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Abstract. Tools in the form of methodology and software for the numerical
study of the thermal-elastoplastic state of coke-pitch composites using the
example of isostatic graphite production technology have been developed.
A closed mathematical formulation and a method for numerically solving an
elastoplastic problem with isotropic hardening based on an implicit inverse
mapping algorithm are considered. Using the finite element method, the cor-
responding program code was developed and verified. A comparison of the
results with the data of numerical analysis obtained using the ANSYS
Mechanical APDL software product shows that, with isotropic hardening, the
maximum discrepancy does not exceed 1.13%, and for ideal plasticity, it is no
more than 3.58%. The calculations of the thermal-elastoplastic behavior of the
coke-pitch composite in the technological stage of the production of isostatic
graphite blanks are performed. It is shown that in the case of non-compliance
with the temperature regimes at the initial stages of roasting, plastic deforma-
tions occur in the isostatic graphite blanks, which lead to cracking and deteri-
oration of the uniformity of the physical properties of the finished products.
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1 Introduction

One of the composite materials with properties close to isotropic can include coke- pitch
mixtures, which are the basis for the production of isostatic graphite (IG) [1, 2]. The
composition of these mixtures includes pitch (matrix) and fine (30–150 lm) or fine-
grained (10–30 lm) filler – coke [3, 4]. Owing to the uniqueness of the physicochemical
properties, isostatic graphite has been extremely widely used in various fields of science
and technology: from metallurgy and mechanical engineering to atomic and renewable
energy [5, 6]. The technological cycle of industrial production of isostatic graphite is
divided into the following stages: the first stage is the selection, preparation of raw
materials, the preparation of a coke-pitch mixture (composite), as well as the isostatic
pressing of “green” blanks, the second stage is the burning of blanks and the third is
graphitization [4, 6]. The plastic properties of the composite material for the production
of isostatic graphite are shown at the stages of pressing and burning [4, 7].
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2 Literature Review

Available literature does not contain information on the results of modeling the elastic-
plastic behavior of coke-pitch composites at the stages of the production of isostatic
graphite blanks, and the mechanical properties are mainly given in the certificates of
manufacturers and only for the finished product, which may be associated with the high
commercial potential of this technology. In [7, 8], based on well-known analytical
solutions for the normal components of the thermal stress tensor in a cylindrical body,
the limiting radial temperature differences in composite graphite billets were estimated
at the burning stage.

One of the first significant works devoted to implicit algorithms for solving
elastoplastic problems is an article by Simo and Taylor [9], which introduced such
important concepts as sequential tangential operators and the inverse mapping algo-
rithm. It is shown that for the case independent of the speed of the elastoplastic behavior
of the material, the so-called inverse mapping algorithms ensure that the quadratic
velocity of the asymptotic convergence of the schemes of iterative solutions based on
the Newton method is preserved. In this work, examples of numerical solutions of
problems with isotropic and kinematic hardening for the associative flow law are given,
as well as a problem with the non-associative Drucker-Prager flow law.

The theoretical foundations for solving a wide class of elastoplastic problems using
various modifications of the inverse mapping algorithm are most fully described in [10,
11]. The paper [12] presents a mathematical formulation of the problem of the elastic-
plastic state of bulk material based on the classical Drucker-Prager model. Using the
inversemapping algorithm, numerical experimentswere carried out using an example of a
material characterized by an associative flow law for various values of the angle of repose.

In the considered works [9–12], there are no closed formulations of the problems of
thermo-elastic plasticity of composite materials and examples of their numerical
implementation that could be directly applied to improve the technology for producing
isostatic graphite.

In connection with the foregoing, this work is aimed at developing tools for the
numerical study of the elastoplastic state of coke-pitch composites using isostatic
graphite technology.

3 Research Methodology

3.1 Mathematical Statement of the Problem

According to the incremental theory of plasticity, the mathematical model of the iso-
tropic material independent of the speed of the elastoplastic behavior of the isotropic
material includes the equilibrium equation, the generalized Hooke law, and the geo-
metric equation written through increments of physical quantities [10–12]:

ð1Þ
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where is symmetric stress increment tensor of the second rank, Pa; q is density,

kg/m3; b
:

is vector increment of mass forces, N/kg; E is the modulus of elasticity under
uniaxial tension (compression), Pa; m is Poisson’s ratio; is symmetric increment
tensor of the total deformations of the second rank; bI is unit tensor of the second rank;
trðÞ is tensor trace operator; is increment tensor of initial stresses, Pa; are the
elastic and plastic components of the tensor of the increment of total deformations ,
respectively; u

:
is the displacement increment vector, m.

