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Abstract

Cannabis and cannabinoid-based extracts 
have long been utilized for their perceived 
therapeutic value, and support for the legaliza-
tion of cannabis for medicinal purposes con-
tinues to increase worldwide. Since the 
discovery of Δ9-tetrahydrocannabinol (THC) 
as the primary psychoactive component of 
cannabis over 50 years ago, substantial effort 
has been directed toward detection of endog-
enous mediators of cannabinoid activity. 
The discovery of anandamide and 
2- arachidonoylglycerol as two endogenous 
lipid mediators of cannabinoid-like effects 
(endocannabinoids) has inspired exponential 
growth in our understanding of this essential 
pathway, as well as the pathological condi-
tions that result from dysregulated endocan-
nabinoid signaling. This review examines 
current knowledge of the endocannabinoid 
system including metabolic enzymes involved 
in biosynthesis and degradation and their 
receptors, and evaluates potential druggable 
targets for therapeutic intervention.
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8.1  Cannabinoids 
as Therapeutics

For centuries, cannabis and cannabinoid-based 
extracts were thought to possess therapeutic value. 
In recent years, the use of medical marijuana has 
increased for a wide variety of disorders  in the 
United States, and changes in the legal landscape 
and public opinion support expanding its recre-
ational availability nationwide. The 2010, a resolu-
tion adopted by the American Medical Association 
advocated reconsideration of marijuana as a 
Schedule I controlled substance given the potential 
therapeutic value of marijuana and cannabis-based 
products. As of January 1, 2020, 33 states have 
legalized the sale of medical marijuana, with addi-
tional states considering similar legislation with 
possible enaction in the near future.

The primary psychoactive component of can-
nabis was identified as Δ9-tetrahydrocannabinol 
(THC) by Yechiel Gaoni and Raphael Mechoulam 
in the 1960s [1, 2]. While hundreds of bioactive 
molecules have been identified in cannabis thus 
far [3], THC recapitulates many of the pharmaco-
logical properties attributed to marijuana in both 
rodent models and in humans [4, 5]. Subsequent 
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worldwide efforts were aimed at the discovery of 
both synthetic and semi-synthetic cannabinoids 
capable of producing cannabinoid-like effects in 
vivo for the eventual development of patentable 
drugs with verifiable therapeutic value. While 
many hundreds of cannabinoid compounds were 
created in subsequent years, the pharmacological 
properties of these compounds often retained or 
exacerbated psychoactive effects when compared 
with THC [6], and thus many of these early 
cannabinoid- mimetics were not heavily pursued 
in clinical trials. Alternatively, synthetic cannabi-
noids began to reemerge as a recreational alterna-
tive to traditional cannabis in convenience stores 
and online marketplaces during the mid-2000s 
under pseudonyms such as “Spice” and “K2”. 
Synthetic cannabinoids were generally consumed 
by inhalation via cigarettes containing herbal 
substances along with these synthetic molecules 
to obtain euphoric, anxiolytic, and antidepressant- 
like effects. Whereas traditional cannabis prod-
ucts generally have been considered safe across a 
wide dose range, numerous case reports illustrate 
that synthetic cannabinoids produce deleterious 
effects including paranoia, tachycardia, panic, 
convulsions, psychosis, visual/auditory halluci-
nations, vomiting, and seizures [6].

Thus far, two cannabinoid-based therapeutics 
have obtained FDA approval: Marinol® (dronabi-
nol or THC) and Cesamet® (nabilone), a synthetic 
cannabinoid [7, 8], for the treatment of 
chemotherapy- induced nausea and emesis. 
Marinol also has been indicated as an appetite 
stimulant to treat cachexia in AIDS patients. A 
third medication, formulated with equivalent 
concentrations of THC and cannabidiol (CBD) 
known as Sativex®, has been approved in several 
countries outside the United States for the relief 
of spasticity in multiple sclerosis (MS) patients 
[9]. While the widespread use of medical mari-
juana suggests potential therapeutic value for a 
number of diseases, psychoactive effects and 
addictive potential of cannabinoids with chronic 
usage may limit widespread use in clinical prac-
tice. Additionally, their CNS effects complicate 
interpretation of efficacy in clinical trials as 
patients can easily determine whether or not they 
are receiving the drug or a placebo. Thus, sub-

stantial efforts are directed toward evaluating 
alternative targets in the cannabinoid signaling 
pathway for the development of safe and effec-
tive therapeutics.

8.2  Selective Modulation 
of Cannabinoid Receptors

While significant adverse effects and lack of effi-
cacy have hampered the development of cannabi-
noid receptor antagonists for clinical use [10–14], 
these compounds served as important tools for 
the discovery of endogenous cannabinoid recep-
tors 1 (CB1) and 2 (CB2) and their classification 
as G protein-coupled receptors [15]. Binding 
studies conducted using radiolabeled versions of 
potent synthetic cannabinoids such as CP-55,940 
revealed high-affinity cannabinoid-specific bind-
ing sites via radioactive displacement by THC or 
other synthetic cannabinoids [16, 17]. Subsequent 
efforts harnessed these approaches to discover 
CB1 [18, 19] and CB2 receptors [20], respectively. 
Both CB1 and CB2 receptors couple to Gαi/o pro-
teins to inhibit adenylate cyclase activity and 
reduce production of cyclic AMP [21, 22]. While 
CB1 receptors are enriched in neuronal synapses 
(where they inhibit neurotransmitter release), 
CB2 is strongly expressed in immune cells and 
glia [23–25]. Many of the psychoactive effects of 
THC and other cannabinoids can be attributed to 
actions on the CB1 receptor [26], yet mounting 
evidence paints a more complex picture of the 
cell-type specific expression patterns of cannabi-
noid receptors in vivo.

