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Abstract. Peer-to-peer transfers allow for sharing crowd monitoring
data despite the loss of network connectivity. However, limited insight
into real-world deployment contexts can let the protocol design go astray
- particularly, if a certain nature of participant behaviour and connec-
tivity changes is assumed. This paper focuses on the delivery of crowd
monitoring data. It puts a protocol out for a reality check that switches
to peer-to-peer (p2p) communication when the infrastructure network
connection is lost. The evaluation at an annual indoor fair asked visitors
to make their phones visible to peers, run the protocol, and share crowd
monitoring data. The results show that most of the participants formed
a large radio cluster throughout the event. This made p2p networking
only possible and enabled a more robust upload of crowd monitoring
data. However, dynamic switching between infrastructure network and
p2p communication also increased the volatility of the system, calling for
future optimizations. The presented measurement results provide further
insights into these details.

Keywords: Crowd monitoring · Peer-to-peer · Bluetooth · Android ·
Real-world evaluation

1 Introduction

Awareness of how event visitors roam the venue allows for aligning safety mea-
sures and for optimizing the event setup. Monitoring techniques that engage
people in the crowd to share sensor data from their phones is a novel way to
infer crowd metrics without expensive camera deployments or crowd stewards.

However, due to the crowd density, the demand for networking bandwidth
increases while the infrastructure is designed for the average case that does not
accommodate for crowds of people. Crowd monitoring data then competes for
bandwidth just like any other traffic and participants of the crowd monitor-
ing campaign may not be able to share their data with the campaign server.
Off-loading to peers that still have a connection allows for sharing such data
nonetheless. Our previous work shows that going as far as using peer-to-peer
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Fig. 1. An annual indoor fair is the setting for testing the protocol.

(p2p) data forwarding on default incurs long data delays and therefore infras-
tructure network connectivity should be used if available [4].

This paper investigates a protocol that switches to p2p data transfer only
when a device lost network connectivity. The device then attempts to offload
its data to a one-hop peer that is still connected to the infrastructure. During
protocol design, however, one makes assumptions (at times unconsciously) about
the way participants behave or the network connectivity changes. This raises the
question of how the protocol performs in a real-world deployment where partic-
ipation, user behaviour, and network infrastructure are beyond the designer’s
control. The evaluation of the protocol is set during an annual indoor fair in
one of the buildings on university campus (cp. Fig. 1). Over the course of six
and a half hours 47 visitors participated and shared location, connectivity and
peer-related data.

The contribution of this paper is an in-depth analysis of the challenges a
real-world crowd monitoring scenario has on the design of a p2p data transfer
protocol. The paper explores the impact of participation patterns, clusters of
visitors, and implications of unexpected network behaviour.

2 Related Work

Participatory crowd monitoring relies on people in the crowd to share crowd
monitoring data with a campaign server. GPS readings, acceleration data, or
Wifi fingerprints allow for inferring the crowd’s density and flow [9] as well as
groups of people that move as a cohesive whole [6]. Experience from large-scale



66 C. Groba and A. Schill

events show that network access via the existing infrastructure becomes slow and
at times even impossible [2]. The resulting long delays for crowd monitoring data
call for offloading solutions to reduce the load on the network [1]. In our case,
participants experienced a high rate of connectivity changes with networking
interfaces frequently switching between connected and disconnected. The paper
shows, how such an unexpected network behaviour affected the tested protocol.

One way to reduce network load is to establish the crowd metric among all
peers and assign one peer that uploads the metric to the server. UrbanCount [3],
for example, proposes a distributed crowd counting technique. It builds on an
epidemic model where nodes receive radio signals from other nodes and broad-
cast a list of “seen” nodes. Trace-driven simulations show that such an approach
produces a precise count when the crowd is dense. A similar approach [5] based
on audio tones shows high scalability and accuracy at much less energy con-
sumption compared to radio-based solutions. As for peer assignment strategies,
techniques from collaborative sensing may be adapted that lets mobile nodes
decide for themselves whether to become a peer with additional responsibilities
[8]. A stochastic algorithm makes this decision in intervals and ensures a fair
and effective allocation.

