
Generation of Realistic Navigation Paths
for Web Site Testing Using Recurrent

Neural Networks and Generative
Adversarial Neural Networks

Silvio Pavanetto(B) and Marco Brambilla(B)

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, P.za L. da Vinci 32, Milano, Italy

{silvio.pavanetto,marco.brambilla}@polimi.it

Abstract. A robust technique for generating web navigation logs could
be fundamental for applications not yet released, since developers could
evaluate their applications as if they were used by real clients. This could
allow to test and improve the applications faster and with lower costs,
especially with respect to the usability and interaction aspects. In this
paper we propose the application of deep learning techniques, like recur-
rent neural networks (RNN) and generative adversarial neural networks
(GAN), aimed at generating high-quality weblogs, which can be used
for automated testing and improvement of Web sites even before their
release.

Keywords: Web engineering · Data mining · Deep learning ·
Recurrent neural networks · Generative adversarial networks · Testing

1 Introduction

Weblogs represent the navigation activity generated by a specific amount of
users on a given website. This type of data is fundamental, e.g. for a company,
because it contains information on the behaviour of users and how they inter-
face with the company’s product itself (website or application). The first useful
information that can be extracted from weblog is the quality of the website, as
described in the work of Berendt and Spiliopoulou [2], where they try to under-
stand navigation patterns that are present in the data. This is explained also in
the work of Singh et al. [15] in 2013, that shows an overview of the web usage
mining techniques by applying pattern recognition. In addition, one could ana-
lyze these patterns and the statistics about users activities with visualization
tools as explained in the work of Bernaschina et al. [3].

If a company could have a realistic weblog before the release of its product, it
would have a significant advantage because it can use the techniques explained
above to see the less navigated web pages or those to put in the foreground,
but users and time are needed to produce them, making it an expensive task.
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 244–258, 2020.
https://doi.org/10.1007/978-3-030-50578-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_17&domain=pdf
http://orcid.org/0000-0001-7301-2801
http://orcid.org/0000-0002-8753-2434
https://doi.org/10.1007/978-3-030-50578-3_17


Generation of Web Site Navigation Paths with RNN and GAN 245

Because of this limit, our focus is on the generation part, since this particular
task is little explored, but it is often a recurring theme also in the research world
due to the lack of publicly available data.

In fact, open source libraries like Flog Generator [9] and Fake Apache Gen-
erator [1], or the work by Lin et al. [10], generate logs in a random manner
and cannot be used as datasets that represent the users behaviour. Therefore,
being able to create an algorithm that generates high-quality weblogs would be
relevant from a scientific and commercial point of view.

What we did was apply deep learning methods for generating more real-
istic navigation activities, starting from a RNN (Hochreiter Sepp and Jürgen
Schmidhuber [8]), which has been seen that it can be used for generating com-
plex sequences with long-range structure (Alex Graves et al. [7]). Then trying
a GAN (Goodfellow et al. 2014 [5]): neural networks aimed at generating new
data, such as images or text, very similar to the original ones and sometimes
indistinguishable from them, that have become increasingly popular in recent
years.

The challenge is to evaluate which algorithm for the generation of log data
could be the best and to verify if the GAN is applicable to this problem. Our
work starts with the implementation of a generative algorithm based only on the
theories already presented in the literature concerning the analysis and genera-
tion of weblogs. Then we introduce the algorithms that falls into the category of
deep learning: an RNN and a GAN, verifying the effective generative capacity
of these neural networks.

This paper is structured as follows: first, we talk about the state of the art
for web mining and discrete data sequences generation topics. Then, there is a
section about the methods used in this work, followed by an implementation and
experiments part. Lastly, we close with the conclusions and future works.

2 Related Work

Berendt and Spiliopoulou [2] in 2000 have demonstrated the appropriateness
of the “Web Usage Miner” (WUM): a set of tools which discovers navigation
patterns subject to advanced statistical and structural constraints. This work
was intended to understand the quality, defined as the conformance of the web
site’s structure to the intuition of each group of visitors accessing the site, of
a specific website as a whole and not considering every page as a single. For
doing this, they used data mining techniques such as sequence pattern mining
and apriori algorithm.

