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Abstract. We consider a fog computing approach with function virtu-
alization in an IoT scenario that uses an SDN/NFV protocol stack and
multipath communication between its clients and servers at the transport
and session layers. We analyze the reliability of the associated redundant
transport system comprising two logical channels that are susceptible to
random failures. We model the error-prone system with a single repair
unit and independent phase-type distributed repair times by a Marshall-
Olkin failure model. The failure processes of both channels are described
by general Markov-modulated Poisson processes (MMPPs) that are asso-
ciated with the corresponding failure times and that are driven by the
transitions of a common random environment. First we identify the gen-
erator matrix of the associated continuous-time Markov chain that is
determined by the interarrival times of the Markov-modulated failure
processes and the independent phase-type distributed repair times and
the Kronecker-product structures of their associated parameter matrices.
Then we show that the steady-state distribution of the restoration model
can be effectively calculated by a semiconvergent iterative aggregation-
disaggregation method for block matrices. Finally, we compute the asso-
ciated reliability function and hazard rate of the multipath transport
system.

Keywords: Fog computing · Marshall-Olkin failure model · Reliability
function · Markov-modulated arrival process · Phase-type distributed
repair times

1 Introduction

In recent years the cloud computing approach has been refined by mobile edge
and fog computing to cover the technical challenges of new applications arising
from the rapidly evolving Internet-of-Things (IoT) (cf. [1,2,8]). These architec-
tures try to integrate new services based on advanced multimedia and machine-
to-machine communication into the associated computing, storage, and internet-
working infrastructures. They are based on modern software-defined networks
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Fig. 1. Protocol stack of fog computing in a virtualized software environment.

(SDN), network function virtualization (NFV), and microservice concepts (cf.
[14,24]). The fog computing architecture can be derived from the classical clear
separation of functionalities into an application and services plane, a control
plane, a data plane, and a management plane (see Fig. 1, cf. [7,9]).

In this context of client-server processing it has been realized that a multi-
path communication which is established at the transport and session layers of
the SDN/NFV protocol stack can substantially improve the capacity and relia-
bility of the required fast interprocess communication. Adapted new transport
layer protocols such as multipath TCP or multipath QUIC can be applied to
establish redundant transport paths between clients and servers. The required
multi-homing is realized by a use of multiple interfaces and will also be supported
in the upcoming mobile settings of the local area and wide area 5G standards
(see Fig. 2, cf. [3,5,20]).

In this paper we investigate a basic multipath transport system comprising
two logical transport channels which provide redundant high-speed interpro-
cess communication paths between a client as sender and a server as receiver
in an SDN/NFV/5G-RAN environment. Due to the presumed existence of an
exclusive, virtualized restoration function in the management plane, we describe
the impact of a functional outage of each transport channel subject to random
errors by a generalized Marshall-Olkin failure model (cf. [13,21–23]). We assume
here that the entire redundant system is managed by a scalable, virtualized
management system applying container virtualization techniques like Docker or
Kubernetes (cf. [11,12]). It can instantiate a single repair function as virtual net-
work function and provides a restoration of the original transport status after a
generally distributed, nonnegative restoration period. We approximate the latter
entity by random variables with phase-type (PH) distributions (cf. [25]).

Our main goal is to derive a Markovian reliability model of this redundant
transport system in a random environment and to compute its reliability function
and hazard rate. For this purpose we apply an effective computational solution
method to a finite continuous-time Markov chain. In this way we enhance our
related previous study [19] to a new setup of the underlying reliability model in
a highly relevant technical context of fog computing. The new model exhibits
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a much more sophisticated algebraic structure of its generator matrix due to
the involved three correlated Markov-modulated Poisson arrival processes of the
failure patterns and the engagement of a single virtualized repairman function
within the management layer of the fog computing architecture (see Fig. 3).

The paper is organized as follows. In Sect. 2 we describe the multipath trans-
port system with two error-prone channels and a generalized Marshall-Olkin
failure model. In Sect. 3 we derive the associated finite Markov chain with its
generator matrix and calculate its related steady-state vector by an effective
semiconvergent iteration scheme. In Sect. 4 we compute the reliability function
and hazard rate of the multipath transport system. Finally, some conclusions
and an outlook on further performance studies are presented.

2 Characterizing the Reliability of a Multipath Transport
System by a Generalized Marshall-Olkin Model

We consider the hierarchical logical structure of a fog computing system that
is deployed as edge computing infrastructure within the continuum between the
cloud and the edge devices of an IoT environment (see Fig. 2, cf. [2,8]).

