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Abstract. In this working paper, we study user identification via mouse
movement. Instead of treating the problem as a multi-class classification
task, we cast user identification as a one-class problem and propose to
learn an individual model for every user. Preliminary empirical results
show that our approach works for some but not all users. We report on
lessons learned.
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1 Introduction

User identification is not only key to privacy and security but also offers a way
to personalize user experiences, e.g., by displaying user-specific content. Apart
from biometric user identification, a non-intrusive alternative is offered by user
behavior. In contrast to physical traits, behavioral-based authentication allows
for continuous (re-)identification during user sessions. In this context, particu-
larly mouse movements is of interest, as it does not require additional hardware
and allows implicit and non-inversive measurements of behavioral biometrics
[10,11,16,17].

Similar to gestures in human communication, the dynamics of the pointing
device in human-computer interaction are unique and can deliver valuable and
deterministic information about the user [2,9,11,16,17]. However, the question
raises how such a system could be reasonably build. Traditionally, a multi-class
classification approach suggests itself: every user is identified with a class and
a classifier chooses the most likely user among the candidates. While such an
approach may work for hardly changing environments, dynamic scenarios with
many new and deleted users require frequent retraining of the classifier. For a
large user base with many sessions per day, this could quickly become infeasible.

By contrast, we treat user identification as an anomaly detection problem
[12,13,15] and propose to learn a model of normality for every user. The idea is
as follows: As long as the user interacts with the system, the corresponding model
correctly identifies the user. If a third user takes over, the identification fails and the
model considers the third party as an anomaly and may shut down critical appli-
cations and data access points. Maintaining a multitude of these models is simple.
Once a user logs in, the rightmodel is retrieved and used until the end of the session.
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Retraining can be trivially parallelized for all users, new user models are integrated
by training a single new model, and a deletion of a user simply deletes the corre-
sponding model without any side effects for other models.

Our contributions are as follows: (i) We cast user identification as an anomaly
detection problem, where user profiles are learned in a rich (non-linear) feature
space spanned by a set of automatically derived features [13,15] and in a deep
neural architecture [12]. (ii) We evaluate the impact of splitting sessions into
sequences including pause-based and an equal number of data points splits. (iii)
We report on lessons learned that may shed light on future research in this area.

2 Related Work

Mouse movement has been investigated in the context of user authentication
[4,5,14] and behavioral analyses [2,3,10,16]; a great deal of these publica-
tions rely on hand-engineered features [2,3,5,8,14,16] though. User identification
based on biometrics extracted from mouse behavior has been first introduced by
Gamboa & Fred [6]. They proposed a number of features and split the session
into single sequences based on mouse clicks. Features are subsequently reduced
by greedy search and fed into a sequential classifier. Feher et al. [5] introduce
a hierarchical structure of mouse features, proposing in total 66 features. With
these features, a random forest classifier is trained using 30 actions for veri-
fication. Recently, Chong et al. [4] investigate different architectures for user
authentication using mouse data. However, their approach requires to retain the
full model with samples of all users, when a new user is added.

3 Algorithms

Perhaps the most prominent one-class-classifier is the One-Class Support-
Vector-Machine (OC-SVM) [13]. Its objective is to find the max-margin hyper-
plane that separates the origin from the data, where the latter is mapped by a
function φ into a (possibly nonlinear) feature space spanned by φ : X �→ F .
Given a training set D = {x1, ..., xn} with xi ∈ X , the primal problem of the
OC-SVM can be written as

min
ω ,ρ,ξ

1
2
‖ω‖2 − ρ +

1
νn

1�ξ s.t. ∀ i : ω�φ(xi) ≥ ρ − ξi ∧ ξi ≥ 0

where ρ is the distance of the hyperplane to the origin and acts as a threshold
such that a new instance x is considered anomalous (not belonging to the class
that is represented by data D) if f(x) = ω�φ(x) − ρ < 0.

The Support Vector Data Description (SVDD) [15] is similar to the
OC-SVM, but uses a hypersphere as a model of normality. The objective of the
SVDD is to find the smallest hypersphere, given by radius R > 0 and center
c ∈ F , which encloses the majority of the data in feature space. The primal
optimization problem is given by

min
c,R,ξ

R2 +
1
νn

1�ξ s.t. ∀ i : ‖φ(xi) − c‖2 ≤ R2 + ξi ∧ ξi ≥ 0.
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New points are considered anomalous if they lie outside of the hyperball, that
is, if ‖φ(x) − c‖2 > R2.

Recently, [12] presented a deep variant of the SVDD. An autoencoder is used
for dimensionality reduction while a second part of the network minimizes the
volume of the data-enclosing hypersphere. The objective of the Deep SVDD
[12] is given by

min
c,R,W

R2 +
1
νn

n∑

i=1

max{0, ‖φ(xi;W) − c‖2 − R2} +
λ

2

L∑

l=1

‖W l‖2 s.t. R > 0

The second term penalizes points lying outside the sphere analogously to the
traditional SVDD.

4 Empirical Study

We use data from the Balabit Mouse Dynamic Challenge1 that comprises sessions
from ten different users. The training data encompasses five to seven longer
sessions for each user while the test set contains multiple smaller sessions. The
test set contains also out-of-sample users not present in the training set as well as
sessions from anonymous attackers. The latter are simulated by mixing sessions
from other users into the test session of a third user. Table 1 summarizes the
data.

