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Abstract. Networks of quantum circuits or, more generally, networks
transmitting quantum information will need, just like classical networks
(e.g. internet), a mechanism for directing data to adequate nodes. Rout-
ing, understood as packet switching, is one of the most important pro-
cesses in classical networks. The issue of routing is also present in quan-
tum networks and an appropriate construction of a quantum router is
required to transfer data to specific points in the network. We describe
an implementation of a router for qutrits in this chapter. The router is
four-qutrit quantum circuit (with one controlling unit). The efficiency
and the accuracy of router’s work is tested by the Fidelity measure. The
circuit’s dynamics is expressed by a Hamiltonian where the role of gen-
eralized Pauli operators is played by the Gell-Mann operators.
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1 Introduction

Transferring information is not the only role of networks. They may be seen
as something more, e.g. tensor networks [11], neural networks [19] or quantum
circuits [22]. Undoubtedly, processing and transferring of information in quantum
networks is a problem which should be solved to efficiently realize quantum
computations [30,31], and utilize quantum communication protocols. It should
be emphasized that, nowadays, quantum networks [27] are intensively studied,
and many tools are constructed to investigate behavior of these structures, like
quantum networks – or even quantum internet – simulators [8–10].

Presently, the transfer of quantum data is based on quantum spin-chains [5,
21], and entangled qubits [20,23,29]. Different physical elements are considered
as components of future quantum networks. Many elements of classical networks,
like switches, repeaters, and routers, have their quantum equivalents [1–4,14,28].

It should be emphasized that mentioned components of networks, especially
routers, are not only discussed as theoretical devices. We can find their experi-
mental physical implementations, for example with the use of coupled harmonic
system [25], quantum tunneling effect [18], or superconducting circuits [7,26].
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In this work, we would like to show that a quantum router may be imple-
mented for higher units of quantum information, i.e. qutrits. We describe the
basis definition of a router, and its dynamics as a Hamiltonian where, because
of qutrits, Pauli operators are substituted by the Gell-Mann matrices. The given
router definition is consistent with the form of the qubit router, presented in
professional literature, so it may be treated as a step in a direction of generaliza-
tion to the qudit router. We present the values of Fidelity measure which proof
that the proposed Hamiltonian correctly realizes tasks of the qutrit router.

The paper is organized as follows. In Sect. 2, we describe the basic information
concerning qudits, and qutrits in particular. We adduce also the Gell-Mann
operators which are required in the Hamiltonian construction (the Hamiltonian
describes the dynamics of router’s operating).

Section 3 contains the idea and definition of the qutrit router. The router is
presented as a quantum circuit, and, what is more important, as the Hamiltonian.
Experiments inspecting the router’s operating are shown in Sect. 4. There, the
values of Fidelity measure for the routing process are presented. The summary
is positioned in Sect. 5. Acknowledgments and references section end the article.

2 Preliminaries

Both, in classical and quantum computing, the definition of a unit of informa-
tion is required. The construction of presently used computers impose a bit as
the basic unit. Naturally, the first algorithms for quantum computers were also
proposed for quantum bits, so-called qubits. However, the technical development
enables the utilization of quantum information units with a freedom level greater
than two (higher freedom level causes higher informational content what allows
obtaining the result of computation with fewer operations).

Let us define a qudit as a general unit of quantum information with the
freedom level d ≥ 2. A quantum state of a single qudit may be expressed as a
normalized d-entity column vector. We denote this kind of vectors, in the Dirac
notation, as |·〉, e.g.

|ψ〉 =

⎛
⎜⎜⎝

α0

α1

. . .
αd−1

⎞
⎟⎟⎠ , (1)

where the normalization condition requires
∑d−1

i=0 |αi|2 = 1, and αi are the com-
plex numbers. In next sections of the text, we denote a quantum state also as ψ
what still means the correct state in the Dirac notation.

If the quantum state is created by more than one qudit, its states’ vector is
calculated as a tensor product of all one-qudit states vectors. For example, let
us have two qudits: |ψ〉, |φ〉, with different freedom levels: a and b, respectively.
The state of these qudits, joined in one quantum register, is:

|Ψ〉 = |ψ〉 ⊗ |φ〉, (2)
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where the dimensionality of a vector |Ψ〉 is equal to a·b (the dot symbol represents
the scalar product of two numbers). Of course, the joined qudits may have the
same freedom levels. The symbol of tensor product is usually omitted, so the
above state |Ψ〉 may be written as |ψφ〉.

