector T cells [24, 25]. Moreover, based on in vitro data, regulatory
T cells were initially considered anergic [26, 27]. However, following a renewed
interest in regulatory T cells, the discovery that costimulation is necessary for their
activation played a critical role in our understanding of the underlying mechanisms
[28–30]. It was established that some costimulatory molecules, for example, CD28
and IL-2, had dual (opposing) effects on immune responses. This had a consequence
of further confounding the mechanisms influencing the net balance of regulatory
vs. effector T cell responses, a significant determinant of overall immune response
outcomes [28, 31, 32]. In addition, it made the prediction of therapeutic outcomes
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aimed at blocking any of these signalling pathways difficult [24, 33, 34]. Attempts
have since been made to elucidate this conundrum. Vogel et al. [35] report a lower
dependence on costimulation by regulatory vs. effector T cells, whilst Hombach et
al. [36] report a higher costimulation threshold for regulator T cells compared with
effector T cells, in an infection of healthy human subjects.

Here, we use the concepts and mathematical machinery of network science to
shed further light on these complex regulatory interactions. Despite the discovery
of various other cosignalling molecules, signal transduction via CD28 receptors and
the B7 molecules remains the best defined initiator of T cell activation [37, 38].
We restrict our attention to this classical version of the two-signal theory, which
espouses necessity of costimulation via CD28-B7 signalling, even though some
quantitative descriptions regard costimulation as a facilitator rather than a necessity
[10, 39]. We save investigation of the dynamic interplay between costimulation and
coinhibition for the future. In addition, we apply the two-signal requirement to both
effector and regulatory T cells. We show that the two-signal requirement induces
a novel type-1 coherent feedforward loop. Feedforward loops (FFL) are amongst
the most significant transcriptional regulatory motifs found in diverse gene systems
[40–42], and in other biological networks [43, 44]. Notably, this motif is capable of
signal processing as a sign-sensitive delay element. We argue that this is a desirable
property of any regulatory system, more so, of T cell activation.

The mathematical instantiation of our hypothesis combines models for gene
transcription regulation [41] with a canonical model for virus growth, widely used to
investigate viral and immune system dynamics [45–48]. A comprehensive literature
review reveals that no previous study has taken such a mechanistic approach to
model immune system dynamics based on the two-signal theory of T cell activation.
Initial attempts to model the downstream signalling pathways of the TCR and
costimulatory receptors include a Boolean network model by Saez-Rodriguez et
al. [49], which was later extended by Beyer et al. [50]. These models rely on logical
formalism, are mainly computational and consider more detailed costimulation
mechanisms.

Next, we analyse the implications of our novel hypothesis on the interaction
between effector and regulatory T cells. The result is a coupled coherent-incoherent
feedforward loop. A number of mathematical models have previously been pro-
posed to capture the dynamics of this interaction in different pathological conditions
[51–55]. Still, these are mainly empirical models that assume already activated
T cell populations. For example, a related model by Sontag [56] analyses this
interaction by combining negative feedback and type 1 incoherent feed forward
loops to model immune responses to antigen presentation.

2 Results

Briefly, a typical immune response to an infectious pathogen commences with the
engulfing and subsequent processing of the pathogens by antigen-presenting cells
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(APCs) of the innate immune system. Whilst bound to MHC class II molecules,
pathogen-derived peptides are displayed for recognition by CD4 T cells [57]. Upon
successful recognition of such peptide-MHC complexes (pMHCs), the T cells are
activated, and go on to orchestrate the rest of the immune response against the
infection via various avenues including enhancement of CD8 T cell and B cell
responses. For convenience, we will collectively refer to these CD4 and CD8 T cells
as effector T cells. In situations of autoimmunity or an excessive immune response,
regulatory T cells intervene to suppress or regulate effector cell activity [58]. In
the following, we will study the dynamics of T cell activation and the interaction
between effector and regulatory T cells using mathematical models inspired by
recent advances in network science.

2.1 T cell Activation is Underpinned by a Type-1 Coherent
FFL (C1-FFL) with AND Logic

As mentioned above, activation of T cells requires at least two signals: one signal in
the form of TCR-pMHC binding, and the second mediated by costimulatory proteins
found on the surfaces of T cells and APCs. The B7 molecules are only expressed
on professional APCs, and their production peaks after the APCs are activated by
microbial products [58]. The combined action of the two signals activates T cells
to proliferate and begin to differentiate into effector T cells [58, 59]. In this way,
the two-signal requirement induces a FFL in which the antigen signal (A) regulates
the costimulatory signal (C), and both jointly regulate T cell (Te) activation (Fig. 1).
This particular case of the FFL is “coherent” because the sign of the direct regulation
path (from A to Te) is the same as the overall sign of the indirect path through C.
This FFL motif is of type-1 because all the paths are positive (activators). Also, since
both signals are required to activate the T cell, the input function of Te activation
follows an AND logic gate. In contrast, an OR-gate would have been appropriate if
either of the two signals was sufficient to activate the T cell.

2.2 The C1-FFL Induces a Sign-Sensitive Delay in T cell
Activation and Prevents Responses to Transient Antigen
Signals

To permit assessment of the dynamical effects of the C1-FFL on T cell activation,
we instantiated the C1-FFL in a mathematical model (see Sect. 4). Numerical
simulations based on the mathematical model show that the C1-FFL can serve as
a sign-sensitive delay element in T cell activation (Fig. 2). Specifically, the C1-FFL
responds with a delay to a step-like antigen stimulus in the ON direction, and rapidly
to the step in the opposite direction. The delay (TON) depends on the costimulation
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Fig. 1 Structure of the
coherent type 1 feedforward
loop proposed to govern T
effector (Te) cell activation.
The presence of antigen (A)
upregulates production of
costimulation signals (C).
Activation of Te requires both
A and C

threshold for the T cell (denoted KCTe). This delay is the time it takes C to pass the
costimulation threshold and is given by

TON = 1

αc

log

(
Cst

Cst − KCTe

)
, (1)

where Cst is the steady-state concentration of the costimulation signal C. From this
expression, if KCTe → Cst, TON → ∞. Therefore, the activation threshold KCTe

should be smaller than Cst. Also, the larger the value of KCTe , the longer it takes
for the T cell to become activated. It is worth noting that, in the light of the assumed
necessity of two signals in this work, absence of costimulation will generate no T
cell response (i.e. Te will remain zero if C is zero).

To further illustrate this sign-sensitive delay, we compared the dynamics obtained
with a short-lived versus a longer-lived antigen signal (Fig. 3). Notably, long
durations of the antigen signal elicit a T cell response after a short delay, whereas
short durations of the antigen signal fail to elicit a response. This failure of T cell
activation occurs because the short duration of the antigen signal does not provide
enough time for the costimulation signal to accumulate past the costimulation
threshold. Therefore, noise in the form of short pulses of antigen signal is filtered
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Fig. 2 Dynamics of C1-FFL with an AND gate input function as a sign-sensitive delay element.
Activation of T effector cells delays for a duration, TON . Parameters used were: βA = βc = βe =
αc = αe = 1, n = 4, λ = 0.03, μ = 1, KAC = 0.5, KATe = 1, KCTe = 1

out, whilst a persistent signal results in T cell activation. Of note, even though a
step-like stimulus was used in these simulations, sigmoidal forms yield qualitatively
similar dynamics. For example, consideration of an exponentially growing antigen
signal A(t) = eλt, λ > 0, reproduces the observed delay in T cell activation (Fig. S1).