Following the discovery of endogenously 
expressed cannabinoid receptors, investigators 
raced to develop the first potent and selective CB1 
and CB2 receptor modulators. From the many 
compounds identified, SR141716A (rimonabant) 
represents the most well-characterized drug in 
this class [27]. Subsequently, it was demonstrated 
that CB1-selective rimonabant blocks acute 
cannabinoid- induced tetrad behaviors in mice 
[27], alters dopamine release in rats [28, 29], pre-
cipitates withdrawal in THC-dependent rats [30–
32], and inhibits long-term potentiation in rodent 
brain slices [33, 34]. It has been shown in multi-
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ple preclinical models of nociception that 
rimonabant exacerbates hyperalgesia [35–37] 
and attenuates cannabinoid-induced analgesic 
effects [35, 37] suggesting an opportunity for 
newer generation therapeutics that modify endo-
cannabinoid signaling in the treatment of chronic 
pain. Rimonabant approved in 2006 as an anti- 
obesity medication in Europe (Acomplia, 
Zimulti), but was later associated with increased 
incidence of severe adverse psychiatric conse-
quences during Phase III clinical trials to exam-
ine its efficacy as an obesity treatment and 
smoking cessation therapy [38, 39]. As a result, 
rimonabant did not garner FDA approval in the 
United States, and was subsequently pulled from 
the market worldwide in 2008.

The localization of CB2 primarily in immune 
cells with limited expression in neurons may 
underlie its implication in several diseases with 
an inflammatory component including neurode-
generative and autoimmune diseases [40–42]. 
While a suite of CB2 agonists have been synthe-
sized to date, a collaborative effort between mul-
tiple academic and industry laboratories identified 
substantial differences in their mechanisms of 
action, pharmacokinetic properties, and off- target 
effects in vivo [43]. Based on their collective 
findings on a wide range of compounds, this 
research team recommends using HU910, 
HU308, or JWH133 as potent and in vivo active 
agonists of the CB2 receptor for subsequent drug 
discovery efforts of clinically useful CB2-based 
therapeutics. This endeavor has proven to be 
more challenging than initially expected, as only 
a few synthetic CB2 agonists have reached 
 clinical trials (GW842166X, CP-55,940, 
S-777469, and JTE-907), with none completing 
phase II for chronic pain indications [42]. 
Currently, the CB2 agonist JBT-101 is undergo-
ing Phase II testing for efficacy in autoimmune 
diseases including systemic lupus erythematosus 
(NCT03093402) and diffuse scleroderma, where 
it has shown some beneficial effects 
(NCT02465437).

8.3  Two Primary Endogenous 
Cannabinoids: Anandamide 
and 2-Arachidonoylglycerol

Nearly 30  years ago, two derivatives of arachi-
donic acid were identified as the endogenous can-
nabinoid receptor ligands. Anandamide  (AEA) 
was the first endocannabinoid (eCB) to be discov-
ered [44], closely followed by identification of 
a second endogenous molecule, 2- arachido 
noylglycerol  (2-AG), signaling via CB1 and CB2 
receptors [45, 46]. AEA and 2-AG retain an ara-
chidonoyl moiety that imparts a significant amount 
of their bioactivity. While endocannabinoid- 
related lipids generated from other fatty acids sub-
strates, including palmitoylethanolamide [47] and 
oleoylethanolamide [48] have described as eCBs, 
these molecules do not interact with cannabinoid 
receptors [49, 50]. Thus, AEA and 2-AG are still 
viewed as the primary endogenous mediators of 
cannabinoid signaling.

Historically, evidence for an eCB mechanism 
in vivo was determined indirectly using cannabi-
noid receptor antagonists, without certainty of 
the identity of the signaling molecule(s). Most 
studies quantified eCB content primarily by lipid 
extraction and purification from bulk tissue, fol-
lowed by subsequent analysis with liquid chro-
matography coupled with mass spectrometry. 
Several excellent articles outline this process 
[51–54]. However, there is significant debate 
regarding the physiological range of eCB con-
centrations in various regions, as there is consid-
erable variability in estimates of brain AEA and 
2-AG content. Notably, a significant pool of 
2-AG serves as an intracellular substrate for tria-
cylglycerol formation in energy metabolism and 
may not participate in cannabinoid signaling 
[55]. An alternate approach utilizing in vivo 
microdialysis samples of interstitial, signaling- 
competent eCBs from awake, behaving animals 
with exquisite sensitivity [55, 56]. Using this 
method, basal interstitial AEA and 2-AG in the 
brain are estimated at low to mid-nanomolar lev-
els, physiologically relevant concentrations for 
activating cannabinoid receptors in vivo [55, 57].
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8.4  Selective Inhibitor 
Development Using Activity- 
Based Protein Profiling 
(ABPP)

Drug selectivity presented a major challenge in 
early efforts in the discovery of drug candidates 
that modulate endocannabinoid metabolism. 
Initial pharmacology studies suggested that these 
enzymes were not rate-limiting, and thus near- 
complete inhibition is required to produce thera-
peutic effects [58–61]. Moreover, many of these 
enzymes utilized the same mechanism of action 
(serine hydrolase), so compounds used at doses 
needed for complete inhibition were more likely 
to exhibit off-target effects. Thus, it was particu-
larly challenging to develop inhibitors for the ser-
ine hydrolases, a class of over 200 enzymes with 
a wide range of biological functions [62]. For 
example, partial inhibition of acetylcholinester-
ase by donepezil can improve cognitive function 
in patients with Alzheimer’s disease [63]. 
However, acetylcholinesterase knockout mice 
typically do not survive to adulthood [64], and 
complete inhibition by non-selective nerve agents 
such as Sarin produce lethal neurotoxicity [65]. 
Given the large number of unannotated serine 
hydrolases in the human body [62], it is plausible 
that inhibition of additional off-target serine 
hydrolases may have similar safety and toxicity 
issues. Thus, the development of a safe and effec-
tive therapeutic targeting endocannabinoid 
metabolism requires substantial preclinical phar-
macokinetic and pharmacodynamic validation 
prior to entering clinical trials.

