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Abstract. In the paper, we investigate one-server queueing system
with stationary Poisson arrival process, non-homogeneous customers and
unreliable server. As non-homogenity, we mean that each customer is
characterized by some arbitrarily distributed random capacity that is
called customer volume. Service time of a customer generally depends
on his volume. The server can be broken when it is free or busy and the
renewal period goes on for random time having an arbitrary distribution.
During this period, customers present in the system and arriving to it
are not served. Their service continues immediately after renewal period
termination. For such systems, we determine the distribution of total
volume of customers present in it. An analysis of some special cases and
some numerical examples are attached as well.
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1 Introduction

A single-server queueing system M/G/1/∞ with unlimited queue is one of
the basic models of classical queueing theory and its applications. Many real
computer or telecommunication systems satisfy the assumptions of this model:
they are composed of only one server, customers arriving to it form Poisson
arrival process and service time of a customer is arbitrarily distributed. In some
other cases, these assumptions are not strictly satisfied, but behavior of proper
systems is very similar (e.g. the queue is limited but long enough or arrival
process is close to Poisson one), and we can approximate their characteristics
using this model. The results for the classical M/G/1/∞ queueing model are
widely known, especially Pollaczek-Khinchine formula for the generating func-
tion P (z) =

∑∞
k=0 P{η = k}zk of the stationary number of customers η present

in the system [2].
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On the other hand, the headway in computer science leads to some new
modifications of this model. Indeed, if we focus on analysis of real computer sys-
tems, we should take into account the following problems: 1) customers coming
to queueing systems are not homogeneous: they usually transport some infor-
mation (measured in bytes), i.e. different customers have as a rule different
volumes (sizes); 2) service time of a customer depends on his volume; 3) servers
are unreliable, they can be broken and then must be fixed for some random
time. These additional assumptions lead to new queueing models called queue-
ing systems with non-homogeneous customers (assumptions 1, 2) and unreli-
able servers (assumption 3). The main result for M/G/1/∞ queueing system
with non-homogeneous customers, unlimited total volume and customer’s service
time dependent on his volume is the expression for Laplace-Stieltjes transform
δ(s) =

∫ ∞
0

e−sxdD(x) of steady-state customers’ total volume σ, where D(x) is
distribution function of random variable σ [1,6], and its modifications [9–11,14]
that can be treated as generalizations of Pollaczek-Khinchine formula obtained
by tools of classical queueing theory [2,12,13].

The main purpose of this paper is an investigation of some modification of
M/G/1/∞ model in which we assume that: 1) customers that arrive to the
system are characterized by random volume; 2) the server is unreliable, i.e. it
can be paused both when it is free or when it is busy; 3) service time of a
customer depends on his volume. The analyzed model is the generalization of
classical single-server queueing system with unreliable server [3]. For this model,
we obtain characteristics of the total volume of customers present in the system
for its various versions and investigate some special cases.

The rest of the paper is organized as follows. In the next Sect. 2, we intro-
duce some needed notation and present well known results from the theory of
queueing systems with non-homogeneous customers that will help us to ana-
lyze the mentioned above model with unreliable server. Then, in Sect. 3, we
present the method of additional event [3–5] that is rarely used in papers writ-
ten in English and its modification for systems under consideration. We also
show (as an example) how to use this modification to obtain well-known results
for M/G/1/∞ model with non-homogeneous customers and unlimited total vol-
ume (these results were obtained earlier with the use of other methods). Section 4
contains some preliminary results for the model with unreliable server. In Sect. 5,
we present main statements for the system with unreliable in free state server.
To obtain these results, we also use modified method of additional event. We
also present here formulae for total volume characteristics (e.g. Laplace-Stieltjes
transform of the steady-state total volume and its moments). Section 6 contains
analysis of the analogous system, but this time we assume that the server can be
also broken if it is busy. In Sect. 7, we present results for some special cases of the
model together with numerical examples. The last Sect. 8 contains conclusions
and final remarks.
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2 Mathematical Description of Systems with
Non-homogeneous Customers

We assume that each customer arriving to the system is characterized by some
random volume ζ that is a non-negative random variable (RV). Let η(t) be the
number of customers present in the system at time instant t, σ(t) be the sum of
the volumes of all these customers (total volume). Our purpose is the determi-
nation of random process σ(t) characteristics. We also assume that customer’s
service time ξ generally depends on his capacity ζ. This dependence is deter-
mined by the following joint distribution function (DF):

F (x, t) = P{ζ < x, ξ < t}.

Let L(x) = F (x,∞) be DF of customer’s volume, B(t) = F (∞, t) be DF of
service time. Let

α(s, q) = Ee−sζ−qξ =
∫ ∞

x=0

∫ ∞

u=0

e−sx−qudF (x, u),

where Re s ≥ 0, Re q ≥ 0, be double Laplace-Stieltjes transform (LST) of DF
F (x, t). Denote by ϕ(s) = α(s, 0) LST of DF L(x) and by β(q) = α(0, q) –
LST of DF B(t). Let i, j = 1, 2, . . . . Denote by Δ(i, j) and Δq(i) the following
differential operators:

Δ(i, j) = (−1)i+j ∂i+j

∂si∂qj
, Δq(i) = (−1)i ∂i

∂qi
.

