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Preface

ISC High Performance, formerly known as the International Supercomputing
Conference, was founded in 1986 as the Supercomputer Seminar. Originally organized
by Hans Meuer, Professor of Computer Science at the University of Mannheim,
Germany, and former director of its computer center, the seminar brought together a
group of 81 scientists and industrial partners who shared an interest in
high-performance computing. Since then, the annual conference has become a major
international event within the HPC community and, accompanying its growth in size
over the years, the conference has moved from Mannheim via Heidelberg, Dresden,
Hamburg, and Leipzig to Frankfurt. Over recent years, we have seen a steady increase
in the number of submissions of high-quality research papers to the conference and in
the number of conference attendees. A record-setting attendance was anticipated for
ISC-HPC 2020 in Frankfurt, but as with all other conferences in summer 2020, the
global coronavirus pandemic forced it to be a digital event.

For ISC-HPC 2020, the call for participation was issued in Fall 2019, inviting
researchers and developers to submit the latest results of their work to the Program
Committee. In all, 87 papers were submitted from authors all over the world. The
Research Papers Program Committee consisted of 88 members from 22 countries
throughout the world. After initial reviews were completed, a rebuttal process offered
authors an opportunity to respond to reviewers’ questions and help clarify issues the
reviewers might have had. To come to a final consensus on the papers, a face-to-face
Program Committee meeting was held in Frankfurt to discuss the papers. Finally, the
committee selected 27 papers for publication.

For the past several years, the ISC-HPC conference has presented an ISC-sponsored
award to encourage outstanding research in high-performance computing and to honor
the overall best research paper submitted to the conference. Two years ago, this annual
award was renamed the Hans Meuer Award in memory of the late Dr. Hans Meuer,
general chair of the ISC-HPC conference from 1986 through 2014, and a co-founder
of the TOP500 benchmark project. In recent years, from all research papers submitted,
the Research Papers Program Committee nominated two papers as finalists for the
award and then selected the best paper based on the final presentations during the
conference. Because ISC-HPC 2020 became an all-digital event without physical
attendance and live presentations, both nominated papers were bestowed with the Hans
Meuer Award:

• “Load-balancing Parallel Relational Algebra” by Sidharth Kumar and Thomas
Gilray

• “Time Series Mining at Petascale Performance” by Amir Raoofy, Martin Schulz,
Carsten Trinitis, Dai Yang, and Roman Karlstetter



The Gauss Centre for Supercomputing sponsors the Gauss Award. This award is
assigned to the most outstanding paper in the field of scalable supercomputing and
went to:

• “Solving Acoustic Boundary Integral Equations Using High Performance Tile
Low-Rank LU Factorization” by Noha Al-Harthi, Rabab Alomairy, Kadir
Akbudak, Rui Chen, Hatem Ltaief, Hakan Bagci, and David Keyes

We would like to express our gratitude to our colleagues for submitting papers to the
ISC-HPC scientific sessions, and the area chairs and members of the Technical Papers
Program Committee for organizing this year’s program.

June 2020 Ponnuswamy Sadayappan
Bradford L. Chamberlain

Guido Juckeland
Hatem Ltaief

The original version of the book was revised: For detailed information see correction
chapter. The correction to the book is available at
https://doi.org/10.1007/978-3-030-50743-5_28
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FASTHash: FPGA-Based High
Throughput Parallel Hash Table

Yang Yang1(B), Sanmukh R. Kuppannagari2, Ajitesh Srivastava2,
Rajgopal Kannan3, and Viktor K. Prasanna2

1 Department of Computer Science, University of Southern California,
Los Angeles, CA, USA
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rajgopal.kannan.civ@mail.mil

Abstract. Hash table is a fundamental data structure that provides
efficient data store and access. It is a key component in AI applications
which rely on building a model of the environment using observations
and performing lookups on the model for newer observations. In this
work, we develop FASTHash, a “truly” high throughput parallel hash
table implementation using FPGA on-chip SRAM. Contrary to state-
of-the-art hash table implementations on CPU, GPU, and FPGA, the
parallelism in our design is data independent, allowing us to support p
parallel queries (p > 1) per clock cycle via p processing engines (PEs) in
the worst case. Our novel data organization and query flow techniques
allow full utilization of abundant low latency on-chip SRAM and enable
conflict free concurrent insertions. Our hash table ensures relaxed even-
tual consistency - inserts from a PE are visible to all PEs with some
latency. We provide theoretical worst case bound on the number of erro-
neous queries (true negative search, duplicate inserts) due to relaxed
eventual consistency. We customize our design to implement both static
and dynamic hash tables on state-of-the-art FPGA devices. Our imple-
mentations are scalable to 16 PEs and support throughput as high as
5360 million operations per second with PEs running at 335 MHz for
static hashing and 4480 million operations per second with PEs run-
ning at 280 MHz for dynamic hashing. They outperform state-of-the-art
implementations by 5.7x and 8.7x respectively.

Keywords: Hash table · Parallel processing · FPGA

1 Introduction

Artificial Intelligence (AI) has played a central role in pushing the frontiers of
technology. There has been a significant progress in several domains due to AI,
c© Springer Nature Switzerland AG 2020
P. Sadayappan et al. (Eds.): ISC High Performance 2020, LNCS 12151, pp. 3–22, 2020.
https://doi.org/10.1007/978-3-030-50743-5_1
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including computer vision [3], robotics [21], machine learning on graphs [32],
and games [8]. Conceptually, AI algorithms use observations to learn a model
for the task, which is then consulted (searched, looked-up) to reason about new
observations and update the model. To enable fast look-up during training as
well as inference, hash table has been widely adopted in the implementation of
many AI algorithms [10,13,27,28,32]. For example, Graph Convolution Neural
Network (GCN) uses hash tables in the graph sampling operation to determine
whether the currently sampled vertex or edge exists in the sampled set or not [32].
Similarly, in Approximate Nearest Neighbor (ANN), hashing is used to determine
the neighbor (point) closest to the current observation [28]. Hashing plays a
central role in text-mining for creating and maintaining bag-of-words models [4].
Therefore, a parallel high throughput hash table is imperative to accelerate a
wide range of AI applications.

Several works have developed high-throughput hash table implementations
by “parallelizing” the hash table. The “parallelization” in these works implies
exploiting certain features of the hash table, such as the availability of multiple
partitions [22], to increase the number of parallel queries that can be supported.
However, this does not imply true parallelism as the parallelism is highly data
dependent and the worst case performance - for example, when all queries belong
to the same partition - is similar to a serial implementation. In contrast, our focus
in this work is to develop a parallel implementation of hash table that supports
p parallel queries (p > 1) in each clock cycle even in the worst case.

Field Programmable Gate Arrays (FPGA) have proved successful in appli-
cations which require energy-efficient acceleration of complex workloads such
as AI due to their high energy-efficiency and the availability of fine grained
parallelism [18]. Their dense logic elements (up to 5.5 million), abundant user-
controllable on-chip SRAM resources (up to 500 MB, up to 38 TB/s bandwidth),
and interfaces with various external memory technologies such as High Band-
width Memory (HBM) make them a logical choice for accelerating computation-
ally intensive time critical AI applications in an energy-efficient manner [14,30].
Cloud platforms are increasingly being augmented with FPGAs to accelerate
computation with offering such as Amazon EC2 F1, Microsoft Catapult, Alibaba
Faas, etc. The versatility of FPGAs is evident from their widespread deploy-
ment in high performance cloud and data-centre platforms [30] as well as in
low-powered edge applications [12].

In this work, we develop FASTHash: FPGA-based High Throughput Parallel
Hash Table. FASTHash supports p queries (p > 1) in each clock cycle, where p
is the number of parallel Processing Engines (PEs). To enable such an imple-
mentation, we exploit the fact that AI applications are approximate in nature
and can tolerate small errors in observations or computations. Thus, we allow
the semantic of relaxed eventual consistency i.e. a query inserted by a PE is
visible to all the other PEs with a maximum delay of O(p) clock cycles and
provide worst case bounds on the erroneous queries (true negative search and
duplicate insertion). We implement our hash table entirely using FPGA on-chip
SRAM. On-chip SRAM has a very low access latency (1 cycle) compared to
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external memory (range of 10 s of cycles). Extremely high bandwidth of up to 38
TB/s is supported by state-of-the-art FPGA devices [30]. Moreover, the abun-
dant on-chip SRAM allows implementation of hash table with entries ranging
from several hundred thousands to more than a million.

The key contributions of our paper are:

– To the best of our knowledge, we develop the first “truly” parallel implemen-
tation of a hash table on FPGA which supports p operations (p > 1) in each
clock cycle, thus achieving a throughput of p per clock cycle. The parallel
queries in each clock cycle can be any combination of search and insert.

– To fully utilize the abundant low latency on-chip SRAM, we develop novel
data organization and query flow techniques. Our techniques allow each of
the p PEs to perform hash table search and insert without memory conflicts.

– Our hash table uses relaxed eventual consistency model, i.e. an element
inserted from a PE is visible to all the other PEs with some latency. We pro-
vide theoretical worst case bounds on the number of queries that are incor-
rectly served (true negative search or duplicate inserts) due to the relaxed
eventual consistency semantics of our hash table.

– Our architecture is flexible and device agnostic. We implement both static
and dynamic hash tables on state-of-the-art Xilinx and Intel FPGAs.

– Our hash table designs are scalable to 16 PEs with the static hash table
reaching a throughput of 5360 million operations per second at 335 MHz, and
the dynamic hash table achieving a throughput of 4480 million operations
per second at 280 MHz. They outperform state-of-the-art implementations
by 5.7x and 8.7x respectively.

2 Related Work

2.1 Hash Table Implementation on CPU and GPU

Many parallel hashing approaches have been proposed on CPU and GPU plat-
forms. On CPU, significant effort has focused on designing concurrent and lock-
free hash table through shared memory and message passing [19,20,24]. With the
emergence of many-core architectures, several researches have investigated hash
table implementations on GPU [1,9,16]. Essentially, these works divide a hash
table into partitions, either coarse or fine grained, and extract parallelism by pro-
cessing queries to each partition concurrently. In the event that all the queries go
to the same partition, they are intrinsically serialized. Recent work by Shankar et
al. [25] investigated accelerating Cuckoo hash table using modern CPUs’ SIMD
instructions, such as Intel AVX2 and AVX-512 extensions. However, their study
is limited to lookups, and the complexity incurred by simultaneous lookups and
insertions is not considered.

2.2 Hash Table Implementation on FPGA

A number of FPGA-based high performance hash table implementations have
been proposed in the community. Among these works, Bando et al. [2] proposed



6 Y. Yang et al.

a hash table based IP lookup technique. Their architecture achieves a lookup
throughput of 250 Mops/s. Istvn et al. [15] described a pipelined hash table
on FPGA for MemcacheD applications that sustain 10 Gbps throughput. To
reduce unnecessary hash table accesses, Cho et al. developed an efficient hash
table implementation with bloom filter [6]. Tong et al. [26] developed a data for-
warding unit to overcome the data hazards during dynamic hash table updates.
Their proposed architecture achieves up to 85 Gbps throughput. Cuckoo hashing
implementation of [29] is based on an efficient memory layout. They incorporate
a decoupled key-value storage that enables parallel computation of hash values
with low overhead. However, all the above works focus on improving performance
for a single processing pipeline, which is not sufficient to fully exploit the high
bandwidth on-chip SRAM in state-of-the-art FPGAs.

Pontarelli et al. presented an FPGA-based Cuckoo hash table with multiple
parallel pipelines [22]. To increase throughput, each pipeline has a different entry
point, each of which corresponds to a different hash function. Therefore, the
parallelism of their design is limited by the number of hashing functions in a
given Cuckoo hash table. Furthermore, due to access conflicts to the same hash
function, the achieved throughput with 4 parallel pipelines is only 1.6 queries
per clock cycle.

2.3 Novelty of Our Work

State-of-the-art works improve the throughput of hash table by one of the fol-
lowing three techniques: (i) pipelining the implementation to increase the clock
frequency, (ii) parallel atomic access to a shared hash table, and (iii) partitioning
of hash table to enable parallel access. Technique (i) while improving throughput
is clearly not a parallel implementation. Techniques (ii) and (iii) lead to high
parallelism if the parallel queries do not need atomic access to the same portion
of the hash table or if they map to different partition of the hash table. However,
this is highly data dependent and in the worst case all the parallel queries will be
serialized leading to reduced throughput similar to a sequential implementation.

In contrast, our implementation processes p parallel queries in each clock
cycle, with p being the degree of parallelism. Our implementation is data inde-
pendent and supports any combination of parallel searches and inserts.

3 Hash Table Overview

3.1 Definition of Hash Table

Hash table is a fast and compact data structure that stores a set S of keys from
a much larger universe U. Usually the size of S is much smaller than the size of
U. Hash function is used to perform hash table lookup operations. Assume the
size of hash table is M, which is usually in the same order as |S|, a hash function
h, h : U → {0, ...,M − 1}, maps a key k in U to an index of M.
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The hash table operations supported by our design are:

– SEARCH (k): Return {k, v} ∈ S or ∅. Retrieve the value associated with
the input key if the key exists in the hash table, or empty if not found.

– INSERT (k, v): S ← S∪ {k, v}. Insert a new key-value pair to the hash table
if the key does not exist in the hash table at the time of insertion.

There are two forms of hash table, Static Hash table and Dynamic Hash
table. We briefly explain the concept below.

Static Hash Table. In a static hash table, S is a fixed priori, and is immutable
during runtime. Therefore, the only operation allowed is search. Perfect hashing
is one of the methods to construct static hash tables without collision [7]. One
method to construct such hash table using perfect hashing is by employing two
levels of hash functions. The first level hash table, in this method, is created
using a hash function from the universal hash function family H [5]. For each
bucket that has more than 1 item in the first level hash table, i.e. producing
some collisions, it creates a second level hash table with O(n2

i ) entries, where ni

is the number of items in bucket i (ni > 1). The second level hash function is
also randomly selected from H. A hashing constructed using this method does
not have collisions.

Fig. 1. A hash table that is capable of processing p operations in parallel.

Dynamic Hash Table. As its name suggests, dynamic hashing allows search oper-
ations while data is incrementally added to a hash table. As a result, dynamic
hash table is a mutable object. When a new key is inserted but its respective
entry is already occupied, collision is said to occur. On FPGA, collision is usually
handled through multiple level of hash functions or linear chaining [15,17,29].

3.2 Parallel Hash Table

In the context of parallel hash table, instead of searching or inserting one key
at a time, each query can contain p (p > 1) independent operations. The p
operations can be in any combination of search and insert. Figure 1 shows the
high level concept of parallel hash table. In this case, hash table can complete at
most p operations per clock cycle. Designing a parallel architecture on FPGA to
efficiently access hash table is a challenging research problem. The primary issue
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is resource contentions such as on-chip memory conflicts between concurrent
hash table operations. Our proposed architecture guarantees p operations per
clock cycle.

4 FASTHash: An FPGA-Based Parallel Hash Table

In this section, we first introduce the novel data organization and query flow
in our proposed architecture, to allow concurrent accesses with mixed operation
types, and efficiently scale to p parallel processing engines on FPGA. Then we
show the architecture details of our design. We also present the extensions to
support static hash tables.

4.1 Hash Table Data Organization

Our design goal is to support p hash table accesses per clock cycle with p pro-
cessing engines. To achieve the desired target, we require a data organization
that can perform p parallel operations without stalling.

Fig. 2. Data organization and high level architecture of a 4 PEs design. “(M)” indicates
the Master Hash Table Block from which a PE initiates insert operation.

The proposed hash table architecture is implemented using on-chip SRAM
(BRAM, URAM, or M20K), which is an abundant resource in modern FPGAs
[14,30]. Since such memory block is dual-ported, and supports one read and one
write per clock cycle, implementing a hash table that guarantees p operations
per clock cycle is challenging.

In our proposed design, we assign a copy of the hash table content to each
PE. Inside each PE, the hash table is further split into multiple Hash Table
Blocks to enable concurrent hash table insert operations. Each Hash Table Block
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is mapped to one or more BRAM, URAM, or M20K blocks. To ensure data
consistency across PEs, we design an efficient and conflict-free Inter-PE Dataflow
that connects each Hash Table Block across PEs. With the Inter-PE Dataflow,
an insert that is made by one PE is visible to all the other PEs with up to O(p)
clock cycle delays.

Figure 2 shows an example of our proposed hash table data organization
with 4 PEs. Each row represents a PE and the Inter-PE Dataflow connects
Hash Table Blocks that are in the same column. With this data organization,
hash table operations can be performed independently by each processing engine
without any memory conflict.

Query Flow. Our hash table architecture supports search and insert operations
defined in Sect. 3.2. Before we discuss the query flow of the supported operations,
we need to introduce an auxiliary structure called Master Hash Table Block.

Fig. 3. Query flow in a 4 PEs design.

Master Hash Table Block (MHTB): As we mentioned earlier, we store our hash
table in FPGA on-chip SRAM. The split data organization increases the par-
allelism of our hash table, but it inevitably poses challenges when performing
insert to the hash table. This is because we need to keep all the Hash Table Block
synchronized in order to return consistent queries. Essentially, an all-to-all com-
munication between PEs would be required during an insert event. To reduce
the wiring overhead, we assign block i to PE i – if PE i receives an insert request
for a key that does not already exist, it will be inserted by PE i in Hash Table
Block i, and subsequently to the whole column i to enable concurrent reads. We
refer this Hash Table Block as Master Hash Table Block (MHTB), as shown in
Fig. 2. This design guarantees that at any given clock cycle there can only be
one insert for any Hash Table Block.

The query flow of our hash table, i.e. mapping of search and insert operations
to our parallel architecture, is described below:

Search: Searching for a specific key in our hash table is similar to traditional hash
table. Once a PE receives a search query, it goes through a Lookup Pipeline that
sequentially looks for the key in each Hash Table Block inside the PE. If input
key is found, search query flow returns the key-value pair back to application. If
no matching key is found, we return empty.
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Insert: To insert a key-value pair into our hash table, the operation needs to
enter Lookup P ipeline first. This ensures the uniqueness of keys in our hash
table. If the input key is not found, PE sends the request to Insert P ipeline in
its MHTB. Insert Pipeline connects the MHTB in one PE to non-Master Hash
Table Blocks in the other PEs. They receive the same to-be-inserted key-value
pair as data flows through the Insert Pipeline. Collision is handled by reserving
multiple slots for each hash table entry. Figure 3 shows an example of search
and insert operations’ data flow in a 4 PEs design. As depicted in Fig. 3(b) and
Fig. 3(c), upon a simultaneous insert from PE0 and PE2, insert operations are
performed by writing to different Hash Table Blocks (columns), thus they never
introduce memory conflicts.

Remarks on Supporting Other Hash Table Operations. We focus on a high
throughput implementation of hash table suitable for AI applications. As search
and insert are the two key operations in such applications, our design is optimized
for the same. However, our hash table can be extended to support update (new
value for an already inserted key) and delete (remove a key-value pair) operations
with little modification by re-routing such operations to the PE which receives
the original insert for the corresponding input key. In this work, we make no
extra effort to support this feature.

4.2 Hash Table Architecture

Design Overview. As shown in Fig. 2, our proposed design consists of p pro-
cessing engines (PEs). Each PE can receive input queries independently and
with different operation types. Search operations can be completed within each
PE itself. For insert operations, each PE needs to propagate changes to the hash
table of the other PEs to ensure data consistency. This is achieved by the Inter-
PE Dataflow. Enforced by our architecture model, inserts initiated by one PE
never intervene with inserts by other PEs. Therefore, we can guarantee p parallel
accesses per clock cycle in our design.

Processing Engine Design. Figure 4 shows the architecture of our PE design.
It contains three key components: Hashing Unit, Data Processing Unit, and
Collision Handling Unit. When an input query arrives, it is sent to the Hashing
Unit to compute the entry index for each hash table block to lookup. Data
Processing Unit receives the output from Hashing Unit. It performs hash table
lookup by reading each hash table block sequentially, keeps track of metadata
information, and initiates hash table insert if necessary. Both Hashing Unit and
Data Processing Unit are pipelined in order to achieve high operating frequency
on FPGA.

Hashing Unit. Hash functions from the Class H3 [5] has been demonstrated to
be effective on distributing keys randomly among hash table entries. The hash
function is defined as follows [23]:
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Definition 1. Let i denote the number of bits for input key, and j denote
the number of bits for hash index. Furthermore, let Q denote a i × j Boolean
matrix. For a given q ∈ Q, let q(m) be the bit string of the mth row of Q,
and let x(m) denote the mth bit of input key. The hash function is: h(x) =
(x(1) · q(1)) ⊕ (x(2) · q(2)) ⊕ ... ⊕ (x(i) · q(i)).

Fig. 4. Architecture of PE 2 in a 4 PEs design. Master Hash Table Block (MHTB) ID
is 2 in this case.

We map the hash calculation into a 2-stage pipeline. The first stage simulta-
neously calculates the AND results for each bit of the input key. The second stage
calculates the final hash value by XORing the results of the first stage. Therefore,
this hash function calculation logic can be achieved with O(1) latency.

Data Processing Unit. The Data Processing Unit (DPU) handles operations
in the order they arrive. As seen in Fig. 4, every operation goes through the
Lookup P ipeline first; depending on the operation type and lookup result, only
insert operations are required to go through Insert P ipeline. The entire Lookup
Pipeline is divided into p mega-stages, as illustrated in Fig. 5(a). Each mega-
stage i performs a read operation from hash table block i. Mega-stage can take

Fig. 5. Implementation details of Lookup P ipeline and Inter-PE Dataflow.



12 Y. Yang et al.

multiple clock cycles and is pipelined as well. DPU has shift-registers for meta-
data information that is needed in a later stage or at the end of the Lookup
Pipeline. When a key in the hash table is found equal to the input key and
the entry is valid, a matching flag is captured and stored into the metadata
shift-register.

Result Resolution Unit collects the metadata information and result from
the last mega-stage of Lookup Pipeline, and routes operations to their next hop.
For search operation, it generates the response based on whether a key exists or
not. When insert is performed, this unit also inspects the matching flag. If hash
table insert condition is satisfied, i.e. matching flag indicates the input key is
unique, it issues the operation to the Insert Pipeline with metadata information
such as hash index, slot ID, etc. Otherwise, it generates a response to application
indicating failure.

Each Hash Table Block has an Insert Pipeline. It is triggered when it receives
an operation along with the corresponding metadata information from Result
Resolution Unit or from another PE. It writes the new key-value pair and valid
information directly to its Hash Table Block. The last stage of Insert Pipeline
sends the update data to the next PE according to the rules of Inter-PE Dataflow,
which we will describe below.

Collision Handling Unit. To handle collision, we design our hash table entry
to have multiple slots. Each slot can be allocated to store one key-value pair.
One valid field is associated with each slot to indicate if this slot has valid data
or available for insertion. An operation is performed only when both the key
matches and validity of the slot.

In each PE, only DPU MHTB mega-stage has extra collision handling logic.
Other Hash Table Block mega-stage doesn’t need collision handling because colli-
sion, if any, has already been resolved by the PE which initiates insert operations.
Collision is handled by finding the first available slot to insert. We implement a
parallel collision handling unit, as shown in Fig. 6. That is: we examine all the
slots from a hash table entry at the same clock cycle. This collision handling
logic is an extension on top of the hit/miss detection logic that already presents
in each Hash Table Block. It has s parallel comparators to detect a matching key.

Fig. 6. Parallel collision handling with s slots per Entry. “Hit/Miss/Collision Handling
Logic” outputs the outcome of lookup, and slot ID for MHTB based on operation type.
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The slot ID from this stage needs to be recorded into the shift-register because
this information is needed by the Insert Pipeline later on. Given our low collision
rate with H3 hash functions, we expect 2 to 4 slots per entry to be sufficient.
Therefore, it can produce slot ID for insert with O(1) latency.

Inter-PE Dataflow. Figure 5(b) shows the Inter-PE communication flow. It
plays a vital role in our design to ensure conflict free hash table updates, as
discussed in Sect. 4.1. Inter-PE Dataflow connects Insert P ipelines that are in
the neighbor PEs into a “relay network”. Therefore, there are totally p parallel
Inter-PE Dataflow in our architecture. For each Inter-PE Dataflow, there is only
one Insert P ipeline which is capable of initiating hash table insert operations,
all the other Insert P ipelines in the same “relay network” simply processes the
insert and passes the data to the next one, until it reaches the end.

Relaxed Eventual Consistency. As described above, a new key is not seen
by all the PEs for up to pt0 + p0 + t0 clock cycles, where t0 is read/write latency
of one Hash Table Block. This includes pt0 clock cycles to search and then p+ t0
clock cycles to insert to all the PEs (instead of pt0 due to pipelining). When
the same key is referenced during this time window, our design doesn’t make
extra effort to forward the data. However, our design guarantees that eventually
all accesses to that key will return the inserted value. We refer this behavior as
relaxed eventual consistency.

4.3 Customization for Static Hash Table

In order to support perfect hashing with two levels of hash tables, another Hash-
ing Unit is added to each PE for the second level hash table. This Hashing Unit
is placed between the Hashing Unit for the first level hash table and the Data
Processing Unit. Inside this unit, we use a lookup table to store the hashing func-
tions for each entry in the first level hash table. Collision Handling Unit and
Inter-PE Dataflow are removed because they are designed for insert operations.

5 Hash Table Guarantees and Applications Supported

5.1 Implications of Relaxed Eventual Consistency

An error due to relaxed eventual consistency may occur when the following hold
simultaneously: (i) an insert request for a key u is received for the first time;
and (ii) another request of search or insert for the same key u is received within
pt0 + p + t0 cycles. Since, every clock cycle serves p requests, we can bound this
error by finding number of such issues within p2t0 + p2 + pt0 requests in the
sequence of all requests. Note that it is possible to create large number of such
errors by having a new key inserted and searched in every clock cycle. However,
such cases are unusual in practical setting. Instead, we will assume that there is
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a sequence of requests to be served, where the requests (search/insert) occur in
small chunks of b keys. The keys in two distinct chunks may be dependent, but
all keys within one chunk follow

P (one more occurrence of u|u has occurred) ≤ P (occurrence of u) (1)

Note that this condition is satisfied, if all the keys within one chunk are
independent. For instance, when sampling a sub-graph through edge sam-
pling, we pick edges and hash their vertices. In that case, out of the edges in
{(u1, v1), (u2, v2), . . . (ub, vb)}, {u1, u2, . . . , ub} are mutually independent, and
{v1, v2, . . . , vb} are mutually independent. Further, if b vertices coming from b/2
edges were considered in the same chunk, they also satisfy the condition as occur-
rence of a vertex can only reduce the probability of it being selected again (in
absence of self loops). Similarly, picking vertices through b independent random
walks ensures that vertices within the same chunk are mutually independent.
For simplicity, we will pick b = p2t0 + p2 + pt0.

Theorem 1. Number of requests nerr that are incorrectly served due to relaxed
eventual consistency is given by P (nerr ≥ θ) ≤ p2t0+p2+pt0

θ .

Proof. As noted above, we can bound the number of errors, by counting for each
key u, the number of times a request for u is made in the same chunk after the
first request for u.

Let Ci,j be the event that u is requested for the first time in chunk i and
the first occurrence is at position j in the chunk. Let n be the total number
of requests. Let Xf

u be the number of times a request for u is made within the
same chunk just after its first request. Let Xu,k be the indicator function for
occurrence of u at position k in a chunk. Then, by linearity of expectation:

E(Xf
u ) =

n/b−1∑

i=1

b∑

j=1

⎛

⎝P (Ci,j)
b∑

k=j+1

E(Xu,k|Xu,j = 1)

⎞

⎠ (2)

≤
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i=1

b∑

j=1

⎛

⎝P (Ci,j)
b∑
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E(Xu,k)

⎞
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⎛
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n/b∑

i=1

∑

j

P (Ci)

⎞

⎠

⎛

⎝
b∑

j=1

P (Xu,j = 1)

⎞

⎠ ≤
b∑

j=1

P (Xu,j = 1).

(4)

Now, nerr =
∑

u Xf
u . Therefore,

E(nerr) =
∑

u

E(Xf
u ) ≤

∑

u

b∑

j=1

P (Xu,j = 1) = b. (5)
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Markov Inequality leads to

P (nerr ≥ θ) ≤ b/θ =
p2t0 + p2 + pt0

θ
. (6)

�

5.2 Applications Supported

Hash table is a widely used data structure in various AI algorithms. We list two
examples of the AI algorithms and the required hash table characteristics below:

– Graph Convolutional Neural Network (GCN): GCN is the general-
ization of the CNNs to high-dimensional irregular domains represented as
Graphs [32]. To tractably handle large graphs, graph sampling is performed
to obtain smaller (10,000–50,000 vertices) representative graphs for training.
Hashing is used in graph sampling to keep track of the sampled vertices at
any given time. With relaxed eventual consistency, it is possible the that same
node is sampled multiple times. This will result in an incorrect counting of
total nodes sampled. However, this discrepancy is bounded by Theorem1
and have no effect on subgraph-based graph embedding [33]. In other graph
embedding methods that sample neighboring nodes for a given node, such
as GraphSAGE [11], this scenario cannot arise because each neighbor is pre-
sented only once. Hash Table Characteristics [32]: Type: Dynamic. Key
size: 32 bits. Value size: 32 bits. Hash Table size: 10,000–50,000.

– Approximate Nearest Neighbor (ANN) Search: Given a query point,
the objective is to find the point in the dataset closest to the query. Hashing
based ANN has been widely adopted in large scale image retrieval [28]. A
hash table is created using each sample in the dataset before performing any
lookups. Since each point is unique, it is seen only once, relaxed eventual con-
sistency has no effect on the correctness. Hash Table Characteristics [28]:
Type: Static. Key size: 32–128 bits. Value size: 64 bit (assuming value is mem-
ory location of the image). Hash Table Size: 10,000–100,000 entries (equal to
image dataset size).

Hash tables are also used for linear function approximation in Reinforcement
Learning [10], association rule mining [13], neural network classification [27], etc.

6 Experiments and Results

6.1 Experimental Methodology

We implemented both the static and the dynamic hash tables on Xilinx Alveo
U250 FPGA [30] and Intel Stratix 10 MX2100 FPGA [14] using Verilog HDL.
The Xilinx device has 1,728,000 LUTs, 3,456,000 Flip-flops, and 327 MB of
URAM memory, while the Intel device has 702,720 ALMs, 2,810,880 ALM reg-
isters, and 134 MB of M20K memory. Post place-and-route simulations were
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performed using Xilinx Vivado Design Suite 2018.3 and Intel Quartus Prime
19.3 respectively. The static hash table, with two levels of hash functions, was
created offline using synthetic data.

We conducted detailed analysis on the performance, power, and scalability
of the proposed architecture. We evaluated the performance and resource uti-
lization by increasing number of PEs from 2 to 16, and varying the total number
of hash table entries. The key sizes we used in our experiments were 16, 32,
and 64 bits; and value sizes were 32 and 64 bits. These numbers cover the most
configurations in AI applications (Sect. 5.2), and they also cover a sufficiently
wide range to test the scalability of our architecture. We generated uniformly
distributed access patterns, which include both the operation types and the hash
keys, as our stimulus. The metric for throughput analysis is million operations
per second (MOPS). The utilization of FPGA resources is reported in terms
of percent usage of LUTs (ALMs), flip-flops (registers), and on-chip SRAM.
To reduce the extra-long duration of the post-route simulation, we used the

Fig. 7. Evaluation of static and dynamic hash tables on Xilinx U250 FPGA. Parame-
ters: key/value length: 32-bit. 4 slots/entry (dynamic hash table).

Fig. 8. Throughput with different key and value sizes on Xilinx U250 FPGA.
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vectorless power estimation methodology provided by the EDA tools [31]. Power
estimation includes leakage and dynamic power.

6.2 Results

Evaluation on Xilinx U250 FPGA. Figure 7 shows the throughput and
operation latency of our hash tables from a configuration with 65K entries hash
table size. The throughput matches our design goal, which is p operations per
clock cycle sustained. The results clearly verify the scalability of our design
with the number of PEs. The throughput difference between static and dynamic
hashing is due to the max clock frequency. For static hash table scheme, we
are able to achieve 335 MHz clock frequency across all PE configurations. On
the other hand, parallel collision handling unit and the long wires for inter-PE
connections are in the critical paths of our dynamic hashing design. When the
number of PEs for dynamic hash table grows, the pressure on place and route also
increases. Therefore max clock rate as well as achieved throughput drop when
compared with static hashing implementations. Figure 7(b) shows the operation
latency increases with the number of PEs. Due to the extra clock cycles that
is spent on writing new key-value pair to all PEs, insert latency is higher than
search latency. With 16 PEs, search operation can be completed within 209 ns for
static hashing and 243 ns for dynamic hashing; insert operation requires 311 ns.

Figure 8 illustrates the throughput as we vary the sizes of hash table keys
and values on the dynamic hashing implementation. We find that key and value
length have little impact on throughput until the length grows to 64-bit. The
clock rate for 4 PEs and 8 PEs configurations drops to 285 MHz and 280 MHz
respectively when the size of key and value are both 64-bit. This again demon-
strates the scalability of our architecture.

Resource utilization of a dynamic hash table implementation is reported
in Table 1. The hash table has 65K entries, 4 slots per entry, and 32-bit key
and value length. We make heavy use of URAM for on-chip hash table store.
Table 1(a) shows that URAM utilization increases linearly as we increase the
number of PEs. This is because each PE stores an entire copy of the hash table.
On the other hand, the utilization of other resources, as presented in Table 1(b),
is low. Table 1 also shows the estimated power consumption. Our architecture is
power efficient, with the power of 16 PEs configuration as low as 9.06 W.

Table 1. Resource utilization of 65K entries dynamic hash table on U250 FPGA.

# of PEs LUT (%) Flip-Flop (%) URAM(%) Power (W)

2 0.08 0.08 10 3.40

4 0.18 0.31 20 4.13

8 0.66 1.21 40 5.34

16 2.45 4.82 80 9.06
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Table 2. Max hash table sizes supported on Xilinx U250 FPGA.

2 PEs 4 PEs 8 PEs 16 PEs

2 slots per entry 1,310K 655K 327K 131K

4 slots per entry 655K 327K 163K 65K

In Table 2, we show the max hash table size—number of entries that can be
implemented on Xilinx U250 FPGA, with 32-bit key and value sizes. Note that as
the URAM utilization is pushed to its limit, pipeline depth for each mega-stage
in the Lookup Pipeline has to be increased to meet optimal timing performance.
Our modular design and flexible configurability give user a wide range of design
options to choose from based on application requirements and available FPGA
resources.

Evaluation on Intel Stratix 10 FPGA. Our architecture is designed as
a general solution to work with various FPGA devices. To illustrate, we also
implemented our hash table on Intel Stratix 10 FPGA. We used 32-bit as key
and value size and used 4 slots per entry for dynamic hash table. Figure 9 shows
the performance of our architecture for a hash table with 50K entries. The result

Table 3. Resource utilization of dynamic hash table on Stratix 10 FPGA.

# of PEs # of entries ALM (%) Register (%) M20K (%)

2 150,000 2 1 59

4 100,000 3 2 78

8 50,000 5 4 81

16 16,000 10 11 52

Fig. 9. Evaluation of static and dynamic hash table on Intel Stratix 10 FPGA. Param-
eters: key/value length: 32-bit. 4 slots/entry (dynamic hash table).
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indicates that the benefits of our architecture is independent of FPGA devices.
This design can process up to 1792 MOPS for static hash able and 1628 MOPS for
the dynamic version, with 8 PEs. Since the number of PEs affects the max clock
rate of the design, the achieved throughput doesn’t scale linearly. From Table 3
we can see that the usage of ALM and register is slow, while the utilization of
M20K depends on the hash table capacity and number of PEs.

6.3 Comparison with State-of-the-Art (SOTA) Designs

We compare the performance of our 16 PEs hash table implementation on Xilinx
U250 FPGA with state-of-the-art GPU and FPGA designs. Performance metric
is in term of throughput - MOPS. In [1], the design is implemented on NVIDIA
Tesla K40c GPU. The GPU has 2880 CUDA cores. It operates at 745 MHz,
and can be boosted up to 876 MHz. The authors report the performance for
bulk build (static) and incremental inserts (dynamic) separately. We used 32-
bit key/value size and random traffic pattern in the comparison, which is the
same as reported by [1,22]. Proposes a parallel Cuckoo hashing on FPGA. Hash
table is stored completely on-chip. The target FPGA device is Xilinx Virtex5
XC5VLX155T. Their implementation operates at 156.25 MHz. Table 4 shows the
comparison results. Comparing with SOTA GPU work, we observe speedup of
5.7x (static) and 8.7x (dynamic) respectively while running at less than half of
the clock rate. Comparing with SOTA FPGA work, our design achieves up to
17x raw speedup, or up to 9.3x speedup after normalizing the clock frequency.
Unlike these intrinsically sequential or less optimal parallel implementations,
FastHASH fully exploits SOTA FPGA’s high bandwidth on-chip SRAM using
its unique parallel architecture.

Table 4. Throughput comparison with state-of-the-art (SOTA)

SOTA GPU [1] SOTA FPGA [22] Our Design

Static hashing
(search MOPS)

937 (peak) n/a 5360 (sustained)

Dynamic hashing
(MOPS)

512 (peak) 480 (sustained,
normalized Fmax)

4480 (sustained)

7 Conclusion

This paper presented FASTHash, a high throughput parallel hash table using
FPGA on-chip SRAM that supports p parallel queries per cycle from p PEs
(p > 1). The architecture is designed to accelerate various AI applications such
as graph convolution networks and approximate nearest neighbors. FASTHash
uses novel data organization and query flow techniques within and between pro-
cessing engines to ensure data consistency and conflict-free memory accesses. In
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addition, FASTHash is customized to support both static and dynamic hashing
on Xilinx and Intel FPGA devices. Both architectures demonstrate high scal-
ability with respect to the number of PEs, key/value lengths, and hash table
sizes. The static hash table achieves up to 5360 MOPS throughput and the
dynamic variant achieves up to 4480 MOPS, thus outperforming state-of-the-art
implementations by 5.7x and 8.7x respectively.

Acknowledgement. This work has been supported by Xilinx and by the U.S.
National Science Foundation (NSF) under grants OAC-1911229 and SPX-1919289.

References

1. Ashkiani, S., Farach-Colton, M., Owens, J.D.: A dynamic hash table for the
GPU. In: 2018 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 419–429, May 2018

2. Bando, M., Artan, N.S., Chao, H.J.: Flashlook: 100-Gbps hash-tuned route lookup
architecture. In: 2009 International Conference on High Performance Switching
and Routing, pp. 1–8 (2009)

3. Bengio, Y., et al.: Learning deep architectures for AI. Found. Trends R© Mach. Lear.
2(1), 1–127 (2009)

4. Boulis, C., Ostendorf, M.: Text classification by augmenting the bag-of-words rep-
resentation with redundancy-compensated bigrams. In: Proceedings of the Inter-
national Workshop in Feature Selection in Data Mining, pp. 9–16. Citeseer (2005)

5. Carter, J.L., Wegman, M.N.: Universal classes of hash functions (extended
abstract). In: Proceedings of the Ninth Annual ACM Symposium on Theory of
Computing, STOC 1977, pp. 106–112. ACM, New York (1977)

6. Cho, J.M., Choi, K.: An FPGA implementation of high-throughput key-value store
using bloom filter. In: Technical Papers of 2014 International Symposium on VLSI
Design, Automation and Test, pp. 1–4 (2014)
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Abstract. As we approach the Exascale era, it is important to verify that the
existing frameworks and tools will still work at that scale. Moreover, public Cloud
computing has been emerging as a viable solution for both prototyping and urgent
computing. Using the elasticity of the Cloud, we have thus put in place a pre-
exascale HTCondor setup for running a scientific simulation in the Cloud, with the
chosen application being IceCube’s photon propagation simulation. I.e. this was
not a purely demonstration run, but it was also used to produce valuable and much
needed scientific results for the IceCube collaboration. In order to reach the desired
scale, we aggregated GPU resources across 8 GPUmodels frommany geographic
regions across Amazon Web Services, Microsoft Azure, and the Google Cloud
Platform. Using this setup, we reached a peak of over 51k GPUs corresponding
to almost 380 PFLOP32s, for a total integrated compute of about 100k GPU
hours. In this paper we provide the description of the setup, the problems that
were discovered and overcome, as well as a short description of the actual science
output of the exercise.

Keywords: Cloud · Exascale · GPU · HTCondor · IceCube · Astrophysics

1 Introduction

In the past couple of years, there has been a lot of activity around getting ready for the
exascale computing era. At the same time, public Cloud computing has been gaining
traction, including funding agencies starting to invest in this sector; examples being
NSF’s ECAS and CloudBank awards, and the European Cloud Initiative. Cloud com-
puting, with its promise of elasticity is the ideal platform for prototyping, as well as
urgent computing needs. We thus attempted to demonstrate an exascale, or at least a pre-
exascale workload using a real application that was already running on the Open Science
Grid (OSG) [1], given that most workloads there follow the distributed High Throughput
Computing (dHTC) paradigm, and could thus easily transition to the Cloud. The chosen
application was IceCube’s photon propagation simulation [2], for technical (heavy use
of GPU at modest IO) and scientific reasons (high impact science). We emphasize that
this meant it would not be a purely experimental setup, but it would produce valuable
and much needed simulation for the IceCube collaboration’s science program.
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Since no public Cloud region, or even a single Cloud provider could deliver an on-
demand exascale-class compute resource,wewent for a geographically distributedmulti-
cloud setup, while still operating it as a single compute pool. Due to our limited budget,
the compute exercise was executed as a short-lived burst, with the aim of demonstrating
peak performance, even if only for a short amount of time. This allowed us to exceed
51k GPUs of various kinds in the pool at peak, which provided about 380 PFLOP32s
(i.e. fp32 PFLOPS) and 160M GPU cores. We ramped to 2/3rd of the total size in about
half hour from the provisioning start and then reached the peak within about two hours.
The total integrated compute time was of about 100k GPU hours.

The exercise used the IceCube’s standard workload management system, i.e.
HTCondor [3], but on dedicated hardware. We chose not to use the existing IceCube
hardware installation since we did not want risk to disrupt the normal production activ-
ities, and we also wanted to minimize the risk of failure by using a slightly tuned setup.
The used setup, including the special configurations and tunings are described in Sect. 2.

Section 3 provides an overview of the experience of ramping up to the peak 380
PFLOP32s and back down, including issues encountered in the process. We also provide
an overview of the type of resources we were using at peak.

Section 4 describes the science behind the simulation application as well as a sum-
mary description of the simulation code internals. The effectiveness of the various GPU
types for this specific application is also presented, both in terms of relative speed and
total contribution during the run.

1.1 Related Work

Running scientific workloads in the public Cloud is hardly a novel idea. This work is
however novel in

a) the concurrent use of all three major Cloud providers,
b) the concurrent use of resources from all over the world,
c) the concurrent use of several different GPU models,
d) the total aggregate PFLOP32s at peak, and
e) in its focus on the use of GPU-providing Cloud instances.

Moreover, running an unmodified, production scientific code in such a setup is also quite
unusual.

In terms of sheer size, the largest scientific Cloud run we are aware of is the 2.1M
vCPU weather modeling run performed by Clemson [4]. While the paper does not
provide the achieved peak FLOP32s, it is unlikely it has exceeded 100 PFLOP32s, so it
was significantly smaller than what we achieved in our setup. And while not exactly an
apples-to-apples comparison, the 2.1M CPU cores are almost two order of magnitude
fewer than the 160M GPU cores we provisioned at peak. Finally, it is also worth noting
that their setup was confined to a single Cloud provider.

In terms of multi-Cloud setups, there have been many small scale, experimental
studies. We are not aware of any other large-scale multi-Cloud scientific run though.
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2 The Workload Management System Setup

The workload management system software used for the pre-exascale, geographically
distributed,multi-cloud setupwas the same as normally used by IceCube to run its regular
production on resources in the Open Science Grid and the European Grid Infrastructure,
namely HTCondor. We saw no need to pick anything else, since HTCondor is naturally
good at aggregating and managing heterogeneous resources, including when they are
geographically distributed. HTCondor is also used for production activates at scales
comparable to the desired peak, although mostly for CPU-focused workloads [5].

We decided to host a completely independent installation for the service processes,
using dedicated hardware. We did this both to minimize the impact to IceCube’s regular
production environment, and to properly size it for the expected size and burst nature
of the exercise, which are not typical of the abovementioned production environment.
In the process we also tuned this setup to minimize the risk of failure during the actual
multi-Cloud burst.

We also decided to not tackle the datamovement problems to and fromcentral storage
related to such a large GPU compute burst. The IceCube jobs fetched input data from
native Cloud storage and staged the results back to the native Cloud storage, too. In both
cases we provisioned storage accounts close to where the jobs were actually running.
For the input files we made educated guesses and used significant replication, since we
did not know in advance where and how many GPU resources would be available. We
fully acknowledge that this is not the ideal operations mode, but we were trying to tackle
one problem at a time, namely large-scale, bursty GPU-heavy compute. We are likely
to perform a more data-focused exercise in the near future.

Section 2.1 contains the summary overview of the HTCondor setup, including the
reasons for the deployment choices. Section 2.2 provides the description of the changes
needed to deal with Cloud native storage. Section 2.3 provides an overview of the
problems encountered and the adopted solutions.

2.1 The Multi-cloud, Geographically Distributed HTCondor Setup

IceCube, and the Open Science Grid community at large, has a lot of experience with
operating large scale HTCondor instances. None however experiences the kind of burst
growth we expected at peak times. The expected total resource pool was also comparable
in scale to the largest production environments. Nevertheless, our experience suggested
it was a feasible proposition, assuming we made arrangements to deal with a couple
well-known bottlenecks.

The design goal for the HTCondor pool used in the multi-Cloud exercise was to be
able to add at least 10k GPU resources per minute continuously up to a maximum of
at least 120k concurrently running GPU jobs. In addition, most Cloud providers bundle
manyCPU cores with theGPU in their offering.We utilize this spare capacity by running
at least a couple CPU jobs alongside each GPU job. This brings the total desired peak
to about 350k concurrently running jobs.

HTCondor has been used in other production setups to sustain a job load of about
300k jobs, usingCPU-only resources butwith similar runtime characteristics.We applied
the same sizing rules as they were applied there. The limiting factor in such setups is the
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number of running jobs that a single HTCondor job queue process, called the schedd,
can handle; approximately 12k jobs. We thus used 10 nodes for GPU jobs and 20 nodes
for CPU jobs. While the job queues are handled independently, they are scheduled as a
single set and each of the jobs could still run on any compute resource that matched its
requirements. By treating each schedd as a different logical user, the HTCondor policy
engine, namely the negotiator process, keeps approximately the same number of
jobs running on each of them by virtue of its standard fair-share policy.

The other well-known HTCondor limit is the ability of the central manager, namely
thecollector process, to add additional resources to its pool. The total size is actually
not that important. TheHTCondor centralmanager is essentially an in-memory database,
and as long as there is enough RAM available, can easily scale to millions of resources
being tracked. The problem is just the initial security handshake with the HTCondor
daemon managing the remote resource, the so-called startd, and high-latency WAN
communication makes the problem worse. It should also be noted that only the initial
handshake is expensive. Further communication (in the absence of network problems)
uses a much cheaper protocol.

Fig. 1. HTCondor setup with a tree of collectors.

Fortunately, HTCondor also provides a solution to work around the above limitation,
by allowing for the creation of a tree of collectors, as seen in Fig. 1. In this setup, themain
collector process only ever talks to leaf collectors; it thus only has to establish a
new security session at startup. Consequently, the startd processes are only aware of
the leaf collectors and after picking one (at random), use it as their only connection
to advertise their resources to the HTCondor pool. The leaf collectors then forward
the information they receive to themain collectorwhich thus gets a complete picture. The
cost of resources joining the pool is thus distributed over many leaf nodes, and those leaf
nodes can also be spread geographically to further minimize the cost inherent to high-
latency WAN traffic. In our particular setup, we used one small Cloud instance running
20 leaf collector processes in each of the major Cloud regions, with startds always
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picking one of those collectors in the closest region. The 20-per-node ratio was
chosen as a perceived safe value to serve the largest of the Cloud regions and replicated
everywhere in order to keep the setup as homogeneous as possible.

For completeness, the installed HTCondor version was 8.8.4, using the RPMs pack-
aged and provided by OSG v3.4. We also used the standard OSG provided configuration
unless otherwise specified. For securing the setup we used a shared secret, also known
as a HTCondor pool password.

2.2 Dealing with Data Handling

Given both the unknown total size and composition of the compute pool and the bursty
nature of the planed experiment, we decided to not add a data handling challenge of
streaming data to and from IceCube’s home storage to the exercise. We thus pre-staged
all the needed input files into Cloud native storage and the outputs of the simulation
were also to be staged back to native Cloud storage. In both cases, the native Cloud
storage used was supposed to be close to where the job was running and belonging to
the same Cloud provider that had provisioned the compute resource. We used extensive
replication of input files to compensate for provisioning uncertainties. Fetching data
back to IceCube’s home storage happened asynchronously after the compute exercise
was completed.

One problem of this approach is that the application would not knowwhat the proper
native Cloud storage to use is until it was running, including location and API used to
access that storage. To address this, we had to solve two problems: 1) discover where
the job is running and 2) make storage access homogenous for the application.

Discovering where a job runs is quite simple, once you know what Cloud provider
you are using, and we used independent worker node images for each of the three
providers, so the later was trivial. All three Cloud providers expose a Metadata service
that allows for any process running in the instance to discover at runtime what region it
belongs to. The syntax is slightly different between the three, but in all cases it is a REST
API call, and is easy to automate e.g. by means of a curl invocation [6–8]. Once this
information is known, a simple lookup table is all that is needed to find the appropriate
storage URI.

In order to minimize the changes needed to the IceCube’s compute jobs, we wrapped
the metadata query, table lookup and the calls to the actual Cloud provider specific tools
in a couple of simpler wrappers, one for downloading the data to the local disk and one
for uploading the data from local disk to the closest native Cloud storage. The application
thus only had to provide the relative paths, and the scripts would do the rest, making
the application itself completely unaware of the environment it was running in. From
the IceCube’s jobs framework point of view, it was basically a two-line change of their
production workflow on the Open Science Grid.

Finally, a quick mention on how we dealt with the actual application code binaries,
which are indeed quite sizable. IceCube workflow expects their application software
and dependencies to be present on the resources they land on. OSG provides IceCube
with a uniform runtime environment via CVMFS, which uses just-in-time fetching of
the binaries and extensive caching. This is efficient when the same application is run
on a worker node multiple times. Our setup was however designed to be bursty, so the
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penalty of populating the cache may have been excessive. We thus decided to pre-loaded
all the necessary software in the image itself. From an application point of view there
was no difference at all.

We fully acknowledge that this is not the ideal data handling solution if one were to
run this setup multiple times and over an extended period. We do plan to have a more
data-oriented exercise in the near future.

2.3 Unexpected Problems Encountered in the HTCondor Setup

Many of the compute resources IceCube usually runs on are behind NATs, and thus
cannot be directly reached from the outside world. HTCondor has a solution for this
problem, called Connection Brokering (CCB). It consists of a lightweight process that
functions as a software-based router for schedds to start remote compute jobs.

Public IPs are a metered commodity subject to quotas in at least some Cloud infras-
tructures. We were planning to use CCB for the Cloud setup, too. Unfortunately, during
the initial feasibility tests, we discovered that HTCondor with CCB enabled does not
properly handle rapid job startup bursts, resulting in an unusable setup, at least for our
purposes. After convincing ourselves and the HTCondor development team that this
was an actual software bug and not simply a configuration issue, and that a proper solu-
tion was not promptly available, we decided to just request public IPs for all the cloud
instances that were part of the test pool. This turned out to be an acceptable solution for
all the involved Cloud providers. It was more an annoyance than a real problem, but a
limitation to be aware of for mimicking our setup.

We also encountered an issue in the policy engine code, resulting in jobs not being
properly matched to resources. This bug is only triggered in very heterogeneous setups.
Given our data placement policy, each Cloud region was treated as a different entity
for scheduling purposes, as only a subset of the input data was placed in each Cloud
region and the requirement to fetch from “local” Cloud native storage. Our pool was thus
indeed quite inhomogeneous. Fortunately, the bug was part of a code optimization base
that was introduced recently and could be avoided through a (mostly undocumented)
configuration parameter:

NEGOTIATOR_PREFETCH_REQUESTS = False

3 The Multi-cloud, Multi-region Setup

While theHTCondorworkloadmanagement setupwas almost identical to the production
IceCube environment used on e.g. the Open Science Grid, the provisioning part of the
exercise was completely ad-hoc. Nobody in our community had ever tried something
similar before, so we did not have much prior art or engineering to rely upon.

On paper the problem did not seem too hard to tackle. All we needed to do was
create an image containing the HTCondor binaries with proper configuration and start
asmany instances aswe could in the shortest amount of time. TheAPI is slightly different
between the three Cloud providers, and the recommended methods and implementation
limits slightly different, but apart from that the amount of work needed seemed to be
very modest.
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Given however the significant projected expense involved, and our relatively limited
budget, we wanted to minimize the risk of hitting any technical limits during the actual
GPU multi-Cloud burst. We thus spent significant time testing various aspects of the
proposed setup using cheaper alternatives, namely CPU-only instances. We provide
more details in Sect. 3.4.

The tests did not identify any significant issues, but they did allow us to further tune
our setup before the main exercise, which is described in Sect. 3.2. It is worth noting
that we did encounter unexpected problems during our actual run, which did not show
up during testing. The decisive factor was likely the much higher variety of GPU Cloud
instances compared to CPU Cloud instances.

We reached 65% of themaximum number of concurrently running instances in about
half hour after we started the provisioning, 90% in about another half hour, and added an
additional 10% over the course of the final hour. After about 2 h from the provisioning
start, we initiated a controlled shutdown which lasted another good hour. In Sect. 3.3 we
provide an overview of the resources provisioned at peak, as well as an analysis of the
total compute integrated during the lifetime of the exercise.

The biggest hurdle we encountered during the setting up of the Cloud infrastructure
for the bursty GPU run was not technology. Rather, the most time-consuming part was
convincing the Cloud providers to even allow us to purchase that many GPU-enabled
instances. A short summary is presented in Sect. 3.1.

Finally, in Sect. 3.5 we provide a short overview of the current Cloud pricing, with
an emphasis on the resources we used during this run.

3.1 The Social Hurdle

Cloud computing is great, in that it allows anyone to provision resources with minimal
effort and hardly any advance planning. This is however only true if your needs are
small. Try provisioning any large amount of compute, and you will very fast bump into
the limits imposed by the default quotas.

We can only speculate why this is the case. Our suspicion is that the Cloud providers
want to minimize the risk that a user ends up with an unexpectedly large bill that they
cannot pay. And as we demonstrate with our exercise, there is enough capacity out there
to easily accumulate a million-dollar bill in just a couple of days!

EachCloud provider has a different strategy onwhat an acceptable quota for different
resources is. But in our case those quotas were universally too low. And our initial
attempts at requesting sizable quota increases through standard channels were met by
staff telling us that they did not have the authority to grant our requests.

We thus spent significant time reaching out to contacts at the three Cloud providers,
explaining both the fact that we did have the money to pay the expected bill, were
technically competent enough to not overspend and that our goalwas actuallyworthwhile
to support. We eventually got enough attention high enough in the leadership chain to
get all our wishes granted, but it was a long process!
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3.2 Provisioning the 51k GPUs Over 3 Cloud Providers Using Multiple Regions

The main objective of this exercise was to provision the maximum number of GPUs
that could be rented in any public Cloud for a couple of hours. We wanted to discover
what was possible without any long-term commitments and demonstrate that it could
be used efficiently for scientific workloads. The overlay workload management system,
namely HTCondor, was described in the previous sections, so here we limit ourselves
to the description of the provisioning part alone.

Given that HTCondor was dealing with job handling and resource matchmaking,
the provisioning part was strictly limited to starting up properly configured worker
node instances. In order to minimize external dependencies, we created self-contained
and self-configuring images that we uploaded to the native Cloud image repositories.
We decided to create a slightly different image for each of the three Cloud providers,
both because there is no easy Cloud-native way of sharing images between them and
it was easier to deal with system level differences between the three platforms. We did
however use a single image for all of the regions belonging to each Cloud provider.
The region-specific details were stored in a local lookup table. We then relied on their
Metadata services for region discovery [6–8] and, after proper table lookups, finished
the configuration of the node at instance boot time. All of this was done ahead of the
run, has taken a couple of iteration to get right, but could be used as-is for any number
of runs from that point on.

With images in the properCloud native repositories, it was just amatter of automating
the rapid startup and teardownof a large number of instances. Thismeant not only dealing
with three separate Cloud providers, but also specifics of each region. Any region is
essentially its own island, with only the Identity and Access Management (IAM) tying
them together. The automation thus had to deal with 28 independent Cloud regions,
using 3 different APIs.

For Amazon Web Services (AWS), we were relying on the fleet mechanism [9]. We
created one fleet configuration template for each GPU instance type in every targeted
Cloud region, for a total of over 40 different templates. The provisioning in AWS was
just a matter of creating new fleets with the desired number of instances. Note that the
AWS API supports the request of multiple instance types within a fleet, but while that
seemed to work fine for CPU instances in our preliminary tests, when mixing GPU
instances it resulted in some instance types never being requested, so we opted for the
safer although more complex alternative.

For Microsoft Azure, we used the Azure Virtual Machine Scale Sets [10]. Concep-
tually, an Azure Scale Set is very similar to an AWS Fleet. There are however a few
significant differences; 1) an Azure Scale Set can be resized, AWS Fleets cannot, 2) an
Azure Scale set has a hard upper limit to howmany instances it can manage, while AWS
Fleets do not, and 3) an Azure Scale Set always manages a uniform set of instances,
while AWS Fleets can be more heterogeneous. Given that Azure Scale Sets can be easily
resized yet have limited maximum size, we created several ahead of time for each GPU
instance type in every targeted region, enough to allow us to provision all instances in
even the most optimistic projection without coming too close to the hard limits of the
Azure Scale Set infrastructure. Overall, we created over 200 of them. With the Scale
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Sets in place, the provisioning during the actual burst was as simple as increasing the
instance count from 0 to the desired max.

In Google Cloud Platform (GCP) we used their Unmanaged Instance Groups [11].
They are conceptually very similar to the Azure Scale Set, so we used virtually the same
approach; create a set of them ahead of time and then just set the instance number to the
desired max during the exercise. GCP will then automatically deal with the rest.

The provisioning ramp-upwentmostly smoothly.We did however encounter internal
limits in a few Cloud regions that required manual intervention to recover. This can be
observed in the two rapid rises in Fig. 2a; the initial provisioning request at time zero,
and the additional rapid rise after the manual recovery about 50 min later. Apart from
that, the whole ramp-up happened completely autonomously. All Cloud regions across
providers ramped up at the same time, as can be seen from the different colors in the
figure, and no-one is ever providing a dominating fraction. Unfortunately, we are not
authorized to identify the various regions involved. We can show which geographical
areas were being provisioned, see Fig. 2b. Here you can clearly see that instances have
been joining the IceCube serving HTCondor pool from all over the world, with no single
region significantly dominating the others.

a b

Fig. 2. Number of GPU instances over time (in mins) during the ramp-up period. a) grouped by
cloud region. b) grouped by geographical region.

Managing a controlled shutdown turned out to be a harder problem than the provi-
sioning. This was partially due to the desire of dynamically de-provision the instances
only after the last job ran, and partially due to semantics of the provisioning tools used.

The desired sequence of the controlled shutdown was to remove all not-yet-started
GPU jobs from theHTCondor queues, let the already runningGPU jobs run to completion
and de-provision the instance as soon as that GPU job terminated. Most instances also
ran CPU jobs alongside the GPU jobs at all times. We would let CPU jobs run up until
the last GPU job on the instance terminated and remove them at that point. Given the
comparatively low value of the CPU-only compute, wewanted to optimize formaximum
GPU utilization.

The removing of the not-yet-started GPU jobs from the HTCondor queues was
obviously trivial. De-provisioning the running Cloud instances soon after the last GPU
job ended was not. And we had to implement a different mechanism for each Cloud
provider API.
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The easiest was AWS. Since AWS Fleets were launched as ephemeral, all we had
to do was to submit a set a system shutdown service jobs that would match as soon as
the GPU job terminated. Unfortunately, we could not use this method for either Azure
or GCP managed instances.

For Azure, the first obvious step was to set the desired numbers of instances in the
Scale Set’s configurations to the number of running instances at the beginning of the
shutdown period, so no new instances would be started. However, instances in an Azure
Scale Set have the property that just shutting down an instance at the system level will
not de-provision that instance; one will still be charged for that time at the same rate as
if the instance was still running [12]. The only proper way to de-provision an instance
managed by an Azure Scale Set is to invoke the Azure API with the proper Scale Set and
Instance ID pair. We thus wrote some service scripts that would extract that information
from the instance Metadata service and automate the invocation of the proper API at the
appropriate time.

For GCP, we had to follow a pattern similar to the one on Azure. First, we updated
the desired number of instances for the Instance Groups, then we explicitly invoked the
GCP API to de-provision each and every instance that we wanted removed from the
Instance Groups. While the needed procedure is conceptually identical, the underlying
reason is different. Unlike an Azure Scale Set, the semantics of an Instance Group is
such that it will automatically replace a terminated instance with a new one, so explicit
de-provisioning is needed to avoid an infinite start-and-terminate loop.

We had prepared and validated the above procedure during the initial testing phases
and were quite confident we could manage the controlled shutdown with minimal effort.
Unfortunately, we hit bugs in some Cloud regions, where our de-provisioning attempts
resulted in Cloud APIs starting additional instances that could not be de-provisioned
using the automated procedureswe had in place. This resulted in a frantic troubleshooting
session that ended by manually shutting down the offending instances manually through
the Cloud provider’s interactive Web portal. There were thousands of such instances,
resulting in moderate waste that we did not anticipate. We are not authorized to identify
neither the offending Cloud regions nor the associated Cloud provider(s). If we were to
repeat such a large scale, bursty multi-Cloud exercise again, we would definitely put in
place additional tools that would allow for rapid detection and cleanup of unexpected
instances.

3.3 An Overview of the Provisioned Resources

The total runtime of the exercise was slightly over 3 h.We reached 90% of the maximum
number of concurrently running instances in about 70 min after we started the provi-
sioning. We sustained that level and added an additional 10% in the following 45 min.
After which we started a controlled shutdown, which lasted just about an hour and a
half. As can be seen from Fig. 3a, we peaked at about 51.5k GPU jobs running.

The provisioned instances spanned 8 generations of NVIDIA GPUs. As seen from
Table 1 and Fig. 3b, the most abundant GPU types at peak were the K80 and the M60,
but the most compute power was provided by the V100 and the P100 GPUs. We were
also pleasantly surprised to see a significant contribution by the quite recent, and very
cost effective T4.
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Fig. 3. a) Time evolution of the HTCondor pool. b) GPU composition at peak. The inner circle
shows the number of instances, the outer circle the PFLOP32s contribution.

Table 1. Distribution of GPU types at peak.

GPU type (NVIDIA) Count at peak Total PFLOP32s

V100
P100
P40
T4
P4
M60
K80
K520

9.2k (18%)
7.1k (14%)
2.1k (4%)
4.6k (9%)
0.5k (1%)
10.1k (20%)
12.5k (24%)
5.4k (10%)

132.2 (35%)
68.1 (18%)
25.2 (7%)
38.6 (10%)
2.5 (1%)
48.8 (13%)
51.6 (14%)
12.4 (3%)

Total 51.5k 379.4

Table 2. Distribution of GPU types over the total runtime

GPU type (NVIDIA) Total walltime in hours Total PFLOP32 hours

V100
P100
P40
T4
P4
M60
K80
K520

18.2k (19%)
16.0k (17%)
4.4k (5%)
7.3k (8%)
0.7k (1%)
25.1k (26%)
18.5k (19%)
7.0k (7%)

260.7 (35%)
152.8 (21%)
51.5 (7%)
61.4 (8%)
3.6 (1%)
121.3 (16%)
76.2 (10%)
16.1 (2%)

Total 97.3k 734.7

The total integrated time of the exercise was about 100k GPU hours. As seen from
Table 2, it features the sameNVIDIAGPU types, but is skewed toward the GPUs that ran
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the longest jobs, namely the M60s, since our controlled shutdown allowed any already
started job to run to completion. Note that jobs on K80 and K520 GPUs were running
on drastically smaller input files and were thus among the fastest to finish. Nevertheless,
the M60 and the K80 were again the GPUs who contributed the most time, and the V100
and the P100 were the two GPUs who contributed the most compute power.

3.4 Preparations

Given the significant expected burn rate during the actual bursty multi-Cloud GPU
exercise, we wanted to validate as many of our assumptions as possible using cheaper
methods. Fortunately, the CPU-only instances are more than an order of magnitude
cheaper and are a good proxy for how the infrastructure works. In the months leading to
the actual exercise we tested three aspects of the whole system; 1) network performance,
2) HTCondor scalability and 3) Cloud API scalability.

The network part of the setup was deemed the most critical. If we were not able to
transfer data in and out fast enough, we would have had huge waste in expensive GPU
time, rendering the setup not feasible. We benchmarked both access to local cloud native
storage aswell asWAN transfers inside the Clouds and to scientific networks. The results
were beyond our most optimistic expectations, with region-local Cloud storage easily
exceeding 1Tbps and100Gbps being the norm in the networking betweenCloud regions.
More than enough to make IO latencies negligible for our workload. Connectivity to
scientific networks was also generally good, with 10 Gbps being exceeded in most
setups. This made pre and post exercise data movement not at all challenging. The
results of the tests have been presented at the CHEP19 conference [13].

The scalability of the HTCondor setup was technically the most critical one, but
we had enough experience with other large-scale setups to be fairly confident that it
would be feasible. Nevertheless, we did run a few bursty CPU-only tests to validate
our assumptions, and did find some unexpected issues, as explained in Sect. 2.3. While
unfortunate, these tests allowed us to implement workarounds that later tests proved to
be effective under conditions expected during the actual GPU burst. At peak, our largest
test setup had over 80k slots, coming from the same combination of Cloud providers
and regions we were planning to provision from during the exercise.

Themajor unknownwas theperformanceof theCloudAPIs.Wehadvirtually noprior
experience with provisioning that many instances in any of the three Cloud providers,
and we were also very eager to learn how fast these APIs could provision the resources.
The preliminary tests did not show any problems, beyond the need of proper quotas
being put in place, and the ramp-up speeds were very promising. Figuring out what the
best APIs to use were was actually the major hurdle.

Finally, we also ran a small-scale GPU-enabled test, which tried to mimic as close
as possible the final setup that would be used for the exercise. Here we discovered that
AWS Fleets do not like heterogeneous GPU instance types, as mentioned in Sect. 3.2,
and we adjusted accordingly.
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3.5 Cloud Cost Analysis

Unfortunately, we are not authorized to discuss the actual price paid to carry out this
exercise. We are instead providing an analysis based on the published list prices of the
used Cloud providers, and in particular with a focus to opportunistic use scenarios. For
clarity, the opportunistic use is called Spot pricing on AWS and Microsoft Azure, and
preemptable instances in GCP. The rationale for using the opportunistic instance pricing
stems from the fact that they are about three times cheaper that full price instances and
dHTC workloads can gracefully recover from preemption, so there is no reason not to
use them unless aiming for maximum resource pool size. Additionally, we only recorded
an average preemption rate of 2% for opportunistic instances during this exercise, which
is considered absolutely negligible in such setups.

Table 3 provides a list price range for instances providing each of the usedGPU types.
We also include an estimated hourly list cost for an experiment like ours, which turns out
to be just shy of $20k/h. The table also provides a clear indication that it is much more
cost effective to use the more recent GPU types; for example, the instances providing
the K520 GPUs had approximately the same hourly list cost as instances providing T4
and P40 GPUs, yet they provided only a small fraction of the FLOP32s.

Table 3. Cloud opportunistic hourly pricing for various GPU types

GPU type
(NVIDIA)

Price range (list) Count at peak PFLOP32s at peak Estimated list price
at peak

V100 $0.6–$1.0 9.2k 132.2 $7.2k/h

P100 $0.4–$0.6 7.1k 68.1 $3.5k/h

P40 $0.4–$0.6 2.1k 25.2 $1.0k/h

T4 $0.2–$0.3 4.6k 38.6 $1.2k/h

P4 $0.2–$0.2 0.5k 2.5 $0.1k/h

M60 $0.2–$0.3 10.1k 48.8 $2.7k/h

K80 $0.13–$0.3 12.5k 51.6 $2.9k/h

K520 $0.2–$0.2 5.4k 12.4 $1.0k/h

Total 51.5k 379.4 $19.6k/h

4 The IceCube Science Proposition

From the ground up, this exercise was planned with the goal of advancing science.While
wewere definitely interested in the technical aspect of the endeavor, wewanted primarily
to demonstrate that such large-scale computation is actually useful for science. The tech-
nical participants in this group thus partnered early on with a scientific community that
had a dHTC computing workload which needed significantly more compute resources
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than they were normally getting. This resulted in the exercise being a joint collaboration
between personnel from both the Open Science Grid and the IceCube collaboration.

Section 4.1 provides an overview of the science behind IceCube. Section 4.2 provides
an overview of the compute challenges involved in the IceCube science. Section 4.3
provides an overview of GPU-enabled code that was run during this exercise. Section 4.4
provides a comparison of the efficacy of the various GPU types for the purpose of
IceCube, including how this skewed total contribution of various GPU types to the
advancement of science objectives.

4.1 The IceCube Neutrino Observatory

The IceCube Neutrino Observatory [14] is the world’s premier facility to detect neutri-
nos with energies above 1 TeV and an essential part of multi-messenger astrophysics.
IceCube is composed of 5160 digital optical modules (DOMs) buried deep in glacial ice
at the geographical south pole. Neutrinos that interact close to or inside of IceCube pro-
duce secondary particles, often a muon. Such secondary particles produces Cherenkov
(blue as seen by humans) light as it travels through the highly transparent ice. Cherenkov
photons detected by DOMs can be used to reconstruct the direction and energy of the
parent neutrino. IceCube has three components: the main array, which has already been
described;DeepCore: a dense and small sub-detector that extends sensitivity to ~10GeV;
and IceTop: a surface air shower array that studies O(PeV) cosmic rays.

IceCube is a remarkably versatile instrument addressingmultiple disciplines, includ-
ing astrophysics, the search for darkmatter, cosmic rays, particle physics and geophysical
sciences. IceCube operates continuously and routinely achieves over 99% up-time while
simultaneously being sensitive to the whole sky. Highlights of IceCube scientific results
is the discovery of an all sky astrophysical neutrino flux and the detection of a neutrino
from Blazar TXS 0506+ 056 that triggered follow-up observations from a slew of other
telescopes and observatories [15].

4.2 The Importance of Proper Calibration

Any experiment requires a fundamental level of understanding of the employed instru-
ments. In IceCube’s case, the detector is built into a naturally existingmedium, i.e. glacial
ice, that has been deposited over millennia. A priori there was only limited information
regarding the optical properties of the detector.

The optical properties of the glacial ice greatly affect the pointing resolution of
IceCube. Improving the pointing resolution has two effects in this case: greater chance
to detect astrophysical neutrinos and better information sent to the community. While
IceCube can detect all flavors and interaction channels of neutrinos, about two-thirds
of the flux reaching IceCube will generate a detection pattern with a large angular
error, see Fig. 4a. In the same figure you can also see that this angular error is mostly
driven by systematic effects. Similarly, different optical models have a great effect on the
reconstructed location of an event on the sky, see Fig. 4b. The comparatively minute field
of view of partner observatories and telescopes requires IceCube to provide as accurate
as information as possible. Having the best calibration possible is therefore imperative.
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Fig. 4. Impact of the IceCube detector calibration on science results. a) Angular momentum vs
errors in IceCube b) Pointing area based on different estimates.

4.3 Using GPUs for Photon Propagation Simulation

The photon propagation algorithm used by IceCube allows for massive parallelization
using either a large number of CPU cores or GPUs [2]. The algorithm follows these
steps. Initially a set of photons is created along the path of charged particles produced in
the neutrino interaction or from in-situ light sources used for calibration. The number of
photons inserted along the path depends on the energy loss pattern of the product. Most
higher energy productswill suffer stochastic energy loses due to bremsstrahlung, electron
pair production, or ionization as they travel through the detector causing concentrations
of light at certain points along the particle’s path. For calibration sources, a fixed number
of photons is inserted depending on the calibration source and its settings.

Once the location and properties of the photons have been determined, they are added
to a queue. For a given device, a thread pool is created depending on the possible number
of threads. If using a CPU, this typically is one thread per logical core. When using a
GPU, this mapping is more complicated, but can be summarized as one to several threads
per “core”, and the exact mapping depends on the specific vendor and architecture. Each
thread takes a photon out of the queue and propagates it. During the propagation, the
algorithm will first determine the absorption length of the photon, i.e. how long the
photon can travel before being absorbed. Then the algorithm will determine the distance
to the next scatter. The photon is now propagated the distance of the next scatter. After the
propagation, a check is performed to test whether the photon has reached its absorption
length or intersected with an optical detector along its path. If the photon does not pass
these checks, the photon is scattered, i.e. a scattering angle and a new scattering distance
are determined, and the cycle repeats. Once the photon has either been absorbed or
intersected with an optical detector, its propagation is halted and the thread will take a
new photon from the queue.

The IceCube photon propagation code is distinct from others, e.g. Nvidia OptiX in
that it is purpose-built. It handles the medium, i.e. glacial ice and the physical aspects
of photon propagation in great detail. The photons will traverse through a medium with
varying optical properties. The ice has been deposited over several hundreds of thousands
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of years. Earth’s climate changed significantly during that time and imprinted a pattern
on the ice as a function of depth. In addition to the depth-dependent optical properties
the glacier has moved across the Antarctic continent and has undergone other unknown
stresses. This has caused layers of constant ice properties, optically speaking, to be tilted
and to have anisotropic optical properties.

4.4 The Science Output

The IceCube photon propagation code relies mostly on fp32 math, and this is why we
focused on FLOP32s in the first three sections of this paper. There is however also a
non-negligible amount of code that is needed to support the dataflow, and that cannot
be directly tied to FLOPS of any kind. In the next few chapters we provide the actual
measurements of how this translates in run times for the IceCube code.

Table 4. IceCube runtime for different GPU types.

GPU type (NVIDIA) Runtime in mins Peak TFLOP32s Correlation

V100 24 14 110%

P100 43 9.5 100%

P40 38 12 95%

T4 50 8.1 100%

P4 80 5.0 100%

M60 95 4.8 90%

K80 138 4.1 70%

K520 310 2.3 55%

GTX 1080 50 8.9 90%

Before running the actual large-scale GPU burst, we benchmarked the IceCube pho-
ton propagation code, using a single representative input file, on all the various GPU-
enabled instances of the variousCloud providers. Table 4 provides the observed runtimes,
alongside the correlation to the nominal FLOP32s of those GPUs, relative to the per-
formance of the recent and cost effective T4. A desktop-class GPU card, the NVIDIA
GTX 1080 is also provided as a reference point. As can be seen, modern GPUs provide
significantly shorter runtimes per nominal FLOP32 compared to the older ones.

The distribution of the observed run times of the jobs completed during the exercise
matched very well the test data. The contribution to science results of the overall run
was thus now much more skewed toward the newer GPU types, as can be seen from
Fig. 5. In particular, the older K80 and K520, which together contributed about a quarter
of all the walltime, contributed less than 8% of the science output. In contrast, the more
modern V100 and T4 together produced over 50% of all the science output while using
about the same amount of wallclock time. A similar pattern can be also observed when
comparing the list price versus the science output in the same figure.
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Fig. 5. Contribution of different GPU types during the exercise. The external ring represents the
fraction of science events simulated. The intermediate ring represents the estimated list price
fraction. The inner ring represents the wallclock time fraction.

5 Conclusions

In this paper we present our experience in provisioning a pre-exascale dHTC workload
using a real science application using Cloud resources from multiple Cloud providers.
The chosen application was IceCube’s photon propagation simulation, both for technical
(heavy use of GPU at modest IO) and scientific reasons (high impact science). We
emphasize that thismeant it was not a purely experimental setup, but it produced valuable
and much needed simulation for the IceCube collaboration’s science program.

Wemanaged to provision almost 380 PFLOP32s distributed over 51k instances using
8 different GPU types, from all over the world, reaching 2/3rd of the total size in about
half hour from the provisioning start and the peak within about two hours. No special
arrangements or long-term commitments were needed, apart from having the quotas
raised to the appropriate levels. While the raising of quotas indeed involved a non-trivial
effort, as explained in Sect. 3.1, we believe pre-exascale dHTC computing using Cloud
resources is today within reach of anyone with a $100k budget.

Our exercise intentionally avoided to deal with real-time data movement problems
in and out of the Cloud, by keeping all networking within Cloud providers’ domains
during the exercise. We do plan to have a follow-on exercise which will be much more
data focused.
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Abstract. This paper describes the new hardware-based streaming-
aggregation capability added to Mellanox’s Scalable Hierarchical Aggre-
gation and Reduction Protocol in its HDR InfiniBand switches. For
large messages, this capability is designed to achieve reduction band-
widths similar to those of point-to-point messages of the same size,
and complements the latency-optimized low-latency aggregation reduc-
tion capabilities, aimed at small data reductions. MPI Allreduce() band-
width measured on an HDR InfiniBand based system achieves about 95%
of network bandwidth. For medium and large data reduction this also
improves the reduction bandwidth by a factor of 2–5 relative to host-
based (e.g., software-based) reduction algorithms. Using this capability
also increased DL-Poly and PyTorch application performance by as much
as 4% and 18%, respectively. This paper describes SHARP Streaming-
Aggregation hardware architecture and a set of synthetic and application
benchmarks used to study this new reduction capability, and the range
of data sizes for which Streaming-Aggregation performs better than the
low-latency aggregation algorithm.

Keywords: In-network computing · All-reduce · Streaming
reduction · Hardware collectives · InfiniBand · Mellanox SHARP

1 Introduction

A parallel application is a collection of independent computational elements
that communicate with each other to the degree needed by the application. In
tightly coupled High Performance Computing (HPC) applications the type of
inter-process communication involved is either some form of point-to-point or
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collective communication. The Message Passing Interface (MPI) [1] and Open
SHMEM [2] define HPC oriented APIs that provide interfaces to such capabil-
ities. Network communication happens between end-points. In point-to-point
communication, data is moved from one source to a single destination, and
includes operations such as the non-blocking MPI Isend() and MPI Irecv() which
are used to initiate sending or receiving data, respectively. Collective communi-
cation involves some form of data exchange with participation of all members
of a group of endpoints, such as MPI Barrier() which is used to synchronize a
set of end-points (MPI processes), or MPI Allreduce() which is used to gather
equal-sized vectors from all members of the collective group, produce a single
output vector, and return this to all members of the group.

Collective communication is used by many HPC applications. Efficient imple-
mentations of such algorithms often use a chain of point-to-point communication
thus serializing algorithm communication, which tends to be scale dependent,
with the number of such communication in the critical path increasing with group
size. Therefore, collective communication often has a large impact on application
scalability.

This scalability challenge has spawned many efforts to optimize collective
communication algorithms. Most of these have used host-side logic to manage
the collective algorithm as well as the necessary data manipulation with the
network being used exclusively as a data pipe. Some network-hardware-based
solutions have been implemented, with those relevant to the focus of this paper
reviewed in Sect. 2.

Mellanox Technologies, as a provider of HPC network technology, has been
moving the implementation of portions of the collective operations to the net-
work, freeing up the computational elements, such as CPUs and GPUs, for com-
putation. For example, CORE-Direct R©[10] moved management of the commu-
nication dependencies in the chain of collective operations to network hardware
in support of asynchronous progress. Mellanox is in the process of IO Processing
Units (IPUs) that improve system efficiency by relocating the processing of net-
work operations and data algorithms from the main host into the network fabric.
As part of this effort the Mellanox SHARP [9] protocol has been developed to
optimize collective reduction and aggregation operations. The first set of capabil-
ities supported include those needed to implement reduction operations, includ-
ing allreduce, reduce and barrier-synchronization, with a latency-optimized short
vector reduction algorithm.

This paper describes and evaluates a new IPU SHARP capability added
to Mellanox’s HDR InfiniBand switches. This capability, called Streaming-
Aggregation, moves distributed large-data reductions from the host to the net-
work, using a bandwidth-optimized algorithm designed to handle wide radix
reduction at near wire speeds. Section 3 describes the Streaming-Aggregation
capability introduced in Mellanox’s QuantumTM R© switch, providing support for
long vector reduce, allreduce and broadcast operations. Due to space considera-
tions, we focus only on the reduction operations, and specifically the allreduce
operation. Streaming-Aggregation optimizes these often-used global reduction
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operations by performing the data reduction operations as it traverses a reduc-
tion tree in the network. Data from each source is injected into the network only
once, and the volume of data is reduced as it goes towards the root of the tree.
This is in contrast to CPU-based algorithms where data traverses the network
multiple times between network endpoints, to be reduced at each stage at some
node in the system. The large-radix reduction trees used provide a highly scal-
able algorithm and shallow reduction trees, reducing the latency of a one MByte
(MB) data reduction across 64 hosts by a factor of 3.5. The effect of this opti-
mization on overall application performance depends on the frequency of using
such calls, as well as the skew in the collective initiation across the group of
participating processes. The greater the skew, the less pronounced the impact.
However, the latter is true for any aggregation algorithm, whether implemented
in hardware or software.

Section 2 describes previous work, Sect. 3 describes the Streaming-Aggregation
design and Sect. 4 provide some experimental data to demonstrate the effective-
ness of this approach in improving system performance, making more CPU cycles
available for computation.

2 Previous Work

Previous work on reduction algorithms for distributed vectors has included both
algorithmic level optimization with software-based implementation as well as
work on hardware acceleration of such algorithms. Most of this work is aimed
at accelerating small-to-medium data reduction, with relatively little work on
optimizing the reduction of longer vectors.

This algorithmic work has resulted in several algorithms in common use
today. For long vector reduction Rabensiefner [14] has developed a widely used
algorithm baring his name. This algorithm uses a reduce-scatter phase to com-
pute a distributed result vector, with this vector being distributed across mem-
bers of the communicator, and an allgather step to gather the full vector to all
group members. A ring algorithm [14] has also been developed to optimize large
vector reductions, and scales linearly with vector size.

Most of the work on hardware optimized collectives has focused on short-
vector reduction, with a limited number of published efforts aiming to address
large data reduction. The latter faces the challenge of handling very large
amounts of data in a single collective operation while staging data across the
network for performing the data reduction. In addition, for a given vector length,
the total volume of data being reduced, increases with group size, further increas-
ing the amount of data manipulated. To achieve reduction rates similar to the
available network bandwidth, such data needs to be reduced efficiently as it
is transferred, to form an efficient reduction pipeline. While multiple imple-
mentation of short-to-medium vector reductions have been found which offload
the full operation to the network, only one reference has been identified on
work that offloads the full large-vector reduction. Gao [8] implemented several
tree-based reduction algorithms for FPGA-based systems, and ran experiments
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on a 32 node system. The latencies are reported for messages up to 140 Kbyte
(KB) in size are high - on the order of milliseconds. Kumar et al. [11] developed
an efficient algorithm for the Blue Gene/Q platform, which leverages the sys-
tem’s 5D torus with the reductions being performed by the host CPU. Adachi
[6] implemented the Rabenseifner algorithm for the K-computer taking advan-
tage its 5D network topology, segmenting the vectors into three parts which are
reduced in parallel over three disjoint trees, and using the host CPU to perform
the data reductions. Stern [13] developed an FPGA based methodology that is
relevant for large reductions, but focuses on small-to-medium reductions.

The methodology being described in this paper offloads the full data reduc-
tion operations to the network, with the use of an efficient pipeline to achieve
reduction throughput similar to the peak network bandwidth.

3 Streaming-Aggregation

Streaming-Aggregation [7] is a new capability introduced with Mellanox’s HDR
InfiniBand technology to perform reductions on data in-flight while maintaining
near line-rate data transfers. This section describes the hardware enhancements
made to the Mellanox SHARP protocol in support of this capability. This new
protocol supplements the latency optimized reduction capabilities introduced
with Mellanox srp in Switch-IB R©-2 EDR switches [9].

Mellanox SHARP protocol details are described in [9], with a brief summary
below. Mellanox SHARP uses reduction trees where the interior nodes of the
tree and the root are instantiated in the switches. Hosts serve as the data source
and data destination, and are the leaves of the reduction-trees. Figure 1a shows
an example of a three-level fat tree and an aggregation group within this tree,
with the hexagons representing radix-six switches which include a Collective
Functional Unit (CFU) represented by a circle in the switch. Switch connectivity
is shown by the edges, and the hosts connecting into the switched fabric by
circles. One of several possible reduction-trees that may be defined within this
network include the switches with red and cyan aggregation nodes (ANs), with
the hosts that are the sources of data colored red or striped. In general, switches
need not be ANs within a reduction-tree, as is reflected by the AN in the second
level of the red tree on the left hand side, which is not colored.

The AN is used to support Mellanox SHARP’s reduction functionality. These
nodes reduce the data received from their children producing one output vec-
tor. Interior nodes forward the result to their parent and the root node initiates
the result distribution phase, replicating the data to its children. Interior nodes
replicate the result received from their parent to their children. The upper limit
on the node radix supported by the CFU leads naturally to a hierarchical app-
roach being used to implement collective operations, with a set of levels handling
host-side aspects of the collective operations, and the switching infrastructure
handling the network-side portion of these collective operations.

Reduction-trees are defined at network initialization time, and reduction
groups at run-time. An aggregation-group is defined by the hosts that serve
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Fig. 1. (a) Aggregation tree and a reduction group overlaid on this tree. Switches
are displayed as hexagons, nodes as circles and the edges showing switch-to-switch
connectivity. (b) Switch-level reduction operation. (Color figure online)

as sources of data for a given set of collective operation. For example, an MPI
implementation may create a Mellanox SHARP group at communicator initial-
ization time or on first use. In Fig. 1a the cyan colored nodes and striped hosts
define a two-level aggregation-group on the specified reduction-tree.

The following enhancements to Mellanox SHARP have been made in support
of the Streaming-Aggregation capability:

– Reduction-trees have a new trait added to specify their type, supporting either
low-latency reduction or Streaming-Aggregation.

– The ability to lock a Streaming-Aggregation tree for exclusive use is added.
This is done with new capabilities added to the low-latency reduction-tree,
with a topology that is identical to that of the Streaming-Aggregation tree.

– Switch-level support for a pipelined reduction ring.
– A single child is supported per tree per switch port. A given aggregation

group supports one outstanding operation at a time, with a switch supporting
operations on up to two trees at a time.

– A scalable reliable multicast is supported on the tree.

The reduction algorithms are implemented using existing InfiniBand trans-
ports, and as such inherit the characteristics of these transports. They include the
message size restrictions imposed by InfiniBand and HCA capabilities, such as
the gather/scatter capabilities. The low-latency aggregation protocol originally
implemented imposes a protocol-specific upper limit, on the order of hundreds
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of bytes, on the vector size which is well below the InfiniBand message size limit
of 2 GB. The Streaming-Aggregation protocol does not impose such additional
limitations.

3.1 Tree Type

The Streaming-Aggregation protocol uses a bandwidth-optimized protocol to
perform data reductions. A design decision is made to associate a single protocol
(e.g., latency-optimized or bandwidth-optimized) with a given reduction-tree,
with multiple trees being able to span identical network resources. A protocol
trait associated with the tree is used to specify which protocol is supported.

3.2 InfiniBand Transport Selection

To provide an asynchronous aggregation protocol, without requiring host-side
intervention, the reduction protocol must provide network-side reliability. In
addition, the aggregation protocol is designed to use transport protocols, and
not to mix network transport and aggregation elements in a single protocol.

It is desirable to use a reliable transport to send data between nodes towards
the root of the reduction-tree and let the hardware transports handle all relia-
bility issues. Such an approach does not slow down the aggregation by waiting
on CPU cycles to become available for progressing the protocol, or for timers
with long end-to-end timeout periods to expire. The InfiniBand Reliable Connec-
tion (RC) transport is favored over the Dynamically Connected (DC) transport
because the number of AN-to-AN connections is small, limited by the upper
limit on the AN radix, and remains constant unless the network is reconfigured.
Therefore, the scalability benefits of DC, with its ability to support multiple
destinations are not relevant in this case, which is why InfiniBand RC transport
is used for sending data between tree nodes.

Since the result of the aggregation is destined to one or more user-space
address spaces, depending on the collective operation being performed, using
host-based reliability algorithms as part of an algorithm that handles missing
result data is possible. Using Unreliable Datagram (UD) multicast to distribute
the results within the tree provides the lowest latency method for distributing
the aggregation result within the tree. However, since the protocol is unreliable,
a second transmission of the same data is needed, with appropriate handling of
duplicate data reception, to ensure that the result is received by each member of
the reduction group. For short messages sending the results twice makes sense,
once using InfiniBand’s UD multicast transport and then with the reliable RC
transport down the tree, as message rate, and not network bandwidth, is the
limiting latency factor determining the latency of the result distribution. Dupli-
cate data is handled by receiving data into temporary buffers and copying one
result into the user buffer, thus ensuring a second copy is not received into user
destination buffers after the user process has already been notified of completion
and could be modifying the data. For short messages, the cost of the memory
copy is small relative to the overall cost of the UD multicast data distribution,
and therefore makes sense from an aggregation latency perspective. However, for
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large messages, sending the data twice effectively halves the available network
bandwidth, doubling the latency, and making such a solution impractical from
a performance perspective. Delivering the data to a temporary buffer and the
copying it to the user buffer, further increases the cost of distributing the result
with UD multicast. Therefore, RC transport is used to distribute the results.

With the aggregation protocols using existing transport protocols, access to
these capabilities is through the standard InfiniBand network access mechanisms.
Initiating a reduction operation from a given end-point is done by posting a send
request. Receive requests for the results are posted to receive queues, InfiniBand
completion queues are used to retrieve reduction completion notification. The
send request holds an aggregation protocol-specific header as part of the user
payload, with the destination address being used to indicate that a message is
part of an aggregation operation. New aggregation operations are introduced for
the management purposes, such as aggregation-group formation. Space consid-
erations do not allow a discussion of these operations.

3.3 Tree Locking

Streaming-aggregation is designed to perform long-vector distributed data reduc-
tions, while maintaining network throughput comparable to that of point-to-
point data transfers of the same length. Since data from different children needs
to be buffered long enough to combine the data from different sources at a
given AN, and there are no guarantees on the temporal nature of data from
different sources in specifications like MPI, it is desirable to delay occupying the
Streaming-Aggregation buffer resources until all aggregation-group input vec-
tors are ready. This is because the aggregation buffers are a shared switch-level
resource that should not be held indefinitely, allowing those operations that are
fully ready for the reduction to proceed.

To avoid occupying reduction buffers indefinitely, a protocol for locking a tree
for a specified number of streaming-aggregations has been added. This protocol
runs on a low-latency aggregation tree with an identical layout to that of the
Streaming-Aggregation tree. In addition, the ability to unlock the Streaming-
Aggregation tree has been added. This also allows for automatic unlocking of
the tree when the number of full message aggregations performed matches the
number requested. It is also possible for the tree to be used with no limit on the
number of aggregations. This mode is suited for systems that are used to run a
single job at time. The mode of operation is set when the lock request is made.

The locking protocol is similar to a Mellanox SHARP barrier operation, with
each process in the group initiating a request to lock the tree. These requests
propagate up the tree, locking the resources along the way. In the event that a
resource is already locked and is unavailable, the failed request is propagated up
the tree, with the root sending a failed-lock notification down the tree causing
locked resources to be released, and the calling host process to be notified of the
failure. The cost of such a lock is similar to a barrier-synchronization operation
on the same low-latency aggregation tree.
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As noted above, for resource locking purposes, each reduction-tree is associ-
ated with a low-latency reduction-tree of identical layout.

3.4 Reduction Tree

The Streaming-Aggregation reduction-tree is very similar in nature to the low-
latency reduction-trees, with respect to how the aggregation proceeds. Individual
ANs receive data from a predetermined number of children and reduce the data
to produce a single output vector. Interior aggregation-group nodes forward the
data to their parent, and the root of the aggregation-group initiates result distri-
bution. An important feature of the aggregation protocol is that a single result
is forwarded towards the root of the tree from each AN thereby reducing the
amount of data forwarded by its aggregation radix. Similarly, as data is dis-
tributed from the root, it is replicated once per child at each AN, keeping the
volume of data transferred to a minimum, and generally transferring much less
data than that of host-based algorithms.

3.5 Reduction Pipelining

To achieve high network bandwidth with long vectors while performing a data
reduction, an efficient pipeline needs to be established, which supports data
staging into the arithmetic units. These units are then used to operate on the
data, while maintaining high end-to-end data throughput. This data motion
must be maintained throughout the full distributed reduction data path.

To achieve good pipelining InfiniBand’s credit-based mechanism is used as a
means for the responder (e.g., the AN) to inform the producer, i.e., the source
of the data, of its available buffer space. This allows data to be sent between the
two at an optimal rate, while avoiding overwhelming the responder with data it
must drop. The credit mechanism runs over a reliable InfiniBand transport. This
synchronizes the responder and requester by sending the amount of credits in
response packets from the responder and allowing sending an additional single
“limited” packet when the requester runs out of credits. This is as described in
the InfiniBand specification for handling end-to-end credits.

3.6 Switch-Level Reduction

The AN in each switch takes input from a pre-configured set of children, and
then delivers the data to the pre-configured destination, as shown in Fig. 1b.
There is a one-to-one mapping between children and physical ports, on a per
reduction-tree basis. Switch ports are paired and assigned reduction resources.
The ports are arranged in two half rings, which meet in the middle, with the
top CFU producing the final result and sending it to the destination. Data is
supplied to the reduction tree at MTU granularity, which enables setting up an
efficient pipeline capable of achieving end-to-end reduction at near wire speed.

Figure 1b shows how a switch performs the reduction of data coming from
eight sources, for a switch of radix 16. The red arrows represent the children for
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the reduction at the AN, with the circles representing the Streaming-Aggregation
reduction unit that handles data from two ports, and the pentagon represents
the CFU which produces the final result. On the left-hand branch there are five
reduction steps, with the first reduction taking data from the bottom two ports
forwarding the result to the second combiner.

On the left-hand side, data from ports 1 and 2 are combined by C1. The
result is forwarded to C2 where it is combined with the input from port 3 with
the result being combined by C2 with the input from port 4, and forwarded
to C3. At C3, the forwarded data is combined with the data from port 5 and
forwarded to C4, where the data is combined with the data from port 8.

On the right-hand side, data from port 10 is forwarded through the combiner
in C6 to C7 where it is combined with the data from port 14. The result is
forwarded through C8 to the CFU where it is combined with the data from C4,
and sent out to the appropriate exit port to the next AN in the tree.

At each step through the switch, data is processed at near wire speed, provid-
ing good throughput, with sufficient switch resources to keep the pipeline busy,
supporting near full wire speed reduction.

3.7 Result Distribution

With the reduction complete at the root of the aggregation-group, it is ready
to be distributed to data recipients, be it the host in the group for an allreduce
type of operation, or the root of a reduction operation. With the short message,
the latency-optimized hardware multicast protocol is used to provide low-latency
data distribution, and a reliable transport is used to send the result down the
tree to ensure reliable data distribution. For a bandwidth-oriented protocol,
distributing the result twice, with both reliable connections and UD multicast
protocols, reduces the operations bandwidth by a factor of two, making it a poor
option.

Therefore, a new reliable broadcast protocol has been developed to distribute
the data reliably at near wire bandwidths. This protocol uses unicast messages to
send data between nodes in the aggregation-group, encapsulating the Mellanox
SHARP reduction-tree which is used to distribute the data. When the CFU
receives the unicast message, it extracts the SHARP group handle, and uses this
to look up in its local SHARP group tables the list of ports through which the
data needs to be forwarded. An optimized reliable packet generator is used to
replicate the data which is sent out through each of the ports constructing new
RC messages, one for each of the group destinations. This is depicted in Fig. 2 for
a radix-6 switch and SHARP group 0X1. The process of extracting the SHARP
group handle, replicating the reliable packets and sending the data to the next
nodes in the reduction-tree is continued until the data reaches the destination.

3.8 Aggregation Protocol Resilience

The high performance computing community has yet to converge on a set of
agreed upon protocols to handle application-side error recovery. Therefore, the
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Fig. 2. Reliable Data Distribution. Black arrows represent ports, red arrows represent
the data path and green arrow represent the control path. (Color figure online)

protocol is designed to allow users to select their own method of handling aggre-
gation protocol failure.

With network error rates being rather low, with the average duration between
unrecoverable errors being orders of magnitude higher than that of the longest
aggregation protocol duration, Mellanox SHARP’s mode of handling errors is
limited to notifying the data sources when failure occurs, and letting the user
decide how to proceed. Upon failure, the affected aggregation trees are torn
down, and it is up to the host-side SHARP stack to decide if to re-initialize the
SHARP resources, with a potentially new network configuration (i.e., without
the failed resources).

Once the running application receives notification that a given aggregation
has failed, it can decide how to proceed. It can try and re-initialize the appli-
cation SHARP resources and use them again, or use an alternative host-based
algorithm, which bypasses the affected resources, and restarts the affected aggre-
gations. In addition, since successful local aggregation protocol completion does
not imply success across the full reduction group, the application is free to add
an agreement protocol, with the associated costs, before declaring the operation
complete and returning control over the result buffers to the user.

4 Experiments

The Mellanox SHARP Streaming-Aggregation capability is studied using syn-
thetic benchmarks and full applications, to explore the performance character-
istics of this capability and its impact on applications.
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4.1 Test System Configuration

The primary system used to run the synthetic benchmarks included 64 nodes
of dual 18 core sockets of Intel( R©) Xeon( R©) Gold 6154 CPU running at
3.00 GHz. Each host uses the Red-Hat Linux version eight package and
MLNX OFED LINUX-4.7-1.0.0.1. Each node is connected to network using a
ConnectX R©-6 HDR InfiniBand Mellanox HCA which were connected to HDR
InfiniBand Mellanox QuantumTM switches. Each host is able to send data at the
limit imposed by the PCIe Gen-3.0x16 bus, which is just above 100 Gbit/sec.
The switches are connected in a two-level fat-tree topology, with four InfiniBand
HDR QuantumTM L1 switches connected to one QuantumTM L2 switch. The
HCAs used firmware version 20.26.1040, and the switches used firmware version
27.2000.2306.

The single switch scalability tests were run on a 32-node cluster. It has
16-core dual-socket Intel( R©) Xeon( R©) CPU E5-2697A v4 (Broadwell) running
at 2.60 GHz with 256 GB of physical memory. Operating system is CentOS
7.7.1908 with kernel version 3.10.0-1062.4.1.el7.x86 64 and MLNX OFED 4.7-
1.0.0.1. Cluster nodes are connected with ConnectX-6 HDR100 InfiniBand and
a QuantumTM switch. DL-Poly was also run on this system.

In addition, an 8-node cluster with AMD EPYC 7742 64-core Processors
with MLNX OFED version 4.7 running the RDY1003B BIOS connected to a
ConnectX R©-6 HDR InfiniBand HCA via a PCIe Gen-4 bus was also used to
measure performance on a fully enabled single-stream HDR configuration. Avail-
ability of systems with PCIe Gen-4 based CPUs has limited most of the testing
to network injection bandwidths limited to just over 100 Gbit/s.

The MLPerf data was collected on an HPE Apollo 6500 configured with 8
NVIDIA Tesla V100 SXM2 with 16 GB of memory. The CPU used was a dual
socket HPE DL360 Gen10 Intel Xeon-Gold 6134 (3.2 GHz/8-core/130 W) run-
ning Ubuntu 16.04, and connected via a PCIe Gen-3 PCI bus to HDR100 HCA
running at 100 Gbit/sec connected to a single Mellanox QuantumTM switch.

The MPI from HPC-X version 2.5 [3] was used in the experiments.

4.2 Synthetic Benchmarks

The OSU allreduce [4] benchmark is used to study the performance of reduction
capability. The test is modified to report the achieved bandwidth, in addition
to the latency, where the bandwidth is computed as the message size divided
by the measured latency. This is done to assess the hardware’s ability to utilize
available network bandwidth while performing the data reduction.

Measurements were taken to assess the efficiency at utilizing available net-
work bandwidth, its efficiency compared to the low-latency aggregation capabil-
ity and host-based distributed reduction algorithms. The host-based algorithm
used is a radix-2 Rabenseifner’s algorithm [14] - reduce-scatter followed by an
allgather. In addition, Streaming-Aggregation’s performance as a function of
switch configuration and job size is studied. All the experiments described in
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this subsection focus on the in-network Streaming-Aggregation feature, so only
a single process is used on each host.

The efficiency of the Streaming-Aggregation and its performance relative to
the low-latency aggregation and host-based implementations was measured using
all 64 hosts, with 16 hosts attached to each leaf switch. Ping-pong bandwidths are
also reported. The results of these experiments are displayed in Fig. 3a. As this
figure shows, the allreduce bandwidths obtained by the Streaming-Aggregation
are close to that obtained in the ping-pong experiment which transfers data
without manipulating it. The bandwidths obtained are much higher than those
obtained with the host-based reduction operations, varying from a factor of
about 2 higher at 4 KB message size to a factor of 4.8 higher at 256 MB message
size. The bandwidth obtained is also higher than that obtained with the low-
latency aggregation protocol, being similar at 8 KB message size and similar
to the host-based performance at large message size. The reduction bandwidth
achieved peaks out at about 96% of the ping-pong bandwidth, dropping off a bit
at larger message sizes.

Fig. 3. (a) Streaming-aggregation (SA), low-latency aggregation (LLA), host-based
MPI Allerduce implementations and MPI ping-pong bandwidth. (b) Streaming-
aggregation (SA), low-latency aggregation (LLA) and host-based MPI Allreduce.

The Streaming-Aggregation is designed for long message aggregation,
whereas the low-latency aggregation is designed to optimize for the small data
reductions, which are dominated by latency effects. It is therefore important to
figure out at what message size to switch from using the low-latency aggregation
to the Streaming-Aggregation algorithm. Figure 3b compares the MPI Allreduce
latency obtained using Streaming-Aggregation, low-latency aggregation and the
host-based algorithm. As expected, the hardware offloaded latency is better than
that of the host-based algorithm, with the latency optimized algorithm perform-
ing better at small message sizes, and bandwidth optimized algorithm overtaking
it in the range of 4 to 8 KB. These measurements do not take into account the cost
of reserving the Streaming-Aggregation resources, for those instances in which
this reservation is required. In such instances, the cross-over point will be at a
larger message size. The overheads of managing multiple message data segments
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in the reduction pipeline, includes a credit mechanism, as well data orchestration
logic within the AN, which is absent from the low-latency aggregation protocol.
It is such logic that enables the high-bandwidths supported by the Streaming-
Aggregation protocol, but increases the latency, and is independent of the data
source.

Bandwidth was also measured on an AMD Rome cluster, supporting a PCIe
Gen-4 bus, which enables full HDR throughput. The reduction bandwidth as
a function of message size is displayed in Fig. 4a, peaking at close to 95% of
available network bandwidth and 96% of ping-pong bandwidth, which is about
4.5 times that of the host-based algorithms, and about a factor of 7.6 better
than using the low-latency aggregation capabilities.

Fig. 4. (a) Streaming-aggregation (SA), low-latency aggregation (LLA), host-based
MPI Allerduce implementations and MPI ping-pong bandwidth - Rome CPU. (b)
MPI Allreduce Streaming-aggregation using four leaf switches and varying the number
of hosts per switch.

Several other comparisons are made to further study the behavior of the
Streaming-Aggregation capabilities. Single switch measurements were performed
to understand how the distributing the reduction between the two reduction rings
in a single switch impact performance. Since the setup available had 32 nodes
per switch, 16 hosts MPI Allreduce() runs were made varying the configuration
from all 16 nodes on a single ring, to half and half. As expected, this showed no
discernible impact on the MPI-level reduction latency and bandwidth.

Figure 5a shows the MPI Allreduce() bandwidth as a function of message size
with all the hosts connected to the same switch and a variable number of hosts.
As this figure shows, the host count has a very small impact on the measured
reduction bandwidth.

Figure 4b shows the MPI Allreduce() bandwidth as a function of message
size and the number of hosts per switch, for a 4 switch two-level fat-tree con-
figuration. For this particular configuration the number of hosts has minimal
impact on measured bandwidth up to about 4 MB message size, but with 16
hosts per switch we see a drop of about 7% in measured bandwidth. Host based
measurements show a corresponding drop of about 12%.
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Fig. 5. (a) Single switch MPI Allreduce Streaming-aggregation reduction bandwidth
(Gbit/sec) as a function of message size. (b) 1048576 byte message size MPI Allreduce
bandwidth (Gbit/sec) as a function number of hosts per switch, for a fixed number of
total hosts. The number of switches varies from one to four.

Figure 5b showed the MPI Allreduce() bandwidth for fixed total host count
and an increasing number of leaf switches, decreasing the number of hosts per
switch with increased switch count. Increasing the total number of hosts has
only a small impact on overall bandwidth, with the largest impact being on
the case where 16 hosts are in use dropping by about 4.8% going from one
to four switches. The drop from two to four switches (both require using both
levels of the two-level fat-tree) is only about 1.6%. The corresponding drops in
performance for the host-base algorithm are 1.9% and 0.3%.

Fig. 6. (a) Streaming-Aggregation tree lock time, as a function of host count. 2 to 32
nodes are attached to a single switch and 64 hosts are configured in a two level fat-tree.

Locking the tree for the aggregation operation can be done either for the
duration of the life of the application, such as the lifetime of an MPI commu-
nicator, or for a specified number of reduction operations, thus allowing other
reduction trees to use the resources. Figure 6a shows the latency of the reduction
operation in the range of 2 to 64 hosts. The range of data points between 2 and
32 hosts was measured on the single switch Intel based system, and the 64-node
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data on the two level fat-tree configuration. The cost of the lock is indeed similar
to that of the barrier operation, with a very small increase in latency for the
fixed single-switch configuration and the expected increase in latency going from
one to two levels in the reduction tree.

4.3 Application Benchmarks

The impact of the Streaming-Aggregation on the performance of two applica-
tions, DL-Poly and PyTorch is studied. These are described below.

DL-Poly [15] is a classical molecular dynamics code developed at Daresbury
Laboratory. The bars in Fig. 7a show the total run-time of the Sodium Chloride
melt with Ewald sum electrostatics and 27 K atoms (bench4) as a function of
host count, with (orange bars) and without (blue bars) using the Streaming-
Aggregation. The line plot represents the overall improvement in application
run-time as a percent of total application run time. Measurements were taking
using a host count varying between 2 and 24, with 32 processes per node. The
amount of time spent in the large MPI Allreduce() operations at 24 nodes and
32 ranks per node is 6.85 s out of a total run time of 45.02 s, or about 15%.
The Streaming-Aggregation reduces this time to 4.73 s, and is used to reduce
vectors of size 524288, 196608 and 98304 bytes. As the results indicate, using the
Streaming-Aggregation capabilities to speedup the MPI Allreduce() operations
improved overall simulation time by as much as 4% at 22 nodes, and about 2.5%
at 24 nodes. Reduction costs at these different sizes are similar, with most of the
fluctuations in run-time coming from other parts of the code.

PyTorch [12] is a machine learning library used in computer vision and natural
language processing. This was used to run the Transformer Translation model
[16] MPLerf benchmark, with and without using the Streaming-Aggregation
capabilities. The performance on a 4 host 8 GPU system, using one and two
HDR100 interfaces is shown in Fig. 7b, with the data being reduced from the
GPU buffers. The reduction capabilities are exposed through the NVIDIA Col-
lective Communication Library (NCCL) [5] which also includes support for
Mellanox’s Streaming-Aggregation capabilities. As the figure shows, using the
Streaming-Aggregation capabilities improves the benchmark performance rel-
ative to the default tree and ring reduction algorithms used by NCCL. The
single HCA performance is improved by about 10% relative to the ring-based
reduction algorithm, with the two-HCA performance improving by 3.7%. Inci-
dentally, the GNMT MLPerf benchmark running on 24 DGX1V nodes and the
VAE benchmark running on 32 DGX1V nodes, using 4 parallel HDR networks
and enabling the Streaming-Aggregation improves performance by 18% in both
cases, but analyzing these is beyond the scope of this paper. The vectors being
reduced are long, as shown in Table 1. When NCCL’s ring algorithm is used for
the reduction 28% of total run time is spent in reduction, but when Mellanox
SHARP is used this drops to 20% of total run time.
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Fig. 7. (a) DL-Poly run time (sec) as a function of host count, with 32 process per
host using Streaming-Aggregation.Test case: Bench4 - Sodium Chloride, 27 K atoms.
(b) MLPerf performance using PyTorch (Color figure online)

Table 1. MLPerf transformer translation model reduction message distribution. The
data type is 16 bit floating point.

# Calls Message count Message size
(MByte)

# Calls Message count Message size
(MByte)

1 210808832 402 1100 46169088 88

2200 46171136 88 1100 72297472 137

As Mellanox SHARP Streaming-Aggregation performance optimization
efforts continue, we expect to improve the performance of the aggregation oper-
ations. Improvement in application performance will depend on how this capa-
bility is used.

5 Summary

This paper describes the Mellanox SHARP Streaming-Aggregation capability
introduced in Mellanox’s HDR InfiniBand network hardware. It takes in vectors
from different network end-points, reduces the data to produce a single out-
put vector, which is then distributed to the specified nodes in the network. No
software is used in the reduction path.

As the MPI Allreduce() OSU benchmark results show, the efficiency of the
data reduction and distribution is close to that of the point-to-point bandwidth,
achieving good pipeline efficiency in reducing and forwarding data. On a 64-node
HDR system using a PCIe Gen-3 bus to connect to the network a reduction
efficiency of as high as 96% of ping-pong message efficiency for a 2 MByte mes-
sage, and at 64 KB achieves about 80% efficiency. Peak reduction bandwidth is
achieved with messages of size 8 MB. When the bandwidth limitation imposed
by the PCI bus is removed, using a PCIe Gen-4 bus, the bandwidth reaches
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59 Gbps ate 64 Kbyte, which is 3.5 times higher than with the host-based algo-
rithm. With 67 GB message size it peaks at 190 Gbps, which is 95% of the
network bandwidth and 4.45 times higher than with the host-based algorithm.

Comparing Mellanox SHARP Streaming-Aggregation bandwidth to that
obtained using a host-based approach, a large increase in measured bandwidth
using the new capabilities is observed. As the data from Fig. 3a shows, Streaming-
Aggregation bandwidth is about a factor of two higher than the host-based
reduction algorithm bandwidth at 4 KB message size, and close to a factor of
five greater for messages of size 128 KB and above. Similarly, the Streaming-
Aggregation reduction bandwidth is greater than the low-latency aggregation
based reduction bandwidth, for all but the 4 KB message size.

For small message sizes, the latency of the low-latency aggregation based
reductions is lower than the Streaming-Aggregation based algorithm, with both
being lower than the host-based algorithm. For the 64 host configuration the
cross-over point between the algorithms is between 4 and 8 KB, and when tree
locking is necessary, this increases to about 16 KB. The cost of managing and
pipelining multiple data segments with the Streaming-Aggregation is what makes
the short message aggregation less efficient then when using low-latency aggre-
gation. When more than two to three message segments are required using
the low-latency aggregation protocol it is more efficient to use the Mellanox
Streaming-Aggregation protocol.

As a basic capability, the addition of the Streaming-Aggregation functionality
enables the asynchronous offloaded reduction capabilities to supersede the host-
based algorithms. Also, using these capabilities with DL-Poly and PyTorch shows
this to be a viable alternative to host-based reduction algorithms at the full
application level, improving the application performance for the tests run by
up to 7% and 10% for DL-Poly and PyTorch, respectively.

Finally, studying Streaming-Aggregation as a function of network configu-
ration has shown that performance remains as the system size increases, albeit
with some reduction in bandwidth. This is expected with a longer data path
which increases the latency for the first MTU to reach the destination, thus
reducing the measured bandwidth. Factors that are local to a single switch have
a much smaller impact on performance relative to factors such as reduction tree
depth and the width of the reduction tree. The distribution of hosts across the
reduction rings in the switch had no discernible effect on the end-to-end reduc-
tion performance, while the number of hosts per switch was shown to have a
small effect. The largest measured impact seems to be related to the reduction
tree depth, with a smaller impact exerted by the number of switches used at a
given tree depth. As larger switch configurations become available for testing,
the impact of scale on overall measured bandwidth can continue to be studied.
The large-radix reduction supports shallow reduction trees, with a three level
tree able to support systems with over 10,000 nodes using 40 port switches as
building blocks.

To summarize, the Streaming-Aggregation capability has been shown to
significantly improve the distributed reduction performance of medium and
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large messages relative to both low-latency aggregation hardware Mellanox
SHARP and host-based software reduction implementations. It provides reduc-
tion throughput similar to that of point-to-point traffic, and improves the per-
formance of both synthetic and full applications.
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Abstract. Power-aware scheduling is a promising solution to the
resource usage monitoring of High-Performance Computing facility elec-
trical power consumption. This kind of solution needs a reliable estima-
tion of job power consumption to feed the Resources and Jobs Manage-
ment System at submission time. Available data for inference is restricted
in practice because unavailable or even untrustworthy. We propose in this
work an instance-based model using only the submission logs and user
provided job data. GID and the number of tasks per node appears to
be good features for prediction of a job’s average power consumption.
Moreover, we extant this model to production context with online com-
putation to make a practical global power prediction from job submission
data using instances re-weighting. The performance of the online model
are excellent on COBALT’s data. With any doubt this model will be a
good candidate for the achievement of consistent power-aware scheduling
for other computing centers with similar informative inputs.

Keywords: RJMS · Job scheduling · Power consumption · Machine
learning

1 Introduction

Power efficiency is a critical issue for the goal of ExaFLOP performance. It will
be impossible to run applications at such a scale without a dedicated power plant
if High-Performance Computing (HPC) systems are not more power-efficient [3].
Minimizing electricity consumption to reduce production costs and environmen-
tal issues is of ever increasing importance. Created in 2007, the Green500 ranks
the 500 most energy-efficient computer systems to raise awareness other perfor-
mance metrics.
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1.1 Constraints for Job Scheduling

One potential direction to improve the power efficiency is to better understand
user behaviors and to create incentives to reward the use of power-efficient appli-
cations using software. The Resource and Job Management System (RJMS) can
be used in this case. If the RJMS is aware of the power consumption, an energy-
budget scheduling policy [5] to avoid power peaks or to address the intermittent
nature of renewable energies can be designed.

Nevertheless, power consumption is rarely known in advance, even by the
user, so an alternative solution is to add power consumption forecasting facilities
to the RJMS. Since the only job data available at the stage of submission is what
the users provide to the RJMS on the resources their jobs need for allocation and
running, one solution may be to use the RJMS submission data to predict the
power consumption of the submitted jobs before scheduling, as already proposed
by [2]. Many studies have been carried out on job power consumption estimations
[17,18], however these have often made use of application type data. Application
type data is not generally available due to confidentiality issues and can also be
untrustworthy, because users may falsify data (e.g. by renaming the executable
file) to take advantage of the scheduling policy, for power-aware scheduling.

A particularly useful functionality would be to use only the RJMS submis-
sions data to predict the power consumption of a job. The power consumption
of the whole computer center can then easily be monitored.

1.2 Related Work

The use of RJMS data in this type of problem has already been investigated;
using application types [3] or symbol information [20] to make predictions. In
these works, the data is not restricted to submission data.

Online model to forecast the elapsed time of the job using only the data
given at submission and the current user’s usage is proposed by [7] so that the
RJMS can use backfilling more efficiently [13]. This estimation is designed for
backfilling and may not be good for power-aware scheduling. An estimate for
memory usage and run time using only submission data has been proposed [19].
Although these papers did not estimate power consumption, the used inputs
suggest that user information is needed to provide a practical estimate when
application types are not available.

Except in a few cases, the instantaneous power consumption of a user and
the whole computer center can be predicted with workload information as the
number of nodes, components used by the user’s jobs and runtime [16]. In our
case, the time evolution of power consumption within a job is not available in
the log files. In a further study [17], submission data to predict job duration,
and not power consumption, are used with the executable name as input data.

1.3 Contributions

The main contributions presented in this paper are first an instance-based model
to predict average power consumption of a job per node using only the data
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submitted to the SLURM RJMS. An online model is then proposed, easy to use
and to maintain in production while a weighted model is introduced to predict
the global power consumption of all jobs.

Moreover this work shows how it is possible to build an efficient model to
forecast the power consumption based on the exploitation of a historical log
database from the SLURM RJMS data collected from the industrial computer
center COBALT that is only composed of user inputs of jobs and associated
energy consumption measures.

Submitted data appears to be sufficient to provide a good estimate of job
power consumption for the RJMS. This can be used in power-aware scheduling
with our generic model because job submission is redundant. This model may be
used in other industrial HPC facilities for power-aware scheduling because it uses
only the data that is necessary for scheduling and because it is easy to maintain,
but further tests must be made using data from other computing centers.

The paper is organized as follows: we first extract and pre-process log data
from SLURM RJMS [21] and we introduce an instance-based model to process
the submitted data as categorical inputs. The model is then adapted to remove
biases and to handle streamed data. The final section presents the results.

2 Extracted Data and Preprocessing

2.1 The COBALT Supercomputer and The SLURM RJMS

The data used for this application are collected from the COBALT1 supercom-
puter, more precisely, from its main partition which is composed of 1422 nodes
ATOS-BULL with Intel Xeon E5-2680V4 2.4 GHZ processors that have 2 CPUs
per node and 14 cores per CPU. The Thermal Design Power of each CPU is
equal to 120 W.

The energy accounting and control mechanisms are implemented within the
open-source SLURM [21] Resource and Job Management System (RJMS) [8].
The data are recorded from accounting per node based on the IMPI measuring
interfaces [8]. IMPI collects data on the consumed power from all the components
(e.g. CPU, memory, I/O, ...) of the node, temporally aggregates it and returns
the consumed energy during an elapsed time to SLURM. As it is impossible to
differentiate between jobs running on the same node, so it was decided to exclude
jobs that did not have exclusivity on a node.

The collected dataset is the resulting logs of SLURM submission data of
12476 jobs run on the supercomputer over 3 months at the beginning of 2017
and their respective consumed energy. The jobs that do not have exclusive usage
of a node or for which the consumed energy is null are filtered out.

2.2 From Raw Data to Relevant Features

There are two potential outputs to predict: the elapsed time and the total con-
sumed energy which are both available once the job is finished. For various
1 https://www.top500.org/system/178806.

https://www.top500.org/system/178806
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reasons (e.g. failure of jobs or sensors), null value can be sometimes returned
for energy consumption. Only non-zero values of energy consumption are here
considered.

Three groups of information provided to SLURM may be used to predict the
output (a summary is provided in Table 1)

1. Information on the user:

User Identifier (or UID) is a number identifying the user that submits
the job. 200 separate UIDs were observed over the 3 month period.

Group Identifier (or GID) characterizes the users that belong to the same
company or community sharing the same group. This number allows the
inclusion of an a priori on what type of job the user runs. 30 unique GIDs
were observed over the selected period.

2. Type of resources required by the job:
Quality of Service (QoS) sets the maximum timelimit, and discriminates

between test and production jobs.
Timelimit can be set by the user to benefit from backfilling. This is a con-

tinuous system variable, but only 520 distinct values were used over the
3 month period (430 by the same user), showing that users often reuse
the same value. Hence, we chose to discretize this variable by taking only
the number of hours that are needed (c.f. Table 1).

3. Computing power quantities required by a job:
Number of tasks in parallel is defined by SLURM with option -n (e.g.

the number of MPI processes if MPI is used)
Number of cores per task is defined by SLURM with option -c and is

used for threading models or if an MPI job needs more memory than is
available per core. This information is combined with the number of tasks
to form the number of nodes required and is not stored.

Number of nodes: SLURM combines the number of tasks and the number
of cores per task to define the number of nodes needed but the user may
specifying this directly.

SLURM logs may also be useful for prediction:

Date of submission of the job. This cannot be used directly as input since no
future job will have the same date. However, some features can be computed
based on the time of day the submission was made (c.f. Table 1).

Final number of nodes that the SLURM allocated for the job. This is the
same as the number of nodes required in our data.

Start date of the job can differ from the submission date if the job has to wait
to be run, but it is set by SLURM and not the user, so it is not used. The
same holds for the end date.

Executable name could be used in some cases to identify the type of applica-
tion the job is running. However, it can be irrelevant (‘python’ or ‘a.out’ are
extreme examples) and users may take advantage to manipulate SLURM if
it is used to define scheduling policy. Hence, it was decided to ignore this in
our model.
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Table 1 summarizes the model’s inputs and the potential outputs of interest.
Although the number of cores per task is unavailable as it is not memorized
by SLURM, it is an interesting value. The average number of tasks per node
(tasks/node in Table 1) can be computed as an equivalent quantity. Redundant
features, such as the required number of nodes that is given by the SLURM
RJMS but is almost always equal to the final number of nodes, are removed.

Table 1. Synthesis of the relevant handcrafted input features and outputs of SLURM
for the studied model.

Feature Meaning Comment

Potential raw inputs Information before allocation

UID User IDentifier Anonymized and unique identifier

GID Group IDentifier Project membership identifier

QoS Quality of Service Indicates if job is in
test/production

#nodes Number of nodes allocated Redundant with requested number

#tasks Number of tasks in parallel E.g. number of MPI processes

submit Date of submission by the user Cannot be used directly

timelim Time limit before a job is killed Cannot be used directly

Computed features Knowledge incorporation

tasks/node Number of tasks per node Manually created features

submit h Hour of submission in the day Relevant information from submit

timelim h Limit duration in hours Relevant information from timelim

Outputs Given after the job is finished

elapsed Time elapsed True duration of the job (wall time)

energy Total consumed energy by the
job

Aggregate temporally and by nodes

Target Model output

meanpow Average power consumption per
node

Computed as Eq. (1)

2.3 Target and Problem Formalization

The elapsed time and the power consumption are the two unknown values needed
before the job runs to improve the management of power consumption by the
RJMS.

The elapsed time inference which has been a subject of interest in several
papers [7,13,17] improves the backfilling of the scheduling policy so that resource
usage is maximal at any time.

The energy usage value returned by SLURM is the total consumed energy
used by all the nodes for the entire job duration. The energy consumption
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increases by definition if the elapsed time increases or if the number of nodes
that a job uses increases. The total energy grows approximately linearly with the
number of nodes and elapsed time. However, this assumption has some limita-
tions, as it implicitly means that the power consumption remains constant when
the job is running and each node uses the same amount of resources over time.
Although this assumption is strong, it is not far from reality for the majority of
jobs, as shown by [1], and it can be removed only with time-evolving data inside
jobs that is not available.

If the number of nodes and elapsed time are not provided, the meaningful
consumption statistic able to be predicted given the information collected by
SLURM is the average power per node. The average power per node, denoted
by meanpow, is defined and computed as:

meanpow =
energy

elapsed × #nodes
(1)

Once a model returns the average power per node, the job’s power consump-
tion can be computed by multiplying it by the number of nodes and used in a
monitoring policy as the estimation P̃comp for budget control [5] or powercap-
ping. If the elapsed time is given (by other models like [7]), the consumed energy
can also be predicted under the linearity assumption.