2.3 The Two-Signal Requirement and Immune Regulation
Together Induce a Coupled Coherent-Incoherent
Feedforward Loop (CCI-FFL)

Usually, network motifs do not work in isolation but they are embedded within
larger networks in a manner that preserves their dynamical functions [60]. The
interaction between Te cells and T regulatory (Tr) cells regulates the effector and
regulatory properties of the immune system. An excessive response by Te cells
is normally prevented by Tr cells via mechanisms such as competition for B7
ligands. Before it can suppress Te cells, however, a Tr cell must itself be activated
following a similar pathway as the Te cell. Proliferation is further enhanced by
interleukin 2 (IL-2) secreted by Te cells [61–63]. IL-2, however, cannot substitute
for CD28 in regulatory T cell activation [36]. Therefore, as shown in Fig. 4,
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Fig. 3 Dynamics of C1-FFL with an AND gate input function as a noise detector. Short-lived
signals are unable to kick-start Te cell activation but a persistent signal does. Parameter values
used in all simulations: αe = βA = βe = KATe = KCTe = 1, αc = 0.4, n = 4, KAC = 0.5. For the
persistent signal, βc = 0.4, λ = 0.001, μ = 1.5, whilst for the short-lived signal βc = 0.2, λ = μ

= 0. The latter signal was manually turned OFF

the two-signal requirement, combined with immune regulation, induce a coupled
coherent-incoherent feedforward loop (CCI-FFL). Notably, this motif has an OR
logic gate for the activation and proliferation of Tr cells. This CCI-FFL is a multiple
output feedforward loop since the antigen and costimulation signals regulate the
activation of more than one type of T cell.

As before, we instantiate the CCI-FFL in a mathematical model (Methods),
which we simulate numerically to investigate its dynamics. Although it has been
shown that regulatory T cells need not recognise the same antigen as effector T cells
[64], we consider the crossregulation model [65] in which regulatory and effector T
cells have the same antigen specificity. Simulations show that the CCI-FFL retains
the property of sign-sensitive delay (Fig. 5). The delay in activation of each T cell
type depends mainly on their respective costimulation threshold parameter, KCT ; the
larger the value of this parameter, the longer the delay. In particular, if KCTr > KCTe,
then Te cells will proliferate first, before later being suppressed by the proliferation
of Tr cells, that is, after the magnitude of the costimulation signal has exceeded KCTr

[31, 66].
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Fig. 4 Network structure of
the coupled
coherent-incoherent
feedforward loop, proposed
to govern Te-Tr interactions.
Initially, each T cell type is
activated by the two signals
with the AND gate.
Subsequent activations are
influenced by the statuses of
the counter cell type
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Fig. 5 Dynamics of the coupled coherent-incoherent feedforward loop (CCI-FFL). Although
activation of both T cell types delays, in this particular scenario, Tr waits longer. An initial rise
in the concentration of Te is suppressed by the rise of Tr . Parameters used were: βc = 1, βr = 1,
βe = 1, αc = 1, αe = 1, αr = 1, n = 4, KAC = 0.01, KCTr = 1, KATr = 0.1, KATe = 0.01, KCTe =
0.3, Ker = 1, Kre = 0.1. λ = 0.001, μ = 1.29, θ = 0.5
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3 Discussion

Understanding the organising principles of T cell activation is key to knowing
how the adaptive immune system works, when it will be effective and why it
sometimes fails, for example, why it is dampened during cancer. This is also key
to improving and devising new T cell-based prophylactics and therapeutics. In this
work, we explored the dynamic consequences of the two-signal requirement for T
cell activation using a novel approach based on network motifs.

The two-signal theory posits that T cells require at least two signals to become
activated. One signal is in the form of an antigen (A) and the other in the form
of costimulation (C). Examining the nature of T cell activation via these two
signals, we showed that the two-signal theory induces a coherent type 1 feedforward
loop. This network motif behaves as a sign-sensitive delay element that responds
differently to signals depending on their sign (Fig. 2). A delay, TON , in the ON step
enables the T cell to decide whether or not to launch a response to potential health
threats. This delay depends inversely on the costimulation threshold, KCT as shown
in Eq. (1). The higher the costimulation threshold, the longer the delay. On the other
hand, absence of a delay when the antigen signal is switched off ensures there is no
wastage of resources and limits the tissue damage that would otherwise result from
a prolonged response.

As a signal-processing element, the sign-sensitive delay rejects any transient
activation signals in the form of antigen (A) and responds only to persistent signals,
whilst allowing a rapid termination of the immune response (Figs. 2 and 3). This is
important because persistent signals are more likely to represent real health threats
compared to short-lived signals. T cell responses consume the body’s resources (e.g.
ATP) and can be extremely inefficient if not required. Our results indicate that the
two-signal model for T cell activation provides a molecular mechanism for ensuring
that immune responses occur only when they are required and for the correct length
of time.

When the two-signal model was combined with the interaction between the Te
and Tr cells, we found that they induce a coupled coherent-incoherent feedforward
loop (CCI-FFL). The CCI-FFL forms a multiple output feedforward loop, since
antigen (A) and costimulation (C) signals regulate the activation of more than
one type of cell. As the activation/inactivation signals vary with time, they pass
through different activation/inactivation thresholds. The CCI-FFL can thus generate
temporal orders of T cell activation/inactivation depending on the respective
thresholds. We predict a similar temporal regulation of T effector and T regulatory
cells by antigen and costimulation, which can prevent immune exhaustion during
chronic infections like HIV/AIDS.

In Fig. 5, we observe a delay in the initial activation of both Te and Tr cells
since both induce a C1-FFL individually. This is because Te and Tr have different
costimulation thresholds, and hence they wait for different lengths of time after the
antigen signal has been turned on to become activated. In remarkable concordance
with this theoretical result are experimental data showing that the costimulation
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threshold for Tr is much higher than that for Te [36], implying that Te would
normally become activated first. The temporal separation between the activation of
Te versus Tr should increase as the difference KCTr − KCTe increases. The existence
of this temporal separation makes sense biologically because Te should not be
suppressed by Tr before it has had the chance to clear an infection. Therefore, our
results indicate that the difference between TON (Te) and TON (Tr) defines a critical
time window within which Te can function unopposed by Tr. Our analysis thus
illuminates an important functional consequence of the previously observed [36]
difference in costimulation threshold between Te and Tr cells.

In conclusion, we applied network science and mathematical modelling to
investigate the dynamical behaviour of T cell regulation. We focused on the classical
version of the two-signal theory of T cell activation, leaving the more complex
consideration of coinhibition for the future. For now, coinhibitory receptors can be
encapsulated in the existing model as costimulation threshold setters. We started by
analysing a novel structural representation of the two-signal requirement, in terms
of C1-FFL. We then analysed the effect of coupling the two-signal requirement to
immune regulation, which induced a coupled coherent-incoherent feedforward loop.
Mathematical analysis of these regulatory structures provided new insight about
how the two-signal requirement ensures that T cell activation is both targeted and
efficient.