The use of activity-based protein profiling 
(ABPP) approaches has greatly facilitated the 
development of many of the selective inhibitors 
currently used in academic research and clinical 
trials [66]. While non-selective serine hydrolase 
inhibitors such as organophosphates would raise 
safety concerns as chronically administered ther-
apeutics, their broad-spectrum capacity to cova-
lently capture a wide range of endogenous serine 
hydrolases render them an excellent tool for eval-
uating potency and selectivity of potential drug 
candidates in vivo. The first broad-spectrum fluo-
rophosphonate probes contained a rhodamine or 
biotin tag [67], which allowed any serine hydro-

lases captured by these probes to be visualized by 
in-gel fluorescence or identified using mass spec-
trometry. In competition experiments, any serine 
hydrolase inhibited by a drug would fail to be 
captured by the fluorophosphonate probe under 
those treatment conditions and the corresponding 
fluorescence or mass spectra would be dimin-
ished. In addition to broad-spectrum probes that 
capture high abundance serine hydrolases, a 
number of more selective ABPP probes have 
been synthesized for discovery of inhibitors for 
difficult targets, such as diacylglycerol lipases 
[59, 68–71], with procedural details outlined in 
several excellent reviews [71, 72]. It follows that 
potential drug-like molecules can be modified to 
contain alkyne moieties which have minimal 
effect on their selectivity but allow their direct 
targets to then be bound by an azide- functionalized 
rhodamine or biotin using click chemistry tech-
niques. Collectively, this approach can provide 
an in vivo readout of both potency and selectivity 
while significantly facilitating the identification 
of off-targets for novel inhibitors.

These techniques have been employed to great 
effect in the development of a selective fatty acid 
amide hydrolase (FAAH) inhibitor by Pfizer. 
Systemic delivery of the initial lead compound 
(PF-3845) exhibits minimal serine hydrolase off- 
target effects in both brain and liver tissue at doses 
that abolish FAAH activity [58]. Moreover, an 
alkyne-functionalized PF-3845 provides direct evi-
dence for the selectivity of this compound, as mini-
mal off-target binding was identified. While minor 
modifications of the lead compound were made to 
improve efficacy and reduce interactions with liver 
cytochrome P450s (CYPs) that cause unwanted 
drug-drug interactions [73], the final candidate to 
enter clinical trials (PF-04457845) is based on the 
chemotype PF-3845, retaining the selectivity pro-
file of the original lead compound [74].

8.5  Targeting Endocannabinoid 
Degradation

Increasing endogenous cannabinoid signaling 
represents an alternative therapeutic approach to 
using cannabinoid receptor agonists such as 
THC.  By inhibiting the natural breakdown of 
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endogenous AEA and/or 2-AG, this approach 
would ideally recapitulate some of the beneficial 
therapeutic effects of cannabinoids while reduc-
ing undesirable side effects. In support of this 
approach, Long and colleagues used a combina-
tion of chemical inhibitors and genetic approaches 
to show that inhibiting all of the primary endo-
cannabinoid degradative enzymes (FAAH, 
MGLL, ABHD6) in mice produces similar 
cannabinoid- appropriate responding in a drug 
discrimination test to THC [75]. Importantly, 
selective inhibition of either AEA or 2-AG degra-
dation failed to recapitulate THC-like responsiv-
ity. This study provides clear support for the 
therapeutic viability of selective inhibition of 
specific endocannabinoid pathways with poten-
tial for reduced side-effect profile. Accordingly, 
the following sections will evaluate current clini-
cal and preclinical studies evaluating inhibitors 
fatty acid amide hydrolase (FAAH), monoacylg-
lycerol lipase (MGLL), and α/β hydrolase domain 
6 (ABHD6).

Fatty Acid Amide Hydrolase 
(FAAH) Following the discovery of AEA as an 
endogenous ligand for the CB1 receptor [44], the 
search began for the enzyme(s) regulating its 
metabolism. In 1996, the fatty acid amide hydro-
lase (FAAH) was identified as the primary 
enzyme responsible for AEA degradation [76, 
77]. Perturbation of FAAH activity via genetic 
deletion or pharmacological inhibition markedly 
reduces AEA hydrolysis, thereby elevating AEA 
levels in multiple organ systems in rodents [78]. 
In addition to AEA, FAAH metabolizes a number 
of other fatty acid amide substrates such as 
oleoylethanolamine and palmitoylethanoamine 
[58, 73], resulting in a battery of CB1-dependent 
and CB1-independent behavioral changes in 
rodents. These effects include, but are not limited 
to, decreased anxiety-like [79–81] and 
depression- like behaviors [82, 83], gastrointesti-
nal function [84–88], altered expression of drug 
and alcohol withdrawal [89–93], as well as 
diminished inflammatory and neuropathic pain 
states [74, 94–97]. This substantial body of pre-
clinical evidence inspired clinical development 
of FAAH inhibitors by several pharmaceutical 

companies including PF-04457845 (Pfizer), JNJ- 
42165279 (Janssen), ASP3652 (Astellas), 
V158866 (Vernalis) and BIA 10–2474 (Bial). 
Likewise, FAAH inhibitors have been evaluated 
for treatment of several disease indications, 
including cannabis use disorder [98], fear mem-
ory extinction [99], Tourette Syndrome 
(NCT02134080  – terminated for lack of fund-
ing), chronic pain due to spinal cord injury 
(NCT01748695), osteoarthritis [100], and pros-
tatitis [101].

The most notable failure in FAAH drug devel-
opment to date is BIA 10-2474, a potent and 
long-acting CNS-active inhibitor of FAAH which 
produced acute neurotoxicity in 5 patients, one of 
which resulted in death in the multiple ascending 
dose part of the study in Phase I [102]. The 
expression of severe adverse events had not yet 
been observed at such a late stage of a first-in- 
human study [103]. It was later revealed that BIA 
10-2474 inhibits several lipases that are not tar-
geted by PF04457845, and produces substantial 
changes in lipid networks in human cortical neu-
rons that may lead to metabolic dysregulation 
[104]. One of these off-targets is Aldehyde 
Dehydrogenase 2, which has been implicated in 
neuroprotection from oxidative stress-related 
damage [105]. While BIAL has since conducted 
a series of toxicity studies in animals [106], in- 
depth analysis of the trial PK/PD parameters and 
study periods may help determine conclusively 
the drug and metabolite concentrations underly-
ing these adverse events.