Let αi,j = Δ(i, j)α(s, q)|s=0, q=0, ϕi = Δs(i)ϕ(s)|s=0 and βi = Δq(i)β(q)|q=0.
Then, we have evidently that αi,j is the mixed (i + j)th moment of DF F (x, t)
and ϕi, βi are the ith moments of DF L(x) and B(t), respectively (if they exist).

We assume that the arrival process is a stationary Poisson one with parameter
a. Assume also that service discipline does not depend on customer’s volume ζ
and system is empty at the initial time moment t = 0, i.e. σ(0) = 0. Introduce
the notation D(x, t) = P{σ(t) < x}.

Let
δ(s, t) = Ee−sσ(t) =

∫ ∞

x=0

e−sxdxD(x, t)

be LST of the function D(x, t) with respect to x. It is clear that, for arbitrary
t > 0, the ith moment of the random process σ(t) (if it exists) takes the form:

δi(t) = Eσi(t) = Δs(i)δ(s, t)
∣
∣
∣
s=0

.

Denote by

δ(s, q) =
∫ ∞

0

e−qtδ(s, t)dt =
∫ ∞

0

e−qtEe−sσ(t)dt

the Laplace transform with respect to t of the function δ(s, t).
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Then, we obtain for Laplace transfom δi(q) of δi(t) with respect to t that

δi(q) =
∫ ∞

0

e−qtδi(t)dt = Δs(i)δ(s, q)
∣
∣
∣
s=0

.

If steady state exists for the system under consideration, i.e. σ(t) ⇒ σ in
the sense of a weak convergence, where σ is a steady-state total volume, we can
introduce the following steady-state characteristics:

D(x) = P{σ < x} = lim
t→∞ D(x, t),

δ(s) =
∫ ∞

0

e−sxdD(x) = lim
t→∞ δ(s, t) = lim

q→0
qδ(s, q).

For steady-state ith moments δi of the total volume σ, we obtain:

δi = Eσi = lim
t→∞ δi(t) = Δs(i)δ(s)

∣
∣
∣
s=0

.

Let χ(t) be the volume of a customer that is served at time instant t. Let
ξ∗(t) be the time from the service beginning to the moment t. The next state-
ment was proved in [13].

Lemma 1. Let Ey(x) = P{χ(t) < x | ξ∗(t) = y} be conditional DF of the ran-
dom variable χ(t) under condition ξ∗(t) = y. Then

dEy(x) = [1 − B(y)]−1

∫ ∞

u=y

dF (x, u).

Hence, the function Ey(x) takes the form:

Ey(x) = P{ζ < x | ξ ≥ y} =
P{ζ < x, ξ ≥ y}

P{ξ ≥ y} =
L(x) − F (x, y)

1 − B(y)
.

Corollary. LST of the function Ey(x) has the form:

ey(s) = [1 − B(y)]−1R(s, y),

where R(s, y) =
∫ ∞

x=0
e−sx

∫ ∞
u=y

dF (x, u).

3 Method of Additional Event and Its Modification

Firstly, we present short the classical method of additional event that is very
rarely used in papers written in English. This method was introduced by
G. P. Klimov (see [4]) and successfully used for analysis of priority queueing
systems [3]. Its idea is to give a probability sense to the formal mathematical
transforms: LST and generating function (GF). To clarify the idea of the method,
we consider two simple examples.
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Example 1. Let non-negative RV ξ with DF A(t) is the duration of some ran-
dom process under consideration. Let, independently of this process behavior,
some events (so-called catastrophes) take place and form stationary Poisson
arrival process with parameter q > 0. Then a(q) =

∫ ∞
0

e−qtdA(t) is probability
that catastrophes do not appear during duration of the process.

Example 2. Let ξ be a number of customers coming to a system during some
fixed time interval and pk = P{ξ = k}. Assume that each customer is of red
colour with probability z (0 ≤ z ≤ 1) and of blue colour with probability 1 − z,
independently of other customers’ colours. Then P (z) =

∑∞
k=0 pkzk is proba-

bility that only red customers come to the system during this interval (or blue
customers do not come during it).

By this way, we give the probability sense to LST a(q) and GF P (z) when
q > 0 and 0 ≤ z ≤ 1, consequently. Now, we can calculate these functions as
probabilities of proper events using, if it is necessary, the principle of analytic
continuation.

Let e.g. P (z, t) =
∑∞

k=0 Pk(t)zk be GF of number of customers present in
a system at time instant t. Then, for 0 ≤ z ≤ 1, function P (z, t) is proba-
bility that there are no blue customers in the system at time instant t. Let
π(z, q) =

∫ ∞
0

e−qtP (z, t)dt be Laplace transform of P (z, t) with respect to t.
Then, qπ(z, q) is probability that the first catastrophe appears when there are
no blue customers in the system.

Later on, for analysis of the system presented in Sect. 2, we shall use some
modification of the classical method of additional event. We assume that: 1)
some events (catastrophes) take place independently of the behavior of a system
under consideration, they form Poisson arrival process with parameter q, q > 0
(this proposition does not distinguish from proper classical one); 2) an arbitrary
customer of volume x has red colour with probability e−sx, s > 0 or blue one with
probability 1−e−sx, independently of other customers’ colours (this proposition
is the generalization of proper classical one).