The work of Singh et al. [15] in 2013 shows an overview of the web usage
mining technique by applying pattern recognition on weblog data, defined as
the act of taking in raw data and making an action based on the ‘category’
of the pattern. They divide their work into three parts: Preprocessing, Pattern
discovery and Pattern analysis.

Generally speaking, these works that analyse web log data for pattern dis-
covery, use almost the same approach based on data pre-processing and data



246 S. Pavanetto and M. Brambilla

mining techniques previously explained, in addition to a clusterization in some
cases (Vedaprakash et al. [16] and Mahoto et al. [11] are examples).

Regarding weblog data generation, the open source malicious log detection
library [10] tries to generate new access log data, by inserting in some malicious
activities with the purpose of identifying them. The problem with [10] and other
open source libraries such as Flog Generator [9] or Fake Apache Generator [1],
is that they create these logs in a random manner. Instead, in this work we
produce them in a completely different and more structured way. With respect
to deep learning techniques used to produce discrete data, we can start with
LSTM in recurrent neural networks (RNNs), presented for the first time by
Hochreiter Sepp and Jürgen Schmidhuber [8]. This type of RNNs was widely
used in the subsequent works, like the work by Alex Graves [7] that shows how
Long Short-term Memory recurrent neural networks can be used to generate
complex sequences with long-range structure, simply by predicting one data
point at a time. Their approach is demonstrated for text (where the data are
discrete) and online handwriting (where the data are real-valued). Due to the
success of this type of neural network applied to data sequences (real-valued and
discrete ones), this work proposes a Long Short-term Memory recurrent neural
networks approach as the first deep learning method.

In the past few years, new techniques have been presented for generating
high-quality data; the most famous and promising is the GAN (Goodfellow et
al. 2014 [5]) that uses a discriminative model to guide the training of the genera-
tive one. However, it has limitations when the goal is for generating sequences of
discrete tokens. A major reason lies in that the discrete outputs from the gener-
ator make it difficult to pass the gradient update from the discriminative model
to the generative model. In addition, the discriminative model can only assess a
complete sequence, while for a partially generated sequence, it is non-trivial to
balance its current score and the future one, once the entire sequence has been
generated. Yu et al. [17] try to solve this problem, proposing a sequence gener-
ation framework, called SeqGAN. Modeling the data generator as a stochastic
policy in reinforcement learning (RL), SeqGAN bypasses the generator differen-
tiation problem by directly performing gradient policy update. The RL reward
signal comes from the GAN discriminator judged on a complete sequence and is
passed back to the intermediate state-action steps using a Monte Carlo search.
However, in their work they use a ‘oracle’ model, that is a randomly initialized
LSTM as the right model, to generate the real data distribution p(xt|x1, ..., xt−1)
for their experiments and evaluations. In this way, they have a significant benefit:
it provides the training dataset and then evaluates the exact performance of the
generative models. In our approach we use real data as training data instead, and
at the end of the GAN training we evaluated the results with different metrics.

3 Deep Learning Based Log Generation

In this section we present our statistical and deep learning approaches for gen-
erating weblogs. The core idea is to develop a recurrent neural network and a



Generation of Web Site Navigation Paths with RNN and GAN 247

generative adversarial network (GAN) for generating new weblog data, and com-
pare the generation performance of these methods with the statistical algorithm.

3.1 Statistical Approach

To this day the only public libraries simply create logs in a completely random
manner. This approach is very coarse and therefore we decided not to consider it
even as a baseline. We propose instead a method composed by two main parts:
the first analyses a website and extracts statistical information, the second uses
those data for generating new weblogs. The input must contain some important
elements, such as the Entry Points1, the Confidences2, the Mean Times3 and
the Web Site Graph4.
The implementation uses the state of the art methods for the extraction of knowl-
edge from logs and applies this information on the creation process. Regarding
the actual implementation of this algorithm, first we need to set different vari-
ables to produce new logs, like the Maximum number of IPs at the same time,
a List of users IPs, the Number of navigation sessions and so on. Once all the
configuration parameters are set, the algorithm can start the generation part
where, if S is the total number of navigation sessions previously established, it
repeats S times the computation of the Navigation Path, that consists of:

– Selection of Entry Point: The first thing that the algorithm needs to compute
for every navigation session, is the entry point of the sequence. This page is
selected among all the home pages that has been received as input by the
algorithm, using the associated probability of being selected. It is not possible
to start the navigation with a page that is not present on the home pages list.

