
Maria Bielikova
Tommi Mikkonen
Cesare Pautasso (Eds.)

LN
CS

 1
21

28

20th International Conference, ICWE 2020
Helsinki, Finland, June 9–12, 2020
Proceedings

Web Engineering

Lecture Notes in Computer Science 12128

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Maria Bielikova • Tommi Mikkonen •

Cesare Pautasso (Eds.)

Web Engineering
20th International Conference, ICWE 2020
Helsinki, Finland, June 9–12, 2020
Proceedings

123

Editors
Maria Bielikova
Slovak University of Technology
Bratislava, Slovakia

Tommi Mikkonen
University of Helsinki
Helsinki, Finland

Cesare Pautasso
University of Lugano (USI)
Lugano, Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-50577-6 ISBN 978-3-030-50578-3 (eBook)
https://doi.org/10.1007/978-3-030-50578-3

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4105-3494
https://orcid.org/0000-0002-8540-9918
https://orcid.org/0000-0002-2748-9665
https://doi.org/10.1007/978-3-030-50578-3

Preface

The International Conference on Web Engineering (ICWE) aims to promote research
and scientific exchange related to Web Engineering, and to bring together researchers
and practitioners from various disciplines in academia and industry in order to tackle
emerging challenges in the engineering of Web applications and associated technolo-
gies, as well as to assess the impact of those technologies on society, media, and
culture.

Supported by International Society of Web Engineering (ISWE), ICWE is the
flagship conference for the Web Engineering community that focuses on different
aspects of designing, building, maintaining, and using Web applications, interpreted in
the widest sense.

Previous editions of ICWE took place in Daejeon, South Korea (2019), Cáceres,
Spain (2018), Rome, Italy (2017), Lugano, Switzerland (2016), Rotterdam, The
Netherlands (2015), Toulouse, France (2014), Aalborg, Denmark (2013), Berlin,
Germany (2012), Paphos, Cyprus (2011), Vienna, Austria (2010), San Sebastian, Spain
(2009), Yorktown Heights, NY, USA (2008), Como, Italy (2007), Palo Alto, CA, USA
(2006), Sydney, Australia (2005), Munich, Germany (2004), Oviedo, Spain (2003),
Santa Fe, Argentina (2002), and Cáceres, Spain (2001).

This volume collects the papers presented at the 20th International Conference on
Web Engineering (ICWE 2020), virtually held during June 9–12, 2020, in Helsinki,
Finland. It contains full research papers, short research papers, industry papers, posters,
demonstrations, PhD symposium papers, tutorials, and extended abstracts of the
keynotes presented at ICWE 2020. In addition, workshops will later publish their own
post-proceedings, where workshop contributions will be disseminated to the wider
audience.

The research track of the ICWE 2020 edition received 78 submissions, out of which
the Program Committee selected 24 full research papers (30% acceptance rate), 6 short
research papers (38% acceptance rate), 1 industry paper, and 3 education track papers.
Additionally, the Program Committee accepted 7 demos/posters and 4 contributions to
the PhD symposium. Also accepted was a tutorial lecture titled “From Linked Data to
Knowledge Graphs: Storing, Querying, and Reasoning,” as well as the following three
workshops: the International Workshop on Web of Things for Humans (ICWE), the
International Workshop on Semantics and the Web for Transport (Sem4Tra), and the
International Workshop on Knowledge Discovery on the Web (KDWEB).

Reflecting the special global pandemic situation, the event was run online, with
keynotes being live and individual sessions pre-recorded and discussed online to
facilitate discussion in a best possible way. Being a conference on Web Engineering,
ICWE 2020 moved to the Web with ease, and it seeked new ways and forms to convey
the program using the website as a portal for the whole conference.

The excellent program would not have been possible without the support of the
many people who helped with the successful organization of this event. We would like

to thank all the organizers – in particular the local team, consisting of Niko Mäkitalo,
Nyyti Saarimäki, and Kari Systä – for their excellent work in identifying cutting-edge
and cross-disciplinary topics in the rapidly moving field of Web Engineering, orga-
nizing inspiring workshops and tutorials around them, as well as putting it all together
to an inspiring event. A word of thanks also to the reviewers for their meticulous work
in selecting the best papers to be presented. Last, but not least, we would like to thank
the authors who submitted their work to the conference and all the participants who
contributed to the success of the events. Finally, we want to thank you, authors and the
ICWE community, for taking the time and effort to contribute to and participate in
ICWE 2020.

June 2020 Maria Bielikova
Cesare Pautasso

Tommi Mikkonen

vi Preface

Organization

General Chair

Tommi Mikkonen University of Helsinki, Finland

Program Committee Co-chairs

Maria Bielikova Slovak University of Technology in Bratislava,
Slovakia

Cesare Pautasso University of Lugano, Switzerland

Local Co-chairs

Niko Mäkitalo University of Helsinki, Finland
Kari Systä Tampere University, Finland

Workshop Co-chairs

In-Young Ko Korea Advanced Institute of Science and Technology,
South Korea

Juan Manuel Murillo University of Extremadura, Spain
Petri Vuorimaa Aalto University, Finland

Tutorial Co-chairs

Marco Brambilla Politecnico di Milano, Italy
Kari Salo Metropolia University of Applied Sciences, Finland
Mahbubul Syeed American International University in Bangladesh,

Bangladesh

Demo and Poster Co-chairs

Maxim Bakaev Novosibirsk State Technical University, Russia
Cinzia Cappiello Politecnico Milano, Italy
Markku Laine Aalto University, Finland

PhD Symposium Co-chairs

Alessandro Bozzon Delft University of Technology, The Netherlands
Irene Garrigos Universidad de Alicante, Spain
Petri Ihantola University of Helsinki, Finland

Publicity Co-chairs

Flavius Frasincar Erasmus University Rotterdam, The Netherlands
Niko Mäkitalo University of Helsinki, Finland
Marco Winckler Université Nice Sophia Antipolis, France

Industry Track Co-chairs

Christoph Bussler Google, USA
Tomoya Noro Fujitsu Laboratories, Japan
Antero Taivalsaari Nokia Bell Laboratories, Finland

Web-Based Learning Track Co-chairs

Nick Falkner The University of Adelaide, Australia
Terhi Kilamo Tampere University, Finland
Ralf Klamma RWTH Aachen University, Germany

Proceedings Chair

Nyyti Saarimäki Tampere University, Finland

ICWE Steering Committee Liaisons

Florian Daniel Politecnico di Milano, Italy

Program Committee

Ioannis Anagnostopoulos University of Thessaly, Greece
Maurício Aniche Delft University of Technology, The Netherlands
Myriam Arrue University of the Basque Country, Spain
Sören Auer Leibniz University of Hannover, Germany
Marcos Baez University of Trento, Italy
Maxim Bakaev Novosibirsk State Technical University, Russia
Hubert Baumeister Technical University of Denmark, Denmark
Devis Bianchini University of Brescia, Italy
Domenico Bianculli University of Luxembourg, Luxembourg
Maria Bielikova Slovak University of Technology in Bratislava,

Slovakia
Matthias Book University of Iceland, Iceland
Alessandro Bozzon Delft University of Technology, The Netherlands
Marco Brambilla Politecnico di Milano, Italy
Christoph Bussler Google, USA
Carlos Canal University of Málaga, Spain
Cinzia Cappiello Politecnico di Milano, Italy
Richard Chbeir University of Pau and Pays de l’Adour, France

viii Organization

Dickson K. W. Chiu The University of Hong Kong, China
Pieter Colpaert Ghent University, Belgium
Oscar Corcho Universidad Politécnica de Madrid, Spain
Florian Daniel Politecnico di Milano, Italy
Oscar Diaz University of the Basque Country, Spain
Schahram Dustdar Vienna University of Technology, Austria
Filomena Ferrucci Università di Salerno, Italy
Sergio Firmenich Universidad Nacional de La Plata, Argentina
Flavius Frasincar Erasmus University Rotterdam, The Netherlands
Piero Fraternali Politecnico di Milano, Italy
Martin Gaedke Chemnitz University of Technology, Germany
Irene Garrigos University of Alicante, Spain
Cristina Gena University of Torino, Italy
Juan Manuel Murillo University of Extremadura, Spain
Hao Han The University of Tokyo, Japan
Jan Hidders Delft University of Technology, The Netherlands
Radu Tudor Ionescu University of Bucharest, Romania
Ashwin Ittoo University of Liège, Belgium
Martin Johns TU Braunschweig, Germany
Epaminondas Kapetanios University of Westminster, UK
Ralf Klamma RWTH Aachen University, Germany
Alexander Knapp Universität Augsburg, Germany
Philipp Leitner Chalmers - University of Gothenburg, Sweden
Oscar Pastor Lopez Universitat Politècnica de València, Spain
Zakaria Maamar Zayed University, UAE
Maristella Matera Politecnico di Milano, Italy
Santiago Melia Universidad de Alicante, Spain
Lourdes Moreno Universidad Carlos III de Madrid, Spain
José Ignacio Panach University of Valencia, Spain
Tomoya Noro Fujitsu Laboratories Ltd., Japan
George Pallis University of Cyprus, Cyprus
Jan Paralic Technical University Kosice, Slovakia
Cesare Pautasso University of Lugano, Switzerland
Vicente Pelechano Universitat Politècnica de València, Spain
Euripides Petrakis Technical University of Crete, Crete
V. Ramakrishnan Stony Brook University, USA
Raphael M. Reischuk ETH Zurich, Switzerland
Werner Retschitzegger Johannes Kepler University, Austria
Filippo Ricca DIBRIS Università di Genova, Italy
Thomas Richter Rhein-Waal University of Applied Sciences, Germany
Gustavo Rossi National University of La Plata, Argentina
Harald Sack FIZ Karlsruhe Leibniz Institute for Information

Infrastructure and KIT Karlsruhe, Germany
Abhishek Srivastava Indian Institute of Technology Indore, India
Andrea Stocco Università della Svizzera Italiana, Italy
Kari Systä Tampere University, Finland

Organization ix

Stefan Tai TU Berlin, Germany
Antero Taivalsaari Nokia Bell Labs, Finland
Jeffrey Ullman Stanford University, USA
Maria Esther Vidal Universidad Simon Bolivar, Venezuela
Markel Vigo The University of Manchester, UK
Michael Weiss Carleton University, Canada
Erik Wilde CA Technologies, Switzerland
Manuel Wimmer Johannes Kepler University Linz, Austria
Marco Winckler University of Paul Sabatier, France
Yeliz Yesilada The University of Manchester, UK
Nicola Zannone Eindhoven University of Technology, The Netherlands
Gefei Zhang Hochschule für Technik und Wirtschaft Berlin,

Germany
Jürgen Ziegler University of Duisburg-Essen, Germany

External Reviewers

Anand Aiyer
Sabri Allani
Ali Aydin
Cristina Barros
Peter Bednar
Russa Biswas
Karam Bou Chaaya
David Chaves-Fraga
Dominik Ernst
Shirin Feiz Disfani
Andrea Gallidabino
Antonio Garmendia
Siggi Gauti
Genet Asefa Gesese
Cesar González Mora
Ibrahim Hammoud

Fabian Hoppe
Manuel Karl
David Klein
Kristína Machová
Elio Mansour
Frank Pallas
Demetris Paschalides
Jorge Ramírez
Ioannis Savvidis
Anis Tissaoui
Rima Türker
Michael Vierhauser
Bernhard Wally
Sebastian Werner
Sabine Wolny
Rita Zgheib

x Organization

Sponsors

Organization xi

Contents

User Interface Technologies

Detecting Responsive Web Design Bugs with Declarative Specifications 3
Oussama Beroual, Francis Guérin, and Sylvain Hallé

Layout as a Service (LaaS): A Service Platform for Self-Optimizing
Web Layouts . 19

Markku Laine, Ai Nakajima, Niraj Dayama, and Antti Oulasvirta

Structural Profiling of Web Sites in the Wild . 27
Xavier Chamberland-Thibeault and Sylvain Hallé

Performance of Web Technologies

Accelerating Web Start-up with Resource Preloading. 37
JiHwan Yeo, Jae-Hyeon Rim, ChangHyun Shin, and Soo-Mook Moon

An Analysis of Throughput and Latency Behaviours Under
Microservice Decomposition. 53

Malith Jayasinghe, Jayathma Chathurangani, Gayal Kuruppu,
Pasindu Tennage, and Srinath Perera

W-ADE: Timing Performance Benchmarking in Web of Things 70
Verena Eileen Schlott, Ege Korkan, Sebastian Kaebisch,
and Sebastian Steinhorst

Comparing a Polling and Push-Based Approach for Live Open
Data Interfaces . 87

Brecht Van de Vyvere, Pieter Colpaert, and Ruben Verborgh

NuMessage: Providing Scalable and Reliable Messaging Service
in Distributed Systems . 102

Lubin Liu, Tong Liu, Xinglang Wang, Tao Xiao, Wei Fang,
and HongYue Chen

Machine Learning

A Credit Scoring Model for SMEs Based on Social Media Data 113
Septian Gilang Permana Putra, Bikash Joshi, Judith Redi,
and Alessandro Bozzon

Who’s Behind That Website? Classifying Websites by the Degree
of Commercial Intent. 130

Michael Färber, Benjamin Scheer, and Frederic Bartscherer

I Don’t Have That Much Data! Reusing User Behavior Models
for Websites from Different Domains . 146

Maxim Bakaev, Maximilian Speicher, Sebastian Heil,
and Martin Gaedke

Improving Detection Accuracy for Malicious JavaScript Using GAN. 163
Junxia Guo, Qiyun Cao, Rilian Zhao, and Zheng Li

VISH: Does Your Smart Home Dialogue System Also Need
Training Data? . 171

Mahda Noura, Sebastian Heil, and Martin Gaedke

Neighborhood Aggregation Embedding Model for Link Prediction
in Knowledge Graphs . 188

Changjian Wang and Ying Sha

Testing of Web Applications

Automatic Model Completion for Web Applications 207
Ruilian Zhao, Chen Chen, Weiwei Wang, and Junxia Guo

Almost Rerere: An Approach for Automating Conflict Resolution
from Similar Resolved Conflicts . 228

Piero Fraternali, Sergio Luis Herrera Gonzalez,
and Mohammad Manan Tariq

Generation of Realistic Navigation Paths for Web Site Testing Using
Recurrent Neural Networks and Generative Adversarial Neural Networks. . . . 244

Silvio Pavanetto and Marco Brambilla

Emotion Detection

Scalable Real-Time Confusion Detection for Personalized
Onboarding Guides . 261

Michal Hucko, Robert Moro, and Maria Bielikova

Creating and Capturing Artificial Emotions in Autonomous Robots
and Software Agents . 277

Claus Hoffmann and Maria-Esther Vidal

On Emotions in Conflict Wikipedia Talk Pages Discussions 293
Maksymilian Marcinowski and Agnieszka Ławrynowicz

xiv Contents

Location-Aware Applications

Geospatial Partitioning of Open Transit Data . 305
Harm Delva, Julián Andrés Rojas, Pieter-Jan Vandenberghe,
Pieter Colpaert, and Ruben Verborgh

Efficient Live Public Transport Data Sharing for Route Planning
on the Web . 321

Julián Andrés Rojas, Dylan Van Assche, Harm Delva, Pieter Colpaert,
and Ruben Verborgh

Web-Based Development and Visualization Dashboards
for Smart City Applications . 337

Douglas Rolim, Jorge Silva, Thais Batista, and Everton Cavalcante

Sentiment Analysis

Detecting Rumor on Microblogging Platforms via a Hybrid Stance
Attention Mechanism. 347

Zeng Lingyu, Wu Bin, and Wang Bai

A Hybrid Approach for Aspect-Based Sentiment Analysis Using Deep
Contextual Word Embeddings and Hierarchical Attention. 365

Maria Mihaela Truşcǎ, Daan Wassenberg, Flavius Frasincar,
and Rommert Dekker

Just the Right Mood for HIT! Analyzing the Role of Worker Moods
in Conversational Microtask Crowdsourcing . 381

Sihang Qiu, Ujwal Gadiraju, and Alessandro Bozzon

Open Data

SolidRDP: Applying Solid Data Containers for Research Data Publishing . . . 399
André Langer, Dang Vu Nguyen Hai, and Martin Gaedke

Applying Natural Language Processing Techniques to Generate Open Data
Web APIs Documentation . 416

César González-Mora, Cristina Barros, Irene Garrigós, Jose Zubcoff,
Elena Lloret, and Jose-Norberto Mazón

Liquid Web Applications

WebDelta: Lightweight Migration of Web Applications with Modified
Execution State. 435

Jin-woo Kwon, Hyeon-Jae Lee, and Soo-Mook Moon

Contents xv

User-Side Service Synchronization in Multiple Devices Environment. 451
Clay Palmeira da Silva, Nizar Messai, Yacine Sam,
and Thomas Devogele

An Approach to Build P2P Web Extensions . 467
Rodolfo Gonzalez, Sergio Firmenich, Alejandro Fernandez,
Gustavo Rossi, and Darío Velez

Web-Based Learning

Blended or Distance Learning? Comparing Student Performance Between
University and Open University . 477

Erkki Kaila and Henri Kajasilta

On Teaching Web Stream Processing: Lessons Learned 485
Riccardo Tommasini, Emanuele Della Valle, Marco Balduini,
and Sherif Sakr

Teaching Container-Based DevOps Practices . 494
Jami Kousa, Petri Ihantola, Arto Hellas, and Matti Luukkainen

PhD Symposium

Predicting the Outbreak of Conflict in Online Discussions Using
Emotion-Based Features. 505

Maksymilian Marcinowski and Agnieszka Ławrynowicz

An APIfication Approach to Facilitate the Access and Reuse
of Open Data . 512

César González-Mora, Irene Garrigós, and Jose Zubcoff

A Personal Health Trajectory API: Addressing Problems in Health
Institution-Oriented Systems . 519

Javier Rojo, Juan Hernandez, and Juan M. Murillo

Context-Aware Encoding and Delivery in the Web 525
Benjamin Wollmer, Wolfram Wingerath, and Norbert Ritter

Demos and Posters

An OpenAPI-Based Testing Framework to Monitor Non-functional
Properties of REST APIs . 533

Steven Bucaille, Javier Luis Cánovas Izquierdo, Hamza Ed-Douibi,
and Jordi Cabot

OpenAPI Bot: A Chatbot to Help You Understand REST APIs 538
Hamza Ed-Douibi, Gwendal Daniel, and Jordi Cabot

xvi Contents

A Different Web Analytics Perspective Through Copy
to Clipboard Heatmaps . 543

Ilan Kirsh and Mike Joy

A Web Augmentation Framework for Accessibility Based
on Voice Interaction . 547

César González-Mora, Irene Garrigós, Sven Casteleyn,
and Sergio Firmenich

Annotated Knowledge Graphs for Teaching in Higher Education:
Supporting Mentors and Mentees by Digital Systems. 551

Roy Meissner and Laura Köbis

A Universal Application Programming Interface to Access
and Reuse Linked Open Data . 556

César González-Mora, Irene Garrigós, and Jose Zubcoff

OntoSemStats: An Ontology to Express the Use of Semantics
in RDF-Based Knowledge Graphs. 561

Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi

Tutorial

From Linked Data to Knowledge Graphs:
Storing, Querying, and Reasoning . 569

Riccardo Tommasini, Raghava Mutharaju, and Sherif Sakr

Author Index . 573

Contents xvii

User Interface Technologies

Detecting Responsive Web Design Bugs
with Declarative Specifications

Oussama Beroual, Francis Guérin, and Sylvain Hallé(B)

Laboratoire d’informatique formelle, Université du Québec à Chicoutimi,
Saguenay, Canada
shalle@acm.org

Abstract. Responsive Web Design (RWD) is a concept that is born
from the need to provide users with a positive and intuitive experience,
no matter what device they use. Complex Cascading Style Sheets (CSS)
are used in RWD to smoothly change the appearance of a website based
on the window width of the device being used. The paper presents an
automated approach for testing these dynamic web applications, where
a combination of dynamic crawling and back-end testing is used to auto-
matically detect RWD bugs.

1 Introduction

The only functionality of a web application with which the user interacts is
via the web page. Today’s users expect a lot from a web page: it has to load
fast, provide the desired service, and be enjoyable to view on all devices: from a
desktop to tablets and mobile phones. However, due to the somewhat complex
relationship between HTML, CSS and JavaScript, the layout of web applica-
tions tends to be harder to properly specify in contrast with traditional desktop
applications. The same document can be shown in a variety of sizes, resolutions,
browsers and even devices.

Responsive Web Design (RWD) [15] attempts to provide a solution to this
wide diversity, by providing a design methodology that easily adapts the lay-
out to various screen sizes. In RWD, significant portions of a site’s graphical
user interface can be modified, or even added or removed depending on the
specific type of device being used to view a page. However, this appealing fea-
ture comes with the drawback that a single web page can now have multiple
possible layouts, making the presence of so-called layout “bugs” all the more
prevalent. Such problems can range from relatively mundane quirks like over-
lapping or incorrectly aligned elements, to more serious issues compromising the
functionality of the user interface. Detecting these bugs in a responsive appli-
cation imposes the testing of the interface on all of its possible layouts, which
multiplies the testing effort required, when compared to traditional web sites
and desktop applications.

It has quickly become clear that detecting GUI bugs in RWD applications
requires a new and more efficient testing approach, and especially the creation
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-50578-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_1

4 O. Beroual et al.

of testing tools adapted to this specific use case. This is precisely the goal of this
paper, which presents an automated technique that provides test oracles capable
of verifying the consistency of a responsive layout over a wide range of window
widths. Contrary to existing methods, which define hard-coded algorithms that
can test a handful of predefined RWD bugs, our proposed approach defines such
bugs as statements expressed in a declarative, domain-specific language designed
especially for web interfaces. This language, implemented by the Cornipickle
web testing tool [13], includes temporal operators that allow the correlation of
elements of a page at multiple moments in time. The novelty of our approach is
to leverage this feature by using an external web crawler (in this case, Crawljax
[16]) to change a browser’s window size multiple times, and instruct the UI oracle
to take each of these window sizes as a distinct page. In such a way, we show
that RWD bugs can be expressed as specifications over sequences of the same
page at different sizes.

The important side effect of expressing RWD bugs as declarative specifi-
cations is that other types of RWD bugs, currently unforeseen, can easily be
detected by simply writing the appropriate declarative specification that corre-
sponds to their occurrence. To the best of our knowledge, this work is the first
solution that tackles the issue of responsive web design testing from a purely
declarative standpoint.

The rest of the paper is structured as follows. In Sect. 2, we describe the
concept of responsive web design, and describe common examples of RWD bugs.
Section 3 describes the current solutions and tools. In Sect. 4, the paper describes
the proposed solution, which consists of combining a declarative language inter-
preter with a stateful crawler to efficiently detect behavioral bugs in Rich Inter-
net Applications (RIAs). Section 5 shows that with a Cornipickle interpreter as
the test oracle for an RIA crawler, one can automatically search and detect
behavioral and RWD bugs in web applications.

2 Responsive Web Design Bugs

Before a few years ago, access to websites was conditioned by assumptions about
the size of the device’s screen. Desktop computers were the dominant device to
access websites, and so designers created page layouts that assumed a minimum
window size in order to be displayed properly. The situation has changed radi-
cally in the past decade, with the advent of smartphones and other devices with
smaller screens. A 2019 report highlights that the percentage of internet users in
the world via mobile devices and tablets is higher than the percentage of internet
users that use desktop computers [11]. An alternative approach for proper site
operation in a range of different viewport appliances and sizes was needed.

2.1 Adapting the Layout

A first solution to this problem was to use parameters extracted from HTTP
headers: the request for a resource through a browser was followed by a so-called

Detecting RWD Bugs with Declarative Specifications 5

“user agent” string to identify the type of browser used. Reading the user agent
string on the server side causes the release of two versions: a mobile version
designed for small screen sizes, and a desktop version designed for large screens.
This approach is not without shortcomings. Among its defects, the fact that
it does not fit with new devices entering the market, such as tablets that are
somewhere in the middle of mobiles and laptops in size, brings the need for
another special version of the site. In addition, other versions of the site must be
developed in order to satisfy all user devices. Even the assumption that desktop
users have large monitors may not always hold: a browser window can share the
screen with other applications, and hence not occupy the entire space available.
Clearly, a better approach was needed.

Developers have been following the emergence of CSS media queries [18],
that allow conditional style statements by media properties such as window size.
Adapting a site for a specific window size at runtime has become possible, by
writing different CSS rules depending on the dimensions of the viewport. Any
valid CSS property can be enclosed within a media query, making it possible
to enforce very distinct layouts depending on the result of these queries. If CSS
rules alone are not sufficient, the standard also defines JavaScript events that are
triggered when a media query fires, which makes it possible to write client-side
code that reacts to specific changes in a window’s dimensions, and to dynamically
alter the layout by directly modifying element properties.

2.2 RWD Bugs

Due to the somewhat complex relationship between HTML, CSS and JavaScript
and the multiplication of the devices in the market nowadays, the layout of web
applications tends to be harder to properly specify in contrast with traditional
desktop applications. The same document can be shown in a variety of sizes,
resolutions, browsers and even devices, making the presence of so-called layout
“bugs” all the more prevalent. Such problems can range from relatively mundane
quirks from elements overlapping to viewport protrusions.

Walsh et al. describe five types of bugs in RWD websites [19]:

1. Element Collision: A bug in which elements overlap into one another. This
bug can hamper the usability of websites if functional elements of the page
are hidden because of this collision. This is shown in Fig. 1a.

2. Element Protrusion: Elements need to resize themselves when they are short
on space, but they also need be large enough to contain all of their children.
Element protrusion is a bug where an element protrudes outside of its parent
due to a lack of space. The element can then be unreachable, hidden by
another element, or on top of other elements. This is shown in Fig. 1b.

3. Viewport Protrusion: This bug happens when elements are pushed outside of
the viewport and become inaccessible or hidden. This is shown in Fig. 1b, by
taking the parent element as the whole viewport.

4. Wrapping Elements: This bug happens when a container is not wide enough
to contain all the items and one or more items are pushed on a supplementary
line. This is shown in Fig. 1c.

6 O. Beroual et al.

5. Small-Range Layouts: Depending on the implementation, some layouts can be
correctly displayed in only a small amount of widths. For instance, a display
could be only correct between 320 and 325 pixels of width.

(a) Element colli-
sion

(b) Element/view-
port protrusion

(c) Wrapping ele-
ments

Fig. 1. Various categories of RWD bugs.

3 Existing Solutions

Related works on testing web applications for such kinds of bugs can be roughly
divided in two families. The first concentrates on test oracles, i.e. mechanisms
for expressing conditions that must be verified by the running application. The
second family concentrates on means of finding errors in applications, by per-
forming an exhaustive search of their state space.

There exist a number of tools and techniques for testing web applications.
Most of them do not address the functional validation and are not able to test the
asynchronous nature and extensive dynamic nature of modern web applications;
they are not suitable to test the specific characteristics with respect to Ajax.
These tools focus on HTML validation, and static analyses, load testing, broken
link detection and protocol conformance.

We first mention web testing software such as Capybara [1], Selenium Web-
Driver, or Sahi [2]. These tools provide various languages for describing the tests
and writing assertions about the application. All these languages are imperative
(i.e. procedural), and aimed at driving an application by performing actions.
The testing part reduces to the insertion of assert-like statements throughout
the script code. By definition, such assertions relate to the current state of the
application; they are therefore ill-suited to express bugs that relate multiple
states of the application. In fact, in order to express such bugs as assertions, a
user must make use of variables to keep data about the state of the application
at various moments, and then write assertions in terms of these variables.

Several tools have been developed to provide the service to display a page
in a custom window of variable sizes using a web browser. With smart search
and quick review features, Websiteresponsivetest [3] supports all major browsers
to provide the exact preview of the website on any specific device. Similarly,
Respondr [4] allows checking the responsiveness by simply entering the URL of
a website. In addition, the device for which a website or web page is tested can
also be chosen from the list given. The page can be previewed at an appropriate

Detecting RWD Bugs with Declarative Specifications 7

width. Screenfly [5] is a multi-device compatibility testing tool which allows
previewing web pages as they appear on different devices. Moreover, it supports
different screen sizes and resolutions.

The Responsive Web Design Bookmarklet [6] displays any web page in multi-
ple screen sizes for previewing, simulating the viewport of different devices. It is
a quick web design tool that can be viewed from a desktop to test any website’s
responsiveness. All these tools, however, are not automated, and the discovery
of RWD bugs still must be done by manual visual inspection of each version of
the page. Responsinator [7] helps site owners to get an idea of how their site
will work on the most popular devices. Just by typing the website URL, the site
will quickly show on screens of various sizes. ResponsivePX’s [8] process involves
entering the URL of the site and uses buttons to adjust the width and height of
the viewport to find the exact breakpoint width in pixels.

Some work has also been done on the use of image analysis techniques to iden-
tify layout problems; in particular, WebSee [14] is a tool implemented in Java
that leverages several third party libraries to implement some of the specialized
algorithms. It applies techniques from the field of computer vision to analyze the
visual representation of web pages to automatically detect and localize presen-
tation failures. Applitools Eyes [9] is a commercial tool following a similar prin-
ciple; it uses the pure image segmentation of the web pages and a pixel-by-pixel
visual comparison. However, these approaches are geared towards the detection
of static, overlapping or overflow-type bugs in a document, and currently do not
support the checking of temporal patterns across multiple snapshots of the same
page. We shall see in the following that comparing multiple versions of the same
page is key to correctly identify RWD bugs.

The closest tool to our proposed approach is ReDeCheck [20], a responsive
web design testing tool. At its core, ReDeCheck builds a Responsive Layout
Graph (RLG), which accumulates information about the positioning, visibility
and relative alignment of an element in multiple versions of the same page.
It is inspired from the alignment graph used in X-PERT, a concept that was
proposed and developed by Choudhary et al. [10]. ReDeCheck defines three
kinds of constraints, respectively called Visibility, Width and Alignment, and
reports a responsive layout bug when these constraints differ for an element in
the RLG of two versions of the same page. As such, ReDeCheck can only verify a
fixed set of predefined layout problems, and does not provide a general-purpose
language for expressing assertions.

4 Proposed Solution

In this section, we propose a novel solution for the automated detection of RWD
bugs. Instead of requiring the development of special algorithms and a dedicated
setup, our approach leverages the combination of two existing web testing tools
to perform this detection.

8 O. Beroual et al.

Fig. 2. The proposed framework for catching
RWD bugs.

The main principle of our app-
roach is shown in Fig. 2. First, a
tool for driving a browser window
is instructed to open the same web
page in a web browser multiple
times. Typically, the first such call
opens the page at a standard desk-
top window size (w1), and subse-
quent calls progressively decrease
this width (w2, w3, etc.). As one
can see in the figure, each distinct
size results in a different page lay-
out, with some jumps producing
more drastic changes than others
(such as the switch from w2 to w3).
For each of these pages, a summary
of the layout is then produced; we call these summaries page snapshots. Such
snapshots can be created by the web crawler itself, or by some external mecha-
nism (a “probe”) fetching the state of some elements of the page and serializing
them into some format. The important point is that the succession of such snap-
shots be kept, in order to form a sequence of snapshots.

The second part of our approach involves a test oracle, which is fed the
sequence of page snapshots, and evaluates a condition, ϕ, on that sequence. Since
our approach involves comparing the state of elements in multiple snapshots
across the sequence, the test oracle should be stateful—that is, it must be able to
handle conditions that take into account the sequence of snapshots. The intuition
behind this setup is that a RWD bug will typically be detected as a particular
condition on the relative positioning of elements that holds for large window
sizes, and which suddenly stops to hold once reaching a smaller width.

This high-level setup constrains the tools that are available for actually imple-
menting the solution. The driver must be able to call a page at different window
sizes, and must provide some mechanism for automatically fetching the page’s
relevant content and produce a summary. On its side, the oracle cannot simply
evaluate an invariant condition on each page separately; on the contrary, it must
have some form of memory that makes it possible to correlate elements of a
page across multiple snapshots. Ideally, expressing these conditions should not
be done by writing low-level procedural code (such as pure Java, JavaScript or
Python), and allow the user to write RWD bug conditions at a higher level of
abstraction for increased modularity and reusability.

Based on these criteria, the solution we propose involves two well-known test-
ing tools: Crawljax [16] as the web driver/crawler component, and Cornipickle
[13] as the stateful test oracle. This architecture was coded in an open source
plugin for Crawljax1. We briefly describe these two components in the following,
and explain how they have been made to interact with each other.

1 http://github.com/liflab/crawljax-cornipickle-plugin.

http://github.com/liflab/crawljax-cornipickle-plugin

Detecting RWD Bugs with Declarative Specifications 9

4.1 A Stateful Oracle

The oracle within Cornipickle is on a server that receives requests in JSON
format to evaluate a page. These requests are sent by a client browsing the
website under test. The developer must inject a JavaScript probe generated by
the application into his website to make the requests.

In a standard use case, a developer first writes a set of declarative state-
ments, which are stored in Cornipickle’s memory. These statements model the
JavaScript code (called probe) that is to be inserted into the application under
test so that the client can serialize every page. This probe is designed to report
a snapshot of the relevant DOM and CSS data upon every user-triggered event.
When such an event occurs, the probe collects whatever information is rele-
vant on the contents of the page into JSON and relays that information to the
Cornipickle server, which saves it into a log. Optionally, information on the cur-
rent status of the assertions being evaluated (true/false) can be relayed back
to the probe. An analytics dashboard can then retrieve the saved log and be
consulted by the developer, to query the state of all properties input at the
beginning of the process.

Cornipickle’s language is constructed from first-order and linear temporal
logic, such as quantifiers and temporal operators, allowing a user to specify
complex relationships on various document elements at multiple moments in
time, a feature that is absent from many scripting languages. As a matter of fact,
Cornipickle provides operators borrowed from Linear Temporal Logic (LTL) [17]
to express assertions about the evolution of a document’s content over time. The
Always x construct allows one to assert that whatever x expresses must be true
in every snapshot of the document. Similarly, Eventually x says that x will be
true in some future document snapshot, and Next x asserts it is true in the next
snapshot.

One particular purpose of temporal operators is to compare the state of the
same element across multiple snapshots. This can be done in Cornipickle with
the construct When x is now y then z. If x refers to the state of an element
captured in some previous snapshot, then y will contain the state of the same
element in the current snapshot.

4.2 Browser Interaction with Crawljax

Crawljax is a tool for automatically exploring the dynamic state of modern web
applications. Through programmatic interfaces, it has the capacity to interact
with the client side code of the application. The detected changes in the dynamic
DOM tree are committed as new states of the behavior. Many options are avail-
able with Crawljax to configure the crawling behavior: we can for example specify
the links or the widgets to click on or not in the course of the crawling.

10 O. Beroual et al.

This crawler (Crawljax) interacts with Cornipickle through its plugin archi-
tecture. Every time a state is created or visited, Crawljax serializes the page
and sends it to the interpreter for evaluation the same way the probe sends the
page to the Cornipickle server in the traditional architecture. After the page has
been evaluated by Cornipickle, the verdict is returned and our plugin outputs
the result.

In order to find RWD bugs, we also created a Crawljax plugin that resizes the
browser from a given width to another width. Because having a vertical scrollbar
is not a problem in responsive design, only resizing horizontally is the correct
approach in discovering RWD bugs. Since we explicitly want to find bugs related
to RWD, the plugin slowly lowers the browser’s width; these bugs show up on
lower widths where the space available becomes increasingly scarce in reference
to wider widths. It is possible to provide to the plugin the upper bound, the lower
bound and the amount of pixels for the decrement. The plugin also highlights
bugs it finds and takes a screenshot of the page. Thanks to Cornipickle’s feedback
mechanism, the user then gets screenshots where the elements responsible for
the bug have red borders.

5 Experiments and Results

In this section, we illustrate how our combination of Cornipickle and Crawljax
can be used to automatically detect RWD bugs in websites.

5.1 Defining a Common Language

Cornipickle only provides very low-level access to element properties. Since RWD
bugs involve a recurring number of higher-level concepts (containment, overlap-
ping, etc.), it is therefore useful to first define “macro-concepts” that will allow
expressing bugs in a more natural way.

The first part of this core constructs defines basic concepts such as alignment
and visibility. The definitions are shown in Fig. 3. The first statement defines
a construct of the form “$x and $y are the same”, using the “cornipickleid”
property. This property is a unique value given to every element in the page
during the serialization phase. Since it is unique, it can be used to identify if
two elements are the same across two distinct snapshots of a page. The second
statement simply defines a “not the same” construct as the negation of the
previous one; it is only added for the sake of readability.

The definition of a visible element checks if its display property is set to
none; invisible elements can be discarded from the analysis, as they do not cause
any layout change. Also, this value is affected consciously by the developer so
their position on the page is correct. Finally, the alignment of two elements
is defined with the constructs “top-aligned” and “left-aligned”. We say that
two elements are top-aligned and left-aligned when their top and left values,
respectively, are equal.

Detecting RWD Bugs with Declarative Specifications 11

Fig. 3. Constructs for visibility, sameness and alignment.

Fig. 4. Constructs for overlapping.

The second part of the core constructs deals with overlapping elements. The
corresponding definitions are shown in Fig. 4. The first two constructs first define
when two elements intersect horizontally and vertically, respectively. Overlap-
ping elements are then defined as two elements that are both visible, and intersect
both horizontally and vertically.

One can see that the first definition uses the expression “right - 1”, which
has for effect that in order to be declared as intersecting, elements should do so by
at least two pixels. It overcomes a problem where Cornipickle relays dimensions
and coordinates in integers (pixels), although the browser can work with floats
in case of elements having dimensions in ratios. These floats are rounded and
can cause 1 pixel differences between what is displayed and what is serialized.

Finally, RWD bugs routinely involve the concept of containment : the fact
that the boundaries of an element are entirely enclosed within the boundaries
of another. Containment constructs are shown in Fig. 5. These rules define two
types of top-level containment: that of a child element within its parent, and
also that of an arbitrary element within the browser’s global viewport.

12 O. Beroual et al.

Fig. 5. Constructs for containment.

5.2 RWD Declarative Properties

Now that we have defined useful concepts at an appropriate level of abstrac-
tion, it is possible to express responsive layout bugs as statements using the
aforementioned constructs.

Scrollbar Bug. One of the first indications of a poorly responsive website is
the presence of a horizontal scrollbar. To detect this bug, a simple Cornipickle
property can be defined:

We say that there is an horizontal scrollbar
when (
the page’s width is less than

the page’s scroll-width).

Always (Not (there is an horizontal scrollbar)).

This property is made of an auxiliary statement expressing the presence
of a scrollbar, which is then used within an LTL temporal operator (Always)
stipulating that the condition should not appear in any of the page snapshots.

Element Collision. The second kind of RWD bug is element collision, which
occurs when two elements of the page overlap while they should not. Detecting
such bugs is more delicate than it looks. Indeed, it does not suffice to report
all overlapping elements inside a page, as many of them overlap for legitimate
reasons: to start with, any element nested within its parent would trigger such
a simple condition.

This is where the approach we propose, which is based on sequences of snap-
shots of the same page in various dimensions, can be put to good use. Rather

Detecting RWD Bugs with Declarative Specifications 13

than trying to guess which overlapping elements are suspect by looking at a
single rendition of the page, we compare the overlapping state of these elements
across successive snapshots. Elements are said to be colliding when they are
non-overlapping in one snapshot, and overlapping in the next.

In order to express these properties, one must use the full expressive power
of the Cornipickle language, as is shown below.

Always (
For each $x in $(body *) (

For each $y in $($x > *) (
For each $z in $($x > *) (

If (($y and $z are not the same) And
($y and $z do not overlap)) Then (Next (

When $y is now $a (When $z is now $b (
$a and $b do not overlap)))))))).

The three For each constructs gather all the elements and their immediate
children. It allows testing pairs of siblings (elements with the same parent) $x
and $y for their overlap property. The Next operator then moves the focus to
the next snapshot of the page; the two constructs When x is now y trace the
same pair of elements and places them into variables $a and $b, respectively.
This way, it becomes possible to compare the properties of a pair of elements
over two successive snapshots of the page. Overall, the property says that if two
siblings do not overlap at one point in time, these two siblings should not overlap
either at the next point in time.

Note that, in the way the property is written, it does not check whether
an element overlaps with a “cousin” (an element that shares the same grand-
parent): this is not necessary, because a colliding cousin necessarily violates the
Element Protrusion property, which we shall describe later. The property could
be done by testing every element with every other element but it is costly in
performance.

Element Protrusion. This property tackles the problem of elements which
overflows their container. As with the previous property, reporting all overflow-
ing elements is not appropriate, as overflows can also occur for legitimate reasons.
However, one can use the same device, and use LTL temporal operators to com-
pare an element and its direct children across two snapshots of the page. It can
be expressed in the Cornipickle language in this fashion:

Always (
For each $x in $(*) (

For each $y in $($x > *) (
If ($y is fully inside $x) Then (Next (

When $x is now $a (
When $y is now $b (

$b is fully inside $a))))))).

14 O. Beroual et al.

The property at the end has two For each constructs that return a pair
composed of any element in the page and any of its direct children. Then, if the
latter is fully inside the former in an initial screenshot, the same pair should be
fully inside in the next one. This property was able to catch a bug on the website
https://www.thelily.com/. It can be seen in Fig. 6 where the div with the menu
buttons ends up outside of the menu bar and out of sight. In the first picture,
all the buttons are correctly placed in the menu bar. In the second picture, the
highlighted “About” button is protruding outside of the menu bar, its parent.

(a) Correct (b) Buggy

Fig. 6. The Element Protrusion bug on the website thelily.com.

Viewport Protrusion. The Viewport Protrusion bug can be handled in a
manner similar to the Element Protrusion bug, but using the whole viewport as
the reference. It can be written in Cornipickle as follows:

Always (For each $x in $(*) (
If ($x is fully inside the viewport)

Then (Next (
When $x is now $y (

$y is fully inside the viewport))))).

On the website https://www.slaveryfootprint.org, a Viewport Protrusion was
found in a large width. Figure 7 shows how non-observable bugs can create prob-
lems at lower widths. In the first picture, the page’s width is already small enough
for the document’s main div element to start protruding outside the viewport.
Cornipickle reports it as a bug, although there is not (yet) any observable effect
(all the graphical elements and the text inside that div are still completely vis-
ible). However, setting the window to an even smaller width makes the bug
observable: in the second picture, the window is exactly 440 pixels wide, and we
can now see the text overflowing outside the viewport.

Wrapping Elements. Wrapped elements are elements that are pushed on an
additional line, although they were aligned with other elements on a single line
at larger widths. We limited our implementation to elements that are inside a
list.

https://www.thelily.com/
https://www.thelily.com/
https://www.slaveryfootprint.org

Detecting RWD Bugs with Declarative Specifications 15

(a) Correct (b) Buggy

Fig. 7. The Viewport Protrusion bug on the website slaveryfootprint.org.

We say that the list $x is

aligned when (

For each $y in $($x > li) (

For each $z in $($x > li) (

($y and $z are top-aligned)

Or

($y and $z are left-aligned)))).

Always (

For each $x in $(ul) (

If (the list $x is aligned)

Then (

Next (

When $x is now $y (

the list $y is aligned))))).

Finally, all the lists are taken in a first screenshot in order to compare their
elements’ alignment. They then need to still be aligned in the next screenshot.

An example of a wrapped element can be seen in Fig. 8. It could be argued
that this is not a bug, however, at lower widths, the list is top-aligned again.
This shows that having this list top-aligned is the desired layout.

(a) Correct (b) Buggy

Fig. 8. The Wrapping Element bug on the website anthedesign.fr. In the first picture,
the list is top-aligned. At a lower width (second picture), the “CGV” element gets
pushed on an additional line. The list was highlighted in red by the Cornipickle probe.
(Color figure online)

5.3 Scalability Considerations

In order to assess the scalability of our approach on real-world web sites, we cre-
ated a benchmark designed to measure the computation time of the Cornipickle

https://slaveryfootprint.org/
https://www.anthedesign.fr/

16 O. Beroual et al.

interpreter on web pages of various sizes. All experiments and data are available
as an external download2, in the form of a self-contained instance of the LabPal
experimental environment [12].

More precisely, we generated synthetic JSON summaries of pages, in the
same format as the one produced by Cornipickle’s JavaScript probe. Each page is
made of two nested levels of lists, with each list element having a variable number
of sub-list elements. Since all properties listed in Sect. 5.2 compare an element
with either its direct children or its immediate siblings, this setup is sufficient to
measure the impact of page size on the evaluation of the properties. While using
“real-world” web pages seems like an appealing prospect at first sight, static
pre-recorded files do not make it possible to run a controlled experiment where
parameters can easily be varied. On the contrary, synthetic snapshots allow us
to vary the size and structure of pages so that the interpreter’s scalability can
be measured.

We varied the number of child elements that each list item can have, and ran
the Cornipickle interpreter on generated page summaries of the corresponding
size. For each snapshot, we measured the total running time of the interpreter
for evaluating each of the properties listed in Sect. 5.2. All experiments have
been run on relatively modest hardware, consisting of an AMD Athlon II X4
640 1.8 GHz running Ubuntu 18.04, with a JVM of 3566 MB of memory.

Fig. 9. Interpreter evaluation time for page summaries of increasing size.

Figure 9 shows the evolution of execution time for increasing page sizes. Due
to lack of space, we only include running times for the fastest (Fig. 9a) and the
slowest (Fig. 9b) of all properties. As one can see, checking for the presence of
a scrollbar requires a negligible amount of time on the order of a few tens of
milliseconds. The running time is roughly linear in the size of the page snapshot,
as it appears that Cornipickle’s design requires the ingestion and parsing of every
page snapshot, regardless of the amount of data that is actually accessed inside
this snapshot.

2 https://github.com/liflab/cornipickle-benchmark.

https://github.com/liflab/cornipickle-benchmark

Detecting RWD Bugs with Declarative Specifications 17

The running time for evaluating the Element Collision property shows a much
larger increase with respect to snapshot size. This is expected, considering the
expression of the property as three nested quantifiers (cf. Sect. 5.2). The first ($x)
loops over all elements of the page, while the second and third ($y and $z) each
loop over all children of $x. Barring the overhead incurred by the remainder
of the expression, a quick calculation shows that the interpreter runs in time
O(m2), where m is the total number of elements in the page; this corresponds
to the roughly quadratic execution time we observe experimentally.

To the best of our knowledge, our work is the first to rigorously measure the
running time of the Cornipickle interpreter on page snapshots. Unfortunately,
the running times we obtained cannot be compared with related works: the
paper on ReDeCheck [20], the only other automated RWD testing tool, makes
no mention of running time on the sample pages it was tested on. The other
approaches mentioned in Sect. 3 all involve a manual inspection, and therefore
it makes no sense to speak of running time for these tools. Nevertheless, figures
gleaned from [20] can give us a few indications. All pages studied contained
fewer than 400 lines of HTML code, and no more than 196 DOM nodes. The
experimental results above indicate that pages of such a scale can be handled in
under five seconds using our Cornipickle/Crawljax approach.

It shall be noted that our proposed approach is intended to be used in a
development and testing context, where tests are run periodically, and a few
seconds of waiting is considered reasonable. Performing the same analysis on
production web sites in realtime is obviously not an option.

6 Conclusion

In this article we have presented an automated approach that allows the detec-
tion of RWD bugs. The effectiveness of the tool has enabled us to catch auto-
matically some common problems encountered in real modern web applications.
Cornipickle properties ensure that the pages of an application follow various
kinds of constraints. A small application has been developed and integrated in
order to test the visual rendering in the different possible viewports in order to
catch the RWD faults.

One main advantage of the proposed approach is that it does not require
the development of new tools or new algorithms; rather, it leverages the power
of two existing systems, and allows RWD bugs to be expressed as declarative
test oracle specifications. So far, our solution has concentrated solely on the five
types of RWD bugs proposed by Walsh et al. [19]; however, the use of a general
purpose declarative language opens the door to the elicitation of RWD bugs
related not only to layout, but also functionality. We are currently exploring
this line of research, which is left as future work.

Our solution also has some limitations. The use of Cornipickle limits us to
constraints referring only to elements that are displayed. It makes bugs that are
caused by the back end sometimes hard to catch; it is necessary to find displayed
elements that can indirectly represent server states. In the same line, if Crawljax

18 O. Beroual et al.

does not notify of a state change when the DOM changes, it is not possible to
evaluate that page where a bug could have happened. Also, when a property
evaluates to false, it is false for the rest of the crawl and no other bug can be
caught with this property. This caused a problem with finding observable RWD
bugs because most failures are non-observable and the properties had to find an
observable bug as their first bug. Finally, our solution currently does not address
cross-browser incompatibilities, multi-page analysis, or incorporate verdicts from
other kinds of approaches, such as screenshot-level analysis. Overcoming these
limitations could be the basis of future works. A comparison with bugs found
by real human testers, as well as ReDeCheck, could be used as a baseline to
calculate the precision and recall of our approach.

References

1. http://makandracards.com/makandra/1422-capybara-the-missing-api
2. http://sahi.co.in
3. http://www.websiteresponsivetest.com/
4. http://respondr.io/
5. http://quirktools.com/screenfly/
6. https://www.sitepoint.com/responsive-web-design-tool/
7. https://www.responsinator.com/
8. http://responsivepx.com/
9. http://www.applitools.com

10. Choudhary, S.R., Prasad, M.R., Orso, A.: X-PERT: accurate identification of cross-
browser issues in web applications. In: Proceedings of the ICSE 2013, pp. 702–711,
May 2013

11. Enge, E.: Mobile vs desktop traffic in 2019 (2019). https://www.stonetemple.com/
mobile-vs-desktop-usage-study/. Accessed 3 July 2019

12. Hallé, S., Khoury, R., Awesso, M.: Streamlining the inclusion of computer experi-
ments in a research paper. IEEE Comput. 51(11), 78–89 (2018)

13. Hallé, S., Bergeron, N., Guérin, F., Beroual, O.: Declarative layout constraints for
testing web applications. Log. Algebraic Methods Program. 85(5), 737–758 (2016)

14. Mahajan, S., Halfond, W.G.J.: WebSee: a tool for debugging html presentation
failures. In: Proceedings of the ICST 2015, pp. 1–8. IEEE, April 2015

15. Marcotte, E.: Responsive Web Design, 4th edn. Eyrolles, Paris (2013)
16. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling Ajax-based web applications

through dynamic analysis of user interface state changes. ACM Trans. Web 6(1),
1–30 (2012)

17. Pnueli, A.: The temporal logic of programs. In: Proceedings of the FOCS 1977, pp.
46–57. IEEE Computer Society (1977)

18. Rivoal, F.: Media queries - W3C recommendation (2012). https://www.w3.org/
TR/css3-mediaqueries

19. Walsh, T.A., Kapfhammer, G.M., McMinn, P.: Automated layout failure detection
for responsive web pages without an explicit oracle. In: Proceedings of the ISSTA
2017. ACM (2017)

20. Walsh, T.A., McMinn, P., Kapfhammer, G.M.: Automatic detection of potential
layout faults following changes to responsive web pages. In: Proceedings of the
ASE 2015, pp. 709–714. ACM (2015)

http://makandracards.com/makandra/1422-capybara-the-missing-api
http://sahi.co.in
http://www.websiteresponsivetest.com/
http://respondr.io/
http://quirktools.com/screenfly/
https://www.sitepoint.com/responsive-web-design-tool/
https://www.responsinator.com/
http://responsivepx.com/
http://www.applitools.com
https://www.stonetemple.com/mobile-vs-desktop-usage-study/
https://www.stonetemple.com/mobile-vs-desktop-usage-study/
https://www.w3.org/TR/css3-mediaqueries
https://www.w3.org/TR/css3-mediaqueries

Layout as a Service (LaaS): A Service
Platform for Self-Optimizing Web Layouts

Markku Laine(B), Ai Nakajima, Niraj Dayama, and Antti Oulasvirta

Aalto University, Helsinki, Finland
{markku.laine,ai.nakajima,niraj.dayama,antti.oulasvirta}@aalto.fi

Abstract. To personalize a web page, case-specific rules or templates
must be specified that define the visuospatial layout of elements as well
as device-specific adaptation rules for an individual. This approach scales
poorly. We present LaaS , a service platform for self-optimizing web lay-
outs to improve their usability at individual, group, and population lev-
els. No hand-coded rules or templates are needed, as LaaS uses combina-
torial optimization to generate web layouts for stated design objectives.
This allows personalization to be controlled via intuitive objectives that
affect the full web layout. We present an extensible architecture and
solutions for (1) layout generation using integer programming, (2) data
abstractions to mediate between browsers and layout generators, and (3)
page restructuring. Moreover, we show how LaaS can be easily deployed
as part of existing web pages. Results demonstrate that our approach
can produce usable personalized web layouts in diverse scenarios.

Keywords: Self-adaptive web interfaces · Web-based interaction ·
Web personalization · Web layouts · Web service architectures

1 Introduction

Designing a web layout is laborious and challenging: Given elements can be laid
out in many different ways, yet content and functionality need to appear interest-
ing and presented in an appealing and accessible way. However, the “one design
fits all” approach is inherently suboptimal from the usability point-of-view. For
any individual user, a page designed for a larger population will always compro-
mise the particular interests, expectations, and capabilities. Previous work sug-
gests that layout personalization could bring significant per-user improvements
in usability and experience and could relieve designers and developers from man-
ual work. However, while there are computational methods and architectures for
web personalization, no viable solution has been proposed how to adapt full web
layouts to individuals without manually precoded rules or templates.

