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1 Introduction

It is often noticed that there is a great gulf between the views of gravitation held by
general relativists and those held by particle physicists (Kaiser 1998; Rovelli 2002;
Brink 2006; Blum et al. 2015). These communities have different expectations for
how gravity, especially Einstein’s General Relativity, should fit into physics: general
relativists tend to incline toward an exceptionalist position that expects General
Relativity to be novel, dramatic, and non-perturbative, whereas particle physicists
incline toward an egalitarian view that expects General Relativity to be familiar and
perturbative, as just another field (in this case mass 0 and spin 2) to be quantized.
As Feynman describes his approach to gravitation in his lectures on gravitation:

Our pedagogical approach is more suited to meson theorists who have gotten used to
the idea of fields, so that it is not hard for them to conceive that the universe is made
up of twenty-nine or thirty-one other fields all in one grand equation; the phenomena of
gravitation add another such field to the pot, it is a new field which was left out of previous
considerations, and it is only one of the thirty or so; explaining gravitation therefore amounts
to explaining three percent of the total number of known fields. (Feynman et al. 1995, 2;
see also Kaiser 1998)

For present purposes, another relevant feature of the mental training of Feynman’s
theorist of mesons and nucleons is a habit of contemplating mass terms: the
default relativistic wave equation for the particle physicist is the Klein-Gordon
equation, not the relativistic wave equation, which is merely the special case
when the field/particle in question is massless. It has been known since the
1930s that massless fields/particles are naturally associated with gauge freedom
for spins greater than or equal to 1 (vectors, vector-spinors, symmetric tensors,
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etc.) (Fierz 1939). There is also a presumption of a smooth massless limit (Pitts
2011). This presumption, however, can be defeated (Zakharov 1970; van Dam and
Veltman 1970, 1972), and this defeat apparently can be overcome non-perturbatively
(Vainshtein 1972; Deffayet et al. 2002), a topic of much literature in the 2000s. Mass
terms also make a significant difference conceptually even for the scalar case where
only a smaller symmetry group, not gauge freedom, is involved (Pitts 2016c). These
differing attitudes toward gravity are reflected in the quantization programs pursued
in both camps.

General relativists are also far more inclined toward philosophical and historical
considerations than are particle physicists. It is therefore not very surprising that
historical and philosophical work on twentieth century gravitation theory would
usually favor the viewpoint of general relativists, consciously or otherwise. If
gravitational physics is best pursued by “amphibious” physicists (Pitts 2017b) (of
whom Stanley Deser and the late Bryce DeWitt would be prominent examples),
what would the history and philosophy of gravitational physics from an amphibious
perspective look like?

There are examples where a particle physics-informed history and philosophy
of space-time and gravitation theory would have new insights, diagnosing missed
opportunities and poor arguments, offering new alternatives and arguments, and
suggesting a different heuristic based on alternate expectations about how General
Relativity fits into physics. Ideally the physical insight of both physics communities
would be systematically integrated. One would also hope that scientific progress will
gradually test each physics community’s expectations in some definitive fashion,
perhaps with mathematical calculations and/or computer simulations.

The 1950s–1970s witnessed a renaissance of General Relativity (Blum et al.
2015, 2016, 2017, 2018). Prior to that time, the clearly dominant party in theoretical
physics was particle physics. General Relativity, when studied at all, tended to
appear in departments of mathematics, and Einstein’s 1915–1916 equations were
not necessarily viewed as the final destination. Among particle physicists, efforts
were made to quantize Einstein’s equations on the model of other field theories. But
little emphasis on novel conceptual lessons about space-time could arise along such
lines. One might be tempted to think that such particle physics egalitarianism was an
aspect of the decades of stagnation for General Relativity and that the renaissance
of General Relativity partly consisted in overcoming such particle physics attitudes.
There is, of course, some degree of normative coloration here, one way or the
other: while a “renaissance” is supposed to be good, the goodness of an historical
tendency to emphasize the distinctiveness of General Relativity depends in part
on the normative question of how distinctive General Relativity in fact is, a topic
that remains controversial in physics. If one were to compare the largely sound
treatment of 4-dimensional symmetry in the Hamiltonian formulation of General
Relativity by Rosenfeld and by Anderson and Bergmann (Rosenfeld 1930; Salisbury
and Sundermeyer 2017; Anderson and Bergmann 1951) with the problem of missing
change (observables as constants of the motion) in the mid-1950s (Bergmann and
Goldberg 1955) and the disappearance of 4-dimensional symmetry by the late 1950s
(Dirac 1958), one would quickly encounter topics of current research interest in
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physics (Pitts 2017a) and might less confidently expect revolutionary novelty to be
helpful.

This paper briefly notes two areas where the renaissance of General Relativity
saw progress that was positively related to the particle physicists’ egalitarian
attitude and then mostly attends to one more. Of the two areas merely noted, one
is gravitational waves: whether they exist and whether they carry energy. This
topic has been well treated (Kennefick 2007; Cattani and De Maria 1993), albeit
without reference to particle physics. It might be useful, with a view to Feynman’s
contribution regarding the sticky bead argument, to consider how a particle physics
egalitarian perspective was helpful in this context. Feynman identified “a perennial
prejudice that gravitation is somehow mysterious and different” as why General
Relativists “feel that it might be that gravity waves carry no energy at all” (Feynman
et al. 1995, 219).

A second area of renaissance progress for General Relativity that could be
discussed involves particle physicists’ “spin 2” derivation of Einstein’s equations
(Gupta 1954; Kraichnan 1955; Deser 1970; Pitts and Schieve 2001; Pitts 2016a).
There is a large difference between a pedestrian re-interpretation of General
Relativity in terms of flat space-time and universal distortion forces (which might
be viewed as an effort to miss the point of the theory by forcing it into a more
familiar mold) and a derivation of Einstein’s equations assuming flat space-time
premises; the difference is especially strong regarding what justifies attending
to Einstein’s field equations rather than some other field equations. While these
derivations admittedly sometimes have been motivated by or invoked in support
of egalitarian or conservative/anti-revolutionary sentiments, the fact remains that
a demonstration that one can hardly avoid Einstein’s equations, given particle
physicists’ own criteria such as avoiding explosive instabilities (van Nieuwenhuizen
1973) (criteria far less negotiable than those of general relativists such as Einstein’s
involving rotation Janssen 1999; Pitts 2016b), added considerably to the justification
of Einstein’s equations. What would have happened if particle physics had been seen
as motivating rivals to Einstein’s equations? Due to limitations of space, this topic
will not be discussed further here.

The last area of renaissance progress, to which this chapter mostly attends,
involves substantial clarification of Einstein’s 1917 confusion between a graviton
mass (or the ancestor thereof) and Einstein’s cosmological constant �. Removing
this confusion both makes conceptual space for massive spin 2 gravitational theories
(which encountered new problems in the early 1970s (van Dam and Veltman 1970,
1972; Boulware and Deser 1972) before the 2000s–2010s revival) and clarifies
the meaning of �. Hence the meaning of Einstein’s equations becomes clearer,
even if the justification of his equations potentially becomes weaker due to the
conceptualization of a serious rival in the form of massive spin 2 gravity (see
Pitts 2011). Thus, perhaps ironically given the real or supposed opposition between
general relativist and particle physicist viewpoints, particle physics contributed to
the renaissance of General Relativity in several ways. The goal of an amphibious
approach, of course, is not to replace one kind of partisanship with another kind,
nor even to achieve a balance of partisanships, but to overcome the physical divide



192 J. B. Pitts

and do the history and philosophy of gravitation and space-time theory using the
whole body of physical knowledge.

Unfortunately this amphibious enterprise has had so little presence historically
that a polemical attitude will be inevitable toward some traditional work. While
many of the authors singled out for getting the issue right are physicists, initially
they are writing to correct the errors of other physicists, whether past (Einstein
in the 1910s) or more current (in the 1960s). Some of the authors criticized on
the historical side, viz. Pais and Jammer, were also physicists. They get classed
in history not due to any limitations in physics participation but due to their
extensive work and achievements in the history of science and for the purposes
of their works considered here. It is inevitable that research physics literature will
be somewhat ‘ahead’ of historical literature. However, the generally commendable
historical emphasis on original sources, context, etc. in this case has the effect of
perpetuating Einstein’s mistake. In this regard, the vol. 6 of the Collected Papers of
Albert Einstein (Einstein 1996a, 552) gave Einstein’s faulty analogy renewed vigor
by providing commentary that did not notice the corrections that had been made
over the years and by citing North’s flawed treatment (North 1990) (on which more
below) for further discussion.