– Computation of Next URL: After the selection of the entry point, the algo-
rithm chooses the next URL until the sequence length is reached: this is the
exit condition of every loop iteration. This URL is selected by retrieving all
the possible subsequent pages for the previous computed URL and then by
picking one of them using the probability of moving from one page to another.

– Computation of Residence Time: After each couple of URLs is chosen, it is
necessary to calculate the number of seconds that the user will spend on page
A before moving to page B or terminating the navigation. This is done by
looking at the Mean Times that come as input to the algorithm and picking
the mean time that corresponds to that couple of pages.

1 A list of pages that represent the possible entry points for every navigation session.
A probability to start the navigation with that page is associated with each one.

2 The confidences are the probabilities for moving from a specific page to another,
or, the probabilities for moving to a new page at a particular moment T , knowing
the complete navigation path done from the beginning of the session (In this case,
session means a portion of continuous time in which the user is browsing without
leaving or interrupt the navigation.), until T .

3 A list of mean times expressed in seconds that correspond to the quantity of time
that users spend on that page on average.

4 The graph representing the entire web site, where each page is associated with a list
of possible subsequent pages.



248 S. Pavanetto and M. Brambilla

Once the loop cycle is completed and all the sequences have been generated, the
algorithm produces a log file that contains all the navigation activity of the users,
created previously. The requests are sorted by time, and then the file is created.
As we illustrated, this first statistical algorithm is guided with constraints such
as the probabilities of moving from one page to another during the navigation
of every user and the residence time on each page, that are already computed
when the algorithm starts its execution. Instead, Deep Learning techniques do
not need any hand-designed feature extraction phase, because they empower the
model with the capability of learning features optimized for the task at hand.

3.2 RNN-Based Approach

Among the deep learning algorithms, we chose the Recurrent Neural Networks
[14] (Rumelhart et al. 1986), that are neural networks dedicated to the processing
of sequential data. Simple RNNs are useful when the temporal dependencies to
be learned are not too long. When this happens, the gradients propagated over
many stages tend to vanish (most of the time) or explode (more rarely). Even
if we consider stable structures with a reasonable number of parameters, long-
term dependencies lead to exponentially smaller weight updates for long-range
interactions compared to the short-term ones. The best solution to this problem
found as of today are gated RNNs, which are based on creating paths through
time that have derivatives that neither vanish nor explode. One of the most
effective models employing gated units is Long Short-Term Memory (LSTM) [8].

Due to these features regarding Recurrent Neural Network and their memory
capacity, we implemented an RNN that receives a list of navigation sessions as
input and trains itself with them. After the training phase, the network is ready
to predict and produce new sequences.

Unlike the statistical algorithm, we do not need to specify the probability of
moving among pages. For this reason, the input for the recurrent neural network
consists of a list of sequences of URLs, together with the seconds of permanence
on that page (secInPage) and the index that represents the number of pages
already visited in the same session (indexSession). Every sequence corresponds
to a navigation session made by a specific user.

The main characteristic that we want our RNN to learn is the sequence of
pages that a specific user will visit and in which order he will make his naviga-
tion. For this reason, we started by feed the network with only the url feature,
then we added the secInPage and indexSession features. We come up with the
architecture shown in Fig. 1, where we can see that there are two principal lay-
ers, composed by the CuDNNLSTM previously discussed. Each of these layers
consists of 50 neurons and is followed by a dropout operation that avoids overfit-
ting. The output of the second layer, after the dropout, is flattened to obtain a
single 2D vector containing the inputs for the last layer: the Dense layer, which
produces the final output of the network.