This paper contributes a novel service architecture design and computations
for objective-level web layout personalization. That is, layouts are adapted by
reference to desired effects on end-users: “I want this page to be improved for
[design objective]”. In objective-level control, the full layout of a page, including
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 19–26, 2020.
https://doi.org/10.1007/978-3-030-50578-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_2

20 M. Laine et al.

elements and their positions and sizes will be generated given the user’s data. No
rules or templates are needed. This extends web personalization from content-
level personalization to consider full layouts. In this paper, we explore selection
time and visual saliency as two common objectives in layout optimization [5].

In the rest of this paper, we present LaaS , an architecture and computations
for self-optimization of web layouts. Our cloud-based service architecture allows
offloading computation effort to the cloud. The computational tasks of selecting
and layouting elements on a page are NP-hard problems and not solvable in
a browser for realistic problem instances. We make two further technical con-
tributions. First, we extend combinatorial optimization based approaches [5] to
permit adapting layouts to a wide variety of users, pages, and devices with no
predefined rules or templates. Changes to existing codebase are minimal (1 line
per page). This is practically out of reach of rule-based approaches, which scale
up poorly. Second, we present a data abstraction for the visuospatial design of
the page, which allows the optimizer to be agnostic of the underlying web tech-
nologies (here: HTML, CSS, and DOM). The architecture is easy to deploy and
fully controllable by the service owners, who may want different outcomes on
different pages and must trust that the outcomes produced are of high quality.
The process is practically invisible to end-users. Moreover, thanks to the separa-
tion of a design task from the generator, proprietary machine learning methods
can be incorporated to LaaS . We demonstrate the system with a clickstream-
based generation of personalized web news portals, a realistic and challenging
case with needs for variability in web layouts.

2 Related Work

LaaS focuses on the grid layout, a common design principle for organizing graphi-
cal UIs, available in many design tools, UI toolkits, and layout managers. Visual
flow and motor selection are two important goals in their design [6,9]. After
determining the visuospatial organization of a web layout, it must be imple-
mented, typically using standard web technologies. Adaptation rules, such as for
Responsive Web Design, must be added, which is often done by hand. Designers
spend considerable time with repetitive tasks related to UI layouts. So far, no
architecture has been proposed for web layout adaptation that is able to adapt
the full layout for an individual without predefined rules or templates.

Web personalization has been a topic of interested since the 1990s. A
number of machine learning and data mining methods have been proposed for
modeling page contents and web usage patterns in order to drive the recommen-
dation and selection of contents. Research on techniques for presenting content
has focused on the ordering, emphasis, and scaling of contents [2], as well on
message framing and use of colors. However, no method has been proposed that
could handle any and all of these on the web.

Service architectures for adaptive web layouts have been either rule-based
or template-based. For example, AERO is a template-based framework for web
layout synthesis [10]. The approach is based on a suite of templates specified

LaaS: A Service Platform for Self-Optimizing Web Layouts 21

in HTML and CSS, of which one is selected in accordance with a customizable
scoring function. An issue with both rule and template-based approaches is that
they rely on decisions at design-time. In general, existing approaches are not
well-suited for handling continuous and unanticipated changes.

Combinatorial optimization has been studied as a method for the GUI
design [5]. Early research mostly used rules and design heuristics to generate
layouts that adhere to known design guidelines and more recently data-driven
approaches. Model-based approaches, on the other hand, use white-box (first prin-
ciples) models that provide a theory-driven and transparent approach to layout
generation. In the generative process, layout quality is measured against some
model or design heuristic. When heuristics are used as objective functions, how-
ever, optimization systems scale up poorly due to the large number of rules.
Predictive models of user performance and experience have been proposed to
address this issue [5]. We found only one application of prediction-based meth-
ods for web layouts. In Familiariser [9], a visual search model was fit to a user’s
site visitation history and used in a browser-side optimizer to re-layout a page to
make elements quicker to find. In ability-based optimization, UI designs are gen-
erated by taking into account motor or cognitive impairments of an individual,
which are represented as parameters in predictive models [8]. For an overview of
design objectives that can be modeled using predictive models, see [5].

The layout problem is recognized in operations research as an NP-hard
problem, and our design problem is an instance of it. In combinatorial geome-
try, grid layout has been studied in the context of 2D bin packing, rectangular
packing, and the guillotine cuts problem [5]. Generation of multiple, varied, near-
optimal solutions has been discussed. An elementary version of the grid design
problem has been previously proposed [4]. However, they merely attempted to
find the most densely packed solution by squeezing elements closely together.

3 LaaS: Architecture and Computations

This section presents Layout as a Service (LaaS), a service platform architecture
and computations that enable objective-level web layout personalization. The
distributed system architecture consists of a set of loosely-coupled client-side and
server-side components that communicate with each other over HTTPS using a
REST API, as depicted in Fig. 1. The client-side components are dynamically
loaded to the end-user’s browser during the initial phase of a page load; Layout
Parser and Layout Adapter are executed before the web page is displayed to the
user, whereas Event Logger collects user behavior data while the user interacts
with it. The server-side components are run on demand (e.g., daily, weekly) in the
cloud; Design Task Generator generates a design task specification for the latest
version of each layout, whereas Layout Generator optimizes them accordingly.

In the architecture, expensive computations, especially layout generation,
are executed on the server side. The adaptation of layout elements, on the other
hand, takes place in the browser to permit adaptation of both server-side and
client-side rendered pages. The architecture is also designed in a modular way
such that it is possible to plug in machine learning components that help in user
modeling and/or design task generation.

22 M. Laine et al.

Fig. 1. LaaS architecture, including core components and interactions between them.

The following subsections describe the above-mentioned LaaS core compo-
nents and their function in greater detail.

3.1 Layout Parser

In order to reproduce a web layout, Layout Parser automatically (1) assigns a
unique identifier for each element, (2) parses the web page structure and styles,
(3) detects and labels key elements, (4) precomputes permissible shapes for key
elements, and finally (5) creates a user interface technology independent repre-
sentation (JSON) of the original layout. This parsing process needs to be done
only once per selected layout optimization level (individual, group, population).

3.2 Event Logger

Event Logger is responsible of capturing user interactions on a web page and
sending the data to API Server. The collected data includes, among others:
event type, layout identifier, client identifier, page URL, and other event-specific
data (e.g., clicked element identifier, link target, and timestamp). Our current
implementation records clicks and visits on web pages. Support for new event
types and metrics (e.g., document scroll and time spent on the page) can be
easily added by extending LaaS event logging capabilities.

3.3 Design Task Generator

To support adaptation on demand for any given target, as well as to sup-
port controllability, LaaS separates the design task from the generator. Design
Task Generator (DTG) creates a specification of design task, which serves as a
communication vehicle between the designer (here: DTG) and Layout Genera-
tor. It allows the designer to specify (1) various design objectives and constraints

LaaS: A Service Platform for Self-Optimizing Web Layouts 23

on a web layout to be generated and (2) compute per-element importance val-
ues based on collected user behavior data. We currently use click frequencies to
obtain element importance values. However, the architecture is flexible enough to
support other, more advanced computational methods, such as machine learning.

3.4 Layout Generator

We formulate a mixed integer linear programming model (MIP) in order to
reorganize web pages as grid layouts. We chose MIP to achieve a balance
between computational performance and solution quality. Our MIP formula-
tion (1) ensures well-formed layouts that are rectangular and well-aligned and
(2) optimizes them for stated design objectives, in our case selection time and
visual saliency. Linearity of our model ensures better performance and enables
use of suitable MIP callbacks [3]. Further, our MIP model has size depending
solely on the number of elements involved, i.e., the size of our MIP model is
independent of the canvas size. The MIP model works in three phases:

Phase 1: Layout Sanctity. We ensure a non-overlapping, non-overflowing grid
where elements are placed within permissible size limits and in permissible loca-
tions. We use continuous decision variables to represent the location of all four
edges of every individual element. Continuous decision variables avoid pixel-
level discretization, which is important for the performance of the solver. To
prevent overlapping elements, we use an approach introduced by Hart and Yi-
Hsin [4]. Hence, the core MIP formulation developed in this phase provides
non-overflowing, non-overlapping solutions with element sizes within limits.

Phase 2: Alignment. This phase computes and restricts the number of inde-
pendent grid lines required to represent the selected candidate solution. It
ensures that the resulting layouts are well-aligned and aesthetically acceptable.
To represent overall alignment objectively, we define notional Cartesian grid
lines on all pixels of the canvas. If any two (or more) elements have any of their
edges aligned with each other, those elements share the single grid line for those
edges. So, the total number of grid lines actually utilised in any feasible solution
is a direct indicator of the overall alignment within that solution. The objec-
tive of minimizing the total number of grid lines achieves the design intent of
well-aligned solutions.

Phase 3: Functional Layout. The functional placement formulation deter-
mines the placement and sizing of relevant elements to ensure that the layout
has high usability. We have picked and implemented the following two design
objectives, but any other objectives that can be efficiently represented in the
MIP could be included (for previous work, see [5]).

– Selection Time. We use Fitts’ law to compute the time required to reach
a specific element on the screen. Fitts’ law is widely used in model-based
optimization as an objective function [1]. Selection time (ST) is a function
of target distance (D) and size (W): ST = a + b log2(D/W + 1). In our
case, we assume that the user starts scanning the screen from the top-left
corner. So, we use a linear function of the distance from the screen corner as

24 M. Laine et al.

a substitute approximation. If the design task instance prioritizes selection
time, the optimizer attempts to minimize the predicted time required for
important elements. The most obvious effect is that very important elements
may become larger and placed closer to the top-left corner of the web page.

– Visual Saliency. Saliency refers to how attention-grabbing an element is given
the rest of the page [7]. In our case, we compute saliency as the relative size
of the element. While area would be a proxy for the saliency, this is further
complicated by the requirement that the permissible areas of the element
must be picked from within a fixed number of permissible shapes only. So, we
pick the most salient size from the permissible shape set, if provided, and use
that size for laying out elements. Similarly, color and other qualities could be
implemented.

3.5 Layout Adapter

Restructuring hierarchical web pages is particularly challenging because even
the smallest change to the DOM structure can break the web page’s visual
appearance, functionality, or both. Thus, Layout Adapter is designed so that it
can reposition and resize web layout elements without changing the original tree
structure. Once an optimized layout for the web page becomes available in the
cloud, it can be fetched and applied before the web page is shown to the user.

3.6 Deployment

Enabling LaaS on a website can be done in just two steps. First, the service
owner registers a website to obtain an embeddable <script> tag with a track-
ing identifier. Second, the obtained script is added on those web pages of the
website, whose usability needs to be improved. Injecting the <script> tag into
the web pages can be done either manually with minimal source code changes
or automatically via our proxy server installation.

We also offer LaaS Control Panel for service owners to manage various LaaS
related settings on their website, such as service status, design objectives, target
elements, and data collection events.

4 Results

Figure 2 shows example outputs for WebNews, a custom news aggregator website
hosted on our server. The original design shown in Fig. 2(a) has one template-
based multi-column grid layout, to which in the initial design news articles from
six different categories are allocated. Normally, adapting the full layout of a page
like this would require predefined templates or a (very) large number of rules.

We divide the example results into two classes: demonstrator results done
with simpler scenarios and two more realistic cases. Figure 2(b-d) shows adap-
tation results for different combinations of the two design objectives, using a
single card as the illustrative example. The produced layouts are well-formed

LaaS: A Service Platform for Self-Optimizing Web Layouts 25

Fig. 2. Results for a web news page: (a) Original web layout with multiple content
cards; (b) Optimized to improve selection time of a single card (Costco); (c) Optimized
for visual saliency of the same card; (d) Optimized for both selection time and saliency
of the same card; (e) Optimized for both and with more complex interest distribution
(all sports and business cards); (f) Optimized for mobile device screen width.

and the element-of-interest (Costco) behaves as desired: it is moved to a closer
position for selection in (b), more visually salient in (c), and both combined in
(d). Figure 2(e) shows a more complex example, where a bimodal interest distri-
bution (sports and business categories) is accounted for. Figure 2(f) shows the
page adapted for a mobile screen. All layouts are properly formed: there are no
holes and no overlapping elements. The layouts adhere to proper, well-aligned
grids. This would be very laborious to achieve with a rule or template-based
approach.

4.1 Discussion

There are two predominant methods for rendering layouts on the web: server-
side rendering and client-side rendering. While client-side rendering has gained
popularity over the past few years, a myriad of web applications (incl. WebNews),
frameworks (e.g., WordPress), and libraries use or support server-side rendering,
including React and Vue.js . The LaaS architecture is designed to work with both
server-side and client-side rendered layouts; however, our research efforts have
almost exclusively focused on the former up until this point.

Quality of Experience (QoE) [11] describes, from a holistic perspective, how
well a service such as a website satisfies its users’ expectations. While LaaS
can produce usable personalized web layouts, we acknowledge that its use may
unfavorably impact other QoE factors, such as page load times and aesthetics.
However, according to our informal testing these effects are small and can be
mitigated with the use of known techniques, such as caching and image re-
cropping.

5 Conclusion

We presented first steps toward objective-level control of personalization, includ-
ing an architecture and involved computations. We believe that at least within

26 M. Laine et al.

the scope of grid-based web layouts, this goal is within reach. The examples
we showed would be very laborious to achieve with a rule-based approach.
This result warrants more research on this approach. LaaS provides an exten-
sible architecture concept for future work to build on. It supports, by design,
easy deployment on many present-day pages and integration with widely used
machine learning methods for user modeling and recommendations. The core
MIP solutions, on the other hand, can be extended with other design objectives.

References

1. Bailly, G., Oulasvirta, A., Kötzing, T., Hoppe, S.: MenuOptimizer: interactive opti-
mization of menu systems. In: Proceedings of the 26th Annual ACM Symposium
on User Interface Software and Technology, UIST 2013, pp. 331–342, ACM (2013).
https://doi.org/10.1145/2501988.2502024

2. Bunt, A., Carenini, G., Conati, C.: Adaptive content presentation for the web.
In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol.
4321, pp. 409–432. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72079-9 13

3. Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout
design problems with unequal areas: a comparison of MILP and MINLP optimiza-
tion methods. Comput. Chem. Eng. 30(1), 54–69 (2005). https://doi.org/10.1016/
j.compchemeng.2005.07.012

4. Hart, S.M., Yi-Hsin, L.: The application of integer linear programming to the
implementation of a graphical user interface: a new rectangular packing prob-
lem. Appl. Math. Model. 19(4), 244–254 (1995). https://doi.org/10.1016/0307-
904X(94)00033-3

5. Oulasvirta, A., Dayama, N.R., Shiripour, M., John, M., Karrenbauer, A.: Com-
binatorial optimization of graphical user interface designs. Proc. IEEE 108(3),
434–464 (2020). https://doi.org/10.1109/JPROC.2020.2969687

6. Pang, X., Cao, Y., Lau, R.W.H., Chan, A.B.: Directing user attention via visual
flow on web designs. ACM Trans. Graph. 35(6), 1–11 (2016). https://doi.org/10.
1145/2980179.2982422. Article No. 240

7. Rosenholtz, R., Li, Y., Mansfield, J., Jin, Z.: Feature congestion: a measure of
display clutter. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 2005, pp. 761–770. ACM (2005). https://doi.org/10.
1145/1054972.1055078

8. Sarcar, S., Jokinen, J.P.P., Oulasvirta, A., Wang, Z., Silpasuwanchai, C., Ren, X.:
Ability-based optimization of touchscreen interactions. IEEE Perv. Comput. 17(1),
15–26 (2018). https://doi.org/10.1109/MPRV.2018.011591058

9. Todi, K., Jokinen, J., Luyten, K., Oulasvirta, A.: Individualising graphical layouts
with predictive visual search models. ACM Trans. Interact. Intell. Syst. 10(1), 1–24
(2019). https://doi.org/10.1145/3241381. Article No. 9

10. Vernica, R., Venkata, N.D.: AERO: an extensible framework for adaptive web
layout synthesis. In: Proceedings of the 2015 ACM Symposium on Document
Engineering, DocEng 2015, pp. 187–190. ACM (2015). https://doi.org/10.1145/
2682571.2797084

11. Wechsung, I., De Moor, K.: Quality of experience versus user experience. In: Möller,
S., Raake, A. (eds.) Quality of Experience. TSTS, pp. 35–54. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-02681-7 3

https://doi.org/10.1145/2501988.2502024
https://doi.org/10.1007/978-3-540-72079-9_13
https://doi.org/10.1007/978-3-540-72079-9_13
https://doi.org/10.1016/j.compchemeng.2005.07.012
https://doi.org/10.1016/j.compchemeng.2005.07.012
https://doi.org/10.1016/0307-904X(94)00033-3
https://doi.org/10.1016/0307-904X(94)00033-3
https://doi.org/10.1109/JPROC.2020.2969687
https://doi.org/10.1145/2980179.2982422
https://doi.org/10.1145/2980179.2982422
https://doi.org/10.1145/1054972.1055078
https://doi.org/10.1145/1054972.1055078
https://doi.org/10.1109/MPRV.2018.011591058
https://doi.org/10.1145/3241381
https://doi.org/10.1145/2682571.2797084
https://doi.org/10.1145/2682571.2797084
https://doi.org/10.1007/978-3-319-02681-7_3

Structural Profiling of Web Sites
in the Wild

Xavier Chamberland-Thibeault and Sylvain Hallé(B)

Laboratoire d’informatique formelle, Université du Québec à Chicoutimi,
Saguenay, Canada
shalle@acm.org

Abstract. The paper reports results of a large-scale survey of 708 web-
sites, in order to measure various features related to their size and struc-
ture: DOM tree size, maximum degree, depth, diversity of element types
and CSS classes, among others. The goal of this research is to serve
as a reference point for studies that include an empirical evaluation on
samples of web pages.

1 Introduction

Over the past years, several tools and techniques have been developed to analyze,
debug, detect errors, or otherwise process the output produced by web applica-
tions. Many of these tools focus on an analysis of the Document Object Model
(DOM) of a page, and accessorily to the Cascading Stylesheet (CSS) declarations
associated to its elements. For example, X-PERT [2] and XFix [5] attempt to fix
cross-browser issues; Cornipickle [3] is a general purpose interpreter for declara-
tive specifications over DOM elements and their rendered attributes; ReDeCheck
[6] performs an analysis of a page’s rendered DOM to detect responsive web
design (RWD) bugs.

A common point to these approaches, and to many others, is that their scal-
ability –and ultimately, their success– is dependent on features of a page that
are typically related to its size. Hence, the running time for ReDeCheck scales
according to the number of DOM nodes in the target page; Cornipickle scrapes a
page in time proportional to the number of DOM nodes, and evaluates a declar-
ative property in time proportional to the number of elements matching any of
the CSS selectors found in that property; some RWD constraints scale propor-
tionally to the number of nodes and the maximum number of direct children
they have; etc.

Most of the aforementioned works duly provide an empirical evaluation of
the proposed tools on a sample of pages or websites. However, it is hard to
assess where these samples lie across the whole spectrum of web pages that
may exist “in the wild”. For example, the experimental analysis in [6] is run
against documents of up to 196 DOM nodes: is this typical of a large web page,
or a small one? Without data making it possible to situate such values with

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 27–34, 2020.
https://doi.org/10.1007/978-3-030-50578-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_3&domain=pdf
M1.1
https://doi.org/10.1007/978-3-030-50578-3_3

28 X. Chamberland-Thibeault and S. Hallé

respect to a larger population, the authors, readers and reviewers alike are left
speculating, with often conflicting viewpoints, to what extent the tested samples
can be accepted as reasonably “real”.

The present paper aims to address this issue. It reports on results of a large-
scale analysis of 708 websites, with the goal of measuring various parameters
related to the structure and size of their pages, such as the size of the DOM
tree, degree distribution of its nodes, depth, distribution of various element types,
diversity of CSS classes, etc. The goal of this research is to provide an objective
(albeit partial) reference point allowing practitioners to quantitatively situate
the samples used in research works that include an empirical evaluation. To
summarize, the paper’s contributions include a description of the methodology
used to harvest and process data, a freely-available interactive package that can
be used to explore the results, and a repository of all the raw data used in the
analysis.

2 Methodology

To accomplish such an analysis, a few steps had to be followed. At first, we had
to collect a large enough sample of websites for the analysis to be meaningful,
then we had to find a way to collect the data from the previously found websites
and, at last, process the recovered data. In this section, we shall present how
each of those steps were fulfilled.

2.1 Website Collection

The first step of the process was to collect the list of websites to be included in
our sample. We opted for a combination of two methods. First, we considered
the first 500 most frequented websites in the world, by retrieving data from the
latest list found on Moz [1]. However, this list contains many duplicates made
of country-specific versions of the same platform. These duplicates have been
removed, keeping only the first occurrence of each site. The remaining sites from
this list (approximately 300) accounted for around 40% of our total sample.

This first sampling step provides us with a set of sites that are visited by the
most users. However, this notion is orthogonal to the sample of sites most visited
by an individual user. To illustrate this, consider a set of websites {s0, . . . , sn}
and n users. Site s0 is visited once by each user, and for each i > 0, site si is
visited n − 1 times by user i. With n = 10, s0 accounts for 53% of all traffic
(compared to less than 5% for each of the remaining sites), but only accounts
for 10% of all visits for any single user. That is, the fact that a site impacts the
most people does not necessarily imply it impacts people most significantly.

In order to address this issue, we added a second part to our sampling step,
by informally asking people around to provide us with the list of websites they
use daily. Therefore, by combining these two data collection methods, we got
the most commonly used ones in the world and various day-to-day websites.
The complete dataset and scripts can be downloaded1.
1 DOI: https://doi.org/10.5281/zenodo.3718598.

M1.1
https://doi.org/10.5281/zenodo.3718598

Structural Profiling of Web Sites in the Wild 29

2.2 DOM Harvesting

After the list of websites was established, the next step was to collect data on the
DOM for each of these sites. This was done by creating a JavaScript program
which is designed to run when the DOM of a page has finished loading.

The script starts at the body node of a page and performs a depth first
preorder traversal of the integral DOM tree of that page. For every node, the
script records and/or computes various features:

– tag name; this is used to record the usage proportion of elements
– CSS classes associated to the element; this is used to measure the diversity

and distribution of CSS classes in a document
– visibility status; elements in the page can be made invisible in various ways:

setting their position outside the viewport, setting their dimensions to 0,
using the display or visibility CSS attributes; the script records if any of
these techniques is applied on the rendered element

– structural information, such as degree and depth from the root.

Fig. 1. An example of a DOM tree repre-
sented graphically, as produced by our har-
vesting script. Each color represents a differ-
ent HTML tag name. The root of the tree is
the black square node. (Color figure online)

For a given page, the output of
the script is made of two files: the
first is a JSON document containing
a nested data structure that mirrors
the structure of the page’s DOM
tree, where each node is a key-value
map containing the features men-
tioned above. The file also contains
global statistics computed on the
DOM, such as the number of ele-
ments for each tag name, class and
method of invisibility. The second
document is a text file in the DOT
format accepted by the Graphviz2

library. It can be used to produce
a graphical representation of the
DOM, where each tag name is given
a different color. An example of such
a tree (for the Zippyshare.com web-
site) is given in Fig. 1.

In order to actually harvest the
data from a web page, we used the
TamperMonkey3 extension, which
allows users to inject and run custom JavaScript code every time a new web
page is loaded in the browser. This extension also presents the advantage that

2 https://graphviz.org.
3 https://www.tampermonkey.net.

https://graphviz.org
https://www.tampermonkey.net

30 X. Chamberland-Thibeault and S. Hallé

versions exist for multiple browsers, including Chrome, Firefox, Edge and Safari.
For each website in our sample, the home page URL was loaded and our Tam-
perMonkey script was run on this page.

It shall be emphasized that the harvesting step on each web page is performed
in the browser, and hence operates on the DOM tree and on properties of the
elements as they are actually rendered by the browser. That is, our script does
not perform a simple scraping of the raw HTML code returned by the server.
Doing so would miss all the elements that are dynamically inserted or modified
by client-side scripts at load time. Overall, running the scripts over the 708 sites
takes approximately 6.5 h and generates 62 MB of raw data.

2.3 Data Processing

As a second step, we aggregated these various measurements to compute statis-
tics over the whole sample of pages, so as to get information such as distribu-
tions for various numerical parameters, using the LabPal experimental process-
ing framework [4]. This library makes it possible to load, process, transform,
and display empirical data in the form of tables, macros and plots. Our LabPal
instance is designed such that every website is an experiment instance, whose
task is to read the corresponding raw JSON files and compute various additional
statistics on the structure of the DOM tree. These results are then collated in
various ways into tables and plots.

It is to be noted that some of the recovered files were not used in the analysis.
As was said earlier, the automated loading of web pages made us retrieve a lot
of advertisement pop-ups –which arguably do not really count as “real” web
pages, in the sense meant by most papers concerned with analyzing the DOM.
Manually inspecting each file to judge whether it is an advertisement page or a
normal web page is a tedious process. We therefore opted for a more general rule
that would remove most of these pages: we took away from the analyzed data
each page that contained fewer than 5 DOM nodes, or whose URL belonged to
a list of domains that are known to be advertisement pages.

3 Results and Discussion

A full presentation of the results of the study cannot be done exhaustively in this
paper due to a lack of space. In this section, we shall present a summary of the
most important features, as well as a few interesting highlights and take-home
points that should be taken from this study. The combined size of all websites
visited amounts to a total of 623100 DOM nodes.

3.1 Website Profiles

DOM Tree Structure. A first statistic we computed is the number of elements
in a web page across all sites. Figure 2a shows the cumulative distribution, where
the line represents the fraction of all sites that have fewer than some number
of elements. From this, we can observe that half of all websites have fewer than

M1.1
M8.1

Structural Profiling of Web Sites in the Wild 31

Fig. 2. Graphical summary of DOM profiling

700 nodes, and 90% have fewer than 2000. The distribution of the number of
elements in a web page very closely matches an inverse exponential function.
In our dataset, the fraction of the number of pages having x elements or less is
given by the function 1− 0.83

e0.0011x ; the coefficient of determination is R2 = 0.999,
which indicates a surprisingly strong fit with the regression.

We also computed the depth of the DOM tree for each website; this corre-
sponds to the maximum level of nesting inside the top-level body element. The
distribution across websites is shown in Fig. 2b. The distribution assumes a rel-
atively smooth bell shape; 39% of all sites have a maximum depth between 10
and 16.

A complementary measurement to the depth of the DOM tree is the maxi-
mum degree (i.e. number of direct descendants) that a DOM node can have. This
is represented in Fig. 2c. 50% of websites have a maximum degree of at most 22,
while 90% of websites have a maximum degree of at most 80. This time, a good
fit for the data is the function 1− 4.91

x0.92 , with a high coefficient of determination
of R2 = 0.894.

A fourth statistic related to tag usage across websites. We measured the
relative proportion of each HTML element name, excluding tags corresponding
to inline SVG markup. Unsurprisingly, div is the most frequent tag, representing
26% of all elements in a page. It is followed by a (19%), li (11%) and span (10%).

M2.0
M2.1
M5.2
M5.0
M5.1
M3.0
M3.1

32 X. Chamberland-Thibeault and S. Hallé

Combined, these four elements account for two-thirds of all tags found in a page.
No other tag has a frequency greater than 4%. Given that div and span have
no special meaning, and are only used to enclose elements for display purposes,
we can conclude that more than one third of all HTML markup is not semantic.

Visibility Status. Of all DOM nodes in the websites analyzed, 54% were invis-
ible to the user by one of the available techniques. This is a rather surprising
finding, which means that more than half of a page’s markup corresponds to ele-
ments that are not immediately displayed to the user, such as scroll-down menus
or pop-ups. Figure 4 shows the distribution of websites according to the fraction
of nodes that are invisible. One can see that this distribution is fairly uniform,
with a roughly equal number of websites for each 10% interval of invisible nodes
(Fig. 4).

Fig. 3. Total number of elements
using each visibility.

An interesting finding is that the tech-
niques used to make elements invisible are
not uniformly distributed. Of all invisible
elements across the analyzed pages, 60% are
made so by assigning them a negative posi-
tion. Surprisingly, none of the websites ana-
lyzed used display:none or a dimension of
zero to make nodes invisible.

CSS Classes. Another aspect of our study
is concerned with the CSS classes associated
with elements of the DOM, either directly
with the class attribute, or programmati-
cally using JavaScript.

Fig. 4. Distribution of websites according to
the fraction of all DOM nodes that are invis-
ible.

We first checked whether there
is a correlation between the size of
the DOM tree and the number of
distinct CSS class names occurring
in the tree. This can be represented
graphically with the plot of Fig. 5a.
As one can see, there is a rela-
tively loose dependency between the
size of a website and the number
of classes it contains. We also cal-
culated, for each website, the aver-
age size of each CSS class (i.e.
the average number of DOM nodes
belonging to each distinct CSS class
present in the document). The func-
tion 1 − 1.72

x1.93 , which represents the
fraction of all sites having an average CSS class size of x or less, fits the experi-
mental data with a coefficient of determination of R2 = 0.931.

M8.0
M7.0

Structural Profiling of Web Sites in the Wild 33

Fig. 5. Statistics about the use of CSS classes.

3.2 Threats to Validity

Website Sample. All the distributions and statistics computed in this study obvi-
ously depend on the sample of websites used for the analysis. Different results
could be obtained by using different selection criteria. We tried to alleviate this
issue by including in our sample a good fraction of sites selected using an objec-
tive and external criterion (the Moz top-500 list, which ranks sites according to
their traffic). However, we also balanced this selection by including lesser known
sites suggested by people based on their daily usage of the web. Finally, the rela-
tively large size of our study (708) lessens the odds that our selection fortuitously
picked only outliers in terms of size or structure.

Variance Due to Browser. A single browser was used in our study, namely
Mozilla Firefox. Since there sometimes exists a discrepancy between the pages
rendered by different browsers, the actual DOM trees obtained could differ when
using a different browser. However, most compliance violations affect the way
elements are graphically rendered on the page, but not the actual contents of
the DOM tree from which the page is rendered; hence these discrepancies do not
affect the statistics we measure in our study. It shall also be noted that our use
of Firefox has been made out of commodity: nothing technically prevents the
same scripts from running in other browsers, thanks to TamperMonkey’s wide
support.

Homepage Analysis. For all the sites considered, only the homepage has been
analyzed. This is deliberate, so that the same methodology could be applied
uniformly to all the sites in our study. Although many websites allow users to
access to a different section after logging in, most of them have a relatively
complete and usable homepage. There are, however, some exceptions; the most
notable is Facebook, which shows nothing but a login form to non-authenticated
visitors. This has repercussions on the reported page size and structure.

To minimize the impact of this phenomenon, it could be possible to choose
a different page in each website, in order to pick one that is representative –for

M1.1

34 X. Chamberland-Thibeault and S. Hallé

example, one of the pages shown to the user after logging in. This, however,
would introduce considerable complexity: valid credentials would need to be
provided for all these sites, and specific instructions on how to reach the desired
page (automatically) would have to be defined. More importantly, the choice of
the “representative” page would introduce an additional arbitrary element that
could in itself be a threat to validity.

4 Conclusion

In this paper, we have presented various statistics about the structural content
of web pages for a sample of 708 websites, which includes the 500 most visited
sites according to Moz [1]. Our analysis has revealed a number of interesting
properties of websites in the wild. For example: the distribution according to
their size closely follows an inverse exponential; most pages have fewer than
2000 nodes and a tree depth less than 22; more than half of all elements are
hidden, and the majority of them are concealed by setting them to a negative
position; most websites have CSS classes containing on average 10 elements or
less.

It is hoped that these findings, and many more included in our online exper-
imental package, can be used as a reference point for future research works on
website analysis. They can help situate a particular benchmark or sample used in
an empirical study, with respect to a larger population of websites “in the wild”.
As future work, we plan to expand the amount of data collected on each page,
and intend to periodically rerun this study in order to witness any long-term
trends over the structure of websites.

References

1. The Moz top 500 websites. https://www.moz.com/top500. Accessed 20 October
2019

2. Choudhary, S.R., Prasad, M.R., Orso, A.: X-PERT: accurate identification of cross-
browser issues in web applications. In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds)
Proceedings of the ICSE 2013, pp. 702–711. IEEE Computer Society (2013)

3. Hallé, S., Bergeron, N., Guerin, F., Breton, G.L., Beroual, O.: Declarative layout
constraints for testing web applications. J. Log. Algebr. Methods Program. 85(5),
737–758 (2016)

4. Hallé, S., Khoury, R., Awesso, M.: Streamlining the inclusion of computer experi-
ments in a research paper. IEEE Comput. 51(11), 78–89 (2018)

5. Mahajan, S., Alameer, A., McMinn, P., Halfond, W.G.J.: Automated repair of layout
cross browser issues using search-based techniques. Proc. ISSTA 2017, 249–260
(2017)

6. Walsh, T.A., McMinn, P., Kapfhammer, G.M.: Automatic detection of potential lay-
out faults following changes to responsive web pages (N). In: Cohen, M.B., Grunske,
L., Whalen, M. (eds) Proceedings of the ASE 2015, pp. 709–714. IEEE Computer
Society (2015)

M1.1
M2.1
M4.1
https://www.moz.com/top500

Performance of Web Technologies

Accelerating Web Start-up
with Resource Preloading

JiHwan Yeo(B), Jae-Hyeon Rim, ChangHyun Shin, and Soo-Mook Moon(B)

Seoul National University, Seoul, Korea
{jhyeo,jhtop12,schyun9212}@altair.snu.ac.kr, smoon@snu.ac.kr

Abstract. Long start-up time of web apps or web pages at the client
device may affect the user experience negatively. One bottleneck in
reducing the start-up time is resource loading overhead. To reduce the
overhead, resource preloading has been proposed, which load resources
ahead of time, instead of loading them on time when they are used.
For commercial client device such as smart TV, it is reasonable for the
browser of the client to do resource preloading. Existing client-only tech-
nique remembers the resources accessed in the previous visit and then
preloads them in the current visit. However, it preloads the resources in
some arbitrary order, thus not dealing well when the preloading order
is important, especially for user experience. One solution is employing a
resource dependence graph, often used for preloading with proxy servers
or web servers, but in client-only environment we need to compute the
graph while preloading is in progress, and update the graph incremen-
tally when the resources change. This paper proposes such a dependence
graph-based, client-only resource preloading technique. For better user
experience, we decide the preloading order based on those factors that
affect user perception such as the size or the location of images in the
screen. Our experimental results on Chromium browser with real web
apps on an embedded board and on a commercial smart TV show that
the proposed technique can improve the UX-related app start-up time
(above-the-fold time or speed index) tangibly, allowing the user to really
feel the difference.

Keywords: Web browser · Resource preloading · Smart device

1 Introduction

Web browsing is important for smart devices. For example, browsing is known
to occupy 63% of the user time and 54% of the CPU time on the smartphone
[22]. The start-up time of web pages or apps during browsing is an important
factor affecting user experience and business revenue [3,4,18]. Amazon found
that every 100 ms of latency costs them 1% in sales [9].

One big contributor to the start-up time is resource loading, which is the
process of fetching the resources from the network [20]. An extensive research
has been done to accelerate resource loading [2,11,13,15,19], and many of them
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 37–52, 2020.
https://doi.org/10.1007/978-3-030-50578-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_4

38 J. Yeo et al.

require infrastructural support of servers and proxies, which is hard to provide
by the device manufacturers (e.g., smart TV makers) due to scalability or main-
tenance issues.

Client-only optimizations are more easily deployable and scalable. There are
two popular client-only approaches: caching and prefetching. Caching stores
resources locally and reuses them in the subsequent page accesses if they are
still valid. Prefetching predicts the pages to visit and fetches the resources in
advance. Although these methods are widely used, they have limited perfor-
mance impact due to spoiled or un-cacheable resources or wrong predictions
[10,12,17,21].

Another client-only method is resource preloading. Normally, a resource is
loaded on demand when it is met during the HTML parsing of a web app (page).
Preloading fetches resources in advance by reading all resource tags in the HTML
file at the beginning of parsing and by requesting their loading using the browser
threads. However, those resources accessed by the execution of JavaScript code
during app start-up (e.g., web framework like jQuery) cannot be preloaded in
this way. So, more aggressive preloading techniques have been proposed.

One technique is a profile-based solution which remembers resources accessed
during the previous visit of a web page and uses it to fetch resources in advance
when visiting the same page again [21]. This approach solves the limitations of
caching and regular preloading, but it does not consider the preloading order of
resources, so some critical resources might be delayed to be loaded (it should
be noted that the preloading order does not affect correctness but only perfor-
mance), or it is hard to implement elaborate preloading heuristic that requires
precise ordering.

Another solution exploits proxy servers at the cloud [11] or the web servers
[13]. Such remote servers proactively visit web pages in advance to decide the tar-
get resources for preloading. Since they work in an offline manner, they can build
an elaborate data structure called a dependence graph to decide the preloading
order. It estimates the dependence between resources using the loading start time
and end time of each resource, where an overlap of loading time between two
resources means independence. This information is used for preloading by the
client so as to preload dependent resources earlier, thus more accurate preload-
ing. Since proxy-cloud for commercial devices is unrealistic, we wonder if the
client browser can exploit the dependence graph by itself.

We propose a dependence graph-based preloading, yet working on the client-
only environment. There are two issues. First, every time we execute a web
app (page), we need to update the dependence graph since new resources can
be added or old ones can be obsolete (again, preloading of wrong resources does
not affect correctness but only performance). So, we must update the graph con-
currently while resource preloading is in progress at the client, and the existing
method of building the graph from scratch by the proxy server at each proactive
visit cannot work. In fact, preloading many resources at once at the client would
make otherwise dependent resources appear independent, if only the start time
and the end time were used. To handle this, we update the dependence graph

Accelerating Web Start-up with Resource Preloading 39

incrementally, based not only on the loading time of a resource but also on the
time the resource is actually used at the client.

Another issue is the preloading order that can best exploit the dependence
graph, especially among non-dependent resources. Existing method uses their
depth/height to decide the preloading order, but we propose a heuristic based
on user experience factors so that the users can have better experience.

We modified chromium browser to implement proposed technique and experi-
mented on an embedded board and on a commercial smart TV. The experimental
results with real TV apps show a tangible performance improvement. Also, when
there are updates of resources, we could recover the performance drop caused by
the out-of-date dependence graph quickly, as it updates the graph incrementally.

The rest of the paper is as follows. Section 2 reviews related work on preload-
ing or UX. Section 3 describes the proposed preloading technique. Section 4 has
the UX-based heuristics. The implementation on Chromium is shown in Sect. 5.
Section 6 shows the experimental results and Sect. 7 includes the summary and
the future work.

2 Background on Resource Loading and Preloading

After downloading the HTML file of a web page, a web browser parses the HTML
file to build a DOM tree. When a resource (e.g., image, JavaScript, CSS, JSON
file) is met during the parsing, the resource is also downloaded, and then the
parsing continues. This on-demand resource loading is slow since the browser
needs to wait while the resource is being downloaded. To reduce the wait time,
most browsers employ a pre-loader by default, which requests the download in
advance for those resources explicitly specified in the HTML file. However, only
those resources in the HTML tags can be preloaded, and many other resources
to be requested as a result of JavaScript execution or those in the CSS or JSON
files cannot be preloaded in this way.

HTML5 includes the preload directives [6], which allow the web developer to
specify the resources that will be needed in a web page using an HTML tag. So
for those dynamic resources to be requested by the JavaScript execution can also
be preloaded if they are specified in a preload directive. However, this would be a
burden for the developers who need to specify the resources manually in the web
page. Also, there is a restriction on the resources allowed with preload directives.
For example, if a web server can provide the resources specialized for each user,
the client needs to send the user’s identifier using query string in resource URL or
request header along with the resource URL. Preload directive can only specify
the resource URL, thus not allowing preloading for those resources with the
request header.

To overcome the above limitations, two more aggressive preloading techniques
have been proposed. One is a client-only approach, and the other is proxy-based
approach.

One representative client-only preloading technique is Tempo [21]. It saves a
list of resources loaded in the previous visits of a website using a resource graph, a

40 J. Yeo et al.

hierarchically structured graph starting from the website root node, subdomain
nodes, web page nodes, to subresource nodes. When accessing a website, Tempo
preloads those subresources of a web page node if it was visited previously, or
predicts then preloads if this is the first visit. The resource graph is updated at
each visit for preciseness.

One problem of Tempo is that it does not specify the precise preloading order,
which might make some critical resources be delayed to be loaded. For example,
some smart TV apps download JSON files, which include resources (or another
JSON files that include resources) to download, which will be added to the DOM
tree to show the real time menus (e.g., today’s movie lists) on the screen. If the
JSON file were preloaded later than the menu resources, none of them are usable
since the JSON file might have different resources than those of the previous visit.
Actually, preloading of the menu resources might even delay the regular loading
of the JSON file by monopolizing the network bandwidth. Another problem
is that Tempo does not save the request headers, so it cannot preload user-
specialized dynamic resources (e.g., user-specialized menus for smart TVs).

SWAROVsky is a representative proxy-based preloading technique [11]. Its
remote proxy server proactively accesses the web servers that the client pre-
notifies for possible future access, decides the target resources for preloading,
and analyzes the order of resources. SWAROVsky performs this job repetitively
(once in 30 min) and caches the resources as well, so when the client access the
web page, it allows the client to perform preloading. It decides the preloading
order by building a resource dependence graph during proactive access. The
basic idea is that for each resource SWAROVsky observes the start time and the
end time of resource loading, and if there is any overlap between two resources,
they are classified as independent. On the other hand, a resource A is classified
as dependent on a resource B, if there is no overlap between A and B, and B’s
end time is closest to A’s start time. When the client requests the web page, the
proxy server will send the resources in topologically sorted order of the graph.
For the TV app example above, this will make the JSON file be preloaded earlier
than the menu resources dependent on it. The dependence graph can save the
request header, allowing preloading of user-specialized resources.

Although SWAROVsky allows more precise preloading, its remote proxy-
based approach is unrealistic to employ by a smart device manufacturer, which
cannot easily afford to provide and maintain a remote, scalable server for a huge
amount of client devices. Also, if a web page is updated frequently (e.g., movie
apps such as Neflix), there can be a difference between the resources of the proxy
server and those of the current web server due to the 30-min delay.

Above discussions indicate that for smart devices, it is more realistic to take
a dependence-based, yet client-only resource preloading approach. There is one
challenge, though. The existing dependence graph of SWAROVsky is built offline
at the remote proxy, while preloading is performed online at the client. The
proposed approach requires performing both simultaneously at the client. Since
every time when the web page is accessed, we need to make a new resource
dependence graph since a new resource can be added or an old resource can be

Accelerating Web Start-up with Resource Preloading 41

Fig. 1. Resource loading sequence and dependency graph without and with preloading

obsolete. The problem is that we need to make the graph while the resource
preloading is in progress at the client. The existing graph cannot work properly;
preloading of many resources at once would make otherwise dependent resources
look independent if only the start time and the end time are used. Also, when a
new resource is added, it will be likely to be loaded later than all other preloaded
resources, thus making it dependent on them, which is not right.

Disabling preloading once in a while to build the precise graph from scratch
would degrade the performance and affect user experience, thus not an option.

We propose a new technique of updating the dependence graph incrementally
and concurrently with resource preloading. We also propose a preloading order
heuristic that can best exploit the proposed precise dependence graph at the
client.

42 J. Yeo et al.

3 Dependence-Based, Client-Only Preloading

This section describes the proposed technique, focusing on how to build and
update the resource dependence graph at the client, concurrently while resource
preloading is in progress. When the client runs a web app (page) for the first
time, it will build a dependence graph (unlike SWAROVsky’s, the graph can be
built as the updates of the initial empty graph; see below). Figure 1 depicts how
to build one for a simple web app.

Figure 1 (a) shows the HTML file (index.html), which accesses two JavaScript
(b.js and c.js) resource and one CSS resource (a.css). The JavaScript code c.js
accesses one image resource depending on a condition, as shown in Fig. 1 (b).
Figure 1 (c) shows an example resource loading sequence for the first execution
of the web app (with the default browser pre-loader), where network means the
transmission time of a resource and evaluation means the time while the resource
is used (e.g., execution time for JavaScript or CSS code or decoding time for an
image). If we build the dependence graph using the start time and the end time
of network (as depicted in Sect. 2), it will be Fig. 1 (d); a.css, b.js, and c.js are
dependent on index.html, while they are independent to each other (thus being
siblings in the graph), and d.jpg is dependent on c.js since the end time of c.js
is closest to the start time of d.jpg.

When the app is run again in the next time, the client will preload resources
based on the graph in Fig. 1 (d), where the preloading order heuristically decided
by SWAROVsky is attached at each node. Among the three sibling resources
who have the same depth, c.js is preferred since it has the longest height. Since
a browser has multiple threads for resource preloading (e.g., maximum three in
our example), it can request multiple resources simultaneously, while satisfying
the preloading order. Let us assume that Fig. 1 (e) shows the resource loading
sequences for the second run, where c.js and a.css are preloaded with index.html,
followed by the preloading of b.js and d.jpg. The overall loading time is reduced,
which also advances the use time of each resource, thus improving the app start-
up time. Now, the question is how to rebuild a new dependence graph since
we need to accommodate a new behavior; new resources can be added or old
resources can be obsolete (for example, if c.js accesses e.jpg instead of d.jpg this
time, we would need to add e.jpg while removing d.jpg in the new graph).

If we rebuild the dependence graph using Fig. 1 (e) as previously, the graph
will be Fig. 1 (f), where a new dependence from a.css to b.js exists, which is not
right. Actually, preloading of many resources at once would even make otherwise
dependent resources look independent. If no resources are added or deleted, the
previous graph in Fig. 1 (d) should still be valid, but if we build the graph using
the start time and the end time of loading sequences of Fig. 1 (e), we will get a
different, incorrect graph.

To handle this problem, we propose a different method. Basically, we will
start from the same graph used in the previous run and update it as needed,
based on the resource usage time as well as the start/end time, as follows.

Accelerating Web Start-up with Resource Preloading 43

First, if a preloaded resource is actually used in the current run, its depen-
dence relationship in the old graph will be preserved. So if no resources are added
or deleted as in Fig. 1 (e), we need no update for the old graph of (d).

Secondly, if a new resource is added in the current run, it will be loaded when
it is needed, unlike other preloaded resources. If we consider only the start/end
time, this new resource would be added to a leaf incorrectly. Instead, we try to
find an existing resource, whose use time is earlier than and closest to the new
resource’s start time. Then, we add the new resource as a child of the node we
found. Actually, there are many possible cases for the dependence, but we think
that the most common case of adding a new resource is replacing an old resource
by a new one (e.g., c.js in Fig. 1 (b) chooses a different resource depending on
a condition, the menu resources of a JSON file is replaced by new ones, or a
resource tag of the HTML file accesses a different resource). If so, the correct
location in the graph would be the sibling of a deleted node. This heuristic tends
to maintain the depth of the old graph unchanged, unlike when adding the new
resource to a leaf. This would keep the depth of the original graph built with
no preloading unchanged, thus more desirable. Actually, when we run the web
app for the first time, we may build the first dependence graph as if we add new
resources incrementally to the initial empty graph.

Finally, if a preloaded resource is not used in the current run, the correspond-
ing node in the old graph should be deleted. If the deleted node is a leaf node,
we simply remove it. If it has children nodes, we try to make them the children
nodes of its sibling node. If there is no sibling, they will be the children of its
parent node, which might reduce the depth of the graph. If deletion of an old
node and insertion of a new node occur at the same time (i.e., replacement of a
node), we perform the insertion first, then the deletion, which is likely to keep
the whole depth of the graph unchanged.

Figure 1 (g) shows the resource loading sequence when execution of c.js
accesses e.jpg instead of d.jpg, and Fig. 1 (h) shows the graph after the insertion
and deletion.

Now, we mention the impact of proposed resource preloading when resource
caching mentioned in Sect. 1 is also used. Generally, resource preloading will have
a higher performance impact when the local cache is empty (cold cache) since
it can significantly reduce the network latency of resource loading. Even if the
resources are available in the local cache (warm cache), the resource preload-
ing still has a performance impact by loading the resources from the disk cache
to the memory of the browser, faster than when they are loaded on demand,
especially when the browser is newly launched when the device (e.g., the TV) is
turned on (if the browser accesses the same web page many times, the resources
will eventually be saved to the memory cache, reducing the impact of preload-
ing, though). Actually, not all resources can be cached; those resources whose
contents are updated frequently cannot be cached as per the instructions of the
web server. We performed preloading with both cold cache and warm cache in
the experiment.

44 J. Yeo et al.

Fig. 2. UX-based Ordering vs. depth/height-based one for Resource Preloading

4 Preloading Order for Better User Experience

The only ordering requirement enforced by the original dependence graph is to
preload the parent resources earlier than the child resources, thus in a topologi-
cally sorted order. Among the nodes with no paths in the graph, any ordering is
possible, but the previous section followed the heuristics used by SWAROVsky,
which prefers nodes closer to the root node (depth is smaller) and prefer those
with the longest descending chain for the siblings whose depth is the same
(height is longer). Figure 2 (a) shows an example of smart TV web app which
includes 15 resources. Figure 2 (b) shows the corresponding dependence graph.
Figure 2 (c) depicts an example of a regular resource loading sequence without
preloading. Figure 2 (d) illustrates an example resource loading sequence with

Accelerating Web Start-up with Resource Preloading 45

depth/height-based preloading when there are three preloading threads, with the
preloading order attached to the dependence graph. Conceptually, they imply
that the total page load time (PLT) as well as the above-the-fold time (AFT)
[1] (which is what the user see) can improve with resource preloading.

One issue with the above preloading is that it tends to delay the preloading
of the image resources located at the bottom of the graph, thus affecting the user
experience. To improve it, we propose an ordering heuristic that favors images,
especially those images that affect human perception. In fact, there have been
many researches on prioritizing resource loading for quality-of-experience (QoE).
They show that earlier loading of bigger images and those images closer to the
center of the screen improves QoE [2,8]. Additionaly, the original finish time of
loading an image is important [2,16].

Using these factors, we can define parameters such as the size of images, the
distance from the center, and the original loading finish time. Then, we define a
QoE score for each image resource with three terms, as follows:

QoE score =
area

window size
+

(
1 − distance

max distance

)
− finished time

last image finished time

The first, second, and the third terms considers the size factor, the distance-
from-the-center factor, and the original loading time factor, respectively. We
could give a different weight for each term, but our experiments showed that
there was no notable difference for user perception. We sort the images in a
descending order of the QoE score and decides the preloading order among them.
Other resources in the dependence graph on which each image is dependent
should be preloaded earlier than the image, and in this way we decide the final
preloading order for all resources. Figure 2(e) shows the conceptual loading
sequence based on the new preloading order attached in the dependence graph,
obtained after sorting the QoE score of images. The image resources and the
dependent resources are loaded earlier, which reduces the AFT, thus improving
user experience (UX), while the PLT is similar. In fact, there is a video clip at
https://youtu.be/EcQeWVd4gj4 that demonstrates the app start-up behavior
for the three configurations (original, depth/height-based preloading, UX-based
preloading) for the above TV app. It shows that preloading leads to much faster
start-up than original start-up, and the UX-based preloading allows users to feel
slightly faster start-up.

5 Implementation

We implemented the proposed preloading technique on the Chromium browser.
For each run, we generated a resource table which records the start time, the
end time, and the use time for each resource. During the process of each resource
loading by the browser (e.g., initiating loading request, starting the fetch from
the network, ending the fetch), some callback functions are called, so we modified
those callback functions to record these times at the table. When the app start-
up ends, we build or update the dependence graph using the resource table.

https://youtu.be/EcQeWVd4gj4

46 J. Yeo et al.

Table 1. Number of resources used for web apps

Apps Browser pre-loaded
resources

Warm cached
resources

Total
resources

Google Movies 4 22 23

Tvigle 3 40 56

POOQ 2 208 234

RU-tv 35 64 71

Plex 0 5 7

We implemented the preloading request logic by following the internal imple-
mentation of the preloading directives in the browser, but we send the request
header as well as the URL. Chromium browser allows a maximum of 10 parallel
preloading requests, yet 6 for a single host. The Chrome browser has its own
priorities and scheduling rules for preloading requests, so we control the number
of invocation of preloading requests appropriately, so as not to affect the original
resource loading drastically.

For some resource, each run intentionally changes its URL by adding a ran-
dom number at the end of the URL, even though it is actually the same resource
(the server understands this, thus sending the same resource to the client). This
is for preventing the resource from being cached. This causes a problem for our
update of the dependence graph since such a resource might be classified as
adding a new resource. This is a well-known problem. To handle this problem,
we employ a URL matching heuristic in [14], to check if different URLs actually
mean the same resource.

For implementation of UX-based ordering, we obtain the size and position of
each image resource by accessing the layout event where the DOM tree and the
CSSOM tree are merged to a render tree.

6 Evaluation

We performed two types of evaluation. One is to compare client-only resource
pre-loading in Sect. 3 with regular resource loading. The other is to compare the
ordering heuristics of depth/height in Sect. 3 and UX in Sect. 4.

6.1 Resource Preloading vs. Regular Loading

For the first evaluation, we evaluate the performance impact of the proposed
dependence-based, client-only resource preloading, compared to regular resource
loading. We experimented with five web apps used in a commercial smart TV
listed in Table 1, which are URL-based apps, thus similar to browsing web pages.
We performed the experiments on an embedded board (Odroid-C2) with 1.5GHz
ARM CPU and 2GB memory (with Chromium version 66), and on a commercial

Accelerating Web Start-up with Resource Preloading 47

Fig. 3. Web app start-up time with cold cache

Fig. 4. Web app start-up time with warm cache

smart TV with an ARM-based SOC (with Chromium version 68). We measured
the app start-up time until the first screen of a web is displayed on the screen.
For the embedded board, we evaluate the performance impact based on diverse
network conditions by saving all resources of a web app in a server and by
emulating the network between the server and the client [7]. We experimented
with the network bandwidth of 10, 25, 50, and 100 Mbps and the network latency
of 50 ms, 100 ms, and 150 ms. There is no difference of app start-up time for the
network bandwidth, so we report the result with the bandwidth of 100 Mbps only.
To measure the app start-up time, we used above-the-fold time (AFT) [1], instead
of page-load time (PLT). PLT measures the time when all resources included in
the HTML are loaded, while AFT measures the time when all resources above
the fold are displayed on the screen, thus better reflecting user experience. We
experimented with both cold cache and warm cache.