In contrast to BIA 10-2474, most clinical can-
didates were generally safe and well-tolerated 
[101, 107–109], and some report efficacy of 
FAAH inhibition in primary outcome measure-
ments for reducing stress reactivity [99] and can-
nabis withdrawal symptoms [98]. However, 
PF-04457845 and ASP3652 failed to attenuate 
osteoarthritis or prostatitis pain, respectively 
[101, 110] despite considerable data demonstrat-
ing antihyperalgesic effects of FAAH inhibition 
in several preclinical models of chronic pain 
states. It has been hypothesized that premature 
termination of the osteoarthritis study due to lack 
of efficacy, while necessary, may have prevented 
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the adequate assessment of contribution of non- 
responders and placebo effects [110]. 
Furthermore, the human trial focused on assess-
ment of affective measures of pain that generally 
were not evaluated in rodent models, with excep-
tion of one study reporting no effect of FAAH 
inhibition on osteoarthritis-induced burrowing 
behavior [111]. Thus, it may be advantageous to 
include spontaneous and functional output mea-
sures of pain-like behaviors (e.g., locomotor 
activity, grip force, nesting, sucrose preference) 
in preclinical studies in order to help inform 
selection of disease indication for clinical trials.

Monoacylglycerol Lipase (MGLL) The dis-
covery of 2-AG as a bonafide endocannabinoid 
led to the search for enzymes regulating its 
metabolism in vivo. While FAAH was briefly 
considered a potential candidate, both chemical 
and genetic inhibition of FAAH failed to substan-
tially elevate 2-AG compared 
with AEA. Monoacylglycerol lipase was identi-
fied as the primary metabolic driver of cannabin-
ergic 2-AG breakdown [112, 113], and genetic 
deletion of MGLL in mice confirmed these find-
ings [114]. Genetic and pharmacological analy-
ses demonstrate ubiquitous expression of MGLL 
across most tissues including brain, liver, kidney, 
lung, heart, muscle, intestines, and adipose tissue 
[60, 115, 116]. These mice exhibited decreased 
body weight as adults, hastened increased latency 
to inflammatory thermal hyperalgesia, and 
 alterations in basal pain sensitivity [117]. Genetic 
inactivation of MGLL enhanced extinction and 
reversal learning [118] and facilitates anxiety- 
like behavior [119], neurophysiological analyses 
reveals cannabinoid-dependent changes in excit-
atory and inhibitor synaptic plasticity in multiple 
brain regions in mice [119–121]. Accordingly, 
selective chemical inhibitors would be necessary 
to distinguish between role of 2-AG signaling in 
adults with the critical role of this pathway in 
neuronal development.

The early chemical inhibitors developed in 
academic labs suggested a prominent role for 
MGLL in 2-AG metabolism and neuronal signal-

ing [122–127]. The first ABPP-validated selec-
tive murine MGLL inhibitor JZL-184 confirmed 
many of these findings, including enhancement 
of depolarization-induced 2-AG release and 
reduction of cannabinoid-sensitive pain states 
[128]. The development of JZL-184 greatly 
accelerated the evaluation of the molecular and 
behavioral role of MGLL in mice, with over 200 
publications using this compound to date. A 
number of potential physiological roles have 
been discovered using JZL-184 including, but 
not limited to, drug withdrawal [91, 129, 130], 
pain states [131–133], stress [134, 135], immune 
function [136–138], cancer [139–141], gastroin-
testinal function [137, 142, 143], and neurode-
generation [144–147]. Importantly, chronic 
administration of JZL-184 produces CB1 recep-
tor desensitization and functional antagonism 
[148], suggesting that pharmacological tolerance 
of an MGLL inhibitor may produce a therapeutic 
profile more similar to a CB1 antagonist than with 
cannabinoid-based therapeutics such as 
THC. However, limitations in JZL-184 pharma-
cology including partial inhibition of ABHD6 
and FAAH during chronic dosing procedures 
[149] and limited efficacy in rats [60] have helped 
open the door for next-generation compounds 
that address these concerns [149–152]. Thus, 
future studies should validate the pharmacologi-
cal selectivity of these compounds and dosing 
procedures for proper interpretation of results.

Recently, Abide Therapeutics discovered 
ABX-1431 (acquired by Lundbeck, and 
rebranded as Lu AG06466) as the potent first-in- 
class, orally bioavailable and selective inhibitor 
of MGLL, now under development for as a thera-
peutic for movement disorders, neurodegenera-
tive diseases and pain [153]. A Phase I 
Experimental Hyperalgesia study of ABX-1431 
may yield insight into its viability in this thera-
peutic space (NCT02929264), as this model is 
generally highly predictive of clinical success for 
Neuropathic Pain [154]. At present, this molecule 
is undergoing a Phase IIa trial for the treatment of 
Tourette syndrome (NCT03625453) and a Phase 
I trial for neuropathic pain (NCT03138421). 
Likewise, Pfizer has developed a selective cova-
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lent MGLL inhibitor [155] and a corresponding 
11C-PET tracer [156] for evaluating the pharma-
cokinetics of this compound as part of a Phase 1 
clinical trial (NCT03100136). Additionally, both 
Takeda Pharmaceutical Co. [157] and Janssen 
Research [158] recently have developed non- 
covalent MGLL inhibitors that show preclinical 
viability for target engagement and increased 
2-AG levels in CNS and peripheral tissue, but 
these candidates have not yet entered clinical 
trials.

α/β Hydrolase Domain 6 (ABHD6) While 
MGLL drives the majority of 2-AG breakdown in 
vivo, emerging evidence suggests that other 
enzymes play a supportive role in this process. 
Initial studies using immortalized BV-2 microg-
lial cells, which do not express MGLL, provide 
clear evidence of alternative 2-AG metabolism 
pathways [159]. While compensation by FAAH 
accounted for about half of the 2-AG metabo-
lism, the use of selective inhibitors revealed that 
the remaining activity could be attributed to 
unknown enzyme(s). Using a functional pro-
teomic approach, two additional serine hydro-
lases (ABHD6 and ABHD12) were identified as 
potential 2-AG metabolic enzymes [160]. 
Ultimately, the unknown 2-AG activity in BV-2 
microglia was attributed to ABHD6, which regu-
lates endocannabinergic signals to alter excit-
atory [161] and inhibitory [162] synapses in the 
brain.