In the case of isotropic hardening, the material yield condition takes the following
form [10, 11]

F br; epleq� �
¼ req � ry ry0; e

pl
eq

� �
; ð2Þ

where F is the function of the surface fluidity of the material; req is Mises equivalent

stress, Pa; ry ry0; epleq

� �
is yield point of the material, taking into account isotropic

hardening according to the linear law, Pa; epleq is Mises equivalent plastic deformation;
ry0 is the initial value of the yield strength of the material, Pa.

The initial conditions for (1) and (2)

ð3Þ

The boundary conditions for (1) and (2):
– displacement vector

ujSu¼ 0; ð4Þ

where Su is the surface (or surface point) on which the components of displacement
are specified, m2;

– symmetry

n � ujSsu¼ 0; ð5Þ

where n is the vector of the external normal to the surface of the body; Ssu is surface
symmetry of the body, m2;

– external pressure

br � nð Þ � njSp¼ p; ð6Þ

where p is the external pressure set on the surface of the body Sp, Pa.

3.2 The Methodology of Numerical Research

Consider the theoretical foundations of the implicit Return-Mapping Algorithms [10,
11] using the example of solving the problem of the elastic-plastic behavior of isotropic
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material. In the case of the occurrence of elastoplastic deformations in the material,
taking into account the temperature load, elastic stresses are determined by the equation

br ¼ 4bC : betr � bepl � beT� �
; ð7Þ

where is the fourth-rank tensor of the elastic constants of the material, Pa; betr is a
tensor of test (full) deformations of the second rank, which is determined in the
approximation of an elastic medium; beT b; T ; Tref

� �
is temperature strain tensor; b is

coefficient of linear thermal expansion (CLThE), K−1; T ;Tref are the current absolute
temperature and the absolute reference temperature, respectively, K.

Under the associative law of plastic flow, the increment of plastic deformations is
determined by the relation

Dbepl ¼ Dk bm; ð8Þ

where Dbepl is an increment of plastic deformation at the i-th step of loading; Dk is the
scalar associative factor (plasticity coefficient), which is determined by the formula

ð9Þ

where bm is the derivative of the plasticity function (2) with respect to the stress tensor;
h is hardening module, Pa.

Using the inverse Euler method, Eq. (7), taking into account (8) and (9) for kþ 1
the loading step, can be easily transformed to

ð10Þ

where brkþ 1 is the elastic stress tensor at the loading step, Pa; brtr is test stress tensor
determined in the approximation of an elastic body, Pa.

Formula (10) describes the mapping of the test stress tensor in the direction of the
yield surface F. Therefore, this method of solving the elastic-plasticity problem is
called the inverse mapping algorithm [10].

System of Eqs. (10), taking into account the symmetry of the stress tensor, has
seven unknowns, i.e. six independent components brtr and plasticity coefficient Dk. In
this regard, to close the system of Eqs. (10), it is necessary to supplement it with a
scalar Eq. (2) of the form
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F brkþ 1;Dk
� � ¼ 0: ð11Þ

Equation (11) ensures the fulfillment of the yield condition at the end of each k-th
stage of loading.

To apply the Newton method, the nonlinear system of Eqs. (10), (11) must be
rewritten in the residual format (12). Moreover, to represent the tensors brkþ 1, brtr andbm in the form of vectors, it is necessary to make the transition to six-dimensional
space, taking into account their symmetry. This makes it possible to replace tensors of
the second rank brkþ 1, brtr and bm with the corresponding vectors rkþ 1, rtr and m with

six components, and instead of using the tensor of the fourth rank , use the tensor of

the second rank of elastic constants bDel of dimension six:

rr ¼ rkþ 1 � rtr þDkkþ 1 bDel � m rkþ 1
� �

;

rF ¼ F rkþ 1;Dkkþ 1� �
:

(
ð12Þ

To solve the system of nonlinear Eqs. (12), Newton’s method (13) or linearization
by Newton’s method (14) are used, the iterative procedures of which are respectively
written as follows:

rkþ 1
jþ 1

Dkkþ 1
jþ 1

 !
¼ rkþ 1

j

Dkkþ 1
j

 !
�

@rr
@r

@rr
@Dk

@rF
@r

@rF
@Dk

" #�1
r jr
r jF

� �
; ð13Þ

or

@rr
@r

@rr
@Dk

@rF
@r

@rF
@Dk

" #
drkþ 1

j

dDkkþ 1
j

 !
¼ r jr

r jF

� �
;

rkþ 1
jþ 1

Dkkþ 1
jþ 1

 !
¼ rkþ 1

j

Dkkþ 1
j

 !
þ drkþ 1

j

dDkkþ 1
j

 !
: ð14Þ

Here, the index k refers to the loading step, and the index j refers to the number of
iterations according to Newton’s method.