Quantum states may be also described by the superposition equation. In this
case, we need to define a concept of a computational basis. Just like in positional
number system theory, we need to clearly point out a representative for each
accepted value i = 1 . . . d. In quantum computing these values are substituted by
vectors. The computational basis for a d-level single qudit contains d orthonormal
vectors (the orthogonality ensures a possibility to distinguish the elements, and
the normality guaranties obtaining a correct quantum state). The most popular
computational basis is so-called standard basis. Vectors in this basis have one
element equal to 1, and other (d− 1) elements equal 0. Of course, in each vector
the non-zero element occupies different position:

|0〉 =

⎛
⎜⎜⎝

1
0

. . .
0

⎞
⎟⎟⎠ , |1〉 =

⎛
⎜⎜⎝

0
1

. . .
0

⎞
⎟⎟⎠ , . . . , |d − 1〉 =

⎛
⎜⎜⎝

0
0

. . .
1

⎞
⎟⎟⎠ . (3)

The superposition is one of the characteristic features of quantum states. The
superposition equation shows that a quantum state may be a mixture of basis
states with the proportions described by probability amplitudes αi:

|ψ〉 = α0|0〉 + α1|1〉 + . . . + αd−1|d − 1〉, (4)

where
∑d−1

i=0 |αi|2 = 1, and αi are the complex numbers.
To realize the computation on quantum states, we need operators. These

operators may be expressed as unitary matrices sized d× d, if they act on single
qudit with the freedom level d. If the state contains n qudits (all with the same
freedom level), the size of an operator’s matrix representation is dn×dn, because
matrices affecting sequent qudits are tensor multiplied just like in Eq. (2). Of
course, if we do not want to change the state of one (or more) particular qudit
in the register, we can use the identity matrix Id×d in the tensor multiplication.

In this work, we describe a router acting on qudits with the freedom level
d = 3 – called qutrits. Now, we would like to present basic quantum gates, but
with the restriction to qutrit gates.

The fundamental rotations which may be realized on one qutrit are given by
the Gell-Mann matrices:

λ1 =

⎛
⎝

0 1 0
1 0 0
0 0 0

⎞
⎠ , λ2 =

⎛
⎝

0 −i 0
i 0 0
0 0 0

⎞
⎠ , λ3 =

⎛
⎝

1 0 0
0 −1 0
0 0 0

⎞
⎠

λ4 =

⎛
⎝

0 0 1
0 0 0
1 0 0

⎞
⎠ , λ5 =

⎛
⎝

0 0 −i
0 0 0
i 0 0

⎞
⎠ , λ6 =

⎛
⎝

0 0 0
0 0 1
0 1 0

⎞
⎠

λ7 =

⎛
⎝

0 0 0
0 0 −i
0 i 0

⎞
⎠ , λ8 = 1√

3

⎛
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎠

. (5)
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The above operators may be utilized to construct unitary counterparts of
Pauli gates: X, Y, Z. The set of generalized operators contains more elements,
e.g. there are three equivalents of the X gate for qutrits:

X1 = e
i
3λ1 , X2 = e

i
3λ4 , X3 = e

i
3λ6 . (6)

The counterparts of the Y gate are built with the use of λ2, λ5, λ7 operators,
and λ3, λ8 operators serve to define equivalents of the Z gate.

Another powerful feature of quantum systems, next to the superposition, is an
entanglement [12]. This phenomenon is a kind of dependency between quantum
states of qudits joined in one register. Colloquially speaking, modifying the state
of one qudit (with the use of quantum gate) causes a change of other qudit/qudits
which take a part in the entanglement. The entanglement takes place when the
state of the register cannot be expressed as a tensor product of all single qudits
involved in this system.

3 Quantum Router for Qutrits

In this work, the input qutrit is denoted as |ψI〉, and its state may expressed as:

|ψI〉 = α|0〉 + β|1〉 + γ|2〉, (7)

where α, β, γ ∈ C and |α|2 + |β|2 + |γ|2 = 1. Naturally, the qutrit |ψI〉 is a data
input for the router.

The output qutrits (and their states) are described as |ψ1〉, |ψ2〉, |ψ3〉 or just
|ψ1ψ2ψ3〉. This three-qutrit register is an output of the router.

There is another qutrit in the router which is a controlling unit – its symbol is
|ψC〉, and it accepts exclusively three quantum states: |0〉, |1〉, |2〉. The controlling
qutrit’s state decides about the position of |ψI〉 in the final state of the quantum
register. Generally, the state of whole router may be denoted as the register:

|Ψ〉 = |ψI〉|ψ1ψ2ψ3〉|ψC〉. (8)

The way the router operates, for the three fundamental states of controlling
qutrit, may expressed as:

|ψI〉|000〉|0〉 −→ |0〉|ψI00〉|0〉,
|ψI〉|000〉|1〉 −→ |0〉|0ψI0〉|1〉,
|ψI〉|000〉|2〉 −→ |0〉|00ψI〉|2〉.