2 Cosmological Constant vs. Graviton Mass: A Recurring
Confusion

2.1 Historical Background

In introducing his cosmological constant � to the world in 1917, Einstein claimed
that � was analogous to a long-range modification of the Poisson equation that, as
a matter of fact, produces a faster (exponential) decay:

. . . the system of equations [that are his field equations] allows a readily suggested extension
which is compatible with the relativity postulate, and is perfectly analogous to the extension
of Poisson’s equation given by equation (2). (Einstein 1996a)

This analogy, unfortunately, is incorrect. Below it will appear that, after criticism
in the 1940s that had negligible effect, substantial criticism from a number of
noteworthy physicists appeared in the 1960s. It will also appear that historians
and philosophers of physics—there seems to be little useful distinction between
historians and philosophers in this context—continued to accept Einstein’s faulty
analogy for decades thereafter, though in the last two decades such confusion has
become considerably rarer.

The idea of a graviton mass is due to 1920s work on relativistic wave equations,
especially the Klein-Gordon equation, 1930s work on the Yukawa potential, and
the 1930s recognition that gravity, even according to Einstein’s equations, could
be construed as occupying a well-defined place in the taxonomy of relativistic
(at least Poincaré-invariant) wave equations (Fierz and Pauli 1939; Fierz 1940). If
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one expects every field theory to be quantized and to yield “particles” much as
quantizing Maxwell’s electromagnetism yields massless photons and quantizing de
Broglie-Proca massive electromagnetism (with an additional term − 1

2m2AμAμ in
the Lagrangian density) yields massive photons, then quantizing Einstein’s theory
ought to yield massless “gravitons” and quantizing a related theory with a suitable
term quadratic in the gravitational potentials ought to yield massive gravitons.
Notwithstanding the quantum words and promissory notes about particles, the basic
idea is just classical field theory and partial differential equations. A “mass” in effect
is an inverse length scale (the conversion being effected using c and h̄).

There is thus a significant pre-history of massive gravitons from the late
nineteenth century. That is due especially to Neumann’s and Seeliger’s modification
of Newtonian gravity in the 1890s with an exponentially decaying potential (Pockels
1891; Neumann 1886, 1896, 1903; von Seeliger 1896; Pauli 1921; North 1990;
Norton 1999). Neumann paid considerable attention to this differential equation,
whereas Seeliger tended to modify the force rather than the potential, at times
using a point mass force law of e−λr/r2 (von Seeliger 1895). Seeliger provided,
if not a physical meaning (as the graviton mass later would), at least a physical
motivation, namely, rendering convergent various integrals that misbehaved for
Newtonian gravity with an infinite homogeneous matter distribution. Later Einstein
in his popular treatment (Einstein 1996b, 362–363 of the translation) offered some
criticisms of Seeliger’s modification of the Newtonian force law:

Of course we purchase our emancipation from the fundamental difficulties mentioned, at
the cost of a modification and complication of Newton’s law which has neither empirical
nor theoretical foundation. We can imagine innumerable laws which would serve the same
purpose, without our being able to state a reason why one of them is to be preferred to the
others; for any one of these laws would be founded just as little on more general theoretical
principles as is the law of Newton.

But the uniqueness problem does not hold in light of Neumann’s mathematics
(which Einstein reinvented), while the Klein-Gordon equation and Yukawa potential
would later give a physical meaning to Neumann’s mathematics. The empirical
basis, while not empty, is merely analogous: many fields are massive, so why
not the graviton field also? In the actual contingent history, Einstein was unaware
of Seeliger’s work until after the ‘final’ 1915–1916 field equations were known
(Einstein 1996b, 420; 1998, 557; 1919; 2002, 189; c.f. Earman 2001).

As early as 1913, Einstein enunciated a principle to the effect that the field
equations for gravity should not depend on the absolute value of the gravitational
potential(s) (Norton 2007, 465; Einstein 1913, 544–545). It follows, given the
concept of a mass term, that a mass term is not permitted, because mass terms make
the field equations contain the potential(s) algebraically. (The cosmological constant
provides a subtle way of maintaining gauge freedom with an algebraic term, but does
not permit a graviton mass.) It is evident that historians of General Relativity with
an eye for particle physics would be more apt to recognize how Einstein’s principle
generates a problem of unconceived alternatives.
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2.2 Physical Background

It isn’t initially obvious what connection there might be, if any, between a graviton
mass and the cosmological constant �. A graviton mass involves a quadratic
term in the Lagrangian like − 1

2m2AμAμ in the electromagnetic case, which by
differentiation implies a linear term in Aμ in the Euler-Lagrange equations. One
might thus envisage something like − 1

2m2γμνγ
μν for gravity. Whether or not one

actually quantizes gravity, one can follow particle physics custom and refer to such
a term as a graviton mass term. (No other terminology is available. Indices are
assumed to be raised or lowered with a background metric ημν . The simplest choice
is a flat metric.) Massive electromagnetism was first entertained by de Broglie
(1922; 1924) and developed as a field theory by Proca (1936). Massive gravity was
also encouraged by de Broglie and was pursued in France during the 1940s onward
(Tonnelat 1941, 1944a,b; Petiau 1944, 1945; Droz-Vincent 1959) and later also in
Sweden (Brulin and Hjalmars 1959); in both countries spinor rather than tensor
notation was often used (except by Droz-Vincent). Recognizably modern work
appeared in the mid-1960s (Ogievetsky and Polubarinov 1965; Freund et al. 1969);
the former paper is still valuable for its radical conceptual innovations (such as
inventing nonlinear group realizations) achieved with binomial series expansions to
take arbitrary powers of the metric tensor (expanded about the identity matrix using
x4 = ict!). Thus they invented many theories of gravity (including some recently
reinvented) and showed how to Ockhamize the coupling of gravity to spinors as
well (Ogievetskiĭ and Polubarinov 1965; Pitts 2012a) (previously partly anticipated
by Bryce DeWitt’s series expansions (DeWitt and DeWitt 1952; Seligman 1949) and
still not widely known outside the supergravity community). Some of these results
on the symmetric square root of the metric and massive gravity theories using it
were reinvented in the 2010s.

Complications arise, however, with a symmetric tensor potential. A first compli-
cation is that with two indices, γμν admits a trace γ =def γ

μ
μ , which cannot justly

be ignored as a participant in the mass term, so there will be a new coefficient for the
new scalar term involving m2γ 2. A second complication (partly following from the
first) is that, unlike electromagnetism, gravity admits many (indeed infinitely many)
relevant distinct but comparably plausible definitions of the gravitational potential.
Comparing two such definitions, such as gμν−ημν and −gμν+√−ηημν, one differs
from another by how much of the trace term is mixed in and what nonlinearities
are included. There is no ‘correct’ answer, although there are a few incorrect ones,
for which the relation to the others cannot be inverted. Physical meaning of an
expression such as γμν is achieved by relating γμν to the effective curved metric gμν

and ημν . A third complication is that the trace γ suggests a negative-energy “ghost”
degree of freedom, which is likely to lead to explosive instability in quantum field
theory. One can tune away this ghost at linear order (Fierz and Pauli 1939). But
such a theory seems not to have the expected massless limit of General Relativity
(van Dam and Veltman 1970; Zakharov 1970; Iwasaki 1970; van Dam and Veltman
1972), the van Dam-Veltman-Zakharov discontinuity, making pure spin 2 massive
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gravity apparently refuted by experimental data. A fourth complication is that
even if one tunes away the ghost at lowest order, it reappears nonlinearly (Tyutin
and Fradkin 1972; Boulware and Deser 1972), the Boulware-Deser ghost. The
apparent dilemma of empirical falsification or explosive instability largely stopped
research on massive gravity from ca. 1972 to 1999.1 The apparent empirical need
for a cosmological constant (Riess et al. 1998; Perlmutter et al. 1999), however,
undermined confidence in General Relativity especially on long distance scales,
thus cracking open the door for renewed consideration of massive gravity. The van
Dam-Veltman-Zakharov discontinuity was plausibly resolved during the 2000s by a
non-perturbative treatment called the Vainshtein mechanism, which built on an early
suggestion by Arkady Vainshtein (1972) and Deffayet et al. (2002). The Boulware-
Deser ghost was resolved in the 2010s (de Rham et al. 2011; Hassan and Rosen
2012) (but see the neglected early work of Maheshwari: Maheshwari 1972; Pitts
2016d; Freund et al. 1969, Note added February 1969) Thus massive gravity, not
necessarily in this simple form, is now a lively field of research overcoming the
GR-particle physics split, spawning review articles in prestigious places (de Rham
2014; Hinterbichler 2012) and getting some of its (re-)developers good physics jobs.
After decades of darkness, massive gravity is very much a part of the current physics
scene. These decades of darkness, however, have left their mark on the historical and
philosophical work on gravity, in that until recently one would have had to look in
unusual places to acquire any knowledge of such matters.