For the smart TV experiment, we measured the wall clock time by connecting
the TV to the internet by the Ethernet. Since the network latency would be even
smaller than the 50 ms of the board experiment, it is worse environment to show
the impact of preloading. Also, the TV is equipped with highly optimized warm
cache specialized to the TV, so it is even disadvantageous. Finally, the CPU
quality of the TV is worse than the board, which would make resource loading
less critical to app start-up time. Nevertheless, we obtained tangible performance
impact, as we will see shortly.

48 J. Yeo et al.

Fig. 5. Web app start-up time on a smart TV with warm cache

For the embedded board, we measure the start-up time for the original (Orig-
inal), Tempo-based preloading exactly as implemented in [21] (Tempo), and ours
with depth/height heuristic (Proposed). For the TV, we measured the start-up
time of Original and Proposed.

It should be noted that Original also does preloading for some resources using
the default pre-loader of the browser. Tempo or Proposed preloads on its own
way.

Figure 3 shows the app start-up time on the embedded board with cold cache
for three network latencies. The start-up time of our Proposed is shorted than
Original and Temp for all five apps for all network latencies. For longer network
latencies, preloading has a better impact, as we can expect. Our Proposed has an
average improvement of 27% compared to Original. It is even better than Tempo
by 11%, but we found that it is mostly due to the lack of specifying request
headers, mentioned in Sect. 2. If we experiment with the same condition, the
results were similar and we found that at the beginning of the start-up, Proposed
preloads better resources than Tempo, but as the time goes on, the difference
between two preloading methods become little (since resources are loaded even
before invoking preloading requests). However, the second experiment with the
ordering heuristics for UX in the next subsection will show the value of more
precise ordering using the dependence graph.

Figure 4 shows the performance impact with warm cache. Proposed shows an
average of 19% improvement over Original, which is better than 6% improvement
of Tempo. The overall start-up time with warm cache is shorter than with cold
cache, since cached resources are loaded from the local disks rather than from
the network.

Table 1 shows the total number of resources used in each app. It also shows
the number of resources preloaded by the browser pre-loader as well as the
resources saved in the local cache when warm cache is used. For the cold cache
experiment, the total resources minus the browser pre-loaded resources will be
the target of preloading from the network for Proposed and Tempo. For the
warm cache experiment, among these target resources, the cached resources will
be preloaded from the local cache and the remaining resources will be preloaded
from the network. Tvigle and POOQ have a relatively large number of un-cached

Accelerating Web Start-up with Resource Preloading 49

Fig. 6. UX-based vs. Depth/Height-based Ordering (lower is better)

Fig. 7. Above-the-fold time for Tvigle app when resources change

resources, thus showing a higher performance impact of preloading, while others
show less impact due to preloading from local cache.

Figure 5 shows the web app start-up time on the smart TV for four TV
apps. Proposed shows an average of 13% improvement over Original, which is
lower than the board experiment but still tangible. This is due to faster network
latency, lower CPU performance, highly optimized caching policy of the TV, as
explained previously. However, for Arirang TV and POOQ, the difference is 2 s
and 1.5 s, respectively, so TV users can feel the difference with their eyes.

6.2 Preloading Order Based on UX vs. Depth/Height

We also experimented with preloading based on UX-based ordering compared
with the depth/height-based ordering. We measure the AFT as well as the speed
index (SI) [5] for this experiment (SI is another popular UX metric). The network
delay is 150 ms and the cold cache is used. For this experiment, we used the two
web apps for TV (Tvigle and POOQ) and four popular web pages (other TV
apps did not show notable difference).

Figure 6 shows the AFT and SI for the original (Ori), the depth/height-based
preloading (DH), and the UX-based preloading (UX). We also measured the

50 J. Yeo et al.

PLT for comparison. We can see that for two web apps, both AFT and SI of UX-
based are better than Depth/Height by as much as 18% and 20%, respectively.
For the web pages, AFTs are similar but SIs of UX-based ordering works better,
exploiting the precise dependences of the dependence graph. One thing to note
is that there is little difference of PLT for both UX and DepthHeight, so the
total time to load all resources is similar, but user experience improves.

6.3 Update of Dependence Graph with Resource Change

If the resources of a web app (page) change as time goes on, our preloader based
on the old dependence graph will preload the old resources and not preload the
new correct resources, degrading the start-up time. So we proposed incremental
update of the dependence graph to recover the start-up time from degradation.

To evaluate the performance impact of our incremental update of the depen-
dence graph, we use the Mahimahi tool [14] to record web resources and replay
the visits. Figure 7 shows the start-up time (AFT) for the Tvigle app when we
ran the app 24 times with 12-h intervals. Original means the original start-up
with no preloading, and DepthHeight-incre and UX-incre mean preloading with
incremental update of the dependence graph. UX-immed means that we make
two consecutive web app loads for each simulated visit. Browser re-compute the
dependence graph and the UX-based order from scratch in the first web app
load and measured the AFT in the second web app load. It would be a some-
what ideal start-up time. We found that at the 12-th visit, around 10 resources
were changed, so we can see a sharp increase of the start-up time for both
depth/height and UX heuristics. However, we can recover it at the 13-th visit
due to our incremental update of the dependence graph. This result indicates
that our client-only preloading can cope with the change of resources by updating
the graph on demand.

7 Summary and Future Work

In this paper, we proposed dependence-based, client-only solution for resource
preloading. Unlike an existing client-only solution, we consider resource preload-
ing order based on dependence graph. Unlike an existing dependence-based solu-
tion working on an offline proxy server, our solution updates the dependence
graph at the client online, even while preloading the resources. We also pro-
posed ordering heuristics for better user experience. Our experimental results
indicate that the proposed solution shows a tangible performance impact on real
TV apps, on the commercial TV as well as on the embedded board.

As a future work, we can improve the heuristics to update the dependence
graph. For a new resource added, if we can consider the network time as well
as the use time for the candidate resources which the node is dependent on, we
might be able to predict its right position in the graph. Also, when a resource is
loaded and its event handler requests a new resource, they are dependent, which
could be identified if we analyze the call stack of the JavaScript engine.

Accelerating Web Start-up with Resource Preloading 51

We can use machine learning to decide the preferable images for each web
site, instead of the current fixed preference based on the size and the location of
the images.

Acknowledgement. This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2020R1A2B5B02001845) and LG Electronics.

References

1. Brutlag, J., Abrams, Z., Meenan, P.: Above the fold time: measuring web page
performance visually. In: Velocity Web Performance and Operations Conference
(2011)

2. Butkiewicz, M., Wang, D., Wu, Z., Madhyastha, H.V., Sekar, V.: Klotski: repriori-
tizing web content to improve user experience on mobile devices. In: 13th USENIX
Symposium on Networked Systems Design and Implementation, pp. 439–453 (2015)

3. Everts, T.: New findings: for top ecommerce sites, mobile web performance is wildly
inconsistent (2018). https://blog.radware.com/applicationdelivery/wpo/2014/10/
2014-mobile-ecommerce-page-speed-web-performance/

4. Galletta, D.F., Henry, R.M., Mccoy, S., Polak, P.: Web site delays: how tolerant
are users? Inf. Syst. Res. 17(December 2002), 20–37 (2002)

5. Google: Speed index (2012). https://sites.google.com/a/webpagetest.org/docs/
using-webpagetest/metrics/speed-index

6. Grigorik, I., Weiss, Y.: Preload (2018). https://www.w3.org/TR/preload/
7. Hubert, B.: tc(8) - Linux man page (2018). https://linux.die.net/man/8/tc
8. Kelton, C., Ryoo, J., Balasubramanian, A., Das, S.R.: Improving user perceived

page load times using gaze. In: 14th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2017, Boston, MA, USA, 27–29 March 2017,
pp. 545–559 (2017)

9. Liddle, J.: Amazon found every 100ms of latency cost them 1% in sales
(2008). https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-
them-1-in-sales/

10. Liu, X., Ma, Y., Liu, Y., Xie, T., Huang, G.: Demystifying the imperfect client-
side cache performance of mobile web browsing. IEEE Trans. Mob. Comput. 15(9),
2206–2220 (2016)

11. Liu, X., Ma, Y., Wang, X., Liu, Y., Xie, T., Huang, G.: SWAROVsky: optimizing
resource loading for mobile web browsing. IEEE Trans. Mob. Comput. 16(10),
2941–2954 (2017)

12. Ma, Y., Liu, X., Zhang, S., Xiang, R., Liu, Y., Xie, T.: Measurement and analysis
of mobile web cache performance. In: Proceedings of the 24th International Con-
ference on World Wide Web, WWW 2015, pp. 691–701. ACM Press, New York
(2015)

13. Netravali, R., Goyal, A., Mickens, J., Balakrishnan, H.: Polaris: faster page loads
using fine-grained dependency tracking. In: Proceeding NSDI 2016 Proceedings of
the 13th USENIX Conference on Networked Systems Design and Implementation,
pp. 123–136. USENIX Association (2016)

14. Netravali, R., et al.: Mahimahi: accurate record-and-replay for HTTP. In: Proceed-
ings of the 2015 USENIX Annual Technical Conference (USENIC ATC 2015), pp.
417–429 (2015)

https://blog.radware.com/applicationdelivery/wpo/2014/10/2014-mobile-ecommerce-page-speed-web-performance/
https://blog.radware.com/applicationdelivery/wpo/2014/10/2014-mobile-ecommerce-page-speed-web-performance/
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://www.w3.org/TR/preload/
https://linux.die.net/man/8/tc
https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

52 J. Yeo et al.

15. Ruamviboonsuk, V., Netravali, R., Uluyol, M., Madhyastha, H.V.: Vroom: accel-
erating the mobile web with server-aided dependency resolution. In: Proceedings
of the Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM 2017, pp. 390–403. ACM Press, New York (2017)

16. Varvello, M., Blackburn, J., Naylor, D., Papagiannaki, K.: EYEORG: a platform
for crowdsourcing web quality of experience measurements. In: Proceedings of the
12th International on Conference on emerging Networking EXperiments and Tech-
nologies, CoNEXT 2016, pp. 399–412. ACM Press, New York (2016)

17. Vesuna, J., Scott, C., Buettner, M., Shenker, S., Berkeley, U.C.: Caching doesn’t
improve mobile web performance (Much). In: USENIX ATC 2016 Proceedings of
the 2016 USENIX Conference on USENIX Annual Technical Conference, pp. 159–
165 (2016)

18. Vrountas, T.: How Slow Mobile Page Speeds Are Ruining Your Conversion Rates
(2018). https://instapage.com/blog/optimizing-mobile-page-speed

19. Wang, X.S., Krishnamurthy, A., Wetherall, D.: Speeding up web page loads with
Shandian. In: Proceedings of the 13th USENIX Conference on Networked Systems
Design and Implementation, p. 15. USENIX Association (2016)

20. Wang, Z., Lin, F.X., Zhong, L., Chishtie, M.: Why are web browsers slow on
smartphones? In: Proceedings of the 12th Workshop on Mobile Computing Systems
and Applications, HotMobile 2011, p. 91. ACM Press, New York (2011)

21. Wang, Z., Lin, F.X., Zhong, L., Chishtie, M.: How far can client-only solutions go
for mobile browser speed? In: Proceedings of the 21st International Conference on
World Wide Web, WWW 2012, p. 31. ACM Press, New York (2012)

22. Zhu, Y., Reddi, V.J.: WebCore: architectural support for mobile Web browsing.
In: 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), vol. 10, no. 4, pp. 541–552, October 2014

https://instapage.com/blog/optimizing-mobile-page-speed

An Analysis of Throughput and Latency
Behaviours Under Microservice

Decomposition

Malith Jayasinghe(B), Jayathma Chathurangani, Gayal Kuruppu,
Pasindu Tennage, and Srinath Perera

WSO2, Colombo, Sri Lanka
{malithj,jayathma,gayal,pasindu,srinath}@wso2.com

Abstract. Microservice architecture is a widely used architectural style
which allows you to design your application using a set of loosely coupled
services which can be developed, deployed, and scaled independently.
The service decomposition is the act of decomposing (breaking) a coarse-
grained service into a set of fine-grained services that collectively perform
the functionality of the original service. The service decomposition intro-
duces additional overhead due to inter-service communication of services
which impacts the performance. In this paper, we study the effect of ser-
vice decomposition on the throughput and average latency. We perform
an extensive performance analysis using a set of standard microservice
benchmarks with different workload characteristics. Our results indicate
that when we decompose a service into a set of micro-services the per-
formance of the new application can improve or degrade. The factors
which impact the performance behaviours are the number of service calls,
the service demand, concurrency (i.e. number of concurrent users) and
the decomposition strategy. In addition to the experimental performance
evaluation, we analyze the performance impact of service decomposition
using queueing theoretic models. We compare the analytical results with
experimental results and notice that analytical results match well with
the experimental results.

Keywords: Service decomposition · Orchestration · Choreography ·
Throughput · Latency · Closed system

1 Introduction

Micro-service architecture has become a popular architectural style because it
allows organizations to develop robust and extensible applications. It separates
a complex application into a set of loosely coupled services that communicate
with each other using a set of lightweight protocols and these services can be
deployed and scaled independently. Microservice applications have the ability to
easily adapt to changing user requirements in contrast to monolithic applications.

Service decomposition is the act of decomposing (breaking) a coarse-
grained service into a set of fine-grained services that collectively perform the
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 53–69, 2020.
https://doi.org/10.1007/978-3-030-50578-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_5

54 M. Jayasinghe et al.

functionality of the original service. Service decomposition introduces additional
overhead due to inter-service communication of services which impacts the per-
formance. The objective of this paper is to investigate the effect of service decom-
position on the performance of microservice applications. Although there is exist-
ing work [1,12,13,15–17] which investigates various performance behaviours of
microservices, these do not specifically investigate performance behaviours of a
microservice under service decomposition. In particular these work do not inves-
tigate the effect of the number of services, the number of concurrent users, service
demand and the number of network calls on the performance. The main focus of
existing work has been to compare the performance of monolithic and microser-
vice applications [16,17], analyzing the tail latency behaviours of microservice
applications [13,15], analyzing the performance of microservice applications run-
ning on containers [1,12], understanding the performance of microservices on
server-less platforms [7] and how to develop the queueing theoretic and simu-
lation models that can estimate the performance of microservice applications
[8,14]. In this paper, we perform an extensive performance analysis using a set
of standard microservice benchmarks and study the impact of service decom-
position on the performance. The main contributions and key findings of this
paper are as follows.

– Using 4 standard microservice benchmarks (I/O bound, CPU bound, etc), we
investigate the impact of service decomposition on the performance of the ser-
vices. We decompose each microservice into multiple microservices using two
architectural styles (namely the orchestration and choreography) and then
we investigate the performance by varying the number of concurrent users.
We show that performance depends on a number of factors which include the
number of concurrent users, the number of services, the number of I/O calls,
and the decomposition method.

– When we decompose microservices we observed degradation in the perfor-
mance under a lower number of concurrent users. This degradation in the
performance (under lower number of concurrent users), however, is not highly
significant and it increases (at a very low rate) with the increasing number
of services.

– When we decompose microservice benchmarks under higher number of con-
current users the performance can degrade or improve depending on workload
characteristics of the individual microservice. If the service is I/O bound then
it is very likely to observe a degradation in the performance (as opposed to
an improvement). In such cases, the overall throughput depends on the pro-
cessing rate of the bottleneck service which is typically the one that has the
highest number of incoming and out-going I/O calls. On the contrary, if the
service is CPU bound then it is likely to observe an improvement in the
performance. The main reason is that the additional resources (e.g. cores)
available will help to boost the performance.

– We provide a Queueing-theoretic based analytical model which can be used to
evaluate the performance in micro-service based architectures and we use this
model to compare the experimental and analytical results. The results closely

The Impact of Service Decomposition on the Performance 55

match for majority of cases. In particular, we use mean value analysis which
allows one to model the behaviour of a set of micro-services communicating
with others. The mean value analysis (MVA) is a recursive algorithm used to
find the expected waiting times, queue lengths in each service and throughput
of a closed queueing network.

The rest of this paper is organised as follows. Section 2 presents the method-
ology we used in this paper. Section 3 presents the evaluation results. Related
work is presented in Sect. 4. Section 5 concludes the paper.

2 Methodology

In this section we provide the methodology that we use in this paper to investi-
gate the performance impact of service decomposition.

2.1 Microservice Benchmarks

The performance evaluation we carry out in this paper is based on a set of stan-
dard microservice micro-benchmarks. In total there are 4 microservice bench-
marks, namely, the simple echo-service [15], the prime-check service1, the news-
portal microservice and news-portal service with cache [9]. The echo microser-
vice represents an I/O bound microservice. It simply echos back the requested
which is posted to it [15]. The prime-check is a part of the well-known system-
bench benchmark (see footnote 1) which is used to evaluate the performance of
CPU bound applications on multi-threaded systems. We implement the prime-
check within the microservice and we carry out the analysis using different prime
numbers (which represent different levels of CPU utilization). The prime-check
microservice checks if a given number is a prime number or not. The higher
the value of the prime number the more computationally intensive the service
call becomes. We carry out the analysis using 3 levels of processing: CPU level 1
(small prime), CPU level 2 (moderate size prime) and CPU level 3 (large prime).
The news-portal microservice is a famous use-case which relates to decomposi-
tion of microservices [9] with a database. The news-portal microservice serves
users who request three different types of news, namely, the sports, politics and
famous news (i.e. celebrity news). This news is stored in a database. We will
provide the details of how we decompose each of these microservices sections
into multiple microservices in the following sections.

2.2 Decomposition Strategy

This section provides the details on how we decompose the microservices we
presented in the previous section. We decompose each microservice into a set of
microservices following two main architectural styles, namely the choreography
and orchestration.
1 https://github.com/akopytov/sysbench.

https://github.com/akopytov/sysbench

56 M. Jayasinghe et al.

1. Choreography: The service choreography can be thought of as a decentralized
way to perform service composition in which there is a global perspective
of the functionality of individual services and how they communicate with
each other. Let us now provide the details of how we decompose the four
microservices presented in the previous section (under Choreography)
(a) Echo-Service: The echo microservice represents the simplest I/O bound

service which echoes back the request that is posted to it. The echo
microservice does not have any functionality which we can further break
down into smaller units. As such when we decompose the echo service we
simply forward the messages to the next service. Figure 1 illustrates the
architecture when we decompose the service into 3 microservices.

Fig. 1. Decomposition of Echo and Prime Services

(b) Prime-Service: The flow of messages in this use case is identical to the
previous one. However, in this use case, we introduce processing into the
service. The objective is to analyse the performance under different levels
of processing. As pointed out we implement prime-check (a commonly
used CPU benchmark) in the service where the service checks if a given
number is a prime or not. Let n be the number which the user wants to
perform the prime check. In the single service case, it simply performs
the prime check and sends the response back to the client. In the case of
two services the first service checks if the given number can be divided by
a number in the range 2 to n/2. If yes it sends the response to the user.
Otherwise, it sends a message to the second service which checks if the
number can be divided by a number in the range n/2+1 to n−1. Once it
receives the response it sends the response back to the client. Similarly, in
the case of three services, the work is divided among the three services. In
our experiments, we use different prime numbers to control the amount
of processing.

(c) News-Portal Service: The flow of the messages in this use case is similar
to the previous 2 cases except that each micro-service has a database
which contains news data. For the single service case we have all the news
data (Famous, Political and Sports) in a single database. Then for the 2
services case, we have Famous and Political news in a single database and
the Sports news in the other database. Lastly, we have Famous, Political
and Sports news data in three separate databases for the 3 services case.
The query we test is “get all types of news”. Figure 2 illustrates this use
case.

The Impact of Service Decomposition on the Performance 57

Fig. 2. Decomposition of news-service

(d) News-Portal Service with Cache: This use case is identical to the previous
use case except that there is a cache which caches the recently accessed
data in the database.

2. Orchestration: In service orchestration, there is a centralized way to perform
service composition where there is a composite service (orchestrator) that
coordinates the interaction among different services.
(a) Echo-Service: With single microservice, the client sends a message to an

orchestrator service which will send a message to the echo-service which
echos back the response to the orchestrator. The orchestrator will then
send the response back to the client. When there is more than one echo-
service the orchestrator sends a message to each echo-service and after
receiving the response from each echo-service it sends the message back
to the client. Figure 3 illustrates the orchestration with 3 echo services.

Fig. 3. Decomposition of Echo and Prime Service

(b) Prime-Service: Let n be the number to perform the prime check. In the
case of a prime service, the client sends the request to orchestrator which
sends a request to the prime-service which performs the prime-check and
sends the response back to the orchestrator which sends the response back
to the user. When there are 2 prime services the orchestrator receives a
request from the client and it first sends a request to the first service
which checks if the number can be divided by a number in the range 2 to
n/2 and sends a response back to the orchestrator. If the number needs
further checking it sends a request to the second service which then check
if n can be divided by a number in the range n/2 + 1 to n − 1. Once
the orchestrator receives the reply from the second service it sends the
response to the client. Similarly, in the case of 3 services, the work is
divided among the 3 participating services instead of 2.

58 M. Jayasinghe et al.

(c) News-Service: Similar to the previous use case there is a composite ser-
vice which sends the requests to a set of microservices. Each microser-
vice fetches the data from its database and sends the reply back to the
orchestrator. Once the orchestrator receives responses from all the micro-
services it sends the consolidated message to the user. Figure 4 illustrates
this use case for the case of three microservices (i.e. famous news service,
political news services, sports news service)

Fig. 4. Decomposition of news-service

(d) News-Portal Service with Cache: This use case is identical to the previous
use case except that there is cache in each micro-service which caches the
recently accessed data stored in the database.

The performance evaluation we carry out in this paper is a closed-system per-
formance evaluation. Note that in a closed system there is a fixed number of
users in the system. The most commonly used term for the number of users is
concurrency (or the number of concurrent users). We conduct our performance
evaluation under different levels of concurrencies. In total there are 4 microser-
vice benchmarks and two architectural styles. This results in 8 use cases in total.
For each of these use cases, we vary the number of microservices from 1 to 3 and
perform tests by varying the concurrency.

2.3 Implementation Details

We implemented 8 use cases using Ballerina (Version 0.981.1), a programming
language which is designed to network distributed applications. We used HTTP
as an application layer protocol for our implementation. The source code for the
implementation can be found in2. We use JMeter as the load testing client. We
carry out our performance tests under different concurrent users (1, 2, 50, 100,
300, 500, 700, 1000) and message sizes (50 bytes, 400 bytes, 1024 bytes). The
full set of results can be found in3. We run each service on machines with 4 cores
and allocate 16 GB (15.5 GB usable) memory. The bandwidth of the network
was 1 Gbps.
2 https://github.com/gayalkuruppu/microservices-performance.
3 https://github.com/gayalkuruppu/microservices-performance/tree/master/

Results.

https://github.com/gayalkuruppu/microservices-performance
https://github.com/gayalkuruppu/microservices-performance/tree/master/Results
https://github.com/gayalkuruppu/microservices-performance/tree/master/Results

The Impact of Service Decomposition on the Performance 59

3 Performance Evaluation

3.1 Performance Behaviours for I/O Bound Service

Let us first take a look at the performance behaviour when we decompose an
I/O bound service into a set of services. Figure 5 illustrates the performance
behaviours for echo service under choreography (refer to Sect. 2.2). We observe
the best throughput and the latency with just a single echo-service (compared to
2 and 3 echo services in a chain). Single echo-service performs significantly better
compared to 2 and 3 (echo) services (in a chain) under high concurrency levels
(note: Fig. 1 shows the architecture with 3 echo services). One may think that
we should see an improvement in the performance (when we increase the number
of services) because when we increase the number of services we provision more
resources (i.e. core, memory, etc) to individual microservices. However, instead
of performance improvements, we observe a performance degradation. Let us
now explain why we observe this performance degradation. Recall that in this
particular use-case each microservice receives the message from the previous
microservice and forwards it to the next microservice and once it receives the
response, it forwards it to the previous microservice. Since each microservice
forwards the message back and forth there is no processing in the service level.
However, there is processing associated with performing I/O and this processing
becomes significant under high concurrency levels due to the significantly large
number of network service calls. When we have one echo service it receives the
request from the client and sends the response back to the client. When we have

Message Size = 50
Bytes

Message Size = 400
Bytes

Message Size = 1024
Bytes

Message Size = 50
Bytes

Message Size = 400
Bytes

Message Size = 1024
Bytes

Fig. 5. Performance of (I/O bound) echo-service under service decomposition (with
Choreography)

60 M. Jayasinghe et al.

two echo services the first service forwards the message to the second service
and once it receives the response from the second service it sends the response
to the client. In this case, the first service has to perform two times more I/O
compared to the single echo service case. Therefore, when we have two services
communicating in this manner the first service becomes the bottleneck due to
additional processing overhead of having to perform more I/O. This is the reason
why we see a significant drop in performance when we increase the number of
microservices from one to two. When we increase the number of services from two
to three, we also see a degradation in the performance. However, this degradation
is not as significant as the degradation we see when we increase the number of
services from one to two. When we have three (echo) services the first and second
service will need to perform more I/O compared to the last service (refer to
Fig. 1). Therefore, the throughput of the use case will depend on the processing
rate of the first and second services. In this case, we expect the processing rates
of these two services to be similar (since they both do the same amount of I/O)
and it to be similar to the processing rate of the first service when we have two
services. Hence the throughput of 3 services should converge to the throughput
of the two services. However, we do not exactly notice this behaviour rather we
see that three services have lower performance compared to two services (under
a higher number of concurrent users). We believe this is due to the effect of other
factors (such as minor variations in hardware on which we run these tests).

3.2 The Performance Behaviours of Prime-Service with Different
Processing Levels (Service Demands)

In the previous section, we discussed the performance behaviours under service
decomposition for simple I/O bound service. We noticed that the performance
degrades as the number of services increases in particular under high concurrency
levels. In this section, we will investigate the performance behaviours under ser-
vice decomposition for the prime-service with different levels of service demands.
The way we control the service demand (i.e. the amount of processing) is by vary-
ing the value of the prime number. We carry out our analysis under 3 levels of
processing, namely, CPU level 1 (minimal), CPU level 2 (moderate) and CPU
level 3 (high). For each of these levels, we investigate the effect of the number
of services on the throughput and the latency. Figures 6 and 7 show the perfor-
mance behaviours under choreography and orchestration respectively. For CPU
level 1, we notice similar performance behaviours as simple I/O bound echo ser-
vice which we investigated in the previous section. This means that for CPU
level 1, I/O overhead plays an important role. The service which has the highest
number of incoming and out-going service calls becomes the bottleneck (service)
and the processing rate of this service will determine the throughput of the appli-
cation. For example, if we consider orchestration with the prime service under
CPU level 1, the orchestrator service is the bottleneck service. As the number
of primes-services increases, the number of prime-services the orchestrator has

The Impact of Service Decomposition on the Performance 61

to communicate also increases. For example, when we have a single prime ser-
vice, the orchestrator service communicates with two entities concurrently (i.e
client and prime-service). When we decompose the prime service into two ser-
vices, orchestrator communicates with 3 entities, namely, the client and the two
prime services and so on. The increasing number of I/O calls increases the I/O
overhead on the orchestrator. As a result, its processing rate decreases with an
increasing number of prime-services. This results in the throughput and latency
to degrade. Let us now consider the behaviour when we increase the processing
i.e. by increasing the value of the prime number. When we increase the value of
the prime number we can see a significant change in the performance behaviours
(refer to Figs. 6 and 7). In particular, we notice that decomposing the service
into multiple services under CPU level 3 has clear performance benefits. For
example, if we consider service orchestration with prime-service when the prime
number = 1000003, we notice that we get 2x improvement in the performance
with 2 services (compared to single service) while we get 3x the performance
with 3 services (compared to the single service). The reason for this behaviour
is that the I/O overhead is no longer the main determinant of the performance
it is rather the service level processing. For large prime numbers having more
services means we have more resources to process the requests and therefore the
performance improves with the increasing number of services.

Level 1 (Prime: 521) Level 2 (Prime: 7919)
Level 3: (Prime:
10000019)

Level 1(Prime - 521) Level 2 (Prime: 7919) Level 2 (Prime:
10000019)

Fig. 6. Performance of prime-service under service decomposition (with choreography)

62 M. Jayasinghe et al.

Level 1 (Prime: 521) Level 2 (Prime: 7919)
Level 3 (Prime:
1000003)

Level 1 (Prime: 521) Level 2 (Prime: 7919) Level 3 (Prime:
1000003)

Fig. 7. Performance of Prime-service: decomposition (with orchestration)

3.3 Microservices with DB Back-Ends

Let us now investigate the performance impact of service decomposition for ser-
vices with database back-ends using the news-portal service. Here, we decompose
a news-portal service into multiple services. For more details, refer to Sect. 2.
Figure 8 shows the performance behaviours for news-portal service with and
without DB cache. Clearly, the use of cache has resulted in an improvement in
the performance. We note the news-portal service by itself has the best perfor-
mance. We see performance degradation when we decompose the service into
multiple services. We noticed similar behaviour earlier with the prime-service
with CPU level 1 and the simple echo service. In the database use cases there
are three reasons why we do not get performance improvements with the increas-
ing number of services (1) DB operations in news portal-service are not com-
putationally heavy (simple select query) and in addition to this the size of the
database is relatively small (less than 100 rows of the data in database tables).
This means that processing times of the database queries are relatively small
(we can expect this behaviour to change for other DB use cases) (2) when we
increase the number of services the orchestrator has to do more I/O calls which
will result in additional I/O overhead making its processing rate to reduce (we
provided the same explanation in the previous sections when we explained the
performance degradation we observed in prime service with CPU level 1 and
simple echo service) (3) In addition to the I/O overhead the orchestrator has to
prepare the consolidated message which it will send to the client. This process-
ing further impacts the processing rate of the orchestrator. We observed similar
behaviour for news-portal service under choreography as well.

The Impact of Service Decomposition on the Performance 63

News-portal service
News-portal service
with cache

Fig. 8. Behaviour of throughput under service Decomposition

Table 1. Variable declaration

M Multi Programming Level (MPL)

μj Service Rate of the jth Server

λM
j Arrival Rate of the jth Server when the MPL is M

E[T
(M)
j] Expected total time at the jth server when the MPL is M

E[R] Expected Response Time

X Throughput

Δsi Processing time overhead for I/O with i number of service calls

3.4 Analytical Performance Evaluation

In the previous sections, we investigated the performance impact of service
decomposition using 4 microservices under two architectural styles. In this
section, we will develop a qeueing theoretic-based analytical model and study
the performance behaviours (throughput and response time. We use mean value
analysis (MVA) which is a recursive algorithm to find the expected waiting times,
queue lengths of a closed queueing network. MVA is established on arrival theo-
rem which relates to the recursive relationship between a system with the total
number of requests N , with the same system with the total number of requests
N − 1. Given the service rates μi and probability routines Pij , i.e. the probabil-
ity of a request travels from service i to j, we can find above expected response
time and throughput under a given number of concurrent users. MVA analy-
sis assumes exponentially distributed inter-arrival and exponentially distributed
service times (markovian assumptions) which is also an assumption in the pre-
vious queueing theoretic-based performance models [2,3,6,10]. For example, Liu
[6] uses markovian assumptions when developing performance models for SOA
applications. We provide the notation we use in this analysis in Table 1.

E[T (M)
j] =

1
μj

+
pjλ

(M−1)E[T (M−1)
j]

μj
(1)

64 M. Jayasinghe et al.

λ(M−1) =
M − 1

∑k
i=1 piE[T (M−1)

i]
(2)

pj =
λ
(M)
j

∑k
i=1 λ

(M)
i

(3)

λ(M) =
k∑

i=1

λ
(M)
i (4)

E[R] =
k∑

i=1

E[T (M)
j] (5)

X =
M

E[R]
(6)

The asymptotic bounds for a closed system imply that the throughput of a
closed system converges to its busiest server’s service rate, which becomes the
bottleneck. When we decompose a service into a set of microservices it results
in each new service receiving requests and sending requests to other services.
This introduces additional overhead on each microservice communicating with
one another which impacts the throughput and the latency of microservices. As
already pointed out, for those use cases where there is minimal processing in the
service level, I/O overhead is the main determinant of the performance of the
system. We introduce Δsi, the service (processing) time overhead due to the ith

additional I/O call (note: we will illustrate how we compute this using a concrete
example later in this section).

Let us now provide a detailed analysis of one of the main use cases we dis-
cussed in the previous section. The analysis for the other use cases can be per-
formed in a similar manner. We now provide the analytical performance evalua-
tions for prime-service under service orchestration (and compare the analytical
results with the experimental results).

Fig. 9. Queueing model for orchestrator with 2 prime services

Figure 9 illustrates the queueing model for the case of two prime microser-
vices. We can extend this model for the case of n services. We model each
microservice as a server that process requests in a First-Come-First-Served
(FCFS) manner until completion (note: in the case of database use cases each
database server is modelled as a separate server). The processing rates for

The Impact of Service Decomposition on the Performance 65

microservices are obtained by benchmarking each microservice on its own. Note
that when using MVA we need to model the workload generator (in our case it
is the JMeter). For JMeter, we use a large processing rate because it is capable
of generating HTTP workloads at rates of over 50000 requests/second4.

In order to obtain the throughput vs users and average latency vs users
plots, we feed the processing rates of microservices, the routing probabilities
and Δsi. There is no direct way to analytically derive the Δsi. As such we use
experimental results to obtain Δsi. Computing the Δsi is rather straightforward
from the experimental results. We need to obtain the maximum throughput for
the orchestrator service and single service performance when the service is doing
an I/O bound task and then decompose the single service into two services and
obtain the maximum throughput. When we decompose the prime-service into
two services the number of communication links for orchestrator increases by one
resulting in a degradation in the maximum throughput. Using the differences
in the maximum throughput for single service and two services cases we can
compute Δs1. Similarly, when we decompose the service into three services we
can compute Δs2. In our experiments, we compute Δs1 (processing overhead on
the orchestrator service due to having 2 services compared to a single service) and
Δs2 (processing overhead on the orchestrator service due to having 3 services
compared to a single service) as 0.0769 ms and 0.125 ms respectively. In the
case of CPU bound application in which the orchestrator does not become the
bottleneck we still consider the Δsi to adjust the throughput of the orchestrator
service to cater for I/O overhead. However, in such cases the overall impact of Δsi
on the performance is minimal. Figures 10 and Figs. 11 illustrate the analytical
and experimental results.

4 Related Work

There is existing work which investigates numerous performance behaviours of
the microservice applications. One main category of such performance evalua-
tions make efforts to compare the performance of monolithic applications with
their microservice counterparts [16,17]. One of the key observations is the poor
performance of microservices applications compared to monolithic implemen-
tations. Existing work reports different levels of performance degradations in
microservices applications compared to monolithics. The reason for such perfor-
mance differences is the differences in the use cases and parameter values used in
these evaluations. For example, Villamizar et al. [17] claim a 13% degradation in
average latency in microservice applications compared to the monolithic using
the Web server use case. Rudrabhatla [11] claims that there is a 72% degrada-
tion in the throughput microservice applications compared to monolithic using
acmeair benchmark5. There is existing work which specifically focuses on inves-
tigating the tail latency behaviours of microservice applications [13,15]. Tennage
et al. [15] in their recent paper extensively investigates the tail latency behaviours
4 https://jmeter.apache.org/.
5 https://github.com/acmeair/acmeair.

https://jmeter.apache.org/
https://github.com/acmeair/acmeair

66 M. Jayasinghe et al.

Analytical vs Experimental(CPU level 1) Analytical vs Experimental(CPU level 1)

Fig. 10. Comparison of analytical and experimental results: CPU level 1

Analytical vs Experimental (CPU level 3) Analytical vs Experimental (CPU level 3)

Fig. 11. Comparison of analytical and experimental results: CPU level 3

of microservices applications. They point out that the latency distribution of
microservice applications have the power-low relationship however, they do not
exhibit the heavy-tailed characteristics. They also show that the number of con-
current users and the service demand impact the tail latency behaviours of
microservice applications. Sriraman et al. [13] investigate the ways in which the
operating system (OS) and network overheads impact the microservice median
and tail latency values. One of their main findings is that non-optimal OS sched-
uler decisions can result in tail latencies in microservice architectures.

Lloyd et al. [7] have done an extensive performance evaluation of the microser-
vices application in server-less platforms. They have identified four main factors
which impact the performance of microservices in server-less platforms and they
show that performance variations in the microservice application on server-less
can be up to 15x. Klock et al. [4] investigate the optimal deployment architec-
tures for microservice-based applications based on a set of different functional-
ities under a different number of concurrent users. They point out that having

The Impact of Service Decomposition on the Performance 67

multiple functionalities in one microservice is ideal for low concurrency levels
and better to disperse the functionalities (features) among multiple services for
optimum performance in high concurrency levels.

There are several existing researches [1,12] that investigate the performance
characteristics of microservices application in containers Amaral et al. [1] have
investigated the performance of microservices deployment on nested and master-
slave containers. This study shows that nested-containers do not have an impact
on the CPU utilization, however, there are some trade-offs in terms of network
performance compared to bare-metal and regular containers. Nane Kratzk [5]
investigates the performance impact of microservices running on containers, they
show that although containers are stated to be lightweight, they have a significant
impact on network performance. This can be in the range of 10% to 20%. Shadija
et al. [12] investigate performance impact of running a set of microservices in
a single container vs microservices partitioned across separate containers. They
have observed a negligible increase in service latency for the multiple container
deployment over a single container.

Efforts have been made to use queueing theoretic and simulations based
models to estimate the performance of microservices-based applications [8,14].
Gribaudo et al. [8] present a parametric simulation-based method that allows one
to model the behaviour of microservice architectures under different workload
mixes and design alternatives. Sun et al. [14] present queueing theoretic model
that models the relationship between workloads and performance metrics. They,
then predict applications’ response time by computing the parameters of the
performance model using an adaptive fuzzy Kalman filter.

Our contribution in this paper differs from existing work where we specifically
focus on investigating the way in which the service decomposition impacts the
performance. We perform an extensive performance analysis by decomposing a
service with different performance characteristics into a set of microservices. We
carry out this analysis by varying the number of microservices, concurrent users
and the method of decomposition.

5 Conclusion

In this paper, we extensively investigated the effect of service decomposition on
the performance of microservices. For this analysis, we have used 4 standard
microservice benchmarks. We showed that when you decompose a microservice
the performance can improve or degrade. The factors which impacts the per-
formance are the workload characteristics of the service being decomposed (I/O
bound, CPU bound), the number of services, the number of incoming and outgo-
ing service calls in each new service (after decomposing), the number of concur-
rent users. We extensively analyzed the behaviours by varying these parameters
and provided the reasoning for the behaviours we observed.

68 M. Jayasinghe et al.

References

1. Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M., Steinder, M.: Perfor-
mance evaluation of microservices architectures using containers. In: 2015 IEEE
14th International Symposium on Network Computing and Applications, pp. 27–
34. IEEE (2015)

2. Bondi, A.: Foundations of Software and System Performance Engineering: Process,
Performance Modeling, Requirements, Testing, Scalability, and Practice, August
2014

3. Didona, D., Quaglia, F., Romano, P., Torre, E.: Enhancing performance prediction
robustness by combining analytical modeling and machine learning. In: Proceed-
ings of the 6th ACM/SPEC International Conference on Performance Engineer-
ing, ICPE 2015, pp. 145–156. ACM, New York (2015). https://doi.org/10.1145/
2668930.2688047

4. Klock, S., Van Der Werf, J.M.E., Guelen, J.P., Jansen, S.: Workload-based clus-
tering of coherent feature sets in microservice architectures. In: 2017 IEEE Inter-
national Conference on Software Architecture (ICSA), pp. 11–20. IEEE (2017)

5. Kratzke, N.: About microservices, containers and their underestimated impact on
network performance (2017)

6. Liu, H.H.: Software Performance and Scalability: A Quantitative Approach. Wiley,
Hoboken (2009)

7. Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., Pallickara, S.: Serverless com-
puting: an investigation of factors influencing microservice performance. In: 2018
IEEE International Conference on Cloud Engineering (IC2E), pp. 159–169, April
2018. https://doi.org/10.1109/IC2E.2018.00039

8. Gribaudo, M., Iacono, M., Manini, D.: Performance evaluation of massively dis-
tributed microservices based applications. In: 31st European Conference on Mod-
elling and Simulation, Proceedings of the ECMS, Hungary (2017)

9. Pacheco, V.: Microservice Patterns and Best Practices: Explore Patterns
Like CQRS and Event Sourcing to Create Scalable, Maintainable, and
Testable Microservices. Packt Publishing (2018). https://books.google.lk/books?
id=gfi9tAEACAAJ

10. Romano, P., Leonetti, M.: Poster: selftuning batching in total order broadcast via
analytical modelling and reinforcement learning. SIGMETRICS Perform. Eval.
Rev. 39, 77 (2011). https://doi.org/10.1145/2034832.2034861

11. Rudrabhatla, C.K.: Comparison of event choreography and orchestration tech-
niques in microservice architecture. Int. J. Adv. Comput. Sci. Appl. 9(8), 18–22
(2018)

12. Shadija, D., Rezai, M., Hill, R.: Microservices: granularity vs. performance. In:
Companion Proceedings of the10th International Conference on Utility and Cloud
Computing, pp. 215–220. ACM (2017)

13. Sriraman, A., Wenisch, T.F.: Micro-suite: a benchmark suite for microservices. In:
2018 IEEE International Symposium on Workload Characterization (IISWC), pp.
1–12, September 2018. https://doi.org/10.1109/IISWC.2018.8573515

14. Sun, Y., Meng, L., Liu, P., Zhang, Y., Chan, H.: Automatic performance simulation
for microservice based applications. In: Li, L., Hasegawa, K., Tanaka, S. (eds.)
AsiaSim 2018. CCIS, vol. 946, pp. 85–95. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-13-2853-4 7

https://doi.org/10.1145/2668930.2688047
https://doi.org/10.1145/2668930.2688047
https://doi.org/10.1109/IC2E.2018.00039
https://books.google.lk/books?id=gfi9tAEACAAJ
https://books.google.lk/books?id=gfi9tAEACAAJ
https://doi.org/10.1145/2034832.2034861
https://doi.org/10.1109/IISWC.2018.8573515
https://doi.org/10.1007/978-981-13-2853-4_7
https://doi.org/10.1007/978-981-13-2853-4_7

The Impact of Service Decomposition on the Performance 69

15. Tennage, P., Perera, S., Jayasinghe, M., Jayasena, S.: An analysis of holistic tail
latency behaviors of Java microservices. In: 2019 IEEE 21st International Con-
ference on High Performance Computing and Communications, IEEE 17th Inter-
national Conference on Smart City, IEEE 5th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), pp. 697–705. IEEE (2019)

16. Ueda, T., Nakaike, T., Ohara, M.: Workload characterization for microservices. In:
2016 IEEE International Symposium on Workload Characterization (IISWC), pp.
1–10. IEEE (2016)

17. Villamizar, M., et al.: Evaluating the monolithic and the microservice architec-
ture pattern to deploy web applications in the cloud. In: 2015 10th Computing
Colombian Conference (10CCC), pp. 583–590. IEEE (2015)

W-ADE: Timing Performance
Benchmarking in Web of Things

Verena Eileen Schlott1(B) , Ege Korkan2 , Sebastian Kaebisch3 ,
and Sebastian Steinhorst2

1 Ludwig Maximilian University of Munich, Munich, Germany
verena.schlott@campus.lmu.de

2 Technical University of Munich, Munich, Germany
{ege.korkan,sebastian.steinhorst}@tum.de

3 Siemens AG, Munich, Germany
sebastian.kaebisch@siemens.de

Abstract. As the number of devices participating in the Internet of
Things (IoT) rapidly grows, the challenge of interoperability across IoT
platforms becomes more apparent. In order to limit fragmentation of
IoT development and improve compatibility, web mechanisms and tech-
nologies can be applied, forming the Web of Things (WoT). The World
Wide Web Consortium (W3C) supports the standardization of WoT by
providing a platform-independent specification called Thing Description
(TD). It is a machine-readable document that semantically describes
metadata, interactions and interfaces of a device, indicating its function-
ality. However, it does not provide any information about timing perfor-
mance, which is crucial for the design of optimal system compositions.
In this paper, we present W-ADE, a development environment for WoT
and TD that facilitates manual timing measurements and automated
timing performance benchmarking of Thing interactions, merely with a
TD available. Timing performance is guaranteed systematically, hence
allowing optimization during the design phase of Thing mashups. Our
evaluation shows that with 99.9% confidence W-ADE can predict aver-
age interaction timing performance within a range of ±5%, and is able
to provide approximate network-independent static timing performance
benchmarks for interaction affordances to 99.93%. To enable the design
of heterogeneous IoT applications based upon these timing requirements,
a proposal on how to annotate a TD based on the measured performance
data is made.

Keywords: Web of Things · Thing Description · Timing
performance · Performance benchmarking

1 Introduction

The Internet of Things (IoT) is a system of physical devices, such as sensors
or actuators, which are able to communicate over various IP-level networking
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 70–86, 2020.
https://doi.org/10.1007/978-3-030-50578-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_6&domain=pdf
http://orcid.org/0000-0002-7777-6291
http://orcid.org/0000-0003-4910-4962
http://orcid.org/0000-0002-0544-4204
http://orcid.org/0000-0002-4096-2584
https://doi.org/10.1007/978-3-030-50578-3_6

W-ADE: Timing Performance Benchmarking in Web of Things 71

Fig. 1. The Web of Things (WoT) development environment W-ADE is a standalone
application based upon the W3C WoT Architecture [6]. Its core includes a WoT run-
time, protocol bindings, a Thing Description (TD) parser, and a timing performance
benchmarking functionality. It can be extended with further plugins. W-ADE takes a
TD as input and is able to return it, annotated with timing performance benchmarks.

interfaces and eventually can be connected to the Internet. These smart things,
also referred to as Things, enable us to monitor and interact with the physical
world in a fine-grained spatial and temporal resolution [1].

However, limitations become visible as soon as multiple Things from diverse
vendors are integrated into one system. As universal application protocols and
platform-independent standards are missing, companies come up with their own
solutions, leading to fragmentation of IoT development. Thus, it requires com-
plex integration work, technical expertise, and it is mostly mandatory to have
real devices available to build heterogeneous system compositions [2].

The World Wide Web and its associated technologies are capable of pro-
viding solutions for the fragmented progression of IoT and offer the foundation
for the next steps beyond basic network connectivity. Hence, web mechanisms
are nowadays used to facilitate communication with IoT platforms - indepen-
dent from their underlying technologies. This approach of integrating real-world
devices into the Web is called the Web of Things (WoT) [3,4].

The World Wide Web Consortium (W3C) is seeking to standardize this
web layer for IoT to enable effortless integration of heterogeneous devices. The
core concept in this process is the Thing Description (TD) specification [5],
further discussed in Sect. 2. A TD is an abstraction of a Thing’s capabilities:
It semantically describes its metadata, interfaces, and available protocols. It
acts as exposed interface, facilitating the communication with the described IoT
instance.

72 V. E. Schlott et al.

1.1 Problem Statement

IoT applications are often composed of not only a single but multiple devices,
also referred to as mashups. The TD facilitates to design them without having
the actual Things or other device documents (e.g. system specification) at dis-
posal. To create reliable TD-based mashups, it is inevitable to have data on
timing performance of the included Things. Timing is defined as the sum of
the round trip delay time (RTD) plus the required processing time of the client
application and Thing. Timing performance can therefore be understood as the
required time to interact with a Thing. This is further discussed in Sect. 4. How-
ever, TDs currently do not provide such information. To obtain data on timing
performance, a time-consuming manual process needs to be accomplished: for
each protocol a compatible service has to be started and timing performance
has to be measured manually. Although many qualitative and quantitative stud-
ies on performance of Things have been conducted, as outlined in Sect. 7, they
are rather focusing on protocol or network than general application logic timing
performance. Moreover, there is no tool available, which is capable of measur-
ing timing performance, supports diverse IoT protocols (besides common web
protocols) and is able to generate timing performance benchmarks at the same
time. The question on how timing performance can be measured with only a
client-side application available, as it usually is the case when including third
party IoT devices, also remains unexplored.

1.2 Contribution

In this paper, we introduce W-ADE, the missing foundation block of a develop-
ment and testing environment for WoT, TDs and mashups, illustrated in Fig. 1.
It facilitates the automated generation of timing performance benchmarks as
well as annotating a TD with the produced data - with only the associated TD
available. In particular, the following contributions are made:

– In Sect. 3, we enable system designers to invoke single interactions of a Thing
independent from its protocol, based only on its TD, and allow them to
retrieve the associated timing performance.

– In Sects. 4 and 6, we introduce and evaluate a technique to automatically
produce static and dynamic timing performance benchmarks for device inter-
actions, giving estimations for worst-, best- and average-case execution with
confidence interval limits.

– In Sect. 5, we propose a vocabulary set, aligned with the TD specification, to
annotate existing TDs with observed timing performance.

Our approach is then compared to related work in Sect. 7. Finally, conclusions
are drawn in Sect. 8.

W-ADE: Timing Performance Benchmarking in Web of Things 73

2 W3C Web of Things

Our concept of providing information on timing performance evolves around the
Thing Description standard. TD is one of the building blocks associated with
the W3C WoT Architecture [6], which aims to prevent the further fragmentation
of IoT development. The main idea is exposing device capabilities as resources
in a description-oriented fashion through the WoT interface, that is, network
interactions modeled as Properties, Actions, and Events [7]. This information
can then be processed and interpreted by a WoT Consumer, also referred to as
Consumer, an entity, for example another device, browser, or web application
that is able to understand TDs and interact with Things [6].

Other important building blocks are the WoT Scripting API [7] and WoT
Binding Templates [8]. The Scripting API is the description of a programming
interface, representing the WoT Architecture. It allows scripts to discover, oper-
ate, and expose Things. The WoT Binding Templates provide guidelines on how
to define Protocol Bindings for the description of network-facing interfaces [8].

2.1 Thing Description

In the WoT context, the TD acts as a defined representation of a Thing and can
be considered the entry point for communication. As TDs are encoded in JSON-
LD [9] format, they are machine-readable as well as human-understandable. The
main goal is to preserve and complement existing IoT standards and solutions [6].
Thus, the TD is not a proposition for a new protocol to replace other standards
but a way to represent them through syntactic and semantic information [10].

One of the TD’s main parts is the interaction model, a formal definition of
mapping application intent to concrete protocol operations [6]. A TD interac-
tion can therefore be understood as the description of a specific capability of
a Thing, representing the data structure, access protocol and access link [10].
Consequently, a TD instance comprises a list of a Thing’s interactions and how
to access them. The interaction affordance is based upon the before-mentioned
WoT paradigms:

– Properties: Exposed values of a Thing that can be read (e.g. sensor data),
written (e.g. to set configuration parameters) or observed.

– Actions: Invoking them triggers physical, possibly time consuming processes
(e.g. moving a robot arm) or functions inside the Thing.

– Events: Used for signaling asynchronous notifications that are triggered by
events (e.g. a pressed button alert).

An example TD including a Action, Event, and Property is shown in Listing 21.

2.2 Thing Description Based Mashups

As IoT systems usually consist of multiple devices, it is important to shift the
focus towards mashups. Mashups in WoT are associated to digital mashups in

74 V. E. Schlott et al.

Web 2.0. These describe the technology of composing modularized web applica-
tions to create entirely new services [11]. Respectively, creating WoT mashups
expresses the process of aggregating WoT-enabled Things1 to form new appli-
cations. This is done by chaining together multiple interactions, whereby the
TD provides required information. A smart-home mashup could for example
compose a light sensor and window shutters that are opened as the sun rises.

2.3 Importance of Timing Performance Benchmarking for Mashups

In order to build reliable physical mashups, a way to analyze, describe, and
generate timing performance benchmarks for included Thing interactions has to
be found. Knowledge on timing performance is especially important if involved
interactions trigger physical processes. As these executions can take a consider-
able amount of time. Furthermore, when the sum of different interactions influ-
ences the total mashup time, it is highly relevant to be able to extract data on
their individual timing performance from their description. This becomes even
more valuable when a mashup is more complex, due to including many inter-
actions or having dependencies on each other’s responses. Timing performance
information is also required during the mashup’s design phase. As then included
Things might not be available and individual interaction request times cannot
be measured.

Another example for the importance of the availability of timing performance
benchmarks in a TD is, when a client application persistently requests data from
a Thing (polling). It could send requests in a shorter time period than the device
needs to process. This potentially leads to malfunctions or to a system overload.
However, the TD does not yet include any performance related information such
as timing behavior, measurement context or precision. As a remedy, this paper
introduces a way to integrate timing aspects into TDs.

1{
2 "@context": "https://www.w3.org /2019/ wot/td/v1",
3 "title": "Coffee -Machine",
4 "securityDefinitions": { "basic_sc": {"scheme": "basic", "in":"header"},
5 "security": ["basic_sc"],
6 "base": "coaps://coffee -machine.example.com:5683",
7 "properties": {
8 "status" : { "forms": [{"href": "properties/state"}]}
9 },

10 "actions": {
11 "brew" : {"forms": [{"href": "actions/brew"}]}
12 },
13 "events":{
14 "error": {
15 "data": {"type": "string"}, "forms": [{"href": "events/error"}]
16} } }
Listing 21. A Thing Description for a smart coffee machine that exposes the machine
status, a brewing action and an error event functionality, together with their URIs.