Table 1. Overview of Balabit Mouse Dynamics Challenge dataset

User Training Test

files min length max length legal illegal sessions min length max length

7 7 43484 83091 36 37 73 164 6966

9 7 54418 72732 23 43 66 141 10991

12 7 29722 48244 56 49 105 127 8086

15 6 16971 44015 45 70 115 119 5656

16 6 28428 53816 68 38 106 114 3104

20 7 31441 60087 30 20 50 146 12672

21 7 15343 21465 37 22 59 154 2170

23 6 17127 28435 38 33 71 157 4706

29 7 13640 32601 43 20 63 134 5207

35 5 16901 23107 35 73 108 114 3771

65 411 405 816

1 https://github.com/balabit/Mouse-Dynamics-Challenge.

https://github.com/balabit/Mouse-Dynamics-Challenge
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Fig. 1. Sequences produced by the TDS-
method, using the 98% quantile of the
overall pauses as a splitting criterion. The
first row shows legal, while the second row
shows illegal sessions of user 7.

Fig. 2. Sequences produced by the EDPS-
method, using 200 data points as a split-
ting criterion. The first row shows legal,
while the second row shows illegal sessions
of user 7.

4.1 Session Splitting

We split the mouse movement within a session into short sequences. We inves-
tigate two different splitting criteria, the first Time Difference Split (TDS) and
Equal Number Of Data Points Split (EDPS).

The former splits the session by time differences between two consecutive
mouse coordinates. The pauses made by the user during the interaction with the
system are an active field of mouse movement research [5,6,16]. Our approach
is similar to [4], but instead of setting a hyper-parameter for the time difference
splitting criterion, we determine the parameter based on the users’ mouse data
using quantiles. We study the effect of splitting mouse movements at 95%, 98%
and 99% quantiles. This leads to a unique splitting criterion for every user, see
Fig. 1.

EDPS splits mouse data into sequences by using a fixed number of data
points. We investigating different lengths of sequences (m ∈ {50, 100, 200, 500}).
Using a fixed number of data points as a splitting criterion ensures that the
session is separated and provides sequences of the same length, see Fig. 2.

The splitted sequences are cleaned and the resulting logs contain the following
variables: timestamps, (x, y) coordinates, mouse buttons (left, right, scroll) and
the action type (move, pressed, released, drag). Since the velocity of a scroll is
not given we discard the related actions and ignore scroll operations entirely.
We compare the 65 features from [5] with additional 12 features described in the
Appendix (Table 2). All features are normalized.

We evaluate area under the curve (AUC) and the equal error rate (EER).
The latter is identical to the intersection of the false acceptance rate (FAR) and
the false rejection rate (FRR). To not clutter the evaluation part unnecessarily,
we report only results for TDS using the 99% quantile and EDPS with length
100 that worked best over all tested parameter settings.

We compare OC-SVM, SVDD, and Deep SVDD and also include a vanilla
SVM trained in a one-versus-rest manner, denoted by OvR-SVM for inter-
pretability. The results are shown in Fig. 3 for TDS-99% and Fig. 4 for EDPS-50.
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Fig. 3. Results for TDS-99%

Unsurprisingly, the OvR-SVM clearly outperforms the one-class approaches.
However, OvR-SVM also uses more information by including unified data from
all other users as the negative class in the training process. Thus, OvR-SVM
shows that there is room for improvement for the methods of interest, but, by
construction, poses a solution that is clearly inappropriate in many practical sce-
narios. Also unsurprisingly, OC-SVM and SVDD perform equivalent throughout
the experiment; for certain normalized feature representation, their objective
functions become identical and provide naturally the same solution. The Deep
SVDD performs well for user 7, 9 and 20 for sequences derives by the EDPS- as
well as the TDS-method on 65 and 77 respectively. This finding gives rise to two
conjectures: The first is that some users can, in general, be identified by their
mouse movement as was also shown e.g., in [1,4–6,14]. And second, that perhaps
the feature representation was simply not the right one for the other users. Thus,
it can be hypothesised that the features learned for the authentication process
have to be individualized so that the detection performance is maximized (see
e.g., [7]).
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Fig. 4. Results for EDPS-100

5 Conclusions

We studied user identification by mouse movements. Conceptually, we inter-
preted the problem setting as an anomaly detection problem and evaluated tra-
ditional (OC-SVM, SVDD, OvR) and recent (DeepSVDD) methods. Preliminary
empirical results showed that some users can actually be identified solely based
on their mouse movement. This finding however does not hold for most of the
users. Our lessons learned is twofold: (i) We conjecture that mouse behaviour
is idiosyncratic, which is in line with other studies [1,4–6,14], and (ii) that we
might be able to improve user identification by tailoring (learning) an individual
feature representation for every user.
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A Additional Features

Table 2. List of additional features

Feature name Description Formal definition

Traveled
distance

The sum of
the distance
between
points

δs =

√
√
√
√

n∑

i=1

(xi+1 − xi)2 + (yi+1 − yi)2

Number of
data points

Just used in
TDS-method

n

Pauses length min, max,
mean, σ
(max − min)

δt

Number of
pauses

–
n∑

i=1

pi where pi =

{

1, δti > threshold

0, otherwise

Number of
clicks

–
n∑

i=1

ci

Dispersal x – disx =
√

(xmax − xmin)2

Dispersal y – disy =
√

(ymax − ymin)2

Dispersal – dis = disy ∗ disx
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