4 Methods

4.1 Mathematical Model of the C1-FFL with AND Logic Gate

We model mathematically the T cell activation dynamics governed by the C1-FFL
motif depicted in Fig. 1. The scope of our simple model spans both molecular
(A and C) and cellular (Te, Tr) levels. As recent studies [67] have shown, at a
single cell level, T cell response is mostly all-or-none, with minimal dependency on
antigen concentration. In these studies, the strength of internally perceived signal
correlates mainly with antigen affinity. As a result, we use a digital (ON-OFF)
antigenic signal for C and Te, implemented as a Heaviside function of the prevailing
antigen concentration. The changes with time for concentrations of A, C and Te are
described by the following system of ordinary differential equations:

dA

dt
= λA − μAT e

dC

dt
= βc

[H(A)]n

Kn
AC + [H(A)]n

− αcC

dTe

dt
= βTe

(
[H(A)]n

Kn
AC + [H(A)]n

Cn

Kn
CTe

+ Cn

)
− αTeTe, (2)
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where H(A) could be set to any reasonable function of A such as the modified
Heaviside function,

H(A) = βA

{
0, A < mA

1, A � mA
. (3)

Parameters KAC and KATe are the activation coefficients of C by A and Te,
respectively, KCTe is the activation coefficient of Te by C, and βc and βTe are the
maximal production rates of the costimulatory signal and the T cell, respectively.
mA represents the T cell detectable antigen concentration, whilst βA is the maximum
magnitude of antigenic signal generated following TCR engagement with cognate
antigen. Before T cell activation and response, the antigen grows uncontrollably at
a rate λ. After activation, the antigen is cleared by interactions with the generated
immune response at a rate μ, hence the mass action term A Te. However, since A
affects both C and Te through a form of the Hill function, its effect on the Te response
is bounded, and so is the effect of varying λ on where the Te response eventually
converges (Fig. S1). We also assume that the production of C and Te is balanced by
the decay rate αc and the cell death rate αTe, respectively. Consider a case when the
antigen signal is ON for a time period t1 ≤ t < t2. If this is the initial instance of an
infection, then until t = t1 the costimulation signal C is off, i.e. C = 0. At t = t1, A
switches ON (A = 1), whilst at t = t2, A switches off (A = 0 again). Therefore, the
dynamics of C are given by

C = βc

αc

(
1

Kn
AC + 1

) (
eαct2 − eαct1

)
eαct . (4)

The functional form f (A) = [H(A)]n/
(
Kn

AC + [H(A)]n
)

found in Eq. (2) is
called the Hill function and represents the probability of activation of C for a given
amount of A. The parameters KAC and n represent the activation coefficient and the
Hill coefficient, respectively. The activation coefficient corresponds to the amount
of A that generates a 50% chance of activation, whilst the Hill coefficient represents
the effective number of molecules of A required to activate C. When H(A) >> KAC,
f (A) → 1 and when H(A) << KAC, f (A) → 0. The higher the value of n, the
more the Hill function behaves like a step function. In this scenario, KAC behaves
like a threshold value for the ON and OFF regulatory influence of A. When n is
close to zero, however, the Hill function can still be approximated by the logic
function f (A) = θ (A > KAC), which is equal to one when the amount of A is greater
than KAC, and zero otherwise.

4.2 Mathematical Model of the CCI-FFL

We use the same approach as above to model the T cell activation dynamics
governed by the CCI-FFL. The rates of change of Te and Tr are described by the
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following system of ordinary differential equations:

dTe

dt
= βTe

(
[H(A)]n

Kn
ATe

+ [H(A)]n
Cn

Kn
CTe

+ Cn

Kn
re

Kn
re + T n

r

)
− αTeTe

dTr

dt
= βTr

(
[H(A)]n

Kn
ATr

+ [H(A)]n
Cn

Kn
CTr

+ Cn
+ θ

T n
e

Kn
er + T n

e

)
− αTr Tr . (5)

Equation (5) takes into account the OR input function for the activation of Tr cells
by Te-produced IL-2; IL-2 is inadequate for maximal activation, hence the parameter
0 < θ < 1. Parameters β represent the maximal production rate of each entity, Kij

is the activation/suppression coefficient of entity j by activating/suppressing factor i
and α are the respective decay rates.

A.1 Electronic Supplementary Material

Fig. S1 Dynamics of C1-FFL with an AND gate input function and an exponentially
increasing antigen signal. Activation of T effector cells waits until the costimulation
signal passes the activation threshold. As expected, based on Eqs. (1) and (5),
the waiting time decreases as the growth rate of the antigen signal increases due
to a corresponding increase in the costimulation signal. In addition, the point at
which the Te response converges increases with the growth rate up to a maximum.
Parameter values used were: βc = βTe = αc = αe = KAC = KATe = KCTe = μ = 1,
n = 4. λ was set to 0.1 (a), 0.5 (b) and 0.9 (c) (PNG 55 kb)
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Modeling Ebola Transmission Dynamics
with Media Effects on Disease and
Isolation Rates

Erick Oduniyi, Brad Gibbons, Myunghyun Oh, and Folashade B. Agusto

1 Introduction

The Ebola Virus Disease (EVD) is a reoccurring epidemic that affects both human
and non-human species. EVD has appeared infrequently since the late 1970s where
the first Ebola outbreak emerged in 1976 near remote villages in Central and East-
Central Africa; now considered the Democratic Republic of Congo and South
Sudan, respectively [39]. There are currently four identified species of Ebola that
cause EVD in humans: Zaire Ebola virus; Sudan virus; Taï Forest Ebola virus;
and Bundibugyo Ebola virus. Of these four, the Zaire Ebola virus (also known as
EBOV) has the highest case fatality rate and is responsible for the most recent 2014–
2016 West Africa Ebola epidemic [21]. The EVD is transmitted by direct contact
with bodily fluids (e.g., blood, saliva, sweat, vomit, etc.), or semen of an infected
or deceased individual [10]. Infected individuals are confirmed through laboratory
diagnostics testing, in which EVD is identified by reverse transcriptase-polymerase
chain reaction (RT- PCR), immunostaining techniques, or by antigen-capture
enzyme-linked immunosorbent assay (ELISA). Today, diagnostic test makes use
of RT-PCR together with ELISA to provide successful identification of EVD
[27, 31, 38].

After the 2014–2016 West African Ebola epidemic, the World Health Organi-
zation (WHO) estimated more than 28,000 confirmed cases and 11,300 confirmed
deaths. According to the Centers for Disease Control and Prevention (CDC), this
was the largest Ebola outbreak in history and prompted health organizations and
communities to reassess disease surveillance systems and public health infrastruc-
ture [6, 17, 36, 39]. Not until recently, there was no specific treatment or federally
approved drug or vaccine used in the treatment or prevention of the disease, as
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such, stopping EVD is nontrivial. The standard practice from CDC and WHO is
to prescribe control measures (or intervention packages) as a contingency plan
for future Ebola epidemics. Such measures include detailed case management and
contact tracing, quarantine procedures, safe burials practices, and more recently
intense media campaigns and other forms of community engagement.

Public health researchers and mathematical epidemiologist commonly utilize
compartmental models to assess various control measures on their effectiveness in
reducing the final epidemic size. Compartmental models of EVD take into account
the biology of the disease, and, environmental characteristics like population
size and temperature. In the end, researchers work to reveal insights on future
intervention strategies for Ebola [18, 36]. For example, incorporating quarantine
or isolation compartments can be used to understand the impact of strict quarantine
[15], and sexually-infectious compartments can be used to account for the viruses
persistence within sexual organs [1, 3]. Additionally, epidemiological research also
considers how media campaigns work to engage and inform the population about
Ebola, potentially influencing the epidemic’s outcome [11, 20, 23, 28, 36, 37]. In
these models, media campaigns are commonly defined as some decreasing function
[20, 24].