Generation of Web Site Navigation Paths with RNN and GAN 249

Fig. 1. The structure of the RNN. Parameters are set as follows: length of every
sequence is 6, number of classes is 17, number of neurons is 50 and number of data
point after the flatten operation is 300.

3.3 GAN-Based Approach

As discussed in the previous section, in the task of generating sequential synthetic
data that mimics the real one, recurrent neural networks with long short-term
memory (LSTM) cells have shown excellent performance. The most common
approach to training an RNN is to maximize the log predictive likelihood of each
valid token in the sequence given the previously observed tokens. However, the
maximum likelihood approaches suffer from exposure bias in the inference stage:
the model generates a sequence iteratively and predicts next token conditioned
on its previously predicted ones that may never be observed in the training data.
Such a discrepancy between training and inference can incur accumulatively
along with the sequence and will become prominent as the length of sequence
increases.

Generative Adversarial Network (GAN) proposed by Goodfellow and others
[6] is a promising framework for alleviating the above problem. Specifically, in
GAN a discriminative net D learns to distinguish whether a given data instance
is real or not, and a generative net G learns to confuse D by generating high-
quality data. This approach has been successful but has been applied almost
only in computer vision tasks of generating samples of natural images (Denton
et al. 2015 [4] is an example).

For these reasons and because of his capability of learning the probability dis-
tribution of training data and his hidden features, we thought that trying to build
a GAN that generates synthetic discrete data would be an interesting challenge



250 S. Pavanetto and M. Brambilla

and a useful work for understanding if these type of Neural Networks are adapt-
able also to this task. Unfortunately, applying GAN to generating sequences has
two problems. Firstly, GAN is designed for generating real-valued, continuous
data but has difficulties in directly generating sequences of discrete tokens, such
as texts or URLs in our case.

As such, the gradient of the loss from D w.r.t. the outputs by G is used to
guide the generative model G (parameters) to slightly change the generated value
to make it more realistic. If the generated data is based on discrete tokens, the
“slight change” guidance from the discriminative net makes little sense because
there is probably no corresponding token for such slight change in the limited
dictionary space.

Secondly, GAN can only give the score/loss for an entire sequence when it has
been generated; for a partially generated sequence, it is non-trivial to balance
how well as it is now and the future score as the entire sequence.

GAN Parametrization. For the development of this net, the input data is a
list of sequences of URLs, encoded as integers. Every sequence in this dataset
corresponds to a navigation session like the RNN input case, and has a pre-fixed
length.

Looking deeper at the implementation of the GAN, the sequence generation
problem is denoted as follows: Given a dataset of real-world structured sequences,
train a θ− parameterized generative model Gθ to produce a sequence Y1:T =
(y1, ..., yt, ..., yT ), yt ∈ Y , where Y is the vocabulary of candidate URLs. This is
interpreted as a reinforcement learning problem. In time-step t, the state s is
the current produced URLs (y1, ..., yt−1) and the action a is the next URL yt

to select. Thus the policy model Gθ(yt|Y1:t−1) is stochastic, whereas the state
transition is deterministic after an action has been chosen, i.e. δa

s,s′ = 1 for the
next state s′ = Y1:t if the current state s = Y1:t−1 and the action a = yt; for
other next states s′′, δa

s,s′′ = 0.
Additionally, we also train a φ-parameterized discriminative model Dφ to pro-

vide a guidance for improving generator Gδ. Dφ(Y1:T ) is a probability indicating
how likely a sequence Y1:T is from real sequence data or not. The discriminative
model Dφ is trained by providing positive examples from the real sequence data
and negative examples from the synthetic sequences produced by the generative
model Gθ. At the same time, the generative model Gθ is updated by employing a
policy gradient and MC search based on the expected end reward received from
the discriminative model Dφ. The reward is estimated by the likelihood that it
would fool the discriminative model Dφ.

Also, while the generator improves, we need to re-train periodically the dis-
criminator to keep a good pace with the generator. Also, to reduce the variability
of the estimation, we use different sets of negative samples combined with posi-
tive ones.