1 A Thing, that is accessible via its TD and can be consumed.

W-ADE: Timing Performance Benchmarking in Web of Things 75

3 W-ADE: API Development Environment for WoT

To solely measure the time it takes to invoke an interaction, several operations
need to be performed. Depending on a Thing’s implementation and the choice of
protocol, a compatible service which can communicate via this protocol eventu-
ally needs to be started on the Consumer. Then, the desired endpoint has to be
extracted and a request to execute it has to be sent. Subsequently, the time until
the response is received has to be manually measured. To obtain representative
results, this process would have to be repeated numerous times. Depending on
the number of interactions, the level of their diversity and the quantity of ser-
vices that need to be utilized, this can become a time-consuming and error-prone
process. To minimize the susceptibility to errors and overall lighten this series of
actions, we developed W-ADE : Web of Things API Development Environment.
It simplifies the TD-based interoperation with devices, can be expanded with
required protocols and facilitates timing measurement of Thing executions.

3.1 Application Features and Implementation

W-ADE possesses WoT specific functionalities, typical features needed for API
interaction, and the possibility to measure timing. Its core is based upon the
W3C Scripting API reference implementation2, making it compatible with WoT
paradigms. It is able to parse and interpret TDs, enables users to edit them
and execute chosen interactions in a specific order. W-ADE acts as Consumer
to communicate with virtual or physical entities over various protocols3. As
it supports diverse protocols existing in IoT ecosystems and web browsers are
usually restricted, it is realized as a standalone Electron4 application5.

Since a TD is the interface for interactions and accessing API endpoints is
a main use-case, functionalities, such as sending requests with optional input
values and displaying responses, are implemented. Another substantial feature
is entering, storing, and applying required security credentials. Beyond that, W-
ADE measures the overall time it takes to send a request, process it on the
target application, and finally receive a response. Utilizing the Node.js feature
process.hrtime(), high-resolution real time measurements in nanoseconds are
available. This and the size of the sent or received data, is then displayed. Fur-
ther, W-ADE’s architecture facilitates custom plugins, allowing it to be easily
extended by numerous already existing WoT implementations. An overview of
its system architecture is presented in Fig. 1.

2 Node-wot (https://github.com/eclipse/thingweb.node-wot) is based upon the
JavaScript runtime Node.js (www.nodejs.org/).

3 Embedded Binding Templates [8] enable the incorporation of further protocols
including custom ones and thus, facilitate interoperability for diverse vendors.

4 A JavaScript based framework, which allows to build cross platform applications.
5 W-ADE is available here: https://github.com/tum-esi/wade.

https://github.com/eclipse/thingweb.node-wot
www.nodejs.org/
https://github.com/tum-esi/wade

76 V. E. Schlott et al.

Fig. 2. W-ADE’s GUI. Thing Descriptions can be uploaded and edited in the Editor
(A). Interactions are parsed and visualized in (B), where input values can be entered
and interactions can be selected. Results, including measured communication time and
payload size of input or output are displayed in (C).

3.2 Workflow

To retrieve timing performance data of a Thing in W-ADE, first a TD has to be
inserted: it can be pasted, uploaded, or fetched via a URI. This TD is then parsed
and all available Properties, Actions, and Events with according input fields/
drop-downs are generated. Interactions can then be selected and invoked. If
applicable, security credentials, e.g. user-password combinations or broker data,
can be stored beforehand. Then, a request to the associated endpoint will be
sent. Simultaneously, the internal measurement is started and stopped as soon
as W-ADE receives the Thing’s response. The elapsed time in milliseconds and
if available, the size of the received data in bytes will be shown. The according
user interface is illustrated in Fig. 2.

W-ADE provides the framework for timing performance testing, eases the
work with TDs and due to its plugin architecture, is able to improve tooling
around the WoT ecosystem. Nonetheless, to give reliable and reusable assertions
on timing performance we introduce a more elaborate timing analysis technique
for timing performance benchmarking in Sect. 4.

4 Automated Timing Performance Benchmarking

W-ADE aims to facilitate the automated generation of timing performance
benchmarks of a Thing with merely its TD available; Premised that the specific
device is WoT-enabled and consumable. We define the scope of timing perfor-
mance in Sect. 4.1, elaborate our benchmarking technique in Sect. 4.2 and present
its implementation in Sect. 4.3.

W-ADE: Timing Performance Benchmarking in Web of Things 77

4.1 Timing Performance Possibilities in W-ADE

The time it takes to communicate with a Thing is dependent on factors like con-
nection throughput, available bandwidth, network workload, loss rate, software
characteristics, hardware architecture, latency of outgoing packets, packet size
or used communication protocols [12,13]. To measure timing performance, com-
mon approaches are measuring the latency of outgoing packets or the throughput
rate, while tweaking network conditions, manipulating bandwidth, or switching
protocols [3,12,14]. In test scenarios, it is feasible to vary system configurations
and retrieve data on the network environment or target devices. However, in
real-world scenarios, mashup designers do not necessarily have access to manip-
ulate devices or the opportunity to analyze internal application processes. Things
could be connected via gateways and data on network conditions might be miss-
ing. As our objective is the facilitation of automated timing performance bench-
marking on any capable machine, in any network environment, without knowl-
edge about the target application, and while using any IoT-protocol, network-,
protocol- and machine influences are not considered individually.

For this reason, W-ADE’s timing performance technique is based on mea-
surements of the overall round trip delay time (RTD), including the required
processing time of the Consumer. The RTD is the sum of latency in each direc-
tion including the Thing’s processing time. Latency indicates the total delay
between endpoints [13]. In our case this relates to the total time elapsed, from
the moment the data is sent until the response is received, expressed by Eq. 1.

Tdynamic(x) = Tconsumer(x) + Ttransfer(x) + Tprocess(x) (1)

– Tdynamic: Total dynamic time needed for transferring a message from the
Consumer to a Thing and receiving a response for an interaction x.

– Tconsumer: Consumer-side (in our case W-ADE’s) processing time.
– Ttransfer: Time needed for sending/ receiving messages over the network.
– Tprocess: Internal process time of a target Thing. It depends on the path of

the internal execution and the time spent in the instructions on this path on
this particular hardware [15]. Also covers physical interaction times.

Although the influences of Tconsumer and Ttransfer cannot be isolated reliably,
it is possible under certain conditions to extract the static timing performance
of an Action (a time-consuming physicial or virtual internal process). The IoT
device must offer a Property-read as well as an Action interaction; Interactions
must be implemented synchronously (not asynchronously or queued: responses
are only send after a physical or internal process is finished)6; The application
logic is comparable for all existing interactions; The time for reading a Property
value is negligible (e.g. due to retrieving from memory); Tdynamic of the Action
is bigger than Tdynamic of the Property-read. With these fullfilled prerequisities,
we make the following assumption:
6 It is assumed that interactions of a WoT-enabled Thing are mostly implemented to

be synchronous, as conveyed in the WoT TD implementation report (https://w3c.
github.io/wot-thing-description/testing/report.html). In future versions of the TD,
information on interaction-implementation will be included.

https://w3c.github.io/wot-thing-description/testing/report.html
https://w3c.github.io/wot-thing-description/testing/report.html

78 V. E. Schlott et al.

Fig. 3. Basic concept of our timing benchmarking technique. The curve depicts sample
values of interaction timing performance. Its minimum indicates the estimated best-
case execution time, its maximum the estimated worst-case execution time. The middle
line represents the Average Execution Time, surrounded by its confidence interval.

Tstatic(x) = Tdynamic(x) − Tdynamic(y) (2)

Tstatic(x) is the estimated static time of an Action x that does not change
with network or client alternations. Tdynamic(x) defines the dynamic time of
the invoked Action x, Tdynamic(y) the same for a Property-read y.

4.2 Benchmarking Technique

To provide meaningful timing performance benchmarks, timing constraints on
measurements and reliable average timing values need to be determined. For this
purpose, bounds on execution times have to be identified. This can be achieved by
executing an interaction for several repetitions or a specific amount of time, while
simultaneously measuring the elapsed time. Results are combined to estimate
execution time bounds. These are specified by deriving the overall maximum and
minimum observed execution time. This is commonly called worst-case execution
time (WCET) and best-case execution time (BCET) [15]. Generally, the BCET
is overestimated and the WCET underestimated, as the actual values are almost
impossible to derive. Since we cannot guarantee that Things can be analyzed,
they are treated as black-box components and estimated WCETs are utilized.
Moreover, the average execution time (AET) for all measurements is computed
(Fig. 3).

In order to offer reliable benchmarks, we use confidence intervals (CI)7 to
propose a range of plausible values for the AET. The CI is calculated as seen in
Eq. 3, where x is the sample mean, σ the standard deviation, n the sample size
and z∗ represents the appropriate z∗-value from the standard normal distribution
of the chosen Confidence Level (CL). The CL indicates the probability that the
unknown parameter lies in the stated interval.

x ± z∗ σ√
n

(3)

7 A CI, in statistics, refers to the probability that an unknown value will fall between
a specific range of values, calculated from observed data [16].

W-ADE: Timing Performance Benchmarking in Web of Things 79

To compute static timing, measurements of both a Property and Action are
required. The static AET is computed from the difference of the dynamic AET
values of the included Action and Property measurements (see Eq. 2). Its CI
is calculated with Eq. 4: Elements have the same meaning as in Eq. 3, whereby
subscript a represents Action and subscript p Property values.

xa − xp ± z∗
√

σ2
a

na
+

σ2
p

np
(4)

Certain factors influence execution times and need to be considered when
timing performance is measured and interpreted. One factor is the context depen-
dence of execution times [15]. The execution time of individual instructions may
vary by several orders of magnitude depending on the state of the processor.
Thus, an execution time B can heavily depend on the state produced by execu-
tion A, e.g. for initial connection establishment, regarding memory or caching
[15]. A task can also show variations depending on the payload or divergent envi-
ronment behavior. To minimize this impact, the option of using measurements
after a certain time has passed and an indefinite amount of interactions have been
executed, is available and measurements can be repeated multiple times to reduce
context errors. To remove the impact of initial connection establishment, the first
measured values are removed. Further, timing anomalies, counter-intuitive influ-
ences on the local execution time of one instruction on the global execution time
of the entire task [15], need to be considered and optionally be removed. We
use the common approach of detecting outliers with the help of the interquartile
range (IQR) that represents the width of the box in the box-and-whisker plot
[17] and indicates how spread out middle values are, shown in Eq. 5.

IQR = Q3 − Q1 (5)

min = Q1 − 1.5 × IQR and max = Q3 + 1.5 × IQR (6)

The IQR is the difference of the third (Q3) and the first quartile (Q1). A Quartile
divides the number of data points into four equal parts, or quarters. Q1 marks
where 25%, Q3 where 75% of the data is below. Equation 6 defines how the min-
imum and maximum threshold can be computed to identify outliers. Outliers
are defined as values that are more than one and a half times the length of the
middle-value box, away. Identified outliers can then be removed.

4.3 Implementation

To put this technique into practice, a timing performance feature is implemented
in W-ADE. Users need to select interactions, enter required inputs, and choose
performance analysis settings, including the type of measurement - either Iter-
ation or Duration - with the desired amount. Iteration indicates that measure-
ments are executed a certain number of times, whereas Duration executes them
for the entered time-period. Then, a delay before the beginning of overall mea-
surements or before the beginning of each execution can be scheduled. To finally
start the execution and computation process, the desired CL to calculate the

80 V. E. Schlott et al.

AET’s CI has to be entered. Selectable options are 80%, 85%, 90%, 95%, 99%,
99.5% and 99.9%. To take into account potential environmental impacts, results
are subdivided into Possible and Realistic. They respectively contain computed
WCET, BCET, AET, CI limits for the AET, and the first measurement value.
Possible results are computed considering all measurements except the first mea-
sured, whereas for Realistic results neither the first measured, nor detected out-
liers are included. Additionally, settings, general information, and all measured
values in chronological order are displayed. To compute static timing, one Prop-
erty, one Action, and the option static timing must be selected. As WCET
and BCET are not applicable, they are not present in static results.

5 Timing Performance Annotation

To be able to apply timing performance benchmarks, results needs to be inte-
grated into the TD, in reference to the appropriate interaction. For this purpose,
we propose a vocabulary set, referred to as InteractionTiming, that describes
timing performance benchmarks. It is compatible with present TD vocabularies,
as it is based upon similar semantics and principles. Existing TD vocabularies
are independent and extensible. They each define a collection of terms that can
be interpreted as objects denoting Things and their Interaction Affordances [5].

As not all collected performance data discussed in Sect. 4 is significant for
describing timing performance, only specific elements are included in our vocabu-
lary. Figure 4 gives an overview of the main InteractionTiming vocabulary terms.
The proposed term names are only suggestions and can be easily adjusted if
they conflict with other TD terms. staticTiming characterizes static timing
measurements and is added to the TD on the same level as forms. Other mea-
surements are respectively summarized in dynamicTiming and are added to the
particular forms element of the interaction. By default, both of them include
measurementContext information, confidence data, and results categorized
in possible and realistic. As measurementContext implies only contextual
data, it is linked to by a JSON Pointer [18] and can be stored in another doc-
ument. This default term set was elaborated with the aim of providing most
information without including the entire set of results. An example of an anno-
tated TD comprising dynamic and static performance data is depicted in List-
ing 51. For the sake of readability, only Possible measurement data is added and
confidence information of the dynamic annotation is absent. We provide a com-
plete annotated TD8 externally9. As a TD can be presented as a JSON-LD file,
its specification [5] also provides a JSON Schema [19] to syntactically validate
TDs. To extend this Schema, we created an InteractionTiming JSON Schema,
including detailed descriptions10 and a TD JSON Schema extended with it11.

8 Available at www.ei.tum.de/fileadmin/tueifei/esi/WADE-files/td annotated.json.
9 The distribution of annotated TDs is not determined in this paper, since not even

the W3C WoT working group has fully explored TD distribution possibilities so far.
10 www.ei.tum.de/fileadmin/tueifei/esi/WADE-files/Interaction Timing schema.json.
11 www.ei.tum.de/fileadmin/tueifei/esi/WADE-files/TD Interaction Timing schema.

json.

www.ei.tum.de/fileadmin/tueifei/esi/WADE-files/td_annotated.json
www.ei.tum.de/fileadmin/tueifei/esi/WADE-files/Interaction_Timing_schema.json
www.ei.tum.de/fileadmin/tueifei/esi/WADE-files/TD_Interaction_Timing_schema.json
www.ei.tum.de/fileadmin/tueifei/esi/WADE-files/TD_Interaction_Timing_schema.json

W-ADE: Timing Performance Benchmarking in Web of Things 81

Fig. 4. Our proposed InteractionTiming vocabulary with term keys and values, includ-
ing child elements and their data types. It is intended for annotating a Thing Descrip-
tion, in order to characterize timing performance of its associated Thing.

An annotated TD can be generated in W-ADE after results are computed. If
desired, annotations can be further revised in the TD editor, before saving. An
enhanced TD can be interpreted by a human and an automated system. It offers
detailed semantics for describing how a Thing behaves regarding timing.

1 "brew": {
2 "staticTiming": {
3 "possible": {
4 "AET": {
5 "AET": 40078.83,
6 "confIntervalMin": 40072.32, "confIntervalMax": 40085.35
7 } } },
8 "forms": [{
9 "href": "actions/brew",

10 "dynamicTiming": {
11 "measurementContext": "#/ measurementContext/

dynamicTimingContext_action/brew",
12 "possible": {
13 "firstMeasured": 40221.06,
14 "BCET": 40118.66, "WCET": 40962.02,
15 "AET": {
16 "AET": 40238.33,
17 "confIntervalMin": 40185.93, "confIntervalMax": 40290.74
18 } },
19 "confidence": {
20 "level": 99.9, "factor": 3.291, "numMeasurements": 100
21} } }] }
Listing 51. A snippet of an annotated Thing Description, including dynamic and static
timing data for the Action brew. Dynamic annotations are added to the particular form
element, whereby static annotations are located on the same level as forms.

82 V. E. Schlott et al.

6 Evaluation

To prove the correctness and validate the quality of our technique, we conducted
three virtual experiments and one use-case scenario with a physical IoT device.

Experiment 1, Validity Test: To validate W-ADE’s timing performance func-
tionality and to show that processed results are consistent, a Property-read that
returns a 14 byte string of an externally hosted TD and its simulated Things12

was selected. Then, a HTTP-request was executed with a chosen CL of 99.9%
for 1000 iterations, 10 times. Different network conditions applied for the Con-
sumer and simulated Thing. We then examined how results differed, to what
percentage the CI fluctuates around the AET and verified whether AETs are
in the range of other CIs. Figure 7 shows that computed AETs and their corre-
sponding CI limits are consistent for Possible, as well as Realistic results. Only
some negligible deviation, with a max. range of 10 ms in Possible and 4 ms in
Realistic average AET values, were observed. Moreover, CI limits always lied
within a range of ±5% of AETs and AETs values lied in their associated CI,
including all other measured CIs (Fig. 5).

Experiment 2, Sanity Check: To evaluate W-ADE’s credibility, we matched
our measurements with measurements of an ADE13 called Postman14. It acted
as a control entity. In comparison to W-ADE, Postman is not able to parse or
understand TDs. It can only communicate over HTTP and lacks functionalities
to interpret and produce timing performance benchmarks. Using the same test
Thing from Exp. 1, we executed an HTTP Property-write request with a 12
byte string-input, no output, and a CL of 99.9% for 1000 times, repeating it 10
times with W-ADE and Postman. To make result sets comparable, we applied
W-ADE’s technique onto Postman’s results to processed the WCET, BCET,
and AET with its CI. We used W-ADE’s Possible results, as outliers were not
removed from Postman, and rounded them to integers.

Results, presented in Fig. 6, show that Postman’s and W-ADE’s results are
proportional to each other and consistent within. WADE’s AET values showed a
max. deviation of 5, 98% (min. 221 ms, max. 235 ms). Postman’s values showed
a similar max. deviation of 6, 42% (min. 103 ms, max. 109 ms). W-ADE added
an average overhead (see Tclient(x) in Eq. 1) of about 121 ms and 111, 01% in
comparison to Postman. This is expected, as Postman’s default behavior keeps
socket connections open15. W-ADE closes them after each request as keep-alive
connections are only usable for polling, which should rather be implemented as
event properties. This is the anticipated way of writing a Consumer application.

12 This TD is provided by the W3C WoT working group for testing purposes.
13 ADE stands for API Development Environment and describes software that focuses

on designing, building, and testing APIs.
14 Postman (www.getpostman.com/) version v7.16.1. was utilized.
15 This behavior cannot be changed in the current version of Postman.

www.getpostman.com/

W-ADE: Timing Performance Benchmarking in Web of Things 83

Fig. 5. W-ADE’s measured, rounded Realistic (blue) and Possible (orange) average
execution times (AET). Confidence intervals (CI) always lied within a 5% range (PI)
around the average values. AETs always lied in their own and all other CIs. (Color
figure online)

Fig. 6. Measured average execution times of W-ADE (blue) are compared to Postman’s
(yellow). Bars denote the average values for 1000 measurements each. Enclosing thinner
bars respectively indicate confidence interval limits. Both systems produced consistent
values, whereas W-ADE’s expected overhead to Postman was also consistent. (Color
figure online)

Experiment 3, Static Timing: To confirm the validity of our static timing
approach, introduced in Sect. 4.1, we created a script that simulates a Thing,
providing a Property-read that returns a 14 byte string and an Action, that
returns the same variable after a predetermined delay of 1000 ms, simulating a
physical process of a device. It was then exposed on the same machine running
W-ADE, communicating over the same local network. 100 Action and Property
HTTP requests were sent to the before-mentioned interaction with a chosen CL
of 99, 9% and measured with W-ADE, 10 times each. Due to network anomalies
and other outliers adding a noticeable effect to timing, we used rounded Realistic
values for our evaluation. As shown in Fig. 7, the computed average static AET
of 999,30 ms matched the artificial delay of 1000 ms to 99, 93%, whereby Realistic
AET measurements resulted either 999 ms or 1000 ms. The min. lower limit of
the CI was 998 ms and the max. 1001 ms. Giving a −0, 2%/+0, 1% range around
the actual delay. This confirms that that computed results are able to anticipate
actual interaction timing performance.

84 V. E. Schlott et al.

Fig. 7. Computed static timing performance of an Action. The upper curve indicates
dynamic measurements (see Eq. 1) of Action a, the lower measurements of a Property
p. The middle line shows the static timing with its confidence interval. For the sake of
comprehension 990 ms are subtracted from both Action values.

Use-Case with a Physical Device: To demonstrate the practicability of tim-
ing performance generation with a real Thing, we conducted static measure-
ments analog to Exp. 3. Included components were W-ADE as client and a
WoT-enabled16 Pan-Tilt HAT module17 (PTH) attached to a Raspberry Pi18

(RP), both connected to the same network. The evaluated Action scan moves the
robot arm from the outer-left to the outer-right position and the used Property
panPosition returns the position of the pan module. Both HTTP interactions
were executed 10 times with 1000 iterations each and a 99, 9% CL, before the
static timing of scan was calculated. Analog to Exp. 3, the evaluation was based
on Realistic results. An average static AET of 40055 ms with a CI of 40053 ms
- 40057 ms was measured for scan. Whereby the average dynamic AET of all
measured Actions was 40063 ms, with a CI of 40049 ms - 40077 ms. Property
measurements revealed an average AET of 8 ms and CI limits of 7,6 ms - 8,8 ms.

This proves that W-ADE enables the conduction of static timing performance
on an actual physical IoT device. To once again validate that the static AET
matches the actual time of a scan movement, manual, possibly error-sensitive
chronometer based measurements, would be necessary.

7 Related Work

Numerous approaches on how the Web of Things can look, have been introduced
to the world of IoT [20–22]. As the TD standard and associated WoT approaches
not only present a well conceived concept, but also actively offer solutions to
counteract the fragmentation of IoT, this work is based upon them. Many W3C
WoT tools and services have already been contributed, nevertheless, there is
little scientific work on them available. This might be due to the TD standard

16 A WoT-enabled Pan-Tilt HAT: www.wotify.org/library/Pan-Tilt%20HAT/general.
17 A set of horizontal and vertical motion servos, that can be moved individually.
18 A small single-board computer, here a model 3B+ running Raspbian 2019-09-26.

www.wotify.org/library/Pan-Tilt%20HAT/general

W-ADE: Timing Performance Benchmarking in Web of Things 85

being rather new and hardly distributed. Therefore, no service or approach to
enhance a TD with timing information has been released.

While performance evaluation in IoT is the topic of many studies, they
often focus on comparison of diverse protocol performance under specific cir-
cumstances, whereby the experiment environment is mostly controlled [3,14,23].
Other studies target network-performance regarding an IoT device [22,24], the
general performance spectrum, or stress testing of Things [12]. In general, stud-
ies in the field of IoT performance do not deal with dynamic or static timing
performance of Things and do not offer solutions on how to generate comparable
benchmarks for this purpose. Choosing the best fitting communication protocol
and determining network performance makes sense when setting up IoT plat-
forms, but not when third-party Things need to be integrated into mashups or
their general timing performance needs to be benchmarked. In contrary to exist-
ing studies, our proposed technique enables developers to actively use timing
performance data for the design of real-world IoT systems and use cases.

8 Conclusion

Motivated by the problem of missing opportunities to easily measure and com-
pare timing performance of IoT devices based on their TD, we introduced a
technique which facilitates timing performance benchmarking, while considering
environmental influences. Thereupon, we developed W-ADE, an API develop-
ment environment and platform for the WoT ecosystem that implements our
technique and additionally enables manual timing measurement of device inter-
actions. To validate and demonstrate the applicability in practice, we tested
our technique with a physical IoT device and conducted virtual simulations.
We proved that W-ADE reliably predicts static timing performance of interac-
tions and offers accurate timing performance benchmarks. Combined with our
proposed InteractionTiming vocabulary to annotate TDs, mashup designers are
now able to estimate and compare interaction timing performance; thus, opti-
mize system compositions during design time.

References

1. Guinard, D., Trifa, V.: Building the Web of Things: With Examples in Node.js
and Raspberry Pi. Manning Publications Co., Shelter Island (2016)

2. Guinard, D., Trifa, V., Pham, T., Liechti, O.: Towards physical mashups in the
web of things. In: Proceedings of INSS, vol. 9, pp. 17–19 (2009)

3. Babovic, Z.B., Protic, J., Milutinovic, V.: Web performance evaluation for internet
of things applications. IEEE Access 4, 6974–6992 (2016)

4. Guinard, D., Trifa, V.: Towards the web of things: web mashups for embedded
devices. In: Workshop on Mashups, Enterprise Mashups and Lightweight Compo-
sition on the Web (MEM 2009), Proceedings of WWW, vol. 15 (2009)

5. Kamiya, T., Käbisch, S., Kovatsch, M., McCool, M., Charpenay, V.: WoT thing
description. Technical report, W3C (2019). www.w3.org/TR/2019/CR-wot-thing-
description-20191106/

www.w3.org/TR/2019/CR-wot-thing-description-20191106/
www.w3.org/TR/2019/CR-wot-thing-description-20191106/

86 V. E. Schlott et al.

6. Matsukura, R., Lagally, M., Kovatsch, M., Toumura, K., Kawaguchi, T.: WoT
architecture. Technical report, W3C (2019). www.w3.org/TR/2019/CR-wot-archit
ecture-20191106/

7. Peintner, D., Nimura, K., Kis, Z., Hund, J., Nimura, K.: WoT scripting
API. Technical report, W3C (2019). www.w3.org/TR/2019/WD-wot-scripting-
api-20191028/

8. Koster, M.: WoT protocol binding templates. Technical report, W3C (2018). www.
w3.org/TR/2018/NOTE-wot-binding-templates-20180405/

9. Champin, P., Kellogg, G., Longley, D.: JSON-LD 1.1. Technical report, W3C
(2019). https://www.w3.org/TR/2019/CR-json-ld11-20191212/

10. Korkan, E., Kaebisch, S., Kovatsch, M., Steinhorst, S.: Safe interoperability for
web of things devices and systems. In: Kazmierski, T.J., Steinhorst, S., Große, D.
(eds.) Languages, Design Methods, and Tools for Electronic System Design. LNEE,
vol. 611, pp. 47–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
31585-6 3

11. Liu, X., Hui, Y., Sun, W., Liang, H.: Towards service composition based on mashup.
In: 2007 IEEE Congress on Services, pp. 332–339. IEEE (2007)

12. Esquiagola, J., de Paula Costa, L.C., Calcina, P., Fedrecheski, G., Zuffo, M.: Per-
formance testing of an internet of things platform. In: IoTBDS, pp. 309–314 (2017)

13. Huston, G.: Measuring IP network performance. Internet Protocol J. 6(1), 2–19
(2003)

14. Chen, Y., Kunz, T.: Performance evaluation of IoT protocols under a constrained
wireless access network. In: 2016 International Conference on Selected Topics in
MoWNeT, pp. 1–7. IEEE (2016)

15. Wilhelm, R., et al.: The worst-case execution time problem – overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst. (TECS) 7(3), 36 (2008)

16. Neyman, J.: X—outline of a theory of statistical estimation based on the classi-
cal theory of probability. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.
236(767), 333–380 (1937)

17. Tukey, J.W.: Exploratory Data Analysis, vol. 2. Reading, Massachusetts (1977)
18. Bryan, P., Zyp, K., Nottingham, M.: JavaScript Object Notation (JSON) Pointer.

RFC 6901 (Proposed Standard) (2013)
19. Wright, A., Andrews, H., Luff, G.: JSON Schema Validation: A Vocabulary for

Structural Validation of JSON. IETF Standard (2016)
20. Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the internet of things to the

web of things: resource-oriented architecture and best practices. In: Uckelmann,
D., Harrison, M., Michahelles, F. (eds.) Architecting the Internet of Things, pp.
97–129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19157-2 5

21. Käfer, T., Richard Bader, S., Heling, L., Manke, R., Harth, A.: Exposing internet
of things devices via REST and linked data interfaces. In: Proceedings of the 2nd
Workshop Semantic Web Technology Internet Things, pp. 1–14 (2017)

22. Duquennoy, S., Grimaud, G., Vandewalle, J.: The web of things: interconnecting
devices with high usability and performance. In: 2009 International Conference on
Embedded Software and Systems, pp. 323–330. IEEE (2009)

23. Yokotani, T., Sasaki, Y.: Comparison with HTTP and MQTT on required net-
work resources for IoT. In: 2016 International Conference on Control, Electronics,
Renewable Energy and Communications (ICCEREC), pp. 1–6. IEEE (2016)

24. Morabito, R., Farris, I., Iera, A., Taleb, T.: Evaluating performance of containerized
IoT services for clustered devices at the network edge. IEEE Internet Things J.
4(4), 1019–1030 (2017)

www.w3.org/TR/2019/CR-wot-architecture-20191106/
www.w3.org/TR/2019/CR-wot-architecture-20191106/
www.w3.org/TR/2019/WD-wot-scripting-api-20191028/
www.w3.org/TR/2019/WD-wot-scripting-api-20191028/
www.w3.org/TR/2018/NOTE-wot-binding-templates-20180405/
www.w3.org/TR/2018/NOTE-wot-binding-templates-20180405/
https://www.w3.org/TR/2019/CR-json-ld11-20191212/
https://doi.org/10.1007/978-3-030-31585-6_3
https://doi.org/10.1007/978-3-030-31585-6_3
https://doi.org/10.1007/978-3-642-19157-2_5

Comparing a Polling and Push-Based Approach
for Live Open Data Interfaces

Brecht Van de Vyvere(B) , Pieter Colpaert(B) , and Ruben Verborgh(B)

IDLab, Department of Electronics and Information Systems, Ghent University – imec,
Gent, Belgium

{brecht.vandevyvere,pieter.colpaert,ruben.verborgh}@ugent.be

Abstract. There are two mechanisms for publishing live changing resources on
theWeb: a client can pull the latest state of a resource or the server pushes updates
to the client. In the state of the art, it is clear that pushing delivers a lower latency
compared to pulling, however, this has not been tested for an Open Data usage
scenario where 15 k clients are not an exception. Also, there are no general guide-
lines when to use a polling or push-based approach for publishing live changing
resources on the Web. We performed (i) a field report of live Open datasets on the
European and U.S. Open Data portal and (ii) a benchmark between HTTP polling
and Server-Sent Events (SSE) under a load of 25 k clients. In this article, we
compare the scalability and latency of updates on the client between polling and
pushing. For the scenario where users want to receive an update as fast as possible,
we found that SSE excels above polling in three aspects: lower CPU usage on the
server, lower latency on the client and more than double the number of clients that
can be served. However, considering that users can perceive a certain maximum
latency on the client (MAL) of an update acceptable, we describe in this article
at which MAL point a polling interface can be able to serve a higher number of
clients than pushing. Open Data publishers can use these insights to determine
which mechanism is the most cost-effective for the usage scenario they foresee of
their live updating resources on the Web.

Keywords: Web API engineering · Performance and scalability · Open Data

1 Introduction

TheOpenData deployment scheme [1] defines 5 steps that data publishers can undertake
to raise the technical and semantical interoperability of their Open datasets on the Web.
With the use of the Hypertext Transfer Protocol (HTTP) as a communication protocol,
a dataset becomes technically interoperable with the Web of data [2, 3]. This allows
Open Data consumers to retrieve a resource (e.g. a document that is part of the dataset)
by sending an HTTP GET method to the Uniform Resource Identifier (URI) of the
resource. For live changing resources, such as the measurements of a sensor, there are
two communication mechanisms to share an update in a timely fashion to clients. First,
there is pull where the client initiates the action to retrieve a resource. This category

© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 87–101, 2020.
https://doi.org/10.1007/978-3-030-50578-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_7&domain=pdf
http://orcid.org/0000-0002-7671-6203
http://orcid.org/0000-0001-6917-2167
http://orcid.org/0000-0002-8596-222X
https://doi.org/10.1007/978-3-030-50578-3_7

88 B. Van de Vyvere et al.

has two representatives: HTTP polling and HTTP long polling. Next, you have push
where the server pushes updates of a resource to the client. Server-Sent Events (SSE)
and Websockets are implementations for this mechanism. Lubbers et al. [4] compared
Websockets with HTTP polling for a dataset that updates every second and up to 100 k
clients, but this was only a theoretical analysis of the bandwidth usage and latency.
Depending on the size of the header information, a bandwidth reduction of 500:1 can
be made with Websockets and a latency reduction of 3:1. Pimentel et al. [5] went a
step further and investigated how the physical distance between publisher and consumer
impacts the overall latency. They performed a comparison between polling, long polling
andWebsockets where a new sensor update of roughly 100 bytes is published per second.
They defined formulas to check when polling or long polling is feasible for updates on
time, dependent on the network latency. When the network latency exceeds half the
update rate of the dataset, then Websockets is the better choice. However, there is no
evaluation performed on the performance of the server under a high load of clients,
which is an important factor that needs to be considered for Open Data publishing.

One of the key features of publishing data on the Web is HTTP caching, which has
not been addressed in related work [4–6]. This allows a resource to become stateless
and can be shared with proxy caches or Content Network Delivery (CDN) services to
offload the server. With push-based interfaces like Websockets, caching of a resource is
not possible as the server needs to actively push the content in a stateful manner to all
subscribed clients. In previous work [7], a minimum set of technical requirements and a
benchmark between pull (HTTP polling) and push (Websockets) have been introduced
for publishing live changing resources on the Web. This benchmark tested with only
200 clients, which did not yield conclusive results on the latency or scalability issues
that arise inside an Open Data ecosystem, where client numbers of 15 000 are not an
exception [8]. In this article, we will run a similar benchmark between HTTP polling
and SSE with up to 25 k clients. SSE is tested instead of Websockets, because it has
a similar performance [6], communication is unidirectional which is suitable for Open
Data and lastly, it only relies on HTTP instead of a Websockets protocol, which lowers
the complexity of reusing a dataset.

The remainder of this article is structured as follows: we will provide in the related
work section an overview of publication techniques and the current state of publishing
RDF Streams on the Web. RDF Streams are applicable for describing live updating
resources with the Resource Description Framework (RDF) and thus resolve the fourth
step of the Open Data deployment scheme [1]. Thereafter, we conduct a field report to
quantify how many live Open datasets are available on the Open Data portals of Europe
and the U.S. to observe which update retrieval mechanism is used in different domains.
In the problem statement section, we define our research questions and hypotheses,
which we will then evaluate with a benchmark between HTTP polling and SSE. In the
discussion and conclusion, based on the results of the benchmark, we will propose some
guidelines for data publishers when to use pull or push interfaces.

Comparing a Polling and Push-Based Approach for Live 89

2 Related Work

2.1 Web Publication Protocols

HTTP Polling. A client sends an HTTP GET request to the server, waits for a certain
time interval after retrieving the response and starts again with requesting the resource.
The benefit of this approach is that a resource becomes stateless and HTTP caching is
possible. However, there is no strict guideline on how clients should time their request.
For variantly updating resources, a client can not predict when the next update will be
available. A higher polling frequency can minimize the latency on the client, but this
comes at a higher bandwidth cost [4].

HTTP Long Polling. With long polling, the server only returns a response when a new
update is available. Thisway, a client does not send redundant requests likeHTTPpolling.
Also, the client does not wait before sending a request again. A resource becomes stateful
as the server needs to maintain all the connections open. Pimental et al. [5] showed that
long polling can have a similar performance asWebsockets when the underlying network
latency is lower than half the data measurement rate.

Server-Sent Events. With the growing demand for (near) realtime applications, HTTP
is extended in 2014 with the support of Server-Sent Events (SSE). Similarly to long
polling, the server holds the connection open for every client, but this remains open for
pushingmultiple updates instead of one.With the use of the EventSource API (supported
by all browsers except IE and Edge), clients can receive updates of a resource in an event-
driven fashion. Using SSE over HTTP/1.1 has the disadvantage that every requested
resource requires a separate TCP connection, which can run into the limited number
of connections a browser can open per domain. However, this is solved for servers that
support HTTP/2, which multiplex all requests and responses over one connection.

Websockets. TheWebsocket protocol provides a bidirectional communication channel
over one TCP connection for every client. HTTP is used to set up a handshake between
client and server for transmitting data, but further communication happens over a raw
TCP connection. The WHATWG Websocket standard describes how messages can be
pushed between client and server, but there are also sub protocols (MQTT [9], CoAP,
etc.) for more advanced features, for example a publish/subscribe broker to receive
or send updates of a specific resource. Websockets has a similar performance as SSE
[6], but a lower transmission latency when the server needs to send large messages
above 7.5 kbytes. Also, for client to server communication providesWebsockets a lower
transmission latency [6] than using HTTP.

WebSub. The WebSub [10] specification extends the communication pattern between
clients and servers from above protocols with a third actor hub. A resource can be
retrieved from the publisher (server), but consumers can also subscribe for updates
through a hub instead of polling the resource URL. A resource is coupled with one
topic, which is exposed by one or more hubs for fault tolerance. Reusers of the data
can receive updates by setting up a Web accessible server and subscribing to a topic.
Hubs then send updates through HTTP POST requests (Webhook mechanism) to this

90 B. Van de Vyvere et al.

server. While Open Data publishers can benefit from distributed hubs in an Open Data
ecosystem, for example a hub can be reused by multiple data publishers, Open Data
reusers are required to deploy a Web server to receive updates they are interested in. To
enable the use case of autonomous intelligent agents [11] that wish to retrieve updates
of a resource through a topic, then a service for subscribing to a topic must be made
available. As this service will also need to decide on exposing polling or pushing to
agents, we will not further elaborate on WebSub in this article.

2.2 RDF Streams

Arasu et al. [12] defines a streamS as a (possibly infinite) bag (multiset) of elements 〈s, τ〉
where s is a tuple (the actual data without the timestamp of the element) belonging to
the schema of S and τ ∈ T is the timestamp of the element. The Resource Description
Framework (RDF) Stream Processing (RSP) Community Group, which focuses on pro-
cessing RDF-modelled data, has applied this definition for RDF streams [13] where an
RDF stream S is a (potentially) unbounded sequence of timestamped RDF statements in
non-decreasing time order. TripleWave [14] is a tool that transformsWeb streams, which
only differs from an RDF stream by its data model [7], into RDF streams and republishes
them with a polling and/or push-based (Websockets, MQTT) interface. These streams
can be consumed by other RDF stream processors (RSP) for continuous query answering
with SPARQL-based query models (C-SPARQL [15], CQLS [16], TPF Query Streamer
[17]). Dell’Aglio et al. [18] describes for the publication of an RDF stream that both
push-based and polling interfaces can be supported; the consumer may choose what it
prefers. Also, several requirements [19] are defined for RSP query engines of which
requirement 6 “timely fashion” acknowledges [18] that the timing of results depend on
the application scenario and thus the requirements of the consumer of the data publi-
cation or query service. In the next section, we will look into how the timely fashion
requirement is applied for live Open datasets.

3 Field Report on Live Open Datasets

This section gives an overview of how many live Open datasets are available in the
European and U.S. Open Data portals, what the rate of publication is and which update
mechanism is used. Datasets were retrieved by doing a full-text search on “real-time”.
Only working and up-to-date datasets are mentioned. Note that this is a non-exhaustive
overview, because among other reasons not all Open datasets are harvested by these
portals. We also briefly describe the update mechanisms that are used in the public
transport and cryptocurrency trading domains.

On Table 1 we see that live Open datasets from only five countries are harvested by
the European Open Data portal. While we can argue that there are more relevant datasets
than on this overview, for example by browsing for OpenData portals of specific cities or
using Google Dataset Search [21], we still get a broad view of the current state-of-the-art
interfaces. Only 2 datasets have a push interface available, both using the Websocket
protocol, of which only the Transport for London (TfL) API from the U.K. is free to use.

Comparing a Polling and Push-Based Approach for Live 91

Interestingly, the True Time API from the U.S. offers the same functionality as the TfL
API with arrival predictions for public transport, but uses polling instead of push-based
update mechanism. On the one hand, we found live datasets related to the environment
(water level, weather, etc.) that publish at a lower rate (from every minute to every hour)
with a polling-based interface. On the other hand, we found mobility related datasets
whose update interval fits between realtime (as fast as possible) and 5 min.

Table 1. Overview of live Open datasets according to their country, how fast it updates and
whether a polling or push interface is used.

Country Datasets Update interval Update mechanism

Belgium Vehicles position (Public transport MIVB) 20 s Polling

Belgium Bicycle counter Realtime Polling

Belgium Park+rides Realtime Polling

France Parking and bicycle stations availability 60 s Polling

Sweden Notifications about Lightning Strikes Realtime Push-based

Ireland Weather station information, the Irish
National Tide Gauge Network

3600 s Polling

UK River level data 900 s Polling

UK Cycle hire availability & arrival predictions
(Transport for London Unified API)

300 s Polling

UK Arrival predictions (Transport for London
Unified API)

Realtime Push-based

U.S. Real-Time Traffic Incident Reports of
Austin-Travis County

300 s Polling

U.S. True Time API (arrival information and
location of public transport vehicles)

Realtime Polling

U.S. Current Bike Availability by Station
(Nextbike)

300 s Polling

U.S. USGS Streamflow Stations 24 h Polling

U.S. NOAA water level (tidal) data of 205 Stations
for the Coastal United States and Other
Non-U.S. Sites

360 s Polling

U.S. National Renewable Energy Laboratory [20] 60 s Polling

U.S. RTC MetStation real time data 360 s Polling

U.S. Seattle Real Time Fire 911 Calls 300 s Polling

We also examined the public transport domain where GTFS-RT, a data specification
for publishing live transit updates, takes no position [22] on how updates should be
published, except that HTTP should be used. OpenTripPlanner (OTP), a world-wide
used multi-modal route planner which allows retrieving GTFS-RT updates and bicycle

92 B. Van de Vyvere et al.

availabilities, also supports both approaches: setup a frequency in seconds for polling
or subscribe to a push-based API.

When peoplewant to trademoney or digital coins, it is crucial that the latency of price
tickings, books, etc. are as low as possible, otherwise it can literally cost them money.
The rate of publication of these live datasets are also typically below 1 s. Therefore,
publishers in the cryptocurrency trading domain heavily use push-based mechanisms
for their clients. This however does not mean that a HTTP polling approach is not used.
Websockets are de-facto used as a bidirectional communication channel is required for
trading. We tested three publishers (Bitfinex, Bitmex and gdax) and saw over a span
of one year that they were still available which makes us believe that Open push-based
interfaces are a viable option for other domains as well.

4 Problem Statement

In the field report, we saw that there is no strict guideline whether to use polling or
pushing for a certain dataset. Based on the insights from the field report and related
work, we define the following research question:

Research question: Which kind of Web interface for server to client communication
is best suited for publishing live Open Data in function of server-side cost, scalability
and latency on the client?

Following hypotheses are defined which will be answered in the discussion:

H1: Using a Server-Sent Events interface will result in a lower latency on the client,
compared to a polling interface.
H2: The server-side CPU cost of an HTTP polling interface is initially higher than
a Server-Sent Events interface, but increases less steeply when the number of clients
increases.
H3: From a certain number of clients onward, the server cost of a Server-Sent Events
interface exceeds the server cost of a polling interface.

5 Benchmark HTTP Polling Versus Server-Sent Events

5.1 Evaluation Design

Update Interval of Live Dataset. The experiments focus on observing the latency on
the clientwhen a server needs to serve a high number of clients. Aswewant to observe the
latency on the client per update and we expect a higher latency when the server works
under a high load of clients, it is important to reserve enough time between updates.
Table 1 shows that most datasets have an update interval in the range of seconds. By
choosing a fixed update interval of 5 s for the live dataset in this experiment, there
should be enough time to observe the latency on the client between two updates and still
have a representative update interval according to Table 1. Also, an invariantly changing
dataset allows to set HTTP caching headers according to the update interval, which is
an opportune circumstance for HTTP polling.

Comparing a Polling and Push-Based Approach for Live 93

Live Dataset. A JSON object with a size of 5.2 kB is generated every 5 s, which has
a similar size as the park+rides dataset (5.6 kB) from Table 1. This object is annotated
with a timestamp that indicates when this object was generated and is used by clients to
calculate the latency on the client. Furthermore, it is published inside a HTTP document
for clients that use HTTP polling or it is directly pushed to clients with SSE.

Latency on the Client. The goal of this benchmark is to observe the time between the
generation of an update and when a client can further process it. We define this as the
latency on the client of an update. For HTTP polling, this depends on timing its request
as closely as possible after a new update is available. Based on the caching headers of a
response (Cache-Control forHTTP/1.1 or Expires forHTTP/1.0), a client could calculate
the optimal time for its next request. In this benchmark, we choose to continuously fetch
the HTTP document with a pause of 500 ms between the previous response and the next
request, because we expect a similar polling implementation by Open Data reusers like
OpenTripPlanner.

Web API. The live data is published with a server written in the Node.js Web appli-
cation framework Express and exposes 2 API routes: /polling to retrieve a JSON docu-
ment containing the latest value with an HTTP GET request and /sse to receive updates
through an open TCP connection with Server-Sent-Events. The latter is naively imple-
mented server-side with a for loop that pushes updates to every client.Multiple optimiza-
tions are possible (multi-threading, load balancing, etc.), but to make a fair comparison
between HTTP polling and SSE we focus on having a single-threaded implementation
for both approaches. By only using a for loop, all work needs to be done by the default
Node.js single-threaded event loop. For HTTP polling, we use nginx as reverse proxy
and enable single threading by configuring the number of worker_processes to 1. In
order that nginx can handle many simultaneous connections with clients, the number of
worker_connections is set to 10 k.

HTTP Caching. Two HTTP caching components are available: one is implemented
server-side using the HTTP cache of nginx, the other one at the client-side. When a
client fetches the document containing the most recent update, it will first check if
a non-expired copy is available in its cache (Fig. 1). Web browsers have this feature
enabled by default, but the Node.js clients in this benchmark need to use the cacheable-
request NPM package to support HTTP caching. An unexpected side effect of using
nginx (version 1.17.7) is that it does not dynamically update the max-age value in the
Cache-Control header when returning a copy from its cache. This means that a cached
copy with a time-to-live of 1 s will still have a max-age of 5 s which leads into extra
client-side caching for 5 s instead of 1 s. To circumvent this behaviour in our benchmark,
we also added the Expires header, which indicates when the document is expired. This
requires that the clocks of the server and clients are synchronized which is the case for
the testbed we used. For future work, we suggest to use Varnish as reverse proxy, which
dynamically updates the Cache-Control header. In Fig. 1, we see that the client makes a
request to nginx when its cache is expired.When nginx’s cache is also expired, then only
the first request will be let through (proxy_cache_lock on) to retrieve the document from
the back-end server over a persistent keep-alive connection that is configured. Other

94 B. Van de Vyvere et al.

requests need to wait until nginx received the response and then pull from the updated
cache. Themax-age value is calculated by subtracting the time that is already passed (the
current time - the time the last update is generated) from the frequency a new update is
generated (5000 ms). The Expires header is calculated by adding the update frequency
to the time of the last update. Finally, nginx removes the Cache-Control header, which
obliges the client to use the Expires header for the correct timing of its cache.

Fig. 1. Two cache components (client-side and server-side/nginx) are used for HTTP polling. As
Nginx does not dynamically update the max-age value from the Cache-Control header, we fall
back on the Expires header for client-side caching.

High Number of Clients. A benchmark environment is created using the Cloudlab
testbed at the University of Utah, which had at the time of writing the biggest num-
ber (200+) among alternatives available to us of bare metal servers. This is necessary for
our envisaged scenario where we need to deploy thousands ofWeb clients to simulate the
impact on an Open Data interface. 200 HP ProLiant m400 [23] servers are used for our
benchmark, each containing a CPU architecture with eight 64-bit ARMv8 (Atlas/A57)
cores at 2.4 GHz, 64 GB of RAM, 120 TB of SATA flash storage. Notice that a m400
server uses ARM which is generally lower in performance than traditional x86 server
architectures which could lead to faster detection of performance losses. Lastly, we use
the Kubernetes framework to easily orchestrate the deployment and scaling of our server
and clients that are containerized with Docker.

Comparing a Polling and Push-Based Approach for Live 95

Logging Results. A time series database (InfluxDB) is deployed where clients log their
latency on the client. Also, the visualisation tool Grafana is deployed to monitor whether
all clients are initialized and polling or subscribed as expected and then to export the
results as CSV. When an update is received on the client, only 10% is randomly logged
to InfluxDB to prevent an excess of updates. We exported several minutes of recordings
of the latency on the client per test, which we deem enough, for evaluation. To log the
usage of the server and client (CPU andmemory), we use the KubernetesMetrics Server.
Similarly to retrieving the resource usage of a Linux machine with the ‘top’ command,
we can use ‘kubectl top pods’ to extract the resource usage of Kubernetes pods. For each
test, we ran this multiple times and calculated the average for plotting. The Node.js back-
end and nginx reverse proxy are deployed in one single pod. This means we can easily
monitor the overall resource usage for HTTP polling from both components together.

5.2 Results

The results from our benchmark are split into two parts: first, we will show the latency
on the client with density charts. Then we will look into the resource usage. We will
first test HTTP polling without using nginx. This way, we demonstrate the performance
boost nginx creates.

Polling Without Nginx. On Fig. 2, we can see a group of density charts for polling
without using nginx. The y-axis represents the number of clients (100, 1000, etc.) that
are deployed in pollingmode, while the x-axis represents the time inms it took to retrieve
a new update. For every number of clients, there is a separate density chart showing the
distribution of latencies on the client that are measured. A client still uses a client-side
cache and polls every 500 ms, but it directly contacts the server Web API when its cache
expires. For 100 clients, more than half of the updates is retrieved below 0.5 s. Up to 2000
clients, the majority of updates are retrieved beneath one second. Above 2000 clients,
the server struggles to respond efficiently as the latency on the client is spread from 0 s
up to 5 s. We were unable to deploy more than 5000 clients, because the server fails to
handle the number of requests.

Polling. With nginx added to the server as a reverse proxy with HTTP caching enabled,
we can see on Fig. 3.1 that the server is able to handle 8000 clients instead of 5000
clients and have a similar latency for 100 and 1000 clients as without nginx (Fig. 2).
From 2000 clients on, a peak of the latency on the client appears between 1 s and 2 s.
Also, a peak exists between 3 s and 4 s starting from 4000 clients. At 8000 clients, the
distribution is evenly spread between 0 s and 2 s. Clients have a polling frequency of
500 ms and start polling at different times, which is one of the causes of this spread. In
addition, all requests wait until the cache is updated and then nginx returns responses
single-threaded. To see whether this is not caused by our client implementation, we
performed a benchmark with the wrk HTTP benchmarking tool, which generates a
significant amount of requests to test the HTTP response latency instead of the latency
on the client to retrieve an update. A wrk benchmark was performed for 30 s, using
12 threads, keeping 400 HTTP connections open and timeout for response times above

96 B. Van de Vyvere et al.

Fig. 2. Latency on the client with polling without using nginx. The server is able to answer
effectively up to 2000 clients and becomes unstable above 5000 clients.

4 s. Wrk measured a maximum response latency of 3.89 s with 13 responses timed
out above 4 s and could reach 2.52 k requests/s which acknowledges insights from the
density charts on Fig. 3.1.

Fig. 3. Latency on the client with polling (Fig. 3.1) and Server-Sent Events (Fig. 3.2). Polling
scales up to 8 k clients, while Server-Sent Events can serve 25 k clients.

Server-Sent Events. On Fig. 3.2 we can see that the maximal latency on the client with
a SSE interface increases with the number of clients. For 5 k clients, the latency on the
client is still below a second, but for 25 k clients this is evenly distributed between 0 s
and 4 s. During implementation, we faced a kernel buffer issue where data transmission
is queued until no data was written from Node.js to the HTTP response objects from
clients. This caused an increasingminimal latency on the client and also a highermaximal
latency on the client up to 1.5 s for 20 k clients. A continuous data transmission was
achieved by running a sleep function of 1 ms per 1000 clients, because we saw on the
density charts of Fig. 3.2 that SSE could respond efficiently up to 1000 clients.

Resource Usage. We measured the CPU and memory usage for the three above-
mentioned approaches. TheCPUmetric of aKubernetes pod, inwhich our server resides,

Comparing a Polling and Push-Based Approach for Live 97

is measured in mCPUs (milliCPUs). 1000 mCPUs are equivalent to 1 AWS vCPU or
1 Hyperthread on a bare-metal Intel processor with Hyperthreading. Memory usage is
measured in mebibytes (MiB). On Fig. 4, we can see that polling without nginx has the
steepest curve for CPU and that SSE still has a significant CPU advantage over polling
with nginx.We believe this is caused by SSE having less overhead than polling, although
nginx is able to minimize this with connections that are kept alive, gzip compression and
caching. For 5000 clients, we see that nginx decreases CPU usage by half compared to
polling without nginx. The memory usage stabilizes for polling (Fig. 5) with preference
for polling with nginx. For SSE, this continuously increases with the number of clients
as every client connection is held in memory.

Fig. 4. CPU usage (in milliCPU) of polling and Server-Sent Events. SSE uses less milliCPU than
polling.

Fig. 5. Memoryusage (inmebibytes) of polling andServer-SentEvents. Polling has a lowmemory
footprint (<100 MiB), while SSE needs to keep every client connection continuously in memory.

98 B. Van de Vyvere et al.

6 Discussion

Based on the benchmarking results from previous section, we start our discussion by
verifying our hypotheses. Thereafter, we will answer our research questions more in
depth.