Our understanding of the significance of 
ABHD6 in regulating endocannabinoid signaling 
and other lipid pathways has emerged from stud-
ies of targeted inactivation using genetic and 
chemical tools [163]. Constitutive deletion of 
ABHD6 reveals its critical role in energy metab-
olism [164, 165] but not in lysosomal storage dis-
orders [166]. ABHD6 knockout mice are 
protected from high-fat diet-induced obesity 
[164] and displayed increased decreased body 
weight, increased energy expenditure, improved 
glucose tolerance and insulin sensitivity, and 
changes in white and brown adipose tissue com-
position [165]. Many of these metabolic effects 
can be recapitulated by antisense oligonucle-

otides or treatment with WWL70, the first chemi-
cal inhibitor designed to target ABHD6. Early 
studies using WWL70 implicate ABHD6 func-
tion in traumatic brain injury [167], obesity and 
type II diabetes [165, 168], seizure activity [169, 
170], inflammation and pain [171, 172]. Selective 
blockade of ABHD6 with the newer generation 
peripherally-restricted inhibitor KT-203 
decreases pancreatic cancer cell metastasis [173], 
while KT-182 modestly attenuates autoimmune 
demyelination [174, 175], in contrast with a pre-
vious study reporting significant reduction of 
clinical signs in the experimental autoimmune 
encephalitis model of Multiple Sclerosis with 
WWL70 [176]. At present, it is not clear if 
ABHD6 drives metabolic changes by enzymatic 
regulation of 2-AG signaling [177] or other lipid 
pathways [164]. Since ABHD6 exhibits promis-
cuity in its acceptance of lipid substrates [164], 
the process of determining the specific lipid 
mediators responsible for its effects presents a 
substantial challenge. Thus, studies utilizing 
inhibitors with off-target effects should be inter-
preted with caution for future drug development 
efforts.

α/β Hydrolase Domain 12 (ABHD12) Since 
its discovery as a serine hydrolase with in vitro 
2-AG metabolic activity [160], the physiological 
role of ABHD12 has remained poorly under-
stood. Loss-of-function mutations in ABHD12 
cause the rare neurodegenerative disorder 
PHARC (polyneuropathy, hearing loss, retinosis 
pigmentosa, and cataract) in humans [178–182], 
which is phenocopied in ABHD12 knockout 
mice [178]. While ABHD12 knockout mice have 
increased levels of 2-AG in multiple brain regions 
[183], the primary function of this enzyme in 
vivo is likely a lysophosphatidylserine lipase. 
Indeed, both genetic deletion [178, 184] and 
selective inhibition [184, 185] of ABHD12 gen-
erate substantially elevated levels of very long 
chain lysophosphatidylserine levels in vivo [186]. 
ABHD12 and downstream target lysophosphati-
dylserine receptors are coexpressed in glia and in 
immune cells, and treatment of macrophages 
with the selective ABHD12 inhibitor DO264 
exacerbated immune responsivity [178, 184, 
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187]. Although acute chemical inactivation of 
ABHD12 did not produce the severe behavioral 
deficits found in knockout mice [184, 187], it is 
presently unclear if the PHARC phenotype would 
emerge following chronic, long-term drug treat-
ment. Given its restricted contribution to endo-
cannabinoid signaling and potential role in 
neuroprotection, ABHD12 may offer limited 
opportunity for therapeutic development when 
compared with other targets in the endocannabi-
noid metabolic pathway.

8.6  Targeting Endocannabinoid 
Biosynthesis

Due to concerns regarding safety and tolerability 
with cannabinoid receptor antagonism, efforts 
have emerged to selectively decrease cannabi-
noid signaling as an alternative therapeutic 
approach. While CB1 receptor antagonists or 
inverse agonists such as rimonabant and 
taranabant demonstrated efficacy in the treatment 
of obesity, type II diabetes and nicotine depen-
dence [188–192], serious adverse psychiatric 
consequences significantly limit clinical utility 
[10–14], ultimately precluding their approval by 
the FDA. Instead, by inhibiting the natural pro-
duction of endogenous AEA and/or 2-AG, target-
ing endocannabinoid biosynthesis might 
recapitulate some of the beneficial therapeutic 
effects of receptor antagonists while mitigating 
undesirable side effects.

The FDA-approved drug Orlistat (tetrahydro-
lipstatin, sold over-the-counter as Alli®) indicated 
for the treatment of obesity was designed as a 
pancreatic and gastric lipase inhibitor [193, 194], 
but nonetheless has a number of potential off- 
target effects including inhibition of the two dia-
cylglycerol lipases α (DAGLα) and β (DAGLβ) 
that generate 2-AG in vivo. Unlike rimonabant, 
Orlistat does not produce serious psychiatric 
events, suggesting that inhibition of endocan-
nabinoid biosynthesis may represent a viable 
alternative to CB1 receptor antagonists. While the 
study of endocannabinoid biosynthetic pathways 
and the subsequent discovery of corresponding 
selective chemical inhibitors is in its nascent 

stage, a number of recent advances have bol-
stered this field and may yield unique candidates 
for future drug development. Several selective 
ABPP probes have been developed to facilitate 
inhibitor development against DAGLs and other 
potential endocannabinoid biosynthases, includ-
ing some based on the tetrahydrolipstatin struc-
ture [195]. Accordingly, the following sections 
will evaluate current clinical and preclinical stud-
ies evaluating inhibitors of DAGLα and β 
(DAGLβ, n-acyl phosphatidylethanolamine 
phospholipase D (NAPE-PLD), and other 
enzymes involved in endocannabinoid 
biosynthesis.