GAN Structure. Lastly, we want to add some information about the two
neural networks structure that compose the GAN:



Generation of Web Site Navigation Paths with RNN and GAN 251

– Generator: We used a recurrent neural network as the generative model.
– Discriminator: In this case, we choose the CNN as our discriminator because

these types of networks has been shown off great effectiveness in text classifica-
tion, and our task is very similar to that one. A kernel applies a convolutional
operation to a window of words to produce a feature map. At the end of this
phase, a max-over-time pooling operation is applied over the feature maps.
To enhance the performance, we used a fully connected layer with sigmoid
activation that outputs the probability that the input sequence is real.

4 Evaluation

4.1 Context and Dataset

The evaluation methods and the algorithms employed in this work use the public
1995 NASA Apache web logs [12]. This public dataset is a standard Apache web
log file. A typical configuration for the access log, that also applies in this case,
is the Apache standard syntax for the HTTP requests. This standard format
can be produced by many different web servers and read by many log analysis
programs. The log file entries produced will look like the following (that is the
standard apache format5): 127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700]” GET

/apache pb.gif HTTP/1.0” 200 2326

This dataset was selected for its size, number of entries and because is one of the
few publicly available web log files: the lack of open web log data is in fact one
of the issues that this work tries to solve. In particular, the size is 205.2 MB that
corresponds to data recorded from Jul 01 to Jul 31(1995) and the total number
of rows is 1891697.

URL Depth Problem. One of the main critical aspects to manage concerns
the depth of every URL to be kept, present in each request. That is, if we have,
for example, a request with a URL like this:

/home/shuttles/1969/apollo 11.html

we can notice that there are 4 steps in the request link: home - shuttles - 1969
and apollo 11. Every step in this navigation path that leads to the apollo 11.html
page represents a folder or eventually a category of the website that goes from
the home page, that is the page with less specificity, to the page of the shuttle
“apollo11”, that is specific for that type of shuttle. This is a common conceptual
representation of pages in every website, but for the task of this work, represents
a problem whose complexity increases exponentially in certain situations.

For clearing this concept, is helpful looking at the Table 1, where we can see
how fast the number of different pages in the website grows with the URL depth
variable. In fact, we have only 19 unique pages when only a single part of the
URL is kept, while we have almost ten times this number with only one more
depth level.
5 http://httpd.apache.org/docs/1.3/logs.html.

http://httpd.apache.org/docs/1.3/logs.html


252 S. Pavanetto and M. Brambilla

Table 1. The numbers of different pages with respect to the URL depth variable

URL depth Number of pages

1 19

2 115

3 275

4 402

The problem with the algorithms that we tried to develop is that every URL
is seen as a category and the neural networks are asked to predict the next page
in a sequence among all. This means that if in the first case (depth = 1) the
networks have to learn 19 different categories, in the last one (depth = 4) the
network will have to learn 402 categories, and this is feasible only with a huge
amount of training data, that is not available for our work.

Metrics. For evaluating the quality and realism of log produced by the different
methods, we used a metric called the BLEU score [13]. BLEU, or the Bilingual
Evaluation Understudy, is a score for comparing a candidate translation of text
to one or more reference translations, or also, is an algorithm for evaluating the
quality of text which has been machine-translated from one natural language to
another. Quality is the correspondence between a machine’s output and that of
a human.

Every URL is treated as a unique “word” in the vocabulary, composed of
all the pages of a particular website. Using this metric, scores are calculated for
individual translated segments—generally sentences—by comparing them with
a set of good quality reference translations. Those scores are then averaged over
the whole corpus to reach an estimate of the translation’s overall quality. Trans-
ferring this to our case, the translated segments are the generated navigation
sequences, while the good quality reference translations correspond to our orig-
inal dataset: the NASA weblog.

4.2 Experiments with RNN

The framework used for the implementation of the network is Keras, a high-
level neural networks API, written in Python and capable of running on top of
TensorFlow, CNTK, or Theano, while the type of LSTM cell is CuDNNLSTM:
This type of LSTM cell must be run on GPU and is based on cuDNN, devel-
oped by Nvidia. cuDNN provides highly tuned implementations for standard
routines such as forward and backward convolution, pooling, normalization, and
activation layers.