Our first hypothesis H1 states that a SSE interface will result in a lower latency on
the client than with polling. When comparing the latency the client on Fig. 3, we see
that SSE always has a lower maximal latency on the client than a polling interface with
server-side cache enabled, so we accept H1. Surprisingly, to achieve this distribution for
SSE from0 s onwards, we had to add a sleep function of 1ms between every 1000 clients.
Otherwise, all responses are first stored in the kernel buffer before getting transmitted
which causes a higher minimum latency on the client. This behavior is not described in
implementation guidelines of SSE or Websockets so we hope that this article can help
informing the Node.js community.

For our second hypothesis H2, we expected a faster growing server cost of SSE
than polling. Previously [7], it was argued that the capabilities of HTTP caching would
outperform the server cost of SSE for a high number of clients, although polling has an
initial higher server cost. CPU usage results (Fig. 4) show that nginx indeed improves the
CPU usage for polling, but it is still steeper than SSE, so we reject H2. Publishers should
take note of the higher memory footprint of SSE, because all client connections are saved
in memory. When data needs to be encrypted using TLS, then we expect that the server-
side CPU cost for both polling and pushing will be only be slightly higher, because TCP
connections are kept alive for both approaches and thus the time and resource expensive
TLS handshake only needs to be done once for the first HTTP request [24].

Hypothesis H3 can also be falsified, because the CPU usage of polling grows apart
higher than SSE for a large number of clients. In other words, answering requests with
a cached copy still has a higher CPU cost than pushing updates directly. In terms of
scalability, we saw in Fig. 3 that SSE is able to serve 25 k clients, while polling could only
serve 8 k clients. From our hypotheses, we see that SSE is favored based on scalability,
server cost and latency on the client.

The field report (Sect. 3) shows for the vehicle positions dataset that updates are
generated every 20 s and polling is used. When an end user wants to reuse this infor-
mation inside the OpenTripPlanner application, then a polling frequency (s) needs to be
specified. This depends on the maximal latency on the client that an end user perceives
as acceptable. Even if the update interval of the live dataset is known, e.g. every 5 s
like in our benchmark, matching the polling frequency with this update interval would
still create a latency on the client distribution between 0 s and the polling frequency. In
the worst case, an HTTP response is returned just before a new update arrives, so the
client will only fetch this update with the next request round. Given the results of our
hypotheses, we question at which point the maximum acceptable latency on the client
(MAL) of an end user must be in order that our polling interface can serve more clients
than SSE. In the next paragraph, we will describe how we can theoretically calculate
this MAL cut-off point between polling and SSE.

In our benchmark, we tested with theWrk HTTP benchmarking tool that our polling
interface could serve up to 2.52 k requests/s. When all users would have started polling
at different starting times every 5 s, so they configured a MAL of 5 s, then our polling

Comparing a Polling and Push-Based Approach for Live 99

interface could have served theoretically up to 12.6 k clients (2.52 * 5) instead of 8 k
from our benchmark. This can be generalized with the following formula, which states
that the maximum supported number of requests/s of a polling interface (2.52 k in our
case) must be higher than the expected number of users that make one request every
MAL seconds:

Requestsmaxsupported/s ≥ Users ∗ Request/MAL (1)

OpenData publishers can calculate with formula (1) howmany users with a certainMAL
can bemaximally served. In practice, users can configure a higher polling frequency than
the expected MAL, so the number of users that can be served will probably be lower. To
compare this with SSE, we see on Fig. 3.2 that SSE canmaximally serve 25 k clients over
a MAL of 4 s, which is still more than polling can serve (10 k clients) with this MAL. By
increasing the MAL, we found that a MAL of 10 s allows our polling interface to serve
the same number of clients (25 k) as SSE. This should not be interpreted as a universal
number, because there are other factors that can influence this number: an AMD CPU
architecture could be more performant than the ARM architecture we used or publishing
in a global network could add extra network latency for polling [5]. Nonetheless, this
number gives an indication that users must have a relatively high MAL (>10 s) in order
that polling can serve a higher number of clients than pushing with the same amount of
resources. This brings us to our research question where our single-threaded comparison
shows that pushing is the best choice up to a maximum latency on the client of 10 s. For
datasets where all users configure a MAL above 10 s, then a polling interface is capable
to serve a higher number of clients, which can be calculated with formula (1).

Figure 4 showed that HTTP caching is crucial for a polling interface to lower the
CPU usage, but for variantly updating datasets it is not possible to foresee when the next
update will happen. For this use case, we advise to only cache the response for 1 s in
the reverse proxy (micro caching), and thus still off-load the back-endWeb API. At last,
caching headers should always be set if possible, according to the arrival of the next
update so the user can still configure its preferred MAL and bandwidth usage can be
reduced.

7 Conclusion

In related work of the RDF Stream Processing Community Group [18] and the field
report on live Open datasets (Sect. 3), we saw that publishing live changing resources
on the Web leaves the options for polling and push-based mechanisms open. With this
article, we shed some light into this topic by running a benchmark between a Server-
Sent Event and polling interface. In contrast with traditional HTTP benchmarks, we
focused on assessing the latency on the client of an update instead of the HTTP response
latency. We extend existing work [5], because we saw that a push mechanism is also the
best option when the server needs to handle a high number of clients. If the latency on
the client must be as low as possible, then the server CPU cost of HTTP polling with
caching enabled does not outperform pushing [7]. Data publishers can use our results,
which reflect the performance of a pull and push mechanism over a single thread, to
foresee when to scale their infrastructure in function of the number of clients and the

100 B. Van de Vyvere et al.

expected maximum latency on the client. The application scenario that users have a
maximal acceptable latency on the client (MAL) of at least 10 s makes polling more
scalable than pushing, although this is a theoretical number. Configuring the MAL is
a task that an Open Data reuser should be able to choose and this cannot be forced by
the data publisher by setting a caching header. Because of this, caching headers should
always be applied for invariant streams, but its timing should not be further than the next
update. For variantly updating streams where the timing of the next update is unknown,
we advise to usemicro caching on the reverse proxy.At last, OpenData publishers should
do user research (conduct a survey or investigate query logs [25]) to find out whichMAL
is most likely to be used for each dataset and verify if their current infrastructure is fit
for this by applying formula (1). For example, the vehicle position dataset from the field
report in Sect. 3 has a new update available every 20 s. If users also configure their
polling frequency in function of this interval, so their MAL is above 10 s, then polling
is the preferred interface based on the number of clients that can be served.

The “timely fashion” requirement is currently only applied for each component
individually (from Web stream to RDF stream and RSP query engines). In future work,
we would like to investigate how this requirement can be resolved from a true user
perspective, such as Smart City Dashboards, and how this requirement goes top-down
to all the underlying components.

Acknowledgements. We would like to express our gratitude to Raf Buyle and Pieter Bonte for
their support during the writing process of this article.

References

1. Berners-Lee, T.: 5 Star Data (2009). https://5stardata.info/en/. Accessed 04 Mar 2020
2. Colpaert, P., et al.: Quantifying the Interoperability of Open Government Datasets. Computer

47, 50–56 (2014)
3. Rezaei, R., Chiew, T.K., Lee, S.P.: A review on e-business interoperability frameworks. J.

Syst. Softw. 93, 199–216 (2014)
4. Lubbers, P., Greco, F.: HTML5 websocket: a quantum leap in scalability for the web (2010).

http://www.websocket.org/quantum.html. Accessed 04 Mar 2020
5. Pimentel, V., Nickerson, B.G.: Communicating and displaying real-time data with websocket.

IEEE Internet Comput. 16, 45–53 (2012)
6. Słodziak, W., Nowak, Z.: Performance analysis of web systems based on XMLHttpRequest,

server-sent events and websocket. In: Grzech, A., Borzemski, L., Świątek, J., Wilimowska,
Z. (eds.) ISAT 2015, Part II. AISC, vol. 430, pp. 71–83. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-28561-0_6

7. Rojas Meléndez, J.A., Van de Vyvere, B., Gevaert, A., Taelman, R., Colpaert, P., Verborgh,
R.: A preliminary open data publishing strategy for live data in flanders. In: Companion
Proceedings of the The Web Conference 2018, pp. 1847–1853. International World Wide
Web Conferences Steering Committee (2018)

8. Colpaert, P., Verborgh, R., Mannens, E.: Public transit route planning through lightweight
linked data interfaces. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS,
vol. 10360, pp. 403–411. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60131-
1_26

https://5stardata.info/en/
http://www.websocket.org/quantum.html
https://doi.org/10.1007/978-3-319-28561-0_6
https://doi.org/10.1007/978-3-319-60131-1_26

Comparing a Polling and Push-Based Approach for Live 101

9. Naik, N.: Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP
and HTTP. In: 2017 IEEE International Systems Engineering Symposium (ISSE), pp. 1–7
(2017)

10. Genestoux, J., Fitzpatrick, B., Slatkin, B., Atkins, M.: WebSub W3C Recommendation 23
January 2018. https://www.w3.org/TR/websub/. Accessed 04 Mar 2020

11. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a modular
SPARQL query engine for the web. In: Vrandečić, D., et al. (eds.) ISWC 2018, Part II.
LNCS, vol. 11137, pp. 239–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00668-6_15

12. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations
and query execution. VLDB J. 15, 121–142 (2006)

13. Dell’Aglio, D., Della Valle, E., Calbimonte, J.-P., Corcho, O.: RSP-QL semantics: a unifying
query model to explain heterogeneity of RDF stream processing systems. Int. J. Seman. Web
Inf. Syst. (IJSWIS). 10, 17–44 (2014)

14. Mauri, A., et al.: TripleWave: spreading RDF streams on the web. In: Groth, P., et al. (eds.)
ISWC 2016, Part II. LNCS, vol. 9982, pp. 140–149. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46547-0_15

15. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a continuous
query language for RDF data streams. Int. J. Seman. Comput. 4, 3–25 (2010)

16. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive app-
roach for unified processing of linked streams and linked data. In: Aroyo, L., et al. (eds.)
ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-25073-6_24

17. Taelman, R., Verborgh, R., Colpaert, P., Mannens, E.: Continuous client-side query evaluation
over dynamic linked data. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S.,
Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 273–289. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47602-5_44

18. Dell’Aglio, D., Phuoc, D.L., Le-Tuan, A., Ali, M.I., Calbimonte, J.-P.: On a Web of Data
Streams. DeSemWeb@ISWC (2017)

19. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: a survey
and outlook. Data Sci. 1, 59–83 (2017)

20. Jager, A., D.; Andreas: NRELNationalWind Technology Center (NWTC):M2 Tower (1996)
21. Brickley,D., Burgess,M.,Noy,N.:Google dataset search: building a search engine for datasets

in an open web ecosystem. In: TheWorldWideWeb Conference, pp. 1365–1375. Association
for Computing Machinery, New York (2019)

22. Google: GTFS Realtime Overview. https://developers.google.com/transit/gtfs-realtime.
Accessed 04 Mar 2020

23. Hardware HP ProLiant m400 server at Cloudlab Utah. https://docs.cloudlab.us/hardware.
html. Accessed 04 Mar 2020

24. Nginx SSL/TLS offloading. https://www.nginx.com/blog/nginx-ssl/. Accessed 04 Mar 2020
25. Vandewiele, G., et al.: Predicting train occupancies based on query logs and external data

sources. In: Proceedings of the 7th International Workshop on Location and the Web (2017)

https://www.w3.org/TR/websub/
https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.1007/978-3-319-46547-0_15
https://doi.org/10.1007/978-3-642-25073-6_24
https://doi.org/10.1007/978-3-319-47602-5_44
https://developers.google.com/transit/gtfs-realtime
https://docs.cloudlab.us/hardware.html
https://www.nginx.com/blog/nginx-ssl/

NuMessage: Providing Scalable
and Reliable Messaging Service

in Distributed Systems

Lubin Liu1, Tong Liu2(B) , Xinglang Wang1, Tao Xiao1, Wei Fang1,
and HongYue Chen1(B)

1 eBay, Shanghai 200120, China
{lubliu,xingwang,taxiao,weifang,hochen}@ebay.com

2 Shanghai University, Shanghai 200444, China
tong liu@shu.edu.cn

Abstract. For e-commerce companies with complex businesses like
eBay, messaging oriented middleware has become a critical component of
a large-scale distributed system, to support real-time asynchronous com-
munication. In this work, we introduce novel messaging oriented mid-
dleware named as NuMessage, which can provide universal messaging
service, including supporting push and pull modes and different scenar-
ios. We also propose a retry mechanism to guarantee each message can
be delivered and processed at least once. Various interfaces are imple-
mented in NuMessage, making it easy to deploy NuMessage in practice.
Experiments are conducted in a real system, and the results show that
NuMessage can achieve superior performance when there are message
consuming failures happening. Moreover, we have adopted NuMessage
in eBay for some time to process 12 billion of messages per day.

Keywords: Message oriented middleware · Retry mechanism design ·
Distributed messaging system

1 Introduction

As the businesses of large e-commerce companies, like eBay and Alibaba, become
more and more complex, distributed system architecture is widely adopted, in
which subsystems are built separately to support different businesses. Subse-
quently, message oriented middleware arises as an indispensable component in a
large-scale distributed system (also called as messaging system), aiming to pro-
vide efficient and reliable communication among subsystems through a certain
message delivering mechanism. Taking the advantage of message oriented mid-
dleware, application decoupling, asynchronous communication, traffic clipping
and other functions could be achieved in a distributed e-commerce system.

This research is supported by NSFC (No. 61802245) and the Shanghai Sailing Program
(No. 18YF1408200).

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 102–110, 2020.
https://doi.org/10.1007/978-3-030-50578-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_8&domain=pdf
http://orcid.org/0000-0003-0485-839X
https://doi.org/10.1007/978-3-030-50578-3_8

NuMessage: Providing Scalable and Reliable Messaging Service 103

Some message oriented middleware [3–7,9] has been developed and widely-
used by enterprises, such as RocketMQ [9] in Alibaba and Kafka [4] in LinkedIn.
Traditional messaging systems based on the Java Message Service (JMS) spec-
ification [2] and the Advanced Message Queuing Protocol (AMQP) [8], always
focus on providing diverse message delivery guarantees. For instance, each
message is allowed to be acknowledged after consumption, according to the
JMS specification. However, such messaging systems has poor performance in
throughput, especially when there are many messages produced and accumu-
lated. Developed as a log-processing messaging system, Kafka [4] has been widely
used due to its high scalability and high throughput. Particularly, it applies to
the applications, which can tolerate a few messages losing occasionally. However,
due to the different requirements of various businesses (e.g., high throughput and
fault intolerance), universal message oriented middleware, supporting different
consuming modes and achieving high reliability and scalability, is in demand.

To meet the challenge, we develop novel messaging oriented middleware,
called NuMessage, to support building a large-scale distributed messaging sys-
tem with different business requirements. NuMessage can offer universal mes-
saging service, which can be implemented based on any storage provider like file
system, log system, and data base. NuMessage can be adopted to both point-
to-point scenario and publish/subscribe scenario. Moreover, both push and pull
message-consuming modes are supported in NuMessage. As our first attempt, a
retry mechanism is proposed to process message consuming failures, which can
guarantee each message can be delivered and processed at least once. Various
interfaces including standard messaging APIs, RESTful APIs, and RPC APIs,
are integrated, making NuMessage easy to be deployed in a distributed messag-
ing system. In addition, another advantage is that the light-weight characteristic
of NuMessage supports its clients can communicate with the HTTP protocol.

The rest of this paper is organized as follows. We introduce some basic con-
cepts in Sect. 2 firstly. Then, we review some representative message oriented
middleware which has been widely used in enterprises in Sect. 3. In Sect. 4, we
describe the design of NuMessage and its key retry mechanism. In addition,
we also implement NuMessage in Ebay and take two applications as examples.
Experiments are conducted in a real system and the results are shown in Sect. 5.
Finally, we conclude the paper in Sect. 6.

2 Basic Concepts

In this subsection, we introduce some basic concepts used in a messaging sys-
tem, which is generally consisted of three components, i.e., message producers,
message consumers, and specific message oriented middleware. The message ori-
ented middleware is also called as a broker or a message server. A message
is a structured object to hold data, transferred among message producers, the
broker, and message consumers. A message producer is responsible to generate
messages and send messages to the broker. Conversely, a message consumer is
responsible to consume messages received from the broker. There are two mod-
els of messages applicable to different scenarios, i.e., point-to-point (P2P) model

104 L. Liu et al.

and publish and subscribe (Pub/Sub) model. In the P2P model, messages are
sent to a specific queue until they are consumed or timed-out. The message in
a queue can only be consumed by one consumer at the same time. The order
of messages in a queue is guaranteed. In the Pub/Sub model, producers (also
called publishers) send messages to a certain topic and then consumed by the
consumers (also called subscribers) subscribed to the topic. A topic could be
subscribed by multiple consumers and a message could be consumed by multiple
consumers at the same time. The order of messages in a topic is not guaranteed.
In some applications, multiple messages are produced or consumed together in
a batch. In our paper, queues and topics used to hold messages, and message
producers and consumers are collectively called messaging resources.

A messaging system can be divided into two modes, i.e., push mode and
pull mode, according to how consumers receive messages. In the push mode, the
broker actively pushes a message to the consumers who subscribe to the mes-
sage, as soon as the broker receives the message. This mode is suitable for the
applications with high real-time messaging capabilities. However, the disadvan-
tage is that a large amount of messages will be accumulated at the consumer
client when the processing rate of the consumer is slower than the sending rate
of the producer. In the pull mode, consumers take the initiative to pull the
required message from the broker, no matter how many messages are generated
by producers. The unconsumed messages are stored at the message server. The
disadvantage of this mode is that the timeliness of message processing is low.

3 Related Work

Until now, there are multiple message oriented middleware, such as IBM Web-
Sphere MQ [5], RabbitMQ [7], ActiveMQ [6], ZeroMQ [3], RocketMQ [9], and
Kafka [4], which have existed for long time and widely-used by enterprises. In
this section, we review three representative message oriented middlewares.

ActiveMQ [6] is a popular and open source message queue framework pro-
duced by Apache, which fully supports the JMS specification [2]. ActiveMQ
supports asynchronous message transfer, which reduces the coupling of pro-
ducers and consumers. ActiveMQ also ensures messages reliably saved in the
middleware and high-speed message persistence. Under the default setting of
ActiveMQ, messages are pushed to consumers one by one.

RabbitMQ [7] is an open-source middleware based on AMQP [8], which is
widely used in financial and payment systems due to its good performance in
reliability, availability, and extensibility. However, RabbitMQ only supports P2P
model, which limits its usage scenarios. Besides, RabbitMQ does not support
message backtracking, which means a message is deleted once consumed.

Kafka [4] is a distributed Pub/Sub messaging system originally developed
by LinkedIn, which is widely used due to its horizontal scalability and high
throughput. Kafka is a well-designed and application-specific messaging system,
which has several special characteristics as follows. Firstly, data are stored in a set
of segment files and the broker simply appends messages to the last segment file.

NuMessage: Providing Scalable and Reliable Messaging Service 105

Each message is addressed by its offset in the segment file, which avoids random
access to the disk. Secondly, the information about how many messages have been
consumed is saved by each consumer itself, and messages are actively required by
consumers. Thus, the burden of the broker is significantly reduced. However, the
broker does not know whether a message is consumed by all subscribers or not.
The main disadvantages of Kafka are that messages may be re-consumed more
than once by mistake, and Kafka lacks some useful functions like message-level
acknowledgement mechanisms.

4 NuMessage Design

In this section, we first introduce the overview of our designed message oriented
middleware NuMessage. Then, we explain the details of our proposed novel retry
mechanism and the improved implementation of NuMessage. Finally, two exam-
ples are taken to show the usage of NuMessage in Ebay.

NuMessage Service Layer

Storage Provider Layer

Client Layer

Metadata Store

Management RPC
Service Message Access RPC Service

Internal
Management

Client

Storage Unit Storage Unit Storage Unit

Internal Producer Internal Consumer

Filter
Engine Push Engine

Producer Pull-Model
Consumer

Push-Model
Consumer

Create
Topic/Producer

Create Storage
Unit/Client

produce(message)

message

consume() ack()

message

message message

message

ack

Write
data

Read
data

Create Consumer

Fig. 1. Framework of NuMessage.

NuMessage Service Layer

Storage Provider Layer

Client Layer

Metadata
Store

Message Access RPC Service

Internal Consumer

Consumer B

consume() ack(BatchDetail)

message

Source data storage unit

BatchDetail storage unit

Cache

Consumer A

consume() ack(BatchDetail)

Distributor

Normal Storage
Reader Retry Storage Reader

BatchDetail
Storage
Writer

BatchDetail
Storage
Reader

message

message

Offset

BatchDetail BatchDetail

BatchDetail

InstaceMapping

Offset

ack(BatchDetail)

Fig. 2. Retry Mechanism.

4.1 Overview

Figure 1 shows the framework and data flow of our designed message oriented
middleware NuMessage, which is mainly composed of four modules.

1. Management Service: A group of RPC APIs to manage (e.g., create, read,
update, and delete) the messaging resources. Internal Management Client is
contained in this service, which converts the requests (e.g., creating a producer
or a topic) of clients to the instructions of storage providers.

2. Message Access Service: A group of RPC APIs for producers generating
messages and consumers consuming messages. Both push and pull modes are
supported in NuMessage.

3. Internal Message Provider: Internal Producer and Internal Consumer are
included, which converts the request of producing/consuming messages to the
instruction of writing/reading data into/from the storage provider.

106 L. Liu et al.

4. Ancillary Module: Two ancillary engines are included in NuMessage as
well, i.e., filtering engine and push engine, which make messages can be fil-
tered according to user-defined rules and pushed to consumers in NuMessage.

In a messaging system implemented based on NuMessage, the storage
provider could be implemented as a file system, a log system like Kafka, or
a data base. Then, each storage unit holding messages is corresponding to a file,
a topic, or a table, respectively. In any storage provider, we uniformly use offset
to identify the location of a message recorded in a storage unit (e.g., rowID in
Oracle DB).

Then, we describe the data flow in NuMessage in the following, as shown in
Fig. 1, a new client (producer/consumer) firstly registers to NuMessage through
the APIs provided by Management Service. To hold messages, a new topic or
queue can be created by a provider, which is also supported by Management Ser-
vice. Internal Management Client is invoked to create a storage unit or a client
in the storage provider layer. All metadata (e.g., topic name, producer name,
and their incidence relation) are saved in Metadata Store. To produce messages,
a producer calls APIs provided by Message Access Service, and then Internal
Producer is invoked to write messages into a storage unit. An acknowledgement
is returned to the producer to inform it the message is persisted or not. In addi-
tion, two message consuming modes are supported in NuMessage. In the push
mode, a consumer firstly subscribes to one or multiple specific topics/queues.
Messages are periodically read by Internal Consumer from the storage provider
according to the subscriptions of a consumer, and delivered to the consumer
by the push engine. In the pull mode, consumers actively send requests to get
messages, through calling the APIs provided by Message Access Service. Finally,
an acknowledgement is returned to Message Access Service after the message is
processed by the consumer.

4.2 Retry Mechanism

Some breakdowns may happen due to network instability or limited capacity
of clients, such as (1) message loss during delivering from NuMessage to client,
(2) processing failure at consumer client, and (3) acknowledgement loss during
delivering from client to NuMessage. They lead to messages are lost during
delivering or processing, which is unacceptable in some applications. To overcome
the drawback, we adopt the acknowledge mechanism in NuMessage. In terms of
consuming, if the acknowledgement of a message pushed to a consumer is not
received, the message needs to be re-delivered to the consumer. To guarantee at
least once delivery, we introduce a novel retry mechanism. The detailed design
is plotted in Fig. 2.

NuMessage: Providing Scalable and Reliable Messaging Service 107

Note that we build a specifical BatchDetail Storage Unit in storage prodiver,
differing from source data storage units used to save normal messages. This spe-
cial unit is used to store the status of each batch of messages consumed by a
consumer client. Specially, each batch detail record stored in the unit contains
the metadata of a consumed batch, such as batch ID, message IDs, batch sta-
tus1, expired time, and the count of retry times. When a consuming request
arrives to Message Access Service, there are two consumption channels to get
the corresponding messages, i.e., normal consuming channel and retry consum-
ing channel, both of which are supported by Internal Consumer.

In the normal consumption channel, the request is sent to Normal Storage
Reader by the distributor, which will read messages from source data storage
units according to the offset recorded in Metadata Store. In the retry consump-
tion channel, the request is sent to Retry Storage Reader, which will try the batch
of messages failed before. Concretely, a cache storing the details of un-acked
batches is maintained by Internal Consumer. A long-running thread BatchDe-
tail Storage Reader periodically pulls batch details from BatchDetail Storage
Unit and writes them into the cache. Retry Storage Reader reads messages from
source data storage units according to the batch details recorded in the cache.
In addition, the details of a batch with status := EMIT is created and written
into BatchDetail Storage Unit by BatchDetail Storage Writer when the batch is
read by Normal Storage Reader. The status of the batch is updated in BatchDe-
tail Storage Unit, when its acknowledgement is returned by the consumer. If
all messages in the batch are processed successfully by the consumer, BatchDe-
tail Storage Reader will delete the record in the cache. If the batch is marked
as failed in the acknowledgement, the details will be written into BatchDetail
Storage Unit and then written into the cache. Failed messages will be retried
sometime by the retry consumption channel. Otherwise, the expired time of the
batch will be up, if there is no acknowledgement returned. Then, the batch will
be retried by Retry Storage Reader based on the details recorded in the cache.

4.3 Improved Implementation

To enhance the efficiency of NuMessage in practice, we take three optimizing
implementations as illustrated in the following.

1 A batch has four statues:

1. SUCCESS means all messages in the batch have been processed successfully, and
the batch will be deleted in storage.

2. EMIT indicates the batch is delivered to the client for the first time.
3. FAILED indicates that partial or all messages in the batch are marked as retry.

A batch will be marked as failed as well if its acknowledgement is not returned
before timeout. All failed batches will be redelivered.

4. ABANDONED means all messages in the batch are marked as abandoned, or the
retry count has exceeded the upper bound.

108 L. Liu et al.

Simplified Cache. A cache is used in NuMessage to record the details of failed
batches. However, it is not necessary and memory-efficient to hold all batch
details in the cache. Only a few key metadata are useful such as batch status,
count of retrym and expired time. Then, each record in the cache has a fixed
payload size of 26 bytes.

Instance Mapping. In NuMessage, the consuming service provided to each
consumer client is supported by Internal Consumer. Thus, we need to map each
novel consumer client to a proper internal consumer and keep the mapping bal-
anced. Specially, if the number of consumer clients dose not exceed the upper
bound asked by NuMessage, we will create a new internal consumer for the new
client; otherwise, the client will be mapped to an existing internal consumer.

Channel Selection. When a consuming request arrives, a normal or retry
consumption channel is selected by Internal Consumer to process the request.
The default policy is simple random selection. We optimize the selection policy as
follows. If the normal/retry channel returns an empty batch, Internal Consumer
will change to the other channel.

4.4 Usage in Ebay

In this subsection, we introduce two practical usages of NuMessage in Ebay.

Search Data Federation (SDF) Service. SDF service is invoked by eBay
business domain to save eBay item index update events to HBase [1]. The traffic
volume of SDF service is quite heavy in eBay. For instance, the count of messages
can reach to more than 4 billion per day. We implement a novel SDF service
base on NuMessage, as shown in Fig. 3. Here, an index update event is written
into NuMessage as a message by a SDF producer. Then, a SDF consumer reads
the message out and invoke HBase write service (i.e., sdfwriter), to persistent
the event in HBase. Thus, the invoke of SDF service by eBay business domain
is decoupled with writing item index update into HBase.

Remote Procedure Call (RPC) Framework. RPC is a protocol of inter-
process communication. We implement a RPC framework based on NuMessage
in eBay, to deal with the applications containing a centralized control plane
(regarded as RPC client) and multiple data planes (regarded as RPC servers). As
shown in Fig. 4, the communication between the RPC clients and RPC servers
is implemented by NuMessage, in which casts and calls generated by a RPC
client are packed as messages, saved in multiple NuMessage queues and parallelly
consumed by different RPC servers.

NuMessage: Providing Scalable and Reliable Messaging Service 109

SDF Producer

SDF Consumer

HBase

Business Domain Producer

NuMessage Service Internal
Service

Legacy Path

Legacy Path

eBay Index Update Event

Fig. 3. SDF service based on
NuMessage.

RPC Client

NuMessage

RPC Server 1 RPC Server 2

Business Logic Cache

Producer 1 Producer 2

Reply Producer 2

Queue 1 Queue 2 Reply Queue 2

Consumer 1 Consumer 2

Reply Consumer 2

Processor Processor

Cast Call

Request

Request

Request

Request Response

Response

Fig. 4. RFC framework based on
NuMessage.

5 Experimental Results

We conduct experiments based on a real system, comparing the performance
achieved by NuMessage and Kafka [4], a popular open-source messaging mid-
dleware for log processing. We run our experiments on 5 machines deployed on
the private cloud of eBay, each with 2 cores and 4 GB of memory. Two of them
are used to run as client (producer/consumer) and server, respectively, while the
other three machines are used as brokers. We carry out NuMessage in which the
storage provider is implemented as log system Kafka. We test the performance
of the consumer achieved by Kafka and NuMessage, which is measured by the
average number of messages processed in a second. We run a single consumer
client for Kafka and NuMessage respectively, and set the processing time of each
message is 20 ms. In addition, we also consider two different scenarios, i.e., (1)
no message retry happen, and (2) 20% messages are re-delivered.

The experimental results are presented in Fig. 5 and Fig. 6, respectively. We
can find that the performance achieved by Kafka and NuMessage is lower than 50
messages/sec, since extra time is spent for the consumer pulling messages from
the broker. As shown in Fig. 5, when there is no message retry, the performance
achieved by NuMessage is slightly lower than Kafka. It is because NuMessage
adds one more network hop to pull messages than Kafka. On the other hand,
when there are 20% messages retried, NuMessage performs much better than
Kafka, e.g., 18.4% higher throughput achieved. This is because Kafka has to
block consuming for redelivering the failed messages, while NuMessage has the
built-in non-blocking retry mechanism.

110 L. Liu et al.

0 500 1000 1500 2000
0

10

20

30

40

50

Kafaka
NuMessage

Fig. 5. Consumer performance when
there is no message retry.

0 500 1000 1500 2000
0

10

20

30

40

50

Kafaka
NuMessage

Fig. 6. Consumer performance when
there are 20% messages re-delivered.

6 Conclusions

In this paper, we propose a novel messaging oriented middleware NuMessage,
which can support push and pull modes and apply to different scenarios. More-
over, a retry mechanism is provided as our first attempt, which can guarantee
at least once delivery in NuMessage. We also conduct experiments to show the
superior performance of NuMessage. Until now, NuMessage has been adopted in
practical systems of eBay, which process up to 12 billion of messages per day.

References

1. George, L.: HBase: The Definitive Guide: Random Access to Your Planet-Size Data.
O’Reilly Media Inc., Sebastopol (2011)

2. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Message Service.
Sun Microsystems Inc., Santa Clara (2002)

3. Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly Media Inc.,
Sebastopol (2013)

4. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: a distributed messaging system for
log processing. In: Proceedings of the NetDB, pp. 1–7 (2011)

5. Lampkin, V., et al.: Building Smarter Planet Solutions with MQTT and IBM Web-
Sphere MQ telemetry. IBM Redbooks (2012)

6. Snyder, B., Bosanac, D., Davies, R.: Introduction to Apache ActiveMQ. Active MQ
in Action, pp. 6–16 (2017)

7. Videla, A., Williams, J.J.: RabbitMQ in action: distributed messaging for everyone.
Manning (2012)

8. Vinoski, S.: Advanced message queuing protocol. IEEE Internet Comput. 6, 87–89
(2006)

9. Yue, M., Ruiyang, Y., Jianwei, S., Kaifeng, Y.: A MQTT protocol message push
server based on RocketMQ. In: 2017 10th International Conference on Intelligent
Computation Technology and Automation (ICICTA), pp. 295–298. IEEE (2017)

Machine Learning

A Credit Scoring Model for SMEs Based
on Social Media Data

Septian Gilang Permana Putra1, Bikash Joshi1, Judith Redi1 ,
and Alessandro Bozzon2(B)

1 Exact Software, Delft, Netherlands
{septian.putra,bikash.joshi,judith.redi}@exact.com

2 Delft University of Technology, Delft, Netherlands
a.bozzon@tudelft.nl

Abstract. Credit scoring is an important tool to assess the solidity
of small and medium-sized enterprises (SMEs), and to unlock for them
new options for credit and improvement of cash flow. Credit scoring is,
in its most common form, used by (potential) creditors to predict the
probability of SMEs to default in the future, as an inverse measure of
creditworthiness. The majority of existing credit scoring methods for
SMEs are solely based on the analysis of SMEs’ financial data. While
straightforward, these methods have major limitations: they may rely on
very incomplete or outdated data, and fail to capture the very dynamic
environment in which the business of SMEs evolves. In this paper, we
propose an alternative approach to credit scoring for SMEs by enriching
traditionally used financial data with social media data. We carried out
our analysis on 25654 SMEs in the Netherlands, using 20 traditional
financial indicators and 35 social media features. Experimental results
suggest that the use of social media data in addition to traditional data
significantly improves the quality of the credit scoring model for SMEs.
Furthermore, we analyze the most important factors from social media
data influencing the credit scoring.

1 Introduction

Small and medium-sized enterprises (SMEs) play an important role in the econ-
omy of every nation. In the Netherlands, for example, SMEs represent 99.8%
of all enterprises, account for 64.2% of overall employment, and contributed
to 61.8% value added of the non-financial business sector in 2017 [11]. In the
Netherlands, as elsewhere in the world, supporting the financial needs of SMEs
is crucial to the country’s growth.

Credit analysis has emerged as an essential aspect of the modern economy,
and especially for SMEs. Businesses need to evaluate the reliability of their cus-
tomers before supplying services or goods. Likewise, financial institutes need
to assess the probability of being paid back in full and on time before lending

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 113–129, 2020.
https://doi.org/10.1007/978-3-030-50578-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_9&domain=pdf
http://orcid.org/0000-0003-1936-8860
http://orcid.org/0000-0002-3300-2913
https://doi.org/10.1007/978-3-030-50578-3_9

114 S. G. P. Putra et al.

money to SMEs. Credit scoring, defined as the process of assigning a quanti-
tative measure to a potential borrower as an estimate of how likely they are
to default (i.e. not repaying the debt in time), is a common credit analysis tool
[15]. Creditors consider SMEs as high-risk clients, mainly because of their higher
failure rate [3], and because of the difficulty to obtain reliable information about
their financial situation as their financial reports are mainly for tax purposes and
not publicly available. Because of these unique characteristics, creditors need to
handle SME’s credit risk separately from larger enterprises [3]. Hence, most of
the commercial banks and other credit companies build specific credit scoring
model for SMEs to enhance their credit decision process.

In the past two decades, plenty of credit scoring models have been proposed
for SMEs. Recently proposed solutions rely on machine learning techniques and
a fairly consistent set of predictors, namely financial ratios derived from account-
ing data (e.g. current ratio, return on asset (ROA), debt-to-equity ratio, etc.).
Despite their proven predictive power [1,2,33], financial ratios have some lim-
itations. As already mentioned, it is difficult for creditors to obtain financial
data of SMEs. Moreover, there can be other factors beyond financial data which
may influence the default behavior of SMEs such as their willingness and abil-
ity to repay the loan [16]. For this reason, a few studies have started including
non-financial predictors [5,28], which incorporate knowledge about marketabil-
ity, technology advantage, management quality, age, size, type of industry, and
geographical area. While improving the accuracy of credit scoring, such data is
difficult to obtain, as creditors should manage an on-site survey or have long
enough historical relation with the borrowers to collect the data.

Social Media are popular among SMEs as tools to present themselves to the
public and acquire new customers. Platforms such as LinkedIn and Facebook
collect profiles of SMEs, reporting information on their business, their most
recent initiatives, as well as their interactions with their customers. Creditors can
access this alternative source of data using APIs provided by the platforms or
using scraping technology. Arguably, SME lenders can also use this information
to build a more comprehensive credit scoring model which is more transparent,
faster and cheaper, and hence suitable for SMEs.

Despite its intrinsic richness [7], the use of Social Media information for
credit scoring presents some non-trivial challenges. First, the data is not readily
available unless provided directly from the company being assessed - which is not
always the case; therefore, smart data collection techniques need to be devised for
data acquisition. Second, scientific literature scarcely addresses the challenge of
using social media data for credit scoring. Several companies provide commercial
credit scoring service (partially) based on social media exist (e.g. Lenddo or
Kabbage), but the nature and performance of their methods are concealed for
obvious commercial reasons. In practice, best practices on how to use social
media data in credit scoring are, to date, not yet set.

A Credit Scoring Model for SMEs Based on Social Media Data 115

In this paper, we investigate how credit scoring for SMEs can make use of
social media as part of a default prediction model. The main contributions of
this work can be summarized as follows:

1. Social media as an additional data source. We investigate the use of
social media data from Facebook as an additional source of data for build-
ing the credit scoring model. We show the techniques used to collect and
process such data. We also present how features can be extracted from such
unstructured data source which can be useful for the credit scoring model.

2. A fuzzy matching method to retrieve social media ID. We present
a technique to improve the veracity of data collected from the social media.
We can search the social media ID using some basic information but some
irrelevant result may appear. We apply similarity-based instance matching to
improve the quality of search result.

3. Analysis of social media features influencing SME credit scoring.
We further analyze the impact of social media features on the performance of
a credit default prediction model. There may be some distinct characteristics
that make a SME more riskier than the others. In this research, we investigate
which social media features relate to an SME’s probability of default.

In the next section we summarise literature related to credit scoring and
the use of social media metrics in business related topics. Then we present our
data collection methods, where we describe how data is collected from different
sources, including data acquisition from social media and public websites. The
following section, introduces the credit scoring framework that we use to develop
SME credit scoring. Finally, we present a detailed analysis of our results.

2 Related Work

2.1 Credit Scoring Models for SMEs

The term credit scoring originates from the banking industry, where it is used to
denote methods to evaluate the creditworthiness of the potential borrowers. It
has been popularly used in the context of large companies and consumer lending.
However, it was only recently adopted to assess credit worthiness of SMEs. SMEs
exhibit distinct characteristics as compared to consumer or large firms lending.
Hence, creditors need to build models specifically designed for SMEs. Given its
business relevance, it is no surprise that the development of models specifically
for SMEs has attracted attention from scholars and practitioners. Those studies
differ in the features associated with the credit default and the techniques used
for building the scoring model. In this subsection, we will explore recent stud-
ies and highlight the features and techniques popularly used to develop credit
scoring model for SMEs.

116 S. G. P. Putra et al.

The majority of the credit scoring models designed for SMEs are variations
of the techniques designed for consumer lending and large corporate lending.
Discriminant analysis is one of the earlier works and popularly used for several
years for credit scoring for SMEs.

Edmister [14] proposed one of the earliest works for predicting default of
small businesses. He examined the predictive power of 19 financial ratios, and
proposed a discriminant function which showed the effectiveness of financial
ratios for predicting SME bankruptcy. On the other hand, the use of many
financial ratios in the discriminant function affected the stability of the model.
Edward Altman proposed a framework using Multivariate Discriminant Analysis
(MDA) for predicting corporate bankruptcy. The discriminant function is showed
to be very accurate in distinguishing between bankrupt and healthy companies.
Even though the original work was designed specifically for medium and large
company, several years later Altman [1] extended this work by building a specific
model for SMEs, known as Z”-score This model uses only 4 financial ratios
derived from accounting data. Because of its simplicity and stability, it is still
popularly used for credit scoring of SMEs.

In [6], authors proposed credit scoring models for SMEs using three differ-
ent machine learning algorithms and adding non-financial features. Their paper
aimed to identify important features for small business. Their results suggest
the effectiveness entrepreneur’s personal and business characteristics in addition
to the credit characteristic for SME credit scoring. Some of the non-financial
features used in their work are: owner’s age, occupation, amount, loan duration,
interest rate, repayment method, location and sector.

Sohn et al. [28] built a logistic regression based model for technology based
firms, where they assessed several attributes. Some of the useful non-financial
features in their work are: knowledge management, technology experience, tech-
nology commercialization potential, product competitiveness etc. The outcome
of their work is a robust classification model with high precision and recall. Alt-
man et al. [4] combined non-financial features with financial features for SMEs
which have insufficient financial information. The inclusion of non-financial fea-
tures is reported to improve the prediction accuracy of the model by up to 13%.
Pederzoli et al. [26] were the first to combine innovation-related features, i.e
R&D productivity and value of the patent, with financial features to predict
the default event on SME lending. Their research shows that combining inno-
vation related features to the financial data can increase the accuracy of the
model by 4.5%. Ciampi et al. [10] implemented SME credit scoring model by
combining the geographical area, business sector and the size of SMEs with the
financial features. They show that size, business sector, and geographical area are
influential for credit scoring of SMEs. A credit risk assessment technique using
both financial and non-financial features is also presented by [18]. Their results
show that the use of non-financial features (e.g. size of company, ownership

A Credit Scoring Model for SMEs Based on Social Media Data 117

structure and corporate banking relationship duration) significantly improved
the performance of their credit scoring model. Finally, Lee et al. [19] proposed
an accounting ethics-based model which is said to reduce the default rate result-
ing from the moral hazard associated with unethical accounting behaviors.

Logistic regression has been conventionally used in many studies for credit
scoring. It is preferred over other methods mainly because of its computational
efficiency and interpretability. Altman et al. [3] used logistic regression to build
SME default prediction model based on a set of financial ratios and proved its
superiority to MDA.

Recently, more complex machine learning techniques such as support vec-
tor machines (SVM), decision trees, and artificial neural networks (ANN) have
also been adopted for SME credit scoring. Ciampi et al. [10] implemented a
model using various machine learning techniques, including Artificial Neural
Networks. Bastos [30] evaluated a credit scoring models based on a variant of
gradient boosting machine, extreme gradient boosting (XGBoost), across five
credit datasets. The proposed XGBoost-based model achieves promising perfor-
mances by producing high accuracy in all of the datasets used.

One of the main challenges in credit scoring modeling is class imbalance.
Marques et al. [20] tackle this problem using re-sampling techniques to balance
the number of samples before applying logistic regression algorithm to build the
model. Their research proposed seven re-sampling algorithms, including vari-
ous under-sampling and over-sampling techniques, such as One-Sided Selection
(OSS), Neighborhood CLeaning rule (NCL), random under-sampling (RUS),
under-Sampling Based on Clustering (SBC), random over-sampling (ROS), Syn-
thetic Minority Over-sampling TEchnique (SMOTE), Safe-Level SMOTE, and
combination of SMOTE and data cleaning, called SMOTE+WE. The exper-
imental results demonstrate that in general, over-sampling techniques perform
better than any under-sampling approach with the SMOTE+WE top the result.
Brown et al. [9] showed that random forest and gradient boosting trees are better
at dealing with class imbalance problems.

2.2 Use of Social Media Data in Credit Scoring

Oztamur et al. [25] analyzed the role of social media for SMEs from the perspec-
tive of firm marketing performance. In this study, the number of likes and follow-
ers, richness of content, interaction with customers and the use of language from
Facebook and Twitter are chosen as criteria to asses the performance of SMEs.
Similarly in [12] and [13], authors investigated the potential of Facebook data for
microfinance credit scoring. In [22], McCann et al. compiled the measurement
of social media in mainstream academic literature and other business-oriented
publications.

Masyutin et al. [21] used the data collected from VKontakte, Russia’s most
popular social media platform, to discriminate between the solvent and delin-
quent borrowers in personal lending. The research showed that social media data

118 S. G. P. Putra et al.

can effectively enrich the classical application of credit scoring. Tan et al. [29]
proposed a social media based credit scoring model for microloans. The research
shows that incorporating social network metrics can improve the repayment pre-
diction by 18%.

Zhang et al. [32] constructed a consumer credit scoring model by fusing social
media information collected from social platform PPDai with the information
that are used in the credit scoring traditional model. The model proved able to
catch 86.02% default customer with overall accuracy 84.86%. In [31], authors
used data collected from largest social media from China i.e. Weibo for conduct-
ing online credit scoring.

Even though social media data has been extensively used in credit scoring
for personal or consumer lending, it has never been used in the context of SMEs.
In this paper, we utilize this additional source of information for credit scoring
for SMEs. Furthermore, we analyze the impact of various social media features
on credit default prediction for SMEs.

3 Data Collection

Data for this research was provided by Exact1, a large software company based in
the Netherlands. It consists of general information about 218,778 SMEs, includ-
ing sector, company size, website, and chamber of commerce number, along with
their financial administration data for the past 5 years. Most of the financial fea-
tures were derived from this data. On the other hand, the dataset did not include
non-financial data (and specifically social media data) or bankrupcy information.
Thus, we had to devise a method to acquire this extra information from publicly
available data sources.

3.1 Public Data

We enriched the data from Exact with public data mainly for two additional
information: bankruptcy label and non-financial data. The Dutch Chamber of
Commerce website2 offers information related to all of the legal entities that
participate in economic transactions in the Netherlands, including SMEs. We
used it to complete and validate the SMEs basic information, i.e. name, address,
website and Chamber of Commerce (KvK in Dutch) number. Especially the
latter, was then used to collect bankruptcy, the extra information we needed.

Information related to bankruptcy status of businesses is available in
some public websites, such as faillissementen.com, faillissementsdossier.nl and
drimble.nl, which can be searched based on KvK number or company name.

1 The information made available by Exact for this research is provided for use for
this research only and under strict confidentiality.

2 www.kvk.nl.

https://www.faillissementen.com/
http://faillissementsdossier.nl/
http://drimble.nl/
www.kvk.nl

A Credit Scoring Model for SMEs Based on Social Media Data 119

Fig. 1. Functional diagram of Web Scraper

To automatically collect bankruptcy information for over 200000 businesses
in our initial dataset, we created a scraper that would use KvK number as an
identifier to select the relevant SME. The architecture of our web scraper is
illustrated in the Fig. 1 and explained below.

The scraping begins with a list of URLs called seed list. The URLs in seed
list (Seed URLs) are constructed from the KvK number of the company of
interest, and can be different for each public website. A Scheduler then han-
dles the scraping strategy, choosing the URL from the queue to be sent to the
downloader module.

The downloader module sends then the HTTP request to the website and
retrieves the content of the HTML file, taking care of sessions, cookies and
authentication, if needed. In this work, we use Selenium3 as our HTML down-
loader. The HTML pages are then parsed via a python script based on the
Beautiful soup4 library, and the relevant information stored (in CSV format) in
the designated storage.

Throughout the scraping, the Frontier module maintains the list of URLs
discovered during the crawling process. Sometimes, the seed URL doesn’t provide
direct access to the desired information, and another hyperlink from the page
needs to be accessed. Such URLs are stored by scrap frontier.

Using this method, we found that 217,280 out of 218,778 Dutch SMEs in our
initial dataset have valid KvK numbers. From those with valid KvK numbers,
124,261 (57, 19%) have size information, 132,227 (60.85%) have sector infor-
mation, 46,948 (21.61%) have website information, and 3264 (1.5%) have filed
bankruptcy.
3 https://www.seleniumhq.org/.
4 https://pypi.org/project/beautifulsoup4/.

https://www.seleniumhq.org/
https://pypi.org/project/beautifulsoup4/

120 S. G. P. Putra et al.

3.2 Social Media Data

Among the many social media platforms which contain information about SMEs,
such as Facebook, LinkedIn, Twitter, Yelp etc, we decided to use Facebook for
various reasons. Facebook is the most popular social media platform followed
by LinkedIn and Twitter [23,27]. Moreover, it is the most popularly used plat-
form for credit scoring and business performance evaluation in the literature.
Facebook also allows companies to create their business page, which can be con-
veniently collected using Facebook’s Graph API. However, for collecting data
from Facebook’s API, we need the username or user ID, information that is not
present in our initial dataset. Hence, we obtained this information using the two
methods described below.

Scraping SME’s Website: Many SMEs report their social media account
information in their website. Therefore, we scraped their websites to get their
social media username or ID, specifically on Facebook: we could then easily
parse the username or ID as the Facebook URL has specific pattern. In doing
so, we considered the data trustworthy only if we got a one-to-one correspondence
between the website information and the Facebook account, ultimately obtaining
17,866 Facebook accounts. One main limitation of this approach is that we could
only obtain social media information for a subset of SME websites. However, for
this subset we have high confidence on the correctness of SME Facebook account
that we found.

Using Facebook Search API with Fuzzy Matching: To complement the
previous approach and extend the dataset, we used Facebook’s search API to
search using the SME’s name or brand name. Here the problem we had to tackle
was that, often, the search result returned multiple accounts with similar names.
Hence, we used a fuzzy matching technique to identify, among the many returned,
the relevant social media account.

Our fuzzy matching technique is based on text similarity of name and address
of the SMEs as per our initial dataset and those returned by the Facebook search
API. To tune this fuzzy matching model, we used the knowledge of the unique
SMEs-Facebook account pairs obtained from website scraping. We created two
similarity features between the two texts (denoted as a and b in the following
equations) comparing at token and phrase level, denoted as Lphrase and Ltoken

respectively. They are computed as:

Lphrase(a, b) = 2 ∗ Ma,b/(Ta + Tb) (1)

Ltoken(a, b) = Ma,b/min(Ta, Tb) (2)

Where M is the number of consecutive character matches and T is the total
number of characters. We calculate both features for name and address. The
probability of an item on search result to be relevant, denoted as p(x, y), can be
computed as the weighted combination of the similarity features as below:

A Credit Scoring Model for SMEs Based on Social Media Data 121

p(x, y) = Lphrase(xname, yname) ∗ wname,phrase

+ Ltoken(xname, yname) ∗ wname,token

+ Lphrase(xaddress, yaddress) ∗ waddress,phrase

+ Ltoken(xaddress, yaddress) ∗ wname,address

(3)

However, deciding the appropriate weights which can provide the best esti-
mation for p(x, y) is not trivial. Hence, we pose this as a classification problem.
We try to predict whether a Facebook page from the list of multiple accounts
is relevant or not. To train this prediction model, we use the SME-Facebook
account pairs which we already collected from the first strategy. The prediction
model can be used to identify the relevant Facebook pages. If there are multiple
relevant pages returned from the classifier, we can use the class probabilities to
chose the most relevant one.

Using this method, we are able to get additional 7,788 SMEs with Facebook
accounts, which is 30.36% of our final dataset.

4 Credit Scoring Framework

This section presents the details of our credit scoring framework based on com-
bination of traditional and social media data.

4.1 Feature Engineering

The first step of our framework is engineering features which are relevant for
credit scoring of SMEs in terms of future bankruptcy.

Traditional Features: Traditional features include both financial and non-
financial features. Here, we follow findings from literature: as financial features
we also use financial ratios derived from accounting data, and we use business
sector and size as non-financial features. All the traditional features used in our
framework are listed in Table 1.

Social Media Features. Content generated by companies on their Facebook
page is used to compute social media features. We use features proposed in earlier
research, and we propose some new relevant ones. Features such as number of
posts (photo and video) and days since last post are derived from [21]; so are
number of story posts, number of days since last comment and number of days
since the last visitor post.

Similarly, number of fans, number of mentions, rating volume and rating level,
are derived from [24]. As suggested in [8], we use features such as average number
and percentage of reactions, shares, and comments per post on the Facebook
page. We adapt these features according to the new feature on Facebook with
6 possible reactions (like, love, haha, wow, sad and angry), dividing them into
positive (like, love, haha and wow) and negative reactions (sad and angry). Along

122 S. G. P. Putra et al.

Table 1. Traditional features for SME credit scoring

Name Description

Equity Book value of equity

Total assets (TA) Total assets owned

Current assets Assets that can be converted into cash within a year

Total liabilities (TL) Total obligations and debts owned

Current liabilities (CL) Obligations that are due within one year

Cost Amount of money that has been used up to produce revenue

Tax Amount of tax paid

Revenue Amount of money received from the sold products

EBITDA Earnings before interest, taxes, depreciation and amortization

EBIT Earnings before interest and taxes

Net profit Earnings after all of the expenses

Current ratio Current assets/current liability

Quick ratio Assets without inventory/current liability

Net margin Net profit/revenue

EBIT margin EBIT/revenue

Return on asset Net profit/total assets

Debt ratio Total liability/total assets

Debt-capital ratio Total liability/(total liability+equity)

Sector SMEs category based on SBI 2008

Size Number of employees

those lines, we propose new features based on visitor posts such as number and
percentage of positive and negative visitor posts. Additionally, we propose a set
of features based on the trend of several activities. These features calculate the
gradient of some features such as number of posts, shares and comments in the
duration of six months. We calculate the trends of posts, shares, comments and
reactions (both positive and negative). Table 2 lists all the social media features
used in our experiments.

4.2 Model Development and Evaluation

Feature Selection. Feature selection is the process of selecting the subset of
features most relevant for learning a model. In this project we perform feature
selection in three steps. First, we screen out features with very low variance, weak
predictive power, or seemingly illogical for the task at hand. Then we perform
correlation based feature selection, where the correlation among the features
is measured and one or more features are selected from the group of highly
correlated features. Then we perform a recursive feature selection to finalize the
set of most relevant features.