How can one compare an expression like �
√−g to a mass term at all?

√−g

seems not to be any kind of series and is not expressed in terms of a graviton
potential γμν that vanishes when ‘nothing is happening.’ Rather, the trivial value for√−g is 1, not 0. (This over-simple claim is coordinate-dependent but heuristically
useful.) It also isn’t clear how differentiating �

√−g to find the Euler-Lagrange
equations leads to something one order lower in the potential, as one might have

expected; indeed the expression ∂
√−g

∂gμν
= 1

2
√−ggμν is of order 1 (dominated by a

zeroth order term in the potential, so to speak), just as
√−g is. One can render

√−g

comparable to a graviton mass expression (quadratic in γμν) using a perturbative
expansion of gμν about ημν, defining γμν by gμν = ημν + √

32πGγμν, though
suppressing the normalizing

√
32πG is sometimes clarifying and is employed

here. (Infinitely many other choices of field variables are possible (Ogievetsky and
Polubarinov 1965; Pitts 2012b, 2016d), leading to differences of detail that can be
important in some contexts.) The determinant g becomes a quartic polynomial in
γμν (though quadratic terms suffice for present purposes):

1The obvious exception was the Russian school of A. A. Logunov and collaborators starting in the
late 1970s, which was largely ignored by others or occasionally subject to polemics (Zel’dovich
and Grishchuk 1988), not without some justification. Logunov being the editor of the Russian
original of Theoretical and Mathematical Physics and a Soviet and Russian Academician, he was
able to maintain a noticeable research group with many publications.
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g = η(1 + γ − 1

2
γμνγ

μν + 1

2
γ 2 + O(γ 3) + O(γ 4)).

One can find
√−g using the binomial series expansion (here with n = 1

2 and using
an obvious formal extension of the factorial notation for convenience)

(1+x)n =
∞∑

i=0

n!
(n − i)!i!x

i =
∞∑

i=0

n · (n − 1) . . . (n − i + 1)

i! xi = 1+nx+n(n−1)x2/2 . . . .

The coefficient of γ 2 gets contributions from two different terms. Thus

√−g = √−η

(
1 + 1

2
γ − 1

4
γμνγ

μν + 1

8
γ 2 + . . .

)
:

the cosmological constant term in the Lagrangian density is an infinite series of
powers of the graviton potential, starting with zeroth order. Thus its contribution
to the field equations is also such an infinite series. While the zeroth order term
in the Lagrangian density does not influence the field equations, the first-order
term (perforce a constant times γ ) is all-important in giving the characteristic �

phenomenology arising from a constant term in the field equations. There are, of
course, other ways of having a linear term in the Lagrangian and hence a constant in
the field equations: one could simply install a term of the form

√−η(gμνη
μν − 4),

but there is little motivation for such a term in isolation. The cosmological constant,
by contrast, provides a motivation for such a term. The precise tuning of linear,
quadratic, and higher terms in the cosmological constant term preserves general
covariance (in the sense of admitting arbitrary coordinates with only fields varied
in the action and no gauge compensation fields: Pitts 2009, 2006). To have instead
a graviton mass term rather than a cosmological constant, one needs to remove the
linear term from the Lagrangian and hence the zeroth order term from the field
equations, leaving a quadratic term in the Lagrangian and hence a linear term in the
field equations. Some old (Ogievetsky and Polubarinov 1965; Freund et al. 1969;
Maheshwari 1972) and recent (Hassan and Rosen 2012) works on massive gravity
therefore use expressions along the lines of ∼ √−g+ ∼ gμνη

μν√−η+ ∼ √−η,

where the coefficients are chosen to cancel the linear term in the Lagrangian (to
avoid � phenomenology) and the zeroth order term (for the tidiness of having the
Lagrangian density vanish when the graviton potential does). The details of the
middle term admit considerable variety such as some constant times gμνη

μν√−η,

or
√−g

84.6
gμνημν

√−η
−83.6, or non-rational density weights or even non-rational

powers of the metrics (Ogievetsky and Polubarinov 1965). Such generality was
reinvented recently (de Rham et al. 2011; Hassan and Rosen 2012; Pitts 2016d)
in order to (re)discover nonlinearly ghost-free massive gravities (i.e., theories such
that there are no negative-energy degrees of freedom even when nonlinear terms are
considered).
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A key point is that having a mass term requires two metrics, and consequently the
gauge freedom (substantive general covariance) of General Relativity is removed,
leaving more degrees of freedom. It is, in fact, possible to have both a cosmological
constant and a graviton mass if there are linear and quadratic terms in the Lagrangian
density, but their coefficients are not related as in

√−g. Cubic and higher terms can
be construed as interactions and are not very important empirically in comparison
to the linear and quadratic terms.

How does the cosmological constant � differ from a graviton mass term in its
effects on the equations of motion of test particles? The geodesic equation of motion
for a point test particle, assuming slow motions, weak fields, nearly Cartesian

coordinates, and − + ++ signature, has spatial components d2xi

dt2 − 1
2∂ig00 = 0.

Identifying this approximate result with the Newtonian result d2xi

dt2 = −∂iφ for the

Newtonian potential φ, one obtains g00 ≈ −c2 − 2φ. Because of the constant term
−c2, the cosmological constant leads at lowest order to a zeroth order term in the
field equations, not to the antecedently more physically plausible nineteenth century
modification with a linear algebraic term

∇2φ − λφ = 4πGρ.

One can assess the relative sizes of the terms such as −c2 and −2φ using Newton’s
constant G = 6.674 · 10−11N · m2kg−2, the masses of the Sun and the Earth, the
radius of the Earth’s orbit, the radius of the Earth, and the speed of light. Taking
φ ≈ −GM

r
(which will hold approximately for equations approximating the Poisson

equation for Newtonian gravity), one has for the potential from the Sun at the Earth

φ ≈ −(1.99 ·1030kg) · (6.674 ·10−11N ·m2kg−2)/(1.50 ·106km) ≈ −8.85 ·109 m2

s2 .

The potential from the Earth at its surface is analogously

φ ≈ −(5.97 · 1024kg) · (6.674 · 10−11N · m2kg−2)/6371km ≈ −6.25 · 107 m2

s2 .

By contrast c2 ≈ 9 · 1016 m2

s2 . Thus typical values of the potential for both terrestrial

and solar system effects are vastly smaller (in absolute value) than c2. The strange
(Freund et al. 1969; Schucking 1991) zeroth order term will tend to dominate over
the intended linear term in φ. The potential grows quadratically and, if � > 0,

is repulsive in Einstein’s theory, giving an anti-oscillator force (proportional to
distance like a spring, but with the ‘wrong’ sign). By contrast a graviton mass term
leaves the gravitational force attractive but merely makes it decay faster than 1

r2
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at long distances due to exponential decay.2 Eddington, without comparing � to a
graviton mass (or Neumann’s antecedent) or criticizing � as bizarre, described the
phenomena fairly adequately in 1923 (Schucking 1991):

Hence d2r
ds2 = 1

3 λr ...................(70.22).
Thus a particle at rest will not remain at rest unless it is at the origin; but will be repelled
from the origin with an acceleration increasing with distance. (Eddington 1952, 161)

It is easy to imagine that such a description would help to draw attention to the
difference between � and the idea of a graviton mass, which would become easier
and easier to conceive during the 1920s and 1930s. But such a result seems not
to have occurred. A subtler mistake that arose during the 1960s held that the
cosmological constant was exactly analogous to a Neumann and Seeliger-type
long-modification of gravity, if not for static fields, at least for gravitational wave
propagation.