In this paper, we develop a system of ordinary differential equations to describe
the transmission dynamics of EVD; the model incorporates sexual transmission, and
media campaigns as a means of community engagement. Our goal is to investigate
the consequences of treatment facilities with the incorporation of an isolation
compartment with limited beds, as well as, the influence of mass media effects.
Accordingly, we assess the effectiveness of these constraints and control measures
as a means to highlight the potentially positive role of media in modern-day disease
transmission and we only carry out basic theoretical stability analysis.

2 Model Formulation

The compartmental model we develop in this paper is composed of the following
groups, which are subdivided by the diseases status of individuals within the
population: susceptible individuals, S(t), exposed individuals, E(t), infectious
individuals, I1(t), sexually-infectious individuals, I2(t), isolated individuals, L1(t),
individuals that are not yet isolated L2(t), recovered individuals, R(t), and deceased
individuals due to the infection, D(t). The total population size is given by N(t),
where

N(t) = S(t) + E(t) + I1(t) + L1(t) + L2(t) + I2(t) + R(t) + D(t).

The total population N(t) consists of the total living population, NL(t), and
individuals in the population who are deceased due to the infection, D(t). These
deceased individuals are highly infectious, the virus can live in and on the deceased
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for up to 7 days [16, 25]. Thus, N(t) = NL(t)+D(t), where NL(t) = S(t)+E(t)+
I1(t) + L1(t) + L2(t) + I2(t) + R(t).

Furthermore, our model takes into account individuals in the population who
are infectious and have recovered but still have the virus in their sexual organs.
The model also considers individuals that are infectious but isolated in treatment
centers, and deceased individuals that are infectious. Formally, the model describing
the transmission dynamics of EVD is given by the following system of equations

dS

dt
= π − λ(t)S(t) − μS(t) (1)

dE

dt
= λ(t)S(t) − (σ + μ)E(t)

dI1

dt
= σE(t) − (ε + μ + δ1)I1(t)

dL1

dt
= pεI1(t) + ω2L1(t) − (ω1 + κ1 + μ + δ2)L1(t)

dL2

dt
= (1 − p)εI1(t) + ω1L2(t) − (ω2 + κ2 + μ + δ1)L2(t)

dI2

dt
= κ1L1(t) + κ2L2(t) − (γ + μ)I2(t)

dR

dt
= γ I2(t) − μR(t),

dD

dt
= δ1[I1(t) + L2(t)] + δ2L1(t) − νD(t),

where λ(t) is the force of infection which accounts for the risk of infection from the
living and the deceased population and is given by

λ(t) = β1[I1(t) + L2(t)] + β2I2(t) + β3L1(t) + β4D(t)

N(t)
.

The force of infection, λ(t), is weighted by the total population N(t) instead
of the total living population NL(t) since the deceased individuals contribute to
the infection in the community. The parameters β1, β2, β3, β4 in the force of
infection λ(t) are the effective transmission probability per contact due to infectious,
sexually-infectious, isolated, and the deceased individuals. The parameter σ is
disease progression rate at which exposed individuals become infectious, ε is the
isolation rate due to examination of an infected individual. The parameter p denotes
the fraction of infectious individuals that are isolated or quarantined, and (1 − p) is
the proportion of individuals who are not isolated. The parameter ω1 is the rate
at which individuals leave isolation and enter the non-isolated population. The
parameter ω2 is the rate at which individuals enter isolation from the non-isolated
population; during the outbreak, some individuals were known to have left the care
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units [3]. This could be due to efforts at contact tracing or simply by voluntary
efforts of the individual due to ill health. The parameters κ1 and κ2 are the rates
at which individuals become sexually-infectious. The parameter κ1 is the rate at
which isolated individuals move into the sexually-infectious class, we assume that
κ2 < κ1. The disease-induced death rates are denoted by δ1, and δ1. The rate δ2 is
the death rate due to EVD while in isolation, we assume that δ2 < δ1. Individuals
in the sexual-infectious class only have the virus in their sexual organs and do not
die from the disease. The parameter γ is the recovery rate of the EVD infectious
who recover from the infection; finally, the rate at which the infectious deceased
are cremated or buried in the population is ν. The model variables and parameters
descriptions are given in Table 1 and the model flow diagram is shown in Fig. 1.

Table 1 Description of the variables and parameters for the Ebola model (1)

Variable Description

S(t) Susceptible individuals

E(t) Exposed individuals

I1(t) Infectious individuals

L1(t) Isolated individuals

L2(t) Individuals that are not isolated

I2(t) Sexually-infectious individuals

R(t) Recovered/removed individuals

D(t) Deceased individuals

π Natural birth rate

β1 Transmission probability due to infectious individuals

β2 Transmission probability due to sexually-infectious individuals

β3 Transmission probability due to isolated-infectious individuals

β4 Transmission probability due to deceased-infectious individuals

σ Disease progression rate

ε Isolation rate

κ1 Rate at which infectious individuals in isolation become sexually-infectious individuals

κ2 Rate at which unisolated infectious individuals become sexually-infectious individuals

p Fraction of population isolated

ω1 Rate of isolated individuals moving into non-isolated population

ω2 Rate of non-isolated moving into isolated population

h Fraction of symptomatic individuals who recovered

γ Recovery rate

μ Natural death rate

δ1 Disease-induced death rate

δ2 Disease-induced death rate in isolation

ν Burial or cremation rate of infectious dead
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Fig. 1 Flow diagram of the Ebola model (1)

2.1 Model Analysis

The basic qualitative properties such as the positivity and boundedness of solutions,
including the analysis of the biologically-feasible invariant region, are stated in
Appendix. In the next subsection, the conditions for the existence and stability of
the equilibria of the model (1) are stated.

2.1.1 Stability of the Disease-Free Equilibrium (DFE)

The Ebola model (1) has a disease-free equilibrium (DFE). The DFE is obtained by
setting the right-hand sides of the equations in the model (1) to zero, which is given
by

E0 = (S,E, I1, L1, L2, I2, R,D) =
(

π

μ
, 0, 0, 0, 0, 0, 0, 0

)
.

The stability of E0 can be established using the next generation operator method on
system (1). Taking E, I1, L1, L2, I2, and D as the infected compartments and then
using the notation in [32], the Jacobian F and V matrices for new infectious terms
and the remaining transfer terms, respectively, are defined as:
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F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 β1 β3 β1 β2 β4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g1 0 0 0 0 0
−σ g2 0 0 0 0
0 −p ε g3 −ω2 0 0
0 −(1 − p) ε −ω1 g4 0 0
0 0 −κ1 −κ2 g5 0
0 −δ1 −δ2 −δ1 0 ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the reproduction number is

R0 = ρ(FV −1)

= σ [εω1p+ε(1−p)g3+(g3g4−ω1ω2)]β1

g1g2(g3g4−ω1ω2)

+σε[p(κ1g4+κ2ω1)+(1−p)(κ2g3+κ1ω2)]β2

g1g2(g3g4−ω1ω2)g5
+σε[pg4+ω2(1−p)]β3

g1g2(g3g4 − ω1ω2)

+σ [pε(δ1ω1+g4δ2)+(1−p)ε(g3δ1+δ2ω2)+δ1(g3g4−ω1ω2)]β4

g1g2(g3g4−ω1ω2)ν
.

where ρ is the spectral radius and g1 = μ+σ , g2 = ε+μ+δ1, g3 = ω1+κ1+μ+δ2,
g4 = ω2 + κ2 + μ + δ1, g5 = γ + μ.