This paper takes another approach by offloading data to a peer only when
connectivity issues occur. However, instead of advancing to complex solutions as
proposed for domains other than crowd monitoring [11], it first focuses on early
evaluation in a real-world deployment.

3 P2P Protocol

The protocol is based on the assumption that a set of nodes representing people
with modern phones run an app to participate in a crowd monitoring campaign.
They arbitrarily move around while visiting an event, for example, a fair. Each
node has a certain capacity to store a number of sensor data and to perform the
following tasks:

– Discover available peers in vicinity and make itself visible to other peers,
– Accept connection requests and store data received from peers, and
– Upload data, if a connection to the crowd monitoring server is available.

Further, it is assumed that some nodes experience network disconnects due to
the density of nodes. These nodes rely on transferring their data to peers that
are able to upload directly to the server via their WiFi or cellular interface.

When the protocol notices a connectivity change event, it switches depending
on the change to either the p2p part or the direct upload part (cp. Fig. 2). The
p2p part of the protocol starts the peer discovery and stops it as soon as it finds a
one-hop peer that is connected. This spares a selection phase, which, when peer
availability changes in the meantime, leads to peer connection issues. The node
transfers its data and removes its local copy once the transfer is completed. If the
connection is closed prematurely, the transfer is aborted, and the data remains
at the node. Further, if no connected peer is found, discovery times out and data
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onConnectivityChange:
if connection lost then

directUpload.stop()
peerTransfer.start()

else
peerTransfer.stop()
directUpload.start()

end

peerTransfer.start():
wait for directUpload to stop
while !self.stopped do

start peer discovery
onConnectedPeerFound:

stop peer discovery
transfer data to peer

onPeerDiscoveryTimeout:
save data

sleep(timeout)
end

peerTransfer.stop():
self.stopped=true
stop peer discovery

directUpload.start():
wait for peerTransfer to stop
open server socket
while !self.stopped do

upload data
sleep(timeout)

end

directUpload.stop():
self.stopped=true
close server socket

Fig. 2. Protocol pseudocode

stays stored locally. Afterwards, the node idles for a given timeout. The direct
upload part of the protocol opens a server socket and in intervals uploads data
collected locally and received from peers directly via the infrastructure. When
this part is stopped, the server socket closes.

The protocol is in either of two states: peer transfer or direct upload. Given
that a state transition is triggered solely by a connectivity change i.e., connected
or disconnected, the protocol is considered deterministic. That trigger, however,
is managed outside the protocol and may be seen as a shared resource. Locally
the protocol is nonetheless deadlock-free, as it remains fully active in its current
state until it receives a change notification. From a distributed perspective, the
protocol is also deadlock-free, since none of the peers waits for another peer
to take action. In case connection requests are not granted or messages do not
get delivered, the underlying communication protocol indicates this failure and
the node is free to abort or retry communication, possibly with another peer.
Timeouts ensure that a node makes progress within a state such as terminating
discovery if no adequate peer is found or stop idling to upload data again. With
regard to testing, preliminary tests in the laboratory and with a small number of
students ensured that the implementation of the protocol is bug-free and meets
the research objectives.