Diacylglycerol Lipase α (DAGLα) The endog-
enous biosynthesis of signaling competent 2-AG 
is driven by the enzymes diacylglycerol lipase α 
(DAGLα) and diacylglycerol lipase β (DAGLβ). 
While both of these serine hydrolases convert 
diacylglycerol into 2-AG, they exhibit unique 
cellular and tissue specific expression. 
Specifically, DAGLα is predominantly expressed 
in neuronal tissue [196] and DAGLα knockout 
mice exhibit approximately 80% lower levels of 
2-AG in the brain and spinal cord, compared with 
a 50% reduction of 2-AG in liver and adipose tis-
sue [197, 198]. Within the central nervous sys-
tem, neurons contain the predominant amount of 
DAGLα as compared with glial cells [196, 199–
201]. In addition, many of the metabolic and 
behavioral phenotypes found in CB1 receptor 
knockout mice are recapitulated by genetic dele-
tion of DAGLα. Mice with genetic inactivation of 
either CB1 or DAGLα both exhibit signs of 
enhanced metabolic function including lower 
body weight and decreased body fat, as well as 
reduced fasting insulin release and blood lipid 
levels [197, 202]. However, both genotypes also 
showed signs of psychiatric dysfunction includ-
ing less marble-burying and shorter latencies in 
the forced swim test [202–204]. DAGLα mice 
also exhibited increased mortality beginning 
around 8–10 weeks of age [202]. Mounting evi-
dence indicates that DAGLα plays a critical role 
in neuronal developmental processes [205–210], 
suggesting that psychiatric behavioral pheno-
types may results from neurodevelopmental defi-
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ciencies as opposed to the direct signaling actions 
of DAGLα. Collectively, these findings highlight 
the necessity for rigorous behavioral evaluation 
of a selective DAGLα inhibitor prior to initiation 
of clinical development.

Early DAGLα inhibitors such as tetrahydro-
lipstatin were utilized mainly in electrophysio-
logical studies, yet the recent development of in 
vivo-active diacylglycerol lipase inhibitors has 
offered important insight into the consequences 
of global chemical inactivation of these enzymes 
[211]. Ogasawara and colleagues created a suite 
of CNS-active covalent inhibitors of diacylglyc-
erol lipases, most notably DO34 and DH376 
[61]. Compared with DH376, DO34 exhibits 
enhanced selectivity for DAGLα, however both 
compounds block DAGLα and DAGLβ follow-
ing systemic administration and are blood-brain 
barrier permeable. Despite their off-target effects, 
each molecule targets a unique group of serine 
hydrolases. Importantly, DO53 blocks all spuri-
ous targets of DO34 while sparing DAGLα and 
DAGLβ, thus serving as a critical negative con-
trol compound for in vivo pharmacology studies. 
Furthermore, Baggelaar et al. report LEI105 as a 
reversible inhibitor of diacylglycerol lipases, 
with potent inactivation of DAGLα and DAGLβ 
and minimal cross-reactivity with other endocan-
nabinoid metabolic enzymes in mice [69]. 
Surprisingly, intracerebroventricular administra-
tion in rats of the DAGLβ inhibitor KT172 (origi-
nally validated in mice) actually reduces activity 
of DAGLα (~80%) and DAGLβ (~50%) in the 
brain [162], suggesting this approach as a poten-
tial alternative to rimonabant antagonism of CB1 
for smoking cessation. While the selectivity of 
these compounds generally has been evaluated 
against the human and mouse orthologs, there is 
precedent for species-specific selectivity when 
targeting enzymes in the eCB pathway [60]. 
Thus, optimization is needed in order to fully 
validate effects of these compounds in rats for 
behavioral studies and in multiple species for 
future clinical development.

Diacylglycerol Lipase β (DAGLβ) With the 
initial cloning in 2003 of DAGLα and DAGLβ 

[196], it was demonstrated that DAGL expres-
sion pattern shifts from axonal tracts to dendritic 
fields, consistent with later reports that DAGL 
activity is required for synaptic plasticity [125, 
126, 212, 213], axonal growth and guidance 
[214], adult neurogenesis [215, 216] and oligo-
dendrocyte differentiation [217]. Several studies 
suggest that while DAGLα is the predominant 
2-AG synthesizing enzyme for endocannabinoid- 
mediated modulation of neurotransmission in 
adults [197, 198, 218], DAGLβ is more abun-
dantly expressed in the developing CNS [196, 
219]. DAGLβ contributes to depolarization- 
induced suppression of excitation in early post-
natal hippocampal autaptic neurons [209] and 
neurite outgrowth in culture models [208]. 
Outside of the CNS, DAGLβ is widely expressed 
in multiple sites including white blood cells 
[220], liver [197] and adipose tissue [221], where 
it may be correlated with serum high-density 
lipoprotein cholesterol levels. Most notably, 
while LPS-induced eCB-eicosanoid crosstalk is 
dependent on DAGLβ in microglia [201], macro-
phages [59] and dendritic cells [222]. These 
observations indicate a crucial role for DAGLβ in 
immune function and inflammation, consistent 
with the implication of this enzyme in patholo-
gies associated with alcoholic fatty liver disease 
[223], Alzheimer’s disease [224] as well as 
inflammatory, neuropathic and post-surgical pain 
[225–227].

The development of in vivo-active DAGLβ 
inhibitors has facilitated significantly our under-
standing of the role of this enzyme. Systemic 
administration of currently available blood-brain 
barrier-permeable DAGLβ inhibitors exhibit 
cross-reactivity with both DAGLα and DAGLβ 
[211], however Hsu and colleagues have devel-
oped peripherally-restricted inhibitors KT109 
and KT172, which exhibit ~60-fold selectivity 
for DAGLβ versus DAGLα in mice [59]. To 
account for its limited off-target effects on 
ABHD6 and to determine DAGLβ-specific biol-
ogy, the negative control compound KT195 was 
utilized as a selective ABHD6 inhibitor. Acute 
treatment with KT109 or KT172 reveals a role 
for DAGLβ in 2-AG metabolism, as well as in 
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downstream eicosanoid production and inflam-
matory signaling in peripheral macrophages [59]. 
Delivery of liposome-encapsulated KT109 pro-
duces macrophage-specific targeted inhibition of 
DAGLβ, with no apparent activity of other tis-
sues in vivo [228]. This mode of administration 
substantially enhances anti-nociceptive potency 
of KT109 compared with traditional systemic 
treatment, thereby demonstrating potential for 
DAGLβ as a novel druggable target with poten-
tial indications in inflammatory diseases.