Since the 1910s an exact solution for Einstein’s equations with spherical
symmetry and a cosmological constant � has been known due to Kottler (1918),
Weyl (1919), Perlick (2004), Uzan et al. (2011), and Ohanian and Ruffini (1994,
177, 397). It is now known among physicists (with naming conventions more suited
to economy by taking equivalence classes under coordinate transformations than to
historical accuracy) as the Schwarzschild-de Sitter solution. The solution is

ds2 = −
(

1− 2GM

r
− �r2

3

)
dt2+

(
1− 2GM

r
− �r2

3

)−1

dr2+r2(dθ2+sin2θdφ2).

(1)
From this expression one sees from g00 that, since the potential −GM

r
gives an

attractive force proportional to −GM
r2 , the cosmological constant analogously gives

an additional potential −�r2

6 yielding a repulsive force (for � > 0) proportional
to �r

3 and independent of M , a force that grows with distance and eventually
dominates the attraction from the heavy body of mass M . The comment by Freund,
Maheshwari, and Schonberg is worth recalling:

A “universal harmonic oscillator” is, so to speak, superposed on the Newton law. The origin
of this extra “oscillator” term is, to say the least, very hard to understand. (Freund et al.
1969)

That description seems to fit � < 0 especially, whereas a positive �’s repulsive
anti-oscillator potential seems even worse.

2Mathematically with the graviton mass term one has a superposition of exponentially decaying
and exponentially growing factors times 1

r
, but one routinely discards the growing solution on

grounds of physical reasonableness. With the zeroth order term in the field equations, by contrast,
there are no solutions to spare and a (quadratically) growing solution cannot be discarded.
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3 Physicists Come to Reject the �-Graviton Mass Conflation

3.1 Otto Heckmann (1942)

Einstein’s mistake seems to have been noticed first in 1942 by Otto Heckmann
in Germany (Heckmann 1942). (For more on Heckmann, see Hubert Goenner’s
encyclopedia article Goenner 2018.) Previously Heckmann and coauthor Siedentopf
had embraced Einstein’s analogy (Heckmann and Siedentopf 1930, p. 88), claiming
that Einstein’s equations with a cosmological constant (their equation (5, 17)) has
as an approximation �V + λ2V = −4πχρ, their equation (5, 18). Heckmann’s
critique of Einstein’s analogy3 thus involved a retraction. This passage is freely
rendered in English by Harvey and Schucking:

The equation � + λφ = 4πGρ [sic: φ is missing from the first term] which is different
from � + �0(t) = 4πGρ [sic: again φ is missing from the first term] is used by Einstein
in his paper S.-B. Preuss. Acad. Wiss. 1917, 142 to explain the introduction of the term
λgμν into his field equations. This suggestion for a change of Newton’s law (C. Neumann:
“About the Newtonian Principle of Action at a Distance,” p. 1 and 2, Leipzig 1896—see
also Leipziger Ber. Math.-Phys, Kl. 1874, 149) does not result as an approximation of the
field equations of relativity theory. Thus, the argument which Heckmann and Siedentopf
[footnote suppressed] gave for their Eq. (5.18) is void. (Harvey and Schucking 2000,
emphasis in the original).

However, given the wartime focus on the practical, the divide between Allied and
Axis countries, and the crude Nazi opposition to Einstein’s relativistic physics and
so-called ‘Jewish’ physics more generally, Germany in 1942 was not an opportune
time and place for serious criticisms of some specific aspect of General Relativity
to draw worldwide notice. Heckmann’s book was republished in 1968 but still not
widely read (Harvey and Schucking 2000).

3.2 Bryce DeWitt

In his distinctive mathematical style, Bryce DeWitt made clear in his 1963 Les
Houches lectures (published both in the proceedings (DeWitt and DeWitt 1964)
and as a separate book DeWitt 1965) that a cosmological constant is quite distinct
from a graviton mass. A graviton mass requires a background geometry, which
the cosmological constant does not involve. He further emphasized the connection

3“In diesem Zusammenhang sei folgendes bemerkt: Die von (21) verschiedene Gleichung �� +
λ� = 4πGρ wird von EINSTEIN in der S. 2. Anm. 4 zitierten Arbeit zur Erläuterung der
Einführung des Gliedes λgμν in seine Feldgleichungen herangezogen. Dieser bereits von C.
NEUMANN gemachte Abänderungsvorschlag des NEWTONschen Gezetzes (vgl. S. 1 Anm. 1)
ergibt sich aber nicht als Näherung aus den Feldgleichungen der Relativitätstheorie. Damit ist die
Begründung, die HECKMANN und SIEDENTOPF [Z. Astrophys. 1, 67 (1930)] für ihre Gleichung
(5, 18) gegeben haben, hinfällig.” (Heckmann 1942, 15, emphasis in the original).
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between mass terms and smaller symmetry groups. It was recognized in the late
1930s that whereas massive particles/fields naturally lack gauge freedom, massless
particles/fields, at least for spin 1 and higher, naturally have gauge freedom and
correspondingly fewer degrees of freedom (Pauli and Fierz 1939; Fierz and Pauli
1939). Thus DeWitt points out that the cosmological constant � does not shrink
the symmetry group, as a real graviton mass term would do, but leaves the general
relativistic gauge (coordinate) freedom. Thus this is another way to see that � does
not give a graviton mass. (It is in fact possible to have both a cosmological constant
and a graviton mass, but that is another matter, and subtle questions of definition
arise.)

As background for his remarks on gravity (spin 2), one can consider the simpler
and uncontentious case of electromagnetism. Instead of gauge freedom (as in
Maxwell’s “massless photon” electromagnetism), one has as consequences of the
field equations, for the case of massive electromagnetism, in effect the Lorenz-
Lorentz condition m2∂μAμ on the potentials. Thus the time-like potential A0 is not
an independent degree of freedom. For sufficiently high spins (such as 2), there is
also the possibility of taking the trace and identifying a scalar field within the tensor
field content. If gravity is to be pure spin 2, then this trace must vanish. DeWitt
contemplates whether these conditions hold on small disturbances, such as waves.

He wrote:

On comparing equation (16.10) [a complicated expression for the second functional
derivative of the action for General Relativity] with equation (6.69) one is at first sight
led to infer that small disturbances in the metric field propagate like those of a tensor field
of rest mass m = (−λ)1/2 (h̄ = c = 16πG = 1). This inference is incorrect, however, for
two reasons. In the first place the concept of rest mass requires for its definition the presence
of an asymptotically flat space-time. Indeed space-time is assumed to be everywhere flat in
the linearized theory to which equation (6.69) refers, whereas, in virtue of (16.9) [Einstein’s
equations with the cosmological constant], the background field of equation (16.10) cannot
be even asymptotically flat. It is true that homogeneous isotropic cosmological solutions
of equations (16.9) exist which can provide a background field with respect to which a
decomposition of small disturbances into positive and negative frequency components can
be effected just as for flat space-time theories. However, these components necessarily have
physical properties which differ to such an extent from the plane wave components of flat
space-time theories that the rest mass concept is no longer valid.
In the second place, since the operator (16.10) does not have a form precisely analogous to
that of the tensor field of mass m, it does not lead to conditions gμνδgμν = 0, δg ν

μν. = 0
on the small disturbances, analogous to the conditions [of vanishing trace and 4-divergence]
of part (c) of Problem 3. In fact, if one attempts to repeat, in generally covariant form, the
arguments which, in the flat space-time theory, lead to such conditions, one finds in virtue of
the lack of commutativity of covariant differentiation, that a Ricci tensor always appears in
such a way as completely to cancel the cosmological constant via the dynamical equations
(16.9). The basic reason for this, of course, is that the coordinate transformation group
is still present as an invariance group for the gravitational field, and the operator (16.10),
despite appearances, is a singular operator. The time-like components of δgμν are therefore
not dynamically suppressed, and δgμν may, in fact, satisfy four arbitrary supplementary
conditions at each space-time point. (DeWitt 1965, 131–132, footnotes suppressed)

Whether or not DeWitt had interests in the history of the question, this was a
clear, deep, authoritative, and twice-published critique of the confusion between
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a cosmological constant and a graviton mass. It might have helped that DeWitt
straddled the GR-particle physics border.