For evaluating the performance of the network, we trained it on a training
set, and then we checked the prediction accuracy on a test set. The problem with
this type of evaluation, in this case, is that in the test data we could encounter
some URLs that were not seen in the training phase, and the results would not



Generation of Web Site Navigation Paths with RNN and GAN 253

Table 2. RNN experiments: hyper-parameters tuning, URL Depth = 1

#test 1 2 3 4 5

Length sequence 6 6 6 6 6

Neurons 50 50 20 50 40

Layers 2 3 2 4 3

Dropout 0.2 0.25 0.25 0.25 0.2

Shuffle True True True True True

Batch size 30 30 30 20 40

Activation Softmax Softmax Softmax Softmax Softmax

Optimizer Adam Adam Adam Adam Adam

Loss cat. cross-ent. cat. cross-ent. cat. cross-ent. cat. cross-ent. cat. cross-ent.

Metrics Accuracy Accuracy Accuracy Accuracy Accuracy

Epochs 50 50 65 70 100 (early stop)

Average accuracy 74,13% 74,17% 74,69% 74,76% 74,76%

Table 3. RNN experiments: BLEU performance and best accuracy with respect to the
URL Depth

URL Depth #classes BLEU Best accuracy

1 19 0.6482 74,76%

2 115 0.4739 58,23%

3 275 0.3655 31,05%

have been accurate because the network could not learn something that it has
never seen. For this reason, we split the data in training and test by checking that
all the URLs in the test set would be present also in the training set. In addition
to this, we adopted some techniques to avoid overfitting, such as dropout, early
stop training, and data shuffle.

In the Table 2 the results of the hyper-parameters tuning are visible for the
URL depth equal to one, while in Table 3 we can see the evaluation results in
terms of BLEU and best accuracy, with respect to the URL depth.

As mentioned before, the URL Depth problem is crucial because it increases
the complexity of learning the correct features and the network performs worse.

4.3 Experiments with GAN

In this algorithm, the training set for the discriminator is comprised by the
generated examples with the label 0 and the instances from the training set
with the label 1. Dropout and L2 regularization are used to avoid over-fitting.
Also in this case, we tried to generate new sequences using three different URL
depth level to understand how the GAN performs respect to this parameter.

In this algorithm, the most important parameters to tune are the number of
training epochs for the generator and the discriminator. In fact, we noticed that if
the RNN (generator) is not sufficiently pre-trained before starting the adversarial
training, the generator improves quite slowly and unstably. The reason is that



254 S. Pavanetto and M. Brambilla

in this GAN, the discriminative model provides reward guidance when training
the generator and if the generator acts almost randomly, the discriminator will
identify the generated sequence to be unreal with high confidence and almost
every action the generator takes receives a low (unified) reward, which does
not guide the generator towards a good improvement direction, resulting in an
ineffective training procedure.

This indicates that in order to apply adversarial training strategies to
sequence generative models, a sufficient pre-training is necessary. For the evalua-
tion of this algorithm, we started with the analysis of the generator loss, relating
it to the URL depth and to the number of pre-training epochs of the generator
before the adversarial training. We run the training with three different values of
pre-train generator epochs and three different values of URL Depth. The results
that emerge from these analyses are the following:

– Adding a discriminator to the RNN allows the GAN to lower the loss of the
generator and to improve its limits.

– Increasing the value of URL Depth variable, the loss value also increases
regardless of the generator pre-train epochs value. This is observable in the
Figs. 2 and is a further confirmation that increasing the number of URLs is
critical for the complexity of the computations that the network must do.

– The variance of the loss in all the cases decreases when the number of pre-train
epochs increases. In the Table 4, is notable that the minimum variance value
occurs when the generator is pre-trained with 100 epochs and this is valid for
the 3 different URL Depth values. This correspond to a better stability of the
generator with respect to the cases with lower pre-train epochs.

– The minimum value of the loss is reached with 15 pre-train epochs, when
the depth is equal to 1 and 2, while with a depth equal to 3, the minimum
value is obtained with 100 pre-train epochs. This means the generator can
get the lowest loss value with few epochs, but a good stability of the network
is reached only with a high number of pre-train epochs.