Most of the previously proposed methods use standard machine learning
models from the SciKit-Learn python library [14], such as decision tree, random
forest for [3] or SVR for [16]. Those models provide interesting results, but all of
these rely on several parameters known to be difficult to tune and they assume
regularity in the input space that may not exist in our case. Our first motivation
and our contribution are to propose an alternative model that requires fewer
assumptions and that works at the same time efficiently.

3 Instance Based Regression Model

3.1 Inputs as Categorical Data

Using all the available data, Fig. 1 shows four empirical distributions of the
approximated average power per node for jobs with the same number of cores
per task. We observe that the distributions are well separated with respect to the
power. It shows that the number of cores per task is already an efficient criterion
to estimate average power per node for certain jobs. This is particularly the case
for the most power consuming jobs (reaching 300 W/nodes), which most likely
use one core for each task, and those using 7 cores per task, which mainly use
half of the full power. This is in fact expected as the number of cores assigned
to the same tasks generally depends on the threading model of the application,
which implies a different power consumption. The Gaussian like distributions
contain interesting and useful information. Hence we infer that a low complexity
model may be useful for modeling. Combined with other inputs, such as UIDs,
we expect a good discrimination of power usage for any submitted job can be
made based on a few internal parameters.
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Fig. 1. Distributions of average power per node. Each histogram is computed for jobs
using the same number of tasks by node. Full MPI jobs use 28 tasks by node.

In our application, the input features are either categorical or numerical, for
example:

– The metadata related to the chosen QoS, the user and group identifiers (UID,
GID) are categorical and thus their values (numerical or not) cannot be
ordered.

– Other features are numerical and describe two types of information; discrete
(the number of nodes or tasks) or continuous related to date or time (submit,
start, end date of the job, duration and timelimit).

However, the discrete numerical features (number of nodes, tasks, or their
ratio) may also be considered as categorical variables. For example, an applica-
tion’s performance depends on the number of cores and is sometimes optimal
when the number of cores verifies arithmetic properties, e.g. LULESH 2.0 should
be used with a number of MPI processes that is a perfect cube [11]. An applica-
tion running with 27 = 33 cores is likely to be different to a plausible OpenMP
application using 28 cores (28 is the number of cores on a COBALT’s node).
Full MPI jobs use one task for each core while full OpenMP jobs use one task
for the whole node. It shows that the threading model imposes the number of
tasks per node.

It then seems more relevant to consider the number of nodes or tasks as a
class of job or a category. Only 55 unique values were observed for requested
nodes in the data when the range of possibilities is theoretically �1000, which
confirms the discrete and categorical behavior of the number of nodes or tasks.
Although time related data is continuous by nature, we choose to discretize it
at an hour level to have categories.

In the end, we transform all available inputs as categorical. We then propose
a data-model to predict the average power consumption per node (meanpow) of
any job, using only categorical inputs.
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3.2 An Input-Conditioning Model

Categorical data is generally hard to handle in machine learning because all
possible combinations of input values must be considered for optimization and
this grows exponentially with the number of inputs. However, though a large
number of combinations are possible, only a few are observed in our dataset.
Submissions may be redundant and this is a motivation to use an instance-based
regression model.

Algorithm 1. instance-based model Training
instance-based model Training

Require: FeatSelected, Estimator, trainset
V alues ← Unique(FeatSelected(trainset)) � FeatSelected’s values in trainset
for all val ∈ V alues do � Group by jobs’ value of FeatSelected

Jval ← ∅
for j ∈ trainset do � Jval = Jobs where FeatSelected match val

if FeatSelected({j}) = val then
Jval = Jval ∪ {j}

end if
end for
OutputDict(val) ← Estimator(Jval) � Estimate output value for val input

end for
return OutputDict

Algorithm 2. instance-based model Prediction
instance-based model Prediction

Require: FeatSelected, OutputDict, job
return OutputDict(FeatSelected({job})) � OutputDict for FeatSelected of job

An instance-based model computes a prediction by searching comparable
instances in a historical training set. The simplest case of instance-based learning
is Rote-Learning [15] as the nearest neighbor approach with a trivial distance
[4]. The prediction for a given job is an estimator computed on the subset of the
training instances that share some inputs as already proposed in [17].

Let J denotes our job training dataset. Each job j ∈ J is a combination of
observed values for the features described in Table 1. Rote-Learning is a super-
vised problem for data as (Xj , Yj)j∈J . Xj is the vector containing selected input
features (i.e. a subset of the submission data as seen by SLURM) of job j used
to predict Yj . Xj is referred as the “job profile”. Yj is the target output of job
j computed with any available features. In our case, it is the average power per
node called meanpow as defined by (1). This is a regression task of Yj given Xj

since Yj is real valued.
Common regression models make assumptions regarding the behavior of Y

given X through a linear hypothesis or a kernel method like SVR in SciKit-Learn
[14] and assume implicitly that X is either a continuous or a binary variable. In
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our case X is discrete and these models can be used consistently with “dummy
indicators” for each possible modality of a categorical variable. However, the
input space dimension grows at the rate of the number of unique values for
categories, which makes these models impractical.

On the contrary, the Rote-Learning regression model computes an estimator
of the target for the jobs in the training set that have the same job profile as
described in the pseudo-code 1 for training and 2 for prediction. We introduce
two functions to tune how the predictions are computed. FeatSelected() is a
function that extracts job profiles (Xj)j∈J that are the values from a fixed
subset of inputs from job set J . Estimator() is a function that takes a list of
jobs with the same profile Xj and computes a chosen estimator as prediction.
After training, we return OutputDict() as a mapping or dictionary that returns
the prediction of any job j having the profile Xj extracted with FeatSelected().
When the job has a profile Xj that is not found in the training set, a prediction
for a subset of the profile Xj can be made by another Rote-Learner to handle
this case or a default value can be returned.

It is well-known that the Rote-Learner is the best unbiased estimator as
discussed by [12]. This means that if no prior knowledge is incorporated into
another model, the Rote-learner has a smaller loss. Despite this strength, the
Rote-learner is rarely used in machine learning because of memory issues and for
statistical reasons: the number of samples for each combination of inputs must
be sufficiently large and this is rarely the case.

In our case, the number of unique observed inputs is limited in our dataset
because the number of samples for a combination of inputs is large enough, hence
there are no memory issues. Training time is then short because it is basically
the time taken to compute the Estimator() multiplied by the number of unique
job profiles in the training set.

In the sequel, we use the arithmetic mean of average power per node as
Estimator(). This minimizes the Root Mean Square Error (RMSE) for average
power per node, which is then the loss function used to evaluate the possible
models. In our framework, Estimator() is defined as:

OutputDict(val) = Estimator(Jval) =
1

cardJval

∑

j∈Jval

energyj

elapsedj × #nodesj

with Jval = {j ∈ J |FeatSelected({j}) = Xj = val} for the job profile val.

3.3 Variable Selection

The number of internal parameters that the Rote-Learner has to learn dur-
ing training is the number of unique job profiles in the training dataset. For
a fixed training dataset, this number depends of the choice of subset of inputs
that defines the job profile. If this number increases, the model complexity also
increases. The model complexity is a statistical concept that quantifies the abil-
ity of the model to fit complex phenomena, even in the case of simple noise.
But a low complexity model is able to generalize for new data. For this reason,
complexity and then the job profile FeatSelected() definition must be carefully
chosen.
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In our application there are less than 10 features, so the number of possible
input feature combinations needed to define FeatSelected() is quite low, and we
can exhaustively test all the features subsets one by one and retain only the best
one. In this work, a cross-validation procedure is used to find the best inputs:
we split our data into two parts, the training set is the first two months of data
and the test set is the last month.

This procedure allows the identification of SLURM information pieces which
are meaningful. However the computations can be time consuming. Once we
empirically find the best inputs, we use only these for the following models as
job profiles without repeating the process of finding the most relevant inputs.
We discuss the performance results in the experimental part of Sect. 5.

At its best, the resulting model predicts the average power consumption per
node of any job. Nevertheless, this objective is not monitoring the global power
consumption. Certain jobs matter more than others and they are presented one
by one in practice with no training time, which motivates the improvements of
the following section.

4 Global Consumption Practical Estimation

4.1 Weighted Estimator for Global Power Estimation

In practice, jobs that run for the longest on many nodes contribute the most
to the global power consumption of a computer center. Moreover, we observe a
correlation between the duration of the jobs and the average power per node. The
scatter plot in Fig. 2 shows that jobs running for less than one minute consumed
less power than the others. A possible reason is that the jobs are first setting up
parallelism and reading data from disks. This phase is not generally compressible
and does not consume significant amounts of power. If a job is short (test, debug
job or crashed), perhaps less than one minute, this phase becomes non-negligible
and may then lower the average power consumption, which explains the observed
bias.

However, each job has the same contribution to the mean estimate used in
the previous section. Short jobs disproportionately lower the mean estimate that
is defined in Sect. 3.2, despite their limited contribution to the global consump-
tion. This is why jobs should be weighted by their total consumed node-time
(number of nodes multiplied by elapsed time) when computing the mean for
global consumption estimation. One method is to sum the total consumed ener-
gies then divide by the sum of their total node-time instead of dividing consumed
energies individually then taking the mean. More formally, Estimator() must
be chosen as:

Estimator(J ) =

∑
j∈J energyj∑

j∈J elapsedj × #nodesj

(2)
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Fig. 2. Scatter plot of jobs less than two minutes long, short jobs consume less power.

4.2 Online Computations

Previous section has presented a model which computes offline the estimation
of the arithmetic mean: training and prediction are two distinct and successive
steps. Once training is done, the model is fixed and used to predict the power
consumption of the job.

In the case of job scheduling, data is presented to SLURM as a stream of logs
containing information on submitted jobs and the previous two step approach
has a major flaw. A model used for prediction does not continue to learn: for a
job’s profile that was not present in the training data, it can only return a default
value at best every time it appears. The whole model can be regularly retrained
but it is then necessary to memorize all the recent data seen by SLURM in
prevision of the next training round. This approach has other drawbacks: if the
rounds are too frequent, a training set may be too small and if they are too rare,
a lot of data has to be memorized and the prediction may be worse before the
rounds.

Thankfully, the arithmetic mean used as Estimator() can be straightforward
to compute online and lots of approaches exist in the literature [10].

If OutputDict(Xi)m is the mean estimator at the (m + 1)th occurrence of a
job with inputs Xi and average power per node Yi, it can be updated indepen-
dently once the job is finished as OutputDict(Xi)m+1 = m

m+1OutputDict(Xi)m+
1

m+1Yi. The counter m and current value OutputDict(Xi)m only should be main-
tained to compute the next value when a job ends. This is called a cumulative
moving average or CUMSUM [10]. This is referred to as an online model because
the model is continuously training itself, and a training round is not required.

However, this CUMSUM model gives equal weight to old and recent obser-
vations of a job profile Xi, and thus the expected job average power per node is
expected to always be the same. This is not always true: a group of users may
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suddenly change the applications they use which may impact the power con-
sumption. A good way to account for such a trend-shift is to compute a moving
average defined as a mean of recent data within a time-window [10]. Once again,
memorization of recent data is required. However, we need to set the number of
recent observations used to compute the moving average, this may not be easy.

An Exponentially Weighted Moving Average (EWMA) introduced in [9] and
[10] for time series analysis is an nice way to compute a weighted moving average
without memorizing any recent data. This method weights recent data more
heavily than old data according to an exponential decay and then computes the
mean. The exponential decay allows the moving average value to be updated
with a simple formula:

OutputDict(Xi)m+1 = αOutputDict(Xi)m + (1 − α)Yi (3)

where α ∈ [0, 1] is a hyperparameter to be chosen (values approaching 0 indicate
lesser influence from the past). A custom weighting is required to remove under-
estimation of the computed estimator for global power consumption estimation.

4.3 Exponential Smoothing for Weighted and Streamed Update

As stated before, EWMA has the big advantage of memoryless updating but
it must be weighted in the update formula (3) for global power consumption
estimation. Previous online estimators were initially designed and used for time
series analysis [9,10]. To weight them consistently, as in Sect. 4.1 and keep them
online, we formally define their associated time series and modify it slightly.

At any time, the value of OutputDict(Xi) is the last estimation of meanpow
for a job with the profile Xi since a job with profile Xi ended. The value of the
estimate OutputDict(Xi) changes only when a job with profile Xi ends. As it is
an evolving mean, it behaves like a trend estimation of the series of meanpow of
jobs with profile Xi ordered by end date. Each job contributes in the same way
to the future estimation. The contribution to the estimation of a job with profile
Xi depends only on which rank it ends. The job’s contribution to the online
estimation does not depend on its node-time contrary to Sect. 4.1. An example
of the series and its estimation by EMWA are given in Fig. 3. We observe that
the EWMA is lowered by the low node-time jobs with low meanpow that have
the same weight the highest node-time jobs because the series is agnostic to this
quantity.

We propose a novel way to account for the needed weighting of the job
without changing much our online estimation. The idea is to generalize and
compute trend estimate on another series that is irregular. It is the same previous
series of the average power per node of jobs with given profile Xi ordered by
end date but the intervals between two successive finished jobs is the node-time
of the first job, as if a job must wait the node-time of the last before starting.
The resulting estimator is a continuous smoothing of this irregular time series
parametrized by a node-time constant and can be used as before for online
estimation but jobs with lowest node-time will not change the trend estimation as
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Fig. 3. Up: Series of the average power per node of 200 jobs with the same profile and
its estimation by classical and reweight EWMA. Bottom: The associated irregular
series used to weight the jobs according to node-time and the same EMWA estimations
series. EWMA hyperparameters are α = exp(log(0.5)/20) (a job contribution is halved
after the 20 next ended jobs) in regular case and τ = 4000 node-hour in irregular case.

much as the ones with highest node-time. The adaptation of CUMSUM replaces
m by the sum of the previous jobs node-time with inputs Xi, and in the moving
average case the recent job are weighted by their node-time for example. The
irregular series deduced from the previous example are given in Fig. 3. The short
jobs have almost no influence on the current re-weighted estimate even if their
meanpow value are extreme. On the contrary, it is clear that the classical EWMA
strongly underestimate the irregular series meanpow because of them.

We propose to apply this adaptation to EWMA so that our estimation is
memoryless and weighted correctly. We compute directly the weighted estimator
without computing the irregular series by slightly modifying the previous esti-
mator formula (3) to take into account of the node-time of the current ending
job. EWMA is generalized as exponential smoothing and computed for irregular
time series in [22] or [6], the update formula uses variable α to account for the
irregular time interval thanks to the memoryless property of exponential:
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EMWA(Y )tn = e−Δtn/τEWMA(Y )tn−1 + (1 − e−Δtn/τ )Yn−1 (4)

tn is the time of the nth sample, Δtn = tn − tn−1 the length of the n−1 interval
between samples, and τ a chosen time constant of exponential decay.

Applied to the trend estimation of the irregular time series, (4) formula shows
that α in (3) must be replaced by e−Δti/τ to weight the job i according to its
node-time Δti. τ must be in the order of expected node-time value for several
meaningful jobs. Due to (4), it is not necessary to compute and maintain the
irregular time series, (4) is used when a job ends and the current estimation
OutputDict(Xi) is updated by computing node-time Δti = elapsedi × #nodesi

and setting α = e−Δti/τ in (3). Our method benefits from both the advantages
of EWMA and the weighting correction for global power estimation. Benefits of
our approach are discussed in the last experiment of the next section.

5 Numerical Results and Discussion

5.1 Offline Instance-Based Model

The proceeding described in Sect. 3.3 is run using the instance-based model
offline introduced in Sect. 3.2 to determine the best job profile Xi. For each
possible job profile, the model is trained using a training set containing the 8000
jobs of the first two months. Then the RMSE is computed for a testing set of
4000 future jobs from the next month.

It appears that a significant part of the jobs in the testing set show a combi-
nation of inputs that were never observed during training. In this case the model
does not return an output value if the job profile is not seen previously in the
training set. For a fair evaluation of any choice of job profile, we need to avoid
handling the case where a pretrained model does not return an output because
the profile is not known by the model. For that, we first extract a small test
subset from the initial testing set composed of 1022 jobs for which their profiles
are present in the training set. This is so that any model returns an output value
no matter what job profile it uses.

We illustrate the bias-variance trade-off by showing the best choice of job
profile that has a given number length with the lowest score (here the RMSE)
and the number of unique job profile values observed in training set is shown
as “diversity”. Diversity is a simple way to approximate the complexity of the
model to highlight bias-variance trade-off. We present the results for the small
testing set in the first column of Table 2. In the special case where the job profile
has zero inputs, the model always returns the mean of the average power per
node of all jobs in the training set.

The best prediction requires features that identify the user, because users
tend to submit the same jobs. UID is first chosen but the number of tasks per
node improves power estimation and is more general when combined with GID
instead of UID. Indeed, diversity is lower when the model uses GID instead
of UID, and GID still indicates well enough that the jobs may be similar as
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Table 2. Variable selection by cross-validation and results. The score is the RMSE
(lower is better). Diversity is the number of memorized instances after training.

Results on small test Results on large test

# Best combination Score Diversity Best combination Score

0 (returns the mean) 78.04 1 (returns the mean) 89.87

1 UID 46.17 �150 UID 44.85

2 GID, task/node 43.98 48 GID, task/node 43.31

3 GID, task/node, timelim h 43.63 217 GID, task/node, QoS 43.83

4 Add QoS 43.78 232 Add timelim h 44.16

5 GID, QoS, #nodes, #tasks 45.09 245 Add UID (all features) 45.49

6 Add timelim h 45.53 475 (no more features) –

7 Add UID (All but submit h) 47.55 578 (no more features) –

8 All features 52.84 1981 (no more features) –

part of the same project given they have the same number of tasks per node.
Surprisingly, adding the hour part of timelimit improves the results although
it drastically increases the diversity. However, adding more inputs to the job
profiles worsens the results, and the effect of over-fitting is stronger as diversity
increases. In particular, the number of nodes and tasks by themselves seem to
be not relevant for prediction of the power consumption as these parameters are
always selected together. QoS does not seem to be informative on power usage.
The hour of submission is the last selected feature showing that the type of job
is the same no matter what the hour in the day is, which can be explained by
auto-submissions.

The number of nodes, tasks and the submitted hour can have a large range
of unique values that substantially increase the diversity which means they tend
to produce over-fitting. In our experiment, this is observed when the result does
not improve if these values are accounted for. But the reduced testing set is
constructed only with jobs that have a combination of all these inputs values in
the training set. To get more robust results about other choices of input features
we reduce the space of possible job profiles which increases the number of jobs
in the testing set with a profile in the training set. As these parameters seem
not to be relevant for prediction, they are removed, and a larger testing set of
2216 jobs is constructed with the combination of inputs without these omitted
values. The results are given in Table 2 in the second column.

The RMSEs are of the same order of magnitude as they do not depend on the
size of the dataset. The same behavior in variable selection is observed, except
that timelimit is no longer relevant, even selected after the QoS (and we can
only choose up to 5 features as the others are removed). This difference may be
explained by the strong selection of which jobs are included in the small testing
set slightly favoring over-fitting.
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From these observations we conclude that the GID and the ratio of number
of tasks and nodes are the best choice of features to predict the average power
consumption per node with any model for data on COBALT. The resulting
model of this choice of features will be called IBmodel for Instance-Based model
in the next sections.

5.2 Comparison with the Offline IBmodel

We compare the IBmodel with models currently in use and proposed by [3] and
[19]. We focus on models based on trees, Decision Tree Regression (DTR) and
Random Forest (RF), that are well-known to handle better inputs from categor-
ical features. We also add the Gradient Boosted Regression Trees (GBRT). For
these last two models, we increment the number of tree estimators and retain
only the best results. We also compare the IBmodel with results from Support
Vector Regression (SVR), as used by [17], choosing the best SVR parameters
by manual tuning. The SciKit-Learn library [14] is used to run and train the
models.

Table 3. Comparison with other models. Score is RMSE (lower is better). Score (all):
result with all the input features for the large test set. Score (selected): results with
input features being GID and task/node. As RF training is not deterministic, it is run
100 times, then the mean score and standard deviation are given.

SciKit models Tested parameters Score (all) Score (selected)

DTR Pure leaves, MSE criterion 48.80 43.31

RF Pure leaves, 0 to 50 trees 45.79 (0.15) 43.14 (0.07)

GBRT max-depth 5, 0 to 300 trees 44.40 43.10

SVR rbf kernel, C = 1000, γ = 0.01 53.58 45.79

IBmodel Xi = (GIDi, task/nodei) 43.31 43.31

At this stage, the IBmodel is not designed to return an output in case of
unknown job profile. So our tests are run on the large testing set of 2216 jobs
previously selected and we drop the same features (number of nodes, tasks and
the submitted hour) to avoid unknown job profile during testing. In a first test
run, all the features used to obtain the second columns of Table 2 are the model
inputs. In a second test run, the chosen features are only GIDs and task/node,
which are the best choices for average power per node prediction found with
the IBmodel (hence it keeps same score). We point out to the reader that this
favours competing models, especially the ones based on trees for which only the
best is retained.

Table 3 presents the results with a range of parameters. It is observed that
the IBmodel outperforms all other models when the input space is large. This
underlines that there may be no variable selection in the other models. However,
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RF and GBRT outperform when we explicitly force the selection of the relevant
inputs we have computed previously for all the models. DTR also provides the
same results as the IBmodel as it becomes similar to an instance-based model
when the dimension is low and the decision tree’s leaves may be pure (they can
have only one sample in training).

The interpretability of the instance-based models, in particular the selection
of explicit features, is a strong advantage as this improves also the other models.
Although RF and GBRT are the best performers once the most effective inputs
for prediction are known, we do not think they are the most suitable for our
application. First, the IBmodel can be updated online whereas RF and GBRT
must be completely and regularly retrained in order to handle a job’s stream,
second, the IBmodel can weight the observations of average power per node of
jobs with minimal modification, and finally, it is not easy to explain how RF
and GBRT built their predictions.

5.3 Online IBmodel

For practical monitoring of global power consumption through the RJMS it is
necessary to provide online and instance weighted models, as already presented
in Sect. 4. To demonstrate this claim we compare predictions of future global
power consumption available at the submission date of a job by the IBmodel
with and without these two improvements. We first construct a reference target
with an oracle estimation over time. At any time t, the oracle value is the sum
over all running jobs at time t of the jobs’ average power consumption. The oracle
value is not the true global power consumption as a job’s consumption can vary
when running, but it is the best approximation following the hypothesis made
in [5] and Sect. 2.3 (consumption is constant over the job’s entire duration).

With the data from the same period of two months used in the previous
section, the IBmodel is trained with only improved weighting (2), only online
updating (3) with α = exp(log(0.5)/20) (job’s contribution is divided by 2 after
the 20 next ended jobs with the same profile) and also both (4) with τ = 4000
node hours, then the results are compared to the oracle value of the test set. To
compute the estimated value of global power consumption available to SLURM,
the list of jobs is converted to a list of events ordered by their time t of three
types:

– Submission event: The job j is submitted at time t, its average power
consumption per node is estimated with the models and buffered for a future
event. If models cannot return an estimation (unknown input values), we
return the default value 292.89 Watts per node as it is the global average
power per node of all the jobs we have.

– Starting event: The job j starts at time t, and its average power consump-
tion per node that is estimated at submission is multiplied by the number
of nodes to get its power consumption, which is added to the current global
power consumption (same for oracle but with true average power per node).
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– Ending event: Job j ends at time t, then we update the online models and
we remove the job’s power consumption estimation from the current global
power consumption estimation (same with oracle for the latter).

Fig. 4. Up: Evolution of global electrical consumption in Watts over the test period for
the offline and online, weighted or not, models. The black curve is the oracle estimation
i.e. the evolution’s estimate if meanpow of each job is known in advance. Bottom:
Difference between values predicted by the three models and the oracle

The upper plot of Fig. 4 shows the global power estimation results over time,
and the lower plot shows the relative error of the different models compared to
the oracle. The online IBmodel (3) without weight adaptation of the jobs under-
estimates the global consumption given by the oracle by 5% to 10%. The errors
of the weighted offline IBmodel (2) peak many times. This suggests that some
jobs have profiles that the model did not see enough during training and that
they impact the estimation randomly in high proportions. The model needs to be
retrained using more recent historical data to improve its estimation, although
the spikes will reappear as soon as training stops.

On the contrary, the online and weighted model (4) gives a much more con-
sistent estimation, as the distribution of the relative differences with the oracle
are more symmetrical with respect to 0 due to weighting adaptation. The online
estimation seems to have stabilized the errors. The peaks in the error patterns
may be due to bad default values for new unknown inputs, but as the model
is still learning, it only sets a meaningful value for those inputs once a job has
ended. Thus, the error remains low even after some time. The absolute deviation
of the predictions compared to the oracle is 99% of the time under 12.7 kW, with
a mean of 2.40 kW. The relative deviation for 99% of the time is under 10.4%
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with a mean of 1.68%. The relative errors approach the measurement precision
of the IMPI interface that was used to collect the data.

6 Conclusion

This work shows that it is possible to compute an accurate estimation of the
average consumption per node of the submitted jobs using the redundancy of
the information provided to SLURM by users. Predictions are computed by an
instance-based model which brings several advantages. It is interpretable and
shows that jobs on the COBALT computing center have a power consumption
that is well predicted by the GID and the number of tasks per node. We show that
instance re-weighting and online computations implemented in the IBmodel are
necessary to provide a prediction of the global power consumption at submission
time that is not underestimated and to stabilize the relative error. The proposed
model has a relative error that is of the order of the relative measurement error of
the data, which indicates that the IBmodel’s performance is already satisfactory.

The next step of this work is to evaluate the capability of the instances model
for other computing centers with different behavior of users. This work should
be extended by studying the instantaneous power consumption of jobs with
time evolving data. Accounting for instantaneous power consumption will allow
regulation of each job with a power cap and will enable jobs to be redistributed
with more precision.
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Abstract. To reduce the training time of large-scale Deep Neural Net-
works (DNNs), Deep Learning (DL) scientists have started to explore
parallelization strategies like data-parallelism, model-parallelism, and
hybrid-parallelism. While data-parallelism has been extensively stud-
ied and developed, several problems exist in realizing model-parallelism
and hybrid-parallelism efficiently. Four major problems we focus on
are: 1) defining a notion of a distributed model across processes, 2)
implementing forward/back-propagation across process boundaries that
requires explicit communication, 3) obtaining parallel speedup on an
inherently sequential task, and 4) achieving scalability without losing out
on a model’s accuracy. To address these problems, we create HyPar-
Flow—a model-size and model-type agnostic, scalable, practical, and
user-transparent system for hybrid-parallel training by exploiting MPI,
Keras, and TensorFlow. HyPar-Flow provides a single API that can be
used to perform data, model, and hybrid parallel training of any Keras
model at scale. We create an internal distributed representation of the
user-provided Keras model, utilize TF’s Eager execution features for dis-
tributed forward/back-propagation across processes, exploit pipelining
to improve performance and leverage efficient MPI primitives for scal-
able communication. Between model partitions, we use send and recv
to exchange layer-data/partial-errors while allreduce is used to accu-
mulate/average gradients across model replicas. Beyond the design and
implementation of HyPar-Flow, we also provide comprehensive correct-
ness and performance results on three state-of-the-art HPC systems
including TACC Frontera (#5 on Top500.org). For ResNet-1001, an
ultra-deep model, HyPar-Flow provides: 1) Up to 1.6× speedup over
Horovod-based data-parallel training, 2) 110× speedup over single-node
on 128 Stampede2 nodes, and 3) 481× speedup over single-node on 512
Frontera nodes.
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1 Introduction and Motivation

Recent advances in Machine/Deep Learning (ML/DL) have triggered key suc-
cess stories in many application domains like Computer Vision, Speech Compre-
hension and Recognition, and Natural Language Processing. Large-scale Deep
Neural Networks (DNNs) are at the core of these state-of-the-art AI technologies
and have been the primary drivers of this success. However, training DNNs is a
compute-intensive task that can take weeks or months to achieve state-of-the-
art prediction capabilities (accuracy). These requirements have led researchers
to resort to a simple but powerful approach called data-parallelism to achieve
shorter training times. Various research studies [5,10] have addressed perfor-
mance improvements for data-parallel training. As a result, production-grade
ML/DL software like TensorFlow and PyTorch also provide robust support for
data-parallelism.

While data-parallel training offers good performance for models that can
completely reside in the memory of a CPU/GPU, it can not be used for models
larger than the memory available. Larger and deeper models are being built
to increase the accuracy of models even further [1,12]. Figure 1 highlights how
memory consumption due to larger images and DNN depth limits the compute
platforms that can be used for training; e.g. ResNet-1k [12] with the smallest
possible batch-size of one (a single 224 × 224 image) needs 16.8 GB memory and
thus cannot be trained on a 16 GB Pascal GPU. Similarly, ResNet-1k on image
size 720 × 720 needs 153 GB of memory, which makes it out-of-core for most
platforms except CPU systems that have 192 GB memory. These out-of-core
models have triggered the need for model/hybrid parallelism.

Fig. 1. The need for model/hybrid-parallelism
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However, realizing model-parallelism—splitting the model (DNN) into mul-
tiple partitions—is non-trivial and requires the knowledge of best practices
in ML/DL as well as expertise in High Performance Computing (HPC). We
note that model-parallelism and layer-parallelism can be considered equivalent
terms when the smallest partition of a model is a layer [7,15]. Little exists in
the literature about model-parallelism for state-of-the-art DNNs like ResNet(s)
on HPC systems. Combining data and model parallelism, also called hybrid-
parallelism has received even less attention. Realizing model-parallelism and
hybrid-parallelism efficiently is challenging because of four major problems: 1)
defining a distributed model is necessary but difficult because it requires knowl-
edge of the model as well as of the underlying communication library and the
distributed hardware, 2) implementing distributed forward/back-propagation is
needed because partitions of the model now reside in different memory spaces
and will need explicit communication, 3) obtaining parallel speedup on an inher-
ently sequential task; forward pass followed by a backward pass, and 4) achieving
scalability without losing out on a model’s accuracy.

Proposed Approach: To address these four problems, we propose HyPar-Flow:
a scalable, practical, and user-transparent system for hybrid-parallel training on
HPC systems. We offer a simple interface that does not require any model-
definition changes and/or manual partitioning of the model. Users provide four
inputs: 1) A model defined using the Keras API, 2) Number of model partitions,
3) Number of model replicas, and 4) Strategy (data, model, or hybrid). Unlike
existing systems, we design and implement all the cumbersome tasks like splitting
the model into partitions, replicating it across processes, pipelining over batch
partitions, and realizing communication inside HyPar-Flow. This enables the
users to focus on the science of the model instead of system-level problems like
the creation of model partitions and replicas, placement of partitions and replicas
on cores and nodes, and performing communication between them. HyPar-Flow’s
simplicity from a user’s standpoint and its complexity (hidden from the user)
from our implementation’s standpoint is shown in Fig. 2.

Fig. 2. Proposed user-transparent hybrid-parallel training approach (HyPar-Flow)
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1.1 Contributions

From a research and novelty standpoint, our proposed solution is both model-size
as well as model-type agnostic. It is also different compared to all existing sys-
tems because we focus on high-level and abstract APIs like Keras that are used
in practice instead of low-level tensors and matrices, which would be challeng-
ing to use for defining state-of-the-art models with hundreds of layers. HyPar-
Flow’s solution to communication is also novel because it is the first system to
exploit standard Message Passing Interface (MPI) primitives for inter-partition
and inter-replica communication instead of reinventing single-use libraries. To
the best of our knowledge, there are very few studies that focus on hybrid-
parallel training of large DNNs; especially using TensorFlow and Keras in a
user-transparent manner for HPC environments where MPI is a dominant pro-
gramming model. We make the following key contributions in this paper:

– Analyze various model-definition APIs and DL frameworks and highlight why
Keras APIs and custom-built training loops using TensorFlow Eager’s Gra-
dientTape are well suited for realizing user-transparent hybrid-parallelism.

– Propose, design, and implement HyPar-Flow to enable parallel training of
any Keras model (with consecutive as well as non-consecutive layer connec-
tions [7]) on multiple processes under any parallelization <strategy>, i.e.
data, model, and hybrid.

– Thoroughly verify the correctness of the HyPar-Flow framework by training
the models to state-of-the-art published accuracy.

– Evaluate HyPar-Flow’s performance using a variety of models including VGG-
16, ResNet-110, ResNet-1001, and AmoebaNet on three HPC systems

– Report up to 3.1× speedup over sequential training for ResNet-110 and up to
1.6× speedup over data-parallel training for ResNet-1001 on a single node.

– Report 110× speedup over single-node on 128 Stampede2 nodes and 481×
speedup over single-node on 512 Frontera nodes for ResNet-1001.

2 The Design Space for Parallel Training Frameworks

Alex Krizhevsky introduced model-parallelism on GPUs in [15] using a single-
tower design that used data-parallelism in convolutional layers but model-
paralle-lism in fully-connected layers. Simulation-based results about various
parallelization strategies are presented in [9]. The LBANN team presented
model-parallel solutions including support for spatial convolutions split across
nodes in [8]. However, model-parallelism in LBANN is not yet publicly available
so we cannot compare its performance with HyPar-Flow. MXNet-MP [2] also
offers model-parallelism support but no working examples are available at the
time of writing. GPipe [13] enables the training of extremely large models like
AmoebaNet [19] on Google TPUs and accelerators. GPipe is publicly available
but we found no examples and/or documentation to train models like ResNet(s)
with model-parallel support on an HPC system. FlexFlow [14] searches paral-
lelization strategies using simulation algorithms and highlights different dimen-
sions of parallelism in DNNs. FlexFlow uses Legion [6] for communication within
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the node and GASNet across nodes. Unfortunately, FlexFlow only works on
GPUs so we cannot offer a direct comparison. Also, we were unable to configure
FlexFlow for multiple nodes. Mesh-TensorFlow (MTF) [20] is a language for dis-
tributed DL with an emphasis on tensors distributed across a processor mesh.
MTF only works with the older TF APIs (sessions, graphs, etc.). Furthermore,
the level at which MTF distributes work is much lower compared to HyPar-Flow,
i.e., tensors vs. layers. Users of MTF need to re-write their entire model to be
compatible with MTF APIs. Unlike MTF, HyPar-Flow works on the existing
models without requiring any code/model changes. We summarize these related
studies on data, model, and hybrid-parallelism and their associated features in
Table 1. Out-of-core methods like [4,17] take a different approach to deal with
large models, which is not directly comparable to model/hybrid-parallelism. Sev-
eral data-parallelism only studies have been published that offer speedup over
sequential training [3,5,10,18,21]. However, all of these are only limited to mod-
els that can fit in the main memory of the GPU/CPU.

Table 1. Features offered by HyPar-flow compared to existing frameworks

Existing and

proposed studies

Features and supported platforms

User

transparent

Speedup

over

data-parallel

Communicationruntim

Runtimee/library

Publicly

available

MP

support

Compatible

w/Keras

Compatible

w/TF

Eager

AlexNet [15,16] ✕ ✔ CUDA ✕ ✕ ✕

MXNet-MP [2] ✕ Unknown MPI ✔ ✔ ✕

LBANN [8] ✔ ✔ MPI/Aluminum ✕ ✕ ✕

Mesh

TensorFlow [20]

✕ ✔ MPI ✔ ✕ ✕

Gpipe [13] ✕ ✕ gRPC/TF ✔ ✕ Unknown

PipeDream [11] ✕ ✔ ZeroMQ Unknown ✕ ✕

FlexFlow [14] ✔ ✔ Legion/GASNet ✔ ✕ ✕

Proposed

(HyPar-Flow)

✔ ✔ MPI Planned ✔ ✔

3 Background

We provide the necessary background in this section.

DNN Training: A DNN consists of different types of layers such as convolutions
(conv), fully-connected or dense (FC ), pooling, etc. DNNs are usually trained
using a labeled dataset. A full pass over this dataset is called an epoch of training.
Training itself is an iterative process and each iteration happens in two broad
phases: 1) Forward pass over all the layers and 2) Back-propagation of loss (or
error) in the reverse order. The end goal of DNN training is to obtain a model
that has good prediction capabilities (accuracy). To reach the desired/target
accuracy in the fastest possible time, the training process itself needs to be
efficient. In this context, the total training time is a product of two metrics:
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1) the number of epochs required to reach the target accuracy and 2) the time
required for one epoch of training.

Data-Parallelism: In data-parallel training, the complete DNN is replicated
across all processes, but the training dataset is partitioned across the processes.
Since the model replicas on each of the processes train on different partitions of
data, the weights (or parameters) learned are different on each process and thus
need to be synchronized among replicas. In most cases, this is done by averaging
the gradients from all processes. This synchronization is performed by using a
collective communication primitive like allreduce or by using parameter servers.
The synchronization of weights is done at the end of every batch. This is referred
to as synchronous parallel in this paper.

Model and Hybrid-Parallelism: Data-parallelism works for models that can
fit completely inside the memory of a single GPU/CPU. But as model sizes
have grown, model designers have pursued aggressive strategies to make them
fit inside a GPU’s memory, which is a precious resource even on the latest Volta
GPU (32 GB). This problem is less pronounced for CPU-based training as the
amount of CPU memory is significantly higher (192 GB) on the latest generation
CPUs. Nevertheless, some models can not be trained without splitting the model
into partitions; Hence, model-parallelism is a necessity, which also allows the
designers to come up with new models without being restricted to any memory
limits. The entire model is partitioned and each process is responsible only for
part (e.g. a layer or some layers) of the DNN. Model-parallelism can be combined
with data-parallelism as well, which we refer to as hybrid-parallelism.

4 Challenges in Designing Model and Hybrid-Parallelism

We expand on four problems discussed earlier in Sect. 1 and elaborate spe-
cific challenges that need to be addressed for designing a scalable and user-
transparent system like HyPar-Flow.

Challenge-1: Model-Definition APIs and Framework-Specific Features
To develop a practical system like HyPar-Flow, it is essential that we thoroughly
investigate APIs and features of DL frameworks. In this context, the design
analysis of execution models like Eager Execution vs. Graph (or Lazy) Execution
is fundamental. Similarly, analysis of model definition APIs like TensorFlow
Estimators compared to Keras is needed because these will influence the design
choices for developing systems like HyPar-Flow. Furthermore, the granularity of
interfaces needs to be explored. For instance, using tensors to define a model is
very complex compared to using a high-level model API like Keras and ONNX
that follow the layer abstraction. Finally, we need to investigate the performance
behavior of these interfaces and frameworks. Specific to HyPar-Flow, the main
requirement from an API’s perspective is to investigate a mechanism that allows
us to perform user-transparent model partitioning. Unlike other APIs, Keras
seems to provide us this capability via the tf.keras.Model interface.
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Challenge-2: Communication Between Partitions and Replicas
Data-parallelism is easy to implement as no modification is required to the for-
ward pass or the back-propagation of loss (error) in the backward pass. However,
for model-parallelism, we need to investigate methods and framework-specific
functionalities that enable us to implement the forward and backward pass in a
distributed fashion. To realize these, explicit communication is needed between
model partitions. For hybrid-parallelism, even deeper investigation is required
because communication between model replicas and model partitions needs to
be well-coordinated and possibly overlapped. In essence, we need to design a
distributed system, which embeds communication primitives like send, recv, and
allreduce for exchanging partial error terms, gradients, and/or activations during
the forward and backward passes. An additional challenge is to deal with newer
DNNs like ResNet(s) [12] as they have evolved from a linear representation to a
more complex graph with several types of skip connections (shortcuts) like iden-
tity connections, convolution connections, etc. For skip connections, maintaining
dependencies for layers as well as for model-partitions is also required to ensure
deadlock-free communication across processes.

Challenge-3: Applying HPC Techniques to Improve Performance
Even though model-parallelism and hybrid-parallelism look very promising, it is
unclear if they can offer performance comparable to data-parallelism. To achieve
performance, we need to investigate if applying widely-used and important HPC
techniques like 1) efficient placement of processes on CPU cores, 2) pipelin-
ing via batch splitting, and 3) overlap of computation and communication can
be exploited for improving performance of model-parallel and hybrid-parallel
training. Naive model-parallelism will certainly suffer from under-utilization of
resources due to stalls caused by the sequential nature of computation in the
forward and backward passes.

5 HyPar-Flow: Proposed Architecture and Designs

We propose HyPar-Flow as an abstraction between the high-level ML/DL frame-
works like TensorFlow and low-level communication runtimes like MPI as shown
in Fig. 3(a). The HyPar-Flow middleware is directly usable by ML/DL applica-
tions and no changes are needed to the code or the DL framework. The four
major internal components of HyPar-Flow, shown in Fig. 3(b), are 1) Model
Generator, 2) Trainer, 3) Communication Engine (CE), and 4) Load Balancer.
The subsections that follow provide details of design schemes and strategies for
HyPar-Flow and challenges (C1–C3) addressed by each scheme.
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Fig. 3. HyPar-Flow: a middleware for hybrid-parallel training

5.1 Designing Distributed Model Representation (Address C1)

The Model Generator component is responsible for creating an internal represen-
tation of a DNN (e.g. a Keras model) suitable for distributed training (Fig. 2). In
the standard single-process (sequential) case, all trainable variables (or weights)
of a model exist in the address space of a single process, so calling tape.gradients()
on a tf.GradientTape object to get gradients will suffice. However, this is not pos-
sible for model-parallel training as trainable variables (weights) are distributed
among model-partitions. To deal with this, we first create a local model object
on all processes using the tf.keras.model API. Next, we identify the layers in
the model object that are local to the process. Finally, we create dependency
lists that allow us to maintain layer and rank dependencies for each of the local
model’s layers. These three components define our internal distributed repre-
sentation of the model. This information is vital for realizing distributed back-
propagation (discussed next) as well as for other HyPar-Flow components like
the Trainer and the Communication Engine.

5.2 Implementing Distributed Back-Propagation (Address C1,C2)

Having a distributed model representation is crucial. However, it is only the first
step. The biggest challenge for HyPar-Flow and its likes are: “How to train a
model that is distributed across process boundaries?”. We deal with this chal-
lenge inside the Trainer component. First, we analyze how training is performed
on a standard (non-distributed) Keras model. Broadly, there are two ways to
do so: 1) model.fit(..) and 2) model.train on batch(..). Second, we explore how
we can design an API that is very similar to the standard case. To this end,
we expose a single hf.fit(..) interface that takes parallelization strategy as an
argument. The value of the strategy argument can be model, data, or hybrid.
Third, we design a custom training loop for distributed back-propagation for the
model/hybrid parallel case. For data-parallel, it is not needed because the model
is replicated on all processes instead of being distributed across processes.

We show a very simple DNN in Fig. 4 to explain back-propagation and high-
light what needs to be done for realizing a distributed version. In addition to
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Fig. 4, we use Eqs. 1–7 to provide a more detailed explanation. There are three
key data elements in DNN Training: 1) The input X, 2) The predicted output
Y ′, and 3) The actual output (or label) Y . The intermediate output from the
hidden layer is denoted as V . The difference between Y and Y ′ is called error or
loss labeled as L (Eq. 2).

Fig. 4. A neural network with a single hidden layer

Y = ActualOutput, Y ′ = PredictedOutput (1)

L(Loss) = loss function(Y, Y ′) (2)

V (HiddenLayer) = W1(Weight − on − hidden − layer) ∗ X(Input) (3)

Y ′(PredictedOutput) = W2(Weight − on − output − layer) ∗ V (4)

D2 =
∂L

∂W2
=

∂L

∂Y ′ ∗ ∂Y ′

∂W2
(5)

D1 =
∂L

∂W1
= partial error ∗ ∂V

∂W1
(6)

partial error =
∂L

∂Y ′ ∗ ∂Y ′

∂V
(7)

To realize distributed back-propagation, we need 1) partial derivative (D1)
of Loss L with respect to the weight W1, and 2) partial derivative (D2) of Loss
L with respect to the weight W2. The challenge for multi-process case is that
the term called “partial error” shown in Eqs. 6 and 7 can only be calculated
on Partition-2 (Fig. 4) as Y ′ only exists there. To calculate D1, Partition-1
needs this “partial error” term in addition to D1. Because we rely on accessing
gradients using the DL framework’s implementation, this scenario poses a fun-
damental problem. TensorFlow, the candidate framework for this work, does not
provide a way to calculate gradients that are not part of a layer. To implement
this functionality, we introduce the notion of grad layer in HyPar-Flow, which
acts as a pseudo-layer inserted before the actual layer on each model-partition.
We note that TensorFlow’s GradientTape cannot be directly used for this case.
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Grad layers ensure that we can call tape.gradients() on this grad layer to cal-
culate the partial errors during back-propagation. Specifically, a grad layer is
required for each recv operation so that partial error can be calculated for each
preceding partition’s input. A call to tape.gradients() will return a list that con-
tains gradients as well as partial errors. The list is then used to update the model
by calling optimizer.apply gradients().

We note that there is no need to implement distributed back-propagation
for the data-parallel case as each model-replica is independently performing the
Forward and Backward pass. The gradients are only synchronized (averaged) at
the end of the Backward pass (back-propagation) using allreduce to update the
model weights in a single step.

5.3 Realizing Inter-Partition/-Replica Comm. (Address C2,C3)

In Sects. 5.1 and 5.2, we discussed how the distributed model definition is gen-
erated and how back-propagation can be implemented for a model that is dis-
tributed across processes. However, Trainer and Model Generator only provide
an infrastructure for distributed training. The actual communication of various
types of data is realized in HyPar-Flow’s Communication Engine (CE). The CE
is a light-weight abstraction for internal usage and it provides four simple APIs:
1) send, 2) recv, 3) broadcast and 4) allreduce.

HyPar-Flow CE Basic Design: For pure data-parallelism, we only need to
use allreduce. However, for model-parallelism, we also need to use point-to-point
communication between model-partitions. In the forward pass, the send/recv
combination is used to propagate partial predictions from each partition to the
next partition starting at Layer 1. On the other hand, send/recv is used to back-
propagate the loss and partial-errors from one partition to the other starting
at Layer N. Finally, for hybrid-parallelism, we need to introduce allreduce to
accumulate (average) the gradients across model replicas. We note that this is
different from the usage of allreduce in pure data-parallelism because in this case,
the model itself is distributed across different partitions so allreduce cannot be
called directly on all processes. One option is to perform another p2p commu-
nication between model replicas for gradient exchange. The other option is to
exploit the concept of MPI communicators. We choose the latter one because of
its simplicity as well as the fact the MPI vendors have spent considerable efforts
to optimize the allreduce collective for a long time. To realize this, we consider
the same model-partition for all model-replicas to form the Allreduce commu-
nicator. Because we only need to accumulate the gradients local to a partition
across all replicas, allreduce called on this communicator will suffice. Please refer
back to Fig. 2 (Sect. 1) for a graphical illustration of this scheme.

HyPar-Flow CE Advanced Design: The basic CE design described above
works but does not offer good performance. To push the envelope of performance
further, we investigate two HPC optimizations: 1) we explore if the overlap of
computation and communication can be exploited for all three parallelization
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strategies and 2) we investigate if pipelining can help overcome some of the lim-
itations that arise due to the sequential nature of the forward/backward passes.
Finally, we also handle some advanced cases for models with non-consecutive
layer connections (e.g. ResNet(s)), which can lead to deadlocks.

Exploiting Overlap of Computation and Communication: To achieve
near-linear speedups for data-parallelism, the overlap of computation (forward/
backward) and communication (allreduce) has proven to be an excellent choice.
Horovod, a popular data-parallelism middleware, provides this support so we
simply use it inside HyPar-Flow for pure data-parallelism. However, for hybrid-
parallelism, we design a different scheme. We create one MPI communicator
per model partition whereas the size of each communicator will be equal to the
number of model-replicas. This design allows us to overlap the allreduce oper-
ation with the computation of other partitions on the same node. An example
scenario clarifies this further: if we split the model across 48 partitions, then we
will use 48 allreduce operations (one for each model-partition) to get optimal
performance. This design allows us to overlap the allreduce operation with the
computation of other partitions on the same node.

Exploiting Pipeline Stages within Each Minibatch: Because DNN train-
ing is inherently sequential, i.e., the computation of each layer is dependent on
the completion of the previous layer. This is true for the forward pass, as well
as for the backward pass. To overcome this performance limitation, we exploit
a standard technique called pipelining. The observation is that DNN training
is done on batches (or mini-batches) of data. This offers an opportunity for
pipelining as a training step on samples within the batch is parallelizable. Theo-
retically, the number of pipeline stages can be varied from 1 all the way to batch
size. This requires tuning or a heuristic and will vary according to the model
and the underlying system. Based on hundreds of experiments we performed for
HyPar-Flow, we derive a simple heuristic: use the largest possible number for
pipeline stages and decrease it by a factor of two. In most cases, we observed
that num pipeline stages= batch size provides the best performance.

Special Handling for Models with Skip Connections: Figure 5 shows a
non-consecutive model with skip connections that requires communication 1)
between adjacent model-partitions for boundary layers and 2) non-adjacent
model-partitions for the skip connections. To handle communication dependen-
cies among layers for each model-partition, we create two lists: 1) Forward list
and 2) Backward list. Each list is a list of lists to store dependencies between
layers as shown in Fig. 5. “F” corresponds to the index of the layer to which the
current layer is sending its data and “B” corresponds to the index of the layer
from which the current layer is receiving data. An arbitrary sequence of send-
ing and receiving messages may lead to a deadlock. For instance, if Partition-1
sends the partial predictions to Partition-3 when Partition-3 is waiting for pre-
dictions from Partition-2, a deadlock will occur as Partition-2 is itself blocked
(waiting for results from Partition-1 ). To deal with this, we sort the message
sequence according to the ranks so that the partition sends the first message to
the partition which has the next layer.



94 A. A. Awan et al.

Fig. 5. Avoiding deadlocks for models with non-consecutive connections

5.4 Load Balancer

The models we used did not show any major load imbalance but we plan to
design this component in the future to address emerging models from other
application areas that require load balancing capabilities from HyPar-Flow.

6 Performance Characterization and Correctness Testing

We have used three HPC systems to evaluate the performance and test the
correctness of HyPar-Flow: 1) Frontera at Texas Advanced Computing Center
(TACC), 2) Stampede2 (Skylake partition) at TACC, and 3) Epyc: A local
system with dual-socket AMD EPYC 7551 32-core processors.

Inter-connect: Frontera nodes are connected using Mellanox InfiniBand HDR-
100 HCAs whereas Stampede2 nodes are connected using Intel Omni-Path HFIs.

DL Framework: All experiments have been performed using TensorFlow v1.13.

MPI Library: MVAPICH2 2.3.2 was used on Frontera, Intel MPI 2018 was
used on Stampede2, and MVAPICH2 2.3.1 was used on Epyc.

Model Definitions: We use and modify model definitions for VGG and
ResNet(s) presented in Keras Applications/Examples [1].

Note about GPUs: The design schemes proposed for HyPar-Flow are
architecture-agnostic and can work on CPUs and/or GPUs. However, in this
paper, we focus only on designs and scale-up/scale-out performance of many-
core CPU clusters. We plan to perform in-depth GPU-based HyPar-Flow studies
in the future.

We now present correctness related experiments followed by a comprehensive
performance evaluation section.
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6.1 Verifying the Correctness of HyPar-Flow

Because we propose and design HyPar-Flow as a new system, it is important to
provide confidence to the users that HyPar-Flow not only offers excellent perfor-
mance but also trains the model correctly. To this end, we present the correct-
ness results based on two types of accuracy-related metrics: 1) Train Accuracy
(train acc)- Percentage of correct predictions for the training data during the
training process and 2) Test Accuracy (test acc)- Percentage of correct predic-
tions for the testing data on the trained model. Both metrics are covered for small
scale training using VGG-16 on the CIFAR-10 dataset. We train VGG-16 for
10 epochs using 8 model-partitions on two Stampede2 nodes with a batch size of
128 and 16 pipeline stages as shown in Fig. 6(a). Next, we show test accuracy for
ResNet-110-v1 in Fig. 6(b) and ResNet-1001-v2 in Fig. 6(c). The learning
rate (LR) schedule was used from Keras Applications [1] for both ResNet(s) and
was kept similar for sequential as well as parallel training variants. Training for
ResNet-110 and ResNet-1001 was performed for 150 and 50 epochs, respectively.
The following variants have been compared:

1) SEQ (GT) - Sequential using tf.GradientTape (GT).
2) SEQ (MF) - Sequential using model.fit (MF).
3) SEQ (MF-E) - Sequential using model.fit (MF) and (E)ager Execution.
4) HF-MP (2)/(56) - HyPar-Flow model-parallel with 2/56 model-partitions.

(a) VGG-16 Training (all
metrics) for 10 epochs with
BS=128 and LR=0.0002

(b) ResNet-110-v1 Test Ac-
curacy for 150 Epochs with
BS=32

(c) ResNet-1001-v2 Test Ac-
curacy for 50 epochs with
BS=32

Fig. 6. Testing the correctness of HyPar-Flow using different models

Discussion: Clearly, model-parallel training with HyPar-Flow is meeting the
accuracy of the sequential model for 150 and 50 epochs of training for ResNet-
110 and ResNet-1001, respectively. We note that training is a stochastic process
and there are variations in earlier epochs whether we use the sequential version
or the model-parallel version. However, the significance is of the end result, which
in this case peaks at 92.5% for all the configurations presented. We ran multiple
training jobs to ensure that the trends presented are reproducible.
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6.2 Experimental Setup for Performance Evaluation

We use the term “process” to refer to a single MPI Process in this section. The
actual mapping of the process to the compute units (or cores) varies according
to the parallelization strategy being used. Images/second (or Img/sec) is the
metric we are using for performance evaluation of different types of training
experiments. Number of images processed by the DNN during training is affected
by the depth (number of layers) of the model, batch size (bs), image size (W × H),
and number of processes. Higher Img/sec indicates better performance. Some
important terms are clarified further:

Batch Size (BS): # of samples in the batch (mini-batch)
Effective Batch Size (EBS)= BS ×num replicas for data/hybrid parallelism
Effective Batch Size (EBS)= BS for model-parallelism
Image Size: Dimension of the image (Width× Height).

Legend Entries for Graphs in Sects. 6.3 and 6.4 are:

– Sequential: Single-process DNN training using default TF/Keras APIs.
– HF (MP): DNN training using hf.fit (..,strategy=model-parallel).
– HF (DP): DNN training using hf.fit(..,strategy=data-parallel).
– Horovod (DP): DNN training using Horovod directly (data-parallel).

6.3 Model Parallelism on a Single Node

We train various models on a single Stampede2 node– dual-socket Xeon Skylake
with 48 cores and 96 threads (hyper-threading enabled). The default version of
TensorFlow relies on underlying math libraries like OpenBLAS and Intel MKL.
On Intel systems, we tried the Intel-optimized version of TensorFlow, but it
failed with different errors such as “function not implemented” etc. For the
AMD system, we used the OpenBLAS available on the system. Both of these
platforms offer very slow sequential training. We present single-node results for
VGG-16, ResNet-110-v1, and ResNet-1001-v2.

VGG-16 has 16 layers so it can be split in to as many as 16 partitions. We
try all possible cases and observe the best performance for num partitions = 8.
As shown in Fig. 7(a), we see that HF (MP) offers better performance for small
batch sizes and HF/Horovod (DP) offers better performance for large batch sizes.
HF (MP) offers better performance compared to sequential (1.65× better at BS
1024) as well as to data-parallel training (1.25× better at BS 64) for VGG-16
on Stampede2.

ResNet-110-v1 has 110 layers so we were able to exploit up to 48 model-
partitions within the node as shown in Fig. 7(b). We observe the following: 1) HF
(MP) is up to 2.1× better than sequential at BS = 1024, 2) HF (MP) is up to
1.6× better than Horovod (DP) and HF (DP) at BS = 128, and 3) HF (MP)
is 15% slower than HF (DP) at BS = 1024. The results highlight that model-
parallelism is better at smaller batch sizes and data-parallelism are better only
when large batch-size is used. Figure 8(a) shows that HF (MP) can offer up to
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3.2× better performance than sequential training for ResNet-110-v1 on Epyc
(64 cores). Epyc offered better scalability with increasing batch sizes compared
to Stampede2 nodes (Fig. 7(b) vs. 8(a)) The performance gains suggest that HF
(MP) can better utilize all cores on Eypc compared to sequential training.

(a) VGG-16 up to 8 model-partitions (b) ResNet-110-v1 up to 48 model-
partitions

Fig. 7. HyPar-Flow’s model-parallelism vs. sequential/data-parallelism (one node)

(a) ResNet-110-v1 up to 64 model-
partitions

(b) ResNet-1001-v2 up to 48 model-
partitions

Fig. 8. HyPar-Flow’s model-parallelism vs. sequential/data-parallelism (one node)

ResNet-1001-v2: To push the envelope of model depth and stress the pro-
posed HyPar-Flow system, we also perform experiments for ResNet-1001-v2,
which has 1,0001 layers and approximately 30 million parameters. Figure 8(b)
shows the performance for ResNet-1001-v2. It is interesting to note that data-
parallel training performs poorly for this model. This is because the number of
parameters increases the synchronization overhead for HF (DP) and Horovod
(DP) significantly. Hence, even for large batch sizes, the computation is not
enough to amortize the communication overhead. Thus, HF (MP) offers much
better performance compared to sequential (2.4× better at BS = 256) as well as
to data-parallel training (1.75× better at BS = 128).
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6.4 Model Parallelism on Two Nodes

Two-node results for model parallelism are presented using VGG-16 and ResNet-
1001-v2. Figure 9(a) shows the performance trends for VGG-16 training across
two nodes. As mentioned earlier, we are only able to achieve good performance
with model-parallelism for up to 8 model-partitions for the 16 layers of VGG-16.
We also perform experiments for 16 model-partitions but observe performance
degradation. This is expected because of the lesser computation per partition
and greater communication overhead in this scenario. We scale ResNet-1001-v2
on two nodes using 96 model-partitions in the model-parallelism-only config-
uration on Stampede2. The result is presented in Fig. 9(b). We observe that
model-parallel HF (MP) training provides 1.6× speedup (at BS = 256) over HF
(DP) and Horovod (DP). On the other hand, a data-parallel-only configura-
tion is not able to achieve good performance for ResNet-1001 due to significant
communication (allreduce) overhead during gradient aggregation.

(a) VGG-16: MP Good for Small BS vs. DP
Good for Large BS (8 model-partitions)

(b) ResNet-1001-v2: MP Good for All BS
(up to 96 model-partitions).

Fig. 9. HyPar-Flow model-parallelism on two nodes

6.5 Hybrid Parallelism on Two Nodes (AmoebaNet)

Emerging models like AmoebaNet [19] are different compared to VGG and
ResNet(s). In order to show the benefit of HyPar-Flow as a generic system
for various types of models, we show the performance of training a 1,381-layer
AmoebaNet variant in Fig. 10. We provide results for four different conditions:
1) Sequential training using Keras and TensorFlow on one node, 2) HF (MP)
with 4 partitions on one node, 3) HF (MP) with 8 partitions on two nodes, and
4) HF (HP), where HP denotes hybrid parallelism on two nodes. As shown in
Fig. 10, we observe that hybrid parallelism offers the best possible performance
using the same set of nodes.



HyPar-Flow 99

Fig. 10. Hybrid parallelism for AmoebaNet on two nodes

6.6 Hybrid Parallelism at Scale: Up to 28,762 Cores on 512 Nodes

The most comprehensive coverage of HyPar-Flow’s flexibility, performance, and
scalability are presented in Fig. 11(a). The figure shows performance for various
combinations of hybrid-parallel training of ResNet-1001-v2 on 128 Stampede2
nodes. The figure has three dimensions: 1) the number of nodes on the X-axis,
2) Performance (Img/sec) on Y-axis, and 3) Batch Size using the diameter of
the circles. The key takeaway is that hybrid-parallelism offers the user to make
trade-offs between high-throughput (Img/sec) and batch size. From an accu-
racy (convergence) standpoint, the goal is to keep the batch-size small so model
updates are more frequent. However, larger batch-size delays synchronization
and thus provides higher throughput (Img/sec). HyPar-Flow offers the flexibil-
ity to control these two goals via different configurations. For instance, the large
blue circle with diagonal lines shows results for 128 nodes using 128 model-
replicas where the model is split into 48 partitions on the single 48-core node.
This leads to a batch-size of just 32,768, which is 2× smaller than the expected
65,536 if pure data-parallelism is used. It is worth noting that the performance
of pure data-parallelism even with 2× larger batch-size will still be lesser than
the hybrid-parallel case, i.e., 793 img/sec (=6.2 × 128 – considering ideal scaling
for data-parallel case presented earlier in Fig. 8(b)) vs. 940 img/sec (observed
value– Fig. 11(a)). This is a significant benefit of hybrid-parallel training, which
is impossible with pure model and/or data parallelism. In addition to this, we
also present the largest scale we know of for any model/hybrid-parallel study on
the latest Frontera system. Figure 11(b)) shows near-ideal scaling on 512 Fron-
tera nodes. Effectively, every single core out of the 28,762 cores on these 512
nodes is being utilized by HyPar-Flow. The ResNet-1001 model is split into 56
partitions as Frontera nodes have a dual-socket Cascade-Lake Xeon processor
for a total of 56 cores/node. We run one model-replica per node with a batch
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size of 128. To get the best performance, pipeline stages were tuned and the best
number was found to be 128.

(a) 128 Stampede2 nodes (b) 512 Frontera nodes

Fig. 11. Hybrid-parallelism at scale: ResNet-1001-v2 on Stampede and Frontera with
different batch sizes, number of replicas, and number of partitions

6.7 Next-Generation Models: ResNet-5000?

Today, designers develop models accounting for the restriction of memory con-
sumption. However, with HyPar-Flow, this restriction no longer exists, and
designers can come up with models with as many layers as needed to achieve the
desired accuracy. To illustrate this, we present ResNet-5000, an experimental
model with 5000 layers. ResNet-5000 is massive and requires a lot of memory
so we were able to train it with a batch-size of 1 only. Beyond that, it is not
trainable on any existing system. We stress-test HyPar-Flow to scale the training
of ResNet-5000 to two nodes and were able to train for bigger batch sizes. We
note that training ResNet-5000 and investigation of its accuracy and finding the
right set of hyper-parameters is beyond the scope of this paper. The objective is
to showcase HyPar-Flow’s ability to deal with models that do not exist today.

6.8 Discussion and Summary of Results

Model and data-parallelism can be combined in a myriad of ways to realize
hybrid-parallel training. E.g. model-parallelism on a single node with multi-
ple cores with data-parallelism across nodes. There are non-trivial and model-
dependent trade-offs involved when designing hybrid schemes. Model-parallelism
and data-parallelism have different use cases; model-parallelism is beneficial
when we have a large model, or we want to keep a small effective batch size
for training. On the other hand, data-parallelism gives a near-linear scale-out on
multiple nodes but it also increases batch size. In our experiments, we observe
that single-node model-parallelism is better than single-node data-parallelism.
Theoretically, the number of model-partitions can not be larger than the number
of layers in the model; we can not have more than 110 partitions for ResNet-
110. In practice, however, we observe that one layer per model-partition will not
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be used because it suffers from performance degradation. To conclude, HyPar-
Flow’s flexible hybrid-parallelism offers the best of both worlds; we can benefit
from both model and data parallelism for the same model. We summarize the
key observations below:

– Models like ResNet-110 offer better performance for model-parallelism on
smaller batch sizes (<128).

– Newer and very-deep models like ResNet-1001 benefit from model-parallelism
for any batch size (Fig. 8(b)).

– HyPar-Flow’s model-parallel training provides up to 3.2× speedup over
sequential training and 1.6× speedup over data-parallel training (Fig. 8(a)).

– HyPar-Flow’s hybrid-parallel training offers flexible configurations and pro-
vides excellent performance for ResNet-1001; 110× speedup over single-node
training on 128 Stampede2 (Xeon Skylake) nodes (Fig. 11(a)).

– HyPar-Flow’s hybrid-parallel training is highly scalable; we scale ResNet-1001
to 512 Frontera nodes (28,762 cores) as shown in Fig. 11(b).

7 Conclusion

Deep Learning workloads are going through a rapid change as newer models and
larger, more diverse datasets are being developed. This has led to an explosion
of software frameworks like TensorFlow and approaches like data and model-
parallelism to deal with ever-increasing workloads. In this paper, we explored
a new approach to train state-of-the-art DNNs and presented HyPar-Flow: a
unified framework that enables user-transparent and parallel training of Ten-
sorFlow models using multiple parallelization strategies. HyPar-Flow does not
enforce any specific paradigm. It allows the programmers to experiment with
different parallelization strategies without requiring any changes to the model
definition and without the need for any system-specific parallel training code.
Instead, HyPar-Flow Trainer and Communication Engine take care of assigning
the partitions to different processes and performing inter-partition and inter-
replica communication efficiently. For ResNet-1001 training using HyPar-Flow,
we were able to achieve excellent speedups: up to 1.6× over data-parallel training,
up to 110× over single-node training on 128 Stampede2 nodes, and up to 481×
over single-node on 512 Frontera nodes. We also tested the ability of HyPar-
Flow to train very large experimental models like ResNet-5000, which consists
of 5,000 layers. We believe that this study paves new ways to design models. We
plan to publicly release the HyPar-Flow system so that the community can use
it to develop and train next-generation models on large-scale HPC systems.
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Abstract. The mining of time series data plays an important role in
modern information retrieval and analysis systems. In particular, the
identification of similarities within and across time series has garnered
significant attention and effort over the last few years. For this task,
the class of matrix profile algorithms, which create a generic structure
that encodes correlations among records and dimensions—the matrix
profile—is a promising approach, as it allows simplified post-processing
and analysis steps by examining the resulting matrix profile structure.
However, it is expensive to create a matrix profile: it requires significant
computational power to evaluate the distance among all subsequence
pairs in a time series, especially for very long and multi-dimensional
time series with a large dimensionality. Existing approaches are limited
in their scalability, as they do not target High Performance Computing
systems, and—for most realistic problems—are suited only for datasets
with a small dimensionality.

In this paper, we introduce a novel MPI-based approach for the cal-
culation of a matrix profile for multi-dimensional time series that pushes
these limits. We evaluate the efficiency of our approach using an ana-
lytical performance model combined with experimental data. Finally, we
demonstrate our solution on a 128-dimensional time series dataset of
1 million records, solving 274 trillion sorts at a sustained 1.3 Petaflop/s
performance on the SuperMUC-NG system.

1 Introduction

State-of-the-art physical systems, such as monitoring infrastructures or oper-
ational logs of industrial machines, often generate a time-tagged series of data
points in a given order. A collection of such data points over time, which is called
a time series, is crucial to understanding the underlying behavior of the physical
system that produces it. Such time series are usually provided in the form of
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a collection of individual time series, which together form a multi-dimensional
time series.

One important aspect in understanding multi-dimensional time series is the
explorative discovery of similar and repeating patterns in a (potentially large)
dataset [4]. Recent advances in data mining techniques enable the extraction of
complex pattern structures in multi-dimensional time series. They generally rely
on computing generic similarity data structures, e.g., correlation information
from the individual time series.

One prominent example for time series data mining is the matrix profile
approach, which has been introduced by Yel et al. [24] and has been successfully
applied to many datasets from various fields. A matrix profile is a generic meta
series, i.e., a time series itself that provides information about the input series
by summarizing correlations and nearest neighbor indices among subsequences
in a set of given time series. A matrix profile also enables easier in-depth studies
of patterns and anomalies, and with that many data mining tasks, such as the
discovery of frequent patterns, correlations, and clusters in a dataset.

State-of-the-art algorithms for the computation of a matrix profile mostly
target one-dimensional time series, i.e., a single time series covering one sen-
sor input. Only recently, the first algorithms for multi-dimensional time series
appeared [23] offering detailed insights into repeating patterns across different
time series, significantly increasing the ability to understand multi-dimensional
time series. However, these approaches are significantly more compute-intensive
than one-dimensional matrix profile algorithms and hence are no longer feasible
on standard systems, which they currently target, for realistic workloads. They
have not been shown to scale to larger systems nor that they can be used on
anything but small datasets.

However, multi-dimensional time series with large numbers of records in each
time series are typical in many disciplines. One example is the operation of indus-
trial gas turbines. Such systems are monitored by more than 100 different sensors
and generate millions of records1 per month [10]. The analysis of this data can
generate new insights about correlations among different sensors and operational
modes, which can be used to optimize the operation of a gas turbine for more sta-
ble operation, better fuel efficiency, and consequently less air pollution. Another
real-world example is monitoring of HPC infrastructures. Netti et al. [14] use
up to 3176 sensors per node to monitor multiple production HPC systems at the
Leibniz Supercomputing Centre and have shown that the collected monitoring
data contains valuable information on the system’s behavior, and can be used,
eg., in the characterization of applications running on it.

To apply the concept of the matrix profile to large-scale multi-dimensional
time series and hence to such real-world problems, we require new approaches to
scale the computation of matrix profiles both to larger computational resources
and to larger datasets. In this work, we provide a novel approach of calculating
the matrix profile for large multi-dimensional time series in parallel on HPC sys-
tems. We build our approach on the observation that the calculation of a matrix

1 In this case, a record is a collection of samples of all sensors at a specific time.



106 A. Raoofy et al.

profile is highly memory bound [15], and therefore can benefit from horizontal
scaling of memory bandwidth and throughput. In addition, parallel computation
of the matrix profile requires the aggregation of final results, i.e., a series of reduc-
tion operations, which can exploit high performance interconnects. However, in
order to achieve efficiency, a series of algorithmic advances and optimization
steps are needed, which we introduce in this work and verify with an analytical
performance model.

In particular, the contributions in this paper are:

– We introduce a new highly-parallel algorithm to compute the matrix profile
for multi-dimensional time series.

– We provide an analytical and experimental model for the performance of our
algorithm.

– We provide a scalable implementation of our algorithm to compute a multi-
dimensional matrix profile efficiently on a Petascale HPC system.

Using our novel algorithmic approach, we demonstrate the computation on
a 128-dimensional time series dataset of 1 million records on the SuperMUC-NG
Petascale system, solving 274 trillion sorts at sustained 1.3 Petaflop/s perfor-
mance.

The remainder of this paper is organized as follows: Sect. 2 introduces the
concept of matrix profile, existing algorithms to compute it, and the challenges
to running this computation on HPC systems. Section 3 discusses our approach
for parallel computation of the matrix profile. Section 4 describes our MPI imple-
mentation, and Sect. 5 presents a performance model to describe the workload of
matrix profile computation for a multi-dimensional time series on a parallel sys-
tem. Section 6 explains and analyzes our experiments, Sect. 7 discusses related
work, and Sect. 8 provides conclusions and final discussions.

2 Background on Matrix Profile

A matrix profile is a generic similarity indexing approach for the analysis of
one- or multi-dimensional time series, in particular, the investigation and quan-
tification of similar patterns. This analysis relies on the study of similarities
(or correlations) among local chunks—i.e., subsets of continuous values—of the
time series, referred to as subsequences. A matrix profile summarizes a complete
correlation matrix (or equivalently distance matrix) of all the subsequences of a
time series, the distance matrix, into mainly two data structures:

– A matrix profile P , which is a meta series encoding the distance of a subse-
quence to its nearest neighbor, and

– A matrix profile index I, which is an indexing structure storing pointers to
the nearest neighbor of a subsequence in the time series.

The terminology introduced above, i.e., matrix profile and matrix profile
index, in principle, also applies to multi-dimensional time series. However, for a
multi-dimensional time series, the notion of similarity is generalized so that the
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Fig. 1. Illustration of automatic semantic segmentation using a multi-dimensional
matrix profile. We show a synthetic time series of three sensors, the corresponding
matrix profile, and we group the patterns in the time series based on matrix profile
into four clusters denoted by colors. Each sensor consists of 20 000 samples. The sub-
sequence length for the analysis is set to 4 s, and we use k-means with 4 clusters on
the 3D matrix profile to distinguish the clusters. (Color figure online)

analysis takes the correlation among subsequences in different dimensions into
account. Moreover, the resulting matrix profile (and index) for a time series with
the dimensionality of d consists of d matrix profiles. These profiles are presented
in a single matrix with d rows where the k-th (k ≤ d) row of the matrix profile
provides information about the nearest neighbors of subsequences in the best
matching k dimensions.

To illustrate the matrix profile, we present a simple scenario in Fig. 1 and
show how a matrix profile can be used for automatic semantic segmentation of
a multi-dimensional time series2. Our synthetic example uses a set of 3 sensors:
the first carries sin(x)-wavelets starting at +20 s; the second carries square-
wavelets starting at time +40 s; and the third carries a sawtooth-wavelet starting
at +70 s; all wavelets are repeated every 10 s. This introduces four phases in
the presented sensor data during which the correlations among the sensors are
unique. The generated matrix profile highlights and distinguishes these phases
by summarizing the correlation structure among the sensors in the time series.

We perform a multi-dimensional matrix profile analysis on this example. The
resulting matrix profile (only the last row in the matrix profile corresponding to
the nearest neighbors of 3D patterns) is presented in the lower graph colored in
black in Fig. 1. We use a k-means algorithm to cluster this matrix profile and
group the corresponding motifs—which are patterns with a unique correlation
structure among all three sensors—based on their distances in the matrix profile
(see Fig. 1, color-coded time series segments). This analysis results in meaningful
clusters corresponding to the respective phases in the original data.

2 We choose this example in favor of a real-world one for simplicity. Moreover, our goal
is to show the capabilities of the approach without binding it to a specific domain.
For more illustrative examples, we refer to Yeh et al. [22,24] and Gharghabi et al. [7].
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Algorithms for Calculation of Matrix Profile

We base our work on the state-of-the-art algorithm STOMP (Scalable Time
Series Ordered-search Matrix Profile) [26], which computes a one-dimensional
matrix profile with optimal complexity. This algorithm is later optimized
(referred to hereafter as STOMPopt) for a better arithmetic intensity and numer-
ical stability [27] to enable the calculation of a matrix profile on large (single-
dimensional) time series. In particular, STOMP -based algorithms allow a partial
storage of the distance matrix—a matrix of, e.g., Euclidean distances among all
subsequences—using an ordered iterative solver for matrix profiles by computing
a so-called distance profile. The distance profile is one row within the distance
matrix (see Eq. 8 and Fig. 2 right), which is computed in a given iteration to
update the matrix profile data structure.

For the calculation of a matrix profile over a multi-dimensional time series,
Yeh et al. [23] introduce mSTAMP. It uses STOMP -based formulations for the
computation of the distance profile. mSTAMP iteratively computes the matrix
profile by independent calculation of distance profiles for all dimensions. Unlike
STOMP, in each iteration, before updating the resulting intermediate state of
the matrix profile, mSTAMP sorts the distance profiles in each record separately.
However, this method has three significant drawbacks: (a) it does not exploit the
numerically stable formulation for computation of a matrix profile, (b) it is only
available as a scripted prototype in Python and Matlab, and (c) it exists only
in a sequential version. Consequently, it is currently insufficient for computing a
matrix profile on a large-scale multi-dimensional real-world dataset.

3 Multi-dimensional Parallel Matrix Profile: (MP )N

To overcome the limitations stated above, we introduce a new approach to com-
pute multi-dimensional matrix profiles. Building on top of the existing mSTAMP
concepts, we introduce (MP )N (stands for Multi-dimensional Parallel Matrix
Profile), which is designed to exploit the computational power, high performance
interconnect, and I/O capabilities of HPC systems to calculate matrix profiles
of multi-dimensional datasets within realistic execution times.

For this, the mSTAMP formulations can be adapted for parallel processing,
allowing the distribution of computational workload among multiple workers
with minimum communication during the computation phase. By partitioning
the time series along records, we can distribute the workload across multiple pro-
cessing elements, e.g., cores of a multiprocessor. This workload consists of (1) the
computation of the distance profile, (2) the sorting of the distance profile, and
(3) the updates on the resulting matrix profile. Finally, the results residing in the
memory of the various machines are merged by performing reduction operations.
This way, we can scale the computation of a multi-dimensional matrix profile to
a large number of nodes.
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3.1 Overview of the (MP )NAlgorithm

The foundation of our algorithm is an adapted version of mSTAMP based on
STOMPopt kernels. Its mathematical representation is given in Table 1, which
provides us good numerical stability and a better single thread arithmetic per-
formance for the evaluation of the distance matrix [27].

For a multi-dimensional time series with d dimensions, each of length (number
of records) n, and considering a subsequence length m, we evaluate a total of
d distance matrices, one for each dimension. A distance matrix is a symmetric
matrix storing the Euclidean distance among all subsequence pairs of the input
time series separately for every dimension.

In contrast to mSTAMP, we explicitly take the symmetric structure of the
distance matrices into account to avoid redundant computations. Further, we
consider the fact that there is a significant semantic difference between one- and
multi-dimensional motifs: in multi-dimensional motifs, subsequences can corre-
late with any other subsequences in any k-dimensional (k ≤ d) subspace across all
dimensions. This results in a matrix profile that is defined as the minimum value
of each column in the distance matrices after sorting and partial aggregation of
resulting distance profiles of the d dimensions. The resulting matrix profile rep-
resents the nearest neighbors of a subsequence with the best matching k (k ≤ d)
dimensions. To achieve this with minimal overhead, we sort the distances across
the dimensions for all records in the distance profile using an optimized mem-
ory layout combined with a high-performance sorting kernel. Accordingly, the
matrix profile index is defined as the argmin3 pointing to the closest neighbor
of each subsequence (Eq. 10).

In the case of a self-join4, we exclude the trivial matches, i.e., a subsequence
matching a given region including itself or its neighboring subsequences. These
regions correspond to the proximities of the diagonal entries in the distance
matrices. (MP )N invalidates these trivial matches in so-called “exclusion zones”
when merging the calculated intermediate profiles into the final result.

At the end of each iteration, (MP )N merges the sorted and aggregated dis-
tance profiles into the final matrix profile and its index using element-wise min
and argmin operations (see Eq. 10).

3.2 Iterative Computation of the Matrix Profile

We use the formulas in Table 1 for the iterative computation of the distance
matrix and its distance profile (Algorithm1), which can be summarized in the
following steps (see Fig. 2 right):

3 Given two distance values a and b, and associated neighboring indices ia and ib, the
argmin operation is defined as following: the output (iout) is set to ia if a < b and
is set to ib otherwise.

4 Similarity join—also known similarity indexing in the literature—is an operation
that combines two input (multi-dimensional) time series and finds similarities. Self-
join is the case with two identical input series. For simplicity and without losing
generality, we restrict the formulations and discussions to self-joins.
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Algorithm 1: Procedure for computing the multi-dimensional
matrix profile based on STOMPopt;
Input: d-dim. time series T ∈ R

d×n and subsequence length m ∈ N ;
Output: multi-dimensional matrix profile P ∈ R

d×n−m+1 and matrix
profile index I ∈ Z

d×n−m+1

1 μ, d−1, df , dg ← precompute statistics (T, m) � Eqs. 1–4

2 QT ← initialize streaming dot product � see [27]

3 for idx ← 0 to n − m do
4 for dim ← 0 to d − 1 do
5 for i ← idx to n − m do
6 δi,dim ← compute distance profile � see Fig. 2 right

7 end

8 end
9 invalidate entries of δ in exclusion region � see [24] and [23]

10 for i ← idx to n − m do
11 δ′

i ← sort i-th row of δ � Eq. 9

12 end
13 for dim ← 0 to d − 1 do
14 δ′′ ← column-wise aggregate and normalize(δ′) � see [23]

15 P, I ← element-wise argmin(P, δ′′) � matrix updates

16 tmp ← row-wise minimum (δ′′)
17 Pc[idx], Ic[idx] ← element-wise argmin(Pc[idx], tmp) � vector updates

18 end

19 end
20 P, I ← combine(P, I, Pc, Ic);

1. First, we (pre-)compute statistics of all subsequences using Eqs. 1–4 in all d
dimensions (Line 1, Algorithm 1).

2. In Line 2, Algorithm 1, we initialize the streaming dot product (see the formu-
lation developed by Zimmerman et al. [27]) with the distance between the first
subsequence in the time series and all other subsequences and (pre-)compute
the distance profiles for all d dimensions.

3. We use Eqs. 5–8 to iteratively—and in-situ—update the distance profile δ
(Line 3, Algorithm 1), by calculating the Euclidean distances between subse-
quence idx and all the other subsequences i. This, in turn, is done for all d
dimensions (Lines 4–8, Algorithm 1). Further, in each iteration idx, we. . .
(a) . . . invalidate the entries in the exclusion zone of δ (Line 9, Algorithm 1).
(b) . . . sort the distance profile δ in each record and across the dimensions

(Eq. 9 and Lines 10–12, Algorithm1).
(c) . . . combine the sorted distance profile with the matrix profile for all

d dimensions using element-wise min and argmin operations, i.e., the
matrix profile and its index are updated according to the distance profile
(Eq. 10, Lines 13–18, Algorithm 1 and Fig. 2 right).
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3.3 Algorithmic Optimizations in (MP )N

As discussed in Sect. 3.1, we only compute the upper triangular part of the
distance matrix and then compensate for this by updating the matrix profile
accordingly. For that, we introduce an additional set of matrix profiles Pc and
matrix profile indices Ic. Pc and Ic represent column-wise (for column c) matrix
profiles and indices (similar to the definitions by Zimmerman [27]), and are
both multi-dimensional (Fig. 2 right). We compute the partial results Pc and
Ic from already computed distance profiles using the transpose of the distance
matrix instead of computing the lower triangular part of the distance matrix.
We then compute Pc and Ic using min and argmin operations per dimension at
each iteration on the distance profile δ. Finally, we construct the final matrix
profile and its index by merging the results of Pc to P , and Ic to I (Line 20,
Algorithm 1). This optimization and merging scheme are parallelizable, as we
demonstrate below in our MPI implementation of (MP )N .

3.4 Data Layout Considerations

For optimal data-locality, we use a column-wise in-memory data layout for most
data structures, as most kernels access the data structures in a column-wise data
layout (see Fig. 2 left). Only for the distance profile δ, we use a double buffering
scheme, where data is accessed row-wise as well. This way, vectorized sorting
kernels can exploit a more efficient access pattern to δ.

Table 1. Iterative STOMPopt formulation extended for multi-dim. matrix profiles

Average of samples in a subsequence
starting at record i in dimension k

μi+1,k = μi,k + (Ti+m,k − Ti,k)/m (1)

Inverse of norm-1 of samples in a
subsequence starting at record i in
dimension k

d−1
i,k

= (
∑m

z=0 Ti+z,k − μi,k )−1 (2)

Intermediate values used in mean-centered
streaming dot product formulation 5

dfi+1,k = (Ti+m,k − Ti,k )/2 (3)

Intermediate values used in mean-centered
streaming dot product formulation 5

dgi+1,k = (Ti+m,k − μi+1,k) + (Ti,k − μi,k) (4)

Streaming dot product of samples in
subsequences i and j in k-th dimension [27]

QT i+1,j+1,k = QT i,j,k + dfi,k × dgj,k + dfj,k × dgi,k (5)

Pearson correlation matrix among
subsequences starting at records i and j in
dimension k

ρi,j,k = QT i,j,k × d−1
i,k

× d−1
j,k

(6)

Euclidean distance matrix among
subsequences starting at records i and j in
dimension k

Di,j,k =
√

2 × m × (1 − ρi,j,k) (7)

i-th distance profile in dimension k δi,k = Di,∗,k (8)

Sort i-th distance profile along dimensions δ′
i = sort(δi) (9)

Matrix profile and its index Pi,k = min(δ′
i,k), Ii,k = argmin(δ′

i,k) (10)
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Fig. 2. Illustration of the column- and row-wise layouts for storage of the distance
profile δ (left). Each column with a unique color represents one dimension, and rows
represent records. Besides, the red arrows indicate the data layout. On the right, the
iterative computation of the matrix profile in all dimensions is visualized. The active
distance profiles in a specific iteration are colored in green. These two distance profiles
are sorted and partially aggregated, and the corresponding elements in the matrix
profile and its index are updated—colored in brown and magenta. (Color figure online)

3.5 Partitioning and Aggregation Scheme

Apart from the pre-computation of the first row of each local distance matrix, the
iterative computation of the distance matrix and matrix profile, as introduced
in Sect. 3.2, is an embarrassingly-parallel workload. Therefore, each process has
to compute the first iteration using a naive sliding dot product formulation [24]
(Fig. 2 right). Figure 3 left illustrates the partitioning scheme used in (MP )N for
a two-dimensional problem by decomposing the problem into four independent
subproblems. Here, the iterative evaluation of the two distance matrices—one
for each dimension—in a two-dimensional problem is distributed among four
processing units. Note that (MP )N computes the matrix profile by evaluating
only the upper triangular parts of the partitioned distance matrix. In addition,
we introduce an additional final step to aggregate the partial results from differ-
ent processing units (cf. the merging scheme in Sect. 3.3). Due to the symmetry
of the distance matrix, the following property for all resulting matrix profiles
in the partitions holds: P (i,j) = P

(j,i)
c —where (i, j) is the index of a process in

the virtual topology. Given this property, the partial matrix profiles are merged
according to the following equation (see Fig. 3 left):

P
(0,0)
merged = merge(P (0,0), P (0,1)) = merge(P (0,0), P (1,0)

c ) (11)

By generalizing Eq. 11, we can formulate this merging step for aggregation
of partial matrix profiles in partitions (cf. Fig. 3). The merge operation in Eq. 11
represents element-wise reduction similar to Lines 15 and 17, Algorithm 1.

4 MPI-Based Parallelization and Optimization

We have implemented the parallel version of our (MP )N algorithm using
the Message Passing Interface (MPI), which allows us to exploit the perfor-
mance advantages in tightly coupled HPC systems. In particular, we replace a
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Fig. 3. (Left) Illustration for the partitioning scheme of the distance matrix in
(MP )N for a two-dimensional matrix profile (cf. Fig. 2): we use four partitions in
this illustration. (Right) Aggregation scheme: the parts of the distance matrix with a
similar color are computed on the same partition, e.g., partitions colored in pink are
computed in the processing element with id (0, 1). (Color figure online)

filesystem-based final aggregation [27] with high-performance reduction opera-
tions, utilize fast communication and scalable I/O functionality for massively-
parallel pre- and post-processing, and enable unprecedented scaling, all of which
have been bottlenecks in existing cloud-based parallel matrix profile algorithms.

4.1 Phases of (MP )N

Our (MP )N implementation includes six phases (see Fig. 4):

1. Setup Phase: We first build a virtual topology of processes (see Fig. 5). Using
this topology, we create the MPI communicators required for reading and
writing input and output time series from the file system, as well as the MPI
communicators required for the distribution of time series and the aggregation
of the matrix profile. Finally, we distribute the data and workload among all
MPI processes according to our partitioning algorithm (see Sect. 3.5).

2. File Read Phase: We read the time series from the file, using a “row-wise”
layout for storing data, i.e., the data points from different data streams with
a given timestamp are stored consecutively in the file. This simplifies the
partitioned read operation when using a large number of processes.

3. Data Distribution Phase: Processes that participate in the File Read Phase
broadcast the input time series via the MPI communicators created during
the setup.

3

1- Setup

MPI_Comm_split

MPI_Comm_create 2- File read

 MPI_File_open

MPI_File_read_at

4- Kernels

Iteratively update distance profile

Sort distance profile

Update matrix profile

5- Aggregation

MPI_Reduce

6- File write

 MPI_File_write_at

3- Data Distribution 

 MPI_Bcast

Fig. 4. Illustration of all phases in our approach on a distributed memory HPC system.
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Fig. 5. Illustration of the virtual topology of MPI processes in communicators. Each
triangle with a distinct color represents a separate MPI process working on a distinct
part of the distance matrix. The red boxes represent exclusive process sets in communi-
cators. The left and middle figures represent communicators used in Data Distribution
and Aggregation phases, and the right figure shows the communicator used in I/O
phases. The small boxes in each process represent data buffers associated with a local
matrix profile and its index to be reduced in the Aggregation phase. Buffers depicted
with the same colors within the same process group are reduced. (Color figure online)

4. Kernel Execution Phase: We execute the necessary kernels to compute a local
multi-dimensional matrix profile for a subset (partition) of the input series
using the iterative algorithm introduced in Sect. 3.

5. Aggregation Phase: We aggregate and merge the final results (see Eq. 11 and
Fig. 5). This is done using reduction operations over MPI communicators
created in the Setup Phase. After this phase, the final results are available on
all processes that participate in the Write Phase.

6. Write Phase: A subset of MPI processes responsible for parallel-write opera-
tions outputs the final matrix profile and its index using MPI I/O (Fig. 5).

4.2 MPI Communicators in (MP )N

We use three communicators in various phases presented in Fig. 4. These com-
municators are illustrated in Fig. 5 and are as follows:

– For reading and writing, we use only MPI processes responsible for the diag-
onals on the virtual topology (Fig. 5 right). This allows us to reduce the pres-
sure on the parallel file system caused by the large amount of I/O operations
(IOP), which would otherwise degrade the I/O performance.

– We use both column- and row-wise communicators for the Distribution of data
and the reduction of the final result in the aggregation phase. We further use
a custom argmin MPI reduction operation, introduced in Sect. 3, according to
the merging scheme described in Sect. 3.5. This custom reduction is executed
on the row-wise and column-wise communicators in the Aggregation Phase.

5 Modeling the Performance Bottlenecks

To understand the scaling behavior of our algorithm, we introduce an analytical
performance model for (MP )N . We base our model on two inputs: the number of
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processes and the problem size. Our model includes all phases in the computation
of our algorithm as introduced in Sect. 4.1. We decompose the execution in shares
of execution time for these phases5:

TExecution = TSetup+TRead+TDistribution+TKernel+TAggregation+TWrite (12)

We consider a time series of size n with d dimensions resulting in n × d as
the input size, and we assume a total of p MPI processes. Using these notations,
the following equations describe the scaling behavior of each phase in (MP )N :

TSetup = CSetup · p · log2p (13)

TRead = CRead · n · d/
√

p (14)

TBroadcast = CBroadcast · √
p · log2

√
p · n · d (15)

TKernel = CKernel · n2 · d · log2d/p (16)

TAggregation = CAggregation · √
p · log2

√
p · n · d (17)

However, to simplify our discussions regarding the scaling bottlenecks of
(MP )N , we only present our model for dominant portions of the runtime, which
are TSetup and TKernel (cf. Sect. 6.4). We consider a linearithmic growth of TSetup

with respect to p (see Moody et al. [12]), and the growth of TKernel is driven
from the parent algorithm mSTAMP, and is modified for (MP )N . This results
in the final model of:

TExecution ≈ TSetup +TKernel = CSetup · p · log2p+CKernel ·n2 ·d · log2d/p (18)

6 Evaluation

To demonstrate the performance of our implementation, we conduct a wide
set of experiments. All our experiments are carried out on the SuperMUC-NG6

system at the Leibniz Supercomputing Centre (LRZ). Each SuperMUC-NG node
features two 24-core Intel Xeon Platinum 8174 Processors (Skylake) running
at 2.69 GHz and 96 GB main memory. Our code is implemented in C++ and
uses double-precision floating-point values in the kernels. We use the Intel C++
compiler v19.0 update 4.0 for compilation, and unless otherwise noted, we use
Intel MPI.

All our scaling experiments are executed using 48 MPI processes per node
and each MPI process is mapped to one physical core. Thus, we use the terms
cores and processes interchangeably in the remainder of this paper. Moreover,
all input sets are randomly generated sequences, as the performance is agnostic
to the input data used.

5 Synchronization between the phases is implied by MPI operations used in imple-
mentation of (MP )N .

6 https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.

https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
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6.1 Correctness and Numerical Stability

To validate the correctness and stability of (MP )N , we compare the matrix pro-
file and its indices calculated with different numbers of processes, as sequential
baseline executions are infeasible for our target input datasets. For that, we fix
the setup to n = 524 288, d = 128 and m = 512, and execute (MP )N on 512
MPI processes to create a baseline. We then repeat the analysis using 1 024,
4 096, 16 384, and 65 536 processes. In all experiments, L1 and L∞7 norms of the
resulting matrix profiles are accurate on up to 15 significant digits and the matrix
profile index fully matches the baseline. This confirms the numerical stability of
our solution with respect to double-precision floating-point numbers.

6.2 Single-Core Performance

We evaluate how the problem size parameters and the difference in sorting ker-
nels affect the execution time on a single-core setup. In the following, each exper-
iment is repeated 5 times, and we show the average result.

For the sorting-kernel used during construction of the complete matrix pro-
file, we use existing standard libraries. In particular, we compare three leading
libraries for their performance:

– AVX-512-bitonic [3], which is a high performance sorting kernel for small-
and mid-sized arrays optimized for the Intel Skylake architecture

– Intel Integrated Performance Primitives (IPP) library [19], as a vendor-
specific alternative

– qsort from C++–stdlib-based [9] as a basic Quicksort implementation

First, we analyze the effect of the dimensionality parameter d. Figure 6 top
illustrates our result. Different colors represent the sorting kernels used in a
given experiment. We confirm an expected linear growth in execution time for
all three kernels, which validates our proposed model presented in Sect. 5. While
all three kernels complete in similar time for smaller dimensionality, AVX-512-
bitonic provides the best performance with an increasing dimensionality, which is
our target. The superiority of AVX-512-bitonic is in accordance with the results
of an existing study by Bramas et al. [3]. Therefore, we fix the AVX-512-bitonic
kernel for all further experiments.

Second, we analyze the effect of the number of records n on execution time.
Figure 6 middle shows a quadratic growth of time with respect to the number
of records matching our model in Sect. 5 as well as a previous study by Yeh et
al. [23]. The subsequence length m has a limited effect on execution time (see
Fig. 6 bottom), which is also confirmed by Yeh et al. [23].

Overall, we confirm that the single-node performance of our adapted algo-
rithm is preserved in relation to the STOMP -based mSTAMP [23], and we
validate our execution time model against the obtained experimental data.

7 Taxicab norm (L1) and Infinity norm (L∞).
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Fig. 6. (Top) Linearithmic growth of execution time vs. increasing dimensionality
parameter d, with n = 214 samples and m = 29. (Middle) Quadratic growth of
execution time vs. increasing number of records n, with d = 25, m = 29. (Bottom)
Near-constant execution time with increasing subsequence length m, with n = 214,
d = 25.

6.3 Single-Node Performance

Next, we present results from single-node execution. We execute (MP )N with
I MPI PIN ORDER=scatter to pin the MPI processes within NUMA nodes8. This
ensures optimal sharing of the available memory bandwidth across all cores.

As shown in Fig. 7, we can see the expected performance saturation pattern
for a memory bound application. We further observe a performance increase with
an increasing number of cores on a single node, but hyper-threading does not

8 For details on mapping MPI processes to cores see https://software.intel.com/en-
us/mpi-developer-reference-linux-interoperability-with-openmp.

https://software.intel.com/en-us/mpi-developer-reference-linux-interoperability-with-openmp
https://software.intel.com/en-us/mpi-developer-reference-linux-interoperability-with-openmp


118 A. Raoofy et al.

Fig. 7. Saturation of performance with an increasing number of MPI processes on a
single node with 48 physical cores, n = 10240, d = 128, m = 512. As the structure of
the algorithm requires a squared number of processes, we observe speedups up to 36
processes. Starting from 49 processes—the region with the background color of red—
hyper-threading causes a performance drop and no additional speedup can be seen.
(Color figure online)

further improve the performance. We have used LIKWID [20] to collect band-
width utilization information and measured a maximum of ∼140 GB/s using
36 cores (18 per socket) on a single node9. This matches the achievable band-
width reported by the STREAM benchmark [11] previously obtained on this
machine10.

The results in Fig. 7 prove that the performance of (MP )N is bound by
memory bandwidth. In each iteration, we access all buffers in a streaming fashion
and perform memory operations to keep the underlying buffers with different
layout synchronized. We further evaluate the effects of cache-blocking by utilizing
smaller tiles, but this approach does not increase the performance due to the lack
of reusability and locality in the data structures.

6.4 Scalability

Figure 8 illustrates the speedup and efficiency (top) as well as the runtime decom-
position (bottom) for strong scaling experiments. We select a random time series
of size n = 524 288, d = 128 and m = 512, and run these experiments on
SuperMUC-NG using 6 to 1 366 nodes (256 cores to 65 536 cores). We observe
a linear speedup and throughput of the kernel execution time, using the 6-node
configuration as the baseline. However, the time for problem setup—mainly time
for creating communicators—increases drastically. This reduces the parallel effi-
ciency to 64% for the experiment with 1 366 nodes.

Similarly, Fig. 9 shows our results for weak scaling experiments. Here, we
fix the workload per core ncore to 2 048. This results in a global problem size
of n = 2048 on 1 node with 1 core, scaling up to n = 1M on 5 462 nodes

9 (MP )N requires a quadratic number of MPI processes.
10 We achieved a maximum bandwidth of 185.9 GB/s using STREAM benchmark for

copy operation using 48 cores.
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Fig. 8. Results of strong scaling experiments for computing the matrix profile. We
show speedup and parallel efficiency (Top) and a detailed breakdown of time spent in
various phases of the application (Bottom). Note that the measurements denoted by ∗

on the x-axis are executed with exclusive access to the system .

with 262 144 cores. This setup results in weak scaling experiments with kernel
execution time of roughly 20 s, which is sufficient for discussions in this paper,
and enough to characterize the performance of (MP )N and illustrate dominating
overheads. Again, we observe an ideal scaling of kernel execution time. However,
we again encounter a significant increase (∼58%) in time spent on the creation of
communicators. In contrast to the strong scaling results, though, this lies within
an acceptable range, as setup time is problem independent and scales only with
the number of MPI processes.

Even though the setup overheads can be absorbed by the runtime in the more
common weak scaling scenario, it clearly represents a performance problem. Fur-
ther, by comparison with our performance model, we also see that this is not a
property of the algorithm, but rather of the system. Upon further investigation,
we trace the overhead back to the creation of the column- and row-wise commu-
nicators using MPI Comm split in the Setup phase when using the default Intel
MPI implementation. Subsequent experiments with alternative MPI implemen-
tations have shown significantly better scaling for the MPI Comm split operation,
indicating a non-scalable implementation, which needs to be resolved.
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Fig. 9. Weak scaling of (MP )N , illustrating time spent in kernels and other time con-
suming phases vs. number of cores. We highlight three regions of number of processes:
the region with light red color represents the experiments limited to 1 node; the light
green shows experiments in middle ranges; and the light blue region represent the
experiments that are conducted using more than half of the system resources. Unlike
others, the large experiments in blue regions are only done once. (Color figure online)

Overall, though, and despite the observed performance problem in MPI, our
novel algorithmic approach was able to compute the matrix profile of a 128-
dimensional time series dataset of 1 million records on the SuperMUC-NG Petas-
cale system. This corresponds to a projected performance (using measurements
from Intel Advisor) of 1.3 Petaflop/s for (MP )N kernels.

6.5 Validation of (MP )NAgainst Our Model

As can be observed from the presented results in this section (Figs. 7, 8, and 9),
Eq. 16 well represents TKernel, however, this is not the case for Eq. 13, which
represents TSetup. We conduct a number of experiments to evaluate the models
that we presented in Sect. 5. We execute (MP )N with 283 different combinations
of various parameters on the SuperMUC-NG and evaluate CSetup and CKernel to
(8.8 ± 0.4)e-06 and (5.644 ± 0.020)e-09 respectively. As the suggested analytical
model for TSetup does not properly fit to our experimental data, we used Extra-
P11 to investigate TSetup, which suggests quadratic growth with the number
of MPI processes. This growth corresponds to the performance problem with
MPI Comm split discussed above.

7 Related Work

There is extensive literature on mining time series, including several survey
papers [5,6,16]. Esling et al. [5] introduce dimensionality as a fundamental prob-
lem in time series mining, and most of the techniques exploit a dimensional-
ity reduction step to address this problem, leaving only limited methods that
11 https://www.scalasca.org/software/extra-p.

https://www.scalasca.org/software/extra-p
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address similarity search in all dimensions. Matrix profile is superior to alterna-
tive approaches like Balasubramanian et al. [1], Tanaka et al. [18] and Vahdat-
pour et al. [21] in mining similar patterns and provides semantically meaningful
multi-dimensional motifs [23].

There are a number of studies on scalable solutions for time series mining:
Huang et al. [8] target the use of Apache Spark for speeding discord discovery
in time series, however, the conducted experiments in this work are limited to
10 nodes. Berard et al. [2] scale time series similarity search to 20 nodes on a
Hadoop cluster. Sart et al. [17] and Zhu et al. [26] use accelerators for speeding
time series mining workloads. Movchan et al. [13] study time series similarity
search on the Intel Many-core Accelerators, utilizing OpenMP. However, none of
the above studies address multi-dimensional datasets, and the analysis is very
limited to specific targets of similarity search. Overall, there is a large gap in
investigation of scalable multi-dimensional time series mining methods.

Yeh et al. [23–26] previously developed various algorithms for the calculation
of matrix profiles. Their evaluation shows good performance for their solutions
in the construction of matrix profiles, but the datasets in the mentioned articles
are limited to one-dimensional datasets and/or small problem sizes. The existing
work by Yeh et al. [23–26] is not suited for large dimensionality in such large
datasets. To target the high demand of computational power, Zimmerman et al.
developed SCAMP [27], a cloud-based framework for the parallel calculation of
one-dimensional matrix profiles on multiple GPU-based accelerators. However,
the multi-dimensional time series problem is also not covered in their solution.

8 Conclusion

In this work, we present a first scalable solution—(MP )N—for the mining of
large-scale multi-dimensional time series targeting CPU-based HPC systems. It
comprises optimizations and parallelization of the mSTAMP algorithm. For the
first time, this enables the computation of large matrix profiles—as a modern
data mining approach—on an HPC system and makes it thereby applicable to
large-scale real-world problems. Our parallelization scheme enables scaling up to
256K cores, providing highly scalable throughput and accuracy. With that, we
confirm the scalability of the matrix profile approach in mining time series.
In our experiments, we performed the fastest and largest (1M × 128) multi-
dimensional matrix profile ever computed with a projected kernel performance
of 1.3 Petaflop/s.
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Abstract. This work examines performance characteristics of multiple
shared-memory implementations of a probabilistic graphical modeling
(PGM) optimization code, which forms the basis for an advanced, state-
of-the art image segmentation method. The work is motivated by the
need to accelerate scientific image analysis pipelines in use by experi-
mental science, such as at x-ray light sources, and is motivated by the
need for platform-portable codes that perform well across many differ-
ent computational architectures. The primary focus of this work and its
main contribution is an in-depth study of shared-memory parallel perfor-
mance of different implementations, which include those using alternative
parallelization approaches such as C11-threads, OpenMP, and data par-
allel primitives (DPPs). Our results show that, for this complex data-
intensive algorithm, the DPP implementation exhibits better runtime
performance, but also exhibits less favorable scaling characteristics than
the C11-threads and OpenMP counterparts. Based upon a set of experi-
ments that collect hardware performance counters on multiple platforms,
the reason for the runtime performance difference appears to be due pri-
marily to algorithmic efficiency gains: the reformulation from the tradi-
tional C11-threads and OpenMP expression of the solution into that of
data parallel primitives results in significantly fewer instructions being
executed. This study is the first of its type to do performance analysis
using hardware counters for comparing methods based on VTK-m-based
data-parallel primitives with those based on more traditional OpenMP
or threads-based parallelism. It is timely, as there is increasing aware-
ness of the need for platform portability in light of increasing node-level
parallelism and increasing device heterogeneity.
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1 Introduction

Image segmentation is a computationally intensive task, influencing scientific
analysis pipelines as a critical element, particularly those that work with large
image-based data obtained by experiments and advanced instruments, such as
the X-ray imaging devices located at the Advanced Light Source at Berkeley
Lab1. As such instruments continually update in spatial and spectral resolution,
there is an increasing need for high-throughput processing of large collections
of 2D and 3D image data for use in time-critical activities such as experiment
optimization and tuning [3]. Our work here is motivated by the need for image
analysis tools that perform well on modern platforms, and that are expected to
be portable to next-generation hardware (Fig. 1).

Fig. 1. Going from a raw image obtained by experiment to a segmented image suitable
for quantitative analysis involves multiple processing stages. This example shows a
single 2D slice from a 3D image stack obtained by x-ray microscopy at the Advanced
Light Source. Here, the original data (left) undergoes an image oversegmentation to
produce coarse regions (middle), which then undergo an additional processing stage
to produce a highly accurate segmentation (right). The focus of this paper is on the
method for the final processing stage, which uses a probabilistic graphical model that
is optimized using a Markov Random Field formulation.

This work centers on evaluating the viability of specific approaches for achiev-
ing platform portability and performance on multi- and many-core platforms.
We focus on a specific data-intensive problem for this study known as prob-
abilistic graphical model (PGM) optimization using a Markov Random Field
(MRF) formulation to tackle image segmentation problems. Such methods are
known for their high degree of accuracy, and, thanks to recent advances, their
amenability to parallelization. We focus on shared-memory parallel performance
in this study, with an eye towards future hybrid-parallel implementations that
build on our previous works [11,17,18,30].

We parallelize this unsupervised, graph-based learning method applied to
scientific image segmentation using three different approaches, and perform an
1 Advanced Light Source website: http://als.lbl.gov/.

http://als.lbl.gov/


Shared-Memory Parallel Probabilistic Graphical Modeling Optimization 129

in-depth performance analysis of each of the three: first by using C11-threads,
then using the Open Multi-Processing (OpenMP) API, and finally using data-
parallel primitives (Sort, Scan, Reduce, etc.). The C11-threads implementation
is the most coarse in terms of workload decomposition, where N pixel neighbor-
hoods are spread across P threads, where each thread receives N/P of the work.
The OpenMP implementation uses loop parallelization over the N neighbor-
hoods, which is a finer-grained distribution than the C11-threads version, and
also benefits from better load balance due to OpenMP’s dynamic scheduling
capabilities. The DPP implementation is the finest level of workload decompo-
sition, where the K operations in a given DPP are divided in chunks of size C
across P execution threads.

In this work, we evaluate the key performance characteristics of each imple-
mentation using strong scalability measures and runtime performance. We also
analyze the factors that lead to these performance characteristics by examining
hardware performance counters for metrics like code vectorization, number of
instructions executed, and memory cache utilization. The main contributions of
this paper are: (1) to compare performance of a PGM optimization algorithm
implemented with VTK-m-based data parallel primitives with ones based on
explicit threading and OpenMP; (2) to give insight into performance charac-
teristics of PGM optimization using VTK-m-based data parallel primitives; (3)
the first use of hardware performance counters to examine the performance of a
VTK-m-based code, where previous works looking at visualization and rendering
measure and report runtime only (e.g., [15–17,19,23,28]).

2 Background and Previous Work

In the following sections, we summarize works relating to image segmenta-
tion, graph-based methods including MRF, and approaches for performance and
portability using C11-threads, OpenMP, and data parallel primitives.

2.1 MRF-Based Image Segmentation

The process of segmenting an image involves separating various phases or compo-
nents from a picture using photometric information and/or relationships between
pixels/regions representing a scene. This essential step in an image analysis
pipeline has been given great attention recently when studying experimental
data [29]. There are several different types of image segmentation algorithms,
which can be divided into categories, such as: threshold-based, region-based,
edge-based, clustering-based, graph-based, and learning-based techniques. Of
these, the graph- and learning-based methods tend to achieve the highest accu-
racy, but at the highest computational cost.

Graph-based methods are well-suited for image segmentation tasks due to
their ability to use contextual information contained in the image, i.e., relation-
ships among pixels and/or regions. The probabilistic graphical model (PGM)
known as Markov random fields (MRF) [22] is an example of one such method.
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MRFs represent discrete data by modeling neighborhood relationships, thereby
consolidating structure representation for image analysis [21].

Despite their high accuracy, MRF optimization algorithms have high compu-
tational complexity (NP-hard). Strategies for overcoming the complexity, such as
graph-cut techniques, are often restricted to specific types of models (first-order
MRFs) [14] and energy functions (regular or submodular) [14]. For higher-order
MRFs and non-submodular functions, some strategies using parallelized graph
cuts and parallelized Belief Propagation have also been proposed [7,10,12,32].
These approaches, though, typically depend on orderly reduction or submodular
functions [34], which are undesirable constraints when dealing with complex and
large image datasets because they limit the contextual modeling of the problem.

In order to circumvent such drawbacks, recent works [24,25] have proposed
theoretical foundations for distributed parameter estimation in MRF. These
approaches make use of a composite likelihood, which enable parallel solutions
to subproblems. Under general conditions on the composite likelihood factoriza-
tions, the distributed estimators are proven to be consistent. The Linear and
Parallel (LAP) [26] algorithm parallelizes naturally over cliques and, for graphs
of bounded degree, its complexity is linear in the number of cliques. It is fully
parallel and, for log-linear models, it is also data efficient. It requires only the
local statistics of the data, i.e., considering only pixel values of local neighbor-
hoods, to estimate parameters.

Perciano et al. [30] describe a graph-based model, referred to as Parallel
Markov Random Fields (PMRF), which exploits MRFs to segment images.
Both the optimization and parameter estimation processes are parallelized using
the LAP method, and the implementation is based on C11 multithreading.
The first attempt to reimplement the PMRF algorithm is described in [11],
where a distributed-memory version of the algorithm is implemented using MPI.
Lessley et al. [18] reformulates the PMRF algorithm using data parallel primi-
tives implemented in the VTK-m library. This work takes advantage of a new
implementation of the maximal cliques problem also using DPPs [19].

Although the previous works study the computational performance of the
reimplemented versions of the PMRF algorithm, the correctness of the new ver-
sions is emphasized. In the work we present here, we describe a detailed study
of shared-memory scalability, as well as collecting hardware performance coun-
ters, such as FLOPS/vectorization, memory utilization, instruction counts, and
so forth, and use these to perform an in-depth analysis of three shared-memory
parallel implementations of the PMRF algorithm: C11-threads, OpenMP, DPP.
In the long term, these shared-memory parallel methods would be paired with
our distributed-memory parallel implementation [11] to produce a scalable,
hybrid-parallel implementation that is portable across HPC platforms and pro-
cessors.
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2.2 Performance and Portability

Open Multi-Processing (OpenMP). OpenMP has been used before to accel-
erate graph-based algorithms. Recently, Meng et al. [24] proposed a paralleliza-
tion of graph-based machine learning algorithms using OpenMP. The authors
also use LAPACK [2] and BLAS [4], which are highly vectorized and multi-
threaded using OpenMP, to optimize intensive linear algebra calculations.

Sariyuce et al. [31], describe a hybrid implementation of graph coloring using
MPI and OpenMP. Ersoy et al. [9] proposed a parallel implementation of a
shortest path algorithm for time dependent graphs using OpenMP and CUDA.
Time dependent shortest path problem (TDSPP) is another example of an NP-
hard problem, as the one we tackle in this paper.

We reformulate the PMRF algorithm using OpenMP by targeting loop paral-
lelization over neighborhoods, which is relatively coarse-grained when compared
to “inner-loop” parallelization. Load balancing is enabled through OpenMPs
dynamic scheduling algorithms.

Data Parallel Primitives (DPP). The primary motivation of using DPPs,
particularly those that are amenable to vectorization, is because this approach
appears promising for achieving good performance on multi- and many-core
architectures. Levesque and Voss, 2017 [20], speculate that vectorized codes may
achieve performance gains of as much as 10–30 fold compared to non-vectorized
code, with the added benefit of using less power on multi- and many-core archi-
tectures. DPPs are amenable to vectorization, and in turn, are capable of high
performance on multi- and many-core architectures. This idea is not new, but
goes over 20 years to early work by Blelloch [5], who proposed a vector-scan
model for parallel computing.

Lessley, et al., 2018 [18] present an implementation of the PMRF algorithm
using DPPs. The DPP form of PMRF required a non-trivial reformulation of
the reference C++/OpenMP implementation, where reformulation is required
to map traditional loop-based computations onto data parallel primitives such
as Sort, Scan, Reduce, etc. That work compared performance and scaling differ-
ences of DPP-PMRF and C++/OpenMP parallel versions by measuring runtime
performance.

The DPP-PMRF implementation relies on the VTK-m library [28], which
is a platform-portable framework that provides a set of key DPPs, along with
back-end code generation and runtime support for the use of GPUs (CUDA)
and multi-core CPUs (TBB [6]) from a single code base [27]. VTK-m achieves
parallelization by distributing the work of its DPPs across “threads” using a
chunking/blocking model, where a larger collection of work is distributed in
chunks or blocks across threads. This basic concept applies to both CPU and
GPU implementations.

For the work we present here, we are using the implementation of DPP-
PMRF from Lessley et al., 2018 [18], but building upon that previous work in
a significant way. Namely, the 2018 study measured only runtime, whereas in
the work we present here, we are measuring several different types of hardware
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performance counters to gain a better understanding of the factors contributing
to absolute runtime performance differences and relative scaling characteristics,
and compare those measures with those obtained from traditional OpenMP and
threads-parallel implementations of the PMRF algorithm.

3 Design and Implementation

We begin by presenting the baseline, serial MRF-based image segmentation algo-
rithm (Sect. 3.1). The subsequent subsections cover three different parallel imple-
mentations: C11-threads (Sect. 3.2), OpenMP (Sect. 3.3), and DPP (Sect. 3.4).
Each of these parallel subsections will focus on key parallelization topics, namely
work decomposition and the parallel algorithm implementation, with an empha-
sis on highlighting differences from the baseline implementation.

3.1 The Baseline MRF Algorithm

The baseline MRF algorithm, along with a threads-parallel variant, are described
in more detail in Perciano et al., 2016 [30]. The input consists of a grayscale
image, an oversegmentation of the input image, and a parameter indicating the
desired number of output labels (classes). The oversegmented image is a prelimi-
nary segmentation based upon a low-cost computational estimate. For example,
a threshold operator can produce an oversegmented image. The oversegmented
image is known to be inaccurate, but is inexpensive to compute. It is inaccurate in
that it has “too many” segments, or regions, hence the name “oversegmented”.
The oversegmented image serves as the starting point for MRF optimization,
which will merge and change oversegmented regions into a more accurate seg-
mentation.

The pseudocode for the Baseline MRF algorithm is shown in Algorithm 1.
It consists of a one-time initialization phase, followed by a compute-intensive,
primary parameter estimation optimization phase. The output is a segmented
image.

Algorithm 1. Baseline MRF
Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
1: Initialize parameters and labels randomly
2: Create graph from oversegmentation
3: Find maximal cliques of the graph
4: Construct k-neighborhoods for all maximal cliques
5: for each EM iteration do
6: for each neighborhood of the subgraph do
7: Compute MAP estimation
8: end for
9: Update parameters and labels

10: end for
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The goal of the initialization phase is the construction of an undirected graph
of pixel regions, each with statistically similar grayscale intensities among mem-
ber pixels. Starting with the original image and the oversegmented version of
that image, the algorithm then builds a graph from the oversegmented image,
where each vertex V represents a region in the oversegmented image (i.e., a
spatially connected region of pixels having similar intensity), and each edge E
indicates spatial adjacency of regions.

Next, in the main computational phase, we define an MRF model over the
set of vertices, which includes an energy function representing contextual infor-
mation of the image. In particular, this model specifies a probability distribution
over the k-neighborhoods of the graph. Each k-neighborhood consists of the ver-
tices of a maximal clique, along with all neighbor vertices that are within k edges
(or hops) from any of the clique vertices; in this study, we use k = 1.

The MRF algorithm then performs energy function optimization over each of
these neighborhoods. This optimization consists of an iterative invocation of the
expectation-maximization (EM) algorithm, which performs parameter estima-
tion using the maximum a posteriori (MAP) inference algorithm [13]. The goal
of the optimization routine is to converge on the most-likely (minimum-energy)
assignment of labels for the vertices in the graph; the mapping of the vertex
labels back to pixels yields the output image segmentation.

3.2 The C++/Threads Algorithm

The C++/Threads implementation uses the same input and parameters as the
Baseline implementation and performs the same types of computations. The
computation is parallelized by dividing the N neighborhoods evenly across each
of the T threads. In this case, the first group of N/T neighborhoods is assigned
to the first thread, the second N/T to the second thread, and so forth. Pro-
cessing consists of optimizing a set of neighborhoods using MAP and estimat-
ing the parameters for the desired labels (classes). In this implementation, a
shared-memory array that hold results from the optimization process is used
by all threads on subsequent EM iterations. This shared-memory array is a
vector that carries the estimated classes for each vertex of the graph. During
the parallel optimization process, the threads are synchronized every time the
shared-memory is updated with new estimated values for each vertex.

This threads-based model is coarse-grained parallelism: each thread is respon-
sible for a rather sizeable amount of work, with relatively little interaction
between threads. Also, the way the algorithm distributes the work across threads
does not take into account the size of the neighborhoods. This can potentially
lead to load imbalance, given that the neighborhoods can vary considerably
depending on the input and oversegmentation.
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Algorithm 2. C++/Threads: Threaded implementation of parallel MRF
Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
1: Initialize parameters and labels randomly
2: Create graph from oversegmentation
3: Find maximal cliques of the graph
4: Construct k-neighborhoods for all maximal cliques
5: Partition into T groups of size N/T
6: for In parallel : each thread processes its N/T group do
7: for each EM iteration do
8: for each neighborhood of the subgraph do
9: Compute MAP estimation

10: end for
11: Update parameters and labels
12: end for
13: end for

3.3 The C++/OpenMP Algorithm

The OpenMP-parallel version of the MRF algorithm, shown in Algorithm 3,
uses the same input and parameters as the Baseline implementation and per-
forms the same types of computations. This version is finer-grained in terms
of workload distribution as compared to the C++/Threads version: the inner
loop of Algorithm 3 iterates over neighborhoods, of which there are typically
many (thousands for 2D images to millions for 3D volumes). We parallelize that
neighborhood-iteration loop using OpenMP, and use OpenMP’s dynamic thread
scheduling algorithms to achieve more even load balance across all threads. The
challenge in this problem is that the amount of computation required for each
neighborhood varies as a function of the size of the neighborhood and its con-
nectivity to adjacent regions.

Algorithm 3. C++/OpenMP: Parallelization with OpenMP
Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
1: Initialize parameters and labels randomly
2: Create graph from oversegmentation
3: Find maximal cliques of the graph
4: Construct k-neighborhoods for all maximal cliques
5: for each EM iteration do
6: for OpenMP parallel each neighborhood of the subgraph do
7: Compute MAP estimation
8: end for
9: Update parameters and labels

10: end for
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Compared to the threads implementation, the OpenMP design targets a finer
granularity so as to achieve better load balance across threads. One of the objec-
tives of our performance study is to better understand the performance impact
of these different design choices.

3.4 VTK-m/DPP

Our VTK-m/DPP implementation [18] is a complete reformulation of the MRF
algorithm using data-parallel primitives. To make use of DPPs, the implemen-
tation recasts the algorithm into a sequence of DPP-based processing steps, e.g,
sequences of operations like Scan, Sort, and Reduce.

Algorithm 4 shows pseudocode for the VTK-m/DPP algorithm. Each of these
steps is a complex seqeuence of DPP calls. For example, from [18], the line that
reads”Construct k-neighborhoods from maximal cliques in parallel” consists of
several DPP operations:

Algorithm 4. VTK-m/DPP: Data parallel primitive version of Markov Random
Field algorithm
Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
1: DPP in parallel: Create graph from oversegmentation
2: DPP in parallel: Enumerate maximal cliques of graph
3: Initialize parameters and labels randomly
4: DPP in parallel: Construct k-neighborhoods from maximal cliques
5: DPP in parallel: Replicate neighborhoods by label
6: for each EM iteration do
7: DPP in parallel: Gather replicated parameters and labels
8: for each vertex of each neighborhood do
9: DPP in parallel: MAP estimation

10: end for
11: DPP in parallel: Update parameters and labels
12: end for

1. A Map operator finds the count of neighbors that are within 1 edge from the
vertex and not a member of the vertex’s maximal clique;

2. A Scan operator adds the counts of neighbors for the purpose of allocating a
neighbors array work buffer;

3. A Map operator populates the newly created neighbors array;
4. The SortByKey and Unique operators remove duplicate neighbors.

There are several significant differences between the VTK-m/DPP, C++/-
OpenMP, and C++/Threads implementations of this method. One is the level of
granularity in parallelization. The C++/Threads is the coarsest decomposition,
C++/OpenMP in the middle, and the VTK-m/DPP is the finest level of gran-
ularity of parallelization. Each of the DPPs is distributed in chunking fashion
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across each of the T available execution threads. Another key difference is in the
relative level of “verboseness” of the algorithm itself. While we did not count the
number of lines of code, as we shall see in the Results section (Sect. 4.3), there is
a significant difference in the number of instructions executed by each of these
implementations.

4 Experiment and Results

The experiments in this section serve to answer two primary questions. First,
we are interested in how well the different implementations perform on a single-
socket study: what are the key performance characteristics of each version? Sec-
ond, we collect hardware performance counters to understand how well each
implementation vectorizes and makes use of the memory hierarchy: what are
the factors that lead to these performance characteristics? Sect. 4.1 describes
the source datasets and the computational platform that we use for the experi-
ments. Sect. 4.2 presents results of the study, which we discuss in Sect. 4.3.

4.1 Datasets, Computational Platforms, and Software

Datasets. We are using an experimental dataset that was generated by the
Lawrence Berkeley National Laboratory Advanced Light Source X-ray beamline
8.3.22 [8] for all tests. This dataset contains cross-sections of a geological sam-
ple and conveys information regarding the x-ray attenuation and density of the
scanned material as a gray scale value. The scanned samples are pre-processed
using a separate software that provides reconstruction of the parallel beam pro-
jection data into a 1 GB stack of 500 image slices with dimensions of 1290×1305.

For our experiments, we use two augmented versions of this dataset, where
we replicate the data of each cross-section by mirroring in both the X and Y
dimensions of the data, resulting in one 3.3 GB stack of 500 image slices with
dimensions of 2580 × 2610 (referred to as the ‘Sandstone2K’ dataset), and one
6.6 GB stack of 500 image slices with dimensions of 5160 × 5220 (referred to as
the ‘Sandstone5k’ dataset).

Hardware Platforms
Intel Xeon Phi. Cori.nersc.gov is a Cray XC40 system comprised of 2,388
nodes containing two 2.3 Ghz 16-core Intel Haswell processors and 128 GB
DDR4 2133 MHz memory, and 9,688 nodes containing a single 68-core 1.4 GHz
Intel Xeon Phi 7250 (Knights Landing) processor and 96 GB DDR4 2400 GHz
memory. For our experiments, we use the KNL processor.3 Compiler: Intel ICC
19.0.3.199.

2 http://microct.lbl.gov.
3 Cori configuration page: http://www.nersc.gov/users/computational-systems/cori/

configuration/.

http://microct.lbl.gov
http://www.nersc.gov/users/computational-systems/cori/configuration/
http://www.nersc.gov/users/computational-systems/cori/configuration/
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Ivy Bridge. Allen.lbl.gov is an Intel(R) Xeon(R) CPU E5-2609 v2 containing
two 2.5 GHz 4-core Intel Xeon Ivy Bridge EN/EP/EX processors and 32 GB of
memory. Compiler: Intel ICC 19.1.0.166.

Software Environment. The software environment in these tests consists of
several different codes, each of which we describe below.

Oversegmentation. We use a custom implementation of the Simple Linear Iter-
ative Clustering (SLIC) method [1]. This implementation will take as input 2D
images or 3D volumes of scalar values (gray-level images), and output 2D images
or 3D volumes at the same resolution as the input data, but where output pix-
els/voxels are region label values, rather than pixel/voxel luminosity. We prepare
using the input images/volumes described above, and process them using the fol-
lowing SLIC parameters: superpixel size = 80, compactness = 10.