The communication among phones is implemented with classic Bluetooth
because it is widely available on Android phones and can be used without
restricting the regular Internet access. In terms of integrating iOS devices and
allowing for cross-platform communication, we also implemented the protocol
with Bluetooth Low Energy. While lab tests show promising results, the eval-
uation in a real-world setting is still on-going. Meanwhile, this paper shares
experiences with classic Bluetooth. Phones need to authorize their Bluetooth
visibility to become discoverable by peers. Bluetooth discovery, however, can-
not be configured to transmit protocol-specific data, namely the connectivity
status of the phone. As a workaround, the phone’s Bluetooth name is edited,
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Fig. 3. The app accompanying the annual fair OUTPUT.DD provides an opt-in feature
for participating in the mobile crowd monitoring experiment and evaluating the p2p
protocol (a). Participants have exclusive access to a heat map that color-codes visitor
densities in different parts of the event area (b).

which as part of the Bluetooth discovery beacon conveys this information. Fur-
ther, the Bluetooth-based p2p communication runs over insecure connections to
avoid manual pairing of phones. A security protocol like Transport Layer Secu-
rity (TSL) is necessary to allow for privacy and data integrity despite insecure
p2p communication. The implementation of such security measures is still future
work.

4 Experiment

The experiment ran during an indoor fair in one of the main buildings on univer-
sity campus. The exhibition area included an open space of 800 square meters
and a number of show rooms spread across three floors. The companion app
of that annual event included a opt-in feature for participating in the mobile
crowd monitoring experiment and evaluating the p2p protocol (cp. Fig. 3a). The
app links program items to an interactive floor plan and applies gamification
to increase participation as well as the overall visitor engagement during the
fair. Once enabled and all necessary permissions provided, participants shared
sensor and log data via their phone’s wireless communication interface with an
application server in the Internet.
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Modern smartphones provide the necessary resources to establish p2p connec-
tions, buffer and upload data. Participation, however, draws from the phone’s
mobile data plan, if Wifi access is unavailable, and consumes scarce battery
resources. For latest phone generations like the Google Pixel 3, the battery level
drops by two percent per hour running the protocol. More dated phones like the
Nexus 5X require three percent per hour. In return for these participation costs,
participants had exclusive access to a heat map, which turned the collected data
into a map overlay color-coding visitor densities in different parts of the event
area (cp. Fig. 3b).

Over the course of the event and among the visitors, about 89 people used the
companion app and of those 47 participated in the experiment. The participants
shared four sets of data: First, mock sensor readings that the phone created once
a second as payload for the protocol. Second, sightings of Bluetooth Low Energy
(BLE) beacons that were deployed on site to track the position of the partici-
pants. Third, sightings of peers in proximity, which contained the peer’s device
id, connectivity state, and protocol state. Fourth, the result of each protocol
iteration, e.g., whether a p2p transfer was completed or aborted. All data was
timestamped on creation and timestamped again when it arrived at the server,
running the network time protocol for synchronized clocks. It was buffered locally
and uploaded when the device was connected, or as in the case of the mock read-
ings, when a p2p data transfer was possible. In a realistic scenario, the mock
readings would be replaced by peer and static beacon sightings to allow for a
cluster analysis similar to Fig. 5 and for identifying perilously dense or trapped
areas.

In intervals a software controller changed the device’s connectivity state to
activate the p2p part of the protocol. That is, randomly after 40 to 60 s being
connected, the device disconnected for 30 to 50 s and thereafter reconnected
again. The controller worked only protocol-internally leaving the connectivity
via the actual network interface unaffected. Only when the actual network con-
nectivity changed, the control adjusted accordingly and dis/reconnected when
the network interface did so.

4.1 Participation

With visitors coming and going, their participation in the experiment varies over
time. Figure 4 depicts the participation behaviour as broken bars. A horizontal
line of bars represents one device. Bars are broken when successive sensor read-
ings are more than two minutes apart. The sensor readings, here, refer to the
mock readings created by the phone. They reflect participation best because
they are unaffected by the device’s distance to real sensor sources and other
peers. Some participants contribute right from the start, while others join-in
later. Some hold out to the end, while others leave early or contribute only for
a short period of time.