N-Acyl Phosphatidylethanolamine 
Phospholipase D (NAPE-PLD) While multiple 
enzymatic pathways have been implicated in the 
endogenous biosynthesis of AEA, none has been 
definitively nominated as the “AEA synthase” to 
date. The initial evaluation of n-acyl phosphati-
dylethanolamine phospholipase D (NAPE-PLD) 
as a zinc hydrolase capable of producing 
n- acylethanolamines (including AEA) offered 
the first example of a potential anandamide syn-
thase [229]. Consistent with this purported role 
of NAPE-PLD in vivo, overexpression of this 
enzyme in mammalian culture systems increases 
AEA and other n-acylethanolamines [230]. 
However, while NAPE-PLD knockout mice 
express lower levels of saturated and mono- 
unsaturated n-acylethanolamines, reduction of 
AEA is inconsistent between reports [231–233].

Recent studies utilizing global and spatio- 
temporal genetic inactivation of NAPE-PLD 
have attempted to elucidate the physiological role 
of this enzyme. Mice expressing a constitutive 
knockout of NAPE-PLD exhibit no changes in 
body mass composition or glucose tolerance on a 
normal chow diet, yet inactivation of NAPE-PLD 
selectively in either adipose [234] or intestinal 
tissue [235] leads to an exaggerated obese pheno-
type on a high-fat diet. Spatio-temporal deletion 
of NAPE-PLD produces significant decreases in 
AEA and other n-acylethanolamines in the tar-
geted tissues and alters the composition of gut 
microbiota in these animals [234, 235]. NAPE- 
PLD may limit development of obesity through 
non-cannabinergic pathways, as other 

n- acylethanolamines such as oleoylethanolamine 
produce robust anorexic effects [48] through 
multiple receptors including GPR119 [236] and 
PPARα [237]. However, it should be noted that 
given the potential for compensatory lipid meta-
bolic pathways in constitutive knockout models, 
selective chemical inhibitors are critical in order 
to clarify the function of NAPE-PLD in activity- 
dependent AEA signaling. Unfortunately, potent 
CNS-active inhibitors are currently not available 
as existing compounds lack the necessary phar-
macological properties to inhibit NAPE-PLD in 
vivo [230, 238, 239]. Future work will evaluate if 
these metabolic changes can be recapitulated and 
treated using pharmacological tools and subse-
quently translated into a potential therapeutic for 
obesity.

Other Potential Anandamide Biosynthetic 
Enzymes In addition to NAPE-PLD, multiple 
enzymatic pathways leading to the biosynthesis 
of n-acylethanolamines, a family of lipid species 
that includes AEA, have been discovered. 
However, current evidence highlights several 
obstacles to therapeutic drug discovery in this 
arena. For example, the serine hydrolase ABHD4 
can act in concert with glycerophosphodiesterase 
GDE1 to produce anandamide and other 
n- acylethanolamines in vitro [240], however lev-
els of AEA in brain tissue are unaltered in GDE1 
knockout mice [241]. Likewise, ABHD4 regu-
lates multiple lipid classes, and genetic inactiva-
tion of this enzyme elicits comparatively greater 
changes in lysophosphatidylserine levels [242]. 
An additional pathway for AEA production uti-
lizing sequential activity of phospholipase C and 
tyrosine phosphatases such as lymphoid-specific 
tyrosine phosphatase (PTPN22) was discovered 
in macrophages [243, 244]. However, targeting 
either phospholipases C or PTPN22 alone is 
expected to exert substantial non-cannabinergic 
effects, as these enzymes are broadly involved in 
lipid metabolism and in responsiveness of B and 
T cells, respectively. Collectively, research on 
AEA biosynthesis suggests that multiple redun-
dant pathways likely exist in vivo [241, 244], as 
illustrated by biological compensation when one 
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of these enzymes is inactivated. It follows that the 
physiological source(s) of AEA and thus the ther-
apeutic utility of inhibitors for these enzymes 
remain to be fully elucidated.

8.7  The Interaction Between 
Endocannabinoids 
and Eicosanoid Production

Precursors for Eicosanoid Production The 
primary focus of research on endocannabinoid 
metabolism centers on changes in 2-AG signal-
ing via cannabinoid receptors. However, recent 
work has uncovered an important role for prosta-
glandins and other arachidonic acid metabolites 
that are derived from endocannabinoid precur-
sors. Although it was previously thought that 
prostaglandins arise mainly from actions of cyto-
solic phospholipase A2, genetic inactivation of 
this enzyme exerts only minimal effect on arachi-
donic acid levels in the brain [245]. Instead, met-
abolic breakdown of 2-AG by MGLL supplies 
arachidonic acid for production of proinflamma-
tory prostaglandins by cyclooxygenases during 
neuroinflammation [138]. Both genetic and 
chemical inactivation of MGLL attenuate 
lipopolysaccharide- induced cytokine release and 
protect against neurodegeneration of dopamine 
neurons through a CB1-independent mechanism 
of reduced prostaglandin synthesis. Accordingly, 
MGLL activity liberates prostaglandins in the 
brain to facilitate neurodegeneration in mouse 
models of Alzheimer’s disease [246–248], while 
deletion or pharmacological inhibition of MGLL 
facilitates cannabinoid receptor-independent 
blunting of disease progression [246]. MGLL- 
dependent prostaglandins also mediate the fever 
response in mice, as genetic or pharmacological 
inactivation of MGLL blunts LPS-induced eleva-
tions in body temperature without altering core 
body temperature in control mice [249, 250].