Then, the functions introduced in Sect. 2 have the following probability sense
[13]: ϕ(s) is probability that an arbitrary customer is red; β(q) is probability
that there are no catastrophes during arbitrary customer’s service; α(s, q) is the
joint probability that an arbitrary customer is red and there are no catastrophes
during his service; ey(s) = [1 − B(y)]−1R(s, y) is probability that a customer on
service is red, under condition that time y has passed from the beginning of his
service; qδ(s, q) is probability that the first catastrophe takes place in the system
when there are no blue customers in it.

Presentation of the method of additional event and its modification is also
the aim of this paper. Of course, it is possible to use other methods for analysis
of the unreliable system with random volume customers, e.g. this system can
be interpreted as a system with vacations (see e.g. [7]), but, in this paper, we
demonstrate possibilities of our method that can be used also for analysis of
other queueing models. Note that this method in its modification form was
used for analysis of the system M/G/1/∞ with random volume customers and
preemptive service discipline (see [8]).



158 O. Tikhonenko and M. Zió�lkowski

As an example, let us consider an application of this method to determine
the function δ(s, q) for the system M/G/1/∞ with reliable server. Note that
this queue was investigated earlier by other method (see e.g. [12]). Below, we
call 0-moments the moments of service beginning or termination (see [3]).

Assume that a busy period of the system begins at time instant 0 and contin-
ues at time t. Let Π(x, y, t) dy = P{σ(t) < x, ξ∗(t) ∈ [y; y + dy)} be probability
that the total customers’ volume σ(t) is less than x at time instant t, and time
y has passed from the last 0-moment to the instant t. Let

π(s, y, q) =
∫ ∞

x=0

∫ ∞

t=0

e−sx−qt dxΠ(x, y, t) dt.

Then, qπ(s, y, q)dy is probability that the first catastrophe on the busy period
occurs when there are no blue customers in the system and time y has passed
from the last 0-moment. Denote by π(s, q) =

∫ ∞
0

π(s, y, q)dy. Then, qπ(s, q) is
probability that the first catastrophe on a separate busy period occurs when
there are no blue customers in the system. Let Π(t) be DF of busy period of the
system.

Firstly, we determine probability π(s, 0, q) that there are no blue customers
in the system at some epoch of service termination and catastrophes do not
appear to this epoch inside of the busy period.

Lemma 2. The function π(s, 0, q) is determined by the relation

π(s, 0, q) =
ϕ(s)[β(q + a − aϕ(s)) − π(q)]

ϕ(s) − β(q + a − aϕ(s))
,

where π(q) =
∫ ∞
0

e−qtdΠ(t) is LST of the busy period.

Proof of the lemma follows from the appropriate statement in [3] (p. 18), where
z must be substituted by ϕ(s). ��
Lemma 3. The functions π(s, y, q) and π(s, 0, q) are connected by the following
relation:

π(s, y, q) = e−(q+a−aϕ(s))y

[

1 +
π(s, 0, q)

ϕ(s)

]

R(s, y).

Proof. The first catastrophe inside of the busy period occurs in the system at
time instant when there are no blue customers in it and the time y passed from
the last 0-moment, iff

1) either the first catastrophe occurs during the first red customer service when
time y has passed from the beginning of his service (probability of this event
is R(s, y)qe−qydy), and only red customers arrived during time y (probability
of this event is e−a(1−ϕ(s))y); therefore the complete probability of this event
is qe−(q+a−aϕ(s))yR(s, y)dy ;
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2) or, at some 0-moment inside of the busy period, there were no blue cus-
tomers in the system and there were no catastrophes before this moment
(probability of this event is π(s, 0, q)), the customer on service was red after
time y has passed from his service beginning (probability of this event is
{[1 − B(y)]ϕ(s)}−1R(s, y)), and a catastrophe appeared at this moment and
during time y blue customers did not arrive; the complete probability of this
event is

π(s, 0, q)
ϕ(s)

qe−(q+a−aϕ(s))yR(s, y)dy.

By summing obtained probabilities, we obtain the statement of the
lemma. ��
If we substitute the function π(s, 0, q) from lemma 2 to the relation in the

statement of lemma 3, we obtain the following theorem.

Theorem 1. a) The function π(s, y, q) is determined by the following relation:

π(s, y, q) = γ(s, y, q)
ϕ(s) − π(q)

ϕ(s) − β(q + a − aϕ(s))
, (1)

where
γ(s, y, q) = e−(q+a−aϕ(s))yR(s, y). (2)

b) The function π(s, q) is determined by the relation

π(s, q) =
∫ ∞

0

π(s, y, q)dy

=
ϕ(s) − α(s, q + a − aϕ(s))

q + a − aϕ(s)
· ϕ(s) − π(q)
ϕ(s) − β(q + a − aϕ(s))

.