A Credit Scoring Model for SMEs Based on Social Media Data 123

Table 2. Social media features for SME credit scoring

Feature name Description

Fan Counts Number of follower in Facebook

Talking About Count Number of content which mention the page

Rating Count Number of rating submitted

Overall star rating Average rating submitted

Posts Number of content created

Shares Number of share in their posts

Comments Average number of comments per posts

P reaction Average number of positive reaction per post

N reaction Average number of negative reaction per posts

Shared Percentage of post which is shared

Commented Percentage of post which has comments

P reacted Percentage of post with positive reaction

N reacted Percentage of post with negative reaction

Photo posts Percentage of posts which contains photo

Video posts Percentage of posts which contains type video

Story posts Percentage of posts which contains text only

Visitor Number of content created by others in the page

P vpost Percentage of positive visitor posts

N vpost Percentage of negative visitor posts

P comments Percentage of positive comments in their posts

N comments Percentage of negative comments in their posts

SL post Number of day since their last post

SL visit Number of day since last visitor post

SL comment Number of day since last comments

t-posts Trend of number of content created

t-shares Trend of number of share in their posts

t-comments Trend of average number of comments per posts

t-P reaction Trend of average number of positive reaction

t-N reaction Trend of average number of negative reaction

t-shared Trend of percentage of post which is shared

t-commented Trend of percentage of post which has comments

t-P reacted Trend of percentage of post with positive reaction

t-N reacted Trend of percentage of post with negative reaction

t-P comments Trend of percentage of positive comments

t-N comments Trend of percentage of negative comments

124 S. G. P. Putra et al.

Handling Class Imbalance. To tackle the class imbalance problem, we use
SMOTE+Tomek links algorithm, which is a variant of Synthetic Minority Over-
sampling TEchnique (SMOTE) [17].

Classification Algorithms. In our experiments, we consider two most pop-
ularly used learning algorithms in the literature: Logistic Regression (LR) and
xgboost. These two algorithms exhibit different characteristics; LR is a linear
model whereas xgboost is gradient boosting based tree ensemble method. We
don’t consider Artificial Neural Networks (ANN) because of the structure nature
of the data and the relatively limited size of the training set.

Evaluation Metrics. One of the main challenges in this work is to tackle
the class imbalance inherent in the dataset. Hence, we choose evaluation metrics
which work well in presence of class imbalance such as Area Under Curve (AUC)
of ROC curve, F1-score, Matthews Correlation Coefficient (MCC), precision and
recall. For the sake of completeness we also use accuracy, however, it is not very
meaningful for imbalanced datasets.

5 Results and Discussion

5.1 Experimental Setup

Dataset. The final dataset used in our experiments consists of 25,654 SMEs,
194 of which filed for bankruptcy (0.756%). The significant drop in the number
of SMEs is due the unavailability of social media data for many of the SMEs.
Even though this dataset does not include all SMEs in the Netherlands, it is
large enough to validate different approaches for this study.

Baselines. We compared the following models:

– Random Guess: randomly assign half of items to positive and the other half
as negative.

– Weighted Guess: randomly assign x of items to positive, and the remaining
(1 − x) items to negative, where x is the ratio of positive samples.

– LR and XGBoost models using traditional features only denoted with a Tra-
ditional prefix in later parts of this paper.

– LR and XGBoost models using social media features only denoted with a
SocMed prefix in the later parts of this paper.

We perform feature selection method as presented in the previous section to
select the subset of most relevant features.

A Credit Scoring Model for SMEs Based on Social Media Data 125

Fig. 2. The combined model

Combined Model. We experiment with different feature combination strate-
gies for combining traditional and social media features. We use two methods to
combine the features (Fig. 2):

– Early combining: we select the best features from the Traditional and SocMed
models and train LR and XGB models. These models will be referred with a
Early prefix in later parts of this paper.

– Late combining: we train a model on the output of the best performing models
using traditional only and social media only features. The output used for
training are bankruptcy prediction probabilities of the previous models. These
models will be referred with a Late prefix in the later parts of this paper.

5.2 Experimental Results

Table 3 compares the performance of the 6 baseline and 4 proposed combined
models. We can observe that performance of combined models are always supe-
rior to the baseline models for important metrics for imbalanced classification
problem. Weighted Guess baseline has higher Accuracy as compared to others,
but Accuracy is not a reliable metric for highly imbalanced datasets. Experi-
ments show that using social media features alone doesn’t perform well. However,
when used in addition to the traditional features, they always provide additional
information, hence resulting in an improved model.

We observe that early combined models always perform better than the late
combined models. This is due to the fact that during early combining, we use
both traditional and social media features together in the learning algorithm.
Even though social media features are not sufficient themselves, when combined
with traditional features, they enrich the learning process. However, for late
combining model, we use class probabilities of models trained separately on
traditional and social media features. Since the probability scores estimated by
model based on social media features is very weak compared to the one based

126 S. G. P. Putra et al.

Table 3. Performance of model developed using traditional features

Model AUC Accuracy F1-score MCC Precision Recall

Random Guess 0.50 0.50 0.01 0 0.01 0.50

Weighted Guess 0.50 0.98 0.01 0 0.01 0.01

Traditional, LR 0.70 0.98 0.09 0.08 0.07 0.11

Traditional, XGB 0.80 0.97 0.12 0.13 0.08 0.25

SocMed, LR 0.66 0.87 0.03 0.04 0.02 0.28

SocMed, XGB 0.68 0.98 0.04 0.03 0.04 0.04

Early, LR 0.75 0.96 0.10 0.12 0.06 0.30

Early, XGB 0.83 0.98 0.15 0.15 0.12 0.22

Late, LR 0.73 0.98 0.09 0.09 0.08 0.13

Late, XGB 0.81 0.97 0.14 0.15 0.10 0.26

on traditional features, combining them in late combiner results in an inferior
model.

Moreover, among the early combined models, the model based on XGBoost
performs better for most the metrics. Hence, in the following section we will
analyze the most important features for the combined model based on early
combining and using XGBoost algorithm.

5.3 Feature Analysis

Figure 3 shows the importance of various features in the combined model. As
also stated in the literature, we also observed that Cost, EBIT, Total Assets,
debt to capital ratio and liabilities (current and total) are important indicators
for SME bankruptcy.

Whereas among the social media features, time since last post (SL post) is the
most influential factor for predicting bankruptcy followed by total number of fol-
lowers (fan count). This is very reasonable because time since last post indicates
the activeness of the SMEs on social media. Usually, SMEs doing well in busi-
ness and well engaged with their customers will be more active on social media
and vice versa. Similar results were reported in [25] too. Similarly, the number of
followers (fan count) is established as another important feature. This is because
the number of followers on Facebook indicates the popularity of the SME. Hence,
this is a major indicator of how prone the business is for bankruptcy.

Number of content mentioning the page (talking about count) and number
of days since last visitor (SL visit) were also influential factors in the model. It
was also self-evident as these features indicate the popularity and activeness of
the SMEs which in-turn are directly correlated with possible bankruptcy.

Additionally, one of the trend features proposed in this work i.e. trend in num-
ber of shares in the post (t-shared), was particularly important for the model.

A Credit Scoring Model for SMEs Based on Social Media Data 127

Fig. 3. Features used in early combining XGBoost model

Hence, the experiments confirmed the importance of the social media features
used in literature for default prediction in the context of SMEs as well.

6 Conclusion

We presented a new method for SME credit scoring in terms of future bankruptcy
prediction by combining social media features extracted from the data collected
from Facebook with traditional financial and non-financial features. Moreover,
we proposed a fuzzy matching based technique to improve the quality of data
collected from Facebook. The experimental results suggest the superiority of
this combined model as compared to the existing baselines which only take into
account traditional features. Additionally, We present a detailed analysis of the
results and especially focusing on the influence of social media features for default
prediction.

References

1. Altman, E.I.: An emerging market credit scoring system for corporate bonds.
Emerg. Markets Rev. 6(4), 311–323 (2005)

2. Altman, E.I., Esentato, M., Sabato, G.: Assessing the credit worthiness of Italian
SMEs and mini-bond issuers. Glob. Finance J. (2018)

3. Altman, E.I., Sabato, G.: Modelling credit risk for SMEs: evidence from the US
market. Abacus 43(3), 332–357 (2007)

4. Altman, E.I., Sabato, G., Wilson, N.: The value of non-financial information in
small and medium-sized enterprise risk management. J. Credit Risk 6(2), 1–33
(2010)

128 S. G. P. Putra et al.

5. Angilella, S., Mazzù, S.: The financing of innovative SMEs: a multicriteria credit
rating model. Eur. J. Oper. Res. 244(2), 540–554 (2015)

6. Bensic, M., Sarlija, N., Zekic-Susac, M.: Modelling small-business credit scoring
by using logistic regression, neural networks and decision trees. Intell. Syst. Acc.
Finance Manag. 13(3), 133–150 (2005)

7. Bocconi, S., Bozzon, A., Psyllidis, A., Titos Bolivar, C., Houben, G.J.: Social glass:
a platform for urban analytics and decision-making through heterogeneous social
data. In: Proceedings of the 24th International Conference on World Wide Web.
WWW 2015 Companion, pp. 175–178. Association for Computing Machinery, New
York, NY (2015). https://doi.org/10.1145/2740908.2742826

8. Bonsón, E., Ratkai, M.: A set of metrics to assess stakeholder engagement and
social legitimacy on a corporate Facebook page. Online Inf. Rev. 37(5), 787–803
(2013)

9. Brown, I., Mues, C.: An experimental comparison of classification algorithms for
imbalanced credit scoring data sets. Expert Syst. Appl. 39(3), 3446–3453 (2012)

10. Ciampi, F., Gordini, N.: Small enterprise default prediction modeling through arti-
ficial neural networks: an empirical analysis of Italian small enterprises. J. Small
Bus. Manag. 51(1), 23–45 (2013)

11. European Commission: 2018 SBA fact sheet Netherlands. European Commission
(2018)

12. De Cnudde, S., Moeyersoms, J., Stankova, M., Tobback, E., Javaly, V., Martens,
D.: Who cares about your Facebook friends? Credit scoring for microfinance (2015)

13. De Cnudde, S., Moeyersoms, J., Stankova, M., Tobback, E., Javaly, V., Martens,
D.: What does your Facebook profile reveal about your creditworthiness? Using
alternative data for microfinance. J. Oper. Res. Soc. 70(3), 353–363 (2019)

14. Edmister, R.O.: An empirical test of financial ratio analysis for small business
failure prediction. J. Finan. Quant. Anal. 7(2), 1477–1493 (1972)

15. Feldman, R.J.: Small business loans, small banks and big change in technology
called credit scoring. Reg. (Sep), 19–25 (1997)

16. Fridson, M.S., Alvarez, F.: Financial Statement Analysis: A Practitioner’s Guide,
vol. 597. Wiley, Hoboken (2011)

17. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 9, 1263–1284 (2008)

18. Khemakhem, S., Boujelbene, Y.: Predicting credit risk on the basis of financial and
non-financial variables and data mining. Rev. Acc. Finance 17(3), 316–340 (2018)

19. Lee, B.K., Sohn, S.Y.: A credit scoring model for SMEs based on accounting ethics.
Sustainability 9(9), 1588 (2017)

20. Marqués, A.I., Garćıa, V., Sánchez, J.S.: On the suitability of resampling tech-
niques for the class imbalance problem in credit scoring. J. Oper. Res. Soc. 64(7),
1060–1070 (2013)

21. Masyutin, A.: Credit scoring based on social network data. Bus. Inform. 3(33),
15–23 (2015)

22. McCann, M., Barlow, A.: Use and measurement of social media for SMEs. J. Small
Bus. Enterp. Dev. 22(2), 273–287 (2015)

23. Michaelidou, N., Siamagka, N.T., Christodoulides, G.: Usage, barriers and mea-
surement of social media marketing: an exploratory investigation of small and
medium B2B brands. Ind. Mark. Manag. 40(7), 1153–1159 (2011)

24. Neiger, B.L., et al.: Use of social media in health promotion: purposes, key perfor-
mance indicators, and evaluation metrics. Health Promot. Pract. 13(2), 159–164
(2012)

https://doi.org/10.1145/2740908.2742826

A Credit Scoring Model for SMEs Based on Social Media Data 129

25. Öztamur, D., Karakadılar, İ.S.: Exploring the role of social media for SMEs: as a
new marketing strategy tool for the firm performance perspective. Procedia-Soc.
Behav. Sci. 150, 511–520 (2014)

26. Pederzoli, C., Thoma, G., Torricelli, C.: Modelling credit risk for innovative smes:
the role of innovation measures. J. Financ. Serv. Res. 44(1), 111–129 (2013).
https://doi.org/10.1007/s10693-012-0152-0

27. Silvestri, G., Yang, J., Bozzon, A., Tagarelli, A.: Linking accounts across social
networks: the case of StackOverflow, Github and Twitter. In: Armano, G., Bozzon,
A., Giuliani, A. (eds.) Proceedings of the 1st InternationalWorkshop on Knowledge
Discovery on theWEB, KDWeb 2015, Cagliari, Italy, 3–5 September 2015, vol. 1489,
pp. 41–52. CEUR-WS.org (2015). http://ceur-ws.org/Vol-1489/paper-05.pdf

28. Sohn, S.Y., Moon, T.H., Kim, S.: Improved technology scoring model for credit
guarantee fund. Expert Syst. Appl. 28(2), 327–331 (2005)

29. Tan, T., Phan, T.: Social media-driven credit scoring: the predictive value of social
structures (2016)

30. Xia, Y., Liu, C., Li, Y., Liu, N.: A boosted decision tree approach using Bayesian
hyper-parameter optimization for credit scoring. Expert Syst. Appl. 78, 225–241
(2017)

31. Yuan, H., Lau, R.Y., Xu, W., Pan, Z., Wong, M.C.: Mining individuals’ behavior
patterns from social media for enhancing online credit scoring. In: PACIS, p. 163
(2018)

32. Zhang, Y., Jia, H., Diao, Y., Hai, M., Li, H.: Research on credit scoring by fusing
social media information in online peer-to-peer lending. Procedia Comput. Sci. 91,
168–174 (2016)

33. Zhu, Y., Zhou, L., Xie, C., Wang, G.J., Nguyen, T.V.: Forecasting SMEs’ credit
risk in supply chain finance with an enhanced hybrid ensemble machine learning
approach. Int. J. Prod. Econ. 211, 22–33 (2019)

https://doi.org/10.1007/s10693-012-0152-0
http://ceur-ws.org/Vol-1489/paper-05.pdf

Who’s Behind That Website?
Classifying Websites by the Degree

of Commercial Intent

Michael Färber1(B) , Benjamin Scheer2, and Frederic Bartscherer1

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
michael.faerber@kit.edu

2 1&1 IONOS SE, Karlsruhe, Germany
benjaminscheer.bs@googlemail.com

Abstract. Web hosting companies strive to provide customised cus-
tomer services and want to know the commercial intent of a website.
Whether a website is run by an individual person, a company, a non-
profit organisation, or a public institution constitutes a great challenge in
website classification as website content might be sparse. In this paper,
we present a novel approach for determining the commercial intent of
websites by using both supervised and unsupervised machine learning
algorithms. Based on a large real-world data set, we evaluate our model
with respect to its effectiveness and efficiency and observe the best per-
formance with a multilayer perceptron.

Keywords: Document classification · Web · Text mining · Machine
learning

1 Introduction

Web hosting companies, such as 1&1 IONOS,1 GoDaddy, and HostGator pro-
vide hosting services to millions of users ranging from individuals and non-profit
organisations with no or little commercial intent to businesses with clear com-
mercial intent. Apart from the size of the contract, web hosting companies are
interested in cross-selling paid services with individual recommendations, such
as SSL certificates or marketing services.

Websites can be clustered automatically given the readily available infor-
mation on websites. Specifically, website classification can be considered as a
document classification task, for which numerous methods have been proposed.
However, no approach has been proposed to identify the commercial intent of
websites on a large scale. In particular, applying document classification meth-
ods to websites is challenging as websites might have few words and coherent
text structure compared to news articles, Wikipedia articles or research papers.

1 This work was carried out in cooperation with the web hosting company 1&1 IONOS.

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 130–145, 2020.
https://doi.org/10.1007/978-3-030-50578-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_10&domain=pdf
http://orcid.org/0000-0001-5458-8645
https://doi.org/10.1007/978-3-030-50578-3_10

Who’s Behind That Website? 131

In this paper, we propose a novel approach to categorise websites based on
its textual content into one of the following classes: profit-oriented company,
non-profit organisation, private website, and public institution. To the best of
our knowledge, our approach is the first one which can identify the commercial
intent of websites on a large scale and, thus, is particularly useful for web hosting
companies that want to improve their customer experience. Based on a large data
set covering over 30,000 websites, we apply both supervised and unsupervised
machine learning methods and evaluate them with respect to effectiveness and
efficiency.

Overall, our main contributions are as follows:

– We propose a new classification schema for commercial intent that applies to
any website.

– We present several machine-learning-based methods for content-based website
classification.

– We evaluate our approaches with a large data set of 30,000 websites in the
German language.

– We publish both implementation and data sets for subsequent research.2

The remainder of the paper is structured as follows: In Sect. 2, we give an
overview of related works and argue for an approach based on the commercial
intent. In Sect. 3, we introduce our classification schema, followed by describing
the data preparation steps and evaluation data set in Sect. 4. Our applied app-
roach and the evaluation results can be found in Sect. 5. Finally, we conclude
the paper with an outlook in Sect. 6.

2 Related Works

Previous works differ either in the domain and used categories for website clas-
sification or in the used machine-learning-based approaches. In the following,
we provide a detailed overview of website classification schemas and website
classification methods.

Website Classification Schemas. Lindemann and Littig [1] identified a lim-
ited set of website categories by analysing textual data present on websites.
They derived the following categories for websites by applying a task-specific
algorithm: academic, blog, community, corporate, information, nonprofit, per-
sonal, and shop. This classification schema partly overlaps with the classes intro-
duced in this paper. In contrast, we propose readily available, general-purpose
approaches for website classification.

Thapa et al. [2] introduced the four non-topical categories public, private,
non-profit and commercial franchise in the food domain. Although the four
classes are similar to our classification schema, we follow a cross-domain app-
roach that is applicable to the entirety of the web.

2 See https://github.com/michaelfaerber/website-classification/.

https://github.com/michaelfaerber/website-classification/

132 M. Färber et al.

Kanaris and Stamatatos [3] used seven categories for classifying websites:
blog, e-shop, FAQs, online newspaper, listings, personal home page, and search
page. However, these labels only describe some elements of a website and are not
designated to indicate the commercial intent. For instance, blogs can be run in
a commercial and non-commercial context. Furthermore, other important cate-
gories such as corporate websites are not included in this schema. The proposed
categories might be sufficient for a benchmark data set, but cannot be used to
categorise all websites on the web.

Meyer zu Eissen and Stein [4] used eight categories for website classification,
such as help, article, shop and non-private portrayal. Note, that the categories
are not driven by commercial intent. For instance, non-private portrayal contains
websites of businesses and non-profit organisations.

Website Classification Methods. Bruni and Bianchi [5] applied machine-
learning-based approaches to identify the commercial intent of websites. For each
website, they aggregated multiple web pages into a single document for document
classification and applied support-vector machines and random forests. Although
similar to our approach, the scope is limited to a binary classifier for the e-
commerce domain determining whether a website offers goods and services or
not.

Studies using support-vector machines have been carried out by Sun et al. [6]
in the academic domain and by Thapa et al. [2] in the food domain. The lat-
ter consider multi-label classification on a small balanced data set with about
100 websites. In contrast, we follow a single-label approach on a large data set
and analyse the results of multiple machine-learning algorithms and imbalanced
training data sets.

Sahid et al. [7] compared various algorithms for the task of website classifi-
cation as well as different ways to weigh the given input texts. Specifically, they
analysed the performance of Naive-Bayes, support-vector machines and multi-
layer perceptrons for classifying the industry of e-commerce websites.

AbdulHussien [8] studied the suitability of random forests for website clas-
sification of health websites and provided an outlook of the potential benefits
of neural networks. Note, that we do not use stemming in data preparation due
to potential information loss. Xhemali et al. [9] explore the benefits of neural
networks for website classification of training course websites and compare the
results with other machine learning algorithms, such as Naive-Bayes and decision
trees.

3 Website Categories

In this paper, we propose the following four categories for website classification
having a distinct level of commercial intent. We argue that this classification is
sufficient to categorise the entirety of the web.

Profit-Oriented Company. (commercial intent: high) A company or business
is an economic, financial and legal entity acting according to economic princi-
ples. Their goal is to realise financial gain; as such, they are also referred to

Who’s Behind That Website? 133

Fig. 1. Process of website classification

as for-profit organisations (FPO). Example websites are fahrschuleanik.de and
dietz-fruchtsaefte.de.

Public Institutions. (commercial intent: medium) Public institutions are
established on the basis of public law. Websites from public institutions include
pages operated by federal and state governments as well as public institutions,
municipalities, universities or state schools. Example websites are kit.edu and
stuttgart.de.

Non-profit Organisation. (commercial intent: low) Following the notion of
the International Classification of Nonprofit Organisations [10], a standard to
classify non-profit organisations (NPO), an NPO fulfills the following criteria:
(1) organised, (2) private, (3) self-governing, (4) non-profit-distributing, (5) vol-
untary. Example websites are tc-mudau.de and adac.de.

Private Websites. (commercial intent: none) A private website usually follows
a private objective of an individual without commercial intent. Although the
boundaries to other categories are sometimes ambiguous, we define a private
website according to the following criteria: (1) No paid advertisement, such as
Amazon affiliate links (2) No contact information or imprint, as this is required
by law for German websites (3) The site is operated by an individual or a group
of individuals. Example websites are fester.de and edithundsven.de.

4 Data Sets and Feature Extraction

In the following, we describe our data set, the required data preparation steps,
and the feature extraction methods. Given an imbalanced distribution of classes,
we consider three different training data sets and experiment with multiple fea-
ture extraction methods. An overview of the entire process, including training
and testing, is provided in Fig. 1.

Data Sources. We start with a collection of websites, the domain library, con-
sisting of two subsets: (1) The directory-based subset contains websites that are
labelled automatically according to the type of directory and the information

http://fahrschuleanik.de/
http://dietz-fruchtsaefte.de/
http://www.kit.edu/
http://stuttgart.de/
http://tc-mudau.de/
http://adac.de/
http://fester.de/
http://edithundsven.de/

134 M. Färber et al.

Fig. 2. Data preparation steps

provided by the directory. As the directory listings might not match exactly and
contain websites of multiple classes, the labels were reviewed manually to a large
extent. The websites of all four categories are retrieved from relevant pages dedi-
cated to German websites such as DMOZ,3 project Curlie,4 NPO Manager,5 and
Schulliste.6 (2) We use the random sample subset as a test data set that consists
of a random sample of 1,500 domains with the German top-level domain .de,
whereof only websites with useful content are considered.7 All in all, we keep
1,109 websites and label them manually.

Data Cleansing. For each website, we crawl up to 30 pages and extract the
textual information into a single document8. We remove non-visible textual infor-
mation such as HTML markups, as well as special characters, non-German letters
and numbers. Furthermore, we omit documents with less than 100 characters,
as they are mostly error and domain parking pages.

Class Distribution. As the performances of some classification algorithms
require knowledge of the a priori probabilities of the classes, we analyse the
distribution of our four classes. Based on our random sample subset, we extrap-
olate the distribution of classes to be 73.2% commercial, 16% non-commercial,
9.1% private and 1.7% public institutions. Given the sample size and a total
of approximately 16 million .de domains registered at DENIC, we derived a
confidence level of 99% and a standard deviation of 4%.

Training & Validation Data Sets. Due to the imbalance in the class distri-
bution, we experiment with three different data sets as depicted in Fig. 2. An
overview of the subsets is given in Table 1. Note, that each data set is split into
training and validation set with a ratio of 3 : 1.

1. Balanced Data Set. Each class is weighted similarly.
2. Distribution Data Set. Each class is weighted according to the distribution

of the random sample subset.
3 https://dmoz-odp.org/World/Deutsch/, accessed on 2019-10-24.
4 https://curlie.org/de/Gesellschaft/Menschen/Pers%C3%B6nliche Homepages.
5 http://www.npo-manager.de/vereine/, accessed on 2019-10-24.
6 http://www.schulliste.eu/, accessed on 2019-10-24.
7 We remove unavailable domains or domain parking pages, i.e., websites with default

content provided by the domain name registar.
8 We consider only static visible textual information as input for classification, hence

no HTML markups, meta tags or JavaScript.

https://dmoz-odp.org/World/Deutsch/
https://curlie.org/de/Gesellschaft/Menschen/Pers%C3%B6nliche_Homepages
http://www.npo-manager.de/vereine/
http://www.schulliste.eu/

Who’s Behind That Website? 135

Table 1. Absolute frequency of classes in the different data sets

Data set Split Comp. NPO Priv. Publ. Total

Full DS Total 16,735 8,679 3,571 1,567 30,552

Balanced DS Total 950 950 950 950 3,800

Training 703 697 747 703 2,850

Validation 247 253 203 247 950

Distribution DS Total 10,450 1,306 2,283 239 14,278

Training 7,827 966 1,740 175 10,708

Validation 2,623 340 543 64 3,570

Quality DS Total 2,100 1,500 1,500 930 6,030

Training 1,600 1,000 1,000 600 4,200

Validation 500 500 500 330 1,830

Test DS Total 842 113 144 10 1,109

3. Quality Data Set. Similar to the distribution data set, but considering only
documents whose class labels were reviewed manually.

Test Data Set. In all cases, the random sample subset is used as the test data
set to establish a consistent basis for comparison.

Data Preparation Method. We analyse multiple feature extraction methods
w.r.t. their suitability for website classification. The basis for all features are n-
grams extracted from documents. We consider only n-grams that occur at least
1% and no more than 50% of the documents.

We consider the following feature extraction methods:

1. Full Vocabulary without Weights. We consider all words but stop words.
Our list of stop words is based on the R package stopwords [11] for the German
language that we extend by common words occurring in error messages, such
as HTTP status codes.

2. Full Vocabulary with Weights. We consider all words and use weights
based on tf-idf. We do not remove stopwords.

3. Reduced Vocabulary with Weights. We consider only the words of the
5,000 most frequent features and use weights based on tf-idf.

4. 1- & 2-grams with Weights. We use n-grams with size 1 and 2 as features
and use weights based on tf-idf.

Note, that convolutional neural networks follow a different approach. Instead
of a bag-of-words representation, they are based on word embeddings. For our
experiments, we choose a sequence length of 2,000 words and consider only the
(i) 25,000 and (ii) 50,000 most common word embeddings of each data set.

136 M. Färber et al.

Fig. 3. Histogram of character count

Discussion. We publish the implementation and data sets online for subsequent
research9. As shown in Table 1, the full data set contains 30,552 websites. The
training and validation data sets are randomly chosen from the full data set and
documents with less than 100 characters are omitted in the data cleansing step.
The distribution of character counts is shown in Fig. 3.

5 Evaluation

5.1 Approach

As outlined in Table 2, 3, and 4, we use abbreviations to describe algorithms,
data sets, and data preparation methods and introduce the following nota-
tion: modelpreparation method

training data set . For instance, NBT
B describes a Naive-Bayes classifier

trained on the balanced data set with td-idf as feature weights.

5.2 Website Classification Using Unsupervised Algorithms

In Sect. 3, we argued that our four classes are sufficient to categorise the entirety
of the web. Considering textual information, we show that unsupervised learning
algorithms can distinguish these classes, too.

For a better visualisation, we analyse a subset of the balanced data set with
full vocabulary with weights as the feature extraction method. For each class, we
choose 300 documents and cluster them with the following methods:
9 The data sets are freely available for research purposes at https://github.com/

michaelfaerber/website-classification/.

https://github.com/michaelfaerber/website-classification/
https://github.com/michaelfaerber/website-classification/

Who’s Behind That Website? 137

Table 2. Abbreviations of algorithms

Abbrev. Model

NB Naive-Bayes

RF random forest

GB gradient boosting

SVO support-vector machine one-versus-one

SVR support-vector machine one-versus-rest

MP[i] multilayer perceptron nr. i

CN[i] convolutional neural network nr. i

Table 3. Abbreviations of
data sets

Abbrev. Training data

B Balanced DS

D Distribution DS

Q Quality DS

Table 4. Abbreviations of preparation method

Abbreviation Variant

U Full vocabulary without weights

T Full vocabulary with tf-idf weights

R Reduced vocabulary (5,000 most popular words) with tf-idf weights

1G Using 1-grams with tf-idf weights

2G Using 2-grams with tf-idf weights

25k Vocabulary with the 25,000 most popular word embeddings (CNN)

50k Vocabulary with the 50,000 most popular word embeddings (CNN)

– k-means is often used for partitioning data. We set the number of clusters
manually to k = 4 and achieved an accuracy of 0.65 and an F1-score of 0.64.

– DIANA is a hierarchical, divisive clustering algorithm. It achieved the best
results with six clusters, consisting of four large clusters that represent our
four classes. When we disregard the two small clusters, we achieve an accuracy
of 0.71 and an F1-score of 0.71.

Both clustering methods confirmed that the introduced four classes can be
found using unsupervised learning algorithms. We plot the data in Fig. 4 and con-
clude that, besides two negligible clusters (yellow and orange), the four classes are
sufficient to classify the entirety of the web. Furthermore, we determine a strong
overlap between company and private websites. The distinction between these
classes turns out to be difficult using solely textual information. For instance,
many of the red dots in the upper-right quadrant turn out to be private instead
of company websites. As discussed in detail in Sec. 5.6 this is due to similar
vocabulary in ambiguous cases, whereas a more distinctive vocabulary makes
separation clearer for the other classes.

5.3 Evaluation Setup

In the following, we outline how we evaluated seven machine learning methods
for website classification. We trained and evaluated all models using a server

138 M. Färber et al.

Fig. 4. Result of divisive clustering algorithm DIANA: company (red), NPO (blue),
private websites (green), public institutions (purple) (Color figure online)

with 40 CPU cores, 565 GB RAM, Python 2.7 and R version 3.6. The training
was conducted on a single GPU with 32 GB, model NVIDIA Tesla V100.

– Guessing. As a simple baseline, this method makes random guesses con-
cerning the class assignment, using either the class distribution a priori or
the most popular class as a fixed assignment.

– Naive-Bayes. We choose the Naive-Bayes classifier as one of our baselines.
– Random Forest. We use the R package randomForest with parameters
ntree = 500 and mtry = 150, following the advice of Liaw & Wiener [12]
for cases where only relevant features are to be found.

– Gradient Boosting. We use the R package xgboost with the booster gblinear
and the parameters n = 250 and k = 15 for all models. All training was termi-
nated before reaching nrounds rounds, when no improvements were observed.
The standard value of max.depth = 6 was reduced in certain training vari-
ants and chosen between [2 ; 6]. The results show that model performance is
affected by the composition of training data.

– Support-vector Machine. We run and evaluated both the SVM one-versus-
one as well as SVM one-versus-rest variant using the R package e1071. A linear
kernel and cost = 200 were used for all models.

Who’s Behind That Website? 139

– Multilayer Perceptron. We evaluated the following four MLP architec-
tures:
1. Two hidden layers with 10 neurons each.
2. Two hidden layers with 30 and 15 neurons.
3. Two hidden layers with 100 neurons each.
4. Three hidden layers with 50, 10, and 50 neurons, i.e. the second layer acts

as an artificial bottleneck.
We chose sigmoid function for all hidden layers as it is suitable for text
classification tasks and quick to calculate using backpropagation [13]. Softmax
is used for all output layers. Due to the high dimensionality of our input, the
highest amount of the neurons is located in the input layer. Therefore, most
edge weights exist between input and the first hidden layer. During training,
we used Adam optimizer [14] to achieve significantly faster run-times during
training.

– Convolutional Neural Network. We evaluated the following two architec-
tures, inspired by Chollet [15]: (i) Three convolutional layers with 128 filters
each and kernel sizes of 3, 2 and 3. (ii) Two convolutional layers with a ker-
nel size of 9. Both variants have an input layer of 2,000 neurons and a fully
connected layer with 100 neurons feeding into an output layer with 4 neurons.

– Convolutional neural networks (CNN) do not use one-hot encoded inputs, but
rather rely on vectorised contiguous text extracts of the same length (2,000
words in our case). The vectors are created using fastText embeddings [16].
A longer vector increases the number of trainable parameters drastically and
may lead to overfitting and longer training times. Thus, we analyse whether
a shallow CNN with a larger context window, i.e. kernel size, will lead to
performance increases and reduced overfitting.

5.4 Evaluation Results

In the following, we present our evaluation results.10

Guessing. A simple classifier always guessing the most popular class achieves
with 10.000 guesses an accuracy of 0.76 and a macro-F1 score of 0.215 on the
test data set, representing the relative frequency of the company class. Another
classifier that considers the class distributions for guessing achieves a lower accu-
racy of 0.60 and a macro-F1 score of 0.25. This shows, that the performance of
guessing is highly dependent on the class distribution in the test data set.

Naive-Bayes. The results underline the dependence of performance on the
training data. We achieve the best results using the balanced or (rather bal-
anced) quality data sets with an accuracy of at least 0.72. The results using the
(imbalanced) distribution data set were significantly lower.

The best performing model was NBR
Q, with the highest micro-F1 score of 0.78

and the highest macro-F1 score of 0.57 as well as the second-highest accuracy
10 We published the confusion matrices for each model at https://github.com/

michaelfaerber/website-classification/.

https://github.com/michaelfaerber/website-classification/
https://github.com/michaelfaerber/website-classification/

140 M. Färber et al.

Table 5. Overview of the best models for each MLP architecture

Model Accuracy Macro-F1 Micro-F1

MP1T
D 0.866 0.689 0.870

MP2T
D 0.861 0.679 0.867

MP3R
D 0.849 0.676 0.855

MP4T
D 0.861 0.710 0.869

of 0.75. Predictions for the classes companies and NPO were notably accurate
with a score of 0.94 and 0.7, respectively.

Random Forest. In contrast to Naive-Bayes, we achieved the lowest scores
with the balanced data set, whereas the model RFR

Q achieved the highest score.
The classes company and NPO are labelled with an accuracy of 0.94 and 0.86,
respectively. The overall accuracy of 0.84 outperforms the Naive-Bayes classifier.
Note, that the RFD models could not label a single website of the class public
institutions, possibly due to insufficient training data in the distributed data set.

A deeper look at the decision trees of each model shows that most private
websites are classified following the exclusion principle, i.e. the trees split on
words that are distinctive for a class. If none of the splits apply, the document
is classified as a private website. This explains why even the best random forest
models perform poorly classifying private websites.

Gradient Boosting. The best gradient boosting model (GBR
Q) is trained using

the quality set with the reduced weighted vocabulary (accuracy: 0.82, macro-
F1: 0.66, micro-F1: 0.83). Similar to previous models, the distinction between
private and company websites proves to be a difficult task. More than half of
the websites classified as private are websites of companies or NPOs.

Support-vector Machine. The models SVOT
D and SVRT

D (accuracy: 0.86,
macro-F1: 0.68, micro-F1: 0.86) achieve the best scores on the distribution data
set and thus are chosen as best-performing variants. The difference between both
models is marginal.

The output of an SVM using one-versus-rest can be interpreted as the con-
fidence score of a class label. With this, we were able to analyse the effects of
various thresholds for confidence values. Figure 5 shows the relationship between
a given threshold, accuracy, and percentage of classified websites. About half of
the websites can be classified with a threshold of 0.94, increasing the accuracy to
0.97. The idea behind this analysis reflects real-world settings, where particular
difficult websites might be labelled manually.

Multilayer Perceptron. A summary of the best performing models for all four
architectures is presented in Table 5, with the best overall model being MP1TD,
achieving the highest accuracy and micro-F1 score.

Models trained on the quality and distribution data set achieve similar
results, though no variant performs best in all metrics. As the largest data set

Who’s Behind That Website? 141

Fig. 5. Accuracy and ratio of classifiable websites depending on threshold value for
SVRT

D, MP1T
D and CN125k

D .

D has slightly better results, we conclude that the size of the training data has
a strong influence on the performance.

Similar to SVMs, we can interpret the output of each classification as a
confidence score for classification and analyse the effect of a manual threshold
(as depicted in Fig. 5) for model MP1TD. A threshold of 0.92 allows for 75%
of websites to be classified, increasing the accuracy to 0.94. Note, that raising
the threshold does not lead to all classes being omitted equally. For instance,
classifications of the classes private, NPO and public institutions are discarded
earlier than the class company due to their relative frequency. Therefore, when
choosing the ideal threshold value, the distribution of classes must be considered.

Convolutional Neural Network. CN125kD is the best performing CNN vari-
ant and achieves an accuracy of 0.80 and a micro-F1 score of 0.80. It achieves a
macro-F1 score of 0.55, the second-highest of all CNNs. The larger context win-
dow of the shallow CNN does not provide any improvement. This implies that
classes are defined rather by individual words than longer coherent sentences.

The analysis of output thresholds for the best performing variant CN125kD is
depicted in Fig. 5. Considering a threshold of 0.92 the model can classify 75% of
all websites and achieves an accuracy of 0.87. With a threshold of 0.99, about
half of all websites can be classified with accuracy increasing to 0.92.

5.5 Comparisons

In the following, the best performing models of each algorithm are compared
according to accuracy, micro-F1 and macro-F1 scores as well as the run-times
of training and classification. Afterwards, we will discuss the shortcomings and
difficulties faced.

Effectiveness. A summary of the results can be found in Table 6.
We achieve the best evaluation results for classification using a multilayer

perceptron with a simple architecture. Experiments with dropout layers did not
improve the performance of our models. The model MP1TD achieves the high-
est scores in all three metrics. Similar performances are achieved by the SVM

142 M. Färber et al.

Table 6. Overview of the best performing
models for each algorithm

Model Accuracy Macro-F1 Micro-F1

MP1T
D 0.866 0.689 0.870

SVRT
D 0.857 0.678 0.861

SVOT
D 0.854 0.676 0.858

RFR
Q 0.844 0.552 0.840

GBR
Q 0.821 0.664 0.834

CN125k
D 0.796 0.550 0.797

NBR
B 0.736 0.571 0.762

Guessing 0.759 0.216 0.655

Table 7. Overview of training and clas-
sification run-time

Model Training (sec.) Testing (sec.)

MP1T
D 46.0 0.5

SVRT
D 6,223.0 36.7

SVOT
D 917.0 20.1

RFR
Q 815.1 0.3

GBR
Q 2.0 0.1

CN125k
D 94.2 0.2

NBR
B 2.0 65.4

with one-versus-rest implementation, achieving only insignificantly lower scores
compared to the MLP.

The Naive-Bayes classifier achieves the worst performance in comparison,
though no parameters need to be optimised. Furthermore, it only requires very
few training data and features. On top of that, the algorithm works well with
balanced data, meaning no previous knowledge of class distribution is necessary.
The classifier is therefore useful for a first analysis to determine the suitability
of machine-based classification for a specific domain.

Despite successes in the latest researches on text classification, our results
with CNN and pre-trained word embeddings did not yield good results. Other
algorithms consistently achieve higher accuracy and F1-scores under similar
training conditions. We conclude that for our use case models benefit rather
from finding meaningful keywords within the text than interpreting coherent
sentences.

We achieved similar results to the work done by Lindemann and Littig [1].
They also had difficulties to distinguish private websites from the categories
“blog”11 and “corporate.”12 They achieved an accuracy of 0.84 and a micro-F1
score of 0.84, which we surpassed with our MLP as well as SVM approaches.

Thapa et al. [2] achieve the best results (macro-F1: 0.74, micro-F1: 0.73)
with an SVM classifier and multi-label approach on a balanced data set with
about 100 websites. Although they consider additional features such as structural
information and URIs, our model MP1TD using a simple multilayer perceptron
architecture (macro-F1: 0.69, micro-F1: 0.87) shows that basic textual informa-
tion as a feature is sufficient for comparable performance on a large, imbalanced
data set.

As depicted in Fig. 5, the outputs of the models MP1TD, SVRT
D and CN125kD

can be interpreted as confidence scores and thus allow experimentation with
threshold values for classification. The performance of our MLP can be improved
to 0.94, whilst still able to classify 75% of websites.

11 “Blogs” fall under the categories of private or company according to our defined
classes from Sect. 3.

12 This is a subset of our company class.

Who’s Behind That Website? 143

Efficiency. If a model is implemented in a real-world setting and productive sys-
tem, regular retraining on large data sets is required. Therefore, training time is
an important metric. Considering the hardware configuration described Sect. 5.3,
an overview of the run-times of our implementations with average training and
testing time of the best models is given in Table 7.

The training times of the SVMs and the random forests are noticeably high.
The longer training time for SVRT

D over SVOT
D was unexpected because fewer

SVMs need to be trained [17], though they were implemented differently (SVRT
D

as a wrapper and SVOT
D using the R package e1071).

The gradient boosting models exhibit the fastest training and testing, though
many more pairs of hyperparameters need to be evaluated beforehand to deter-
mine the optimal setup, which is not accounted for in pure run-time analysis.

The Naive-Bayes classifier is the only algorithm with a higher run-time during
testing compared to training. Because of its slow classification, it is better suited
for cases where only a few classifications need to be made like local spam filters
that must be retrained every time a new pattern emerges.

We conclude that a multilayer perceptron with a bag of words approach is
the most promising solution to the task of website classification. Besides the best
results, MLPs have a short classification run-time which can be easily improved
through parallel processing with multiple GPUs.

Feature Extraction Method. A comparison between the four proposed train-
ing sets shows that a prior weighting of features through tf-idf is the most rea-
sonable approach. No model achieved the best performance using non-weighted
features. The average accuracy of all models using non-weighted full vocabulary
reached 0.777, whereas the average accuracy of all models using weighted full
vocabulary reached 0.798. This confirms results achieved by Sahid et al. in which
weighting through tf-idf proved to be superior to non-weighted input [7].

Furthermore, a smaller vocabulary does not seem to necessarily lower perfor-
mance scores. This effect is especially prominent for Naive-Bayes, random forest,
and gradient boosting, where reduced vocabularies lead to the best results. A size
of 5,000 words proves to be sufficient for our task at hand. All models trained
using reduced vocabularies reached an accuracy of 0.794 on average. Finally,
using 2-grams instead of 1-grams did not increase performance in our case. All
models using 2-grams averaged an accuracy score of 0.789.

5.6 Classification of Private Websites

Our evaluation shows that both supervised and unsupervised algorithms can-
not distinguish easily between private websites and company websites because
private websites sometimes use commercial vocabulary in a non-commercial con-
text. For instance, websites of musicians might be labelled as a private website
in case of a school band whereas the portrayal of a singer might have a clear
commercial intent. In some cases, this might be a challenge even during man-
ual labelling. We conclude that the diversity of private websites creates a large
feature space, leading to many cases where private websites are not classified

144 M. Färber et al.

correctly. A solution for this might be a multi-label classification approach as
described by Thapa et al. [2]. However, in our case, a single-label approach was
chosen to clearly define a distinct business strategy for the web hosting company.

5.7 Main Findings

1. We showed that there are many websites containing only few words and
that distinguishing between private and company classes is a non-trivial task.
Therefore, robust methods are required for website classification.

2. Our four proposed categories proved to be sufficient to cover the entirety of
the web. As each class can be mapped to a target audience, we provide a
real-world application for web hosting companies for determining their rela-
tionship and communication strategy with their customers.

3. Our work with unsupervised learning algorithms confirms the existence of our
four proposed clusters. As for supervised learning, an MLP with a simple two
hidden layer architecture proved to be the most suitable model for the task.
Although SVMs achieved similar results, MLPs have a short classification run-
time and, in general, run-times can be improved easily by parallel processing
with multiple GPUs.

4. CNNs did not deliver superior results as performance is influenced rather by
individual words than by longer coherent sentences.

6 Conclusion and Outlook

In this paper, we proposed four categories that can be used for website classifi-
cation of the entirety of the web. We implemented various unsupervised as well
as supervised machine learning algorithms for the purpose of automatic website
classification. Furthermore, we discussed the efficiency and effectiveness of each
method in a real-world setting. All in all, we achieved the best performance
(accuracy: 0.866, macro-F1: 0.689, micro-F1: 0.870) using a multilayer percep-
tron that was trained on a data set with real-world distribution of classes using
tf-idf as feature weights.

Experiences and insights gathered from this work could be applied to clas-
sifying other document types, categorization schemas, and languages. However,
language-specific features might influence results, such as the required declara-
tion of legal forms in Germany. Subsequent research can use our published imple-
mentations and data sets and, besides textual content, might consider additional
features to improve our results, such as URIs and images.

Who’s Behind That Website? 145

References

1. Lindemann, C., Littig, L.: Classification of web sites at super-genre level. In:
Mehler, A., Sharoff, S., Santini, M. (eds.) Genres on the Web. Text, Speech and
Language Technology, vol. 42, pp. 211–236. Springer, Dordrecht (2011). https://
doi.org/10.1007/978-90-481-9178-9 10

2. Thapa, C., Zaiane, O., Rafiei, D., Sharma, A.M.: Classifying websites into non-
topical categories. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol.
7448, pp. 364–377. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32584-7 30

3. Kanaris, I., Stamatatos, E.: Learning to recognize webpage genres. Inf. Process.
Manag. 45(5), 499–512 (2009)

4. Meyer zu Eissen, S., Stein, B.: Genre classification of web pages. In: Biundo, S.,
Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 256–269.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30221-6 20

5. Bruni, R., Bianchi, G., et al.: Robustness analysis of a website categorization pro-
cedure based on machine learning. Technical report n. 04–2018 DIAG (2018)

6. Sun, A., Lim, E., Ng, W.K.: Web classification using support vector machine. In:
Proceedings of the Fourth ACM CIKM International Workshop on Web Informa-
tion and Data Management. WIDM 2002, pp. 96–99 (2002)

7. Sahid, G.T., Mahendra, R., Budi, I.: E-commerce merchant classification using
website information. In: Proceedings of the 9th International Conference on Web
Intelligence, Mining and Semantics. WIMS 2019, pp. 5:1–5:10 (2019)

8. AbdulHussien, A.A.: Comparison of machine learning algorithms to classify web
pages. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 8(11), 205–209 (2017)

9. Xhemali, D., Hinde, C.J., Stone, R.G.: Näıve bayes vs. decision trees vs. neural
networks in the classification of training web pages. Int. J. Comput. Sci. Issues
4(1), 16–23 (2009)

10. Salamon, L.M., Anheier, H.K.: The International Classification of Nonprofit Orga-
nizations. Jossey Bass Publishers, San Francisco (1996)

11. Benoit, K., Muhr, D., Watanabe, K.: Stopwords: Multilingual Stopword Lists. R
package version 1.0 (2019)

12. Liaw, A., Wiener, M., et al.: Classification and regression by RandomForest. R
News 2(3), 18–22 (2002)

13. Amajd, M., Kaimuldenov, Z., Voronkov, I.: Text classification with deep neural
networks. In: International Conference on Actual Problems of System and Software
Engineering (APSSE), pp. 364–370 (2017)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of the 3rd International Conference on Learning Representations. ICLR 2015 (2015)

15. Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications Co., Green-
wich (2017)

16. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vec-
tors for 157 languages. In: Proceedings of the International Conference on Language
Resources and Evaluation (LREC 2018) (2018)

17. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York (2007)

https://doi.org/10.1007/978-90-481-9178-9_10
https://doi.org/10.1007/978-90-481-9178-9_10
https://doi.org/10.1007/978-3-642-32584-7_30
https://doi.org/10.1007/978-3-642-32584-7_30
https://doi.org/10.1007/978-3-540-30221-6_20

I Don’t Have That Much Data! Reusing User
Behavior Models for Websites from Different

Domains

Maxim Bakaev1(B) , Maximilian Speicher2 , Sebastian Heil3 ,
and Martin Gaedke3

1 Novosibirsk State Technical University, Novosibirsk, Russia
bakaev@corp.nstu.ru

2 C&A Europe, Düsseldorf, Germany
maximilian.speicher@canda.com

3 Technische Universität Chemnitz, Chemnitz, Germany
{sebastian.heil,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. User behavior models see increased usage in automated evaluation and
design of user interfaces (UIs). Obtaining training data for the models is costly,
since it generally requires the involvement of human subjects. For interaction’s
subjective quality parameters, like aesthetic impressions, it is even inevitable. In
our paper, we study applicability of trained user behavior models between dif-
ferent domains of websites. We collected subjective assessments of Aesthetics,
Complexity and Orderliness from 137 human participants for more than 3000
homepages from 7 domains, and used them to train 21 artificial neural network
(ANN) models. The input neurons were 32 quantitative metrics obtained via com-
puter vision-based analysis of the homepages screenshots. Then, we tested how
well each ANNmodel can predict subjective assessments for websites from other
domains, and correlated the changes in prediction accuracies with the pairwise
distances between the domains. We found that the Complexity scale was rather
domain-independent,whereas “foreign-domain”models forAesthetics andOrder-
liness had on average greater prediction errors for other domains, by 60%and 45%,
respectively. The results of our study provide web designers and engineers with a
first framework to assess the reusability and difference in prediction accuracy of
the models, for more informed decisions.

Keywords: Web design · User experience · Machine learning · Training data

1 Introduction

Even though the thorough evaluation of user interfaces (UIs) became widely popular
already in the early 90 s (e.g. [1]), it has not ceased to be a hot topic. User interfaces are
becoming increasingly complex and sophisticated, which a visit to the Internet Archive’s
Wayback Machine easily proves. This, however, also raises the complexity of setting up
and analyzing corresponding assessments. Besides, certain methods for evaluation are

© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 146–162, 2020.
https://doi.org/10.1007/978-3-030-50578-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_11&domain=pdf
http://orcid.org/0000-0002-1889-0692
http://orcid.org/0000-0001-8064-812X
http://orcid.org/0000-0003-2761-9009
http://orcid.org/0000-0002-6729-2912
https://doi.org/10.1007/978-3-030-50578-3_11

I Don’t Have That Much Data! 147

often considered costly and inefficient in the industry. Especially the ability to carry out
user tests is limited by the available resources ([2, 3, p. 180]). In many cases, this leads
to the application of simpler and faster methods, like A/B testing, which is, however,
not perfectly suited for determining qualitative aspects such as the usability or user
experience of an interface [4]. One alternative to traditional user testing that has been
repeatedly suggested in the literature is to employ models that predict subjective quality
parameters – like usability – from (a) static [5] or (b) visual [6] properties of a user
interface, or (c) from tracked interactions [7, 8].

Why is (efficient) evaluation of UIs important? With today’s plethora of available
websites and apps, it is crucial to properly test them in order to gain user acceptance.
Users spend most of their time on other websites and disapprove of usability and user
experience flaws [9].Now, themore efficient an evaluationmethod is, the fewer resources
are required, both, time- and money-wise, which leads to easier stakeholder buy-in,
particularly in industry settings (yet, effectiveness must not be traded for efficiency).
On top, the more user-friendly the interface and the more resource-efficient its creation
process, themore sustainable it becomes,which is a consideration becoming increasingly
important nowadays [3].

What are the advantages of user behavior models? Leveraging user behavior models
to predict subjective interaction quality parameters is a promising approach to effective
evaluation that uses fewer resources than traditional methods. First, libraries such as
MOA and scikit-learn are widely available and make training machine-learning
models relatively easy. Second, once such models have been trained, they can be applied
as many times as wanted, without lengthy testing sessions and the involvement of real
users.

So, what is the problem? Even though user behavior models need to be trained only
once, obtaining high-quality training data is often a problem and huge amounts of data
might be needed to obtain well-working models (e.g., ~23 GB of raw tracking data in the
case of [10]). Therefore, it would be worthwhile to reuse existing models for as many
UIs as possible, hence reducing the need for collecting hard-to-obtain training data. Yet,
Speicher et al. [8] hypothesized that such models are only applicable within clusters of
very similarly structured websites (since user interactions seem to be very sensitive to
low-level details of an interface). This is the very question we intend to investigate in
this paper.

Based on a set of features that are potentially more robust than user interactions
with an interface, we build artificial neural network models (ANNs) for websites from a
certain domain and investigate how accurately they can predict subjective assessments
for different domains. Overall, this paper makes the following contributions:

1. We train ANN models for 7 different domains of websites, based on subjective
quality assessments from 137 users.

2. We show that theseANNmodels can to a certain degree predict subjective interaction
quality parameters of websites from other domains.

3. We show that there is a connection between prediction accuracy and distance between
website domains, and we propose the corresponding distance measure.

148 M. Bakaev et al.

In Sect. 2, we overview related work, while in Sect. 3 we describe our experimental
study. In Sect. 4, we analyze the data and propose the regression model that relates the
models’ prediction accuracies and the distances between the domains.

2 Related Work

User behavior models are considered effective in representing research results in HCI
and a solid basis for software tools that support UI designers [11], particularly in the eval-
uation of web UI prototypes and designs. Generally, they predict an interaction quality
parameter, based on two sets of input: target user characteristics and UI representation.
Interaction models are built for particular tasks (more rarely, task specification can be
part of the input), whereas user experience models, which are a rather novel research
topic, are more inclined towards reflecting cognitive processes and neural structures.

Despite the increasing recognition, their use in practical Web Engineering so far
remains limited, for which we see two main reasons. First, building and training a new
model for a project context imposes high skill requirements: a software development
team rarely includes a computer scientist, a cognitive psychologist, etc. Second, even
though more and more models are made available, it remains unclear how granular the
input needs to be, i.e., how much re-training is needed for another group of users or a
changed UI.

The endeavor undertaken in this paper relates to the topic of transfer learning, which
in practicalML sometimes is also called pre-training.According to [12], transfer learning
takes place when the knowledge contained in an existing model for a task T1 in a given
domain D1 supports the learning of a not yet existing model for a task T2 from a domain
D2, whereas D1 �=D2.While also T1 �= T2, the tasks should be related [13], which is the
case for predicting quality parameters for websites from different domains. However,
our approach is more radical in the sense that we intend to directly apply the model
for D1 to D2, rather than to support the learning of a new model. This corresponds to
skipping the second step (fine training) in the utilization of pre-trained user behavior
models, which means a trade-off: saving on training data, but losing on the evaluation
model’s accuracy.