3.3 Hans-Jürgen Treder, Andrzej Trautman, and Wolfgang
Rindler

Critiques of Einstein’s analogy and related ideas from Treder, Trautman, and Rindler
are all somewhat similar. It is noteworthy that in contrast to DeWitt, these three
figures are closer to paradigm general relativists.

In comparison to DeWitt, Treder made a more explicitly polemical attack on the
idea that the cosmological constant gives gravitons a rest mass (Treder 1963, 1968).
The claim that � implies a graviton mass is a higher-tech version of Einstein’s
analogy between � and the modified Poisson equation. While mentioning “authors”
he cites the book on unified field theories by Marie-Antoinette Tonnelat (1965).
Treder introduces Einstein’s equations and compares two wave equations, one with
the cosmological constant and one with a graviton mass (Treder 1963). Regarding
the equation with the cosmological constant (a zeroth order term in the wave
equation), he says:

[t]he constant λ cannot be set proportional to k2, where k−1 is the Compton wavelength
of the graviton. If we form the equivalent of (1.7) [the linearized wave equation without
the cosmological constant] to the new equations (1.10) [Einstein’s equations with the
cosmological constant], we get

1

2
�γμν + λ(ημν + γμν) = 0. (1.11)

So that, however, λ could in essence be k2, instead of (1.11)

1

2
�γμν + λγμν = 0 (1.11a)

would have to apply” [references suppressed] (Treder 1963)4

4“Die Konstante λ kann nun aber nicht proportional k2 gesetzt werden, wobei k−1 die Comp-
tonwellenlänge des Gravitons wäre. Bilden wir nämlich das Äquivalent von (1.7) [the linearized
wave equation, without the cosmological constant] zu den neuen Gleichungen (1.10) [Einstein’s
equations with the cosmological constant], so erhalten wir

1

2
�γμν + λ(ημν + γμν) = 0. (1.11)

Damit aber λ im wesentlichen k2 sein könnte, müßte anstelle von (1.11)

1

2
�γμν + λγμν = 0 (1.11a)

gelten” [references to papers by L. de Broglie and M.-A. Tonnelat].
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The contrast between the two wave equations is clear: the cosmological constant
introduces a zeroth order term λημν, which is more important for weak fields than
is the first order term λγμν that would signify a graviton mass. He also mentions
how general covariance is retained, and hence there are only two wave polarizations
even with the cosmological constant.

In the later paper (1968), Treder discusses a tempting mistake with the wave
equations that people claiming that a cosmological constant gives a graviton mass
sometimes make. (This is a more sophisticated mistake than Einstein’s original one.)

The authors who interpret the cosmological constant λ like the square of the rest-mass
of gravitons. . . , put forward as a general argument for their opinion that the variation of
the cosmological equation (1) gives Yukawa-type equations for the perturbations of the
gravitational field. (Treder 1968)

But this is wrong, as one sees once one keeps track of the covariant derivatives.

Therefore, the terms of [the weak field wave equation] with the cosmological constant λ are
compensated for by the terms with the Ricci tensor.
The result is that the same propagation equations (17) for the perturbations δgkl result from
the cosmological equations (1) as from the equations

Rkl = 0.

This means that the final form of the propagation equations for the perturbations of the
gravitational field is independent of the existence of a cosmological term in the Einstein
vacuum equations. Therefore, the gravitons connected with these perturbations have zero
rest-mass for a cosmological constant λ �= 0 too. The cosmological constant does not have
any connection with a graviton rest-mass. (Treder 1968)

Thus Treder’s and DeWitt’s points are basically the same, apart from Treder’s
explicit polemical aim.

Andrzej Trautman, a very mathematical general relativist, accurately critiqued
the �-graviton mass confusion in some book-length lectures at Brandeis in 1964,
along with a brief passable reference to the history (Trautman 1965, 228–231). After
discussing Olbers’ paradox and the problem of the diverging Newtonian potential
for an infinite homogeneous matter distribution, Trautman says:

Neumann and Seeliger (in 1895) proposed the idea of replacing Poisson’s equation by

∇2φ − λφ = 4πkρ.

This corresponds to assuming that the gravitational forces have a finite range with 1/
√

λ

being the characteristic length for the gravitational interactions.. . .
. . . Einstein modified the field equations by adding a cosmological term

λgab + Rab − 1

2
gabR = −8πkTab (9.2)

However, these equations are not the analog of the Neumann-Seeliger equation in the
Newtonian limit but go over into

∇2φ + λc2 = 4πkρ.

(Trautman 1965, 229–230)
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While not linking the Neumann-Seeliger nineteenth-century idea to the 1920s–
1930s physical meaning of a graviton mass or being explicitly interested in
Einstein’s own making of the analogy, Trautman nonetheless makes clear the
distinction between the two things that Einstein had presented as analogous.

Wolfgang Rindler also gently criticized the analogy between � and the expo-
nential decay of Neumann and Seeliger (Rindler 1969). The problem of the infinite
potential in a homogeneous matter distribution in absolute space:

. . . led Neumann and Seeliger in 1896 to suggest that the Newtonian potential of a point
mass be replaced by

φ = −mG

r
e−r

√
λ, (λ = constant ≈ 0), (82.1)

whose integral would remain finite. (Note that this is identical in form with Yukawa’s
mesonic potential put forward in 1935.) Poisson’s equation [footnote suppressed] ∇2φ =
4πGρ then becomes

∇2φ − λφ = 4πGρ, (82.2)

which possesses the obvious solution

φ = −4πGρ

λ
(82.3)

in a homogeneous universe. (This results also on integrating (82.1) throughout space for a
continuous distribution of matter.)
It is interesting to observe the striking formal analogy between Einstein’s modification
(79.10) of his original field equations (79.7) and Neumann and Seeliger’s modification
(82.2) of Poisson’s equation. However, in first approximation (79.10) does not reduce to
(82.2) but rather to another modification of Poisson’s equation, namely

∇2φ + c2� = 4πGρ, (82.4)

as can be shown by methods similar to those of Section 79. This also admits a constant
solution in the presence of homogeneous matter, namely φ = 0, provided c2� = 4πGρ—a
situation which obtains in Einstein’s static universe, for which, indeed, Einstein originally
introduced his � term. (Rindler 1969, 222–223)

Though the contributions of Neumann and Seeliger are run together, this description
in an accessible textbook is both historically and technically serviceable.

3.4 Peter G. O. Freund, Amar Maheshwari, and Edmond
Schonberg

One of the clearest distinctions between a cosmological constant and a graviton
mass comes from a significant particle physics-flavored paper (in the Astrophysical
Journal!) putting forward a theory of massive gravitons (Freund et al. 1969).
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Einstein’s theory with the cosmological constant is faulted on multiple grounds,
of which here is the second.

B. In the “Newtonian” limit it leads to the potential equation,

�V + � = κρ. (1)

Correspondingly, the gravitational potential of a material point of mass M will be given by

V = −1

2
�r2 − κM

r
. (2)

A “universal harmonic oscillator” is, so to speak, superposed on the Newton law. The origin
of this extra “oscillator” term is, to say the least, very hard to understand. (Freund et al.
1969)

By contrast, their proposed massive graviton theory is far more reasonable by the
standards of particle physics, and because it violates general covariance, it is easier
to quantize as well.5

In the Newtonian limit, equation (1) is now replaced by the Neumann-Yukawa equation,

(� − m2)V = κρ, (3)

which leads to the quantum-mechanically reasonable Yukawa potential,

V (r) = −κMe−mr

r
, (4)

rather than the peculiar oscillator of equation (2). Difficulty B is thus removed.