Denote by P (x, y, t)dy = P{σ(t) < x, ξ∗(t) ∈ [y; y + dy)} probability that
the total customers volume is less than x at the time instant t and time y has
passed from the last 0-moment to this instant. Then,

qδ(s, y, q)dy = q

∫ ∞

x=0

∫ ∞

t=0

e−sx−qtdxP (x, y, t) dy dt

is the probability that the first catastrophe occurs when there are no blue
customers in the system and time y has passed from the last 0-moment;
qδ(s, q) = q

∫ ∞
0

δ(s, y, q)dy is the probability that the first catastrophe occurs
when there are no blue customers in the system.

Theorem 2. a) The function δ(s, y, q) is determined by the following relation:

δ(s, y, q) =
e−(q+a)y

q + a − aπ(q)

[

q + a +
aeaϕ(s)y(ϕ(s) − π(q))

ϕ(s) − β(q + a − aϕ(s))
R(s, y)

]

.
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b) The function δ(s, q) is determined by the following relation:

δ(s, q) =
∫ ∞

0

δ(s, y, q)dy = [q + a − aπ(q)]−1

×
{

1 +
ϕ(s) − α(s, q + a − aϕ(s))

q + a − aϕ(s)
· a[ϕ(s) − π(q)]
ϕ(s) − β(q + a − aϕ(s))

}

.

Proof. Determine the probability qδ(s, y, q)dy. A proper event takes place iff:

1) either the first catastrophe occurs on the first interval when server is free
(probability of this event is e−(q+a)y);

2) or the first busy period begins earlier than a catastrophe appears (probability
of this event is a/(q+a)) and the first catastrophe occurs on this period when
there are no blue customers in the system, and time y has passed from the
last 0-moment (probability of this event is qπ(s, y, q)dy);

3) or there were no catastrophes during the first interval when the server was free
nor during the first busy period (probability of this event is aπ(q)/(q + a)),
and further the process behaves as from the start (it is clear that epochs of
busy periods terminations are regeneration points of the process σ(t)).

As a result, we have:

qδ(s, y, q)dy = qe−(q+a)ydy +
aq

q + a
π(s, y, q)dy +

aqπ(q)
q + a

δ(s, y, q)dy,

whereas we obtain the first statement of the theorem. ��
The last relation in the second statement coincides with results obtained

earlier (see [12]).

4 The Model and Preliminary Results

Consider a system M/G/1/∞ and assume that its server is reliable in busy state.
If T is an epoch of service termination when there are no waiting customers and
other customers do not arrive to the system during time t, the server can be
broken on time interval [T ;T + t) with probability E(t). After breakage, the
server restores during some random time ψ. Denote by H(t) = P{ψ < t} DF
of RV ψ. The volume of a customer ζ and his service time ξ are determined by
the joint DF F (x, t) = P{ζ < x, ξ < t}. We assume that service time, the time
of reliable state of the server and renewal time are independent RVs. For the
considered system, we determine the function

δ(s, q) =
∫ ∞

0

e−qt

[∫ ∞

x=0

e−sxdxD(x, t)
]

dt,

where D(x, t) = P{σ(t) < x} is DF of total volume at time instant t.
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Denote by π(q) LST of busy period of the system under consideration when
E(t) ≡ 0 (this is the busy period of the reliable system M/G/1/∞). Let
πn(q) = [π(q)]n be LST of DF of so-called n-period (busy period that begins
from the moment when there are n customers in the system, n = 1, 2, . . . ).
Let Π(n)(x, y, t)dy be probability that the total customers volume σ(t) is less
than x at time instant t, and time y has passed from the last 0-moment, under
assumption that this n-period does not terminate at time instant t.

Introduce the notations:

πn(s, y, q) =
∫ ∞

x=0

∫ ∞

0

e−sx−qtdxΠ(n)(x, y, t)dt,

πn(s, q) =
∫ ∞

0

πn(s, y, q)dy.

Then, qπn(s, y, q)dy is probability that the first catastrophe on n-period occurs
when there are no blue customers in the system and time y has passed from the
last 0-moment, qπ(s, y, q)dy is probability of an analogous event for the reliable
system.

Theorem 3. The following relations take place:

πn(s, y, q) =
(ϕ(s))n − (π(q))n

ϕ(s) − β(q + a − aϕ(s))
e−(q+a−aϕ(s))yR(s, y),

πn(s, q) =
(ϕ(s))n − (π(q))n

ϕ(s) − β(q + a − aϕ(s))
· ϕ(s) − α(s, q + a − aϕ(s))

q + a − aϕ(s)
.

(3)

Proof. As it follows from relations (1) and (2), the relation (3) can be presented
as:

πn(s, y, q) =
(ϕ(s))n − (π(q))n

ϕ(s) − π(q)
π(s, y, q), n ≥ 1,

or, if we treat the fraction as a sum of n initial items of geometrical progression
with the first item (ϕ(s))n−1 and denominator π(q)/ϕ(s),

qπn(s, y, q)dy = (ϕ(s))n−1qπ(s, y, q)dy + (ϕ(s))n−2π(q)qπ(s, y, q)dy

+ · · · + ϕ(s)(π(q))n−2qπ(s, y, q)dy + (π(q))n−1qπ(s, y, q)dy.
(4)