C++/OpenMP and C++/Threads. The C++/Threads version of PMRF is
implemented using C11 multithreading for parallelization. The C++/OpenMP
algorithm is implemented with OpenMP 4.5. We take advantage of OpenMP loop
parallelism constructs to achieve outer-parallelism over MRF neighborhoods,
and make use of OpenMP’s dynamic scheduling algorithm in the performance
studies.

VTK-m/DPP. The VTK-m/DPP algorithm is implemented using the platform-
portable VTK-m toolkit [27], and coded to VTK-m API version 1.3.0. In our
experiments, we configured VTK-m for parallelism on the CPU by enabling an
OpenMP backend, and set the VTK-m index integer (vtkm::Id) size to 64 bits.

Hardware Performance Counters. For measuring hardware performance coun-
ters on CPU platforms, we made use of likwid-perfctr, which is part of the
LIKWID toolsuite [33]. LIKWID is a collection of command line programs that
facilitate performance-oriented program development and production in x86 mul-
ticore environments under Linux. Using LIKWID 4.3.4 on Allen/Ivy Bridge and
4.3.0 on Cori/KNL, we collected and analyzed several different performance
counters and restricted these measures to the PGM graph optimization phase
only by using LIKWID’s marker API:

– Counts of total number of double-precision scalar and vector instructions exe-
cuted (FLOPS DP), as well as total number of all scalar and vector instructions
executed (UOPS RETIRED *).

– Measures related to L2 cache: L2 request rate, miss rate, and miss ratio
(L2CACHE).

– Vectorization ratio. On Ivy Bridge, LIKWID reports this directly. On KNL,
we compute this ratio to be V/(V + S), where V is the count of vector
(“packed”) operations, and S is the count of scalar operations.
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4.2 Performance and Scalability Studies: Parallel MRF

Here, we present the results of performance and scaling studies of the three differ-
ent PMRF implementations (VTK-m/DPP, C++/OpenMP, C++/Threads) on
two different platforms (KNL, Ivy Bridge). The primary objective is to compare
their runtime performance and scalability, and to examine hardware counters
to gain deeper insight into the performance characteristics of each method. The
discussion and analysis of these results appears in Sect. 4.3, which follows.

Runtime. The first performance study question we examine is a comparison of
runtimes among the implementations used. We executed all the codes at varying
levels of concurrency on the KNL platform and Ivy Bridge platforms using two
different datasets (sandstone2k and sandstone5k). The speedup plots for the
datasets on both platforms are shown in Fig. 2 and Fig. 3.

Speedup is defined as S(n, p) = T∗(n)
T (n,p) where T (n, p) is the time it takes to

run the parallel algorithm on p processes with an input size of n, and T ∗(n) is
the time for the best serial algorithm on the same input.

Fig. 2. Speedup of the Sandstone2K and Sandstone5K datasets on Cori. The horizontal
axis is the concurrency level and the vertical axis measures the speedup.

Fig. 3. Speedup of the Sandstone2K and Sandstone5K datasets on the Ivy Bridge
platform. The horizontal axis is the concurrency level and the vertical axis measures
the speedup.
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Examining these two speedup plots, we notice that although the VTK-
m/DPP version presents much faster runtimes at lower concurrencies, this imple-
mentation shows the worst speedups for both platforms. On the Ivy Bridge
platform, both the C++/Threads and C++/OpenMP versions present the best
speedup values with very similar results. On the other hand, on the KNL plat-
form, the C++/Threads version presents a similar speedup compared to the
VTK-m/DPP version.

Hardware Performance Counters. To gain a deeper understanding into code per-
formance, we collect hardware performance counters using LIKWID on the KNL
and Ivy Bridge platforms for the three different implementations. Table 1 shows
the results of the three different implementations run on the KNL platform. Here,
we vary concurrency across the range of 1, 2, ..., 256. Using LIKWID, we record
the counts for the FLOPS DP and L2CACHE performance counter groups. Results
for the Ivy Bridge platform tests are shown in Table 2, where concurrency varies
across 1, 2, ..., 8.

Table 1. KNL Platform and Hardware Performance Counters for the Sandstone5K
Dataset. Legend for counters: FLOPS: FLOPS DP (∗109); Vector%: Vectorization
Ratio (Proxy); L2 Miss Ratio: average % across all threads at a given concurrency.

Counter Code ver. Concurrency

1 2 4 8 16 32 64 128 256

Runtime (secs) VTK-m/DPP 5.78 3.93 3.01 1.33 0.94 0.90 1.84 6.65 27.39

C++/OpenMP 143.56 72.75 36.48 18.25 9.14 4.58 2.31 1.40 1.13

C++/Threads 140.16 70.24 35.48 18.09 9.89 6.73 10.92 21.60 43.23

1 2 4 8 16 32 64 128 256

FLOPS VTK-m/DPP 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.88 0.88

C++/OpenMP 49.32 49.32 49.32 49.32 49.32 49.32 49.32 49.32 49.32

C++/Threads 45.39 45.49 45.59 45.79 46.19 47.00 48.62 51.84 57.66

1 2 4 8 16 32 64 128 256

L2 Miss Ratio % VTK-m/DPP 0.01 0.20 0.39 0.97 2.86 7.72 24.79 61.05 64.66

C++/OpenMP 0.01 0.01 0.02 0.09 0.09 0.05 0.11 1.22 8.12

C++/Threads 0.01 0.01 0.06 0.16 0.28 0.36 0.42 0.94 1.57

1

Vector % VTK-m/DPP 43.48%

C++/OpenMP 51.44%

C++/Threads 46.89%

4.3 Discussion and Analysis

The VTK-m/DPP code is executing far fewer floating point instructions than
its C++/OpenMP and C++/Threads counterparts. For all the test results we
present, the runtime difference between the DPP (VTK-m/DPP) and non-DPP
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(C++/OpenMP, C++/Threads) versions appears to be proportional to the dif-
ference in the amount of floating point instructions being executed. While the
DPP code is solving the same set of numerical equations as the non-DPP code
(for the MRF optimization), it does so using a completely different algorithmic
formulation. The DPP code design involved a significant refactorization of the
MRF optimization algorithm to map it to data parallel primitives [18]. This
reordering has resulted in significantly fewer operations being required to per-
form the computation, and is one of the primary findings of this study.

Vectorization Ratios. In both Table 1 and Table 2, we report a Vectorization
Ratio only for the serial configuration because this value does not change in a
significant way with increasing concurrency: the algorithm’s complexity is pri-
marily dependent upon problem size.

On the KNL platform, we see vectorization ratios that are comparable across
all three implementations, in the range of about 43%–51%. This result suggests
that the looping structures in all three implementations are amenable to a rea-
sonable level of automatic vectorization by the compiler on the KNL platform.

On the Ivy Bridge platform, the C++/OpenMP and C++/Threads versions
show vectorization ratios above 70%, while the VTK-m/DPP version shows
a much lower vectorization ratio of about 18%. There are two likely factors

Table 2. Ivy Bridge Platform and Hardware Performance Counters for the Sand-
stone5K Dataset. Legend for counters: FLOPS: (Double Precision Scalar FLOPS +
Double Precision Vector FLOPS) / (109); Vector%: Vectorization Ratio; L2 Miss Ratio:
average % across all threads at a given concurrency.

Counter/Measure Code version Concurrency

1 2 4 8

Runtime (secs) VTK-m/DPP 2.51 1.46 1.30 0.83

C++/OpenMP 13.34 6.66 3.35 1.83

C++/Threads 13.94 7.00 3.51 2.16

1 2 4 8

FLOPS (∗109) VTK-m/DPP 0.47 0.33 0.33 0.33

C++/OpenMP 7.14 7.13 7.13 7.13

C++/Threads 7.25 7.26 7.26 7.27

1 2 4 8

L2 Miss Ratio % VTK-m/DPP 0.26 0.26 0.25 0.25

C++/OpenMP 0.05 0.07 0.05 0.05

C++/Threads 0.04 0.06 0.06 0.06

1

Vector % VTK-m/DPP 18.16%

C++/OpenMP 73.31%

C++/Threads 70.43%
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contributing to this difference. The first is in the code itself: the C++/OpenMP
and C++/Threads codes implement their computations using C++ vector
objects, and these are likely easier for the compiler to auto-vectorize compared
to code that performs explicit blocking and chunking, as is the case with VTK-m
internals, which will take a large DPP operation and decompose it into smaller
chunks, which are then executed in parallel by one of several backends (TBB,
OpenMP, or CUDA). With explicit blocking and chunking, there may be an
adverse interplay between how VTK-m blocks and chunks and what the com-
piler needs for a given architecture. This particular issue merits further study to
better understand this interplay.

The second reason concerns variation in how the compiler auto-vectorizes
code for each architecture. What works well on one architecture may not work
so well on a different architecture: we see this with the VTK-m/DPP code base
where the Intel compiler auto-vectorizes code to produce 43.48% vectorization on
the KNL platform, but is able to manage only 18.16% on the Ivy Bridge platform.
With the hardware performance counters we have access to with LIKWID, we are
unable to discern precisely which type of vector instructions are being executed
(e.g., SSE, AVX, AVX512) on each platform, which would in term provide more
useful insights.

At the outset of this study, we had the expectation that the VTK-m/DPP
code would have significantly better vectorization characteristics, which would
then account for its significantly faster runtime, particularly as we observed in
earlier studies [18]. Instead, what we see are comparable levels of vectorization
on the KNL (43%–51%), and a lower vectorization level on Ivy Bridge (18%).

It turns out that there are other factors that, in this study, have much more
impact on code performance than vectorization, namely the absolute number
of instructions executed. One of the primary findings of this study is that our
refactoring a complex graph algorithm (PMRF) to use DPPs results in signif-
icantly fewer instructions being executed compared to implementations using
C++/OpenMP and C++/Threads.

Scalability. These studies show differing levels of scalability, as evidenced in the
speedup charts shown in Fig. 2. The VTK-m/DPP code on the KNL platform
shows decreasing runtime up to about 32 cores, after which it increases in run-
time. Looking at the performance counters in Table 1, we see a corresponding
increase in the L2 Cache Miss ratio. The L2 cache misses are due to how KNL
shares L2 cache across hardware threads, where increasing the number of threads
to exceed the number of cores causes the amount of L2 cache available to each
core to be reduced. In other words, if there is one thread per core, it will use all
of the L2 cache, if two threads share a core, each thread has one-half of the L2
cache, and if three or four threads share a core, then each thread has access to
1/4 of the L2 cache.

On the KNL, the C++/Threads implementation shows decreasing runtime
up to about 32 cores, after which point the runtime increases significantly.
Whereas the VTK-m/DPP code shows significant L2 cache misses at higher
concurrency, the C++/Threads version does not. Instead, this performance
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difference between C++/Threads and C++/OpenMP at higher concurrency is
most likely the result of a highly optimized OpenMP loop parallelization that is
provided by the compiler, an effect that does not become readily apparent until
higher degrees of node-level concurrency on the KNL platform.

On the Ivy Bridge platform, all implementations exhibit better scalability
than on the KNL platform. This is most likely the result of a large L3 cache that
is shared across all cores, something that is not present on the KNL platform.
However, the Ivy Bridge study only goes up to 8 threads, and the declined in
speedup shown in the KNL study (Fig. 2) does not begin until higher levels of
concurrency. Therefore, while we may see a decline in speedup on the Ivy Bridge
at higher concurrency, since that platform has only 8 cores, our study only goes
up to 8-way concurrency.

Platform Portability Issues. One of the objectives of OpenMP and VTK-m is to
provide platform portability, so that a given code implementation can be run,
without modification, on CPU and GPU platforms. We have demonstrated in
previous work [18] that the VTK-m/DPP is capable of running on the GPU
platform. For the C++/OpenMP implementation, there are significant restric-
tions and limitations on OpenMP in terms of what kind of code can be pro-
cessed successfully to emit device code. At the present time, our C++/OpenMP
implementation would require significant changes, including, but not limited to,
eliminating the use of “ragged arrays”, which are not naturally supported by
OpenMP on the GPU. This will be the subject of future work. Meanwhile, the
KNL platform in these studies allows us to go to 256-way parallel for the pur-
poses of performance analysis. This degree of node-level concurrency is expected
to be commonplace on future platforms.

5 Conclusion and Future Work

One of the objectives of this work has been to understand the performance char-
acteristics of three different approaches for doing shared-memory parallelization
of a probabilistic graphical modeling optimization code, which serves as the
basis for a highly accurate, and scalable method for scientific image segmen-
tation. The work is motivated by the need to improve throughput of scientific
analysis tools in light of increasing sensor and detector resolution. The three
parallelization methods consist of two that are “traditional” (C++/OpenMP
and C++/Threads) and one that is “non-traditional” (VTK-m/DPP).

At the outset of this work, we expected that the VTK-m/DPP implementa-
tion was running faster than the other two due to better vectorization charac-
teristics. The results of our performance study point to a different reason for the
performance difference: the VTK-m/DPP version executes many fewer instruc-
tions. The reason is because the process of reformulating a complex, graphical
model optimization code to use sequences of DPPs results in runtime code that
is more terse and efficient in terms of number of computations needed to pro-
duce the same answer as the corresponding C++/Threads and C++/OpenMP
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formulations. This bit of insight, and the performance analysis methodology we
used, is the primary contribution of this paper. To our knowledge, this study is
the first of its kind: an in-depth performance analysis of codes based on DPPs,
OpenMP, and threads.

Future work will include pressing deeper into the topic of platform portability.
While our VTK-m/DPP implementation can run on both CPU and GPU plat-
forms, owing to the capabilities of the underlying DPP implementation, which
is based on VTK-m, our OpenMP codes are not yet capable of running on GPU
platforms. For OpenMP to emit code that runs on a GPU, the application must
conform to a strict set of memory access patterns. Future work will include
redesigning our code so that it does conform to those limitations.

The topic of platform portability and performance is of significant concern
as computational platforms increase in concurrency, particularly at the node
level. For that reason, this particular study is timely, for it sheds light on the
performance characteristics of a non-trivial, data-intensive code implemented
with three different methodologies, one of which is relatively new and holds
promise.
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9. Ersoy, M.A., Özturan, C.: Parallelizing shortest path algorithm for time dependent
graphs with flow speed model. In: 2016 IEEE 10th International Conference on
Application of Information and Communication Technologies (AICT), pp. 1–7,
October 2016. https://doi.org/10.1109/ICAICT.2016.7991833

10. Eslami, H., Kasampalis, T., Kotsifakou, M.: A GPU implementation of tiled belief
propagation on markov random fields. In: 2013 Eleventh ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEMOCODE 2013), pp.
143–146 (Oct 2013)

11. Heinemann, C., Perciano, T., Ushizima, D., Bethel, E.W.: Distributed memory
parallel markov random fields using graph partitioning. In: Fourth International
Workshop on High Performance Big Graph Data Management, Analysis, and Min-
ing (BigGraphs 2017), in conjunction with IEEE BigData 2017, December 2017

12. Jamriska, O., Sykora, D., Hornung, A.: A cache-efficient graph cuts on structured
grids. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.
3673–3680 (2012)

13. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques - Adaptive Computation and Machine Learning. MIT Press, Cambridge
(2009)

14. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph
cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)
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Abstract. We analyze the opportunities for in-transit visualization to
provide cost savings compared to in-line visualization. We begin by devel-
oping a cost model that includes factors related to both in-line and in-
transit which allows comparisons to be made between the two methods.
We then run a series of studies to create a corpus of data for our model.
We run two different visualization algorithms, one that is computation
heavy and one that is communication heavy with concurrencies up to
32, 768 cores. Our primary results are in exploring the cost model within
the context of our corpus. Our findings show that in-transit consistently
achieves significant cost efficiencies by running visualization algorithms
at lower concurrency, and that in many cases these efficiencies are enough
to offset other costs (transfer, blocking, and additional nodes) to be cost
effective overall. Finally, this work informs future studies, which can
focus on choosing ideal configurations for in-transit processing that can
consistently achieve cost efficiencies.

1 Introduction

In situ visualization is increasingly necessary to address I/O limitations on super-
computers [2,3]. That said, the processing paradigm for in situ visualization can
take multiple forms. With this study, we consider two popular forms. In the first
form, which we refer to in this paper as in-line visualization, the visualization
routines are embedded into the simulation code, typically via a library which is
linked into the simulation binary. In this case, the visualization routines directly
access the memory of the simulation code. When it is time to perform visual-
ization tasks, the simulation pauses, and the visualization tasks use the same
nodes that were being used for the simulation. With the second form, which
we refer to in this paper as in-transit visualization, extra compute nodes run
concurrently to the simulation. In this case, the simulation runs on the primary
compute nodes (the “simulation nodes”) and the visualization runs, as a separate
program, on the extra compute nodes (the “in-transit nodes”). The simulation
c© Springer Nature Switzerland AG 2020
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shares data with the visualization program by sending data over the network.
In this scenario, the simulation and visualization are both running at the same
time.

In-line and in-transit both have beneficial aspects [6]. For example, in-transit
naturally lends itself to fault tolerance, while in-line saves on usage of primary
memory. In short, there are good reasons motivating the use of either technique.
However, one factor has a special importance, namely cost. With this study, we
define cost to be in units of “node seconds,” i.e., using ten compute nodes for
one second or one compute node for ten seconds are both “ten node seconds.”
Cost directly informs the size of the request needed on a supercomputer to
perform the simulation. Therefore, we believe understanding the relative costs
of in-transit and in-line is critical in helping scientists determine which paradigm
to use. While other factors (fault tolerance, memory usage, etc.) may play a role
in the decision, we believe cost will be a critical factor.

In-transit visualization incurs new costs that do not exist with in-line visu-
alization. There are additional resources for the in-transit nodes, and a new
activity to perform: transferring the data from the simulation nodes to the in-
transit nodes. Further, if the in-transit nodes are not able to perform their tasks
quickly enough, they can block the simulation from advancing. While blocking
the simulation is not the only possible decision for this scenario, it is the decision
we consider in the context of this paper.

Despite these additional costs, in-transit also has a potential cost advantage
that in-line does not have. The number of in-transit nodes is typically much less
than the number of simulation nodes. Further, when algorithms exhibit poor
scaling, fewer nodes are more efficient. In effect, in-transit has the potential to
reduce costs that result from poor scaling of visualization algorithms. Consider a
scenario: if a visualization algorithm takes 1 s on 1000 nodes running in-line, but
the same algorithm takes 50 s on 10 nodes running in-transit, then the visual-
ization cost is 1000 node seconds for in-line and 500 node seconds for in-transit.
We define a term to capture this phenomenon: Visualization Cost Efficiency
Factor (VCEF). V CEF is the in-line visualization cost divided by the in-
transit visualization cost. In the scenario just described, the V CEF would be
1000/500 or 2—the cost to perform in-line is 2X more than in-transit. Of course,
V CEF is just one consideration for in-transit, and must be considered alongside
its other factors, including, extra resources, transfer costs, and blocking, which
impose barriers to cost savings.

Our hypothesis entering this study is that there are configurations of in-
transit visualization such that the cost to reach the final solution are less in-
transit than in-line. To that end, for this study, we consider the topic of relative
costs between in-transit and in-line visualization. What makes our study novel is
the identification and usage of V CEF . We observe that V CEF is a significant
phenomenon; our communication-heavy algorithm regularly yields a V CEF of
four or above, and even our computation-heavy algorithm yields such values at
very high concurrency. This high V CEF value in turn allows in-transit to become
cost effective overall in many scenarios, as the savings are enough to offset other
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costs (extra resources, transfer costs, and blocking). We also provide a model for
reasoning about this space, and a corpus of data that reflects experiment times
for currently popular software. Overall, this study provides significant evidence
that in-transit can be cost effective.

2 Related Works

In recent years, some application teams have began seeing the need to adopt the
in situ approach for visualization and analysis of large-scale simulations [10]. One
strength of in situ methods is the ability to access all of the data during the course
of a simulation, and only save what is interesting. This means, in situ is not just a
tool for visualization, but also for processing of data such as reduction, explorable
feature extractions, simulation monitoring, and the generation of statistics [11].
The choice then, comes down to which in situ approach is appropriate for a given
application.

To aid in making that choice, several studies have looked at in-transit and
in-line from the perspective of time. Morozov et al. [16] describes a system for
launching in situ/in-transit analysis routines, and compares each in situ tech-
nique based on time to solution for two different analysis operations. They find
there were times when in-transit analysis was faster due to how the analysis
code scaled. Friesen et al. [5] describes a setup where in-line and in-transit visu-
alization are used in conjunction with a cosmological code to run two different
analysis routines. They analyze the time to solution using both in situ tech-
niques, finding that there are configurations where in-transit is faster to use,
due to the inter-node communication overhead of the analysis routines. These
and other studies have largely focused on analysis pipelines which can have differ-
ent communication and computation scaling curves than visualization pipelines.
Further, they do not do an in depth analysis of the trade-offs associated with
in-transit or in-line methods.

Our work takes a different view than these past works. First, we concentrate
on in situ visualization pipelines. Second, we focus specifically on in-line in situ
vs. in-transit in situ from the perspective of visualization frequency, resource
requirements, and how different combinations of these factors impact the final
cost of the simulation and visualization for research scientists.

There are three highly relevant works preceding this work:

– Oldfield et al. [17] also considered in-transit and in-line costs. The main dif-
ference between their work and our own is that they focused on analysis tasks
which did not benefit from a V CEF speedup. As such, their findings differ
from ours.

– Malakar et al. did twin studies on cost models, one for in-line [12] and one for
in-transit [13]. Once again, these studies did not consider V CEF . Further,
they considered optimizing allocation sizes and analysis frequencies which is
a complementary task to our effort.
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– Work by Kress et al. [7] considered trade-offs between in-transit and in-line
for isosurfacing at high concurrencies. This study was the first to show evi-
dence of V CEF . However, the algorithm considered was computation-heavy,
so the extent of the effect was smaller and only appeared at very high con-
currency. Further, that paper lacked a cost modeling component, rather just
observing that the phenomenon was possible. Our paper focuses exclusively
on cost savings, providing a model and considering both computation- and
communication-heavy visualization algorithms. Finally, we note the corpus of
data for our study in part draws on runs from the Kress et al. study.

3 Cost Model

This section defines a cost model for determining when in-transit visualization
can cost less than in-line visualization. First, terms are introduced for the oper-
ations that occur in both in-line and in-transit visualization. Next, we use those
terms to demonstrate when in-transit will cost less than in-line visualization, and
provide a discussion for when and how this occurs. Finally, we derive a formu-
lation to determine the degree of scalability of in-transit over in-line, (V CEF ),
that is required for in-transit to be cost effective.

3.1 Definition of Terms

Below we define terms for both in-line and in-transit visualization operations.

– Let T be the time for the simulation to advance one cycle.
– Let N be the number of nodes used by the simulation code.
– Let Resp be the proportion of nodes (resources) used for in-transit visu-

alization. E.g., if the number of nodes for the simulation (N) is 10,000
and the number of nodes for in-transit visualization is 1,000, then Resp =
1, 000/10, 000, which is 0.1.

– Let V isp be the proportion of time spent doing visualization in the in-line
visualization case. E.g., if T is 5 s and the in-line visualization time is 1 s,
then V isp = 1/5, which is 0.2.

– Let Blockp be the proportion of time that the simulation code is blocking
while waiting for in-transit visualization to complete. E.g., if T is 5 s and
the simulation has to wait an additional 2 s for the in-transit resources to
complete, then Blockp = 2/5, which is 0.4. If the in-transit visualization
completes and does not block the simulation, then Blockp is 0.

– Let V CEF be the term identified earlier in this paper that captures the effi-
ciency achieved by running at lower concurrency. E.g., if in-line visualization
took 1 s on 10,000 nodes, but in-transit visualization took 5 s on 1,000 nodes,
then V CEF would be 1×10,000

5×1,000 , which is 2.

We have two terms for transferring data because sending data from the simula-
tion side may be faster than receiving it on the in-transit side. For example, if
8 simulation nodes send to 1 visualization node, then that 1 visualization node
will need to unserialize eight times as much data as each of the simulation nodes
serialized.



150 J. Kress et al.

– Let Sendp be the proportion of time by the simulation code sending data to
in-transit visualization resources. E.g., if T is 5 s and the send time is 2 s, then
Sendp = 2/5, which is 0.4.

– Let Recvp be the proportion of time spent receiving data on the in-transit
visualization resources. E.g., if T is 5 s and the transfer time is 2 s, then
Recvp = 2/5, which is 0.4.

3.2 Base Model Defined

We define our base cost model below. This cost model will be refined in Sect. 3.4
as we consider the implications of blocking. The cost for in-transit visualization
will be lower than in-line visualization when:

(total resources with in-transit) × (time per cycle for simulation with in-transit)
<

(total resources with in-line) × (time per cycle for simulation with in-line)
=⇒

(#in-transit nodes + #simulation nodes)×
(simulation cycle time + transfer time + block time)

<
(#simulation nodes) × (simulation cycle time + in-line vis time)

(1)

Using the terms defined above in Sect. 3.1, this becomes:

(N × Resp + N) × (T + T × Sendp + T × Blockp) < (N) × (T + T × V isP ) (2)

This equation can be simplified by dividing both sides by the simulation cycle
time (T ) and number of nodes (N):

(1 + Resp) × (1 + Sendp + Blockp) < (1 + V isP ) (3)

If Eq. 3 is true, then in-transit costs less than in-line.

3.3 Base Model Discussion

In-transit visualization has three different costs that do not occur with in-line.
(1) In-transit visualization requires data transfer, which slows down the sim-
ulation nodes. (2) In-transit visualization requires dedicated resources beyond
those required for in-line. If the in-transit visualization finishes quickly, these
additional resources sit idle, and yet still incur cost. (3) In-transit can block the
simulation if the visualization is not finished before the simulation is ready to
send data for the next cycle. This is very harmful since it slows down the sim-
ulation nodes. There are alternatives to blocking, for example skipping cycles,
and only visualizing the latest. In this study, our focus is on blocking, and we
do not consider the alternatives.

Given the three additional costs incurred by in-transit, the only way for it to
cost less than in-line is for the visualization to run faster at lower concurrency.
In other words, the cost savings with in-transit can only occur if the benefit of
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(V CEF ) outweighs the combined effects of the three additional costs described
above. The fact that certain operations are more efficient at lower levels of con-
currency provides an opporunity for a more cost effective solution.

That said, there are scenarios where any value of V CEF is insufficient to
achieve cost savings. Examples where in-transit can never be more cost effective,
regardless of V CEF , are discussed below:

– If blocking takes longer than in-line visualization (e.g., Blockp = 0.3, V isp =
0.2), it is impossible to be more cost efficient. For example, even if T = ε,
then (1 + ε) × (1 + ε + 1.3) < (1 + 1.2) is not possible.

– Further, even if Blockp = 0 (no blocking), then some in-transit configurations
will still always be less efficient:

• if the simulation transfer cost is bigger than the in-line visualization time
(e.g., Sendp = 0.4, V isp = 0.2), then: (1 + ε) × (1 + 0.4 + 0) < 1.2

• if there are many in-transit nodes (e.g., Resp = 0.5) and the in-line visu-
alization time is sufficiently fast (e.g., V isp = 0.5), then: (1 + 0.5) × (1 +
ε + 0) < 1 + 0.5

3.4 When Does Blocking Occur?: Replacing Blockp via V CEF

In this section we expand the model by using the V CEF term to determine
when blocking will occur. We then present two new equations that define when
in-transit will cost less if blocking does or does not occur.

Consider what it means to block. Blocking occurs when in-transit resources
are taking longer to do their job than the simulation resources are taking to do
their job. Similarly, “not blocking” means that the in-transit resources are doing
their job faster than the simulation resources take to do their job. So, what does
“time to do their job” mean? For the simulation side, this means the time to
advance the simulation plus the time to send the data, i.e., T + T × Sendp. For
the in-transit side, this means the time to receive data (T ×Recvp) plus the time
to do the visualization task. This latter time is explored below.

Nominally, assuming that visualization scaled perfectly as a function of con-
currency, the cost (number of node seconds) to do the visualization task can be
directly calculated from the in-line case: N ×(V isp×T ). However, a key premise
of this study is that in-transit has an advantage at lower concurrency because of
V CEF . Because in-transit is running at a lower concurrency, the cost is scaled
by the V CEF term: N×(V isp×T )

V CEF . Finally, the time to carry out the visualization
task on the in-transit nodes would be the V CEF -reduced cost divided by the
resources (N × Resp). Thus, the in-transit visualization time is:

N × (T × V isp)
V CEF × N × Resp

(4)

Canceling out N gives a simpler form:

V isp × T

V CEF × Resp
(5)
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Restating, blocking occurs with in-transit when the time to receive data plus
the visualization time is greater than the simulation time plus the time to send
data:

Recvp × T +
V isp × T

V CEF × Resp
> T × (1 + Sendp) (6)

This means that blocking does not occur if:

Recvp × T +
V isp × T

V CEF × Resp
≤ T × (1 + Sendp) (7)

The terms in Eq. 7 can be rearranged to find the V CEF values when blocking
does not occur:

V isp
Resp × (1 + Sendp − RecvP )

≤ V CEF (8)

This analysis on blocking informs the original question: when does in-transit
incur less cost than in-line? This can be answered using a combination of Eq. 3
and our observations about blocking in this section. If blocking does not occur,
then Blockp drops out as zero, and Eq. 3 is simplified:

(1 + Resp) × (1 + Sendp) < (1 + V isP ) (9)

If blocking does occur, then the simulation advances only as fast as the in-transit
resources can take new data. This means that the time term for the left-hand
side of Eq. 3, which was previously 1 + Sendp, is replaced with the in-transit
time. Using the relationship in Eq. 6, we get:

(1 + Resp) × (Recvp +
V isp

V CEF × Resp
) < (1 + V isP ) (10)

3.5 Cost Model Discussion

The basis of the cost model are described above in Eqs. 3, 8, 9, and 10. This model
allows the relative costs of in-line and in-transit visualization for a particular
configuration to be analyzed. The first step is to determine the cost feasibility of
in-transit. Equation 3 serves as a threshold for determining when this is possible.
If Eq. 3 is false, in-line visualization is the cost-effective solution. Otherwise,
when Eq. 3 is true, Eqs. 8, 9, and 10 are used to determine cost feasibility based
on blocking, as follows:

– The V CEF value necessary to prevent blocking is given by Eq. 8:
V CEF ≥ V isp

Resp×(1+Sendp−RecvP )

• For cases when there is no blocking, using Eq. 9 shows that in-transit is cost
efficient if:
(1 + Resp) × (1 + Sendp) < (1 + V isP )

• Otherwise, for cases where blocking occurs, using Eq. 10 shows that in-transit
is cost efficient if:
(1 + Resp) × (Recvp + V isp

V CEF×Resp
) < (1 + V isP )
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Fig. 1. Comparison of the two workflow types used in this study.

4 Corpus of Data

In this section we detail the experimental setup, methods, and software used
to generate our corpus of data, as well as a cursory overview of the data we
collected.

4.1 Experiment Software Used

To generate data for this study, we use CloverLeaf3D [1,14], a hydrodynamics
proxy-application. Cloverleaf3D spatially decomposes the data uniformly across
distributed memory processes, where each process computes a spatial subset of
the problem domain. To couple CloverLeaf3D with both in-transit and in-line in
situ, we leveraged existing integrations with Ascent [8].

In-line visualization is accomplished with Ascent which uses VTK-m [15] for
visualization operations. The visualization is described through a set of actions
which Ascent turns into a data flow graph, and then executed. Figure 1a depicts
how the software components interact in the in-line workflow.

In-transit visualization used Ascent’s integration with the Adaptable I/O
System (ADIOS) [9] to transport data from the simulation nodes to the in-transit
nodes using its RDMA capabilities [4,18]. ADIOS requires the use of dedicated
staging nodes to hold the metadata necessary to service RDMA requests. Once
the data are transported, the visualization tasks are performed using VTK-m.
To be clear, the same VTK-m code was being used for both in-line and in-transit
visualization. The only differences are the number of nodes used for visualization,
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the shared-memory parallelism approach (see Sect. 4.5), and the use of ADIOS
for data transport to a separate allocation.

Figure 1b depicts how the software components interact in the in-transit
workflow.

4.2 Visualization Tasks Studied

There were two classes of visualization tasks in this study, computation heavy
and one that is communication heavy. The computation heavy task was isocon-
touring and parallel rendering, while the communication heavy task was volume
rendering. Visualization was performed after each simulation step. The compu-
tation heavy task consisted of creating two isocontours at values of 33% and 67%
between the minimum and maximum value of the simulations energy variable,
followed by ray trace rendering. The ray tracing algorithm first locally rendered
the data it contained, then all of the locally rendered images were composited
using radix-k. The communication heavy task consisted of volume rendering the
simulations energy variable. Compositing for volume rendering is implemented
as a direct send.

4.3 Application/Visualization Configurations

In this study we used five different in situ configurations of the application and
visualization:

– Sim only: Baseline simulation time with no visualization
– In-line: Simulation time with in-line visualization
– Alloc(12%): In-transit uses an additional 12% of simulation resources
– Alloc(25%): In-transit uses an additional 25% of simulation resources
– Alloc(50%): In-transit uses an additional 50% of simulation resources

For in-transit visualization, predetermined percentages of simulation
resources for visualization were selected. These percentages, were selected based
off of a rule of thumb where simulations typically allow up to 10% of resources for
visualization. 10% was our starting point, and we then selected two additional
higher allocations to explore a range of options. We initially considered in-transit
allocations that were below 10%, but due to the memory limitations on Titan
(32 GB per node), the visualization nodes ran out of memory. We leave a lower
percentage study as future work on a future machine. Finally, we ran each one
of these configurations with weak scaling with concurrency ranging between 128
and 32,768 processes, with 1283 cells per process (268M cells to 68B cells).

CloverLeaf3d uses a simplified physics model, as such, it has a relatively fast
cycle time. This fast cycle time is representative for some types of simulations,
but we also wanted to study the implications with simulations that have longer
cycle times. We simulated longer cycle times by configuring CloverLeaf3D to
pause after each cycle completes, using a sleep command. This command was
placed after the simulation computation, and before any visualization calls were
made. We used three different levels of delay:
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– Delay(0): simulation ran with no sleep command.
– Delay(10): a 10 s sleep was called after each simulation step.
– Delay(20): a 20 s sleep was called after each simulation step.

Lastly, we ran each test for 100 time steps using a fixed visualization fre-
quency of once every time step. This frequency ensures that fast evolving struc-
tures in simulation data are not missed. Also, very frequent visualization gives
us an upper bound for how visualization will impact the simulation.

4.4 Hardware

All runs in this study were performed on the Titan supercomputer deployed at
the Oak Ridge Leadership Computing Facility (OLCF). Because the mini-app
we used for our study runs on CPUs only, we restricted this study to simulations
and visualizations run entirely on the CPU.

4.5 Launch Configurations

The configuration for each experiment performed is shown in Table 1. Isosur-
facing plus rendering was run on up to 16K cores, volume rendering was run
on up to 32K cores. Because CloverLeaf3D is not an OpenMP code, the in-line
in situ and the simulation only configurations were launched with 16 ranks per
node. The in-transit configurations used 4 ranks per visualization node and 4
OpenMP threads to process data blocks in parallel. Therefore, in-transit and
in-line both used 16 cores per node. Additionally, the in-transit configuration
required the use of dedicated staging nodes to gather the metadata from the
simulation in order to perform RDMA memory transfers from the simulation
resource to the visualization resource. These additional resources are accounted
for in Table 1 and are used in the calculation of all in-transit results.

Table 1. Resource configuration for each experiment in our scaling study.

Test Sim Procs 128 256 512 1024 2048 4096 8192 16384 32768

Configuration Data Cells 6483 8163 10243 12963 16323 20483 25923 32643 40963

In-line Total Nodes 8 16 32 64 128 256 512 1024 2048

In-transit
Alloc(12%)

Vis Nodes 1 2 4 8 16 32 54 128 256

Staging Nodes 1 2 2 4 4 8 8 16 16

Total Nodes 10 20 38 76 148 296 584 1168 2320

In-transit
Alloc(25%)

Vis Nodes 2 4 8 16 32 64 128 256 512

Staging Nodes 1 2 2 4 4 8 8 16 16

Total Nodes 11 22 42 84 164 328 648 1296 2576

In-transit
Alloc(50%)

Vis Nodes 4 8 16 32 64 128 256 512 1024

Staging Nodes 1 2 2 4 4 8 8 16 16

Total Nodes 13 26 50 100 196 392 776 1552 3088
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Fig. 2. Stacked bar charts comparing the total cost per step for using in-transit and
in-line visualization. In-transit visualization is broken down into cost for the time that
the visualization is actively working, cost for the time that it is idle, cost for the time it
is receiving data from the simulation, and cost associated with blocking the application.
The application active cost is excluded from this chart as it is the same for each level
of Delay, and obfuscates the times for visualization and data transfer.
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An important detail from these configurations is that the in-line tests have
one core per MPI task, while the in-transit tests have four cores per MPI task.
Where the in-line tests were restricted to the MPI approach of the simulation
code, the in-transit tests were not, enabling shared-memory parallelism. As a
result, in-transit had even fewer participants in communication, which will boost
its V CEF factor.

4.6 Overview of Data Collected

In total, we ran 255 individual tests, each for 100 time steps. From each of these
tests we collected the total time for each time step from both the simulation and
visualization resources, as well as more fine grained timers placed around major
operations. After the runs were complete, the total cost was calculated by mul-
tiplying the total time by the total number of nodes listed in Table 1. Figure 2a
shows the total cost per time step we observed for each of the isosurfacing plus
rendering tests and Fig. 2b shows the total cost per time step we observed for
each of the volume rendering tests. These charts break down the cost of each
step associated with each of our runs, showing if the simulation was blocked by
the visualization and how much that blocking cost, how much it cost to transfer
data from the simulation to the in-transit resources, how long the visualization
resources were active and their cost, how long they were idle and that cost, and
how long the in-line visualization operation took and its associated cost.

There are marked differences in the performance of the isosurfacing and
rendering runs versus the volume rendering runs. The isosurfacing tests have
large periods of blocking whereas the volume rendering runs have very little.
One reason for that blocking was that on average, isosurfacing and rendering
took twice as long per step as volume rendering. Finally as the simulation cycle
time increased, isosurfacing and rendering benefited more than volume render-
ing, showing that the isosurfacing tests were compute bound on the in-transit
resources.

5 Results

In this section we use the model described in Sect. 3 to analyze the data collected
from our experiments. In particular, we follow the discussion detailed in Sect. 3.5.
In Sect. 5.1, we discuss and analyze the magnitude of V CEF (Eq. 8) for each
experiment. In Sect. 5.2 we use Eq. 3 from our model to determine the in-transit
cost savings feasibility for each experiment. Finally, in Sect. 5.3, we combine these
two and discuss the experiments that are feasible and have sufficient V CEF to
produce cost savings using in-transit for both non-blocking and blocking cases
(Eqs. 9 and 10).
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Fig. 3. This plot shows in-transit V CEF as a function of the in-line cycle time. Iso-
surfacing experiments are denoted with a triangle glyph and volume rendering with a
circle glyph. Each glyph is scaled by the concurrency of the experiment (isosurfacing
8-1024; volume rendering: 8-2048). Experiments are group by color (configuration) and
connected by lines (concurrency sequence).

5.1 VCEF Magnitude Across Experiments

Figure 3 shows the V CEF for each experiment. We felt the most surprising result
was how large V CEF values were as a whole. Many of the experiments had val-
ues above 4X, which creates significant opportunities for the cost effectiveness
of in-transit. Surprisingly, volume rendering experiments where the in-transit
resources were 50% of the simulation (Alloc(50%)) were able to achieve V CEF
values of about 4X. Putting this number in perspective, if an Alloc(50%) exper-
iment runs in the same amount of time as its in-line counterpart using half the
concurrency, then its V CEF would be 2. This is because it would have run using
half the resources while taking the same amount of time as in-line. Higher val-
ues indicate that the runtime has decreased at smaller concurrency, i.e., 4X cost
efficiency via using half the resources and running 2X faster. Further, we note
this volume rendering algorithm has been extensively optimized and is used in a
production setting. This result highlights the significant advantage that V CEF
provides. Algorithms with poor scalability (i.e., heavy communication) are able
to run at lower levels of concurrency, and therefore achieve better performance.

As expected, V CEF is heavily dependent on the type of algorithm. The vol-
ume rendering experiments were communication-heavy, lending itself to higher
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cost efficiency when running at lower concurrency. The isosurfacing experiments
were computation-heavy—first, an isosurface is calculated, and then it was ren-
dered. The isosurface calculation is embarrassingly parallel, so there is no reason
to expect a high V CEF . That said, the parallel rendering became very slow
at high concurrency, as evidenced by the high in-line times (>10 s). This was
due to the communication required to perform the image compositing and the
final reduction using the radix-k algorithm. In these cases, the V CEF values
increased from 3X to 6X.

While the main takeaway of Fig. 3 is high V CEF values, a secondary take-
away looks ahead to our analysis of cost savings, and in particular establishing
intuition about which configurations will be viable for cost savings. All volume
rendering experiments had high V CEF values, while only isosurfacing experi-
ments at very high concurrency had high V CEF values. The isosurfacing exper-
iments at lower concurrencies had smaller V CEF values, which makes them
less likely to offset the additional costs incurred for in-transit (transfer times,
blocking, idle).

5.2 Feasibility of Cost Savings

Equation 3 from our model is used to determine the feasibility of cost savings
for in-transit visualization. When Eq. 3 is true, then cost feasibility is possible.
Figure 4a uses this equation to show the feasibility for each experiment. The
black line shows where in-line and in-transit costs are identical, and the region
above the black line is cost feasibility for in-transit. This figure follows discussion
from Sect. 3.3. For example, if the in-line cost is less than the transfer cost, then
no V CEF value can make in-transit cost effective. Or if the resources devoted
to in-transit are very large, then they will likely sit idle and be a incur cost
at no gain. About half of our experiments were in this category, incapable of
achieving cost savings with in-transit, because the transfer and resource costs
exceeded the in-line costs. In the remaining half of the experiments, our choice
for the number of in-transit nodes created a potentially feasible situation—the
resources dedicated to in-transit and the cost of transferring data was less than
the in-line visualization cost. That said, only some of these experiments actually
led to cost savings with in-transit. This is because the feasibility test for Fig. 4a
placed no consideration on whether the in-transit resources were sufficient to
perform the visualization task. In some cases, V CEF was enough that the in-
transit resources could complete its visualization task within the allotted time. In
others cases, V CEF was not sufficient, and this caused the in-transit resources
to block. Figure 4b takes this blocking into account, and faithfully plots the
terms from Eq. 3 from Sect. 3.2. The difference between Fig. 4a and 4b, then, is
whether blocking is included when considering in-transit costs.

A final point from Fig. 4a is the trend as concurrency increases—in-line visu-
alization increases at a much higher rate than transfer costs. Consider the exam-
ple of isosurfacing, with Alloc(50%) and Delay(0) i.e., the blue lines on the right
of Fig. 4a with triangle glyphs. These experiments have in-line costs that go from
0.6X of the simulation cycle time at the smallest scale to 2.2X for the largest
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Fig. 4. Plot of cost savings feasibility for each test case. Each glyph denotes the in-line
cost as a function of transfer and resource costs. Glyph size represents the number of
simulation nodes used in each test (isosurfacing: 8-1024; volume rendering: 8-2048).
Hollow glyphs indicate in-line was more cost efficient and solid glyphs indicate that
in-transit was more cost efficient. The black line marks where in-line and in-transit
costs are equal. Above the line is where in-transit can be cost effective.
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Fig. 5. This plot takes the points from experiments in Fig. 4b where in-transit was cost
effective and plots the achieved V CEF as a function of the required V CEF to prevent
blocking. The black line is Eq. 8. Points above the line did not block, while those below
did block. This plot shows two things: first, the necessary V CEF speedup required
to prevent blocking, and second, that cost feasibility is possible even with simulation
blocking.

scale. Further, the x-values (i.e., transfer cost and resource cost) change in a
much more modest way (0.75X to 0.85X, with this representing only a variation
in transfer since the resource cost is fixed at 0.5 for this case). This is a critical
point to bring up for in-line visualization: It can be very difficult to scale some
algorithms up to the scale of the simulation without incurring huge penalties. All
of the other families of experiments exhibit a similar trend, with little variation
in X (transfer and resource) and significant increases in Y (in-line visualization)
as scale increases. Extrapolating forward, the opportunities demonstrated in our
experiments will only become greater as supercomputers get larger and larger.

5.3 Achieved Cost Savings

Figure 5 extends Fig. 4b by plotting the results of Eq. 8 for each of the points that
did provide cost savings. Equation 8 calculates the required V CEF value for a
in-transit experiment to not block the simulation. While blocking the simulation
is certainly not an ideal configuration, it is still possible to achieve cost savings
if the cost savings gained through V CEF is greater than the cost of the blocked
simulation. About a third of the experiments that provided cost savings from
Fig. 4b actually blocked the simulation (points to the right of the black line).
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Fig. 6. This plot takes the points from experiments in Fig. 4b where in-transit was cost
effective and plots the in-transit cost as a function of the in-line cost using Eq. 9 (if
no blocking occurred), or Eq. 10 (otherwise). The black line indicates where costs are
equal.

The main takeaway from this plot though, is the rate at which V CEF allowed
in-transit visualization to achieve cost savings and prevent blocking. About two
thirds of the cases that achieved cost savings did so by not blocking the simula-
tion. This was in large part due to the high values for V CEF that were achieved
in those cases.

Looking back to the intuition we established in Sect. 5.1 about which experi-
ments would be viable from a cost savings standpoint, we see that our intuition
was correct. Our intuition was that volume rendering would lead to more exper-
iments with cost savings vs. isosurfacing due to its high V CEF values across all
concurrencies, whereas isosurfacing only had high V CEF values at high concur-
rency. Looking at Fig. 5, we see that the majority of the points are for volume
rendering, 19 cases were more cost efficient, vs. isosurfacing, 9 cases being more
cost efficient. This trend indicates two important things: first, at even higher
concurrency we should expect to see larger values for V CEF , with even more
cases where in-transit is more cost efficient, and second, in future as more algo-
rithms are studied, those with even more communication than volume rendering
should see even greater cost savings due to V CEF .

Figure 6 takes all of the cases that achieved cost savings from Fig. 4b and
shows what the observed in-transit and in-line costs were in each case. The
further the points are from the black line the larger the in-transit cost savings.



Opportunities for Cost Savings with In-Transit Visualization 163

This chart shows that 30 cases out of a possible 58 cases from Fig. 4a were able
to achieve cost savings. Meaning that overall, out of our 153 in-transit tests, we
demonstrated high V CEF values and cost savings in 30, or 20%, of our cases. We
note that these test cases were originally conceived for a study on the fastest time
to solution, not cost savings, so seeing 20% of cases costing less is encouraging.
Stated differently, our experiments did not focus on optimizing over resources,
and so it is possible that more success could have been found. By focusing on
smaller allocations, these studies should see a much higher percentage of cases
where in-transit is the most cost efficient choice.

6 Conclusion

The primary results from this paper are three-fold: (1) VCEF values are surpris-
ingly high, and in particular high enough to create opportunities for in-transit
to be cost effective over in-line, (2) a model for considering the relative costs
between in-transit and in-line that incorporates V CEF , and (3) consideration
of that model over a corpus of data that demonstrated that VCEF-based sav-
ings do in fact create real opportunities for in-transit cost savings. We feel this
result is important, since it provides simulation teams a valuable metric to use in
determining which in situ paradigm to select. Combined with in-transit’s other
benefits (such as fault tolerance), we feel this new information on cost could be
impactful in making a decision. In our studies, our communication-heavy algo-
rithm showed more promise for in-transit cost benefit than the computation-
heavy algorithm. This observation speaks to an additional role for in-transit:
sidestepping scalability issues by offering the ability to run at lower concur-
rency. This is particularly important as the visualization community considers
critical algorithms like particle advection, topology, connected components, and
Delaunay tetrahedralization.

The results of this study open up several intriguing directions for future work:

The first direction is in selecting an in-transit allocation that is likely to
create cost benefits. Our corpus of data was originally conceived for a study
on time savings. This is why it included configurations like Alloc(50%), which
have very little chance of providing cost savings. Saying it another way, although
we put little effort into choosing configurations that could achieve cost savings,
we still found these cost savings occurred 20% of the time. If we put more
effort into choosing such configurations, perhaps by incorporating the work of
Malakar [12,13], who had complementary ideas on choosing allocation sizes and
analysis frequencies, this proportion could rise significantly. A twin benefit to
choosing an appropriately sized in-transit allocation is that potentially more
nodes would be available for simulation use, as over allocating an in-transit
allocation can limit the maximum size of a simulation scaling run.

The second direction is in further understanding of V CEF . For our study,
we ran production software for two algorithms. We were able to observe V CEF
factors after the run, but we are not able to predict them. Predicting V CEF
is hard—it will vary based on algorithm, data size, architecture, and possibly
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due to data-dependent factors. However, being able to predict V CEF would
have great benefit in being able to choose cost effective configurations. Further,
our test configuration had in-line experiments that were restricted to the MPI
approach of our studied simulation code (one core per MPI task). While this
configuration reflects an advantage of in-transit (i.e., freedom to select the opti-
mal configuration), this likely boosted V CEF , and future work should evaluate
the extent of V CEF when in-transit runs does not have such an advantage.

The third direction is in considering more alternatives to blocking. Making
the choice to block simplified our cost model and study. A twin choice was to
ignore idle time—we could have tried to do “more visualization” when the in-
transit resources completed their initial task and went idle. Making a system that
is more dynamic (not blocking and instead visualizing data from the next time
step and/or also adding tasks when there is idle time) would be an interesting
future direction. Such a system would be able to realize cost savings compared
to in-line, provided V CEF can offset transfer costs.
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Abstract. HPC applications with suboptimal I/O behavior interfere
with well-behaving applications and lead to increased application run-
time. In some cases, this may even lead to unresponsive systems and
unfinished jobs. HPC monitoring systems can aid users and support staff
to identify problematic behavior and support optimization of problem-
atic applications. The key issue is how to identify relevant applications?
A profile of an application doesn’t allow identifying problematic phases
during the execution but tracing of each individual I/O is too invasive.

In this work, we split the execution into segments, i.e., windows of
fixed size and analyze profiles of them. We develop three I/O metrics to
identify three relevant classes of inefficient I/O behaviors, and evaluate
them on raw data of 1,000,000 jobs on the supercomputer Mistral. The
advantages of our method is that temporal information about I/O activ-
ities during job runtime is preserved to some extent and can be used to
identify phases of inefficient I/O.

The main contribution of this work is the segmentation of time series
and computation of metrics (Job-I/O-Utilization, Job-I/O-Problem-
Time, and Job-I/O-Balance) that are effective to identify problematic
I/O phases and jobs.

1 Introduction

Modern HPC systems are processing many thousands of jobs every day. Some of
them can misbehave for some reasons (e.g., due to poor programming practices,
I/O intensive tasks, or bugs) and can slow down the whole system performance
and affect other jobs that are running on the same system in parallel. This bad
behavior must be identified and brought under control. Before we can think
about what to do with these jobs, we need to find a way to detect them.

It is important to detect inefficient I/O patterns. Monitoring systems are
employed to solve this problem. However, the amount of time needed by humans
to identify inefficient usage grows with the system size and the runtime of jobs.
c© Springer Nature Switzerland AG 2020
P. Sadayappan et al. (Eds.): ISC High Performance 2020, LNCS 12151, pp. 166–184, 2020.
https://doi.org/10.1007/978-3-030-50743-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50743-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-50743-5_9


Semi-automatic Assessment of I/O Behavior 167

To overcome this, the monitoring system must provide tools aiding the analysis.
It needs to produce more compact representation of data providing meaningful
metrics and allow for deeper analysis.

There are a variety of data-intensive parallel applications that run on HPC-
systems solving different tasks, for example, climate applications. Depending
on the application, we can observe different data and metadata characteristics
such as parallel/serial I/O, check-pointing behavior, or I/O bursts in write/read
phases. Efficient patterns are critical for I/O performance of file systems and
application runtime. Checking every application manually is not possible for the
support. We believe that focusing on relevant jobs is important, hence we need
meaningful metrics tailored to parallel jobs and are sensitive to specific I/O
behaviors.

After the related work section, the theoretical part follows. Then, we evaluate
the approach on a real HPC system.

2 Related Work

There are many tracing and profiling tools that are able to record I/O informa-
tion [6]; we will discuss a selection of them in more detail in the following. The
issue of performance profiles is that they remove the temporal dimension and
make it difficult to identify relevant I/O phases. As the purpose of interesting
applications is the computation and I/O is just a byproduct, applications often
spend less than 10% time with I/O. Tracing tools, however, produce too much
information that must be reduced further.

The Ellexus tools1 include Breeze, a user-friendly offline I/O profiling soft-
ware, an automatic I/O report generator Healthcheck, and command line tool
Mistral2 which purpose is to report on and resolve I/O performance issues
when running complex Linux applications on high performance compute clus-
ters. Mistral is a small program that allows you to monitor application I/O
patterns in real time, and log undesirable behaviour using rules defined in a con-
figuration file called a contract. Ellexus tools support POSIX and MPI (MPICH,
MVAPICH, OpenMPI) I/O interfaces.

Darshan [2,3] is an open source I/O characterization tool for post-mortem
analysis of HPC applications’ I/O behavior. Its primary objective is to cap-
ture concise but useful information with minimal overhead. Darshan accom-
plishes this by eschewing end-to-end tracing in favor of compact statistics such
as elapsed time, access sizes, access patterns, and file names for each file opened
by an application. These statistics are captured in a bounded amount of mem-
ory per process as the application executes. When the application shuts down,
it is reduced, compressed, and stored in a unified log file. Utilities included with
Darshan can then be used to analyze, visualize, and summarize the Darshan log
information. Because of Darshan’s low overhead, it is suitable for system-wide
deployment on large-scale systems. In this deployment model, Darshan can be
used not just to investigate the I/O behavior of individual applications but also
1 https://www.ellexus.com/products/.
2 Not to confuse with the DKRZ supercomputer Mistral!.

https://www.ellexus.com/products/


168 E. Betke and J. Kunkel

to capture a broad view of system workloads for use by facility operators and
I/O researchers. Darshan is compatible with a wide range of HPC systems.

Darshan supports several types of instrumentation via software modules.
Each module provides its own statistical counters and function wrappers while
sharing a common infrastructure for reduction, compression, and storage. The
most full-featured modules provide instrumentation for POSIX, MPI-I/O and
standard I/O library function calls, while additional modules provide limited
PNetCDF and HDF5 instrumentation. Other modules collect system informa-
tion, such as Blue Gene runtime system parameters or Lustre file system striping
parameters. The Darshan eXtended Tracing (DXT) module can be enabled at
runtime to increase fidelity by recording a complete trace of all MPI-I/O and
POSIX I/O operations.

Darshan uses LD PRELOAD to intercept I/O calls at runtime in dynami-
cally linked executables and link-time wrappers to intercept I/O calls at compile
time in statically linked executables. For example, to override POSIX I/O calls,
the GNU C Library is overloaded so that Darshan can intercept all the read,
write and metadata operations. In order to measure MPI I/O, the MPI libraries
must be similarly overridden. This technique allows an application to be traced
without modification and with reasonably low overhead.

LASSi tool [7] was developed for detecting, the so called, victim and aggressor
applications. An aggressor can steal I/O resources from the victim and negatively
affect its runtime. To identify such applications, LASSi calculates metrics from
Lustre job-stats and information from the job scheduler. One metric category
shows file system load and another category describes applications I/O behavior.
The correlation of these metrics can help to identify applications that cause the
file system to slow down. In the LASSi workflow this is a manual step, where a
support team is involved in the identification of applications during file system
slow down. Manual steps are disadvantageous when processing large amounts of
data and must be avoided in unsupervised I/O behavior identification. LASSi’s
indicates that the main target group are system maintainers. Understanding
LASSi reports may be challenging for ordinary HPC users, who do not have
knowledge about the underlying storage system.

The Ellexus tool set includes, Breeze, an offline I/O profiling software,
an automatic I/O report generator Healthcheck, and command line tool
Mistral, which purpose is to report on and resolve I/O performance issues
when running complex Linux applications on high performance compute clus-
ters. Mistral is a small download that allows you to monitor application I/O
patterns in real time, and log undesirable behaviour using rules defined in a
configuration file called a contract. Another powerful feature of Mistral is the
ability to control I/O for application individually. Ellexus tools currently support
POSIX and MPI (MPICH, MVAPICH, OpenMPI) I/O interfaces.

Another branch of research goes towards I/O prediction. Some methods work
with performance data from storage systems, application side and hybrids. Appli-
cation runtime prediction, efficient scheduling, I/O performance improvement.
The methods work in a dynamically changing environment. They didn’t tell
much about the application.
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The discussed limitations are well known, and many projects investigate new
solutions for I/O assessment of behaviour.

In [5], the authors utilized probes to detect file system slow-down. A probing
tool measures file system response times by periodically sending metadata and
read/write requests. An increase of response times correlates to the overloading
of the file system. This approach allows the calculation of a slow-down factor
identification of the slow-down time period.

In [4], the authors run HPC applications in monitored containers. Depending
on metric values captured during application runtime, the I/O management
can increase or decrease the number of containers, or even take them offline, if
insufficient resources are available.

In [8], a performance prediction model is developed by developers that aims
to improve job runtime estimation for better job scheduling. The authors use the
property of static iterative scientific code to produce near constant I/O burst,
when considered over a longer period of time.

3 Methodology

The methodology of this work relies on (1) the segmentation of I/O traces for
jobs, i.e., the generation of performance profiles for fixed length time windows.
This operation results in a set of segments over job runtime that (2) are analyzed
individually and aggregated on node level or job level. (3) Finally, the develop-
ment of metrics for scoring the segments, i.e., the mapping from segment data to
meaningful scores. The thresholds for those metrics can be semi-automatically
determined and learned. In this section, we introduce the methodology in a
generic manner, without giving any numbers or using metrics. We apply and
evaluate the approach on a real HPC system in Sect. 5.

3.1 Segmentation and Timeline Aggregation

Let us assume the following as a starting situation. A data collector runs on all
compute nodes, captures periodically metrics, and sends them to a centralized
database. Database stores each metric as a time series together with information
like node name, file system, job ID.

As the resolution of the sampling is too fine-grained (the default sampling
interval is 5 s), we split the timeline obtained on a client node into segments of
equal length.

To illustrate the approach, consider the fictive example: a job runs on 4 nodes
and a monitoring system collects data for 4 different metrics at time points tX ,
with 0 ≤ X < 9. By grouping 3 samples of each metric into one segment, we
obtain 3 segments.

Node and job segments are collections of metric segments that aggregate this
information for each node or for each job. The example is illustrated in Fig. 1.
A segment can be related to an individual metric (green), a node (red), or the
job data (blue).
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Fig. 1. Monitoring data structure and segmentation. In the example, 4 metrics are
captured on 4 client nodes at time points ti. Three sequential samples are aggregated to
metric segments (green box). Node and job segments are collections of metric segments
(red and blue boxes). (Color figure online)

3.2 Training

The training step produces statistics, which describe the overall I/O performance
of the HPC system. Ideally, the analyzed dataset should contain peak perfor-
mance values, achievable on an HPC, for all metrics. Similar performance values
form categories (e.g., low, medium, and high performance).

There are several alternative ways to form categories: by manual selection,
by using statistics like quantiles, and by using machine learning algorithms. We
tried all the three mentioned methods, but quantiles worked robustly for our
purpose. Furthermore, it allows to determine the percentage of jobs that the
support team can investigate. For example, for the one million jobs investigated
in this study (covering a period of 3 month), DKRZ could inspect 1000 - 10k
jobs closer, hence looking at the 0.1% of jobs that are most I/O demanding.

We want to take a closer look at the computation of quantiles. Tabe 1 illus-
trates the idea. First of all, we define two quantiles qX and qY, and use them
to determine the limits for each metric individually (in our case X = 99 and
Y = 99.9). For simplification, we use the same quantiles for all metrics. After
definition of the limit, the metric segments can be categorized and we count the
number of segments that falls into each category in the following way:

LowIO smaller than qX c0,X = count(value(metricX) ≤ limit0,X)
HighIO between qX and qY c1,X = count(limit0,X > value(metricX) ≤ limit1,X)
CriticalIO larger than qY c2,X = count(value(metricX) > limit1,X)
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Table 1. Generic limits and category statistics.

Metric Limits Number of occurrences

Name qY qX LowIO HighIO CriticalIO

metric0 limit0,0 limit1,0 c0,0 c1,0 c2,0

metric1 limit0,1 limit1,1 c0,1 c1,1 c2,1

. . .

metricN limit0,N limit1,N c0,N c1,N c2,N

3.3 Scores

Our categories are labeled manually. The scoring strategy is based on the fol-
lowing considerations:

Since, LowIO represents low I/O utilization, it gets a score of 0. This category
will be mostly ignored in derived metrics. HighIO contains no outliers but may
generate a mixed workload or be inefficient and needs to be taken into account.
Therefore, it gets a score of 1. CriticalIO is a weight factor, larger than
HighIO. We suggest to compute CriticalIO/HighIO, and to take the smallest
value for Z (this is summarized in Table 2a).

Table 2. Summary of the scoring

Category name MScore

LowIO 0

HighIO 1

CriticalIO Z

(a)Category scores

Score name Definition

MScore = category scores

NScore
∑

MScore

JScore
∑

NScore

(b)Segment scores

Based on the individual metrics scores, further scores are derived. The node
score is the sum of all individual metrics scores for a segment, i.e., it indicates
if there is an I/O issue at all in this segment and on this node. The job level
aggregation is the sum of the node score (see Table 2b).

3.4 Job Assessment

Once the system is trained and a configuration file with the statistics gener-
ated, a single job can be analyzed and assessed automatically. To understand
the behavior of the job I/O, we exploit the knowledge about the timeline and
analyze the temporal and spatial I/O behavior of the segments in coarse-grained
fashion. This is achieved by introducing new metrics that reduce the complexity
into relevant scores that show potential for optimization: the Job-I/O-Problem-
Time, Job-I/O-Utilization, and Job-I/O-Balance. These values must be consid-
ered together.
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Job-I/O-Problem-Time. This metric is the fraction of job runtime that is I/O-
intensive; it is approximated by the fractions of segments that are considered
problematic (JScore > 1). I/O problem time is the amount of problematic, I/O-
intensive job segments (IOJS) divided by the total number of job segments (JS)
(see Eq. (1)).

Job-I/O-Problem-Time =
count (IOJS)
count (JS)

(1)

Job-I/O-Utilization. While most phases may not do any I/O, these might have
extraordinary I/O activity during such phases. Large jobs with a large number of
I/O accesses can induce slow down on the file system for other jobs. To identify
such jobs, we compute a metric that shows the average load during I/O-relevant
phases.

The first step identifies I/O-intensive job segments (IOJS), i.e., JScore > 1,
and counts occurrences N = count(IOFS). Assume, the max score() func-
tion returns the highest metric score of all metrics in a
job segment. Then, the quotient of the max score()’s sum and N is I/O
utilization for one particular file system. For handling several file systems, we
compute a sum of the resulting values and obtain Job-I/O-Utilization (see
Eq. (2)).

Job-I/O-Utilization =
∑

FS

∑
j∈IOJS max score(j)

N
(2)

Since, Job-I/O-Utilization considers only I/O intensive job segments, the
condition max score() ≥ 1 is always true. Thus, Job-I/O-Utilization is defined
for a job iff the job has at least some relevant I/O activity. Job-I/O-Utilization
values are always ≥ 1.

For a conventional mean-score computation, we would probably apply the
mean score() function to a job segment, instead of max score(), to obtain
a mean value of all metric scores in a job segment. This would provide a con-
ventional mean value, as we would expect it. Although such a value might be
more intuitive, the following considerations show that it is not robust enough
for our purpose. Monitoring data (in particular historical data) may be incom-
plete or incompatible, e.g., when some metrics are not captured due a collector
malfunction or when monitoring system changes after. As a consequence, con-
ventional mean values for complete and incomplete job data may diverge quite
substantially from one another, even for jobs with similar I/O performance. For
illustration, consider a job segment with only one active metric segment, e.g.,
with score = 4, and others with scores = 0. The mean value would be smaller, if
data for all 13 metrics are available as if only 8 metrics are present. This would
adversely affect the result, assigning higher values to incomplete data. In this
context of this work, this would be interpreted as higher I/O load. To prevent
such a miss-calculation, we compute mean value of job segment max values. This
method is independent of the number of metrics and fulfills our requirements.
Even if one metric segment works with high performance, the whole job seg-
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ment can be considered as loaded. This works as a perfect complement for the
balance metrics.

Job-I/O-Balance. The balance metric indicates how I/O load is distributed
between nodes during job runtime. Here again, we consider only I/O-intensive
job segments (IOJS), i.e., JScore > 1 but divide them with the maximum score
obtained on any single node. A perfect balance is 1.0 and a balance where 25%
of nodes participate in I/O is 0.25.

For each job segment j, with j ∈ IOJS, we compute:

1. NScore for each node segment
2. Mean and max values of NScores
3. Job-I/O-Balance(j) for a job segment, i.e., the quotient of mean and max

values

The overall Job-I/O-Balance is the mean value of all Job-I/O-Balance(j) values,
with j ∈ IOJS (see Eq. (3)).

Job-I/O-Balance = mean

({
mean score (j)
max score (j)

}

j∈IOJS

)
(3)

3.5 Example

Assume a 4-node job with two I/O intensive job segments sj0 and sj5 . Further-
more, assume, the job assesses two file systems fs1 and fs2. We compute Job-
I/O-Utilization, Job-I/O-Problem-Time and Job-I/O-Balance metrics in Eqs. (4)
to (6) for generic data illustrated in Fig. 2.

Fig. 2. Segment timeline. sj0 , sj5 ∈ IOJS are I/O-intensive job segments.

max0 = max score(sj0) = 4
max1 = max score(sj5) = 1
Ufs1 = mean({max0,max1}) = 2.5
Ufs2 = mean({max0,max1}) = 2.5

Job-I/O-Utilization = Ufs1 + Ufs2 = 5 (4)
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NIOJS = 2
NJS = 6

Job-I/O-Problem-Time =
NIOJS

NJS
≈ 0.33 (5)

b0 = balance(sj0) = 0.25
b1 = balance(sj5) = 1

Job-I/O-Balance = mean({b0, b1}) = 0, 625 (6)

4 Data Exploration

DKRZ uses Slurm workload manager for scheduling jobs on Mistral on shared
and non-shared partitions. The monitoring system of DKRZ [1] does not capture
data on shared Slurm partitions, because it can not assign this data unambigu-
ously to jobs. The problem hides in the (in-house) data collector, more precise,
in the usage of proc files as its main data source. The point is that shared parti-
tions can run two or more jobs on a compute node. Job activities can change the
I/O counters in the proc files, but the changes can not be traced back to jobs.
This kind of monitoring makes observation of individual jobs not feasible. In
contrast, a non-shared partition, where only one job is allowed to run, does not
suffer from this problem. Monitoring system assumes that all changes in proc
files are a result of activities done by a currently running job.

This section deals with job data statistics of 1,000,000 job data downloaded
from DKRZ’s monitoring system. These data cover a time period of 99 days
(from 2019–05–16 until 2019–08–23).

4.1 Job Data

In our experiments, the monitoring system periodically collects various metrics
(according to a capture interval) including I/O metrics. The resulting time series
is collected for each client node and then assigned to a parallel (SLURM) job.
Ultimately, the job data has a 3-dimensional structure: Metric×Node×Time.
Metrics used in our investigation are listed in Table 3a and 3b.

To reduce the overhead of the data acquisition and storage space, metadata
and I/O metrics are selected in the following way: Similar metadata operations
are combined into three different counters: read, modification and other accesses.
Then, create and unlink counters are captured separately as these operations are
performance critical. The exact group compositions and metric names are listed
in Table 3a.
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For I/O, we capture a set of counters: The read * and write * counters
provide the basic information about file system access performed by the applica-
tion. We also include the osc read *, osc write * that represent the actual
data transfer between the node (Lustre client) and each server3. The metrics are
listed in Table 3b.

4.2 Analysis Tool

The analysis tool is a product of our continuous research on monitoring data
analysis. It requires an initial training, based on a relatively small job dataset,
before it can be used for automatic job assessment. Therefore, in the first step, it
downloads job data from a system-wide monitoring database and creates statis-
tics about I/O performance on the HPC system. In the second step, these statis-
tics are used for assessing individual jobs. The workflow is illustrated in Fig. 3.

Table 3. Data collectors run on all compute node and capture periodically thirteen
I/O metrics (emphasized by bold font) and send them to a centralized database. These
I/O metrics are computed from around thirty constantly growing proc counters in
/proc/fs/lustre/llite/lustre*-*/stats. (Note: Lustre can reset counters at any time
point.)

md_read = getattr + getxattr + readdir + statfs + listxattr + open + close

md_mod = setattr + setxattr + mkdir + link + rename + symlink + rmdir

md_file_create = create

md_file_delete = unlink

md_other = truncate + mmap + ioctl + fsync + mknod

(a)Metadata metrics: data collector form groups of related metadata proc counters,
compute sums, and assign the sums to corresponding metadata metrics.

read_bytes osc_read_bytes

read_calls osc_read_calls

write_bytes osc_write_bytes

write_calls osc_write_calls

Application’s I/O requests. Lustre client I/O requests.

(b)Data metrics: data collectors assign selected data related proc counter values directly
to corresponding data metrics (proc counter names are omitted).

4.3 Data Statistics

About 5.3% of data is empty. For these jobs neither data, nor metadata exist.
We suppose these jobs are canceled, before Slurm is able to allocate nodes. After
this filtering, 947445 job data are available.
3 The Lustre client transforms the original file system accesses—made by the

application—to Lustre specific accesses, for instance by utilizing the kernel cache.
This can have a significant impact on I/O performance, when many small I/O
accesses are created but coalesced.
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1. Computing file system usage statistics

Fig. 3. Analysis tool workflow

Fig. 4. Statistics about Slurm jobs analysed.

Fig. 5. Ordered job runtime (blue line) and 10 min threshold (red line). (Color figure
online)

All nodes have access to two file systems; as both deliver similar performance
values, a differentiation is not necessary. Therefore, in the course of the paper, we
will summarize both partitions to one big partition, called “compute”. The nodes
of these partitions are reserved exclusively for a job. The monitoring system
relies on the assumption that all I/O activities registered on these nodes refers
to the running job. Conversely, other partitions can be shared by several jobs.
Since the monitoring system captures node related data, monitoring data from
these partitions can not be assigned unambiguously to a job. Thus, data from
“shared”, “prepost”, and other small partitions is filtered out. A further filtering
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criteria is exit state of jobs. We analyze data only from successfully completed
jobs. Statistics for completed jobs for Mistral’s large partitions are shown in
Fig. 4a. After filtering, 338,681 job data remain for analysis.

The next statistic describes the runtime of the successfully completed jobs.
Below the red line are about 45% of jobs that are shorter than 10 min. As
these jobs consume only 1.5% of available node hours, we do not expect to find
significant I/O loads in there. Figure 5 illustrates the runtime of the remaining
jobs, including the 10 min threshold (red line).

During our experiments, we encounter a problem with incomplete data.
Sometimes, individual metrics, and occasionally, data from complete nodes are
missing. The statistics are shown in Fig. 4b. The reasons can be, that some coun-
ters are not available during collector initialization, collectors can crash, or the
database is overloaded and is not able to record data. For 4.5% of the jobs less
than 90% of data is available, in 10.4% data is complete from 90% to 100%, and
in the remaining 85.1% all data is available. It is not harmful for the training to
lack some data as metric scores can be computed on partially available data. We
believe the approach is sufficiently robust to process such data, but for assess-
ment of individual jobs the results won’t be perfectly accurate if they omitted
some I/O phases.

5 Evaluation

This section uses our methodology to identify I/O-intensive applications on the
Mistral supercomputer by doing a step-by-step evaluation of real data. There-
with, we validate that the strategy and metrics will allow us to identify I/O
critical jobs and I/O segments within. The segment size used in the experiments
is 10 min.

5.1 Limits

There is no perfect recipe for finding the best quantiles that meets everyone’s
needs, because file system usage and goals may be different. In our case, identi-
fication of outlier jobs requires quantiles in the upper range. We can see this in

Fig. 6. Training data (subset) for read bytes metric, and q99%- and q99.9%-
quantiles (red lines). (Color figure online)
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the example of read calls segments in Fig. 6. The most blue dots are located
close to 0 Op/s, which means that there is low or no I/O activity in most seg-
ments. We separated them by the 99-quantile (lower red line). The remaining
high activity segments are significant for identification of high I/O load. The
more of them are located in a job, the higher is the probability that this job
causes a high I/O load. Additionally, the 99.9-quantile (the upper red line) sep-
arates high and critical activity segments. This separation defines segments with
an exceptionally high I/O load. Generally speaking, the quantiles choice in this
work is based on observations of file system usage on Mistral and rough ideas of
what we want to achieve. We suspect it is transferable to other HPC systems,
but this point was not investigated and requires a further study.

For limit calculation we use a 30 days training set consisting of 72,000 jobs.
Their segmentation results in around 152,000,000 metrics segments. The result-
ing limits are listed in Table 5.

5.2 Categorization

In the next step, the limits are used for categorization of all job data (about
660 million metric segments) (Table 4). The result of categorization is shown in
Table 5.

Table 4. Category scores for Mitral evaluation.

Category name MScore Justification for Mscore value

LowIO 0 Ignore this category in mathematical expressions

HighIO 1 Consider this category in mathematical expressions

CriticalIO 4 CriticalIO is at least four times higher than HighIO

The first observation is, that there are less osc read * and osc write *
metrics reported than for other metrics. The reason for that is the file system
changed from Lustre 2.7.14 to Lustre 2.11.0. Unfortunately, since Lustre 2.8, the
proc files do not offer the osc read * and osc write * metrics anymore. We
did not know that and captured incomplete data. (Fortunately, other sources
provide this information and we can fix that in the future.) This trifle makes no
difference for this concept, as long as data represents typical file system usage.
We assume that 17M metric segments form a representative training set and
take this opportunity to show the robustness of the approach.

The second observation is that modification of metadata, deleting and cre-
ation of files are rare operations. For delete and modify operations, the 99%-
quantile is zero, i.e., any segment that has one delete/modify operation, it is
considered to be in the category HighIO.

5.3 Aggregation

The conversion of metrics value to the score allows the aggregation of job data
on job, node, and metric levels and of incompatible metrics, like md delete
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Table 5. Category statistics for training with segments size of 600 s.

Metric Limits Number of occurrences

Name Unit q99 q99.9 LowIO HighIO CriticalIO

md file create Op/s 0.17 1.34 65,829 K 622 K 156 K

md file delete Op/s 0.00 0.41 65,824 K 545 K 172 K

md mod Op/s 0.00 0.67 65,752 K 642 K 146 K

md other Op/s 20.87 79.31 65,559K 763K 212 K

md read Op/s 371.17 7084.16 65,281 K 1,028 K 225 K

osc read bytes MiB/s 1.98 93.58 17,317 K 188 K 30 K

osc read calls Op/s 5.65 32.23 17,215 K 287 K 33 K

osc write bytes MiB/s 8.17 64.64 16,935 K 159 K 26 K

osc write calls Op/s 2.77 17.37 16,926 K 167K 27K

read bytes MiB/s 28.69 276.09 66,661 K 865 K 233 K

read calls Op/s 348.91 1573.45 67,014 K 360 K 385K

write bytes MiB/s 9.84 80.10 61,938 K 619 K 155 K

write calls Op/s 198.56 6149.64 61,860 K 662 K 174 K

and read bytes. This is useful as it allows us to reduce the data for large jobs.
Due to inability to aggregate, conventional dashboards contain many plots with
detailed information, which, in turn, is hard to grasp and inconvenient to use.
With uniform scoring aggregation it becomes an easy task. This is illustrated
in Fig. 7. Data is aggregated from detailed view in Fig. 7a to reduced view in
Fig. 7b, and finally to one single chart in Fig. 7c.

5.4 Metrics Calculation

Metrics calculation is the next logical step in our work. They describe specific
I/O behavior by a meaningful number.

5.5 Job-I/O-Utilization (U)

The mean score metric filters non-I/O-intensive jobs out of the dataset. 41%
jobs (151,777) have a Job-I/O-Utilization = 0. These jobs are of little interest
to us, since they do not produce any noticeable load for our file system. The
remaining 59% jobs (218,776) are selected for further investigations.

The distribution of Job-I/O-Utilization is shown in Fig. 8a. The utilization
for one file system may be U = 4, if the file system is used to 100%. We can
observe that for many jobs U > 4, which means these jobs are using two file
systems at the same time. This may be a copy job that moves data from one file
system to another.
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(a) Metric/Node view (b) Node view

(c) Job view

Fig. 7. Segments visualization at different level of details.

5.6 Job-I/O-Balance (B)

Jobs that are running on 1 node are always balanced. There are about 66,049
(30%) jobs of this kind. Job-I/O-Balance for the remaining 152,727 (70%) jobs
are visualized in Fig. 8b. The picture shows that a vast amount of jobs are not
using parallel I/O or doing it insufficiently. 17,323 of the jobs are balanced to
50% or more. 4,122 of them are highly optimized and are running with almost
100% optimization.

We have to keep in mind that during categorization, all negligible I/O (i.e., if
JScore = 0) is filtered out. That means, the balance metric focuses on significant
I/O sizes.

List of jobs ordered by Job-I/O-Balance in increased order gives an overview
of jobs with the lowest I/O balance. A closer look at the first entries reveals that
Jobs with a fixed number of I/O nodes have also a small I/O balance value, but
they are far behind in the list.

5.7 Job-I/O-Problem-Time (PT)

Surprisingly, we found that 142,329 (65%) jobs are pure I/O jobs, i.e.,
with Job-I/O-Problem-Time = 1. The other 76,447 (35%) jobs have a
Job-I/O-Problem-Time < 1. The peaks in Fig. 8c at positions 1, 1/2, 1/3, 1/4, . . .
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(a) Job-I/O-Utilization (b) Job-I/O-Balance (c) Job-I/O-Problem-Time

Fig. 8. Metric statistics

(a) Problem-Score = (1− B) · PT ·U (b) I/O-Intensity = B ·PT ·U · total nodes

Fig. 9. Penalty functions and the Top 20 jobs with a runtime >30 min. The color
represents a unique job name. (Color figure online)

are mostly artifacts from short jobs. After filtering out jobs shorter than 2 h, they
disappear, but peak at position 1 is still there.

6 Job Assessment

Job assessment is a semi-automated process. In the first step, penalty functions
sort jobs according to user-defined requirements. Typically, a function is con-
structed such that each sub-optimal parameter increases its value. A job list can
be sorted automatically by that value. The manual tasks in the second steps are
visualization of top ranked jobs and actual assessment.

Based on our initial goals, we define two functions: (1) Problem-Score: for
detection of potential inefficient file system usage and I/O-Intensity: for detection
of high I/O loads. Both are defined and visualized in Fig. 9. The computation
includes B, U, and PT metrics from the previous section and further parameters
for computing a single value.
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Fig. 10. Problem-Score ≈ 2.9: Nodes: 70; B: 0.05; PT:0.8; U: 7.5. First I/O phase:
highly parallel metadata access; Second I/O phase: single node writes.

Fig. 11. I/O-Intensity ≈ 29.9; Nodes: 13; B: 1.0; PT: 0.6; U: 3.9.; First I/O phase:
fully balanced metadata operations and reads on both file systems; Second I/O phase:
fully balanced file create operations on both file systems.

6.1 Problem-Score

The Problem-Score is a product of all metrics, as defined by the penalty function
in the Fig. 9a. For illustration, a 70-node job with Problem-Score ≈ 2.9 is visu-
alized on node-level in Fig. 10. It represents a classic case of unoptimized single
node I/O. In the picture, we see a short phase of metadata operations, and a
360 min long write phase. The node view (omitted, due to space restrictions)
reveals also, that the short phase is fully balanced, and the long phase runs on
a single node. The phases can be clearly identified by naked eye in the timeline.

When considering further jobs, we found other recurring and inefficient I/O
patterns, e.g., partially or improperly balanced I/O. In all cases, different phases
can be easily read from timelines, even if they are connected to each other or
running in parallel.

6.2 I/O-Intensity

To identify applications that generate high I/O loads, we have also to consider
the number of nodes. Here again, we use the same logic as before, i.e., when I/O
load increases, I/O-Intensity must also increase. Now, high balance is a sign for
load generation, and can be used directly in the function. All that is reflected in
the penalty function in Fig. 9b.

A particularly interesting case is illustrated on job level in Fig. 11. This pic-
ture reveals that the job does I/O in two phases. Looking at the metric/node
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level (omitted, due to space restrictions), we see that the job (1) operates on both
file systems, (2) reads data in the first phase and creates files in the second phase,
and (3) both phases are fully balanced. The file creation phase takes longer than
240 min (>50% of job runtime). This extreme behavior can degrade the perfor-
mance of Lustre metadata servers, affect the runtime of parallel running jobs,
and slow down metadata operations for other users. We suppose that users and
developers of this application are not aware of that, and store information in
different files for reasons of convenience.

This job could be discovered even if all osc * are missing. Obviously, the
design of the approach is robust enough to handle missing data.

7 Conclusion

In this work, we developed and evaluated an approach for characterization of I/O
phases utilizing monitoring infrastructure widely available and compute derived
metrics for phases of application execution. In our experiments, these metrics
support the detection of I/O-intensive and problematic jobs.

In the pre-processing part, we split monitoring data into fixed size time win-
dows (segments). Then, data of several thousands of jobs are used for computing
statistics representing typical file system usage. Based on statistics and average
segment performance, we are able to assign a score value for each segment. These
segment scores are the basis for the next processing.

Working with categories and scores significantly simplifies mapping of com-
mon I/O behavior to meaningful metrics. We derived the metrics Job-I/O-
Balance, Job-I/O-Problem-Time, and Job-I/O-Utilization. These metrics can
be used in any mathematical calculation, or in direct comparison of jobs, or for
deriving new metrics.

Visualization of the derived metrics is easier to understand than visualization
of raw data, e.g., because raw data can have a different semantics, an arbitrary
value with high peaks. For the ordinary users, it is not always obvious, if the
performance of such values is good or bad. The categorization hides all the details
from users.

In our experiments, we could identify applications with high potential to
degrade file system performance and applications with inefficient file system
usage profile. By investigating raw data, we could verify that the presented
approach supports the analysis. In our opinion, this approach is suitable for most
current state-of-the-art cluster environments that are able to monitor suitable
file system usage counters.

Ultimately, we work toward automatic analysis and reporting tools. Our next
step is the data reduction, e.g., the grouping of similar profiles.
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Abstract. We propose two new algorithms – Spring-Based MinorMiner
(SPMM) and Clique-Based MinorMiner (CLMM) – which take as input
the connectivity graph of a Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problem and produce as output an embedding of the input
graph on a host graph that models the topology of a quantum comput-
ing device. As host graphs, we take the Chimera graph and the Pega-
sus graph, which are the topology graphs of D-Wave’s 2000 qubit (first
introduced in 2017) and 5000 qubit (expected 2020) quantum annealer
devices, respectively. We evaluate our algorithms on a large set of random
graph QUBO inputs (Erdős-Rényi Gn,p, Barabási-Albert and d-regular
graphs) on both host topologies against other embedding algorithms.
For the Pegasus topology, we find that CLMM outperforms all other
algorithms at edge densities larger than 0.08, while SPMM wins at edge
densities smaller than 0.08 for Erdős-Rényi graphs, with very similar
transition densities for the other graph classes. Surprisingly, the standard
D-Wave MinorMiner embedding algorithm – while also getting slightly
outperformed by SPMM for sparse and very dense graphs on Chimera
– does not manage to extend its overall good performance on Chimera
to Pegasus as it fails to embed even medium-density graphs on 175–180
nodes which are known to have clique embeddings on Pegasus.

1 Introduction

Quantum annealers such as the D-Wave 2000Q offer high quality solutions to
hard optimization problems, and have a relatively large number of (currently
up to 2000) qubits, while the next-generation D-Wave Advantage (due in 2020)
will have more than 5000 qubits. Because of the technological challenges in con-
necting qubits, existing qubit connectivity topologies are far from the desirable
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Table 1. Study Parameters: we compare the performance of four embedding methods
for three different QUBO graphs on the two main D-Wave host graph topologies.

Embedding method QUBO Class Host Graph

MinorMiner (MM) [9,13] Erdős-Rényi Gn,p Chimera C16
Layout-Aware MinorMiner (LAMM) [28,29] Barabási-Albert Pegasus P16
Spring-based MinorMiner (SPMM) random d-regular
Clique-based MinorMiner (CLMM)

all-to-all topology, as a result limiting the sizes of the problems that can be solved
on these devices. In fact, the currently used Chimera has degree 6 [7], while the
Pegasus topology (available in 2020 with D-Wave Advantage) has degree 15 [5].
The programming model for the D-Wave quantum annealer consists of setting
the coefficients of a quadratic optimization function on binary variables (called a
Quadratic Unconstrained Binary Optimization (QUBO) problem) so that linear
terms map to qubits and quadratic terms map to couplers between the corre-
sponding qubits. In practical applications, we are given an input QUBO whose
set of linear and quadratic weights does not directly map onto the physical topol-
ogy of the D-Wave device, so we have to represent each variable by a set of qubits
(chain) and decide how to map variables onto chains. This problem is usually
modeled as a graph theoretic problem: Finding a minor embedding of the input
QUBO graph into an input topology host graph, a classical algorithmic problem
that is generally NP-hard [25]. The ability to embed practical QUBOs at larger
and larger size directly correlates to the success and operational applicability of
D-Wave devices when competing with classical devices.

In this paper, we propose and test two new embedding algorithms – Spring-
based MinorMiner (SPMM) and Clique-based MinorMiner (CLMM). We study
the performance of these algorithms as compared to two previously proposed
methods: MinorMiner (MM) [9,13] and a recent adaptation, Layout-Aware
MinorMiner (LAMM) [28,29]. All four algorithms are benchmarked on a large
set of random input QUBO graphs that need to be embedded onto the Chimera
and Pegasus topologies. As random graph classes, we study Erdős-Rényi Gn,p

graphs, Barabási-Albert graphs, and random d-regular graphs. Each of these
graph classes has a density parameter and a graph order (size) that we vary
in our experiments. We assess the performance of the four algorithms based on
whether they are able to embed graphs. The parameters of our experimental
study are given in Table 1. Our main findings are:

– On the Pegasus host graph, our Clique-based MinorMiner (CLMM) is a clear
winner with our alternative Spring-Based MinorMiner (SPMM) algorithm
edging out both CLMM and MM for very sparse graphs only. The relative
ranking of the algorithms is the same across all three QUBO input classes with
SPMM’s advantage at sparse graphs most pronounced for d-regular graphs.
Somewhat surprisingly, a threshold edge density exists that is very similar
for all three random graph classes (at about |E|/(|V |

2

) ≈ 0.08) such that
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CLMM and SPMM win at edge densities larger and smaller than the thresh-
old, respectively (E, V denote edges and nodes of the QUBO graph).

– On the Chimera host graph, SPMM wins over MM and LAMM at sparse and
dense graphs, whereas MM and LAMM perform slightly better at medium
density graphs. Again, SPMM’s advantage at large sparse graphs is most
pronounced for d-regular graphs.

– On the Chimera host graph, all algorithms easily manage to embed the pre-
viously largest known embeddable clique (at 65 vertices), whereas on Pegasus
only CLMM finds embeddings of cliques with more than 180 nodes. In fact,
using SPMM for Chimera and CLMM for Pegasus we find largest embeddable
cliques at sizes 65 and 185 respectively.

The paper is organized as follows: We introduce the concepts of QUBOs,
embeddings, host graphs and other background material including related work
in more detail in Sect. 2. We describe the embedding algorithms in Sect. 3, and
give details about the experimental design in Sect. 4. We present our results for
the Pegasus host graph in Sect. 5 and for the Chimera host graph in Sect. 6,
before concluding in Sect. 7.

2 Background

2.1 Quadratic Unconstrained Binary Optimization (QUBO)

Quadratic Unconstrained Binary Optimization (QUBO) is the problem of min-
imizing a quadratic function of binary variables, in one of the forms

min
x

n∑

i=1

aixi +
∑

i<j

bijxixj , xi ∈ {0, 1} (QUBO formulation),

or min
z

n∑

i=1

hizi +
∑

i<j

Jijzizj , zi ∈ {−1,+1} (Ising formulation).

The two formulations are equivalent via bijective relations hi = 1
2 (ai +

∑
jbij),

Jij = bij
4 . Note that Jij is nonzero if and only if bij is nonzero. Hence QUBO

problems are naturally represented by a graph P = (VP , EP ), where in VP each
variable zi is represented as a node zi with weight hi, and in EP we have for
every pair i < j with nonzero Jij an edge e = {zi, zj} with edge weight Jij .

We remark that QUBOs are a class of NP-hard optimization problems; as we
can use QUBOs to optimize the number of satisfied constraints in an instance of
0/1 Integer Programming – one of Karp’s original 21 NP-complete problems [21].

2.2 Solving QUBOs on Quantum Annealers

Quantum Annealers such as D-Wave’s 2000Q and the upcoming D-Wave Advan-
tage [5] have quantum processors with a set of qubits Q and a set of couplers C
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Fig. 1. Schematics of solving a QUBO instance with a Quantum Annealer (cf. [32])
(left) Full workflow (center) Clique minor embedding of a clique K12 on a Chimera
graph C3 (right) Heuristic minor embedding of a 16-node 7-regular graph on host C3.

between some pairs of qubits. If we identify the qubits with a node set VH and
the couplers with an edge set EH , the resulting connected structure is a graph
H = (VH , EH), called the host graph. The D-Wave programming model lets us
set weights hi for every qubit qi ∈ Q and weights Jij for every coupler cij ∈ C.
In an actual D-Wave calculation, the device uses quantum annealing to sample
from low-energy eigenstates of the Hamiltonian

H =
n∑

i=1

hiσ
(i)
z +

∑

{i,j}∈EH

Jijσ
(i)
z σ(j)

z ,

with Pauli-Z operators σ
(i)
z acting on qubit qi.1 As such, the spin configura-

tion of a groundstate corresponds to an optimum solution of a QUBO in Ising
formulation with the same weights hi, Jij .

However, most users will have QUBO problems from their application
domains with corresponding QUBO graphs that are far from being subgraphs of
the host graph. In order to be able to solve QUBOs using a quantum annealer,
the standard approach (see Fig. 1) is to find a minor embedding of the QUBO
graph into the host graph [11] and to set the hi, Jij parameters accordingly [10];
i.e. one chains multiple qubits of the host graph with ferromagnetic couplings
Jij � 0 to represent a single variable of a QUBO (indicated by shared colors in
Fig. 1 (center)/(right)). The better the embedding algorithm, the more QUBO

1 We have σz = ( 1 0
0 -1 ), Id = ( 1 0

0 1 ), and tensor product σ
(i)
z = Id⊗i−1 ⊗ σz ⊗ Id⊗n−i.
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problems can be solved by an annealer. Designing and testing capable embedding
algorithms that are able to embed a large set of QUBO graphs is thus crucial to
expand the set of applications for a quantum device such as D-Wave. The same
holds true for CMOS annealers, such as those of Hitachi [33,36].

We note in passing that adiabatic quantum computing [15] – the theoretical
inspiration for quantum annealer technology – is equivalent in power to standard
gate-based quantum computing [2] that implements arbitrary unitary operations.
However, the mapping challenge on gate-based quantum devices differs substan-
tially from quantum annealers as logical variables are mapped only to single
qubits and not to chains. To implement a gate between two non-neighboring
qubits in a gate device, qubit states are swapped along paths of the host topol-
ogy, giving a “time-dependent mapping”, sometimes called routing. Depending
on the application, this can be done heuristically [12], with exact solvers [35],
or using a swap network [26]. Comparing state-of-the-art approaches to equal-
ity constraints implementation on a quantum annealer [34] and on a gate-based
quantum computer [8] shows, on a concrete application, how different the map-
ping problem is for the two platforms.

2.3 Minor Embeddings

A minor embedding of a pattern graph P = (VP , EP ) into a host graph H =
(VH , EH) is a mapping ϕ of each node in VP to a subset of nodes in VH :

ϕ : VP → 2VH ,

where 2VH is the set of all subsets of VH , such that

1. For each node v in VP , the set of nodes ϕ(v) induces a connected subgraph
in H, called the chain of v.

2. For every edge e = {u, v} in EP , there exist nodes ũ ∈ ϕ(u) and ṽ ∈ ϕ(v)
such that {ũ, ṽ} ∈ EH .

3. ϕ(v) ∩ ϕ(u) = ∅ for all u �= v ∈ VP , i.e., each node ṽ of the host graph H
appears in the mapping of at most one node of the pattern graph P .

We call a mapping ϕ a chain mapping if it satisfies Condition 1.. A chain map-
ping ϕ is called a semi-valid embedding if it satisfies Condition 2. and is called a
chain placement if it satisfies Condition 3.. Only if all three conditions are satis-
fied do we have a minor embedding. Colloquially, we abbreviate minor embedding
with just embedding.

Finding a minor-embedding is NP-complete [25] except for (small) fixed pat-
tern graphs [30], and the best known algorithms [1] are exponential in |VP | and
the branch-width or tree-width of H (which is Ω(

√|VH |) for current anneal-
ers). Research on minor-embedding for annealers has therefore focused on find-
ing fast and hiqh-quality heuristics. Existing approaches can best be described
along one of two trajectories: (i) iteratively modify a semi-valid embedding to
reduce the number of multiply used nodes ṽ ∈ VH (the approach shared by the
algorithms benchmarked in this paper), (ii) iteratively modify a chain placement
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Fig. 2. (left) Chimera topology (D-Wave 2000Q): intersecting axis-parallel rectangles
gives rise to a grid of K4,4 tiles with vertical/horizontal connections. (right) Pegasus
topology (D-Wave Advantage): non-bipartite graph & increased connectivity achieved
through longer, shifted rectangles and couplers for pairs of neighboring parallel qubits.
Rectangle drawings courtesy of Kelly Boothby (D-Wave Systems, Inc.).

to increase the number of represented edges e ∈ EP (recently proposed [32] for
King’s graphs, the topology of Hitachi CMOS annealers [33]).

Furthermore, good minor embeddings are known for highly structured pat-
tern graphs such as cliques [6,24], cartesian products thereof [37], bicliques [19],
cubic grids [20] and cylindrical lattices (square-octogonal and triangular) [23].

2.4 Chimera and Pegasus Topologies

The host graphs of current and upcoming D-Wave annealers can be understood
starting from an intersection graph of axis-parallel rectangles (the qubits):

In Chimera [7], 4×4 intersecting orthogonal qubits with internal couplers give
rise to biclique K4,4 tiles. External couplers to adjacent horizontal respectively
vertical qubits arrange these in a grid, where neighboring tiles are connected by
4 edges. All qubits (except those on the border) have degree 6, see Fig. 2 (left).
The Chimera graph C16, such as in the D-Wave 2000Q, has 16 × 16 tiles for a
total of 2048 qubits. We illustrate a smaller C3 in Fig. 1.

In Pegasus [5], qubit rectangles are longer and connect to 12 orthogonal
qubits. Furthermore, horizontal and vertical qubits are shifted asymmetrically,
and have additional odd couplers that connect pairs of neighboring parallel
qubits, such that qubits have degree 15. This results in cells that are connected
by 4, 8, or 16 edges, see Fig. 2 (right). The Pegasus graph P16, such as in the
upcoming D-Wave Advantage, has 15 × 15 × 3 cells, plus some partial cells on
the border, for a total of 5640 qubits. We illustrate P4 in Fig. 3.

2.5 QUBO Random Graph Classes

To extend the range of embeddable QUBOs on current and next-generation
devices, we benchmark embedding algorithms based on their performance in find-
ing embeddings. Other metrics such as average or maximum chain lengths [29]
are not a focus of this paper; hence the actual values of non-zero QUBO terms
do not matter. Similarly, we only consider connected graphs (as one can always
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solve connected components independently) and do not consider any divide-and-
conquer strategies [27]. We use three classes of random graphs as benchmarks:

(i) Erdős-Rényi graphs Gn,p [18], where edges are included in the graph i.i.d
with probability p, (ii) Barabási-Albert graphs BAn,m [3,4], in which, starting
from m isolated nodes, we insert m − n nodes one by one, connecting each to m
existing nodes with preferential attachment proportional to the current degree
distribution, (iii) random d-regular graphs, in which each node has degree d. By
varying p, d and m, respectively, we generate graphs of various densities.

We chose these three graph classes in order to test our algorithms on a
diverse set of graphs: Erdős-Rényi graphs have a binomial (Poisson for small p)
degree distribution, Barabási-Albert graphs have a power-law degree distribution
(modeling networks), and d-regular graphs have a constant degree distribution.

In the following Section, we briefly present existing algorithms that we either
compare to or use as a subroutine in our algorithms, which then follow next.

3 Minor Embedding Heuristics

3.1 Existing Embedding Algorithms

MinorMiner. The MinorMiner algorithm (MM), proposed in 2014 [9], is
arguably the most prominent embedding algorithm, given its inclusion in D-
Wave’s Ocean software stack [13]. Given any QUBO graph P and host graph H
as an input, it tries to find an embedding; and if not successful after a certain
number of steps it returns an empty embedding. The MM algorithm starts from
an initial chain mapping (with chains empty by default) and repeatedly loops
over the nodes of P , to determine for each node v ∈ VP a (preliminary) chain as
follows:

1. Remove the chain ϕ(v) ⊆ EH from the existing chain mapping.
2. Compute a node-weighted shortest paths tree in H from each non-empty

chain ϕ(u), where u is a neighbor of v in P ({u, v} ∈ EP ). The node weights
in H come with a high penalty term for using nodes in multiple chains.

3. Choose an optimal node ṽ ∈ VH that minimizes the sum of distances accord-
ing to the computed shortest paths trees. Extend ṽ to a chain ϕ(v) by back-
tracking along the shortest paths trees, and re-add ϕ(v) to the chain mapping.

This naturally splits MinorMiner into two phases: First, MM completes a single
loop over the vertices VP , after which the chain mapping ϕ is in fact a semi-valid
embedding (in which chains might still share qubits).

Secondly, MM enters a fixing phase, where consecutive loops over nodes in
VP have the goal of fixing this semi-valid embedding. The algorithm restarts
when there has been no progression for too many steps in a row2, with limiting
parameters on the total number of steps and number of restarts allowed. Thus,

2 Even if the algorithm is already in a state with a valid embedding, progression is
measured for example in having a smaller maximal chain size.
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Fig. 3. Minor embedding of a K36 on Pegasus P4. Horizontal/vertical edges are mainly
used to connect chains internally; other edges act as couplers between different chains.

when the algorithm terminates, it might either return a valid embedding when
it found one, or an empty embedding if it did not.

MM has a few other controls, such as the initial_chain parameter. This
parameter can be used to feed the algorithm an initial chain mapping, which
is then used in the first phase of finding a semi-valid embedding. However, the
algorithm still iterates over all nodes. When it reaches a node which was assigned
an initial non-empty chain, it still deletes and replaces that chain with the pro-
cedure outlined above.

Layout-Aware MinorMiner. A recent contribution to MinorMiner [29] has
as its main focus QUBOs that come with a natural graph layout in the plane
(think, e.g., of lattices in the simplest case). The implementation [28] takes a
QUBO graph and its layout together with the host graph and a plane host graph
layout as an input. The algorithm maps each variable node of the QUBO graph
layout to the closest (in Euclidean metric) qubit node of the host graph layout.
An additional diffusion phase shifts this mapping to achieve an even spreading
of initial chains across tiles/cells of the topology, and then starts MinorMiner
with the computed initial_chain mapping. However, not all QUBOs come
with a natural layout; if the graph comes without a layout, their algorithm runs
a Fruchterman-Reingold spring embedding algorithm to generate such a layout.

Clique Embedding. D-Wave has a host-specific clique embedding algo-
rithm [6], which can quickly embed any clique up to a certain size chost into
the Pegasus or the Chimera graph (this also implies an embedding algorithm
for any graph with up to chost nodes). For Pegasus P16, the maximal clique size
embeddable this way is chost = 180, for Chimera C16 it is chost = 64. Chains
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gained from this embedding have a very special shape: they are all paths which
are “L-shaped” if drawn into the 2D-layout of the respective host graph, see
Fig. 3.

3.2 Our Contribution

We propose, implement and compare two new algorithms: Clique-based
MinorMiner (CLMM) and Spring-based MinorMiner (SPMM).

For CLMM, we construct an initial chain mapping for a subset of QUBO
nodes, able to implement a coupling between any two chains of this node subset.
For SPMM, we give an initial chain mapping for all QUBO nodes VP , based
on a force-directed graph drawing of P . In the second approach, there are no
guarantees for existing couplings between chains. We then pass this initial chain
mapping to MinorMiner with the initial_chain parameter.

Clique-Based MinorMiner (CLMM). For CLMM, we construct an initial
chain mapping as follows: We run D-Waves clique embedding algorithm for a
clique of size k = min(|VP |, chost). The k chains found this way are assigned to k
nodes of the QUBO graph, with the assignment depending on the density of P : If
|EP |/(|VP |

2

) ≥ 0.55, they are assigned to the k nodes of lowest degree, otherwise
to k random nodes. The remaining QUBO nodes are mapped to empty chains.

We also tested a wide variety of other density- and degree-based assignments,
as well as a splitting or a multi-assignment of chains in exploratory runs. In
contrast to these approaches, the presented (albeit simpler) settings performed
significantly better and were thus used in the final experiments.

Spring-Based MinorMiner (SPMM). For SPMM, we construct an initial
chain mapping as follows: (i) We use standard D-Wave layout functions to get
a drawing of the Pegasus/Chimera host graph in the plane (cf. the host graphs
in Fig. 2), and a tuned Fruchterman-Reingold algorithm (see below) to get a
QUBO graph layout as well. (ii) We rescale both plane layouts to fit into a
[−1, 1] × [−1, 1] square. (iii) We map each of the QUBO nodes v to the closest
qubit node in Euclidean metric.

Fruchterman-Reingold [16] is a force-directed graph drawing algorithm that
computes a plane layout based on two principles: nodes pairwise repel each other,
but nodes connected by an edge at the same time attract each other. The strength
with which the latter takes place can be set for each edge individually; smaller
weights implying a smaller attraction. For an edge e = {u, v} we set weight(e) =
(2|EP |/|VP |)2 · (deg(u) deg(v))−1, where the weighting by node degrees ensures
that neighboring nodes with high degrees are not too close to each other (as,
intuitively, their chains need more space in the host graph) and where the first
term is a normalization factor (normalizing weights in regular graphs to 1).

While SPMM and LAMM have some similarities, we find a significant per-
formance difference on Pegasus graphs due to SPMM’s improved use of edge
weights for node attraction, substituting LAMM’s consecutive diffusion phase.
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4 Experimental Design

We present the results of a large factorial-design experiment to compare our two
algorithms Clique-based MinorMiner (CLMM) and Spring-Based MinorMiner
(SPMM) with the established MinorMiner (MM) and the recently proposed
Layout-Aware MinorMiner (LAMM). We test the algorithms on the random
QUBO graph classes Gn,p, Barabási-Albert, and d-regular. As host graphs, we
use the D-Wave Pegasus host graph (used in the 5000 qubit model first out in
2020) as well as the previous Chimera topolgy (used until the 2000 qubit model).

For the Erdős-Rényi Gn,p graph model, we generate five random graphs for
each combination of values n = {1, . . . , 425} and p = {.01, .02, . . . , 1.00}. While
this would result in a total of 5 ·450 ·100 = 212, 500 graphs, we actually reduced
this number to around 26, 000 graphs by carefully pruning the set of graphs for a
specific algorithm once it has become clear – based on results for smaller/larger
values of n or p – that the algorithm will always/never find an embedding. Gn,p

graphs have a sharp threshold of n · p > lnn of being connected [14].
For the d-regular graph model (on Pegasus), we generate five graphs each

for all combinations of n = {1, . . . , 1200} and d = {3, . . . , 183}, employing again
a pruning mechanism. On Chimera, we also use five graphs and cut off at 380
vertices and maximum d = 64 to account for the smaller host graph. Random d-
regular graphs can be sampled quickly for d ≤ n/2 [31] and uniformly at random
for d ∈ O(n1/3−ε) [22]; we sample (n − d)-regular graphs as complements of d-
regular graphs. d-regular graphs only exist for 2|E| = n · d even and d < n.

For the Barabási-Albert graph model, we generate five graphs each for n =
{1, . . . , 1200} and m = {1, . . . , 110} and employ pruning. The number of edges
in BAn,m is (n − m) · m ≤ (n−m+m

2 )2 = n2/4 by AM-GM, with equality for
m = n/2. Hence we get increasing graph density for m up to n/2, and we restrict
ourselves to this regime. All graphs are constructed with Python’s networkx.

Our experiments were executed on LANL’s Darwin Cluster [17] using a triv-
ially parallel approach. Running times for individual graphs ranged from mil-
liseconds to more than 10min per graph, largely proportional to graph vertex
and edge counts. Overall, the study consumed around 100, 000 core hours. We
assess the different algorithms on whether they succeed in finding an embed-
ding with the default parameters of MinorMiner, and not by running times, but
overall we observed that running times were very comparable for all the tested
algorithms.

5 Embeddings on the Pegasus Host Graph

Embedding Erdős-Rényi Graphs on Pegasus. Figure 4 shows our results
for Gn,p graphs on Pegasus for the four algorithms MM, LAMM, CLMM, and
SPMM. The plot structure is as follows: The blue area on the bottom shows
where n ·p < ln(n), the region of disconnected QUBOs excluded from this study.
The red vertical line displays chost = 180. Heatplot areas are colored using
the green-to-white color scheme on the right of the plot. The color assigned to
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Fig. 4. Embedding performance of all algorithms for Erdős-Rényi graphs on Pegasus:
(top left) MM, (top right) LAMM, (bottom left) CLMM, (bottom right) SPMM.
(Color figure online)

a point (n, p) corresponds to the number of times the algorithm succeeds at
finding an embedding for the five Gn,p graphs tested at point (n, p). The large
darker-green area on the left are pruned points, as we can be reasonably sure
that the algorithm would always find an embedding since it does find embeddings
reliably for larger graphs. Similarly, the light gray area on the right side of the
plot represents pruned points, where we are reasonably sure that the algorithm
would not find an embedding as it did not find embeddings on smaller and
less dense graphs. More precisely, if an algorithm manages to embed a Gn,p

QUBO with high probability, it is even more likely that it will manage to embed
a Gn−k,p QUBO graph. Therefore, after testing for each p where the transition
from embeddable QUBO to non embeddable QUBO is, we tested a cone of width
at least 10 on both sides around them as interesting points before pruning.

Contrasting the performance of the four algorithms, we note the following:
The LAMM algorithm does not perform particularly well, perhaps unsurprisingly
as Gn,p graphs do not have a natural layout that would play to LAMM’s core
design element; LAMM does show a fairly quick transition from being able to
embed all graphs (dark green) to no graphs (white). This transition is in fact
more spread-out in the overall better performing SPMM algorithm. The standard
MM algorithm sees an even farther spread-out transition when compared to
both LAMM and SPMM and clearly outperforms LAMM and SPMM on dense
graphs, while being outperformed by SPMM on very sparse graphs. However,
MM is remarkably far off from being able to embed a clique of size 180 (the red
vertical line). CLMM easily outperforms MM on dense graphs and interestingly
shows a very cleanly defined transition from embeddable to non-embeddable.
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Fig. 5. A combination of CLMM/SPMM outperforms existing methods (host-specific
clique and heuristic MinorMiner embeddings) on embedding Erdős-Rényi graphs into
Pegasus at every value of p, with a sharp transition from CLMM to SPMM at p = 0.08.
(Color figure online)

We get a more in-depth understanding of performance difference by looking
at the difference plot in Fig. 5. Its structure is similar to the individual perfor-
mance plots, except the color bar ranges from green (positive) to white (zero)
to purple (negative). A point (n, p) above (below) the blue line at p = 0.08 is
assigned a color based on the number of embeddings found by CLMM (SPMM,
respectively) minus the maximum of the number of embeddings found by the
clique embedding algorithm or by MM. This way we capture the improvement
SPMM gains for sparse graphs and the improvement CLMM gains on dense
graphs in one plot. The transition between areas where CLMM and where SPMM
are the respective best performing algorithms is sharp, around an edge density
value of |EP |/(|VP |

2

)
� p = 0.8. In combination, our algorithms manage to out-

perform the already existing algorithms at every value of p, gaining the most
around p = 0.20, and for p = 0.02 where the graphs get sparse enough such that
SPMM’s advantage over MM starts to get significant.

Embedding Barabási-Albert and d-regular Graphs on Pegasus. Figure 6
(top) shows a similar picture as Fig. 5, with CLMM outperforming MM on dense
graphs and SPMM taking the lead on sparse graphs. However, as Barabási-
Albert graphs for small m are sparser than the sparsest Erdős-Rényi graphs we
tested, the improvement of SPMM over MM is much more pronounced, being
largest for m = 2. We again observe a sharp transition threshold between CLMM
and SPMM at m = 12 around n = 240, corresponding to an edge density of
(n − m)m/

(
n
2

) ≈ 0.095.
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Fig. 6. (top) Performance comparison of CLMM/SPMM vs max(Clique, MM) for
Barabási-Albert graphs on Pegasus, transitioning from CLMM to SPMM at m = 12.
(bottom) Performance comparison of CLMM/SPMM vs max(Clique, MM) in embed-
ding d-regular graphs into Pegasus, transitioning from CLMM to SPMM at d = 18.
The plot omits odd columns to prevent distraction by empty data points for n ·d odd.

Figure 6 (bottom) shows that on d-regular graphs, performance of CLMM,
SPMM and MM mirrors their performance on Erdős-Rényi and Barabási-Albert
graphs. Since d-regular graphs only exist for even n · d, we omit odd n columns
from the plot (but not from the experiments, see the concluding data in Sect. 7).
SPMM again gains the biggest advantage on the sparsest graphs, namely d = 3,
while CLMM outperforms MM on dense graphs, with a transition threshold at
d = 18, n = 233, corresponding to an edge density of d/(n − 1) ≈ 0.078.

Discussion. We first discuss MM’s poor performance on Pegasus, where the
picture is quite bleak: Here, graphs have to be very sparse until MM manages
to embed a graph of order 180 nodes, even though there exists a host-specific
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Fig. 7. Performance in embedding Erdős-Rényi graphs on Chimera (top left) for MM
and (top right) for LAMM. (bottom) Respective improvements made by SPMM.

embeddable clique of size 180.3 In trying to find out why MM fails on instances
which are still easy embeddable via a host-specific clique embedding, we look at
the characteristic pattern given by such a clique embedding. Recall that each
QUBO node is mapped to a chain, where the qubit nodes in the chain form a
path, linked mostly by edges that are horizontal or vertical in the graph (see
Fig. 3). Looking at the layout of Pegasus, these are both the sparsest connec-
tions between neighboring cells as well as the edges which have the longest
length. Therefore, the chains are able to “spread through the graph” using as
few qubits as possible, leaving many unused edges suitable as couplers between
different chains. However, MM does not distinguish between different types of
cell-connecting edges when re-computing a chain of the chain mapping, possibly
resulting in a worse solution at the end. In contrast, the edges between tiles of
Chimera are all equivalent, so this kind of misstep cannot happen.

Secondly, we look at the link between CLMM and SPMM’s performance and
the sparsity of the graph. In embeddings for dense graphs, chains often form a
path through a large part of the host graph, with few or no nodes of induced
degree larger than two. We believe that providing initial “L-shaped” chains such
as in CLMM may promote newly built chains to take on such shapes as well. On
the other hand, for sparse graphs a well-chosen initial single-qubit chain such as
in SPMM can enable short connections to neighboring chains, reducing the qubit
footprint of a semi-valid embedding created after the first phase of MinorMiner.

3 Especially compared to Chimera, where MM manages to find an embedding for K65,
the largest embeddable clique, given that treewidth(K65) = 64 = treewidth(C16).
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Fig. 8. Embedding performance of SPMM compared to its closest (QUBO graph type
specific) competitor on Chimera: (top) SPMM vs MM for Barabási-Albert graphs,
(bottom) SPMM vs LAMM for d-regular graphs, with odd n columns omitted.

6 Embeddings on the Chimera Host Graph

On Chimera, we only compare the three algorithms MM, LAMM and SPMM.
We did not test CLMM in great detail, as MM performs very similar, and since
preliminary observations could not find any improvements of CLMM over MM.

Embedding Erdős-Rényi Graphs on Chimera. For each non-pruned
parameter combination (n, p), we generated five Gn,p graphs which we tried
to embed using MM, LAMM and SPMM. Figure 7 shows the performance of
both MM (left) and LAMM (right) as well as the relative improvements made
by SPMM (bottom). Perhaps a bit surprisingly, all algorithms manage to embed
cliques of size 65, the largest embeddable clique and one node larger than the
maximal clique found by the host-graph specific clique embedder.

SPMM performs better than MM on graphs with p ≥ 0.8 and graphs with
p ≤ 0.3. However, for 0.3 < p < 0.8, both algorithms perform comparably well.
The performance difference between SPMM and LAMM is similar to the one
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Table 2. Summary of all experiments: We rank Algorithms based on the total number
of found embeddings. Pegasus experiments are split into a sparse and a dense QUBO
graph regime, given by the observed transition parameters for p, m, d. For comparison,
we also give the number of possible embeddings via host-specific cliques.

Ranking Erdős-Rényi Barabási-Albert d-regular

Pegasus (dense) 1. CLMM 86,159 38,256 54,937
0.08 < p ≤ 1.00 2. MM 78,230 31,206 44,229
12 < m ≤ n/2 3. SPMM 70,512 24,435 35,375
18 < d ≤ n − 1 4. LAMM 68,349 23,248 32,998

Clique 81,530 30,420 49,410

Pegasus (sparse) 1. SPMM 6,150 23,334 37,210
0.01 ≤ p ≤ 0.08 2. MM 6,039 21,814 35,866
2 ≤ m ≤ 12 3. CLMM 5,964 21,803 35,490
3 ≤ d ≤ 18 4. LAMM 6,047 18,681 35,374

Clique 2,700 10,985 12,470

Chimera 1. SPMM 33,793 10,874 16,506
2. LAMM 33,688 10,217 16,132
3. MM 33,530 10,367 15,972
Clique 27,860 5,445 8,060

between SPMM and MM. However, while SPMM still beats LAMM for p ≤ 0.2,
for larger p LAMM outperforms SPMM slightly.

Embedding Barabási-Albert and d-regular Graphs on Chimera. While
SPMM delivers the best overall performance in embedding both Barabási-Albert
and d-regular graphs on Chimera, the second place depends on the graph class
(MM for Barabási-Albert, LAMM for d-regular graphs). In Fig. 8 (top), we show
the performance difference between SPMM and MM on Barabási-Albert graphs.
While MM outperforms SPMM slightly on m ≥ 20, the advantage of SPMM on
small m is much more apparent, especially at m = 2.

Figure 8 (bottom) shows the difference between embedding performances of
SPMM and LAMM on d-regular graphs. For 15 ≤ d ≤ 64, both algorithms
perform comparably well, with a slight advantage to LAMM. For smaller degree,
SPMM starts to clearly outperform LAMM (and MM), with the most significant
improvement at d = 3. Again, we omit odd n columns in the plot.

7 Conclusion

We studied the performance of two new embedding algorithms, Spring-based
MinorMiner (SPMM) and Clique-based MinorMiner (CLMM), and contrasted
these to existing embedding heuristics for the two different D-Wave host graph
topologies Pegasus and Chimera. To the best of our knowledge, this is the first
such study on the upcoming Pegasus topology. While we observed that the
existing MinorMiner heuristic does not extend its overall good performance on
Chimera to Pegasus, we show how to remedy the situation with our Clique-based
and Spring-based MinorMiner variants, see Table 2.
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We found that for certain values of the density parameters p,m, d (used
in Erdős-Rényi, Barabási-Albert and d-regular graphs, respectively) our algo-
rithms significantly outperform the existing methods, increasing the number of
embeddable QUBO graphs by double-digit percentages and enlarging the range
of embeddable sparse graphs to graphs with over a hundred additional nodes.
Detailed statistics are given in Fig. 9, where for each studied value of p,m and d,
we show the number of additionally embeddable graphs, both in absolute num-
bers (bar plots) as well as a percentage increase (line plot). We note that absolute
numbers are normalized by the number of sampled graphs per data point (i.e. 5),
and that for d-regular graphs, the bar plots show the expected factor 2 difference
between odd and even values of d (with the exception of 3-regular graphs, on
which SPMM shows an exceptionally massive increase).

Fig. 9. Improvement of our two algorithms SPMM (orange) and CLMM (blue) com-
pared to the maximal possible embeddability range with a host-specific clique or a
heuristic MM embedding algorithm on Pegasus. Results for (top) Erdős-Rényi graphs,
(bottom left) Barabási-Albert graphs, (bottom right) random d-regular graphs.
(Color figure online)

In conclusion, we studied different random graphs to represent a wide variety
of possible QUBO graphs and gave a detailed analysis of the performance of
CLMM, SPMM, MM and the recent LAMM. A relative ranking of the algorithms
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based on the total number of found embeddings is given in Table 2. While SPMM
and CLMM are the clear winners in their respective density domains, the order
of the competitors can change depending on the graph class studied.

Though SPMM and CLMM outperform the standard algorithm MM, their
simplicity is somewhat remarkable and of course they build upon the work of
both the original MinorMiner paper [9] and its implementation [13] as a subrou-
tine. We suggest that the MinorMiner parameter initial_chain be extended
with ‘clique’ and ‘spring’ parameters to serve as calls to the respective CLMM
and SPMM algorithms presented in this work.

Future Work. Future research directions are three-fold: First, we intend to add
case studies of real-world QUBO instance graphs to include them in a full version
of this paper, together with plots and results of all our experiments.

Secondly, we would like to study other (CMOS) host graphs [36] and compare
our algorithms to simulated annealing-based approaches which were recently
proposed in the literature [32] but not yet published as software.

Finally, applying various embedding algorithms to the same QUBO problem
will result in embeddings with different characteristics, such as the distribution
of chain lengths. These characteristics, in turn, will influence the chance of suc-
cess and hence the overall time-to-solution of solving QUBO problems with a
quantum annealer. Once the Pegasus architecture becomes available, it will be
useful to compare embedding algorithms with respect to these metrics, as was
done for Chimera before [29].
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Abstract. We design and develop a new high performance implemen-
tation of a fast direct LU-based solver using low-rank approximations
on massively parallel systems. The LU factorization is the most time-
consuming step in solving systems of linear equations in the context of
analyzing acoustic scattering from large 3D objects. The matrix equation
is obtained by discretizing the boundary integral of the exterior Helmholtz
problem using a higher-order Nyström scheme. The main idea is to exploit
the inherent data sparsity of the matrix operator by performing local tile-
centric approximations while still capturing the most significant informa-
tion. In particular, the proposed LU-based solver leverages the Tile Low-
Rank (TLR) data compression format as implemented in the Hierarchi-
cal Computations on Manycore Architectures (HiCMA) library to decrease
the complexity of “classical” dense direct solvers from cubic to quadratic
order. We taskify the underlying boundary integral kernels to expose
fine-grained computations. We then employ the dynamic runtime system
StarPU to orchestrate the scheduling of computational tasks on shared and
distributed-memory systems. The resulting asynchronous execution per-
mits to compensate for the load imbalance due to the heterogeneous ranks,
while mitigating the overhead of data motion. We assess the robustness of
our TLR LU-based solver and study the qualitative impact when using dif-
ferent numerical accuracies. The new TLR LU factorization outperforms
the state-of-the-art dense factorizations by up to an order of magnitude
on various parallel systems, for analysis of scattering from large-scale 3D
synthetic and real geometries.
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1 Introduction

Numerous science and engineering applications require solving large dense linear
systems. In particular, the discretization of acoustic Boundary Integral Equa-
tions (BIE) using the Nyström method [22,43] leads to a linear system of equa-
tions, where the matrix is dense and non-symmetric. The direct method to
solve such a non-symmetric system requires an LU decomposition (or factor-
ization) [30]. LU factorization is an essential operation in linear algebra since
it is used in many computational tasks: finding the matrix inverse, computing
the matrix determinant, or even ranking the fastest supercomputers with the
High Performance LINPACK (HPL) benchmark. As the problem dimensions
increase, the cubic and quadratic complexities of the dense LU factorization for
arithmetics and memory storage, respectively, make it prohibitively complex.

The matrix operator of the acoustic BIE contains the self-field, near-field, and
far-field interactions and, therefore, inherently exhibits a data sparsity structure.
Such structure may be exploited using low-rank approximations [31,37] to attain
lower bounds for the arithmetic complexity and memory storage. The achieved
accuracy is then controlled with an application-dependent threshold to ensure
numerical correctness. The resulting approximated matrix system may then be
solved using iterative methods that rely on fast algorithms. For instance, when
combined with iterative solvers (e.g., GMRES [49]), the Fast Multipole Method
(FMM) [32] may leverage the data sparsity structure and accelerate the matrix-
vector multiplication by reducing its complexity from O(N2) to O(N log N) or
even O(N).

However, despite their enormous success, iterative methods may still
encounter several major bottlenecks when compared to direct solvers. Indeed,
iterative methods are often inadequate for ill-conditioned problems which arise
when solving a scattering problem near resonant frequencies [2] or when the
scatterer exhibits multi-scale geometric features. In contrast, direct methods are
stable and are not as sensitive to ill-conditioning. It is only necessary to ver-
ify that they are sufficiently well-posed for the required level of accuracy with
respect to floating point rounding error. Therefore, when the reliability and pre-
dictability of the solver and solution are crucial (e.g., production environments),
direct solvers are often preferred. Moreover, iterative methods cannot directly
exploit the structure of systems that are altered by a low-rank modification.
Direct methods, on the other hand, are particularly effective at handling low-
rank perturbations by incrementally updating the existing matrix factors. Last
but not least, iterative methods cannot efficiently account for multiple right-hand
sides. They often have to start from scratch for each right-hand side (e.g., calcu-
lation of monostatic radar cross section) except under certain circumstances (see
[28,29] for economic reuse of Krylov spaces for nearby right-hand sides). Direct
methods can efficiently work with multiple right-hand sides. As soon as the sys-
tem matrix has been factorized, direct methods may apply the triangular solves
to all right-hand sides at once, resulting in a much lower arithmetic complexity.
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In this work, we propose a new high performance implementation of a direct
LU-based solver for analyzing acoustic scattering from large 3D objects. The
main idea is to exploit the data sparsity of the matrix operator by using the Tile
Low-Rank (TLR) data compression format and approximate the off-diagonal
tiles. The initial tile-centric compression phase permits to capture the most sig-
nificant singular values up to an application-dependent accuracy threshold. The
LU-based solver can then proceed to using the underlying TLR compressed data
structure. We rely on task-based programming models to express the overall TLR
LU-based solver into various fine-grained computational tasks operating on tiles.
The TLR LU-based solver can actually be translated into a Directed Acyclic
Graph (DAG), where nodes correspond to kernels and edges represent the data
dependencies. We define an Array of Structure (AoS) of TLR data descriptors
to effectively support the data distribution on shared as well as distributed-
memory systems. We rely on the dynamic runtime system StarPU [13] to orches-
trate the asynchronous executions of the tasks and track their respective data
dependencies. We report accuracy results for scattering analysis of large-scale
3D synthetic and real geometries. We show then performance results on several
shared-memory systems and compare against the-state-of-the-art dense linear
algebra libraries. We further demonstrate the numerical robustness and perfor-
mance scaling on 1024 nodes of a Cray XC40 dual-socket 16-core Intel Haswell
system.