2.1 Description of a Transport System Related to Fog Computing

We assume that the fog computing environment is constructed by means of
lightweight virtualization technology based on Linux containers and the orches-
tration framework Docker (cf. [9,12]). Dedicated stationary or mobile fog gate-
ways provide the first logical entrance gates of its computing, storage and net-
working infrastructure. They realize aggregation points of the collected data
streams generated by IoT sensor systems of corresponding smart edge devices in
an associated fog cell (cf. Fig. 2, [9]). These generated data flows may be prepro-
cessed and then forwarded to fog nodes in a higher logical layer or to processing
and storage nodes in a distributed cloud infrastructure (cf. Fig. 2, see [7,26]).
The latter nodes may also interact with a blockchain to support an immutable
event history and the secure transfer of anonymous data elements in an under-
lying IoT infrastructure (cf. [7,26]). The minimal set of redundant transport
paths between a fog node and more powerful nodes in the fog hierarchy or edge
and cloud computing nodes, respectively, is modelled by two logical channels
operating in hot stand-by mode. These entities are subject to random failures
that may strike either one or both channels simultaneously. We suppose that
each erroneous channel is immediately handled by independent repair activities
which are triggered by a virtual surveillance function. The latter is realized in
the management layer of the fog computing architecture (see Fig. 3).



104 U. R. Krieger and N. M. Markovich

Fig. 2. A hierarchical fog computing architecture supporting IoT data processing in
the fog cells (see also [7,26]).

Fig. 3. A logical channel model of the redundant transport system with an operational
channel 2 and an erroneous channel 1.

2.2 A Generalized Marshall-Olkin Failure Model of the Multipath
Transport System

The considered multipath transport system comprises these two coupled logical
channels. We suppose that they exhibit an identical logical structure. Therefore,
we conclude that the error events are governed by a failure model of Marshall-
Olkin type (see Figs. 2, 3, also [13,21–23]).

The transfer function of each channel is hit by different kinds of errors that
are triggered by a common internal or external environment. We can assume
that a system failure occurs if the throughput along a channel drops below
a certain predefined threshold or a total outage of the transport functions is
observed. Then the latter error patterns are modelled by a Marshall-Olkin fail-
ure model with three correlated Markov-modulated Poisson processes (MMPPs)
(cf. [10]) which are driving these failures on the individual channels 1 and 2,
respectively, or strike both of them simultaneously (cf. [13,21–23]). This MMPP
class of Markovian arrival processes is an important subset the well-known
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general Markovian arrival processes (MAPs) (cf. [6]). We suppose that the
latter MMPP processes can be described by the state of a common Markov-
modulating environment {Y (t), t ≥ 0} in continuous time with a finite state
space ΣY = {1, . . . , K},K ∈ N and an irreducible K−state generator matrix
Q ∈ R

K×K . Its associated unique steady-state probability vector is denoted by
p ∈ R

K . It is determined by the solution of the linear system pT ·Q = 0, pT ·e = 1
with the vector of all ones e ∈ R

K .
In the following, we apply the order relation 0 � x for vectors x ∈ R

N . It
shows that all components xi > 0 of a vector x ∈ R

N are positive. In contrast,
the order relation 0 < x indicates that x ∈ R

N is a nonnegative, non-zero vector,
i.e. 0 ≤ xi for all i ∈ {1, . . . N} and 0 < xi holds for at least one i (cf. [4]).

Considering a given state Y (t) = j ∈ ΣY of the modulating environment, we
assume that the interarrival times of any isolated failures imposed on channel 1
and 2 appear as independent exponentially distributed events with mean values
1/λ1j and 1/λ2j , respectively, whereas a common failure is governed by the mean
values 1/λ3j .

Let 0 � λ1 = (λ11, . . . , λ1K)T ∈ R
K , 0 � λ2 = (λ21, . . . , λ2K)T ∈ R

K ,
and 0 � λ3 = (λ31, . . . , λ3K)T ∈ R

K be the positive column vectors of these
associated arrival rates and Λ1 = Diag(λ1) > 0, Λ2 = Diag(λ2) > 0, Λ3 =
Diag(λ3) > 0 denote the corresponding diagonal-positive diagonal matrices of
these arrival rate vectors of the failures in the random environment Y . Let Λ =
Λ1 + Λ2 + Λ3 be the arrival rate matrix of the superimposed MMPP arrival
process of all correlated errors. Then the mean arrival rates of these three basic
point processes are given by ̂λi = pt · Λi · e = pt · λi, i ∈ {1, 2, 3}, and ̂λ =
pt · Λ · e = ̂λ1 + ̂λ2 + ̂λ3 holds (cf. [10]). We set Λ1 = Λ1 + Λ3 and Λ2 = Λ2 + Λ3

as arrival rate matrices of two corresponding MMPP processes that arise from
a superposition of the streams 1 and 3 as well as 2 and 3, respectively.