The reproduction number, R0, is the number of secondary infections in com-
pletely susceptible population due to infections from one introduced infectious
individual with Ebola. The reproduction number measures the average number
of secondary infections from four different groups, the infectious (in the infected
and non-isolated class), the sexually-infectious, isolated, and deceased individuals.
Further, using Theorem 2 in [32], the following result is established.

Lemma 2.1 The disease-free equilibrium (DFE) of the Ebola model (1) is locally
asymptotically stable (LAS) if R0 < 1 and unstable ifR0 > 1.

The implication of the reproduction number is that when R0 < 1, the disease
will be eliminated from the community, while if R0 > 1, the disease will persist
and continue to spread within the population.

2.2 Sensitivity Analysis

In order to determine the robustness of the model in relation to each parameter, a
sensitivity analysis was performed. Analysis of parameters can give insight into the
uncertainty an input may have and how this will affect the outcome of the model. To
determine system sensitivity to its parameters, the normalized forward sensitivity
index [7, 12, 14] given in Eq. (2) is used
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Fig. 2 Sensitivity index of the reproduction number, R0, of the Ebola model (1)

ϒRN
q = ∂R0

∂q
× q

RN

, (2)

where q represent the parameter of interest and R0 is the reproduction number of
the Ebola model (1). The sensitivity index is plotted in Fig. 2 using the parameter
values in Table 2. The figure shows β1 having the highest positive sensitivity index,
indicating that increase in β1 will increase R0 and subsequently, the disease burden.
This is followed by β3 which has a positive impact on R0. The parameter κ1 has
a negative sensitivity index, which will reduce the disease burden as the value of
κ1 increases. The other parameters impacting R0 are δ1, β4, ε, ω2, and κ2. The
parameters ω2, and κ2, although have a small negative sensitivity index, increase in
their values will still lead to a decrease in disease burden. On the other hand, the
parameters β2 and ω1, also small in value, will increase the disease burden. These
parameters can be impacted by the actions of the individuals in the community.

Of these parameters, we can directly influence the transmission probabilities
β1, β3, β4 and the transition rate ω2 via educational media campaigns to reduce
infection and to encourage infected individuals to seek treatment. Similarly, the
parameter ω1 can be influenced via educational media campaigns to reduce
infection by encouraging infected individuals to stay in treatment facilities. The
disease-induced death rate on the other hand, can be influenced by ensuring
adequate treatment measures to prevent death. The transition rates κ1 and κ2 cannot,
however, be directly influence by the actions of individuals in the community since
this is a natural course of the infection.

We explore in the next section the impact of media on the parameters ω1, ω2, and
ε. First we show in Fig. 3 the impact of varying these parameters on R0, as expected,
as values of ε and ω2 increases, the reproduction decreases. On the other hand
as the values of ω1 increase, R0 increases as indicated from the sensitivity index.
Furthermore, Fig. 3 unlike Fig. 2 shows the trend in R0 values as these parameter
values varies from 0–1. We expect that the inclusion of media will promote the
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Table 2 Parameters values of Ebola model (1) and Ebola media model (5)

Parameter Definition Values References

π Natural birth rate 0.0001149 [2]

β1 Transmission probability due to infectious 0.30 [5]

β2 Transmission probability due to sexually-
infectious

0.001 [1, 5]

β3 Transmission probability due to isolated-
infectious

0.080 [26]

β4 Transmission probability due to deceased-
infectious

0.0078 [35]

σ Disease progression rate 0.0250 [22]

μ Natural death rate 0.0001149 [4, 22]

ε Rate of isolation 0.5 [23, 35]

κ1 Rate of infectious in isolation becoming sexually-
infectious

0.05 Variable

κ2 Rate of infectious in isolation becoming sexually-
infectious

0.005 [35]

p Fraction of population isolated 0.75 [18]

ω1 Transition rate from isolated into the non-isolated
class

0.00024 [22]

ω2 Transition rate from non-isolated into isolated
class

0.0133 [22]

h Fraction of infectious individuals who recover 0.48 [4]

γ Recovery rate 0.017 [4, 11]

δ1 Disease-induced death rate 0.050 [18]

δ2 Death rate while in isolation 0.001 [18]

ν Burial or cremation rate of the infectious dead
individuals

0.005 Variable

b Number of beds Variable [2]

m Media effect [1.2 × 10−8, 5] [29]

β10, β11 Pre-media and post-media transmission probabili-
ties

0.2, 0.8 [11, 29]

β20, β21 Pre-media and post-media transmission probabili-
ties

0.2, 0.8 [11, 29]

β30, β31 Pre-media and post-media transmission probabili-
ties

0.2, 0.8 [11, 29]

β40, β41 Pre-media and post-media transmission probabili-
ties

0.2, 0.8 [11, 29]

μ0ω1 , μ1ω1 Pre-media and post-media number of transition
rate

0.15, 0.25 [11, 22]

into non-isolated class

μ0ω2 , μ1ω2 Pre-media and post-media number of transition
rate

0.15, 0.75 [22, 29]

into isolated class

μ0ε , μ1ε Pre-media and post-media isolation rate 0.27, 0.4 [22, 29]
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Fig. 3 Simulation of the reproduction number, R0, of the Ebola model (1) while varying ω1, ω2,
and ε

actions (either positively or negatively) of these parameters on the reproduction
number R0.

3 Ebola Model with Media Coverage Effects

One of the critical factors that exacerbated the recent West African Ebola crisis
was lack of media coverage during the early months of the outbreak. This initial
failure of media campaigns and health communication in countries like Guinea,
Liberia, and Sierra Leone is believed to be the result of underestimating the difficulty
in containing Ebola. Consequently, perceptions of Ebola as a local and global
health threat were dismissed until it was too late. Fortunately, by late 2015 various
international and national government agencies realized the importance of providing
awareness about the disease during the epidemic through timely, accessible, high-
quality media coverage [36, 37].

This national and global realization generated fears about infected individuals,
where even people outside of the West African region, such as the USA, may
have been unjustifiably concerned and eager to learn about the disease [28, 30,
40]. On the other hand, this realization highlights a media campaigns ability to
reduce the overall epidemic size through sensationalizing stories. Clearly, media
coverage in modern-day disease transmission is an important control measure to
incorporate into epidemiological models. Further, due to the worlds increasingly
interconnected nature [13], not only are media outlets dispensing news to the
public through television and radio broadcast, but individuals have the capability of
quickly reporting events as they arise via social media. To account for these media
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dynamics, researchers have proposed many different media formulations. Still, these
formulations usually take the form of either modifying the contact structures of
the disease model as a function of media effects [8, 9, 19, 20, 29, 33, 34], or
introducing into the model explicit media compartments that track individuals under
the presence of media [23], or by the use of statistical models involving media and
disease prevalence, which take advantage of large data sets from Twitter or Google
Analytics, or some combination of each of these component [20, 24].