The remainder of the paper is organized as follows. Section 2 describes related
work and summarizes our research contributions. Section 3 and 4 recall the
background on the formulation and discretization of the acoustic BIE appli-
cation and dense linear solvers, respectively. Section 5 introduces the task-based
TLR LU-based solver algorithm and the corresponding computational kernels.
Section 6 provides implementation details on the data distribution and the
StarPU dynamic runtime systems. Section 7 highlights the numerical robustness
of our TLR LU-based solver using 3D synthetic and real geometry testcases.
Section 8 assesses the performance results on various systems and we conclude
in Sect. 9.

2 Related Work

The application of direct solvers to matrix systems resulting from discretization
of 3D problems has traditionally been considered expensive due to the high num-
ber of unknowns. However, the synergism between advanced matrix factorization
methods, along with modern massively parallel hardware systems have created
new opportunities to tackle such challenging problems. Indeed, direct methods
have been used together with low-rank matrix representation schemes to reduce
the arithmetic complexity. Introduced more than two decades ago, low-rank
matrix approximations in the form of hierarchical matrices (H -matrices) [31,36]
represent a new compromise in the literature. Many state-of-the-art data com-
pression formats for H -matrix approximation (e.g., H 2-matrix [16], Hierarchi-
cally Semi-Separable (HSS) [7,26,48], Block/Tile Low-Rank (BLR / TLR) [5,9],
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Hierarchically Off-Diagonal Low-Rank (HODLR) [8,11]) have been developed
to enable the use of finite element method (FEM) and boundary element
method (BEM) in analysis of large-scale problems in a broad range of scientific
applications. In particular, several H -matrix arithmetics-accelerated schemes
have been developed to solve surface integral equations discretized using the
Method of Moments (MoM). For instance, direct solvers are coupled with
nested and non-nested basis H -matrix compression formats and deployed on
shared [24,40,47,50,51] and distributed-memory systems [12,34,35] for large-
scale electromagnetic scattering analysis.

Fig. 1. Higher-order geometry modeling: the curvilinear triangular patch in the Carte-
sian domain and the parent triangle patch in the (ξ1, ξ2) domain.

Compared to related work, we design and implement the Tile Low-Rank
(TLR) LU-based solver for solving 3D acoustic Boundary Integral Equations
(BIE) problems with the Nyström method. In this work, we prefer Nyström over
MoM since it allows us to implement a higher-order discretization in a more
straightforward way, without loosing generality. By adopting TLR, i.e., a flat
tree data compression format, we trade off optimality with user productivity to
reduce the deployment effort on massively parallel systems. Such approach has
already demonstrated its effectiveness in solving large-scale scientific problems
[6,23]. In fact, TLR may be considered as one step toward bridging the com-
plexity gap (i.e., arithmetic and memory) between flat and hierarchical low-rank
matrix formats [10]. Moreover, our systematic approach relies on asynchronous
task scheduling using the dynamic runtime system StarPU to cope with the load
imbalance issue. We apply our new solver to the analysis of scattering from 3D
synthetic and real geometries, evaluate the numerical robustness and assess the
performance results on various parallel systems.

3 The Acoustic Boundary Integral Equation Application

Problem Definition. For an acoustically rigid scatterer, the Helmholtz Bound-
ary Integral Equation (BIE) in unknown pressure field P (r) reads:

1
2
P (r) −

∫
S

P (r′)∂n′G(r, r′)dS′ = P inc(r), r ∈ S, (1)
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where S is the surface of the scatterer, “∂n′” denotes the partial derivative in the
direction of the surface normal unit vector n̂(r′), G(r, r′) = ejk|r−r′|/(4π|r − r′|)
is the 3D scalar Green function of the unbounded domain where S resides in,
P inc(r) is the pressure field, and r′ and r are source and observer points, respec-
tively.

Higher-Order Discretization Using Nyström Method. To facilitate the
numerical solution of Eq. (1), first, S is divided into a mesh of N curvilinear
triangular patches, as seen in Fig. 1. A higher-order Nyström method [45] is
then used on this mesh to discretize Eq. (1). To this end, the scalar version of
the vector interpolation functions that have been introduced in [42] is used to
expand the unknown P (r). This function requires M number of interpolation
points to be defined on each patch. Inserting this expansion into Eq. (1) and
testing the resulting equation at these interpolation points of each patch yield
a linear system of equations ĀP̄ = P̄ inc, where Ā is a matrix of dimension
NM × NM , P̄ inc and P̄ are vectors of dimension NM storing samples of test
incident field P inc(r), and (unknown) the pressure field P (r) at the interpolation
points. Their entries are given by:

Āef,qj =
1
2
δef,qj −

∫
Sq

∂n′G(rqj , r′)Lqj(r′)ds′,

P̄ inc
ef = P inc(ref ),

P̄qj = P (rqj), (2)

for e, q = 1, . . . , N , and f, j = 1, . . . , M . Here, δef,qj = 1 for ef = qj and zero
otherwise, ref is the testing (interpolation) point e on patch f , rqj is the source
(interpolation) point q on patch j, Sq is the surface of patch q, and Lqj(r) is the
interpolation function associated with point rqj .

The surface integral in Eq. (2) is evaluated numerically after it is ”mapped”
onto a unit flat right-angle triangle (see Fig. 1). Furthermore, the computation
of this integral calls for a singularity treatment scheme when e = q. Several
approaches have been proposed in the literature (e.g., Duffy transformation [27],
singularity subtraction technique (SST) [41], and polar coordinate transforma-
tion [33]). In this work, we use the polar coordinate transformation (PCT) based
on the improved Guiggiani’s method [18].

It should also be noted here that the acoustic BIE formulation used in this
work suffers from the internal resonance problem, i.e., Eq. (1) has a null space
at the frequencies that coincide with cavity modes/resonances of S [15]. In
other words, the pressure field solution on the surface of the scatterer does
not generate any scattered/radiated fields. These resonance frequencies depend
on the shape of the scatterer. The condition number of the matrix resulting
from the discretization of the integral equation increases as the excitation fre-
quency approaches any one of these resonance frequencies. Unless the two fre-
quencies exactly coincide, the matrix system might still be solved but often iter-
ative methods do not converge or require too many iterations to be considered



214 N. Al-Harthi et al.

efficient. For such cases, direct methods produce the solution more efficiently
assuming the matrix is well-posed enough for the required level of accuracy with
respect to floating point rounding error. Note that for the examples considered
in the paper, the excitation frequency is sufficiently away from the resonance
frequencies. The Burton-Miller formulation [20] can alleviate this problem of
non-uniqueness. However, the discretization of this formulation requires the use
of more complex singularity treatment techniques (particularly for higher-order
discretizations) as the order of singularity increases. An accurate numerical result
can still be achieved, even with the existence of the internal resonance problem,
if the frequency does not coincide exactly with the resonance frequencies [25].

Once the linear system is built, the non-symmetric matrix Ā in double com-
plex precision arithmetic is diagonally dominant due to the “self-patch inter-
actions”. The LU factorization may represent the adequate choice for direct
solving the dense linear system, without the pivoting mechanism. Moreover,
its off-diagonal blocks are usually data sparse and may be subject to low-rank
approximations. Last but not least, the matrix Ā may need a proper row/column
ordering of the patch indices [44] to decouple the “near-patch interactions” from
“far-patch interactions” so that the compression phase may be further optimized.

4 The State-of-The-Art Dense LU-Based Solvers

LAPACK and ScaLAPACK are the de facto libraries for performing dense linear
algebra operations. However, the algorithmic paradigm has shifted from block
(i.e., coarse granularity) to tile (fine granularity) algorithms in response to
manycore hardware evolution. Block algorithms emphasize efficient use of deep
memory hierarchies, whereas tile algorithms focus on achieving a high level of
concurrency.

Block LU Algorithm. The LU factorization provided in LAPACK and
ScaLAPACK software packages is implemented as a high-level algorithm built on
top of the Basic Linear Algebra Subprograms (BLAS) for LAPACK and the Basic
Linear Algebra Communication Subprograms (BLACS) for ScaLAPACK. Concep-
tually, the matrix is divided into blocks of columns, commonly named panels, on
which a partial pivoting scheme may be applied. The factorization then proceeds
by an update of the trailing submatrix. This panel-update sequence continues
until all panels are factorized. Block algorithms leverage the Level-3 BLAS matrix-
matrix multiplication GEMM, resulting into a superior data reuse which is required
to run efficiently on cache-based computer architectures. However, in-between
synchronization points are required, due to the fork-join paradigm. The paral-
lelism occurs only within each update phase and is expressed at the BLAS and
BLACS levels, which eventually degrades the performance [3].
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Algorithm 1. Dense Tile LU factor-
ization of a N -by-N matrix A com-
posed of nb × nb tiles and solve.
1: p = N / nb � number of tiles

2: for k = 1 to p do

3: ZGETRF(A[k][k])

4: for m = k+1 to p do

5: ZTRSM(‘U’, A[k][k], A[m][k])

6: for n = k+1 to p do

7: ZTRSM(‘L’, A[k][k],A[k][n])

8: for m = k+1 to p do

9: ZGEMM(A[m][k],A[k][n],A[m][n]) �

matrix-matrix multiplication

10: ZTRSM(‘L’, A, RHS) � forward substitution

11: ZTRSM(‘U’, A, RHS) � backward substitution

Tile LU Algorithm. To alleviate
the synchronization bottleneck seen in
block algorithms, the dense linear alge-
bra community introduced a decade
ago a redesign of matrix computa-
tion algorithms, named tile algorithms,
using task-based programming mod-
els. The idea consists in splitting the
matrix into tiles, on which elements
are contiguous in memory for better
cache usage. The panel factorization
and the update of the trailing sub-
matrix may now be represented into
successive fine-grained computational
tasks operating on tiles. The fine granularity tasks weaken the synchroniza-
tion points seen in block algorithms and create opportunities for asynchronous
execution. The sequential tile algorithms can then be presented by a Directed
Acyclic Graphs (DAG), where nodes and edges represent the computational
tasks and the dependencies among the tasks, respectively. The key idea is to
bring the parallelism to the fore by scheduling the DAG’s sequential tasks using
a dynamic runtime system. The runtime system is then in charge of orchestrat-
ing the tasks across the underlying shared and distributed-memory resources,
while ensuring data dependencies are not violated. The performance advantages
of tile over block algorithms have been discussed in the literature [4,17,21,46].
Algorithm 1 shows the pseudo-code of the dense tile LU-based solver in dou-
ble complex precision arithmetic, involving three kernels, i.e., ZGETRF, ZTRSM,
and ZGEMM, performing the LU factorization of the diagonal tile, the triangular
matrix solve and the matrix-matrix multiplication, respectively. The correspond-
ing DAG of the tile LU factorization for a 4-by-4 tile matrix is drawn in Fig. 2:
the DAG width shows the critical path and the height exposes the concurrency.

ZGETRF

ZTRSM('L')

ZTRSM('L')

ZTRSM('U')

ZTRSM('L')

ZTRSM('U')

ZTRSM('U')

ZGEMM
HCORE_ZGEMM_LLD

ZGEMM
HCORE_ZGEMM_LLL

ZGEMM
HCORE_ZGEMM_LLL

ZGEMM
HCORE_ZGEMM_LLD

ZGEMM
HCORE_ZGEMM_LLL

ZGEMM
HCORE_ZGEMM_LLL

ZGEMM
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ZGETRF ZTRSM('U')
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Fig. 2. Single DAG for the tile dense and tile low-rank LU factorization for a 4-by-4
matrix. Yellow nodes represent ZGETRF operations, blue and cyan nodes represent upper
and lower ZTRSM operations, resp., and dark and light gray nodes represent ZGEMM and
HCORE ZGEMM XXX operations, respectively. (Color figure online)
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5 The Tile Low-Rank LU-Based Solver Algorithm

The Tile Low-Rank Compression Format. Following the principle of the
dense tile algorithms, the Tile Low-Rank (TLR) algorithm exploits the data spar-
sity of the off-diagonal tiles [5,6]. The initial phase is to approximate each of the
off-diagonal tiles of size nb using the fast randomized singular value decomposi-
tion [39], while capturing only the most significant k singular values and their
associated singular vectors. The rank k depends on the user-defined accuracy
threshold. The diagonal tiles are typically full rank and may not be approxi-
mated. Then, each of the off-diagonal tiles (i, j) can be represented by the prod-
uct of two rectangular matrices Uij and Vij of size nb × k. Once the tile-centric
compression phase ends, the TLR LU-based solver phase can then carry on with
the TLR matrix computation.

Description of the Numerical Kernels. The TLR LU-based solver algo-
rithm requires new computational kernels. Compared to the sequential dense
LU algorithm, the sequential TLR LU algorithm is quite similar, except that it
necessitates a new matrix-matrix multiplication kernel that takes into account
the data format (i.e., dense or TLR) of each operand A, B, and C. The new
HCORE ZGEMM XXX has three variants to fully support the TLR LU-based solver
algorithm: (1) HCORE ZGEMM LLL performing C = C+A*B, where A,B,C are TLR,
(2) HCORE ZGEMM LLD performing C = C+A*B, where A, B are TLR; C is dense,
and (3) HCORE ZGEMM LDD performing C = C+A*B, where A is TLR; B, C are
dense (used in solve part). Algorithms 2 and 3 highlight the pseudo-codes of the
sequential TLR LU factorization and its corresponding solver, respectively. The
diagonal tiles need a special treatment for the matrix-matrix multiplication due
to their dense data structure (i.e., HCORE ZGEMM LLD). The corresponding DAG
of the TLR LU factorization for a 4-by-4 tile matrix is essentially the same as
the tile dense LU, as shown in Fig. 2. However, the red circle tasks highlight the

Algorithm 2. Sequential HiCMA LU
(D, U, V, N, nb, rank, acc)

� A is an N-by-N TLR matrix stored in D, U,

and V.

p = N / nb � number of tiles

for k = 1 to p do

ZGETRF(D[k][k])

for m = k+1 to p do

ZTRSM(‘U’, D[k][k], V[m][k])

for n = k+1 to p do

ZTRSM(‘L’, D[k][k], U[k][n])

for m = k+1 to p do

if m == n then

HCORE ZGEMM LLD(U[n][k], V[n][k],

U[k][n], V[k][n], D[n][n])

else

HCORE ZGEMM LLL(U[m][k], V[m][k],

U[k][n], V[k][n], U[m][n],

V[m][n], rank, acc)
return D, U, V

Algorithm 3. Sequential HiCMA
ZTRSM(D, U, V, N, B, K, nb)

� Computes the solution of AX = B

� A / B are N-by-N / N-by-K TLR / dense matrices.

p = N / nb q = K / nb � number of tiles of A

and B

for k=1 to p do � Forward Substitution

for n=1 to q do

ZTRSM(‘L’, D[k][k], B[k][n])

for m=1 to p do

for n=1 to q do

HCORE ZGEMM LDD(U[m][k], V[m][k], B[k][n],

B[m][n])

for k=1 to p do � Backward substitution

for n=1 to q do

ZTRSM(‘U’, D[k][k], B[k][n])

for m=1 to p do

for n=1 to q do

HCORE ZGEMM LDD(U[p-1-m][p-1-k], V[p-1-

m][p-1-k], B[p-1-k][n],B[p-1-m][n])
return B
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difference when performing the matrix-matrix multiplication kernel with dense
tile LU (i.e., ZGEMM) or TLR LU (i.e, the HCORE ZGEMM XXX variants).

The tile size nb is a tunable parameter and has a significant effect on the
overall performance as it trades off optimality and parallel performance [5,6,23].
The fixed accuracy allows for an application-dependent level of approximation
for the off-diagonal tiles. However, this may engender variable ranks across off-
diagonal tiles, which may cause load balancing issues. It is then paramount to
rely on a dynamic runtime system to mitigate the load balancing issues, while
maintaining high occupancy on the underlying hardware resources.

6 Implementation Details

Array of TLR Structures. We develop the new TLR LU factorization in the
context of the Hierarchical Computations on Manycore Architectures (HiCMA [1] )
software library. We have extended HiCMA to support non-symmetric matrix com-
putations, and given the BIE problems, we have also provided support for dou-
ble complex precision arithmetic. HiCMA inherently provides a data descriptor for
TLR using a 2D block cyclic data distributions, similar to the ScaLAPACK descrip-
tor [5]. The TLR data descriptor specifies how the data should be distributed
among processing units. To reduce the memory footprint, we have changed the
existing Structure of TLR Arrays (SoA) for the data descriptor to an Array of
TLR Structures (AoS). This allows us to allocate each logical tile using their
respective sizes that depend on the rank k. This flexibility in handling the rank
disparities is critical, especially when moving data in distributed-memory sys-
tem environments. We also generate on-the-fly each dense tile individually using
reusable buffers, before compressing them using the randomized SVD [39]. We
initially allocate as many buffers as the number of processing units so that the
matrix does not need to be wholly alive at any given time. Although TLR does
not provide linear complexity, this format has enabled to solve challenging prob-
lems with a high number of unknowns on massively parallel distributed-memory
system [6,23]. TLR adopts a flattened algorithmic design to further increase
task parallelism in lieu of the plain recursive approach usually adopted in H -
matrix libraries [38]. TLR is actually a step toward reducing the complexity gap
(i.e., arithmetic and memory) between flat and hierarchical low-rank matrix for-
mats [10]. HiCMA relies on the dynamic runtime system StarPU to run in parallel,
which is explained in the next section.

The StarPU Task-Based Runtime Systems. StarPU [13] is the standard
dynamic runtime system for HiCMA. It handles the execution of generic task
graphs, which results from the Sequential Task Flow (STF) programming model.
Herein, the tasks are exposed to the runtime with hints on the data directions
(i.e., StarPU R, StarPU W, and StarPU RW). Then, the StarPU runtime system
starts to dynamically schedule the given tasks asynchronously based on the
given data directions. The StarPU runtime system abstracts the complexity of
the underlying hardware and improve user productivity. StarPU supports shared
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Algorithm 4. Parallel HiCMA LU
(D, U, V, N, nb, rank, acc)

� A is an N-by-N TLR matrix stored in D,
U, and V.

p = N / nb � number of tiles
for k = 1 to p do

StarPU Insert Task(ZGETRF, StarPU R,
D[k][k], StarPU priority,
5),

for m = k+1 to p do
StarPU Insert Task(ZTRSM,

StarPU R, ‘U’, D[k][k],
StarPU RW, V[m][k],
StarPU priority, 4)

for n = k+1 to p do
StarPU Insert Task(ZTRSM,

StarPU R, ‘L’, D[k][k],
StarPU RW, U[k][n],
StarPU priority, 4)

for m = k+1 to p do
if m == n then

StarPU Insert Task(
HCORE ZGEMM LLD,
StarPU R, U[n][k],
StarPU R, V[n][k],
StarPU R, U[k][n],
StarPU R, V[k][n],
StarPU RW, D[n][n],
StarPU priority, 2)

else
StarPU Insert Task(
HCORE ZGEMM LLL,
StarPU R, U[m][k],
StarPU R, V[m][k],
StarPU R, U[k][n],
StarPU R, V[k][n],
StarPU RW, U[m][n],
StarPU RW, V[m][b],
StarPU priority, 2, rank,
acc)

return D, U, V

Algorithm 5. Parallel HiCMA
ZTRSM(D, U, V, N, B, K, nb)

� Computes the solution of AX = B
� A / B are N-by-N / N-by-K TLR / dense

matrices.
p = N / nb q = K / nb � number of

tiles of A and B
for k=1 to p do � Forward Substitution

for n=1 to q do
StarPU Insert Task(ZTRSM,

StarPU R, ‘L’, D[k][k],
StarPU RW, B[k][n],
StarPU priority, 5)

for m=1 to p do
for n=1 to q do

StarPU Insert Task(
HCORE ZGEMM LDD,
StarPU R, U[m][k],
StarPU R, V[m][k],
StarPU R, B[k][n],
StarPU RW, B[m][n],
StarPU priority, 4)

for k=1 to p do � Backward substitution
for n=1 to q do

StarPU Insert Task(ZTRSM,
StarPU R, ‘U’, D[p-
1-k][p-1-k], StarPU RW,
B[k][n], StarPU priority,
3)

for m=1 to p do
for n=1 to q do

StarPU Insert Task(
HCORE ZGEMM LDD,
StarPU R, U[p-1-
m][p-1-k], StarPU R,
V[p-1-m][p-1-k],
StarPU R, B[p-1-k][n],
StarPU RW, B[p-1-m][n],
StarPU priority, 2)

return B

and distributed-memory systems (possibly equipped with GPUs). StarPU plays
an even more major role when dealing with scattering analysis from 3D acoustic
BIE problems than 2D Gaussian process, as seen in [5,6]. The large rank discrep-
ancy between off-diagonal tiles is more severe in the herein studied applications.
This creates load imbalance situations where resource may become idle. Thanks
to the fine-grained computational tasks, StarPU can perform asynchronous exe-
cutions by exploiting algorithmic lookahead to mitigate theses overheads and
maximize hardware occupancy. Lookahead is achieved at runtime by using the
task priority and the task window size features from StarPU. Basically, the task
window size governs the number of queued tasks. The more tasks are queued,
the more opportunities to create lookahead opportunities. Once the tasks shift
to a ready state (i.e., tasks for which data dependencies are satisfied), they are
executed following the order of their priorities. Algorithms 4 and 5 show the
pseudo-codes of the parallel TLR LU factorization and its corresponding solver.
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The API StarPU Insert Task queues the tasks with the data directions for each
operand and eventually executes them, as soon as their data dependencies are
satisfied. One of the interesting things to notice is the user productivity achieved
when moving from sequential (i.e., Algorithms 2 and 3) to parallel TLR LU-based
solver (i.e., Algorithms 4 and 5).

7 Numerical Accuracy

We assess the numerical accuracy and robustness of the HiCMA TLR LU-based
solver. Figure 3 pictures the rank distribution of the initial matrix obtained after
compression and presents the impact of using different accuracy thresholds on
the matrix structure. The matrix size is 91368-by-91368 and tile size nb = 3384.
There are 27 tiles in each dimension. The colors show the ranks of tiles, i.e.,
white tiles show the dense diagonal with full rank, red tones denote tiles with
larger ranks, whereas blue tones denote tiles with smaller ranks. The highest
ranks are located on tiles around the diagonal, which contains the near-field
strong interactions. The smallest ranks are located on the off-diagonal tiles,
which typically represent the far-field weak interactions. Furthermore, as the
thresholds decrease, both average and maximum ranks become larger since the
truncation step removes less singular values.

Singular value decay for specific tiles is depicted on Fig. 4. The tile location
is chosen according to the distance from source point. We select tile on sub-
diagonal which is close to self-interaction field, tile on the near field interaction,
tile on the far interaction area, and last tile is on the farthest point. We can
notice that when moving away from the source point the singular values decayed
significantly compare to the near field interaction tile.

Fig. 3. The rank distribution of initial matrices obtained by compression for different
accuracy thresholds. The matrix size is 91368-by-91368 and tile size nb = 3384. There
are 27 tiles in each dimension. The colors show the ranks of tiles, i.e., red tones denote
larger ranks, whereas blue tones denote smaller ranks. For smaller thresholds, both
average and maximum ranks become larger. (Color figure online)
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Figure 5 shows the rank distribution before and after HiCMA TLR LU factor-
ization for the matrix size of 91368-by-91368. The tile size is 3384 where 27 tiles
in each dimension, and the accuracy threshold is 10−3. It is interesting to see
that the rank growth has been limited throughout the factorization.

To validate and demonstrate the accuracy of the solver, we consider scat-
tering by a rigid sphere, so that the scattering fields can be easily verified and
tested by comparing them with the analytical solutions (Mie Series Solution).
Figure 6 compares the near scattered fields with the Mie scattered fields on a
sphere with a radius a = 1 m, and is discretized into N = 15228 high-order
curvilinear iso-parametric quadrilateral elements and resulting in 91368 num-
ber of unknowns. The incident wave is a uniform plane wave with a frequency
f = 1978 Hz, and the propagation medium is air where the standard speed of
sound in air is c = 340.29m/s. The solution is obtained using the HiCMA TLR LU-
based solver for three different fixed accuracies, i.e., 1e−1, 1e−2 and 1e−3. Then,
as a post-processing step, we calculate the potential on a circle with a radius
of 4m (θ ∈ [0◦; 180◦];φ = 0◦). Figures 6a and 6b plot the scattered potential
amplitude and its difference from that computed using a Mie series code versus
θ of this circle. We can see the error decreases as the accuracy increases, which
demonstrates the correct implementation of the solver. While 1e−1 degrades the
numerical solution, an accuracy threshold of 1e − 2 is typically satisfactory for
the application requirement. With the accuracy threshold of 1e− 3, the solver is
in an “over-accurate” state, which results in an unnecessary computational load.

Next, to show the applicability of the solver, we consider scattering from a
more complex realistic submarine geometry, as shown in Fig. 7. The submarine is
contained within a box of dimensions 32.1×3.6×6.5 meters, as shown in Fig. 7a.

Fig. 4. Singular Values Decay for blocks
(13,12), (15,11), (20,5) , and (27,1),
respectively, of matrix size 91368-by-
91368 and tile size is 3384

Fig. 5. The rank distribution before (on the
left) and after (on the right) LU factoriza-
tion. The matrix size is 91368-by-91368 and
tile size is 3384, the accuracy threshold is
10−2. White color is used to represent dense
tiles. The ranks become larger after factor-
ization. (Color figure online)
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Fig. 6. Comparison of the near scattered potential computed on a circle with radius
a = 4 m for φ = 0◦ and 0◦ < θ < 180◦ using the numerical solution (obtained by the
HiCMA LU solver for accuracy 1e − 1, 1e − 2 and 1e − 3) and the analytical solution,
obtained using Mie series. The matrix size is 91368-by-91368 and tile size is 3384.

Fig. 7. Application of HiCMA TLR LU-based solver to the analysis of acoustic scattering
from a submarine.
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Its surface is discretized into 10818 second-order curvilinear triangular patches
resulting in having 64908 unknowns. The submarine is illuminated by an x-
propagating plane wave with a frequency of 1366 Hz. Figures 7b, 7c, and 7d show
the pressure fields (in dB) induced on the surface of the submarine computed by
the HiCMA TLR LU-based solver for three different truncation errors, 1e-1, 1e-2
and 1e-3, respectively. Based on conclusion from the previous set of results for
the sphere and since there is no significant difference between Figs. 7c and 7d,
we believe the solution converged and thus a 1e-2 accuracy for this example is
enough.

8 Performance Results

Environment Settings. The experiments are carried on several shared and
distributed-memory systems, as illustrated in Table 1. All computations are per-
formed using double complex precision arithmetic and the presented results are
an average of three consistent executions. HiCMA and StarPU (v1.2.6) are built by
GCC (v5.5.0) on Intel and AMD shared-memory systems and by ARM Allinea
Studio (v19.2) on the ARM system. For BLAS and LAPACK implementations,
MKL (v2018) is used on the Intel systems, OpenBLAS (v0.2.20) on the AMD sys-
tem, and ArmPL (v19.2) on the ARM system. On the distributed-memory sys-
tem, HiCMA and StarPU (v1.2.6) have been compiled with Intel compiler suite
(v18.0.1.163) and link against Cray MPICH.

Performance Comparisons. Fig. 8 presents the performance comparisons in
time of vendor optimized dense LU factorization versus HiCMA TLR LU factor-
ization. HiCMA TLR LU is up to an order of magnitude faster than the vendor
optimized dense LU factorization across all systems. This figure demonstrates
the portability of HiCMA TLR LU factorization. The times shown do not include
the the matrix generation for both HiCMA TLR LU and dense LU, nor the com-
pression phase for HiCMA TLR LU only.

Table 1. Hardware specifications.

Shaheen-2 Broadwell(BDW) Haswell(HSW) Skylake (SKL) Cascade Lake AMD ARM

Family E5V3 E5V4 E5 Scalable Scalable EPYC Marvell

Model 2698 2680 2699 2698 6248 7601 ThunderX2

Node(s) 6144 1 1 1 1 1 1

Socket(s) 2 2 2 2 2 2 2

Cores 32 28 36 40 40 64 64

GHz 2.60 2.40 2.30 2.40 2.50 2.2 2.5

DDR4 (GB) 128 256 256 370 370 256 256

L3 cache (MB) 40 35 35 27.5 28 64 32

Time Breakdown. Fig. 9 shows the time spent in the generation and compres-
sion phases for the HiCMA TLR LU and dense LU on the Cascade Lake system for
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various matrix sizes. The time for the compression phase is negligible compared
to the overall time to solution. The time for generation may be improved using
Adaptive Cross Approximation technique [14] but this is beyond the scope of
the paper.

Accuracy Impact on the Performance. Fig. 10 shows the accuracy impact
on the overall performance. As we increase the accuracy threshold, the time to
solution increases steadily due to larger ranks k captured on each tile. The HiCMA
TLR LU may actually becomes slower than the vendor optimized dense LU due
to the expensive recompression step once k > nb/2.

Performance on Distributed-Memory System. Fig. 11a shows the perfor-
mance of the dense LU factorization (i.e., the zgetrf nopiv double complex LU
routine without pivoting) from DPLASMA v2.0 [17] on up to 256 nodes and com-
pares it against HiCMA LU factorization on 16 nodes only. Thanks to low-rank
approximations, HiCMA TLR LU outperforms DPLASMA’s dense LU across a range
of matrix sizes, and up to an order of magnitude when using the same number of
nodes. Figure 11b shows the performance scalability of HiCMA TLR LU on up to
1024 nodes with 2.5M unknowns.

Traces. Fig. 12 presents the execution trace of tile dense LU factorization as
implemented in Chameleon and HiCMA TLR LU on four nodes with a matrix size
of 74K. Each core of the four nodes has it timeline represented along the x axis.
The blue colors corresponds to cores busy working, while the red colors show
when the cores are idle. The gray area for the HiCMA trace does not record any
activities since the code has already finished. While it is true that HiCMA TLR
LU is much faster than tile dense LU factorization from Chameleon, we believe
there is still room for improvement. Some of the off-diagonal tiles may have
higher ranks, as seen in Fig. 5. Further runtime optimizations may be required
to execute tasks along the critical path with higher priorities. Also, as seen in
previous work [23], a hybrid data distribution combining 1D cyclic for the dense
diagonal tiles and 2D cyclic for the off-diagonal tiles may result in a better load
balancing.

9 Summary and Future Work

We present a new high performance implementation based on the Tile Low-Rank
(TLR) LU factorization, which exploits the data sparsity of the matrix operator,
in the context of scattering analysis from acoustic 3D boundary integral equa-
tions. Our high performance TLR LU factorization relies on task-based program-
ming models associated with the StarPU dynamic runtime system. We extend
and plan to integrate this new TLR LU into the existing HiCMA TLR software
library. This synergistic software solution enables asynchronous executions of
the TLR LU factorization, while mitigating the data motion overhead. We com-
pare the obtained performance results of our TLR LU factorization against the
state-of-the-art dense factorizations on several shared and distributed-memory
systems. We achieve up to an order of magnitude performance speedup. We are
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Fig. 8. Performance of HiCMA TLR LU versus vendor optimized dense LU on Intel
systems (Haswell, Skylake, Broadwell, Cascade Lake), AMD Epyc, and ARM shared-
memory systems.

able to solve the scattering analysis from 3D acoustic BIE problem with up to
2.5M unknowns in double complex precision arithmetics. Although our algo-
rithmic and software solutions rely on StarPU, we would like to investigate the
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Fig. 9. Time breakdown comparing
HiCMA Generation, Compression, and
Computation with MKL Generation,
and Computation on Cascade Lake
shared-memory systems.

Fig. 10. Runtime HiCMA TLR LU factor-
ization on Cascade Lake system for dif-
ferent accuracy thresholds. The matrix
size is 114120-by-114120 and tile size
nb = 1902.

Fig. 11. Performance assessment on distributed-memory environment.

Fig. 12. Execution traces on four nodes with a matrix size of 74K. (Color figure online)
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PaRSEC dynamic runtime system, which uses a domain specific language to tar-
get extreme scale performance [23]. We would like also to assess more complex
geometries [19] and to provide support for GPU hardware accelerators. Another
direction may be the study of our fast direct solver in the context of a monostatic
radar cross-section scattering problem involving multiple right-hand sides. Last
but not least, we plan to release the new TLR LU-based solver into the HiCMA
open-source library.
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45. Nyström, E.J.: Über die praktische auflösung von integralgleichungen mit anwen-
dungen auf randwertaufgaben. Acta Mathematica 54(1), 185–204 (1930)

46. Quintana-Ort́ı, G., Quintana-Ort́ı, E.S., Geijn, R.A., Zee, F.G.V., Chan, E.: Pro-
gramming matrix algorithms-by-blocks for thread-level parallelism. ACM TOMS
36(3), 14 (2009)

47. Rong, Z., et al.: Fast direct solution of integral equations with modified HODLR
structure for analyzing electromagnetic scattering problems. IEEE Trans. Antennas
Propag. 67(5), 3288–3296 (2019)

48. Rouet, F.H., Li, X.S., Ghysels, P., Napov, A.: A distributed-memory package
for dense hierarchically semi-separable matrix computations using randomization.
ACM Trans. Math. Softw. (TOMS) 42(4), 27 (2016)

49. Saad, Y., Schultz, M.H.: GMRES:a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7(3), 856–869
(1986)

50. Shaeffer, J.: Direct solve of electrically large integral equations for problem sizes
to 1 M unknowns. IEEE Trans. Antennas Propag. 56(8), 2306–2313 (2008)

51. Wei, J., Peng, Z., Lee, J.: A fast direct matrix solver for surface integral equation
methods for electromagnetic wave scattering from non-penetrable targets. Radio
Sci. 47(05), 1–9 (2012)

https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1007/978-1-4614-9593-2
https://doi.org/10.1007/978-1-4614-9593-2


Solving Acoustic BIE Using High Performance Tile Low-Rank LU Factorization 229

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


DGEMM Using Tensor Cores, and Its
Accurate and Reproducible Versions

Daichi Mukunoki1(B), Katsuhisa Ozaki2, Takeshi Ogita3,
and Toshiyuki Imamura1

1 RIKEN Center for Computational Science, Hyogo, Japan
{daichi.mukunoki,imamura.toshiyuki}@riken.jp
2 Shibaura Institute of Technology, Saitama, Japan

ozaki@sic.shibaura-it.ac.jp
3 Tokyo Woman’s Christian University, Tokyo, Japan

ogita@lab.twcu.ac.jp

Abstract. This paper proposes a method for implementing dense
matrix multiplication on FP64 (DGEMM) and FP32 (SGEMM) using
Tensor Cores on NVIDIA’s graphics processing units (GPUs). Tensor
Cores are special processing units that perform 4 × 4 matrix multiplica-
tions on FP16 inputs with FP32 precision, and return the result on FP32.
The proposed method adopts the Ozaki scheme, an accurate matrix mul-
tiplication algorithm based on error-free transformation for matrix mul-
tiplication. The proposed method has three prominent advantages: first,
it can be built upon the cublasGemmEx routine using Tensor Core oper-
ations; second, it can achieve higher accuracy than standard DGEMM,
including the correctly-rounded result; third, it ensures bit-level repro-
ducibility even for different numbers of cores and threads. The achievable
performance of the method depends on the absolute-value range of each
element of the input matrices. For example, when the matrices were
initialized with random numbers over a dynamic range of 1E+9, our
DGEMM-equivalent implementation achieved up to approximately 980
GFlops of FP64 operation on the Titan RTX GPU (with 130 TFlops on
Tensor Cores), although cublasDgemm can achieve only 539 GFlops on
FP64 floating-point units. Our results reveal the possibility of utilizing
hardware with limited FP32/FP64 resources and fast low-precision pro-
cessing units (such as AI-oriented processors) for general-purpose work-
loads.

Keywords: Tensor cores · FP16 · Half-precision · Low-precision ·
Matrix multiplication · GEMM · Linear algebra · Accuracy ·
Reproducibility

1 Introduction

The increasing number of deep learning applications has triggered the devel-
opment of special processing units such as Tensor Cores on NVIDIA’s graph-
ics processing units (GPUs) and Google’s Tensor Processing Units (TPUs) in
c© Springer Nature Switzerland AG 2020
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Fig. 1. Tensor Cores (FP16 computations with FP32 precision mode)

recent years. The kernel of such tasks is matrix multiplication, which does not
require high-precision such as IEEE 754-2008 binary32 (known as single-precision
or FP32, with an 8-bit exponent and a 23-bit fraction) and binary64 (known
as double-precision or FP64, with an 11-bit exponent and a 52-bit fraction).
The hardware instead supports fast, low-precision operations such as binary16
(known as half-precision or FP16, with a 5-bit exponent and a 10-bit fraction)
and 8/16-bit integer operations.

One of the most widely used examples is Tensor Cores introduced in the Volta
architecture, which computes a 4 × 4 matrix multiplication per clock with fused
multiply-add operations. Although Tensor Cores support several data formats
and computational precisions, the present paper focuses on FP16 computations
with FP32 precision mode, which compute d = a × b + c with FP32 precision
(Fig. 1). Here, a and b are FP16 values, and c and d are FP32. The Tensor Cores
operate up to eight times faster than standard FP32 floating-point units (FPUs)
on CUDA Cores. Many studies have exploited this tremendous performance of
Tensor Cores in general tasks.

This paper presents a method for computing a general matrix multiply rou-
tine (GEMM) in level-3 basic linear algebra subprograms (BLAS) [4] on FP64
(DGEMM) and FP32 (SGEMM) using Tensor Cores. GEMM is one of the ker-
nel operations of many scientific workloads, as well as high-performance Linpack.
The proposed method is based on an accurate matrix multiplication algorithm
based on error-free transformation for matrix multiplication, proposed by Ozaki
et al. [13], also known as the Ozaki scheme. The advantages of this method are
listed below.

– Productive: Being built upon the cublasGemmEx routine in cuBLAS1 pro-
vided by NVIDIA, the method incurs a low development cost.

– Accurate: The method achieves higher accuracy than standard SGEMM and
DGEMM even with correct-rounding.

– Reproducible: The method obtains the same (bitwise identical) result for
the same input, even when the number of cores and threads differs in each
execution.

– Adaptable: The concept is adaptable to other precisions.

Whereas some studies simply accelerate the computation not requiring high-
precision by utilizing low-precision hardware, the present study attempts more
1 http://developer.nvidia.com/cublas.

http://developer.nvidia.com/cublas.
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accurate computations by utilizing low-precision hardware. Our DGEMM imple-
mentations outperform cuBLAS DGEMM only on processors with limited FP64
support. However, the performance gain over FP64 FPUs is not necessar-
ily important; rather, the intent is to increase the potential of low-precision
hardware such as artificial intelligence (AI) oriented processors. Moreover, our
method provides a new perspective on the efficient hardware design for both AI
and traditional high-performance computing (HPC) workloads. For example, it
may reduce the number of FP64 resources in exchange for massive low-precision
support.

The remainder of this paper is organized as follows. Section 2 introduces
related work, and Sect. 3 describes our methodology based on the Ozaki scheme.
Section 4 implements the method, and Sect. 5 presents the accuracy and perfor-
mance evaluations on Titan RTX and Tesla V100 GPUs. Section 6 discusses the
perspective of future hardware design using our proposal. This paper concludes
with Sect. 7.

2 Related Work

Several studies have attempted to utilize low-precision hardware designed for AI
workloads for other purposes. For example, Haidar et al. [7] utilized standard
FP16 and the Tensor Cores operation with FP32 precision in dense and sparse
linear systems with iterative refinement. Energy improvement has also been stud-
ied [6]. Its error analysis was given by Carson and Higham [1]. Yang et al. [16]
presented a Monte Carlo simulation of an Ising model using bfloat16 (BF16, with
an 8-bit exponent and a 7-bit fraction) on Google’s TPUs. These studies apply
low-precision operations to the portions of code not requiring high accuracy,
which can be computed at that precision level. Accordingly, their applicability
is algorithm- or problem-dependent.

Similarly to the present study, several studies have attempted more accurate
operations than those achieved by low-precision hardware. For example, Markidis
et al. [11] proposed a method that improves the accuracy of matrix multiplica-
tion computed with Tensor Cores. Although their method is conceptually similar
to ours, its capability is limited to the computation of matrices with dynamic
ranges supported on FP16 with SGEMM-equivalent accuracy. Henry et al. [8]
discussed the performance of high-precision operations with double-double arith-
metic [2], a classic 2-fold precision arithmetic technique, on BF16 FPUs. Sorna et
al. [15] proposed a method to improve the accuracy of 2D fast Fourier transform
performed on Tensor Cores. We note that, in those studies, the performance
gain over FP32 or FP64 FPUs was not necessarily important; rather, the intent
was to increase the potential of low-precision hardware. Therefore, the hardware
may need to be redesigned to balance the precisions supported on the FPUs.
Our present discussion follows a similar direction.

The Ozaki scheme, which is the kernel of our proposed method, was orig-
inally proposed for accurate matrix multiplication by standard floating-point
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Fig. 2. Schematic of matrix multiplication (C = AB) by Ozaki scheme (in this figure,
scaling is omitted).

operations. OzBLAS [12]2 implements accurate and reproducible BLAS rou-
tines on CPUs and GPUs based on the Ozaki scheme. Whereas OzBLAS was
built on DGEMM performed on FP64 FPUs, the Ozaki scheme in the present
study performs DGEMM/SGEMM operations using GEMM performed on Ten-
sor Cores. Ichimura et al. [10] also reported a high-performance implementation
of the Ozaki scheme based on FP64 operations on many-core CPUs.

3 Methodology

This section first describes the minimal scheme for computing DGEMM by the
modified Ozaki scheme on Tensor Cores. Next, it presents additional techniques
that accelerate the computations. In this paper, flFP64(· · · ) and flFP32(· · · )
denote the computations performed in FP64 and FP32 arithmetic, respectively,
uFP64 and uFP32 denote the unit round-offs of FP64 (uFP64 = 2−53) and FP32
(uFP32 = 2−24), respectively, and FFP64 and FFP16 denote the sets of FP64 and
FP16 floating-point numbers, respectively. N denotes the set of natural numbers
including zero.

3.1 Ozaki Scheme for Tensor Cores

The Ozaki scheme performs an error-free transformation of matrix multiplica-
tion; specifically, the matrix multiplication is transformed into a summation of
2 http://www.math.twcu.ac.jp/ogita/post-k/results.html.

http://www.math.twcu.ac.jp/ogita/post-k/results.html.
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Algorithm 1. Splitting of a vector x ∈ FFP64
n in Ozaki scheme for Tensor Cores.

(x, xtmp, and xsplit[j] are vectors, and the others are scalar values. Lines 9–11
are computations of xi, xtmpi

, and xsplit[j]i for 1 ≤ i ≤ n)
1: function ((xsplit[1 : sx], c[1 : sx]) = Split(n,x))
2: ρ = ceil(log2(uFP64

−1) − (log2(uFP32
−1) − log2(n))/2)

3: μ = max1≤i≤n(|xi|)
4: j = 0
5: while (μ �= 0) do
6: j = j + 1
7: c[j] = τ = ceil(log2(μ)) // τ is hold on c for upscaling later
8: σ = 2ρ+τ

9: xtmpi = flFP64((xi + σ) − σ) // xtmp is the split vector on FP64
10: xi = flFP64(xi − xtmpi)
11: xsplit[j]i = flFP16(flFP64(2

−τxtmpi))
// Downscaling and conversion from FP64 to FP16

12: μ = max1≤i≤n(|xi|)
13: end while
14: sx = j
15: end function

several matrix multiplications that can be performed on floating-point operations
without rounding-errors. Figure 2 is a schematic of the whole Ozaki scheme. The
method performs three major steps:

– Step 1: Splitting – element-wise splitting of the input matrices into several
split matrices.

– Step 2: Computation – computation of all-to-all matrix products of the
split matrices.

– Step 3: Summation – element-wise summation of the all-to-all matrix prod-
ucts.

We now describe each step in detail. For simplicity, we consider an inner product
of two vectors x,y ∈ FFP64

n, but the approach is naturally extendible to matrix
multiplication as it consists of inner products. Also, although we describe the
case for DGEMM only, the same concept applies to SGEMM.

Step 1: Splitting. Algorithm 1 splits the input vectors on FP64 into several
vectors on FP16 as follows.

x = 2c
(x1)

x(1) + 2c
(x2)

x(2) + · · · + 2c
(xsx )

x(sx)

y = 2c
(y1)

y(1) + 2c
(y2)

y(2) + · · · + 2c
(ysy )

y(sy)

xp, yq, sx, sy, c
(p), c(q) ∈ N,x(p),y(q) ∈ FFP16

n

A split vector is first obtained on FP64 and then converted (downscaled) to
FP16. The conversion moves only the exponent and causes no significand-bit
loss. Here, 2c

(p)
and 2c

(q)
are the downscaling factors (from FP64 to FP16) of
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the exponents of x(p) and y(q), respectively. At line 7 in Algorithm 1, τ reaches
1024 when μ =DBL MAX, meaning that c(p) and c(q) can be stored as 2-byte short
integers. The splitting algorithm must satisfy the following properties:

1. If x(p)
i and y(q)

j are non-zero elements,

|x(p)
i| ≥ |x(p+1)

i|, |y(q)
j | ≥ |y(q+1)

j |

2. (x(p))Ty(q) must be error-free in the FP32 computation:

(x(p))Ty(q) = flFP32((x(p))Ty(q)), 1 ≤ p ≤ sx, 1 ≤ q ≤ sy

Splitting can be understood as a translation from a floating-point representation
to a fixed-point representation. The former of the above two properties means
that the accuracy of the final result can be controlled (to lower accuracy) by
omitting some split vectors from the lowest term. The accuracy of the final
result obtainable with a certain number of split vectors depends on the length
of the inner product and the range of the absolute values in each element of the
input vectors. Note that to replace Tensor Cores by other FPUs with different
precisions, we need to modify parameter ρ in Algorithm 1, and the number of
bits held in the split vectors (x(p) and y(q)) depends on the precision of the
FPUs.

Step 2: Computation. Next, the inner product xTy is computed as

xTy = (2c
(x1)

x(1) + 2c
(x2)

x(2) + · · · + 2c
(xsx )

x(sx))T

(2c
(y1)

y(1) + 2c
(y2)

y(2) + · · · + 2c
(ysy )

y(sy))

= 2c
(x1)+c(y1)

flFP32((x(1))Ty(1)) + 2c
(x1)+c(y2)

flFP32((x(1))Ty(2)) +

· · · + 2c
(x1)+c

(ysy )

flFP32((x(1))Ty(sy))

+ 2c
(x2)+c(y1)

flFP32((x(2))Ty(1)) + 2c
(x2)+c(y2)

flFP32((x(2))Ty(2)) +

· · · + 2c
(x2)+c

(ysy )

flFP32((x(2))Ty(sy))
+ · · ·
+ 2c

(xsx )+c(y1)
flFP32((x(sx))Ty(1)) + 2c

(xsx )+c(y2)
flFP32((x(sx))Ty(2)) +

· · · + 2c
(xsx )+c

(ysy )

flFP32((x(sx))Ty(sy))

Here, the computation of all-to-all inner products of the split vectors is per-
formed: a total of sxsy inner products are computed. 2c

(xp)+c(yq)
is the upscaling

factor that compensates the downscaling performed in the splitting process. By
the second property of Algorithm 1, the inner products of the split vectors can be
computed with Tensor Core operations because the inputs are stored in the FP16
format. When extending this example to matrix multiplication, the split matri-
ces must be multiplied by the algorithm based on the standard inner product:
divide-and-conquer approaches such as Strassen’s algorithm are not permitted.
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Algorithm 2. Matrix multiplication C = AB (A ∈ FFP64
m×k, B ∈ FFP64

k×n,
C ∈ FFP64

m×n) with Ozaki scheme
1: function (C = DGEMM-TC(m, n, k,A,B))
2: (Asplit[1 : sA], cA[1 : sA]) = SplitA(m, k,A) // Asplit is obtained on FP16
3: (Bsplit[1 : sB ], cB [1 : sB ]) = SplitB(k, n,B) // Bsplit is obtained on FP16
4: Cij = 0
5: for (q = 1 : sB) do
6: for (p = 1 : sA) do
7: Ctmp = GEMMFP32(m, n, k,Asplit[p],Bsplit[q])

// This can be performed using Tensor Cores as Asplit and Bsplit are FP16
8: Cij = Cij + 2cA[p]i+cB [q]jCtmpij

// Computations for 1 ≤ i ≤ m and 1 ≤ j ≤ n
9: end for

10: end for
11: end function

Step 3: Summation. Finally, the inner products of the split vectors are
summed. The summation can be computed by FP64 arithmetic if the required
accuracy is that of standard DGEMM. However, as flFP32((x(p))Ty(q)) in Step
2 has no rounding errors (being error-free), the correctly-rounded result of xTy
can be obtained by summation with a correctly-rounded method such as Near-
Sum [14]. The result is reproducible if the summation is performed by some
reproducible method, even in FP64 arithmetic. As the summation is computed
element-wise, the order of the computation is easily fixed.

Whole Procedure on Matrix Multiplication. Algorithm 2 computes the
whole Ozaki scheme for matrix multiplication on Tensor Cores. Here, SplitA and
SplitB perform the splitting in the inner product direction (along k-dimension)
of matrices A and B respectively, using Algorithm 1. Note that as Asplit and
Bsplit can be stored on FP16, GEMMFP32 can be performed by FP16 computations
with FP32 precision on Tensor Cores through the cublasGemmEx routine in
cuBLAS.

3.2 Fast Computation Techniques

To further improve the performance, the following methods modify Algorithm 1
or 2. Implementation-based speedup techniques that do not change the algorithm
will be discussed in Sect. 4.

Fast Mode. As implemented in OzBLAS, we define a parameter d ∈ N, d ≤
max(sx, sy) that determines the number of split matrices in the computation.
With d specified, we can omit the computations p + q > d + 1 in (x(p))Ty(q) in
exchange for a small loss of accuracy. If the required accuracy is FP64 (equivalent
to the standard DGEMM, as performed by the method that determines the
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Algorithm 3. Determination of the number split matrices required to achieve
the DGEMM equivalent accuracy with fast mode (A ∈ FFP64

m×k, B ∈ FFP64
k×n)

1: function (d = DetermineNumSplitMats(m, n, k,A,B))
2: (Asplit[1 : sA], cA[1 : sA]) = SplitA(m, k,A) // from line 2 in Algorithm 2
3: e = (1, ..., 1)T

4: s = flFP64(2
√

kuFP64(|A|(|B|e)))
5: d = 2
6: while (1) do
7: t = flFP64((d + 1)(|2cA[d]iAsplit[d]ij |(|B|e)))
8: if (si > ti for 1 ≤ i ≤ m) then
9: break

10: end if
11: d = d + 1
12: end while
13: end function

number of split matrices, described next), the accuracy loss is negligible. This
technique reduces the number of matrix multiplications to d(d+1)/2 from d2 at
most.

Estimating the Number of Split Matrices that Achieves FP64-
equivalent Accuracy. Splitting by Algorithm 1 automatically stops when
μ = 0; that is, when the accuracy of the final result is maximized. However, if the
required accuracy is that of standard DGEMM performed on FP64 arithmetic
(FP64-equivalent accuracy), we can estimate the minimum required number of
splits by Algorithm 3 based on the probabilistic error bound [9] as

|flFP64(AB) − AB|e � 2
√

kuFP64|A||B|e (1)

where e = (1, ..., 1)T is introduced to avoid matrix multiplication in the estima-
tion (note that at line 7 in Algorithm 3, 2cA[d]iAsplit[d]

ij
is d-th non-downscaled

split matrix stored on FP64. Hence, SplitA at line 2 does not necessarily need
to perform until sA, and SplitA and this algorithm can be integrated). This
algorithm is designed to operate in fast mode. If the split number is determined
such that Algorithm 1 executes until μ = 0, the accuracy may be lower than
that of standard DGEMM. In this case, we must disable the fast mode. Note
that, a certain degree of difference between the desired (achieved by standard
DGEMM) and obtained is expected in this method, because the number of split
matrices is just estimated based on the probabilistic error bound, and will also
be influenced by the vector e.

Blocking Against Inner Product. This step is not implemented in the
present study. As ρ in Algorithm 1 includes n, the dimension of the inner product,
the number of splits required to achieve a certain accuracy depends on the inner-
product-wise dimension of the matrix. Its increase can be avoided by employing
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a blocking strategy against the inner product-wise operations. The blocking size
can be set to the minimum size that achieves the best performance. However,
this strategy increases the summation cost; moreover, changing the block size
may disturb the reproducibility except when the correctly-rounded computation
is performed.

4 Implementation

4.1 Basic Design

Our DGEMM implementations, computing C = αAB+βC, using Tensor Cores
are referred to as DGEMM-TC, and two versions are implemented as described
below.

– DP-mode: This mode achieves FP64-equivalent accuracy. The number of
split matrices is determined automatically by Algorithm 3. Fast mode is auto-
matically applied if possible. The summation is performed in FP64 arithmetic.

– CR-mode: This mode achieves the correctly-rounded result when α = 1 and
β = 0. The splitting iterates until all elements of the split matrices are zero.
Fast mode is disabled. The summation is performed with NearSum when
α = 1 and β = 0 or in FP64 arithmetic in other cases.

We also implemented SGEMM-TC in SP-mode, which corresponds to the FP32
version of DGEMM-TC in DP-mode.

Our implementations are interface-compatible with the standard DGEMM
and SGEMM routines, except for an argument for the pointer to a handler
that holds some parameters including the address pointing to the working mem-
ory of the Ozaki scheme. The working memory is wholly allocated outside the
BLAS routine to avoid the allocation time. The allocation is performed through
a BLAS initialization function, which must be called in advance, similar to
cublasInit in cuBLAS. In our implementation of Algorithm 1, max (at line 12)
is obtained on the register through the shared memory, whereas x is accessed
at line 10. For downscaling (and upscaling in the summation), 2n is computed
by scalbn (double x, int n), a function that computes 2nx. In DP-mode, Algo-
rithms 1 and 3 are performed simultaneously as the latter includes the former.
The computation part is performed by cublasGemmEx, a matrix multiplication
routine that uses Tensor Cores. This routine has several internal implementa-
tions3, and can be selected as an argument. In this study, we used the default:
CUBLAS GEMM DFALT TENSOR OP. α and β are computed in the summa-
tion process.

4.2 Optimization

Blocking to Reduce Memory Consumption. Memory consumption is
reduced by a blocking technique applied to the outer-product-wise direction
3 The details are not presented.
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(note that this blocking differs from the inner-product-wise blocking discussed
in Subsect. 3.2). All procedures are blocked by dividing a matrix into a rectan-
gle with block size bk. In our implementation, the block size is determined as
bk = �n/�n/bmax��. This blocking technique may reduce the performance, as
the memory consumption shrinks towards bk = 1, because each matrix multipli-
cation more closely approaches the inner product.

Further Performance Improvement. Although not attempted in this study,
the performance can be improved in several ways from an implementation tech-
nique perspective.

First, as implemented in OzBLAS, the computations of split matrices can
be performed with batched BLAS (i.e., cublasGemmEx can be replaced with
cublasGemmBatchedEx) because each matrix multiplication can be performed
independently. We observed that the performance was improved when the matrix
size was very small, or when the number of split matrices was relatively large,
but was degraded in other cases.

Second, as discussed in the paper [13], a sufficiently sparse split matrix can
be represented in sparse matrix form. Split matrices holding higher or lower bits
of the input matrices may contain many zero elements. If a high-performance
sparse matrix-matrix multiplication routine using Tensor Cores is provided, we
might enhance the performance by switching the dense operation to a sparse
operation.

4.3 Expected Performance and Memory Consumption

The most computationally complex part of matrix multiplication by this scheme
is multiplying the split matrices using cublasGemmEx, which has O(n3) com-
plexity. Ideally, the overall performance is thus determined by the number of
GEMMs called in the computation and the GEMM throughput. For d split
matrices, the number of GEMM is d2 in the standard method and d(d + 1)/2 in
fast mode. These values show how the performance overheads (in time) compare
with that of a one-time execution of cublasGemmEx. However, our implemen-
tations contain several operations executed using FP64 FPUs. Whereas those
portions have a computational complexity of O(n2) at most, they may affect the
performance, if the hardware has limited FP64 support.

The memory consumption when A ∈ FFP64
m×k with sA split matrices and

B ∈ FFP64
k×n with sB split matrices in the naive implementation (i.e., without

the blocking technique) is (sAm + sBn)k on FP16 for storing the split matrices.
As shown in Algorithm 2, if the summation is performed immediately after each
GEMM execution, Ctmp requires mn storage on FP32; however, in our imple-
mentation, owing to the convenience of implementing NearSum in CR-mode,
all computation results are retained, requiring sAsBmn of storage. After apply-
ing the blocking technique with block size bk in both the m and n dimensions,
the memory consumption reduces to (sA + sB)kbk + sAsBbk

2 (0 < bk ≤ m,n).
On the other hand, as the sA and sB are unknown before execution and the
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working memory is allocated before execution to avoid the memory allocation
time, a certain amount of memory must be allocated at initialization. We then
determine the maximum possible block size under the memory constraint. In
addition to the above, several working memory spaces are needed. The memory
consumption of our implementation is not yet optimized and should be improved
in future work.

5 Evaluation

5.1 Experimental Settings

The performance was mainly evaluated on NVIDIA Titan RTX, a Turing archi-
tecture GPU with a compute capability of 7.5. The theoretical peak perfor-
mance (with a boost clock of 1.77 GHz4) is 509.76 GFlops on FP64, 16312.32
GFlops on FP32, and 130498.56 GFlops5 on Tensor Cores with FP32 preci-
sion. This GPU has more limited FP64 support than the Tesla series target-
ing HPC workloads (1/32 of FP32 and 1/256 of Tensor Cores). The mem-
ory is 24 GB GDDR6 at 672.0 GB/s. The host machine was equipped with
an Intel Core i7-5930K CPU running CentOS Linux release 8.1.1911 (4.18.0-
147.3.1.el8 1.x86 64), CUDA 10.2, and CUDA driver version 440.44. The GPU
codes were compiled by nvcc release 10.2, V10.2.89 with compiler options “-O3
-gencode arch=compute 60, code=sm 75”.

Further evaluations were conducted on NVIDIA Tesla V100 (PCIe 32GB),
which offers rich FP64 support (1/2 of FP32 and 1/16 of Tensor Cores). The
Tesla V100 is a Volta architecture GPU with compute capability 7.0, and its
theoretical peak performance (with a boost clock of 1.38 GHz) is 7065.6 GFlops
on FP64, 14131.2 GFlops on FP32, and 113049.6 GFlops on Tensor Cores with
FP32 precision. The memory is 32 GB HBM2 at 898.0 GB/s. The host machine
was equipped with an Intel Xeon Gold 6126 CPU running Red Hat Enterprise
Linux Server release 7.7 (3.10.0-1062.18.1.el7.x86 64), CUDA 10.2, and CUDA
driver version 440.33.01. The codes for this GPU were compiled by nvcc release
10.2, V10.2.89 with “-O3 -gencode arch=compute 60, code=sm 70”.

For accurate evaluation, we averaged the results of 10 executions after three
warm-up executions. In our proposed method, the number of split matrices
required to achieve a certain accuracy depends on the range of the absolute
values in each element of the input matrices. To observe the performance
degradation arising from this range, we initialized the input matrices with
(rand−0.5)×exp(φ×randn), where rand is a uniform random number [0, 1) and
randn is a random number selected from the standard normal distribution. The
range of the absolute value of the input can be controlled by φ, and is widened
by increasing φ. For example, fixing m = n = k = 10240 and varying φ = 0.1,
1, and 2, the ranges were obtained as 9.8E−10 – 8.9E−01, 1.4E−09 – 1.6E+02,

4 The actual clock can exceed the boost clock, depending on the individual product
and the execution environment.

5 576 (Tensor Cores) × 1.77 (GHz) ×2 × 43 (Flops) = 130498.56 (GFlops).
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Fig. 3. Accuracy of cublasDgemm and DGEMM-TC in DP mode on Titan RTX. The
maximum relative error is plotted against the results of MPFR 2048-bit. φ varies the
range of the input values.

and 4.4E−10 – 4.8E+04, respectively. In all experiments, we allocated 20 GB to
the working memory, and set the maximum block size to bk = 3584. The scalar
parameters were set as α = 1 and β = 0.

5.2 DGEMM-TC

Figure 3 shows the accuracies of cublasDgemm and DGEMM-TC in DP-mode
(DGEMM-TC-DP) for various input ranges (collected with different φ values) on
Titan RTX. The maximum relative error is compared with the result of 2048-
bit MPFR6 [5] on FP64 (the results of MPFR are rounded to FP64). As the
CR-mode with NearSum always obtained “zero,” meaning that all the results
were correctly-rounded, its results are omitted from Fig. 3. The accuracy of our
implementation (solid lines) was equivalent to that of cublasDgemm (dotted
lines), but some differences were observed, because our method (Algorithm 3)
simply estimates the minimum number of split matrices that ensure similar
accuracy to the classic DGEMM based on a probabilistic error bound of GEMM.
The estimation further roughened by the e = (1, ..., 1)T term that avoids matrix
multiplications in the estimation.

Figure 4 shows the performance of DGEMM-TC in DP-mode (with FP64-
equivalent accuracy) for the φ values. “Flops (on DP)” is the number of floating-
point operations on FP64 per second when viewed as the standard DGEMM
(i.e., it is computed as 2mnk/t, where t denotes the execution time in sec-
onds). Although the theoretical peak performance of the GPU on FP64 was
only 510 GFlops (539 GFlops was observed on cublasDgemm with GPU boost),
our implementation achieved up to approximately 980 GFlops (when n = 7168),
outperforming cublasDgemm.
6 http://www.mpfr.org.

http://www.mpfr.org
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Fig. 4. Performance of DGEMM-TC in DP-mode (with FP64-equivalent accuracy) on
Titan RTX. “Flops (on DP)” is the number of FP64 floating-point operations corre-
sponding to the standard DGEMM. φ varies the range of the input values.

Fig. 5. Details of DGEMM-TC in DP-mode (with FP64-equivalent accuracy) on Titan
RTX. φ varies the range of the input values. †1: The same line plots the values of
matrices A and B. †1†2: Average over all blocks.
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Fig. 6. Performance of DGEMM-TC in CR-mode (correctly-rounded) on Titan RTX.
“Flops (on DP)” is the number of FP64 floating-point operations corresponding to the
standard DGEMM. φ varies the range of the input values.

Fig. 7. Details of DGEMM-TC in CR-mode (correctly-rounded) on Titan RTX. φ
varies the range of the input values. †1: The same line plots the values of matrices A
and B. †1†2: Average over all blocks.
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Table 1. Performance comparison (m = n = k = 10240) on Titan RTX and Tesla
V100 (GFlops on DP). φ varies the range of the input values.

Titan RTX Tesla V100

φ = 0.1 φ = 1 φ = 2 φ = 0.1 φ = 1 φ = 2

cublasDgemm 534.1 6761

DGEMM-TC-DP 972.4 823.0 713.1 1064 914.3 790.8

DGEMM-TC-CR 220.4 193.5 173.1 255.0 222.5 198.5

DGEMM-DP-CR 24.75 21.17 21.17 293.1 250.7 250.7

Additional performance analyses are shown in Fig. 5. Panel (a) shows the
execution time breakdown for φ = 0.1–2, observed in the tenth (final) execution.
The execution time was dominated by the Tensor Cores computations. The
splitting execution SplitA was slightly slower than SplitB because it included
the cost of determining the number of splits, but SplitB was more costly than
SplitA overall, because it was performed several times on the same portions of
matrix B. Such multiple executions were required by the blocking strategy. The
left part of Fig. 5 (b) shows the number of split matrices (d) of A and B (plotted
by the same line). The central part of Fig. 5 (b) plots the number of GEMMs
called in the computation (d2 or d(d + 1)/2 in fast mode against the number
of split matrices d). Finally, the right part of Fig. 5 shows the computational
throughput on Tensor Cores (i.e., cublasGemmEx). Unlike the case in Fig. 4,
the Flops value directly represents the number of floating-point operations per-
formed on the Tensor Cores, and excludes all other computations. The actual
performance can be understood through the following example: when n = 7168
and φ = 0.1, we observed 980 GFlops. In this case, the number of GEMM calls
was 66. The throughput of cublasGemmEx was approximately 92 TFlops on
TC, and consumed approximately 70% of the total execution time. Hence, there
were 0.7 × 92/66 ≈ 0.98 TFlops on DP.

Figure 6 shows the performance of DGEMM-TC in CR-mode (DGEMM-
TC-CR) (correctly-rounded) on Titan RTX. Figure 7 analyzes the performance
in detail. The number of split matrices and GEMMs called in the computa-
tion can be decimals because the results were averaged over several blocks pro-
cessed by the blocking technique. This mode degraded the performance because
it increased the number of split matrices (and GEMMs), disabled the fast mode
(i.e., affected the number of GEMMs), and increased the summation cost (Near-
Sum is much costly than the standard FP64 summation).

Finally, Table 1 summarizes the performances of DGEMM-TC with m =
n = k = 10240 on Titan RTX and on Tesla V100, which has rich FP64 support.
For comparison, we also show the performance of a correctly-rounded DGEMM
implementation (DGEMM-DP-CR), which is based on the Ozaki scheme but
uses cublasDgemm instead of cublasGemmEx (hence, the computation was per-
formed using FP64 instead of Tensor Cores). On Tesla V100, DGEMM-TC in
DP-mode could not accelerate cublasDgemm.
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Fig. 8. Accuracy of cublasSgemm and SGEMM-TC in SP mode on Titan RTX. The
maximum relative error is plotted against the results of MPFR 2048-bit. φ varies the
range of the input values.

5.3 SGEMM-TC

Figure 8 shows the accuracy of cublasSgemm and SGEMM-TC in SP-mode for
various input ranges (controlled by varying φ) on Titan RTX. The results are
compared on FP32 (the results of MPFR are rounded to FP32).

Figure 9 shows the performance of SGEMM-TC in SP-mode. Similarly to
DGEMM-TC on Tesla V100, our proposed method was useless for accelerating
SGEMM on this GPU with fast FP32 support, but outperformed DGEMM-TC.
The reason for the superior performance is not discernible from Fig. 9; however,
the number of split matrices decreased, and the execution time of the splitting
and summation parts was reduced in SGEMM-TC.

6 Discussion

This section discusses perspectives for introducing our proposed approach into
hardware design. Although our method is limited to inner product based com-
putations, it extends the application range of hardware with limited (or no)
FP32/FP64 resources and fast low-precision processing units for general pur-
pose workloads. Consequently, we can consider reducing the number of FP64
(or even FP32) FPUs, as discussed by Domke et al. [3], by exchanging them
with low-precision FPUs such as Tensor Cores. Our rationale is supported by
the following situations.

– The demand for AI workloads not requiring FP64 is increasing, and such
work is becoming a significant part of the total workloads of HPC systems.

– The performance of large-scale computations is becoming communication-
bound as the degree of parallelism of HPC systems increases.
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Fig. 9. Performance of SGEMM-TC in SP-mode (with FP32-equivalent accuracy) on
Titan RTX. “Flops (on SP)” is the number of FP32 floating-point operations corre-
sponding to the standard SGEMM. φ varies the range of the input values.

– The need for FP64 performance has reduced under the advance of mixed-
precision techniques such as iterative refinement and precision-tuning.

– Low-precision hardware is easier to implement than high-precision hardware.
In general, the complexity of p-bit precision hardware is O(p2). Currently,
most processors only exploit the O(p) benefit of instruction-level parallelism
in single-instruction-multiple-data (SIMD) vectorization.

– Field-programmable gate arrays (FPGAs) are becoming a promising platform
for HPC. Computations that do not fit into general processors can be accom-
modated by FPGAs. For instance, FPGAs can cover any “niche” demands
for FP64 in future.

Accurate and high-precision computational methods, such as the proposed
method and the other methods introduced in Sect. 2, may satisfy the “averaged”
demand for the workloads requiring FP64 operations on an HPC system. Par-
ticularly in memory-bound operations, sufficient performance may be delivered
by limited FP64 performance on hardware, or by software emulation of FP64
through multi-precision techniques; for example, “double-float” arithmetic as a
float version of double-double arithmetic.

We now propose some hardware designs based on the Ozaki scheme. As
described in Subsect. 3.1, the core concept of the Ozaki scheme is error-free
transformation, which is similar to conversion from a matrix represented by
floating-point numbers to matrices represented by fixed-point numbers. Accord-
ingly, the length of the significand bit is important, and the exponent can be
computed separately. Fast integer matrix multiplication (i.e., fast Arithmetic
Logic Units) is desired for such a scheme because it requires fewer split matri-
ces than the floating-point format for the same bit length. Moreover, this study
effectively utilizes the Tensor Core design that computes FP16 data with FP32
precision and returns the result on FP32. Although the same idea can be imple-
mented on standard FP16 FPUs, which adopt FP16 for both data format and
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computation, this implementation would increase the number of split matrices
that achieve a given accuracy. This situation is worsened on BF16 FPUs, which
have fewer significand bits. From this perspective, FPUs like the FP64 version of
Tensor Cores are desired; as it computes d = a×b+c with FP64 accuracy, where
a and b are FP32 and c and d are FP64. Such FPUs can adequately substitute
full FP64 FPUs with the Ozaki scheme on DGEMM.

7 Conclusion

This paper presented an implementation technique for DGEMM and SGEMM
using Tensor Cores that compute FP16 inputs with FP32 precision. Our method
is based on the Ozaki scheme and is built upon cublasGemmEx, a GEMM imple-
mentation in cuBLAS performed on Tensor Cores. Besides providing a DGEMM
and SGEMM compatible interface with equivalent accuracy, our technique can
support accurate (correctly-rounded) and reproducible computations. The per-
formance of our method depends on the range of the absolute values in each
element of the input matrices. For instance, when matrices were initialized with
random numbers over a dynamic range of 1E+9, and our DGEMM implementa-
tion with FP64-equivalent accuracy was run on Titan RTX with 130 TFlops on
Tensor Cores, the highest achievement was approximately 980 GFlops of FP64
operation, although cublasDgemm can achieve only 539 GFlops on FP64 FPUs.
The proposed method enhances the possibility of utilizing hardware with lim-
ited (or no) FP32/FP64 resources and fast low-precision processing units (such
as AI-oriented processors) for general-purpose workloads. Furthermore, because
the proposed method reduces the demand for FP64 FPUs in exchange for lower-
precision FPUs, it will contribute to new perspectives of future hardware designs.
Our code is available on our webpage7.
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Abstract. This work presents how to implement the Matrix-Vector Multiplica-
tion (MVM) onto FPGA through the QuickPlay High-Level Synthesis flow. The
motivations arise from the Adaptive Optics field, where the MVM is the core
of the real-time control algorithm which controls the mirrors of a telescope to
compensate for the effects of the atmospheric turbulence. The proposed imple-
mentation of the MVM exploits four different levels of parallelism: spatial and
pipeline parallelism are used both at the fine (scalar instructions) and at the coarse
(vector instructions) levels. To characterize the architecture being developed, a
performance model has been developed and validated through the actual results
obtained from runs on a prototype board based on the Intel ARRIA10 FPGA.
Some details are given to describe how the algorithm has been implemented using
the QuickPlay HLS flow. Performance results are presented, in terms of sustained
computational speed and resources used in the hardware implementation.

1 Introduction

In the framework of the research project Green Flash [1], we developed the work pre-
sented in this paper, aimed at efficiently implementing the Matrix-Vector Multiplication
(MVM) on the FPGA technology. As discussed in [2–5], in Adaptive Optics (AO) the
effect of the atmospheric turbulence is compensated using the mobile mirrors in the
telescope, which are moved according to a given real-time control algorithm. The dom-
inating part of such an algorithm, see technical annex of the project [1], is the execution
of two MVMs, namely sk* = Mvk and wk = Rspolk .

In this paper we illustrate how we used QuickPlay [6], a High-Level Synthesis
(HLS) design flow, to efficiently implement the MVM on FPGA. Representing one of
the Level-2 BLAS functions [7], MVM is the basis for many algebraic computations and
it is fundamental in many application domains. We underline that we see the presented
work as a template of the methodology to be adopted when using HLS.

We start describing the problem to be solved, together with the constraints imposed
by the challenges on the architecture to be implemented. Next, we present the formula-
tion of the solution, explaining how parallelism should be exploited to obtain an efficient
implementation. The implementation we propose in this paper uses four levels of paral-
lelism: as the MVM is a collection of many independent scalar products, we introduce

© Springer Nature Switzerland AG 2020
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pipeline and spatial parallelism both at the coarse level (parallelization among differ-
ent scalar products) and at the fine level (parallelization within the computation of one
scalar product). A performance model is derived to quantify the performance achievable
through the proposed implementation: this phase is crucial to validate the performance
of the HLS. When using HLS, it is crucial the preliminary determination of what can
be achieved, checking after the synthesis that the results produced by the automated
synthesis process comply with expectations: in lack of this modeling phase, we should
rely only on comparisons with other implementations to (indirectly) evaluate the imple-
mentation produced by HLS. In this paper, the emphasis is put mainly on the evaluation
of the quality of the implementation derived from the HLS flow, as we are not trying to
assess the superiority of a given technology against another: discussing FPGA vs GPU
is not the aim of this paper. For this reason, we put much effort into the modeling of
the performance which can be theoretically achieved, to have an absolute criterion to
evaluate the quality of the FPGA implementation: the closer is the performance to the
theoretical forecast, the better it is.

The document is concluded with the presentation of the results, in terms of per-
formance achieved in actual runs (GFlop/s) and resource used (LUT, memory blocks,
DSP).

2 Related Work

Due to its relevance in many domains, the implementation of the MVM has been widely
investigated; in particular, how to efficiently implement the operation on the FPGA
technology has been investigated. In [8] the authors present a comparison of the imple-
mentation of the MVM, the gaxpy operation, on FPGA, GPU and CPU. They describe
the FPGA implementation, organizing the internal dual-portedmemories as V row banks
which store the rows of the matrix; each of these banks is composed by B banks which
store in an interleaved way the rows mapped into the row bank; thanks to this organiza-
tion, at each clock cycle V×B elements can be read andwritten from and to thememory.
These elements can feed Q ≤ V pipelined modules, each one computing a B-size scalar
product. The work is further improved in [9], where the management of large external
memory is added. In [10, 11] the FPGA implementation of the BLAS operations is dis-
cussed, with a special focus on the implementation of the reduction circuit needed in the
accumulation involved in each BLAS operation. The authors in [12] report the FPGA
implementation of the MVM and matrix-matrix product with a detailed analysis of the
error propagation in the accumulation phase. Considering that the MVM problem is I/O
bound and there is no benefit in increasing the parallelism beyond the I/O saturation,
the authors propose to use some logic to implement the group-alignment based floating-
point summation [13], which increases the numerical accuracy of the computation. The
FPGA implementation of the BLAS is reported in [14]. In this work, while relying on
the OpenCL framework [15] for the actual FPGA implementation, the authors give a
detailed performance model to drive the selection of the parameters determining the
tradeoff between speed and resource performance. Using the selected parameters, some
code generators are activated to generate theOpenCL description of the optimizedBLAS
routine. The reader interested in the implementation of the MVM on GPU technology
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can refer to [16], which presents an analysis of the MVM implementation on GPU,
together with a detailed performance model.

3 Problem Definition

The MVM is the basic operation to perform the Wavefront Reconstruction control algo-
rithm; its usage is well known in the Adaptive Optics community and dates back to the
late ’80 s [17] and has been successively improved many times [2]. In our implementa-
tion, using single-precision floating-point arithmetic, we have to multiply two matrices
M[Nmeans, Nrec] andR[Nrec, Nmeans] with the vectors vk[Nrec], sk[Nmeans], being Nmeans
= 9232 and Nrec = 6316.

Due to their size,M andR are stored in external memory.M andR do not change for
a quite long time and must be multiplied many times by vectors vk and sk; processing
step (k + 1) can start only when the kth step has finished.

Once the bandwidth BW to access the external memory is fixed, an upper bound
for the speed of the computation is determined. To perform the MVM, the matrix must
be read from the memory; when we refer to a generic matrix M[n, m] and we indicate
with D the floating-point data size expressed in bytes (in single-precision D = 4, in
double-precision D = 8), the matrix size is Ms = nmD [Bytes] and the time to read the
matrix from external memory is

tR = nmD/BW. (1)

As the number of operations performed in the MVM is nops = 2 nm and the overall
computing time cannot be smaller than tR, the computing speed SC cannot be larger than
nops/tR i.e.,

SC ≤ nops
tR

= 2nm
nmD
BW

= 2BW

D
. (2)

Using single-precision floating-point, D = 4, the speed can never be greater than
half of the available memory BW.

In the following sections, we will analyze how the MVM should be implemented to
be as close as possible to the previous limit.

4 Guidelines for Implementation: Exploiting Coarse-Grained
Parallelism

The MVM b = M × a (M[n, m], a[m], b[n]) is the collection of n independent scalar
products between m-sized vectors i.e.,

bi = mi · a i = 0, 1, . . . , n − 1; bi ∈ R;mi ∈ R
m; a ∈ R

m. (3)

Let’s implement, in an optimized way, a kernel SP which performs a certain number
of scalar products between one vector a and several vectors read from the external



254 A. Marongiu and P. Palazzari

memory; if we have p external memory banks, we can partition1 M in p equal partsMp,
each containing n/p different matrix linesmp,i with p = 0, 1, …, p − 1 and i = 0, 1, …,
n/p − 1 (each line is an m-sized vector), storing eachMp into a different memory bank.
We instantiate p replicas of the SP scalar product kernel and we distribute a copy of the
a vector, to be read once, to all the SP kernels. Each SP kernel computes a portion bp
of the b result vector. The final vector is obtained properly merging (i.e., concatenating)
all the bp sub-vectors.

The degree of parallelism p is selected to make (nearly) equal the BW requirement
with the BW available toward the external memory (BWExtMem); let’s indicate with
BWreq the memory bandwidth requested by the SP kernel (BWreq will be quantified in
the following).

The memory bandwidth required by the p SP kernels is p×BWreq and must be large
enough to saturate BWExtMem i.e., BWExtMem ≈ p × BWreq which gives

p ≈ BWExtMem/BWreq. (4)

Fig. 1. Coarse-grained parallel architecture to implement the MVM

In the following, when giving numerical examples, we use the parameters character-
izing the µXComp board, developed by MicroGate and equipped with an Intel ARRIA
10 GX1150 FPGA [18]. Referring to the previous example and to the four Hyper Mem-
ory Cube (HMC) banks present in the µXComp board (each HMC bank has a peak
BW of 17 GB/s), BWExtMem = 68 GB/s. In our implementation of the SP kernel BWreq
= 19.2 GB/s, so the degree of parallelism that can be efficiently supported is given by
Eq. (4) which yields p ≈ 4. Therefore, four SP kernels can be instantiated, each one
accessing a different HMC bank.

5 The Scalar Product: Basic Pipelined Implementation

As a consequence of the discussion of the previous section, we recognize the scalar
product as our coarse grain unit of parallelism. The scalar product can be implemented

1 Let’s assume n to bemultiple of p; should this not being the case, (n%p) setswould have �n/p�+1
lines and the remaining sets would contain �n/p� lines.
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with one pipelined MADD (one multiplier and one adder) which iteratively computes
the recurrence

si+1 = ai × bi + si i = 0, . . . , n − 1with s0 = 0, ai ∈ a, bi ∈ b.

The computation of the next MADD operation is dependent on the completion of
the previous operation, so a newMADD cannot start until the previous has finished, thus
waiting for the latency L of the MADD.

To avoid paying this penalty, we can exploit the commutativity and associativity
of the ADD operation (let us neglect the effects of the limited precision). Under the
commutative and associative hypothesis for the ADD and assuming m to be an integer
multiple of L, we can rewrite the scalar product as in the following

s =
∑m−1

i=0
(ai · bi) =

∑L−1

i=0

(∑ m
L−1

j=0
ajL+i · bjL+i

)
(5)

where

– vectors a and b have been partitioned into L sub-vectors ai and bi,
– L partial scalar products are computed (expression in brackets) and finally
– the result is derived by summing the L partial scalar products (external sum).

In the previous formulation, each partial scalar product has to be updated every
L clock cycles; during its processing (requiring L cycles), the other L-1 partial scalar
products will be processed, each one being at a different stage of the pipeline. Only the
final (i.e., the external) sum requires the accumulation of values where the dependence
cannot be completely hidden, thus imposing the payment of some pipeline penalty.

Following the previous approach, we can compute the scalar product in Nclk clock
cycles, as follows

Nclk = (m − 1) + L + O(LA ∗ log(L)) (6)

where (m − 1) + L, are the cycles needed to compute the m MADD operations
and O(LA*log(L)) are the cycles needed to perform the final sum of the L partial
scalar products (LA is the latency of the pipelined add operator) using L/2 adders;
if m � L, Nclk ≈ m. In our case m � L, so we compute the 2 m operations required by
the scalar product in Nclk ≈ m clock cycles, thus sustaining 2 FP operations per cycle.
The sustained speed of the computation is SC = 2fck = 300MFlop/s for fck = 150MHz.

As seen in the previous section, to sustain the speed of the computation SC we must
have a BW toward the memory which is at least twice the numerical value of SC (Eq. 2)).
In this case, the memory BW required by the kernel would be BWreq = 2 * SC = 2 * 300
= 600 MB/s. Referring to the BW of the HMC memory we are using (≈6 GB/s), to
saturate the memory BW we should put p = 68/0.6 = 112 kernels in parallel, which
would require 112 ports to access the external memory module: this huge number of
ports is not realistic, so we have to find a way to increase the computational speed of
the kernel which performs the basic scalar product, in order to use, with the BWreq of a
single kernel, a significant portion of the available memory BW.
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6 The Scalar Product: Exploiting Spatial Parallelism

To increase the computational speed and the BWreq of the kernel which computes the
scalar product, we could further partition each of the L sub-vectors into P sub-vectors
so that, at each cycle, we can start computing P independent partial scalar products.

Let’s rewrite the Eq. (5) as in the following

s =
∑m−1

i=0
(ai · bi) =

∑L−1

i=0

∑P−1

j=0

(∑ m
LP −1

k=0
aiP+j+kLP · biP+j+kLP

)
(7)

where vectors a and b have been partitioned into LP sub-vectors, each with m/(LP)
elements; the generic sub-vector vij is defined as

vij = {
viP+j+kLP| k = 0, 1, . . . ,m/LP

}
i = 0, 1, . . . ,L − 1 j = 0, 1, · · · ,P − 1.

Once partitioned a and b into the LP sub-vectors aij and bij, we compute the LP
partial scalar products sij (expression in brackets in (7)), then we sum all the LP partial
values to obtain the final result.

Using P MADDs, if we can read 2P floating-point values per cycle, the number of
cycles to determine the LP partial scalar products is given by

Ncomp =
[(m

P
− 1

)
+ L

]
. (8)

In fact, after L clock cycles, P MADD results are produced; the remaining (m – P)
MADD results are produced in the following (m – P)/P cycles, as P new results are
produced at every cycle.

Once generated the N = LP sij values, they must be summed together to obtain the
final scalar product.

As already discussed, we can use N/2 adders to perform the sum of N numbers in
[log2(N )]LA clock cycles. If we use PA < N adders, in each layer we can parallelize the
sums among all the PA adders. It’s easy to verify that the number of cycles to compute
the sum of N = LP numbers using PA pipelined adders is given by

NCyclessum(PA) =
∑	log2(N)


i=1

(⌈
N

2i
1

PA

⌉
+ LA

)
≈ N

PA
+ ⌈

log2(N)
⌉
LA. (9)

The number of cycles NCyclesSP necessary to compute the scalar product of two
vectors of size m using P pipelined MADD modules, with latency L, and PA pipelined
adders, with latency LA, is given by

NCyclesSP = Ncomp + NCyclessum(PA). (10)

From (8), (9) and (10) we get

NCyclesSP ≈ m

P
+ L + LP

PA
+ ⌈

log2(LP)
⌉
LA. (11)
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From the previous expression, we can compute the sustained speed of the computa-
tion (expressed in operations/cycle) as

SustainedSpeed = 2m
m
P + L + LP

PA
+ ⌈

log2(LP)
⌉
LA

. (12)

In previous equation L and LA are fixed by the technology (for instance, with the
current version of QuickCompiler and for the ARRIA10 FPGA, L = 8 and LA = 3),
m is fixed by the problem, P and PA are the parameters of the architecture that must be
determined to maximize the sustained speed.

P must satisfy the following requirements:

– must be a power of 2, i.e. P = 2k, because it determines the width of the internal
memory used by the SP kernel (width of the memory must be a power of 2),

– must be large enough to nearly saturate the memory BW.

In our example, fck = 150 MHz and the BW to one bank of the HMC memory is
17 GB/s. Thus, the width W to saturate the BW is given by

W ∗ fck = BW
[
Byte/s

] => W = BW/fck
[
Byte

]

which gives W = 17000/150 = 113 [Byte]. As W has to be a power of 2, we can
set W = 128 [Byte] (the closest to 113), thus fixing the MADD parallelism to 32 (32
MADDs must read 64 floats/cycle; 32 floats come from the buffer memory connected
to the HMC and storing a row of the matrix M and 32 floats come from the buffer
memory connected to the input stream and storing the vector a, read only once at the
very beginning).

When P = 32 and m = 8K elements, the number of cycles necessary to compute the
LP partial products sij is (ref. to Eq. (8))

NCyclescomp = (m/P) − 1 + L = (8192/32) − 1 + 8 = 263.

If we set PA = 4 (adder parallelism), the number of cycles to sum all the partial
results is (ref. to Eq. (9))

NCyclessum(PA) ≈ LP

PA
+ ⌈

log2(LP)
⌉
LA = 8 · 32

4
+ 8 · 3 = 88.

With theprevious values, theEq. (9) gives aSustainedSpeedof 46.7 operations/cycle;
as fck = 150 MHz, the previous figure corresponds to

46.7
[
ops/cycle

] ∗ 150[MHz]= 7.0
[
GFlop/s

]
.

7 MVM: Coarse-Grained Pipelining

In the operation b = M × a, the result vector b can be computed through the following
loop
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for (l=0; l<n;l++) 
 bl=ml∙a;  // ml is the l-th row of M

whose body can be decomposed in three basic operations:

for (l=0; l<n; l++){ 
 load ml from the external memory 
 compute the LP partial scalar products sij
 compute the final result bl = Σi,j (sij)
} 

The loop can be repeated in different kernels when the matrix M is partitioned into
p submatrices, as depicted in Fig. 1.

Regarding the time complexity (expressed in number of clock cycles), we can write
the following relations

– moving 4 m bytes from the external memory, accessible through a port with W = 4P
bytes, to the internal multi-ported memory requires the number of cycles

Nmem = m

P
+ Lm (13)

as the internal memory can accept 4P bytes/cycle; Lm is the latency to access the
external memory; if Wfck = BWreq > BWExtMem, the actual number of cycles will
be larger than Nmem because the required bandwidth Wfck is larger than the available
memory bandwidth;

– the number of cycles required to compute the LP partial scalar products is given by
Eq. (8):

– the sum of LP values using PA floating-point adders (with latency LA) requires the
number of clock cycles NSum(PA) given by Eq. (9).

As the iterations of the loop are independent, the loop can be pipelined, at a coarse
grain, with three pipeline stages:

– load vector mi,
– compute the LP partial scalar products sij,
– sum the LP sij.

The duration of each stage of this “macro-pipeline” is given by

NPipeStage = max
(
Nmem,Ncomp,NSUM(PA)

)
. (14)

Being the loop fully pipelined, n+ 2 “macro-pipeline” stages are required to process
n matrix lines and to compute n scalar products. The number of cycles necessary to
compute the whole MVM, using p equal SP kernels, is given by

NTotal =
(
n

p
+ 2

)
NPipeStage. (15)
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The sustained speed (operations/cycle) is given by the ratio

S = Noperations
NTotal

= 2nm(
n
p + 2

)
NPipeStage

. (16)

Let’s consider the case characterized by the following parameters:

– m = n = 8192 (m: size of the vector, n: number of scalar products to be computed)
– LA = 3, L = 8 and Lm = 200 cycles (latencies of FP adder, MADD and HMC)
– P = 32 (spatial parallelism, i.e., number of MADD operations performed in parallel)
– PA = 1 (1 adder is used to sum the LP partial scalar products)
– p= 2 (kernel parallelism, i.e., number of equal kernels, each one performing the scalar
product)

Previous values, when inserted in the expressions derived above, give the following
values:

– Nmem = m/P + Lm = 456,
– Ncomp = m/P + LMADD = 264,
–

NSUM (PA) ≈ LP

PA
+ 	log2(LP)
LA = 280.

So NPipeStage = 456 and the sustained speed, when fck = 150 MHz, is

S = Noperations

NTotal
= 2nm(

n
p + 2

)
NPipeStage

= 71.82

[
ops

cycle

]
= 10.8

[
GFlop

s

]
.

It’s worth to be underlined that, when we ran on the µXComp board the test devel-
oped using previous values, we measured an overall speed of 10.6 [GFlop/s], in perfect
agreement with the performance foreseen by the model (see Table 1, reported in the
section related to performance).

8 FPGA Implementation of the MVM Through the QuickPlay
HLS

In this section, we analyze the actual FPGA implementation of the MVM algorithm,
based on the considerations illustrated in the previous sections.

To achieve the FPGA implementation, we use the Accelize HLS framework (Quick-
Play with its embedded QuickCompiler HLS engine [6], formerly produced by Accelize
and to be shortly released as Open Source SW).

We refer to the architecture depicted in Fig. 1 and, in the following Fig. 2, we report
the QuickPlay schematic representing that architecture, in the case of p = 4 SP kernels.

In the previous design, we can recognize the four VectorMatrixProduct kernels, each
performing n/4 scalar products: they are connected to four differentHMCmemory banks.
The first mySplit kernel is used to divide the input data coming from the input port in
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Fig. 2. Top level of the design with p = 4 SP kernels, as shown in the QuickPlay VisualEditor

a) the configuration part (8 bytes sent to the config_in - config_out chain to distribute
the Id of the computing kernels) and

b) the data part (data are the values of the matrixM to be stored in the memory and the
vector a to be multiplied with the matrix) which is sent to the 4 computing kernels
through a streamCopy kernel.

The last BuildResultVector kernel is used to concatenate the results produced by the
four VectorMatrixProduct kernels, generating the result vector.

8.1 The Scalar Product

As seen in the Sect. 6, the basic step to compute the scalar product between the lth row
of the matrix (ml) and the input vector a is the following

compute the LP values

sij = ml:ij · aij =
m
LP −1∑

k=0

(
ml:ip+j+kLP · aip+j+kLP

) i = 0, 1, . . . ,L − 1
j = 0, 1, . . . ,P − 1

which requires the computation of LP partial scalar products. The basic operation
to implement these scalar products is the vector multiply-and-add pipelined function
which takes as input P pairs of single-precision floating-point variables and produces P
floating-point values (in our implementation P = 32), performing the computation

ci + = ai × bi; i = 1, 2, . . . ,P.

The sketch of the QuickPlay C code to implement the vector pipelined MADD is the
following

/*#qp pipeline */
Void MADD(float a1,…a32, float b1,… b32,float &c1,… &c32)
{
 c1 += a1*b1;  
 …  
 c32 += a32*b32;  
}
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Thanks to the /*#qp pipeline*/ directive the previous function is synthesized as a
pipelined function which performs 2P = 64 floating-point operations per cycle (P add
and P mul).

From the synthesis reports of QuickCompiler we know that previous function
requires 7 cycles to produce the output results, so LMADD = 7 cycles; we use L = 8 to
include the cycle needed to read the data from the memory. The MADD is implemented
through the instantiation of 32 fp adders and 32 fp multipliers.

The MADD() function computes the LP scalar products sij i = 0, .., L − 1 and j =
0, 1, …, P − 1 through the following code:

count=0; count1=1; …,count31=31; //init the 32 count vars
/*#qp unroll 32*/
for (i=0; i<(m)/(L*P); i++){
 a1 = a[count];  
 …  
 a32 = a[count31];  
 b1 = b[count];  
 … 
 b32 = b[count31];  
//1st group of 32 MADD scalar operations
 MADD(a1, …,a32,b1,…,b32,s0_0,…,s0_31);           

Inc(count,…,count31);//each count var is incremented by 32  
 …  
 a1 = a[count];  
 …  
 a32 = a[count31];  
 b1 = b[count];  
 …  
 b32 = b[count31];  
 //8th group of 32 MADD scalar operations
 MADD(a1,…,a32,b1,…,b32,s7_0,…,s7_31);  
 Inc(count,…,count31); //each count var is incremented by 32  
}

In our example the size of the vector m assumes the value m = 8192 and L × P =
256. The loop is executed m/(LP) = 8192/256 = 32 times, so the directive /*#qp unroll
32*/ unrolls completely the loop.

The scalar variables a1, …, b32 are read from the FastMemory a[] and the
FastMemory b[] in one clock cycle.

8.2 FastMemory

The FastMemory modules are the memories used by QuickCompiler to map internal
arrays. They are implemented on embedded ram and are described by the tuple

FastMemory = <W, G, N, DType, Size>
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– W is the width of the wide “external” port.
– G is the number of independent groups, each group being formed by N ports; usually
G = 2 (as the embedded Ram modules are dual-ported)

– N is the number of typed ports in each of the G groups. Each port presents a data
which has size DType;

– DType is the size (in bytes) of the data type stored in the FastMemory. In
QuickCompiler, each array is stored in a different FastMemory.

– Size is the size of the memory, expressed in Bytes.

FastMemory has G × N + 1 ports.
The large external port, whose width is W = N * DType, is used to trans-

fer data to/from streams or to/from external memories through the qpReadStream(),
qpWriteStream() and memcpy() functions. The bandwidth of read/write through this
port is given by BW = W * fck [Byte/s]; typical value is W = 128 [B], fck = 150 MHz
and BW= 19.2 GB/s. The latency to access external memories depends on the available
memory controller; the HMC controller in the µXComp board is characterized by a
latency Lm = 200 cycles.

The G × N “internal” ports, whose size is DType, are accessed by the kernel. The
internal BW, between the FastMemory and the computing kernel, is G times the BW of
the external port. The latency to read a data from the FastMemory to the kernel is one
cycle while writing a data from the kernel to the fast memory is accomplished in the
same cycle.

Since W ≥ Dtype, each group of ports allows accessing N = W/DType elements of
an array at the same clock cycle. As the memory is organized in word of W bytes, when
the first port of a group is used it selects the memory word being accessed and it allows
the other ports of its group to access the other array elements of the word.

The FastMemories a[m] and b[m] have been declared with the directive /*#qp
ports 2 32*/ which specifies that the array, composed by m = 8K float elements, is
stored in a memory which has G= 2 groups of N= 32 ports accessible in parallel, every
port being four bytes wide (as they are float data type). Both a and b FastMemories are
characterized by the tuple

<W = 128, G = 2, N = 32, DType = 4, Size = 32768>.

This means that up to 64 floats can be read/written in parallel in one clock cycle.
In one iteration of the loop, the LP sij values are updated; values sij are mapped onto

the variables si_j (i = 0, .., 7 and j = 0, .., 31).
The previous loop-code is scheduled by theQuickCompiler HLS engine as described

in Sect. 6, with the performance given by Eq. (8).
Looking in the QuickCompiler timing report, we see that the execution of themodule

implementing the previous code requires 264 clock cycles, in perfect agreement with
the formula derived from the analysis Ncomp = m/P + LMADD.

After having computed the LP sij values, we must sum them together to obtain the
result i.e., we must implement the expression

bl =
L−1∑

i=0

P−1∑

j=0

(
sij

)
.
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The previous formula is very simply computed through the following (not pipelined)
function

float Sum(float s0_0,..., float s7_31) 
{ 
 float result; 
 result =s0_0+s0_1+...+s0_31+s1_0+...+s7_31; //256 operands
 return result; 
} 

which is scheduled by QuickCompiler on one fp adder and requires 263 clock cycles
to be executed, slightly better than the simplified model presented in the Sect. 6, Eq. (9),
which was foreseeing 280 clock cycles (in our simplified model we are neglecting the
possibility to start the computation of a new layer of sums in the tree adding scheme
before terminating the previous layer).

Putting the things together, the number of cycles requested to compute the scalar
product of two vectors a and b, each containing m = 8192 floating-point values and
stored in two dedicated FastMemory modules, each module having G= 2 groups of N=
32 ports 4 bytes wide, requires 264 + 263 = 527 clock cycles. This figure corresponds
to (nearly) 31 [flop/cycle] which, for a clock frequency fck = 150 [MHz], gives the
sustained speed S = 31 * 150 = 4650 [MFlop/s].

8.3 MVM with a Coarse-Grained Pipeline

We use the just described scalar product module as a basic block to perform the MVM;
the pseudo-code for the MVM is the following:

load vector a; 
for (i=0; i<n; i++)
{ 

load mi, the ith row of M;
Compute the LP sij values as partial scalar products
Sum all the sij

} 

While the loading of the a vector is negligible, as it is performed only once, before
starting the actual computation loop, the load of themi vector is relevant because it lasts
for Nmem = Lmem + m * D/W cycles, being

– Lmem the latency to access the external memory (in our case Lmem ≈ 200)
– W the width of the “external” port of the FastMemory (W = 128 [Byte])

In our case (n = m = 8192, W = 128, LMADD = 8, LA = 3, PA = 1)

– Nmem = 456
– Ncomp = 264
– Nsum = 263
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and the global number of cycles necessary to compute b = M × a is given by

Nseq = n ∗ (
Nmem + Ncomp + Nsum

)
. (17)

As the number of floating-point operations to compute the MVM is Nflop = 2 nm,
the speed expressed in number of operations per cycle is given by

Sops/cycle = 2nm

n
(
Nmem + Ncomp + Nsum

) ≈ 16.7

[
ops

cycle

]
.

Considering that each iteration of the computing loop is independent on the others,
it is immediate to think to a pipelined scheme to overlap the three operations (Fig. 3):

Fig. 3. Gantt for the pipelined execution of the MVM

The computation, arranged according to previous scheduling, can be executed in
Npipe cycles

Npipe = n ∗ Nmem + Ncomp + Nsum. (18)

The speed-up of the pipelined implementation, with respect to the not-pipelined
implementation, is given by

S = Nseq

Npipe
= 8.1 × 106

3.7 × 106
= 2.2

from which we can derive the expected speed for the pipelined implementation, in
ops/cycle, through the following expression

Sops/cycle(pipe) = Sops/cycle(seq) ∗ S = 16.7 ∗ 2.16 = 36.01

[
ops

cycle

]
.

The speed, in flop/s, is obtained as in the following

Sflops/s = Sops/cycle ∗ fck = 36.01 ∗ 150 = 5411

[
MFlops

s

]
.

The scheduling described inFig. 3 is enforced by theQuickPlayHLSwhen compiling
the following code:
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...
qpReadStream(d_in_0,a1,NbElem*sizeof(float));//read vect a 
ReadVector(b1, Matrix,row); row++; // read a row of M
ComputePartialScalarProducts(a1, b1, cr0_0,..., cr0_31);
sum1 = Sum(cr0_0,..., cr0_31);
ReadVector(b2, Matrix, row); row++;
ComputePartialScalarProducts(a1, b2, cr0_0,..., cr0_31);
ReadVector(b3, Matrix, row);  row++;
for (i=0; i<myNbProducts-6; i+=3) 

Write(dout,sum1,false); //send an element of the result 
//vector

sum2 = Sum(cr0_0,..., cr0_31);
Write(dout,sum2,false);
ComputePartialScalarProducts(a1, b3, cr0_0,..., cr0_31);
sum3 = Sum(cr0_0,..., cr0_31);
Write(dout,sum3,false);
ReadVector(b1, Matrix, row); row++;
ComputePartialScalarProducts(a1, b1, cr0_0,..., cr0_31);

sum1 = Sum(cr0_0,..., cr0_31);
ReadVector(b2, Matrix, row);    row++;
ComputePartialScalarProducts(a1, b2, cr0_0,..., cr0_31);
ReadVector(b3, Matrix, row); row++;

{

}
Write(dout,sum1,false);
i++;  //i is the number of written values
sum2 = Sum(cr0_0,..., cr0_31);
Write(dout,sum2,false);

i++;  //i is the number of written values
ComputePartialScalarProducts(a1, b3, cr0_0,..., cr0_31);
sum3 = Sum(cr0_0,..., cr0_31);
Write(dout,sum3,i==NbProducts-1);
… 

preamble

postamble 

In previous code we can recognize three sections:

– the preamble, to fill the pipeline modules; in this section, we find the read (once for
all) of the a vector, the read of the first three rows of M, two computations of the
partial scalar results and one sum operation.

– the loop, which implements the steady-state of the pipelined behavior; in this section
we find three reads of rows of M, three computations of partial scalar result, three
sum operations and the write to the output of three results i.e., the manual unroll of
three complete processing of three rows of M;

– the postamble, which empties the pipeline (no more matrix rows are read). In this
phase it is finished the processing of the last three rows. It is the dual of the preamble;
we have no read, one computation of the partial scalar products, two sum operations
and three write of the results.

To ensure the parallel execution of the different functions accessing the same array,
we used three different buffers to store the rows of matrix M.

The QuickPlay project which instantiates all the available 4 HMCmemory modules,
each connected to one Compute MatrixVectorProduct, is reported in Fig. 2.

Both the input and output ports have been mapped onto a PCIe interface.
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The PCIe IP, HMC controller IP, clock and reset generator IP, as well as the copy
IP and the FIFO IP are all part of the QuickPlay distribution and are instantiated by the
tool in a transparent way (clock & reset generator, FIFO) or based on the configuration
derived from the Visual Editor. The computing kernels are generated by QuickCompiler,
the HLS engine of QuickPlay.

9 Performance Results

To show the performance achieved, in terms of both speed and resource usage, we report
for the different designs developed (with 1, 2, 3 and 4 kernels, each performing theMVM
on a portion of the matrix M)

– the sustained speed [GFlop/s] measured on actual runs on the MicroGate board
(equipped with one ARRIA 10 FPGA and 4 HMC memory banks),

– the resource used (ALM - Arithmetic Logic Modules, memory modules M20K).

Table 1. Results when implementing the MVM with 1, 2, 3 and 4 SP kernels

1 Kernel 2 Kernels 3 Kernels 4 Kernels

Speed [GFlop/s] 5.3 10.6 15.9 21.0

ALM 88547 190648 264600 282473

M20K 500 959 1378 2045

The design presents nearly linear scaling for computational performance.
To understand how resources are used, we report, for the largest design using four

equal MatrixVectorProduct kernels, the percentage of the resources (ALM,M20K) used
to implement

– the PCIe interfacing IP: ALM 2.7%, M2K 0.7%
– the MatrixVectorProduct kernels: ALM 5.3%, M2K 8.1% each kernel
– the HMC memory controllers: ALM 7.0%, M2K 5.7% each controller
– the other auxiliary modules (reset and clock generators, FIFOs, mySplit and
BuildResultVector modules, …): ALM 18.6%, M2K 22.9%

When the FPGA board was configured with the design using four SP kernels, the
power consumption of the board was 40 W, resulting in the energy efficiency of 0.53
GFlop/s/W.

Even if we think that comparison with other implementations is a weak way to
evaluate an implementation, we report an alternative realization of the MVM to verify
that the proposed solution is aligned with what is allowed by the current technology.

The work presented in [14] reports the implementation of several BLAS routines,
including the MVM. The performance of this routine is reported in the case of a 1024 ×
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1024matrix stored within the internal RAM, thus not requiring any communication with
the DDR banks; in the case of vectorization width set to 64 (i.e., performing in parallel
64 multiply operations) it is reported a computing speed greater than 20 GFlop/s (both
in single and in double precision). While giving an idea of the performance achievable
by the hardware in the FPGA, such a figure would require a significantly large I/O BW
to be sustained for larger matrices (as the 8Kx8k matrices used in our case): the proper
buffering and macro-pipelining of the computation to sustain the traffic with the DDR
memory is not addressed in [14], not being this the core of the FBLAS implementation.

10 Future Developments

Looking at the Gantt reported in Fig. 3, we see that the transfer of one line of matrix
M from memory lasts longer (456 cycles) than the computation of the partial scalar
products (264 cycles) and the final sum (263 cycles). This happens because QuickPlay
HLS does not support outstanding read operations, which would allow overlapping
different memory transfers. Could we use outstanding memory reads, the latency of the
next transfer could be overlapped with the actual data transfer of the current, as in the
following:

In the previous figure, we decomposed the time to transfer data from HMC to the
kernel into the latency L(mi) and the actual data transfer. It’s easy to verify that the
number of cycles needed to perform the computation shown in Fig. 4 is given by

Fig. 4. Pipelined implementation with support to outstanding read operations

Npipe = n ∗ max
(
L(m), Nmem, Ncomp, Nsum

) + L(m) + Nmem + Ncomp + Nsum.

In our case (n = m = 8192) the values are L(m) = 200, Nmem = 256, Ncomp = 256
and Nsum = 263 which yield

Npipe = n ∗ 264 + 983

Previous value corresponds to

Sops/cycle(pipe) = 2nm

264n + 983
≈ 62

[
ops

cycle

]

i.e., 9.3 GFlop/s when fck = 150 MHz, very close to the limit imposed by the memory
BW.
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11 Conclusions

The activities performed to implement on FPGA the MVM through the QuickPlay HLS
flow have been described.

We started formalizing the problem, describing how parallelism is a key factor to
achieve the expected performance and we showed how parallelism could be introduced
at 4 different levels:

– (spatial) parallelization over the different rows of the matrix, computing in parallel
the scalar products between the input vector and p different rows of the matrix M

– parallelization (pipelining) of the basic scalar product, achieved thanks to the intro-
duction of L different independent partial scalar products to break the data dependence
characterizing the classical accumulation scheme (L is the latencyof the basicMultiply
and Add pipelined operation)

– parallelization derived from the iteration of the previous decomposition, dividing each
of the L sub-vectors into P smaller sub-vectors, thus performing in parallel P pipelined
partial scalar products

– coarse-grained pipelining, overlapping different phases of successive scalar products
whenmultiplying the input vector bydifferent rowsof thematrixM(read fromexternal
memory, computation of the partial scalar products, sum of the partial results).

Some models to compute the expected performance of the algorithm we have imple-
mented have been presented and discussed. We found a good agreement between the
forecasted and the actual performance. This agreement demonstrates the good quality
of the hardware generated by the HLS engine.
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koniges@hawaii.edu

4 NERSC/LBL, Berkeley, CA, USA
csdaley@lbl.gov

5 MHPCC, University of Hawai‘i, Kihei, HI, USA
dceder@hawaii.edu

6 PACE/Georgia Tech, Atlanta, GA, USA
chris.stone@gatech.edu

Abstract. We describe the process and outcome of our efforts to port a
legacy Fortran benchmark code to heterogeneous GPU-accelerated com-
puting architectures using OpenMP. The benchmark code is one of the
multi-zone NAS Parallel Benchmarks (NPB-MZ) called SP-MZ. This
“mini-app” mimics the computation and data movement that is found in
popular legacy and modern implicit computational fluid dynamics (CFD)
solvers. Our objective was to examine how efficiently legacy Fortran
codes can be ported to accelerators by leveraging OpenMP directives.
We describe the development and optimization process and demonstrate
the performance impact of various code modifications. We show select
profiling results from the NVIDIA Visual Profiler (nvpp) to help others
diagnose and overcome performance issues in their own applications. We
present results for two compute systems endowed with NVIDIA V100
accelerators.
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1 Introduction

The latest computing architectures that are deployed in existing supercomputing
installations have very closely followed hardware trends that were propelled by
emergent fields of computational science, such as machine learning, data mining
and artificial intelligence. These emergent fields use methodologies that can take
c© Springer Nature Switzerland AG 2020
P. Sadayappan et al. (Eds.): ISC High Performance 2020, LNCS 12151, pp. 270–287, 2020.
https://doi.org/10.1007/978-3-030-50743-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50743-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-50743-5_14


Execution of CFD Mini-App on Accelerators 271

advantage of large numbers of low-power processors, as they require simple linear
algebra operations to be performed on compactly sized chunks of independent
data. As a result, high levels of parallelism are possible because concurrency
is relatively easy to realize when processing data without the need of frequent
exchanges of information. The pipelining that is possible by means of forming
and executing small kernels on streams of data can be done very efficiently on
large numbers of co-processors, similar to how graphics processing units (GPU)
operate to form graphics pipelines. This hardware model was adopted as a means
to provide a large number of theoretical floating point operations for the cost
incurred; here we note that cost implies powering, packaging, and cooling the
processing units.

While these GPU architectures are generally optimal in data-science fields,
they are more difficult to exploit for the traditional algorithms of physical prob-
lems, which involve the solution to partial-differential equations that have inher-
ent strong coupling of the data structures. However, this shift in hardware is
also inevitable due to the exhaustion of raw computational power achievable
by increasing processor clock-speeds and physically compacting the processor
footprints. As a result, researchers in the physical sciences that require more
computational power and performance have to undergo a paradigm shift, where
the methods must take advantage of the new architectures. Legacy codes gen-
erally have a history of testing, user bases, I/O, and other aspects that make
them staples of the HPC landscape. Thus refactoring and porting them to GPU
accelerated nodes is critically important. Our work specifically explores a path
forward for porting codes written in Fortran that are already OpenMP enabled
on the CPU. For reasons of portability, the OpenMP API [3] is an appropriate
direction. Alternative APIs such as OpenACC [2] will require similar modifica-
tions, with similar syntax, and can benefit from the work presented here.

Other avenues for porting methodologies exist, for example frameworks that
act as “middle-writers” for executing code such that porting, data movement
and portability are entirely opaque to the programmer. Kokkos [15] and Raja
[17] are two such frameworks that have been demonstrated to make simulation
software portable. However, this is not a viable option for porting legacy codes,
and especially codes written in legacy Fortran.

This manuscript is organized as follows. First, we discuss the OpenMP frame-
work, and in particular the “Target” constructs that are used for programming
co-processor accelerators. We then describe our general porting strategy and
discuss some related work. Section 2 discusses the parallel benchmark mini-app
that we have chosen for this study. Section 3 describes the evaluation systems,
compiler directives and run-time execution environment for our experiments.
Results are presented alongside the code modifications that were made and are
found in Sects. 4 and 5. We provide some concluding remarks in the final section.

1.1 Programming with OpenMP Target Offload

There are various methods of programming co-processor accelerators. Vendor
specific libraries, for example, such as NVIDIATM cuBLAS [4] or cuFFT [1]
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usually provide good performance with a small programming effort. However,
they limit portability and require that the application kernels match the pat-
tern of the library routines. Low level frameworks such as CUDATM [5] or
OpenCL [16] are suitable for general kernel patterns but require higher pro-
gramming effort. The use of CUDA also limits portability.

Compiler directive based APIs, such as OpenMP, require only moderate pro-
gramming effort with acceptable performance for multi-core nodes. OpenMP
is a well established programming API for shared memory systems that was
first standardized in 1997. It has since been augmented such that it includes
directives for support of accelerators. It provides compiler directives, runtime
library routines and environment variables. Accelerator programming support
has been available since OpenMP 4.0 and the functionality was greatly extended
in OpenMP 4.5. Support is provided to

– Identify kernels for offloading to the accelerator device
– Semi-explicitly specify parallelism
– Manage data transfer between the host and accelerator device.

The new OpenMP 4.5 functionality seamlessly integrates into existing OpenMP
code and is supported by many compilers such as GNU Fortran (gfortran) [12],
CrayTM ftn, and IBMTM xlf.

1.2 Porting Strategy

As alluded to earlier, there are three high-level aspects of porting solvers to het-
erogeneous accelerated systems that must be evaluated in advance of committing
to a given approach:

– performance: the amount of performance that is desirable and is realizable
when using accelerators

– portability: what level of abstraction can be maintained to allow for a desired
level of portability across systems

– intrusiveness: the amount of alteration to the baseline code and to the data
structures that is necessary or is tolerated.

The focus of this work is high performance for the accelerator. We aimed towards
portability by employing the OpenMP standard for accessing accelerators. In
terms of code alteration, minimal modification to the baseline code was desired
and we tried to limit re-factoring of code and changes in data structures. During
the development process we documented the code changes and their impact on
GPU and CPU performance. In essence, our effort consisted of an assessment of
performance gains as a function of the level of alteration made to the mini-app.

1.3 Related Work

Previously, the C implementations of the single zone NAS Parallel Benchmarks
FT, LU and BT [10]. Were ported to accelerators using OpenMP 4.5, which
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was presented at OpenMPCon 2018 [14]. The focus of the current work differs
from the previous work in that we targeted multi-zone codes, and chose SP-
MZ implemented in Fortran as an example. Use of OpenACC to parallelize
CFD algorithms is described in [22]. Various other work has been done using
OpenACC for CFD codes [19]. The focus of the current work differs from previous
efforts in that we targeted multi-zone CFD codes implemented in Fortran and
we are using OpenMP 4.5 as the API.

The basis of our work was established during a Hackathon event sponsored
by the Department of Energy [7].

2 NAS Parallel Benchmark SP-MZ

This effort centered on legacy computational fluid dynamics solvers written in
Fortran and their potential for porting to and acceleration with heterogeneous
computing systems. In order to avoid the complexity of porting a production
solver, we restricted this effort to a mini application that retains the character of
the Navier-Stokes equations and employs a common numerical method. While
modern CFD solvers employ a mix of structured and unstructured grids, we
restricted this work to a structured discretization, which is typical of legacy
codes, to avoid the complexity of building kernels out of unstructured data.

We used the multi-zone NAS parallel benchmark suite in this work. The
NPB-MZ [23] suite consists of three mini applications. These are multi-zone
versions of the well known NAS Parallel Benchmarks BT, SP and LU [10,
21]. SP-MZ supports distributed and shared-memory parallelism with MPI and
OpenMP. Zone-level parallelism is exploited using MPI and parallelism within
each zone is exploited using OpenMP. Version 3.4 of the SP-MZ mini-app has
3,515 total lines of code (LoC). The mini-app contains only 1809 LoC associated
with the implicit integration (i.e. the core arithmetic computation of the CFD
solver), which includes MPI function calls and OpenMP directives. The small
size of the mini-app allows an end-to-end refactoring and several iterations on
offloading strategies. The general execution flow of the original SP-MZ hybrid
code is depicted in Fig. 1.

2.1 The Underlying Numerical Method

The mini application is intended to mimic the performance characteristics of
CFD applications that use the diagonalized Beam-Warming [11] alternating
direction implicit (ADI) algorithm (i.e. the Pulliam-Chaussee algorithm). Major
CFD software packages use this algorithm to simulate a wide variety of com-
pressible flows for external aerodynamics applications. SP-MZ uses this implicit
integration algorithm and it is designed to model the key performance charac-
teristics of larger CFD applications.

Key features include the formation of the explicit right-hand-side (RHS)
vector with finite differences and the factorization of the scalar pentadiagonal
(SP) matrices along each grid line in all three directional sweeps. For a mesh
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Fig. 1. Execution flow of the SP-MZ Benchmark

with N3 points, the ADI scheme requires that N2 SP line matrices (with N
rows) be factored and equations solved in each of the sweeps. Fast assembly
and factorization of the SP matrices is key to achieving high performance in the
mini-app (and similar real CFD applications). In any refactoring effort of similar
algorithms, efficient linear solvers on GPUs are needed for scalar and block tri-
and penta-diagonal matrices.

Briefly, the SP-MZ benchmark solves a set of discretized nonlinear partial
differential equations (PDEs) based on the Navier-Stokes equations. When dis-
cretized on a structured grid using 1st or 2nd-order (central) finite-differences for
spatial derivatives and an implicit backwards Euler time differencing method,
the three-dimensional equations result in a banded, block-matrix with three,
non-adjacent sub- and super-diagonal bands. The block-matrix elements are
5× 5 submatrices. This block-matrix system is considered too large to solve
with either direct or iterative methods. Instead, the discretized PDE system is
approximately factorized (AF) spatially such that each spatial direction can be
solved independently. That is, if the original discretized system is written as:

[I − h{Ax + By + Cz}](Un+1 − Un) = R(Un) (1)

the approximate factorization, following Beam and Warming [11], is:

[I − h Ax][I − h By][I − h Cz](Un+1 − Un) = R(Un) (2)

Here, Ax, By, Cz contain the implicit spatial difference operators, Un+1 is the
state vector solution at the next (future) time-step, h is the step size, and R
contains all forcing terms and explicit terms at the nth time level. Equation 2
can be solved in three sequential steps representing directional solution sweeps:

[I − h Ax]δUx = R(Un) (3)
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[I − h By]δUy = δUx (4)

[I − h Cz]δU = δUy (5)

with δU = Un+1 − Un. In this form, which resembles an alternating direction
implicit (ADI) algorithm, only block tridiagonal matrices must be factored. Note
that in the spatial decoupling in each directional sweep, multiple block tridiago-
nal systems must be solved. That is, if the mesh has Nx ×Ny ×Nz points, then
Ny×Nz block-tridiagonal line matrix equations must be solved in the x solution
direction sweep.

The approximate factorization form requires less storage and less computa-
tional time to solve than the nonfactorized Eq. 1. The computational cost and
storage can be reduced further by solving the diagonalized form [10,20] of Eq. 5.
The block-matrix elements have all real eigenvalues and a complete set of eigen-
vectors. As such, the coupled systems are cast into a decoupled, diagonal form
with some loss of accuracy. The diagonalization recasts the problem from one
of solving block-tridiagonal systems (with five unknowns per block) to one of
solving five decoupled scalar-pentadiagonal systems. Furthermore, three of the
SP systems have the same matrix and can be solved together. The diagonaliza-
tion requires some additional vector-matrix operations compared to the coupled
form, but uses less storage and requires fewer computations. Further details on
the diagonalization can be found in [20].

The multi-zone aspect of the SP-MZ relates to the domain decomposition
approach. The global three-dimensional mesh is partitioned into the x and y
directions. The 2nd-order spatial scheme requires an overlap of ±1 ghost (or
rind) points. The implicit AF scheme is applied independently within each mesh
zone and each MPI process is assigned one or more zones. That is, within each
time-step, each zone is integrated independently.

The major computational costs of the SP-MZ benchmark are the evaluation
of the right-hand-side terms R(Un) in Eq. 5, the assembly of the three SP matri-
ces, and solution of the five decoupled equations in the three spatial directions.
The SP systems are solved using a variant of the Thomas algorithm (TA) for
scalar matrices. The TA is inherently sequential, however, many independent
mesh-line matrices can be solved concurrently.

3 Testing Architectures

Two types of systems were used in this work: the IBM-built “Ascent” system,
which is similar to the “Summit” supercomputer [9] and the Cray-built “Cori”
[6] system.

3.1 The Ascent/Summit Compute Node

The Ascent system [8] is located at the Oak Ridge Leadership Computing Facil-
ity (OLCF). Ascent is a system that is identical to the Summit supercomputer
in terms of compute node hardware, and it serves as a training system. Each
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compute node has two banks of 256 GB DDR4 memory, and each bank is con-
nected via a 170 GB/s bus to an IBM Power9 CPU with 21 physical cores. Each
core can support up to 4 hardware threads for a total of 84 threads per CPU.
The CPUs are connected to each other with a 64 GB/s bus. Each CPU has
access to 3 Volta V100 GPUs, and each of the GPU accelerators accesses 16 GB
HBM2 memory via a 900 GB/s bus. The 3 GPU accelerators on each bank are
connected to the CPU and to each other via a 50 GB/s NVLink2 bus.

One Fortran compiler available on Ascent and the one used in this work is the
Fortran compiler “xlf” that is part of the IBMTMXL compiler suite. The message
passing interface for Ascent is provided by IBM Spectrum MPI. Interactive job
submission and run-time support is provided through the IBM Spectrum Load
Sharing Facility (LSF).

For our study we used cuda/10.1 and the IBM xlf v16.1 compiler with the
following flags:

x l f −q f i x ed −qpreproce s s −O3 −g −q64 −qsmp=omp −qo f f l o ad

3.2 The Cori Compute Node

The Cori system is located at NERSC. Cori is a Cray XC40 supercomputer
that comprises of a mix of Intel Xeon “Haswell” nodes and Intel Xeon Phi
“Knights Landing” nodes. A small set of “Skylake” nodes (18 in total) with
GPU accelerators are accessible via Cori. This will henceforth be referred to
as Cori GPU. There are 2 Skylake CPU sockets on each Cori GPU node, each
containing 20 cores, and sharing 384 GB DDR4 memory. Each Cori GPU node
contains 8 Volta V100 GPUs, each with 16 GB HBM2 memory, and connected to
each other in a “hybrid cube-mesh” topology via a NVLink2 interconnect. The
Cori GPU nodes are intended to help users prepare for the GPU-accelerated
nodes in the Perlmutter supercomputer to be deployed at NERSC in 2020.

The Fortran compilers available on the Cori GPU nodes include GNU-8.1.1,
PGI-19.7, Intel-18.0.1.163, Cray-9.0.0 and LLVM/Flang-7.0. Neither PGI nor
Intel compilers currently provide OpenMP GPU offload support. We also found
that the OpenMP GPU offload support in the GNU and LLVM/Flang compilers
failed even in simple benchmark programs. Therefore, we used the Cray com-
piler in this study. The Cray compiler is accessed using the CrayTM“ftn” MPI
and math library wrapper script. A major limitation of the Cray compiler on
Cori GPU is that the Cray MPI stack is not supported and so Cray compiler
experiments were limited to single process tests only.

For our study we used Cray-9.0.0 with the following flags:

f tn −O3 −h omp −h noacc −hacce l=nvid ia70
−h cpu=haswe l l −h fp3

The reason we optimized for the Haswell processor architecture is that Cray-9.0.0
does not provide optimizations for the Skylake processor architecture.
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4 From OpenMP 3.1 to OpenMP 4.5

In this section we describe our porting strategy and discuss code transformations
that enabled performance gains.

4.1 Identifying Kernels and Describing the Parallelism

In our current implementation we focused on exploiting GPU parallelism within
the zones. We demonstrate our approach with the example in the code snippets
shown in Fig. 2, part of one of the most time-consuming routines in the module
that solves the factored system in the x-direction (running index “i”). This seg-
ment implements forward and backward substitution, and portions of the code
have been removed to ease presentation. The OpenMP directives indicate how
the loops are to be parallelized to perform forward and backward substitution
along the i-direction of the data structures.

The refactored code in Fig. 2 uses the TARGET construct to offload the code
region to the accelerator. The TEAMS DISTRIBUTE constructs create a league of
teams and distributes the loop iterations across teams. The code transformations
of our initial implementation are as follows:

– We manually inlined routines called within OpenMP target regions. An exam-
ple is routine lhsinit in the code listing.

– We transposed some of the arrays to allow for stride one memory access. This
is essential for good performance on the GPU because it enables coalesced
memory accesses. An example is the array rhst in the code listing.

– We used the OpenMP COLLAPSE clause to collapse as many loops as possible.
The code in the listing permits only 2 loop collapses; collapsing 3 loops was
possible in some other routines.