Participation gaps may occur because participants cancel their participation
deliberately, e.g., out of curiosity to see the effect on app features. Or, partici-
pants pause participation involuntarily as they miss notifications on the renewal
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Fig. 4. Participation in the experiment varies: Some devices contribute throughout the
event (e.g., device 9) while others do so only intermittently (e.g., device 21).

of app permissions. Expiring permissions, like for being Bluetooth discoverable,
is among Android’s efforts to protect their users’ privacy. This, however, chal-
lenges apps with background features like a p2p protocol. They need to bring
user attention back to the phone without negatively impacting the user’s cur-
rent experience in the real-world. Considering the staccato-like behaviour of the
device 21 in Fig. 4, there may be other reasons, which are not yet clear.

4.2 Radio and Spatial Clusters

Over time participants formed clusters in terms of their spatial distance and radio
range. Spatial clusters are derived from sightings of BLE beacons. A centroid
technique [7] evaluates the beacons’ received signal strength and positions each
participant accordingly. Density-joining [10] clusters participants based on their
neighbourhood within a two meter radius. For radio clusters, the peer sightings
dataset is used, which defines neighbourhood as the number of peers a device
senses in its radio range. Density-joining assigns those to the same cluster that
have at least one peer in common.

Figure 5 depicts the number and size of the clusters over the course of the
experiment. A dot represents a cluster. It grows in size and lightness, the more
members the cluster has. In spatial terms, participants are rather scattered and
independently roam the event area. This is reflected by the high number of small
dots in the top part of the figure. The exception is past noon (12:20–12:50) when
10 to 15 participants gather in the same part of the event area. This may be
due to a program item that catches the interest of many visitors. In contrast,
the bottom of the figure shows the evolution of one large radio cluster and how
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it grows to more than 20 members towards the end of the event at 14:40. There
are only few small radio clusters with one to five members that are disconnected
from the rest possibly because they are in the most remote places of the event
area. The analysis of the radio clusters shows that most participants are part of
the same p2p network, which allows for data exchange and task offloading.

Fig. 5. Despite the participants’ spatial distribution (top), most of them are part of
one large radio cluster (bottom) leaving only few to small isolated radio clusters.

4.3 Connectivity Changes

With a computer science building as the venue for the event and experiment,
the assumption is that network connectivity is not an issue. Disconnects that
do occur, would not be sufficient to activate and sample the p2p part of the
protocol in suitable quantities. A software controller thus induced artificial dis-
and reconnects.

Analysing the connectivity state in the peer sightings dataset, Fig. 6 shows
the median connectivity change rate over time. Considering the effect of the
software controller, a rate of up to 1.5 changes per minute is expected. At times,
however, the depicted values are much higher. This means, devices experience
additional dis- and reconnects from the actual networking infrastructure. The
peak times at 12:45 and 14:35 coincide with the times when the size of the radio
and spatial clusters peak. This suggests that already at a medium size indoor
event, network issues occur when the infrastructure is not particularly adjusted
to the expected number of visitors. Typically, existing infrastructure is designed
for the average use case that does not accommodate for crowds of people.
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Fig. 6. The median connectivity change rate is at times much higher than the expected
1.5 changes per minute. This indicates that participants experience connection issues
with the networking infrastructure.

4.4 P2P Transfers

Frequent dis- and reconnects trigger the protocol switch more often, which may
increase the number of aborted p2p transfers. A p2p transfer is aborted in two
cases: First, while the transfer is in progress, the remote end loses network con-
nectivity and closes all its serving sockets to inform its clients about the change
allowing them to find a new server peer. The client peer records this as an aborted
transfer. Second, the device reconnects to the network, stops the p2p transfer,
and uploads data itself rather than risking a disconnect from the remote end.

Figure 7 depicts the average count of completed and aborted transfers over
time. The analysis focuses on the two most prominent cases which repeat them-
selves throughout but possibly to a lesser extent. It shows an increased number of
aborts from 13:00 onwards, which means that more transfers are affected by the
connectivity change. In contrast, the transfers at noon (11:25 to 13:00) are less
affected since the number of completed transfers is higher than the aborted ones.
One reason is that at noon some devices experience disconnects that are much
longer than induced by the software controller. Whether they are in a blind spot
or deliberately turned their networking interfaces off, is unclear. Apart from that,
not every connectivity change happens during a p2p data transfer but instead
to peers that are currently idle.
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Fig. 7. At around noon, p2p transfers are much less affected by connectivity changes
than from 13:00 onwards when the number of aborted transfers increases.