Mass media has tremendous effect on the society; in regard to disease, its effect
maybe be positive resulting in a reduction in disease spread since individuals in
the community are avoiding contact with a possible infectious individual [8]. While
on the other hand, it effect maybe be negative leading to panic in the community
[8]. Thus, in our model, we modify the contact structure using a function with
media effects. First, we make the simplifying assumption that media is platform
independent and can be grouped together as mass media. Following Shen et al.
[29], we represent mass media and its influences by first augmenting the force of
infection using an exponentially decaying function given by

λM = β1(I1 + L2) + β2I2 + β3L1 + β4D

N
, (3)

where

β1 = β10 + (β11 − β10)e
−m(CI +CD), β2 = β20 + (β21 − β20)e

−m(CI +CD)

β3 = β30 + (β31 − β30)e
−m(CI +CD), β4 = β40 + (β41 − β40)e

−m(CI +CD),

where βi0 and βi1, i = 1, 2, 3, 4 are the pre-media and post-media infection rates.
That is the infection rates before and after the effect of media are apparent in
the community. CI and CD are cumulative number of infectious and deceased
individuals in the community, these are determined from the following equations.

dCI

dt
= σE + εI1

dCD

dt
= δ1(I1 + L2) + δ2L1.

Note that CI and CD are not epidemiological variables. Furthermore, the non-
negative parameter m induces the effect of media reported cumulative numbers
of infected cases and deaths in the community. If m = 0 or relatively small, the
infection rates and βi , i = 1, 2, 3, 4 are equal or close to the constant βi1. On
the other hand, if m > 0, there is increased awareness about the disease in the
community and the infection rate could be decreased to βi0 (< βi1) as the number
of accumulated infected cases CI or deaths CD increases as shown in Fig. 4a,
similar behaviors are observed for β2, β3, β4 and are not shown here. Then, the
force of infection λM incorporates the effects of media in reducing the contact



Modeling Ebola Transmission Dynamics with Media Effects on Disease and. . . 267

0 50 100 150

Time (days)

0.7

0.71

0.72

0.73

0.74

0.75

0.76
1

0 50 100 150

Time (days)

0.28

0.3

0.32

0.34

0.36

0.38

M

0 50 100 150

Time (days)

0.18

0.2

0.22

0.24

1M

0 50 100 150

Time (days)

(a) (b)

(c) (d)

0.16

0.18

0.2

0.22

2M

Fig. 4 Simulation of the functions showing media effect. (a) Transmission probability, βM , with
media effect; and (b) Isolation rate, εM , with media effect (c) Transition rate from isolated, ω1M

with media effect (d) Transition rate from non-isolated, ω1M , with media effect

between the healthy susceptible individuals and the infectious in the community
as the cumulative number of infected and deceased increases in the community.
Figure 4a shows the behavior of β1 as it decreases with media awareness in the
community.

More often than not, Ebola-affected communities have limited resources and
failing health infrastructures [36, 37]. As a result, the available health system is
unable to cope with outbreak-related emergencies; in particular, there are inadequate
number of hospital beds. We endeavor to reflect such a constraint by specifying a
limit on how many people the health-care units can isolate. Therefore, we assume
there is some minimum and maximum number of individuals the health-care units
can sustain due to limited infrastructure regarding hospital beds, denoted by b.
Further, we assume that these limitations in the number of available beds affect
the rate at which individuals are quarantined (ε) and affect the transitions rates ω1
and ω2. From the results of the sensitivity analysis, we see from Fig. 2 that these
parameters impact the reproduction number. We further assume that media can
impact these rates. Since ε and ω2 decrease R0, we propose an increasing media
related function that will reduce R0. Similarly, for ω1, we propose a decreasing
media related function that will reduce R0. Thus, based on these assumptions,
we use the following functions to capture media related isolation function εM ,
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and media related transition functions ω1M and ω2M which are represented by the
following functions:

ω1M = μ0ω1 + (μ1ω1 − μ0ω1)

(
b

b + NI

)
e−m(I1+L2+I2+L1+D) (4)

ω2M = μ1ω2 + (μ0ω2 − μ1ω2)

(
b

b + NI

)
e−m(I1+L2+I2+L1+D)

εM = μ1ε + (μ0ε − μ1ε)

(
b

b + NI

)
e−m(I1+L2+I2+L1+D),

where NI = I1 + I2 + L1 + L2 + D. The dynamic behavior of functions εM and
ω2M are depicted in Fig. 4b, d, and they are similar since we want to increase the
number of individuals going into the isolation units. The dynamics of ω1M is given
in Fig. 4c and it is similar to the dynamics of β1, since our goal is to reduce the
number of individuals leaving the isolation units.

Note that ω1M > 0 for NI > 0, b > 0. Furthermore, for arbitrarily small number
of infectious individuals NI , the media related transition function ω1M converges to
μ1ω1 , that is,

lim
NI → 0

ω1M = μ1ω1 > 0,

the maximum transition rate out of the isolated class before media manifests in the
community. Also, as the number of infectious individuals NI grows, the transition
function ω1M converges to ω1M , that is,

lim
NI →∞ ω1M = μ0ω1 > 0,

the minimum transition rate out of the isolation class as media manifests in the
community.

Consequences for an arbitrarily small number of infectious individuals NI , the
media related isolation function εM converges to μ0ε, that is,

lim
NI → 0

εM = μ0ε > 0,

the minimum isolation rate before the onset of media coverage. Also, as the
infectious individuals NI get larger, εM converges to μ1ε

lim
NI →∞ εM = μ1ε > 0,

the maximum number of individuals that are isolated as a result of media coverage.
Similarly, the media related transition function, ω2M , back into the isolation

class, converges to μ0ω2 , that is,



Modeling Ebola Transmission Dynamics with Media Effects on Disease and. . . 269

lim
NI → 0

ω2M = μ0ω2 > 0,

the minimum transition rate for small number of infectious individuals NI before
the onset of media coverage. And limNI →∞ ω2M = μ1ω2 > 0, the maximum
transition rate for large number of infections individuals NI as media effect
manifest.

Now, incorporating the media and limited infrastructure related function (3) and
(4) into the Ebola model (1), we have the following system of differential equations

dS

dt
= π − λMS(t) − μS(t) (5)

dE

dt
= λMS(t) − (σ + μ)E(t)

dI1

dt
= σE(t) − (εM + μ + δ1)I1(t)

dL1

dt
= pεMI1(t) + ω2ML1 − (ω1M + κ1 + μ + δ2)L1(t)

dL2

dt
= (1 − p)εMI1(t) + ω1ML2(t) − (ω2M + κ2 + μ + δ1)L2(t)

dI2

dt
= κ[L1(t) + L2(t)] − (γ + μ)I2(t)

dR

dt
= γ I2(t) − μR(t)

dD

dt
= δ2[I1(t) + L2(t)] + δ1L1(t) − νD(t).

Ebola model (5) with media effect is analyzed in a biologically-feasible region
� ⊂ R

8+,

� =
{
(S(t), E(t), I1(t), I2(t), L1(t), L2(t), R(t),D(t)) ∈ R

8+ : N(t) ≤ �

μ

}
.

Using the approach in Lemma A.2 in Appendix, we can state the following result:

Lemma 3.1 The region � ⊂ R
8+ is positively-invariant for the model (5) with non-

negative initial conditions in R
8+.