Relation (4) can be proved by the modified method of additional event.
Assume that the first catastrophe inside of n-period occurs when all cus-

tomers present in the system are red and time y has passed from the last 0-
moment. This event takes place iff:

a) either the first catastrophe occurs inside of busy period connected with the
first (from n) served customer, there are no blue customers in the system at
this time instant, time y has passed from the last 0-moment (probability of
this event is qπ(s, y, q)dy) and other n−1 customers present in the system at
the moment of beginning of the n-period were red (probability of this event
is (ϕ(s))n−1);
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b) or there were no catastrophes inside of busy period connected with the first
served customer (probability of this event is π(q)), but the first catastrophe
occurs inside of busy period connected with the second served customer (from
presented ones at the beginning of the n-period) at time instant when all
customers present in the system are red, time y has passed from the last
0-moment (probability of this event is π(q)qπ(s, y, q)dy) and other n − 2
customers from those presented at the beginning of the n-period were red
(probability of this event is (ϕ(s))n−2);

c) or, finally, there were no catastrophes during initial n − 1 busy periods and
the first catastrophe occurs inside of the last one at time instant when all
customers present in the system are red and time y has passed from the last
0-moment (probability of this event is (π(q))n−1qπ(s, y, q)dy).

Summing obtained probabilities, we obtain the relation (4). The rest of the proof
is evident. ��

5 Main Statements

Denote by ε(q) and h(q) LSTs of DFs E(t) and H(t), respectively. As a regen-
eration period of the system we mean the time interval between neighbouring
epochs when the system becomes empty after service termination. It is follows
from [3, p. 46] that, for the system under consideration, LST r(q) of DF of a
regeneration period is determined by the following relation:

r(q) =
a

q + a
[1 − ε(q + a)]π(q) + ε(q + a)h(q + a − aπ(q)). (5)

Denote by ω(t) the time that has passed from the beginning of a regeneration
period to some time moment t inside it.

Let P (x, y, t)dy = P{σ(t) < x, ω(t) ∈ [y; y + dy)}. Then

δ(s, y, q) =
∫ ∞

0

e−qt

[∫ ∞

x=0

e−sxdxD(x, t |ω(t) = y)
]

dt

be the Laplace transform (with respect to t) of LST (with respect to x) of DF
of total volume of customers present in the system t time units after beginning
of a regeneration period, if time y has passed from the last 0-moment inside of
the period.

Theorem 4. The function δ(s, y, q) is determined by the following relation:

δ(s, y, q) = [1 − E(y)]e−(q+a)y +
ε(q + a)
q + a

e−(q+a−aϕ(s))y

× ϕ(s) − π(q)
ϕ(s) − β(q + a − aϕ(s))

R(s, y)

+
ε(q + a) [h(q + a − aϕ(s)) − h(q + a − aπ(q))]

ϕ(s) − β(q + a − aϕ(s))
e−(q+a−aϕ(s))yR(s, y)

+ ε(q + a)[1 − H(y)]e−(q+a−aϕ(s))y.

(6)
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Proof. A time interval when the server is busy that begins either from beginning
of service of an arriving customer, or from the epoch of server breakage, and
terminates at the nearest time moment when the server is in good repair and
there are no customers in the system, we call generalized busy period. Therefore,
it is a time interval of two possible types [3]: 1) a generalized busy period begins
from customer service; 2) it begins from server breakage. Probabilities that the
regeneration period involves generalized busy periods of types 1 and 2 equal
a(q + a)−1[1 − ε(q + a)] and ε(q + a), respectively.

Recall that qπ(s, y, q)dy is probability that the first catastrophe on the busy
period of the reliable system M/G/1/∞ occurs when there are no blue customers
in the system and time y has passed from the last 0-moment. It is clear that,
for the system under consideration, probability of an analogous event on the
generalized busy period of the first type equals qπn(s, y, q)dy, i.e. the distribution
of the total customers volume on this period is determined by the function
π(s, y, q).

Consider a generalized busy period of the second type. It is clear that blue
customers form Poisson arrival process with parameter a(1 − ϕ(s)). Hence,
e−(q+a−aϕ(s))y is probability that, during time y, catastrophes do not occur
and blue customers do not arrive; q[1 − H(y)]e−(q+a−aϕ(s))ydy is probability
that, during renewal period having duration greater than y, the first catastro-
phe occurs after time y from the beginning of the period, and only red customers
arrive to the system before the catastrophe. Probability that catastrophes do not
occur and n customers arrive to the system during the renewal period is equal to∫ ∞
0

(au)n

n! e−(q+a)udH(u). Then, probability qG(s, y, q)dy that period of the sec-
ond type involves service of customers and the first catastrophe inside it occurs
when there no blue customers in the system, and time y has passed from the
last 0-moment is equal to

qG(s, y, q)dy =
∞∑

n=1

∫ ∞

u=0

(au)n

n!
e−(q+a)uqπn(s, y, q)dy dH(u),

where function πn(s, y, q) is determined by relation (3), whereas we obtain after
some transformations:

qG(s, y, q)dy = qe−(q+a−aϕ(s))ydy
h(q + a − aϕ(s)) − h(q + a − aπ(q))

ϕ(s) − β(q + a − aϕ(s))
R(s, y).