2.1 AI in UI Evaluation and Design

Classifiers for predicting quality parameters of UIs used in existing research include
Random Forests, Naïve Bayes, ANNs, and non-ML-based models, among others. For
instance, [10] collected a number of user interactions (mostlymouse and scrolling behav-
ior) on search engine results pages and trained models that were able to predict the
relevance of search results better than a generative state-of-the-art approach. They used
Random Forests as the classifier of their choice. However, their solution is restricted to a
very specific type of webpage and a single quality parameter. In [8], they employ a sim-
ilar, but extended approach by tracking a similar (but larger) set of user interactions and
learning several models in parallel to predict 7 different usability parameters (according
to the Inutt instrument). Their classifier of choice is an incremental version of Naïve
Bayes.

I Don’t Have That Much Data! 149

Such models in the context of UI evaluation and design have certain advantages and
disadvantages. On the one hand, it is very cumbersome for a developer or researcher to
manually identify patterns in website structure or user interactions that correlate with
certain quality parameters (such as, “Users that change scrolling direction at least twice
rate a website as more confusing”). In [8], the authors have tried this, but the correlations
they found are mostly rather low (r < .3) and derived from the models they learned.
Discovering these connections is much easier for machine learning classifiers. On the
other hand, the models trained by classifiers are mostly not human-interpretable and the
models themselves remain a black box.

The work of Grigera et al. [7] builds on a non-ML approach. They identified patterns
of user behavior that hint at certain “usability smells”, e.g., “user clicks a link and returns
shortly after” → misleading link, and implemented a finder for each smell. This is a
robust, easily understandable approach that is applicable to a large range of websites,
but limited by existing knowledge about user behavior, not easily adjustable, and might
prevent the detection of new patterns beyond the perception of the developers. None of
the research described above aims at applying their learned models to user interfaces
from a different domain. In [8], they tried but concluded that if it is possible, it is at
best possible for interfaces that are structurally very similar. The approach in [7] is
applicable to a range of websites from different domains, but not based on machine-
learning approaches. Therefore, a comparison with our work is out of scope in this
regard.

Indeed, [8] partly inspired the topic of this paper since we hypothesize that with
different, more robust input attributes, applying models across domains of websites
could be possible. For this, we orient at [6], since global, visual features of websites
are potentially not as prone to differences in structure as user interactions. Their work
builds on static visual properties of websites – metrics, as obtained through a screenshot-
processing visual analyzer – and ANNs to predict subjective quality assessments (e.g.,
perceived complexity of a website).

2.2 The UI Visual Analysis Tools

The more traditional approach for extracting quantitative metrics of UIs is based on the
analysis of UI code or model representation. It boasts high performance and accuracy
and is particularly suitable for web UIs whose HTML/CSS code is easily available [14].
Code-based analysis is widely used to check compliance with accessibility guidelines
and other standards and recommendations but is less suited for the assessment of such a
subjective thing as user experience.On the other hand, the increasingly popularUI vision-
based analysis, which is based on image recognition techniques, generally deals with the
screenshot of a webpage as rendered in a browser. The main advantage of this UI “visual
analysis” approach is that it assesses theUI as the target user witnesses it, so it is naturally
good at considering layouts, spatial properties of UI elements, graphical content, etc.
For instance, in [15], the authors perform automated data extraction from images and
make use of Gestalt principles of human visual perception – this understandably would
be highly problematic to do with code analysis. At the same time, the disadvantages of
the vision-based approach include computational expensiveness and so far low accuracy
for some of the metrics.

150 M. Bakaev et al.

In view of the abundance and diversity of metrics proposed by various researchers in
the rapidly developingmetrics-basedUI analysis field, we have previously developed the
WUIMeasurement Integration Platform1 [14]. It is capable of collecting web UI metrics
from different providers and storing them in the common structured representation for
further analysis. The platform sends a web UI screenshot or website URI to a remote
service using its supported protocol, waits for the output (WebSocket is mostly used)
and saves it in the platform’s database. Currently, the platform works with the two main
UI visual analysis tools, which we also use for the purposes of the current research:

1. Visual Analyzer (VA), developed by Technical University of Chemnitz (Germany)
and Novosibirsk State Technical University (Russia) [14];

2. Aalto Interface Metrics service (AIM), by Aalto University (Finland)2 [16].

The potential number of UImetrics that can be obtained via the vision-based analysis
is understandably boundless (the two analyzers that we exploit for this work are just a
small portion of the available tools). It thus seems logical to assume that, just like for the
general image recognition techniques, artificial neural networks should be an appropriate
modeling method.

2.3 ANNs in User Behavior Modeling

Lately, artificial neural networks are back in fashion, with the advent of deep learn-
ing in AI. They have reasonable computational cost but are known to be “hungry” for
diverse data, so their practical use in the fields where training data are scarce is limited.
User behavior modeling is somehow divided with respect to this since the abundance
of data varies due to the exact interaction quality parameter being predicted and the
corresponding input. Still, the relatively novel recurrent neural networks are used for
modeling sequences of user behaviors and are being introduced to predicting behavior
on the web. Particularly, in [17], they consider domain switch – where two successive
behaviors belong to different domains, which in that work are understood as “service
categories in a large-scale web service”.

We can speculate that for predicting user experience (as reported by users in their
subjective assessments, making the training data quite costly) there is no guarantee that
ANNs would be the most accurate method. Or, at least, quite special architectures and
approaches would need to be developed for each of the subjective impressions, which
has actually been done, e.g., for aesthetics [18]. However, in our current work, we are
going to employ rather unsophisticated ANNs, since our goal is to obtain generalizable
patterns of the models’ applicability across website domains, not propose the most
effective prediction model. So, our choice is further reinforced by the known “universal
approximator” capability of ANNs, which theoretically makes them more general than,
e.g., linear regression (which is, in a way an ANN with a single layer) or certain other
methods.

1 http://va.wuikb.info.
2 https://interfacemetrics.aalto.fi/.

http://va.wuikb.info
https://interfacemetrics.aalto.fi/

I Don’t Have That Much Data! 151

Since we are not going to perform neural architecture search and tinker with the
ANNs’ hyper-parameters, this somehow relaxes the requirements towards the amount
of training data we would need. A popular “rule of thumb” for linear models is having 10
cases per predictor, so given the number of quantitative metrics the two chosen analyzers
can produce (about 35), we would need to collect training data for about 350 websites
per domain.

3 Research Hypotheses and Method

The goal of our experimental study was to check the applicability of models across
domains of websites. Particularly, we formulated the following hypotheses:

• Hypothesis 1: There are significant differences in the quality of ANN user behavior
models due to the website’s domain.

• Hypothesis 2: The difference is smaller for domains that are more similar.

Material. In our experiment, we used screenshots of homepages of websites belonging
to one of the 7 distinct domains described in Table 1. The requirements were:

1. The homepage is in English language (or the homepage of thewebsite’s international
version).

2. Not representing a famous brand/company.
3. Maximum diversity of designs in the set.
4. The nominal number of websites per domain is 500.

Then we used our dedicated tool to automatically make screenshots of webpages
located at the collectedURIs. Since there is ongoing exploration ofwhether or not having
above-the-fold screenshots is enough for predicting users’ impressions, we settled on
a compromise: for the universities (Univer) domain, the full webpage was captured,
whereas for the other domains the capture was performed only for 1280 × 960 or
1280 × 900 pixels. Afterwards, the set of the automatically collected screenshots was
manually inspected. The screenshots having some technical problems (most often, a
pop-up covering a significant portion of the screen) or not obviously belonging to the
specified domain were removed.

To investigate the influence of domain similarity on the applicability of models, we
calculated pairwise domain distances for each combination of the 7 domains. For this
calculation, each category was mapped onto the DMOZ hierarchy3 of categories, as
shown in Table 1. The domains of Food, Games, Health, News, and Univer have direct
equivalents in DMOZ. For Culture and Gov, we identified sets of DMOZ categories
that best match the websites of these domains contained in our dataset. As the resulting
categories have the same depth in the hierarchy, all nodes to which a domain is mapped
have the same distance to other domains.

Figure 1 shows the relevant section of theDMOZ category hierarchy used for domain
distance calculation. To calculate the distance between two domains, we use the length

3 using http://curlie.org/.

http://curlie.org/

152 M. Bakaev et al.

Table 1. Homepage domains and their mappings to DMOZ categories.

Domain name Number of
screenshots

Description DMOZ Categories

Culture 807 Websites of museums,
libraries, exhibition
centers, other cultural
institutions

Reference/Libraries,
Reference/Museums

Food 388 Websites dedicated to
food, cooking, healthy
eating, etc.

Recreation/Food

Games 455 Websites dedicated to
computer games

Games

Gov 370 E-government,
non-governmental
organizations’ and
foundations’ websites

Society/Government,
Society/Organizations,
Society/Activism

Health 565 Websites dedicated to
health, hospitals,
pharmacies,
medicaments

Health

News 347 Online and offline news
editions’ websites, news
portals

News

Univer 497 Official websites of
universities and colleges

Reference/Education/Colleges
and Universities

3429

of the shortest path between the nodes corresponding to the two domains as per Table 1.
This implies identifying the lowest common ancestor (LCA) and adding vertex distances
distv between both nodes and their LCA:

Fig. 1. DMOZ category hierarchy used for domain distance calculation (domains Culture and
Gov comprising several DMOZ categories highlighted with boxes).

dist(D1,D2) = distv(dm(D1),LCA(D1,D2)) + distv(LCA(D1,D2), dm(D2)) (1)

I Don’t Have That Much Data! 153

dm(D) = argmin
c∈DMOZ(D)

distv(c,Root). (2)

For distance calculation, domains D are represented by the corresponding DMOZ
category that is the highest in the hierarchy, dm(D). Table 2 presents the resulting domain
distances for each domain pair.

Table 2. Domain distances based on the proposed measure.

Domain
name

Culture Food Games Gov Health News Univer

Culture 0 4 3 4 3 3 3

Food 4 0 3 4 3 3 5

Games 3 3 0 3 2 2 4

Gov 4 4 3 0 3 3 5

Health 3 3 2 3 0 2 4

News 3 3 2 3 2 0 4

Univer 3 5 4 5 4 4 0

Design. The experiment used a within-subject design. The main independent variable
was the screenshot domain (Domain). Derived independent variables were the pairwise
distances between the domains (Dist), the 32metrics for each screenshot (Mi – see the list
in Table 3), and the subjects’ assessments of each screenshots per the three subjective
Likert scales (each ranging from 1, the lowest degree of the characteristic, to 7, the
highest degree):

• How visually complex the WUI appears in the screenshot: Complexity;
• How aesthetically pleasant the WUI appears: Aesthetics;
• How orderly the WUI appears: Orderliness.

The dependent variable was the quality of the ANN models in predicting subjective
assessments for each domain, as represented by absolute (MSE) and relative (MSEREL)
mean square errors.MSEREL was calculated as the ratio between themodel’sMSE for the
d-th domain and theMSE for the “native” domain of the model (i.e. the one whose data
was used for training the model). Obviously, when d was the native domain, MSEREL
= 100%.

Participants and Procedure. In total, there were 137 participants (67 female, 70 male)
in the survey, whose ages ranged from 17 to 46 (mean 21.18, SD = 2.68). They were
mostly Bachelor’s and Master’s students of Novosibirsk State Technical University
(NSTU), but also students and staff of some other universities, and specialists work-
ing in the IT industry. The majority of participants were Russians (89.1%), the rest

154 M. Bakaev et al.

Table 3. Derived independent variables (Mi): the metrics for the screenshots.

Group Metric Mean SD

Visual Analyzer (VA) PNG filesize (in MB) 0.844 0.505

JPEG 100 filesize (in MB) 0.848 0.453

No. of UI elements 27.9 22.1

No. of UI elements’ types 4.430 1.279

Visual complexity index 1248 1220

AIM – Colour Perception Unique RGB colours 13742 10061

HSV colours avg Hue 153 152

HSV colours avg Saturation 0.225 0.140

HSV colours std Saturation 0.271 0.083

HSV colours avg Value 0.715 0.170

HSV colours std Value 0.271 0.070

HSV spectrum HSV 14157 8927

HSV spectrum Hue 16396 7975

HSV spectrum Saturation 16965 3865

HSV spectrum Value 254.8 5.4

Hassler Susstrunk dist A 18.0 14.1

Hassler Susstrunk std A 28.3 14.5

Hassler Susstrunk dist B 20.2 14.9

Hassler Susstrunk std B 28.8 13.1

Hassler Susstrunk dist RGYB 27.7 19.6

Hassler Susstrunk std RGYB 41.3 17.4

Hassler Susstrunk colorfulness 49.6 22.3

Static clusters 3859 2030

Dynamic CC clusters 693 449

Dynamic CC avg cluster colors 12.4 1.4

AIM – Perceptual Fluency Edge congestion 0.252 0.082

Quadtree Dec balance 0.711 0.246

Quadtree Dec symmetry 0.564 0.051

Quadtree Dec equilibrium 1.000 0.002

Quadtree Dec leaves 2876 2002

Whitespace 0.340 0.265

Grid quality (No. of alignment lines) 91.7 61.4

I Don’t Have That Much Data! 155

being from Bulgaria, Germany, South Africa, etc. The subjects took part in the experi-
ment voluntary and no random selection was performed. All the participants had normal
or corrected to normal vision and reasonable experience with websites.

The participants were provided a link to the online questionnaire that we specially
developed for this study. In the survey, the screenshots were selected randomly from
the pool of the available ones (with priority given to the ones that had a lower number
of evaluations at the moment of selection) and presented to participants successively.
The completeness of evaluation, i.e. ranking by all the 3 scales, was mandatory and
controlled by the software. The default number of screenshots to be evaluated in each
session was set at 100 for most of the participants. The assessment of the screenshots
of the Univer domain was performed in a separate session (see in [19]), about 9 months
before the other 6 domains, for which the screenshots were mixed into the single pool.

ANN Models. To construct and train ANN models, we used the Colab4 service freely
offered by Google (TensorFlow 1.15.0 environment with Keras, etc.). There was a sep-
arate model for each website domain and each subjective impression scale, so there
were 21 models in total. In each model, the input values were the 32 metrics for the
screenshots of the respective domain, and the single output was the respective subjective
assessment.

The most widely used loss function for ANNs that perform a regression task is the
mean squared error (MSE), which wewill also use to represent the quality of the models.
As for the architecture, the goal of our research was not to find the best one but to have
comparable models for all domains and quality parameters. Therefore, we adopted the
same generic architecture for all the datasets. The main hyper-parameters of the ANNs
were set as specified in the following code:

def build_model(x):
model = Sequential()
model.add(Dense(units = 64, activation = 'relu',\

input_shape = [len(x.keys())]))
model.add(Dense(units = 64, activation = 'relu'))
model.add(Dense(units = 1))
model.compile(loss = 'mse', \

optimizer = 'rmsprop', \
metrics = ['mae', 'mse'])

return model

The normalization of the input data was performed as follows:

def norm(x):
return (x - x.describe().transpose()['mean']) / \
x.describe().transpose()['std']

4 Our full implementation is available at https://colab.research.google.com/drive/1PFFMkE9v
SE7aWBlKdFSLEu0jnSQX7fHw.

https://colab.research.google.com/drive/1PFFMkE9vSE7aWBlKdFSLEu0jnSQX7fHw

156 M. Bakaev et al.

For the models’ training, the following configuration was specified:

TEST_SPLIT = 0.2
VAL_SPLIT = 0.2 # of the remaining 0.8
early_stop = ks.callbacks.EarlyStopping \

(monitor = 'val_loss', patience = 10, \
restore_best_weights = True)

Since restore_best_weights only works if the training was stopped by
EarlyStopping, the nominal number of training epochs was set to 1000.

4 Results

4.1 Descriptive Statistics

For each of the 3429 screenshots, we attempted to calculate 32 metrics through our
WUI Measurement Integration Platform performing in “batch” mode. However, for 345
(10.1%) of the screenshots the VA and AIM services would silently fail to produce some
or allmetrics (for some reason,Whitespacewas especially problematic). The screenshots
with incomplete metric values had to be excluded from further analysis, even though we
do realize that this discard was not random. The metrics’ means and standard deviations
for the remaining 3084 screenshots are presented in Table 3.

For the 3084 valid screenshots there were 15134 full assessments, so on average 4.9
participants would provide their Complexity, Aesthetics and Orderliness ratings for a
screenshot (see in Table 4). For the Univer domain, which was assessed in a separate
session, this number was 8.6.

Table 4. Derived independent variables: the subjective impressions scales.

Domain
name

Full
assessments

Valid
screenshots

Complexity Aesthetics Orderliness

Mean SD Mean SD Mean SD

Culture 3280 746 (92.4%) 3.629 0.814 4.243 0.987 4.289 0.895

Food 1585 369 (95.1%) 3.658 0.811 4.699 0.945 4.657 0.865

Games 1570 362 (79.6%) 3.570 0.928 4.244 1.139 4.325 1.000

Gov 1494 346 (93.5%) 3.805 0.820 3.858 0.920 4.140 0.858

Health 2381 541 (95.8%) 3.728 0.789 4.154 0.900 4.399 0.822

News 1445 328 (94.5%) 4.157 0.857 3.795 0.833 4.164 0.817

Univer 3379 392 (78.9%) 3.570 0.636 4.047 0.825 4.417 0.632

15134 3084
(89.9%)

3.711 0.826 4.166 0.976 4.343 0.863

We found significant Kendall’s τb correlations between Complexity and Aesthetics
(τ3084 = −0.046, p < 0.001), as well as between Aesthetics and Orderliness (τ3084

I Don’t Have That Much Data! 157

= 0.520, p < 0.001). Complexity and Orderliness, however, did not have a significant
correlation (p = 0.359).

4.2 The ANN Models

Eachof the 21models thatwe constructed and trainedwas evaluatedwith its native testing
dataset and 6 foreign ones (i.e., assessments for the screenshots of another domain), thus
producing 147 MSE values. On average, predictions for the foreign datasets produced
greater MSEs: +23% for Complexity, +60% for Aesthetics and +45% for Orderliness.
T-tests suggested that for Aesthetics (t47 = −6.11, p < 0.001) and Orderliness (t47 =
−2.97, p = 0.005) absolute MSEs were significantly different due to the model type
(native or foreign). For Complexity (t47 = −1.41, p = 0.166), no significant effect was
found. Detailed values for the absolute and relative MSEs per the subjective evaluation
scales are presented in Tables 5, 6 and 7.

Table 5. The results of the Complexity models’ evaluations (MSE and MSEREL, %).

Testing dataset
training dataset

Culture Food Games Gov Health News Univer Avg. MSEREL
for foreign
models

Culture 0.820 1.145 1.116 1.308 1.320 1.491 0.937

140% 136% 159% 161% 182% 114% 149%

Food 1.126 1.231 1.689 1.100 1.260 1.343 1.120

91% 137% 89% 102% 109% 91% 103%

Games 1.229 1.062 1.346 1.375 1.405 1.549 1.047

91% 79% 102% 104% 115% 78% 95%

Gov 1.269 0.852 1.356 1.166 1.003 1.612 1.005

109% 73% 116% 86% 138% 86% 102%

Health 0.945 1.114 1.452 1.068 1.079 1.348 0.889

88% 103% 135% 99% 125% 82% 105%

News 1.456 1.497 2.778 1.745 1.616 1.497 1.506

97% 100% 186% 117% 108% 101% 118%

Univer 0.963 0.937 1.510 1.325 1.292 1.536 0.665

145% 141% 227% 199% 194% 231% 190%

123%

The correlation between the models’ MSEs averaged per domain and the respective
domains’ dataset sample sizes was not significant (p = 0.296). This finding suggests
that the models had adequate amounts of training data, which caused no under- or over-
fitting. Still, to compare the effects of Domain and of training data, we tried pooling all
the domain-specific datasets into a single large one. We trained 3 ANN models (per the

158 M. Bakaev et al.

Table 6. The results of the Aesthetics models’ evaluations (MSE and MSEREL, %).

Testing dataset
training dataset

Culture Food Games Gov Health News Univer Avg. MSEREL
for foreign
models

Culture 0.958 2.219 1.593 1.261 2.044 1.565 1.146

232% 166% 132% 213% 163% 120% 171%

Food 1.899 1.009 2.675 1.943 1.943 1.873 2.287

188% 265% 193% 193% 186% 227% 208%

Games 1.277 2.215 1.401 1.758 2.369 2.963 1.611

91% 158% 125% 169% 212% 115% 145%

Gov 1.264 2.168 1.605 1.196 0.934 1.099 1.126

106% 181% 134% 78% 92% 94% 114%

Health 1.680 1.918 1.912 1.525 1.174 1.047 1.395

143% 163% 163% 130% 89% 119% 135%

News 1.777 2.143 2.299 1.416 1.357 0.866 1.569

205% 248% 266% 164% 157% 181% 203%

Univer 1.316 2.495 1.493 1.166 1.301 1.084 1.024

128% 244% 146% 114% 127% 106% 144%

160%

3 subjective scales) with the same hyper-parameters as we used before and evaluated
them with testing sets, in which all the websites were mixed as well. The obtainedMSE
values were −33% for Complexity, −18% for Aesthetics, and −30% for Orderliness,
compared to the averaged MSEs for the domain-specific models. So, for the two latter
scales, the effect of a native training dataset was greater than of more training data.

4.3 Effects of the Domains’ Distances

We found significant Pearson correlations betweenMSEREL and Dist for Aesthetics (r49
= 0.313, p = 0.028) and Orderliness (r49 = 0.343, p = 0.016), but not for Complexity
(r49 = 0.223, p = 0.123). However, if the native models (distance = 0) were excluded
from the consideration, such correlations were no longer significant. But for this set of
foreign models, we unexpectedly found significant negative correlations between the
absolute MSE and Dist, for Complexity (r42 = −0.437, p = 0.004) and Orderliness
(r42 = −0.347, p = 0.024), though not for Aesthetics (r42 = −0.149, p = 0.348). The
averaged values for the absolute and relative MSEs per Dist are presented in Fig. 2 and
Fig. 3 respectively.

Further, we performed regression analysis using the backwards selection method
(entry 0.05, removal 0.1). We introduced 3 dummy variables with the values {0/1}:
ScaleC , ScaleA and ScaleO to reflect to which of the subjective impression scales (Com-
plexity, Aesthetics and Orderliness) belongs the model that produced the MSEREL. The

I Don’t Have That Much Data! 159

Table 7. The results of the Orderliness models’ evaluations (MSE and MSEREL, %).

Testing dataset
Training dataset

Culture Food Games Gov Health News Univer Avg. MSEREL
for foreign
models

Culture 1.048 1.409 1.093 1.452 1.829 1.705 0.848

134% 104% 139% 175% 163% 81% 133%

Food 1.828 1.311 2.119 2.037 1.937 1.644 1.562

139% 162% 155% 148% 125% 119% 142%

Games 1.585 2.038 1.506 1.935 2.643 3.174 1.564

105% 135% 128% 176% 211% 104% 143%

Gov 1.287 1.676 1.210 1.061 1.116 1.385 1.263

121% 158% 114% 105% 131% 119% 125%

Health 1.557 1.511 1.414 1.465 0.992 1.211 1.312

157% 152% 142% 148% 122% 132% 142%

News 1.908 1.511 2.306 1.558 1.494 1.073 1.644

178% 141% 215% 145% 139% 153% 162%

Univer 1.275 1.495 1.456 1.066 1.366 1.862 0.839

152% 178% 174% 127% 163% 222% 169%

145%

0

0.5

1

1.5

2

2.5

3

0 2 3 4 5

M
SE

Distance

Complexity Aesthetics Orderliness

Fig. 2. Averaged absolute MSEs per distances between the domains.

resulting model included the factors of Dist (p < 0.001, Beta = 0.274), ScaleA (p <

0.001, Beta = 0.35) and ScaleO (p = 0.02, Beta = 0.208) and was highly significant
(F3,143 = 9.62, p < 0.001), although the R2 = 0.168 was rather low:

MSEREL = 0.958 + 0.084Dist + 0.318ScaleA + 0.189ScaleO. (3)

160 M. Bakaev et al.

0%

50%

100%

150%

200%

250%

0 2 3 4 5

Re
la

tiv
e

M
SE

Distance

Complexity Aesthetics Orderliness

Fig. 3. Averaged relative MSEs per distances between the domains.

5 Discussion

Beforewe conclude this paper, we intend to have a look at the limitations of the described
approach as well as questions that were left open.

First, while Complexity was the only scale without a significantly higher avg. MSE
for foreign models, the peculiarity of this scale is further reinforced by its much lower
correlation with the other two scales. Hence, we feel the need for more studies in various
detailed dimensions of user experience.

Second, there also was an unexpected finding that absolute MSEs had significant
negative correlations with the distance between the website domains. We thus believe
that the measure of distance that we proposed deserves more exploration, possibly with
more domains. Also, rather than relying on topical domains, it would be worthwhile to
investigate a more structure-based approach to clustering and distance, e.g., as proposed
by Hachenberg and Gottron [20].

Finally, the ANN models that were used for this research are only valid for the spe-
cific user groups that provided the subjective assessments. That is, they might not be
representative target groups for all of the investigated domains. Hence, for better gen-
eralizability of our results, future work should investigate the influence of assessments
from different user types on prediction accuracy and the correlations above.

6 Conclusions

In this paper, we sought to apply reuse, which has proven to be rather efficient in software
engineering, to machine learning models and training data. For that, we built and trained
21 ANN models for websites from 7 different domains and evaluated how accurately
they can predict subjective assessments of Complexity, Aesthetics and Orderliness for
other (“foreign”) domains. The assessments for the 3 subjective scales were provided
by 137 participants of various nationalities, while the input data for the models were 32
metrics obtained through visual-based web UI analysis tools.

ConcerningHypothesis 1 formulated prior to our experimental study, we found that
although all the “foreign” models had on average higher mean square errors (+23%

I Don’t Have That Much Data! 161

for Complexity, +60% for Aesthetics and +45% for Orderliness), the difference for
Complexity was not significant.

ExploringHypothesis 2, we found that themeasure of distance between the domains
that we proposed in our study significantly affected Aesthetics and Orderliness. The
regression model that we built for all the 3 scales was highly significant (but with a low
R2 = 0.168) and suggested that on average an extra point of distance adds 8.4% to the
model’s MSE, compared to the domain-specific (“native”) model.

As for the validity of our study, we need to note the rathermodest prediction accuracy
of the ANN models, which should probably not be used for practical purposes. Yet, this
is understandable since we did not seek to increase the models’ MSEs by performing
Neural Architecture Search, tweaking the hyper-parameters, etc. As our focus was on
studying the effects of website domain similarity, we were reluctant to introduce these
extra factors to themodels. The amounts of training data per domains thatwe obtained for
the study appear adequate, as we found no significant correlation between the models’
MSEs and the sample sizes (p = 0.296). On the other hand, the control models that
were trained on joined domain datasets had better MSE values, which is in line with the
notorious “unreasonable effectiveness of data” in ML.

So, can we trust the predictions of ANN models for other domains than the original
one? To answer this, we want to provide the reader with three key takeaways:

1. Our results suggest it is safe to assume user models for Complexity do not yield
significantly less accurate results for foreign domains.

2. Domain distance indeed correlates with prediction accuracy for Aesthetics and
Orderliness, so if you intend to reuse models, try to do so only for close domains.
You can assume roughly 8.4% additional MSE per extra point of distance.

3. More research is required and it is always good, although often costly, to have more
subjective assessments, but our study shows, with numbers, the trade-off for using
available models and training data from different website domains.

When programmers’ time became the prime cost in software, reuse came to be an
integral part of SE. We believe that it can become similarly worthy in ML, at least for
domains where training data is limited or expensive to get. So, in our work, we made a
first step towards calculated trade-offs in the reuse of trained ML user behavior models.

Acknowledgment. The reported study was funded by RFBR and DST according to the research
project No. 19-57-45006. We thank Vladimir Khvorostov from NSTU for his technical work
on collecting the screenshots, the assessments, and the metrics. We are also grateful to all the
colleagues who participated and organized assessments of websites.

References

1. Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 152–158 (1994)

2. Nebeling, M. et al.: Crowdstudy: general toolkit for crowdsourced evaluation of web inter-
faces. In: Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, pp. 255–264 (2013)

162 M. Bakaev et al.

3. Frick, T.: Designing for Sustainability: a Guide to Building Greener Digital Products and
Services. O’Reilly Media, Inc., Sebastopol (2016)

4. Nielsen, J.: Putting A/B Testing in Its Place. Nielsen Norman Group, 14 August 2005. https://
www.nngroup.com/articles/putting-ab-testing-in-its-place/. Accessed 13 Jan 2020

5. Beirekdar, A., Keita, M., Noirhomme, M., Randolet, F., Vanderdonckt, J., Mariage, C.: Flex-
ible reporting for automated usability and accessibility evaluation of web sites. In: Costa-
bile, M.F., Paternò, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 281–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/11555261_25

6. Bakaev, M.: Assessing similarity for case-based web user interface design. In: Alexandrov,
D.A., Boukhanovsky, A.V., Chugunov, A.V., Kabanov, Y., Koltsova, O. (eds.) DTGS 2018,
Part I. CCIS, vol. 858, pp. 353–365. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-02843-5_28

7. Grigera, J., et al.: Automatic detection of usability smells in web applications. Int. J. Hum
Comput Stud. 97, 129–148 (2017)

8. Speicher, M., Both, A., Gaedke, M.: Ensuring web interface quality through usability-based
split testing. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541,
pp. 93–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08245-5_6

9. Nielsen, J.: The Negativity Bias in User Experience. Nielsen Norman Group, 23 October
2016. https://www.nngroup.com/articles/negativity-bias-ux/. Accessed 14 Jan 2020

10. Speicher, M. et al.: TellMyRelevance! predicting the relevance of web search results from
cursor interactions. In: Proceedings of the 22ndACMInternationalConferenceon Information
and Knowledge Management, pp. 1281–1290 (2013)

11. Chen, X., et al.: The emergence of interactive behaviour: a model of rational menu search.
In: Proceedings of the 33rd ACM Conference on Human Factors in Computing Systems,
pp. 4217–4226 (2015)

12. Lin, Y.-P., Jung, T.-P.: Improving EEG-based emotion classification using conditional transfer
learning. Front. Hum. Neurosci. 11, 334 (2017)

13. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning
Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI Global
(2010)

14. Bakaev, M., et al.: Auto-extraction and integration of metrics for web user interfaces. J. Web
Eng. 17(6), 561–590 (2018)

15. Estuka, F., Miller, J.: A pure visual approach for automatically extracting and aligning
structured web data. ACM Trans. Internet Technol. 19(4), 1–26 (2019)

16. Oulasvirta, A. et al.: Aalto InterfaceMetrics (AIM): a service and codebase for computational
GUI evaluation. In: 31stAnnualACMSymposiumonUser InterfaceSoftware andTechnology
Adjunct Proceedings, pp. 16–19. ACM (2018)

17. Kim, D. et al: Domain switch-aware holistic recurrent neural network for modeling multi-
domain user behavior. In: 12th ACM International Conference on Web Search and Data
Mining, pp. 663–671 (2019)

18. Dou, Q., et al.: Webthetics: quantifying webpage aesthetics with deep learning. Int. J. Hum
Comput Stud. 124, 56–66 (2019)

19. Boychuk, E., Bakaev, M.: Entropy and compression based analysis of web user interfaces.
In: Bakaev, M., Frasincar, F., Ko, I.-Y. (eds.) ICWE 2019. LNCS, vol. 11496, pp. 253–261.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19274-7_19

20. Hachenberg, C., Gottron, T.: Locality sensitive hashing for scalable structural classification
and clustering of web documents. In: Proceedings of the ACM CIKM (2013)

https://www.nngroup.com/articles/putting-ab-testing-in-its-place/
https://doi.org/10.1007/11555261_25
https://doi.org/10.1007/978-3-030-02843-5_28
https://doi.org/10.1007/978-3-319-08245-5_6
https://www.nngroup.com/articles/negativity-bias-ux/
https://doi.org/10.1007/978-3-030-19274-7_19

Improving Detection Accuracy
for Malicious JavaScript Using GAN

Junxia Guo , Qiyun Cao, Rilian Zhao, and Zheng Li(B)

College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing, China

{gjxia,lizheng}@mail.buct.edu.cn

Abstract. Dynamic web pages are widely used in web applications
to provide better user experience. Meanwhile, web applications have
become a primary target in cybercriminals by injecting malware, espe-
cially JavaScript, to perform malicious activities through impersonation.
Thus, in order to protect users from attacks, it is necessary to detect
those malicious codes before they are executed. Since the types of mali-
cious codes increase quickly, it is difficult for the traditional static and
dynamic approaches to detect new style of malicious code. In recent
years, machine learning has been used in malicious code identification
approaches. However, a large number of labeled samples are required
to achieve good performance, which is difficult to acquire. This paper
proposes an efficient method for improving the classifiers’ recognition
rate in detecting malicious JavaScript based on Generative Adversarial
Networks (GAN). The output from the GAN is used to train classifiers.
Experimental results show that our method can achieve better accuracy
with a limited set of labeled sample.

Keywords: Malicious code detection · JavaScript · GAN · Classifier

1 Introduction

Web applications are progressively more utilized for security-critical services,
they have turned out to be a well-liked and precious target for the web-
related vulnerabilities. As one of the key technologies to resist network attacks,
JavaScript has become an open playground for the attackers to spread malware
by injecting malicious JavaScripts. According to the Symantec 2019 Internet
Security Threat Report [1], formjacking was one of the biggest cyber security
trends of the year, with an average of 4,800 websites compromised with form-
jacking code every month in 2018, which mainly use malicious JavaScript code
to steal important information.

Main techniques for detecting malicious code are static and dynamic meth-
ods. Static methods have high detection efficiency and do not need to execute

The work described in this paper is supported by the National Natural Science Foun-
dation of China under Grant No. 61702029, No. 61872026 and No. 61672085.

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 163–170, 2020.
https://doi.org/10.1007/978-3-030-50578-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_12&domain=pdf
http://orcid.org/0000-0003-4905-1290
https://doi.org/10.1007/978-3-030-50578-3_12

164 J. Guo et al.

JavaScript code, but are not good at detecting new malicious code. Dynamic
methods usually require simulation of the environment to execute JavaScript
code and analyze its runtime behavior, which lead to low efficiency. There are
also methods that use both static and dynamic techniques, which usually perform
static analysis first, and then simulate dynamic execution based on the results
of the analysis. Researchers recently have enlisted machine learning approaches
in the detection of malware, which extract features from programs and use clas-
sifiers to distinguish benign programs and malware. One advantage of using
machine learning is that it can determine whether a code or a file is malicious
or not without isolating it in a sandbox to perform the analysis. Another advan-
tage is its predictive capability in detecting previously unknown malware. The
advantage of using machine learning is even more apparent as malware becomes
more polymorphic.

However, in order to use machine learning in classifying regular and mali-
cious codes, usually we need to collect a large number of regular and malicious
JavaScript samples, label them manually, and then perform model training. In
fact it is difficult to collect sample data. In addition, manual labeling means high
cost. This paper propose a method that uses Generative Adversarial Networks
(GAN) to generate samples based on a small set of labeled sample and most
unlabeled samples to improve the accuracy of the classifier. The contributions
of this work are summarized below:

– It provides an efficient method to generate JavaScript samples, and follows
on the improving of classifiers’ accuracy when just has a small set of labeled
samples.

– We design and implement a real-time detection tool for protecting web
browsers from malicious JavaScript.

The rest of this paper is organized as follows. Section 2 presents the back-
ground of GAN and related work. Section 3 introduces the proposed model. The
experiments and related analysis are shown in Sect. 4. Section 5 concludes the
paper.

2 Related Work

JavaScript malicious code detection has been extensively studied in recent years.
The studies are not limited to Web application architecture, also include the
Android side JavaScript. Many machine learning based approaches are proposed.
Research [11] shows how image tags, URL properties of style tags are used for
malicious script injection resulting in URL redirection. Nunan et al. [15] proposed
a machine learning based approach for the automatic classification of Cross Site
Scripting attacks. This approach extracts features from the URLs and web docu-
ments, then uses them for analyzing classification performance. Andrew et al. [5]
developed a supervised machine learning classifier based on four broad feature
families: JavaScript properties accessed, HTTP cookies, HTTP referer informa-
tion, and URL meta-features. Research [9] proposed a hybrid analysis method,

Improving Detection Accuracy for Malicious JavaScript Using GAN 165

in which, before performing classification-based detection to distinguish attacks,
it analyzes for JavaScript code that works by conducting syntax analysis and
dynamic instrumentation to extract internal features that are related to mali-
cious code. Khan et al. [12] proposed an interceptor for the detection of malicious
JavaScript attacks coming towards the client side. This approach based on the
machine learning for detecting malware, especially previously unknown malware
variants. The proposed approach is lightweight in nature with minimal runtime
overheads. Detection is based on the static analysis of code for extracting fea-
tures from given JavaScript to be fed into classifier for the classification process.
Research [6] presented a malicious JavaScript detection model based on LSTM,
in which features are extracted from the semantic level of bytecode and the
method of word vector is optimized. Singh et al. [18] compared the aspects of
attribute selection for detecting Malicious Websites using Machine Learning.

However, the attach techniques are also developed continuously. For exmple,
Fass et al. [7] proposed an attack approach named HideNoSeek, which replaces
benign sub-ASTs by their malicious equivalents (same syntactic structure) and
adjusts the benign data dependencies without changing the AST so that the
malicious semantics is kept. Thus, the continuous study on Malicious code detec-
tion is also necessary.

Fig. 1. The architecture of GAN this paper proposed.

3 Training Process

The learning model we propose in this paper is inspired by GAN [8]. GAN
has shown good performance in generating realistic images [16,19], also can be
used in image classification [10]. In this section, we describe the design of our
method whose architecture is shown in Fig. 1. The discriminator network D in
a normal GAN outputs an estimated probability that the input samples are
generated from the G or not. Traditionally this is implemented with a feed-
forward network ending in a single sigmoid unit, but it can also be implemented
with a soft-max output layer with one unit for each of the classes [Real, Fake].
Once this modification is made, it is possible to find that D could have 2+1
output units corresponding to [Benign, Malware, Fake]. In this case, D can also
act as a Classifier. We call this network D/C.

For learning the parameters of this GAN, we need to train the D/C to
maximize the accuracy of discriminating the input data from the real data x

166 J. Guo et al.

or the generated data G(z). In addition, we need to train the G to minimize
log(1−D(G(z))). Here we can use an alternative training method. Firstly, we fix
G and optimize D/C to maximize the discrimination accuracy of D/C. Then, we
fix D/C and optimize G to minimize the discrimination accuracy of D/C. This
process alternates until the model achieves the global optimal solution, which
is if and only if pdata = pg. In the training process, we empirically update the
parameters of D/C for k times and then update the parameters of G once.

Algorithm 1. The Training Process of GAN
Input: epoch :training times of GAN,
1: labeled data :labeled samples,
2: unlabeled data :unlabeled samples
3: function Train(generator, discriminator)
4: i ← 0
5: while i <epoch do
6: Sample a batch of samples ld from labeled data
7: Sample a batch of samples uld from unlabeled data
8: Label ld and uld using the D/C
9: Update the D/C’s weight θd by descending along the gradient ∇θd LossD

10: Generate adversarial examples g from the generator for x
11: Label g using the D/C
12: Update the D/C’s weight θd by descending along the gradient ∇θd LossD
13: Update the G’s weight θg by descending along the gradient ∇θg LossG
14: end while
15: end function
16:
17: function Sample(generator)
18: Generate some samples data from the GAN’s generator
19: return data
20: end function
21:
22: function Classification
23: GAN ← TRAIN(generator, discriminator)
24: generator ← GAN ′s generator
25: data ← SAMPLE(generator)
26: Training classifier 100 times using data
27: return average accuracy
28: end function

When training a GAN model, it is necessary to define a loss function to
represent the loss between the model’s prediction ŷ and the real output y. The
training process is the process of minimizing this loss. The loss function of the
D/C is defined in Eq. 1,

LossD = Lsupervised + Lunsupervised (1)

Improving Detection Accuracy for Malicious JavaScript Using GAN 167

where:

Lsupervised = − Ex∼pdata
logpmodel(y|x, y ∈ {0, 1})

Lunsupervised = − Ex∼pdata
log[1 − pmodel(y|x, y = 2)]

+ Ex∼G(z),z∼noiselogpmodel(y|x, y = 2)
= − Ex∼pdata

logD(x)
+ Ez∼puniform(0,1) log[1 − D(G(z))]

The loss function of the G is defined as Eq. 2.

LossG = Ez∼noiselogD(G(z)) (2)

pmodel(y|x, y ∈ {0, 1}) is the set of samples that are recognized as real by the
D/C, and pmodel(y|x, y = 2) is the set of samples that are recognized as fake by
the D/C.

When the input is a labeled sample, it is in supervised learning mode.
The D/C should distinguish that it is a benign or malware sample. So the
Losssupervised should be minimized with respect to the weight of the discrimina-
tor. When the input is an unlabeled sample, it is in unsupervised learning mode.
The D/C should distinguish the sample from generated samples, no matter it is
benign or malware. So we can just minimize the log(1 − D(G(z))). While the
input is G(z) from generator, the D/C should distinguish it as fake.

Training this model is similar to training other GAN models. It takes labeled
samples and unlabeled samples as input, and needs random variables z to gen-
erate G(z) by generator. First, fix G and optimize D/C to minimize the LossD.
Next, fix D/C and optimize G to minimize the LossG. When D/C cannot classify
the samples coming from real samples or coming from G, it means that the G
has captured the distribution of real data. Finally, use G to generate samples as
classifiers’ input, and calculate the average accuracy of training classifiers. The
whole process of training GAN is shown in Algorithm 1.

4 Empirical Study

To verify the effectiveness and usability of our method, which is applying the
GAN in the identification of malicious JavaScript code, we designed the following
research questions. RQ1: CAN the method we proposed in this paper improve
the accuracy of classifiers? RQ2: Can the method we proposed in this paper be
really used in the detection of malicious JavaScript?

4.1 Experimental Setup

The benign JavaScript dataset used in this paper is crawled from top 100 web-
sites listed in Alexa [2]. We downloaded 5000 javascript code snippets from these
websites. For collecting potentially malicious JavaScript, we visit common black-
lists and services to track malicious URLs. As an example, we query the database
service Harmur [14] for all malicious URLs that have been submitted. We crawl

168 J. Guo et al.

these URLs, collect JavaScripts and get about 2000 JavaScript code snippets.
API features are used in this paper. We collect JavaScript API from W3school
[3], and construct an 225-dimensional binary feature vector for each JavaScript
code snippet based on 225 system level APIs.1

In order to validate the efficacy of samples generated by GAN, we use several
different machine learning algorithms for comparison. The classifiers used in this
paper include random forest (RF), logistic regression (LR), decision trees (DT),
support vector machines (SVM), and k-nearest neighbor (KNN). Normally, the
training of these classifiers depends on a large number of labeled samples, other-
wise it will lead to lower accuracy. We use samples to train those classifiers 100
times, then calculate the average accuracy.

Adam [13] is used as the optimizer. We tuned the hyper-parameters on the
validation set. 100 is chosen as the dimension of the noise vector z. The G’s layer
size is set to 100-500-256-225. The D/C’s layer size is set to 225-256-500-1. The
learning rate 0.001 is used for both the G and the D/C. The maximum number
of epochs to train GAN is set to 1000. The epoch with the highest detection rate
on the train set is finally chosen to test the performance of GAN.

4.2 Experimental Results

For malware detection, accuracy means the detection rate of malware. The accu-
racy results of original and generated samples with different training sets are
shown in Table 1. Firstly, we analyze the case where the GAN is trained by 100,
200, 300, 400, 500 samples. In other words, we use those different numbers of
samples to generate new samples and train the five classifiers.

Table 1. Accuracy of the classifiers use different original samples and generated sam-
ples. ‘original’ means the classifiers use the original samples to train, ‘generate’ means
the classifiers use the generated samples to train.

RF LR DT SVM KNN

100 original 65.24 67.98 64.78 74.08 81.40

generate 70.86 73.14 70.25 75.26 81.81

200 original 69.42 72.91 65.89 75.86 85.88

generate 73.02 74.14 71.50 77.63 87.32

300 original 76.36 80.33 73.19 80.87 88.91

generate 79.17 83.93 76.83 84.82 89.64

400 original 77.56 81.64 75.86 85.73 90.94

generate 79.57 84.06 76.12 86.94 91.08

500 original 78.05 84.35 76.25 86.41 91.54

generate 81.96 86.62 78.13 88.09 93.79

1 The API features used in this paper is listed at https://github.com/shi13san/proxy/
blob/master/Features-javascript%20apis.pdf.

https://github.com/shi13san/proxy/blob/master/Features-javascript%20apis.pdf
https://github.com/shi13san/proxy/blob/master/Features-javascript%20apis.pdf

Improving Detection Accuracy for Malicious JavaScript Using GAN 169

In detail, for the RF, LR and DT, the accuracy of using generated set
improves about 5% when using 100 samples as input to training GAN. When
using other classifiers as the detector, GAN also can increase the accuracy when
using generated samples, although 1%. That is to say, the proposed model has
successfully learned to map the data distribution characteristics and can gener-
ate samples like the reality for these machine learning based malware detection
algorithms.

In the five classifiers, KNN gives a comparatively better performance with
respect to accuracy. From 100 samples to 500 samples, it always achieves higher
accuracy than other classifiers.

Each of the 100, 200, 300, 400, 500 sample sets can be considered as a small
set. Thus, we can say that our method has good performance with small set of
labeled samples.

In the training process, the loss of our GAN model hovered around 0.05 near
the 1000th training epoch, after which it shook a bit and was not very smooth.
This reflects the fact that the training of GAN is usually unstable. How to
stabilize the training of GAN have attracted the attention of many researchers
[4,16,17].

4.3 Detecting Tool

Keeping in view the need for real-time detection of malicious JavaScript code,
we design a tool fitting for the detection of real-time attacks based on the mali-
cious code detection approach we propose above. This tool implements through
putting a proxy, which we call MDproxy, between browser and server for the
detection of malicious JavaScript code.2

The process of protecting a web browser by the MDproxy tool can be done in
few steps. Firstly, when the web browser sends a request to the MDproxy using
its URL, the MDproxy will forward the request to the web server and receive
the response from the web server. Then, if the content type of response data is
‘text/javascript’ or ‘application/javascript’, it will be analyzed by the classifier
which has been trained already. Finally, if the response data has malicious code,
it will be replaced by a warning code. Otherwise the MDproxy forward the
response data to the web browser.

5 Conclusion

In this paper, we proposed a method that uses GAN to generate samples and
trained a model for detecting malicious JavaScript effectively. While comparing
the overall performance of all the 5 classifiers on a different number of samples,
we can find that when using samples generated by GAN the classifiers all have a
comparatively better performance with respect to accuracy. Based on our test-
ing, the MDProxy implemented in this paper can effectively intercept malicious
JavaScript code in real-time.
2 We share at https://github.com/shi13san/proxy.

https://github.com/shi13san/proxy

170 J. Guo et al.

References

1. Symantec 2019 Internet Security Threat Report. https://www.symantec.com/
content/dam/symantec/docs/reports/istr-24-2019-en.pdf

2. Alexa Top Websites. https://www.alexa.com/topsites
3. W3School. http://www.w3school.com.cn/jsref/index.asp
4. Arjovsky, M., Bottou, L.: Towards principled methods for training generative

adversarial networks (2017)
5. Denton, E., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models

using a Laplacian pyramid of adversarial networks, pp. 1486–1494 (2015)
6. Fang, Y., Huang, C., Liu, L., Xue, M.: Research on malicious JavaScript detection

technology based on LSTM. IEEE Access 6, 59118–59125 (2018)
7. Fass, A., Backes, M., Stock, B.: HideNoSeek: camouflaging malicious JavaScript in

benign ASTs. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1899–1913 (2019)

8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

9. He, X., Xu, L., Cha, C.: Malicious JavaScript code detection based on hybrid
analysis. In: 2018 25th Asia-Pacific Software Engineering Conference (APSEC),
pp. 365–374. IEEE (2018)

10. He, Z., Liu, H., Wang, Y., Hu, J.: Generative adversarial networks-based semi-
supervised learning for hyperspectral image classification. Remote Sens. 9(10),
1042 (2017)

11. Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with browser-
enforced embedded policies. In: International Conference on World Wide Web.
WWW 2007, Banff, Alberta, Canada, pp. 601–610, May 2007

12. Khan, N., Abdullah, J., Khan, A.S.: Defending malicious script attacks using
machine learning classifiers Wirel. Commun. Mob. Comput. 2017(2017), 1–9
(2017). https://doi.org/10.1155/2017/5360472. Article ID 5360472

13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

14. Leita, C., Cova, M.: HARMUR: storing and analyzing historic data on malicious
domains. In: The Workshop on Building Analysis Datasets and Gathering Experi-
ence Returns for Security, pp. 46–53 (2011)

15. Nunan, A.E., Souto, E., Santos, E.M.D., Feitosa, E.: Automatic classification of
cross-site scripting in web pages using document-based and URL-based features.
In: IEEE Symposium on Computers and Communications, pp. 702–707 (2012)

16. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

17. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: Advances in Neural Information Pro-
cessing Systems, pp. 2234–2242 (2016)

18. Singh, A., Goyal, N.: A comparison of machine learning attributes for detecting
malicious websites. In: 2019 11th International Conference on Communication Sys-
tems & Networks (COMSNETS), pp. 352–358. IEEE (2019)

19. Wang, S., Gao, H., Zhu, Y., Zhang, W., Chen, Y.: A food dish image generation
framework based on progressive growing GANs. In: Wang, X., Gao, H., Iqbal, M.,
Min, G. (eds.) CollaborateCom 2019. LNICST, vol. 292, pp. 323–333. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30146-0 22

https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.alexa.com/topsites
http://www.w3school.com.cn/jsref/index.asp
https://doi.org/10.1155/2017/5360472
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1511.06434
https://doi.org/10.1007/978-3-030-30146-0_22

VISH: Does Your Smart Home Dialogue
System Also Need Training Data?

Mahda Noura(B) , Sebastian Heil , and Martin Gaedke

Technische Universität Chemnitz, Chemnitz, Germany
{mahda.noura,sebastian.heil,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. The main objective of smart homes is to improve the quality
of life and comfort of their inhabitants through automation systems and
ambient intelligence. Voice-based interaction like dialogue systems is the
current emerging trend in these systems. Natural Language Understand-
ing (NLU) model can identify the end-users’ intentions in the utterances
provided to spoken dialogue systems. The utility of dialogue systems is
reliant on the quality of NLU models, which is in turn significantly depen-
dent on the availability of a high-quality and sufficiently large corpus
for training, containing diverse utterance structures. However, building
such corpora is a complex task even for companies possessing significant
human and infrastructure resources. On the other hand, the existing
corpora for the smart home domain are either concerned with web ser-
vices, focus on direct goals only, follow static command structure, or
are not publicly available in English language which limits the develop-
ment of goal-oriented dialogue systems for smart homes. In this paper,
we propose a generic method to create training data for the NLU com-
ponent using a generative grammar-based approach. Our method out-
puts, Voice Interaction in Smart Home (VISH) dataset consisting of five
million unique utterances for the smart home. This dataset can greatly
facilitate research in the area of voice-based dialogue systems for smart
homes. We evaluate the approach by using VISH to train several state-of-
the-art NLU models. Our experiment results demonstrate the capability
of the corpus to support the development of goal-oriented voice-based
dialogue systems in the context of smart homes.

Keywords: Smart home · Internet of Things · Web of Things ·
Goal-oriented interfaces · Training data generation · Dataset

1 Introduction

One of the main challenges of smart home is to enable end-users to control their
smart devices to fulfill complex tasks, known as End-User Development (EUD)
[2]. To reach this objective, it is vital that users can easily control how to use
their smart objects (i.e., sense data from sensors and affect the physical envi-
ronment) and how to combine the behavior of different objects to reach their

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 171–187, 2020.
https://doi.org/10.1007/978-3-030-50578-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_13&domain=pdf
http://orcid.org/0000-0002-5105-2463
http://orcid.org/0000-0003-2761-9009
http://orcid.org/0000-0002-6729-2912
https://doi.org/10.1007/978-3-030-50578-3_13

172 M. Noura et al.

desired goal. One popular way of realizing such scenarios are graphical user inter-
faces which enable users to define relations between sensor events and actuator
actions in a graphical way e.g., IFTTT1 or Node-Red2. However, with the rise
of modern voice-based user interfaces such as Amazon Echo and Google Home,
new interaction mechanisms are becoming popular to make EUD approaches
for smart environments more natural [11]. Moreover, goal-oriented interfaces for
IoT provide an end-user-friendly mechanism by enabling the end-users to model
their smart environments based on the desired goals (effects) rather than the
concrete operations of the devices [5,10,12,15,17]: end-users specify a coarse-
grained goal without providing a concrete way how to achieve it. For instance,
end-users need to only state «it’s too warm here», or «the noise is irritating
me» instead of having to provide a solution like «turn on the air conditioner» or
«reduce the volume».