– The original code contains two-dimensional arrays which are declared as
THREADPRIVATE. However, the effect of an access to a THREADPRIVATE vari-
able in a TARGET region is unspecified according to the OpenMP Standard.
We found that OpenMP PRIVATE arrays per thread gave poor performance
because of the large size of the arrays. Therefore, we made the array shared.
This was accomplished by adding two extra dimensions. An example is the
array lhs4 in the code listing.

– To exploit some of the available zone-level parallelism within the code, we
enabled asynchronous kernel execution using deferred OpenMP target tasks
with dependencies. This is why the directive in the code listing contains the
NOWAIT and DEPEND clauses. The execution flow of SP-MZ with potential
kernel overlap is depicted in the pseudo-code in Fig. 3.

In what follows, we will refer to the implementation described above as our initial
port. We refer to the original code as the baseline version.

4.2 Further Optimizing Parallelism and Data Movement

Details on the performance analysis of our initial implementation are provided in
the next section. After profiling, we implemented some additional optimizations.
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Implementation optimized for CPUs
! $OMP PARALLEL DO DEFAULT(SHARED)
! $OMP& PRIVATE ( f a c 2 ,m, f a c 1 , i 2 , i 1 , ru1 , i , j , k )
! $OMP& SCHEDULE( STATIC ) COLLAPSE ( 2 )
do k = 1 , nz−2

do j = 1 , ny−2

ca l l l h s i n i t ( lhs , lhsp , lhsm , nx−1)
. . . . !−−− o p e r a t i o n s l o c a l i z e d a t ” i ”

do i = 0 , nx−3 !−−− Thomas a l g . f o r w a r d e l i m .
i 1 = i + 1
i2 = i + 2
fac1 = 1 . d0/ lh s (3 , i )
l h s (4 , i ) = fac1∗ l h s (4 , i )
l h s (5 , i ) = fac1∗ l h s (5 , i )
do m = 1 , 3

rhs (m, i , j , k ) = fac1∗ rhs (m, i , j , k )
end do
l h s (3 , i 1 ) = lh s (3 , i 1 ) −

l h s (2 , i 1 )∗ l h s (4 , i )
l h s (4 , i 1 ) = lh s (4 , i 1 ) −

l h s (2 , i 1 )∗ l h s (5 , i )
do m = 1 , 3

rhs (m, i1 , j , k ) = rhs (m, i1 , j , k ) −
l h s (2 , i 1 )∗ rhs (m, i , j , k )

end do
. . . .
lhsm (4 , i 1 ) = lhsm (4 , i 1 ) −

lhsm (2 , i 1 )∗ lhsm (5 , i )
. . . .

end do
. . . .

end do
end do

Implementation optimized for GPUs
! $OMP TARGET TEAMS DISTRIBUTE
! $OMP& PARALLEL DO SIMD COLLAPSE ( 2 )
! $OMP& NOWAIT DEPEND( i n o u t : r h s )
! $OMP& MAP( ALLOC : l h s 4 , l h s p 4 , l h sm4 , r h s t )
! $OMP& PRIVATE ( f a c 2 ,m, f a c 1 , i 2 , i 1 , ru1 , i )
! $OMP& PRIVATE ( c v im1 , c v i p 1 )
! $OMP& PRIVATE ( r h o n i p 1 , r h on im1 , r h o n i )
do k = 1 , nz−2

do j = 1 , ny−2

lhs4 ( j , 1 : 5 , 0 , k ) = 0.0 d0
lhs4 ( j , 1 : 5 , nx−1,k ) = 0.0 d0
. . . . !−−− o p e r a t i o n s l o c a l i z e d a t ” i ”

do i = 0 , nx−3 !−−− Thomas a l g . f o r w a r d e l i m .
i 1 = i + 1
i2 = i + 2
fac1 = 1 . d0/ lhs4 ( j , 3 , i , k )
lh s4 ( j , 4 , i , k ) = fac1∗ l h s4 ( j , 4 , i , k )
lh s4 ( j , 5 , i , k ) = fac1∗ l h s4 ( j , 5 , i , k )
do m = 1 , 3

rhs t ( j ,m, i , k ) = fac1∗ rhs t ( j ,m, i , k )
end do
l h s4 ( j , 3 , i1 , k ) = lhs4 ( j , 3 , i1 , k ) −

l h s4 ( j , 2 , i1 , k)∗ l h s4 ( j , 4 , i , k )
. . . .

end do
. . . .

end do
end do

Fig. 2. Code fragments showing base language code and OpenMP directives to execute
efficiently on CPUs and GPUs

– We eliminated some small host-to-device (“HtoD”) data transfers by using
the DECLARE TARGET construct to declare some of the constants on the
device. Furthermore, we declared some subroutine arguments to have the
VALUE attribute. We found that the xlf compiler did not transfer the asso-
ciated data as part of the kernel launch if they were passed by reference.
However, passing the data by value circumvented the issue.
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Par t i t i on domain in to zones
For a l l zones :

i n i t i a l i z e zone
For a l l time−s t eps :

Communication r ind data
For a l l zones :

Pack zone ’ s f a c e po int s in to bu f f e r .
Cal l MPI Send/Recv to exchange bu f f e r s with ne ighbors .
For a l l zones :

Unpack bu f f e r and update zone ghost po int s .
For a l l zones :

Enqueue SP/ADI s o l v e r f o r zone . Async execut ion on dev ice .
Wait f o r a l l zones to complete async execut ion .

Ver i fy r e s u l t s

Fig. 3. Pseudo-code for asynchronous execution in SP-MZ

– We improved the parallelism in the small loop over the two-dimensional slabs
of all zones to accelerate the copy in/out kernels. Instead of a kernel for each
rind copy in/out in “exch-bc” for each zone, we created a target region over
the zone loop so all the copy in/out operations run within the same kernel.
The drawback is that the number of zones shrinks since we end up with just
a few or even one gang/team/threadblock.

– Using preallocated lhs scratch memory for all zones improved performance.
The original implementation used dynamic allocation for each zone inside of
the x, y, and z solvers. This required frequent device allocations with global
barriers. We pre-allocated a large temporary array for all the lhs structures
on all zones and passed them to the x, y and z solver routines.

– We merged asynchronous kernels with communication optimizations. This
removed some unnecessary HtoD and DtoH transfers. We also combined the
PARALLEL DO directives with TARGET TEAMS DISTRIBUTE since this enables the
compiler to generate simpler code where all GPU threads execute the same
computation on different data. It allows the compiler to generate code that
maps better to GPU hardware [18].

In what follows, we refer to the implementation containing these optimizations
as the optimized version.

We monitored the incremental performance changes during the development
process on the Ascent system, which is shown in Fig. 4. The host configuration
used 21 OpenMP threads bound to 1 CPU socket and the device configuration
used 1 process bound to 1 CPU socket, which offloaded work to 1 GPU. The
intention of this graph is to show the performance in the absence of MPI.

The Roman numerals correspond to the following code changes.

(I) Baseline
(II) Transposed arrays to support coalesced memory operations; replaced

dependencies on one-dimensional, thread-private (host) scratch arrays
with four-dimensional scratch arrays.

(III) Changed index ordering in x-solve to improve memory coalescing.
(IV) Reduced or eliminated unnecessary host-to-device transfers.
(V) Merged target, teams distribute, and parallel do directives into one com-

bined directive and additionally used loop collapsing.
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Fig. 4. Incremental performance change during the development process on the Ascent
system: Dev-SU and host-SU stands for speed-up on device and host respectively. A
and C indicate the Benchmark Class. Note the Dev-SU increases but host-SU decreases
during the development process

(VI) Enabled kernel task dependencies to allow asynchronous execution.
(VII) Improved efficiency of ghost/rind data buffer fill kernels.

(VIII) Enabled asynchronous rind fill kernels.
(IX) Added loop scalars to private clauses to avoid unnecessary host-to-device

transfers before kernel execution.
(X) Added CUDA-aware MPI option to bypass host transfers during MPI

communication.
(XI) Improved parallelism and occupancy of rind fill in/out routines.

(XII) Added SIMD to the PARALLEL DO directive to improve performance when
using the Cray compiler.

(XIII) Change argument passing from by-reference to by-value to allow the IBM
OpenMP v4.5 compiler to avoid unnecessary host-to-device transfers.

(XIV) Combined all rind/ghost cell fill in/out routines to execute in one kernel
instead of one per zone. That is, changed parallelism from within each
zone to all zones at once.

The chart also shows that code changes that improved GPU performance,
at times decreased CPU performance. There are several reasons for this. Most
important is the fact that there is poorer cache locality. Furthermore, the IV
change introduced additional arrays, which hurt host performance. The XII
change modified the IBM compiler code generation in a negative way. Figure 4
shows IBM performance, although the XII change describes an optimization for
the Cray compiler.
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5 Performance Studies

In this section we show timings on our different evaluation systems and discuss
performance analysis results. We collected performance results for 3 different
benchmark classes.

– Class A: 4 × 4 zones, 128 × 128 × 16 grid points
– Class C: 16 × 16 zones, 480 × 320 × 28 grid points
– Class D: 32 × 32 zones, 1632 × 1216 × 34 grid points.

A characteristic of SP-MZ is that all zones are of equal size. Provided that
a high performance MPI library is available and that there are no memory con-
straints imposed by the problem size, it is best to exploit zone level parallelism
via MPI rather than using hybrid MPI+OpenMP. The baseline measurements
on Ascent were thus obtained in MPI-only configuration. We could not do this on
Cori GPU with the Cray compiler because of the lack of MPI support. Thus we
used the nested OpenMP implementation of SP-MZ that is part of the NPB 3.4
distribution for the CPU-only measurements. We ran this version with OpenMP
threads on the outer level parallel region to exploit zone parallelism only, mak-
ing it more of a fair comparison against the Ascent MPI-only experiment on
CPUs. We ran the MPI+OpenMP target offload implementation of SP-MZ on
Cori GPU by using a single process and a “dummy” MPI library.

The CPU-only configuration on the Ascent system used in Fig. 5 is different
from the one used in Fig. 4. The purpose of Fig. 4 is to show the performance
in the absence of MPI. In Fig. 5, on the other hand, we want to show the best
possible result that can be obtained on the CPU, which is using 42 MPI ranks on
zone level. This is the reason why speed-up on CPU versus GPU is not as high
in Fig. 5 as in Fig. 4. Using 84 ranks/threads and 168 ranks/threads on the IBM
Power9 did not yield a performance gain since the code is memory bandwidth
limited.

Figures 5 and 6 show the performance in GFLOP/s that we obtained on
Ascent and Cori GPU for different benchmark classes. The Class D problem
on a single Ascent GPU failed and thus we only have results for the smaller
problem sizes for this case. The results show that the performance is generally
highest for Class D, which is the largest problem size. The CPU-only results are
approximately a factor of 2 higher on Ascent than Cori-GPU. This is most likely
because of NUMA penalties affecting the OpenMP version of SP-MZ. The best
single GPU performance we obtained was approximately a factor of 2 slower
than the best CPU-only performance. The benefit of GPUs is only really seen
when running the Class D problem on all 6 GPUs of an Ascent compute node.
Here, performance is approximately 4x higher than the corresponding MPI-only
configuration on CPUs.

We used the nvprof profiler to collect performance statistics. We noticed
that in the optimized code, the CUDA API overhead decreased significantly
in comparison to the initial port. The biggest impact was observed on the
cuMemcpyHtoDAsync call, which we attribute to the excess HtoD transfers of
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Fig. 5. Single node performance for different classes of the SP-MZ Benchmark on
Ascent, using 1 GPU and 6 GPUs on the node. Class D for a single GPU failed.

Fig. 6. Performance for different classes of the SP-MZ Benchmark on Cori GPU

the small constants. Those issues were fixed with the OpenMP “declare tar-
get” directive to make variables available on the device across target regions. As
noted previously, we also declared some subroutine arguments to be passed by
value rather than being passed by reference. An example for this are the array
dimensions in the calls to the solver routines. Another good performance boost
came from using the pre-allocated lhs scratch memory for all zones.

As described in Sect. 4 we used the OpenMP tasking mechanism to allow for
kernel execution overlap. In principle, this allows one to “implicitly” compute
SP-MZ zones in parallel because the work per zone is independent. We used
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OpenMP dependencies for each zone to enable computation for different zones
to execute concurrently. Figures 7 and 8 display the execution timeline generated
by the NVIDIA nvvp visual profiler on Ascent and Cori-GPU, respectively. The
results were obtained by running 10 iterations of the Class C benchmark. The
“Compute” part of the timeline, shows that there was not much overlap of the
kernel execution. We observed that only 2 streams were used for the execution
of the kernels. On the Cori system, on the other hand, kernel execution over-
lapped. This can be clearly seen in the nvvp execution timeline in Fig. 8. Here
we observed that 7 streams were used for the kernel execution. Another obser-
vation is, that the IBM compiler introduces additional Memcpy (HtoD) because
variables are not passed by value as part of the kernel launch.

The lines in the “Compute” part of the timeline, show whether kernels were
running concurrently. The results show that on Ascent we did not get the amount
of overlap we were hoping for, while we could clearly observe overlapping kernels
on the Cori system. It is unclear why there was not more overlap with the IBM
compiler on the Ascent system. We could work around this manually by adding
explicit zone-level parallelism. This would be achieved by lifting the “target
teams” region to the sweep over the zones. All ADI functions will need to be
target functions that could then be called at the team level. We consider such
an implementation as an item for future work.

Fig. 7. Execution timeline of SP-MZ Class C on Ascent as seen on the profiler

We mentioned in Sect. 4 that the CPU performance degraded during the
development process. While the code is functionally portable between different
hardware platforms, its performance is clearly not. We introduced code pat-
terns that improve GPU performance, but degrade performance on the CPU.
We noticed, for example, that the solver in z dimension suffered most during
the development process. In the refactored code, the stride on the inner, non-
vectorized loop is very large. So this is an issue of terrible cache reuse, as it
will thrash the L1 cache considerably. A code snippet of the loop in question is
displayed in Fig. 9.

While performance portability is very important, this was not the focus of
our effort. We plan to address this in future work. The question of performance
portability for directive-based programming is addressed in [13], for example.
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Fig. 8. Execution timeline of SP-MZ Class C on Cori GPU as seen on the profiler

! s e qu en t i a l loop
do k = 1 , nz−2

. . .
ru1 = c3c4∗ r h o i ( i , j , k−1)
cv km1 = ws( i , j , k−1)
rhos km1 = dmax1( dz4 + con43 ∗ ru1 ,

> dz5 + c1c5 ∗ ru1 ,
> dzmax + ru1 ,
> dz1 )

. . .
l h s4 ( i , 2 , j , k ) = −dttz2 ∗ cv km1 − dttz1 ∗ rhos km1
lhs4 ( i , 4 , j , k ) = dttz2 ∗ cv kp1 − dttz1 ∗ rhos kp1
. . .

end do

Fig. 9. Inner loop in refactored z solve routine

6 Summary and Conclusions

In this study we showed that OpenMP 4.5 offers a path forward for achieving
reasonable performance on accelerators when adapting Fortran codes that are
over 10 years old. We described our experience using the OpenMP 4.5 support for
heterogeneous compute nodes. We found that the compiler directives permitted
us to port the legacy Fortran CFD mini-application for execution on compute
nodes endowed with NVIDIA V100 GPU accelerators. We collected results on
two different evaluation systems and conducted performance studies.

As a positive observation, we note that using OpenMP compiler directives
permitted us to port the code within one week of programming effort. We also
note that significant code changes were required to obtain acceptable perfor-
mance. What is important to emphasize is that our approach was one-sided, in
the sense that we targeted code execution and performance gains only on GPUs;
no effort was made to retain performance for execution on CPUs. During the
development process, we noticed that code changes that improved the perfor-
mance on the GPU accelerators actually decreased performance on CPUs. This
implies that when porting legacy codes (i.e. codes not originally designed to use
co-processors), different aspects of the numerical method at hand may have to
be handled differently and distributed across co-processors and the CPUs. An
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approach that is designed systematically to leverage GPUs/co-processors and
CPUs in a manner tailored to the numerical method can potentially yield much
higher performance gains. We envision that such an approach is a suitable path
forward.

Another positive aspect was, that we did not find a lack of functionality in
OpenMP when comparing it to OpenACC. The lack of a present clause did not
present a hurdle. Using OpenMP tasking allowed us to implement asynchronous
execution expressing the dependences more explicitly than using the OpenACC
async construct.

The flip side of using the convenience of OpenMP is that we depend very
much on compiler support. We have mentioned a number of system specific issues
we encountered. Performance optimization is also difficult, as it is often not clear
if poor performance is due to poorly chosen directives or bad code generated by
the compiler. We plan further studies to investigate such issues.

A number of paths to portability (e.g. Kokkos, Raja, and Thrust), can work
well for C++ codes, but are not appropriate for codes entirely written in For-
tran. OpenMP can play an important role here. In our work we focused on exclu-
sively porting code to GPUs, where we also observed minor degraded CPU-only
performance. However, we expect that porting of Fortran codes without such
performance decreases will be possible in the future. There are a number of
research projects on the way addressing specifically performance portability of
Fortran codes as discussed in [13]. The porting process will greatly improve as 5.0
features become available, where one will be able to use different functions and
directives for specific vendor hardware, and in that sense OpenMP can undertake
the middleware role (like Kokkos, for example), performing appropriate changes
based on hardware. Our future work will include enabling explicit zone-level
parallelism, compute kernel optimization and multi-node scaling studies.
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Abstract. Relational algebra (RA) comprises a basis of important oper-
ations, sufficient to power state-of-the-art reasoning engines for Datalog
and related logic-programming languages. Parallel RA implementations
can thus play a significant role in extracting parallelism inherent in a
wide variety of analytic problems. In general, bottom-up logical inference
can be implemented as fixed-point iteration over RA kernels; relations
dynamically accumulate new tuples of information according to a set
of rules until no new tuples can be discovered from previously inferred
tuples and relevant rules (RA kernels). While this strategy has been quite
successful in single-node contexts, it poses unique challenges when dis-
tributed over many-node, networked clusters—especially regarding how
the work-load is balanced across available compute resources.

In this paper, we identify two fundamental kinds of load imbalance
and present a strategy to address each. We investigate both spatial load
imbalance—imbalance across each relation (across compute nodes)—and
temporal load imbalance–imbalance in tuples produced across fixed-point
iterations. For spatial balancing, we implement refinement and consolida-
tion procedures. For temporal balancing, we implement a technique that
permits the residual workload from a busy iteration to roll over to a new
iteration. In sum, these techniques permit fully dynamic load-balancing
of relational algebra that is robust to changes across time.

Keywords: Parallel relational algebra · Load balancing · Logic
programming · Message passing interface · All-to-all communication

1 Introduction

Relational algebra (RA) comprises an important basis of operations. It can be
used to implement a variety of algorithms in satisfiability and constraint solv-
ing [21], graph analytics [24], program analysis and verification [19], deductive
databases [16], and machine learning [22]. Many of these applications are, at
their heart, cases of logical inference; a basis of performant relational algebra
is sufficient to power state-of-the-art forward-reasoning engines for Datalog and
related logic-programming languages.

Quite recently, some efforts [5,14] have explored methods for exploiting the
massive parallelism available on modern clusters in a single relational-algebra
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operation, making it possible to extract data-parallelism across individual opera-
tions for relations at scale. Instead of only decomposing tasks in a broader logical
inference problem, such approaches could permit extreme scaling for problems
involving only a small number of distinct tasks in a principled manner. A funda-
mental problem such approaches must contend with is that of inherent imbalance
possible among the relation data. For example, a join of two relations (an oper-
ation that generalizes both Cartesian product and intersection by matching only
specified columns) may most naturally be decomposed across many processes or
threads by grouping like keys on like processes, permitting most of the join to
be parallelized completely. If a relation is imbalanced among its keys (exhibits
“key skew”), this imbalance will also be represented in the decomposition of the
join operation, which is highly undesirable for performance.

In this paper, we discuss both the problem of dynamic changes in spatial
imbalance, where operations on relations become imbalanced due to key skew
in the relation itself, and the problem of temporal imbalance, where operations
on relations may vary significantly in their output when repeated. While past
work has given mention of replication-based strategies for remediating spatial
imbalance [5] and has implemented static replication strategies [14], no existing
approach offers a solution that is robust to arbitrary changes in relation balance
across time, or to sudden explosions in operation output.

We make three novel contributions to the literature on effectively parallelizing
relational algebra:

– We explore spatial load imbalance in relational algebra and present two tech-
niques for dynamically balancing relations across MPI processes at scale.

– We explore temporal load imbalance in relational algebra and present an
iteration-buffering technique for mitigating against the effects of explosions
in workload and guarding against resultant failures.

– We present an evaluation of our two approaches, together and in isolation,
using random, real world, and corner-case relation topologies, illuminating a
space of tunings and demonstrating effectiveness using 256–32,768 processes.

In Sect. 2, we describe background and related work on relational algebra.
In Sect. 3, we discuss our implementation using MPI, describe two kinds of load
imbalance, and present three techniques for mitigating such load imbalance. In
Sect. 4, we present an evaluation of our approaches using the Theta supercom-
puter and discuss tuning the framework and our observations.

2 Parallel Relational Algebra

This section reviews some standard relational operations such as union, product,
intersection, natural join, selection, renaming, and projection, along with their
use in implementing algorithms for bottom-up logical inference engines. We dis-
cuss existing approaches to parallelizing relational algebra (RA) on single-node
systems, and then on many-node systems.
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We make a few typical assumptions about relational algebra that diverge
from those of traditional set operations. Specifically, we assume that all rela-
tions are sets of flat (first-order) tuples of integers with a fixed, homogeneous
arity. Although our approach may extend naturally to relations over any enu-
merable domains (e.g., booleans, symbols/strings, etc), we also assume that such
values are interned and assigned a unique enumerated identity. Several RA opera-
tions are especially standard and form a simple basis for computation. Cartesian
product is defined as for sets except it only yields flat first-order tuples and never
nested tuples. The Union and Intersection of two relations are defined as for sets
except that these operations require both relations to have the same arity.

Projection is a unary operation that removes a column or columns from a
relation—and thus any duplicate tuples that result from removing these columns.
Projection of relation R restricts R to a particular set of columns α0, . . . , αj ,
where α0 < . . . < αj , and is written Πα0,...,αj

(R). For each tuple, projection
retains only the specified columns. Renaming is a unary operation that renames
columns (i.e., reorders columns, as column names are just their index). Renaming
columns can be defined in different ways, including renaming all columns at
once. We define a renaming operator, ραi/αj

(R), to swap two columns, αi and
αj where αi < αj—an operation that may be repeated to rename/reorder any
number of columns. In practice, our implementation offers a combined projection
and reordering operation that generalizes these two operations more efficiently.

Πα0,...,αj
(R) �{(rα0 , . . . , rαj

) | (r0, . . . , rk) ∈ R}
ραi/αj

(R) �{(. . . , rαj
, . . . , rαi

, . . .) | (. . . , rαi
, . . . , rαj

, . . .) ∈ R}
G

0 1
A B
A C
B D
C D
D E

G joined with G
0 1 2
A B D
A C D
B D E
C D E

ρ0/1(ρ0/1(G) ��1 G)

Fig. 1. Graph G and the result of G-join-G.

Two relations can also be joined
into one on a subset of columns
they have in common. Natural Join
combines two relations into one,
where a subset of columns are
required to have matching values,
and generalizes both intersection
and Cartesian product operations.

Consider a relation G, shown in
Fig. 1, as a table, and at the top of
Fig. 2, as a graph. Joining G on its second column with G on its first column
yields a new relation, with three columns, encoding all paths of length 2 through
the graph G, where each path is made of three nodes in order.

To formalize natural join as an operation on such a relation, we parameterize
it by the number of columns that must match, assumed to be the first j of each
relation (if they are not, a renaming operation must come first). The join of
relations R and S on the first j columns is written R ��j S and defined:

R ��j S � { (r0, . . ., rk, sj , . . . , sm)

| (. . . , rk) ∈ R ∧ (. . . , sm) ∈ S ∧
∧

i=0..j−1

ri = si }
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A
B

C D E

A
B

C D E

A
B

C D E

A
B

C D E

Fig. 2. Each iteration of
computing transitive clo-
sure for a small example
relation G.

Note that to compute the join of G on its second
column with G on its first column, we first have to
reverse G’s columns, computing ρ0/1(G), so we may
then compute a join on one column: ρ0/1(G) ��1 G.
To present the resulting paths of length two in order
again, we may use renaming to swap the join col-
umn back to the middle position, as shown in Fig. 1.
Our implementation (detailed in Sect. 3) provides
more general operations that make this administra-
tive renaming occur only implicitly, on the fly.

2.1 Motivation: Logical Inference

One of the simplest common algorithms that may
be implemented efficiently as a loop over high-
performance relational algebra primitives, is com-
puting the transitive closure (TC) of a relation or
graph. For example, consider our example graph
G ⊂ N

2 where each symbol A through E has
been encoded or interned as an integer: G =
{(0A, 1B), (1B, 3D), (0A, 2C), (2C, 3D), (3D, 4E)} (a
subscript shows each integer’s interpretation as a
symbol or vertex name). Renaming to swap the
columns of G, results in a graph, ρ0/1(G), where all
arrows are reversed in direction. If this graph is joined
with G on only the first column (meaning G is joined
on its second columns with G on its first column),
via ρ0/1(G) ��1 G, we get a set of triples (b, a, c)—
specifically {(1B, 0A, 3D), (2C, 0A, 3D), (3D, 1B, 4E),
(3D, 2C, 4E)}—that encode paths of length two in
the original graph where a leads to b which leads
to c. Projecting out the initial column, b, with
Π1,2(ρ0/1(G) ��1 G) yields pairs (a, c) encoding paths
of length two from a to c in the original graph G. (Note that this projection step
not only removes a column but a row as well, as (1B, 0A, 3D) and (2C, 0A, 3D)
are duplicates if not differentiated by their middle, b, node). If we compute the
union of this graph with the original G, we obtain a relation encoding paths of
length one or two in G. This graph, G ∪ Π1,2(ρ0/1(G) ��1 G), is second from the
top in Fig. 4 with new edges styled as dashed lines.

We can encapsulate this step in a function ExtendG which takes a graph T ,
and returns T ’s edges extended with G’s edges, unioned with G.

ExtendG(T ) � G ∪ Π1,2(ρ0/1(T ) ��1 G)

The original graph G, at the top of Fig. 4, is yielded for ExtendG(⊥), the
graph below it is returned for ExtendG

2(⊥), the graph below that is returned for
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ExtendG
3(⊥), etc. As ExtendG is repeatedly applied from an empty input, each

result encodes ever longer paths through G, as shown. In this case for example,
the graph ExtendG

3(⊥) encodes the transitive closure of G—all paths in G reified
as edges. One final iteration, computing ExtendG

4(⊥), is required to check that
the process successfully reached a fixed point for ExtendG.

In the general case, for any graph G, there exists some n ∈ N such that
ExtendG

n(⊥) encodes the transitive closure of G. The transitive closure may be
computed by repeatedly applying ExtendG in a loop until reaching an n where
ExtendG

n(⊥) = ExtendG
n−1(⊥) in a process of fixed-point iteration. In the first

iteration, paths of length one are computed; in the second, paths of length one
or two are computed, and so forth. After the longest path in G is found, just
one additional iteration is necessary as a fixed-point check to confirm that the
final graph has stabilized in this process of path inference.

Computing transitive closure is a simple example of logical inference. From
paths of length zero (an empty graph) and the existence of edges in graph G, we
deduce the existence of paths of length 0 . . . 1. From paths of length 0 . . . n and
the original edges in graph G, we deduce the existence of paths of length 0 . . . n+
1. The function ExtendG above performs a single round of inference, finding paths
one edge longer than any found previously and exposing new deductions for a
next iteration to make. When the computation reaches a fixed point, the solution
has been found as no further paths may be deduced from available facts. In fact,
the function ExtendG is a quite-immediate encoding, in relational algebra, of
the transitivity property itself, T (a, c) ⇐= G(a, c) ∨ T (a, b) ∧ G(b, c), a logical
constraint for which we desire a least solution. T satisfies this property exactly
when T is a fixed-point for ExtendG and the transitive closure of G.

Solving logical and constraint problems in this way is precisely the strategy
of bottom-up logic programming. Bottom-up logic programming begins with a
set of facts (such as T (a, b)—the existence of an edge in a graph T ) and a
set of inference rules and performs a least-fixed-point calculation, accumulating
new facts that are immediately derivable, until reaching a minimal set of facts
consistent with all rules.

This kind of logical inference forms the semantics of Datalog, a bottom-up
logic-programming language supporting a restricted logic corresponding roughly
to first-order HornSAT—the SAT problem for conjunctions of Horn clauses [3].
A Horn clause is a disjunction of atoms where all but one is negated: a0 ∨¬a1 ∨
. . . ∨ ¬aj . By DeMorgan’s laws we may rewrite this as a0 ∨ ¬(a1 ∧ . . . ∧ aj) and
note that this is an implication: a0 ← a1 ∧ . . . ∧ aj . In first-order logic, atoms
are predicates (in this case, with universally quantified variables). A Datalog
program is a set of such rules,

P (x0, . . . , xk) ← Q(y0, . . . , yj) ∧ . . . ∧ S(z0, . . . , zm),

and its input is a database of initial facts called the extensional database (EDB).
Running the datalog program makes explicit the intensional database (IDB)
which extends facts in the EDB with all facts transitively derivable via the
program’s rules. In the usual Datalog notation, computing transitive closure of
a graph is accomplished with two rules:
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T(x,y) <- G(x,y). T(x,z) <- T(x,y), G(y,z).

The first rule says that any edge, in G, implies a path, in T (taking the role
of the left operand of union in ExtendG or the left disjunct in our implication);
the second rule says that any path (x, y) and edge (y, z) imply a path (x, z)
(adding edges for the right operand of union in ExtendG). Other kinds of graph
mining problems, such as computing triangles or k-cliques, can also be naturally
implemented as Datalog programs [23]. Our primary motivation for developing
distributed RA is as a back-end for an Datalog-like logic-programming language.

Each Datalog rule may be encoded as a function Extend (between databases)
where a fixed point for the function is guaranteed to be a database that satisfies
the particular rule. Atoms in the body (premise) of the implication, where two
columns are required to match, are refined using a selection operation; e.g.,
atom S(a, b, b) is computed by RA σα1=α2(S). Conjunction of atoms in the
body of the implication is computed with a join operation: e.g., in the second
rule above, this is the second column of path joined with the first of edge, or
ρ0/1(path) ��1 edge. These steps are followed by projection to only the columns
needed in the head of the rule and any necessary column reordering. Finally,
the resulting relation is unioned with the existing relation in the head of the
implication to produce F ’s output, an updated database (e.g., with an updated
path relation in the examples above).

Each Datalog rule may be encoded as a monotonic function F (between
databases) where a fixed point for the function is guaranteed to be a database
that satisfies the particular rule. Once a set of functions F0 . . . Fm, one for each
rule, are constructed, Datalog evaluation operates by iterating the IDB to a
mutual fixed point for F0 . . . Fm.

2.2 Implementing Parallel Relational Algebra

In our discussion of both TC computation and Datalog generally, we have elided
important optimizations and implementation details in favor of formality regard-
ing the main ideas of both. In practice, it is inefficient to perform multiple
granular RA operations separately to perform a selection, reorder columns, join
relations, project out unneeded columns, reorder columns again, etc, when iter-
ation overhead can be eliminated and cache coherence improved by fusing these
operations. In practice, high-performance Datalog solvers perform all necessary
steps at once, supporting a generalization of the operations we have discussed
that can join, select, reorder variables, project, and union, all at once.

In addition, both transitive closure and Datalog generally, as presented above,
are using näıve fixed-point iteration, recomputing all previously discovered edges
(i.e., facts) at every iteration. Efficient implementations are incrementalized and
only consider facts that can be extended to produce so-far undiscovered facts. For
example, when computing transitive closure, another relation TΔ is used which
only stores the longest paths in T—those discovered in the previous iteration.
When computing paths of length n, in fixed-point iteration n, only new paths
discovered in the previous iteration, paths of length n−1, need to be considered,
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as shorter paths extended with edges from G necessarily yield paths which have
been discovered already. This optimization is known as semi-näıve evaluation [3].
Each non-static relation (such as T ) is effectively partitioned into three relations:
Tfull, TΔ, and Tnew. Tfull stores all facts discovered more than 1 iteration ago; TΔ

stores all facts that were newly discovered in the previous iteration, and is joined
with G each iteration to discover new facts; and Tnew stores all these facts, newly
discovered in the current iteration. At the end of each iteration, TΔ’s tuples are
added to Tfull, TΔ’s pointer is swapped with the pointer to Tnew, and Tnew is
emptied to prepare for the next iteration.

The state of the art evaluating Datalog is perhaps best embodied in the Soufflé
engine [9–11,19]. Soufflé systematically optimizes the RA kernels obtained from
an input Datalog program, partially evaluating and staging the resulting RA for
the task at hand. Soufflé also performs a strongly-connected-component analysis
to extract separate inference tasks connected in a dependency (directed, acyclic)
graph—stratifying SCC evaluation. RA itself is performed using a series of nested
loops that utilize efficient data-structures to iterate over the tuples of a relation,
iterate over tuples that match a subset of column-values, and insert new tuples.
Figure 3 shows a portion of the exact C++ code produced by Soufflé (v1.5.1) for
the two-rule TC program shown above (indentation and code comments have been
added by the authors to improve clarity).

To compute ρ0/1(TΔ) ��1 G, first the outer relation (the left-hand relation—
in this case TΔ) is partitioned so that Soufflé may process each on a separate
thread via OpenMP (line 1 in Fig. 3). For each partition, a loop iterates over each
tuple in the current partition of TΔ (line 2) and computes a selection tuple, key,
representing all tuples in G that match the present tuple from TΔ in its join-
columns (in this case the second column value, env0[1]). This selection tuple
is then used to produce an iterator selecting only tuples in G whose column-0
value matches the particular tuple env0’s column-1 value. Soufflé thus iterates
over each (x, y) ∈ TΔ and creates an iterator that selects all corresponding
(y, z) ∈ G. Soufflé iterates over all matching tuples in G (line 5), and then
constructs a tuple (x, z), produced by pairing the column-0 value of the tuple
from TΔ, env0[0], with the column-1 value of the tuple from G, env1[1], which
is inserted into Tnew (line 8) only if it is not already in Tfull (line 6).

Given this architecture, Soufflé achieves good performance by using fast
thread-safe data-structures, template specialized for common use cases, that
represent each relation extensionally—explicitly storing each tuple in the rela-
tion, organized to be amenable to fast iteration, selection, and insertion. Soufflé
includes a concurrent B-tree implementation [10] and a concurrent blocked
prefix-tree implementation [11] as underlying representations for relations along
with a global symbol table storing intern values. Soufflé does not support MPI
or distributed computation of Datalog programs.

2.3 Related Work on Distributed Relational Algebra

The double-hashing approach, with local hash-based joins and hash-based dis-
tribution of relations, is the most commonly used method to distribute join



Load-Balancing Parallel Relational Algebra 295

// Partition T_delta for a pool of OpenMP threads; iterate over parts
1 pfor(auto it = part.begin(); it<part.end();++it){

// Iterate over each tuple, env0, of T_delta (in each partition)
2 try{for(const auto& env0 : *it) {

// Construct an iterator selecting tuples in G that match env0
3 const Tuple<RamDomain,2> key({{env0[1],0}});
4 auto range = rel_1_edge->equalRange_1(key,

READ_OP_CONTEXT(rel_1_edge_op_ctxt));
// Iterate over matching tuples in G

5 for(const auto& env1 : range) {
// Has this output tuple already been discovered (is in T_full)?

6 if(!(rel_2_path->contains(Tuple<RamDomain,2>({{env0[0],env1[1]}}),
READ_OP_CONTEXT(rel_2_path_op_ctxt)))) {

// Construct the output tuple and insert it into T_new
7 Tuple<RamDomain,2> tuple({{static_cast<RamDomain>(env0[0]),

static_cast<RamDomain>(env1[1])}});
8 rel_4_new_path->insert(tuple,

READ_OP_CONTEXT(rel_4_new_path_op_ctxt));
9 }
10 }
11 }} catch(std::exception &e){SignalHandler::instance()->error(e.what());}
12 }

Fig. 3. The join of a TC computation, as implemented by Soufflé.

operations over many nodes in a networked cluster computer. This algorithm
involves partitioning relations by their join-column values so that they can be
efficiently distributed to participating processes [6,7]. The main insight behind
this approach is that for each tuple in the outer relation, all relevant tuples in
the inner relation must be hashed to the same MPI process or node, permitting
joins to be performed locally on each process.

Recently, radix-hash join and merge-sort join algorithms have been evaluated
using this approach [5]. Both these algorithms partition data so that they may
be efficiently distributed to participating processes and are designed to mini-
mize inter-process communication. One-sided RMA operations remotely coordi-
nate distributed joins and parallelize communication and computation phases.
Experiments for this work scaled join operations to 4,096 nodes, and reached
extremely high peak tuples/second throughput, but this work does not address
materializing and reorganizing relations for subsequent iterations—challenges
required to implement fixed-point algorithms over RA. In addition, this work
only considers uniform (perfectly balanced) relations, citing balancing of rela-
tions as future work and does not represent realistic workloads because each key
has exactly one matching tuple in each relation being joined. A key advantage
of this approach is that radix-hash join and merge-sort join, used on each pro-
cess, support acceleration via AVX/SIMD instructions and exhibit good cache
behavior [4,12].

Our recent approach proposes adapting the representation of imbalanced
relations by using a two-layered distributed hash-table to partition tuples over
a fixed set of buckets, and, within each bucket, to a dynamic set of subbuckets
which may vary across buckets [14]. Each tuple is assigned to a bucket based on
a hash of its join-column values, but within each bucket, tuples are hashed on
non-join-column values, assigning them to a local subbucket, then mapped to an



296 S. Kumar and T. Gilray

MPI process. This permits buckets that have more tuples to be split across mul-
tiple processes, but requires some additional communication among subbuckets
for any particular bucket. Our previous work presents a static refinement strat-
egy that is used before fixed-point iteration to decide how many subbuckets
to allocate per bucket, and compares two approaches for mapping subbuckets
to processes. This implementation does not address dynamic refinement across
fixed-point iterations; as relations accumulate new tuples, the difference between
the largest subbucket and the smallest subbucket can grow or diminish.

Our implementation heavily relies on all-to-all communication. We use the
MPI Alltoallv function to transmit data from every process to every other pro-
cess. Our use is related to distributed hash tables more generally [17], which make
effective use of all-to-all communication, except that we co-locate multiple dis-
tributed hash tables for the purposes of performing efficient joins. MPI Alltoallv
is one of the most communication-intensive collective operations used across par-
allel applications such as CPMD [1], NAMD [18], LU factorization, parallel sort-
ing, fast fourier transform (FFT) and matrix transpose. Much research [13,20]
has gone into developing scalable implementations of collective operations; most
of the existing HPC platforms therefore have a scalable implementation of all-
to-all operations.

3 Balancing Distributed Relational Algebra

Buckets Processes

Bucket 0 Rank 0

Bucket 1 Rank 1

Bucket 2 Rank 2

Bucket 3 Rank 3

Bucket 4 Rank 4

Fig. 4. Round-robin
mapping of subbuckets
to processes.

In this section, we extend previous approaches to
efficiently distributing relational algebra by develop-
ing strategies that mitigate load-imbalance in a fully
dynamic manner. First, we describe the architecture of
our join operation in detail to ground this discussion.
Following [14], we distribute each relation across a fixed
number of logical buckets (chosen to match the number
of MPI processes in our experiments). Each bucket has
a variable number of subbuckets, that can increase as
needed for buckets containing disproportionately large
numbers of tuples. Each subbucket belongs to just one
bucket and is hosted by a single MPI process, but a sin-
gle MPI process may host any number of subbuckets.

To distribute subbuckets to managing processes, we
use a round-robin mapping scheme. The example in Fig. 4
shows the round-robin mapping of subbuckets to pro-
cesses where there are 5 buckets with 2 subbuckets each
and 5 MPI processes. This process requires a very small
amount of added communication, but ensures that no
process manages more than one subbucket more than any
other.

Locally, subbuckets store tuples using B-trees (an approach used by Soufflé),
which carries several advantages over the double-hashing approach’s use of hash
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tables. Crucially, hash-tables can lead to a resizing operation that delays syn-
chronization.

Figure 5 shows a schematic diagram of our join algorithm in the context of
an incrementalized TC computation. A join operation can only be performed
for two co-located relations: two relations each keyed on their respective join
columns that share a bucket decomposition (but not necessarily a subbucket
decomposition for each bucket). This ensures that the join operation may be
performed separately on each bucket as all matching tuples will share a logical
bucket; it does not, however, ensure that all pairs of matching tuples will share
the same subbucket as tuples are assigned to subbuckets (within a bucket) based
on the values of non-join columns, separately for each relation.

YES

Clique communication

Local join

All to all communication

Local inserts

Fixed point 
reached ?

Stop

Start 
(Initialize relations)

NO

Fig. 5. Major steps in our join
algorithm, in the context of
TC.

The first step in a join operation is there-
fore an intra-bucket communication phase within
each bucket so that every subbucket receives all
tuples for the outer relation across all subbuckets
(while the inner relation only needs tuples belong-
ing to the local subbucket). Following this, a local
join operation (with any necessary projection and
renaming) can be performed in every subbucket,
and, as output tuples may each belong to an arbi-
trary bucket in the output relation, an MPI all-
to-all communication phase shuffles the output of
all joins to their managing processes (preparing
them for any subsequent iteration). Finally, upon
receiving these output tuples from the previous
join, each process inserts them into the local B-
tree for Tnew, propagates TΔ into Tfull and Tnew

becomes TΔ for the next iteration along with a
empty Tnew. If no new tuples have been discovered, globally, a fixed point has
been reached and iteration may halt.

Intra-bucket communication (shown on the left of Fig. 6) uses MPI point-to-
point communication to shuffle all tuples from each subbucket of the outer rela-
tion (in the case of T-join-G in TC, TΔ) to all subbuckets of the inner-relation (in
the case of TC, G), which will subsequently perform local, per-subbucket joins.
It may seem appealing to fuse the final all-to-all communication phase among
buckets with the intra-bucket communication of the next iteration, sending new
tuples (for TΔ in the next iteration) directly to all subbuckets of G; however,
doing this fusion forgoes an opportunity for per-subbucket deduplication and
yields meaningful slowdowns in practice.

The local join phase proceeds in a fully parallel and unsynchronized fashion.
Each process iterates over its subbuckets, performing a single join operation for
each. Our join is implemented as a straightforward tree-based join as shown in
the center of Fig. 6. In this diagram, colors are used to indicate the hash value
of each tuple as determined by its join-column value. The outer relation’s local
tuples are iterated over, grouped by key values. For each key value, a lookup is
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Join        Project        Hash

Rank 0

Rank 1

Rank 2

Rank 3

Rank 4

TΔ

Rank 0

Rank 1

Rank2

Rank 3

Rank 4

TΔ MPI_Alltoallv

Rank 0

Rank 1

Rank 2

Rank 3

Rank 4

Fig. 6. (Left) Intra-bucket communication; each subbucket of TΔ sends its data to
all subbuckets of G. (Center) Local, per-subbucket joins (including projection and re-
hashing). (Right) All to all communication.

performed to select a portion of the tree storing the inner relation’s local tuples
where all tuples have a matching key value (in this case on the first column of G).
For two sets of tuples with matching join-column values, we effectively perform
a Cartesian product computation, producing one tuple for all output pairs. Each
output tuple has any needed projection and renaming of columns performed on-
the-fly; in this case, the prior join columns that matched are projected away.
These output tuples are temporarily stored in a tree, to perform local dedu-
plication, and are then staged for transmission to new managing subbuckets in
their receiving relation. After the join, each output tuple belongs to Tnew (TΔ in
the next iteration) and must be hashed on the final column to determine which
bucket it belongs to, and on all other columns to determine which subbucket
within that bucket. While we follow Soufflé in implementing B-tree-based joins
on each process, other approaches may be able to take better advantage of AVX
instructions and on-chip caching [4,12]. We plan to investigate alternatives in
the future and believe them to be largely orthogonal to our paradigm for decom-
position, communication, and balancing of relations. Other future work includes
taking advantage of thread-level parallelism offered by multi-core nodes. In par-
ticular, we plan to parallelize sub-bucket joins across concurrent threads.
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Next, an all-to-all communication phase (shown on the right side of Fig. 6)
transmits materialized joins to their new bucket-subbucket decomposition in Tnew.
After being hashed on their new join column value to assign each to a bucket,
and on all non-join-column values to assign each to a subbucket, the managing
process for this subbucket is looked up in a local map and tuples are organized
into buffers for MPI’s All to allv synchronous communication operation. When
this is invoked, all tuples are shuffled to their destination processes.
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Fig. 7. A complete binary tree with height 2 and down-directed edges (left); a bowtie
graph with width 4 and length 3 (right).

Finally, after the synchronous communication phase, TΔ is locally propagated
into Tfull, which stores all tuples discovered more than 1 iteration ago. New tuples
are checked against this Tfull to ensure they are genuinely new facts (paths in
G), and are inserted into a B-tree for Tnew on each receiving process to perform
remote deduplication. At this point, the iteration ends, Tnew becomes TΔ for
the subsequent iteration, and an empty Tnew is allocated. If no new tuples were
actually discovered in the previous iteration, a fixed-point has been reached and
no further iterations are needed as the database as stabilized.

3.1 Two Kinds of Load-Imbalance

We consider two kinds of load-imbalance and how they might occur and change
across iterations of a transitive closure computation: spatial load imbalance, when
a relation’s stored tuples are mapped unevenly to processes, and temporal load
imbalance, when the number of output tuples produced varies across iterations.

Direction T G

0Up O(2H−D) O(1)
0Down O(D) O(1)

Fig. 8. Worst-case imbalance for T and
G in TC computation (for complete
binary tree topology).

Consider the class of relations that
encode complete binary trees of height H,
where directed edges face either strictly
downward or upward. The left side of
Fig. 7 shows an example of a downward-
facing complete binary tree with height
2. If a downward-facing relation in this
class is keyed on its first column, there is
no load imbalance as each key has exactly
two tuples (two children per parent); if it is keyed on its second column, there
is likewise no load imbalance as each key has exactly one tuple (one parent
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per child). If we use an up-directed binary tree instead, these are reversed; either
way, the relation is initially balanced. Now what happens when we compute its
TC?

The TC of a down-directed complete binary tree of height H (keyed on col-
umn 0) has significant spatial imbalance. The root node has O(2H) tuples (edges)
hosted on its process, while nodes at depth H − 1 have only 2. If the relation
is keyed on the second column (or if we use an up-directed tree), then there is
a natural imbalance that increases linearly with depth. In a TC computation,
as relation T is keyed on its second column, not the first, a down-directed tree
exhibits the more moderate imbalance; for an upward-facing complete binary
tree, T has a worst-case exponential imbalance ratio. The worst-case imbalance
ratios for T and G are summarized in Fig. 8.

The complete binary tree topology graphs are perhaps corner cases for rela-
tion imbalance, however such relations can occur in the wild, and even more
moderate degrees of imbalance can cause relational algebra to slow down or
crash in practice. Relational algebra that is suitable for arbitrary workloads
must handle arbitrary degrees of spatial imbalance gracefully, and if used within
a fixed-point loop (as is the case for general logical inference applications), rela-
tions must support dynamic spatial refinement that is efficient enough to handle
arbitrary changes in imbalance across time—both increases and decreases.

Now consider the bowtie topology shown on the right side of Fig. 7. Each
bowtie-topology graph has a width W and length L, and is formed by connecting
W nodes each to the starting node of a string of L nodes, connected on the far
side to another W nodes each. What happens when computing the TC of an
arbitrary bowtie relation? The first iteration, a join between a bowtie relation
and itself, yields 2W + L − 1 new edges; in fact, at every iteration until the last,
the worst-case join output is in O(W + L). At the final iteration, however, the
number of output tuples suddently becomes quadratic in the width of the bowtie,
O(W 2), as each of the leftmost nodes are paired with each of the rightmost nodes.
This illustrates a case of temporal imbalance—a large bowtie can produce fewer
than 100K tuples one iteration and more than 1B tuples the next.

A general-purpose system for relational algebra should also be robust to unex-
pected surges in the per-iteration workload, adapting itself to dynamic changes
in the overall workload across time. While bowtie graphs represent corner cases,
it is common to see join output change significantly from iteration to iteration
when computing TC of real-world graphs as well (see Table 1).

3.2 Three Techniques for Adaptive Load-Balancing

Now we describe three techniques that, used in conjunction, can remediate both
kinds of imbalance illustrated in the previous section: bucket refinement, bucket
consolidation, and iteration roll-over. Bucket refinement is a dynamic check for
each bucket to see if its subbuckets are significantly heavier than average, trig-
gering a refinement in which new subbuckets are allocated to support this larger
number of tuples. Bucket consolidation occurs only if there are a significant
number of refined buckets, and consolidates buckets into fewer subbuckets when
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spatial imbalance has lessened. Finally, iteration roll-over allows particularly
busy iterations to be interrupted part-way, with completed work being processed
immediately and with the residual workload from the iteration “rolling over”.

Bucket refinement is one of two techniques we use to address natural spa-
tial imbalance among the keys of a relation. Refinement is used to check for
disproportionately heavy subbuckets (those with more than the average num-
ber of tuples), and to spread this load across an increased number of subbuck-
ets. Checking for needed refinement is a lightweight, but non-trivial step, so we
only perform this imbalance check every N iterations (where N is an adjustable
parameter). In our experiments, we use both N = 2 and N = 10 but observed
only a small difference in performance. To check for refinement, the heaviest
subbucket in each bucket is compared with the average subbucket size across all
buckets; when the ratio is greater than 3-to-1, we refine this bucket, quadrupling
its subbucket count from 1 to 4, from 4 to 16, from 16 to 64, etc; the subbucket
count in each bucket is always maintained as a power of 4. This additional allo-
cation of subbuckets extends the round-robin mapping maintained in lock-step
on all processes by transmitting a small amount of meta-data during the global
all-to-all phase. An immediate point-to-point communication is triggered espe-
cially to distribute three-quarters of the tuples from each subbucket in a refined
bucket to processes hosting newly allocated subbuckets.

Intra-bucket comm

Local join

All to all comm

Local inserts

Fixed point 
reached ?

Stop

Threshold 
reached during 

itera�on ?

Start 
(Ini�alize rela�ons)

YES

NO

YES

NEVER

All to all 
comm

Local 
inserts

Fig. 9. The major steps in our
join algorithm with iteration roll-
over added.

Bucket consolidation is a complementary
technique for combining previously split sub-
buckets when spatial load imbalance has again
lessened. The imbalance check for bucket con-
solidation is guarded by a global check to see if
greater than 60% of buckets have been refined
to 4 or more subbuckets. When this is the
case, all buckets containing subbuckets with
a below-average tuple-count are consolidated
into 1

4 as many subbuckets. This process uses
the same communication machinery as bucket
refinement; a special point-to-point commu-
nication is used to redistribute tuples into a
smaller number of buckets, all of which are
freshly allocated using our round-robin allo-
cation scheme to prevent pathological cases.

Iteration roll-over guards against severe
cases of temporal imbalance which can slow
evaluation, through thrashing of memory, or
crash a process. As in the case of our bowtie
topology, the shape of a graph can cause a sud-

den explosion of work in a single iteration. This requires our algorithm to be on-
guard for temporal imbalance at every iteration, as opposed to spatial imbalance
where we may avoid some overhead by checking for imbalance intermittently. As
each local join is processed, grouped by key-column values, a count of output
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tuples is maintained and at each new key-column value we check to see if it has
passed some fixed threshold value (a tunable parameter—we experiment with
several threshold values). When the threshold has been exceeded, we stop com-
puting the join and transmit the partial join output to destination processes for
remote deduplication early.

This step is shown in Fig. 9. When a threshold value is reached during the
local-join phase, an all-to-all communication is triggered, followed by local inserts
in each destination subbucket. Then, instead of the iteration ending (with prop-
agation from each RΔ to Rfull and from each Rnew to RΔ), the previous iteration
continues exactly where it left off. We may also think of this an inner iteration as
opposed to the normal outer iterations of semi-näıve evaluation. Each inner iter-
ation batches the threshold value in output tuples to promote cache coherence
and prevent overflow.
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Fig. 10. TC computation for complete binary
trees (depths 21, 23, 25 and 27) for up (top) and
down (bottom) pointing edges with and without
load balancing.

We begin by studying the
impact of spatial and tempo-
ral load balancing in isolation.
Following this, we analyze the
impact of both forms of load
balancing, jointly, on real-world
graphs and at scale.

We performed our experi-
ments for this work on the
Theta Supercomputer [2] at the
Argonne Leadership Comput-
ing Facility (ALCF). Theta is
a Cray machine with a peak
performance of 11.69 petaflops,
281,088 compute cores, 843.264
TiB of DDR4 RAM, 70.272 TiB
of MCDRAM and 10 PiB of
online disk storage. We per-
formed our experiments using
the SuiteSparse Matrix Collec-
tion [8].

4.1 Spatial Load
Balancing

We evaluate the performance
of spatial load-balancing, in
Fig. 10, by computing the tran-
sitive closure of eight balanced binary-tree graphs (depths: 21, 23, 25, 27, for each
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edge direction: up and down). We run all these experiments at 512 cores, both
with and without spatial load balancing turned on. The transitive closure for
the graphs (in order of increasing tree depth) generated 39,845,890, 176,160,770,
771,751,938 and 3,355,443,202 edges, respectively (taking 21, 23, 25 and 27 iter-
ations to converge). Note that both up-directed (UP) and down-directed (DOWN)
graphs (of equal depth) produce the same number of edges.

We observed dynamic load balancing lead to a roughly 2× improvement for
UP graphs. As an example, for the graph with depth 27, load balancing led the
total runtime to go down from 463 s to 209 s. In our experiments, we set the load-
imbalance check to be performed every other iteration, as this is the sole feature
under consideration; for all four graphs, however, actual re-balancing (refinement
of buckets) occurred only five times each, with the cumulative number of sub-
buckets increasing dynamically from 512 to 1088 in every case.

On the other hand, load balancing does not yield any improvement for DOWN
graphs. This is despite the fact that computing the TC UP and DOWN graphs
produces the same number of edges and takes the same number of iterations
to converge in both cases. What differs is how tuples are distributed among
keys (values for the join column); with linear imbalance in the DOWN case and
exponential imbalance in the UP case. We note that TC for UP graphs can be
computed as efficiently as DOWN graphs if we change our iterated join from T-
join-G to G-join-T, but this optimization requires a priori knowledge of the final
graph’s topology, which is likely unavailable. Our approach aims to be as relation
agnostic as is possible, so that arbitrary logical inference tasks may be scaled
effectively.

It may be surprising that DOWN graphs do not show some lesser need for
dynamic re-balancing as they evolve from being perfectly balanced to being
linearly imbalanced. This would be the case if each key were mapped to a unique
bucket. Since keys are hashed to a smaller number of buckets, however, we only
observe a 1.001 imbalance ratio for height-25 DOWN trees and we observe a 204.8
inter-bucket imbalance ratio for height-25 UP trees. This means hashing keys to
buckets has a modest ameliorating effect on imbalance that can be sufficient,
but not in cases of severe imbalance.

4.2 Temporal Load Balancing

Temporal load balancing is a key safety feature, without which it can become
impossible to make meaningful progress due to continuous page faults. We
demonstrate this particular use case for an extreme scenario, where thresholding
acts as a critical component. We use a very large graph Hardesty3 [8] (40,451,631
edges) that generates an overwhelming number of edges at an accelerating pace.
Without thresholding, a process gets overwhelmed by the computational work-
load and runs out of memory. We applied a modified version of the transitive
closure problem where, instead of trying to reach the fixed point, we restricted
our computation to run only 20 iterations. (At the end of iteration 20, we have
computed all paths of up to length 20.) We ran our experiments at 32,768 cores,
both with and without temporal load balancing. Without load balancing, we
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Fig. 11. Breakdown of time taken to finish 20 iterations (paths of length 20) using
temporal load balancing.

were only able to complete iteration 16, whereas with load balancing we were
able to finish all 20 iterations. The number of edges generated at the end of
20 iterations was 913,419,562,086 (13.3 Terabytes). We have plotted a break-
down of time taken during every iteration in Fig. 11. We observed temporal load
balancing was used for all iterations after the 14th iteration, the 19th and 20th

iterations, for example, were broken into 11 and 16 inner iterations respectively.
Also, it can be seen that the aggregate time taken increases significantly with
every iteration. For these experiments, we used a threshold of 8,000,000. It took
1,256 s to finish running 20 iterations.
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Fig. 12. Time to compute TC for bow-tie topology
graph with varying thresholds.

Temporal balancing can
also be used as an optimiza-
tion technique for extreme
topology graphs such as
the bowtie (see Fig. 7). To
demonstrate this, we used a
bow-tie graph with a width
of 10,000 vertices and length
of 10 vertices. This graph
generates 10,000 × 10,000
edges in the 10th iteration,
when all vertices on the left
side of the bowtie each dis-
cover paths to all vertices on
the right side of the bowtie.
For the first 10 iterations,
the number of edges pro-
duced every iteration is roughly 20,000 whereas the number of edges generated
in the 10th iteration is 100,000,000, leading to a temporal imbalance ratio of
about 5,000. We run our experiments at 256 cores with 5 different threshold
values: 10,000, 100,000, 1,000,000, 10,000,000, and 100,000,000. The transitive
closure of the graph generated 400,440,055 edges. While the number of outer iter-
ations is 10 for all thresholds, the number of inner iterations varied as 20,020,
3,343, 402, 49 and 13. Note that small threshold values lead to an unnecessarily
increased number of inner iterations and hence an increased number of all to all
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communication epochs. Smaller threshold values also lead to more-optimized
local join phases, as the nested B-tree data structures holding relations do not
grow very large, leading to better cache coherence while performing lookups and
inserts.

We plot our results in Fig. 12. We observe a best timing of 516 s for a thresh-
old of 1,000,000 tuples. At this threshold, we achieve a good balance between the
extra time taken for all-to-all communication phases versus the time saved during
each local join phase. Lower thresholds make the problem bounded by commu-
nication (all-to-all phase) whereas higher thresholds make the problem bounded
by computation (local join phase). At larger process counts, we observed better
performance for larger threshold values. For example, at 8,192 cores the transi-
tive closure of graph sgpf5y6 with edge count 831,976 took 384, 559 and 590 s
for threshold values 100,000,000, 10,000,000 and 1,000,000 respectively. We use
temporal load balancing primarily as a safety check, although it is also a practi-
cal optimization for corner-case topology graphs. We believe that our design is
flexible enough to be tuned to different scales and different degrees in imbalance
in the input graph.

4.3 Transitive Closure at Scale

We also performed experiments to study the impact of load balancing on real-
world and random graphs. We compute the transitive closure of six real world
graphs [8] and two random graphs generated via RMAT [15]. All our experiments
were performed at 8,192 processes with both temporal and spatial load-balancing
enabled. In these experiments we check for spatial imbalance every tenth itera-
tion and temporal imbalance at every iteration—the roll-over threshold is set at
8,000,000 tuples. Our results are shown in Table 1. All graphs except TSC OPF 300
make use of spatial load balancing. We also note that graphs sgpf5y6, RMAT 1,
and RMAT 2 make use of temporal load balancing, as the number of edges gener-
ated for these graphs grow at a rapidly increasing rate (respectively, 76, 2, and
9 billion edges in the first 20 iterations).

Table 1. List of eight (6 real world + 2 random) graphs used in our evaluation.

Name Edges Time

(seconds)

Spatial

balancing

Temporal

balancing

Iterations TC Edges

lhr34 764,014 64.3391 � 30 1,233,554,044

nemeth13 241,989 28.8445 � 310 45,186,771

sgpf5y6 831,976 578.641 � � 20 76,382,533,943

rim 1,014,951 46.7834 � 30 508,931,041

TSC OPF 300 415,288 2.11 30 1,876,367

RMAT 1 200000 68.8143 � � 20 2,502,341,599

RMAT 2 400000 220.993 � � 20 9,481,998,719
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Fig. 13. Strong-scaling plots for lhr34, sgpf5y6,
TSC OPF 300, and rim graphs. Numbers in red shows
scaling efficiency. (Color figure online)

We also performed strong
scaling studies for the graphs
in Table 1, we report the
performance numbers for
four graphs lhr34, sgpf5y6,
TSC OPF 300, and rim in
Fig. 13. For graph lhr34
we observe 7× improve-
ment in performance while
going from 512 processes
to 8,192 processes. Further
breakdown shows that we
achieve a scaling efficiency of
74% while going from 512
processes to 2048 processes
and an efficiency of 60%
while going from 2048 to 8192 processes. For graph rim we observe an over-
all improvement of 5× (scaling efficiency shown in figure). Graph TSC OPF 300
demonstrates a trend reversal, with performance worsening with increased pro-
cess count. Our observation shows that the degree of extractable parallelism
varies across graphs, depending on the connectivity, topology and the size of the
graph. For example, TSC OPF 300 is sparsely connected (as seen from the small
TC size), requires very few iterations to converge and thus, is not suitable for a
large process run.

We also make the observation that for a given workload, there is a range
of processes that exhibits good scaling and beyond which performance starts to
suffer due to workload scarcity and increased communication costs.

5 Conclusion

In this paper, we have explored the issue of inherent imbalance in relations, and
across iterations of fixed-point computations. We have described three techniques
for mitigating these issues dynamically in parallel relational algebra, distributed
in a data-parallel manner across many cores, and have evaluated our approach by
computing the transitive closures of real world, random, and corner-case graphs.

Acknowledgement. We are thankful to the Argonne Leadership Computing Facil-
ity’s Director’s Discretionary (DD) program for providing us with compute hours to
run our experiments on the Theta Supercomputer.
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Abstract. Efficiently processing sparse matrices is a central and
performance-critical part of many scientific simulation codes. Recogniz-
ing the adoption of manycore accelerators in HPC, we evaluate in this
paper the performance of the currently best sparse matrix-vector product
(SpMV) implementations on high-end GPUs from AMD and NVIDIA.
Specifically, we optimize SpMV kernels for the CSR, COO, ELL, and
HYB format taking the hardware characteristics of the latest GPU tech-
nologies into account. We compare for 2,800 test matrices the perfor-
mance of our kernels against AMD’s hipSPARSE library and NVIDIA’s
cuSPARSE library, and ultimately assess how the GPU technologies from
AMD and NVIDIA compare in terms of SpMV performance.

Keywords: Sparse matrix vector product (SpMV) · GPUs · AMD ·
NVIDIA

1 Introduction

The sparse matrix vector product (SpMV) is a heavily-used and performance-
critical operation in many scientific and industrial applications such as fluid
flow simulations, electrochemical analysis, or Google’s PageRank algorithm [11].
Operations including sparse matrices are typically memory bound on virtually
all modern processor technology. With an increasing number of high perfor-
mance computing (HPC) systems featuring GPU accelerators, there are sig-
nificant resources spent on finding the best way to store a sparse matrix and
optimize the SpMV kernel for different problems.

In this paper, we present and compare four SpMV strategies (COO, CSR,
ELL, and HYB) and their realization on AMD and NVIDIA GPUs. We further-
more assess the performance of each format for 2,800 test matrices on high-end
GPUs from AMD and NVIDIA. We also derive performance profiles to inves-
tigate how well the distinct kernels generalize. All considered SpMV kernels
are integrated into the Ginkgo open-source library1, a modern C++ library
designed for the iterative solution of sparse linear systems, and we demonstrate

1 https://ginkgo-project.github.io.
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that these kernels often outperform their counterparts available in the AMD
hipSPARSE and the NVIDIA cuSPARSE vendor libraries.

Given the long list of efforts covering the design and evaluation of SpMV
kernels on manycore processors, see [2,7] for a recent and comprehensive overview
of SpMV research, we highlight that this work contains the following novel
contributions:

– We develop new SpMV kernels for COO, CSR, ELL and HYB that are
optimized for AMD and NVIDIA GPUs and outperform existing implementa-
tions. In particular, we propose algorithmic improvements and tuning param-
eters to enable performance portability.

– We evaluate the performance of the new kernels against SpMV kernels avail-
able in AMD’s hipSPARSE library and NVIDIA’s cuSPARSE library.

– Using the 2,800 test matrices from the Suite Sparse Matrix Collection, we
derive performance profiles to assess how well the distinct kernels generalize.

– We compare the SpMV performance limits of high-end GPUs from AMD and
NVIDIA.

– Up to our knowledge, Ginkgo is the first open-source sparse linear alge-
bra library based on C++ that features multiple SpMV kernels suitable for
irregular matrices with back ends for both, AMD’s and NVIDIA’s GPUs.

– We ensure full result reproducibility by making all kernels publicly available
as part of the Ginkgo library, and archiving the performance results in a
public repository2.

Before providing more details about the sparse matrix formats and the pro-
cessing strategy of the related SpMV routines in Sect. 3, we recall some basics
about sparse matrix formats in Sect. 2. In Sect. 3.4, we combine several basic
matrix storage formats into the so-called “hybrid” format (HYB) that splits the
matrix into parts to exploit the performance niches of various basic formats.
In a comprehensive evaluation in Sect. 4, we first compare the performance of
Ginkgo’s SpMV functionality with the SpMV kernels available in NVIDIA’s
cuSPARSE library and AMD’s hipSPARSE library, then derive performance pro-
files to characterize all kernels with respect to specialization and generalization,
and finally compare the SpMV performance of AMD’s RadeonVII GPU with
NVIDIA’s V100 GPU. We conclude in Sect. 5 with a summary of the observations.

2 Review of Sparse Matrix Formats

For matrices where most elements are zero, which is typical for, e.g., finite ele-
ment discretizations or network representations, storing all values explicitly is
expensive in terms of memory and computational effort. In response, sparse
matrix formats reduce the memory footprint and the computational effort by
focusing on the nonzero matrix values [3]. In some cases, additionally storing
some zero elements can improve memory access and data-parallel processing [4].

2 https://github.com/ginkgo-project/ginkgo-data/tree/2020 isc.

https://github.com/ginkgo-project/ginkgo-data/tree/2020_isc
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(max row nz ·m) · sizeof(index)
(max row nz ·m) · sizeof(value)nnz · sizeof(value)

(m+ 1) · sizeof(index)
nnz · sizeof(index)2 · nnz · sizeof(index)

nnz · sizeof(value)m · n · sizeof(value)

Fig. 1. Different storage formats for a sparse matrix of dimension m×n containing nz

nonzeros along with the memory consumption [6].

While there exists a long and still expanding list of sparse matrix formats (some
of them tailored towards specific problems), we illustrate some of the most com-
mon basic formats (DENSE, COO, CSR, ELL) in Fig. 1.

The optimization of the SpMV kernel for manycore GPUs remains a topic
of major interest [5,9,12]. Many of the most recent algorithm developments
increase the efficiency by using prefix-sum computations [13] and intra-warp
communication [10] on modern manycore hardware.

3 Sparse Matrix Vector Kernel Designs

We realize all SpMV kernels in the vendors’ native languages: CUDA for
NVIDIA GPUs and HIP for AMD GPUs. Given the different hardware char-
acteristics, see Table 1, we optimize kernel parameters like group size for the
distinct architectures. More relevant, for the CSR, ELL, and HYB kernels, we
modify the SpMV execution strategy for the AMD architecture from the strat-
egy that was previously realized for NVIDIA architectures [2].

3.1 Balancing COO SpMV Kernel

Flegar et al. [6] introduced a load-balancing COO SpMV based on the idea
of parallelizing across the nonzeros of a sparse matrix. This way, all threads
have the same workload, and coalesced access to the column indexes and the
values of the sparse matrix is enabled. At the same time, parallelizing across
nonzeros requires the use of atomicAdd operations to avoid race conditions, see
Algorithm 1.

Flegar et al. [6] also introduced an “oversubscribing” parameter ω that con-
trols the number of threads allocated to each physical core. When increasing the
oversubscribing, we have more active threads to hide the latency of data access
and atomicAdds [1]. At the same time, it increases the number of atomicAdds
invocations and the overhead of context switching. Using an experimental assess-
ment on all of the 2,800 matrices from the Suite Sparse Matrix Collection, Flegar
et al. [6] identifies oversubscribing parameters ωNVIDIA that draw a good balance
between these aspects. Similarly to Flegar et al. [6], we use experiments to iden-
tify good choices ωAMD for AMD architectures by considering oversubscribing
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Algorithm 1. Load-balancing COO kernel algorithm.
1: Get ind = index of the first element to be processed by this thread
2: Get current row = rowidx[ind].
3: Compute the first value c = A[ind] × x[colidx[ind]]
4: for i = 0 .. nz per warp; i+ = warpsize do
5: Compute next row, row index of the next element to be processed
6: if any thread in the warp’s next row != current row or it is the final iteration

then
7: Compute the segmented scan according to current row.
8: if first thread in segment then
9: atomicAdd c on output vector by the first entry of each segment

10: end if
11: Reinitialize c = 0
12: end if
13: Get the next index ind
14: Compute c+ = A[ind] × x[colidx[ind]]
15: Update current row to next row
16: end for

parameters ω = 2k(0 ≤ k ≤ 7). In the Ginkgo library and our experiments, we
use the setting

ωNVIDIA =

⎧
⎪⎨

⎪⎩

8 (nz < 2 · 105),
32 (2 · 105 ≤ nz < 2 · 106),
128 (2 · 106 ≤ nz)

ωAMD =

⎧
⎪⎨

⎪⎩

2 (nz < 105),
8 (105 ≤ nz < 107).
32 (107 ≤ nz)

3.2 CSR SpMV Kernel

The most basic CSR SpMV kernel (basic CSR) assigns only one thread to
each row, which results in notoriously low occupancy of GPU. In Algorithm2,
we assign a “subwarp” (multiple threads) to each row, and use warp reduction
mechanisms to accumulate the partial results before writing to the output vector.
This classical CSR assigning multiple threads to each row is inspired by the
performance improvement of the ELL SpMV in [2]. We adjust the number of
threads assigned to each row to the maximum number of nonzeros in a row. We
select

subwarp size = 2k(0 ≤ k ≤ 5 (NVIDIA) or 6 (AMD))

as the closest number smaller or equal to the maximum number of nonzeros in
a row, i.e.

subwarp size = max
{
2t ≤ max row nnz|t ∈ Z, 0 ≤ t ≤ log2(device warpsize)

}

In Fig. 5 in Sect. 4, we visualize the performance improvements obtained from
assigning multiple threads to each row and observe that the basic CSR SpMV
is not always slower. In particular for very unbalanced matrices, assigning the
same parallel resources to each row turns out to be inefficient. In response, we
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Algorithm 2. Ginkgo’s classical CSR kernel.
1: Get row = the row index
2: Compute subrow = the step size to next row
3: Get step size = the step size to next element of value.
4: Initialize value c = 0
5: for row = row .. #rows, row+ = subrow do
6: for idx = row ptr[row] .. row ptr[row + 1], idx+ = step size do
7: Compute c = val[idx] ∗ b[col[idx]]
8: end for
9: Perform warp reduction of c on the warp

10: if thread 0 in subwarp then
11: Write c to the output vector
12: end if
13: end for

design a load-balancing CSRI which follows the strategy of the COO SpMV
described in Sect. 3.1 to balance the workload across the compute resources. For
an automatic strategy selection in Algorithm 3, we define two variables nnz limit
and row len limit to control the kernel selection on NVIDIA and AMD GPUs.
nnz limit reflects the limit of total nonzero count, and row len limit reflects
the limit of the maximum number of stored elements in a row. For AMD GPUs,
nnz limit is 108 and row len limit is 768. For NVIDIA GPUs, nnz limit is 106

and row len limit is 1024.

Algorithm 3. Ginkgo’s CSR strategy.
1: Compute max row nnz = the maximal number of stored element per rows.
2: if #nnz > nnz limit or max row nnz > row len limit then
3: Use load-balance CSR Kernel
4: else
5: Use classical CSR Kernel
6: end if

3.3 ELL SpMV Kernel

In [2], the authors demonstrated that the ELL SpMV kernel can be acceler-
ated by assigning multiple threads to each row, and using an “early stopping”
strategy to terminate thread blocks early if they reach the padding part of the
ELL format. Porting this strategy to AMD architectures, we discovered that the
non-coalesced global memory access possible when assigning multiple threads to
the rows of the ELL matrix stored in column-major format can result in low
performance. The reason behind this is that the strategy in [2] uses threads of
the same group to handle one row, which results in adjacent threads always read-
ing matrix elements that are m (matrix size or stride) memory locations apart.
To overcome this problem, we rearrange the memory access by assigning the
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threads of the same group to handle one column like the classical ELL kernel,
but assigning several groups to each row to increase GPU usage. Because the
threads handling the elements of a row may be of the same thread block but are
no longer part of the same warp, we can not use warp reduction for the partial
sums but need to invoke atomicAdds on shared memory. Figure 2 visualizes the
different memory access strategies.

In our experiments, we set the “group size” to multiple of 32 for both AMD
and NVIDIA architectures. The group size is the number of contiguous ele-
ment read by thread block, and the num group is the number of thread in
the thread block accessing the same row. We use block size = 512 in ELL
kernel. To make the “group size” is the multiple of 32, we set the max of
num group = block size/min group size = 512/32 = 16. We visualize in
Fig. 8 the improvement of the new ELL SpMV kernel over the kernel previ-
ously employed [2].

Algorithm 4. Ginkgo’s ELL SpMV kernel.
1: Initialize Value c = 0
2: Compute row = the row idx
3: Compute y = the start index of row
4: Compute step size = the step size to next element
5: Initialize shared memory data
6: for idx = y .. max row nnz, idx+ = step size do
7: Compute ind = index of this element in the ELL format
8: if A(row, colidx[ind]) is padding then
9: break

10: end if
11: Perform local operation c+ = A(row, colidx[ind]) ∗ x[colidx[ind]]
12: end for
13: Perform atomicAdd c to data[threadIdx.x]
14: if thread 0 in group then
15: atomicAdd data[threadIdx.x] on the output vector
16: end if

In Algorithm 4, we present the ELL SpMV kernel implemented in Ginkgo
for SIMD architectures like GPUs. The number of groups assigned to a row
is computed via Algorithm 5. Generally, the number of the group is increased
with the number of nonzero elements accumulated in a single row. However,
if num group = 16, multiple thread block may be assigned to the same row,
see line 8 in Algorithm 5. This strategy aims at increasing the occupancy of the
GPU multiprocessors when targeting short-and-wide matrices that accumulate
many elements in few rows. After the group is determined, the start index for
a specific thread is computed in lines 2 in Algorithm 4 with the step size which
is same as the total number of threads accessing the same row. The threads
process the data with the loop in lines 6–12. This kernel still uses the early
stopping in lines 8–10 introduced in [2]. After completion of the matrix vector
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Algorithm 5. Ginkgo’s automatic ELL kernel configuration.
1: Initialize num group = 1
2: Initialize nblock per row = 1
3: Compute ell ncols = maximum number of non zero elements per row
4: Get nwarps = total number of warps available on the GPU
5: if ell ncols / nrows > 1e − 2 then
6: Compute num group = min(16, 2ceil(log2(ell ncols)))
7: if num group == 16 then
8: Compute nblock per row = max(min(ell ncols/16, nwarps/nrows), 1)
9: end if

10: end if

multiplication step, the partial sums accumulated in thread-local variables are
reduced (line 13) and added to the output vector in global memory, see line 15.
Even though this operation requires an atomic operation as multiple groups
(part of distinct thread blocks) may operate on the same row, the chance of
atomic collisions is small due to the previous reduction in line 13.

Fig. 2. Comparison of the memory access for different ELL SpMV kernels.

3.4 Hybrid Matrix Formats and Optimal Matrix Splitting

Ginkgo’s hybrid (“HYB”) format splits the matrix into two parts and stores the
regular part in the ELL format and the irregular part in the COO format. Flegar
et al. [6] demonstrated that Ginkgo’s COO SpMV achieves good performance
for irregular matrices on NVIDIA architectures, and the results in Sect. 4 confirm
that Ginkgo’s COO SpMV performs well also on AMD architectures. How the
HYB format partitions a matrix into the ELL and the COO part impacts the
memory requirements and performance. Anzt et al. [2] derived strategies basing
the partitioning on the nonzeros-per-row distribution of the matrix. We modify
this strategy by adding a condition based on the ratio between the maximum
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nonzeros-per-row and the number of rows. For R being the set of the nonzeros-
per-row values, we define the function QR and FR:

QR(x) := min {t ∈ N | x < FR(t)} , FR(t) :=
|{r ∈ R | r ≤ t}|

|R| .

We recall that Anzt et al. [2] introduced hybrid{n} which takes the nonzeros
of the row at the n%-quantile in the ascending ordering of the nonzero-per-row
values, QR(n%). A variant denoted with “hybridminstorage” selects

n% =
⌊

#rows × sizeof(index)
sizeof(value) + 2 × sizeof(index)

+ 1
⌋

according to the (bit-)size of the value and index arrays, i.e. hybridminstorage
is hybrid25 when storing the values in 64-bit doubles and the indexes in 32-bit
integers [2]. In this paper, we enhance the hybrid{n} partitioning from Anzt
et al. [2] by enforcing the limitation that the maximum nonzero-per-row of the
ELL part can at most be #rows ∗ 0.0001. We consider the resulting strategy
“hybridlimit{n}” and select hybridlimit33 (label “HYB”) as our default strategy
according to the performance evaluation in Fig. 11 in Sect. 4.

4 Experimental Performance Assessment

4.1 Experiment Setup

In this paper, we consider NVIDIA’s V100 (SXM2 16 GB) GPU with support
for compute capability 7.0 [14] and AMD’s RadeonVII with compute capability
gfx906. See Table 1 for some hardware specifications [16]. We note that the AMD
RadeonVII is not a server-line GPU, but provides the same memory bandwidth
as the AMD HPC GPU MI50, and thus should be comparable for memory
bound operations such as the SpMV kernels. We use the major programming
ecosystems for the distinct architectures - CUDA for NVIDIA GPUs and HIP
for AMD GPUs. CUDA GPU kernels were compiled using CUDA version 9.2,
and HIP GPU kernels were compiled using HIP version 2.8.19361.

Table 1. Specifications of the V100 SXM2 16GB and the RadeonVII [16].

Warpsize Bandwidth FP64 performance L1 cache L2 cache

V100 32 897GB/s 7.834 TFLOPS 128KB 6 MB

RadeonVII 64 1024GB/s 3.360 TFLOPS 16KB 4 MB

The performance evaluation covers more than 2,800 test matrices of the Suite
Sparse Matrix Collection [15]. Some matrices contain dense rows, which makes
the conversion to the ELL format virtually impossible. We ignore those matrices
in the performance evaluation of the ELL SpMV kernel.
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All experiments are performed in IEEE double precision arithmetic, and the
GFLOP/s rates are computed under the assumption that the number of flops
is always 2nz, where nz is the number of nonzeros of the test matrix (ignoring
padding).

4.2 COO SpMV Performance Analysis

(a) V100 (b) RadeonVII

Fig. 3. Performance of Ginkgo’s and vendors’ COO SpMV

(a) V100 (b) RadeonVII

Fig. 4. Releative performance of Ginkgo’s and vendors’ COO SpMV (Color figure
online)

We first evaluate the performance of the load-balancing COO SpMV ker-
nel. In Fig. 3a, we compare against cuSPARSE’s COO kernel (cusparseD-
hybmv with CUSPARSE HYB PARTITION USER and threshold of 0), in Fig. 3b,
we compare against hipSPARSE’s COO kernel (hipsparseDhybmv with
HIPSPARSE HYB PARTITION USER and threshold of 0). Each dot reflects one test
matrix from the Suite Sparse collection. The x-axis is the nonzero count of the
matrix, and the y-axis is the performance in GFLOP/s. In Fig. 4, we present
the speedup of Ginkgo’s SpMV over cuSPARSE’s COO implementation and
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hipSPARSE’s COO implementation, respectively. Red dots reflect test matrices
where Ginkgo outperforms the vendor library, green dots reflect cases where the
vendor library is faster. Despite the fact that the irregularity of a matrix heavily
impacts the SpMV kernels’ efficiency, we can observe that Ginkgo’s COO
SpMV achieves much higher performance than both NVIDIA’s and AMD’s
COO kernels in most cases. Overall, Ginkgo achieves an average speedup of
about 2.5x over cuSPARSE’s COO SpMV and an average speedup of about
1.5x over hipSPARSE COO SpMV.

4.3 CSR SpMV Performance Analysis

(a) V100 (b) RadeonVII

Fig. 5. Performance improvement of (current) classical CSR SpMV and (previous)
basic CSR SpMV.

In the CSR SpMV performance analysis, we first demonstrate the improvement
of assigning multiple threads to each row (classical CSR) over the implementa-
tion assigning only one thread to each row (basic CSR) see Fig. 5 for the CUDA
and AMD backend, respectively. For a few matrices with many nonzeros, the
basic CSR is 5x–10x faster than the classical CSR. To overcome this problem,
we use Algorithm 3 in Ginkgo that chooses the load-balancing CSRI algorithm
for problems with large nonzero counts.

Next, we compare the performance of the Ginkgo CSR SpMV (that auto-
matically interfaces to either the load-balancing CSRI kernel or the classical
CSR, see Sect. 3.2) with the vendors’ CSR SpMV. Anzt et al. [2] identified the
cusp csr kernel (cusparseDcsrmv) as the overall performance winner among the
different NVIDIA CSR implementations. For the AMD CSR SpMV kernel, we
use the CSR kernel (hipsparseDcsrmv) provided in hipSPARSE. For complete-
ness, we mention that the rocSPARSE library (outside the HIP ecosystem) con-
tains a CSR kernel that renders better SpMV performance for irregular matrices
on AMD GPUs. We refrain from considering it as we want to stay within the
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(a) V100 (b) RadeonVII

Fig. 6. Performance of Ginkgo’s and vendors’ CSR SpMV

(a) V100 (b) RadeonVII

Fig. 7. Relative performance of Ginkgo’s and vendors’ CSR SpMV

HIP ecosystem, which is anticipated to serve as primary dissemination tool for
AMD’s sparse linear algebra technology.

In Fig. 6, we compare the Ginkgo CSR SpMV with the cusparseDcsrmv
CSR kernel available in NVIDIA’s cuSPARSE library and the hipsparseDcsrmv
CSR kernel available in AMD’s hipSPARSE library, respectively. In the relative
performance analysis, Fig. 7, we use the ratio max(row nz)

num rows for the x-axis as this is
the parameter used in Ginkgo’s CSR SpMV to decide which CSR algorithm
is selected. Ginkgo CSR achieves significant speedups for large x-values (up to
900x speedup on V100 and 700x speedup on RadeonVII). At the same time,
there are a few cases where the Ginkgo CSR SpMV is slower than the library
implementations (up to 20x slowdown on V100 and 5x slowdown on RadeonVII).
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4.4 ELL SpMV Performance Analysis

(a) V100 (b) RadeonVII

Fig. 8. Relative performance of Ginkgo’s current ELL SpMV against the previous
one

First, we investigate the performance improvement we obtain by changing the
memory access strategy for the ELL SpMV kernel, see Sect. 3. Interestingly,
moving to the new ELL SpMV algorithm does not render noteworthy perfor-
mance improvements on NVIDIA’s V100 GPU, as can be seen in Fig. 8a. At the
same time, the performance improvements are significant for AMD’s RadeonVII,
as shown in Fig. 8b. In the new ELL SpMV algorithm, we improve the global
memory access at the cost of atomicAdd operations on shared memory (which
are more expensive than warp reductions). In consequence, the current ELL
SpMV is not always faster than the previous ELL SpMV.

(a) V100 (b) RadeonVII

Fig. 9. Performance of Ginkgo’s and vendors’ ELL SpMV (Color figure online)
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(a) V100 (b) RadeonVII

Fig. 10. Relative performance of Ginkgo’s and vendors’ ELL SpMV

In Fig. 9, we compare Ginkgo’s ELL SpMV kernel against cuSPARSE cus-
parseDhybmv with CUSPARSE HYB PARTITION MAX ELL kernel and hipSPARSE
hipsparseDhybmv with HIPSPARSE HYB PARTITION MAX ELL kernel, respec-
tively. hipSPARSE ELL employs a limitation not to process matrices that have
more than #nnz−1

#rows + 1 elements in a row. Thus, we have much fewer data
points for the hipSPARSE ELL SpMV (the blue points in Fig. 9b). In Fig. 10,
Ginkgo’s ELL is faster than their counterparts available in the vendors libraries
if the ratio max(row nz)

num rows > 10−2. For the other cases, Ginkgo and the vendor
libraries are comparable in their ELL SpMV performance.

4.5 HYB SpMV Performance Analysis

(a) V100 (b) RadeonVII

Fig. 11. Performance profile comparing the different Ginkgo HYB splitting strategies
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Before comparing against the vendor implementations, we investigate the perfor-
mance of our HYB SpMV kernel for different partitioning strategies denoted by
hybrid{n}, hybridlimit{n}, and hybridminstorage (which is same as hybrid25)
as introduced in Sect. 3.4. We use a performance profile [8] on all Suite Sparse
matrices to compare the strategies with respect to specialization and general-
ization. Using a performance profile allows to identify the test problem share
(y-axis) for a maximum acceptable slowdown compared to the fastest algo-
rithm (x-axis). In Fig. 11, we visualize the performance profiles for the V100
and RadeonVII architectures. Although the hybrid strategy (which corresponds
to hybridlimit33) does not win in terms of specialization (maximum slowdown of
1), we favor this strategy since it provides the best generality: when considering
a maximum acceptable slowdown factor of less than 1.75, this format wins in
terms of problem share.

(a) V100 (b) RadeonVII

Fig. 12. Performance of Ginkgo’s and vendors’ HYB SpMV

(a) V100 (b) RadeonVII

Fig. 13. Relative performance of Ginkgo’s and vendors’ HYB SpMV

In Fig. 12, we see that Ginkgo’s HYB SpMV achieves similar peak per-
formances like cuSPARSE’s cusparseDhybmv HYB SpMV and hipSPARSE’s
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hipsparseDhybmv HYB SpMV, but Ginkgo has much higher performance aver-
ages than cuSPARSE or hipSPARSE. Figure 13a and Fig. 13b visualize the HYB
SpMV performance relative to the vendor libraries, and we identify significant
speedups for most problems and moderate slowdowns for a few cases.

4.6 All SpMV Performance Profile Analysis

Fig. 14. Performance profile comparing multiple SpMV kernels on V100.

In Fig. 14, we use the performance profile to assess the specialization and gen-
eralization of all matrix formats we consider. In Fig. 14, Ginkgo’s CSR is the
fastest for about 30% of the test cases, and Ginkgo’s HYB is the winner in
terms of generality (if the acceptable slowdown factor is larger than 1.0625).
Very similarly, in Fig. 15, Ginkgo’s CSR is the fastest kernel for roughly 30%
of the test cases, and Ginkgo’s HYB is the generalization-winner if the accept-
able slowdown factor is larger than 1.375. We note that the hipSPARSE ELL
stays at a low problem ratio as it employs a limitation to not process matrices
that have more than #nnz−1

#rows + 1 elements in a row.
We already noticed in the analysis comparing Ginkgo’s different SpMV ker-

nels to the vendor libraries that AMD’s hipSPARSE library generally features
much better-engineered kernels than NVIDIA’s cuSPARSE library. In conse-
quence, also the performance profiles of AMD’s SpMV kernels are much closer
to Ginkgo’s SpMV kernel profiles than NVIDIA’s SpMV kernel profiles.
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Fig. 15. Performance profile comparing multiple SpMV kernels on Radeon VII.

4.7 RadeonVII vs V100 SpMV Performance Analysis

We finally compare the SpMV performance limits of RadeonVII and V100 in
Fig. 16. We consider both Ginkgo’s back ends for the two architectures, and
the SpMV kernels available in the vendor libraries (labeled “Sparselib”).

In most cases, the V100 is faster than RadeonVII, but the speedup factors
are moderate, with an average around 2x. RadeonVII shows better performance
for matrices that contain many nonzeros. The higher memory bandwidth of the
RadeonVII might be a reason for these performance advantages, but as there
are typically many factors (such as context switch, warp size, the number of
multiprocessors, etc.) affecting the performance of SpMV kernels, identifying
the origin of the performance results is difficult.

While NVIDIA’s V100 outperforms AMD’s RadeonVII in most tests, we
acknowledge that the price for a V100 (16 GB SXM2) is currently more than an
order of magnitude higher than for a RadeonVII3

3 In December 2019, the list price for NVIDIA’s V100 (16 GB SXM2) is US$ 10,664.-,
the list price for AMD’s RadeonVII is US$ 699.-.
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(a) Ginkgo Coo (b) Ginkgo Csr (c) Ginkgo Ell

(d) Ginkgo Hybrid (e) Sparselib Coo

(f) Sparselib Csr (g) Sparselib Ell (h) Sparselib Hybrid

Fig. 16. Comparison of the SpMV kernel implementations of hipSPARSE on Radeon-
VII and cuSPARSE on V100

5 Summary and Outlook

In this paper, we have presented a comprehensive evaluation of SpMV kernels
for AMD and NVIDIA GPUs, including routines for the CSR, COO, ELL, and
HYB format. We have optimized all kernels for the latest GPU architectures
from both vendors, including new algorithmic developments and parameter tun-
ing. All kernels are part of the Ginkgo open source library, and typically outper-
form their counterparts available in the vendor libraries NVIDIA cuSPARSE and
AMD hipSPARSE. We accompany te kernel release with a performance database
and a web tool that allows investigating the performance characteristics interac-
tively. We also conducted an extensive SpMV performance comparison on both
AMD RadeonVII and NVIDIA V100 hardware. We show that despite NVIDIA’s
V100 providing better performance for many cases, AMD’s RadeonVII with the
hipSPARSE library is able to compete against NVIDIA’s V100 in particular for
matrices with a high number of non zero elements. In addition, we note that
due to the price discrepancy between the two hardware (AMD’s RadeonVII is
roughly 6.6% of the price of an NVIDIA’s V100), the AMD hardware provides
a much better performance-per-dollar ratio. This may indicate that after a long
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period of NVIDIA dominating the HPC GPU market, AMD steps up to recover
a serious competitor position.
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Abstract. Research is increasingly becoming data-driven, and natu-
ral sciences are not an exception. In both biology and medicine, we
are observing an exponential growth of structured data collections from
experiments and population studies, enabling us to gain novel insights
that would otherwise not be possible. However, these growing data
sets pose a challenge for existing compute infrastructures since data is
outgrowing limits within compute. In this work, we present the applica-
tion of a novel approach, Memory-Driven Computing (MDC), in the life
sciences. MDC proposes a data-centric approach that has been designed
for growing data sizes and provides a composable infrastructure for
changing workloads. In particular, we show how a typical pipeline for
genomics data processing can be accelerated, and application modifica-
tions required to exploit this novel architecture. Furthermore, we demon-
strate how the isolated evaluation of individual tasks misses significant
overheads of typical pipelines in genomics data processing.

Keywords: Computational biology · Memory-Driven Computing ·
Genomics

1 Introduction

Life and medical sciences are evolving towards a data-driven research model.
The leading biological institutions face a new challenge in dealing with data.
Interdisciplinary collaborations are aimed at accelerating this digitalization of
research. The use of compute clusters and cloud services has become more com-
mon with growing data sets. High-performance computing (HPC) is relevant for
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many modeling and simulation aspects in the life sciences, as indicated by the
study of genome-scale biochemical reaction networks [12].

This trend towards data-driven research challenges a community that is wit-
nessing an explosion in accumulated data sizes. The European Bioinformatics
Institute (EBI) has reported [10] a growth of data stored from 120 PB to 160PB
from 2016 to 2018. The number of deposited high-throughput sequencing data
sets at the US National Center for Bioinformatics (NCBI) shows exponential
growth in the last years, as depicted in Fig. 1. This can be explained by the
decline in sequencing costs, reduction in sequencing times, and availability of
diverse sequencing platforms.

Another source of increasing data sets is comprehensive collections like po-
pulation studies. These studies follow a large number of participants for a long
time and acquire different modalities, like image data and multi-omics data.
Storing and processing such data collections is challenging not only because of
their sizes but also because the data needs to be available without delays for the
researchers. While researching health-related questions, large time-series data
sets can be helpful but pose a challenge for storage systems.

Fig. 1. Number of high throughput sequencing (HTS) data sets uploaded to NCBI per
year. The 2019 data is still incomplete, since most studies are only uploaded to NCBI
once they are published.

In this work, we want to demonstrate how a novel architecture, named
Memory-Driven Computing (MDC), can be used for processing genomics se-
quencing data.

2 Memory-Driven Computing

While the data sets used in research are continually growing, the computing
power is not keeping up. The end of Moore’s law [31] seems to have finally been
reached. Current approaches to scaling focus on distributing workloads among
processing nodes in large clusters. However, these clusters come with growing
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costs, in particular from energy consumption that limits similar future scaling.
Also, genomics tasks often cannot be easily distributed among many nodes, e.g.,
gene regulation network processing deals with densely connected graphs.

2.1 Novel Architecture Tailored for Data Science

To overcome these shortcomings, Hewlett Packard Enterprise (HPE) has pro-
posed a novel architecture: Memory-Driven Computing. Unlike traditional, pro-
cessor-centric systems, it puts the memory (and therefore the user data) at the
center of the architecture [7]. This is realized by going from the traditional von
Neumann architecture, as shown in Fig. 2a, established since 1953, towards a
more memory-centric approach (Fig. 2b). To eliminate overheads, remote data
access no longer has to traverse the host processor, but is handled by the memory
fabric. Traditional local storage and memory are bundled into a persistent mem-
ory pool that can be realized through technologies such as the memristor [9].
Finally, the underlying fabric between all components, including processors, will
be switching from electrical to optical connections. This is necessary to overcome
the required energy for moving growing data sets.

Fig. 2. (a) The traditional von Neumann architecture defines the processor as the
central component. (b) MDC puts persistent memory at the center of the system.
Components are linked through an optical fabric. (c) The connecting fabric, e.g., Gen-Z,
puts different components from the processor-, memory- and accelerator class in a single
shared address space. Other specialized devices like sequencers for data generation
could also be integrated.

2.2 Composable Infrastructure

In this composable infrastructure, compute power can be attached to the memory
as required to allow scaling. All components share the address space and are
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connected through a fabric like Gen-Z [13] that also controls data access and
security, which are essential properties when working with sensitive medical data.
Besides CPUs and memory, other components like accelerators and GPUs can
be integrated. Since the fabric is well-specified1, it is also possible to incorporate
more specialized data sources, e.g., sequencing machines, to avoid data transfer
to the fabric attached memory. Traditional HPC architectures typically offer
large numbers of standardized nodes, grouped into different classes, like high-
memory or GPU-nodes. Often these systems are specially tailored for simulation
applications but do not fit well to other tasks like genomics data processing. With
MDC, it is possible to group the fabric-connected components dynamically into
task-tailored systems.

2.3 Transition Path Towards MDC

The idea behind MDC touches all components in computer systems. A hard-
ware transition to MDC cannot realistically happen in a single step, but rather
is a process. The first components like Gen-Z enabled devices, are expected in
2020, and other techniques like memristor-based storage for persistent fabric
attached memory are still a few years out. Nonetheless, it is already possible to
apply MDC principles. Existing large-memory machines can exploit an abun-
dance of memory. Systems like the HPE Superdome Flex offer a shared address
space between multiple nodes for applications. Software development can also
use smaller servers or even laptops to emulate fabric attached memory using the
Fabric Attached Memory Emulation (FAME)2.

Software adapted for MDC has provided large performance gains [8] and
allows us to think in new paradigms as memory pools enable new programming
models [19]. The transition to MDC follows an iterative process of preparing and
modifying an application. The preparation starts with the definition of goals and
metrics, defining the optimization target, e.g., doubling the number of tasks per
time. This is followed by a baseline performance measurement. The results are
used to perform a cost/benefit analysis to identify the MDC modifications, e.g.,
modifications to exploit the abundance of memory through different data struc-
tures or the elimination of I/O. During the modification phase, the developers
need to apply MDC principles and modify the application. Finally, the fine-
tuning based on the initially defined metrics and goals can be performed. More
details can be found in Sect. 5.

3 Related Work

Genomics data processing is a challenging task and, therefore, an excellent use
case to evaluate MDC. In this section, we discuss prior work, beginning with
in-memory genomics data processing approaches. Schapranow et al. [29] have

1 The full specification is available in [13].
2 http://github.com/FabricAttachedMemory/Emulation.

http://github.com/FabricAttachedMemory/Emulation
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employed an in-memory database to accelerate the alignment tool BWA on a
cluster, a method similar to MapReduce. They have reported an improvement
of 89% for a cluster of 25 machines. Firnkorn et al. [11] have followed a similar
path and compare the use of in-memory databases (SAP HANA) to a traditional
RDBMS (MySQL) for alignment focussed on direct matches. While they have
observed an acceleration factor of 27, the comparison was made against a highly
unusual tool that is not specialized in alignment. Finally, Li et al. [25] have
improved the processing of genomic data using the SPARK framework by intro-
ducing improved compression of genomic data to optimize data transfer between
the nodes. Hajj et al. [15] have demonstrated new address space concepts using
samtools.

Other approaches use specialized hardware. Luo et al. [26] have used GPUs
for alignment. Lavenier et al. [23] and Kim et al. [21] have explored the use
of completely new hardware for genomics data processing. They propose to use
processing within the memory to minimize data access time and maximize band-
width. The pre-alignment steps of Kim et al. lead to an end-to-end improvement
between 2× and 3.5×. Alser et al. [5] propose another FPGA based tool for
pre-alignment; they achieve a 10× acceleration for this task using a Virtex-7
FPGA using Xilinx VC709 board running at 250 MHz. Kaplan et al. [18] pro-
pose a novel resistive approximate similarity search accelerator (RASSA) that
exploits charge distribution and parallel in-memory processing to reflect a mis-
match count between DNA sequences. Their pre-alignment software achieves
16–77× improvements in long reads.

Finally, different programming languages have been explored to accelerate
the preprocessing of genomics data. Herzeel et al. [16] have proposed a multi-
threaded framework for sequence analysis to leverage the concurrency features
of the Go programming language. Tarasow et al. [30] have investigated the par-
allel processing features of the programming language D to improve genomics
processing speed.

4 Application in Bioinformatics

From an HPC perspective, bioinformatics applications often fall in either of
two categories: I/O-bound and compute-bound. I/O-bound applications typi-
cally transform or annotate data. They operate on significant inputs and produce
large outputs while the actual transformation task takes little to no computa-
tional effort. Compute-bound tasks are not limited by I/O, their primary work,
e.g., assembly or modeling or cellular interaction, is the limiting factor. While
many compute-bound applications operate on large data sets, the I/O part can
often be neglected in comparison to the main functionality. In previous work,
it has been shown that compute-bound applications still can benefit from the
abundance of memory available in MDC [6].
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4.1 Typical Preprocessing Tasks and Pipeline Structures

In this work, we will focus on optimizing an I/O-bound application since there
is a lot of overhead that can be eliminated with MDC, and such applications
are common in the typical structures of bioinformatic preprocessing tasks. The
preprocessing of next-generation sequencing (NGS) genomics data consists of
initial quality controls, demultiplexing of data from multiple experiments (which
have been multiplexed to reduce costs), alignment to a reference genome and
further quality controls as shown in Fig. 3. These steps can be performed through
several competing tools that often specialize in certain types of experiments.
Considering single-cell genomics, the number of involved tools increases, and the
pipelines become more complex. This has lead to the development of specialized
bioinformatics pipelines and dedicated workflow managers like Snakemake [22].
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Fig. 3. Classical bioinformatics pipelines are a series of tools that exchange data
through large files on disk-based storage. With MDC, the data is kept in memory,
and I/O can be avoided. Parallel processing with different tools does not impose a
penalty for random data access that is known from existing storage systems that often
are optimized for serial or streaming data access.

These pipelines deal with large input files, and many tools transform the
data, annotate information, or change the order of the content. They take an
input and produce an output of a similar size. This leads to a large number of
intermediate files, and therefore these tools are often I/O-bound. The last step
in the preprocessing typically performs a data reduction, going from alignments
to gene expression information. Here, we will demonstrate the use case for the
I/O-bound application samtools, which is a common tool for processing aligned
reads or alignments.

4.2 Application: Samtools

Samtools [24] is a standard tool for processing alignments in Structured Align-
ment Map (SAM) and binary SAM (BAM) files [2]. These files contain tens to
hundreds of millions of alignments in a single file and must be efficient to deal
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with growing data sets. An alignment consists of core information like genomic
position, the actual sequence, the associated quality values, and auxiliary infor-
mation, including tags to store key-value pairs of different data types.

We have evaluated the broad functionality of samtools (version 1.9) to select
commands that are used most frequently in the community as well as those
that could benefit most from eliminating I/O. In the following, we list these
commands, briefly describe their functionality, and classify the output that they
produce. A comprehensive overview of samtools and the details for each com-
mand can be found in the documentation [3].

View. Samtools provides the view command to convert between SAM and BAM
format. Often tools only support one of these formats, or conversion to BAM is
needed to reduce file sizes in storage. SAM files can be useful for visual inspection
of the data since SAM is human readable. It is also possible to specify filter
criteria, e.g., to filter for a specific chromosome.

Sort. After the alignment of input files to a reference genome, the output file
(e.g., in BAM format) stores the alignments in random order. Many downstream
steps such as read-count generation, variant calling, or visualization in IGV
require the alignments in the file to be ordered. Alignments can be sorted by
genomic order based on their coordinates on each chromosome or by read or
query names to get a technical ordering.

Markdup. The markdup function can be used to identify duplicate alignments
from a coordinate/position sorted file. The duplicate reads are referred to as the
primary reads whose coordinates are matching. The highest quality of a duplicate
is kept, and others are marked with the duplicate flag. Removal of duplicate
reads, generated due to PCR amplification or sequencing, is an indispensable
step for the processing of alignment data as it affects the overall quality and
downstream steps of NGS analysis.

Fixmate. To prepare a file for the markdup command, it has to be modified
with the fixmate command to add MS (mate score) and MC (CIGAR string for
mate/next segment) tags. The MS tag is used by the markdup function to select
the best reads to keep.

Combined Commands. Often, the functionality of samtools is not used in-
dependently, but multiple commands interact. An example is the marking of
duplicate reads in a data set. This task consists of four consecutive steps: sorting
by query name, the fixmate command, sorting by genomic position, and finally,
actual marking of the duplicates. Often these steps are connected through files
(see Fig. 4). It is also possible to connect the tools with a pipe; this avoids I/O but
still requires serialization and deserialisation of the data between the individual
steps. The serialization and deserialization steps convert between in-memory and
on-disk representation of SAM records.
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Fig. 4. Samtools commands can be concatenated with multiple approaches: Data
exchange through files (top) or a pipeline (middle). We propose to share data in mem-
ory (bottom) to remove unnecessary overhead.

5 Modifications to Exploit Memory-Driven Computing

Running an unmodified application in an MDC environment already yields the
benefit of accelerated data access, since no storage systems and drivers are
involved. However, to fully exploit this environment, memory-mapping the data
is recommended and can often be easily added. Besides this, two significant
areas for benefiting from MDC exist: First, we can eliminate all I/O opera-
tions for data input and output. This also applies to temporary data and data
exchange between applications. Existing storage systems often are optimized
for serial or streaming data access. Random access from a single application
or multiple applications reduces data throughput significantly. Since the cen-
tral memory pool does not require traditional access patterns for performance
reasons (e.g., linear reading), parallel processing of data becomes feasible. This
speeds up quality control tools and preprocessing in parallel or similar use cases,
where I/O bottlenecks are common. In a second step, the internal data struc-
tures of an application can be modified to benefit from the abundance of memory
in MDC environments. This could be, for example, extensive pre-calculation of
intermediate results to replace standard computations with a simple look-up.

We have applied these principles to samtools to benefit from I/O elimination
and improved data passing between different functionalities of the application.

5.1 Samtools

Samtools stores data in the Sequence Alignment Map (SAM)-format [2], which is
text-based. A binary version of this format (BAM) exists as well. Finally, a text-
based column-oriented version (CRAM) exists but is of no practical relevance.
In this work, we present four contributions to the main functionality of samtools
in the areas of I/O reduction that include input and output parsing, removal of
intermediate files, and the better integration of multiple commands. Samtools is
available as open source and written in C.
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Parallel Input Parsing. We have modified the input loading and parsing for
the two most common formats, SAM and BAM. In both formats, we first need
to parse the header information that contains reference information about the
alignment targets (e.g., chromosomes) and their sizes. Afterward, we split the
file into chunks and parse them in parallel. To fully exploit the capabilities of
MDC, we have modified all I/O to use memory-mapped files, which are based on
the posix mmap() function that establishes a mapping between an address space
of a process and a memory object. MDC already gives us the shared memory
pool for storing our data, therefore, we can avoid the introduction of additional
frameworks like MPI-IO which introduce additional layers.

Sequence Alignment Map (SAM) files are a line-based format where each
line contains a single alignment. Alignments require header information, and it
needs to be loaded first. Next, we split the file into byte-regions and process
them in parallel. Through MDC, the data is already in memory, and random
access bears no extra costs. The start of the regions does not necessarily coincide
with the beginning of a line, hence parsing only starts after the next newline.
Correspondingly, the last line is parsed beyond the end of the region to capture
the full alignment information.

Binary SAM (BAM) files consist of a series of gzip-compressed blocks that
contain the header and alignment information. Again, the header needs to be
parsed first, just like for SAM files. Next, the compressed blocks containing the
alignments can be processed. A single block can hold up to 64 KB of alignment
information. Since there is no reliable indicator for the beginning of a compressed
block, it is not possible to simply split the file into equally sized regions. There-
fore, we first create an index of all blocks. This task takes very little time since
the file is already in memory. The index is then used to distribute the contents
for parallel decompression and alignment parsing, as shown in Fig. 5a.
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Fig. 5. Parallel input and output. The BAM file is initially scanned for blocks and
then parsed in parallel. The output works by writing into sufficiently large regions of
the file, followed by a later removal intermediate unused spaces.

Parallel Output Writing. The process of writing alignment data starts with
storing the header information. Afterward, we estimate the average size of an
alignment to assess the overall file size. This allows us to allocate sufficient space
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in a memory-mapped file for the output. We split the output into parts that
are saved into different regions of the output file. Unused space remains in each
region because the estimation of the expected size is designed to overestimate so
that all alignments will fit. In the last step, we move the file parts to eliminate the
unused space, and finally, we truncate the file to the actual size. These steps are
shown in Fig. 5b. For BAM files, we estimate the required size for uncompressed
data. However, usually, good compression can be achieved, and therefore the
final file size is much smaller.

Intermediate Data Storage. The data processing commands of samtools
often require some temporary storage. The sorting command pre-sorts data in
blocks and finally merges them into the final file. For smaller files, these tem-
porary blocks are held in memory, but this no longer applies to growing data
sets. Similarly, the markdup and fixmate commands use temporary storage for
intermediate data. In our approach, we load the full data set into memory to
avoid additional I/O. We have modified samtools to remove temporary files.
With all data in memory, sorting can be easily performed without temporary
files using the C++ extensions for parallelism [17]. The temporary data storage
of the fixmate and markdup commands can be resolved by instead keeping a list
of references to the alignments that otherwise would have been written to disk.

Pipelining Commands. We have found that certain samtools commands are
often run together. We have chosen the marking of duplicates pipeline for investi-
gation and optimization. Since data parsing and I/O consume a large part of the
runtime, we have modified the commands to take a list of alignments in memory
and to work on that data. Therefore, we have modified the sorting, fixmate, and
markdup commands to work with a list of alignments that we obtain from the
input parsing. Although fixmate and markdup are sequential tasks, we still can
remove the input parsing or deserialisation.

Memory-Management. A growing number of processing threads, in particu-
lar during the input parsing, allocate many small memory parts. With massive
input files, tens to hundreds of million allocations are required during input pars-
ing. With the default allocator (from glibc), the central lock for the memory-list
is a bottleneck that significantly slows down the input parsing. The core informa-
tion for an alignment is of fixed size, and it is accompanied by a variable-length
string for storing sequence and auxiliary information. This results in two alloca-
tions per alignment. For the core information, the memory can be pre-allocated
in larger batches due to its known size, the sequence and auxiliary informa-
tion requires custom allocations. We have considered specialized allocators like
jemalloc [1] and tcmalloc [14] that use per-thread pools as well as a non-freeing
custom allocation solution, that acquires large portions of memory per thread
and uses them for allocations. This custom allocator is experimental only to
understand the difficulties of many small allocations from a large number of
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threads and should not be used in outside of experiments, since it does not track
the allocated memory, and therefore, is not able to free memory again.

These modifications are designed to be reusable and are available on Github:
https://github.com/schultzelab/samtools-mdc. This includes the parallel read-
ing and writing functions for SAM and BAM files. Samtools-mdc is designed
to be a drop-in replacement for samtools. SAM/BAM reading and writing has
been separated from the data modification (e.g. sorting) to allow re-use of com-
ponents.

6 Evaluation and Results

We have used two systems to evaluate our MDC-modifications. We took a typ-
ical Dell blade server, as it is common among bioinformatics groups, with two
sockets, 32 cores, 64 threads, and a total of 768 GB memory. As a second system,
we have used an HPE Superdome Flex, with two nodes, 16 sockets, 144 cores,
and 288 threads and a total of 6 TB memory. The abundance of memory in
this system is close to our expectation in an MDC environment, although larger
systems (up to 48 TB) exist. The Superdome Flex implements MDC principles
and provides a single address space across the nodes through a custom inter-
connect and firmware. Future systems are expected to include Gen-Z hardware.
We have collected data points for different numbers of threads, with 1, 16, 32
and 64 collected on the smaller blade system and 144 and 288 gathered on the
Superdome Flex system.

We have selected a range of samples3 from the National Institutes of Health
Sequence Read Archive [4] to get coverage of typical input files sizes. These ten
samples cover different studies and multiple diseases. An overview of the samples
is shown in Table 1. We have grouped the samples by size into three categories:
small, medium, and large.

6.1 Memory Allocation

Our initial experiments show that memory allocation is a crucial factor in pro-
cessing SAM and BAM files. The loading process requires multiple allocations
per read, and this becomes an increasing challenge with a growing number of
parallel reading threads.

To test the allocations strategies, we read the three sample groups with dif-
ferent allocators and multiple thread numbers, ranging from 1 to 288, and report
the cumulated time per group. The results, differentiated between bam and sam
files, are shown in Fig. 6. It can be seen immediately that the default alloca-
tor consistently shows the worst performance, both with just a single thread as
well as with large numbers of threads (144, 288). In most cases, tcmalloc per-
forms equal or worse in comparison to jemalloc. Our custom allocator shows the
best performance for most cases; however, we discarded it since it is not a full
implementation but rather a proof-of-principle.
3 We have used hisat 2.0.4 [20] to perform the alignment and to produce the BAM

files.

https://github.com/schultzelab/samtools-mdc
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Table 1. Ten selected samples from NCBI presented corresponding to the number of
reads contained. They are grouped by size into three categories (1, 2, 3; small, medium,
large).

Sample Number of reads Study Group Disease

GSM1641335 397748 GSE67184 Small Malaria

GSM1540592 950441 GSE63085 Small Control

GSM1113415 9004143 GSE45735 Small Influenza vaccination

GSM1273616 11215264 GSE52656 Small AML

GSM2309852 20339057 GSE86884 Medium Kidney transplant

GSM1576441 21396334 GSE64655 Medium Influenza vaccination

GSM1521568 22655944 GSE62190 Medium AML

GSM1554600 34059694 GSE63646 Large AML

GSM2324152 44470876 GSE87186 Large BCG vaccination

GSM1540488 54561415 GSE63085 Large Lyme disease

Fig. 6. Cumulative times to fully load the small, medium and large samples in SAM
and BAM format into memory using different allocators (see Sect. 5.1, Memory-
Management) and number of threads.
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6.2 Samtools Commands

Next, we evaluated different samtools commands. The results present a broad
range of behavior, and we show examples in Fig. 7. All examples use the large
bam sample group. The view command shows consistently better performance
for the MDC-optimised version of samtools (mdc) when compared to the orig-
inal (unmodified) samtools (orig). The fixmate use case contains program logic
that is not parallelized, and the streaming architecture of the original samtools
shows better performance than the modified version. Samtools (mdc) loads the
complete data set first, performs the fixmate operation, and then writes the com-
plete data set; samtools (orig) uses a streaming approach that is more suited for
this specific task. Finally, sorting by query name shows slightly better results of
the MDC-optimised version for smaller numbers of threads and similar perfor-
mance for larger thread numbers (64, 144, 288). With growing thread numbers,
samtools (orig) is configured to retain growing parts of the data set in memory,
similar to our approach.

Fig. 7. Comparison of original and mdc-modified samtools for three commands: view,
fixmate and sorting by query name. Each command uses the large bam samples and
threads ranging from 16 to 288.

6.3 Marking Duplicates Pipeline

Finally, we evaluated different choices to realize a duplicate marking pipeline:
individual calls with intermediate files, a pipeline with serialization and deseriali-
zation, and our MDC approach with all data stored in memory. The results are
presented in Fig. 8. We have evaluated all pipelines with sam and bam samples
from all three groups. The MDC pipeline is always faster than the other options.
For small files and large numbers of threads, the pipeline with serialization and
deserialization can be slower than individual tools. The measurements for the
individual tools show that the majority of processing time is spent in the fixmate
functionality. Further inspection revealed that this step is not parallelized and
it would be an opportunity for future work.
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Fig. 8. Evaluation of duplicate marking using individual commands (stacked results),
a pipeline, and our MDC approach. We have tested the bam (left) and sam (right) files
of different sizes and report cumulative results per size group. Single-threaded MDC
results for sam files had to be omitted to technical problems. Sort/sort -n denotes
sorting by query name, sort -p is sorting by genomic position.

7 Discussion

Samtools is already optimized for single commands; the streaming approach of
samtools shows satisfactory performance. Some commands are not parallelized,
and the streaming might prevent this. Especially the fixmate functionality con-
sumes a significant amount of time. If we analyze not just single commands but
rather pipelines that combine multiple commands, we can see that data exchange
between the individual commands limits the throughput. Using a pipe instead
of intermediate files shows an acceleration but still comes with overhead from
serialization and deserialization.

With MDC, we can remove I/O from intermediate files, and we can share
data in native data types. This gives an additional acceleration over the pipeline
approach, and we believe this to be true of other pipelines. However, the input
and output of the current MDC version are still files and need to be parsed and
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written - an overhead that could be avoided by using shared memory for data
exchange between multiple tools.

Furthermore, we have found that selecting a proper allocation strategy is
crucial for parsing genomics data. A single read requires at least two allocations,
and with a growing number of threads, the synchronization overhead becomes a
bottleneck. Some of the required memory objects are already known in size so
that the pre-allocation of larger amounts is possible.

8 Outlook

A next step will be to expand the MDC optimized version of samtools to cover
more of its functionality. After focusing on the most common commands, we aim
to study the remaining commands as well. Since samtools is a central component
in many pipelines, we want to improve data exchange between tools to remove the
need for expensive serialization and deserialization and to establish a common
way of memory-based data exchange.

Besides these steps, we want to expand from genomics data preprocessing
to bioinformatics analysis, especially for the growing number of large single-cell
data sets from consortia like the Human Cell Atlas [27] which try to catalog all
cell types. For many biological questions, a large number of analysis methods
already exist. Still, for many, the performance is increasingly becoming an issue,
this has been shown for trajectory inference by Saelens et al. [28].

Furthermore, the integration of multiple data sources increases computa-
tional needs. Multi-omics data sets that combine approaches like genomics,
lipidomics, and proteomics allow gaining novel insights into biological processes.
Another domain that produces growing data sets for analysis is spatial approa-
ches that combine the capture of omics data with spatial and image information.
This also provides a link to population studies whose growing data production
poses an increasing challenge.
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Abstract. High Performance Computing (HPC) systems are facing
severe limitations in both power and memory bandwidth/capacity. By
now, these limitations have been addressed individually: to improve per-
formance under a strict power constraint, power capping, which sets
power limits to components/nodes/jobs, is an indispensable feature; and
for memory bandwidth/capacity increase, the industry has begun to sup-
port hybrid main memory designs that comprise multiple different tech-
nologies including emerging memories (e.g., 3D stacked DRAM or Non-
Volatile RAM) in one compute node. However, few works look at the
combination of both trends.

This paper explicitly targets power managements on hybrid memory
based HPC systems and is based on the following observation: in spite
of the system software’s efforts to optimize data allocations on such a
system, the effective memory bandwidth can decrease considerably when
we scale the problem size of applications. As a result, the performance
bottleneck component changes in accordance with the footprint (or data)
size, which then also changes the optimal power cap settings in a node.
Motivated by this observation, we propose a power management concept
called footprint-aware power capping (FPCAP) and a profile-driven soft-
ware framework to realize it. Our experimental result on a real system
using HPC benchmarks shows that our approach is successful in correctly
setting power caps depending on the footprint size while keeping around
93/96% of performance/power-efficiency compared to the best settings.

1 Introduction

Power consumption has become the major design constraint when building
supercomputers or High Performance Computing (HPC) systems. For instance,
the US DOE once had set a power constraint of 20 MW per future exascale sys-
tem to ensure their economical feasibility. To achieve orders of magnitude per-
formance improvement under such a strict power constraint, we must develop
sophisticated power management schemes. To this end, power capping (setting
a power constraint to each job/node/component) and power shifting (shifting
power among components depending on their needs under a given power bud-
get) are promising and the most common approaches [5,9,20,27,28,31,33].
c© The Author(s) 2020
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At the same time, we continue to face limited memory bandwidths and
capacities in HPC systems. On the one hand, to improve bandwidth, architect-
ing main memories with 3D stacked DRAM technologies, such as HBM [36]
and HMC [6], is an attractive approach. However, these technologies have
limited capacity-scalability compared to conventional DDR-based DRAM [16].
On the other hand, using emerging scalable NVRAMs (Non-Volatile RAMs,
e.g., PRAM [8,19,26,30], ReRAM [2], STT-MRAM [3,18,23] and 3D Xpoint
memory [14]) are promising in terms of capacity, but these technologies are gen-
erally much slower than conventional DRAM. As a consequence, the industry
has been shifting toward hybrid memory designs: main memories with multi-
ple different technologies (e.g., 3D stacked DRAM + DDR-based DRAM [16]
or DRAM + NVRAM [14]), which are usually heterogeneous in bandwidth and
capacity.

Driven by these trends, this paper focuses on a power management technique
explicitly tailored for such hybrid memory based systems. Our approach is based
on the following observation: when we scale the problem size (e.g., by using finer-
grained and/or larger-scaled mesh models for scientific applications), the perfor-
mance bottleneck can change among components. As a result, the optimal power
budget settings also change due to this bottleneck shifting phenomenon. Thus, to
exploit higher performance under a power constraint, we should also shift power
between CPU and memory system in accordance with the footprint (or data)
size of applications, which we call footprint-aware power capping (or FPCAP)
in this paper. As we often use various problem settings for each scientific appli-
cation, this footprint awareness is critically important.

To realize the concept of FPCAP, we first formulate the power allocation
problem and provide a regression-based performance model to solve it. Then,
based on the formulations, we present a profile-based software framework that
optimizes the power allocation to each component based on an efficient offline
model-fitting methodology as well as an online heuristic algorithm. Our experi-
mental results measured on a real system shows that our approach achieves near
optimal allocations under various power caps.

The followings are the major contributions of this study:

– We demonstrate the bottleneck shifting phenomenon by scaling the problem
size on a hybrid memory based system and propose a power management
concept called FPCAP.

– We quantify its potential benefit using various mini HPC applications chosen
from the CORAL benchmark suite.

– We formulate the power allocation problem and present an empirical perfor-
mance model to solve it.

– Based on this formulation, we provide a profile-based software framework
consisting of an efficient calibration method as well as an algorithm based on
a hill climbing based heuristic.

– We evaluate our approach on a hybrid memory based system. The experi-
mental result shows that our framework is successful in setting power caps to
components in accordance with the footprint size.
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2 Background and Related Work

Various power management schemes for large-scaled systems have been proposed
so far, and such schemes generally assume hierarchical power controls and can
be classified into global or local parts. Figure 1 illustrates a typical power control
hierarchy for them. In the figure, the power scheduler distributes power budgets
or sets power constraints to nodes/jobs (global control). Then, in each node/job
the allocated power is distributed to the components with the goal of maxi-
mizing performance by shifting power from non-bottleneck components to the
bottleneck one (local control). Our paper belongs to the latter part and is the
first work that (1) focuses on the bottleneck shifting phenomenon when scaling
the problem size on the hybrid memory based nodes and (2) provides a power
allocation scheme based on the observation.

Fig. 1. Assuming hierarchical power management

The followings summarize the related work to ours.

Global Power Controls: Since the power consumption of large-scaled sys-
tems have become a significant problem, various power scheduling schemes and
implementations for them have been proposed so far [5,9,28,31,33]. These stud-
ies are usually based on the concept of overprovisioning: installing more hardware
than the system can afford in terms of power, and intelligently controlling power
supply to each job/node while keeping the total system power constraint [27].
Although these studies are very useful to improve the total throughput under the
system power constraint, they focus on how to distribute power budgets across
nodes/jobs and thus are orthogonal to ours.

Local Power Controls: The concept of power shifting firstly appeared in [10],
and power capping was proposed to enable power shifting [20]. Since then, var-
ious other local power management techniques have been proposed. However,
ours is the first work in providing a way to optimize the power allocations to
CPU and hybrid memory system in accordance with the footprint size. Sev-
eral studies focused on power shifting between processors (CPU or GPU) and
memories [7,10,12,24,29,32], but they did not target hybrid memory systems.
Others propose various approaches based on different concepts: power shifting
in a NUMA node [11], CPU-GPU power optimizations [4,17], power shifting
between CPUs and networks [21,22], and I/O-aware power shifting [35], which
do not consider memories.
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Power Management for Hybrid Memory Systems: As DRAM scaling is
at risk, many studies have focused on hybrid memory architectures, and some of
them proposed power control schemes for them. H. Park et al. [26] uses DRAM
as a cache in a DRAM-PRAM hybrid memory system and applies cache-decay,
a power reduction technique that turns-off unused cachelines, to save the refresh
power of DRAM. Other studies aim at optimizing data allocations on DRAM-
PRAM hybrid memories to reduce the impact of the write access energy of
PRAM [30,39]. Although these approaches are promising, they still focus only
on hybrid main memory systems—ours covers both memories and processors
and optimizes power allocations to them. Moreover, these studies are based on
architectural simulations, and thus most of them require hardware modifications,
while ours works on real systems.