4.5 Data Delay

Data delay is the time from a senor reading being collected to when it becomes
available at the server. The analysis refers to the mock sensor readings, which
have been uploaded to the server either directly or via a peer. For completed
transfers, the data delay is well below 200 s (cp. Fig. 8a). The mean delay is
around 100 s. Given the small amounts of data transferred, this delay is rather
high. This is caused by the timeout between protocol iterations. If a device did
not discover a connected peer, it idled for 60 s before it run the p2p part of the
protocol again.

For data directly uploaded by the device itself, the mean delay is at 25 s, which
is expected (cp. Fig. 8b). Notice, however, the density of outliers, which show that
a considerable number of devices deviate from the average. One explanation
may be that these devices started out with a p2p transfer, regained network
connectivity, aborted the transfer, and uploaded data themselves. This takes
longer than uploading data right away. There are, however outliers whose delay
is too long to fit into the same graph (cp. Fig. 8c). In these cases, the devices
remained disconnected for a long time, during which they were unable to find a
connected peer in their proximity. Or, during which the payload had grown to a
size that no peer connection was stable enough to complete the transfer, either
because the peer moved out of range, or the peer lost connectivity. Generally, the
phone creates 84 Bytes of mock readings per second adding up to 300 Kilobytes
an hour.
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(a)

(b)

(c)

Fig. 8. The delay for completed transfers and subsequent uploads would be rather
swift if it was not for the timeout between protocol iterations (a). For direct uploads
a considerable number of delays deviate from the otherwise short average delay (b).
Some direct uploads take so long that they are outsourced to a separate graph (c).



Peer-to-Peer Transfers for Crowd Monitoring 75

5 Conclusion

The availability of crowd monitoring data is essential for event organisers and
emergency response personnel to ensure safety. In case of network issues, data
transfers to peers in vicinity that are still connected may allow for sharing such
data nonetheless. This paper focuses on the delivery of crowd monitoring data.
During an experiment at an indoor fair, a p2p transfer protocol was tested for
how it meets real-world challenges. With considerable effort put into the design
of the events’ companion app, 47 visitors agreed to become visible to peers and
share sensor and log data. The results of the experiment show:

– Despite variations in the continuity and duration of participation, most par-
ticipants were part of the same large radio cluster throughout the experiment
and thus fulfilled the main prerequisite for p2p data transfers.

– Even at this medium size indoor event, network issues occur when the infras-
tructure is not particularly adjusted to the expected number of visitors. This
underlines the necessity for solutions that mitigate the loss of data.

Further, unanticipated changes in the connectivity to the network infrastructure
challenged the protocol and highlight prospective refinements of its design:

– Participants experienced at times high rates of connectivity changes. The
protocol quickly switched between dis- and reconnects often aborting p2p
data transfers. This is inevitable when the remote end cancels the connection.
However, losing the network connection could be approached more gracefully:
Instead of immediately switching to a p2p transfer, a device could wait to see
if it can reconnect after a short time. When the disconnect does take longer, a
p2p transfer is feasible as the experiment shows short delays when a connected
peer is around.

– Disconnects that lasted dozens of minutes caused the steady growth of data to
be transferred. Agnostic of these changes, the protocol kept trying to transfer
all collected data at once. For this to succeed, a peer connection would be
required to be stable for an extended period of time. A more realistic way
to mitigate this built-up of data is to split it up into small chunks that are
suitable for short connections times with peers.

Overall, the lesson learnt from testing the protocol in a real-world setting is that
attention to detail is important before advancing the protocol design e.g., to a
multi-hop solution.
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