Furthermore, we suppose that the initiated repair processes after an isolated
error of channel 1 or 2, respectively, or the single maintenance process of both
channels after a simultaneous outage are described by independent, phase-type
distributed repair times R1, R2, R3, respectively. Their stochastic characteristics
are governed by general phase-type distributions

F1(x) = P{R1 ≤ x} = 1 − βT · exp(T · x) · e, (1)
F2(x) = P{R2 ≤ x} = 1 − αT · exp(S · x) · e, (2)
F3(x) = P{R3 ≤ x} = 1 − γT · exp(U · x) · e (3)

with the corresponding probability densities on the support set [0,∞) ⊂ R

f1(x) = dP{R1 ≤ x}/dt = βT · exp(T · x) · T 0, (4)
f2(x) = dP{R2 ≤ x}/dt = αT · exp(S · x) · S0, (5)
f3(x) = dP{R3 ≤ x}/dt = γT · exp(U · x) · U0. (6)
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Here e denotes the vector of all ones of corresponding dimension. It means that
three finite state phase-type representation matrices

(T, β), T ∈ R
n1×n1 , 0 < β ∈ R

n1 , T 0 = −T · e > 0, (7)
(S, α), S ∈ R

n2×n2 , 0 < α ∈ R
n2 , S0 = −S · e > 0, (8)

(U, γ), U ∈ R
n3×n3 , 0 < γ ∈ R

n3 , U0 = −U · e > 0 (9)

with n1, n2, and n3 states are used. Then the associated mean repair times are
given by

E(R1) = 1/μ1 = −βT · T−1 · e, E(R2) = 1/μ2 = −αT · S−1 · e, (10)
E(R3) = 1/μ3 = −γT · U−1 · e (11)

and their variances are determined by

Var(R1) = 2βT · T−2 · e − (βT · T−1 · e)2, (12)
Var(R2) = 2αT · S−2 · e − (αT · S−1 · e)2, (13)
Var(R3) = 2γT · U−2 · e − (γT · U−1 · e)2. (14)

Then the overall state of the multipath transport system can be described for
t ≥ 0 by a vector process

Z(t) = (X(t),M(t), Y (t)) = ((X1(t),X2(t)), (M1(t),M2(t),M3(t)), Y (t)) (15)

on the finite state space Σ ⊂ {0, 1}2 × {0, 1, . . . , n1} × {0, 1, . . . , n2} ×
{0, 1, . . . , n3} × {1, . . . ,K}. The binary tuple X(t) = (X1(t),X2(t)) = (i1, i2) ∈
ΣX = {0, 1}2 indicates by X1(t) = i1 = 1 or X2(t) = i2 = 1 that at time t
a failure has occurred in channel 1 or 2, respectively, and the related channel
is repaired by a virtual maintenance function of the transport system. A state
i1 = 0 or i2 = 0 indicates a proper operation of the respective transport chan-
nel. X(t) = (0, 0) corresponds to the initial operational state and the failure
state is determined by X(t) = (1, 1) where no further operation is possible until
the maintenance process has been successfully executed on both channels. The
common maintenance component

M(t) = (M1(t),M2(t),M3(t)) = m = (m1,m2,m3) ∈ ΣM , (16)

ΣM ⊆ {0, 1, . . . , n1} × {0, 1, . . . , n2} × {0, 1, . . . , n3}, records the phases m =
(m1,m2,m3) ≥ 0 of the running repair processes for a state i1 = 1 or i2 = 1.
Here a state mk = 0, k ∈ {1, 2, 3} indicates an idle repair function for a given
related level component il = 0, l ∈ {1, 2}.

We arrange the state variable Z(t) and its overall state space Σ in such a way
that the level process X(t) = (X1(t),X2(t)) ∈ ΣX is the leading indicator vari-
able of the continuous-time Markov chain with the subspace ΣX = {0, 1, 2, 3}.
Its four states are arranged according to a lexicographical ordering, i.e., it is
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Fig. 4. Model of the states and transitions with their associated rate vectors and
matrices of the related failure arrival epochs and maintenance completion events.

given by a binary encoding 0 ≡ (0, 0), 1 ≡ (0, 1), 2 ≡ (1, 0), 3 ≡ (1, 1). The phase
variable (M(t), Y (t)) ∈ Σ(M,Y ) with the phase state space