#pragma omp p a r a l l e l for simd
for ( i = 0 ; i < N; i ++) { A[ i ] = A[ i ] ∗ B[ i ] . . . ∗ B[ i ] ; }

Fig. 2. Tested synthetic streaming code (footprint size ∝ N, arithmetic intensity or
simply AI ∝ the number of *B[i])

Fig. 3. Measured rooflines [38] Fig. 4. Concept of our proposal

3 Motivation and Approach

The goal of this research is to provide a power management scheme suitable for
emerging HPC nodes composed of hybrid main memories under a given node
power constraint. When we execute scientific applications on HPC systems, we
usually utilize various problem inputs, which can considerably change the foot-
print size (the memory consumption of the running application). For instance,
we change the granularity/scale of mesh models and/or the number of time steps
for scientific applications. Under such scenarios, footprint-awareness is essential
to optimize the power settings of the components, which will be described in the
following subsections.
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3.1 Motivation: Roofline Observation

We execute the synthetic streaming code shown in Fig. 2 on our hybrid memory
based system whose configurations are provided in Sect. 6. In this experiment,
we change the footprint size and the arithmetic intensity (or simply AI ) of
this application by scaling the array size (N) and the number of arithmetic
operations (∗B[i]). Figure 3 describes the results. The horizontal axis indicates
the arithmetic intensity (Flops/Bytes), while the vertical axis shows the perfor-
mance (GFLOPS). The shapes of the curves can be well-explained by the roofline
model [38]: (1) for smaller arithmetic intensity, the performance is capped by the
memory system bandwidth (the slope lines), which means the memory system is
the performance bottleneck ; (2) but for higher arithmetic intensity, it is limited
by the CPU throughput (the horizontal lines)—in other words the CPU is the
performance bottleneck.

In this evaluation, we observe the phenomenon of bottleneck shifting : although
the system software attempts to optimize the data mapping on the hybrid main
memory, the effective bandwidth decreases as the footprint size scales due to
more frequent accesses to the large (but slow) memory, and as a result, the slope
line in Fig. 3 moves toward the downside1. Because of this effect, the performance
bottleneck can shift from the CPU to the memory system even for CPU intensive
workloads when we increase the footprint size. As the fundamental principle of
the power management for power constrained systems is allocating more power
budget on the bottleneck component, thus focusing on this phenomenon is a piv-
otal approach.

3.2 Concept: Footprint-Aware Power Capping

Driven by the above observation, we propose a power management concept called
footprint-aware power capping (or FPCAP) that optimizes power allocations to
CPUs/memories in a node depending on the footprint size (Ffs) as well as
the application features under a given node power constraint (Pnode) that is
assigned by the power scheduler of the system. The concept is illustrated in
Fig. 4. In this figure, we optimize the power budget allocations (or power caps)
to the CPUs (Pcpu) and the Memory i (Pmemi)i=1,2,... in accordance with these
inputs. In the figure, Pothers shows the total power limits of the other components
that are out of the scope of this paper, which we follow the prior node-level
power management studies [7,12,32]. More specifically, we assume Pothers is
reserved accordingly, and we focus on distributing the rest of the allocated node
power budget Psum(= Pnode −Pothers) to the CPUs and the memories under the
constraint of Pcpu + Pmem1 + · · · ≤ Psum.

1 This phenomenon could happen on traditional systems using monolithic main memo-
ries when the footprint size were in the neighborhood of the on-chip cache capacity
(at most few 10 MB), which is not the case for HPC applications in general.
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3.3 Performance Impact

Next, we demonstrate the potential performance benefit of FPCAP using our
hybrid memory based system. More specifically, we observe how the optimal
combination of {Pcpu, Pmem1, Pmem2} changes depending on the footprint sizes
using Small or Large problems while keeping the total power cap at a constant
value (here, we set

∑
Px = Psum = 260[W ]). At the same time, we also confirm

the performance impacts of naive power allocations that do not consider the
footprint size of applications. The details of the system settings as well as the
workload specifications including the definitions of Small/Large problems will
be provided later in Sect. 6.

Fig. 5. Performance comparison of various power allocation settings (constraint:
Psum = 260[W]) for two different problem settings (Small/Large problems) (Color
figure online)
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Figure 5 illustrates the evaluation results for different applications. Each spi-
der graph indicates the relative performance of two different problems along
with the power cap settings for all the possible power combinations under the
given total power constraint. Here, the performance is normalized to that of the
optimal combination for each problem/application. In the figures, the optimal
settings for Small/Large problems are highlighted with black/red lines.

Overall, the impact of power cap settings on performance is quite significant,
and some cases also a slowdown can happen when the power allocations are
not set accordingly. In addition, the optimal power allocations changes when we
scale the problem sizes for most of the applications, thus FPCAP is effective.

For miniFE, LULESH and MCB allocating more power budgets on Memory 2
is effective when we scale the footprint sizes, which matches our roofline anal-
ysis provided in the last subsection. Also, the footprint size does not affect the
performance bottleneck for very CPU intensive codes such as our synthetic code
(Streaming (AI: 10.7)) described in Sect. 3.1, thus the optimal settings do not
change for it when we change the problem size. For AMG and Streaming (AI:
0.167), reducing Pmem2 is effective when the footprint size is scaled. One major
reason of this phenomenon is that the software-based data management adopted
on our system—CPU also consumes power to handle the data transfers between
Memory 1 and Memory 2, which can also change the performance bottleneck
among the components.

Fig. 6. Overall parameters transformation

Table 1. Definitions of parameters/functions

Application related parameters

Kernel Target kernel in an application

Inputs Inputs for the application: Inputs = (arg1, arg2, · · · )
F Feature parameters that represent the kernel + inputs (F = (Fprof ,Fdy))

Fprof Parameters obtained after a profile run (e.g., FP operations per instruction)

Fdy Parameters dynamically collected at runtime (e.g., footprint size Ffs)

Power related parameters

P Vector of power allocations to components: P = (Pcpu, Pmem1, Pmem2, · · · )
Px Allocated power budget to a component x (x = cpu, mem1, mem2, · · · )
SPx Set of power cap values for a component x: Px ∈ SPx (x = cpu, mem1, mem2, · · · )
Psum Given total power constraint

Objective functions

Obj(P,F) Objective function to be maximized (e.g., Obj(P,F) = Perf(P,F))

Perf(P,F) Performance as a function of P and F

PowEff(P,F) Power efficiency: Perf(P,F)/
∑

Px
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4 Formulation and Modeling

Motivated by the observation in the last section, we optimize the power allo-
cations to components while taking the footprint size and other aspects into
considerations (FPCAP). In this section, we firstly formulate the problem defi-
nition. Then, we provide a simple model to solve it.

4.1 Problem Formulation

Figure 6 summarizes how parameters are transformed through our optimization.
Our approach receives a kernel code region (Kernel), inputs for the applications
such as arguments (Inputs) that determine the footprint size (Ffs), and the
total power constraint or budget (Psum) set to the power capping targets within
a node (cpu,mem1, · · · ). We then convert two of them (Kernel & Inputs) into
feature parameters (F) that represent the behavior of the kernel executed with
the inputs. The feature parameter vector is divided into profile-based statistic
(Fprof ) and dynamically collected information (Fdy), of which the latter includes
the footprint size (Ffs). Finally, based on our modeling/algorithm provided later,
we optimize the power caps to different components (P).

This can be formulated as the following optimization problem:

given Kernel, Inputs, Psum(⇒ F, Psum)
max Obj(P,F)
s.t. ΣPx ≤ Psum

Px ∈ Spx
(x = cpu,mem1, · · · )

Here, we consider maximizing the objective function Obj(P,F) under the power
constraint Psum. This objective function can be performance (Pref(P,F)),
power efficiency (PowEff(P,F)), or others. The power cap allocated to a com-
ponent x is taken from a set of pre-determined power cap values SPx

. Note that
the functions and parameters used here are summarized in Table 1.

Fig. 7. Kernel-level optimization Fig. 8. Framework overview
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4.2 Performance Model

In this study, we utilize a widely-used linear regression model for our performance
estimation. More specifically, we estimate performance as follows:

Perf(P,F) = C1(P)H1(F) + C2(P)H2(F) + · · · = C(P) · H(F) (1)

C(P) is a vector of coefficients that are functions of the power allocations (P).
Further, H(F) is a vector of basis functions that depend on the feature param-
eters (F). We can determine C(P) by applying the method of least squares (or
regression analysis), while using the pairs of measured Perf(P,F) and H(F)—
the details of this are explained in the next section. In addition, the definitions
of H(F) used in our evaluation, which cover footprint awareness, are provided
in Sect. 6.

5 System Design

Based on the formulation/modeling provided in the last section, we introduce
a system design to realize our approach. More specifically, we first explain the
overview of our optimization framework and then describe our efficient calibra-
tion methodology to set the model coefficients. Finally, we provide our power
allocation algorithm.

5.1 Framework Overview

Figure 7 demonstrates our optimization methodology. Following the prior node-
level power management studies [4,34], we consider an application kernel-level
power optimization. The library call start power opt() in the figure first col-
lects the needed feature values (F) and then distributes the allocated power
budget to the components based on the obtained statistics. Here, we assume
the library interacts with the system resource manager and receives the total
power budget (Psum), which is given as an environment variable and manually
set in our evaluation. The library call end power opt() indicates the end point
of the kernel, and thus the optimization finishes here. In addition, we acquire
Fprof at this point during a profile run, which can be initiated by the user or
is conducted when there is no profile for the application. On the other hand,
scale/inputs dependent features (Fdy), such as the footprint size (Ffs), need to
be obtained at every execution.

Figure 8 illustrates the workflow of our framework. Before using our power
optimization approach, the offline calibration process is needed to determine the
coefficients (C(P)) in our model. This is conducted only once for a system by
using a set of benchmarks, each of which consists of a kernel and inputs. Then,
we optimize the power cap settings (P) by using C(P) as well as F and Psum

at runtime.
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Fig. 9. Model calibration overview

5.2 Efficient Coefficients Calibration

Figure 9 illustrates how we set the model coefficients appropriately through the
calibration process. The inputs here are a set of power cap combinations (TP) and
a set of benchmarks (TB). Then, we measure the performance (PerfM (P,B))
as well as the feature parameters (F) for each power cap combination and each
benchmark. By using these measured statistics, we identify the coefficients vector
(C(P)) for each power budget setting through the least-square curve fitting
method. Then, we store the obtained coefficients in a file which is utilized at
runtime to estimate the performance (PerfE(P,F)). Note that the definitions
of functions/parameters used here are summarized in Table 2.

We determine all coefficients by only exploring a limited area of the entire
space of all power cap combinations (UP) as examining all possible combinations
for the calibration would be practically infeasible, especially for larger numbers of
power caps and components. More specifically, we just scale the power cap value
of one of the components turn-by-turn, obtain the coefficients for these power
cap settings, and then estimate all coefficients for the entire power combination
space by applying the following simple linear interpolation:

Ci(P) = Ci(Pmax) + {Ci(Pcpu, Pmax
mem1, P

max
mem2, · · · ) − Ci(Pmax)}

+
{
Ci(Pmax

cpu , Pmem1, P
max
mem2, · · · ) − Ci(Pmax)

}
+ · · · (2)

Figure 10 illustrates how our approach improves the calibration efficiency in
terms of the exploration space reduction. Although the brute force based naive

Table 2. Parameters/functions used in our calibration

Symbols Remarks

PerfM (P,B) Measured performance as a function of P and B (benchmark)

PerfE(P,F) Estimated performance using our model: PerfE(P,F) = C(P) · H(F)

TP(⊆ UP) Set of tested power combinations: TP = {P1,P2, · · · }, Pj = (P j
cpu, P j

mem1, · · · )
TB Set of tested benchmarks: TB = {B1,B2, · · · }, Bk = (Kernelk, Inputsk)

UP Set of all the power budget combinations: UP = {(Pcpu, Pmem1, · · · )|∀Px ∈ SPx}
Pmax Maximum power cap settings: Pmax = (Pmax

cpu , Pmax
mem1, · · · ), Pmax

x = max(SPx )
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Fig. 10. Efficient exploration in our calibration Fig. 11. Hill climbing algorithm

exploration examines all the power cap combinations (TP = UP), ours just moves
the space linearly. As a consequence, the number of tested power combinations
is reduced significantly from O(

∏ |SPx
|) to O(

∑ |SPx
|).

5.3 Power Allocation Algorithm

Next, based on the calibrated performance model, we optimize the power allo-
cations for the running job under the given power constraint. As the brut-force
approach searches for the best in the large number of combinations represented
as O(

∏ |SPx
|), which is practically infeasible, especially for larger numbers of

power cap values and components, we alternatively consider an algorithm based
on a hill climbing heuristic. The overview of the algorithm is illustrated in Fig. 11.
We firstly set the power cap of each component at its minimum, and then we
choose one and increase its power cap step-by-step while the total power cap
meets the constraint. In each step, we select the component that improves the
objective function the most with the one-step power cap increment. Although,
the algorithm can finish at a locally optimal point, it does work well for mono-
tonically increasing functions, such as performance, which increases with higher
power cap allocations (Px).

The precise form of our approach is described in Algorithm 1. The algorithm
returns an estimated optimal power allocations vector (P) for the given objective
function, job features, and power constraint (Obj, F, Psum). The Lines 1 to 4
represent the initialization process: setting all power caps to minimums and
sorting the set of power caps of each component in the ascending order. Then,
the main loop follows after this—here, we increase the power caps of components
step-by-step. In the inner-most loop (Line 7 to 13), we increase the power cap of
each component by one step in each turn and register both its ID and the value
of the objective function, if it meets all of the following conditions (Line 10): (1)
the power cap did not reach the maximum in this previous; (2) the objective
function returns the temporal optimum; and (3) the sum of the power caps is
less than or equal to the power constraint. When this inner-most loop finishes,
we decide whether we need to update the power cap combinations (Line 14 to
18). If the objective function value is improved in the above inner-most loop, we
select the registered component and update its power cap by popping the front
one from the associated power cap set; otherwise we just abort here. Finally, at
the Line 20, we return the chosen power cap combinations.
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Algorithm 1: Power allocation algorithm
Input: Obj(P,F),F, Psum // Maximize Obj under the power constraint
Output: P = (Pcpu, Pmem1, · · · ) // Return optimal power cap values
Preset parameters: SPcpu , SPmem1 , · · · // All possible power caps for each component

/* Set each element of P to the minimum */
1 foreach c ∈ {cpu, mem1, ...} do
2 S′

Pc
← SortAscending(SPc );

3 Pc ← PopFront(S′
Pc

); // Take out the minimum power cap

4 end
/* Main loop (go to the best direction step-by-step) */

5 while S′
Pcpu

∪ S′
Pmem1

∪ ... �= φ do

6 bestv ← Obj(P,F); bestc ← Null;
7 foreach c ∈ {cpu, mem1, ...} do

/* Increase the power cap of c by one step */

8 P′ ← P; // Set P’ (= temporal next point) as P (= current)

9 P ′
c ← Front(S′

Pc
); // Update P’ by increasing the power cap of c

/* Existence/improvement/constraint checks */

10 if (P ′
c �= Null) ∧ (Obj(P′,F) > bestv) ∧ (

∑
P ′

x ≤ Psum) then
11 bestv ← Obj(P′,F); bestc ← c; // Update the temporal best
12 end

13 end
14 if bestc �= Null then
15 Pbestc ← PopFront(S′

Pbestc
);// Take out the front element from the power cap

set of bestc and update P

16 else
17 break; // Already reached at an optimal point
18 end

19 end
20 return P;

6 Evaluation Setup

Environment: Our approach is applicable to any system that meets the follow-
ing conditions: (1) the main memory is heterogeneous in terms of capacity and
performance; and (2) component-wise power/performance controls are possible.
In this evaluation, we use the platform summarized in Table 3, which follows the
above conditions. As shown in the table, our main memory consists of DDR4

Table 3. System configurations

Name Remarks

CPU Package Xeon Gold 6154 Processor (Skylake) x2 sockets, 36 cores

Memory System DRAM (Memory 1): DDR4-2666 x12 DIMMs, 12ch, 192 GB,
256GB/s(max), NVRAM (Memory 2): Intel Optane SSD
P4800X x2 cards, 750 GB, 4.8 GB/s (read max), 4.0 GB/s (write
max), Data management: IMDT [14]

OS Cent OS 7.4

Compiler Intel C++/Fortran Compiler 17.0.4, Options: -O3 -qopenmp
-xCORE-AVX512

Power caps[W] Spcpu = {160, 170, · · · , 280}, Spmem1 = {20, 30, · · · , 60},
Spmem2 = {20, 30, 40}
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DRAM and PCIe attached NVRAM (Intel 3D Xpoint Optane [14]). By using
Intel Memory Drive Technology (IMDT) [14], we can use the NVRAM as a part
of the main memory2. More specifically, it works as a virtual machine monitor
dedicated to the data management among the different kinds of memories, and
these memories are used in a hierarchical manner: the DRAM is accessed first,
and if it turns out to be a miss, then data swap happens (at page-level granu-
larity). Note that our approach is applicable/extensible to any other emerging
platforms with hybrid main memories such as 3D stacked DRAM + DIMM-
based DRAM like Knights Landing [16] or DRAM + DIMM-based NVRAM
like DCPMM [15], if they accept component-wise power managements. Only
one thing we need to do to apply our method to them is just calibrating the
model coefficients beforehand (or for finer tuning, adding/optimizing the basis
functions for the target system is one option).

Power Controls: For the power management, we set various power cap values
to the CPU and the DRAM through an interface based on RAPL (Running
Average Power Limit) [13], which are listed in Table 3. Since power capping is
not supported on our NVRAM, we emulate it by limiting the PCIe link speed
(Gen1/2/3). More specifically, the link speed (Genx, x = 1, 2, 3) is selected so
that the NVRAM power cap (Pmem2) fits the following:

Pmem2 = Pdynamic(x) + Pstatic + Pmargin(x) (3)
Pdynamic(x) = Blink(x)/Blink(3) ∗ Pdynamic(3) (4)

The first equation ensures that the power cap value (Pmem2) is dividable into the
dynamic power part (Pdynamic), the static power (Pstatic) and the accordingly
set margin to round up (Pmargin < 10[W]). The second equation ensures that
the dynamic power limit is proportional to its link bandwidth (Blink). We use
this because (1) the link speed limits the memory access frequency, and (2) the
dynamic power consumption is, in principle, equal to the product of the energy
consumption per access and the access frequency. We take Blink(x), Pstatic and
Pdynamic(3) + Pstatic from the official specs and determine the link speed for
a given Pmem2. More specifically, we set the link as Gen1/2/3 for Pmem2 =
20/30/40 [W], respectively.

Methodology: To evaluate our approach, we use the synthetic code
(Streaming) shown in Fig. 2 (Sect. 3.1) as well as several mini applications cho-
sen from the CORAL benchmark suite [25]: AMG, LULESH, MCB and miniFE. For
each application, we regard the main loop as a target kernel. The benchmark set
(TB) used for our calibration process is listed in Table 4; we test various inputs
for each application kernel. Then, by using the obtained coefficients, we optimize
the power allocations for the workloads listed in Table 5. Here, the data footprint
fits within the fast memory (192[GB]) for Small problems, but it does not for
Large problems.

2 Persistent Memory Development Kit (PMDK) also supports an automatic data man-
agement feature and can be used for this purpose [1].
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Table 4. Benchmarks (TB) used for our calibration

(Kernel, Inputs)

(miniFE, I1=“-nx 512 -ny 512 -nz 512”), (miniFE, I2= “ -nx 896 -ny 896 -nz 640”),

(miniFE, I3=“-nx 1024 -ny 512 -nz 512”), (miniFE, I4= “-nx 1024 -ny 768 -nz 640”),

(miniFE, I5=“-nx 1024 -ny 1024 -nz 512”), (miniFE, I6=“-nx 1024 -ny 1024 -nz 640”),

(LULESH, I1=“-s 400”), (LULESH, I2=“-s 450”), (LULESH, I3=“-s 500”),

(LULESH, I4=“-s 550”), (LULESH, I5=“-s 600”), (LULESH, I6=“-s 645”),

(MCB, I1=“–nZonesX=2048 –nZonesY=2048”), (MCB, I2=“–nZonesX=4096

–nZonesY=2048”),

(MCB, I3=“–nZonesX=4096 –nZonesY=3072”), (MCB, I4=“–nZonesX=4096

–nZonesY=4096”),

(MCB, I5=“–nZonesX=5120 –nZonesY=4096”), (MCB, I6=“–nZonesX=6144

–nZonesY=4096”),

(Streaming(AI: 10.7), I1= “N = 16G”), (Streaming(AI: 10.7), I2= “N = 24G”),

(Streaming(AI: 10.7), I3= “N = 32G”), (Streaming(AI: 10.7), I4= “N = 48G”),

(Streaming(AI: 10.7), I5= “N = 64G”), (Streaming(AI: 10.7), I6= “N = 80G”),

(AMG, I1=“-n 512 512 256”), (AMG, I2=“ -n 512 521 512”), (AMG, I3=“-n 640 512 640”),

(AMG, I4=“-n768 768 512”), (AMG, I5=“-n 640 640 640”), (AMG, I6=“-n 1024 640 512”),

(Streaming(AI: 0.167), I1= “N = 16G”), (Streaming(AI: 0.167), I2= “N = 24G”),

(Streaming(AI: 0.167), I3= “N = 32G”), (Streaming(AI: 0.167), I4= “N = 48G”),

(Streaming(AI: 0.167), I5= “N = 64G”), (Streaming(AI: 0.167), I6= “N = 80G”)

Table 5. Problem settings for our power allocation evaluation

Application [Problem]: (Inputs, Footprint Size[GB])

miniFE [Small]: (“-nx 1024 -ny 512 -nz 512”, 129), [Large]: (“-nx 1024
-ny 1024 -nz 640”, 321)

LULESH [Small]: (“-s 400”, 62), [Large]: (“-s 645”, 258)

MCB [Small]: (“–nZonesX= 2048 –nZonesY= 2048”, 57), [Large]:
(“–nZonesX= 5120 –nZonesY= 4096”, 279)

AMG [Small]: (“-n 512 512 512”, 141), [Large]: (“-n 1024 640 512”, 354)

Stream(AI:*) [Small]: (“N = 8G”, 64), [Large]: (“N = 32G”, 256)

Next, Table 6 describes the feature parameters (F) utilized in our evaluation.
On one hand, we measure Fdy at every run, while on the other hand, we collect
Fprof only once for an application, especially with the Small problems shown in
Table 5. By using PAPI [37], we collected these feature parameters3. Note that,
through our preliminary evaluation, we confirmed that all of Fprof , including the
LLC (Last Level Cache) access statistics (Fp3 and Fp4), are almost constant when
we scale the problem sizes from few GiB to few 100 GiB for these applications,
thus we consider them as scale-independent, yet application-specific parameters
in this work.
3 We disable IMDT when collecting Fprof as it prevents us from accessing hardware

counters. But, this is not the case when we use PMDK for the data management.
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Table 6. Feature parameter selections (F = (Fprof ,Fdy))

Types Parameter remarks

Fprof Fp1=(# of FP operations)/(# of instructions),
Fp2 = (# of non FP arithmetic instructions)/(# of instructions),
Fp3 = (# of LLC misses)/(# of instructions),
Fp4 = (# of LLC misses)/(# of LLC accesses),

Fdy Fd1 = (footprint Feature parameter selections size Ffs)/(capacity
of Memory1)

Table 7. Basis function setups (H(F) = (H1(F), H2(F), · · · ))

Function Definitions

H1 = Fp1, H2 = Fp2, H3 = Fp3, H4 = Fp3 ∗ Fd1 H5 = Fp3 ∗ Fp4, H6 = Fp3 ∗ Fp4 ∗ Fd1,
H7 = 1 (constant)

Table 7 shows the list of the basis functions (H(F)) utilized in our evaluation.
By using H1 and H2, we detect the CPU load and how much it affects the power
capping settings. In addition to them, we also consider the traffic on the overall
hybrid memory system and how each of them are accessed by using the functions
H3, H4, H5, and H6. Because Fp3 is equal to the frequency of accesses to the
memory system, H3 indicates how heavily it is used. In addition, we utilize Fp4

and/or Fd1 for H4, H5 and H6 due to the following reasons: (1) because the
LLC hit rate Fp4 is sensitive to the memory access pattern, we can use it to
cover this aspect; (2) to take problem scale into account, we further utilize Fd1

here as well. These parameters are multiplied by Fp3 as the impacts of access-
pattern/problem-scale on performance depend on the access frequency, and we
thus take the correlation of these parameters into consideration.

Although this selection of parameters and the function settings are effective,
as shown in the next section, it may be possible to further improve the accuracy
by consider additional aspects. For instance, adding other memory-access related
parameters, such as working-set size, could be a good option for workloads with
more complicated inputs. We can provide such an extensibility in a straightfor-
ward manner by making the model parameters/terms modifiable by users and
then making them available to the other parts of the framework, like calibration
and power allocation.

7 Experimental Results

In Figs. 12 and 13, we compare performance/power-efficiency across methods
using different problem sizes. Here, we set Psum to 300[W] and utilize
Perf()/PowEff() as the objective function in our approach through the mea-
surements of Figs. 12 and 13. The vertical axis indicates relative performance or
power-efficiency, normalized to the optimal power cap combinations that max-
imize the given objective function. The Worst combination is chosen from the
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Fig. 12. Performance comparisons at Psum = 300[W] for different problem sizes (U:
Small, D: Large)—the objective function for our approach is Perf()

Fig. 13. Power-efficiency comparisons at Psum = 300[W] for different problem sizes
(U: Small, D: Large)—the objective function for our approach is PowEff()

settings that meet
∑

Px = Psum or
∑

Px ≤ Psum in Fig. 12 or Fig. 13 so that the
objective function is minimized4. GeometricMean indicates the geometric mean
of performance or power efficiency across all workloads for each method. Over-
all, our approach achieves near optimal performance/power-efficiency: on aver-
age, our approach keeps 93.7%/96.2% or 92.3%/95.4% of performance/power-
efficiency compared to the optimal for Small or Large problems. Note that these
numbers are quite important as we consider the situation where the power sched-
uler distributes power budgets to the nodes, and each node needs to optimize the
power allocations to the components while keeping the given power constraint,
which is regarded as common in future power-constrained supercomputers.

Then, we scale the total power budget (Psum) and observe performance
and power efficiency for all the above methods. In Fig. 14, we summarize the

4 If we choose the worst of {∀P| ∑Px ≤ Psum} for the performance evaluation, it will
always mean setting all power caps to the minimum. Therefore, we set the constraint
as

∑
Px = Psum for Worst in the performance evaluation.
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Fig. 14. Performance (U) and Power efficiency (D) as functions of the node power
constraint for different problem sizes

experimental result using the geometric mean of performance/power-efficiency
across all workloads. In the graphs, the X-axis indicates the node power con-
straint (Psum), while the Y-axis shows relative performance or power efficiency
normalized to the maximum power cap setting (P = Pmax). As shown in the
figures, our approach is very close to the optimal regardless of the problem size,
the objective function, or the total power budget.

Next, we demonstrate how our approach distributes the given power budget
(Psum) depending on several aspects by using miniFE as an example. Figure 15
illustrates the breakdowns of power allocations in accordance to the given power
constraint (Psum) as well as the objective function for different problem sizes
(Small/Large). The horizontal axis represents the power constraint (Psum),
while the vertical axis indicates the breakdown or relative performance/power-
efficiency normalized to P = Pmax. Note that the performance or power-
efficiency curves in the figures are the estimated values provided by our model,
and the allocations are based on them.

According to the figures, even for the same application, the power alloca-
tion decisions can change considerably depending on the objective function as
well as the problem settings. For Small, our method initially allocates power to
the memory system side and then shifts to the CPU side until reaching 340[W]
to maximize performance (upper left figure). However, when the problem size
is scaled, the CPU and the first memory need less power. This is because the
second memory becomes the significant bottleneck, and allocating more power
to the others does not help with improving performance (upper right figure).
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Fig. 15. Power cap settings determined by our approach for miniFE

Fig. 16. Comparison of measured (left) and estimated (right) performance for different
Pcpu (Pmem1 = Pmax

mem1 = 60[W ], Pmem2 = Pmax
mem2 = 40[W ])
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As for the power efficiency (lower figures), our approach stops the power alloca-
tions earlier because it requires large enough performance gain that is worthwhile
putting additional power. For most of the evaluated workloads, we also observe
the exact same situation: the given power budget cannot be fully used, especially
when the problem size is scaled. We regard this as an opportunity to improve
the whole system efficiency (e.g., by returning such extra power budget to the
system manager and allocating it to other jobs).

Further, in Fig. 16, 17, and 18, we demonstrate the model calibration result
using the workloads described in Table 4. For each graph, the horizontal axis
indicates the power capping value set at each component, while the vertical axis
represents relative performance which is normalized to that at best—namely,
setting P at Pmax. Each legend is associated with the problem (or inputs) set-
tings shown in Table 4. Here, we applied the method of least squares using sets
of relative performance and feature parameters brought by the workloads. Over-
all, our approach successfully captures the characteristics of these applications
including the footprint size dependency, and the estimated result is close to the
measured performance for almost all the cases (the average error is only 6.00%).

Finally, we measured the time overhead of our approach, which turned out
to be negligible. More specifically, it took only around 200µs, 1µs, and 80µs for

Fig. 17. Comparison of measured (left) and estimated (right) performance for different
Pmem1 (Pcpu = Pmax

cpu = 280[W ], Pmem2 = Pmax
mem2 = 40[W ])
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Fig. 18. Comparison of measured (left) and estimated (right) performance for different
Pmem2 (Pcpu = Pmax

cpu = 280[W ], Pmem1 = Pmax
mem1 = 60[W ])

accessing feature parameters through PAPI, conducting our decision algorithm
(completed at P = Pmax), and setting a power cap through RAPL, respectively.

8 Conclusions

In this article, we firstly focused on the bottleneck shifting phenomenon
when scaling the problem size on a real system that consists of a hybrid
main memory. Based on this observation, we introduced the concept of
footprint-aware power capping (or FPCAP) and demonstrated its potential ben-
efit using various HPC benchmark applications. Motivated by this preliminary
result, we defined the problem, formulated a solution and provided a software
framework to realize our concept. Finally, we quantified the effectiveness of
our approach, which showed that it achieves near optimal performance/power-
efficiency.

As a next-step, we will evaluate our approach using more complicated real-
world applications and show the effectiveness with them. Another direction will
be the coordination between our framework and a power scheduler to optimize
both intra- and inter-node power budget settings at the same time. We expect
that this will have a significant impact on full system energy efficiency, as the
power budget to a node is prone to be under-utilized when the footprint size
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is large. Consequently, sending this as feedback to the power scheduler will help
whole system performance/energy-efficiency under the total power constraint.
Another promising direction is an extension of our work to cover other kinds
of systems (e.g., CPU + GPU/FPGA + hybrid memory) or other application
areas, such as data analytics or machine learning using various types of hybrid
memories. Although we may have to update the parameters/terms of the regres-
sion model, the concept of FPCAP and the approaches used in our framework
will carry forward and improve system efficiency.
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Abstract. Autotuning (AT) is a promising concept to minimize the
often tedious manual effort of optimizing scientific applications for a spe-
cific target platform. Ideally, an AT approach can reliably identify the
most efficient implementation variant(s) for a new platform or new char-
acteristics of the input by applying suitable program transformations and
analytic models. In this work, we introduce Offsite, an offline AT app-
roach that automates this selection process at installation time by rating
implementation variants based on an analytic performance model with-
out requiring time-consuming runtime tests. From abstract multilevel
description languages, Offsite automatically derives optimized, platform-
specific and problem-specific code of possible variants and applies the
performance model to these variants.

We apply Offsite to parallel numerical methods for ordinary differen-
tial equations (ODEs). In particular, we investigate tuning a specific class
of explicit ODE solvers, PIRK methods, for four different initial value
problems (IVPs) on three different shared-memory systems. Our exper-
iments demonstrate that Offsite can reliably identify the set of most effi-
cient implementation variants for different given test configurations (ODE
solver, IVP, platform) and effectively handle important AT scenarios.

Keywords: Autotuning · Performance modeling · Description
language · ODE methods · ECM performance model · Shared-memory

1 Introduction

The performance of scientific applications strongly depends on the character-
istics of the targeted computing platform, such as, e.g., the processor design,
the core topology, the cache architectures, the memory latency or the memory
bandwidth. Facing the growing diversity and complexity of today’s computing
landscape, the task of writing and maintaining highly efficient application code
is getting more and more cumbersome for software developers. A highly opti-
mized implementation variant on one target platform, might, however, perform
poorly on another platform. That particular poorly performant implementation
variant, though, could again potentially outperform all other variants on the
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next platform. Hence, in order to achieve a high efficiency and obtain optimal
performance when migrating an existing scientific application, developers need
to tune and adapt the application code for each specific platform anew.

1.1 Related Work

A promising concept to avoid this time-consuming, manual effort is autotun-
ing (AT), and many different approaches have been proposed to automatically
tune software [2]. AT is based on two core concepts: (i) the generation of opti-
mized implementation variants based on program transformation and optimiza-
tion techniques and (ii) the selection of the most efficient variant(s) on the target
platform from the set of generated variants. In general, there are (i) offline and
(ii) online AT techniques. Offline AT tries to select the supposedly most effi-
cient variant at installation time without actual knowledge of the input data.
Such approaches are applicable for use-cases, whose execution behavior does not
depend on the input data. This is the case, e.g., for dense linear algebra prob-
lems, which can, i.a., be tuned offline with ATLAS [23], PATUS [6] and PhiPAC
[4]. In other fields, such as sparse linear algebra or particle codes, characteristics
of the input data heavily influence the execution behavior. By choosing the best
variant at runtime—when all input is known—, online AT approaches such as
Active Harmony [22], ATF [17] and Periscope [9] incorporate these influences.

Selecting a suitable implementation variant from a potentially large set of
available variants in a time-efficient manner is a big challenge in AT. Various
techniques and search strategies have been proposed in previous works to meet
this challenge [2]. A straightforward approach is the time-consuming comparison
of variants by runtime tests, possibly steered by a single search strategy, such as
an exhaustive search or more sophisticated mathematical optimization methods
like differential evolution [7] or genetic algorithms [25] or a combination of mul-
tiple search strategies [1]. [16] proposes a hierarchical approach that allows the
use of individual search algorithms for dependent subspaces of the search space.

As an alternative to runtime tests, analytic performance models can be
applied to either select the most efficient variant or to reduce the number of
tests required by filtering out inefficient variants beforehand. In general, two cate-
gories of performance models are distinguished: (i) black box models applying
statistical methods and machine learning techniques to observed performance
data like hardware metrics or measured runtimes in order to learn to predict
performance behavior [15,20], and (ii) white box models such as the Roofline
model [8,24] or the ECM performance model [12,21] that describe the interac-
tion of hardware and code using simplified machine models. For loop kernels, the
Roofline and the ECM model can be constructed with the Kerncraft tool [11].
Kerncraft is based on static code analysis and determines ECM contributions
from application (assembly; data transfers) and machine information (in-core
port model; instruction throughput).
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1.2 Main Contributions

In this work, we propose Offsite, an offline AT approach that automatically
identifies the most efficient implementation variant(s) during installation time
based on performance predictions. These predictions stem from an analytic per-
formance prediction methodology for explicit ODE methods proposed by [19]
that uses a combined white and black box model approach based on the ECM
model. The main contributions of this paper are:

(i) We develop a novel offline AT approach for shared-memory systems based
on performance modelling. This approach automates the task of generating the
pool of possible implementation variants using abstract description languages.
For all these variants, our approach can automatically predict their performance
and identify the best variant(s). Further, we integrated a database interface for
collected performance data which enables the reusability of data and which
allows to include feedback from possible online AT or actual program runs.
(ii) We show how to apply Offsite to an algorithm from numerical analysis with
complex runtime behavior: the parallel solution of IVPs of ODEs.
(iii) We validate the accuracy and efficiency of Offsite for different test config-
urations and discuss its applicability to four different AT scenarios.

1.3 Outline

Section 2 details the selected example use-case (PIRK methods) and the cor-
responding testbed. Based on this use-case, Offsite is described in Sect. 3. In
Sect. 4, we experimentally evaluate Offsite in four different AT scenarios and on
three different target platforms. Section 5 discusses possible future extensions of
Offsite and Sect. 6 concludes the paper.

2 Use-Case and Experimental Test Bed

Use-Case: PIRK Methods

As example use-case, we study parallel iterated Runge–Kutta (PIRK) meth-
ods [13], which are part of the general class of explicit ODE methods, and solve
an ODE system y′(t) = r(t,y(t)), y(t0) = y0, y ∈ R

n by performing a series of
time steps until the end of the integration interval is reached. In each time step,
a new numerical approximation yκ+1 for the unknown solution y is determined
by an explicit predictor–corrector process in a fixed number of sub steps.

PIRK methods are an excellent candidate class for AT. Their complex four-
dimensional loop structure (Listing 1) can be modified by loop transformations
resulting in a large pool of possible implementation variants whose performance
behavior potentially varies highly depending on: (i) the composition of computa-
tions and memory accesses, (ii) the number of stages of the base ODE method,
(iii) the characteristics of the ODE system solved, (iv) the target hardware, (v)
the compiler and the compiler flags, and (vi) the number of threads started.
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1 for l ← 1, . . . , s do Y
(0)
l ← yκ

2 for k ← 1, . . . ,m do

3 for l ← 1, . . . , s do

4 Y
(k)
l ← yκ + hκ

∑s
i=1 aliF

(k−1)
i with F

(k−1)
i ← r(tκ + cihκ,Y

(k−1)
i )

5 yκ+1 ← yκ + hκ

∑s
i=1 biF

(m)
i

Listing 1. Time step function of a PIRK method.

Table 1. Characteristics of the test set of IVPs.

IVP Cusp IC Medakzo Wave1D

Acces distancea Unlimited Limited Unlimited Limited

Computational behavior Mixed Compute-bound Mixed Memory-bound
a In practice, many IVPs are sparse, i.e. only access few components of Y when
evaluating function r (line 4, Listing 1). A special case of sparse is limited access
distance d(r), where rj only accesses components yj−d(r) to yj+d(r).

Test Set of Initial Value Problems

In our experiments, we consider a broad set of IVPs (Table 1) that exhibit dif-
ferent characteristics: (i) Cusp combines Zeeman’s cusp catastrophe model for
a threshold-nerve-impulse mechanism with the van der Pol oscillator [10], (ii)
IC describes a traversing signal through a chain of N concatenated inverters [3],
(iii) Medakzo describes the penetration of radio-labeled antibodies into a tis-
sue infected by a tumor [14], and (iv) Wave1D describes the propagation of
disturbances at a fixed speed in one direction [5].

Test Set of Target Platforms

We conducted our experiments on three different shared-memory systems
(Table 2). For all experiments, the CPU clock was fixed, hyper-threading dis-
abled and thread binding set with KMP AFFINITY=granularity=fine,compact.
All codes were compiled with the Intel C compiler and flags -O3, -xAVX and
-fno-alias set.
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Fig. 1. Workflow of the Offsite autotuning approach.
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Table 2. Characteristics of the test set of target platforms.

Name HSW IVB SKY

Micro-architecture Haswell EP Ivy-Bridge EP Skylake SP

CPU Xeon E5-2630 v3 Xeon E5-2660 v2 Xeon Gold 6148

De-facto frequency 2.3 GHz 2.2 GHz 1.76 GHz

Cores 8 10 20

L1 cache (data) 32 kB 32 kB 32 kB

L2 cache 256 kB 256 kB 1MB

L3 cache (shared) 20MB 25 MB 27.5 MB

Cache line size 64B 64 B 64B

Measured memory bandwidth

Load only 50GB/s 47 GB/s 118GB/s

FLOPs per cycle (double precision)

ADD/FMA/MUL 4/8/4 4/-/4 16/32/16

Compiler icc 19.0.5 icc 19.0.4 icc 19.0.2

3 Offsite Autotuning Approach

In this work, we introduce the Offsite offline AT approach on the example of
explicit ODE methods. Before starting a new Offsite run, the tuning scenario
desired, which consists of: (i) the pool of possible implementations and program
transformations, (ii) the ODE base method(s), (iii) the IVP(s), and (iv) the
target platform, is defined using description languages in the YAML standard1.

From its input data, Offsite automatically handles the whole tuning workflow
(Fig. 1). First, Offsite generates optimized, platform-specific and problem-specific
code for all kernels and derives all possible implementation variants. Applying
an analytic performance prediction methodology, the performance of each kernel
is predicted for either (i) a fixed ODE system size n—if specified by the user or
prescribed by the ODE2—or (ii) a set of relevant ODE system sizes determined
by a working set model. The performance of a variant is derived by combin-
ing the predictions of its kernels and adding an estimate of its synchronization
costs. Variants are ranked by their performance to identify the most efficient
variant(s). All obtained prediction and ranking data are stored in a database.
For the best ranked variants, Offsite generates optimized, platform-specific and
problem-specific code.

3.1 Input Description Languages

A decisive, yet cumbersome step in AT is generating optimized code. Often, there
is a large pool of possible implementation variants, applicable program transfor-
mations (e.g. loop transformations) and tunable parameters (e.g. tile sizes) avail-
able. Furthermore, exploiting characteristics of the input data can enable more
1 YAML is a data serialization language; https://yaml.org.
2 There are scalable ODE systems but also ODEs with a fixed size [10].

https://yaml.org
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optimizations (e.g. constant propagation). Writing all variants by hand, how-
ever, would be tedious and error-prone and there is demand for automation. In
this work, we introduce multilevel description languages to describe implementa-
tions, ODE methods, IVPs and target platforms in an abstract way. Offsite can
interpret these languages and automatically derives optimized code.

1 stages: 4
2 order: 7
3 corrector_steps: 6
4 A: [["0.1130", "-0.0403", "0.0258",

"-0.0099"], ..., [...]]
5 b: ["0.2205", ...]
6 c: ["0.1130 - 0.0403 + 0.0258 -

0.0099", ...]

Listing 2. ODE method description
format on the example of Radau
IIA(7).

1 components:
2 first: 1
3 size: n-1
4 code: |
5 (((U_op - %in[j]) * R - (eta * ((%in[j-1] -

U_th) * (%in[j-1] - U_th) - (%in[j
-1] - %in[j] - U_th) * (%in[j-1] - %
in[j] - U_th)))) / C);

6 constants:
7 - double R = 1.0
8 - ...

Listing 3. IVP description format on the
example of InverterChain.

The Base ODE Method of a PIRK method is characterized by its Butcher
table—i.e., coefficient matrix A, weight vector b, node vector c—and a small set
of properties: (i) number of stages s, (ii) order o, (iii) number of corrector steps
m. Exploiting these properties, however, can have a large impact on the efficiency
of an implementation variant and should be included into the code generation
in order to obtain the most efficient code. The i-loop in Listing 4, e.g., might
be replaceable by a single vector operation for specific s, or zero entries in the
Butcher table might allow to save computations.

Listing 2 shows the ODE method description format on the example of Radau
IIA(7) which is a four-stage method with order seven applying six corrector steps
per time step. To save space, only an excerpt of the Butcher table is shown with
a reduced number of digits.

IVPs are described in the IVP description format shown by IC (Listing 3):

(i) components describes the n components of the IVP. Each component
contains a code YAML block that describes how function evaluation r(tκ +
cihκ,Y(k−1)

i ) (l. 4, Listing 1) will be substituted during code generation whereby
%in is a placeholder for the used input vector Y(k−1)

i . Adjacent components
that execute the same computation can be described by a single block whereby
first denotes the first component and size specifies the total number of adja-
cent components handled by that particular block.
(ii) constants defines IVP-specific parameters replaced with their actual values
during code generation and might possibly enable further code optimizations.
In IVP IC, e.g., a multiplication could be saved if electrical resistance R equals
1.0.
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Target Platform and Compiler are described using the machine description
format introduced by Kerncraft3. Its general structure is tripartite: (i) the exe-
cution architecture description, (ii) the cache and memory hierarchy description,
and (iii) benchmark results of typical streaming kernels.

Implementation Variants of numerical algorithms are abstracted by descrip-
tion languages as (i) kernel templates and (ii) implementation skeletons.

Kernel Templates define basic computation kernels and possible variations of this
kernel enabled by program transformations that preserve semantic correctness.
Listing 4 shows the kernel template description format on the example of APRX,
which covers computation

∑s
i=1 biF

(m)
i (l. 5, Listing 1):

(i) datastructs defines required data structures.
(ii) computations describes the computations covered by a kernel template.
Each computation corresponds to a single line of code and has an unique iden-
tifier (e.g. C1 in Listing 4). Computations can contain IVP evaluations which
are marked by keyword %RHS and are replaced by an IVP component during
code generation (e.g. for IC by line 5 of Listing 3). Hence, if a kernel template
contains %RHS, a separate, specialized kernel version has to be generated for
each IVP component.
(iii) variants contains possible kernels of a kernel template enabled by pro-
gram transformations. For each kernel, its workings sets (working sets) and
its program code (code) are specified. The code block defines the order of com-
putations and the program transformations applied using four different key-
words. Computations are specified by keyword %COMP whose parameter must
correspond to one of the identifiers defined in the computations block (e.g.
C1 in Listing 4). For-loop statements are defined by keywords %LOOP START
and %LOOP END. The first parameter of %LOOP START specifies the loop vari-
able name, the second parameter defines the number of loop iterations, and
an optional third parameter unroll indicates that the loop will be unrolled
during code generation. In addition, loop-specific pragmas can be added using
keyword %PRAGMA.

Implementation Skeletons define processing orders of kernel templates and
required communication points. From skeletons, concrete implementation vari-
ants are derived by replacing its templates with concrete kernel code. Listing 6
shows the implementation skeleton description format on the example of skeleton
A which is a realization of a PIRK method (Listing 1) that focuses on parallelism
across the ODE system, i.e its n equations are distributed blockwise among the
threads. A contains a loop k over the m corrector steps dividing each corrector
step into two templates: RHS computes the IVP function evaluations (l. 5, List-
ing 1) which are then used to compute the linear combinations (l. 4, Listing 1)
in LC. Per corrector step, two synchronizations are needed as RHS—depending

3 For example files, we refer to https://github.com/RRZE-HPC/kerncraft.

https://github.com/RRZE-HPC/kerncraft
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on the IVP solved—can potentially require all components of the linear com-
binations from the last iteration of k. After all corrector steps are computed,
the next approximation yκ+1 is calculated by templates APRX and UPD (l. 6,
Listing 1). Four keywords suffice to specify skeletons:

(i) %LOOP START and %LOOP END define for-loops.
(ii) %COM states communication operations of an implementation skeleton. Skele-
ton A, e.g., requires 2m + 2 barrier synchronizations.
(iii) %KERNEL specifies an executed kernel template. Its parameter must cor-
respond to the name of an available kernel template. During code generation
%KERNEL will be replaced by actual kernel code (e.g. APRX in Listing 7).

1 datastructs:
2 - double b[s]
3 - double F[s][n]
4 - double dy[n]
5 computations:
6 C1: dy[j]=dy[j]+b[i]*F[i][j]
7 variants:
8 - name: APRX_ij
9 code: |

10 %PRAGMA nounroll_and_jam
11 %LOOP_START i s
12 %LOOP_START j n
13 %COMP C1
14 %LOOP_END j
15 %LOOP_END i
16 working sets: {"(s+1)*n+s","2*n"}
17 - name: APRX_ji
18 code: |
19 %LOOP_START j n
20 %LOOP_START i s unroll
21 %COMP C1
22 %LOOP_END i
23 %LOOP_END j
24 working sets: {"(s+1)*n+s"}

Listing 4. Kernel template description
YAML on the example of APRX.

1 double F[4][161]; // s=4; n=161
2 double dy[161]; // n=161
3 for(int j=0; j<161; ++j) { // unrolled i

; replaced b[i]; n=161
4 dy[0] += 0.2205 * F[0][j];
5 dy[1] += 0.3882 * F[1][j];
6 dy[2] += 0.3288 * F[2][j];
7 dy[3] += 0.0625 * F[3][j];
8 }

Listing 5. Code generated for kernel
APRX ji of kernel template APRX
when specialized in Radau IIA(7) and
n = 161.

1 code: |
2 %COM omp_barrier
3 %LOOP_START k m
4 %KERNEL RHS
5 %COM omp_barrier
6 %KERNEL LC
7 %COM omp_barrier
8 %LOOP_END k
9 %KERNEL RHS

10 %COM omp_barrier
11 %KERNEL APRX
12 %KERNEL UPD

Listing 6. Implementation skeleton
description format on the example of
A.

1 void timestep(...) {
2 #omp barrier
3 for(k=0; k<6; ++k) { // m=6
4 // Code for template RHS
5 #omp barrier
6 // Code for template LC
7 #omp barrier
8 }
9 #omp barrier

10 // Code for template RHS
11 // Kernel APRX
12 for(int j=0; j<161; ++j) { //

unrolled i; replaced b[i]; n=161
13 dy[0] += 0.2205 * F[0][j];
14 dy[1] += 0.3882 * F[1][j];
15 dy[2] += 0.3288 * F[2][j];
16 dy[3] += 0.0625 * F[3][j];
17 }
18 // Code for template UPD
19 }

Listing 7. Code generated for a
variant of impl. skeleton A using kernel
APRX ji specialized in Radau IIA(7),
n = 161.

3.2 Rating Implementation Variant Performance

Offsite can automatically identify the most efficient implementation variant(s)
from a pool of available variants using analytic performance modelling (Fig. 1):
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(i) In a first step, Offsite automatically generates code for all kernels in a special
code format processable by kerncraft4. Kernel code generation (Kernel Code
Generation in Fig. 1) includes specializations of the code on the target platform,
IVP, ODE method and (if fixed) ODE system size n. Listing 5 exemplary shows
the code generated for kernel APRX ji of kernel template APRX (Listing 4)
when specialized in ODE method Radau IIA(7) and n = 161. As specified in
the template description, the j loop is unrolled completely. Further, Butcher
table coefficients (b) and known constants (s = 4, n = 161) are substituted.
(ii) In some tuning scenarios, the ODE system size n is not yet known during
installation time. Giving predictions for all valid n values, however, is in general
not feasible. By applying a working set model (Sect. 3.4), Offsite automatically
determines for each kernel a set of relevant n (Kernel Working Sets, Fig. 1) for
which predictions are then obtained in the next step.
(iii) Offsite automatically computes node-level runtime predictions (Sect. 3.3)
for each implementation variant (Impl. Variant Prediction, Fig. 1) by adding
up the kernel predictions of its kernels and adding an estimate of its communi-
cation costs (Communication Cost Benchmarks, Fig. 1), which Offsite derives
from benchmark data. For each of the kernel codes generated in step (i), its
kernel prediction is automatically derived by Offsite (Kernel Prediction, Fig. 1)
whereby Kerncraft is used to construct the ECM model.
(iv) Using these node-level runtime predictions, Offsite ranks implementation
variants by their performance (Impl. Variant Ranking, Fig. 1).
(v) From the ranking of implementation variants, Offsite automatically derives
the subset Λ of the best rated variant(s) which contains all variants λ whose
performance is within a user-provided maximum deviation from the best rated
variant. For each variant of λ, Offsite generates optimized, platform-specific
and problem-specific code (Impl. Variant Code Generation, Fig. 1). Listing 7
shows an excerpt of the code generated for a variant of implementation skele-
ton A which substitutes kernel template APRX with kernel APRX ji and was
specialized in ODE method Radau IIA(7), IVP IC and n = 161.

3.3 Performance Prediction Methodology

The performance prediction methodology applied by Offsite expands [19] and
comprises: (i) a node-level runtime prediction of an implementation variant and
(ii) an estimate of its intra-node communication costs.

Node-Level Runtime Prediction. Base of the node-level prediction is the
analytic ECM (Execution-Cache-Memory) performance model. For an in-depth
explanation, we refer to [12,21]. The ECM model gives an estimation of the
number of CPU cycles per cache line (CL) required to execute a particular loop
kernel on a multi- or many-core chip which includes contributions from the in-

4 In this work, version 0.8.3 of the Kerncraft tool was used.
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core execution time Tcore and the data transfer time Tdata:

Tcore = max(TOL, TnOL) , (1)

TL3
data = T data

L1L2 + T data
L2L3 + T p

L2L3 . (2)

Tcore is defined as the time required to retire the instructions of a single loop
iteration under the assumptions that (i) there are no loop-carried dependen-
cies, (ii) all data are in the L1 data cache, (iii) all instructions are scheduled
independently to the ports of the units, and (iv) the time to retire arithmetic
instructions and load/store operations can overlap due to speculative execution
depending on the target platform. Hence, the unit that takes the longest to retire
its instructions determines Tcore. T level

data factors in the time required to transfer
all data from its current location in the memory hierarchy to the L1 data cache
and back. The single contributions of transfers between levels i and j of the
memory hierarchy T data

ij are determined depending on the amount of transferred
CLs. Depending on the platform used, an optional latency penalty T p

ij might
be added. In (2) T level

data is exemplarily shown for data coming from the L3 cache
under the assumption that a latency penalty between L2 and L3 cache has to
be factored in on the platform used. Combining all contributions, a single-core
prediction

T level
ECM = max(TOL, TnOL + T level

data ) (3)

can be derived, whereby the overlapping capabilities of the target platform deter-
mine whether a contribution is considered overlapping or non-overlapping. Off-
site obtains ECM model predictions (3) for all kernels λ using Kerncraft. For
each kernel, kernel runtime prediction

φλ = αλ · βλ · δ−1 · f−1 (4)

yields the runtime in seconds of kernel λ, where αλ is (3) computed for a specific
number of running cores τ , βλ is the number of loop iterations executed, δ is
the number of data elements fitting into one CL and f is the CPU frequency.
By summing up the individual kernel runtime predictions φλ of its basic kernels
λ and adding an estimate of its communication costs tcom (in seconds), the
node-level runtime prediction θε of an implementation variant ε is given by:

θε =
∑

λ

φλ + tcom . (5)

Remark: [19] used an older Kerncraft version that could not yet return ECM
predictions for multiple core counts τ with a single run, but further returned
the kernel’s saturation point σλ. Hence, [19] used an extra factor min(τ, σλ)−1

in (4).

Estimate of Intra-node Communication Costs. The costs of the occurring
intra-node communication (tcom) depend on the number of communication oper-
ations executed. The implementation variants considered in this work, solely use
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OpenMP barrier operations to synchronize threads. Offsite automatically bench-
marks the costs of the OpenMP barrier operations depending on the number of
threads and stores the obtained data in its database for future runs.

Remark: Since this works serves as an introduction to Offsite, we focus on
OpenMP-only implementations. The general workflow, however, is also appli-
cable to other communication schemes (e.g. MPI-only or hybrid OpenMP-
MPI)—granted suitable benchmarks exist for all communication operations—as
tcom only influences (5). The applicability of the performance prediction method-
ology to hybrid OpenMP-MPI implementations on cluster systems was shown
in [18].

Reusability of Performance Predictions. Its database enables Offsite to
reuse prediction and ranking data in future Offsite runs. Prediction data (e.g.
kernel runtime predictions) collected for a specific implementation variant can
be reused to estimate other variants (if they share the kernel) or to estimate
other IVPs (if the kernel contains no IVP evaluations). In the context of AT,
this is a decisive advantage compared to runtime testing which would require
to also run each further added variant or (when switching the IVP) to run all
variants anew.

3.4 Working Set Model

If the ODE system size n is not fixed—either by the user or restrictions of the
IVP—selecting the most efficient implementation variant(s) at installation time
leads to an exhaustive search over the possibly vast space of values for n. To
minimize the number of predictions required per kernel, the set of estimated n
values is reduced by a model-based restriction, the working set of the kernel,
which corresponds to the amount of data referenced by a kernel.

We use the working sets to identify for each kernel the maximum n that still
fit into the single cache levels. Using these maximums, ranges of consecutive n
values for which the ECM prediction (3) stays constant5 can be derived. The
medium values of these ranges form the working set of the kernel.

4 Experimental Evaluation

We validate Offsite using the experimental test bed introduced in Sect. 2. In
particular, we study the efficiency of Offsite in four AT scenarios when tuning
four different IVPs on three different target platforms and compare the ideal
case and four AT strategies:

5 The ECM prediction factors in the location of data in the memory hierarchy. As a
simplified assumption—neglecting overlapping effects at cache borders—, this means
that as long as data locations do not change, the ECM model yields the same value
for a kernel independent from the actual n.
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(i) BestVariant covers the case that the most efficient implementation variant
is already known (e.g. from previous execution) and no AT is required.

(ii) RunAll runs all variants in order to identify the most efficient variant.
(iii) OffsitePreselect5 (OffPre5 ) runs an Offsite determined subset of all variants,

which contains all variants withing a 5% deviation of the best ranked variant,
to identify the most efficient variant of that subset.

(iv) OffsitePreselect10 (OffPre10 ) allows a bigger deviation (10%) than OffPre5
and, thus, potentially also runs more variants6. While potentially leading to
more tuning overhead, OffPre10 might be able to identify the best variant
for applications for which predictions are inaccurate and OffPre5 fails.

(v) RandomSelect randomly runs 20 of the total 56 variants.

4.1 Derived Implementation Variants

Table 3 summarizes the implementation skeletons and kernel templates used in
this work. In total, we consider eight skeletons from which 56 implementation
variants can be derived. Each table row shows the templates required by a par-
ticular skeleton. E.g., skeleton A (Listing 6) uses templates LC, RHS, APRX
and UPD. Twelve different variants can be derived from A as there are six dif-
ferent kernels of LC (enabled by loop interchanges, unrolls, pragmas) and two
of APRX.

Table 3. Overview of the implementation variants considered.

Kernel Templatea

(#Kernels)
Implementation Skeleton

A (12) B (12) C (2) D (2) E (2) F (2) G (12) H (12)

LC (6) × × × ×
RHS* (1) × × × ×
RHSLC* (1) × × × ×
APRX (2) × ×
RHSAPRX* (2) × ×
UPD (1) × × × ×
APRXUPD (2) × ×
RHSAPRXUPD* (2) × ×
a A kernel template marked with * contains evaluations of the IVP.

In total, 17 different kernels can be derived from the eight kernel templates
available. To predict the performance of all 56 variants, only these 17 kernels
have to be estimated. Further, when obtaining predictions off all 56 variants for
a different IVP, only those four templates that contain IVP evaluations—and
thus their six corresponding kernels—need to be re-evaluated, while prediction
data of the remaining kernels can be retrieved from database.
6 Step-up time is the same for OffPre5 and OffPre10 as determining their set of

considered variants is carried out by the same single database operation.
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4.2 At Scenario – All Input Known

As first test scenario, we consider the case that all input is known at installation
time, in particular the ODE system size n. In such cases, Offsite is applied with-
out the working set model. Performance predictions, however, are only obtained
for that particular n and a new Offsite run would be required if n changes.

Table 4 compares the accuracy and efficiency of the single AT strategies when
tuning four different IVPs on three different target platforms for n = 36,000,000
and ODE method Radau IIA(7). For Offsite strategies OffPre5 and OffPre10,
tstep yields the time in seconds it takes to execute a time step using the measured
best implementation variant from the subset Λ of variants λ tested by that strat-
egy. Performance loss denotes the percent runtime deviation of that particular
measured best variant from the variant selected by BestVariant (tbest). Ideally,
an AT strategy correctly identifies the measured best variant and, thus, would
suffer no performance loss. For an AT strategy, |Λ| yields the cardinality of sub-
set Λ and the percent tuning overhead of applying that strategy is defined as
ttune−|Λ|tbest

|Λ|tbest
· 100 where ttune =

∑
λ∈Λ tλ is the time required to test all variants

and |Λ|tbest is the time needed to execute the measured best variant instead.

Haswell. AT strategy RunAll causes a significant tuning overhead for all IVPs,
while OffPre5 and OffPre10 only lead to marginal overhead as the subset of
tested variants is considerably smaller, while still being able to select the mea-
sured best variant for all IVPs but Wave1D.

IvyBridge. Again, RunAll leads to decisive overhead compared to either of the
two Offsite strategies and the measured best variant is correctly identified for
all IVPs. However, for IVP IC only OffPre10 finds the best variant. As IC is
compute-bound (Table 1), the IVP evaluation dominates the computation time
while the order of the remaining computations has only minor impact. Hence,
already minor jitter can lead to a different variant being selected.

Skylake. Similar observations as on the two previous systems can be made on
Skylake. The overhead of both Offsite strategies is marginal compared to RunAll.
For all IVPs, the measured best variant is successfully identified.
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Table 4. Comparison of different AT strategies applied to four different IVPs with
n = 36,000,000 and Radau IIA(7).

IVP Cusp IC Medakzo Wave1D

Haswell BestVariant F *ji F *ij F *ji H LCjli *ij

(8 cores) BestVariant tstep[s] 1.28 0.80 1.29 1.04

AT strategy – OffPre5

|Λ| (tuning overhead) 3 (1%) 3 (3%) 2 (2%) 3 (5%)

tstep[s] selected variant (perf. loss) 1.28 (–) 0.80 (–) 1.29 (–) 1.08 (4%)

AT strategy – OffPre10

|Λ| (tuning overhead) 3 (1%) 3 (3%) 3 (1%) 4 (5%)

tstep[s] selected variant (perf. loss) 1.28 (–) 0.80 (–) 1.29 (–) 1.08 (4%)

AT strategy – RunAll

|Λ| (tuning overhead) 56 (42%) 56 (44%) 56 (20%) 56 (16%)

IvyBridge BestVariant E *ji F *ij F *ji F *ji

(10 cores) BestVariant tstep[s] 1.16 0.725 1.20 1.04

AT strategy – OffPre5

|Λ| (tuning overhead) 3 (3%) 1 (1%) 3 (1%) 3 (0.4%)

tstep[s] selected variant (perf. loss) 1.16 (–) 0.734 (1%) 1.20 (–) 1.04 (–)

AT strategy – OffPre10

|Λ| (tuning overhead) 3 (3%) 3 (3%) 3 (1%) 3 (0.4%)

tstep[s] selected variant (perf. loss) 1.16 (–) 0.725 (–) 1.20 (–) 1.04 (–)

AT strategy – RunAll

|Λ| (tuning overhead) 56 (54%) 56 (59%) 56 (41%) 56 (44%)

Skylake BestVariant E *ji F *ji F *ji F *ji

(20 cores) BestVariant tstep[s] 0.43 0.24 0.45 0.40

AT strategy – OffPre5

|Λ| (tuning overhead) 3 (1%) 3 (2%) 3 (1%) 3 (%)

tstep[s] selected variant (perf. loss) 0.43 (–) 0.24 (–) 0.45 (–) 0.40 (–)

AT strategy – OffPre10

|Λ| (tuning overhead) 3 (1%) 3 (2%) 3 (1%) 3 (1%)

tstep[s] selected variant (perf. loss) 0.43 (–) 0.24 (–) 0.45 (–) 0.40 (–)

AT strategy – RunAll

|Λ| (tuning overhead) 56 (69%) 56 (65%) 56 (41%) 56 (44%)
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Fig. 2. Comparison of AT strategies applied to Cusp with varying n and Radau IIA(7).
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4.3 At Scenario – Unknown ODE System Size

The next scenario considered is that of a still unknown ODE system size n at
installation time. In these cases, the working set model is applied to determine
a set of sample n values for which Offsite computes predictions and from which
predictions for the whole range of possible n are derived. As this requires com-
puting multiple performance predictions, a single Offsite run takes longer than
in the previous scenario. This particular Offsite run, however, already covers all
possible n and no further run will be required when switching n at a later point.

Figures 2 and 3 show for the single implementation variants selected as best
variant by the AT strategies considered, the time per time step of IC and Cusp
on three platforms (each using their max. number of cores). On the x-axis, n is
plotted up to n = 60,000,000. The y-axis shows the time per component of n in
seconds needed by a specific variant to solve a time step for Radau IIA(7).

Tuning Cusp (Fig. 2). On Haswell (Fig. 2a), OffPre5 and OffPre10 select the
same subset of three variants independent of n. Both strategies always correctly
identify the measured best variant. The same observations can be made on Ivy-
Bridge (Fig. 2b) and on Skylake (Fig. 2c) where also the same subset of three
variants is selected and the measured best variant is always found.

Tuning IC (Fig. 3). On Haswell (Fig. 3a), the same subset of one (for OffPre5 )
respectively of two variants (for OffPre10 ) is picked for n up to 8,500,000. For
bigger n, both strategies select the same three variants. Except for n = 5,760,000,
OffPre10 always correctly finds the measured best variant. The single variant
selected by OffPre5 is slightly off for n = 1,440,000 and n = 2,560,000. In both
cases, however, the absolute time difference is only marginal. IC is compute-
bound (Table 1) and, thus, the IVP evaluation dominates the computation time.
Hence, in particular for small n, the order of the remaining computations has
only minor impact on the time and already minor jitter can lead to a different
variant being selected.
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Strategy OffPre5 selects on IvyBridge (Fig. 3b) the same variant for all n
while OffPre10 adds two additional variants for n ≥ 2,560,000. While OffPre10
always finds the measured best variant, OffPre5 is slightly off for n = 4,000,000
and n = 5,760,000 but the absolute time difference is only marginal.

On Skylake (Fig. 3c), the same variant is selected for n up to 1,440,000 by
both Offsite strategies while for larger n two additional variants are considered.
Except for n = 1,440,000 both strategies manage to always correctly identify
the measured best variant. As on the two previous systems, the absolute time
difference is again only marginal.

4.4 At Scenario – Variable Number of Cores

Offsite is capable of predicting the performance of an implementation variant for
different core counts τ with a single AT run. In this AT scenario, we consider
tuning an IVP for a fixed ODE system size n and multiple core counts.

Figure 4 shows the effectiveness of different AT strategies compared to strat-
egy RunAll when tuning IVP IC on three target platforms for n = 9,000,000 and
Radau IIA(7). On the x-axis, we plot the number of cores τ . The y-axis plots
for different AT strategies the percent performance gain Π achieved by applying
that particular strategy instead of RunAll which tests all 56 variants (tRA). The
performance gain is defined as tRA−tAT

tRA
∗ 100 where tAT includes the time to run

the variants Λ tested by that strategy and the time to run the measured best
variant from Λ an additional 56 − |Λ| times. Ideally, the bar of an AT strategy
would be close to the horizontal line of BestVariant.

Haswell (Fig. 4a). Depending on the number of cores τ , OffPre5 selects differ-
ent subsets Λ. For τ < 8, the same variant is selected, while for τ = 8 two addi-
tional variants are selected. Using OffPre10, these two variants are also included
for τ = 4. For all τ , a significant performance gain close to BestImplVariant can
be observed with either Offsite strategy. The total performance gain grows with
τ as the performance gap between best and worst variant also increases. While
outperforming RunAll, RandomSelect is far off from the maximum gain.
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Fig. 4. Percent performance gain achieved by different AT strategies when tuning IVP
IC for different core counts, Radau IIA(7) and n = 9,000,000.
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IvyBridge (Fig. 4b). OffPre5 selects the same variant for all core counts τ .
Using OffPre10, two further variants are selected for τ = 20. Again, a consider-
able performance gain close to BestImplVariant, can be observed for all τ when
using either Offsite strategy while RandomSelect is far off from that ideal gain.

Skylake (Fig. 4c). Both Offsite strategies select the same three variants for τ =
20, while the same single variant is selected for smaller core counts. As on the two
previous target platforms, both Offsite strategies are close to BestImplVariant
while RandomSelect is again further off.

4.5 At Scenario – Variable ODE Method

In the last AT scenario, we consider tuning an IVP for a fixed ODE system
size n for four different ODE methods. Depending on the characteristics of the
ODE method, different optimizations might be applicable—for specific number
of stages s, e.g., loops over s can be replaced by a vector operation—which
potentially results in varying efficiency of the same implementation variant for
different ODE methods.

Figure 5 shows the effectiveness of different AT strategies when tuning IVP
IC on three target platforms for n = 9,000,000 and four different ODE methods:
(i) Radau IA(5) (s = 3, m = 4), (ii) Radau IIA(7) (s = 4, m = 6), (iii) Lobatto
III C(6) (s = 4, m = 5), and (iv) Lobatto III C(8) (s = 5, m = 7). On the
x-axis the ODE method used is shown. The y-axis plots for each AT strategy
the percent performance gain Π achieved by applying that particular strategy
instead of RunAll which tests all 56 variants. The bar of an AT strategy is ideally
close to the horizontal line of BestVariant.

Haswell (Fig. 5a). OffPre5 selects the same subset of two variants for Lobatto
III C(6) and Radau IA(5). For Lobatto III C(8) and Radau IIA(7), an additional
variant is selected. Using OffPre10, these three variants are selected for all ODE
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methods. For all ODE methods, a significant performance gain close to BestIm-
plVariant can be observed when using one of the two Offsite strategies. Further,
both strategies decisively outperform RandomSelect.

IvyBridge (Fig. 5b). For all ODE methods, the same single variant is chosen
when using OffPre5, while OffPre10 selects two variants for Lobatto III C(6) and
the same three variants for Lobatto III C(8) and Radau IIA(7). As on Haswell,
the performance gain of both Offsite strategies for all ODE methods is close
to the maximum gain, while the achieved gain of RandomSelect is far off from
BestImplVariant.

Skylake (Fig. 5c). Both Offsite strategies select the same subset of three vari-
ants for all ODE methods but for Radau IA(5) which only selects two variants
when using OffPre5. Again, the performance gain achieved by both strategies is
close to BestVariant while RandomSearch is further off.

5 Future Extensions

Our future work includes expanding Offsite to cluster systems as well as AMD
and ARM platforms. Further, we plan to extend Offsite to a combined offline-
online AT approach that incorporates feedback data from previous online AT
(or program runs) and to study whether these data can be used to predict the
performance in scenarios with unknown input data (e.g. new IVP).

Expansion to Cluster Systems

We expect that extending the approach to cluster systems will raise additional
challenges (design-wise and implementation-wise) which could be neglected in
the current shared-memory setting:

(i) To integrate the costs of inter-node communication operations, additional
benchmarks are needed and database tables might have to be adjusted. Fur-
thermore, this requires extending the YAML specifications and implementation
variant code generator to support inter-node communication operations.
(ii) Similar to [18], the performance prediction methodology needs to be
adapted to incorporate inter-node communication costs.
(iii) For more complex ODEs systems, e.g. ones with many different types of
components and differing computation costs, the workflow has to be adjusted
slightly. In particular, the load distribution needs to be taken into account.

Extension to a Combined Offline-Online AT Approach

The database plays a vital role in the extension to a combined offline-online AT
approach as it is supposed to serve as an interface between both AT phases. Cur-
rently, the database stores prediction and ranking data for reuse in future offline
runs. For a combined approach, additions and modifications to the database
will be necessary to incorporate feedback data from program runs/online AT to
verify or improve predictions.
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Applicability to Other Programs

The kernel templates used to describe PIRK methods correspond to basic linear
algebra functions (e.g. LC is a matrix multiplication). This makes Offsite appli-
cable to more complex applications that can be broken down into linear algebra
functions (e.g. PCG solver [12]). In most cases, this is possible without any or
only minor extensions to the current YAML specifications. Minor extensions
might include supporting additional communication operations or keywords for
special operations (e.g. MIN). Major extensions might be needed for applica-
tions where the equations themselves or even the number of equations change
for different time intervals (e.g. grid resolution). The general approach will not
be applicable to highly dynamic and irregular systems like particle simulations
(tree codes).

6 Conclusion

In this work, we have introduced the Offsite AT approach which automates the
process of identifying the most efficient implementation variant(s) from a pool
of possible variants at installation time. Offsite ranks variants by their perfor-
mance using analytic performance predictions. To facilitate specifying tuning
scenarios, multilevel YAML description languages allow to describe these sce-
narios abstractly and enable Offsite to automatically generate optimized codes.
Moreover, we have demonstrated that Offsite can reliably tune a representative
class of parallel explicit ODE methods, PIRK methods, by investigating different
AT scenarios and AT strategies on three different shared-memory platforms.
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Abstract. Analytic, first-principles performance modeling of
distributed-memory parallel codes is notoriously imprecise. Even
for applications with extremely regular and homogeneous compute-
communicate phases, simply adding communication time to computation
time does often not yield a satisfactory prediction of parallel runtime due
to deviations from the expected simple lockstep pattern caused by system
noise, variations in communication time, and inherent load imbalance.
In this paper, we highlight the specific cases of provoked and sponta-
neous desynchronization of memory-bound, bulk-synchronous pure MPI
and hybrid MPI+OpenMP programs. Using simple microbenchmarks we
observe that although desynchronization can introduce increased waiting
time per process, it does not necessarily cause lower resource utilization
but can lead to an increase in available bandwidth per core. In case of
significant communication overhead, even natural noise can shove the
system into a state of automatic overlap of communication and com-
putation, improving the overall time to solution. The saturation point,
i.e., the number of processes per memory domain required to achieve
full memory bandwidth, is pivotal in the dynamics of this process and
the emerging stable wave pattern. We also demonstrate how hybrid MPI-
OpenMP programming can prevent desirable desynchronization by elim-
inating the bandwidth bottleneck among processes. A Chebyshev filter
diagonalization application is used to demonstrate some of the observed
effects in a realistic setting.

1 Introduction

In principle, a parallel computer should be a deterministic system. Given some
code and hardware specifications, it should be possible to predict the runtime
of the program and measure it consistently in repeated experiments. Analytic,
first-principles performance models such as Roofline [21] or ECM [10,19] approx-
imate this goal on the core and socket level. Although residual deviations and
statistical variations remain, these models can yield valuable insights into the
hardware bottlenecks of computation despite the simplifications that go into
c© The Author(s) 2020
P. Sadayappan et al. (Eds.): ISC High Performance 2020, LNCS 12151, pp. 391–411, 2020.
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the model assumptions. One of these is the notion that all cores or hardware
threads execute the same code on different data, which is often true for pro-
grams exploiting thread-level loop parallelism. With message passing, however,
the dependencies among instruction streams (processes) are less tight, and com-
munication overhead complicates the picture. Ideally, one would like to add
communication models such as the Hockney model [7] or its refinements on top
of Roofline or ECM, but this is too simplistic: System noise, variations in net-
work bandwidth and latency, load imbalance, and strong one-off delays can cause
global effects such as desynchronization and traveling idle waves [2,15]. Using
threaded MPI processes changes the phenomenology and dynamics of the sys-
tem, because socket-level bottlenecks (i.e., memory bound vs. core bound) play
a decisive role. It is therefore necessary to shed light on the dynamic processes
that lead to desynchronization and global structure formation in pure MPI and
threaded MPI programs.

An idle wave is a period of idleness caused by a strong delay in computa-
tion or communication on one process of an MPI program. It travels across the
MPI processes with a speed that is governed by the particular communication
characteristics (distance of communication, eager vs. rendezvous mode, etc.) and
interacts with other idle waves, computational noise, and system noise in a non-
linear way. In this paper, we extend a previous study on the dynamics of idle
waves with core-bound pure-MPI programs [2] towards the memory-bound case,
i.e., codes with a low computational intensity. These exhibit saturation charac-
teristics when running on multiple cores connected to a single memory interface
(the contention domain1). The basic mechanisms are investigated using parallel
microbenchmarks that are amenable to straightforward node-level performance
modeling and can be easily altered to mimic different application characteristics.

We start by comparing the dynamics of traveling idle waves generated by
injected one-off delays between core-bound and memory-bound MPI programs
with negligible communication overhead and perfect load balance. More com-
plex dynamics can be observed in the memory-bound case within the memory
domain and when crossing domain boundaries (sockets, nodes). Even after the
idle wave is gone, a distinctive “computational wave” pattern prevails that is
governed by the topological properties of the MPI program (inter-process com-
munication dependencies, boundary conditions) and the location of the memory
bandwidth saturation point, i.e., the number of processes required for full mem-
ory bandwidth utilization. In case of significant communication overhead, a mas-
sive one-off delay is not required to provoke the wave pattern; the natural system
noise or a single, small disturbance of regularity in computation or communi-
cation time is sufficient. Based on these observations, we study the impact of
using threaded MPI processes. Multithreading has an influence on the bandwidth
saturation point, and filling the contention domain with a multi-threaded MPI
process effectively generates a bandwidth-scalable code. This answers the long-
standing question why a nonreflective introduction of OpenMP threading into

1 This is usually identical to a ccNUMA domain and often, but not always, a full CPU
socket.
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an MPI-only code can in some cases cause a slowdown even if OpenMP-specific
overheads are negligible [5,22]. Finally, we employ an application code imple-
menting Chebyshev Filter Diagonalization (ChebFD) for a topological insulator
problem to show the relevance of our findings in a real-world scenario.

The configuration parameter space of MPI and hybrid MPI-OpenMP parallel
programs is huge. Here we restrict ourselves to simple, bidirectional point-to-
point communication using eager or rendezvous protocols (depending on the
message size).

This paper is organized as follows: Sect. 2 details our experimental environ-
ment and methodology. In Sect. 3 we study the propagation of an injected, one-
off delays, contrasting memory-bound with core-bound scenarios. Computational
wavefronts in memory-bound programs emerging from idle waves are covered in
Sect. 4. Section 5 deals with the spontaneous formation of wavefronts and its
consequences on program performance, and in Sect. 6 we showcase some of the
observed effects using an application code. Section 7 covers related work and
Sect. 8 concludes the paper and gives an outlook to future work.

Contributions. This work makes the following novel contributions:

– We show the characteristics of idle waves traveling through memory-bound
MPI applications on multicore clusters, and how they differ from the core-
bound case studied in prior work [2].

– We show that the forced emergence of computational wave patterns via desyn-
chronization by one-off delays only occurs with memory-bound code.

– We show that the average available memory bandwidth per core in an estab-
lished computational wave (desynchronized state) is larger than in the syn-
chronous state while the core is executing application code. The wave settles
in a state where the number of active processes per contention domain is near
the memory bandwidth saturation point.

– We show how natural system noise leads to spontaneous desynchronization
and computational wave formation if there is significant communication over-
head.

– We show that desynchronization can lead to automatic overlap of communica-
tion and computation, reducing overall time to solution. Significant intra-node
communication overhead can reduce this gain.

– We show that the introduction of threaded MPI processes can prevent the
formation of computational waves and automatic communication overlap if
one process is used per contention domain, effectively recovering the charac-
teristics of a scalable pure MPI code.

2 Experimental Environment and Methodology

2.1 Cluster Test Bed and External Tools

In order to ensure that our observed phenomenology is not specific to a singular
hardware or software setup, four different clusters were used to conduct various
experiments:
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– Emmy2, a QDR-InfiniBand cluster with dual-socket nodes comprising ten-core
Intel Xeon “Ivy Bridge” CPUs ans Hyper-Threading (SMT) enabled,

– Meggie3, an Omni-Path cluster with dual-socket nodes comprising ten-core
Intel Xeon “Broadwell” CPUs and Hyper-Threading (SMT) disabled,

– Hazel Hen4, a Cray XC40 with Aries interconnect and 12-core Intel Xeon
“Haswell” CPUs,

– SuperMUC-NG5, an Omni-Path cluster with dual-socket nodes comprising 24-
core Intel Xeon “Skylake SP” CPUs.

Details of the hardware and software environments on these systems can be
found in Table 1.

Table 1. Key hardware and software specifications of systems

Systems Emmy Meggie Hazel Hen (CRAY

XC40)

SuperMUC-NG

Intel Xeon Processor Ivy Bridge EP Broadwell EP Haswell EP Skylake SP

Processor model E5-2660 v2 E5-2630 v4 E5-2680 v3 Platinum 8174

Base clock speed 2.2GHz 2.2GHz 2.5GHz 3.10GHz(2.3GHz

used∗)
Physical cores per 20 20 24 48

Dual socket node

LLC size 25MB 25MB 30MB 33MB

Memory per node (type) 64GB (DDR3) 64GB (DDR4) 128GB (DDR4) 96GB (DDR4)

Theor. memory bandwidth 51.2GB/s 68.3GB/s 68.3GB/s 128GB/s

Node interconnect QDR

InfiniBand

Omni-Path Cray Aries Omni-Path

Interconnect topology Fat-tree Fat-tree Dragonfly Fat-tree

Raw bandwidth per 40Gbit s−1 100Gbit s−1 126Gbit s−1 100Gbit s−1

Link and direction

Software

Compiler Intel C++

v2019.4.243

Intel C++

v2019.4.243

Cray C++ v8.7.10 Intel C++

v2019.4.243

Message passing library Intel MPI

v2019u4

Intel MPI v2019u4 Cray MPICH

v7.7.6

Intel MPI v2019u4

Operating system CentOS Linux

v7.7.1908

CentOS Linux

v7.7.1908

SESU Linux ENT.

Server 12 SP3

SESU Linux ENT.

Server 12 SP3

Tools

ITAC v2019u4 v2019u4 § v2019

LIKWID 5.0.0 5.0.0 § 4.3.3

∗ A power cap is applied on SuperMUC-NG, i.e., the CPUs run by default on a lower than maximum clock

speed (2.3GHz instead of 3.10GHz).

§ C++ high-resolution Chrono clock for timing measurement.

2 https://anleitungen.rrze.fau.de/hpc/emmy-cluster.
3 https://anleitungen.rrze.fau.de/hpc/meggie-cluster.
4 https://hlrs.de/systems/cray-xc40-hazel-hen.
5 https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.

https://anleitungen.rrze.fau.de/hpc/emmy-cluster
https://anleitungen.rrze.fau.de/hpc/meggie-cluster
https://hlrs.de/systems/cray-xc40-hazel-hen
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG


Desynchronization and Wave Pattern Formation 395

We used Intel trace analyzer and collector (ITAC)6 for timeline visualization
(except on Hazel Hen, where traces were recorded by explicit timing measure-
ments), the C++ high-resolution Chrono clock for timing, and likwid-perfctr
from the LIKWID tool suite7 for memory bandwidth measurements.

2.2 Experimental Parameters and Methodology

We took a number of measures to create a reproducible experimental environ-
ment and minimize any noise from system sources. On the Emmy and Meggie
systems, we ran all multi-node experiments on nodes connected to a single leaf
switch. Core-thread affinity was enforced. The computational workload for the
core-bound case was a number of back-to-back divide instructions (vdivpd),
which have a low but constant throughput on Intel architectures if “simple”
denominators are avoided. Except for the application case study, the memory-
bound workload comprised simple kernels like STREAM triad. One-off idle peri-
ods were generated by massively extending one computational phase via doing
extra work.

Most microbenchmark experiments were performed on two nodes only,
since the basic phenomenology is visible even on this scale. Bidirectional
point-to-point communication between MPI processes employed a standard
MPI Isend/MPI IRecv/MPI Waitall sequence. Before actual measurements were
taken, at least two warm-up time steps with barrier synchronization were per-
formed to allow the MPI and OpenMP runtimes to settle and eliminate first-call
overhead. We only report statistical variation in measurements where the rel-
ative spread was larger than 5%. Unless otherwise stated, the clock speed of
processors was fixed. On SuperMUC-NG the active power capping feature leads to
an effective clock speed of 2.3 GHz, which was validated by the likwid-perfctr
tool.

3 Idle Wave Mechanisms for Memory-Bound Code

In [2], idle waves were shown to have nonlinear characteristics, i.e., colliding
waves interact and partially cancel each other. Noise, i.e., short delays from dif-
ferent sources such as load imbalance, varying communication characteristics, or
system noise, causes the decay of traveling idle waves. In this section, we compare
the known dynamics of idle waves between core-bound code and memory-bound
code. For brevity and to avoid confusion, we will call the two phenomena core-
bound and memory-bound idle wave, respectively. We also restrict ourselves to
the case of negligible communication overhead, i.e., a small communication-to-
computation ratio.

6 https://software.intel.com/en-us/trace-analyzer.
7 http://tiny.cc/LIKWID.

https://software.intel.com/en-us/trace-analyzer
http://tiny.cc/LIKWID
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3.1 Idle Wave Propagation Speed

Figure 1a shows a traveling idle wave on the SuperMUC-NG system with core-
bound code. The leading and the trailing edges of the wave are parallel, and due
to the communication characteristics (bidirectional next-neighbor, eager mode,
closed ring) the waves emanating from the idle injection cancel each other after
one half round trip. The memory-bound code in Fig. 1b shows a very different
pattern: Since the available memory bandwidth per core declines after the sat-
uration point, the length of any particular execution phase on any particular
MPI process depends on how many other processes are executing user code at
the same time on the same contention domain. If b(N) is the STREAM memory
bandwidth with N processes, transferring a data volume of V bytes with a single
process takes a time of

Texec =
NV

b(N)
. (1)

In the saturation phase, where N > Nsc, b(N) ∼ const. and thus Texec ∼ NV ,
i.e., as the front (back) of the idle wave progresses through the cores of a socket
and more (fewer) cores participate in code execution, the time per iteration
goes up (down). Hence, the forward and backward edges of the idle wave ripple
through the system at variable propagation speeds.

The expression for the silent-system idle wave propagation speed from [2]
still holds, but with modifications. Instead of the whole idle wave velocity, we
can only draw conclusions for either of its two edges at a single moment in time
since the execution time obeys the relation (1). The local velocity is
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Fig. 1. Timelines of idle waves through MPI code (one process per core) with different
workload characteristics, negligible communication overhead, and bidirectional next-
neighbor communication in a closed ring topology on SuperMUC-NG. The y axis is the
MPI rank and the x axis is wall-clock time. Red indicates waiting time (within the MPI
library) while white or light blue denote user code (50 iterations). The injected delay of
about 25 execution phases is shown in dark blue. (a) Core-bound code with execution
phase of 10 ms, (b) memory-bound STREAM triad code (overall data transfer volume
of 4.8 GB, evenly distributed across all cores for a computation phase of 11.5 ms), (c)
zoom-in of marked area in (b). (Color figure online)
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vsilent(N) =
σ · d

NV/b(N) + Tcomm

[
ranks

s

]
, (2)

where N is the number of processes executing code. This means that νsilent can be
different for processes on the same contention domain, which will be investigated
further in the next section. Tcomm is the communication time, d parameterizes
the distance of communicating processes, and σ ∈ {1, 2} is a correction factor
that depends on communication characteristics, e.g., communication patterns
(uni- vs. bidirectional), flavors (multiple split-waits vs. one wait-for-all), and
protocols (eager vs. rendezvous) [2].

Note that (2) even holds for hybrid MPI/OpenMP programs that commu-
nicate only outside parallel regions. In this case, N is the number of active
multi-threaded MPI processes on a socket. If the process spans the full socket,
N = 1 and the propagation speed does not vary. This setting will be analyzed
in Sect. 5.3.

3.2 Idle Wave Decay

In [2] it was shown that noise, i.e., small statistical disturbances of the pure lock-
step pattern, cause the decay of traveling idle waves, possibly to the point where
a one-off injection does not even impact the time to solution of the program.
In a noise-free system, a core-bound idle wave does not decay, but eventually
interacts with itself or with the boundaries of an open process topology.

The propagation and decay mechanisms of memory-bound idle waves are
much different since the propagation speed of the trailing and leading edges is
strongly influenced by topological domain boundaries, specifically those between
adjacent contention domains. Together with the contention effect, decay occurs
even on a silent system. Figure 1(b, c) shows the basic phenomenology: As the
idle wave progresses through the contention domain (from core 5 to 23 as shown
in the upper section of Fig. 1b and in the upper half of Fig. 1c), the trailing edge
is gradually getting steeper as fewer cores participate in the computation (cores
6–16 1 ) because more bandwidth becomes available per core. On the other hand,
idle phases are emanating from the end of the domain (core 23 2 ) because the
next contention domain (core 24 and up, 3 ) is still executing with all cores and
is thus slower per core. These small idle waves propagate up and interact with
the main idle wave on cores 17–23 4 , effectively causing its partial decay. The
same occurs on the second contention domain at cores 39–47 5 and, in reverse
direction due to the wrapping around of the wave, on the fourth domain on cores
72–80 6 .

Domain boundaries and the memory bottleneck are just as important for the
leading edge dynamics. Within the domain where the one-off delay was injected
(cores 6–23 7 ), the leading edge of the idle wave is not straight but shows a
slowdown as time progresses. This is because the number of active cores on the
contention domain increases as the wave propagates, and the available memory
bandwidth per core goes down as soon as contention sets in. Eventually, the
leading edge hits the boundary to the next contention domain. Right after this
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point 8 the first domain is free of any delay and the bulk-synchronous execution
is restored there. The idle wave is now progressing entirely through the second
domain. Since the first domain is in synchronous state and there is idleness on
the second domain, more bandwidth is available per core on the latter, so the
computation phases are shorter and there is waiting time (small red boxes in the
timeline graph 9 ). The key observation here is that the second domain does not
go back to a synchronized state; computation alternates with waiting times on
every process, but enough cores are active concurrently to saturate the memory
bandwidth. Hence, the overall throughput of the second domain is the same as
on the first but the processes are out of sync. Finally, after the preset number of
time steps has passed, the computation terminates. Processes that have collected
less idle time because of the decay of the injected idle wave (on the second to
fourth domain) finish early, as shown by the dashed blue line in Fig. 1b 10 .
A distinctive wave-like pattern emerges across all contention domains but the
one in which the idle wave was injected. We call this pattern a “computational
wavefront.”

4 Induced Computational Wavefronts

In this section, we will further analyze the generating mechanisms of compu-
tational wavefronts with memory-bound MPI code that emerge from singular
one-off delays. We restrict ourselves to the case of negligible communication over-
head. Spontaneous wavefront formation and significant communication overhead
are linked and will be covered in Sect. 5.

4.1 Wavefront Amplitude vs. Processes per Contention Domain

A computational wavefront is a stable structure that can be visualized by mark-
ing the wallclock time of a specific time step on each MPI process in a bulk-
synchronous iterative application. In a fully synchronized state, the pattern is a
straight line perpendicular to the time axis. Desynchronization causes wave-
like patterns like the one shown in Fig. 1b. We have shown above that the
memory-bound nature of the code is crucial for desynchronization, so we start
with a series of experiments with progressively more severe memory bottlenecks.
Figure 2 shows six timelines of memory-bound MPI programs on the Emmy system
(parameters as in Fig. 1) after injecting a one-off delay. The difference among
the six cases is the number of MPI processes per contention domain (socket).
In the scalable regime (up to N = 3 cores per socket) the idle wave causes no
visible computational wave. As soon as the bandwidth bottleneck becomes rel-
evant, i.e., when using more cores leads to less bandwidth available per core,
(here at N � 4), the damping effect on the idle wave sets in although it is weak
at first (Fig. 2c,d). Our experiments show, however, that even in this regime a
stable computational wave persists, albeit with a low amplitude 1 . At strong
saturation (N � 7) the fully developed wave is clearly visible. In all cases, the
desynchronization prevails even after the idle wave has died out, and even on
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Fig. 2. Idle wave-induced computational wavefront pattern formation with memory-
bound (STREAM triad with nontemporal stores) workload on the Emmy system with
varying number of MPI processes per contention domain (socket). Overall triad data
volume was 9.6 GB, other parameters as in Fig. 1. Middle panel: memory bandwidth
versus number of cores for the STREAM triad benchmark on one socket. (a)–(f) Idle
wave propagation with 1,. . . ,10 cores per contention domain over 20 time steps. Hori-
zontal dashed lines denote socket boundaries except in (a), where one process per node
was run on the first core of the first socket. Computational wavefronts are shown with
blue dashed lines. (Color figure online)

contention domains that were never traversed by it (cores 20–29 in Fig. 2f 2 ).
Note also that the socket on which the idle wave was originally injected is still
synchronized.

This shows that strong computational wave patterns require a strong memory
bandwidth saturation. Note that wave patterns will also form without initial one-
off idle injection, but this is a very slow process so we provoked it by “kicking” the
system. This “kick” will not be required when there is significant communication
overhead. See Sect. 5 for details.
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Fig. 3. Saturation characteristics of benchmark platforms with different code and fre-
quency settings and their influence on computational wave formation. (a) Bandwidth
saturation of microbenchmarks on a contention domain (MPI strong scaling) on four
systems: STREAM triad on Emmy with vs. without NT stores and on Meggie using
Turbo Mode vs. lowest core frequency. On SuperMUC-NG, using STREAM triad and a
“slow” Schönauer triad, and standard STREAM triad on Hazel Hen. (b)–(f) Timeline
visualization of idle wave-induced computational wave emergence under different sat-
uration conditions. On Hazel Hen, ITAC was not available so the trace was taken via
explicit timing measurements.

4.2 Saturation Point and Wavefront Amplitude

There is still the question whether the saturation point, i.e., how many pro-
cesses are needed to attain maximum memory bandwidth, plays any role. Our
benchmark platforms exhibit different characteristics in this respect, as shown in
Fig. 3a: The Broadwell CPUs on Meggie have the convenient property that the
saturated memory bandwidth depends only weakly on the clock speed, so we set
the core frequency to a constant 1.2 GHz or activated “Turbo Mode.” The lat-
ter led to clock frequency varying from 3.0 GHz (1 core) to 2.4 GHz (full socket)
along the scaling curve. On SuperMUC-NG with its 24 cores per contention domain
and fixed 2.3 GHz clock speed, we employed a modified variant of the Schönauer
vector triad that has a higher computational cost (A(:)=B(:)+cos(C(:)/D(:)))
in order to increase Nsc from about 14 to 20 cores. As a side effect, the saturation
point becomes more sharply defined. On Emmy, using nontemporal (NT) stores
for the STREAM triad the single-core bandwidth is about a factor of two lower
than with standard stores, shifting the saturation point further out.
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Fig. 4. (a) Average number of MPI processes executing user code concurrently for
the fully developed steady state computational waves (wavelength MPI COMM SIZE) in
Figs. 2(f), 3(e), and 3(f). Minimum and maximum values among 60 samples along the
timeline are indicated as whiskers. Data points were taken from the timeline data as
shown in (b). Numbers in circles denote number of active processes at this point in
time on this contention domain.

In Fig. 3b–f these variants are tested for their reaction to injected idle waves
when using all cores on the contention domain. The data shows that the more
data hungry the serial code (i.e., the earlier the saturation point), the stronger
the damping. This was expected from the analysis in Fig. 1. In addition, an
early saturation point causes a large amplitude of the generated computational
wavefront (compare Fig. 3c and d, and Fig. 3e and f). Thus, the saturation point
impacts the amplitude of the computational wavefront. Since the wavefront is
defined by a constant time step ID across processes, a large wave amplitude indi-
cates a larger inter-process skew, i.e., stronger desynchronization, which causes
longer waiting times within MPI calls despite negligible communication volume.
Since the computational wave survives even long after the idle wave has died
out, it is impossible for these waiting times to cause reduced memory bandwidth
utilization (else the still-synchronized contention domain would eventually catch
up). It thus seems that there are is always a sufficient number of computing
processes within the computational wave to still reach bandwidth saturation.
Figure 4a shows the average number of computing processes within the fully
developed wave for the three cases in Figs. 2(f), 3(e), and 3(f). Comparing with
Fig. 3a it is evident that this number is very close to the bandwidth saturation
point (at 7, 13, and 20 cores, respectively). Hence, the computational wave set-
tles at an amplitude that allows for just enough active processes to saturate
the memory bandwidth, but not more. The inevitable waiting times caused by
desynchronization are perfectly overlapped with user code execution.
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+121 rank/s, r = 0.968

Fig. 5. Shape and slope of memory-bound computational wavefront with different com-
munication topologies and patterns on the Emmy system. The measured slope(s) of the
computational wave(s) in ranks per second is/are indicated together with correlation
coefficients of linear fits. Code properties are the same as in Fig. 2. The x axis shows
walltime but the time step at which the computation was terminated is indicated.
(a) Open boundary conditions, next-neighbor communication, short one-off idle injec-
tion, (b) open boundary conditions, next-neighbor communication, long one-off idle
injection, (c) periodic boundary conditions, next-neighbor communication along ris-
ing ranks, next- and next-to-next neighbor communication along falling ranks, short
one-off idle injection.

4.3 Influence of Communication Patterns and Injection Length

In Fig. 5 we investigate how the shape and slope of an induced computational
wave depends on the communication pattern (distance of point-to-point com-
munication) and topology (open vs. periodic boundary conditions). In Fig. 5a
we injected a short idle period into a code with open boundary conditions and
next-neighbor bidirectional communication. The corresponding idle wave in neg-
ative rank direction dies at rank 0, as expected [2]. The idle wave in the positive
rank direction hardly travels beyond the next contention domain (node 0, socket
1) before dying out, but a computational wave prevails on that domain in the
form of a single ramp with a slope of −40 rank/s. Doubling the duration of the
injection (Fig. 5) leads to a longer idle wave that extends across three sockets
in positive rank direction, and so does the generated computational wave. Its
slope, however, is the same as in the previous case. The strength of the initial
idle wave thus has no influence on the local slope of the computational wave.

The experiment in Fig. 5c shows the influence of communication patterns.
Each MPI process communicates with its next neighbor in positive rank direc-
tion and with its next- and next-to-next neighbors in negative rank direction;
moreover, the topology was changed to periodic boundary conditions. The idle
wave can now roll over the system boundary and eventually annihilates itself.
Its leading edges are governed by the known mechanisms investigated in [2]:
The idle wave in negative rank direction is three times faster than the one in
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positive rank direction. The resulting computational wave is continuous (because
of the boundary condition) and shows two distinct slopes, which are different
from the slopes of the idle wave but have the same 3:1 ratio. Hence, the slopes
involved in the computational wave are influenced by the same communication
parameters that govern the slopes of the idle wave, but the absolute slopes are
different, which translates into different wave amplitudes. As shown in the previ-
ous sections, they depend on the saturation characteristics of the memory-bound
code.

5 Spontaneous Computational Wavefronts

With negligible communication overhead, the desynchronization phenomena
described above can be observed when provoked by a rather strong one-off delay
injection. They only occur spontaneously, i.e., via the normal system noise, over
very long time scales. Moreover, although the available memory bandwidth per
process is larger in the desynchronized state, the runtime of the whole program,
i.e., the wall-clock time required for the slowest process to reach the last time
step, cannot be reduced in this scenario since no significant overhead is over-
lapped with code execution.

In this section we show how computational wavefronts and desynchroniza-
tion can occur spontaneously via natural system noise if there is significant com-
munication overhead, which paves the way towards automatic communication-
computation overlap.

5.1 Pure MPI

In Fig. 6 we show four phases of a timeline of a memory-bound STREAM triad
code on four sockets of Emmy and an initial communication overhead of ≈25%.
One MPI process was run per core with bidirectional next-neighbor communica-
tion, open boundary conditions, and a message size of 5 MB. The synchronized
state from the beginning soon dissolves. After 100 time steps (second phase),
local wavefronts have emerged, but no global state is reached yet. Within 500
time steps (third phase), a global wave has formed, and it persists till the end
of the program (50 000 time steps). Interestingly, although the wavelength and
amplitude of the computational wave are rather constant, the pattern can shift
across the MPI ranks over time: After 26 s of walltime the slowest process is on
socket 1, while after 2000 s it is on socket 0. The cause for such shifts are small
perturbations (natural noise), whose close investigation is left for future work.

The overall MPI time per process goes up when entering the wave state as
expected because waiting time is added on top of actual communication time.
However, since communication can be overlapped with execution, performance
increases. In our particular case, the total average (computation plus commu-
nication/waiting) time per iteration goes down from 30ms + 10ms = 40ms to
20ms + 17.5ms = 37.5ms, i.e., by about 6%.
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Fig. 6. 50 000 iterations run of an MPI-parallel STREAM triad code (non-periodic grid,
bidirectional next-neighbor communication, 4.8 GB overall data volume) on the Emmy

system (normal stores, saturation at 5–6 cores). The four phases show different cutouts
of the complete timeline near the indicated walltimes. Synchronized state (phase 1):
30 + 10ms average compute + communication intervals. Fully developed wavefront
(phase 3, 4): 20 + 17.5 ms average compute + communication. Numbers of concurrent
working processes per domain are indicated in circles.

5.2 Latency- vs Bandwidth-Dominated Overhead

There are two potential benefits from desynchronization: Better memory band-
width utilization by the application code and better network interface utiliza-
tion (not discussed here). These advantages are partially offset by the memory
bandwidth drawn by MPI communication of large messages. For example, in
the experiment in Fig. 6, each message had a size of 5 MB. In particular the
intra-node point-to-point communication can aggregate to a significant data vol-
ume (at least 20 MB per process and time step in this case, and probably more
depending on the implementation of intra-node MPI), reducing the bandwidth
available to the application code. This is why the theoretical speedup of 25%
could not be obtained.

5.3 Threaded MPI Processes

All phenomenology discussed so far can also be observed with hybrid
MPI+OpenMP codes that communicate only outside OpenMP-parallel regions.
However, spanning an MPI process across several cores on a contention domain
is equivalent to reducing the number of cores, which makes for weaker satura-
tion characteristics as discussed in Sects. 4.1 and 4.2. If the number of threads
per process is large enough to show linear bandwidth scaling across processes,
spontaneous wave formation and automatic overlap will not occur.
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Fig. 7. MPI+OpenMP hybrid execution of parallel STREAM triad on Emmy with bidi-
rectional next-neighbor communication, periodic boundary conditions, and the same
overall data volume as in Fig. 6 but with 10 threads per process and one process per
contention domain. (a) 40 processes on 20 nodes with negligible communication over-
head and an idle injection on process 5 for first 20 iterations, (b) four processes on two
nodes with 5 MB MPI message size for intermediate 31 iterations over a complete run
of 50 000 timesteps.

Figure 7a shows an injected idle wave on Emmy with 40 MPI processes by
ten threads each, running the STREAM triad with one process per contention
domain, bidirectional next-neighbor communication (negligible overhead), and
periodic boundary conditions. Since there is no bandwidth contention among
processes, the situation is very similar to Fig. 1 and Fig. 2a: The idle wave is
hardly damped and eventually cancels itself, with no discernible desynchroniza-
tion prevailing and no computational wave following up. The memory-bound
nature of the code is of no significance.

The property of scalable code to automatically eliminate idle waves by the
interaction of the trailing edge with system noise (which was thoroughly studied
in [2]) leads to the important and general conclusion that spontaneous desyn-
chronization does not occur in this case. Figure 7b shows a timeline of four MPI
processes with ten threads each, running on four contention domains of Emmy.
System noise causes a delay with subsequent desynchronization, which is quickly
dissolved and the system returns to the synchronized state. One can argue that
there is more to hybrid MPI+OpenMP programming than optimizing commu-
nication overhead; “full hybrid” codes, in which one MPI process spans a full
contention domain (or more), do not profit from desynchronization and auto-
matic overlap since they enforce a lock-step across threads.

We have to add that we have deliberately chosen a simplified scenario where
the number and size of point-to-point messages sent between processes does not
depend on the number of threads per process. In real-world codes, many effects
complicate matters, especially when comparing pure MPI with MPI+OpenMP
code for the same problem since the number of messages and (probably) the
communication volume changes [18]. A thorough study of this problem area is
left for future work.
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Algorithm 1. Application of the ChebFD polynomial filter to block vectors.
1: U := u1, . . . , uns � define block vector
2: W := w1, . . . , wns � define block vector
3: X := x1, . . . , xns � define block vector
4: U ← (αH + β1)X � spmmv()
5: W ← 2(αH + β1)U − X � spmmv()
6: X ← g0c0X + g1c1U + g2c2W � baxpy()+bscal()
7: for p = 3 to np do
8: swap(W , U )
9: W ← 2(αH + β1)U − W
10: ηp ← 〈W , U 〉
11: μp← 〈U , U 〉

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

� chebfd op(H, U , W , X )

12: X ← X + gpcpW
13: end for

6 Chebychev Filter Diagonalization

Chebyshev filter diagonalization (ChebFD) [17] is a popular technique for cal-
culating inner or extremal eigenvalues of large sparse matrices. It is based on
subspace projection via polynomial filters constructed from Chebyshev polyno-
mials. ChebFD is applied in many problems in quantum physics and chemistry,
such as the study of topological materials (e.g., graphene) or electronic structure
calculations based on density functional theory. Although the basic algorithm is
just a sequence of simple vector operations and sparse matrix-vector multiplica-
tions (SpMV), it is amenable to loop fusion and blocking optimizations [12].

We use the scalable ChebFD implementation, specifically the application of
the polynomial filter to a block of vectors. The compute kernels and imple-
mentation alternatives are available with the open-source GHOST8 library for
download. This is the dominant part of the full ChebFD algorithm, which still
requires an orthogonalization procedure that is omitted here without loss of
generality. The code supports MPI+OpenMP parallelism.

Algorithm 1 shows the basic algorithm. H is the Hamiltonian matrix describ-
ing the physical system, while U , W , and X are blocks of ns vectors, with ns

being the dimension of the search space. The loop from line 7 to 13 iterates up to
the polynomial degree np, which determines how selective the polynomial filter
will be. The goal of the algorithm is the computation of the polynomial filter
coefficients {ηp} and {μp}, which requires global scalar products (lines 10 and
11). However, since these coefficients are not needed until after the end of the
calculation, the global reduction can be postponed and leads to an algorithm
without synchronization points or global operations. The body of the p loop can
then be fused completely into a single kernel CHEBFD OP for better cache
reuse. Our implementation uses a blocking optimization that processes blocks of
nb vectors at a time for improved cache efficiency. Details can be found in [12].

Our specific application case is a topological insulator of size 128 × 64 × 64
with periodic boundary conditions. This leads to a Hamiltonian of dimension 221

and 2.71 × 106 nonzeros. The full working set is about 6.7 GB (double precision
matrix, 4-byte indices, plus all block vectors) when using ns = 128 search vectors

8 https://bitbucket.org/essex/ghost.

https://bitbucket.org/essex/ghost
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Fig. 8. ChebFD application for the topological insulator matrix Topi-128-64-64

(static OpenMP scheduling, AVX vectorized and aligned execution, niter = 5) running
on (single leaf switch connected) homogeneous Emmy nodes. (a) Performance scaling
with OpenMP on a contention domain for nb = 2 and nb = 32, (b) scaling up to 10
nodes for nb = 2 and nb = 32, and different numbers of threads per process, (c) time-
line for a specific number of iterations of pure MPI vs. full hybrid execution for nb = 2
and 8 Emmy nodes.

and a polynomial filter degree np = 500, which are realistic values. The optimistic
code balance assuming perfect cache reuse on the block vectors is [12]

Bc =
260/nb + 80

146
byte
flop

, (3)

which is well beyond the machine balance of all current CPUs even for large
nb, rendering the code memory bound according to a naive Roofline model. In
reality, the nb = 32 case is already close to core bound since intra-cache data
transfers begin to limit the performance of the code on some platforms, such as
Emmy [13]: Fig. 8a shows performance vs. cores per socket for nb = 2 and nb = 32,
and indeed the latter cannot fully saturate the bandwidth and achieves only
41 Gflop/s out of the bandwidth-bound Roofline limit of 66 Gflop/s. Figure 8b
shows strong scaling from 2–10 nodes for both cases with 2 (10 threads each) to
20 (single-threaded) MPI processes on each Emmy node. At nb = 2, fewer threads
have a clear advantage while the situation is reversed at nb = 32. The more
saturating code (nb = 2) has ample opportunity for desynchronization without
threading (which is shown in the timeline comparison in Fig. 8c). In Fig. 8c,
the upper panel shows MPI only while the lower panel shows hybrid with 10
threads (1 process) per socket, both on eight Emmy nodes. The more scalable
code (nb = 32) shows no spontaneous desynchronization without threading, and
the fully hybrid code can benefit from the reduced number of MPI messages.

7 Related Work

There is very little research on idle wave propagation and pattern formation
in parallel code, especially in the context of memory-bound programs. Hence,
none of the existing prior work addressed spontaneous pattern formation and
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desynchronization. Markidis et al. [15] used a simulator to study idle waves in
MPI programs and their propagation for the first time. They did not consider the
socket-level character of the code, though, and assumed a linear wave equation
to govern the propagation of the waves. Afzal et al. [1,2] have investigated the
dynamics of idle waves in pure MPI programs with core-bound code. Our work
builds on theirs and significantly extends it towards memory-bound code and
spontaneous pattern formation. Gamell et al. [6] noted the emergence of idle
waves in the context of failure recovery and failure masking of stencil codes, but
the speed of propagation, the memory-bound characteristics of the application,
and the corresponding damping mechanisms were not studied. Böhme et al. [4]
presented a tool-based approach to attribute propagating wait states in MPI
programs to their original sources, helping to identify and correct the root issues.
Global properties of such waves like damping and velocity, or the interaction with
memory-bound code, were ignored, however.

There is a vast body of research that targets the characterization of noise
as well as its mitigation via explicit techniques, such as dynamic load balanc-
ing, MPI process placement, synchronization of OS influence, and lightweight
OS kernels [3,14,16,20]. In contrast, the present paper investigates the favor-
able consequences of noise as an enabling factor for desynchronization and – in
case of memory-bound code – automatic partial overlap of communication and
computation.

8 Conclusion and Outlook

We have shown how the memory-bound nature of load-balanced MPI programs
without explicit synchronization or global operations and homogeneous commu-
nication characteristics is directly linked to the damping of idle waves and to
desynchronization effects. The key concept is the computational wave, a stable
pattern marked by different processes reaching a given step within an applica-
tion run at different times. Such patterns can be provoked by injected one-off
delays or emerge spontaneously; rapid, spontaneous pattern formation caused
by natural system noise is only possible with significant communication over-
head. In a desynchronized state, the time spent in MPI routines is larger but the
available memory bandwidth per process is higher. There is evidence that a com-
putational wave settles in a state where the number of processes concurrently
running user code within a contention domain is very close to the bandwidth
saturation point. Desynchronization also enables automatic hiding of communi-
cation overhead, which can in some cases improve the performance of a program.
This overlap may not be perfect due to the MPI communication requiring part
of the memory bandwidth.

From the viewpoint of memory bandwidth, using a single, multi-threaded
MPI process per contention domain effectively recovers a scalable code. In this
case, automatic overlap does not occur and (induced or spontaneous) delays die
out automatically. Multi-threaded MPI processes pay off mainly at larger core
counts, where applications become more communication-intensive in strong scal-
ing scenarios [5]. One main benefit from using threaded processes is a reduction
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in the number of messages. Thus, fewer threads per process can improve perfor-
mance if process desynchronization can be leveraged for communication overlap
without too much impact on the communication efficiency.

We consider studying microbenchmarks and simple applications as a neces-
sary prerequisite to understand basic mechanisms. While our results were first
obtained using simple microbenchmark codes on four different cluster systems,
we have demonstrated the emergence of computational waves and the detrimen-
tal effect of full hybrid mode using a Chebyshev Filter application from quantum
physics. Our coverage of the topic is certainly limited to the “barrier-free bulk-
synchonous” pattern, i.e., regular communication-computation phases without
explicit or implicit synchronization.

Future Work. Although we could uncover some of the mechanisms behind
the computational wave formation in a qualitative way, a detailed quantitative
understanding of these effects is still out of reach. For example, the length of
computation and communication phases influences the idle wave velocity accord-
ing to Eq. (2). A higher idle wave velocity will cause a smaller computational
wave amplitude. Currently this is just an observation and we lack a quantita-
tive model. Additionally, there is no actual mathematical proof of stability for
computational waves, or a proof of instability for the bulk-synchronous state.
We have also just scratched the surface of how threaded MPI processes, nat-
ural system noise, and network contention change the underlying mechanisms.
For example, even with core-bound code there may be a strong bottleneck on
the network interface if parallel program is strongly communication bound, and
desynchronization does occur in this case as well. It will be helpful to have a con-
trolled, noise-free experimental environment in which all relevant aspects, from
code characteristics to communication parameters and contention effects, can
be influenced at will. Well-known networking simulation tools [11], e.g., SST9 or
CODES10, cannot accurately take resource sharing beyond network aspects into
account since that would require a separate performance model on the node,
such as the ECM model [9]. We are currently working on a high-performance
simulation tool that goes far beyond existing simulators such as LogGOPSim [8].
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tence Network for Scientific High Performance Computing in Bavaria, under project
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Abstract. Hardware platforms in high performance computing are con-
stantly getting more complex to handle even when considering multicore
CPUs alone. Numerous features and configuration options in the hard-
ware and the software environment that are relevant for performance are
not even known to most application users or developers. Microbench-
marks, i.e., simple codes that fathom a particular aspect of the hard-
ware, can help to shed light on such issues, but only if they are well
understood and if the results can be reconciled with known facts or per-
formance models. The insight gained from microbenchmarks may then
be applied to real applications for performance analysis or optimization.
In this paper we investigate two modern Intel x86 server CPU archi-
tectures in depth: Broadwell EP and Cascade Lake SP. We highlight
relevant hardware configuration settings that can have a decisive impact
on code performance and show how to properly measure on-chip and
off-chip data transfer bandwidths. The new victim L3 cache of Cascade
Lake and its advanced replacement policy receive due attention. Finally
we use DGEMM, sparse matrix-vector multiplication, and the HPCG
benchmark to make a connection to relevant application scenarios.

Keywords: Benchmarking · Microbenchmarking · x86 · Intel

1 Introduction

Over the past few years the field of high performance computing (HPC) has
received attention from different vendors, which led to a steep rise in the number
of chip architectures. All of these chips have different performance-power-price
points, and thus different performance characteristics. This trend is believed to
continue in the future with more vendors such as Marvell, Huawei, and Arm
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entering HPC and related fields with new designs. Benchmarking the architec-
tures to understand their characteristics is pivotal for informed decision making
and targeted code optimization. However, with hardware becoming more diverse,
proper benchmarking is challenging and error-prone due to wide variety of avail-
able but often badly documented tuning knobs and settings.

In this paper we explore two modern Intel server processors, Cascade Lake
SP and Broadwell EP, using carefully developed micro-architectural benchmarks,
then show how these simple microbenchmark codes become relevant in applica-
tion scenarios. During the process we demonstrate the different aspects of proper
benchmarking like the importance of appropriate tools, the danger of black-box
benchmark code, and the influence of different hardware and system settings. We
also show how simple performance models can help to draw correct conclusions
from the data.

Our microbenchmarking results highlight the changes from the Broadwell to
the Cascade Lake architecture and their impact on the performance of HPC
applications. Probably the biggest modification in this respect was the introduc-
tion of a new L3 cache design.

This paper makes the following relevant contributions:

– We show how proper microarchitectural benchmarking can be used to reveal
the cache performance characteristics of modern Intel processors. We compare
the performance features of two recent Intel processor generations and resolve
inconsistencies in published data.

– We analyze the performance impact of the change in the L3 cache design
from Broadwell EP to Skylake/Cascade Lake SP and investigate potential
implications for HPC applications (effective L3 size, scalability).

– For DGEMM we show the impact of varying core and Uncore clock speed,
problem size, and sub-NUMA clustering on Cascade Lake SP.

– For a series of sparse matrix-vector multiplications we show the consequence
of the nonscalable L3 cache and the benefit of the enhanced effective L3 size
on Cascade Lake SP.

– To understand the performance characteristics of the HPCG benchmark, we
construct and validate the roofline model for all its components and the full
solver for the first time. Using the model we identify an MPI desynchroniza-
tion mechanism in the implementation that causes erratic performance of one
solver component.

This paper is organized as follows. After describing the benchmark systems setup
in Sect. 2, microarchitectural analysis using microbenchmarks (e.g., load and
copy kernels and STREAM) is performed in Sect. 3 to 5. In Sect. 6 we then revisit
the findings and see how they affect code from realistic applications. Section 7
concludes the paper.

Related Work. There is a vast body of research on benchmarking of HPC sys-
tems. The following papers present and analyze microbenchmark and application
performance data in order to fathom the capabilities of the hardware.
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Molka et al. [17] used their BenchIT microbenchmarking framework to thor-
oughly analyze latency and bandwidth across the full memory hierarchy of Intel
Sandy Bridge and AMD Bulldozer processors, but no application analysis or per-
formance modeling was done. Hofmann et al. [9,11] presented microbenchmark
results for several Intel server CPUs. We extend their methodology towards Cas-
cade Lake SP and also focus on application-near scenarios. Saini et al. [20,21]
compared a range of Intel server processors using diverse microbenchmarks,
proxy apps, and application codes. They did not, however, provide a thorough
interpretation of the data in terms of the hardware architectures. McIntosh-
Smith et al. [15] compared the Marvell ThunderX2 CPU with Intel Broadwell
and Skylake using STREAM, proxy apps, and full applications, but without
mapping architectural features to microbenchmark experiments. Recently, Ham-
mond et al. [6,7] performed a benchmark analysis of the Intel Skylake and Mar-
vell ThunderX2 CPUs, presenting results partly in contradiction to known hard-
ware features: Cache bandwidths obtained with standard benchmark tools were
too low compared to theoretical limits, the observed memory bandwidth with
vectorized vs. scalar STREAM was not interpreted correctly, and matrix-matrix-
multiplication performance showed erratic behavior. A deeper investigation of
these issues formed the seed for the present paper. Finally, Marjanović et al. [13]
attempted a performance model for the HPCG benchmark; we refine and extend
their node-level model and validate it with hardware counter data.

2 Testbed and Environment

All experiments were carried out on one socket each of Intel’s Broadwell-EP
(BDW) and Cascade Lake-SP (CLX) CPUs. These represent previous- and
current-generation models in the Intel line of architectures, which encompass
more than 85% of the November 2019 top500 list. Table 1 summarizes key
specifications of the testbed. Measurements conducted on a Skylake-SP Gold-
6148 (SKX) machine are not presented as the results were identical to CLX
(successor) in all the cases.

The Broadwell-EP architecture has a three-level inclusive cache hierarchy.
The L1 and L2 caches are private to each core and the L3 is shared. BDW
supports the AVX2 instruction set, which is capable of 256-bit wide SIMD. The
Cascade Lake-SP architecture has a shared non-inclusive victim L3 cache. The
particular model in our testbed supports the AVX-512 instruction set and has
512-bit wide SIMD. Both chips support the “Cluster on Die [CoD]” (BDW)
or “Sub-NUMA Clustering [SNC]” (CLX) feature, by which the chip can be
logically split in two ccNUMA domains.

Unless otherwise specified, hardware prefetchers were enabled. For all
microbenchmarks the clock frequency was set to the guaranteed attainable fre-
quency of the processor when all the cores are active, i.e., 1.6 GHz for CLX
and 2.0 GHz for BDW. For real application runs, Turbo mode was activated.
The Uncore clock speed was always set to the maximum possible frequency of
2.4 GHz on CLX and 2.8 GHz on BDW.
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Both systems ran Ubuntu version 18.04.3 (Kernel 4.15.0). The Intel com-
piler version 19.0 update 2 with the highest optimization flag (-O3) was used
throughout. Unless otherwise stated, we added architecture-specific flags -xAVX
(-xCORE-AVX512 -qopt-zmm-usage=high) for BDW (CLX). For experiments
that use MKL and MPI libraries we used the version that comes bundled
with the Intel compiler. The LIKWID tool suite in version 4.3 was used for
performance counter measurements and benchmarking (likwid-perfctr and
likwid-bench). Note that likwid-bench generates assembly kernels automati-
cally, providing full control over the executed code.

Table 1. Key specification of test bed machines.

Microarchitecture Broadwell-EP (BDW) Cascade Lake-SP (CLX)

Chip Model Xeon E5-2697 v4 Xeon Gold 6248

Supported core freqs 1.2–3.6 GHz 1.2–3.9 GHz

Supported Uncore freqs 1.2–2.8 GHz 1.0–2.4 GHz

Cores/Threads 18/36 20/40

Latest SIMD extension AVX2/FMA AVX-512

L1 cache capacity 18 × 32 KiB 20 × 32 KiB

L2 cache capacity 18 × 256 KiB 20 × 1 MiB

L3 cache capacity 45MiB (18 × 2.5 MiB) 27.5 MiB (20 × 1.375 MiB)

Memory Configuration 4 ch. DDR4-2400 6 ch. DDR4-2933

LD/ST throughput 2 LD, 1 ST (AVX) 2 LD, 1 ST (AVX512)

L1 - L2 bandwidth 64 B/cy 64 B/cy

L2 - L3 bandwidth 32 B/cy 16 B/cy + 16 B/cy

Theor. Mem. Bandwidth 76.8 GB/s 140.8 GB/s

Operating system Ubuntu 18.04.3 Ubuntu 18.04.3

Compiler Intel 19.0 update 2 Intel 19.0 update 2

Influence of Machine and Environment Settings. The machine and envi-
ronment settings are a commonly neglected aspect of benchmarking. Since they
can have a decisive impact on performance, all available settings must be docu-
mented. Figure 1(a) shows the influence of different operating system (OS) set-
tings on a serial load-only benchmark running at 1.6 GHz on CLX for different
data-set sizes in L3 and memory. With the default OS setting (NUMA bal-
ancing on and transparent huge pages (THP) set to “madvise”), we can see a
2× hit in performance for big data sets. The influence of these settings can be
seen for multi-core runs (see Fig. 1(a) right) where a difference of 12% is observed
between the best and default setting on a full socket. This behavior also strongly
depends on the OS version. We observed it with Ubuntu 18.04.3 (see Table 1).
Consequently, we use the setting that gives highest performance, i.e., NUMA
balancing off and THP set to “always,” for all subsequent experiments.
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Fig. 1. (a) Performance impact of NUMA balancing and transparent huge pages (THP)
on a load-only streaming benchmark on CLX. The left figure in (a) shows the single
core performance over different data set sizes for various OS settings. The right figure in
(a) shows the performance influence of the best and worst setting for different number
of cores with a data-set size of 3 GB per core. (b) Performance effect of sub-NUMA
clustering (SNC) on single core for the same load-only benchmark. For the experiment
in (a) SNC was enabled and in (b) NUMA balancing was disabled and THP set to
“always.”

Modern systems have an increasing number of knobs to tune on system
startup. Figure 1(b) shows the consequences of the sub-NUMA clustering (SNC)
feature on CLX for the load-only benchmark. With SNC active the single core
has local access to only one sub-NUMA domain causing the shared L3 size to
be halved. For accesses from main memory, disabling SNC slightly reduces the
single core performance by 4% as seen in the inset of Fig. 1(b).

3 Single-Core Bandwidth Analysis

Single-core bandwidth analysis is critical to understand the machine character-
istics and capability for a wide range of applications, but it requires great care
especially when measuring cache bandwidths since any extra cycle will directly
change the result. To show this we choose the popular bandwidth measurement
tool lmbench [16]. Figure 2 shows the load-only (full-read or frd) bandwidth
obtained by lmbench as a function of data set size on CLX at 1.6 GHz. Ten runs
per size are presented in a box-and-whisker plot.

Theoretically, one core is capable of two AVX-512 loads per cycle for an L1
bandwidth of 128 byte/cy (204.8 Gbyte/s @ 1.6 GHz). However, with the compiler
option -O2 (default setting) it deviates by a huge factor of eight (25.5 Gbyte/s)
from the theoretical limit. The characteristic strong performance gap between
L1 and L2 is also missing. Therefore, we tested different compiler flags and
compilers to see the effect (see Fig. 2) and observed a large span of performance
values. Oddly, increasing the level of optimization (-O2 vs -O3) dramatically
decreases the performance. The highest bandwidth was attained for -O2 with
the architecture-specific flags mentioned in Sect. 2. A deeper investigation reveals
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Fig. 2. Load-only bandwidth as a function of data set size on CLX. The plot compares
the bandwidth obtained from likwid-bench with that of lmbench. likwid-bench is
able to achieve 88% of the theoretical L1 bandwidth limit (128 byte/cy). The extreme
sensitivity of lmbench benchmark results to compilers and compiler flags is also shown.
The “zmm-flag*” refers to the compiler flag -qopt-zmm-usage=high.

that this problem is due to compiler inefficiency and the nature of the benchmark.
The frd benchmark performs a sum reduction on an integer array; in the source
code, the inner loop is manually unrolled 128 times. With -O2 optimization, the
compiler performs exactly 128 ADD operations using eight AVX-5121 integer
ADD instructions (vpaddd) on eight independent registers. After the loop, a
reduction is carried out among these eight registers to accumulate the scalar
result. However, with -O3 the compiler performs an additional 16-way unrolling
on top of the 128-way manual unrolling and generates sub-optimal code with a
long dependency chain and additional instructions (blends, permutations) inside
the inner loop, degrading the performance. The run-to-run variability of the
highest-performing lmbench variant is also high in the default setting (cyan
line). This is due to an inadequate number of warmup runs and repetitions in
the default benchmark setting; increasing the default values (to ten warmup runs
and 100 repetitions) yields stable measurements (blue line).