Upstream of MGLL, DAGLα and DAGLβ 
both contribute to release of arachidonic acid 
[197, 201] and subsequent production of prosta-
glandins [201], with a prominent role of DAGLα 
in the brain [59, 197, 201] and DAGLβ in microg-

lia and other immune cells [59, 201], respec-
tively. For example, inhibition of DAGLβ 
following injury decreases local PGE2 production 
and attenuates chronic pain-like behaviors in 
mouse models of neuropathic and inflammatory 
pain [225]. Furthermore, targeted delivery of the 
DAGLβ inhibitor KT-109 using liposomes pro-
duces 80% inactivation in macrophages without 
altering activity in other tissues such as brain and 
heart, and reduces LPS-induced allodynia [228], 
thus providing more direct evidence for periph-
eral immune DAGLβ in the inflammatory 
response. Alternatively, pharmacological or 
genetic inactivation of DAGLα abrogates pro-
duction of prostaglandins in brain tissue, blocks 
central LPS-induced prostaglandin release and 
blunts the fever response in these mice [225]. 
While the role of eCBs in prostaglandin signaling 
has become clear, our understanding of their 
contribution(s) to other eicosanoid pathways 
remains limited, and future studies will establish 
potential links with lipoxygenases and cyto-
chrome P450s.

Eicosanoid-Like 2-AG Metabolites Endocan- 
nabinoids also may interact directly with cyclo-
oxygenases as substrates to produce prostaglan-
din-like compounds with unique biological 
effects [251]. While the (S)-enantiomers of non-
steroidal anti- inflammatory drugs (NSAIDS) 
such as ibuprofen and naproxen inhibit cyclooxy-
genase to prevent the formation of proinflamma-
tory prostaglandins [252], the (R)-enantiomers of 
these compounds accomplish only minimal inhi-
bition of enzymatic activity against arachidonic 
acid substrate. However, (R)-NSAIDs attenuate 
cyclooxygenase- dependent activity with AEA 
and 2-AG, thereby acting as potent substrate-
selective inhibitors of this class of lipid signals 
[253]. Importantly, (R)-NSAIDS exhibit antihy-
peralgesic activity in models of neuropathic pain 
that is superior to that of traditionally prescribed 
(S)-NSAIDS [254, 255]. Furthermore, levels of 
endogenous prostaglandin E2 glycerol ester are 
elevated in the carrageenan model of inflamma-
tory pain, contributing to thermal hyperalgesia 
that is not fully reversed by prostaglandin recep-
tor antagonists [256]. Accordingly, prostaglandin 
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E2 glycerol ester functions as an agonist for the 
g-protein coupled receptor P2Y6, with almost four 
orders of magnitude more potency than the proto-
typical agonist uridine diphosphate [257]. In a 
model of colon inflammation, prostaglandin D2 
glycerol ester derived from 2-AG, but not related 
metabolites arising from arachidonic acid or 
AEA, reduced dextran sulfate sodium-induced 
colitis in mice and are blocked by antagonists of 
traditional prostaglandin receptors, DP1 and 
PPARy [258].

Eicosanoid-Like Anandamide Metabo- 
lites While serving only a limited role in colon 
inflammation, prostaglandin D2 ethanolamine 
induces skin cancer apoptosis independent of the 
putative DP receptors, but the precise mechanism 
remains unclear [259]. Perhaps the most well- 
established endogenous prostamide, prostaglan-
din F2α ethanolamine exerts minimal activity 
through the prostaglandin F2α receptor and 
instead likely acts through an FP receptor variant 
[260]. A structural analogue of prostaglandin F2α 
ethanolamine, Bimatoprost is an FDA-approved 
drug marketed under the name Lumigan® 
(Allergan) for reducing intraocular pressure as a 
treatment for glaucoma [261], and a sustained- 
release formulation of Bimatoprost is currently 
undergoing testing in Phase I/II clinical trials 
[262]. Patients reported longer and fuller eye-
lashes during administration of Bimatoprost, so 
the drug was repurposed as Latisse® and received 
FDA approval for the treatment of eyelash hypo-
trichosis [263] In contrast, an antagonist of the 
prostamide F2α receptor AGN211336 reduces 
inflammatory pain in mice [264]. Substrate- 
selective inhibitors affect a number of different 
pathologies in mice including stress and anxiety- 
like behaviors (23912944), and future research 
likely will uncover additional biological roles for 
these lipids as signaling molecules.

While it has become clear that cyclooxygen-
ases utilize 2-AG and AEA as substrates, research 
investigating the biological activity of corre-

sponding lipoxygenase and cytochrome P450 
enzymes on these lipid species is limited [251] 
and future studies will help clarify their role(s) in 
endocannabinoid biology. Collectively, these 
results suggest a number of novel potential thera-
peutic avenues for endocannabinoid metabolism 
inhibitors.

8.8  Conclusions and Future 
Directions

Considerable efforts have been concentrated on 
targeting endocannabinoid biosynthetic and deg-
radative enzymes as alternatives to CB1-receptor- 
based therapeutics that can produce serious 
adverse effects associated with a number of fail-
ures in clinical trials. In general, potent and selec-
tive inhibitors of FAAH or MGLL that are devoid 
of off-target effects have demonstrated safety and 
tolerability in human volunteers. These drug can-
didates could be met with success in the treat-
ment of neurological diseases and pain if caution 
is exercised in interpreting preclinical data as 
well as selection of clinical indication and output 
measures. Small molecule inhibitors of other 
eCB enzymes remain in the preclinical discovery 
stage, but current research suggests some poten-
tial druggable targets. DAGLα serves an impor-
tant physiological role in metabolism and brain 
function, yet its temporal inhibition may improve 
smoking cessation. Chemical inactivation of 
DAGLβ by liposome-mediated delivery of a 
peripherally-restricted inhibitor reduces inflam-
mation and pain-like behaviors in mice. DAGL 
inhibitors undoubtedly will benefit from further 
chemical optimization in order to improve both 
selectivity and brain-barrier permeability for 
CNS indications. In addition, future studies elu-
cidating pathways of anandamide synthesis and 
exploring substrate-specific inhibitors of cyclo-
oxygenases, lipoxygenases and cytochrome 
P450s may yield additional promising targets for 
drug discovery in the cannabinoid therapeutic 
space.
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