Σ(M,Y ) = {(0, 0, 0)} × {1, . . . , K} (17)
∪ {0} × {1, . . . , n2} × {0} × {1, . . . , K}
∪ {1, . . . , n1} × {0} × {0} × {1, . . . , K}
∪ {0} × {0} × {1, . . . , n3} × {1, . . . , K}

indicates the residual set of the microstates.
The initial state Z(t) = z = (x,m, y) with x = (0, 0) ∈ ΣX consists

of the j0 = n0 · K = K,n0 = 1, microstates (x,m, y) ∈ {((0, 0), (0, 0, 0))} ×
{1, . . . , K}, whereas the final error state with x = (1, 1) ∈ ΣX comprises the
j3 = n3 · K microstates {(1, 1)} × {(0, 0)} × {1, . . . , n3} × {1, . . . , K}. The two
failure states with x ∈ {(0, 1), (1, 0)} ⊂ ΣX with one channel under repair consist
of j1 = n2 · K and j2 = n1 · K microstates {(0, 1)} × {0} × {1, . . . , n2} × {0} ×
{1, . . . , K} and {(1, 0)} × {1, . . . , n1} × {0} × {0} × {1, . . . , K}, respectively. A
model of the state space with the associated transition vectors and matrices of
the corresponding failure arrival epochs and maintenance completion events is
illustrated in Fig. 4.

2.3 Analysis of a Simplified Marshall-Olkin Failure Model
of the Redundant Transport System

We now consider the simplified Marshall-Olkin failure model with three inde-
pendent Poisson input streams as failure triggers whose arrival rates are given
by ̂λi = pt ·Λi ·e = pt ·λi, i ∈ {1, 2, 3}. Furthermore, we may select the previously
specified three independent phase-type distributed repair processes R1, R2, R3

with the finite means 1/μi = E(Ri), i ∈ {1, 2, 3}. Applying the steady-state
results of Rykov et al. [23, Theorem 2], one can determine the steady-state
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probabilities Π(S) = (Π(S)
0 ,Π

(S)
1 ,Π

(S)
2 ,Π

(S)
3 )T ∈ R

4 of this simplified Marshall-
Olkin failure model on the corresponding levels i ∈ ΣX = {0, 1, 2, 3} in the
following form:

Π
(S)
1 = Π

(S)
0 ·

̂λ1

̂λ2 + ̂λ3

·
[

1 − βT ·
(

(̂λ2 + ̂λ3)I − T
)−1

· T 0

]

(18)

Π
(S)
2 = Π

(S)
0 ·

̂λ2

̂λ1 + ̂λ3

·
[

1 − αT ·
(

(̂λ1 + ̂λ3)I − S
)−1

· S0

]

(19)

Π
(S)
3 =

Π
(S)
0

μ3
·
(

̂λ1 ·
[

1 − βT ·
(

(̂λ2 + ̂λ3)I − T
)−1

· T 0

]

(20)

+̂λ2 ·
[

1 − αT ·
(

(̂λ1 + ̂λ3)I − S
)−1

· S0

]

+ ̂λ3

)

Π
(S)
0 =

(

1 +
̂λ1

̂λ2 + ̂λ3

·
[

1 − βT ·
(

(̂λ2 + ̂λ3)I − T
)−1

· T 0

]

·
[

1 +
̂λ2 + ̂λ3

μ3

]

(21)

+
̂λ2

̂λ1 + ̂λ3

·
[

1 − αT ·
(

(̂λ1 + ̂λ3)I − S
)−1

· S0

]

·
[

1 +
̂λ1 + ̂λ3

μ3

]

+
̂λ3

μ3

)−1

This vector Π(S) ∈ R
4 can be used to approximate the initial steady-state solu-

tion α(x(0)) of the first aggregation system (47) that is triggering the disaggre-
gation step (48) and the following iteration step (49) of the IAD approach in
Subsect. 3.3.

3 Analyzing the Markov Model of the Transport System

In the following we investigate the finite continuous-time Markov chain (CTMC)
{Z(t), t ≥ 0} that is used to analyze the reliability behavior of the described
multipath transport system subject to the sketched generalized Marshall-Olkin
failure model of its basic redundant, erroneous transport channels.