The use of linearization of a system of equations of the form (14) and its solution by
the Gaussian elimination method instead of inverting the matrix in (13) using a unit
matrix allows significantly reducing the number of arithmetic operations at each iter-
ation step by approximately 2n n� 1ð Þ2, where n is the dimension of the system of
equations.

For k ¼ 1, the usual elastic problem with respect to complete displacements under
the boundary conditions (4)–(6) is solved and the tensor of test stresses is determined.
Further, in the part of the body in the elastoplastic state, tensors of the increment of
plastic deformations and elastic stresses are determined from solution (14) and the
initial stresses are found by the formula
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r0 kð Þ ¼ Dk kð Þ bDel �m kð Þ: ð15Þ

The following integration steps (1), (2) for k[ 1 are performed only with a load
with initial stresses (15), (16) under boundary conditions (4), i.e. without taking into
account external and internal load. In this case, the elastic problem is also solved and
the vector of increment of displacements Duk is determined and the components of the
vector of full displacements are determined, according to which new values of the
components of the test stress tensor are found. Then, from solution (14), new values of
the components of the tensors of the increment of plastic strains and elastic stresses are
determined for the part of the body in the elastoplastic state. Next, to perform the next
loading step, we find the tensor of the increment of initial stresses according to the
formula

r0 kð Þ ¼ Dk kð Þ bDel �m kð Þ � r0 k�1ð Þ: ð16Þ

The plastic strain tensor is determined by the formula

epl kð Þ ¼ epl k�1ð Þ þDk kð Þm kð Þ:

The criterion for the completion of calculations may be the fulfillment of one of the
conditions

Duk
�� ��� du or epl kð Þ

eq

��� ���� de:

To apply the described methodology to the problems of the elastoplastic state of
isotropic composite materials, it is necessary to determine their effective physical and
mechanical properties. For this, one can either use the additive relations [13] using the
known properties of the constituents (matrix and filler) of the composite or experi-
mentally determine the effective values of these properties [7].

Additive relations [13] have the general form

Pcomp ¼ PfVf þPmVm;

where Vf , Vm are the volume fractions of the filler and matrix, respectively; indices
comp, f, m relate to the composite, filler, and matrix, respectively; P is one of the
physical properties of the composite, filler, and matrix, respectively.

When solving the unbound thermo-elastic-plastic problem (7), which takes place in
IG technology, to determine the temperature field, it is necessary either to solve the
non-stationary (stationary) heat conduction problem with the corresponding initial and
boundary conditions [14] or to set the known temperature field in advance.

3.3 Software Implementation of the Calculation Method

For the numerical implementation of the above algorithm, the finite element method
(FEM) was used [9–12] and the Mathcad programming environment [15]. To build the
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geometry and tetrahedron mesh of the model, free open source code is used – a CAD
system for grid generation Gmsh [16]. To visualize the results of calculations of
physical fields, the free open software code ParaView was used [17]. Testing of the
developed program code for solving the problem of elastic-plasticity with isotropic
hardening was performed using an example of a material with the mechanical prop-
erties of carbon steel.

To fulfill the conditions on the yield surface (11) with an accuracy of 10–6 in each
plastic finite element (FE), iterations must be performed 6 times, and to achieve an
accuracy of 0.1% in determining the components of the displacement vector, 10–15
loading steps are required initial stresses when solving the global system of discrete
FEM equations.

Test. The problem of elasticity is taking into account the isotropic hardening of a
thick-walled cylinder with radii r1=r2 ¼ 0:05=0:08 m. Material is steel (E ¼ 2 � 105
MPa, m ¼ 0:3, ry0 ¼ 320 MPa, h ¼ 1:5 � 103 MPa). The pressure on the inner wall of
the cylinder is p¼ 150 MPa.

The grid convergence of the solution to the problem was determined by the double
recount method. As a result, it was found that the computational grid of the test
problem, consisting of 2041 linear tetrahedral FEs and 743 nodes, leads to an error in
the determination req of not more than 0.5%.

Table 1. Results of a comparison of solutions to the plasticity problem taking into account
isotropic hardening.

Type of solution us, m req, MPa eeleq epleq
ANSYS, nodes 774, FEs
– 2209

8.61 � 10−5–
0.000112

213–322 0.001064–
0.001608

0–
0.001217

Mathcad, nodes 743,
FEs – 2041

8.675 � 10−5–
0.00011204

215.3–
321.83

0.001076–
0.001607

0–
0.001218

Error, % 0.75–0.038 1.08–
0.053

1.13–0.06 0–0.08

Note: us ¼ uj j is the displacement vector module; req is Mises equivalent stresses; eeleq and e
pl
eq are

equivalent Mises elastic and plastic deformations, respectively.