We generated 3 different sets of sequences with respect to the URL depth and
to the number of pre-train epochs for the generator and we computed the BLEU
score against the original set of sequences. The results are shown in Table 6.
We can see that adding a discriminator to the RNN (the generator) improves
the scores in each of the 3 cases only if the number of pre-train epochs for the
generator is enough to make the generator robust. If we train the generator only
for 40 epochs and then we start the adversarial training, the data generated by
the RNN will receive always a low score as a reward by the discriminator.

This is in contrast with the assessments previously made, where we showed
that the lowest loss values are reached with 15 or 40 pre-train epochs, but agrees
on what concerns the stability of the network that is improved with 100 pre-train
epochs. This demonstrates that in the case of generative models the analyses of
pure loss are not enough to understand if these models produce high-quality
data (Table 5).



Generation of Web Site Navigation Paths with RNN and GAN 255

Fig. 2. Generator loss with 15, 14, and 100 pre-training epochs respectively, in relation
to different URL Depth.



256 S. Pavanetto and M. Brambilla

Table 4. GAN experiments: variance of the generator loss, related to the URL Depth
and the pre-train epochs

URL Depth = 1 URL Depth = 2 URL Depth = 3

15 Epochs 0.0151 0.0324 0.0673

40 Epochs 0.0255 0.0239 0.0614

100 Epochs 0.00832 0.0179 0.0550

Table 5. GAN experiments: minimum value of the generator loss, related to the URL
Depth and the pre-train epochs

URL Depth = 1 URL Depth = 2 URL Depth = 3

15 Epochs 0.3916 0.9308 1.7240

40 Epochs 0.5451 1.0667 1.4720

100 Epochs 0.5922 1.0215 1.5121

Table 6. GAN experiments: BLEU performance with respect to the URL Depth

URL Depth BLEU, 40 pre-train epochs BLEU, 100 pre-train epochs

1 0.6071 0.7243

2 0.4328 0.5471

3 0.3321 0.4839

5 Comparison: Statistical Approach vs RNN vs GAN

For the final comparison between all the techniques explored in this work, we
opted to use another metric in addition to BLEU, that is a human judgment,
since a weblog is a composition of navigation sequence and every sequence is
something that is decided and created by a human. For this reason, we chose
5 of our colleagues with the same skills and knowledge: we showed him all the
pages of the website and the possible navigation paths. Specifically, we mix 50
real sequences and 50 generated from GAN and RNN.

Then the judges are invited to pronounce whether each of the 100 sequences
is created by human or machines. Once regarded to be real, it gets +1 score,
otherwise 0. Finally, the average score for each algorithm is calculated. The
experiment results are shown in Table 7, from which we can see the significant
advantage of GAN over the RNN and Statistical method in weblog generation.



Generation of Web Site Navigation Paths with RNN and GAN 257

Table 7. Weblog generation performance comparison

Algorithm Statistical RNN GAN

Human score 0.4335 0.5400 0.6450

BLEU 0.5811 0.6482 0.7243

6 Conclusions

In this paper, we proposed a step forward towards automatic production of high-
quality weblog using deep learning techniques, such as recurrent neural network
and generative adversarial neural networks. We provided an analysis of state of
the art, aimed to identify the techniques to be used in order to reproduce and
improve the best performances reached today with generative approaches for
discrete sequences of data. We first implemented the state of the art algorithm,
that improves the performances reached with random techniques, using data
mining and generating navigation sequences based on association rules. Then
we implemented a recurrent neural network that tries to learn the probability
distribution of the input data and is capable of predicting the right URLs to
complete a given incomplete sequence with good performances when the num-
ber of features is not very large, while it is not robust in the other case. Finally,
we developed the GAN by adding a convolutional neural network as the dis-
criminator, to allow the RNN to improve itself, applying the so-called min-max
game between the two networks. Our experiments support the hypothesis that
generative adversarial neural networks are the best families of models to handle
weblog generation and that they can outperform the recurrent models especially
when the number of feature variables increases substantially. We showed that
using both the BLEU and the Human metric, the GAN overcomes the RNN and
the statistical approach when the generator is well trained. Instead, when the
pre-train epochs for the generator are not enough or too much, the quality of
the generated sequences is lower than that of RNN, but is still higher than the
statistical one.