3.1 Generator Matrix of the Finite Markov Chain

In the following we consider the three different state sets {IOS, FS, IES} ⊂
P(ΣX) comprising the initial operational state (IOS) X(t) = x = (0, 0) ∈ ΣX ,
the complete failure state (FS) X(t) = x = (1, 1) ∈ ΣX , and the cluster of
isolated error states (IES) X(t) = x ∈ {(0, 1), (1, 0)} ⊂ ΣX . Then the resulting
generator matrix A of this finite CTMC Z(t) has a block structure on the corre-
sponding microstates (x,m, y) ∈ Σ which is related to a redundant system with
the Marshall-Olkin failure behavior (cf. [13,21–23]):

A =

⎛

⎜

⎜

⎝

A00 A01 A02 A03

A10 A11 0 A13

A20 0 A22 A23

A30 0 0 A33

⎞

⎟

⎟

⎠

∈ R
N×N , (22)
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The transition behavior of the failure interarrivals in the random environment Y
is driven by the irreducible generator matrix Q. The three PH-type driven repair
processes are governed by (T, β), (S, α), (U, γ) that run independently of each
other. Subsequently, we define the corresponding blocks Aij of the generator
matrix A in terms of the Kronecker product and Kronecker sum, i.e. F ⊗ E =
(Fij ·E)ij , and F ⊕E = F ⊗Il +Im ⊗E for block matrices F ∈ R

m×m, E ∈ R
l×l

and identity matrices Il, Im as well as vectors of all ones el, em of appropriate
dimensions l > 0,m > 0:

A00 = 1 ⊗ (Q − Λ) = Q − Λ (23)
A01 = 1 ⊗ αT ⊗ 1 ⊗ Λ2 = αT ⊗ Λ2 (24)
A02 = βT ⊗ 1 ⊗ 1 ⊗ Λ1 = βT ⊗ Λ1 (25)
A03 = 1 ⊗ 1 ⊗ γT ⊗ Λ3 = γT ⊗ Λ3 (26)
A10 = 1 ⊗ S0 ⊗ 1 ⊗ IK = S0 ⊗ IK (27)
A11 = 1 ⊗ S ⊗ 1 ⊗ IK + 1 ⊗ In2 ⊗ 1 ⊗ (Q − Λ1 − Λ3)

= S ⊕ (Q − Λ1 − Λ3) (28)
A13 = 1 ⊗ en2 ⊗ γT ⊗ (Λ1 + Λ3) = en2 ⊗ γT ⊗ (Λ1 + Λ3) (29)
A20 = T 0 ⊗ 1 ⊗ 1 ⊗ IK = T 0 ⊗ IK (30)
A22 = T ⊗ 1 ⊗ 1 ⊗ IK + In1 ⊗ 1 ⊗ 1 ⊗ (Q − Λ2 − Λ3)

= T ⊕ (Q − Λ2 − Λ3) (31)
A23 = en1 ⊗ 1 ⊗ γT ⊗ (Λ2 + Λ3) = en1 ⊗ γT ⊗ (Λ2 + Λ3) (32)
A30 = 1 ⊗ 1 ⊗ U0 ⊗ IK = U0 ⊗ IK (33)
A33 = 1 ⊗ 1 ⊗ U ⊗ IK + 1 ⊗ 1 ⊗ In3 ⊗ Q = U ⊕ Q (34)
A31 = A32 = A12 = A21 = 0 (35)

Then the part of the generator matrix A on the operational states OS =
{0, 1, 2} ≡ {(0, 0), (0, 1), (1, 0)} ⊂ ΣX excluding the failure state FS = {3} ≡
{(1, 1)} ⊂ ΣX is defined by the block matrix

AO =

⎛

⎝

A00 A01 A02

A10 A11 0
A20 0 A22

⎞

⎠ ∈ R
M×M (36)

with M = K · (n0 + n1 + n2) = K · (1 + n1 + n2) states.

3.2 Calculation of the Steady-State Vector

In the following we suppose that an irreducible generator matrix Q of the Marko-
vian environment and three irreducible phase-type generators T + T 0βT , S +
S0αT , U+U0γT are given. Then we denote by ΠT = (ΠT

0 ,ΠT
1 ,ΠT

2 ,ΠT
3 )  0 the

resulting partitioned, unique steady-state row vector of the irreducible Markov
chain Z(t).

We can calculate Π by efficient numerical solution methods for finite ergodic
Markov chains such as direct or iterative solution techniques of the balance



110 U. R. Krieger and N. M. Markovich

equations ΠT · A = 0, ΠT · e = 1, for instance, by applying aggregation-
disaggregation methods such as an additive or multiplicative Schwarz decom-
position method or any other iteration scheme derived from an M-splitting (cf.
[4,15–18,25]).