Furthermore, following Lemma A.3 in Appendix, the biologically-feasible
region, �L of all the living individuals in the population is positively-invariant.
This region is defined as

�L =
{
(S(t), E(t), I1(t), L1(t), L2(t), I2(t), R(t)) ∈ R

7+ : NL(t) ≤ �

μ

}
.
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The reproduction number, R0M
, of the Ebola model (5) is given as

R0M
= σ [u0εpV33 + u0εu1ω1

(1 − p) + (V44V33 − u1ω1
u0ω2

)]β11

V22g1(V44V33 − u1ω1
u0ω2

)

+σu0ε [p(κ2V33 + κ1u0ω2
) + (1 − p)(V44κ1 + κ2u1ω1

)]β21

V22g5g1(V44V33 − u1ω1
u0ω2

)

+σu0ε [u0ω2
p + V44(1 − p)]β31

V22g1(V44V33 − u1ω1
u0ω2

)

+{σ [pu0ε (V33δ1 + u0ω2
δ2) + (1 − p)u0ε (V44δ2 + δ1u1ω1

)

+δ1(V33V44 − u0ω2
u1ω1

)]β41}/V22g1ν(V44V33 − u1ω1
u0ω2

),

where g1 = σ + μ, g2 = μ + δ1, g3 = κ1 + μ + δ2, g4, g4 = κ2 + μ + δ1, g5 =
γ + μ, V2 = u0ε + g2, V3 = u1ω1

+ g3, V4 = u0ω2 + g4
The production number, R0M

, is the number of secondary infections in com-
pletely susceptible population due to infections from one introduced infectious
individual with Ebola. The reproduction number measures in a community with
media awareness the average number of secondary infections from four differ-
ent groups, the infectious (in the infected and non-isolated class), the sexually-
infectious, isolated, and deceased individuals. Further, using Theorem 2 in [32],
the following result is established.

Lemma 3.2 The disease-free equilibrium (DFE) of the Ebola model (5) is locally
asymptotically stable (LAS) if R0M

< 1 and unstable if R0M
> 1.

The implication of the reproduction number is that when R0M
< 1, the disease

will be eliminated from the community, while if R0M
> 1, the disease will persist

and continue to spread within the population.

4 Numerical Simulations

To illustrate the impact of media on the disease transmission the following values
were taken for the initial conditions S(0) = 1000, E(0) = 0, I1(0) = 3, L1(0) =
0, L2(0) = 0, I2(0) = 0, R(0) = 0, and D(0) = 0. The parameter values are
shown in Table 2. It should be pointed out that the initial conditions here are only of
theoretical sense to illustrate the impact of media.

Setting the same initial conditions and parameter values for both the non-media
Ebola model (1) and Ebola media model (5) we study the effect of media coverage
on disease burden in the community using the infectious, I1(t), isolated, L1, non-
isolated, L2, and the sexually-infectious, I2(t), classes.

As shown in Fig. 5, we see clearly the effect of media on disease burden in the
community. In Fig. 5a we see a higher number of infected at the peak infection
period in the model without media and infection peak earlier compared to the
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Fig. 5 Simulation of the Ebola model (5) without and with media effect (using media effect m =
1). (a) Infectious individuals; (b) Non-isolated individuals; (c) Isolated individuals; (d) Sexually-
infectious individuals. Parameter values used are as given in Table 2

model with media effect. This dynamics is also reflected in the non-isolated class
in Fig. 5b. Figure 5c, d on the other hand shows higher number of individuals in the
isolated and sexually-infectious classes in the model with media compared to the
non-media class. Similarly, we observe a shift in the peaks of these compartments
unlike the peaks in the infectious class. We also observed the same dynamics for the
susceptible, exposed and recovered classes are they are not shown here. This figure
shows the effect of public awareness in the community; the more people are aware
of the dangers inherent about a disease, the more careful they will become. Thus,
public awareness and media coverage will subsequently lead to a lower number of
infected in the community. This figure (Fig. 5) clearly shows the effect of media in
the community, it is, however, difficult to tease out the effect on every single part
of the system. In the next figure (Fig. 6), we will explore the effect of media on the
isolated and non-isolated classes since we have modeled some of the transition rates
into and out of these classes are functions of media.

In Fig. 6, we compare the difference between the isolated and non-isolated class
with the Ebola model (1) and the Ebola media model (5). We see (in Fig. 6a) that
the difference in the non-media model is smaller (about 180.8 individuals) than
the difference (about 700.5 individuals) in the media model (see Fig. 6b). This
difference shows the impact of media in encouraging non-isolated individuals in
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Fig. 6 Simulation of the Ebola model (5) using media effect m = 1. (a) Isolated and Non-
Isolate individuals without media effect; (b) Isolated and Non-Isolate individuals with media effect.
Parameter values used are as given in Table 2

the community to seek treatment, while encouraging those in isolation units to
stay and complete their treatments in the treatment facilities. In order words, fewer
individuals will seek treatment when there is weak media effect compared to when
there are strong media effects where more people seek treatment and remain in the
treatment units.

Public health is both a concern of governments and individuals. For this
reason, mass media will necessarily attempt to disseminate disease outbreak-related
information during an epidemic. For instance, although media coverage during
the 2014–2016 EVD crisis was nonuniform across many national and regional
communities, eventually the presence of media manifested [28, 36, 37]. Hence, we
turn from investigating the impact of introducing media coverage into a community,
to evaluating the impact of varying the level of media coverage on disease burden.
Figure 7 shows the comparison between two values media effect parameter m,
that is, m = 1 and m = 1.2 × 10−5. These values represent strong and weak
media effect. We observe in Fig. 7a that the number of infectious individuals peak
early when media effect is weak compared to when media effect is strong where
the disease peak later; furthermore, the number infectious is much smaller with
strong media effect. We observe the same dynamics in Fig. 7b among non-isolated
individuals, isolated, and sexually-infectious individuals. The number of individuals
in isolated and sexually-isolated groups are more when media effects is stronger
m = 1 compared to when media effect is weak m = 1.2 × 10−5.

Next, we also compare the difference between the isolated and non-isolated
classes using the Ebola media model (5) with weak and strong media effect, that
is, m = 1 and m = 1.2 × 10−5 (see Fig. 8). We see, in Fig. 8a, that the difference
in the infectious class under weak media effect is smaller (448.8 individuals) than
the difference (700.5 individuals) in the infectious under strong media (see Fig. 7b).
This difference as earlier observed shows the impact of media in encouraging non-
isolated individuals in the community to seek treatment, while encouraging those
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Fig. 7 Simulation of the Ebola model (5) using weak and strong media effect m = 1.2 × 10−5

and m = 1. (a) Infectious individuals; (b) Non-isolated individuals; (c) Isolated individuals; (d)
Sexually-infectious individuals. Parameter values used are as given in Table 2
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Fig. 8 Simulation of the Ebola model (5) using weak (m = 1.2 × 10−5) and strong media effect
(m = 1). (a) Isolated and Non-Isolated individuals with weak media effects; (b) Isolated and
Non-Isolated individuals with strong media effects. Parameter values used are as given in Table 2
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in isolation units to stay and complete their treatments in the treatment facilities. In
order words, fewer individuals will seek treatment when there is weak media effect
compared to strong media effects where we see more people seeking treatment.

5 Conclusion and Discussion

In this paper, we formulated a deterministic model that uniquely incorporate
isolation of the infectious in the community, and non-isolated individuals. We
assume these individuals can self-discharge themselves from the isolation units, as
was observed during the 2014 West African Ebola outbreak. Following the life-
history of the disease, we include the sexually-infectious individuals who have
recovered from the infection and cleared the virus from their blood; however, the
virus remains in their sexual and other vital organs of their body and is infectious
to susceptible individuals following any sexual contact. Results from our basic
theoretical analysis show that the Ebola model is locally asymptotically stable when
the reproduction number is less that one and unstable otherwise.