(9)

If the controlling qutrit is in the superposition of standard basis states:
|ψC〉 = α|0〉 + β|1〉 + γ|2〉, then the router’s construction affects the quantum
state as follows:

|ψI〉|000〉|ψC〉 −→ α|0〉|ψI00〉|0〉 + β|0〉|0ψI0〉|1〉 + γ|00ψI〉|2〉, (10)

and it means the entanglement of the controlling qutrit with the output qutrits.
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Fig. 1. The operation scheme (A) and the general form of the quantum circuit (B) for
the router. Due to operating, one of the output qutrits accepts the state |ψI〉, and other
output qutrits are equal |0〉. The circuit (B) realizes the transfer of information |ψI〉
to the output 1. The unitary operation R symbolizes the router which is controlled by
the state of the fifth qutrit |ψC〉 (illustrated as the small empty square)

The description of the router, according to Eq. 9, is depict in Fig. 1. The
information written in the state |ψI〉 is routed in a direction defined in |ψC〉 (it
appears in one of the outputs: 0, 1 or 2).

It is also interesting to analyze a system built of a few routers. Such a bus
of routers allows sending an information to particular nodes in the whole quan-
tum network. Figure 2 depicts exemplary scheme of a five-router bus where the
controlling qutrits states |ψC0ψC1ψC2 . . .〉 point the router’s output Oi for the
information |ψI〉 to be transferred.

If the qutrit state ψI is expected to be routed to the output O3, the controlling
qutrits should be configured: |111BB〉 (letters B symbolize that qutrits ψC3 and
ψC4 may accept any basis states – without any influence on the output O3). The
qutrits ψC3 and ψC4 are significant for the output O10. To send ψI to O10, the
controlling qutrits should be |12B02〉 – as we can see now, the state of |ψC2〉
may be one of three standard basis states, and the ψI will be still transferred to
O10.

Naturally, the state of controlling qutrits clearly defines the output. If the
input information shows up in more than one output, we deal with a phenomenon
of entanglement. It is not welcome if we discuss the basic function of the router.
On the other hand, we can utilize the entangled states in different outputs as a
background in solving other issues in the field of quantum computing.

It should be mentioned that the router transfers information from the input
to one of the outputs, and just like for qubits, it is possible to induce entan-
gled states during this process. Naturally, we can build a network of routers,
but its structure is a chain or a two-dimensional grid (Fig. 2 depicts such a
grid). An analysis of connections between qutrits in multidimensional grids seems
very difficult because of the entanglement’s presence – there are no methods of
entanglement classification, especially for so-called multibody entanglement in
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real physical systems. There are works concerning routers for multidimensional
quantum states, but they refer only to the router’s operating on the entangled
state [6,13,15,16].

Fig. 2. The exemplary five-router bus. The input state ψI may be transferred to one
of the outputs Oi, i = 0, 1, . . . , by assigning proper values to controlling states ψC0 ,
. . ., ψC4 . The state of first three qutrits ψC0ψC1ψC2 = |111〉 directs the state ψI to the
output O3 (the state of other units has no influence on the system)

In Fig. 1, we can see the controlled unitary operation R which describes the
operating of the router. The matrix form of R may be expressed as a permuta-
tion operator:

(11)

because of the system’s dimension, we present operator’s abbreviated version,
including omitted values 1 on the main diagonal and proportion of matrix is not
preserved (the dimensions of the full matrix are 243 × 243).
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Of course, the presented matrix is only a part of the permutation matrix,
which realizes the task of the router, and it is directly defined, i.e. the digits “1”
are placed in the crossings of rows and columns between which the transfer of
information should occur.

However, the operator’s description given in Eq. 11 does not show the inner
actions between qutrits. This kind of insight offers a Hamiltonian (notation λ

(2)
7

means that the operator is used on the second controlling qutrit – the third
router’s output):

H = −1
2
(Δ1λ

(1)
3 λ

(1)
8 + Δ3λ

(2)
3 λ

(2)
8 + Δ3λ

(3)
3 λ

(3)
8 )

+ JZ(λ(1)
3 λ

(1)
8 + λ

(2)
3 λ

(2)
8 + λ

(3)
3 λ

(3)
8 )(λ(C)

3 λ
(C)
8 )

+
1
2
JX

(
(λ(I)

1 λ
(I)
4 λ

(I)
6 )

(
λ
(1)
1 λ

(1)
4 λ

(1)
6 + λ

(2)
1 λ

(2)
4 λ

(2)
6 + λ

(3)
1 λ

(3)
4 λ

(3)
6

)

+λ
(I)
2 λ

(I)
5 λ

(I)
7 )