We are forced to conclude that the frd benchmark does not allow any pro-
found conclusions about the machine characteristics without a deeper investiga-
tion. Thus, lmbench results for frd (e.g., [6,7,20,21]) should be interpreted with
due care. However, employing proper tools one can attain bandwidths close to
the limits. This is demonstrated by the AVX-512 load-only bandwidth results
obtained using likwid-bench [24]. As seen in Fig. 2, with likwid-bench we get
88% of the theoretical limit in L1, the expected drops at the respective cache
sizes, and much less run-to-run variations.

1 16 integer elements in an AVX512 register.
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Fig. 3. Single-core bandwidth measurements in all memory hierarchy levels for load-
only and copy benchmarks (likwid-bench). The bandwidth is shown in byte/cy, which
is a frequency-agnostic unit for L1 and L2 cache. For main memory, the bandwidth in
Gbyte/s at the base AVX512/AVX clock frequency of 1.6 GHz/2GHz for CLX/BDW
is also indicated. Different SIMD widths are shown for CLX in L1. Horizontal lines
denote theoretical upper bandwidth limits.

Figure 3 shows application bandwidths2 from different memory hierarchy lev-
els of BDW and CLX (load-only and copy kernels). The core clock frequency was
fixed at 1.6 and 2 GHz for CLX and BDW, respectively, with SNC/CoD switched
on. The bandwidth is shown in byte/cy, which makes it independent of core clock
speed for L1 and L2 caches. Conversion to Gbyte/s is done by multiplying the
byte/cy value with the clock frequency in GHz. The effect of single-core L1 band-
width for scalar and different SIMD width is also shown in Fig. 3(a) for CLX.
It can be seen that the bandwidth reduces by 2× as expected when the SIMD
width is halved each time.

4 Intel’s New Shared L3 Victim Cache

From BDW to CLX there are no major observable changes to the behavior of L1
and L2 caches, except that the L2 cache size has been significantly extended in
CLX. However, starting from Skylake (SKX) the L3 cache has been redesigned.
In the following we study the effects of this newly designed non-inclusive victim
L3 cache.

4.1 L3 Cache Replacement Policy

A significant change with respect to the L3 cache concerns its replacement pol-
icy. Since SNB, which used a pseudo-LRU replacement strategy [1], new Intel
microarchitectures have implemented dynamic replacement policies [8] which

2 Application bandwidth refers to the bandwidth as seen by the application without
the inclusion of hidden data traffic like write-allocate transfers.
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Fig. 4. (a) Demonstration of the implications of the change in cache-replacement policy
across processor generations using the L3-cache hit rate. (b) Bandwidth for a load-only
data-access pattern on CLX (using likwid-bench). In (a), data for the older Intel Ivy
Bridge Xeon E5-2690 v2 (IVB) is included for reference.

continuously improved the cache hit rate for streaming workloads from gen-
eration to generation. Instead of applying the same pseudo-LRU policy to all
workloads, post-SNB processors make use of a small amount of dedicated leader
sets, each of which implements a different replacement policy. During execution,
the processor constantly monitors which of the leader sets delivers the highest
hit rate, and instructs all remaining sets (also called follower sets) to use the
best-performing leader set’s replacement strategy [19].

Experimental analysis suggests that the replacement policy selected by the
processor for streaming access patterns involves placing new cache lines only in
one of the ways of each cache set; the same strategy is used when prefetching
data using the prefetchnta instruction (cf. Section 7.6.2.1 in [1]). Consequently,
data in the remaining ten ways of the sets will not be preempted and can later
be reused.

Figure 4(a) demonstrates the benefit of this replacement policy by comparing
it to previous generations’ L3 caches. The figure shows the L3-cache hit rate3

for different data-set sizes on different processors for a load-only data access
pattern. To put the focus on the impact of the replacement policies on the
cache hit rate, hardware prefetchers were disabled during these measurements.
Moreover, data-set sizes are normalized to compensate the processors’ different
L3-cache capacities. The data indicates that older generations’ L3 caches offer
no data reuse for data set sizes of two times the cache capacity, whereas CLX’s
L3 delivers hit rates of 20% even for data sets almost four times its capacity.
Reuse can by detected even for data sizes more than ten times the L3 cache size
on CLX.

The fact that this improvement can also be observed in practice is demon-
strated in Fig. 4(b), which shows measured bandwidth for the same load-only

3 Based on performance-counter data for the MEM LOAD RETIRED L3 HIT and MISS

events.
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Fig. 5. L3 bandwidth of load, copy, and update benchmarks measured on CLX and
BDW. The saturation of L3 bandwidth on CLX architecture can be clearly seen. The
parallel efficiency of each NUMA domain is further labeled in the plot.

data-access pattern on CLX. For this measurement, all hardware prefetchers were
enabled. The data indicates that the L3-cache hit-rate improvements directly
translate into higher-than-memory bandwidths for data sets well exceeding the
L3 cache’s capacity.

4.2 L3 Scalability

Starting from Intel’s Sandy Bridge architecture (created in 2011) the shared L3
cache of all the Intel architectures up to Broadwell is known to scale very well
with the number of cores [11]. However, with SKX onwards the L3 cache archi-
tecture has changed from the usual ring bus architecture to a mesh architecture.
Therefore in this section we test the scalability of this new L3 cache.

In order to test the L3 scalability we use again the likwid-bench tool and run
the benchmark with increasing number of cores. The data-set size was carefully
chosen to be 2 MB per core to ensure that the size is sufficiently bigger than the
L2 cache however small enough such that no significant data traffic is incurred
from the main memory.

The application bandwidths of the three basic kernels load-only, copy and
update are shown in Fig. 5 for CLX and BDW. As the update kernel has equal
number of loads and stores it shows the maximum attainable performance on
both architectures. Note that also within cache hierarchies write-allocate trans-
fers occur leading to lower copy application bandwidth. The striking difference
between CLX and BDW for load-only bandwidth can finally be explained by the
bi-directional L2-L3 link on CLX which only has half the load-only bandwidth
of BDW (see Table 1).

In terms of scalability we find that the BDW scales almost linearly and
attains an efficiency within 90%, proving that the BDW has an almost perfectly
scalable L3 cache. However, with CLX this behavior has changed drastically
and the L3 cache saturates at higher core counts both with and without SNC
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enabled, yielding an efficiency of about 70%. Consequently, for applications that
employ L3 cache blocking it might be worthwhile to consider L2 blocking instead
on SKX and CLX. Applications that use the shared property of L3 cache like
some of the temporal blocking schemes [12,25] might exhibit a similar saturation
effect as in Fig. 5.

The effect of SNC/COD mode is also shown in Fig. 5, with dotted lines
corresponding to SNC off mode and solid to SNC on mode. For CLX with SNC
off mode the bandwidth attained at half of the socket (ten threads) is higher than
SNC on mode. This is due to the availability of 2× more L3 tiles and controllers
with SNC off mode.

5 Multi-core Scaling with STREAM

The STREAM benchmark [14] measures the achievable memory bandwidth of a
processor. Although the code comprises four different loops, their performance
is generally similar and usually only the triad (A(:)=B(:)+s*C(:)) is reported.
The benchmark output is a bandwidth number in Mbyte/s, assuming 24 byte
of data traffic per iteration. The rules state that the working set size should
be at least four times the LLC size of the CPU. In the light of the new LLC
replacement policies (see Sect. 4.1), this appears too small and we chose a 2 GB
working set for our experiments.

Since the target array A causes write misses, the assumption of the benchmark
about the code balance is wrong if write-back caches are used and write-allocate
transfers cannot be avoided. X86 processors feature nontemporal store instruc-
tions (also known as streaming stores), which bypass the normal cache hierarchy
and store into separate write-combine buffers. If a full cache line is to be writ-
ten, the write-allocate transfer can thus be avoided. Nontemporal stores are only
available in SIMD variants on Intel processors, so if the compiler chooses not to
use them (or is forced to by a directive or a command line option), write-allocates
will occur and the memory bandwidth available to the application is reduced.
This is why vectorization appears to be linked with better STREAM bandwidth,
while it is actually the nontemporal store that cannot be applied for scalar code.
Note that a careful investigation of the impact of write-allocate policies is also
required on other modern processors such as AMD- or ARM-based systems.4

Figure 6 shows the bandwidth reported by the STREAM triad benchmark
on BDW and CLX with (a,b) and without (c) CoD/SNC enabled. There are
three data sets in each graph: full vectorization with the widest supported SIMD
instruction set and standard stores (ST), scalar code, and full vectorization with
nontemporal stores (NT). Note that the scalar and “ST” variants have very simi-
lar bandwidth, which is not surprising since they both cause write-allocate trans-
fers for an overall code balance of 32 byte/it. The reported saturated bandwidth
of the “NT” variant is higher because the memory interface delivers roughly the
4 For example, on the Marvell ThunderX2 and many other ARM-based architectures,

an automatic detection of streaming patterns can be activated that allows to avoid
the write-allocate by claiming cache lines directly at the L2 cache [4].
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Fig. 6. STREAM triad scaling on BDW (closed symbols) and CLX (open sym-
bols) with (a) CoD/SNC enabled and compact pinning of threads to cores,
(b) CoD/SNC enabled and scattered pinning of threads to cores, and (c)
CoD/SNC disabled. “NT” denotes the use of nontemporal stores (enforced by the
-qopt-streaming-stores always), with “ST” the compiler was instructed to avoid
them (via -qopt-streaming-stores never), and the “scalar” variant used non-SIMD
code (via -no-vec). The working set was 2 GB. Core/Uncore clock speeds were set to
1.6 GHz/2.4 GHz on CLX and 2.0 GHz/2.8 GHz on BDW to make sure that no auto-
matic clock speed reduction can occur. Note that the “scattered” graphs start at two
cores.

same bandwidth but the code balance is only 24 byte/it. This means that the
actual bandwidth is the same as the reported bandwidth; with standard stores,
it is a factor of 4/3 higher. In case of BDW, the NT store variant thus achieves
about the same memory bandwidth as the ST and scalar versions, while on CLX
there is a small penalty. Note that earlier Intel processors like Ivy Bridge and
Sandy Bridge also cannot attain the same memory bandwidth with NT stores
as without. The difference is small enough, however, to still warrant the use of
NT stores in performance optimization whenever the store stream(s) require a
significant amount of bandwidth.

The peculiar shape of the scaling curve with CoD or SNC enabled and “com-
pact” pinning (filling the physical cores of the socket from left to right, see
Fig. 6(a)) is a consequence of the static loop schedule employed by the OpenMP
runtime. If only part of the second ccNUMA domain is utilized (i.e., between 10
and 17 cores on BDW and between 11 and 19 cores on CLX), all active cores will
have the same workload, but the cores on the first, fully occupied domain have
less bandwidth available per core. Due to the implicit barrier at the end of the
parallel region, these “slow” cores take longer to do their work than the cores
on the other domain. Hence, over the whole runtime of the loop, i.e., including
the waiting time at the barrier, each core on the second domain runs at the
average performance of a core on the first domain, leading to linear scaling. A
“scattered” pinning strategy as shown in Fig. 6(b) has only one saturation curve,
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Fig. 7. DGEMM performance subject to (a) problem size N and (b) number of active
cores for N = 40,000. (Color figure online)

of course. Note that the available saturated memory bandwidth is independent
of the CoD/SNC setting for both CPUs.

6 Implications for Real-World Applications

In the previous sections we discussed microbenchmark analysis of the two
Intel architectures. In the following we demonstrate how these results reflect
in real applications by investigating important kernels such as DGEMM, sparse
matrix-power-vector multiplication, and HPCG. According to settings used in
production-level HPC runs, we use Turbo mode and switch off SNC unless spec-
ified otherwise. Statistical variations for ten runs are shown whenever the fluc-
tuations are bigger than 5%.

6.1 DGEMM—Double-Precision General Matrix-Matrix
Multiplication

If implemented correctly, DGEMM is compute-bound on Intel processors. Each
CLX core is capable of executing 32 floating-point operations (flops) per cycle
(8 DP numbers per AVX-512 register, 16 flops per fused multiply-add (FMA)
instruction, 32 flops using both AVX-512 FMA units). Running DGEMM on
all twenty cores, the processor specimen from the testbed managed to sus-
tain a frequency of 2.09 GHz. The upper limit to DGEMM performance is thus
1337.6 Gflop/s.

Figure 7(a) compares measured full-chip performance of Intel MKL’s
DGEMM implementation on CLX in Turbo mode (black line) to theoretical
peak performance (dashed red line). The data indicates that small values of N
are not suited to produce meaningful results. In addition to resulting in sub-
optimal performance, values of N below 10,000 lead to significant variance in
measurements, as demonstrated for N = 4096 using a box-plot representation
(and reproducing the results from [7]).
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Figure 7(b) shows measured DGEMM performance with respect to the num-
ber of active cores. When the frequency is fixed (in this case at 1.6 GHz, which is
the frequency the processor guarantees to attain when running AVX-512 enabled
code on all its cores), DGEMM performance scales all but perfectly with the
number of active cores (black line). Consequently, the change of slope in Turbo
mode stems solely from a reduction in frequency when increasing the number of
active cores. Moreover, the data shows that SNC mode is slightly detrimental to
performance (blue vs. green line).

Similar performance behavior can be observed on Haswell-based processors,
which have been studied in [10]. However, on Haswell a sensitivity of DGEMM
performance to the Uncore frequency could be observed [11]: When running
cores in Turbo mode, increasing the Uncore frequency resulted in a decrease of
the share of the processor’s TDP available to the cores, which caused them to
lower their frequency. On CLX this is no longer the case. Running DGEMM on
all cores in Turbo mode results in a clock frequency of 2.09 GHz independent
of the Uncore clock. Analysis using hardware events suggests that the Uncore
clock is subordinated to the core clock: Using the appropriate MSR (0x620),
the Uncore clock can only be increased up to 2.4 GHz. There are, however, no
negative consequences of this limitation. Traffic analysis in the memory hierarchy
indicates that DGEMM is blocked for the L2 cache, so the Uncore clock (which
influences L3 and memory bandwidth) plays no significant role for DGEMM.

6.2 SpMPV – Sparse Matrix-Power-Vector Multiplication

The SpMPV benchmark (see Algorithm 1) computes y = Apx, where A is a
sparse matrix, as a sequence of sparse matrix-vector products. The SpMPV
kernel is used in a wide range of numerical algorithms like Chebyshev filter
diagonalization for eigenvalue solvers [18], stochastic matrix-function estimators
used in big data applications [22], and numerical time propagation [23].

The sparse matrix is stored in the compressed row storage (CRS) format
using double precision, and we choose p = 4 in our experiments. For the basic
sparse matrix vector (SpMV) kernel we use the implementation in Intel MKL
19.0.2. The benchmark is repeated multiple times to ensure that it runs for at
least one second, so we report the average performance over many runs.

We selected five matrices from the publicly available SuiteSparse Matrix
Collection [5]. The choice of matrices was motivated by some of the hardware
properties (in particular L3 features) as investigated in previous sections via
microbenchmarks. The details of the chosen matrices are listed in Table 2. The
matrices were pre-processed with reverse Cuthill-McKee (RCM) to attain bet-
ter data locality; however, all performance measurements use the pure SpMPV
execution time, ignoring the time taken for reordering.

L3 Scalability. Figure 8a shows the performance scaling of the ct20stif matrix
on CLX and BDW. This matrix is just 32 MB in size and fits easily into the caches
of both processors. Note that even though CLX has just 27.5 MiB of L3, it is
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Algorithm 1. SpMPV algorithm: y = Apx

1: double :: A[nnz]
2: double :: y[p + 1][nrows], x[nrows]
3: y[0][∗] = x[∗]
4: for i = 1 : p do
5: y[i][∗] = A ∗ y[i − 1][∗]

a non-inclusive victim cache. The applicable cache size using all cores is thus
the aggregate L2/L3 cache size, 47.5 MiB. The L3 bandwidth saturation of CLX
as shown in Sect. 4.2 is reflected by the performance saturation in the SpMPV
benchmark. For this matrix, BDW performs better than CLX since the sparse
matrix kernel is predominantly load bound and limited by the bandwidth of the
load-only microbenchmark (see Fig. 5a).

Despite this advantage, the in-cache SpMPV scaling on BDW is not linear
(parallel efficiency ε = 67.5% at all cores), which differs from the microbench-
mark results in Fig. 5a. The main reason is the active Turbo mode, causing the
clock speed to drop by 25% when using all cores (BDW: 3.6 GHz at single core
to 2.7 GHz at full socket; CLX: 3.8 GHz at single core to 2.8 GHz at full socket).

L3 Cache Replacement Policy. We have seen in Sect. 4.1 that CLX has
a more sophisticated adaptive L3 cache replacement policy, which allows it to
extend the caching effect for working sets as big as ten times the cache size. Here
we show that SpMPV can profit from this as well. We choose three matrices
that are within five times the L3 cache size (index 2, 3, and 4 in Table 2) and a
moderately large matrix that is 37 times bigger than the L3 cache (index 5 in
Table 2).

Figure 8b shows the full-socket performance and memory transfer volume
for the four matrices. Theoretically, with a least-recently used (LRU) pol-
icy the benchmark requires a minimum memory data transfer volume of
12 + 28/Nnzr bytes per non-zero entry of the matrix [3]. This lower limit is shown
in Fig. 8b (right panel) with dashed lines. We can observe that in some cases the

Table 2. Details of the benchmark matrices. Nr is the number of matrix rows, Nnz is
the number of nonzeros, and Nnzr = Nnz/Nr. The last column shows the total memory
footprint of the matrix (in CRS storage format).

Index Matrix name Nr Nnz Nnzr Size (MB)

1 ct20stif 52,329 2,698,463 52 32

2 boneS01 127,224 6,715,152 53 81

3 ship 003 121,728 8,086,034 66 97

4 pwtk 217,918 11,634,424 53 140

5 dielFilterV3real 1,102,824 89,306,020 81 1072
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Fig. 8. SpMPV benchmark results on CLX and BDW (CoD/SNC off, Turbo mode).
(a) Performance for the ct20stif matrix, which fits in the L3 cache. (b) Performance
and memory data transfer volume for four different matrices. Dashed lines mark upper
limits from a roofline model using the saturated load-only memory bandwidth.

actual memory traffic is lower than the theoretical minimum, because the L3
cache can satisfy some of the cacheline requests. Even though CLX and BDW
have almost the same amount of cache, the effect is more prominent on CLX.
On BDW it is visible only for the boneS01 matrix, which is 1.7× bigger than
its L3 cache, while on CLX it can be observed even for larger matrices. This is
compatible with the microbenchmark results in Sect. 4.1. For some matrices the
transfer volume is well below 12 bytes per entry, which indicates that not just
the vectors but also some fraction of the matrix stays in cache.

As shown in the left panel of Fig. 8b, the decrease in memory traffic directly
leads to higher performance. For two matrices on CLX the performance is higher
than the maximum predicted by the roofline model (dashed line) even when using
the highest attainable memory bandwidth (load-only). This is in line with data
presented in [3].

6.3 HPCG – High Performance Conjugate Gradient

HPCG5 (High Performance Conjugate Gradient) is a popular memory-bound
proxy application which mimics the behavior of many realistic sparse iterative
algorithms. However, there has been little work to date on analytic performance
modeling of this benchmark. In this section we analyze HPCG using the roofline
approach.

The HPCG benchmark implements a preconditioned conjugate gradient
(CG) algorithm with a multi-grid (MG) preconditioner. The linear system is
derived from a 27-point stencil discretization, but the corresponding sparse
matrix is explicitly stored. The benchmark uses the two BLAS-1 kernels DOT
and WAXPBY and two kernels (SpMV and MG) involving the sparse matrix.

5 http://www.hpcg-benchmark.org/.

http://www.hpcg-benchmark.org/
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Algorithm 2. HPCG
1: while k ≤ iter & rnorm/r0 > tol do
2: z = MG(A,r) − > MG sweep
3: oldrtz = rtz
4: rtz = 〈r,z〉 − > DOT
5: β = rtz/oldrtz
6: p = β ∗ p + z − > WAXPBY
7: Ap = A ∗ p − > SpMPV
8: pAp = 〈p,Ap〉 − > DOT
9: α = rtz/pAp

10: x = x + α ∗ p − > WAXPBY
11: r = r − α ∗ Ap − > WAXPBY
12: rnorm = 〈r,r〉 − > DOT
13: rnorm = sqrt(rnorm)
14: k + +

The chip-level performance of HPCG should thus be governed by the mem-
ory bandwidth of the processor. Since the benchmark prints the Gflop/s per-
formance of all kernels after a run, this should be straightforward to corrobo-
rate. However, the bandwidth varies a lot across different kernels in HPCG (see
Table 3): For the WAXPBY kernel (w[i]=a*x[i]+y[i]), which has a code bal-
ance of 12 byte/flop6, the reported performance is 5.14 Gflop/s on a full socket
of BDW. On the other hand, for the DOT kernel with a reported code balance
of 8 byte/flop the benchmark reports a performance of 10.16 Gflop/s. According
to the roofline model this translates into memory bandwidths of 61.7 Gbyte/s
and 81.3 Gbyte/s, respectively. The latter value is substantially higher than any
STREAM value presented for BDW in Fig. 6. In the following, we use perfor-
mance analysis and measurements to explore the cause of this discrepancy, and
to check whether the HPCG kernel bandwidths are in line with the microbench-
mark analysis.

Setup. For this analysis we use the recent reference variant of HPCG (version
3.1), which is a straightforward implementation using hybrid MPI+OpenMP
parallelization. However, the local symmetric Gauss-Seidel (symGS) smoother
used in MG has a distance-1 dependency and is not shared-memory parallel.
The main loop of the benchmark is shown in Algorithm2, where A is the sparse
matrix stored in CRS format.

As the symGS kernel consumes more than 80% of the entire runtime, the
benchmark is run with pure MPI using one process per core. The code imple-
ments weak scaling across MPI processes; we choose a local problem size of
1603 for a working set of about 1.3 GB per process. The maximum number of
CG iteration was set at 25, the highest compiler optimization flag was used

6 The plain WAXPBY kernel has a code balance of 16 byte/flop if a write-allocate
transfer must be accounted for; however, in HPCG it is called with w[] and x[]

being the same array, so no write-allocate applies.
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(see Table 1), and the contiguous storage of sparse matrix data structures was
enabled (-DHPCG CONTIGUOUS ARRAYS).

Performance Analysis of Kernels. We use the roofline model to model each of
the four kernels separately. Due to their strongly memory-bound characteristics,
an upper performance limit is given by Px = bs/Cx, where bs is the full-socket
(saturated) memory bandwidth and Cx is the code balance of the kernel x. As
we have a mixture of BLAS-1 (Nr iterations) and sparse (Nnz iterations) kernels,
Cx is computed in terms of bytes required and work done per row of the matrix.

The reference implementation has three DOT kernels (see Algorithm 2). Two
of them need two input vectors (lines 4 and 8 in Algorithm2) and the other
requires just one (norm computation in line 12), resulting in a total average code
balance of CDOT = ((2 ·16+8)/3) byte/row = 13.3 byte/row. All three WAXPBY
kernels need one input vector and one vector to be both loaded and stored, result-
ing in CWAXPBY = 24 byte/row. For sparse kernels, the total data transferred for
the inner Nnzr iterations has to be considered. As shown in Sect. 6.2, the opti-
mal code balance for SpMV is 12 + 28/Nnzr bytes per non-zero matrix entry,
i.e., CSpMV = (12Nnzr + 28) byte/row. Note that this is substantially different
from the model derived in [13]: We assume that the RHS vector is loaded only
once, which makes the model strictly optimistic but is a good approximation
for well-structured matrices like the one in HPCG. For the MG preconditioner
we consider only the finest grid since the coarse grids do not substantially con-
tribute to the overall runtime. Therefore the MG consists mainly of one symGS
pre-smoothing step followed by one SpMV and one symGS post-smoothing step.
The symGS comprises a forward sweep (0:nrows) followed by a backward sweep
(nrows:0). Both have the same optimal code balance as SpMV, which means
that the entire MG operation has a code balance of five times that of SpMV:
CMG = 5CSpMV.

The correctness of the predicted code balance can be verified using perfor-
mance counters. We use the likwid-perfctr tool to count the number of main
memory data transfers for each of the kernels.7 Table 3 summarizes the pre-
dicted and measured code balance values for full-socket execution along with
the reported performance and number of flops per row for the four kernels in
HPCG. Except for DDOT, the deviation between predicted and measured code
balance is less than 10%.

MPI Desynchronization. Surprisingly, DDOT has a measured code balance that
is lower than the model, pointing towards caching effects. However, a single
input vector for DDOT has a size of 560 MB, which is more than ten times the
available cache size. As shown in Sect. 4.1, even CLX is not able to show any
significant caching effect with such working sets. Closer investigation revealed
desynchronization of MPI processes to be the reason for the low code balance:
In Algorithm 2 we can see that the DOT kernels can reuse data from previous

7 See https://github.com/RRZE-HPC/likwid/wiki/TestAccuracy for validation of the
data groups.

https://github.com/RRZE-HPC/likwid/wiki/TestAccuracy
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Fig. 9. Performance of different kernels in the HPCG benchmark (reference implemen-
tation) as a function of active cores.

Table 3. Summary of the roofline performance model parameters and measurements
for HPCG kernels. Predicted and measured values for code balance and performance
are shown in columns three to six. The last two columns compare the predicted and
measured performance of the entire solver.

BDW DDOT 13.30 11.13 10.23 10.16 2 3 10.27 8.98

WAXPBY 24.00 24.11 5.67 5.14 2 3

SpMV 352.00 385.61 10.43 9.28 54 1

MG 1760.00 1952.09 10.43 9.04 270 1

CLX DDOT 13.30 12.68 17.29 14.34 2 3 17.37 13.95

WAXPBY 24.00 24.02 9.58 8.39 2 3

SpMV 352.00 382.68 17.64 14.46 54 1

MG 1760.00 1944.31 17.64 14.05 270 1

kernels. For example, the last DOT (line 12) reuses the r vector from the preced-
ing WAXPBY. Therefore, if MPI processes desynchronize such that only some
of them are already in DOT while the others are still in preceding kernels (like
WAXPBY), then the processes in DOT can reuse the data, while the others
just need to stream data as there is no reuse. To have a measurable perfor-
mance impact of the desynchronization phenomenon, a kernel x should satisfy
the following criteria:

– no global synchronization point between x and its preceding kernel(s),
– some of the data used by x and its predecessor(s) are the same,
– the common data used by the kernels should have a significant contribution

in the code balance (Cx) of the kernel.



430 C. L. Alappat et al.

In Algorithm 2, DOT is the only kernel that satisfies all these conditions and
hence it shows the effect of desynchronization.

This desynchronization effect is not predictable and will vary across runs
and machines as can be observed in the significant performance fluctuation of
DOT in Fig. 9. To verify our assumption we added barriers before the DOT
kernels, which caused the measured CDOT to go up to 13.3 byte/row, matching
the expected value. The desynchronization effect clearly shows the importance
of analyzing statistical fluctuations and deviations from performance models.
Ignoring them can easily lead to false conclusions about hardware characteristics
and code behavior. Desynchronization is a known phenomenon in memory-bound
MPI code that can have a decisive influence on performance. See [2] for recent
research.

Combining Kernel Predictions. Once the performance predictions for individual
kernels are in place, we can combine them to get a prediction of the entire HPCG.
This is done by using a time-based formulation of the roofline model and linearly
combining the predicted kernel runtimes based on their call counts. If Fx is the
number of flops per row and Ix the number of times the kernel x is invoked, the
final prediction is

THPCG =
∑

x

IxTx ∀x ∈ {DOT,WAXPBY,SpMV,MG}, (1)

where Tx = FxNr/Px. (2)

Table 3 gives an overview of Fx, Ix, and Cx for different kernels and compares the
predicted and measured performance on a full socket. The prediction is consis-
tently higher than the model because we used the highest attainable bandwidth
for the roofline model prediction. For Intel processors this is the load-only band-
width bS = 115 Gbyte/s (68 Gbyte/s) for CLX (BDW), which is approximately
10% higher than the STREAM values (see Sect. 5). Figure 9 shows the scaling
performance of the different kernels in HPCG. The typical saturation pattern of
memory-bound code can be observed on both architectures.

7 Conclusions and Outlook

Two recent, state-of-the-art generations of Intel architectures have been ana-
lyzed: Broadwell EP and Cascade Lake SP. We started with a basic microar-
chitectural study concentrating on data access. The analysis showed that our
benchmarks were able to obtain 85% of the theoretical bandwidth limits. For
the first time, the performance effect of Intel’s newly designed shared L3 vic-
tim cache was demonstrated. During the process of microbenchmarking we also
identified the importance of selecting proper benchmark tools and the impact
of various hardware, software, and OS settings, thereby proving the need for
detailed documentation. We further demonstrated that the observations made
in microbenchmark analysis are well reflected in real-world application scenarios.
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To this end we investigated the performance characteristics of DGEMM, sparse
matrix-vector multiplication, and HPCG. For the first time, a roofline model of
HPCG and its components was established and successfully validated for both
architectures. Performance modeling was used as a guiding tool throughout this
work to get deeper insight and explain anomalies.

Future work will include investigation of benchmarks for random and latency-
bound codes along with the development of suitable performance models. The
existing and further upcoming wide range of architectures will bring more param-
eters and benchmarking challenges, which will be very interesting and worthwhile
to investigate.
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Abstract. HPC has undergone a significant transition toward hetero-
geneous architectures. This transition has introduced several issues in
code migration to support multiple frameworks for targeting the vari-
ous architectures. In order to cope with these challenges, projects such
as Kokkos and LLVM create abstractions which map a generic front-
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paper presents a complementary framework for performance measure-
ment and analysis. Several performance measurement and analysis tools
in existence provide their capabilities through various methods but the
common theme among these tools are prohibitive limitations in terms
of user-level extensions. For this reason, software developers commonly
have to learn multiple tools and valuable analysis methods, such as
the roofline model, are frequently required to be generated manually.
The timemory framework provides complete modularity for performance
measurement and analysis and eliminates all restrictions on user-level
extensions. The timemory framework also provides a highly-efficient and
intuitive method for handling multiple tools/measurements (i.e., “com-
ponents”) concurrently. The intersection of these characteristics provide
ample evidence that timemory can serve as the common interface for
existing performance measurement and analysis tools. Timemory com-
ponents are developed in C++ but includes multi-language support for
C, Fortran, and Python codes. Numerous components are provided by
the library itself – including, but not limited to, timers, memory usage,
hardware counters, and FLOP and instruction roofline models. Addition-
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in comparison with popular tools.
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1 Introduction

A straightforward modular system for user-defined performance measurements
and analysis is notably absent from the vast ecosystem of specialized and generic
tools for sophisticated performance measurements and reflective analysis. The
modular compiler infrastructure provided by LLVM [18] is an excellent example
of the benefits of modularity and has resulted in the development of a number of
tools filling various generic and specialized needs [19]. The programming model
abstractions provided by Kokkos [7] is an excellent example of using C++ tem-
plates to provide a generic and flexible front-end that adapts to the targeted
architecture at compile-time. Timemory attempts to provide the analogue to
the LLVM infrastructure and Kokkos model in the realm of performance mea-
surement and analysis. The framework provides a viable solution to a common
instrumentation interface [5] for multiplexing performance measurement and
analysis tools. As a common instrumentation interface, timemory would pro-
vide a straightforward method for projects with existing instrumentation APIs
to locally1 wrap their existing API and introduce a significant number of new
capabilities to the existing tool2 while requiring no significant changes to the
tool itself. Projects that adopt the timemory framework gain the capability to
arbitrarily define multiple bundles of performance measurement and analysis
tools to the need of the project and can customize the activation or deactivation
of these tools in any manner desired. This paper will outline the current state of
performance tools, highlight several key innovations developed in timemory, and
then provide examples which demonstrate how these innovations have enabled
an extensive suite of tools and capabilities.

The timemory library is written in C++14 using template meta-
programming, is presently available for codes written in C, C++, Python, and
Fortran, and supports interoperability with CUDA, MPI, UPC++, and various
forms of multi-threading. Overall, the contributions through timemory include:

– Common performance measurement and analysis framework with full support
for user-level extensions

– Common framework for: generation of custom event-based, statistical, and/or
instrumentation profilers, custom preload libraries, and tool multiplexing

– Type-safe method for arbitrarily wrapping existing tools which can store data
in any valid C++ data type

– Highly-efficient instrumentation API with almost negligible overhead when
disabled at runtime

– Static and dynamic generation of arbitrary component bundles
– Intermixed call-stack tracing, timeline tracing, and flat-profiling
– Intermixed usage of different tool bundles3.
1 i.e., within the existing project’s code and without any required changes upstream

to timemory.
2 Cross-language support, JSON/XML/text output, call-graphs, statistical analysis,

plotting, sampling, MPI support, UPC++ support, multi-threading support.
3 e.g., Bundle of A, B, and C can be used alongside bundle of A, C, and D and/or

bundle of E, F, and G.
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2 Motivation

2.1 Need for Composite Components

A variety of performance measurement and analysis tools co-exist in the HPC
ecosystem. Well known examples include TAU [26], Caliper [6], HPCToolkit [1],
and LIKWID [28]. Each one of these tools provide their capabilities via design
abstractions around the lower-level interfaces for the hardware and generally
build upon the work of more specialized libraries such as PAPI [27], CUPTI [9],
and Linux perf [11]. However, each tool tends to have a special set of features
in order to provide a unique draw and use case scenario. The special set of
feature(s) provided by the tools form a complementary set of capabilities with
other tools which make them worthwhile to use in combination, however in order
to provide these features, there is commonly a redundancy in basic functional-
ity4 [17]. The most disparate properties among these tools is the data storage
model, control methods, and input/output schema. The data storage model is
influenced heavily by the design of the library and very few libraries directly
expose methods for accessing the raw data handled by the library. The plausible
culprit for the commonality of obscuring the data storage model is the type-
obfuscation that arises from either the common C-style generic design patterns,
which commonly restrict supported data types to those listed in an enumera-
tion, and the C++-style generic design pattern of dynamic polymorphism, which
requires non-templated types for virtual functions. Thus, providing access to the
data model is not only prone to complexity and lack of type-safety but it may
also have to be completely re-factored to support new features which necessitate
adding explicit support for new data types.

The timemory library presents an unique solution to these challenges.
Through the use of C++ template meta-programming, a package can expose
any number of unique C++ classes that encapsulate a performance measure-
ment or analysis pattern. The C++ classes have only one core requirement: a
public type declaration of the value_type used by the component, which can
be any valid C++ data type, including void. In timemory, only the names for
the functions are required to be consistent and there are no restrictions on the
data types that non-void functions return. Thus, one component can imple-
ment the data access member function get() to return a floating-point value
and another component can implement this member function to return an array
of integers. Once this minimal set of requirements is provided, the component
can be bundled alongside any number of other components into a single handle.
Various other capabilities/features can be activated within a component simply
through implementing the corresponding member function inside the compo-
nent. These member functions are optional due to extensive use of SFINAE and
empty base-class implementations of these functions. Additionally, components

4 Support for various parallelization models, data acquisition techniques (instrumen-
tation, sampling, etc.), and injection techniques (symbol overloading, binary modi-
fication, etc.).

https://en.wikipedia.org/w/index.php?title=Substitution_failure_is_not_an_error&oldid=913333652
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can be designed as composites of other components. This building-block charac-
teristic is unique to the framework and strengthens the argument for timemory
as the universal interface for performance measurement and analysis.

2.2 Need for Common Instrumentation Interface

Numerous tools provide instrumentation APIs that are directly inserted into the
application source code. The instrumentation APIs for many tools provide the
capability to enable/disable a tool when connected, provide context labels for
code regions, and track simple event metrics. Common examples include the
ittnotify [8] API for Intel’s VTune Amplifier and Advisor, NVTX for NVIDIA’s
Nsight and NVprof, gperftools, LIKWID, TAU, and Score-P [17]. Some of these
tools center their usage around a command-line tool while other tools, such as
the Caliper package, focus their usage around instrumentation markers.

The potential for performance degradation via instrumentation APIs, even
when dormant at runtime, is supported by the results of applying an edge-case
scenario of injecting 500,000 runtime-disabled instrumentation points within a
matrix multiplication benchmark (Fig. 1) to Caliper, TAU, and timemory [5].
Unlike statistical profilers which take measurements at a given rate, the over-
head of deterministic instrumentation cannot be fully negated and the overhead
associated with the instrumentation is subject to high variability: Caliper mark-
ers increased run time by ∼397% while TAU markers increased run time by
∼262%. These overheads stand in stark contrast to the methods provided by
timemory, which increased the runtime by a minimum of ∼42% and a maximum
of ∼82%. The primary objective of timemory is not to serve as a replacement for
Caliper, TAU, etc. but, instead, provide a common, easily extendable interface

Fig. 1. Average (samples = 100) runtime of 500,000 dormant instrumentations for
100×100 Matrix-Multiply Calculation. BASELINE is without instrumentation, CALIPER
is with Caliper instrumentation, TAU is with TAU instrumentation, and remaining
data points (FUNCTIONAL, HEAP, LIBRARY, STACK) use different models of timemory
instrumentation, where each model has different compile-time and runtime capabilities.
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for the deployment of performance analysis tools which is optimized for minimal
overhead when not being utilized. With concerns about unintentional overhead
minimized, HPC developers can safely provide built-in performance monitoring
which can deploy whichever performance tool(s) are available for a given archi-
tecture. Significant progress towards this objective has been achieved: at present,
timemory provides one or more components for ARM-MAP, Caliper, TAU, LIK-
WID, CrayPAT, Intel VTune, Intel Advisor, gperftools, CUDA, NVTX, CUPTI,
and PAPI.

2.3 Need for Object-Level Analysis Granularity

Profiling tools generally support one or more granularities for reporting per-
formance measurements: functions, addresses, lines, and files, in descending
order of commonality. However, object-oriented programming is a widely uti-
lized paradigm in HPC and is supported by C++, Fortran, and Python. The
tasking and object-oriented model presents a challenge for performance mea-
surements frameworks using a procedural design. Since the lifetime of objects
typically overlap, these designs struggle to distinguish measurements from differ-
ent objects when only the function, file, and line metadata is available. In other
words, object-oriented codes violate the LIFO model of function call-stacks that
these frameworks might rely upon. Furthermore, providing measurements and
analysis for an object introduces a configuration issue for the tool when objects
derive from abstract objects because the tool (ideally) should support the user
coalescing the data at an arbitrary abstraction granularity of their choosing.

The Geant4 toolkit [2] – a Monte Carlo particle transport toolkit for the
simulation of the passage of particles through matter5 – provides an excellent
example of the need for a new performance analysis model that tracks measure-
ments at object-level granularity. The Geant4 toolkit is written in C++ and
makes extensive use of dynamic polymorphism in ∼1 million lines of code. This
code supports 125+ derived particle types, 550+ derived physics processes, and
1000+ derived process models. Each particle type is subject to a unique set of
stochastic physics process model pairs whose probabilities for interaction and
secondary particle generation vary tremendously across the spectrum of particle
energy and target material. From a performance analysis standpoint, this cre-
ates a challenging task for determining improvable “hotspots” and traditional
performance analysis fails because the Geant4 execution model does not have
any core “hotspot” routines at function-level granularity.

Timemory proposes that in order to provide object tracing measurements
and customization of the abstraction-level6, the analysis tool itself should pro-
vide instrumentation objects which locally store intermediate data instead of
instrumentation points which invoke global functions or pseudo-instrumentation
objects which couple the global function invocations to RAII. With this inter-
mediate storage design, these instrumentation objects can be inserted into the

5 i.e., Radiation shielding, particle accelerator simulations, nuclear reactor design.
6 i.e., Ability to associate measurements with either the derived or abstract object.
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target object itself at the desired abstraction-level, be treated by the application
as just another member variable, increase data locality for measurements, and
support asynchronous paradigms. Timemory also proposes that a well-designed
framework adhering to these principles should provide multiple variants of these
instrumentation objects which (A) utilize RAII to easily couple of the measure-
ment scope to the scope of the target object and (B) permit the insertion or
activation of different analysis types during compilation and/or runtime.

3 Library Design

The timemory library is implemented in C++14 with the curiously recurring
template pattern (CRTP) style and was designed from the outset to:

– Allow for user-level implementations of tools (also called “components”)
– Allow for components to store measurements in an arbitrary data type
– Allow for arbitrary bundling of tools into a single handle
– Fully support modularity
– Utilize thread-local memory to minimize synchronization bottlenecks
– Strictly avoid spawning background work in library core
– Minimize any runtime logic which can be evaluated at compile-time
– Minimize overhead when enabled at compile-time but disabled at runtime
– Provide an easy-to-use interface.

A sample of the basic design of timemory in C++ is demonstrated in List-
ing 1.1.

Listing 1.1. Sample Usage in C++ of bundle of tools combining: wall-clock timer,
peak memory measurement, and various markers for external tools which are removed
at compile-time when not available.

1 #include <timemory/timemory.hpp>

2 using namespace tim::component;

3 using markers_t = type_list<nvtx_marker, likwid_marker, tau_marker>;

4 using tools_t = tim::component_tuple<wall_clock, peak_rss, markers_t>;

5
6 void foo() {

7 tools_t obj("foo"); // create marker

8 obj.start(); // start all components

9 sleep(1); // sleep for 1 second

10 obj.stop(); // stop all components

11 // access specific component

12 wall_clock* wc = obj.get<wall_clock>();

13 double elapsed = wc->get(); // computed value

14 std::string unit = wall_clock::display_unit();

15 // Output: "Wall time: 1.000 sec"

16 printf("Wall time: %f %s\n", elapsed, unit.c_str());

17 }

https://en.wikipedia.org/w/index.php?title=Curiously_recurring_template_pattern&oldid=924944028
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3.1 Components

Timemory uses the term “component” to refer to a single structure that provides
a certain functionality in the form of a “caliper” (i.e., a region enclosed by a
start and stop). The definition of a component is straightforward and a sample
is provided in Listing 1.2. In general, a component inherits from a templated base
class and specifies itself as the first template parameter and the data type that
the component will be using to store the metric (if any). The data type can be
any valid C++ data type, e.g., int, double, vector<MyClass>, etc. Components
that accumulate no internal data, such as a component that just forwards the
marker labels to another tool, can designate the data type as void.

Listing 1.2. Sample component in timemory. The macros TIMEMORY_<XYZ> are used
for type declarations and setting type-traits which activate various features for the
type, e.g., statistics, unit conversion support, category-specific formatting, etc.

1 TIMEMORY_DECLARE_COMPONENT(wall_clock)

2 TIMEMORY_CONCRETE_TRAIT(uses_timing_units, wall_clock, true_type)

3 TIMEMORY_CONCRETE_TRAIT(is_timing_category, wall_clock, true_type)

4 TIMEMORY_STATISTICS_TYPE(wall_clock, double)

5
6 struct wall_clock : public base<wall_clock, int64_t>

7 {

8 static string label() { return "wall"; }

9 static string description() { return "wall-clock timer"; }

10 static value_type record() { return get_time_now(); }

11 // ’value’ and ’accum’ are inherited int64_t

12 void start() { value = record(); }

13 void stop() { value = (record() - value); accum += value; }

14 // ’get_units()’ is base-class func controlled via type-traits

15 double get() const { return accum * get_units(); }

16 };

Several type-traits are provided to customize functionality, provide default
output formatting, unit support and conversions, etc. The details of the var-
ious type-traits are beyond the scope of this paper with the exception of the
most important type-trait with respect to portability: is_available. This type-
trait creates a template meta-programming system through which a type can
be forward declared, and thus be portably declared as a component in a bun-
dle, but filtered out entirely from the template specification before the type
is instantiated when is_available evaluates to false. Thus, tuple<A, B, C> will
be implicitly implemented as tuple<A, B> if component C is not available. The
timemory-provided components which rely on external packages use the absence
of the package-specific pre-processor definition (e.g., TIMEMORY_USE_PAPI) to set
the is_available type-trait to false. In addition to the portability benefits, this
feature also allows timemory to minimally function as a header-only library for
C++ codes.
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3.2 Data Storage

The data storage for each component type is handled dynamically via storage
class singletons that are templated on the component type. Each storage class
singleton maintains a unique call-graph per-thread (see Fig. 2) for components
which store data. This call-graph handles the accumulation of data throughout
the application and supports arbitrarily mixing hierarchical, timeline, and flat
node insertion modes. This approach also enables an arbitrary number of compo-
nents to operate independently by eliminating the need for fixed array limits on
the number of tools that can concurrently allocate storage space. Furthermore,
since the component-specific storage is templated on the component type, the
data storage model ensures complete type-safety.

3.3 Parallelism Support

The timemory framework supports both MPI and UPC++ for distributed mem-
ory parallelism and neither backend imposes any communication overhead during
the application execution outside of the one-time communication to the zeroth
rank during finalization and output. Within a process, timemory makes careful
use of static and thread-local static storage singletons to provide an efficient
model for multi-threading which is highly scalable for HPC. The data storage
model is entirely free from the use of synchronization primitives (i.e., locks)
outside of the construction and destruction of the storage singleton on a worker
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Fig. 2. Call-graph per component. Each node is keyed to a label (e.g., function name,
file, and line number) and contains an instance of the component. The component
instance within the call-graph provides data-storage only. When a new component
instance is created and assigned a label, the component searches the children of the
current node for a matching key. If no matching key is found, the component creates
a new node. The address of the node is stored internally in the component and when
the component instance is stopped, the instances adds its data to the component at
that node address and resets it’s internal data to zero. Thus, temporary component
instances are fully responsible for finding and creating new nodes for persistent storage
and updating those nodes.
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thread. During the construction of the storage singleton on a worker thread,
the master instance is locked to ensure the worker-thread can safely bookmark
(perform a copy) the current instrumentation stack location. Beyond this point,
no synchronization is performed until the worker thread terminates and cleans
up the thread-local memory. At this point, the manager thread is locked and
the instrumentation stack from the worker thread is inserted as a child of the
bookmarked location on the master thread.

3.4 Bundling Components

Timemory provides variadic template wrappers that allow multiple components
to be bundled together into a single handle whose member functions correspond
to the invocation of the similarly named member function for each component.
The variadic template wrappers rely on the temporary construction of operation
classes which are templated per-component (see Listing 1.3). These operation
classes are the key to the flexibility of timemory. These classes provide both the
ability to specialize the behavior of a component in a multiplexing scenario (see
Listing 1.4) and provide a generic interface for calling similarly named member
functions with different signatures per component through the use of SFINAE
(see Listing 1.3). The instantiation and translation of these concepts for a generic
variadic wrapper (Listing 1.5) is demonstrated in Listing 1.6.

Listing 1.3. Sample foo operation struct that is templated on a component. SFINAE
is used to determine desired call signature at compile-time and int and long are used
to control overload resolution. The first bar function checks if T has foo() member
function that accepts the given arguments. If this check fails, then the foo() member
function is called without arguments. This methodology can be easily extended to a
third option that does not call the member function at all.

template <typename T>

struct foo {

foo(T obj, args...) { bar(obj, 0, args...); }

auto bar(T obj, int, args...) -> decltype(obj.foo(args...), void())

{ obj.foo(args...); }

void bar(T obj, long, ...) { obj.foo(); }

};

Listing 1.4. Sample specialization of foo operation struct from Listing 1.3 for com-
ponent A where it is known that A does not accept arguments and has foo() member
function

template <> struct foo<A> { foo(T obj, ...) { obj.foo(); } };

https://en.wikipedia.org/w/index.php?title=Substitution_failure_is_not_an_error&oldid=913333652
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Listing 1.5. Sample of internals from generic variadic component wrapper (template
<typename... T> struct component_tuple) combining concepts from Listing 1.2 and
Listing 1.3. Template parameters are omitted for readability.

// generic data type held by component_tuple<T...>

tuple<T...> m_data;

// generic foo member function for component_tuple<T...>

void foo(args...) { apply<operation::foo<T>...>(m_data, args...); }

};

Listing 1.6. Sample of internals from generic variadic component wrapper
component_tuple<A, B> when Listing 1.5 is instantiated with types A and B. Template
parameters are omitted for readability.

// data type held by component_tuple<A, B>

tuple<A, B> m_data;

// foo member function for component_tuple<A, B> after instantiation

void foo(args...) {

operation::foo<A>(get<0>(m_data), args...);

operation::foo<B>(get<1>(m_data), args...); }

};

The variadic wrappers are provided in numerous flavors for compile-time
and runtime configuration via various type-traits, configuration bundles, call-
backs, and custom environment variables. These various methods are provided
to empower projects to build in custom schemes for utilizing their bundles which
conform to the standard configuration methods of the project itself. Thus, the
timemory framework facilitates the generation of easy-to-use built-in perfor-
mance diagnostic tools that can be quickly switched on by developers and users
when performance analysis is either desired or required.

4 Profiling Capabilities

Profilers generally fall into two broad categories: statistical profilers which oper-
ate via sampling and instrumentation profilers. Instrumentation profilers effec-
tively inject additional instructions into the binary and are implemented through
several methods: manually, automatic source-level (tool that modifies source-
code), compiler-assisted, binary translation (tool that modifies compiled binary),
runtime instrumentation (tool that supervises and controls execution after tem-
porarily injecting instrumentation), and runtime injection (a lightweight form
of runtime instrumentation that instruments jumps to helpers functions). At
present, timemory supports manual instrumentation, runtime instrumentation
for dynamically-linked binaries via Gotcha [23], binary translation, runtime
instrumentation, and a simple command-line execution wrapper similar to the
UNIX command-line tool time except with extensions to include memory and
I/O values and rates and hardware counters. Additionally, timemory distributes
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a number of “instrumentation libraries” which provide simple function interfaces
for activating instrumentation around performance monitoring APIs exposed by
several commonly-used APIs, e.g., Kokkos, MPI, and OpenMP. These instru-
mentation libraries can be directly inserted into the application codes or injected
externally via binary translation or runtime instrumentation. For Python codes,
the timemory package supports context-managers and decorators for instrument-
ing specific functions and regions of code and can also leverage the built-in
debugging and profiling capabilities of the interpreter.

Dynamic Instrumentation. Timemory provides a command-line tool,
timemory-run, for runtime instrumentation and binary translation of
dynamically- and statically-linked binaries via the Dyninst [4] toolkit. The
command-line tool combines a number of features derived from various pos-
itive experiences with existing profiling tools. These features include: using
regular expressions (regex) and/or text files for precise selection of which
modules and functions to instrument (inclusive, exclusive, and inclusive/ex-
clusive unions), lightweight stub instrumentation during binary translation for
LD_PRELOAD, loop instrumentation, defining the default set of components during
binary translation, insertion of user-defined functions from custom instrumen-
tation libraries, and two different modes which offer a choice between whether
the dynamic instrumentation is affected by manual timemory instrumentation
with the C/C++/Fortran library interface. With respect to these two different
“modes” of instrumentation, an application using manual timemory instrumen-
tation may be precisely configured at a high-level to collect different components
in different regions of the code and dynamic instrumentation may be deployed
for fine-grained analysis. In one scenario, a user may want to keep these precise
configurations intact as a reference point for the overhead of the fine-grained
analysis. In another scenario, the user may want to propagate these precise
configurations to the dynamic instrumentation. The aforementioned “modes” of
instrumentation address these two scenarios. In one mode, the set of compo-
nents collected by the dynamic instrumentation points are configurable via its
own distinct environment variable and unaffected by changes to the component
collection set via the library interface. In the second mode, instrumentation is
synchronized with the manual instrumentation: both the manual and dynamic
instrumentation are configurable with the same environment variable and mod-
ifications to the instrumentation component set via the library interface are
applied to the dynamic instrumentation.

Statistical Profiling. At present, timemory does not provide an API for the
generation of performance measurements via sampling on par with the facili-
ties for instrumentation. However, the need for this capability was factored into
the design of the library and is currently being deployed in the timem execution
wrapper. This command-line tool is similar to the UNIX time command except it
extends the measurement set beyond timers to include resource usage and hard-
ware counter measurements. This command-line tool uses a fork + execv model
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and thus, in order to post-process and produce output, only the parent process
can invoke start and stop on the component bundle since the child process never
returns. Although this model does not present issues for numerous components
that either inherently include or are configurable to include activity within child
processes, certain components such as those which read from Linux process ID
files (e.g., /proc/<PID>/statm) or hardware counters must record measurements
at or very near the end of the child process but before the child process exits and
execution on the parent process resumes (where stop on the component bundle
in the parent process is called). Thus, when building this command-line tool,
the components with this criteria must be customized to sample their value(s)
during an interrupt and measurements during the stop operation must be either
be discarded or the operation itself should not be invoked. Through the use
of a local specialization on the corresponding operation classes introduced in
Sect. 3.4, this is easily accomplished: operation::start<T> and operation::stop<

T> for any component T requiring sampling is locally specialized so that the start
and stop member functions of an instance of T are never invoked when start or
stop is invoked on the component bundle and operation::sample<T> is special-
ized for these components to update their values accordingly. The success of this
model for the timem executable will likely serve as a template for the creation of
independent sampling libraries which can be inserted into applications directly
and/or through the dynamic instrumentation command-line tool.

Gotcha Support. The timemory library simplifies using Gotcha for re-writing
the Global Offset Table on the Linux operating system that links inter-library
call-sites and variable references to their targets. In general, a set of components
for performance measurement or analysis can be injected around any externally
linked function in as little as 2–3 lines of code plus one line for each function to
be wrapped.

Listing 1.7 demonstrates a hypothetical timemory Gotcha implementation
which wraps a wall-clock timer around the C exp(double) function and a C++
function, sum_exp, which takes an array of floating-point values and accumulates
the result of calling exp in each value. Thus, invocation of the sum_exp function
with two floating-point values results in a nested hierarchy of one wall-clock mea-
surement around sum_exp at depth 0 and two wall-clock measurements around
exp as children of sum_exp in the call-graph (see Listing 1.8).

Listing 1.7. Sample Gotcha specification around two external dynamically-linked func-
tions: exp and sum_exp

1 using wc_t = component_tuple<wall_clock>;

2 using got_t = gotcha<2, wc_t>;

3
4 extern "C" double exp(double);

5 double sum_exp(vector<double>);

6
7 int main() {
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8 got_t::get_initializer() = []()

9 { TIMEMORY_C_GOTCHA (got_t, 0, exp);

10 TIMEMORY_CXX_GOTCHA(got_t, 1, sum_exp); };

11
12 auto_tuple<got_t> obj("example");

13 auto ret = sum_exp({ 1.0, 2.0});

14 }

Listing 1.8. Abbreviated output for Listing 1.7

| LABEL | COUNT | DEPTH | METRIC | UNITS | SUM |

|-------------|----------|----------|----------|----------|----------|

| >>> sum_exp | 1 | 0 | wall | msec | 0.072 |

| >>> |_exp | 2 | 1 | wall | msec | 0.043 |

In addition to instrumenting functions, the timemory Gotcha component
can be used to provide wholesale function replacement of the Gotcha wrappee
when (1) a third template parameter is provided, (2) the third template param-
eter is a timemory component, and (3) the timemory component provided as
the third template parameter has an overloaded function operator (operator())
whose return type and arguments match the function being wrapped, e.g., to
replace double exp(double), the timemory component provided as the third tem-
plate parameter must provide double operator()(double). Thus, not only can
the timemory Gotcha component be utilized to instrument external function
calls but it can also be utilized to provide wholesale replacement of external
function calls for optimization, as illustrated in Sect. 5.2. Finally, similar to the
operator() overloading scheme, components which are instrumenting functions
instead of replacing them can provide void audit(Args...) member functions
where Args... matches the function parameter types of the original function
and/or the return type of the original function to gain access to the values of
the input parameters before the original function is invoked and the return value
of the original function before it returns.7

Instrumentation Libraries. Timemory distributes several stand-alone
libraries which can be utilized to activate instrumentation around APIs which
provide their own performance monitoring framework, e.g., Kokkos, MPI, and
OpenMP. With respect to Kokkos, timemory generates one traditional profil-
ing library whose selection of components is configurable via environment vari-
ables at runtime and then over a dozen of pre-configured profiling libraries
with dedicated functionality, e.g., kp_timemory_trip_count.so is explicitly config-
ured to collect trip-counts, kp_timemory_cpu_flops.so is explicitly configured to
count floating-point operations, etc. Concerning OpenMP, timemory distributes
a library that provides instrumentation via the OMPT [13] call-back system.

7 Users can also alternatively provide void audit(string, Args...) if the (deman-
gled) name of the function is required.
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For MPI, timemory distributes a library which leverages it’s Gotcha capabilities
to wrap the equivalent of the PMPI [22] interface without breaking any exist-
ing user-defined MPI functions using the PMPI interface. Additionally, both the
OpenMP and MPI instrumentation libraries provide reference counting modes
to enable scoped instrumentation. Although these libraries will satisfy the needs
of the vast majority of use cases, we would like to note that the implemen-
tation of these instrumentation libraries is straight-forward and the MPI and
OpenMP instrumentation libraries require less than 100 lines of code – with min-
imal effort these libraries can be customized to include user-defined components
which, when paired with the Gotcha method to wrap the targeted function call,
can produce instrumentation libraries which are capable of replacing the original
function call or analyzing the input parameters and return values of the function
call and then inserted into the binary via the dynamic instrumentation tool.

5 Novel Use Cases

5.1 Performance Measurements and Analysis in Geant4

Section 3.4 introduced the concept of using timemory to build an extensible,
built-in performance measurement and analysis framework that conforms to the
design of the project. This concept was put into practice within the Geant4
toolkit, whose description was provided in Sect. 2.3.

The Geant4 source code implements a G4TiMemory header file which pro-
vides empty macro replacements when Geant4 is configured without timem-
ory support. When Geant4 is configured with timemory support, Geant4 takes
advantage of the pre-defined tim::auto_timer bundle to instrument always-on
high-level measurements around approximately two dozen core routines. To pro-
vide user-customizable performance analysis in low-level functions invoked at a
high frequencies, Geant4 defines a G4Profiler class templated on the value of the
profiler type enumeration and a variadic list of types that form an instrumenta-
tion context (see Listing 1.9). Using this scheme, each instrumentation instance
can arbitrarily adapt to the runtime data analyzed in the callbacks and selec-
tively: enable/disable the instrumentation, customize the label, and add/remove
components.

Listing 1.9. Geant4 Profiler Definitions for timemory. The query, label, and tweak

functions apply their arguments to call-backs provided by the user-application.
G4ProfilerBundle is an alias to the timemory user_bundle component which pro-
vides an interface for manipulating an array of components during runtime.

template <size_t Category, typename... Types>

class G4Profiler {

using type = tim::auto_tuple<G4ProfilerBundle<Category>>;

static bool query(Types...);

static string label(Types...);

static type& tweak(type&, Types...);

};
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Listing 1.10. Hypothetical User Configuration of G4TrackProfiler which only instru-
ments Electrons, customizes the label to reflect the physical volume of track, and
defaults to wall-clock and thread-specific cpu-clock timers for instrumentation unless
the electron energy is below 100 keV, at which point the API supplements the
instrumentation to include data collection for the classical roofline plot on the CPU.
Data types abbreviated for readability, assume all code is specifically applied to the
G4TrackProfiler.

get_query() = [](G4Track* t) { return t->GetType() == Electron; };

get_labeler() = [](G4Track* t) { return t->GetVolumeName(); };

get_tweak() = [](auto& p, G4Track* t) {

if(t->GetEnergy() < 100.*keV) { p.insert<cpu_roofline_flops>(); }

return p;

configure<wall_clock, thread_cpu_clock>();

};

5.2 Mixed-Precision Analysis

Floating-point arithmetic [15,16] is ubiquitous in High Performance Computing
applications and it is the source of numerical bugs [10]. Due to the complexity of
understanding the impact of floating-point arithmetic on result accuracy, many
applications are written entirely with double precision despite the growing gap
between half, single, and double precision performance [21].

The precision required in different phases of an application to achieve the
desired precision in the result remains an open question. One of the projects
at NERSC consists of developing a systematic approach to optimize scientific
applications using multiple precisions for calls to mathematical library functions
(exp, log, sin, cos, etc.). The basic idea is to intercept these function calls and to
execute some of them in lower precision, searching the space by using existing
heuristics [25].

Section 4 introduced the timemory Gotcha capability for providing wholesale
function replacement for optimization purposes and Listing 1.11 demonstrates
the simplicity of this feature: the struct mixed_prec_exp_t shown there is a fully-
defined timemory component. Additionally, as a by-product of the object-based
design of and reference counting within the Gotcha component, timemory intro-
duces the concept of a “scoped Gotcha”, which deactivates the Gotcha wrapper
when no object of that Gotcha component is within a start/stop region. Thus,
in the mixed-precision analysis scenario, the developer can perform piece-wise
analysis by simply changing the scope(s) of one or more instances of this com-
ponent within a variadic wrapper, executing the application, and validating the
result(s) until all regions which permit mixed-precision have been identified.
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Listing 1.11. Using the Gotcha framework through timemory component

struct mixed_prec_exp : tim::component::base<mixed_prec_exp, void>

{

double operator()(double v) { return PrecisionTuner(expf, exp, v); }

};

// pair the operator of mixed_prec_exp with a Gotcha

using mixed_prec_exp_t = gotcha<1, tuple<>, mixed_prec_exp>;

5.3 Roofline

The roofline model [29] is a visually intuitive performance model used to bound
the performance of various numerical methods and operations running on multi-
core, many-core, or accelerator processor architectures. It is a valuable tool in
HPC to determine inherent performance limitations related to locality, band-
width, and different parallelization paradigms.

The roofline model is an excellent example of the benefits of the timemory
design. The generation of a roofline plot requires 3 capabilities: (1) a method
for measuring the wall-clock run-time for all the desired regions, (2) a method
for collecting the desired hardware-counter values for the all the desired regions,
and (3) an empirical method for approximating the peak performance charac-
teristics (i.e., the “roof” part of the roofline). Although numerous existing tools
undoubtedly included the capabilities #1 and #2 and capability #3 could be
provided by the user’s runtime, these tools do not expose enough modularity for
this calculation to be fully integrated into the tool itself with respect to input
and output. In other words, the lack of modularity in these tools necessitates the
user engage in post-processing of the data outside of the application execution
in order to generate the final result. Within the timemory framework, combining
these three capabilities into a stand-alone output is arbitrary to provide since (1)
there are no restrictions with respect to components using other components, (2)
components are designed to be fully-functional when used explicitly instead of
through a variadic wrapper, and (3) explicitly used component instances without
variadic wrappers do not interact with the global call-graph storage unless the
insert_node() and pop_node() member functions are invoked8.

At present, timemory is the only existing tool, to the knowledge of the
authors, that is capable of generating the roofline for both the CPU and GPU.
Furthermore, timemory contains a built-in extension of the Roofline Model
Toolkit [20] that is capable of stand-alone execution and provides a level of cus-
tomization unavailable in any existing Roofline tools. The design of the roofline
toolkit is such that the traditional algorithms for calculating the various peak-
performance metrics of the roofline, e.g., fused-multiply-add operations, can be
customized within user applications in order to better emulate the operations of
the target application.

8 Thus, this eliminates the potential for data-corruption in the call-graph storage.
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5.4 Instruction Roofline

Timemory provides support for instructions roofline plot generation on the GPU
for applications which are integer heavy and do not make use of floating-point
instructions. In [12] authors have used a GPU Kernel of Smith-Waterman algo-
rithm [3] (GPU-BSW) as a case-study. Here, we use the Diagonal-Major memory
indexing version of the same kernel to validate the timemory generated instruc-
tion roofline against the manually generated one in [12].

We used timemory’s built-in features to auto-generate the instruction roofline
shown in Fig. 3. It can be observed that the timemory generated roofline is similar
to the manually created roofline in [12] for the same kernel on the same GPU
(NVIDIA V100).

Fig. 3. Timemory generated instruction roofline for the diagonal major indexing GPU-
BSW kernel

6 Future Work

In the near future, planned support includes MPI performance variables (MPI-
T) [24] and extensions to the Python interface for post-processing context-trees
and Jupyter notebooks. In the long-term, there are two goals for timemory which
have not been prioritized. The first goal is to add support for compiler-assisted
instrumentation in the form of compiler-flags and pragmas. The second goal is
support for ClangJIT [14] which could theoretically add limited support for the
injection of new components from C, Python, and Fortran.

7 Conclusion

This paper presents a unified framework for performance measurement and anal-
ysis, timemory. It provides an easy-to-use interface, supports multiple program-
ming languages, object-level measurement granularity, and superior performance
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in runtime overhead. The most significant contributions of timemory lie in its
modular design, straightforward implementation of complex analysis methods
such as the Roofline analysis, flexibility and extensibility for user-defined analy-
sis, simplifications to the Gotcha model, and wide applicability to modern archi-
tectures such as CPUs and GPUs. With these favorable features, HPC users and
performance engineers are expected to be able to perform profiling and analysis
of large scale HPC applications in an easier, faster, and more flexible way.
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Abstract. In an era where we can not afford to checkpoint frequently,
replication is a generic way forward to construct numerical simulations
that can continue to run even if hardware parts fail. Yet, replication often
is not employed on larger scales, as näıvely mirroring a computation
once effectively halves the machine size, and as keeping replicated simu-
lations consistent with each other is not trivial. We demonstrate for the
ExaHyPE engine—a task-based solver for hyperbolic equation systems—
that it is possible to realise resiliency without major code changes on the
user side, while we introduce a novel algorithmic idea where replica-
tion reduces the time-to-solution. The redundant CPU cycles are not
burned “for nothing”. Our work employs a weakly consistent data model
where replicas run independently yet inform each other through heart-
beat messages whether they are still up and running. Our key perfor-
mance idea is to let the tasks of the replicated simulations share some
of their outcomes, while we shuffle the actual task execution order per
replica. This way, replicated ranks can skip some local computations and
automatically start to synchronise with each other. Our experiments with
a production-level seismic wave-equation solver provide evidence that
this novel concept has the potential to make replication affordable for
large-scale simulations in high-performance computing.

1 Introduction

Supercomputing roadmaps predict that machines soon will suffer from hardware
unreliability [11]. A linear correlation between system size and the number of
failures has already been observed [27], as effects alike bias temperature insta-
bilities or hot carrier injection diminish the mean time between failures (MTBF)
for the individual components. For the next generation of machine sizes, a pre-
served or reduced MTBF however implies that codes have to be prepared for
parts of the machine going down unexpectedly, either through hard errors or
soft errors corrupting the code’s state. Alternatively, parts might become unac-
ceptably slow as hardware or software error correction [22] step in. We thus need
c© Springer Nature Switzerland AG 2020
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resilient codes. Numerical simulations will have to be at the forefront here. With
their massive concurrency going full speed and their strong causal dependencies
between intermediate results they are vulnerable to hardware failures.

For numerical simulations, we distinguish three strategies to inject resilience:
(i) Codes can be prepared algorithmically to recover from drop-outs of compute
nodes. (ii) Codes can checkpoint and restart if hardware fails. (iii) Codes can
run computations redundantly.

The first variant works only if the underlying problem allows us to recover
information even if data is “lost”. Elliptic equations fall into this category: If
we know the solution around a region that has dropped out, we can reconstruct
the solution within the domain [1,17]. Another example for algorithmic recovery
is the combination technique, where a drop-out of some data might (slightly)
reduce the solution accuracy but the overall algorithm can cope with it [18]. In
both cases, the numerical scheme itself has to be resiliency-ready.

Checkpointing works more in a black-box fashion, but the time to write a
checkpoint has to be significantly smaller than the MTBF. We also have to be
willing to spend CPU cycles and energy on I/O, which typically is costly [15].
For in-memory checkpointing which mitigates the speed and energy penalty, we
need “spare” storage. As checkpoints are costly one way or the other, partial
checkpoint-restart is a must. Containment domains [9] for example ask the pro-
grammer to decompose the application into task-similar constructs with manual
state preservation, error detection and recovery. Some tasking runtime systems
such as ParSEC [4] provide a framework for the “automatic” re-execution of
task sub-graphs in combination with checkpointing. A sophisticated example for
checkpointing is to run the recalculation with a different numerical scheme [22].
This realises a hybrid between an algorithmic approach and checkpoints.

If algorithmic resiliency is not at hand and checkpointing cannot be afforded,
replication of work, i.e., data redundancy, is the prime solution. If a node or
memory drops out, we simply swap in the replicated data. Cloud computing,
sensor networks, desktop grids, peer-to-peer networks, and almost every other
field that requires resilient computations [5] base their fault tolerance upon the
idea of replicating resources. Capability high-performance computing (HPC) in
contrast tends not to use replication. If we duplicate a computation, we effec-
tively half the machine—which renders the prime character of capability com-
puting absurd. Since supercomputers however tend to become so ill-balanced
w.r.t. I/O capabilities vs. compute resources that we cannot afford to check-
point frequently, we will eventually be forced to employ replication nevertheless
[12,13,24]. We therefore need to reduce its pain.

Our paper introduces a novel idea to do so, together with a prototypical
implementation of team-based MPI replication, called teaMPI. We demonstrate
its potential for a high-order discontinuous Galerkin code for hyperbolic equa-
tion systems, i.e., a solver for which we are not aware of any straightforward
algorithmic resiliency strategy. Our approach relies on replication on the MPI
rank level. Each rank is replicated K times, while the simulation per rank is
phrased in tasks. A task is an atomic unit, i.e., it has a well-defined input and
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output and, once it becomes ready, can be executed without any further depen-
dencies. To benefit from our techniques, codes need not be task-based only,
but the heavy workload should be phrased as tasks. Furthermore, we require
that tasks allow us to send their outcome via MPI, and they should have some
slack, i.e., should not be part of the critical path. That is, there is some freedom
to move their startup time around, without immediately penalising the overall
time-to-solution.

With such tasks, we can replicate each rank K times without a K× overhead
in compute time: We shuffle the task execution order per replication, i.e., we
make each rank process sets of ready tasks in a slightly different order. Further-
more, we let each rank offer its task outcomes to other replicas. Whenever a task
is about to be executed on a rank, this rank now can first check whether the task
outcome is already available from a replica. If so, it skips the execution. All tech-
niques affect the task runtime, i.e., can be invisible to the simulation [29]. To the
best of our knowledge, this is the first approach offering full simulation replica-
tion without a full multiplication of compute workload. It is thus a fundamental
contribution towards affordable replication-based resiliency in HPC.

While our paper focuses on speed of execution, we can detect certain hard
failures as well, using a concept called heartbeats. Since we keep redundant
copies of data, we could, similar to RAID systems, replace corrupt ranks. How-
ever, a discussion and presentation of such a swapping strategy is beyond the
scope of this paper. Furthermore, we do not yet link our work to MPI-based
run-through-stabilisation techniques [3,8,14], which inject further technical and
implementation difficulties. Finally, replication in HPC remains a double-edged
sword: While it offers fault-tolerance, it also requires to use more memory, net-
work bandwidth and compute units, i.e., CPU hours, per simulation run. Our
approach reduces the compute cost compared to näıve replication. We however
neglect the increased memory [2] and network stress. For many applications,
users will have to balance the replication-based resilience against these facets of
increased cost.

The remainder of the text is organised as follows: We establish our termi-
nology in Sect. 2 and sketch the replication mechanisms. Our core contribution
is the introduction of the task-based result sharing (Sect. 3) which eventually
reduces the workload per rank whenever results from a replica drop in on time.
The realisation and encapsulation of the whole idea is subject of discussion in
Sect. 4, before we study the method’s runtime implications (Sect. 5). A brief
conclusion and outlook in Sect. 6 wrap up the discussion.

2 Team-Based Resiliency with Heartbeats

We first introduce the terminology which underlies our algorithmic contributions.
The terminology is also adopted by our software teaMPI which realises the pro-
posed ideas. teaMPI plugs into the MPI standard profiling interface (PMPI).
By mapping physical ranks onto logical numbers and altering the MPI com-
municator size (number of ranks) exposed to SPMD user code, it transparently
reorganises and replicates MPI ranks in multiple teams:
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Fig. 1. Illustration of a replication-based run with three teams, each hosting three
ranks. In the baseline code, ranks communicate only with their team members (solid
arrows), but they send heartbeats in regular time intervals to their replicas (dotted
arrows, only illustrated for the logical ranks 2).

Definition 1 (Team). All the ranks of an application (without any redun-
dancy) form a team. If we run a code with K-fold redundancy, the global set
of ranks is split into K teams. Each team consists of the same number of ranks,
sees only the ranks of its own team, and runs asynchronously from all the other
teams. Each team consequently hosts one application instance of its own.

With this definition, each rank belongs uniquely to one team. If there are K
teams, each rank has K − 1 replicas belonging to other teams. The teams are
completely autonomous, i.e., independent of the other teams, and therefore con-
sistent only in themselves: We run the code K times and each run completes all
computations and has all data. There is neither some kind of lockstepping nor
any data sharing in this baseline version of teaMPI.

With teaMPI, our team-based replication for SPMD is totally transparent:
An application neither does need to replicate data structures nor does it need to
be aware of the replication. Teams are formed from subsets of MPI ranks at the
simulation start-up. All subsequent communication calls to both point-to-point
and collective MPI routines are mapped by teaMPI to communication within
the teams. We work with both data and computation redundancy: Each team is
a complete application instance, and, due to SPMD, a send within team A from
rank r

(A)
1 to rank r

(A)
2 will have a matching send in team B from r

(B)
1 to r

(B)
2 .

Running an application with teaMPI logically means the same as using a
communicator decomposition and making each communicator run the whole
simulation. Teams do not have to be consistent all the time. They are weakly
consistent and fully asynchronous without added overhead for message consis-
tency checking. Instead of an in-built sanity check for MPI messages, we rely on
low-frequency consistency checks:

Definition 2 (Heartbeat).Each rank in each team issues a heartbeat after every
ΔtHB seconds. Heartbeats are sent to all replica of a rank (replication multicast)
and only carry the elapsed wall time since the last heartbeat. They are sent out in
a fire-and-forget fashion.
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While all other MPI communication is restricted to intra-team only and
transfers data from the user space, heartbeats are simple non-blocking messages
exchanged between the replicas which do not carry any user data. We clearly
distinguish intra-team from inter-replica communication (Fig. 1). The latter is
hidden from the user code and is no arbitrary inter-team data exchange. It only
“couples” replicas. As mainstream HPC machines lack support for hard real-time
scheduling, we weaken the ΔtHB property: We launch a task which reschedules
itself all the time with a low priority and issues a heartbeat as soon as at least
ΔtHB seconds have expired since the last heartbeat task.

Definition 3 (Team divergence). A rank of a team diverges if the time in-
between two heartbeats increases compared to this in-between time in other teams.
A team diverges if at least one rank of this team diverges.

Divergence is a relative quantity. It results from a comparison of local in-between
times to the time stamps carried by arriving messages. If a rank is overbooked
with tasks and its heartbeat task thus is issued with Δt � ΔtHB, it is reason-
able to assume that any replica faces a similar delay of heartbeats as it “suffers”
from high workload, too. Divergence is also an observable property: A rank can
identify a slowing down replica, and a slow rank can identify itself as diverg-
ing by receiving faster heartbeats from other ranks. Finally, divergence is an
asynchronous property, as we use the timestamps written into the heartbeats to
compute in-between times. Local clocks do not have to be synchronised and we
try to eliminate MPI message delivery/progression effects.

Divergence nevertheless remains a statistic quantity: As we work in a multi-
tasking MPI+X environment, a single late heartbeat is not a reliable indicator
that a rank is suffering from errors or overheating and thus is going down. If
we observe divergence over a longer time span or define well-suited timeouts
ΔtHB ≥ Δttimeout, we can however spot failing ranks.

Each team does exactly the same calculations and thus eventually reaches
the same state, but the heartbeats run asynchronously on-top and do not impose
any synchronisation. They can identify that a rank is going down as it becomes
slower, or they can identify complete drop-outs. They are ill-suited to spot
data inconsistency. However, we hypothesize that data inconsistencies eventually
manifest in corrupted data and thus in the drop-out of a complete team; which
we can detect again.

Our transparent replication is similar to the one used in RedMPI, e.g. [16].
RedMPI and other replication models however enforce a strong consistency
model among replicated ranks, i.e., make all replicas have exactly the same
state subject to temporal shifts. Individual MPI messages are double-checked
against replicas for soft errors. This adds synchronisation. Strong consistency on
the message level furthermore becomes particularly challenging when wildcard
MPI receive operations are used. We avoid this cliff.

To constrain overhead, many approaches do not replicate data and compu-
tations automatically and persistently, but enable replication on-demand. The
ARRIA distributed runtime system, e.g. [28] schedules and replicates tasks based
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Algorithm 1. Wrap around the task scheduler with task sharing: We plug into
the transition from a ready task into a running task and skip the execution
if a task is already available from another team. In return, we send out our
task results whenever we have processed a task locally. This is done through
a special teaMPI routine, since teaMPI’s user interface does not support inter-
team communication. We assume the application has equipped the task with
MPI serialisation/deserialisation routines.
1: function runTaskIfNotReceived(task t)
2: id ← computeUniqueID(t)
3: if database.contains(id) then � id computed by other team, reuse outcome
4: copy received outcome into task’s output buffers
5: free task outcome
6: database.delete(id)
7: else � id not yet in database
8: runTask(t)
9: send (id) plus task outcome to all replicas

10: end if
11: end function

on predictions about their probability of failure, while the work in [23] allows
to spawn resilient tasks that use either replicated execution or checkpointing for
resilience depending on the programmer’s choice. Our replication is persistent.

3 Task Sharing

teaMPI makes both data as well as all computations redundant. In order to
save compute time, we however propose an algorithm where teams exchange
outcomes of tasks.

Definition 4 (Shareable task). The tasks of interest for this paper have four
important properties: (i) They are compute-heavy, i.e., exhibit a high arithmetic
intensity. (ii) They are not a member of the critical path. We can delay their
execution once they are spawned by some time without slowing down the appli-
cation immediately. (iii) They have an outcome with a relatively small footprint
relative to their compute cost, and the outcome is serialisable. We can send it
around through MPI. (iv) They have a globally unique id.

Uniqueness incorporates both the data the task is working on plus its action. As
we work with a time stepping solver, each task also is unique by the time step
it belongs to. Two tasks t(A) and t(B) from two different teams A and B thus
have the same id if and only if they perform the same action on the same data
of their respective application and are issued by the same time step.

From a user’s point of view, teaMPI allows ranks only to exchange data
within their team, while teaMPI itself exchanges heartbeats between teams. To
reduce the total cost despite the replication, we introduce further inter-team
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Algorithm 2. Event handler that is invoked every time a task drops in from
another team’s rank.
1: function handleTaskReceive(task t)
2: id ← computeUniqueID(t)
3: if database.contains(id) then � id already in database, do nothing
4: deallocate t � happens if two teams compute id around the same time
5: else � id not yet in database
6: database.insert(id,t)
7: end if
8: end function

data flow from hereon. Both this further flow and the heartbeats however do not
introduce arbitrary point-to-point connections. They solely remain inter-replica.

Our extension is a straightforward augmentation of the task runtime
(Algorithm 1): The runtime on a rank sends the outcome of any shareable task
that it has completed to all replicas, i.e., all the corresponding ranks in the
other teams. They receive and store them in a database. For every ready share-
able task that is to be launched, we hence validate first that its outcome has not
yet been received. If this is not the case, we execute the actual task (and eventu-
ally distribute its result). If a task outcome is already in our database, we do not
have to compute the task any more. It is sufficient to roll over the received task
result and to skip the actual computation. To make this work, the scheduling is
complemented by a receive handler listening for task results (Algorithm 2).

The database is a map from task ids onto task outcomes. An entry in the
database indicates that a task outcome has been received. A database of received
tasks as sketched so far would grow monotonically, since tasks might drop in
while they are computed. We thus equip each database entry with a timeout and
run a garbage collection regularly. It removes all entries and cleans up buffers for
tasks which are considered to be too old. Such a timeout could rely on heartbeat
counts (“received more than x heartbeats before”). For explicit timestepping, it
is however more convenient to use the time step counter. Entries older than the
most recent time step won’t be used anymore and can safely be discarded.

The algorithmic blueprint so far saves compute cost whenever a team lags
behind. The team running ahead completes its tasks and sends out the results.
The team behind picks up the results and skips its own computations. If two
teams are roughly running in-sync, we have to modify the scheduling slightly to
benefit from the exchange between replicas:

Definition 5 (Task shuffling). Let {t1, t2, t3, . . .} be a set of tasks that are
issued as ready or released as ready in one rush by our application. The
first team A schedules {t

(A)
1 , t

(A)
K+1, t

(A)
2K+1, . . .} prior to {t

(A)
2 , t

(A)
K+2, t

(A)
2K+2, . . .}

and so forth. The second team B schedules {t
(B)
2 , t

(B)
K+2, t

(B)
2K+2, . . .} prior to

{t
(B)
3 , t

(B)
K+3, t

(B)
2K+3, . . .} and eventually {t

(B)
1 , t

(B)
K+1, t

(B)
2K+1, . . .}. This pattern con-

tinues for all teams.
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Each team permutes its shareable tasks modulo the number of teams. In practice,
it is convenient to realise this through task priorities where high priority tasks
are scheduled prior to low priority tasks. We start from the application’s task
priorities but then add subpriorities with a modulo counter which realise the
shuffling. Such shuffling even works for applications which do not issue tasks
in a batch but fire them one by one. Shuffling weakens the task scheduling
consistency, and effectively the data consistency between the teams. The only
situation where it might not ensure a differing task execution ordering is when
ranks issue tasks non-deterministically. In this case, the randomness plus the
shuffling might yield similar task execution orders for different teams. Yet, this
is unlikely.

4 Implementation

teaMPI is implemented as a C++ library. Using the PMPI interface, teaMPI
intercepts the relevant MPI calls and redirects them onto communicators or dif-
ferent physical ranks, respectively. We mainly wrap blocking and nonblocking
point-to-point routines as well as collectives. Relying on PMPI makes teaMPI
portable. For a replication factor K, an application with R ranks is started
with a total of K · R ranks. This yields K teams with R ranks each. Within
MPI’s initialisation, teaMPI creates subcommunicators for all intra-team com-
munication. Each subsequent user MPI call is hijacked by teaMPI and internally
mapped onto an MPI call on the appropriate subcommunicator.

4.1 Implementation Decisions

Heartbeats Without a Hard Real-Time Environment. Issuing heartbeats during
the simulation requires particular care. If we make heartbeats dependent on the
progression of the numerical simulation (for example by posting a heartbeat after
every time step), a single slow rank would delay the heartbeats of other ranks
in its team: In classical domain-decomposition approaches (as in our example
application), point-to-point messages to “neighbour” ranks are required before a
new simulation time step can be started. A single slow rank will therefore delay
its neighbours, too. With a heartbeat after each time step, it would thus not
be possible to isolate an individual slow or failing rank. We could only identify
teams hosting a slow or dropped-out rank.

teaMPI’s heartbeats are issued by a special heartbeat task on each rank.
The heartbeat reschedules itself until program termination. It stores the time
stamp of the most recent heartbeat. Whenever invoked, the heartbeat task checks
whether at least ΔtHB seconds have elapsed since the last heartbeat. If so, a new
heartbeat message is issued and the stored time stamp is updated. We rely on two
assumptions: (i) Tasks run agnostic of MPI synchronization and the progression
of the numerical algorithm. That is, even if some ranks cannot proceed with their
next time step due to missing MPI messages, they will nevertheless process the
heartbeat task. (ii) If a rank crashes, it stops issuing heartbeats. If it slows
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down significantly, also its heartbeat task will be triggered less often, resulting
in increased time intervals between two heartbeats. This allows us to single out
a failing rank. The ΔtHB ensures that the system is not flooded with heartbeat
messages and is not overly sensitive to small performance fluctuations [6].

In our implementation, we use Intel’s Threading Building Blocks (TBB), an
abstraction from the actual hardware threading. TBB lacks support for real-time
tasking. This introduces uncertainty. We do not know when exactly heartbeats
are triggered. We can not ensure that the time in-between two heartbeat sends
equals the prescribed ΔtHB. We might even end up with situations where a rank
r(A) sends more heartbeats to its replica r(B) than the other way around.

This challenge seems to be amplified when ranks deploy their results to repli-
cas. Any deployment moves computational load between replicas and thus, on
purpose, unbalances ranks belonging to different teams. Real-time heartbeats
would be agnostic of this. However, their usage would contradict our assump-
tion that hardware failures announce themselves often through a performance
degradation. We launch heartbeats with a fixed, reasonably high priority and
rely on the runtime to schedule the heartbeats fairly and, more importantly,
roughly with the same time intervals ΔtHB on all teams. It is obvious that a
more mature solution would use a burn-in phase without any replication data
sharing to determine a proper priority. The important implementation remark is
that we use a comparison of local heartbeat in-between times to the in-between
times of received heartbeats to identify slow downs.

On the receiver side, we rely on MPI polling for the heartbeats: Whenever a
heartbeat task becomes active, we both send out our heartbeat (multicast) and
probe on available incoming ones. If there are heartbeats in the MPI queue, we
dump them into a local array. Unexpected message arrivals should be avoided
in MPI. Yet, heartbeats do not induce a major runtime penalty. With only the
timestamp, their message footprint is small.

Task Sharing. For the inter-team data exchange, teaMPI does not hijack stan-
dardised MPI, but offers dedicated routines. These routines expose additional
inter-team communicators and teaMPI’s knowledge about the number of teams
to the application. This way, the application can circumvent native MPI commu-
nication which is wrapped by teaMPI and only designed for intra-team exchange.
Task outcome sharing is multicasts sending one piece of data to all replicas. To
use these routines, we make use of a previously developed communication infras-
tructure that relaxes the binding of tasks to their spawning rank [26]: tasks and
their outcomes can migrate dynamically at runtime to other processes. For this,
we add meta data (the unique ids) to the tasks and MPI sending/receiving wrap-
pers around both the meta data, input arguments and output. All the wrapping
is not for free: Task outcome sharing in the resiliency context pays off if the tasks
are of reasonable workload. We hence solely wrap compute-heavy tasks [7].

Runtime Wrapper Realisation. Whenever a task outcome has been computed,
it is buffered first before we distribute it among the replicas. This is because
we use non-blocking communication and the teams run asynchronously. A team
progresses its computation irrespectively of teaMPI’s communication. Without
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task outcome buffering, outgoing data may become inconsistent, as the applica-
tion might already overwrite the send buffer with new data. To avoid some of
the overhead of the buffering, we wrap the sends into another condition clause:
We check before line 9 in Algorithm 1 once more whether the task outcome has
been received already. If so, we know that at least one replica is ahead and has
multicasted the task outcomes to the other teams while we computed locally.
There is no need to distribute the local outcome once more.

Buffering is also required on the receiver side. A zero-copy approach is impos-
sible, as the receiving rank might be slightly ahead of the sender and compute
the task already itself while it receives data. Alternatively, it might lag behind
and might not even have created the task including its output data fields.

4.2 Implementation Pitfalls

An efficient implementation of task migration between teams is technically del-
icate, as we are confronted with a highly dynamic communication pattern. We
cannot predict which team will be fast or how many tasks the teams exchange.
Instead, we receive unexpected MPI messages, as task outcomes arrive unexpect-
edly, while it is essential to fully overlap task sharing-related communication with
the application and to receive shared task outcomes as quickly as possible.

MPI Progression. Even though launched through non-blocking MPI, messages
may actually not be progressed internally by the MPI implementation [19].
Instead, communication request handles need to be checked for completion
repeatedly through MPI Test for example. Furthermore, standard MPI neither
triggers an interrupt if messages arrive unexpectedly nor supports a mechanism
to tell the runtime when investments into MPI progression calls actually pay off.

Too little investment into MPI progression would be lethal for our task
sharing approach. We are dealing with unexpected messages which might use
a rendez-vous protocol. If they are not detected in a timely manner, they are
useless for the replicas and even might delay the baseline application. We there-
fore need frequent MPI Iprobes. Probes detect (unexpected) incoming messages
and thus issue MPI Irecvs for pending incoming tasks which consequently are
progressed through MPI Test. Shared task outcomes consequently arrive timely.

Different to our previous work where we did interweave MPI progression with
the standard tasking [26], we found it vital for teaMPI to dedicate one core to
an asynchronously running communication thread [19], similar to our previous
work [20,25]. It is responsible for both the progression of MPI messages (using
MPI testing), MPI Iprobes for detecting messages, as well as the progression of
the task sharing algorithm (e.g., buffering received task outcomes and inserting
them into the task outcome database). It ensures that task sharing actually
overlaps and is hidden from the user code.

Memory and Communication Overhead. Task sharing runs risk to result in an
excessive memory footprint and to yield many outstanding MPI receive and send
handles. Due to the buffering, open communication requests do not allow us to
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Fig. 2. Visualization of an example setup simulated with our code by courtesy of
Maurizio Tavelli [30].

free allocated buffers and handles. We therefore limit the number of open send
requests per process. This effectively constrains the memory overhead and also
the number of open data exchange handles.

For explicit time stepping, this artificial limitation makes it convenient to
drop incoming tasks immediately if they belong to a past time step. In our
algorithmic blueprint, it is rare that this happens: If a rank is significantly ahead
of a replica, it has fed the replica’s team with task outcomes which in turn makes
the replica skip all task outcome sharing. Once we limit the number of tasks, we
however might run into situations where ranks receive outdated task outcomes.
While the garbage collection would remove these as well, it is reasonable to pipe
the incoming data into a temporary buffer right away.

5 Results

Our tests are conducted on the SuperMUC-NG supercomputer operated by the
Leibniz Supercomputing Centre. SuperMUC-NG consists of Intel Skylake Xeon
Platinum 8174 nodes, where each node hosts 2 × 24 cores, running at a nominal
clock frequency of 2.3 GHz. Intel Omnipath serves as interconnect. We use Intel
MPI, Intel Compiler 2019, and Intel’s TBB for the multithreading.

We benchmark performance and functionality against a seismology simula-
tion for the LOH.1 setup [10]. The simulation relies on an engine for solving sys-
tems of hyperbolic partial differential equations (PDEs) and employs an explicit,
high order Discontinuous Galerkin scheme in space and time (ADER-DG). Its
spatial discretisation stems from dynamically adaptive Cartesian meshes, while
the code phrases its execution in tasks relying on TBB. Although we study a
benchmark, i.e., strip the code off many features such as the integration of real
geometries and subsurface data or extensive postprocessing and I/O, these core
features already make up a challenging setup characterising production runs. An
example visualization obtained with our framework is shown in Fig. 2.
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Fig. 3. Time between heartbeats on 56 nodes on SuperMUC-NG if a single node is
increasingly delayed.

ADER-DG is a numerical scheme splitting up each time step into a space-time
prediction, a Riemann solve and a correction phase. We found the prediction to
be responsible for the majority of the runtime [6] and thus make only prediction
tasks migration-ready.

One core is sacrificed to a communication thread with task sharing. If not
stated differently, we do not take this additional core into account when we
compare the performance of teaMPI with task sharing to a baseline code without
task sharing: both the baseline as well as the task sharing versions use the
same number of cores for computations. We, however, also provide data for
one setup where both the baseline and the task sharing variant use the same
number of cores per process: i.e., the task sharing variant uses one core less for
computation than the baseline due to the core dedicated to the communication
thread. Readers may recalibrate all other data accordingly or agree that the
progression thread is a workaround for an MPI weakness.

5.1 Heartbeats

We first demonstrate how teaMPI can be used to identify failing or slow ranks
with ExaHyPE. Let 56 nodes of SuperMUC-NG host two teams, each consisting
of 28 MPI ranks. Each rank is responsible for one part of the three-dimensional
grid. It is evenly distributed, i.e., the setup is load-balanced. We configure each
rank to send a heartbeat every ΔtHB = 1 s, but artificially delay one rank in
the first team in order to simulate a failing node. This is achieved by repeatedly
pausing and resuming its process. A delay of 0.1 s kicks in after 100 s. From here,
the delays increase by 0.1 s every time. This resembles an anticipated scenario
where a failing node gradually decreases its clock frequency before it finally goes
down completely. teaMPI’s goal has to be to identify this situation on time.

A plot of the time in-between heartbeats over the first 20 timesteps (Fig. 3)
unmasks the failing rank. This rank delays its whole team 0. As a result,
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Fig. 4. Team divergence for two teams for different initial delays.

team 0 finishes later and posts more heartbeats compared to the ranks in team
1. Although one heartbeat per second is chosen, the task-based heartbeat imple-
mentation makes the actual task timings become fuzzy and consistently exceed
1s, resulting in scheduling effects.

Every rank observes its replicas through the heartbeats. We cannot directly,
i.e., in an unfiltered way, use the in-between time between heartbeats to identify
failures. Instead, time averages have to be used to assess the healthiness of a
replica. Although a slow rank affects all members of its team (and it is thus
difficult to identify a failing rank by measuring time per time step of a team),
our heartbeats are well-suited to identify which rank is to blame for a delay.

5.2 Robustness Against Temporary Delays

If a single rank and, hence, team is temporarily delayed through I/O or
non-persistent hardware deteriorations (overheating) for example, task sharing
should enable the delayed team to “catch up” with the faster teams. To validate
this hypothesis, we rerun the two-team setup but artificially delay the startup
of one rank of the first team: We pause the rank for a certain time t directly
at startup. To exclude stochastic effects, we make t ∈ [45 s, 65 s] uniformly dis-
tributed and run the code with and without task outcome sharing.

Let t
(A)
i be the timestamp of the start of the i–th timestep of team A. For

teams A and B, we can then quantify the divergence at the ith timestep as
d
(A,B)
i = |(t(A)

i −t
(B)
i )|. Without task sharing, an initial start offset between both

teams persists throughout the simulation (Fig. 4), while task outcome sharing
makes the divergence decrease rather quickly: the fast team “drags along” the
slow team, as it feeds it with task results.

We investigate this effect further by plotting the accumulated number of
reused tasks with task sharing for the two teams (Fig. 5). Initially, the undis-
turbed team reuses little to no task results from the replica team, as the disturbed



468 P. Samfass et al.

Fig. 5. Number of reused tasks per team per time step for different initial random
delays (with task sharing).

team cannot provide its results in a timely manner. At the same time, the dis-
turbed team reuses tasks starting from the first timestep. It catches up. For the
delayed team, the number of reused tasks per time step decreases over time as it
catches up. Accordingly, the number of reused tasks per time step increases for
the undisturbed team. Once the delayed team has catched up, the teams share
tasks evenly as a result of our shuffling approach.

5.3 Upscaling

We next study two strong scaling setups with two teams, where we gradually
increase the number of cores per rank or team, respectively (Fig. 6). We compare
the task sharing measurements to both a baseline that uses the same number
of cores for computation (Fig. 6a) and to a baseline that uses one additional
core for computation (the core that is sacrificed to a communication thread in
the task sharing variant, Fig. 6b). We start with a domain decomposition of the
computational grid that is well-balanced, using 28 partitions for example. These
28 partitions are mapped onto 28 ranks which are all deployed to one node.
Then we grant each rank more and more cores until the experiment eventually
spreads all 28 nodes. We do a similar experiment with 731 ranks or partitions,
respectively. This setup eventually employs 731 nodes and 35088 cores. Each
experiment is conducted for three polynomial orders of the underlying Discon-
tinuous Galerkin scheme. The polynomial order determines how expensive the
compute-heavy tasks for which we enable task sharing are relative to the total
runtime. The higher the order the more dominant these tasks.

Task sharing yields a speedup of up to 1.5× for most measurements. In fact,
task sharing can even compete with a baseline that uses an additional core for
computation in some cases, although at reduced speedups (compare Fig. 6a and
Fig. 6b). However, both experiments run into strong scaling effects at higher
core counts: If the number of cores per rank exceeds a certain threshold, the
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(a) Same number of computation cores for
baseline and task sharing.

(b) Baseline uses one additional core for
computation compared to task sharing.

Fig. 6. Up-scaling of two teams to up to 731 nodes and 35088 cores for varying polyno-
mial orders: Green lines show the normalized times per degree of freedom update if task
sharing is enabled, while the red lines illustrate the vanilla variant where computation
is done redundantly. (Color figure online)

speedup induced by teaMPI’s replication breaks down. This breakdown occurs
the earlier the smaller the polynomial order, i.e., the smaller the relative cost of
the shared compute tasks is relative to the total compute time. In the breakdown
regime, the rate of reused task outcomes decreases significantly up to the point
where hardly any computed result can be picked up by another team and all
computations are effectively replicated. We invest twice the compute resources,
but obtain the time-to-solution of a run without any replication.

For most setups, our task outcome sharing however pays off. Our two teams
double the number of cores and thus compute cost, but we get replication plus
a significant speedup by means of walltime. The advantageous property is lost
if the balancing of cores per rank to compute cost of the shared tasks becomes
disadvantageous—which is a direct implication of “too many cores per rank”:
With too many, the pressure on the communication system increases as tasks
are processed and sent at a higher speed. The single communication thread and
the interconnect can no longer sustain a fast enough transfer rate of task results.
It just becomes cheaper to run all computations locally even though they are
done somewhere else, too.

We continue our experimental section with further experiments where we use
more than two teams (Table 1). The speedup behaviour persists, yet, we need
an even higher relative compute load per task to benefit from yet another team.
More than three teams does not lead to any significant improvement of the time to
solution anymore. As three teams are sufficient to implement resiliency where two
“valid” ranks overrule the outcome of a corrupted one, we conclude that any usage
of more than three teams is likely esoteric. To confirm this hypothesis, experiments
with validation routines however are required. This is out of scope here.
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Table 1. Total cost (in CPU hours) and speedup (in time-to-solution) with task shar-
ing, each normalized to a single-team baseline at varying polynomial orders and number
of cores per team.

Total cost (CPUh) Speedup (time-to-solution)

Order Cores/team 2 teams 3 teams 4 teams 2 teams 3 teams 4 teams

7 56 1.39 1.69 2.22 1.43 1.77 1.80

7 112 1.38 1.73 2.04 1.45 1.74 1.96

7 224 1.35 1.66 1.93 1.48 1.81 2.07

7 448 1.36 1.60 1.85 1.47 1.88 2.17

8 56 1.35 1.63 2.05 1.49 1.84 1.96

8 112 1.34 1.61 1.92 1.50 1.86 2.08

8 224 1.30 1.57 1.84 1.54 1.92 2.18

8 448 1.30 1.53 1.71 1.54 1.96 2.34

9 56 1.30 1.61 1.94 1.54 1.86 2.06

9 112 1.25 1.47 1.81 1.61 2.04 2.21

9 224 1.24 1.44 1.68 1.62 2.09 2.38

9 448 1.21 1.47 1.57 1.65 2.03 2.54

k-fold replication comes at the expense of k-times increased total memory
consumption plus increased communication needs. On top of this, the bookkeep-
ing of task outcomes requires further resources. We quantified the memory over-
head of task sharing by repeatedly sampling each rank’s memory consumption
during program execution (Fig. 7) after the computational grid has been allo-
cated. In conjunction with system noise, task sharing yields a variable memory
consumption pattern as task outcomes are allocated and freed dynamically. Yet,
the typical additional memory overhead of task sharing remains under control
at around 20% additionally used memory.

Fig. 7. Memory consumption of task sharing vs the baseline variant without task shar-
ing for a selected representative rank.
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6 Conclusion and Outlook

Our paper introduces teaMPI, an MPI wrapper/plugin which replicates a sim-
ulation multiple times. We call the replicas teams. The teams run completely
asynchronously. They do however exchange heartbeats. If the time in-between
the heartbeats received vs. the local heartbeats diverges, we consider this to
be a reliable indicator for faults. While any rank can spot any performance
degradation of a replica rank, it is important to note that the heartbeats do
not synchronise the replicas at all and, thus, do not introduce any performance
penalty. The actual compute cost of replicas is reduced as we make each rank
share its task outcomes with the replicas which, whenever these task outcomes
drop in on time, skip their local computations and instead use the results from
another rank from another team. This technique reduces the total CPUh cost,
as long as the computation is phrased in tasks, and as long as we do not work
in the strong scaling regime: Enough ready tasks have to be available, so we can
shuffle their order and do not make threads idle.

Our paper introduces an elegant, minimalist and powerful new idea render-
ing replication in HPC economically feasible. It is however a conceptional piece
of work. To translate it into a production environment, we need, on the one
hand, the integration with modern MPI versions which support resiliency. On
the other hand, we have to solve four further fundamental challenges: First,
our code lacks a mature communication performance model for task sharing.
Specifically, it would never share too many task outcomes such that the overall
performance suffers. Second, the task outcome sharing makes the whole simula-
tion more sensitive to soft faults (bit flips, e.g.) [22]: If a task yields an invalid
outcome, this outcome might corrupt all other teams. There is a need to develop
checksums or hash techniques that can spot such cases and veto the pollution of
a run with invalid data. The heartbeat messages might be canonical candidates
to carry such crossvalidation records. Third, we have to generalise our notion of
shareable tasks. Our strategy relies on the fact that a code yields many share-
able tasks, and that these tasks make up a significant part of the runtime. To
make the concept applicable to a wider range of code characteristics, we have to
develop mechanisms that can migrate and share whole task subgraphs such that
more fine granular tasking benefits from our ideas, too. Finally, our approach
increases the pressure on the MPI interconnects. It will be subject of future work
to analyse how this pressure can be reduced. To this end, we plan to investigate
whether emerging technologies such as SmartNICs can be exploited to offload
the task sharing fully to the network hardware and to guarantee sufficient MPI
progress.
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Abstract. The ever increasing demand for higher memory performance
and—at the same time—larger memory capacity is leading the industry
towards hybrid main memory designs, i.e., memory systems that consist
of multiple different memory technologies. This trend, however, naturally
leads to one important question: how can we efficiently utilize such hybrid
memories? Our paper proposes a software-based approach to solve this
challenge by deploying a pattern-aware staging technique. Our work is
based on the following observations: (a) the high-bandwidth fast memory
outperforms the large memory for memory intensive tasks; (b) but those
tasks can run for much longer than a bulk data copy to/from the fast
memory, especially when the access pattern is more irregular/sparse. We
exploit these observations by applying the following staging technique if
the accesses are irregular and sparse: (1) copying a chunk (few GB of
sequential data) from large to fast memory; (2) performing a memory
intensive task on the chunk; and (3) writing it back to the large memory.
To check the regularity/sparseness of the accesses at runtime with neg-
ligible performance impact, we develop a lightweight pattern detection
mechanism using a helper threading inspired approach with two different
Bloom filters. Our case study using various scientific codes on a real
system shows that our approach achieves significant speed-ups compared
to executions with using only the large memory or hardware caching: 3×
or 41% speedups in the best, respectively.

1 Introduction

The performance of future computing systems relies less and less on compu-
tational power, but directly depends on both memory performance and capac-
ity [26,29]. At the same time, classical DRAM technologies are at risk in scaling
bandwidth/capacity, and thus systems built solely on them will face severe limi-
tations [29]. In order to counteract these trends, new and promising technologies,
such as 3D stacking, HMC [9] or HBM [18,23], have been developed, but face
limitations in terms of capacity and scalability [23]. Therefore, to increase the
memory capacity, DIMM-based off-package memories including NVRAM, such
as Intel’s 3D XPoint memory [16], are still needed, but also face limitations, this
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Fig. 1. Concept of our staging technique Fig. 2. Target architecture

time in terms of bandwidth-scalability due to power constraints on the mem-
ory bus/modules [8] and the number of off-package pins [32]. Driven by these
diverging observations, adopting hybrid memory architectures, which combine
different memory technologies on a single node, is an important design option
for next generation computing systems from supercomputers to main stream
systems [15,17,18,34,35].

While such hybrid memory systems have the potential to improve the per-
formance of memory intensive applications, it is still unclear how to exploit—at
the same time—both the available performance and the capacity on such hybrid
memory systems. As an answer to this open question, we propose a software-
based pattern-aware staging technique. Our core concept follows the funda-
mental observations1 demonstrated in Fig. 1: (a) the high-bandwidth fast mem-
ory outperforms the large memory for the memory intensive random updates
task, but (b) it takes a much longer time than the sequential copy tasks.

We exploit these observations to accelerate memory intensive tasks by using
the staging technique shown in the figure if the accesses are irregular and sparse:
(1) copying a large chunk of data from large to fast memory, (2) performing
accesses on the chunk, and (3) writing it back to the large memory. We apply
this technique when the data footprint is larger than the fast memory. In this
technique, the data is divided into chunks of a few GB, and the staged access
is, in turn, applied to each of them. Several recent studies also focus on the
data managements for hybrid memory systems [3,6,11,21,27,36,38], but none
of them exploits this large performance impact of the access pattern to improve
software-based data placement decisions at runtime.

To successfully enable our pattern-aware staging technique, we need to detect
when it is profitable to apply. For this, we propose a lightweight software-based
mechanism that dynamically samples small parts of the access sequence, ana-
lyzes the access pattern in terms of regularity/sparseness, and then decides—at
runtime—whether to apply staging or not. More specifically, we sample addresses
using our new mechanism inspired by helper threading [19,25], and then we
efficiently characterize the pattern based on two different detectors implemented
using Bloom filters: a Page Address Filter (PAF) for sparseness and a Stride

1 This experiment was performed on a real system described in Sect. 6. The same
number/size of memory references are issued for both the random/copy tasks (details
are provided in Sect. 2.3).
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Filter (SF) for regularity analysis. Finally, we propose a quantitative scheme to
detect if an application can likely benefit from staging or not.

The followings are the major contributions of this paper:

– We focus on the observations regarding the impact of access pattern on the
effectiveness of staging.

– Based on the above observations, we propose a software-based data manage-
ment scheme called pattern-aware staging .

– We propose a simple dynamic address sampling mechanism inspired by
software-based helper threading [19,25].

– We realize a lightweight pattern characterization scheme using two different
small Bloom filters: PAF and SF.

– We propose a quantitative approach to make a decision based on the outputs
of the above access pattern analysis.

– Finally, we evaluate our pattern-aware staging approach on a real system
using scientific kernels.

2 Staging Accesses in Hybrid Memory

Figure 2 illustrates the target architecture of this study: the processor has mul-
tiple separated memory controllers, each of which is connected to a set of mem-
ories: one consists of fast but small memories; while the other one consists of
large but slow memories. Looking forward, this kind of architecture is not only
considered indispensable for any next generation high performance computing
systems, covering exascale supercomputers and beyond [34,35], but is also poised
to find its way into mainstream systems [18]. One example of this is installing
both high-bandwidth 3D-stacked DRAMs (e.g., HBM [18,23] or HMC [9]) and
conventional DDR modules in one compute board, which is supported in recent
products such as Intel Knights Landing (KNL) processors [17] and Intel Agilex
SoCs [15], and will be so in the future systems [18,35]. Another example is inte-
grating both DRAM and NVRAM modules into DIMM slots, which is supported
in Intel Cascade Lake processors [16]. In general, they are heterogeneous in
terms of bandwidth as the 3D-stacked DRAMs can offer higher bandwidth
scalability [9,17,18,23], and the bandwidth of NVRAM is limited [16] due to the
significant memory access overheads [11,38].

2.1 Concept of Memory Staging

The goal of this research is to provide an easy to use way for memory
consuming/intensive applications to exploit the performance of the fast
memory, while also being able to utilize the capacity of the large mem-
ory in hybrid memory systems. In particular, to enjoy the bandwidth het-
erogeneity, we target memory-intensive multi-threaded applications with high
instruction/data/thread-level parallelisms, which thus can become bandwidth-
limited .
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Fig. 3. Overview of staging Fig. 4. Performance boost Fig. 5. Copy overhead

To achieve this goal, we aim at utilizing corse-grained data transfers/copies
(data chunks in the order of GBs). This is because (1) over GBs of memory
space is already available even in the fast memory, (2) accessing a large enough
chunk is essential to exploit the bandwidth in the fast memory, and (3) we can
allocate larger pages for larger chunks to mitigate the virtual/physical address
translation overhead. As few applications naturally expose such coarse-grained
accesses, we revisit the concept of access staging and adapt and extend it for
managing data in hybrid memory systems.

Figure 3 illustrates an overview. First, we reserve a buffer (up to a few GB)
in the fast memory and divide the large data, still stored in the slow memory,
into the several data chunks matching the buffer size in the fast memory. For
each data chunk, we then apply data staging as follows: (1) copy the data from
the large memory to the fast memory, (2) perform bandwidth-critical tasks in
the fast memory, and (3) return the data to the large memory by copying it
back. We then iterate this process across all data chunks, until all chunks are
processed.

In this work, we purposely do not consider overlapping or pipelining between
the different stages of processing consecutive data chunks. The detailed reasons
behind this will be discussed in Sect. 8.

2.2 Balancing Performance Boost and Overhead

To achieve performance improvements, we must apply our staging technique only
when the performance boost gained in the second stage (Tboost) is larger than the
copy overhead caused by the first and third stages (Tcopy). These overheads can
be formulated by using the parameters shown in Fig. 3. Here, Tbase represents
the execution time without staging, while T1st, T2nd and T3rd represent the
execution time of the first, second, and third stages in the staging technique,
respectively. We can obtain a performance improvement when these times meet
the following condition: Tbase > T1st + T2nd + T3rd ⇔ Tboost(= Tbase − T2nd) >
Tcopy(= T1st + T3rd). These times, however, depend on the characteristics of the
memory access patterns in the targeted code or algorithm, which we need to
carefully consider when determining wether we apply the staging or not. Further,
to reduce the copy overhead, in certain cases we can remove the first stage or
third stage in our approach. More specifically, we remove the third stage (writing
back a chunk to the large memory) for read only tasks. Likewise, we remove the
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first stage (reading a chunk from the large memory) for write only tasks such as
overwriting temporary arrays.

2.3 Tradeoff Observations

In Fig. 4, we quantify the performance boost (Tboost) by comparing T2nd and
Tbase. For this evaluation, we utilized a real hybrid memory system whose details
are shown in Sect. 6. The vertical axis shows the execution time that is divided
by the data size, i.e., the inverse of bandwidth. In this evaluation we analyze the
performance boost for two different access patterns. For random we performed
one billion random memory accesses on an 8 GB data array whose data element
size is eight bytes; for sequential we examined sequential memory references on
the same 8 GB data array, also by issuing one billion memory references.

As shown in the figure, the fast memory outperforms the large memory
for both tasks. This is because the former has significantly more parallelism
in ranks/banks/channels than the latter, and thus can provide data much faster
regardless of access patterns if the accesses are intensive.

On the other hand, the random access pattern takes much longer to com-
plete than the sequential one, which is a well-known phenomenon [14] happens
also in NVRAMs [16,38], and hence Tboost has to become much longer for the
former. This is caused by the fundamental fact that memory systems are opti-
mized in a way that they can exploit the bandwidth for sequential accesses by
interleaving data across banks/ranks/channels [5], while utilizing open page poli-
cies [20]. Therefore, more irregular patterns cause more bank/rank/channel level
conflicts [33]. Further, such accesses are very sparse (and hence come with very
low locality) and thus these contentions can occur very frequently as, under such
conditions, on-chip caches cannot help with reducing the number of accesses to
memory.

Figure 5 represents the copy overhead (Tcopy) between the two different mem-
ories. By comparing Fig. 4 and Fig. 5, we find that the significance of the copy
overhead depends on the access types of the codes. As shown in the figures, it is
better to move data for the random access pattern (Tboost > Tcopy), but we should
not do so for the sequential accesses (Tboost < Tcopy). Note that this pattern-
aware comparison is universally valid for any hybrid memories—the application
to other systems will be discussed in Sect. 8.

3 Pattern-Aware Staging

Following the insights in the last section, we developed a lightweight software
mechanism called pattern-aware staging that dynamically detects access pat-
terns and decides on the fly whether to apply data staging or not. Figure 6 shows
the overview with block diagrams. By a statical source-to-source transformation,
the following functionalities are augmented into the original code as well as the
staging: sampling the access sequence for a chunk just before executing the task,
characterizing the pattern, and then using this information to make a decision
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Fig. 6. Block diagram for Pattern-
Aware Staging

Fig. 7. Overall strategy of pattern analysis

on whether we use the staging or not, i.e., we make a pattern-aware decision.
The time and memory overhead of this analysis part has to be small enough in
order for this scheme to be effective. We achieve this by (1) limiting the number
of samples obtained, (2) parallelizing the sampling across multiple threads, and
(3) using a filter-based efficient pattern-analysis, as described below. We perform
this analysis at runtime as it is both more convenient for the user and more flex-
ible to adapt to varying application behavior such as input dependencies than
performing a static, offline based pattern-analysis. Consequently, no profile from
a previous run is needed for the application of our method.

Figure 7 describes the concepts behind our pattern analysis component, which
consists of three parts: sampling, characterization and decision. Each Sampling
Thread in the figure acquires a part of the address sequence and analyzes the
pattern at runtime. For this we use two separate detectors in the form of (Bloom)
filters—a Page Address Filter (PAF) and a Stride Filter (SF)—as indicators.
These filters keep the recent history of inputs (page-addresses/access-strides)
and can thereby provide an answer on whether an input page-address/access-
stride exists in the recent access history or not. A low hit rate in the PAF
indicates low data locality, and thus a sparse access pattern. Additionally, a
low hit rate in the SF indicates that accesses are irregular . More specifically,
when accesses are more regular, the number of different access strides detected
in the SF decreases and hence hits in the SF increase. For example, for an access
pattern with only one constant stride, the SF only has one entry and shows a
hit for all access except for the initial one.

After completing the sampling, we collect the hit/miss records of these two
filters using a reduction operation and with that complete the characterization
part. Based on the obtained statistics, we then make a decision based on the
following observation: if the accesses are sparse and irregular, the task is likely
to take much longer time than the copy and thus the performance boost brought
by data staging will be larger and hence worthwhile.
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for ( i =0; i<num chunks ; i++){
// proces s ing i t h chunk
#pragma our directive target(A[][])
for ( j =0; j<M; j++){

for ( k=0;k<N; k++){
A[ i ] [ ( j ∗ I [ k ] )%L]+=1;

}
}

}

Fig. 8. Original code + our new direc-
tive

for ( j =0; j<M; j++){
for ( k=0;k<N; k++){

// Load(&A[i][(j*I[k])%L]);//HT
PAF. input (&A[i][(j*I[k])%L]) ;
SF . input (&A[i][(j*I[k])%L]) ;
[ Abort when # of sampling
exceeds th r e sho ld ]

}
}

Fig. 9. Sampling thread code

for ( i =0; i<num chunks ; i++){
// proces s ing i t h chunk
[Put the sampling thread code here (inline)]
i f (decision making( args ) ) {

[ code with s tag ing ]
} else {

[ code without s tag ing ]
}

}

Fig. 10. Pattern-aware staging code

4 Sampling and Characterization

4.1 Sampling Threads

Figure 8 represents a sample pseudo code to apply our pattern-aware staging
technique2. In this figure, the two-dimensional array (A[num chunks][L]) can
be divided into chunks, and the outermost for loop then selects one of them
turn by turn. The 3rd line in the figure shows our newly introduced directive
to specify the target array to apply our technique to. Here, we assume the fol-
lowing scenario: when a compiler comes across this directive, it automatically
attempts to transform this original code into the pattern-aware staging code in
Fig. 9 and 10 for the target array. Although the transformation is performed by
hand in this paper, as in previous studies on compiler-based pre-execution or
helper thread prefetching [19,25], this can be automated using, e.g., a source-
to-source compiler [24,30], similar to previous software-based data management
studies [22,28,31].

Next, we describe the sampling thread code3 in Fig. 9. This code can
be considered a modified version of the inner two loops of Fig. 8. The 6th
line, commented-out in Fig. 9, shows the original helper threading approach.
2 Here, to simplify the explanation, we utilize the sequential code. But, our codes are

actually parallelized with OpenMP in our evaluation.
3 In our evaluation, we parallelize the code as follows: (1) to abort OpenMP parallel for

loops on the way, we utilize cancel for statement; (2) to minimize the communications
among threads, we set the statistics of the filters as private variables and collect them
using atomic statement just after the end of the samplings.
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Instead of calculating A[i][(j*I[k])%L] += 1, it prefetches data using the address
(&A[i][(j*I[k])%L]), which is achieved by distilling the codes to execute only the
address generation paths [19,22,25,31]. Similar to this, our sampling mechanism
just obtains the same address and utilizes it as an input for the filters (PAF
and SF). Note that, if the array is accessed multiple times in the loop (e.g.,
unrolled loop), we add the filter input and increment the sample count accord-
ingly. When the total number of sampled addresses exceeds a given threshold,
we abort the loops and collect the statistics. Putting it all together, this sam-
pling code is inlined at the 3rd line in Fig. 10, just before the decision making
function decision making(args). While this direct inlining of the code could be
optimized by spawning separate sampling threads and overlapping them with the
main threads, we decided to avoid this extra complexity due to the negligible
sampling and characterization overhead shown in Fig. 13 (Sect. 4.3).

4.2 Access Characterization

We characterize the sampled address sequence in terms of sparseness and reg-
ularity using the PAF/SF as described in Sect. 3. To realize this, these filters
have to be efficient in memory and time overheads. For this reason we turn to
Bloom filters, as they fulfill the requirements, as laid out below.

The Filter Mechanism. We assume each filter has three functionalities:
Test(), Set(), and Clear as shown in Fig. 11. First, the Clear function is used
to initialize/reset the contents of the filter. For each access, we use the Test()
function to examine whether an incoming element x (page-address/stride for
PAF/SF, respectively) is recorded in the filter or not. If it returns a hit, then
the corresponding hit counter is incremented, otherwise the miss counter is incre-
mented and Set() is called to register x in the filter to detect future accesses.

Bloom Filter Based Implementation. To implement PAF and SF, we utilize
Bloom filter, which is a probabilistic data structure that can record a large set
of elements with a small memory footprint [4]. Figure 12 shows their principle
structure: it consists of a bit array, which stores the elements in the filter, and
multiple hash functions, each of which returns an index to the bit array. At first,
all of the bits are set to zero. Then, to register input elements (e.g., in our case
page-addresses/strides for PAF/SF), we can use the Set() function to identify
the bits associated with the input using the hash functions and then set them
to one. We use the Test() function to extract the bits associated with an input
element using an AND operation on the bits pointed to by the hash functions: it
should return a hit (1) if an element was recorded before, otherwise a miss (0).

In the figure, Test(x) returns a hit because x was already registered (True
Positive). The output of Test(z) is a miss, as z has not appeared, yet, at this
point (True Negative). However, due to the hash collisions, Test(w) can return
also a wrong answer: a hit for a non-registered element w (False Positive). Small
numbers of false positives do not have a significant impact, but to avoid too
frequent false positives, the size of the bit array must be chosen large enough.
Thus, the memory overhead and the false positive probability are an important
trade-off, which is further influenced by picking the right hash functions. Further,
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Fig. 11. Filter operations Fig. 12. Bloom filter mechanism

after recording a certain amount of records, the Clear function must be used
to re-initialize the filter contents; otherwise the filter can be filled with positive
values and always return hits.

4.3 Quantitative Analysis

We evaluate the overhead/effectiveness of our sampling and characterization
approach using access patterns for various sparse matrices. The matrices are
collected from the Florida sparse matrix collection [10] and are listed in Table 2.
Assuming SpMV with CRS format [2], we use the column indices of each matrix
as an index array to a vector and analyze the access patterns with using our
sampling and characterization approach. For this evaluation, we use our hybrid
memory system whose detailed configuration is shown in Sect. 6. The configura-
tions for our sampling phase and the filters are summarized in Table 1.

Figure 13 compares the time overhead between 1 or 8 GB copy operations
(T1st + T3rd) and our sampling and characterization approach. The X-axis indi-
cates the sampled addresses for both PAF and SF in each thread, while the Y-axis
represents the time overhead. For the sampling and characterization overhead,
each value shows the average time with the standard deviation across workloads.

Fig. 13. Time overhead comparison Fig. 14. Hit rates v.s. # of sampling

Table 1. Sampling and filter settings

Sampling

# of samples/thread 2K (1K→ 8K in Fig. 13/14)

# of threads 64

Filters (PAF/SF)

Size [B] (=2N/8) 256 (64→ 512 in Fig. 15)

Trigger for Clear 256 unique inputs

# of hashes 2

hashk(x) (k = 0, 1) (x >> (N ∗ k))&(2N − 1) Fig. 15. Hit rates v.s. filter size
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Fig. 16. Hit rates vs. μ (Δ = 0—fixed) Fig. 17. Hit rates vs. Δ (μ = 1K—fixed)

As shown in the figure, when we limit the number of sampled addresses to
less than 8 K per thread, the overhead of our approach becomes quite small (less
than 1%) compared with the few GB of round-trip copy operations. In particular,
it takes just 0.025% of time compared with a 8 GB copy at 1K samples.

Figure 14 shows how many sampled addresses are needed to obtain accurate
enough PAF/SF hit rates. The X-axis shows the number of sampled addresses
per thread, while the Y-axis represents the PAF/SF hit rates. Each line in the
figure is associated with one of the matrices listed in Table 2. As the graph
shows, the PAF/SF hit rates are almost constant when we sample more than
2 K/1 K addresses per thread. Based on this result, we limit ourselves to 2 K/1 K
addresses per thread for the PAF/SF. The time overhead of this is less than
0.040% compared to the 8 GB copy operations, as shown in Fig. 13.

Figure 15 presents the PAF/SF hit rates as a function of the filter size. We
scale the filter size from 64 B to 512 B (512 bit to 4096 bit) per thread while
fixing the maximum number of filter inputs as 256. As shown in the figure,
as the filter size scales, the PAF/SF hit rates become smaller, i.e., fewer false
positive happen. However, they are almost constant when the size is larger than
256 B. Based on this result, we choose 256 B for both PAF and SF.

Finally, Fig. 16 and 17 demonstrate how well our Bloom filter based detectors
can represent the sparseness/regularity of memory accesses. In this evaluation,
we examine a synthetic memory access code, in which the address of ith memory
reference (Addri) is defined as follows: Addri = Addri−1 +μ+URAND(−Δ,Δ)
(i > 0). Namely, μ is the average stride of the accesses, which determines the
sparseness, while URAND(−Δ,Δ) is a random noise following a uniform dis-
tribution ranging from −Δ to Δ, thus affects the regularity. As shown in those
figures, each filter is effective to sense the associated access feature.

Table 2. Selected matrices

Matrix name

2cubes sphere, audikw 1, eu-2005, europe osm, F1, FullChip,
G n pin pout, GL7d20, Hamrle3, hugebubbles-00020, HV15R,
offshore, pkustk14, poisson3Db, pre2, rajat29, road usa, scircuit,
soc-sign-epinions, thermomech dK, thermomech dM, tmt unsym,
torso3, tx2010, wiki-Talk, wikipedia-20061104
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5 To Stage or Not to Stage?

Figure 18 illustrates the overview of our strategy: on the Rpaf -Rsf plane
(PAF/SF hit rates), we consider the Break Even Line (BEL)—at any points
on the line, the time reduction gained in the second stage (Tboost) is equal to the
copy overhead time (Tcopy). If the pattern feature vector (Rpaf , Rsf ) is mapped
below the BEL on the plane, we can achieve speed-up with the staging, otherwise
not. The BEL is formulated as follows: Tboost(Rpaf , Rsf , P ) − Tcopy(P ) = 0.

In addition to the pattern features, this function also utilizes additional input
parameters (denoted through the set P = {Rwrite, Rutil, Pelse}), which help
fine tune the shape of the BEL. The definitions of these parameters are listed
in Table 3. Tboost() (the performance gain) will be shorter if the chunk is less
utilized (Rutil is smaller), and it will also depend on the read/write access rate
as read/write bandwidths are different in various memory systems. Furthermore,
T1st/T3rd in Tcopy() can be skipped if the chunk is read- or write-only (Rwrite=0
or 1) as described in Sect. 2.2. These parameters can be collected at such as the
code transformation time4.