We carried out a sensitivity analysis to determine the impact of each parameter
on the reproduction. We found that the parameters β1, β3, β4, ε, ω2, κ , and δ1
have the highest impact on the reproduction number. These parameters have positive
and negative sensitivity index that will increase or reduce R0 depending on the
sign of the sensitivity index. Of these parameters, ω1, ω2, and ε can be directly
influenced by educational media campaigns. Thus, we uniquely incorporate into the
Ebola model the effect of media on these parameters.

Simulations of this model broadly showcase how the presence of media cam-
paigns in a community reduces the disease burden. In particular, our model shows
that as the quantity of media campaigning increases, the peak of the epidemic is
delayed, and produces fewer number of infectious individuals, and an increase
in the number of isolated individuals; subsequently leading to fewer EVD-related
deaths (not shown in our simulation). On these accounts, our model lends itself
to interpreting media as a competent control measure on EVD. More specifically,
media campaigning works to reduce the rate at which people become infected and
increase the rate at which people seek help and treatment, and therefore the rate
they recover from the infection. Furthermore, media campaign also encourages
individuals in the treatment units or facilities to stay and complete their treatment.

Media coverage, whether it is through social media or radio and television
broadcast, informs the populace about disease symptoms and treatments, which
is vital to understanding the transmission of the disease. Indeed, the 2014–2016
Ebola epidemic showcased the importance of prompt and quality health care
communication at the global, national, and local levels. As was observed during
the 2014 outbreaks some communities initially underestimated the extent and
seriousness of the disease, but as the CDC and WHO began to highlight the
case fatalities, the seriousness became apparent and the importance of spreading
information about the epidemic increased.
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Thus, we have assumed that mass media encourages healthier behavior and
thereby reducing the number of confirmed cases. However, most Ebola epidemic
models do not account for the effect of media in their formulation. Hence, to
adequately represent the impact of media coverage it is vital to incorporate into
these models data on Ebola-related tweets, Ebola segments on the nightly news,
and the amount of airtime given Ebola during the 2014–2016 epidemic. Additional
model insights may even be driven by inquiries related to how different West African
countries utilize media platforms and their respective preferences for disseminating
epidemic related information.

In our model we have assumed that media coverage has a positive effect on
reducing disease transmission and encouraging positive behavior towards seeking
treatment and remaining in treatment facilities. However, that is not always the
case, media could have a counter negative effect; for instance, media could promote
misinform leading to mistrust around government health engagement. Hence, it will
be worthwhile to incorporate the negative consequences of mass media into these
epidemic models.

Finally, this current study has relied on existing literature to parameterize the
model. In a future work we will explore ways to fit this model to data so as to
determine vital model parameters, particularly the media related parameters.

Appendix: Basic Qualitative Properties

Positivity and Boundedness of Solutions

For the Ebola model (1) to be epidemiologically meaningful, it is important to prove
that all its state variables are non-negative for all time. In other words, solutions of
the system (1) with non-negative initial data will remain non-negative for all time
t > 0.

Lemma A.1 Let the initial data F(0) ≥ 0, where F(t) = (S(t), E(t), I1(t), L1(t),

L2(t), I2(t), R(t), D(t)). Then the solutions F(t) of the Ebola model (1) are non-
negative for all t > 0. Furthermore

lim sup
t→∞

N(t) ≤ π

μ
,

and

N(t) = S(t) + E(t) + I1(t) + L1(t) + L2(t) + I2 + R(t) + D(t).

Proof Let t1 = sup{t > 0 : F(t) > 0 ∈ [0, t]}. Thus, t1 > 0. It follows from the
first equation of the system (1) that

dS

dt
= π − λ(t)S − μS
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which can be re-written as

d

dt

{
S(t) exp

(∫ t1

0
λ(ζ )dζ + μt

)}
= π exp

(∫ t1

0
λ(ζ )dζ + μt

)
.

Hence,

S(t1) exp

(∫ t1

0
λ(ζ )dζ + μt1

)
− S(0) =

∫ t1

0
π exp

(∫ p

0
λ(ζ )dζ + μp

)
dp

so that,

S(t1) = S(0) exp

[
−
(∫ t1

0
λ(ζ )dζ + μt1

)]

+ exp

[
−
(∫ t1

0
λ(ζ )dζ + μt1

)]∫ t1

0
π exp

[(∫ p

0
λ(ζ )dζ + μp

)]
dp

> 0.

Similarly, it can be shown that F > 0 for all t > 0.
For the second part of the proof, note that 0 < S(0) ≤ N(t), 0 ≤ E(0) ≤

N(t), 0 ≤ I1(0) ≤ N(t), 0 ≤ I2(0) ≤ N(t), 0 ≤ L1(0) ≤ N(t), 0 ≤ L2(t) ≤
N(t), 0 ≤ R(t) ≤ N(t), 0 ≤ D(t) ≤ N(t).

Adding components of the model (1) gives

dN(t)

dt
= π − μN − (ν − μ)D (A.1)

≤ π − μN.

Hence,

lim sup
t→∞

N(t) ≤ π

μ

as required.

Invariant Regions

The Ebola model (1) will be analyzed in a biologically-feasible region as follows.
Consider the feasible region

� ⊂ R
8+,
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with,

� =
{
(S(t), E(t), I1(t), L1(t), L2(t), I2(t), R(t),D(t)) ∈ R

8+ : N(t) ≤ �

μ

}
.

Lemma A.2 The region � ⊂ R
8+ is positively-invariant for the model (1) with

non-negative initial conditions in R
8+.

Proof It follows from summing equations of model (1) that

dN(t)

dt
= π − μN − (ν − μ)D

≤ π − μN.

Hence,
dN(t)

dt
≤ 0, if N(0) ≥ π

μ
. Thus, N(t) ≤ N(0)e−μt + π

μ
(1 − e−μt ). In

particular, N(t) ≤ π

μ
.

Thus, the region � is positively-invariant. Furthermore, if N(0) >
π

μ
, then either

the solutions enter � in finite time, or N(t) approaches
π

μ
asymptotically. Hence,

the region � attracts all solutions in R
8+.

Following [22], we can also show that the biologically-feasible region, �L of all
the living individuals in the population, is positively-invariant. This region is defined
as

�L =
{
(S(t), E(t), I1(t), L1(t), L2(t), I2(t), R(t)) ∈ R

7+ : NL(t) ≤ �

μ

}
.

This leads to the following lemma:

Lemma A.3 The region �L ⊂ R
7+ is positively-invariant for the model (1) with

non-negative initial conditions in R
7+.

Proof Summing the equations for the living individuals in model (1) we have

dNL(t)

dt
= π − μNL − δ(I1 + L1 + L2)

≤ π − μNL,

where δ = min{δ1, δ2}.
Hence,

dNL(t)

dt
≤ 0, if NL(0) ≥ π

μ
. Thus, NL(t) ≤ NL(0)e−μt + π

μ
(1 − e−μt ).

In particular, NL(t) ≤ π

μ
.



278 E. Oduniyi et al.

If NL(0) >
π

μ
, then either the solutions enter �L in finite time, or NL(t)

approaches
π

μ
asymptotically. Hence, the region �L is positively-invariant and

attracts all solutions in R
7+.
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