Now, we can obtain the relation (6) using (5) and formula of total
probability. ��

Denote by δ(s, y, q) Laplace transform with respect to t of total customers
volume σ(t) under condition that time y has passed from the last 0-moment.

The next statement follows from Theorem 4 and can be proved analogously
as Theorem 2.
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Theorem 5. a) Function δ(s, y, q) is determined by the following relation:

δ(s, y, q) =

{
1 − a

q + a
[1 − ε(q + a)]π(q) − ε(q + a)h(q + a − aπ(q))

}−1

×
{

[1 − E(y)]e−(q+a)y +
ae−(q+a−aϕ(s))y

q + a
[1 − ε(q + a)]

R(s, y)(ϕ(s) − π(q))

ϕ(s) − β(q + a − aϕ(s))

+ ε(q + a)[1 − H(y)]e−(q+a−aϕ(s))y

+ ε(q + a)e−(q+a−aϕ(s))y h(q + a − aϕ(s)) − h(q + a − aπ(q))

ϕ(s) − β(q + a − aϕ(s))
R(s, y)

}
.

b) Function δ(s, q) =
∫ ∞
0

e−qtEe−sσ(t)dt is determined by the relation:

δ(s, q) =

∫ ∞

0

δ(s, y, q)dy

=

{
1 − a

q + a
[1 − ε(q + a)]π(q) − ε(q + a)h(q + a − aπ(q))

}−1 {
1 − ε(q + a)

q + a

+
a[1 − ε(q + a)][ϕ(s) − α(s, q + a − aϕ(s))][ϕ(s) − π(q)]

(q + a)(q + a − aϕ(s))[ϕ(s) − β(q + a − aϕ(s))]

+
ε(q + a)[ϕ(s) − α(s, q + a − aϕ(s))]

q + a − aϕ(s)
· h(q + a − aϕ(s)) − h(q + a − aπ(q))

ϕ(s) − β(q + a − aϕ(s))

+
ε(q + a)[1 − h(q + a − aϕ(s))]

q + a − aϕ(s)

}
.

(7)

Corollary. If ρ = aβ1 < 1, a steady state exists for the system under con-
sideration, i.e. σ(t) ⇒ σ in the sense of a weak convergence. LST δ(s) of DF
D(x) = lim

t→∞ D(x, t) = P{σ < x} of RV σ is determined by the following rela-
tion:

δ(s) = lim
q→0

qδ(s, q) =
1 − ρ

1 − ε(a)(1 − ah1)

{ [
1 − ε(a) +

ε(a)(1 − h(a − aϕ(s)))

1 − ϕ(s)

]

×
[
1 +

ϕ(s) − α(s, a − aϕ(s))

β(a − aϕ(s)) − ϕ(s)

] }
,

(8)

where h1 is the first moment of DF H(t).

Using appropriate relations from Sect. 2, we can calculate moments of the
total volume or their Laplace transforms. Note that, if ε(q) ≡ 0, we obtain the
known relations for the reliable system M/G/1/∞ (see [13]).
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For example, Laplace transform δ1(q) =
∫ ∞
0

e−qtδ1(t)dt of the mean total
customers volume δ1(t) = Eσ(t) has the following form:

δ1(q) =
{

1 − a

q + a
[1 − ε(q + a)]π(q) − ε(q + a)h(q + a − aπ(q))

}−1

×
[

ε(q + a)(h(q) − h(q + a − aπ(q)))

+
a(1 − ε(q + a))(1 − π(q))

q + a

]
Δs(1)α(s, q)|s=0

q(β(q) − 1)

+
aϕ1

q2

[

ε(q + a)(1 − h(q + a − aπ(q))) +
(1 − ε(q + a))(q + a − aπ(q))

q + a

] }

,

whereas we obtain the first and second moments of RV σ in the following form:

δ1 = Eσ = aα11 +
a2β2ϕ1

2(1 − ρ)
+

a2h2ε(a)ϕ1

2(1 − ε(a) + aε(a)h1)
, (9)

δ2 = Eσ2 = a(α21 + aϕ1α12) +
a3β2ϕ1α11

1 − ρ
+

a2β2ϕ2

2(1 − ρ)
+

a3β3ϕ
2
1

3(1 − ρ)

+
a4β2

2ϕ
2
1

2(1 − ρ)2
+

a3ε(a)h2ϕ1α11

1 − ε(a) + aε(a)h1
+

a2ε(a)h2ϕ2

2(1 − ε(a) + aε(a)h1)

+
a3ε(a)h3ϕ

2
1

3(1 − ε(a) + aε(a)h1)
+

a4ε(a)h2ϕ
2
1

2(1 − ρ)(1 − ε(a) + aε(a)h1)
.

(10)

6 The Case of the System Unreliable Also When Server
Is Busy

Our model can be generalized to the case of unreliable server also when it is
busy. Let, in addition, the server can be broken on time interval [T ;T + t),
where T is a moment of service beginning, with probability G(t) (we assume
that service of the customer does not terminate before time instant T + t). If
this event takes place, the service of the customer is interrupted and will be
continued after server’s renewal. Denote by X(t) DF of the renewal period. Let
g(q) and χ(q) be LSTs of the functions G(t) and X(t), respectively, and denote
by χi, i = 1, 2, . . . , the ith moment of the renewal time.