Thus during the 1960s, quite a few leading physicists took aim at the confusion
between the cosmological constant and the graviton mass, confusion that apparently
had gone unchallenged apart from Heckmann’s little-noticed work.

4 Engelbert Schucking’s Decisive Influence

While some authors since the 1960s have criticized Einstein’s conflation of his
cosmological constant with a graviton mass, Engelbert Schucking (also spelled
“Schücking”) later mounted a sustained assault on that error (Schucking 1991;

5They were presumably not reckoning sufficiently with the ghost problem, though they did discuss
it. But their appendix is evidently the first public appearance of a nonlinearly ghost-free, that is
pure spin 2, massive gravity, singled out from among the OP 2-parameter family of theories. The
nonlinear argument was published later (Maheshwari 1972) (submitted no later than early April
1971). This (Tyutin-Fradkin-)Boulware-Deser nonlinear ghost problem was pre-solved before it
was proposed. But no one noticed and the problem had to be solved again in 2010. Thus the
decades of darkness for massive gravity were quite contingent. Maheshwari was unaware of the
van Dam-Veltman-Zakharov discontinuity, however.
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Harvey and Schucking 2000). Schucking’s first work appeared in a Festschrift for
Peter Bergmann, a work likely to be read only by physicists, though the content
is substantially historical. Schucking’s work on the Einstein Papers Project also
implies that one could as plausibly list his contribution among the historians and
philosophers to be treated later as among the physicists treated above, though his
work somehow had no influence on the treatment of the analogy in the Einstein
Papers Project. Given the difficulty of classifying him and the transformative nature
of his interventions, it seems fitting to devote a separate section to his influence.

His first writing is so accurate, brief, and vigorous that it is tempting to quote
the whole thing, though one might wish that Seeliger got mentioned along with
Neumann. Here is a substantial portion.

To motivate the introduction of this new constant of nature without a wisp of empirical
evidence he wrote that his new extension was “completely analogous to the extension of the
Poisson equation to

�φ−λφ = 4πKρ ” (3)

This remark was the opening line in a bizarre comedy of errors.
Einstein’s modified Poisson equation is now familiar to all physicists through the static
version of Yukawa’s meson theory which has the spherically symmetric vacuum solution

φ = const

r
e−r

√
λ, λ =

(
mc

h̄

)2

, r = (x2 + y2 + z2)
1
2 . (4)

But this equation had a deeper root. The Königsberg theoretician Carl Neumann (Neumann
1896) had proposed the modified Poisson equation to introduce an exponential cut-off
for the gravitational potential. He thus anticipated Einstein’s worry about the disastrous
influence of distant stars on the potential. Einstein, apparently, was not aware of Neumann’s
work in 1917.
It is true that the Poisson equation modified by a term −λφ (with a positive λ ) on its
left hand side leads to an exponential cut-off for the gravitational potential. But Einstein’s
flat assertion that the λ -term in his field equations had a completely analogous effect was
wrong. However generations of physicists have parroted this nonsense. Even Abraham Pais
(1982) writes in his magisterial Einstein biography about the analogy between the λ-terms
in Poisson’s and Einstein’s equations “he (Einstein) performs the very same transition in
general relativity.”
It seemed so deceptively obvious: the potential corresponds in the Newtonian approximation
to (c = 1)

g00 = −(1+2φ). (5)

Thus adding a term −λφ to �φ might correspond to inserting a term −λgμν in addition
to the Ricci tensor whose 00-component gives essentially the Laplacean in Newtonian
approximation.
I still remember when Otto Heckmann told me 35 years ago: “Einstein’s [sic] Argument ist
naturlich Quatsch (baloney).” And the late Hamburg cosmologist was right. For φ is φ/c2

and can be neglected compared to one in first approximation. Thus the Newtonian analog
of Einstein’s equations with λ-term is not the modified Poisson equation (3) but

�φ + λc2 = 4πKρ. (6)
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With equation (6) Einstein had not introduced an exponential cut-off for the range of
gravitation but a new repulsive force ( λ > 0), proportional to mass, that pushed away
every particle of mass m with a force

�F = mc2 λ

3
�x, (7)

a force derivable from the repulsive oscillator potential −λc2r2/6. This was clearly stated
by Arthur Eddington (Eddington 1923).. . .
Instead of getting a shielded gravitation one had now at large distances almost naked
repulsion. This was quite different from the expected bargain. (Schucking 1991, 185–186)

This Italian Festschrift for Peter Bergmann was probably a bit too obscure and
technical to reach the widest relevant audience, however. As perhaps a foretaste of
how old errors die hard, Joe Weber in the same volume (Weber 1991) made the same
mistake that Schucking corrected! At least Weber was thinking about experimental
tests of a graviton mass, calling attention to Zwicky (1961), who was influenced by
his Caltech colleague Feynman. One might think that Schucking’s work has already
said everything that needs saying. But the persistence of unclear and even erroneous
ideas in the newer historical literature, after both the 1960s physics corrections and
in some cases after Schucking’s blasts, shows that the topic requires continuing
discussion. Doubtless his own personal connection to Heckmann played a role in his
work on this topic. A more recent article by Alex Harvey and Engelbert Schucking
(2000), published in a more visible and pedagogical place (American Journal of
Physics), takes much the same message (with a fair amount of reused text) to a
larger audience.

5 History and Philosophy of Science and Einstein’s Analogy

Unfortunately, historical treatments of Einstein’s cosmological constant � and its
relevance to the Seeliger-Neumann modification of Newtonian gravity have not
always been reliable. That is despite the fact that some of those here classed as
historians were trained as and long operated as physicists; their classification as
historians here reflects more their high achievements in history than any dearth of
participation in physics. This section might be an interesting case study on the need
for an at least partly internalist history of science, in that a purely externalist view
would not be motivated to inquire further to trace the origins of erroneous claims. It
also helps to illustrate how systematic neglect of particle physics by historians and
philosophers of General Relativity leads to errors and oversights.
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5.1 John D. North

John D. North addressed the issues in question on more than one occasion in his
historically rich work. His classic 1965 work starts well in its discussion of Seeliger
and Neumann, but later tends to confuse their idea with that of Laplace and with
Einstein’s cosmological constant.

In 1895 Seeliger began by protesting that as the volume (V ) of a Newtonian distribution
of matter of finite density tends to infinity, the gravitational potential at any point can
be assigned no definite value; added to which the expression for the gravitational force
also becomes indefinite. Carl Neumann, faced by the same difficulties, proposed that
Poisson’s equation should be adjusted so as to permit a uniform and static distribution of
matter throughout space. For the gravitational potential they took expressions of the usual
Newtonian form, multiplied by an additional factor e−αr , where α is a quantity sufficiently
small to make the modification insignificant, except for large distances.. . .
. . . On the other hand, neither were Seeliger and Neumann first with the exponential law:
Laplace had taken this very law fifty years before. In all the earlier cases, however, the
concern was in only a narrow sense cosmological.
The effect of the exponential modifying factor is to introduce a cosmical repulsion capable,
at large distances, of exceeding the usual gravitational forces. As will be seen in due
course, the introduction of what was to be known as the ‘cosmological term’ into the
later gravitational field equations of Einstein is reminiscent of Neumann’s modification of
Poisson’s equation. (North 1990, 17–18, footnotes suppressed)

Here Seeliger’s diversity of mathematical expressions has been pared down to match
the more unique and optimal expression of Neumann. North’s effort to find an
antecedent in Laplace (1846, book 16, chapter 4, 481), unfortunately, confused
Laplace’s multiplication of a 1

r2 force by an exponentially decaying factor with

Neumann’s multiplication of the 1
r
potential by such an exponential factor. (The

same mistake was made by Erich Robert Paul 1993, 69. Laplace’s modified force
law is not obviously the solution to any relevant linear differential equation or
connected with any clear physical meaning of current interest, so Neumann’s
exponential decay modifying the potential is more plausible. And North is in
mathematical error in holding that the exponential modifying factor introduces “a
cosmical repulsion capable, at large distances, of exceeding the usual gravitational
forces.” The exponential decay merely causes the gravitational attraction to weaken
faster than it otherwise would. He seems to be warming up for confusing Neumann’s
exponentially decaying factor in the potential (or its ancestor in the relevant
differential equation, the modified Poisson equation) with Einstein’s cosmological
constant �.