5.1 Decision Criterium

First, we formulate Tcopy() [s/GB] as follows:

Tcopy(P ) = α · 1/B1st + β · 1/B3rd = αT1st + βT3rd (1)

In the equation, B1st/B3rd and T1st/T3rd represent the copy bandwidth and
the time per GB of the first/third stages, respectively (see also Sect. 2.2). Here,
α = 0/β = 0 stands when the write-/read-only case (namely, Rwrite = 1/0),
otherwise we set α = 1/β = 1, respectively. Note that Tcopy() does not depend
on Rpaf , Rsf , Rutil, or others as it has nothing to do with how the chunk is
accessed during the task except for Rwrite.

Second, we define Tboost() [s/GB] (time per chunk size) as follows:

Tboost(Rpaf , Rsf , P ) = S(Rutil, Pelse) · T ′
boost(Rpaf , Rsf , Rwrite) (2)

Here, we divide Tboost() into memory access pattern (or types) depen-
dent/independent parts. T ′

boost() is a pattern dependent function, which can
be regarded as the special case of Tboost(), namely when S() = 1 stands. S()
is a scaling factor, which is independent of the access pattern/types. In this
paper, we utilize S(Rutil, Pelse) = Rutil assuming that a task takes N times
longer when the access sequence also becomes N times longer with the same
access pattern/types, which is generally the case. Further extensions of S() will
be discussed in Sect. 8.
4 When we convert memory references into filter inputs in a target loop (see Sect. 4.1),

we can also count the number of loads/stores in the loop and thus can estimate the
write rate (Rwrite). As for Rutil, we assume the chunk size is designated by the
programmers, but we need to know the number of iterations of the target loop to
obtain the number of references. One option for doing this is, like the parallel for
statement in OpenMP, limiting the applicable targets to the canonical form loops.
Another option is providing a mechanism to predict it.
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Fig. 18. Overview of decision making
strategy

Table 3. Functions and parameters

Time Functions/Parameter [s/GB]

Tboost() Speed-up gained in the second stage

Tcopy() Time overhead of the copy operations

Tth Threshold to set the decision aggressiveness

Pattern Features

Rpaf Page Address Filter (PAF) hit rate [0:1]

Rsf Stride Filter (SF) hit rate [0:1]

Additional parameters for fine tuning (P )

Rwrite # of writes per reference on the chunk [0:1]

Rutil # of references per element on the chunk

Pelse Empty set, reserved for further tuning

Then, we utilize the following linear approximation:

T ′
boost(Rpsf , Rsf , Rwrite) = RpafC0(Rwrite) + RsfC1(Rwrite) + C2(Rwrite) (3)

We determine the coefficients (Ci) by testing the following three patterns on each
memory (fast/large) for a fixed Rwrite: (1) random accesses on a large enough
array (Rpaf � 0, Rsf � 0), (2) accesses with a long enough stride (Rpaf �
0, Rsf � 1), and (3) sequential streaming accesses (Rpaf � 1, Rsf � 1). By
acquiring T ′

boost() with measurements for these patterns (here put as Trand, Tstrd,
and Tseq) and solving the given linear equations, we can gain Ci for a fixed Rwrite.

We decide on whether to stage or not, based on these functions, combined
with a threshold Tth. More specifically, we apply the staging if the following
condition holds:

Tboost(Rpaf , Rsf , P ) − Tcopy(P ) > Tth (4)
When Tth is set lower/higher, the staging is applied more aggres-

sively/conservatively, respectively. We assume the parameter is predetermined,
but as an option, this should also be controllable by users depending on their
confidence.

5.2 Accuracy Analysis

We evaluate the accuracy of our staging criteria using synthetic workloads. The
system/coefficients setups will be described in Sect. 6, and the sampling thread
settings are based on the evaluation in Sect. 4.3. We apply our staging technique
to the source vectors in SpMV operations (CRS format) whose matrices are
listed in Table 2 in Sect. 4.3. In this evaluation, we utilize multiple vectors and
organize a chunk by using consecutive vectors. The number of vectors is set so
that the total data size becomes around 90 GB. Also, we scale the number of
rows of the matrices from 1 to 1/32 to change the chunk utilization (Rutil).

Figure 19 demonstrates the performance impact of false decisions. The hori-
zontal axis represents workload number, while the vertical axis indicates relative
performance, which is normalized to that of Large Mem Only (the pure large
memory only solution). The workloads appear in the left side of the figure have
smaller Rutil but higher Rsf and Rpaf—chunks are less utilized and more reg-
ularly accessed with higher locality. In this graph, the threshold parameter Tth
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Fig. 19. Impact of false decisions Fig. 20. Correctness of decisions

is set to 0. In the figure, Always Staging means the staging is always applied
regardless of the access features.

According to the figure, the false decisions (False Positive/Negative in the
figure) occur more often when the performance impact of decision makings is less
significant (Always Staging and Large Mem Only are closer), which is a preferable
feature for our approach. This is because (1) our approach basically compares
Tboost and Tcopy, which is equal to comparing the performance of Always Staging
and Large Mem Only as |Tboost −Tcopy| = |(T1st +T2nd +T3rd)−Tbase| (see also
Sect. 2.2); and thus (2) this comparison becomes more error tolerant when the
performance difference of the two approaches becomes larger.

Figure 20 shows the breakdown of decision types as a function of Tth/Tcopy

(Tth: the threshold parameter used in decisions). In the figure, “True” means
the decision is correct, and “Positive” represents the staging is conducted—the
equation Tboost()−Tcopy() > Tth is expected to stand. As shown in the figure, 79%
of the decisions are correct (“True Positive/Negative”) at Tth/Tcopy = 0. We can
trade-off “False Positive” and “False Negative” by changing the threshold Tth.
According to the figure, scaling Tth/Tcopy from 0 to 1 has no significant impact
on the decision accuracy, allowing users to freely choose the right tradeoff. To
balance false positives/negatives, we choose 0.5 in Sect. 6 and 7.

6 Evaluation Setup

Table 4 summarizes the environment for our experiments. We utilize a KNL-
based system whose nodes provide a hybrid memory system [17]. The fast mem-
ory in the system supports both software-based scratch pad mode (Flat) and
hardware-based data management (Cache), and we choose the former for our
approach. The operating system used for the evaluation is Cent OS 7 and we
use Intel C/C++ compiler (ICC) with the listed options. The sampling thread
settings are based on the evaluation in Sect. 4.3, and the threshold parameter
Tth/Tcopy is set to 0.5. Through this evaluation we set the number of threads
to 256 for all of the applications. In our implementation, a 16 GB buffer is allo-
cated to the fast memory using the memkind library [7], which is designed to
use different kinds of memories in a node.
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6.1 Coefficients Calibration

Before applying our approach, we have to correctly set the coefficients described
in Sect. 5.1: T1st, T3rd, Trand, Tstrd and Tseq. Here, we summarize how to acquire
them. First, to obtain Trand, Tstrd and Tseq for a given Rwrite, we measure the
bandwidth of the following tasks on both fast and large memories: (1) 1G times
random accesses on an 8 GB array, (2) 2 M times stride accesses on 8 GB array
(4 K +B stride) and (3) a streaming task on 8 GB array. In this paper, the
measurements are performed for Rwrite = {0, 0.5, 1} by changing the rate of
load/store operations in the main loop of the test tasks. Second, to determine
T1st and T3rd, we just measure the copy bandwidth between the memories.

6.2 Implementation and Workloads

Our proposal is implemented manually in each application, following the exam-
ple of various published studies of software-based data management [19,25]. In
this evaluation, to represent widely used kernels for a range of applications espe-
cially in scientific computing, we choose various benchmarks from HPC Chal-
lenge (HPCC), NAS Parallel Benchmarks (NPB), and also use stencil codes
(Jacobi2D/3D). The followings are the details:

RandomAccess (HPCC): This application randomly updates a big table. We
repeat the main update loop multiple times, and, in the loop, we filter the update
accesses: only the accesses to a target area (chunk) pass the filter [14]. By doing
so, we can restrain the accesses within the buffer in the fast memory and, at the
same time, can conduct all the update accesses. Note that we apply this to all
methods that we compare. In this evaluation, the total table size and the chunk
size are set to 64 GB and 16 GB, respectively.

PTRANS (HPCC): This application transposes a matrix and adds it to
another (T+ = AT ). These matrices are dividable into sub-matrices (chunks),
and we apply our technique to the source matrix A, which is accessed with a
long stride. In this evaluation, the total size of the matrices, and the chunk size
are 96 GB (=48 GB× 2) and 16 GB, respectively

Table 4. Evaluation environment

Name Remarks

CPU XeonPhi 7210, 64cores, 1.3 GHz, quadrant mode
Memory Fast Memory: MCDRAM, 8ch, 450 GB/s, 100 +ns, 16 GB,

flat/cache mode
Large Memory: DDR4 DRAM, 2ch, 90 GB/s, 100 + ns, 96 GB
Measured Copy Bandwidth: 79.7 [GB/s] (1st stage),
42.1 [GB/s] (3rd stage)

OS CentOS 7
Compiler ICC 19.0, options: -O3, -qopenmp, -lmemkind, -xMIC-AVX512
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FFT (HPCC): This workload calculates one dimensional FFT using two 32 GB
arrays: input and output array. We apply our staging technique to the output
array by dividing it into 4 GB× 8 chunks. Through the evaluation, a temporal
array is located at the fast memory.

STREAM (HPCC): In this workload, a simple vector operation dst = src
is performed, and we applied our method to the destination vector dst. In the
evaluation, the total data size is around 96 GB, and the chunk size is 16 GB.

Jacobi2D/3D : We utilize 5/7-point 2D/3D Jacobi stencil codes. In these codes,
we keep the results of all time steps to different arrays (= chunks). We apply our
technique to the source array, which is heavily loaded in the stencil operations.
In this evaluation, the chunk size is set to 8 GB (the array size for one time step),
and the total data size is 80 GB.

IntegerSort (NPB): This workload sorts an integer array by counting the
distribution of the elements (bucket sort). Our approach is applied to the array
of the distribution (16 GB = the chunk size). The total data size is around 64 GB.

ConjugateGradient(NPB): In this kernel, we focus on the iterative SpMV
operations, as it is the major performance bottleneck. We apply our technique
to the source vector for the SpMV operations whose size is 2 GB (= the chunk
size). The total data size is 90 GB, which includes multiple different vectors.

6.3 Compared Methods

For the above workloads, we compare the performance of the following methods:
LO: The execution with the Large memory Only (baseline).
NP: The execution with a N umactl command with Preferred option, which
preferentially stores data on the fast memory [17].
HC: The fast memory works as a direct mapped H ardware Cache [17].
PS: The execution with our Pattern-aware Staging.

7 Experimental Result

Figure 21 compares the performance among the methods across all applications.
The vertical axis indicates relative performance that is normalized to LO for
each application. GeometricMean in the figure shows the geometric mean of per-
formance across all the workloads for each method. Our method (PS ) achieves a
factor of three performance improvement over LO at the best case and on aver-
age, it improves performance by a factor of 1.9. As the data management policy
of NP is naive, it does not improve performance except for STREAM. Compared to
hardware cache (HC ), our approach has the following benefits: (1) ours purposely
puts the useful chunk of data on the fast memory based on the pattern-analysis
thus can avoid unnecessary allocations/conflicts on it; (2) ours can fully utilize
the hardware resources of the fast memory, but the hardware cache wastes the
available bandwidth/storage due to the hardware overheads such as tags. Thanks
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Fig. 21. Performance comparison among methods across applications

Fig. 22. Comparison of memory access traffic

to these characteristics, our PS outperforms HC for almost all workloads in this
evaluation (up to 41%).

Figure 22 demonstrates the memory access traffic (or bandwidth consump-
tion) on the two different memories. The measurement was accomplished through
Intel PCM, a well-known performance monitoring tool. Although our approach
increases the data traffic compared with LO/NP due to the additional data
transfer between the memories, it reduces 36% of the traffic compared with HC
on average. This is because HC induces unnecessary data conflicts on the fast
memory, while ours not as described later. This traffic reduction will lead to a
considerable power reduction on the memory system as a consequence.

One exception in Fig. 21 is ConjugateGradient (the hardware cache works
better than ours), and we can see the reason in Fig. 23: in the figure, the X-axis
represents the total data size, while the Y-axis indicates the relative performance
normalized to LO at 16 GB. When the data footprint size is small enough, the
hardware cache approach can keep almost all the useful data on the fast memory,
thus it works well. However, as we scale the data size, more conflicts happen on
the fast memory, which degrades performance significantly. In contrast to this,
ours can explicitly hold the useful data without conflicts on the fast memory no
matter how much we scale the total footprint. Therefore, if we would scale the
data size more (over 96 GB, the capacity limitation in our system), ours would
work better than the hardware cache for this workload.

Finally, we summarize the statistics of our approach in Table 5. The pattern
features (Rpaf , Rsf ) are taken from our sampling technique, while the other
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Table 5. Statistics of our pattern-aware staging approach

Name Rpaf Rsf Rutil Rwrite Estimated

Tboost/Tcopy − 1.5

Measured

Tboost/Tcopy − 1

Decision

Correctness

RandomAccess 0.0388 0.0620 8 0.5 22.4 (>0) 20.3 (>0) Correct

PTRANS 0.00297 0.999 1 0 6.10 (>0) 3.73 (>0) Correct

FFT 0.968 0.998 4.5 1 5.04 (>0) 9.08 (>0) Correct

Jacobi2D 0.998 0.998 5 0 3.01 (>0) 1.67 (>0) Correct

Jacobi3D 0.996 0.998 7 0 4.87 (>0) 2.18 (>0) Correct

IntegerSort 0.691 0.687 6 0.5 10.2 (>0) 10.6 (>0) Correct

STREAM 0.998 0.999 1 1 −0.315 (<0) −0.331 (<0) Correct

ConjugateGradient 0.368 0.0947 7 0 31.3 (> 0) 17.8 (>0) Correct

Fig. 23. Performance vs. data
size (ConjugateGradient)

Fig. 24. Performance/overhead comparison

parameters (Rutil, Rwrite) are acquired by manually counting the number of
load/store instructions to the target array in the target loop. As for the decision
makings, if Tboost−Tcopy−Tth is greater than zero, which is equal to Tboost/Tcopy−
1.5 > 0 in our Tth setting, we use the staging technique; otherwise not (see
also Eq. (4) in Sect. 5.1). From this point of view, as long as the signs of the
estimated Tboost/Tcopy−1.5 and the measured Tboost/Tcopy−1 are the same , our
approach is correct, and our approach is correct for all the workloads. Note that
by adjusting Tth based on the observation in Sect. 5.2, our approach successfully
avoids slow down for STREAM unlike HC.

8 Discussions

Applicability of the Approach: The most significant restriction to apply our
approach to a kernel is that the data structure of a potential target array has
to be transformable into a multi-dimensional array form (e.g., into a matrix
or SoA). Note that several access optimization approaches, such as multi-pass
gather/scatter [14], are useful to meet this requirement. For multi-dimensional
arrays, we can choose a chunk by designating the indices for the higher dimen-
sions, and at the same time, we can ensure the size of the chunk and the area
of the accesses. After copying the chunk to the fast memory, the pointer to
the data is replaced to go to the fast memory, while the remaining data stays
in the large memory. With this, any complicated access pattern that includes
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accesses to both inside/outside of the chunked area are handled correctly, but
the performance gain will be less if too many accesses don’t hit the target chunk.

We assume the indices to choose the target chunk are manually assigned
by the programmer just before the target loop by using a specific function to
set them. However, it is not always easy for the programmer to set the right
indices. One promising option to cope with this issue is providing a functionality
to automatically choose the chunk that is most likely to be intensively accessed.
We can support this option by extending our sampling and characterization
approach to include additional filters to store the indices.

Our approach is applicable regardless of the number of arrays the target
kernel accesses. In this work, we assume the programmer chooses one array by
designating the variable in the directive shown in Fig. 8, and then the compiler
generates a distilled version of the code that executes only the address generation
path for the target while ignoring the others, which relies on the prior helper
threading works [19,22,25,31]. However, our approach is extensible to multiple
arrays: (1) listing them in the directive; (2) creating the address generation
paths for all the targets; and (3) storing the addresses in their own unique filters
separately. To this end, the decision making part needs several modifications (in
both the decision function and the control structure after it).

When multiple different array/pointer variables are used in a kernel, pointer
aliasing can potentially happen, i.e., different variables point to the same mem-
ory. Namely, even if a chunk is moved to the fast memory for a variable, another
pointer may point to the old data stored on the large memory. One option to cope
with this is applying our technique only when the programmer specifies that they
are free from the aliasing by putting a keyword like restrict supported in C99.
Such a keyword is widely utilized to allow compilers aggressive optimizations,
and our approach can be considered one of them in a broad view.

Overlapping and Pipelining: Pipelining is a well-known technique to hide
the communication latency between components/nodes by overlapping compu-
tation and data transfer [28]. In our case, the second stage for one chunk and
the first/third copy stages of other chunks can be overlapped (see also Sect. 2).
However, we purposely do not consider this optimization in our approach due to
significant hardware contention on the fast memory, as all of the stages access
it intensively for memory intensive tasks.

We quantify the impact of the contention using the same environment and
workloads as in Sect. 2.3, which clarifies that the performance benefit of overlap-
ping is limited or even harmful (Fig. 24)5. This is due to the following reasons:
the overlapping does not reduce the amount of traffic on the memory subsystem;

5 * For “Staging w/ Overlap”, we refer to the contention overhead as C ×
Tcopy, i.e., this approach is beneficial only when both C < 1 and Tboost >
CTcopy stand, which is not the case in the figure: neither (a) nor (b).
* “Ideal” or “Staging w/o Overlap” are executed by 64 threads, while for “Stag-
ing w/ Overlap”, additional 64 copy threads also run in parallel and are distributed
to all 64 cores to balance the loads. The contention in core resources does not matter
as the memory is the bottleneck.
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it can cause more conflicts on the memory resources (e.g., at row buffers [38])
for case (a) ; and the copy time is too large to hide for case (b).

Interaction with Hardware Caching: In our evaluation, when applying our
technique, we utilized the fast memory as a scratchpad region instead of a hard-
ware cache. This is because the major benefit of our technique is selectively
allocating a useful chunk on the fast memory, which should be conflict free,
but the cache mode evicts data placed on the fast memory by automatically
allocating the others (even more so for larger data, as demonstrated in Fig. 23).

Application to Other Platforms: Our methodology is applicable to any
hybrid memory systems including the configuration of DRAM+NVRAM [16,38].
This is because ours is based on the fundamental architectural principle:
memories are optimized and thus operate significantly faster for sequential
accesses [5,16,20,33,38] regardless of the memory cell implementation. Based on
the above, our decision criterion estimates the impact of access pattern/types
using several system-dependent coefficients. Thus, what we have to do when
applying ours to different platforms is just updating the coefficients, i.e., the cal-
ibration process performed in Sect. 6.1, which is needed only once for a system.

Automation: Although we quantify the effectiveness of our proposal, some
parts, such as the sampling and the staging, are hand coded. In future work,
we will automate them in the compilers/runtime tool chain such as LLVM [24]
or the ROSE compiler [30], similar to previous software-based data manage-
ment studies [22,28,31]. For this automation, our approach needs to obtain some
parameters (P ) at the code generation time or by using augmented codes at run-
time as described in Sect. 5 (see the footnote). As for the staging part, existing
compiler techniques to apply pipelining to CPU-GPU systems will be useful [28].
In addition, acquiring more parameters (Pelse) at compilation or runtime and
updating the scaling function S() accordingly is a promising direction to cover
more aspects in the decision making. One example for this is counting floating
operations and memory access instructions in the target loops, calculating the
arithmetic intensity based on the results, and tuning S() following our existing
models.

9 Related Work

Since hybrid memory systems have become a significant design choice recently,
various software-based data placement techniques for them have been proposed.
Due to their limited availabilities, we couldn’t compare our approach with them
quantitatively in the evaluation. However, our technique qualitatively has the
following uniqueness/benefit compared with them: (1) ours does not require any
application profiles; and thus (2) ours can detect the pattern of both input-
dependent/independent memory accesses well, while the others cannot. Espe-
cially, when the pattern heavily depends on the input such as the problem set-
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tings, which is often the case for the scientific computing, our runtime pattern
analysis approach becomes essential.

Data Tiering API provides a memory allocation interface that optimizes
the page allocations automatically, but the decisions are based on the appli-
cation statistics that depend on the inputs [13]. Unimem API provides a similar
memory allocation interface and optimizes the placements at the granularity
of data objects. However, it does not target the chunking except for sequential
accesses [36]. A prior study proposed a compiler-based technique that attempts
to optimize the initial data allocations, but it does not handle the data trans-
fer and relies on a statical analysis [21]. Some runtime-based approaches target
different programming model, such as task parallel programming [1,37], which
is out of our scope. Other studies focus on application specific solutions [6,27],
but ours aims at covering general applications. OS/HW-level page managements
have been widely studied for hybrid memory systems, but they require hardware
modifications [11,38]. A recently proposed page scheduler does not require such
hardware, but needs a large number of profiles to work [12].

10 Conclusions

This paper proposed and made a case for a software-based data management
technique called patten-aware staging to exploit both the high performance and
the large capacity components of hybrid main memory systems. Our technique
dynamically examines the pattern of memory accesses and, in case of irregu-
lar/sparse patterns, fetches chunks of data from large memories to fast memories,
just before they are referenced. The experimental results using scientific codes
on a real system show that our approach enables 300% improvements compared
to using only large memory and still 41% compared to hardware caching.
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Abstract. Overlap of communication with computation is a key optimization
for high performance computing (HPC) applications. In this paper, we explore
the usage of user-level threading to enable productive and efficient communi-
cation overlap and pipelining. We extend OpenSHMEM with integrated user-
level thread scheduling, enabling applications to leverage fine-grain thread-
ing as an alternative to non-blocking communication. Our solution introduces
communication-aware thread scheduling that utilizes the communication state
of threads to minimize context switching overheads. We identify several pat-
terns common to multi-threaded OpenSHMEM applications, leverage user-level
threads to increase overlap of communication and computation, and explore
the impact of different thread scheduling policies. Results indicate that user-
level threading can enable blocking communication to meet the performance of
highly-optimized, non-blocking, single-threaded codes with significantly lower
application-level complexity. In one case, we observe a 28.7% performance
improvement for the Smith-Waterman DNA sequence alignment benchmark.

1 Introduction

Communication latency hiding through pipelining and overlap with computation are
key optimizations for High Performance Computing (HPC) applications. Popular com-
munication middleware, such as MPI [22] and OpenSHMEM [24], facilitate these
optimizations through non-blocking communication; however, managing asynchronous
data movement can lead to significant application-level complexity. Multi-threaded pro-
gramming can provide a simpler approach to enabling communication asynchrony, but
the over-subscription required to reach effective pipelining depths can result in high
context switching overheads in typical multi-threaded environments.

User-level threading and tasking models have been proposed as alternatives to con-
ventional operating system (OS) scheduled threads. In contrast with OS threads, user-
level threads reduce context switching overheads through cooperative, rather than pre-
emptive, thread scheduling that is performed at the user level, without invoking the
OS thread scheduler. Thus, relative to OS level multi-threading approaches, user-level
threading enables a greater number of fine-grain operations to be in-flight. By reducing
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Fig. 1. Opportunities for user-level threads with OpenSHMEM applications

these overheads, user-level threading can make feasible multithreaded approaches to
hiding communication latency.

Version 1.4 of the OpenSHMEM specification [24] was recently ratified and intro-
duced threading support that allows OpenSHMEM programs with multi-threaded pro-
cesses (PEs). This new feature enables hybrid programming with OpenSHMEM, which
can be exploited to enable on-node shared memory programming and to enable trade-
offs between the number of PEs and number of threads on a given node. However, in
traditional usage, hybrid programming has avoided over-subscription, because of the
overheads associated with context switching.

Figure 1(a) illustrates the performance challenges associated with multi-threading
using a bandwidth experiment where 8 sender and receiver PEs are involved in measur-
ing the uni-directional streaming bandwidth through the shmem put operation. Fur-
ther details of the experimental setup are available in Sect. 5. In this experiment, we use
both blocking and non-blocking versions of the API and also launch the blocking API
test with multiple OpenMP [6] threads. As shown in Fig. 1(a), while 4 OpenMP threads
with blocking APIs improve the bandwidth achieved for several message sizes com-
pared to the non-blocking API experiment, 16 OpenMP threads cause the performance
to degrade relative to the blocking API experiment because of the over-subscription
overheads.

A challenge to user-level threading is that such models require explicit, cooperative
scheduling of threads and deadlock can occur if threads block in OpenSHMEM oper-
ations without first yielding. However, user-level control results in significantly lower
overheads, as shown in Fig. 1(b), which compares user-level and OS thread creation
and context switch operation costs. In this comparison, user-level threads are created
using the Unix� ucontext [1] interface. The context switch overhead is measured by
averaging a total of 100,000 context switches between two participating threads using a
synthetic benchmark [8]. This experiment highlights that user-level threading can sig-
nificantly reduce overheads.

In this work, we leverage these insights to design a generic thread scheduling exten-
sion to OpenSHMEM that integrates user-level threading with the OpenSHMEM mid-
dleware, enabling the runtime system to perform cooperative thread scheduling when
threads become blocked in communication operations. One of the major challenges in
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our implementation of this model is to detect the appropriate threads for scheduling
that will ensure effective forward progress of the application. In this regard, we propose
communication-aware thread scheduling in our extension, which reduces overheads by
avoiding threads that remain blocked on pending communication. We extend the open
source Sandia OpenSHMEM [30] library to support user-level thread scheduling and
evaluate our approach using several applications in conjunction with the popular Argob-
ots [3] user-level threading system. Results indicate that, while threading overheads are
still present, user-level threading can enable communication overlap comparable to that
achieved with non-blocking communication and at a much lower level of complexity
in application code. For the Smith-Waterman DNA sequence alignment benchmark, we
observe 28.7% performance resulting from the addition of user-level threading.

2 Background and Related Work

We begin with a summary of the OpenSHMEM library specification, focusing on the
recent developments that define multi-threaded interfaces, which are most relevant to
this paper. For additional detail on the OpenSHMEM APIs, we refer the reader to
the OpenSHMEM specification [24]. Next, we review user-level threading and prior
approaches to thread integration.

2.1 OpenSHMEM

OpenSHMEM [24] is a community specification that defines a Partitioned Global
Address Space (PGAS) parallel programming model. An OpenSHMEM application
is comprised of multiple processes (PEs) running the same program, where each PE is
parameterized with a unique integer identity in the range 0 . . . npes − 1. PEs expose a
symmetric data segment and a symmetric heap for remote access. The values in mem-
ory at each PE differ; however, the layout of the symmetric segments is identical at
all PEs, simplifying usage and providing opportunities for implementations to optimize
performance. OpenSHMEM defines a library API that enables asynchronous, one-sided
access to symmetric data at all PEs through put/get data transfers, atomic operations,
and collective communication primitives.

The recently released OpenSHMEM 1.4 specification introduced support for multi-
threaded communication with OpenSHMEM routines. Similar to multi-threading in
MPI, OpenSHMEM provides an initialization routine, shmem init thread, which
allows the user to specify a level of thread support required by the application. The
most restrictive thread level is SHMEM THREAD SINGLE, for which there must not be
any threads used by the application; and the least restrictive thread level supported is
SHMEM THREAD MULTIPLE for which any thread may call an OpenSHMEM routine
at any time. There is also a SHMEM THREAD FUNNELED model in which only a main
thread invokes OpenSHMEM routines and a SHMEM THREAD SERIALIZED model, in
which the application serializes OpenSHMEM calls made by any application thread.

OpenSHMEM 1.4 also introduced a communication contexts API, which facilitates
better overlap of communication and computation by enabling applications to express
streams of operations that can be synchronized and ordered independently. The contexts
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API enables implementations to isolate groups of threads, reduce internal threading
overheads, and more effectively manage underlying communication resources [14].

2.2 Sandia OpenSHMEM and OFI

We define a generic extension to OpenSHMEM to support an arbitrary user-level
thread or task system focusing on the open source Sandia OpenSHMEM (SOS) imple-
mentation [30] that uses the OpenFabrics Interfaces (OFI) libfabric communication
library [16] to support multiple popular HPC networks. Detailed descriptions of the
implementation of SOS on OFI can be found in [31].

The OFI libfabric communication library provides a common, low-level interface to
high-speed networks. OFI’s design is focused on portable support for HPC communi-
cation, which requires low latency and high throughput. OFI defines a complete set of
interfaces that enable one-sided and two-sided messaging, memory registration, com-
munication event management, collective communication, and many other features. A
primary focus of this work are OFI communication event counters that are used in SOS
to track the number of communication operations pending on a given context.

2.3 User-Level Thread Libraries

User-level thread systems are similar to conventional OS threads; both models allow
applications to create multiple threads to expose tasks that can be executed simulta-
neously. During execution, threads can yield when they become idle and when thread
execution ends, threads join with a parent thread. OS threads are typically scheduled
preemptively where the OS periodically interrupts the execution of threads to perform
a context switch that exchanges the currently executing thread for another thread. The
preemptive scheduling model guarantees that all OS threads make forward progress.
User-level threads, on the other hand, are scheduled cooperatively where a thread either
completes or executes a yield operation to enable another thread to execute. The cooper-
ative scheduling model relies on threads to cooperatively yield in order for other threads
to make forward progress.

A user-level threading yield operation may automatically choose the next thread
to execute. Alternatively, the yielding thread can supply a context to specify the next
thread, as is done with the Unix� ucontext and Boost [10] fcontext APIs. In such
models, thread contexts are continuations that capture the state of a suspended thread
and these models are commonly used as a lower layer by user-level threading and mul-
titasking systems.

User-level thread and task execution models have been explored extensively in
the context of HPC programming [11]. The Argobots [32] threading package used in
this work provides a lightweight, user-level threading model that is similar to that of
QThreads [35], MassiveThreads [23], Intel R© Thread Building Blocks [28], and Stack-
Threads [34]. Such user-level threading systems transparently map user level threads
to one or more underlying OS threads. These OS-level threads provide the execution
resource on which user-level threads are executed and are often referred to as shepherd
threads. The parallel execution of these shepherd threads are, in turn, managed by the
OS. While this mapping does allow for over-subscription, in HPC workloads, shepherds
are typically not oversubscribed and are pinned to a specific processor core.
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Listing 1. Proposed APIs for OpenSHMEM support of user-level thread scheduling

/* Register yield routine */
void shmemx_register_yield(void (*yield_fn)());

/* Optional routines to register user level thread info provider */
void shmemx_register_getultinfo(void (*get_ult_info_fn)(int *, uint64_t *));
void shmemx_register_getulthandle(void* (*get_ult_handle_fn)(void));

/* Optional scheduler initialize and finalize routines */
void shmemx_ult_scheduler_init(shmemx_scheduler_config conf);
void shmemx_ult_scheduler_finalize(void);

/* Optional routines for query and thread management within scheduler */
int shmemx_get_next_runnable_ult(void **next_ult);
int shmemx_get_registered_ult_count(void);
void shmemx_ult_unregister(void);

2.4 Integrated User-Level Threading

Lightweight threading has been extensively explored in the context of MPI applications.
MPC-MPI [25] and FG-MPI [19] have explored supporting multiple MPI processes as
threads within a single OS process. To increase overlapping between communication
and computation, MPI/SMPS [21] proposed a hybrid environment of MPI and task
based shared memory programming model [26] that allow the asynchronous communi-
cation among processes. Adaptive MPI [18] executes MPI processes as Charm++ tasks
that can be adaptively scheduled. Castillo et al. [12,13] proposed to leverage MPI inter-
nal information to task-based runtime systems for making better scheduling decisions,
whereas Sala et al. [29] utilized the external event information to pause and resume
scheduled tasks. The most closely related research work to this work is MPI+ULT [20],
which explored the usage of hybrid programming with MPI and user-level threads. As
we explore in this work, the asynchronous, one-sided communication model provided
by OpenSHMEM introduces unique challenges and opportunities to integration with
user-level threading.

3 Enabling Thread Integration in OpenSHMEM

Supporting user-level threading effectively in an OpenSHMEM library requires integra-
tion of cooperative thread scheduling to prevent deadlock in scenarios where threads
block or poll on updates to memory (e.g. in a call to shmem wait or repeated calls
to shmem test) and to hide latency in scenarios where threads become blocked on
communication (e.g. in a call to shmem get). We propose several OpenSHMEM API
extensions to register callbacks and provide query routines needed to support coop-
erative user-level thread scheduling in the OpenSHMEM library. The proposed API
routines are shown in Listing 1 as OpenSHMEM extensions, prefixed by shmemx *.

Among the proposed APIs, the only routine required to support user-level threading
is shmemx register yield, which registers a callback that the OpenSHMEM library
invokes to yield the current thread. In our proposed API, the yield function is defined to
take no arguments and utilize the scheduling policies as defined by the application.
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To enable deep integration of user-level threading with OpenSHMEM, we define
two registration routines that register callbacks enabling OpenSHMEM implementa-
tions to collect user-level thread specific information, such as thread ID, shepherd ID,
and thread handle. These optional routines enable the OpenSHMEM library to track
the runnable state of threads that block on communication and use this information to
optimize thread scheduling. To enable this usage model, we introduce an initialization
API for setting up the thread scheduler before creating the threads. Through this initial-
ization routine, the user can optionally provide a configuration argument that specifies
the total number of shepherd threads and user-level threads. This configuration setting
can also allow the user to customize the scheduler, for example to prioritize threads
performing one RMA operation to another to optimize forward progress of the threads.
For example, if an application is executing two sets of threads with one set executing a
fetch operation and the other executing a put using the fetched content, the user can set
the fetch operation priority higher so that the scheduler prioritizes those threads leading
to improved communication overlap. The shmemx ult scheduler finalize routine
releases all resources and resets all the counters associated with the scheduler.

The optional routine shmemx get next runnable ult allows a user-level thread
scheduler to query OpenSHMEM for a thread handle that is ready to be run. The library
implementation can define its own policy on choosing the next runnable thread. The
query routine shmemx get registered ult count returns the total number of reg-
istered user-level threads within the OpenSHMEM layer. This information will provide
application flexibility to choose the next thread either from the already executing ones
or from the ones that have not been started yet, if any. Finally, we provide a routine that
unregisters a user-level thread from the OpenSHMEM library, removing it from the
internal data structure that holds the thread information. A code example demonstrating
the API usage is shown in Listing 2.

Through the optional APIs listed in Listing 1, we provide the user flexibility to
control the scheduling policy as needed. An alternative approach will be to design the
thread scheduling transparent to the user, without providing any control. While such
a design approach would greatly reduce the complexity of using the APIs, it would
require the OpenSHMEM library either to communicate with the underlying thread
library that the user chooses or to implement the desired thread library functionalities
within itself.

4 Design of OpenSHMEM with Integrated User-Level Threading

An architectural view of user-level threading integrated with OpenSHMEM is shown
in Fig. 2(a). In this model, the application uses a user-level threading package to paral-
lelize the workload within an OpenSHMEM PE and individual threads perform Open-
SHMEM operations. In the OpenSHMEM 1.4 API, all point-to-point communication
operations are associated with an application-level context and users can assign threads
to different contexts to enable communication isolation.

We have extended the open source Sandia OpenSHMEM (SOS) library to support
the proposed model, namely with the ability to yield and transfer execution among
the user-level threads through callbacks registered by the application. By default, SOS
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Listing 2. An example program in C highlighting the proposed API usage

void thread_func() {
// execute thread parallel operations
shmemx_ult_unregister();

}
void my_yield() {

if (shmemx_get_registered_ult_count() == total_threads &&
shmemx_get_next_runnable_ult(&next_thread))

// yield directly to next_thread
else

// yield using default policy
}
void *my_get_thread_handle(void) { /* return current thread handle */ }
void my_get_ult_info(int *shepherd, uint64_t *tid) { /* return ult info */ }

int main(int argc, char* argv[]) {
...
shmemx_register_yield(&my_yield);
shmemx_register_getultinfo(&my_get_ult_info);
shmemx_register_getulthandle(&my_get_thread_handle);
...
shmemx_ult_scheduler_init(thread_conf);
for (i = 0; i < num_threads; i++) { thread_create(..., thread_func, ...); }
for (i = 0; i < num_threads; i++) { thread_join(...); }
shmemx_ult_scheduler_finalize();
...

}

invokes the registered user-level threading yield function to participate in cooperative
scheduling. A more advanced communication-aware thread scheduling module is also
provided that tracks the communication state of individual threads to identify runnable
threads from within the OpenSHMEM layer and avoid the overhead of switching to
threads that are still blocked on OpenSHMEM operations. This module utilizes com-
pletion counters [14,27] associated with the OpenSHMEM contexts used by individual
threads to track completions and identify runnable threads.

To hide latency associated with blocked one-sided communication operations, we
extend the communication flows used by SOS as shown in Fig. 2(b). This figure shows
the existing sequence of operations used to implement OpenSHMEM operations using
the OpenFabrics Interfaces libfabric communication layer. In the existing approach,
an OpenSHMEM blocking RMA operation relies on waiting on any update on the
event counters provided by the OFI through invoking fi cntr wait. With our pro-
posed changes, an RMA operation initiated by a user thread checks for completion,
releases any locks, and yields to the next runnable thread if there is no update on the
event counter associated with the given context. In this way, another thread can com-
mence its execution while the original thread goes to a pending state and returns when
the blocking operation gets completed.

4.1 Implementation of Communication Aware Thread Scheduling

Upon initialization by the application, the scheduler allocates a queue to hold thread
data objects for threads blocked on OpenSHMEM operations. The thread data object
stores thread ID, corresponding shepherd ID, thread handle, etc. It also contains the
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OpenSHMEM context that the thread is associated with along with the operation type
(e.g. put, get) on which the thread is currently blocked. In addition, it maintains a flag
indicating whether the thread is currently runnable. The queue data structure is used to
support three basic operations as shown in Fig. 3(a):

Append: New threads are appended and remain in the queue until they are unregistered.

Update: Existing threads can be updated, e.g. when yielding in a blocking operation.
An update operation moves the thread object to the end of the queue.

Remove: Upon completion, threads are removed from the queue. This is achieved
at the application level by calling either shmemx ult unregister or shmemx ult

scheduler finalize.
After the scheduler is initialized, the library appends threads to the queue the first

time a thread blocks on an RMA, AMO, or synchronization operation. Immediately
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after issuing the operation, the thread checks whether it is complete by reading the event
counter through fi cntr read. If the operation is not complete, it adds or updates its
current status to the queue and returns control to the application through the yield

callback. When new threads are pending, the yield routine performs a generic yield
operation to start additional threads and maximize communication overlap. If no new
threads are pending, the application-provided yield routine queries the communication-
aware thread scheduler for a ready thread and yields to it by invoking the yield to routine
from the threading library. If neither case is met, the current thread continues execution.
This execution flow is highlighted in Fig. 3(b).

We design the scheduler to dynamically detect the next runnable thread and provide
the thread handler upon request through the shmemx get next runnable ult API.
To detect the next runnable thread, the scheduler leverages the completion tracking on
individual OpenSHMEM contexts as described in [15]. In SOS, completion tracking is
implemented by unsigned 64-bit integers that provide the number of issued and com-
pleted operations on a given context. These counters are used to identify whether a
thread associated with a given context has made progress in their previously blocked
operation. Listing 3 presents the pseudocode for identifying and obtaining the next
runnable thread in our design.

As illustrated in Listing 3, we maintain a next runnable object to point to the
next runnable thread. On each invocation of shmemx get next runnable ult, we
update the next runnable to point to the next thread in the queue that is runnable
and the current next runnable is returned. If the number of runnable threads in the
queue falls under a threshold min runnables count, the queue is traversed to check
all the thread contexts and the appropriate runnable threads are flagged. During this
check, for each thread context, the issued and completed counters are read. The threads
are marked runnable in the case of matching issued and completed counter values. If
a particular operation is prioritized by the user during the scheduler initialization, the
runnable threads are selected based on the operation type first and then the counter
values. For simplicity, we present the scheduler algorithm without the priority based
selection in Listing 3.

4.2 Simplifying Communication Overlap

Our proposed extensions presented in Sect. 4.1 enable an application to be re-written
with user-level threads using only blocking communication APIs. This simplifies the
way a user achieves communication overlap in an application that is otherwise imple-
mented with non-blocking APIs. While we present the performance comparisons
between these two executions in Sect. 5, we highlight the application-level code changes
in this section through an example.

Listing 4 shows the key exchange phase in parallel integer sorting application,
ISx [17], with a single thread and non-blocking APIs. To achieve overlapping between
the two communication operations, shmem fetch add nbi and shmem put nbi, the
code is split into two separate loops. Before invoking a put operation, we wait for the
corresponding destination offset fetch operation to be complete, thus overlapping the
remaining fetch operations with the put operations. Achieving communication overlap
in this way requires careful consideration and manual interleaving of the APIs from the
application developer’s perspective.
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Listing 3. Algorithm to detect and return the next runnable thread

procedure get_next_runnable()
if next_runnable = NULL then

if count_runnables ≤ min_runnables_count and find_next_runnables() = 0 then
return NULL

end
end
ret_object ← next_runnable
update next_runnable with the next runnable thread in queue
return ret_object

procedure find_next_runnables()
count ← 0, curr_thread ← thread_queue
while curr_thread �= NULL do

if read_issued(curr_thread.ctx) = read_completed(curr_thread.ctx) then
curr_thread.is_runnable ← true, count ← count + 1
if next_runnable = NULL then

next_runnable ← curr_thread
end

end
curr_thread ← curr_thread.next

done
return count

Listing 4. Key exchange in ISx with single thread and non-blocking APIs

static long long bucket_offset = 0;
static int bucket_keys[BUCKET_SIZE];
...
long long dest_offsets = malloc(sizeof(long long) * shmem_n_pes());
for (int i = 0; i < shmem_n_pes(); i++) dest_offsets[i] = -1;
for (int i = 0; i < shmem_n_pes(); i++) {

int dest_pe = peers_iter(i);
shmem_longlong_atomic_fetch_add_nbi(&bucket_offset, bucket_sizes[dest_pe],

&dest_offsets[dest_pe], dest_pe);
}
for (int i = 0; i < shmem_n_pes(); i++) {

int dest_pe = peers_iter(i);
shmem_longlong_wait_until(&dest_offsets[dest_pe], SHMEM_CMP_NE, -1);
shmem_int_put_nbi(&bucket_keys[dest_offsets[dest_pe]], ..., dest_pe);

}
shmem_quiet();

On the other hand, our proposed extensions enable OpenSHMEM to efficiently
schedule user-level threads that allow the same key exchange program to be re-written
as shown in Listing 5. In this version, we use the blocking communication APIs, and
the overlapping among different operations is achieved through the usage of user-level
threads and communication-aware thread scheduling provided by the underlying imple-
mentation. As illustrated in Listing 5, this approach achieves operation overlapping
from a single loop execution with load balanced across multiple threads using separate
contexts, which reduces the level of code complexity.
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Listing 5. Key exchange in ISx with user-level threads and blocking APIs

void thread_func(void *t_arg) {

int tid = t_arg->id;

shmem_ctx_t ctx;

shmem_ctx_create(SHMEM_CTX_PRIVATE, &ctx);

for (int i = 0; i < shmem_n_pes(); i++) {

if (i % total_threads == tid) {

int dest_pe = peers_iter(i);

long long dest_offset = shmem_ctx_longlong_atomic_fetch_add(ctx, &offset,

..., dest_pe);

shmem_ctx_int_put(ctx, &dest_buffer[dest_offset], ..., dest_pe);

}

}

}

int main(int argc, char *argv[]) {

...

for (i = 0; i < num_threads; i++) { thread_create(..., thread_func, ...); }

...

}

5 Experimental Results

We have extended Sandia OpenSHMEM (SOS) v1.4.4 with support for user-level
threading integration. SOS was built using libfabric version 1.7.0 with the PSM2 [4]
provider. SOS is configured with manual progress enabled with a progress interval of
1 us. We also disable bounce buffering to ensure consistent performance across differ-
ent message sizes. We use the MPICH Hydra process launcher version 3.2 to execute
all jobs and restrict processes to be bound to two CPU cores (--bind-to=core:2).

For the user-level thread library, we use Argobots [3,32] throughout our experi-
ments. In our experiments, we analyze performance by utilizing both user-level threads
and shepherd threads. A similar but alternative evaluation strategy would be to evaluate
our proposed OpenSHMEM extensions in conjunction with BOLT [9], an OpenMP [6]
based parallel library that utilizes Argobots for implementing the underlying threading
mechanisms. As we provide the preliminary study on OpenSHMEM with user-level
threads in this work, we plan to investigate an integration with other threading models
in the future.

Results were gathered on a cluster with 8 compute nodes. Each compute node
contains two Intel R©Xeon R©Platinum 8170 (Skylake) CPUs at 2.1GHz and 192 GB of
DDR4-2666 RAM. Each node contains one 100 Gbps Intel R© Omni-Path Host Fabric
Adapter 100 Series (Intel R©OPA) and nodes are connected using an Intel R© Omni-Path
Edge Switch. Nodes are running Red Hat� Enterprise Linux Server release 7.5 (Maipo)
with Linux� kernel 3.10.0-862.el7.x86 64.

5.1 Performance Analysis of Different Scheduler Policies

We first analyze the performance impact of different thread scheduling policies. We
use either the round-robin (RR) or random policy for the Argobots thread scheduler to
schedule uninitialized threads. Once registered with SOS, threads are scheduled by the
integrated thread scheduler using a round-robin (RR), random, or communication aware
policy. We conduct these experiments on 4 nodes with 4 PEs per node using the Key
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Fig. 4. Performance impact of different scheduling policies with user-level threads

Exchange pattern introduced in Sect. 5.2, which performs an atomic fetch-add followed
by a put operation. We evaluate cases where the workload is balanced and unbalanced
across threads. Imbalance is introduced by creating additional threads that wait for and
consume data as it arrives.

Figure 4 presents the results of these experiments, where the legend “A”+“B” indi-
cates that thread library scheduler with policy “A” and OpenSHMEM thread scheduler
with policy “B” is used. We present only one instance of the random scheduling for
uninitialized threads used by the thread library scheduler as it has similar performance
impact to the RR scheduling policy.

For balanced load experiments with 16 threads per PE presented in Fig. 4(a), we
observe that our proposed communication-aware thread scheduler increases overhead,
resulting in a 3–8% increase in latency compared to the default round-robin policy for
message sizes up to 256B. Larger message sizes incur higher latency, thus increasing
the opportunity for communication-aware scheduling and achieving 3–5% performance
improvement compared to the default round-robin policy. For the unbalanced load
distribution with 64 threads per PE shown in Fig. 4(b), communication-aware thread
scheduling uses the internal communication state to avoid scheduling blocked threads,
improving performance by 23% across most message sizes. In both of these cases, ran-
dom scheduling performs poorly because it ignores the current communication state,
causing it to frequently select blocked threads for execution.

5.2 Micro-benchmark Case Studies

We identify several communication patterns that are commonly used in OpenSHMEM
applications and create micro-benchmarks to analyze their performance with user-level
threading. Our micro-benchmarks support both blocking and nonblocking communica-
tion and can be run with or without user-level threads. The resulting case studies pro-
vide a base case of potential communication performance improvement with user-level
threading. A key area of inquiry is whether user-level threading can achieve communi-
cation performance similar to that of nonblocking communication, but with lower code
complexity. We conduct each of these experiments on 4 nodes with 16 PEs per node.
Latency is reported averaging 1000 iterations for each message size. For multi-threaded
experiments, we run with one shepherd and 2, 8, or 32 user-level threads.

Streaming: This micro-benchmark performs a unidirectional streaming bandwidth test
where a group of sender PEs send data to a group of receiver PEs using shmem put
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Fig. 5. Performance impact of user-level threads for stream micro-benchmark

Listing 6. Case study 2 - All-to-all with shmem put

for (int i = 0; i < shmem_n_pes(); i++) {
int dest_pe = peers_iter(i);
shmem_int_put(&dest_buffer[dest_offset], ..., dest_pe);

}

operations. Figure 5 show the bandwidth with 8 senders and 8 receiver PEs on two
nodes. For cases with threads, we vary the number of user-level threads while keeping
a single shepherd thread.

With blocking communication, shown in Fig. 5(a), we observe that user-level
threads can improve the achieved bandwidth compared to that of single-threaded imple-
mentation. For 32B–1KB message size, 32 user-level threads provide 2.22x–2.64x
more bandwidth compared to single-threaded execution. However, with non-blocking
APIs, as presented in Fig. 5(b), user-level threads do not bring any additional benefits.
Since this benchmark has only one operation, using non-blocking API for that operation
yields the same performance between single and multiple user-level threads.

Transpose: In this study, we consider an all-to-all communication operation using
shmem put. Each PE runs a loop of all the PEs and use the loop index to construct
the destination PE, sending different data to different PEs. This communication pattern
represents a generic use-case in OpenSHMEM applications. For example, distributed
matrix transpose, OpenSHMEM implementation of LAMMPS application [33], and
distributed fast Fourier transform may utilize this communication pattern. Listing 6
presents this communication loop example with blocking API.

We develop a micro-benchmark for the communication pattern shown in Listing 6.
When nonblocking shmem int put nbi operations are used, we place a shmem quiet

after the loop to ensure completion of all the pending put operations. For multithreaded
execution, we divide the loop across threads to assign each thread a set of destination
PEs for the communication. We use separate contexts for each thread to avoid synchro-
nization between threads. Figure 6 presents the results obtained from this experiment
for up to 4KB message size.

As shown in Fig. 6(a), user-level threading reduces latency with blocking commu-
nication by almost 42% with 8 threads for most message sizes (4 B–2KB). In Fig. 6(b),
we observe that with nonblocking communication user-level threads do not improve
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Fig. 6. Performance impact of user-level threads for transpose micro-benchmark

Listing 7. Case study 3 - All-to-all with shmem fadd and shmem put

for (int i = 0; i < shmem_n_pes(); i++) {

int dest_pe = peers_iter(i);

long long dest_offset = shmem_longlong_atomic_fetch_add(&offset, ..., dest_pe);

shmem_int_put(&dest_buffer[dest_offset], ..., dest_pe);

}

latency for sizes up to 32B. For message sizes larger that 32B, we observe a maximum
performance improvement of 20% (for 2KB message size) using 8 threads. In contrast
to the blocking API, we observe performance degradation with 32 user-level threads for
message sizes up to 128B.

Key exchange: In this case study, we explore a communication pattern that is common
to the key exchange phase of parallel sorting, similar to the pattern used by the Integer
Sort (ISx) [17] benchmark. This communication pattern involves an atomic fetch-add
operation followed by a put operation utilizing the fetched value. This pattern is used
when different PEs append data to the same destination buffer on a remote PE and an
atomic fetch add to reserve buffer space at the destination PE. Listing 7 highlights this
communication loop block with blocking APIs for shmem fetch add and shmem put.
For the non-blocking implementation, shmem fetch add nbi and shmem put nbi are
split into separate loops and a shmem quiet operation is used to complete operations
after each loop, as shown in Listing 4.

As shown in Fig. 7(a), we observe 46–52% performance improvement for message
sizes up to 64B and a maximum of 40% improvement for larger message sizes. With
non-blocking APIs shown in Fig. 7(b), we observe a maximum of 27% improvement
for 2KB message size with 8 threads.

Put with Signal: Listing 8 shows the blocking version of commonly used Open-
SHMEM communication loop that performs an all-to-all exchange where each iteration
sends a message and then sets a signal flag at a given peer PE to notify that the data has
arrived. For the non-blocking API, we use the nonblocking shmem put signal nbi

routine that performs the data transfer and subsequent signal flag update as a single
operation. Put-with-signal has been ratified for OpenSHMEM 1.5 and is available in
SOS.
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Fig. 7. Performance impact of user-level threads for key exchange micro-benchmark

Listing 8. Case study 4 - All-to-all with shmem put for data and signal

for (int i = 0; i < shmem_n_pes(); i++) {
int dest_pe = peers_iter(i);
shmem_long_put(&dest_buffer[dest_offset], ..., dest_pe);
shmem_fence();
shmem_uint64_put(&signal_addr, &signal_value, 1, dest_pe);

}

As shown in Fig. 8(a) and Fig. 8(b), we observe more than 40% performance benefit
for both blocking and nonblocking APIs with the addition of user-level threads across
all message sizes.

5.3 Application Case Studies

We analyze the application-level performance impact of integrated user-level thread
scheduling using three benchmarks: Mandelbrot set generation, integer sort for exascale
(ISx), and Smith-Waterman DNA sequence alignment.

Mandelbrot: We use the OpenSHMEM implementation [2] of Mandelbrot set gen-
erator provided through the SOS repository and first introduced in [14]. We conduct
two sets of experiments with this application. In the first set, we vary the total number
of user-level threads per PE while keeping two shepherd threads for both default and
modified implementation. We measure the speedup obtained with respect to total work
rate compared to the default threaded implementation. We conduct this experiment on
8 nodes with 16 PEs per node. We use 8K as the width and height of the Mandelbrot
domain. We vary the number of user-level threads from 1 per PE (32 per node) to 64
per PE (2K per node). We compare the performance of user-level threading with two
shepherds (2 pthreads) for the default implementation. Both cases use the same number
of cores without OS thread oversubscription. We measure performance for three differ-
ent communication variants provided by the benchmark: Blocking, Non-blocking, and
Non-blocking pipelined (shown as NB-pipelined).

As shown in Fig. 9(a), with 16 user-level threads per PE, we observe 1.35× speedup
for Blocking, 5% improvement for Non-blocking, and 1.57× speedup for Non-blocking
with pipelining. These results demonstrate that the introduction of user-level threads can
provide significant performance improvements without OS thread oversubscription. We
further analyze the performance in the presence of OS thread oversubscription by using
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Fig. 8. Performance impact of user-level threads for put with signal micro-benchmark
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Fig. 9. Performance improvement of Mandelbrot benchmark with user-level threads

8 pthreads and shepherd threads for both the default and modified implementation of
Mandelbrot, respectively. We use 8 user-level threads in this experiment and keep other
settings same as the previous experiment. In Fig. 9(b), we report the total work rate
and compare this between the two implementations. We observe similar performance
benefits for all three settings: 1.21× for Blocking, 5% for Non-blocking, and 1.94× for
Non-blocking with pipelined communication using contexts.

ISx: We conduct a weak scaling experiment with the Integer Sort (ISx) [17] bench-
mark on 8 nodes. As the current ISx implementation is single-threaded, we conduct
this experiment with one shepherd thread and 64 user-level threads. We vary the total
number of PEs from 4 per node to 16 per node with a fixed 64M keys per PE. We
compare the performance with respect to average all-to-all time per PE reported by the
benchmark. We measure this performance with the default setting of 1 warm-up and 1
test iteration. As shown in Fig. 10(a), we observe a maximum of 14.7% performance
benefit for 96 PEs compared to the default non-threaded implementation.

Smith-Waterman: Smith-Waterman is a dynamic programming algorithm used for
matching similarity between two DNA/RNA sequence, which locates regions in
sequence with high levels of similarity. The OpenSHMEM implementation of this algo-
rithm is first proposed in [7] and its open-source implementation is available in [5]. We
observe that the OpenSHMEMSmith-Waterman benchmark performs a large number of
RMA operations with complex interactions between communication and computation
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Fig. 10. Performance improvement of ISx and Smith-Waterman algorithm with user-level threads

phases. Thus, we anticipate that user-level threads can provide a productive method for
hiding communication latency and overlapping communication with computation.

Figure 10(b) shows performance across different scales for four different settings
based on API and pre-fetching options: the default implementation (Default), default
with pre-fetching enabled and non-blocking APIs (Default-Prefetch-NB), enhanced
implementation with user-level threads (User-level-threads), and user-level threads with
non-blocking APIs (User-level-threads-NB). We conduct this experiment on 8 nodes
with 4 PEs per node and 8 user-level threads per PE. We measure the time taken on
kernel 1 execution of the implementation and compare the performance between the
baseline user-level threaded versions. We observe that with user-level thread schedul-
ing, performance of the algorithm improves by almost 28.74% compared to the base-
line. With pre-fetching and non-blocking APIs, the algorithm performs slightly better
compared to the user-level threaded implementation with blocking APIs. However, with
non-blocking APIs and even without pre-fetching, user-level threaded implementation
can out-perform the default best case by 1–3%.

To illustrate the additional overlap introduced by user-level threads, we utilize the
performance counters [27] in SOS and analyze the number of pending communica-
tion operations for Smith-Waterman implementation. We conduct this experiment on 4
nodes with 4 PEs per node with a scale value of 25 and observe the differences between
the default execution and user-level threaded execution. As presented in Fig. 11, user-
level threads introduce better overlapping (increased number of pending operations in
Fig. 11(b)) and thus, reduces the execution time.
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Fig. 11. Overlapping through performance counters for Smith-Waterman algorithm
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6 Conclusion

This paper explores the usage of user user-level threading with OpenSHMEM as an
effective method of exposing communication overlap, while maintaining the ease-
ofprogramming provided by blocking communication interfaces We propose a generic
OpenSHMEM API extension to enable cooperatively scheduled threads to safely use
blocking OpenSHMEM interfaces. We further build on these concepts to introduce
communication-aware thread scheduling for OpenSHMEM applications that leverages
the OpenSHMEM runtime system’s knowledge of multithreaded communication state
to avoid scheduling blocked threads, thereby minimizing overheads.

Our experimental analysis indicates that user-level threading is effective at enabling
communication overlap and pipelining. Microbenchmark results showed that block-
ing communication with user-level threading can provide performance comparable to
optimized, single-threaded nonblocking communication. For example, in a majority of
cases analyzed in Sect. 5.2, we observe that the blocking API implementation with user-
level threads meets or exceeds the performance of single-threaded non-blocking imple-
mentations for message sizes larger than 128B. Similar results were observed with the
Mandelbrot and Smith-Waterman benchmarks presented in Figs. 9(a) and 10(b), respec-
tively. We attribute overheads at smaller message sizes to threading inefficiencies that
can be addressed with greater attention to threading support in the communication stack.

In this work, our proposed OpenSHMEM extensions define a generic infrastructure
for building communication-aware schedulers. While the scheduler we have demon-
strated is effective, this remains a broad area for further investigation and customiza-
tion. Also, the usage of user-level threading in conjunction with the new OpenSHMEM
features, such as the proposed teams interface, may provide new opportunities for per-
formance optimization.

Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other
countries.

Benchmark results were obtained prior to implementation of recent software
patches and firmware updates intended to address exploits referred to as “Spec-
tre” and “Meltdown”. Implementation of these updates may make these results
inapplicable to your device or system.

Software and workloads used in performance tests may have been optimized
for performance only on Intel R© microprocessors. Performance tests, such as
SYSmark� andMobileMark�, are measured using specific computer systems, com-
ponents, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and perfor-
mance tests to assist you in fully evaluating your contemplated purchases, includ-
ing the performance of that product when combined with other products.

For more information go to http://www.intel.com/benchmarks.

�Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks
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Abstract. Overlap of computation and communication is critical for
good application-level performance. Modern high-performance networks
offer Hardware-assisted tag matching and rendezvous offload to enable
communication progress without involving the host CPU. However, hard-
ware based offload cannot be used in many situations due to various hard-
ware limitations and performance issues. Furthermore, hardware-based
designs cannot provide good overlap for common communication pat-
terns involving unexpected messages or non-contiguous datatypes. In this
paper, we address these limitations by designing a communication-aware
overlap engine for MPI that uses novel hardware-assisted and software-
based solutions to extract overlap for both expected and unexpected
messages. The proposed design adapts to the application’s communica-
tion requirements including message size, datatype, and relative timing
of processes using heuristics and history-driven predictions. We evalu-
ate the proposed designs against state-of-the-art MPI libraries and show
up to 41% and 22% reduction in latency for collective operations and
stencil-based application kernels on 1024 and 128 nodes, respectively, as
well as 23% improvement in communication performance of the P3DFFT
application.

1 Introduction

The massive growth in the size and scale of supercomputing systems has been
driven by the current trends in multi-/many-core architectures and the availabil-
ity of RDMA-enabled, and high-performance interconnects such as InfiniBand
(IB) and Omni-Path. The Message Passing Interface (MPI) [18] has been the de-
facto programming model for developing high-performance parallel applications
for the last couple of decades. One of the major features offered by modern high-
performance network adapters (HCAs) is called ‘RDMA’ and it is the ability to
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read from and write data to remote memory locations without involving the host
CPU. The MPI standard offers non-blocking communication primitives to take
advantage of RDMA and enable overlap of communication and computation.
Numerous studies have shown this overlap to be the critical factor for achieving
good application performance and have proposed different solutions to address
this [15,17,22].

There are generally two schemes in MPI to implement the point-to-point com-
munications — ‘Eager’ and ‘Rendezvous’. The eager protocol uses a set of pre-
allocated and pre-registered buffers for the HCA to communicate asynchronously,
without performing any handshake with peer processes. Upon receiving an eager
message, this protocol involves one extra copy from pre-registered buffers into
the application buffers, therefore, it is typically used for small messages. On
the other hand, in Rendezvous protocol, the sending process first checks for the
availability of the buffer in the receiver’s side before transferring the actual mes-
sage and it is used for medium and large message sizes. The Fig. 1(a) illustrates
the RDMA read based rendezvous. The sender sends a control signal RTS to
the receiver. The receiver after receiving the RTS issues an RDMA read signal
which fetches the data from the sender without involving the sender’s CPU. As
it is seen in this figure, there is no overlap in communication with computation.
In other words, the communication starts only after MPI wait is called by the
application, after which the application is idle [25].

(a) Rendezvous RGET (b) Rendezvous RGET with HW TM

Fig. 1. Comparison of RGET with and without HW Tag Matching [5].

To tackle this, modern HCAs such as Mellanox Infiniband ConnectX-5 and
ConnectX-6 have included the ability to perform tag-matching in hardware and
initiate RDMA operations without the involvement of the CPU on the receiver
side [5,26]. This allows the MPI library to post a receive operation along with
the address of its destination buffer to the HCA. If the posted receive request is
expected, meaning that the time that the receive request has been posted (trecv)
is before the time that incoming Tag Mathing (TM) packet has arrived (tarrive),
(tarrive > trecv), a matching receive for an incoming RTS gets offloaded to the
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HCA. Therefore, the HCA can perform an RDMA read from the sender’s buffer
as soon as it gets the RTS without any involvement of the receiver process.
Rendezvous offload using Hardware Tag Matching is depicted in Fig. 1(b).

While this feature enables the MPI library to extract more overlap in cer-
tain scenarios, it cannot be used as a universal solution due to various semantic
limitations and performance bottlenecks [5]. For instance, when no matching
receive is found for an incoming message (unexpected message), it cannot be
handled by the HCA since it does not know the destination buffer. Similarly,
small messages or non-contiguous messages may not be offloaded to the HCA due
to performance reasons. Even for expected messages, existing hardware-assisted
solutions [5,26] do not provide the HCA peak bandwidth while the posted receive
requests are offloaded. Furthermore, due to the semantic limitations of Hardware
Tag Matching, these solutions do not provide reasonable overlap of communica-
tion and computation when the application uses a combination of 1) short and
large or 2) contiguous and non-contiguous messages. These observations show
that while hardware tag matching is useful in certain scenarios, MPI libraries
need to address several challenges to mitigate its limited applicability as well as
performance bottlenecks to provide a complete and high-performance solution.

2 Challenges

In this paper, our goal is to design an overlap engine capable of adaptively
utilizing advanced hardware and software-based schemes for progress-
ing MPI operations for diverse application communication scenarios.
To achieve this, we need to answer the following five questions: 1) What are the
performance characteristics, benefits, and shortcomings of state-of-the-art hard-
ware tag-matching and offload? 2) Are the capabilities provided by the hardware
sufficient or do they need to be augmented by software-based schemes? 3) Which
communication scenarios can be improved in terms of performance and overlap

Table 1. State-of-the-art designs and features to support efficient communication and
computation overlap. In this table, we define the following design challenges for a high-
performance overlap engine: C1) Adaptability to application communication require-
ments, C2) Efficient designs to extract overlap for unexpected messages, C3) Communi-
cation progress without receiver involvement, and C4) Efficient overlap for out-of-order
messages

Design challenges State-of-the-art MPI libraries

OpenMPI+
UCX with
HW-TM

OpenMPI+
UCX

MVAPICH2 MVAPICH2+
Async

Proposed

C1 [see the caption] ✕ ✕ ✕ ✕ ✔

C2 ✕ ✕ ✕ ✕ ✔

C3 ✔ ✕ ✕ ✔ ✔

C4 ✕ ✕ ✕ ✕ ✔
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by offloading to HW? 4) Can we propose novel designs to extract overlap for
unexpected messages? Can it be done without increasing the memory footprint
of the MPI library? 5) Can the proposed designs be combined so they can be
adaptively applied to the application’s communication requirements?

Table 1 shows an overview of the state-of-the-art solutions available in differ-
ent MPI libraries to extract overlap. Four different representative open source
solutions are considered - OpenMPI+UCX with and without support for hard-
ware tag-matching [26]; and MVAPICH2 with and without software-based asyn-
chronous progress [21]. As we can see, both hardware and software-based solu-
tions enable communication progress without receiver involvement for expected
messages. However, none of the solutions provide good overlap for unexpected
messages. Furthermore, even for expected messages, existing hardware-assisted
solutions do not provide good overlap when the application uses a combination
of 1) short and large or 2) contiguous and non-contiguous messages. Similarly,
existing designs do not efficiently handle out-of-order messages. These issues
limit the performance and applicability of the existing solutions. To the best
of our knowledge, a comprehensive solution that adaptively and efficiently han-
dles different application scenarios has neither been proposed in literature nor
available as a software product.

3 Contributions

In this paper, we tackle these questions and show that neither hardware nor
software-based tag matching can provide the best performance and overlap for
different communication scenarios. Thus, a hybrid design that can take advan-
tage of both these approaches and adapt to the application’s communication
requirements is required. To this end, we propose a Communication-Aware
Hardware-Assisted MPI Overlap Engine (“CHAMPION”) that takes advan-
tage of hardware and software features to provide high overlap of computation
and communication for both expected and unexpected messages, and dynami-
cally adapt to the application’s communication requirements. To summarize, the
paper makes the following contributions:

– In-depth characterization of state-of-the-art hardware tag-matching and
offload schemes and identify regions of applicability for hardware tag match-
ing and software-based solutions.

– Design a communication-aware Hardware Tag Matching offload mechanism
that hides the performance overheads of the offload engine while maintaining
the peak performance of this engine.

– Enable the processing of out-of-order messages in hardware, using a trace-
based matching design to maximize the benefits of Hardware Tag Matching.

– Propose novel designs to extract overlap from unexpected rendezvous mes-
sages by efficient prefetching.

– Evaluate and analyze the proposed designs using various benchmarks and
application kernels.
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Compared to state-of-the-art MPI libraries, the proposed designs show up to
41% improvement for collectives on 1024 nodes, up to 23% reduction in latency,
and up to 2× improvement in overlap for a stencil-based application kernel on
128 nodes and 23% improvement in communication performance of P3DFFT
application.

4 Motivation

As the first step toward designing a high-performance and scalable overlap engine
inside the MPI library using Hardware Tag Matching, we need to systematically
analyze the key communication primitives and semantics in the MPI library. We
consider the semantic challenges as well as performance challenges of state-of-
the-art Hardware Tag Matching. To have a complete picture of the hardware
improvements in this technology, we analyze Hardware Tag Matching in two
latest models of Infiniband HCAs: ConnectX-5 EDR and ConnectX-6 HDR.

Fig. 2. Comparison of communication and computation overlap of Hardware Tag
Matching with respect to the index of the inserted non-contiguous message in the
window size of 64 on different architectures. This figure indicates that the receive
requests which were posted after the non-contiguous receive request in the window are
not getting offloaded, leading to underutilization of Hardware Tag Matching and lower
overlap.

4.1 Semantic Challenges

In this section, to realize the impact of non-contiguous datatype on the over-
lap for medium to large messages, we modified the OMB [1] suite to insert
a non-contiguous message in the window size of 64 and calculate the overlap
and total latency. Figure 2 shows the impact of this insertion on the overlap.
For instance,‘dt-idx-0’ shows that insertion of non-contiguous message as the
first transfer in the window leads to total overlap of almost 0%. On the other
hand,‘dt-idx-63’ which is the last transfer in the window almost has no impact
on the expected overlap. These results indicate that posted receive messages that
have been posted after the inserted non-contiguous message were not offloaded
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to the Hardware Tag Matching engine, leading to poor overlap and underuti-
lization of Hardware Tag Matching. Such poor performance exists for both EDR
as well as HDR models. MPI semantics mandate the MPI library to preserve
the message ordering, i.e., consecutive messages with the same tag must match
the posted receives in the same order they were posted. However, some of the
posted receives cannot be offloaded to the HCA (such as unexpected messages or
expected messages with non-contiguous datatypes) and need to be matched in
software. In this scenario, the offloaded tag-matching handled by the HCA and
software-based tag-matching handled by the CPU based communication progress
in MPI library could lead to incorrect ordering. For instance, consider a scenario
where the receiver posts two receives r1, r2, with the same tag t. However, due
to some limitation r1 cannot be offloaded to the HCA so only r2 is offloaded.
Now, the sender performs two sends s1 and s2 that should match with r1 and
r2 respectively. However, the HCA will process the incoming message from s1
first and match it to r2, violating the MPI ordering semantics. Conversely, if the
MPI library does not offload r2 to prevent this scenario, it has to be progressed
in software and benefits of hardware tag matching can not be obtained. Thus,
a high-performance MPI library should have the necessary designs to
maximize the applicability of Hardware Tag Matching.

Fig. 3. Comparison of bandwidth and overlap for different message sizes with and
without hardware rendezvous offload on different architectures. As we observe here,
Hardware Tag Matching is able to provide higher overlap compared to the software-
based solutions for point-to-point communications. On the other hand, this feature is
unable to maintain the peak bandwidth for message range less than 1 MB. HDR and
EDR are showing similar behavior.

4.2 Performance Challenges

In this section, we compare the communication performance (bandwidth) and
overlap achieved using point-to-point operations in Fig. 3. To measure overlap,
we modified the osu bw benchmark to calculate overlap similar to nonblocking
collectives in OMB [1]. We call this benchmark osu bw overlap. To observe the
effect of expected messages we introduce artificial delays at the sender to make
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sure that all the messages are expected and are handled by Hardware Tag Match-
ing. As shown in Fig. 3, Hardware Tag Matching maintains the peak overlap of
communication and computation in both EDR and HDR architectures. However,
in the ‘onload’ scenario, there is no overlap of communication and computation.
Here we assume that there is no asynchronous process/thread performing the
communication progress on behalf of the main process. Therefore, RDMA Read
is initiated only after application calls MPI Wait, which happens after compu-
tation is done. On the other hand, by comparing the bandwidth of the ‘offload’
vs. ‘onload’, we can realize that Hardware Tag Matching performs worse com-
pared to the CPU onloading. In the case of unexpected messages, RDMA Read is
always initiated by CPU, therefore, the bandwidth is same for both ‘onload’ and
‘offload’ scenarios. Hardware tag matching requires pre-posting receives to HCA
before the message has arrived at the receiver, so that the HCA can directly put
the data into the application buffer. Clearly, this scheme cannot be applied to
unexpected messages, where the message has already arrived but no matching
receive operation has been posted to the HCA. As illustrated in Fig. 7(a), this
scenario prevents overlap of computation and communication at the receiver.
Also, the delayed receiver process may increase the communication progress and
wait time at the sender side, leading to the propagation of a skew from the
receiver process to the sender process. Furthermore, since the HCA is unable to
process unexpected messages independent of the CPU, it disables hardware tag
matching once an unexpected message arrives to avoid ordering issues. Further
receives cannot be posted to the HCA until the unexpected message has been
processed by the CPU. Since the process arrival pattern of HPC applications are
often skewed [27], unexpected messages are a common scenario. Thus, a high-
performance Hardware Tag Matching assisted offload design in MPI
must avoid performance degradation of hardware rendezvous offload
while maintaining the peak overlap during the application runtime for
both expected and unexpected messages.

5 Proposed CHAMPION Design

A message in the MPI runtime can be classified as an expected or unexpected
message. Each has its own challenges and requires different considerations to
achieve better communication overlap. In view of the broad spectrum of MPI
communication, we explore the design challenges and solutions for expected
and unexpected messages. In the following sections, we show how our pro-
posed designs for hardware tag-matching semantics augmented by software-
based approaches are able to exploit better performance and overlap for various
benchmarks and applications.

5.1 Communication-Aware and Adaptive Rendezvous HCA Offload

As we discussed in Sect. 4, rendezvous offload using Hardware Tag Matching
has some performance degradations compared to the default version that all
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rendezvous protocol is initiated by host CPU. To address these limitations, we
propose a communication aware design that tries to adaptively offload the MPI
receive requests in an on-demand fashion. This design offloads only when an
overlap opportunity is presented, otherwise, it avoids offloading to mitigate the
overheads of the hardware tag-matching.

For expected messages, RDMA read needs to be performed as soon as the
incoming RTS is received. To realize this in our opportunistic design, we employ
a heuristic to find the frequency (f) of progress calls (MPI Wait, MPI Test) made
during the runtime. The frequency f is computed based on the difference between
the time (δ) when the receiver posts a receive request and when the actual RDMA
operation is triggered. The frequency f has an inverse relation to the offloading
factor e.g., the higher the progress frequency, the less the number of offloaded
tag-matching requests. This adaptive progress design is opportunistic in nature
as it continuously looks for overlap opportunities on the receiver side.

(a) High due to late sender (b) High due to low frequency of com-
munication progress

Fig. 4. In the proposed communication-aware Hardware Tag Matching design we con-
sider high value of δ as indicator of the need for hardware offload. Here we show two
different scenarios where δ can become high.

If δ is large enough (greater than a threshold K), then we try to offload the
receive request for this process peer. K depends on the number of outstanding
rendezvous requests (Crndv) and the average network latency of all outstanding
rendezvous messages. To approximate the latency, we use the LogGP [2] model.
α and β are obtained in an offline fashion and they are architecture-specific.

K = (
∑Crndv

i=1 (α × MSGi + β)
Crndv

) × Crndv =
Crndv∑

i=1

(α × MSGi + β)

Large value of δ could be caused by either (or both) of the following cases:
1) Sender’s RTS is posted later in time than the receiver has posted the
receive-request. In this case, HW TM is needed to avoid the receiver to get
blocked because of the late sender, leading to more overlap at the receiver side.
Figure 4(a) depicts this scenario. 2) Receiver process does not progress the com-
munication frequently enough and as a result, does not quickly poll the comple-
tion queue inside HCA to find the received RTS. In this scenario, HW TM is
needed to take care of the handshake required for RGET based rendezvous pro-
tocol. This scenario is shown in Fig. 4(b). On the other hand, a small value of δ
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Fig. 5. Proposed communication-aware and adaptive HW-TM design on bandwidth
and overlap benchmarks.

implies that there is no skew between the sender and the receiver processes. This
means that the receiver process is frequently progressing the communication and
there is no extra overlap gain from using HW TM, hence, we avoid offloading
to the HCA. Our proposed communication-aware design further keeps track of
the rate of canceled offloaded receive requests. If the cancelation rate passes a
threshold during a period, our proposed design avoids offloading more receive
requests until the next period. This is used to avoid the overheads of receive
request cancelations.

Figures 5(a) and (b) show that our proposed design can correctly realize the
lack of overlap opportunity in the osu bw benchmark and adaptively avoids
offloading receiver requests to the HCA. On the other hand, for osu bw overlap
benchmark, it correctly offloads the receives to achieve maximum overlap. This
benchmark is similar to osu bw but it also calculates the overlap with the same
formula as used in Nonblocking Collectives in OMB [1].

5.2 Trace-Based Matching

Scientific applications exhibit a wide variety of communication patterns involving
a range of message sizes and datatype layouts. For instance, a sender is allowed
to send a message with a derived datatype layout that cannot be offloaded,
followed by a message with a contiguous datatype layout which can be offloaded.
As discussed in Sect. 4, such variability in the message layouts limits the usability
of the offloading if we only rely on HW TM semantics.

An MPI library must make sure that there are no messages offloaded to the
network with the same tag to avoid the ordering issues which limit the usage
of HW TM. To have such a capability, we add an additional variable to the
tag-matching tuple of rank, tag, and context id so that messages which have the
same tag get differentiated. The new variable is unique and preserves the ordering
of the messages for a sequence of messages with the same tag. To achieve this,
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Fig. 6. Impact of proposed designs on variable memory layout communications. Out of
64 messages, all are using contiguous layouts while one is using MPI derived datatype.

two sequence numbers are added for each communicating peer. If an application
uses more than one unique ‘tag’ when it calls MPI Send and Recv primitives,
we allocate new sequence numbers for each new tag. Every communicator in the
application has its own set of sequence numbers so that context id remains same
for all the sequence numbers within a communicator. Both the sequence numbers
are used to keep track of corresponding Send and Recv MPI calls issued by the
application for each unique combination of rank, tag, and context id. Whenever
an application issues these operations, the sequence numbers for that specific
tag and peer are incremented, as there is always a matching Recv operation for
a Send operation. Appending this sequence number within the 64-bit value of
HW TM tag ensures that no two messages can have the same tag, while MPI
ordering of the messages is preserved.

To evaluate our design, we analyze the same benchmark that we used in
Sect. 4.1. As we mentioned before, the benchmark creates an MPI derived
datatype and during the window size number of transfers, it runs few itera-
tions with derived datatypes by using the same tag as of other transfers in each
iteration. By running this benchmark, when a software-based pending receive is
available, MPI libraries such as OpenMPI+UCX stop offloading new incoming
receives to the HCA until software takes care of the pending receives. Due to
this limitation, the hardware cannot be exploited to its full potential to achieve
maximum overlap. Figure 6 shows how our proposed trace-based matching design
overcomes this limitation. As it can be seen, the presence of even a single non-
contiguous datatype transfer can completely eliminate the benefits of naive hard-
ware tag-matching design (refer to Sect. 4). However, our proposed trace-based
matching design is able to address these limitations and offer better performance
and overlap in comparison to other state-of-the-art solutions.
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5.3 Improving the Overlap of Unexpected Messages

In this section, we discuss various design components for our overlap engine
which are applicable to ‘unexpected messages’ at the receiver side. We start
with a speculative approach and move towards an optimized design. As we dis-
cussed in Sect. 4, Hardware Tag Matching does not provide any communication
and computation overlap for unexpected messages. This is an expected behav-
ior as upon receiving an unexpected RTS, receiver process has not yet posted
the receive request and therefore, receiver HCA does not yet know where the
destination buffer is. As illustrated in Fig. 7(a), this scenario prevents overlap of
computation and communication at the receiver. Also, the delayed receiver pro-
cess may increase the communication progress and wait time at the sender side,
leading to the propagation of a skew from the receiver process to the sender pro-
cess. Since the process arrival pattern of HPC applications are often skewed [27],
unexpected messages are a common scenario.

In order to allow the sender to proceed without getting stuck on a late receiver
process to post the receive request and perform the RDMA-Read, the receiver
process selectively prefetches some of the unexpected rendezvous messages. To
achieve this, we create a memory pool and register it with HCA during MPI Init.
Whenever an unexpected RTS is received at the receive side, we query the mem-
ory pool to see if there is a memory slot available to be used for prefetching. If
a free slot is found, then based on the sender’s information obtained from RTS
packet, an RDMA read is issued to transfer the data from the sender’s buffer.
After the completion of the transfer, a FIN packet is sent to the sender indicating
that the sender is free to mark the operation as complete. This design is illus-
trated in Fig. 7(b). To decide whether or not prefetch the incoming unexpected
RTS, this design relies on the history of the previous prefetches and number of
useful prefetches (ones that receiver process posted the receive request after the

(a) Rendezvous RGET (b) Proposed Prefetch Scheme

Fig. 7. The proposed design and default MVAPICH2 approaches in handling unex-
pected rendezvous messages. In the proposed design, the receiver process prefetches
the unexpected rendezvous message, leading to better overlap and latency for sender
and receiver as the sender does not get blocked by the late receiver.



528 M. Bayatpour et al.

prefetch is done) versus non-useful prefetches (ones that receiver process posted
the receive request before prefetch is done, but obviously, after RTS is received).

To measure the impact of the proposed design for unexpected messages,
we use a synthetic benchmark where we inject skew between the sender and
the receiver to force the message to arrive as unexpected at the receiver. As
it is shown in Fig. 8, closest in performance is the MVAPICH2-X library with
asynchronous progress thread enabled—referred to as MVAPICH2+Async. In
our proposed design, we also create a tm-thread that functions similar to how
MVAPICH2+Async functions [21]. The proposed design improved overall run-
time by up to 38% as well as achieved better overlap in comparison to MVA-
PICH2+Async design.

6 Performance Evaluation

In this section, we discuss the experimental results of our proposed designs and
provide in-depth analyses. We implemented our proposed designs in a pub-
licly available open-source version of MVAPICH2 [19]. To evaluate the pro-
posed designs, we provide an in-depth comparison against the state-of-the-art
designs employed by MPI libraries such as MVAPICH2-X v2.3rc2 (referred to
as “MVAPICH2”) and Open MPI v4.0.0 with UCX v1.4 (referred to as “Open-
MPI+UCX”). All the reported numbers are an average of five runs. Microbench-
mark evaluations ran for 1,000 iterations for each run and an average of five runs
is reported. Furthermore, the standard deviation between these iterations is kept
under 5%.

Fig. 8. Impact of the proposed prefetch-based design on the performance of unexpected
messages (Window size = 64)

6.1 Experimental Setup

We used the following clusters for our evaluation:
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Cluster-A—Frontera cluster at the Texas Advanced Computing Center con-
tains 8008 compute nodes equipped with the dual-socket Intel Xeon Platinum
8280 (Cascade Lake), 56-core processors (448,448 cores in total) operating at
2.70 GHz with 192 GB RAM. Each node is equipped with Mellanox HDR-100
ConnectX-6 HCAs (100 Gbps data rate).

Cluster-B—Pitzer cluster at the Ohio Supercomputing Center contains 260
compute nodes equipped with the Skylake Gold 6148 series of Xeon dual-socket,
20-core processors operating at 2.40 GHz with 128 GB RAM. Each node is
equipped with Mellanox MT4119 EDR ConnectX-5 HCAs with PCI-Ex Gen3
interfaces. For some of the motivational numbers we used our local cluster which
has similar details to this cluster but it has Broadwell series of Xeon dual-
socket, 14-core processors operating at 2.40 GHz. All the results were obtained
on Cluster-B except for the ones which are indicated that they were run on
Cluster-A.

6.2 Impact of Proposed Designs on Collective Operations

In this section, we evaluate the performance of collective operations using the
proposed designs.

Fig. 9. Impact of proposed communication-aware design on collectives with 640
processes.

Fig. 10. Performance impact of proposed designs on MPI Ialltoall and MPI Iscatterv
running on cluster A
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Impact of Proposed Communication-Aware Hardware Tag Matching
Design. Figure 9(a) shows that by using the proposed design, MPI Iscatterv
performance increases by a factor of 1.6X. In MVAPICH2, MPI Iscatterv uses
a direct algorithm, meaning that the root process directly sends the data to all
other non-root processes. Therefore, HW TM can provide nearly perfect over-
lap of communication and computation for this collective as only one receive
request is issued by non-roots during the collective runtime and this receive
request gets overlapped using HW TM. On the other hand, Fig. 9(b) shows that
for MPI Igatherv, basic TM design has around 10% to 15% degradation com-
pared to default for medium messages but the proposed design can avoid this
degradation. After profiling this test, we realized that even though Igatherv
uses a direct algorithm, more than 90% of the offloaded receive requests at root
are getting canceled, therefore, there will be no benefit from HW TM. Since
our communication-aware design keeps track of the cancel rate of the offloaded
receive requests, it avoids using HW TM for this benchmark during the runtime
leading higher performance compared to basic HW TM design.

Figure 10 shows the impact of the proposed designs at large scale for Iall-
toall and Iscatterv collectives. As it is shown in these figures, for iscatterv in
1024 node, there is up to 41% improvement in total latency while increasing the
overlap up to 80%. On the other hand, Ialltoall also shows up to 33% improve-
ment in total latency and up to 70% in overlap providing near-perfect overlap
of communication and computation on 64 nodes.

Fig. 11. Impact of proposed prefetch-based design on collectives with 320 processes.

Impact of the Proposed Designs for Unexpected Messages. By run-
ning collective tests using OMB [1] using the prefetch-based design, we did not
observe any significant difference in the performance of collective operations.
This is expected because in collective benchmarks (OMB) all the processes are
mostly synchronized e.g., all the processes enter the collective operation at the
same time. To better understand the impact of our designs, we modify some
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benchmarks to insert skew for some of the processes as the real applications typ-
ically show skewed communication. We observed that the rooted collectives such
as MPI Gather and MPI Reduce show benefits due to the prefetch design. This is
due to the fact that the rooted collectives do not have any implicit barrier dur-
ing the operation in contrast to dense collectives like MPI Alltoall. For these
communication patterns, the propagation of skew to other processes of the com-
municator can be avoided by efficiently prefetching the unexpected messages.
Figure 11 conforms to our understanding where we see up to 55% improvement
for MPI Reduce and up to 17% improvement for MPI Gather at 320 processes.

6.3 Impact of Proposed Designs on 3Dstencil Kernel

Fig. 12. Performance of 3D-Stencil application kernel running on 128 nodes using
proposed designs on cluster A

3DStencil is a common communication kernel that mimics the communica-
tion pattern of many stencil-based applications and Adaptive Mesh Refine-
ment (AMR) kernels. This communication kernel performs 7-point stencil with
neighboring processes using MPI non-blocking point-to-point primitives i.e.,
MPI Isend and MPI Irecv using contiguous datatypes. Figure 12 shows that pro-
posed design achieve up to 2× increased overlap and up to 22% improved latency
as compared to other MPI libraries running on 128 nodes. In this experiment, for
all the message sizes, the Rendezvous protocol is getting used and our profiles
showed in the proposed design, out of 579,365 receive requests that have been
offloaded, 20,050 receive request has been canceled while 559,315 offload requests
have been successful, having the offload rate of 96%. This results in more than
20% improvement in overall runtime compared to default MVAPICH2.
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6.4 Application-Level Evaluations

Fig. 13. Impact of proposed designs on P3DFFT with 32 processes per node.

In this section, we evaluate the impact of the proposed designs on performance
of P3DFFT and LAMMPS applications. The Parallel Three-Dimensional Fast
Fourier Transforms (P3DFFT) [20] library uses a 2D, or pencil, decomposition
and overcomes an important limitation to scalability inherent in FFT libraries
by increasing the degree of parallelism. This library heavily relies on nonblock-
ing Alltoall collectives to transform the data grid during each iteration [16,24].
Figure 13 shows the impact of the proposed design. As shown in this figure, the
proposed design can correctly realize the opportunity of overlap in this applica-
tion and provide 23% improvement in the communication time and up to 7%
improvement in total application time.

Our second evaluation is on Large-scale Atomic/Molecular Massively Paral-
lel Simulator (LAMMPS) [3] which is a molecular dynamics program developed
in Sandia National Laboratories. This test runs on 32 nodes with 16 processes
per node on Frontera cluster. On this configuration, we observed 3.58% improve-
ment in total execution time compared to MVAPICH2. We further profile this
application and realized that out of 266,896 rendezvous recieves, 216,517 receive
requests have been successfully offloaded and matched in the Hardware Tag
Matching engine and rest have been handled by software tag matching. This
leads to 81% success rate in the tag matching offload and improved overlap in
the application.

7 Related Work

Optimizing software-based MPI tag matching has been the interest of many
researchers. Some of these proposals [8,9,11] consider static designs to improve
tag matching operations, while others [4,10,12,13] propose adaptive and
dynamic approaches. Offloading the communication progress to NICs for MPI
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point-to-point and collective operations has been explored in the past. For exam-
ple, Researchers [28] explore the implementation of multicast in Myrinet based
NICs. Graham et al. [14] explore the overlap of computation and communica-
tion in Mellanox ConnectX2 HCA. It uses the Core-Direct API to implement
the barrier collective and study the improvements in the total time obtained
due to Hardware offloading. Subramoni et al. [23] provide designs to effectively
implement the collectives on the ConnectX2 HCA. Brightwell et al. [6] showed
that eagerly sending large messages can improve latency for pre-posted receives.
However, this scheme has to resend unexpected large messages in the presence of
application skew, which does not affect our design. Chakraborty et al. [7] inves-
tigate different approaches to increase the overlap of intra-node communication
and computation with inter-node communication. As we can see, no work exists
in literature that can provide maximum overlap of computation and communica-
tion in a communication-aware fashion while taking advantage of state-of-the-art
solutions in hardware and software in an adaptive fashion as “CHAMPION” is
able to do.

8 Conclusion and Future Work

In this paper, we characterized the semantic and performance limitations of
state-of-the-art hardware-based tag matching and rendezvous offload designs
and showed that they cannot be applied to a number of scenarios. We also show
that hardware tag-matching does not provide improved overlap for various com-
mon communication patterns such as unexpected or non-contiguous messages.
We proposed an adaptive overlap engine for MPI that is cognizant of the appli-
cation’s communication requirements and can opportunistically offload receives
to the network adapter based on factors like message size, datatype, as well as
arrival patterns of the sender and the receiver process. The proposed design uses
both hardware-assisted and history-driven software-based solutions to extract
overlap for both expected and unexpected messages in different communication
scenarios. We evaluated the efficacy of the proposed design against state-of-the-
art hardware and software-based solutions using a variety of microbenchmarks
and application kernels and showed up to 55% and 17% improvement for Reduce
and Gather collectives with 320 processes. Furthermore, we showed that our
designs can increase the performance of Iscatterv and Ialltoall up to 41% and
33% in 1024 and 64 nodes, respectively. We also show up to 2× increase in
overlap and up to 22% reduction in overall runtime for stencil-based application
kernels and 23% improvement in communication performance of P3DFFT. As
the future work, we will work on proposing HW TM aware collectives as well as
running more scientific applications to see the impact of proposed designs.
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Abstract. Scaling supercomputers comes with an increase in failure
rates due to the increasing number of hardware components. In stan-
dard practice, applications are made resilient through checkpointing data
and restarting execution after a failure occurs to resume from the lat-
est checkpoint. However, re-deploying an application incurs overhead by
tearing down and re-instating execution, and possibly limiting check-
pointing retrieval from slow permanent storage.

In this paper we present Reinit++, a new design and implementation of
the Reinit approach for global-restart recovery, which avoids application
re-deployment. We extensively evaluate Reinit++ contrasted with the
leading MPI fault-tolerance approach of ULFM, implementing global-
restart recovery, and the typical practice of restarting an application to
derive new insight on performance. Experimentation with three different
HPC proxy applications made resilient to withstand process and node
failures shows that Reinit++ recovers much faster than restarting, up to
6×, or ULFM, up to 3×, and that it scales excellently as the number of
MPI processes grows.

1 Introduction

HPC system performance scales by increasing the number of computing nodes
and by increasing the processing and memory elements of each node. Further-
more, electronics continue to shrink, thus are more susceptible to interference,
such as radiation upsets or voltage fluctuations. Those trends increase the prob-
ability of a failure happening, either due to component failure or due to transient
soft errors affecting electronics. Large HPC applications run for hours or days
and use most, if not all, the nodes of a supercomputer, thus are vulnerable to
failures, often leading to process or node crashes. Reportedly, the mean time
between a node failure on petascale systems has been measured to be 6.7 h [24],
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while worst-case projections [12] foresee that exascale systems may experience a
failure even more frequently.

HPC applications often implement fault tolerance using checkpoints to
restart execution, a method referred to as Checkpoint-Restart (CR). Applications
periodically store checkpoints, e.g., every few iterations of an iterative compu-
tation, and when a failure occurs, execution aborts and restarts again to resume
from the latest checkpoint. Most scalable HPC applications follow the Bulk
Synchronous Parallel (BSP) paradigm, hence CR with global, backward, non-
shrinking recovery [21], also known as global-restart naturally fits their execution.
CR is straightforward to implement but requires re-deploying the whole applica-
tion on a failure, re-spawning all processes on every node and re-initializing any
application data structures. This method has significant overhead since a failure
of few processes, even a single process failure, requires complete re-deployment,
although most of the processes survived the failure.

By contrast, User-level Fault Mitigation (ULFM) [4] extends MPI with inter-
faces for handling failures at the application level without restarting execution.
The programmer is required to use the ULFM extensions to detect a failure and
repair communicators and either spawn new processes, for non-shrinking recov-
ery, or continue execution with any survivor processes, for shrinking recovery.
Although ULFM grants the programmer great flexibility to handle failures, it
requires considerable effort to refactor the application for correctly and efficiently
implementing recovery.

Alternatively, Reinit [11,22] has been proposed as an easier-to-program app-
roach, but equally capable of supporting global-restart recovery. Reinit extends
MPI with a function call that sets a rollback point in the application. It trans-
parently implements MPI recovery, by spawning new processes and mending
the world communicator at the MPI runtime level. Thus, Reinit transparently
ensures a consistent, initial MPI state akin to the state after MPI initialization.
However, the existing implementation of Reinit [11] is hard to deploy, since it
requires modifications to the job scheduler, and difficult to compare with ULFM,
which only requires extensions to the MPI library. Notably, both Reinit and
ULFM approaches assume the application has checkpointing in place to resume
execution at the application level.

Although there has been a large bibliography [4,5,9,11,16–18,21–23,26] dis-
cussing the programming model and prototypes of those approaches, no study
has presented an in-depth performance evaluation of them –most previous works
either focus on individual aspects of each approach or perform limited scale
experiments. In this paper, we present an extensive evaluation using HPC proxy
applications to contrast these two leading global-restart recovery approaches.
Specifically, our contributions are:

– A new design and implementation of the Reinit approach, named Reinit++,
using the latest Open MPI runtime. Our design and implementation sup-
ports recovery from either process or node failures, is high performance, and
deploys easily by extending the Open MPI library. Notably, we present a
precise definition of the failures it handles and the scope of this design and
implementation.
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– An extensive evaluation of the performance of the possible recovery
approaches (CR, Reinit++, ULFM) using three HPC proxy applications
(CoMD, LULESH, HPCCG), and including file and in-memory checkpointing
schemes.

– New insight from the results of our evaluation which show that recovery under
Reinit++ is up to 6× faster than CR and up to 3× faster than ULFM. Com-
pared to CR, Reinit++ avoids the re-deployment overhead, while compared to
UFLM, Reinit++ avoids interference during fault-free application execution
and has less recovery overhead.

2 Overview

This section presents an overview of the state-of-the-art approaches for MPI
fault tolerance. Specifically, it provides an overview of the recovery models for
applications and briefly discusses ULFM and Reinit, which represent the state-
of-the-art in MPI fault tolerance.

2.1 Recovery Models for MPI Applications

There are several models for fault tolerance depending on the requirements of the
application. Specifically, if all MPI processes must recover after a failure, recov-
ery is global ; otherwise if some, but not all, of the MPI processes need to recover
then recovery is deemed as local. Furthermore, applications can either recover
by rolling back computation at an earlier point in time, defined as backward
recovery, or, if they can continue computation without backtracking, recovery
is deemed as forward. Moreover, if recovery restores the number of MPI pro-
cesses to resume execution, it is defined as non-shrinking, whereas if execution
continues with whatever number of processes surviving the failure, then recov-
ery is characterized as shrinking. Global-restart implements global, backward,
non-shrinking recovery which fits most HPC applications that follow a bulk-
synchronous paradigm where MPI processes have interlocked dependencies, thus
it is the focus of this work.

2.2 Existing Approaches for MPI Fault Tolerance

ULFM. One of the state-of-the-art approaches for fault tolerance in MPI is
User-level Fault Mitigation (ULFM) [4]. ULFM extends MPI to enable failure
detection at the application level and provide a set of primitives for handling
recovery. Specifically, ULFM taps to the existing error handling interface of MPI
to implement user-level fault notification. Regarding its extensions to the MPI
interface, we elaborate on communicators since their extensions are a superset
of other communication objects (windows, I/O). Following, ULFM extends MPI
with a revoke operation (MPI_Comm_revoke(comm)) to invalidate a communica-
tor such that any subsequent operation on it raises an error. Also, it defines a
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shrink operation (MPI_Comm_shrink(comm, newcomm)) that creates a new com-
municator from an existing one after excluding any failed processes. Additionally,
ULFM defines a collective agreement operation (MPI_Comm_agree(comm,flag))
which achieves consensus on the group of failed processes in a communicator
and on the value of the integer variable flag.

Based on those extensions, MPI programmers are expected to implement
their own recovery strategy tailored to their applications. ULFM operations are
general enough to implement any type of recovery discussed earlier. However,
this generality comes at the cost of complexity. Programmers need to under-
stand the intricate semantics of those operations to correctly and efficiently
implement recovery and restructure, possibly significantly, the application for
explicitly handling failures. Although ULFM provides examples that prescribe
the implementation of global-restart, the programmer must embed this in the
code and refactor the application to function with the expectation that commu-
nicators may change during execution due to shrinking and merging, which is
not ideal.

Reinit. Reinit [11,22] has been proposed as an alternative approach for imple-
menting global-restart recovery, through a simpler interface compared to ULFM.
The most recent implementation [11] of Reinit is limited in several aspects: (1) it
requires modifying the job scheduler (SLURM), besides the MPI runtime, thus
it is impractical to deploy and skews performance measurements due to crossing
the interface between the job scheduler and the MPI runtime; (2) its implemen-
tation is not publicly available; (3) it bases on the MVAPICH2 MPI runtime,
which makes comparisons with ULFM hard, since ULFM is implemented on the
Open MPI runtime. Thus, we opt for a new design and implementation1, named
Reinit++, which we present in detail in the next section.

3 Reinit++

This section describes the programming interface of Reinit++, the assumptions
for application deployment, process and node failure detection, and the recovery
algorithm for global-restart. We also define the semantics of MPI recovery for
the implementation of Reinit++ as well as discuss its specifics.

3.1 Design

Programming Interface of Reinit++. Figure 1 presents the programming
interface of Reinit++ in the C language, while Fig. 2 shows sample usage of it.
There is a single function call, MPI_Reinit, for the programmer to call to define
the point in code to rollback and resume execution after a failure. This function
must be called after MPI_Init so ensure the MPI runtime has been initialized.
Its arguments imitate the parameters of MPI_Init, adding a parameter for a

1 Available open-source at https://github.com/ggeorgakoudis/ompi/tree/reinit.

https://github.com/ggeorgakoudis/ompi/tree/reinit
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typedef enum {

MPI_REINIT_NEW , MPI_REINIT_REINITED , MPI_REINIT_RESTARTED

} MPI_Reinit_state_t

typedef int

(* MPI_Restart_point)

(int argc , char **argv , MPI_Reinit_state_t state);

int MPI_Reinit

(int argc , char **argv , const MPI_Restart_point point);

Fig. 1. The programming interface of Reinit++

int foo(int argc , char **argv , MPI_Reinit_state_t state)

{

/* Load checkpoint if it exists */
while (!done) {

/* Do computation */
/* Store checkpoint */

}

}

int main(int argc , char **argv)

{

MPI_Init (&argc , &argv);

/* Application -specific initialization */
// Entry point of the resilient function
MPI_Reinit (&argc , &argv , foo);

MPI_Finalize ();

}

Fig. 2. Sample usage of the interface of Reinit++

pointer to a user-defined function. Reinit++ expects the programmer to encap-
sulate in this function the main computational loop of the application, which
is restartable through checkpointing. Internally, MPI_Reinit passes the param-
eters argc and argv to this user-defined function, plus the parameter state,
which indicates the MPI state of the process as values from the enumeration
type MPI_Reinit_state_t. Specifically, the value MPI_REINIT_NEW designates a
new process executing for the first time, the value MPI_REINIT_REINITED desig-
nates a survivor process that has entered the user-defined function after rolling
back due to a failure, and the value MPI_REINIT_RESTARTED designates that the
process has failed and has been re-spawned to resume execution. Note that this
state variable describes only the MPI state of Reinit++, thus has no semantics
on the application state, such as whether to load a checkpoint or not.

Application Deployment Model. Reinit++ assumes a logical, hierarchical
topology of application deployment. Figure 3 shows a graphical representation
of this deployment model. At the top level, there is a single root process that
spawns and monitors daemon processes, one on each of the computing nodes
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Fig. 3. Application deployment model

reserved for the application. Daemons spawn and monitor MPI processes local
to their nodes. The root communicates with daemons and keeps track of their
liveness, while daemons track the liveness of their children MPI processes. Based
on this execution and deployment model, Reinit++ performs fault detection,
which we discuss next.

Fault Detection. Reinit++ targets fail-stop failures of either MPI processes or
daemons. A daemon failure is deemed equivalent to a node failure. The causes
for those failures may be transient faults or hard faults of hardware components.

In the design of Reinit++, the root manages the execution of the whole
applications, so any recovery decisions are taken by it, hence it is the focal point
for fault detection. Specifically, if an MPI process fails, its managing daemon is
notified of the failure and forwards this notification to the root, without taking
an action itself. If a daemon process fails, which means either the node failed or
the daemon process itself, the root directly detects the failure and also assumes
that the children MPI processes of that daemon are lost too. After detecting a
fault the root process proceeds with recovery, which we introduce in the following
section.

MPI Recovery. Reinit++ recovery for both MPI process and daemon failures
is similar, except that on a daemon failure the root chooses a new host node to
re-instate failed MPI processes, since a daemon failure proxies a node failure. For
recovery, the root process broadcasts a reinit message to all daemons. Daemons
receiving that message roll back survivor processes and re-spawn failed ones.
After rolling back survivor MPI processes and spawning new ones, the seman-
tics of MPI recovery are that only the world communicator is valid and any
previous MPI state (other communicators, windows, etc.) has been discarded.
This is similar to the MPI state available immediately after an application calls
MPI_Init. Next, the application restores its state, discussed in the following
section.

Application Recovery. Reinit++ assumes that applications are responsible for
saving and restoring their state to resume execution. Hence, both survivor and
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re-spawned MPI processes should load a valid checkpoint after MPI recovery to
restore application state and resume computation.

3.2 Implementation

We implement Reinit++ in the latest Open MPI runtime, version 4.0.0. The
implementation supports recovery from both process and daemon (node) failures.
This implementation does not presuppose any particular job scheduler, so it is
compatible with any job scheduler the Open MPI runtime works with. Introduc-
ing briefly the Open MPI software architecture, it comprises of three frameworks
of distinct functionality: (i) the OpenMPI MPI layer (OMPI), which implements
the interface of the MPI specification used by the application developers; (ii) the
OpenMPI Runtime Environment (ORTE), which implements runtime functions
for application deployment, execution monitoring, and fault detection, and (iii)
the Open Portability Access Layers (OPAL), which implements abstractions of
OS interfaces, such as signal handling, process creation, etc.

Reinit++ extends OMPI to provide the function MPI_Reinit. It extends
ORTE to propagate fault notifications from daemons to the root and to imple-
ment the mechanism of MPI recovery on detecting a fault. Also, Reinit++

extends OPAL to implement low-level process signaling for notifying survivor
process to roll back. The following sections provide more details.

Application Deployment. Reinit++ requires the application to deploy using
the default launcher of Open MPI, mpirun. Note that using the launcher mpirun
is compatible with any job scheduler and even uses optimized deployment inter-
faces, if the scheduler provides any. Physical application deployment in Open
MPI closely follows the logical model of the design of Reinit++. Specifically,
Open MPI sets the root of the deployment at the process launching the mpirun,
typically on a login node of HPC installations, which is deemed as the Head
Node Process (HNP) in Open MPI terminology. Following, the root launches an
ORTE daemon on each node allocated for the application. Daemons spawn the
set of MPI processes in each node and monitor their execution. The root process
communicates with each daemon over a channel of a reliable network transport
and monitors the liveness of daemons through the existence of this channel.

Launching an application, the user specifies the number of MPI processes and
optionally the number of nodes (or number of processes per node). To withstand
process failures, this specification of deployment is sufficient, since Reinit++

re-spawns failed processes on their original node of deployment. However, for
node failures, the user must over-provision the allocated process slots for re-
spawning the set of MPI processes lost due to a failed node. To do so, the
most straightforward way is to allocate more nodes than required for fault-free
operation, up to the maximum number of node failures to withstand.

Fault Detection. In Open MPI, a daemon is the parent of the MPI processes
on its node. If an MPI process crashes, its parent daemon is notified, by trap-
ping the signal SIGCHLD, in POSIX semantics. Implementing the fault detection
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Algorithm 1: Root: HandleFailure
Data: D : the set of daemons,
Children(x) : returns the set of children MPI processes of daemon x,
Parent(x) : returns the parent daemon of MPI process x
Input: The failed process f (MPI process or daemon)
// failed process is a daemon

if f ∈ D then
D ← D \ {f}
d′ ← d | arg min

d∈D
Children(d)

// broadcast REINIT to all daemons

Broadcast D message
〈
REINIT, { 〈d′, c〉 | ∀c ∈ Children(f) } 〉

// failed process is an MPI process

else
Broadcast D message

〈
REINIT, { 〈Parent(f), f〉 } 〉

end

requirements of Reinit++, a daemon relays the fault notification to the root pro-
cess for taking action. Regarding node failures, the root directly detects them
proxied through daemon failures. Specifically, the root has an open communica-
tion channel with each daemon over some reliable transport, e.g., TCP. If the
connection over that communication channel breaks, the root process is notified
of the failure and regards the daemon at fault, thus assuming all its children MPI
process lost and its host node is unavailable. For both types of failures (process
and node), the root process initiates MPI recovery.

MPI Recovery. Algorithm 1 shows in pseudocode the operation of the root
process when handling a failure. On detecting a failure, the root process dis-
tinguishes whether it is a faulty daemon or MPI process. For a node failure,
the root selects the least loaded node in the resource allocation, that is the node
with the fewest occupied process slots, and sets this node’s daemon as the parent
daemon for failed processes. For a process failure, the root selects the original
parent daemon of the failed process to re-spawn that process. Next, the root
process initiates recovery by broadcasting to all daemons a message with the
REINIT command and the list of processes to spawn, along with their selected
parent daemons. Following, when a daemon receives that message it signals its
survivor, children MPI processes to roll back, and re-spawns any processes in the
list that have this daemon as their parent. Algorithm 2 presents this procedure
in pseudocode.

Regarding the asynchronous, signaling interface of Reinit++, Algorithm 3
illustrates the internals of the Reinit++ in pseudocode. When an MPI process
executes MPI_Reinit, it installs a signal handler for the signal SIGREINIT, which
aliases SIGUSR1 in our implementation. Also, MPI_Reinit sets a non-local goto
point using the POSIX function setjmp(). The signal handler of SIGREINIT
simply calls longjmp() to return execution of survivor processes to this goto
point. Rolled back survivor processes discard any previous MPI state and block
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Algorithm 2: Daemon d̂: HandleReinit
Data: Children(x) : returns the set of children MPI processes of daemon x,
Parent(x) : returns the parent daemon of MPI process x
Input: List {〈di, ci〉, · · · }
// Signal survivor MPI processes

for c ∈ Children(d̂) do
c.state ← MPI REINIT REINITED

Signal SIGREINIT to c

end

// Spawn new process if d̂ is parent

foreach {〈di, ci〉, · · · } do

if d̂ == di then

Children(d̂) ← Children(d̂) ∪ ci
ci.state ← MPI REINIT RESTARTED

Spawn ci
end

end

on a ORTE-level barrier. This barrier replicates the implicit barrier present in
MPI_Init to synchronize with re-spawned processes joining the computation.
After the barrier, survivor processes re-initialize the world communicator and
call the function foo to resume computation. Re-spawned processes initialize
the world communicator as part of the MPI initialization procedure of MPI_Init
and go through MPI_Reinit to install the signal handler, set the goto point, and
lastly call the user-defined function to resume computation.

Application Recovery. Application recovery includes the actions needed at the
application-level to resume computation. Any additional MPI state besides the
repaired world communicator, such as sub-communicators, must be re-created by
the application’s MPI processes. Also, it is expected that each process loads the
latest consistent checkpoint to continue computing. Checkpointing lays within
the responsibility of the application developer. In the next section, we discuss
the scope and implications of our implementation.

Discussion. In this implementation, the scope of fault tolerance is to support
recovery from failures happening after MPI_Reinit has been called by all MPI
processes. This is because MPI_Reinit must install signal handlers and set the
roll-back point on all MPI processes. This is sufficient for a large coverage of
failures since execution time is dominated by the main computational loop. In the
case a failure happens before the call to MPI_Reinit, the application falls back
to the default action of aborting execution. Nevertheless, the design of Reinit++

is not limited by this implementation choice. A possible approach instead of
aborting, which we leave as future work, is to treat any MPI processes that have
not called MPI_Reinit as if failed and re-execute them.
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Algorithm 3: Reinit++ internals
Function OnSignalReinit():

goto Rollback
end
Function MPI Reinit(argc, argv, foo):

Install signal handler OnSignalReinit on SIGREINIT

Rollback: if this.state == MPI REINIT REINITED then
Discard MPI state
Wait on barrier
Re-initialize world communicator

end
return foo (argc, argv, this.state)

end

Furthermore, signaling SIGREINIT for rolling back survivor MPI processes
asynchronously interrupts execution. In our implementation, we render the MPI
runtime library signal and roll-back safe by using masking to defer signal han-
dling until a safe point, i.e., avoid interruption when locks are held or data struc-
tures are updating. Since application code is out of our control, Reinit++ requires
the application developer to program the application as signal and roll-back safe.
A possible enhancement is to provide an interface for installing cleanup handlers,
proposed in earlier designs of Reinit [21], so that application and library devel-
opers can install routines to reset application-level state on recovery. Another
approach is to make recovery synchronous, by extending the Reinit++ interface
to include a function that tests whether a fault has been detected and trigger
roll back. The developer may call this function at safe points during execution
for recovery. We leave both those enhancements as future work, noting that the
existing interface is sufficient for performing our evaluation.

4 Experimentation Setup

This section provides detailed information on the experimentation setup, the
recovery approaches used for comparisons, the proxy applications and their con-
figurations, and the measurement methodology.

Table 1. Proxy applications and their configuration

Application Input No. ranks

CoMD -i4 -j2 -k2 16, 32, 64, 128, 256, 512, 1024

-x 80 -y 40 -z 40 -N 20

HPCCG 64 64 64 16, 32, 64, 128, 256, 512, 1024

LULESH -i 20 -s 48 8, 64, 512
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Recovery Approaches. Experimentation includes the following recovery
approaches:

– CR, which implements the typical approach of immediately restarting an
application after execution aborts due to a failure.

– ULFM, by using its latest revision based on the Open MPI runtime v4.0.1
(4.0.1ulfm2.1rc1).

– Reinit++, which is our own implementation of Reinit, based on OpenMPI
runtime v4.0.0.

Emulating Failures. Failures are emulated through fault injection. We opt
for random fault injection to emulate the occurrence of random faults, e.g.,
soft errors or failures of hardware components, that lead to a crash failure.
Specifically, for process failures, we instrument applications so that at a random
iteration of the main computational loop, a random MPI process suicides by
raising the signal SIGKILL. The random selection of iteration and MPI process
is the same for every recovery approach. For node failures, the method is similar,
but instead of itself, the MPI process sends the signal SIGKILL to its parent
daemon, thus kills the daemon and by extension all its children processes. In
experimentation, we inject a single MPI process failure or a single node failure.

Applications. We experiment with three benchmark applications that repre-
sent different HPC domains: CoMD for molecular dynamics, HPCCG for itera-
tive solvers, and LULESH for multi-physics computation. The motivation is to
investigate global-restart recovery on a wide range of applications and evaluate
any performance differences. Table 1 shows information on the proxy applica-
tions and scaling of their deployed number of ranks. Note LULESH requires
a cube number of ranks, thus the trimmed down experimentation space. The
deployment configuration has 16 ranks per node, so the smallest deployment
comprises of one node while the largest one spans 64 nodes (1024 ranks). Appli-
cation execute in weak scaling mode – for CoMD we show its input only 16 ranks
and change it accordingly. We extend applications to implement global-restart
with Reinit++ or ULFM, to store a checkpoint after every iteration of their main
computational loop and load the latest checkpoint upon recovery.

Checkpointing. For evaluation purposes, we implement our own, simple check-
pointing library that supports saving and loading application data using in-
memory and file checkpoints. Table 2 summarizes checkpointing per recovery
approach and failure type. In detail, we implement two types of checkpointing:
file and memory. For file checkpointing, each MPI process stores a checkpoint to
globally accessible permanent storage, which is the networked, parallel filesys-
tem Lustre available in our cluster. For memory checkpointing, an MPI process
stores a checkpoint both locally in its own memory and remotely to the memory
of a buddy [33,34] MPI process, which in our implementation is the (cyclically)
next MPI process by rank. This memory checkpointing implementation is appli-
cable only to single process failures since multiple process failures or a node
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failure can wipe out both local and buddy checkpoints for the failed MPI pro-
cesses. CR necessarily uses file checkpointing since re-deploying the application
requires permanent storage to retrieve checkpoints.

Table 2. Checkpointing per recovery and failure

Failure Recovery

process CR ULFM Reinit

File Memory Memory

node File File File

Statistical Evaluation. For each proxy application and configuration we per-
form 10 independent measurements. Each measurement counts the total execu-
tion time of the application breaking it down to time needed for writing check-
points, time spent during MPI recovery, time reading a checkpoint after a failure,
and the pure application time executing the computation. Any confidence inter-
vals shown correspond to a 95% confidence level and are calculated based on the
t-distribution to avoid assumptions on the sampled population’s distribution.

5 Evaluation

For the evaluation we compare CR, Reinit++ and ULFM for both process and
node failures. Results provide insight on the performance of each of those recov-
ery approaches implementing global-restart and reveal the reasons for their per-
formance differences.

5.1 Comparing Total Execution Time on a Process Failure

Figure 4 shows average total execution time for process failures using file check-
pointing for CR and memory checkpointing for Reinit++ and ULFM. The plot
breaks down time to components of writing checkpoints, MPI recovery, and pure
application time. Reading checkpoints occurs one-off after a failure and has neg-
ligible impact, in the order of tens of milliseconds, thus it is omitted.

The first observation is that Reinit++ scales excellently compared to both
CR and ULFM, across all programs. CR has the worse performance, increasingly
so with more ranks. The reason is the limited scaling of writing checkpoints
to the networked filesystem. By contrast, ULFM and Reinit++ use memory
checkpointing, spending minimal time writing checkpoints. Interestingly, ULFM
scales worse than Reinit++; we believe that the reason is that it inflates pure
application execution time, which we illustrate in the next section. Further, in
the following sections, we remove checkpointing overhead from the analysis to
highlight the performance differences of the different recovering approaches.
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(a) CoMD (b) HPCCG

(c) LULESH

Fig. 4. Total execution time breakdown recovering from a process failure

5.2 Comparing Pure Application Time Under Different Recovery
Approaches

Figure 5 shows the pure application time, without including reading/writing
checkpoints or MPI recovery. We observe that application time is on par for
CR and Reinit++, and that all applications scale weakly well on up to 1024
ranks. CR and Reinit++ do not interfere with execution, thus they have no
impact on application time, which is on par to the fault-free execution time of
the proxy applications. However, in ULFM, application time grows significantly
as the number of ranks increases. ULFM extends MPI with an always-on, peri-
odic heartbeat mechanism [8] to detect failures and also modifies communication
primitives for fault tolerant operation. Following from our measurements, those

(a) CoMD (b) HPCCG (c) LULESH

Fig. 5. Scaling of pure application time
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extensions noticeably increase the original application execution time. However,
it is inconclusive whether this is a result of the tested prototype implementation
or a systemic trade-off. Next, we compare the MPI recovery times among all the
approaches.

(a) CoMD (b) HPCCG (c) LULESH

Fig. 6. Scaling of MPI recovery time recovering from a process failure

5.3 Comparing MPI Recovery Time Recovering from a Process
Failure

Though checkpointing saves application’s computation time, reducing MPI
recovery time saves overhead from restarting. This overhead is increasingly
important the larger the deployment and the higher the fault rate. In partic-
ular, Fig. 6 shows the scaling of time required for MPI recovery across all pro-
grams and recovery approaches, again removing any overhead for checkpointing
to focus on the MPI recovery time. As expected, MPI recovery time depends
only on the number of ranks, thus times are similar among different programs
for the same recovery approach. Commenting on scaling, CR and Reinit++ scale
excellently, requiring almost constant time for MPI recovery regardless the num-
ber of ranks. However, CR is about 6× slower, requiring around 3 s to tear down
execution and re-deploy the application, whereas Reinit++ requires about 0.5 s
to propagate the fault, re-initialize survivor processes and re-spawn the failed
process. ULFM has on par recovery time with Reinit++ up to 64 ranks, but then
its time increases being up to 3× slower than Reinit++ for 1024 ranks. ULFM

(a) CoMD (b) HPCCG (c) LULESH

Fig. 7. Scaling of MPI recovery time recovering from a node failure
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requires multiple collective operations among all MPI processes to implement
global-restart (shrink the faulty communicator, spawn a new process, merge it
to a new communicator). By contrast, Reinit++ implements recovery at the MPI
runtime layer requiring fewer operations and confining collective communication
only between root and daemon processes.

5.4 Comparing MPI Recovery Time Recovering from a Node
Failure

This comparison for a node failure includes only CR and Reinit++, since the pro-
totype implementation of ULFM faced robustness issues (hanging or crashing)
and did not produce measurements. Also, since both CR and Reinit++ use file
checkpointing and do not interfere with pure application time, we present only
results for MPI recovery times, shown in Fig. 7. Both CR and Reinit++ scale
very well with almost constant times, as they do for a process failure. However,
in absolute values, Reinit++ has a higher recovery time of about 1.5 s for a node
failure compared to 0.5 s for a process failure. This is because recovering from
a node failure requires extra work to select the least loaded node and spawn all
the MPI processes of the failed node. Nevertheless, recovery with Reinit++ is
still about 2× faster than with CR.

6 Related Work

Checkpoint-Restart [1,2,10,15,20,27,29,32] is the most common approach to
recover an MPI application after a failure. CR requires substantial development
effort to identify which data to checkpoint and may have significant overhead.
Thus, many efforts attempt to make checkpointing easier to adopt and render it
fast and storage efficient. We briefly discuss them here.

Hargrove and Duell [15] implement the system-level CR library Berkeley Lab
Checkpoint/Restart (BLCR) library to automatically checkpoint applications
by extending the Linux kernel. Bosilca et al. [6] integrate an uncoordinated,
distributed checkpoint/roll-back system in the MPICH runtime to automati-
cally support fault tolerance for node failures. Furthermore. Sankaran et al. [27]
integrate Berkeley Lab BLCR kernel-level C/R to the LAM implementation of
MPI. Adam et al. [2], SCR [25], and FTI [3] propose asynchronous, multi-level
checkpointing techniques that significantly improve checkpointing performance.
Shahzad et al. [28] provide an extensive interface that simplifies the implementa-
tion of application-level checkpointing and recovery. Advances in checkpointing
are beneficial not only for CR but for other MPI fault tolerance approaches,
such as ULFM and Reinit. Though making checkpointing faster resolves this
bottleneck, the overhead of re-deploying the full application remains.

ULFM [4,5] is the state-of-the-art MPI fault tolerance approach, pursued
by the MPI Fault Tolerance Working Group. ULFM extends MPI with inter-
faces to shrink or revoke communicators, and fault-tolerant collective consensus.
The application developer is responsible for implementing recovery using those
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operations, choosing the type of recovery best suited for its application. A collec-
tion of works on ULFM [9,16–18,21,23,26] has investigated the applicability of
ULFM and benchmarked individual operations of it. Bosilca et al. [7,8] and Katti
et al. [19] propose efficient fault detection algorithms to integrate with ULFM.
Teranishi et al. [31] use spare processes to replace failed processes for local recov-
ery so as to accelerate recovery of ULFM. Even though ULFM gives flexibility
to developers to implement any type of recover, it requires significant developer
effort to refactor the application. Also, implementing ULFM has been identified
by previous work [14,31] to suffer from scalability issues, as our experimenta-
tion shows too. Fenix [13] provides a simplified abstraction layer atop ULFM
to implement global-restart recovery. However, we choose to directly use ULFM
since it already provides a straightforward, prescribed solution for implementing
global-restart.

Reinit [11,22] is an alternative solution that supports only global-restart
recovery and provide an easy to use interface to developers. Previous designs
and implementations of Reinit have limited applicability because they require
modifying the job scheduler and its interface with the MPI runtime. We present
Reinit++, a new design and implementation of Reinit using the latest Open MPI
runtime and thoroughly evaluate it.

Lastly, Sultana et al. [30] propose MPI stages to reduce the overhead of
global-restart recovery by checkpointing MPI state, so that rolling back does
not have to re-create it. While this approach is interesting, it is still in proof-of-
concept status. How to maintain consistent checkpoints of MPI state across all
MPI processes, and doing so fast and efficiently, is still an open-problem.

7 Conclusion

We have presented Reinit++, a new design and implementation of the global-
restart approach of Reinit. Reinit++ recovers from both process and node crash
failures, by spawning new processes and mending the world communicator,
requiring from the programmer only to provide a rollback point in execution and
have checkpointing in place. Our extensive evaluation comparing with the state-
of-the-art approaches Checkpoint-Restart (CR) and ULFM shows that Reinit++

scales excellently as the number of ranks grows, achieving almost constant recov-
ery time, being up to 6× faster than CR and up to 3× faster than ULFM. For
future work, we plan to expand Reinit for supporting more recovery strategies
besides global-restart, including shrinking recovery and forward recovery strate-
gies, to maintain its implementation, and expand the experimentation with more
applications and larger deployments.
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an application-level checkpointing framework and ULFM. The Journal of Super-
computing 73(1) (2017)

24. Martino, C.D., Kalbarczyk, Z., Iyer, R.K., Baccanico, F., Fullop, J., Kramer, W.:
Lessons learned from the analysis of system failures at petascale: The case of blue
waters. In: 2014 44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks. pp. 610–621, June 2014. https://doi.org/10.1109/
DSN.2014.62

25. Mohror, K., Moody, A., Bronevetsky, G., de Supinski, B.R.: Detailed modeling
and evaluation of a scalable multilevel checkpointing system. IEEE Trans. Parallel
Distrib. Syst. 25(9), 2255–2263 (2014). https://doi.org/10.1109/TPDS.2013.100

26. Pauli, S., Kohler, M., Arbenz, P.: A fault tolerant implementation of multi-level
monte carlo methods. Parallel Comput. Acceler. Comput. Sci. Eng. (CSE) 25,
471–480 (2014)

27. Sankaran, S., et al.: The lam/mpi checkpoint/restart framework: system-initiated
checkpointing. JHPCA 19(4), 479–493 (2005)

28. Shahzad, F., Thies, J., Kreutzer, M., Zeiser, T., Hager, G., Wellein, G.: Craft: a
library for easier application-level checkpoint/restart and automatic fault toler-
ance. IEEE Trans. Parallel Distrib. Syst. 30(3), 501–514 (2018)

29. Subasi, O., Martsinkevich, T., Zyulkyarov, F., Unsal, O., Labarta, J., Cappello, F.:
Unified fault-tolerance framework for hybrid task-parallel message-passing appli-
cations. Int. J. High Performance Comput. Appl. 32(5), 641–657 (2018)
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