Let ˜A = −AT denote the irreducible M-matrix associated with the generator
matrix A and A = L+U −Δ be the Jacobi block-matrix decomposition into the
diagonal block matrix Δ = −Diag(A00, A11, A22, A33), and lower- and upper-
diagonal block matrices

L =

⎛

⎜

⎜

⎝

0 0 0 0
A10 0 0 0
A20 0 0 0
A30 0 0 0

⎞

⎟

⎟

⎠

, U =

⎛

⎜

⎜

⎝

0 A01 A02 A03

0 0 0 A13

0 0 0 A23

0 0 0 0

⎞

⎟

⎟

⎠

, (37)

respectively. Then we define the associated M-splitting ˜A = −AT = M −N with
the corresponding transposed matrices of the block-matrix decomposition

M = ΔT = −

⎛

⎜

⎜

⎝

A00
T 0 0 0

0 A11
T 0 0

0 0 A22
T 0

0 0 0 A33
T

⎞

⎟

⎟

⎠

(38)

N = LT + UT =

⎛

⎜

⎜

⎝

0 A10
T A20

T A30
T

A01
T 0 0 0

A02
T 0 0 0

A03
T A13

T A23
T 0

⎞

⎟

⎟

⎠

. (39)

We get the iteration matrix J = M−1 ·N = [ΔT ]−1 ·[LT +UT ] and the associated
nonnegative matrix

˜T = IN − ˜A · M−1 = N · M−1 (40)

=

⎛

⎜

⎜

⎝

0 A10
T · [−A11]−T A20

T · [−A22]−T A30
T · [−A33]−T

A01
T · [−A00]−T 0 0 0

A02
T · [−A00]−T 0 0 0

A03
T · [−A00]−T A13

T · [−A11]−T A23
T · [−A22]−T 0

⎞

⎟

⎟

⎠

˜T =

⎛

⎜

⎜

⎝

0 (S0)
T ⊗ IK (T 0)

T ⊗ IK (U0)
T ⊗ IK

α ⊗ Λ2 0 0 0
β ⊗ Λ1 0 0 0
γ ⊗ Λ3 [en2 ]

T ⊗ γ ⊗ (Λ1 + Λ3) [en1 ]
T ⊗ γ ⊗ (Λ2 + Λ3) 0

⎞

⎟

⎟

⎠

(41)

·

⎛

⎜

⎜

⎝

[QT − Λ]−1 0 0 0
0 [ST ⊕ (QT − Λ1 − Λ3)]−1 0 0
0 0 [TT ⊕ (QT − Λ2 − Λ3)]−1 0
0 0 0 [UT ⊕ QT ]−1

⎞

⎟

⎟

⎠

with the property M−1 · ˜T · M = J . This stochastic matrix ˜T extends the
structure of the Marshall-Olkin reliability model to a block matrix. Its reduction
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to single elements by means of the aggregation-disaggregation approach will yield
a stochastic matrix B ≡ B(x) = R · T · P (x) ∈ R

4×4 subject to an aggregation
matrix R and a prolongation matrix P (x) for any probability vector 0 < x ∈ R

N ,
eT · x = 1 (see (43)). The latter reflects the connectivity graph of the original
Marshall-Olkin reliability model.

Then the column-stochastic block structured matrix

T = IN − ω ˜A · M−1 = (1 − ω)IN + ω ˜T (42)

is a semiconvergent, nonnegative matrix for any scaling ω ∈ (0, 1) (cf. [4,15,25]).
Thus, the algebraically similar iteration matrix Jω = IN − ωM−1 · ˜A = (1 −
ω)IN + ω ˜J which has the same spectrum as T is also semiconvergent for any
ω ∈ (0, 1).

Based on the block-matrix decomposition of A in (22) we determine a
partition Γ = {J0, J1, J2, J3} into m = 4 subsets of the state space Σ =
{1, . . . , N}, N = n0 · K + n2 · K + n1 · K + n3 · K,n0 = 1, with the four disjoint
subsets J0 = {1, . . . , K}, J1 = {K + 1, . . . , (1 + n2) · K}, J2 = {(1 + n2) · K +
1, . . . , (1+n1 +n2) ·K}, J3 = {(1+n1 +n2) ·K +1, . . . , (1+n1 +n2 +n3) ·K}.

3.3 Application of a Semiconvergent IAD-Algorithm for M-Matrices

In the following we apply an iterative aggregation-disaggregation (IAD) algo-
rithm that is semiconvergent to the unique steady-state vector ΠT = (ΠT

i )i  0
with its positive components ΠT

i on the partition set Ji for each state i ∈
{0, 1, 2, 3} (cf. [17,18]). The IAD-algorithm includes three basic matrices. First,
we generate an aggregation matrix R and a prolongation matrix P (x),