Future Work. In addition to the possibility of including more variables in the
training of the network that could improve the quality of the generated weblog,
we mentioned the work proposed by [3] for visualizing the statistics taken from
weblogs on a graphical representation of a particular website or app, using a
model-driven approach. With the GAN used, a future work could be to generate
new weblogs and fed the model of the website with them. Then, one could
compare two models where one of them is fed with human generated logs and
the other with the GAN logs.



258 S. Pavanetto and M. Brambilla

References

1. Basu, K.: Fake apache log generator (2015–2018). https://github.com/kiritbasu/
Fake-Apache-Log-Generator

2. Berendt, B., Spiliopoulou, M.: Analysis of navigation behaviour in web sites inte-
grating multiple information systems. VLDB J. Int. J. Very Large Data Bases 9(1),
56–75 (2000)

3. Bernaschina, C., Brambilla, M., Koka, T., Mauri, A., Umuhoza, E.: Integrating
modeling languages and web logs for enhanced user behavior analytics. In: Pro-
ceedings of the 26th International Conference on World Wide Web Companion, pp.
171–175. International World Wide Web Conferences Steering Committee (2017)

4. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using
a Laplacian pyramid of adversarial networks. In: Advances in Neural Information
Processing Systems, pp. 1486–1494 (2015)

5. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Informa-
tion Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014).
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

7. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–80 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

9. Kwon, M.: Flog, an apache log generator (2017–2018). https://github.com/
mingrammer/flog

10. Lin, C.H., Liu, J.C., Chen, C.R.: Access log generator for analyzing malicious
website browsing behaviors. In: 2009 Fifth International Conference on Information
Assurance and Security, pp. 126–129. IEEE (2009)

11. Mahoto, N., Memon, A., TEEVNO, M.: Extraction of web navigation patterns by
means of sequential pattern mining. Sindh Univ. Res. J.-SURJ (Sci. Ser.) 48(1),
201–208 (2016)

12. NASA: Nasa apache web log (1995). ftp://ita.ee.lbl.gov/html/contrib/NASA-
HTTP.html

13. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: A method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, ACL 2002, Stroudsburg, PA, USA,
pp. 311–318. Association for Computational Linguistics (2002). https://doi.org/
10.3115/1073083.1073135

14. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533 (1986)

15. Singh, N., Jain, A., Raw, R.S.: Comparison analysis of web usage mining using
pattern recognition techniques. Int. J. Data Min. Knowl. Manag. Process (IJDKP)
3, 137–147 (2013)

16. Vedaprakash, M.P., Prakash, M.P.O., Navaneethakrishnan, M.M.: Analyzing the
user navigation pattern from weblogs using data pre-processing technique. Int. J.
Comput. Sci. Mob. Comput. 5, 90–99 (2016)

17. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets
with policy gradient. In: Thirty-First AAAI Conference on Artificial Intelligence
(2017)

https://github.com/kiritbasu/Fake-Apache-Log-Generator
https://github.com/kiritbasu/Fake-Apache-Log-Generator
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1308.0850
https://doi.org/10.1162/neco.1997.9.8.1735
https://github.com/mingrammer/flog
https://github.com/mingrammer/flog
ftp://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

	Generation of Realistic Navigation Paths for Web Site Testing Using Recurrent Neural Networks and Generative Adversarial Neural Networks
	1 Introduction
	2 Related Work
	3 Deep Learning Based Log Generation
	3.1 Statistical Approach
	3.2 RNN-Based Approach
	3.3 GAN-Based Approach

	4 Evaluation
	4.1 Context and Dataset
	4.2 Experiments with RNN
	4.3 Experiments with GAN

	5 Comparison: Statistical Approach vs RNN vs GAN
	6 Conclusions
	References