Table 2. The results of a comparison of the solutions of the plasticity problem for ideal
plasticity.

Type of solution us, m req, MPa eeleq epleq
ANSYS, nodes 774,
FEs – 2209

8.62 � 10−5–
0.000113

213–320 0.001066–
0.0016

0–0.001128

Mathcad, nodes 743,
FEs – 2041

8.615 � 10−5–
0.0001111

212.8–320 0.001068–
0.00162

0–
0.00115825

Error, % 0.058–1.68 0.094–0 0.84–1.25 0–3.58
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The results of a numerical solution of the elastoplastic problem for cases of iso-
tropic hardening and ideal plasticity and their comparison with data obtained using the
ANSYS Mechanical APDL software product [18] are given in Table 1 and 2.

The results of numerical modeling of physical fields in solving the test problem of
elasticity using the developed software code confirm the possibility of its practical
application.

4 Results

The following are the results of a numerical analysis of the elastic-plasticity of coke-
pitch composite blanks in the production of isostatic graphite.

To conduct studies of thermo-elastic plasticity at the early stages of the burning of
IG blanks, the composition of the coke-pitch composite was used, including calcined
pitch coke as a filler with an average grain size of 15 lm and a matrix of high-
temperature pitch (HTP) in an amount of 40% (by weight) [7]. The softening tem-
perature of the HTP is 140 °C. Pitch coke is characterized by physical properties close
to isotropic [19], which positively affects the properties of the finished IG. The cal-
cination temperature of coke exceeds the burning temperature of the IG blanks, which
minimizes its shrinkage during the heat treatment. The physical properties of the coke-
pitch composite used in the calculations are given in Table 3.

In the calculations, the Poisson’s ratio, CLThE, the yield strength and the hardening
modulus of the IG blanks were taken equal to m ¼ 0:235, b ¼ 1:8 � 10� 4 K � 1,
ry0 ¼ 3 MPa and h ¼ 0 MPa, respectively. When heated, the composite material of
the IG blanks behaves differently: to the softening temperature of the pitch (matrices)
expand, and after the onset of destruction, accompanied by gas-fission, it shrinks with
the formation of semicoke and coke in the temperature range of more than 250 °C,
which leads to an increase in its density [7, 20].

Table 3. Physico-mechanical properties of IG blanks at the burning stage [7] (composition:
calcined coke (15 lm) + 40% HTP).

t, °C q, kg/m3 cp, J/(kg K) k, W/(m�K) E, MPa rc, MPa rt, MPa

20 1420 670 0.60 3800 12.0 3.1
100 1380 950 0.77 5000 12.0 3.1
200 1450 1180 0.90 8400 20.6 5.3

Note: t is temperature; q is density; cp is mass isobaric heat capacity; k is a
coefficient of thermal conductivity; rc, rt are the compressive and tensile
strengths, respectively.
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The calculations were performed for vertically standing IG blanks with a diameter
of 300 mm and a height of 500 mm, taking into account gravitational and temperature
loads on a finite element mesh consisting of 4762 linear tetrahedral FEs and 1311
nodes. The temperature load in the form of radial temperature drops across the
workpieces varied within the range DTr = 5–15 K.

Analysis of the calculation results shows that:

– a significant part of the IG blank under the influence of temperature loading is in the
plastic state;

– in the upper part along the axis of the workpiece, gravitational compressive forces
and temperature expansion cancel each other out, which results in minimal
equivalent elastic deformations and, accordingly, equivalent Mises stresses.

Irreversible plastic deformations worsen the uniformity of the composite and pro-
voke cracks nucleation at the initial stage of burning, i.e. to reach the level of softening
temperatures of the matrix material, the beginning of destruction and intense gas
evolution.

5 Conclusions

Tools have been developed in the form of methodology and software for the numerical
study of the thermal-elastoplastic state of coke-pitch composites in the production
technology of isostatic graphite.

Verification of the program code developed in the Mathcad environment is carried
out using the example of a numerical solution of the test problem of the elastic-
plasticity of isotropic material. A comparison of the results with the data of numerical
analysis obtained using the ANSYS Mechanical APDL software product shows that,
with isotropic hardening, the maximum discrepancy does not exceed 1.13%, and for
ideal plasticity, it is no more than 3.58%.

A numerical analysis of the thermo-elastic-plastic state of composite IG blanks
during the burning process is carried out. It is shown that in the early stages of burning
at radial temperature gradients of large 33 K/m in the coke-pitch composite, undesir-
able plastic deformations may occur, which can contribute to the initiation of cracks
and reduce the uniformity of the composite material.
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