R =

⎛

⎜

⎜

⎝

eT
J0

0 0 0
0 eT

J1
0 0

0 0 eT
J2

0
0 0 0 eT

J3

⎞

⎟

⎟

⎠

∈ R
4×N , P (x) =

⎛

⎜

⎜

⎝

y0 0 0 0
0 y1 0 0
0 0 y2 0
0 0 0 y3

⎞

⎟

⎟

⎠

∈ R
N×4, (43)

for 0 < x =

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

∈ R
N , eT · x = 1, in terms of

[α(x)]j = eT
Jj

· xj [y(x)]j = xj/[α(x)]j (44)

provided that xj > 0 holds for its component on set Jj , j ∈ {0, 1, 2, 3}, and
we use the uniform distribution in case of xj = 0 for a given j. Here eJ0 ∈
R

n0K , eJ1 ∈ R
n2K , eJ2 ∈ R

n1K , eJ3 ∈ R
n3K , e4 ∈ R

4, e ∈ R
N denote the vectors

of all ones.
Applying the iteration matrix T = T (ω) in (42) and such a nonnegative

vector x ∈ R
N we get the corresponding aggregated matrix B(x) ∈ R

4×4 in
terms of

B(x) = R · T · P (x). (45)
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We further use r(x) = ||(IN − T ) · x||1 with the identity matrix IN for the
L1-norm ||x||1 =

∑N
1 |xi| in R

N .
Then the IAD-algorithm reads as follows:

1. We choose four real numbers ω, ε, c1, c2 ∈ (0, 1) and set k = 0.
First, we select the steady-state vector of the simplified Marshall-Olkin model
as initial vector α(x(0)) = Π(S) ∈ R

4, cf. (18)–(21). Then we construct the
initial probability vector x(0) = (x(0)

i )i  0, eT · x(0) = 1, by expanding
α(x(0)) uniformly on each subset Ji, i ∈ {0, 1, 2, 3} in terms of

x
(0)
i =

α(x(0))i

ni
· eJi

(46)

Then we go to step 3.
2. We solve

B(x(k)) · α(x(k)) = α(x(k)) (47)

subject to eT
4 · α(x(k)) = 1, α(x(k)) > 0.

3. We compute

x̃ = P (x(k)) · α(x(k)). (48)

4. We compute

x(k+1) = T · x̃. (49)

5. If
r(x̃) ≤ c1 · r(x(k))

then go to step 6
else compute

x(k+1) = Th · x̃ (50)

for h > 1 such that r(x(k+1)) ≤ c2 · r(x(k))
endif

6. If

||x(k+1) − x(k)||1/||x(k)||1 < ε (51)

then go to step 7
else

k = k + 1,

and go to step 2
endif

7. At the end we perform a normalization after a successful convergence test:

Π =
M−1 · x(k+1)

eT · M−1 · x(k+1)
(52)
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The existing convergence theory related to numerical solution methods for finite
Markov chains has revealed that the semiconvergence of this specific IAD-
algorithm to the probability vector Π can be proven (cf. [17,18,25]). The specific
selection of its initial vector x(0) in (46) by the simplified Marshall-Olkin model
shall guarantee this required local convergence behavior of our approach.

4 Computing the Reliability Function and Hazard Rate
of the Redundant Transport System

The reliability of the error-prone multipath transport system is characterized by
the dwell time DT ≥ 0 in the set of the operational states ̂O = {z = (x, h, y) ∈
Σ | x ∈ OS ⊂ ΣX} of the overall state space Σ subject to the start in one of
those states z ∈ ̂O in the steady-state regime with the steady-state row vector
ΠT

O = (ΠT
0 ,ΠT

1 ,ΠT
2 )  0 and its positive components ΠT

i  0 associated with
each non-failure state i ∈ OS = {0, 1, 2} ⊂ ΣX .

Then we can calculate the reliability function FR(t) = P{DT > t} as time-
dependent probability of the Markov chain Z(t) to reside in a state z ∈ ̂O up to
time t > 0 given that a capturing in the absorbing states ̂F = {z = (x, h, y) ∈
Σ | x ∈ FS ⊂ ΣX} does not occur before that epoch (cf. (36), see also [13,19]):

FR(t) = P{Z(0) ∈ ̂O} · P{DT > t | Z(0) ∈ ̂O}
= P{Z(0) ∈ ̂O} · P{Z(t) /∈ ̂F | Z(0) ∈ ̂O} = ΠT

O · exp(AOt) · e (53)

The computation of the matrix exponential exp(AOt) can be effectively per-
formed by means of a uniformization approach (cf. [25]).