Obviously, in this case, the problem of determination of total customers vol-
ume distribution comes to previous one solved in Sect. 5, if service time of a
customer is substituted by the time from beginning to termination of his ser-
vice. This time is called the time of customer presence on server. Let κ(q) be LST
of DF of this time (taking into consideration possible breakages and renewals).
Then, when ε(q) ≡ 0, instead of the equation π(q) = β(q+a−aπ(q)), we have the
following functional equation for busy period of the system under consideration:
π(q) = κ(q + a − aπ(q)).
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Denote by P (z, t) the generating function of number of server’s breakages
during customer service time t, under assumption that the total service time
y ≥ t. Let B(t | ζ = x) = P{ξ < t | ζ = x} is conditional DF of service time of a
customer, under condition that his volume equals x, κ(q | ζ = x) is LST of DF of
the time of customer presence on server, if his volume equals x. It is clear that

κ(q | ζ = x) =
∫ ∞

0

e−qtP (χ(q), t) dB(t | ζ = x), (11)

where the function P (z, t) can be determined via its Laplace transform p(z, q)
(see e.g. [13]):

p(z, q) =
∫ ∞

0

e−qtP (z, t) dt =
1 − g(q)

q[1 − zg(q)]
.

Let ω be the time of customer presence on server, Γ (x, t) = P{ζ < x, ω < t}
be joint DF of customer volume ζ and RV ω. We denote by γ(s, q) double LST
of the function Γ (x, t):

γ(s, q) =
∫ ∞

x=0

∫ ∞

t=0

e−sx−qt dΓ (x, t).

In particular, ϕ(s) = γ(s, 0), κ(q) = γ(0, q). It follows from (11) that

γ(s, q) =

∫ ∞

x=0

e−sxκ(q | ζ = x) dL(x) =

∫ ∞

x=0

∫ ∞

t=0

e−sx−qtP (χ(q), t) dF (x, t). (12)

So, the problem of determination of process σ(t) characteristics comes to
analogous problem for the system M/G/1/∞ with unreliable server in free state
only, if we assume that the joint DF of customer volume and his service time
is Γ (x, t). Let κi be the ith moment of RV ω and γij be the mixed (i + j)th
moment of the random vector (ζ, ω). Then, for the system under consideration,
the function δ(s, q) is determined by the relation (7), where we have to replace
β(q) by κ(q) and α(s, q) by γ(s, q).

It is clear that steady state exists for the system under consideration, if the
inequality ρ∗ = aκ1 < 1 holds. The function δ(s) can be determined by relation
(8) with the same previously made replacements.

7 Special Cases and Numerical Results

In this section we analyze some special cases of investigated in Sect. 6 model.
Assume additionally that G(t) = 1 − e−dt, d > 0. In this case, we obtain
P (z, t) = e−(1−z)dt, and it follows from (12) that

γ(s, q) =
∫ ∞

x=0

∫ ∞

t=0

e−sx−(q+d−dχ(q))tdF (x, t) = α(s, q + d − dχ(q)), (13)
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whereas we obtain:

κ(q) = β(q + d − dχ(q)). (14)

Then, for function δ(s) determination we can use relation (8), where α(s, q)
is substituted by α(s, q + d − dχ(q)) and β(q) by β(q + d − dχ(q)).

The moments δ1, δ2 can be calculated by relations (9), (10), where αij is
substituted by γij , and βi – by κi. We can easily obtain that

γ11 = (1 + dχ1)α11, γ21 = (1 + dχ1)α21, γ12 = (1 + dχ1)2α12 + dχ2α11, (15)

κ1 = (1 + dχ1)β1, κ2 = (1 + dχ1)2β2 + dχ2β1,

κ3 = (1 + dχ1)3β3 + 3d(1 + dχ1)χ2β2 + dχ3β1.
(16)

Assume additionally that E(t) = G(t) = 1 − e−dt (probabilities of servers’s
breakage in free and busy state are determined exponentially with the same
parameter d) and customer’s service time ξ and volume ζ are connected by the
relation ξ = cζ, c > 0. Then, we obtain α(s, q) = ϕ(s+cq) and β(q) = ϕ(cq) (see
e.g. [12,13]), and mixed moments αij are determined as αij = cjϕi+j , moments
βi are determined as βi = ciϕi, i, j = 1, 2, . . . . In addition, we suppose that
renewal periods distributions in server’s free or busy state are also the same
which means that H(t) = X(t) (so χ(q) = h(q)).

In this case, the relation (8) (taking into consideration replacements α(s, q)
by γ(s, q) and β(q) by κ(q)) has the form

δ(s) =
[

1
1 + dh1

− acϕ1

]{[

1 +
d(1 − h(aψ(s)))

aψ(s)

]

×
[

1 +
ϕ(s) − ϕ(s + caψ(s) + cd − cdh(aψ(s)))

ϕ(caψ(s) + cd − cdh(aψ(s))) − ϕ(s)

]}

,

where ψ(s) = 1−ϕ(s). Initial moments of the total volume can be calculated by
formulae (9), (10), where αij = γij , βi = κi, and the values γij , κi are calculated
by formulae (15), (16).