North unfortunately makes a version of Einstein’s erroneous conflation in dis-
cussing the Milne-McCrea modified Newtonian cosmology that sought to encom-
pass much of relativistic cosmology within a simpler framework. This work
permitted a λ term, an introduction by hand of a term like Einstein’s cosmological
constant � into Newtonian equations (McCrea and Milne 1934). According to
North:
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(The λ-term in the equation of motion is precisely that which Neumann and Seeliger had
introduced, nearly forty years before, in the hope of explaining how an infinite and static
universe was possible.) (North 1990, 179)

North’s more recent work seemed not to profit fully from the somewhat greater
visibility of critiques of Einstein’s � error that had become available:

When applied to cosmological problems assuming an infinite Universe, ordinary Newtonian
theory, based on the familiar (Euclidean) geometry, seemed to lead to inconsistencies. In fact
Carl Neumann and Hugo von Seeliger—to name only two—tried to modify the Newtonian
law of gravity to remove these difficulties. In doing so, strangely enough, they introduced
what was effectively a cosmical repulsion (one that they supposed worked against the
much more powerful gravitational attraction), which has its counterpart in later relativistic
cosmology. (North 1994, 515–516)

5.2 Max Jammer and Abraham Pais

Max Jammer’s generally impressive and erudite work has, unfortunately, also tended
to perpetuate Einstein’s confusion about � (Jammer 1993, 1997). Jammer wrote in
Concepts of Space:

Einstein’s introduction of the cosmological constant λ, by which he hoped to remove
the inconsistency with Mach’s Principle, stands in striking similarity to H. Seeliger’s
modification of the classical Laplace-Poisson equation �ϕ = 4πρ into �ϕ − μ2ρ = 4πρ,
[sic—the left side should contain ϕ rather than ρ] whereby Seeliger attempted to relieve
Newtonian cosmology from certain inconsistencies. The positive constant μ should be
chosen so small that within the dimensions of the solar system the solution of the original
equation (i.e., ϕ = −m/r) and that of the supplemented equation (ϕ = −m

r
e−μr )

should coincide within the margin of observational error. (Jammer 1993, 194–195, footnotes
suppressed).

(There is no change from the 1969 edition.) While criticisms of Einstein are
admitted, there seems to be no expectation that they would come from much later
decades (1940s–1960s) and be facilitated by particle physics. Notwithstanding the
citation of Seeliger’s 1895 and 1896 papers, Jammer’s Seeliger looks more like
Neumann (who does not appear here in Jammer’s account) or a composite figure
propounding a fusion of Seeliger’s physical arguments and Neumann’s mathematics
in presenting a unique plausible differential equation, rather than a variety of more
or less arbitrary modified force laws as Seeliger in fact gave.

More recent historical works show no monotonic improvement. Pais’s work is
similar to Jammer’s on this point; thus Einstein’s standard scientific biography did
no better in the 1980s, well after the corrections were available in the physics litera-
ture, than Jammer had in the 1960s. Pais discusses Einstein’s proposed modification
of Newtonian gravity well enough, but then endorses Einstein’s analogy. If the
Newton-Poisson equation

�φ = 4πGρ (15.17)
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. . . is replaced by

�φ − λφ = 4πGρ (15.18)

(a proposal which again has nineteenth century origins), then the solution [with
uniform matter density ρ and gravitational potential φ] is dynamically acceptable.

. . . Let us return to the transition from Eq. 15.17 to Eq. 15.18. There are three
main points in Einstein’s paper. First, he performs the very same transition in general
relativity. . . (Pais 1982, 286).

5.3 Pierre Kerszberg

In a generally fascinating and illuminating book written in the late 1980s, Kerszberg
seems to have lacked the concept of a graviton mass and consequently had
an obsolete view of the plausibility of a Neumann-Seeliger modification of the
Newtonian potential, while also falling into Einstein’s false analogy (Schucking
commented on Kerszberg’s book (Schucking 1991)). Kerszberg writes:

By the end of the nineteenth century, Seeliger and Neumann proposed a modification of
the Newtonian law of gravitation that would make no perceptible difference within the
solar system but would dispense with the disturbing increase of attraction over larger
distances.. . . Suffice to say here that this modification was designed to restore homogeneity
at large, and that it was just as ad hoc a solution as the absorbing matter had been in the
case of the optical paradox. (Kerszberg 1989, 50).

The promised further discussion in the next chapter largely embraces Einstein’s
analogy:

In fact Einstein introduces the cosmological constant by again appealing to a parallel with
the Newtonian theory. As he reminds us at the end of the analysis of Newtonian cosmology
with which he opened his memoir, the strategy for overcoming the paradoxes of the island
universe involves what looks like a piece of similar contrivance. It was in the third edition of
his popular exposition of relativity that Einstein gave Seeliger credit for the modification of
Newton’s law, according to which “the force of attraction between two masses diminishes
more rapidly than would result from the inverse square law” (1918. . . ). In fact, C. Neumann
had reached similar conclusions (see Seeliger 1895 and Neumann 1896). Einstein went
on to emphasize that neither a theoretical principle nor an observation would ever justify
the proposed modification; any other convenient law would do the same job.. . . Seeliger’s
modification of the inverse square law was F = Gmm′e−�r/r2. (Kerszberg 1989, 161–
162)

Unfortunately this expression of Seeliger’s (one of a number that he used) was not
the most plausible option even in the 1890s. Neumann’s potential had the virtue of
solving a known linear differential equation, unlike most of Seeliger’s expressions.
The enhanced plausibility of Neumann’s mathematics with the rise of the concept of
graviton mass overcomes the objections to Seeliger. Kerszberg commendably finds
� difficult to interpret.
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He comments more explicitly on Einstein’s analogy between his modified Poisson
equation and his cosmological constant �:

Beyond any surface similarity, there is indeed a fundamental contrast, because the �-term
now fixes the periphery and removes all reference to the centre. Thus, the new constant is
parallel to Newton insofar as the form of the laws is concerned, but the interpretation of it
diverges sharply from formal analogy. (Kerszberg 1989, 163)

But in fact scalar (spin 0) and symmetric tensor (spin 2) tensor theories of gravity
are too similar to permit this disconnect between formal analogy and interpretation
(Freund et al. 1969; Boulware and Deser 1972). In fact there is no formal analogy,
either; Kerszberg’s sense of an important difference is correct. Once one has
the proper alignment of scalar/spin 0 and tensor/spin 2 analogs, the behavior of
the corresponding cases (scalar with graviton mass, tensor with graviton mass;
scalar with cosmological constant, tensor with cosmological constant) is quite
similar, both empirically and conceptually. In both the scalar and tensor cases, the
massive graviton case involves a background geometry and a smaller symmetry
group (typically the Poincaré group of special relativity), whereas the cosmological
constant involves no background geometry and does not shrink the symmetry group.

5.4 John Norton and John Earman: Clarity But No Graviton
Mass

Some philosophically flavored history out of Pittsburgh has fared noticeably better.
At the end of the 1990s, John Norton very helpfully discussed “The Cosmological
Woes of Newtonian Gravitational Theory,” providing a useful discussion of Seeliger,
Neumann, and Neumann’s elusive priority claim. Norton, citing Trautman, is not
taken in by Einstein’s claimed analogy between the modification of Newtonian
gravity and the cosmological constant:

(The analogy is less than perfect—something Einstein may have found it expedient to
overlook in order not to compromise his introduction of the cosmological term. As
Trautman (1965: 230) pointed out, Einstein’s augmented gravitational field equation
reduces in Newtonian limit to a field equation other than [the modified Newtonian equation
∇2φ − λφ = 4πGρ]: ∇2φ + λc2 = 4πGρ.) (Norton 1999, 299)

Norton does not, however, consider how developments in the 1920s–1930s in
particle physics provided a physical meaning for Neumann’s mathematics and thus
made a specific and plausible form of Seeliger’s ideas more available. Admittedly,
changing gravitation on long ranges becomes far less urgent once one finds that the
universe is expanding.