Let D = Diag(Dii) > 0 denote the diagonal matrix determined by the pos-
itive diagonal elements Dii = −(AO)ii > 0, i ∈ {1, . . . , M}, of the M-matrix
−AO in (36). We define a constant γ = max1≤i≤M (Dii) > 0 and use the sub-
stochastic submatrix of the generator matrix PO = (Pij), 1 ≤ i ≤ M, 1 ≤ j ≤ M,
that is determined by the transition probabilities PO = IM +AO/γ at the embed-
ded time epochs of transition events in the Markov chain Z(t). Then it holds
AO = γ · (PO − IM ) with the identity matrix IM ∈ R

M×M . It induces a simple
representation as matrix exponential

RO(t) = exp(AO · t) = exp(γt · (PO − IM ))

=

[ ∞
∑

n=0

(γt)n

n!
exp(−γt) · ((PO)n)ij

]

1≤i,j≤M

. (54)

The latter form allows a fast computation of the reliability function FR(t) in
(53) in terms of the matrix-vector product

FR(t) = ΠT
O · RO(t) · e =

∞
∑

n=0

(γt)n

n!
exp(−γt) · ΠO

T · (PO)n · e (55)
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by means of a Poisson distribution with parameter γt and the consecutive powers
of the sub-stochastic matrix PO (cf. [19,25]).

If we assume to start in steady state with the probability distribution ΠO,
then the hazard rate h(t) : [0,∞) → R of the reliability model can be simply
calculated by the Markov chain with the absorbing failure states z ∈ ̂F of FS =
{(1, 1)} as a simple phase-type model:

h(t) =
d[1 − FR(t)]

dt
· [FR(t)]−1 =

ΠT
O · exp(AOt) · (−AO) · e

ΠT
O · exp(AOt) · e

t ≥ 0. (56)

Due to A · e = 0 and γT · e = 1 we get

Δ = −AO · e =

⎛

⎝

A03

A13

A23

⎞

⎠ · e =

⎛

⎝

γT ⊗ Λ3

en2 ⊗ γT ⊗ (Λ1 + Λ3)
en1 ⊗ γT ⊗ (Λ2 + Λ3)

⎞

⎠ · e

=

⎛

⎝

γT ⊗ λ3

en2 ⊗ γT ⊗ (λ1 + λ3)
en1 ⊗ γT ⊗ (λ2 + λ3)

⎞

⎠ · e =

⎛

⎝

λ3

en2 ⊗ (λ1 + λ3)
en1 ⊗ (λ2 + λ3)

⎞

⎠ (57)

with vectors of all ones e of appropriate dimensions. Inserting the uniformization
representation (55), we conclude that

h = lim
t→∞ h(t) =

ΠT
O · PO · (−AO) · e

ΠT
O · PO · e

=
ΠT

O · PO · Δ

ΠT
O · [e − Δ/γ]

=
ΠT

O · PO · Δ

1 − ΠT
O · Δ/γ

(58)

holds for the asymptotic regime t → ∞ and we approach a corresponding expo-
nential distribution with mean 1/h in this asymptotic regime. This outcome
expands the results of Kozyrev, Rykov et al. [13,22] to the developed general-
ized Marshall-Olkin failure model.

5 Conclusions

We have considered the application of a fog computing paradigm with function
virtualization to an IoT scenario that is supported by an SDN/NFV protocol
stack and a multipath communication between its clients and servers (cf. [8,14,
20,24]).

It has been our major goal to model this error-prone multipath transport
system with a single repairman and independent phase-type distributed repair
times by a generalized Marshall-Olkin failure model. For this purpose the failure
processes of the incorporated two logical transport channels between a client-
server pair have been described by three Markov-modulated Poisson failure pro-
cesses that are driven by the transitions of a common random environment. The
restoration processes were modelled by general phase-type distributed repair
times.
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First we have identified the generator matrix of the derived finite, continuous-
time Markov chain of the reliability model in terms of associated Kronecker
products of the parameter matrices which are related to the Markov-modulated
interarrival times of failures and the phase-type distributed repair times. Then
we have revealed that the steady-state distribution of this restoration model
of Marshall-Olkin type can be effectively computed by means of an iterative
aggregation-disaggregation method that has been derived from a Jacobi splitting
of an associated block structured M-matrix. The latter scheme has used a closed-
form representation of the steady-state vector of a simpler Marshall-Olkin failure
model derived by Rykov, Kozyrev et al. [23]. Finally, we have used this outcome
to compute the reliability function and the hazard rate of the multipath transport
system by means of an appropriately defined finite, absorbing Markov chain and
we have revealed its form in the asymptotic regime of time.

Our future work will focus on the sensitivity analysis of the reliability function
and hazard rate with regard to the properties of the Markov-modulated arrival
processes. Moreover, we shall consider the application of the Marshall-Olkin
failure model to other services in SDN/NFV networks with an integrated 5G
RAN that can support fog and mobile edge computing (cf. [1,7,14]).
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for Basic Research (grant 19-01-00090).
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