(
λ
(1)
2 λ

(1)
5 λ

(1)
7 + λ

(2)
2 λ

(2)
5 λ

(2)
7 + λ

(3)
2 λ

(3)
5 λ

(3)
7

))
(12)

The values Δ1, Δ2, Δ3 symbolize frequencies of qutrit transitions between
basis states. The frequency JX denotes the coupling between input qutrit and
output qutrits. While, JZ is the frequency of coupling between output qutrits and
controlling unit. Theoretically, these parameters may be selected independently
one to another. However, if we want to send the input qutrit state to one of the
outputs, the parameters have to meet:

Δ1 = −Δ2 =
Δ3

2
= 4JZ . (13)

Furthermore, we assume that JZ > JX , and JZ have to be significantly greater
than JX .

Remark 1. The symbols Δi, JX , JZ keep their meaning just like for qubits [7].
However, the Pauli operators have to be replaced by the Gell-Mann operators.
The given schema may be generalized for qudits, and then SU(d) unitary group
operators have to be used [17].

The unitary operator U , describing the router’s operating, may be defined
with the direct use of H:

U(t) = e−i π
2 tH (14)

where t ∈ R is the time variable.

4 Numerical Experiments

One of the most important parameters of the router’s operating is the accuracy.
Of course, presenting quantum operation as the U0 leads to the perfect results –
during a simulation with the use of such a permutation operator, we obtain an
output vector as a product of multiplication matrix by vector, and calculated



48 M. Sawerwain and J. Wísniewska

value of Fidelity measure equals one. However, this procedure is purely theoretic.
More realistic system’s behaviour may be obtained by utilizing a Hamiltonian.
Let U be a Hamiltonian-based operator, a value of the Fidelity measure (denoted
by the capital letter F ) in a moment t is calculated as:

F (t) = |〈ψo|U(t)|ψ〉|2, (15)

where ψo represents the correct final quantum state (after the router’s operat-
ing), U(t)|ψ〉 is the router’s state for the moment t, if the initial state was ψ.
The above definition of the Fidelity measure allow us to evaluate if the whole
router works correctly.

Furthermore, in the case analyzed in this paper, it is important to employ
the average Fidelity measure (denoted by the letter F̄ ):

F̄ =
∫

〈ψ|Û†E(ψ)Û |ψ〉dψ. (16)

We integrate the area of all input states as a quantum map E for the router. The
operator U denotes the final operation, correctly realizing the router’s operating.
In our work Û = U0.

As in [24], the average Fidelity value may be calculated as:

F̄ (ψ,U0,M) =
1

n(n + 1)

(
Tr

(
MM†) + |Tr (M) |2

)
and M = U†

0U(t). (17)

This way of Fidelity computing does not require the state ψ value. It means
that only the forms of U0 and U(t) influence the value of the average Fidelity
measure. The dimension of the state ψ is n.

Fig. 3. The changes of average Fidelity value (A) during the router’s operating for
states |0〉 (red solid line), |+〉 (green dotted), 1√

2
|0〉 + |2〉 (blue dash-dot line) for

different values of |JZ/JX | and the first 50 discrete time steps. The values of average
Fidelity measure F̂ for routing state |0〉 for there ration (red line JZ/JX = 1, green
dotted JZ/JX = 2, blue dash-dot line JZ/JX = 3) are presented in plot (B) (Color
figure online)
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Figure 3 contains the values of Fidelity measure for three exemplary states.
The time values are scaled to the time where the time variable is changed dis-
cretely each π/2JX . It is possible to reach the Fidelity value ≈0.99 but it requires
to select the parameters for each coupling.

5 Conclusions

The construction of quantum router was presented in this article. The router is
a generalization of solutions working on qubits, and discussed in the literature
in therms of spin interactions between quantum units of information. As the set
of operators, we utilize the Gell-Mann matrices which are qutrit generalization
of the Pauli operators. It is necessary to emphasize that the used Hamiltonian
allows indicating the ways of possible physical implementation. The Hamilto-
nian describes interactions given by the generalized Pauli group, i.e. Gell-Mann
operators for qutrits, to the physical realization of the router.

We have briefly shown that joining the routers allows building the structures
able to transfer a quantum state to the defined node in a quantum network.

It is possible to achieve very high accuracy of information transfer in the
router. However, it requires to carefully select the coupling parameters. The
obtained values of the average Fidelity measure (≈0.99), show that the router
operates correctly.

An interesting direction for further work is a hybrid system which could
transfer the qubit state to one specific output from the available outputs with a
qudit controlling state.
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9. Diadamo, S., Nözel, J., Zanger, B., Bese, M.M.: QuNetSim: a software framework
for quantum networks. arXiv:abs/2003.06397 (2020)
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