If we additionally assume that H(t) = 1 − e−rt, L(x) = 1 − e−fx, then
hi = i!/ri, ϕi = i!/f i, γ11 = 2c(d + r)/(rf2), γ21 = 6c(d + r)/(rf3), γ12 =
2c[3c(d + r)2 + 2df ]/(r2f3), κ1 = c(d + r)/(rf), κ2 = 2c

[
c(d + r)2 + df

]
/(rf)2,

κ3 = 6c
[
c2(d + r)3 + 2cd(d + r)f + df2

]
/(rf)3.
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For example, in this case, the relations for the first moments of steady-state
total volume have the form:

δ1 =
a

rf

{
d

d + r
+

c(d + r)[2rf − ca(d + r)] + acdf

f [rf − ca(d + r)]

}
.

δ2 =
d(−2ad + 2ar − 2dr + a2dr − 2r2 + a2r2)

c(d + r)3(−acd − acr + fr)
+

2(2a2cd + acdr + acr2)

f3r2

+
2(a2c2d2 + 2a2c2dr + a2c2r2)

f4r2
+

2ad2 − 2adr + 2d2r − a2d2r + 2dr2 − a2dr2

cfr(d + r)3

+
2(a2d2 − d2r2 − 2dr3 − r4)

f2r2(d + r)2
+

2(a2d2 + 2ad2r + 2adr2 + d2r2 + 2dr3 + r4)

(d + r)2(−acd − acr + fr)2
.

(17)

Formulae (17) are important not only from the theoretical point of view. As it
was discussed in [13] (p. 262–266), these characteristics are also used in approx-
imation of loss characteristics for analogous (to the mentioned above) queueing
system but with limited total volume. Assume now that we analyze single–server
queueing model with non–homogeneous customers, unreliable server and limited
(by value V ) total volume (which means that σ(t) ≤ V ). Then we introduce, for
example, characteristic called loss probability, which is usually determined by
the following relation:

Ploss = 1 −
∫ V

0

DV (V − x) dL(x), (18)

where DV (x) is the distribution function of the total customers’ volume for this
system and L(x) – distribution function of the customer’s volume. For the sys-
tems with limited memory, where service time of a customer and his volume are
dependent, it is often impossible to determine function DV (x). Then we calcu-
late estimators P ∗

loss of Ploss substituting in (18) distribution D(x) instead of
DV (x) (D(x) is analogous function for the system with unlimited total volume).
Moreover, even in the case when total volume is unlimited, we rarely obtain rela-
tion for D(x) in exact form. We usually obtain its LST and, on the base of its
properties, we can calculate its first two moments δ1, δ2 that let us approximate
convolution Φ(x) =

∫ x

0
D(V − u) dL(u) (that is present in (18)) by the function

Φ∗(x) = γ(q,cx)
Γ (q) , where q = f2

1 /(f2 − f2
1 ), c = f1/(f2 − f2

1 ), f1 = δ1 + ϕ1 and
f2 = δ2 + ϕ2 + 2δ1ϕ1. Finally, we use formula: P ∗

loss = 1 − Φ∗(V ). In Table 1,
we present numerical computations for the model with limited total volume.
Its characteristics are the same as characteristics of the model discussed at the
beginning of this section, but this time total volume is limited by V . We present
results for the following values: a = 1, c = 1, d = 0, 5, r = 1, f = 2 (then
ρ = 0, 75); a = 1, c = 1, d = 0, 25, r = 1, f = 2 (ρ = 0, 625) and a = 0, 5, c = 1,
d = 0, 1, r = 1, f = 2 (ρ = 0, 275). As we can see, loss probability also depends
strictly on the value of the parameter d which determines how often breakages
in the system appear.

Note that our approach of Ploss estimation guarantees correct determination
of buffer capacity, i.e. the determination of such V that this probability does not
exceed a given value.
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Table 1. Numerical values of Ploss for the system with limited memory and unreliable
server

V Ploss(ρ = 0,75) Ploss(ρ = 0,625) Ploss(ρ = 0,275)

1 0,7416 0,5980 0,3077

2 0,5330 0,3530 0,1042

3 0,3796 0,2077 0,0360

4 0,2690 0,1220 0,0125

5 0,1900 0,0716 0,0044

6 0,1339 0,0420 0,0015

7 0,0942 0,0246 0,0005

8 0,0662 0,0144 0,0002

9 0,0465 0,0084 0,0001

10 0,0326 0,0049 2, 4 · 10−5

8 Conclusion and Final Remarks

In the paper, we present the modified method of additional event that is
very rarely used in English scientific literature and use this method to investi-
gate single-server queueing system with non-homogeneous customers, unreliable
server and unlimited total volume. For the analyzed model, we obtain charac-
teristics of the total volume both in stationary and nonstationary mode. We
also calculate first two moments of the steady-state total volume and show loss
probability estimators calculations for the analogous model with limited mem-
ory that gives us the possibility to determine buffer space capacity of the node
of computer or communication network. Investigations show possibility of using
method of additional event in the case of complicated models. In addition, we
prove that the character of dependency between customer’s volume and his ser-
vice time has influence on characteristics of total volume and estimators of loss
characteristics.
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