John Earman’s paper on � (2001), which draws upon Norton’s, is also clear and
accurate technically—indeed clearer than others that say little about the perturbative
business involved—as well as historically aware. He does not, however, connect the
Neumann-Seeliger work with the later physical meaning of a graviton mass.



Cosmological Constant � vs. Massive Gravitons: A Case Study in General. . . 211

5.5 Helge Kragh: Rewriting History

More recently, in an otherwise admirable book Matter and Spirit in the Universe:
Scientific and Religious Preludes to Modern Cosmology, Helge Kragh took Ein-
stein’s false analogy between � and the Seeliger-Neumann sort of modification of
gravity so seriously as to rewrite history in light of this analogy, at variance with
what Seeliger actually proposed (Kragh 2004, 28). Kragh seems to have used both
Einstein’s false analogy and the 1918–1919 Kottler-Weyl (a.k.a. “Schwarzschild-
de Sitter”) solution of Einstein’s equations with � discussed above to infer the
mathematical potential comparable to 1

r
that Seeliger supposedly posited in the

1890s. This error seems not to appear in Kragh’s sources (Norton 1999; Harrison
1986; Jaki 1979). Kragh writes:

Seeliger’s suggestion was to replace the [Newtonian gravitational potential ϕ(r) =
−M/r]. . . with

ϕ(r) = −M

r
− �r2

6

where � is a cosmological constant so small that its effects will be unnoticeable except
for exceedingly large distances. The body not only experiences an attractive inverse-square
force towards the central body, but also a repulsive force given by �r/3. In a somewhat
different way the slight but significant adjustment of the inverse square law was suggested
also by Carl Neumann in 1896, and it reappeared in a very different context in 1917, now
as Einstein’s famous cosmological constant. (Kragh 2004, 28)

Seeliger did experiment with various ways to modify the Newtonian potential
(von Seeliger 1895, 1896, 1898) and did not seem captivated by Neumann’s
specific proposal to include just an exponentially decaying factor in the potential
(a modification later interpretable as a graviton mass and hence the ‘right’ way to
do it). But adding a divergent quadratic potential was not among the things that
Seeliger considered.

5.6 Marco Mamone Capria: Clarity but No Graviton Mass

The faulty analogy has been treated better in the work of Marco Mamone Capria
(2005), partly with influence from Schucking. Regarding Einstein’s proposed
modification of Newtonian gravity, it:

was probably inspired by the modified gravitational potential φN built out of the mass-point

potential Ae−r
√

λ/r (A is a constant), as proposed by the German theoretical physicist Carl
Neumann in 1896. Neumann introduced this form of the potential in order to solve the
gravitational paradox in the form of the impossibility to assign, at any point, a finite value
to the gravitational potential corresponding to a uniform infinite mass distribution. In fact
φN goes to zero at infinity even with such a mass distribution, and (2) [the modified Poisson
equation] is precisely the equation which it satisfies. (Mamone Capria 2005, 131)
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Seeliger’s motivation seems to be attributed to Neumann, however. Mamone Capria
explicitly rejects Einstein’s analogy (Mamone Capria 2005, 135), following Harvey
and Schucking (2000).

Even more remarkable [than Einstein’s false analogy, the quarter of a century before it was
criticized by Heckmann, and the ease with which one refutes the analogy], perhaps, is that
a long sequence of eminent authors missed this basic point and blindly endorsed Einstein’s
stated analogy between (2) and (7) (“generations of physicists have parroted this nonsense”
as is said in [Harvey and Schucking 2000, 723]). Clearly most working scientists are just
too anxious to publish some ‘new’ piece of research of theirs to spend a sufficient amount of
time reviewing the foundations of their disciplines; so they frequently end up by relying on
authority much more than on rational belief, in contrast with the scientific ethos as ordinarily
proclaimed. (Mamone Capria 2005, 135)

Mamone Capria does not go on to draw the further conclusion that the actual analog
of the modified Poisson equation is thus a potentially interesting and unexplored
possibility for relativistic cosmology or recognize that particle physics is the missing
ingredient, but still this is progress.

5.7 O’Raifeartaigh, O’Keeffe, Nahm and Mitton: Clarity But
No Graviton Mass

A recent centennial review of Einstein’s 1917 cosmological paper also makes a
clear distinction between the Neumann-Seeliger enhanced long-range decay and
Einstein’s cosmological constant:

It is an intriguing but little-known fact that, despite his claim to the contrary, Einstein’s
modification of the field equations in Section §4 of his memoir was not in fact “perfectly
analogous” to his modification of Newtonian gravity in Section §1. As later pointed out by
several analysts [footnote suppressed], the modified field equations (E13a) do not reduce
in the Newtonian limit to the modified Poisson’s equation (E2), but to a different relation
given by

∇2φ + c2λ = 4πGρ. (10)

This might seem a rather pedantic point, given that the general theory allowed the
introduction of the cosmological constant term, irrespective of comparisons with Newto-
nian cosmology. Indeed, as noted in Section 4.1, Einstein described his modification of
Newtonian cosmology merely as a “foil for what is to follow”. However, the error may
be significant with regard to Einstein’s interpretation of the term. Where he intended to
introduce a term to the field equations representing an attenuation of the gravitational
interaction at large distances, he in fact introduced a term representing a very different
effect. Indeed, the later interpretation of the cosmological term as representing a tendency
for empty space to expand would have been deeply problematic for Einstein in 1917, given
his understanding of Mach’s Principle at the time. Thus, while there is no question that
relativity allowed the introduction of the cosmic constant term, it appears that Einstein’s
interpretation of the term may have been to some extent founded on a misconception
(Harvey and Schucking 2000, 223). (O’Raifeartaigh et al. 2017, 28)



Cosmological Constant � vs. Massive Gravitons: A Case Study in General. . . 213

This is a very appropriate assessment, albeit without seeing that the Neumann-
Seeliger idea provided the mathematical nucleus of a potentially interesting case
of unconceived alternatives in the form of a graviton mass.

6 Conclusion

It seems that there is an irregular but gradual upward trend in recognition by
historians and philosophers of physics of the distinction between faster long-range
decay and a cosmological constant, notwithstanding Einstein’s claimed analogy.
Thus it is certainly possible to get the correct answer without much personal
awareness of particle physics. However, it is also quite easy to fall for the false
analogy. Much depends on what one has read. Works that clarify the issue are not
standard reading material for historians or philosophers of physics.

But there are a number of imperfections even in a situation in which historians
and philosophers recognize the erroneous quality of Einstein’s analogy. First, it
is unclear that one can make sense of the difference between a cosmological
constant and a graviton mass if one is averse to particle physics; one cannot make
sense of a graviton mass without a background geometry and perturbative-looking
comparison of two geometries. Second, it appears that the increased recognition of
the distinction is based largely on authority, oftentimes that of Schücking, making
the recognition highly contingent on reading the right materials. Third, if one does
manage to avoid the false analogy, one can easily still fail to recognize that one
has encountered a potentially interesting example of the problem of unconceived
alternatives. A dose of particle physics egalitarianism and corresponding de-
privileging of General Relativity exceptionalism would help on all counts.

This discussion is clearly not intended to imply that anyone should embrace
a graviton mass or should not embrace a cosmological constant. Ultimately the
world should settle that issue through observational data. At present at least an
effective cosmological constant has empirical support, whereas the graviton mass
does not clearly have any empirical support (although it is difficult to say what
to make of the dark matter problem, which might be soluble in terms of modified
gravity in some form). But failing even to conceive of a graviton mass, which is
a plausible option from the standpoint of particle physics, while taking with great
seriousness a cosmological constant even prior to any data, when it is at least prima
facie implausible from the standpoint of particle physics (prior to quantum field
calculations), is hardly a balanced view. One needs to adjust one’s prior plausibilities
in order to profit more from the data.

The briefly mentioned examples of gravitational radiation and particle physicists’
spin 2 derivations of Einstein’s equations also illustrate how influence from particle
physics can be salutary for understanding and motivating Einstein’s equations. All
three examples provide support for the claim that systematic integration of general
relativist and particle physics ideas holds considerable promise for historical and
philosophical reflection on gravitation and space-time.
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