Goal-based natural language (NL) spoken dialogue systems receive spoken
language goal-related utterances from users as input, analyze their meaning to
identify the user goal and extract named entities using Natural Language Under-
standing (NLU) components, and finally derive and execute a suitable solution,
which may result in a set of actions on smart devices [15]. However, to ensure
understanding of the meaning of the utterances and provide a good user experi-
ence, the NLU model requires a high-quality and sufficiently large training cor-
pus with diverse utterance structures. The common process for developing such a
dataset involves (1) recording sample utterances from users, (2) transcribing the
utterances to text, (3) creating a training dataset by labelling the transcribed
utterances and (4) training the NLU models on this dataset to extract and clas-
sify the required information. The recording, transcription and labelling causes
a high level of human effort to achieve sufficient quality necessary for usable NL
models, especially when the dataset grows in size due to the recording of many
utterances by diverse speakers, data cleansing, transcribing each unique utter-
ances, and labelling utterances with various entities, for each unique utterance.
Moreover, manual/automatic transcription is error-prone due to the inclusion
of foreign words, multiple users speaking at the same time, background noise
or music. Labelling the utterances has the risk of subjective influences and dif-
ferent interpretations which could result in different sets of label for the same
utterance.

The literature for gathering training data is based on live users in produc-
tion (e.g., Amazon Alexa, Google Home), crowdsourcing [4,19], or performing
controlled experiment with users in a smart home [7,18,22]. State of the art
corpora for smart homes are either concerned mostly with invoking web services
rather than physical devices, support only direct goals, follow fixed rules, or are
not publicly available in English language which limits the research development
of goal-oriented dialogue systems. In contrast, our work proposes an end-to-end
approach, starting from sample utterance collection from users, mechanisms to
enrich the dataset, generation of the final corpus called VISH (Voice-Interaction

1 https://ifttt.com/.
2 https://nodered.org/.

https://ifttt.com/
https://nodered.org/

VISH: Does Your Smart Home Dialogue System Also Need Training Data? 173

for Smart Home), and is evaluated by training different state-of-the-art NLU
models on the corpus. The results of this paper include the following contribu-
tions: (1) we present a systematic method for generating a corpus for dialogue
systems using a generative-grammar based technique in a way that advocates
reproducibility to create such a corpus, (2) public release of the VISH corpus in
English language useful for several tasks such as automatic mapping of spoken
utterances to configurations for Alexa’s voice interface, Web of Things (WoT)
composition using AI planning approaches, automated evaluation of spoken dia-
logue systems, pre-routing/pre-filtering step for specific processing units, and (3)
demonstration of the usefulness of the corpus on different NLU models.

The rest of the paper is structured as follows. Section 2 discusses user goals
in goal-oriented interfaces. After we present the proposed end-to-end method
in Sect. 3 the procedure for creating the training corpus is presented in Sect. 4.
Section 5 details the set of experiments performed and the results obtained from
testing the corpus on different NLU models. In Sect. 6, the related work for
existing smart home corpora is presented. Finally, Sect. 7 concludes the paper
and provides future insights.

2 User Goals in Smart Homes

In this section, we first define the different user goals in a smart home setting
and then present a conceptual model for goal-oriented interfaces for the Web of
Things (WoT) domain which serves as the foundation of our work. Smart home
user goals can be broadly divided into:

1. Direct goals, which is also referred to as procedural goals [8] specify a set of
procedures that need to be performed for meeting the user’s requirement, that
is, how to satisfy the request. For example, remote device commands naming
a specific device like «I’d like to adjust the thermostat to 22 degrees» are
one type of direct goals. However, there are other direct goals which do not
explicitly specify a target device like «clean the bedroom». Most direct goals
are imperative, which means the actions, desired states and, related objects
are present in user’s utterances.

2. Indirect goals, which is also called declarative goals [8], an often-overlooked
type of smart home interaction, best exemplified by «it’s too hot here» spec-
ify the desired environment state that the user wants to achieve. In this kind
of goals, users are interested in providing the overall effect rather than think-
ing in terms of individual devices/services. In this case, the dialogue system
needs to infer the speaker’s desired environmental change – a parameter and
a change type– and decide which devices/services can satisfy the goal. For
instance, the real intention of the above-mentioned goal is equivalent to the
direct goal «turn on the air conditioner» or «open the window».

Goals are verbally expressed by users through utterances: natural language
phrases that may form complete sentences or fragments of a sentence, that call
for a state change in the physical environment. In the following, we provide a
conceptual model for goal-oriented WoT interfaces.

174 M. Noura et al.

Definition 1 (Goal-oriented WoT Interfaces): A Goal-oriented WoT
domain is defined as 5-tuple GWoT = 〈S, so, A, s∗, γ〉, where:
S = {s1, s2, . . . , sn} is a finite set of states including the initial state so and the
goal state s∗. Each state is represented by a finite non-empty set of parame-
ters Pars = {p1, p2, . . . , pk} expressing the facts known about this state. Each
parameter pi ∈ Pars has a finite domain of V pi . The parameters can be for
instance brightness, noise, temperature.
A is the set of actions that link to the different operations of physical devices. An
action a ∈A defines its functionality as 2-tuples: a = (effects(a), actuations(a)),
where: effects(a) = (pi, t, v) of action a on parameter pi ∈ Pars can be of the
following types t:

– increase or decrease, for increasing or decreasing pi (e.g., increase brightness)
– toggle, for switching between the possible values of pi (e.g., from on to off)
– assign, for assigning a constant value v to pi (e.g., set temperature to 22◦C)

The actuations(a) are a set of HTTP or MQTT requests that can be sent to the
physical devices that invokes the operations on the devices. γ : S ×A → S is the
transition function between the states associated with actions from A performed
on devices.

3 End-to-End Method

Our solution is designed for dialogue systems based on goal-oriented interfaces
that call for a state change in the physical environment (e.g., «it’s freaking cold
in the bedroom» or «turn the heating on») rather than informational goals (e.g.,
«where is my vacuum cleaner?») or conditional commands (e.g., «when I’m away
turn on the security system»). Accordingly, the dialogue system can be seen as
an interface for end-users’ actuating WoT devices.

Figure 1 depicts the engineering process that we propose for supporting EUD
for WoT. The main steps are as follows:

1. Describe the WoT environments in an interoperable format using W3C Web
of Things Description (TD) Model3. The semantic ontology should provide
knowledge of the effects of each device action on the environment.

2. Automatically generate a running REST API of the modelled WoT devices
using an API Generator [14,16].

3. Search repositories for existing implementations for WoT devices or if they
don’t exist develop them.

4. Derive the user goal and extract custom named entities from the incoming
request by the NLU component of the dialogue system Web service REST
API, for which the presented training dataset is being generated. The API
endpoint invokes an AI planner with the extracted named entities and clas-
sified intent (as JSON).

3 https://www.w3.org/2019/wot/td.

https://www.w3.org/2019/wot/td

VISH: Does Your Smart Home Dialogue System Also Need Training Data? 175

5. Apply a planning technique to dynamically generate plans at runtime con-
sidering user goals, current state of the environment and the available WoT
devices [13].

6. The corresponding plan will then result in invoking the set of WoT devices
which consume RESTful and MQTT interfaces.

Describe IoT
Devices using

WoT TD

REST
API

WoT Instance

WoT
TD

API
Generation AI Planner

NLU Dataset

Fig. 1. The process for supporting EUD.

4 Voice Interaction Smart Home (VISH) Dataset

In this section we present the holistic approach that is employed for creating
the training dataset for the development of voice-based goal-oriented dialogue
systems in the smart home domain. Figure 2 illustrates an overview of the dataset
creation workflow as BPMN diagram. There are two actors involved in this
process:

– Natural language engineer is the actor who is in charge of collecting the
utterance patterns and describing them through a formal language to support
the dataset creation.

– VISH Toolchain is a system role representing our toolchain for supporting the
NL engineer by automatically generating utterances based on the generative
grammar.

The process consists of seven main steps which is described in the following in
sequential order.

Step 1. Sample User Utterance Collection: As a first step, it is necessary
to identify the different ways that end-users issue commands to their smart
home dialogue systems. To realize this, we administered two different online
questionnaires motivated from the study in [6] containing two scenario settings
(1) unmediated and (2) mediated.

In the unmediated scenario setting the participants were not provided with
any assistance and were told to imagine they have a smart home agent to which
they can give arbitrary voice commands to control their houses. They were given
the option to either write their commands as text or speak to the microphone
by providing as many unique utterances they would trigger in their smart home.

176 M. Noura et al.

V
IS

H
 D

at
as

et
 C

re
at

io
n

N
at

ur
al

 L
an

gu
ag

e
E

ng
in

ee
r

V
IS

H

T
oo

lc
ha

in

T
ra

in
in

g

Labelling

Utterance
Generation

Goal
Grouping

Pattern Identification
& Enrichment

2 5

6

3

Labelled
Grammar

User
Utterances

Utterance
Groups

VISH Grammar

Grammar
Specification

4

Patterns

VISH Dataset

Goal
Collection

1

NLU
Training

7

Trained
NLU Model

Fig. 2. The process for creating VISH corpus.

In the mediated scenario4 setting, the participants were presented with a
hypothetical smart home scenario describing some samples of instructions to an
AI personal assistant. In addition, to simulate the capabilities of their imaginary
smart home, a list of sample IoT sensors and actuators was provided as inspira-
tion. The reason for this guidance was to allow the users to explore the devices
themselves as they would do with a real deployed system over a long period of
time. The participants were provided with additional time to look over the list
of device capabilities before they could proceed. Next, we told participants that
their AI personal assistant wants to assist them by automating their home on
their behalf. We asked them to provide at least five different commands or goals
starting with, «OK, Charlie . . . » that they want their personal assistant to do
without restricting them to the given devices.

These two questionnaires were administered three months apart and with dif-
ferent target groups. The unmediated scenario was conducted with international
users while most respondents of the mediated scenario were students within Ger-
many. Table 1 shows the number of responses that were received in each setting.
A total of 823 goals were collected which includes 596 goals from 56 partici-
pants in the unmediated scenario setting and 227 goals from 45 participants in
the mediated setting. One notable aspect we observed from the result of this
experiment was that even our brief descriptions in the mediated setting resulted
in receiving commands and goals that were more diverse in terms of semantic
structure compared to the first questionnaire.

4 https://bildungsportal.sachsen.de/umfragen/limesurvey/index.php/777955.

https://bildungsportal.sachsen.de/umfragen/limesurvey/index.php/777955

VISH: Does Your Smart Home Dialogue System Also Need Training Data? 177

Table 1. Overview of questionnaire responses

Method Number of users Direct goals Indirect goals

Mediated 45 453 243
Unmediated 56 110 117

Step 2. Utterance grouping. The initially collected utterances from end-
users need to be analyzed to identify a set of patterns. The requests were grouped
into different categories to form utterance groups. These groupings are derived
based on similar grammatical structures, parameters and effect types.

Step 3. Pattern identification and enrichment. After the utterances
have been grouped, for each group the words or phrases that represent constant
or variable information were identified to form the patterns. These information
serves as placeholders that are used to dynamically generate diverse utterances.
For example, in the utterances «open the shades in the bedroom», the place-
holders are highlighted in bold and refer to an action, awning device, and a
location respectively.

Up to this step, a comparatively small corpus following low variability in
syntactic structures and vocabulary can be created. However, the quality of
interaction between the end-user and the dialogue system is highly dependent on
a diversified dataset. Therefore, to further enrich the dataset with more diverse
utterances this step consists of three main sub-tasks:

– Utterance variation with placeholders: Users can express the same intent
to the dialogue system by providing a different number of placeholders and in
different order. Therefore, a suitable approach for increasing the number of
utterances in the training dataset is through consideration of all combinatorial
variations of placeholders without repetition. For each original pattern with a
given number of n placeholders, the maximum number of pattern variations
resulting from this is:

#variations ≤
n−1∑

i=0

n!
i!

(1)

– Replication with different placeholders values and synonyms: The
extended patterns from the previous phase consists of different placehold-
ers representing possible variables. A reasonable method for extending the
number of possible utterances is to utilize these patterns to create a rep-
resentative set of utterances covering different custom variable values and
replacing variables with their synonyms. Specifically, for some placeholders
in a pattern a gazetteer – a comprehensive list of representative values and
synonyms that are expected as input from the user – is used. This allows to
generate additional utterances by filling the placeholder with the values in
the gazetteer. For example, a placeholder representing devices is instantiated

178 M. Noura et al.

with values such as “tv”, “light bulb”,“window”. For a placeholder like media-
type the gazetteer lists synonyms like “track”, “tune”, “song”, or “single”. By
adding n placeholders with Xi unique values of placeholder pli, this method
allows to generate the following number of utterances:

#utterances =
n∏

i=1

Xi (2)

– Pattern paraphrasing: The previous iterations already cover the different
placeholders and corresponding values, the goal of this iteration is to increase
the diversity of the utterance structures. In reality, users can use different
expressions to refer to the same goal. For example, for the goal «open the
shades», all the following utterance could be used to express the same seman-
tic content:

• Make the shades open
• Could you wind up the blinds for me
• The blinds are too low
• I need some lights from the shades

Having this aspect in mind we create additional patterns by paraphrasing
the existing patterns to create new training instances that are alternative
functionality-relevant utterances. Unlike replacing the parameters with their
equivalent synonyms, this step changes the syntactic structure of the utter-
ance.

Step 4. Grammar Specification. Each identified pattern is represented
using extended Backus Normal Form (eBNF) [1] rules that specify the grammat-
ical structure of utterances according to the patterns. All rules together form a
context-free grammar, called the VISH Grammar.

Definition 2 (VISH Grammar): The VISH Grammar G is a set of rules used
to generate a set of NL utterances defined as a 4-tuple G = 〈Vn, Vt, R, s〉 where:

– Vn is a finite set of non-terminal symbols representing placeholders in the
rules, (e.g., ‘DeviceOnOff’ or ‘Turn’ in Listing 1.1)

– Vt is a finite set of terminal symbols that appear in the utterance (e.g., ‘on’
or ‘off’ in Listing 1.1)

– R : Vn �→ (Vn ∪Vt)∗ is a finite set of rules mapping each non-terminal symbol
to a sequence of other non-terminal or terminal symbols. These production
rules are used to generate the utterances.

– s ∈ Vn is the starting symbol, a special non-terminal symbol that is the
starting point of grammar generation.

The VISH grammar defines a language L representing smart home utterances.
The following listing reports a sample of production rules in the VISH grammar.

VISH: Does Your Smart Home Dialogue System Also Need Training Data? 179

Listing 1.1. VISH Grammar Extract
<DeviceOn> : := <Intro >? (Act ivate | Turn On) <DeviceOnOff>
<DeviceOff> : := <Intro >? (Deact ivate | Turn Off) <DeviceOnOff>
<Intro> : := ’ I want to ’ | ’ could you ’ | ’ p l ease ’ | ’ he lp me’
<Turn> : := ’ turn ’ | ’ switch ’
<Activate> : := ’ ac t i va t e ’
<Deact ivate> : := ’ deact ivate ’
<On> : := ’ on ’
<Off> : := ’ o f f ’
<DeviceOnOff> : := ’ lamp ’ | ’ tv ’

With this grammar, we can build simple utterance like «could you activate
the tv» or it’s synonym form «turn on the tv». We believe this initial grammar
for utterance generation is expressive enough to represent most goals in the
smart home domain. The number of different goals in the smart home domain
is rather constrained when compared to general question answering systems or
general purpose dialogue systems. The current grammar consists of 259 rules
and 218 terminal symbols.

Step 5. Labelling for Classification and Extraction. Some utterances
contain smart-home-related information (entities) that needs to be extracted
such as device, action, value etc. To support the extraction of this information
the corresponding terminal symbols need to be labelled using Part Of Speech
(POS)-like tags. In the smart-home-related utterances generated by the VISH
grammar, the following concepts are supported for extraction:

– Device: Set the DEVICE:thermostat to 25 degrees
– Action: ACTION:Mix a smoothie for me
– Value: Change the colour of the hue to VALUE:blue
– Device state: Tell the robot to start STATE:cleaning
– Location: Turn the LOCATION:bedroom lights on
– Unit: Cook two UNIT:ounces of coffee
– Quantity: Brew QUANTITY:three tablespoons of tea

Some information that is not directly represented in the utterance as words
(non-terminal symbols in VISH grammar) can be identified through classification
requiring to further label the generated utterances with classes that correspond
to:

– physical parameters pi (temperature, humidity, brightness, air quality, noise,
pressure, gas and colour)

– effect types t (increase, decrease, toggle, assign)
– direct/indirect nature of goals

For instance, the utterance: «The sound is disturbing me » is labelled as
“PARAMETER:Noise EFFECT:Decrease GOAL:Indirect”

Step 6. Utterance Generation. In this step, the VISH toolchain is applied
to the grammar to automatically generate all the possible utterances with the
corresponding labels. The core of this step is a generator developed using the

180 M. Noura et al.

NLTK5 python library. The output of this step is the VISH dataset which consists
of around 5 million labelled utterances. Table 2 shows the different NLP-related
and smart-home-related characteristics of the VISH dataset.

Table 2. Characteristics of VISH dataset

Total Words: 33,618,437 Total Entities: 6,819,062

Total utterances: 4,743,745 Indirect Goals: 4,000,854

Unique words: 822 Direct Goals: 742,891

Entity Types: 7 Total Actions: 674,711

Effect Types: 4 Device Types: 305

Parameter Types: 8 Action Types: 130

Step 7. NLU Model. With the resulting VISH dataset, NLU models for
smart home interfaces can be trained as demonstrated in the Evaluation Section.

5 Evaluation

The main objective of this evaluation is to show the applicability of the generated
VISH dataset for training different general purpose NLU models to support
identification of direct/indirect goals, parameters and intended effects as well as
device, action, value extraction in the smart home context. This will enable the
construction of dialogue systems exceeding the limited pattern-based interactions
for smart home systems in subsequent work.

We first describe the evaluation procedure and the different NLU models that
were trained on the VISH dataset and then we showcase the results.

5.1 Procedure

In order to evaluate the VISH dataset we use the open source NL toolkit Rasa6

with different NLU models and configurations. The main motivation of using
different NLU models is to reduce the bias from this variable. In the following
we describe the steps of the evaluation process.

– Dataset preparation: Initially, the VISH training dataset was automati-
cally transformed to Rasa’s markdown syntax using the VISH toolchain. The
markdown structures the dataset into lists of utterances grouped by intents. In
natural language understanding, named entity recognition (NER) and intent
classification are commmonly used to analyze utterances [23]. NLU models
allow to identify the different required pieces of information in user utter-
ances and to assign them an entity type. We employ named entity recognition

5 https://www.nltk.org/.
6 https://rasa.com/.

https://www.nltk.org/
https://rasa.com/

VISH: Does Your Smart Home Dialogue System Also Need Training Data? 181

to perform the extraction of the seven types of smart-home-related entities
from utterances as described in Sect. 4 Step 5. On the other hand, intent clas-
sification allows to derive the intent from user-provided NL input, which is
required to identify corresponding actions [15]. For instance, the intent behind
the utterance «it’s too cold here» is to increase the temperature. Typically,
an utterance is assigned to one intent. For that reason, we map combina-
tions of the classification labels (cf. Sect. 4 step 5) on to intents for intent
classification. This forms in total 29 number of unique intents.

– Dataset division: A standard evaluation method in machine learning is
partitioning the training dataset into training and holdout sets. Accordingly
we separated the VISH training dataset, 80% was used to train the different
NLU models and 20% of the data is used for testing.

– Training the dataset using NLU models: We used different NLU models
in Rasa which differ in the way intent classification and NER is performed.
The NLU models that were used are namely supervised embeddings pretrained
embeddings convert and pretrained embeddings spacy. The supervised embed-
dings model trains the word embedding model from the VISH dataset itself
using a neural network. It utilizes Conditional Random Field (CRF) for NER,
and a 2-layer softmax intent classifier on StarSpace embeddings of the utter-
ances and intent labels. On the other hand, the ConveRT7 model provides
intent classification on a pre-trained sentence encoding embedding model,
but does not support NER. As an alternative model for NER, we therefore
employed the SpaCy8 entity extractor, which utilizes CRF and a statisti-
cal Begin, Intermediate, Last, Other, Unigram (BILOU) transition model on
pre-trained embeddings from GloVe and fastText. The training data from
the previous step is used to train these three NLU models. We additionally,
trained the NLU models using different number of epoch values to investigate
the impact of training time on quality.

– Tesing the NLU models: After the training process, a test was performed
using the holdout set on the trained NLU models to calculate the quality in
terms of accuracy, precision and F1-score for intent classification and named
entity extraction. The objective of this experiment is to show that the VISH
dataset enables training of different state-of-the-art NLU models and config-
urations for use in smart home scenarios.

5.2 Evaluation Results

To provide a measure for the quality of the generated dataset, in this section
we present the results obtained from testing the VISH dataset with the three
different NLU models described in the previous step for intent classification and
feature extraction.

Intent Classification. Table 3 provides an overview of the results of the NLU
models for intent classifiers using supervised embeddings and pretrained embed-
7 https://github.com/PolyAI-LDN/polyai-models#models.
8 https://spacy.io/.

https://github.com/PolyAI-LDN/polyai-models#models
https://spacy.io/

182 M. Noura et al.

dings ConveRT. The F1-score of the supervised model is slightly higher compared
to the pretrained ConveRt embeddings. With an increased number of epochs
used to train the supervised embeddings model, classification quality slightly
increases. However, it is feasible to use the VISH dataset even with smaller
numbers of epochs to reduce training effort. Overall, the results for precision,
recall and F1 of all models and configurations are very close to 1, demonstrating
the feasibility of intent classification for smart home utterances leveraging the
VISH dataset.

Table 3. Intent classification results

Intent Classifiers Mean
Supervised 100 Supervised 300 Supervised 500 ConveRT

P .9834 .9849 .9886 .9756 .9831
R .9834 .9849 .9886 .9756 .9831
F1 .9834 .9849 .9886 .9756 .9831
Precision P , Recall R and F1 score of intent classification using a 2-layer
softmax NN trained with 100, 300 and 500 epochs on custom embeddings
trained on VISH and on pretrained ConveRT embeddings (300 epochs)
respectively

Entity Extraction. Table 4 gives an overview of the results of the NLU models
using CRF and spaCy entity extraction techniques. The results show very com-
parable results for all models and entities, close to 1. Entity types with a greater
variety of possible values, such as Value, Device and Action, show slightly worse
results in the third and fourth digit only. The quality of entity extraction of both
NLU models is not distinguishable.

Table 4. Named entity extraction results

Entities Mean
State Quantity Value Location Device Unit Action

Custom P 1.0 1.0 .9980 1.0 .9999 1.0 .9998 .9997
R 1.0 1.0 .9999 1.0 .9998 1.0 .9995 .9999
F1 1.0 1.0 .9989 1.0 .9998 1.0 .9997 .9998

spaCy P 1.0 1.0 .9992 1.0 .9999 1.0 .9998 .9998
R 1.0 1.0 .9983 1.0 .9998 1.0 .9995 .9997
F1 1.0 1.0 .9988 1.0 .9998 1.0 .9996 .9998

Precision P , Recall R and F1 score of entity extraction using a CRF extractor
on custom embeddings and on pretrained spaCy embeddings

Conclusion. The above results indicate that the VISH dataset can be success-
fully used to train state-of-the-art NLU models for both intent classification and

VISH: Does Your Smart Home Dialogue System Also Need Training Data? 183

entity extraction of smart-home-related utterances. The resulting quality is inde-
pendent of the concrete NLU model or configuration used and the VISH dataset
can be used for classifier/extractor training only as well as for training custom
embedding models. The VISH dataset9 is publicly available.

6 Related Work

The development of smart home dialogue systems based on machine learning
algorithms requires a large corpus of labelled utterances to learn identifying the
user goal. Building such a corpus is a complex task requiring significant human
effort and infrastructure resources. Moreover, obtaining high quality user data
to construct an accurate model is not possible before the model is deployed. This
slows down research advances in the smart home domain. To tackle this problem,
a set of datasets are available in the literature for smart homes each with their
own benefits and limitations. Table 5 displays a qualitative comparison between
the selected datasets for smart home domain where the columns indicate the
features of the datasets. There are also some datasets collected in smart homes
focusing on sensor measurements, however since they cannot be used to develop
voice based dialogue systems we do not review them here.

The existing solutions use different approaches for the creation of datasets,
namely data collection from smart home users in production, controlled experi-
ments in the smart home, crowdsourcing and generative grammars.

Voice-based personal assistants like Google Home and Alexa collect train-
ing data from the users interaction with the system. Alexa assistant is based
on Alexa Meaning Representation Language [9], that aims to understand the
meaning of voice-based commands. For evaluating the performance of AMRL, a
manually labelled dataset containing 20k samples were used. However, the data
is not available publicly. IFTTT is an end-user programming paradigm designed
for web services and IoT devices following a trigger-action model. The different
recipes are developed by end-users and are also available on their website. How-
ever, IFTTT is not voice-based rather textual representation and the rules are
constructed according to fixed Event-Condition-Action (ECA) patterns which
limits diversity and flexibility. For this reason, only using IFTTT for training a
dialogue system for smart home is not suitable.

In the speech community different controlled experiments are performed in
the smart home using microphones to record datasets. For instance, the DIRHA
corpus [7] was developed in an apartment with 40 microphones where the utter-
ance of 24 native UK and US speakers were recorded. The recordings include
phonetically-rich sentences, read and spontaneous home automation commands,
keywords and conversational speech in four different languages. However, the
utterances in DIRHA corpus are not smart home related since their intention is
distant-speech recognition under background noise. The VocADom corpus and
it’s extension VocADom@A4H [18] corpus was recorded in Amiqual4Home smart
home equipped with 500 sensors and actuators using eleven French participants.
9 https://vsr.informatik.tu-chemnitz.de/projects/2019/growth/.

https://vsr.informatik.tu-chemnitz.de/projects/2019/growth/

184 M. Noura et al.

Table 5. Qualitative comparison between smart home datasets

Dataset Size L DG IG A Pr E De Ac Approach

Google Home NA en ✓ ✗ ✗ ✗ ✗ ✓ ✓ User
Alexa 20K en ✓ ✗ ✗ ✗ ✗ ✓ ✓ User
IFTTT NA en �� ✗ ✓ ✗ ✗ ✓ ✓ User, ECA rules
DIRHA 183 en ✗ ✗ �� ✗ ✗ ✗ ✗ Experiment
VocADom@4H 7K fr ✗ ✗ ✗ ✗ ✗ ✗ ✗ synthetic & Experiment
VoiceHome-2 1560 fr ✓ ✗ ✓ ✗ ✗ ✗ ✗ Experiment
Sweet-Home 1,5K fr �� ✗ �� ✗ ✗ ✗ ✗ Experiment
ATHENA 370 el �� ✗ ✗ ✗ ✗ ✗ ✗ Experiment
Genie 3M en ✓ ✗ ✓ ✗ ✗ ✓ ✓ Synthetic & crowdsourcing
Shilin et al 1 k ru ✓ �� ✓ �� ✗ ✗ ✓ Crowdsourcing

VISH 5M en ✓ ✓ ✓ ✓ ✓ ✓ ✓ User-derived generative grammar
L indicates ISO 639-1 language codes, DG, IG, A, Pr, E, D, Ac respectively stand for direct
goal, indirect goal, availability, parameter, effect, device and action, the symbols refer to:
✓ full-filled, ✗ not fulfilled, �� partially full-filled

The users were guided to interact with the smart home using voice commands
for about an hour. However, this dataset is in French and the recordings/tran-
scriptions cover conversations that are not directly related to controlling smart
home. Similarly, the VoiceHome-2 [3] corpus was recorded for distant speech
processing analysis in home. Sweet-Home [22] corpus is also a French dataset
which was recorded with a single user with a simple set of commands follow-
ing a strict grammar and it is not sufficient to cover a large set of intents with
syntactic and lexical variation. On the other hand, ATHENA [21] is a Greek
corpus collected using 20 participants that contains commands, keywords and
conversations. However, this dataset is in Greek and not publicly available.

Crowdsourcing is used as a popular approach for corpus collection using
anonymous contributors on platforms like Amazon Mechanical Turk. For exam-
ple, Shilin et al. [19], used crowdworkers and domain experts to create a dataset.
This work has some similarities to ours, in that in the first step sample com-
mands are collected from users, and considering device parameters in entity
extraction. In contrast, we consider extracting both device parameters (states)
and physical parameters (e.g., brightness, temperature, colour). They only seek
to collect a dataset with three levels of commands which is in a narrower focus
than ours. Rather, we focus on indirect goals on a wider scope. Although their
corpus is publicly accessible, it is in Russian language. The author of [20] also
used the help of crowd workers to create a relatively small dataset related to
smart home scenarios which is restricted to only static trigger-action patterns
in IFTTT. Campagna et al. [4] elaborate on Genie toolkit which is capable
of understanding compound commands provided to virtual assistants using a
semantic parser. To train their neural model, they collect a dataset using syn-
thesized data generated from NL-templates provided by developers which is then
paraphrased by crowdsourced workers to make them natural. Our approach is
similar to theirs in using synthesized data for training. However, the utterances in

VISH: Does Your Smart Home Dialogue System Also Need Training Data? 185

our case are created based on a generative-grammar based approach. Chatito10

and Chatette11 are tools which support generating NL datasets using a generic
Domain Specific Language (DSL). Our solution for generating the VISH dataset
is similar to Chatito in that we also generate all the possible utterances using
defined grammar. However, to generate a corpus for smart home the developer
needs to provide the grammar from scratch. In contrast, we provide the grammar
used to generate VISH dataset, which can be further extended to support new
goal structures.

7 Conclusion and Future Work

Goal-oriented natural language dialogue systems for smart homes can consider-
ably simplify and enhance end-users lives. However, creating such a system is
challenging due to the lack of labelled training data representing diverse utter-
ance structures. In this paper, we introduced a systematic method for generating
training data for smart home goal-oriented dialogue systems using a generative-
grammar-based technique. The method can also be used by engineers to get
training data for spoken dialogue systems in their own domains (e.g., smart
city, smart health, etc.). The resulting VISH dataset consists of about 5 mil-
lion labelled utterances and is publicly available (See footnote 9) for usage and
further research. The dataset was evaluated by training three different NLU
models. All models used performed with high quality on the VISH dataset for
NLP tasks like intent classification and named entity recognition. In addition,
we trained the NLU models in different configurations and reported on qual-
ity impact. The results suggest that the VISH dataset can be used to support
goal-oriented dialogue system for smart homes. In the future, we plan to test
the dataset in interactive sessions with goals received from end-users in a live
setting. In addition we plan to integrate our custom NLU pipeline trained on the
VISH dataset with our existing goal-based planning for smart home composition
solution, GrOWTH.

References

1. International Organization for Standardization/International Electrotechnical
Commission 14977:1996 information technology-syntactic meta-language-extended
BNF. In: Standard. International Organization for Standardization, Geneva, CH
(1996). http://standards.iso.org/ittf/PubliclyAvailableStandards/

2. Barricelli, B.R., Valtolina, S.: Designing for end-user development in the Internet
of Things. In: Díaz, P., Pipek, V., Ardito, C., Jensen, C., Aedo, I., Boden, A. (eds.)
IS-EUD 2015. LNCS, vol. 9083, pp. 9–24. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-18425-8_2

3. Bertin, N., et al.: Voicehome-2, an extended corpus for multichannel speech pro-
cessing in real homes. Speech Commun. 106, 68–78 (2019)

10 https://github.com/rodrigopivi/Chatito.
11 https://github.com/SimGus/Chatette.

http://standards.iso.org/ittf/PubliclyAvailableStandards/
https://doi.org/10.1007/978-3-319-18425-8_2
https://doi.org/10.1007/978-3-319-18425-8_2
https://github.com/rodrigopivi/Chatito
https://github.com/SimGus/Chatette

186 M. Noura et al.

4. Campagna, G., Xu, S., Moradshahi, M., Socher, R., Lam, M.S.: Genie: a generator
of natural language semantic parsers for virtual assistant commands. In: Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 394–410. ACM (2019)

5. Catania, V., Delfa, G.C.L., Monteleone, S., Patti, D., Ventura, D., Torre, G.L.:
Goose: goal oriented orchestration for smart environments. Int. J. Ad Hoc Ubiquit.
Comput. 32(3), 159–170 (2019)

6. Clark, M., Newman, M.W., Dutta, P.: Devices and data and agents, oh my: how
smart home abstractions prime end-user mental models. Proc. ACM Interact. Mob.
Wearable Ubiquit. Technol. 1(3), 44 (2017)

7. Cristoforetti, L., et al.: The DIRHA simulated corpus. In: LREC, pp. 2629–2634
(2014)

8. Georgievski, I., Aiello, M.: Automated planning for ubiquitous computing. ACM
Comput. Surv. (CSUR) 49(4), 1–46 (2016)

9. Kollar, T., et al.: The alexa meaning representation language. In: Proceedings of
the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Vol. 3 (Industry Papers),
pp. 177–184 (2018)

10. Li, T.J.-J., Labutov, I., Myers, B.A., Azaria, A., Rudnicky, A.I., Mitchell, T.M.:
Teaching agents when they fail: end user development in goal-oriented conversa-
tional agents. In: Moore, R.J., Szymanski, M.H., Arar, R., Ren, G.-J. (eds.) Studies
in Conversational UX Design. HIS, pp. 119–137. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-95579-7_6

11. Luger, E., Sellen, A.: “Like Having a Really Bad PA” the gulf between user expec-
tation and experience of conversational agents. In: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, pp. 5286–5297 (2016)

12. Mayer, S., Verborgh, R., Kovatsch, M., Mattern, F.: Smart configuration of smart
environments. IEEE Trans. Autom. Sci. Eng. 13(3), 1247–1255 (2016)

13. Noura, M., Gaedke, M.: An automated cyclic planning framework based on plan-
do-check-act for web of things composition. In: Proceedings of the 10th ACM
Conference on Web Science, pp. 205–214 (2019)

14. Noura, M., Gaedke, M.: WoTDL: Web of things description language for auto-
matic composition. In: 2019 IEEE/WIC/ACM International Conference on Web
Intelligence (WI), pp. 413–417. IEEE (2019)

15. Noura, M., Heil, S., Gaedke, M.: GrOWTH: goal-oriented end user development for
web of things devices. In: Mikkonen, T., Klamma, R., Hernández, J. (eds.) ICWE
2018. LNCS, vol. 10845, pp. 358–365. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91662-0_29

16. Noura, M., Heil, S., Gaedke, M.: Webifying heterogenous Internet of Things
devices. In: Bakaev, M., Frasincar, F., Ko, I.-Y. (eds.) ICWE 2019. LNCS, vol.
11496, pp. 509–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19274-7_36

17. Palanca, J., Val, E., Garcia-Fornes, A., Billhardt, H., Corchado, J.M., Julián, V.:
Designing a goal-oriented smart-home environment. Inf. Syst. Front. 20(1), 125–
142 (2016). https://doi.org/10.1007/s10796-016-9670-x

https://doi.org/10.1007/978-3-319-95579-7_6
https://doi.org/10.1007/978-3-319-95579-7_6
https://doi.org/10.1007/978-3-319-91662-0_29
https://doi.org/10.1007/978-3-319-91662-0_29
https://doi.org/10.1007/978-3-030-19274-7_36
https://doi.org/10.1007/978-3-030-19274-7_36
https://doi.org/10.1007/s10796-016-9670-x

VISH: Does Your Smart Home Dialogue System Also Need Training Data? 187

18. Portet, F., et al.: Context-aware voice-based interaction in smart home-vocadom@
a4h corpus collection and empirical assessment of its usefulness. In: 2019 IEEE
Intl Conference on Dependable, Autonomic and Secure Computing, International
Conference on Pervasive Intelligence and Computing, International Conference
on Cloud and Big Data Computing, International Conference on Cyber Science
and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pp. 811–818.
IEEE (2019)

19. Shilin, I., Kovriguina, L., Mouromtsev, D., Wohlgenannt, G., Ivanitskiy, R.: A
method for dataset creation for dialogue state classification in voice control systems
for the Internet of Things. In: R. Piotrowski’s Readings in Language Engineering
and Applied Linguistics, pp. 96–106 (2018)

20. Tahir, A.: Smart home scenarios (2019). https://doi.org/10.6084/m9.figshare.
8327096.v1

21. Tsiami, A., Rodomagoulakis, I., Giannoulis, P., Katsamanis, A., Potamianos, G.,
Maragos, P.: Athena: a Greek multi-sensory database for home automation control
uthor: isidoros rodomagoulakis (ntua, greece). In: INTERSPEECH (2014)

22. Vacher, M., Lecouteux, B., Chahuara, P., Portet, F., Meillon, B., Bonnefond, N.:
The sweet-home speech and multimodal corpus for home automation interaction
(2014)

23. Wang, X., Yuan, C.: Recent advances on human-computer dialogue. CAAI Trans.
Intell. Technol. 1(4), 303–312 (2016)

https://doi.org/10.6084/m9.figshare.8327096.v1
https://doi.org/10.6084/m9.figshare.8327096.v1

Neighborhood Aggregation Embedding
Model for Link Prediction in Knowledge

Graphs

Changjian Wang1,2 and Ying Sha3,4(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
wangchangjian@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 College of Informatics, Huazhong Agricultural University, Wuhan, China
shaying@mail.hzau.edu.cn

4 Hubei Engineering Technology Research Center of Agricultural Big Data,
Wuhan, China

Abstract. Link prediction has become a hot topic of knowledge graphs
(KGs) in recent years. It aims at predicting missing links between enti-
ties to complement KGs. The most successful methods for this problem
are embedding-based. Most previous works only consider the triples to
learn the embeddings of entities and relations, so the information they
can utilize is limited. However, KGs are graph-structured data, we can
use the neighborhood information to improve the quality of embeddings,
thus improving the performance of link prediction task. In this paper,
we propose NAE (neighborhood aggregation embedding model), a novel
approach for link prediction. NAE consists of an aggregator and a predic-
tor. The aggregator aggregates the embeddings of multi-order neighbors
with different weights to generate a new embedding for each entity. Fur-
ther analysis shows that the performance of some existing methods such
as TransE and DistMult can be improved by integrating our aggregators.
The predictor predicts the probability distributions of target entities. It
uses convolutional neural network (CNN) to capture more interactions
between the new entity embeddings and the relation embeddings. We
also propose a highly parameter efficient model NAE-S by simplifying the
predictor, which can obtain competitive performance with fewer param-
eters. Compared with DistMult, NAE-S achieves the same performance
with 16x fewer parameters. Experimental results show that our method
outperforms several state-of-the-art methods on benchmark datasets.

Keywords: Knowledge graph embedding · Link prediction · Semantic
web · Graph neural networks

1 Introduction

Knowledge graphs (KGs) such as YAGO [26], Freebase [1], NELL [4], and DBpe-
dia [15] are collections of real-world facts. Each fact that represents a relation r

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 188–203, 2020.
https://doi.org/10.1007/978-3-030-50578-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_14

Neighborhood Aggregation Embedding Model for Link Prediction in KGs 189

[0.2, 0.5, 0.6, 0.9] [0.9, 0.4, 0.8, 0.2]

[0.3, 0.6, 0.2, 0.7]

A

C

D

E

B

father

[0.4, 0.1, 0.6, 0.8]

[0.8, 0.6, 0.4, 0.9]

father

mother mother

sister sister

Fig. 1. A example of KG in the form of a graph. We randomly assign an embedding
vector to each entity and generate new embedding vectors for A and B by simply aggre-
gating their first-order neighbors (i.e., A = (A+ C + D+ E)/4, B = (B + C + D+ E)/4).
The cosine similarity between A and B is improved (from 0.67 to 0.97).

between a head entity h and a tail entity t is usually denoted as a triple 〈h, r, t〉.
KGs are useful resources in various applications such as question answering [9],
information extraction [5], recommendation [30], etc. However, these applica-
tions are vulnerable to the incompleteness of KGs, i.e., missing links between
entities. Therefore, many works are devoted to solving this problem called link
prediction or knowledge base completion.

In recent years, many embedding-based models have been proposed to solve
link prediction and obtained state-of-the-art performance. In these models, enti-
ties and relations are represented as vectors or matrices. By simple operations
like addition [2,16,31] or multiplication [21,28,33], the representations of entity
and relation in a triple constitute a scoring function. The object of these models is
to optimize this scoring function so that it scores valid triples higher than invalid
triples. For example, the scoring function of TransE [2] is −‖h+r−t‖1/2, where
h, r, t are the vector representations of head entities, relations and tail entities
respectively. For link prediction, we can get the most plausible triples by sorting
the scores of all candidate triples. Instead of using simple operations, ConvE [7]
and ConvKB [19] use convolutional neural networks (CNNs) to construct the
scoring functions, which makes their models more expressive. However, most of
these methods only consider the triples individually, so the information they use
to learn the embeddings is limited.

In fact, if we treat the entities as nodes and the triples as edges, KG is natu-
rally graph-structured. We can utilize the graph structure information of KGs,
not just triples, to improve the quality of entity embeddings. One of the most
important information in graph-structured data is the neighborhood informa-
tion. Nodes with same neighbors usually have some similarities (e.g., A and B in
Fig. 1). If we make similar nodes get similar embedding representations, it will be
helpful for link prediction task (e.g., if we know that A’s embedding is similar to

190 C. Wang and Y. Sha

B’s and 〈A, bornIn, F 〉 is a fact, there is a high possibility that embedding-based
models predict 〈B, bornIn, F 〉 is also a fact).

As a powerful method for processing graph-structured data, graph neural net-
works (GNNs) [3,6,10,14,29] have received extensive attention in recent years.
GNN is a kind of model which generates the representation of a node by iter-
atively aggregating the representations of its neighbors. Inspired by GNNs, we
find we can make the embeddings of similar entities more similar by simply
aggregating the embeddings of their neighbors. As is shown in Fig. 1, the cosine
similarity of A and B is improved after neighborhood aggregation even without
training. Based on this observation, we construct our aggregator. The aggregator
can only coarsely improve the quality of entity embeddings, and we also need a
predictor to optimize this entity embeddings along with the relation embeddings.
Similar to [19], in the predictor, we use 1D CNN instead of simple operations to
capture more interactions between entity embeddings and relation embeddings
for link prediction task.

More specifically, in this paper, we propose a novel model NAE (neighborhood
aggregation embedding model) for link prediction in KGs. Figure 2 shows the
architecture of NAE. NAE consists of two parts, an aggregator and a predictor.
In order to utilize the information of neighbor entities, we first convert KG into
a graph. The aggregator aggregates the embeddings of multi-order neighbors for
each entity. We use random walks to distinguish the importance of one entity’s
neighbors, which is determined by the transition probability from this entity
to its neighbor in a Markov chain. After the aggregator, each entity will have
a new embedding. For each triple, the predictor using the new embedding of
entity and the embedding of relation to predict the probability distribution of
the target entity. We use CNN to construct the predictor, which consists of a
convolution layer, a projection layer, and a softmax layer. We also propose a
simplified version of NAE called NAE-S. NAE-S simplifies the predictor of NAE
by restricting the number of filters to 1 and replacing the projection matrix
with the entity embedding matrix. We evaluate our method on four benchmark
datasets: WN18 [2], FB15k [2], WN18RR [7], and FB15k-237 [27]. Experimental
results show that our NAE model outperforms several state-of-the-art models
and our NAE-S model achieves competitive performance with fewer parameters.

In summary, our contributions are as follows:

– We propose a novel model for link prediction called NAE. The aggregator of
NAE imporves the quality of entity embeddings by aggregating the neighbor-
hood information in KGs. The predictor of NAE captures more interactions
between entity embeddings and relation embeddings by CNN.

– The aggregator part of our method can easily extend to other existing meth-
ods and improve their performance without introducing additional parame-
ters. This makes it possible for our aggregator to be a component of other
link prediction methods.

– We also propose a parameter efficient model NAE-S, which simplifies the
predictor part of NAE. Compared with ConvE and DistMult [33], NAE-S is
2x parameter efficient than ConvE and 16x than DistMult.

Neighborhood Aggregation Embedding Model for Link Prediction in KGs 191

2 Related Work

In recent years, the most successful methods for link prediction are embedding-
based. There are mainly three categories of these models, including translational
models, bilinear models, and neural network-based models.

As a representative of translational models, TransE [2] represents entities
and relations as vectors in the same space and the relations are interpreted as
translations operating between entities. TransH [31] is an extension of TransE,
which projects entity vectors into relation-specific hyperplanes by projection
vectors. Similar to TransH, TransR [16] projects entity vectors into relation-
specific spaces by projection matrices. TransD [11] simplifies TransR by using
the product of two vectors to construct the projection matrix. Using the same
principle as TransE, TorusE [8] embeds entities and relations on a torus to solve
the regularization problem.

Different from translational models, bilinear models represent relations as
matrices and combine two entity vectors by multiplication. RESCAL [21] is
the most generalized bilinear model where each relation matrix is a full matrix.
DistMult [33] simplifies RESCAL by restricting the relation matrices to diagonal
matrices to decrease the number of parameters. Since DistMult can only deal
with symmetric relations, ComplEx [28] extends DistMult by using complex
numbers instead of real numbers to better model asymmetric relations. SimplE
[12] is a simple interpretable fully expressive bilinear model that addresses the
independence among the two embedding vectors of the entities.

Translational models and bilinear models have fewer parameters, less com-
putational cost and are easy to extend to large knowledge graphs. However, they
are less expressive than neural network-based models. NTN [25] has a standard
linear neural network architecture, which combines two entity embeddings by a
relation-specific tensor and gets the score by a nonlinear hidden layer and a linear
output layer. One problem of NTN is that it requires a large number of param-
eters, and a convolutional neural network-based model may be a better choice
since its parameter efficiency. ConvE [7] and ConvKB [19] are two models which
utilize the convolutional neural network for link prediction. ConvE applies 2D
convolution over a matrix which is constructed by reshaping the embeddings of
head entity and relation. The feature maps generated by convolution are vector-
ized and then matched with all candidate tail embeddings through a projection
layer and an inner product layer. ConvKB applies 1D convolution over a matrix
constructed by the triple. The vectorized feature maps are computed with a
weight vector via a dot product to give a score for the triple.

In addition to previous works which only consider the triples, there are some
works which are similar to ours to capture more information using the graph
structure of KGs. TransE-NMM [20] constructs neighbor-based vector represen-
tations for entities and applies it on TransE. However, they only consider the
first-order neighbors and their TransE-based model is less expressive than our
CNN-based model. R-GCN [23] and SACN [24] are two end-to-end models where
the encoders are extensions of GCN and the decoders are based on existing mod-
els. They require multiple iterations and multiple layer-specific weight matrices

192 C. Wang and Y. Sha

that need training to aggregate high-order neighborhood information, while we
only need a transition matrix without training. Another difference is that they
learn the scoring function of the triples, while we directly learn the probability
distributions of target entities.

softmax

relation

a

b

s
c
d

r

embedding
matrix

entity
s

dc

a

b

Aggregator

s r

Predictor

filters

feature
maps

concat

relu &
dropout

. . .

W

P(T|s, r)

. . .

0.01

0.02

0.90

0.03

0.01

P(T=o|s, r)

Fig. 2. NAE architecture. Take the triple 〈s, r, o〉 as an example. The aggregator gener-
ates a new embedding for s by aggregating the embeddings of its multi-order neighbors.
The predictor constructed by CNN utilizes the new embedding of s and the embedding
of r to predict the probability distribution of the target entity.

3 Background

3.1 Problem Definition

A knowledge graph K = {〈h, r, t〉} ⊆ E × R × E is a collection of valid triples,
where E and R are the sets of entities and relations respectively. Each triple
〈h, r, t〉 is a fact in the real-world, indicating that there is a relation r between a
head entity h and a tail entity t.

Link prediction typically refers to the task that predicts the head or the tail
entity given a relation and another entity, i.e., predicting t given h and r (〈h, r, ?〉)
or predicting h given r and t (〈?, r, t〉). For example, 〈Washington, capitalOf, ?〉
means to predict which country’s capital is Washington, and 〈?, capitalOf, USA〉
means to predict which city is the capital of the USA. Note that by adding the
inverse relation set R−1 to R, 〈h, r, t〉 can also be represented as 〈t, r−1, h〉,
so these two tasks can be transformed into one task, i.e., 〈S,R, ?〉 where S
and R denote h and r or t and r−1. Instead of learning the scoring function
which consists of the representations of head entities, tail entities, and relations,
we directly learn the conditional probability distribution of the target entity
P (T |S,R) given S and R. An entity with a higher probability is more likely to
be the target entity which we want to predict.

Neighborhood Aggregation Embedding Model for Link Prediction in KGs 193

3.2 Graph Neural Networks

The main idea of GNNs is to use node features to learn the representations of
nodes from the graph structure. Most GNNs can be described as neighborhood
aggregation models which iteratively update the representation of a node by
aggregating representations of its neighbors [32]. Formally, the general form of
GNNs is:

hk
N (v) = AGGREGATEk

({
hk−1
u ,∀u ∈ N (v)

})

hk
v = σ

(
Wk · COMBINEk

(
hk−1
v , hk

N (v)

))
,

(1)

where N (v) is the set of first-order neighbors of node v, hk
v is the feature vector

of node v at the k-th layer, Wk is a layer-specific trainable weight matrix. σ (·)
is an activation function, AGGREGATE is an aggregator function such as mean
and pooling, and COMBINE combines the representations of the node itself and
its neighbors. AGGREGATE and COMBINE are defined by specific models.

The representations of nodes at last layer will be used for specific tasks.
For node classification, one of the most widely used applications of GNNs, the
probability distribution of node’s class is:

P = softmax
(
Wlhl

v

)
. (2)

Our approach generally follows this form, except for several differences: we
do not need the initial features of entities; we learn an entity embedding matrix
rather than multiple layer-specific weight matrices; our aggregator function is not
iterative; our predictor is based on CNN, which combines relation information
to predict the probability distribution of the target entity.

4 Methodology

In this section, we will describe the two parts of our method, including an aggre-
gator and a predictor. The purpose of the aggregator is to obtain the new embed-
ding of each entity. These new embeddings will be used in our predictor for link
prediction task.

We first convert the triples into a graph G = (V,E) where V is the set of
nodes and E is the set of edges. We treat entities as nodes. If there is any relation
between two entities, there is an edge between the two nodes.

4.1 Aggregator

The role of the aggregator is to generate a new embedding for each entity based
on the embeddings of its neighbors. The general form of our aggregator is:

ni = σ

⎛

⎝
∑

j∈Nk
1 (ni)

ajnj

⎞

⎠ , (3)

194 C. Wang and Y. Sha

where ni is the embedding of entity i, N k
1 (ni) is the set of 1th to kth-order

neighbors of entity i, aj is the embedding weight of neighbor entity j, and σ (·)
is an activation function.

According to this general form, we mainly need to determine how to choose
the weights of embeddings. An easy way is to assign a same weight to all neigh-
bors in N k

1 (ni), i.e., aj = 1/|N k
1 (ni) |. Although the computational complexity

of this method is small, it cannot distinguish the importance of neighbors. As
a compromise, we use random walks to distinguish the importance of different
neighbors, i.e., the neighbor entities which are easier to reach in random walks
on G will have higher weights. Random walk on a graph is a special category
of Markov chains where each node is a state. The weight of node i’s 1th-order
neighbor j is the one-step transition probability from state i to state j:

aj = pij =
1

deg (ni)
, j ∈ N1 (ni) , (4)

where deg (ni) is the degree of the node i. For kth-order neighbors, the weights
are determined by k-step transition probability:

aj = p
(k)
ij =

∑

r∈V

p
(m)
ir p

(k−m)
rj , j ∈ Nk (ni) . (5)

In order to combine the embedding information of the node itself, we add a
self-connection edge to each node in G, so the adjacency matrix of this new G
is A = A

′
+ I|V |, where A

′
is the adjacency matrix of the original graph, and

I|V | is the identity matrix. For all entities, the weight matrix of their first-order
neighbors, i.e., the one-step transition probability matrix is:

P = D−1A, (6)

where D is the degree matrix, Dii =
∑

j Aij . According to the properties of
Markov chains, the embedding weight matrix of kth-order neighbors is Pk.

We represent the entity embedding matrix as M ∈ R
|E|×d, where d is the

embedding dimension of entities and the i-th line of M represents the embedding
representation of the i-th entity. By aggregating the embeddings of neighbors
from 1th to kth-order with different weights, we get a new entity embedding
matrix:

M̃ = σ

⎛

⎝
k∑

j=1

PjM

⎞

⎠ . (7)

4.2 Predictor

Our predictor is a model which uses entity information and relation information
to perform link prediction task. The entity information is entity embeddings
obtained by the aggregator and the relation information is relation embeddings.

As an efficient feature extractor, CNN has been widely used in many fields,
such as images, natural language, audio, etc. In recent years, some works begin

Neighborhood Aggregation Embedding Model for Link Prediction in KGs 195

to apply CNN for link prediction [7,19]. In our model, we utilize 1D CNN to
captures more interactions between entity embeddings and relation embeddings.
For each triple 〈s, r, o〉, our model predicts the probability distribution of the
target entity o:

P = softmax (Wσ (concat ([s; r] ∗ Ω))) , (8)

where s ∈ R
d and r ∈ R

d are entity and relation embedding vectors from M̃ and
relation embedding matrix Mr ∈ R

|R|×d respectively, ∗ denotes a convolution
operator, Ω denotes the set of filters, concat denotes a concatenation operator,
and W ∈ R

|E|×d|Ω| is a projection matrix.
The architecture of our predictor is shown in Fig. 2. After the aggregator, we

get a new embedding for each entity. For each training triple, we first combine
s and r into an matrix ∈ R

d×2. Then we perform the convolution operation
on this matrix using multiple filters ∈ R

1×2. Next, we concatenate the multiple
feature maps generated by the filters to a vector. We also apply dropout and
activation function to this vector. Finally, we project this vector to E-dimensional
space using W and get the probability distribution of the target entity using the
softmax function.

Like many neural network-based models, our NAE model is expressive, but
there are too many parameters need to learn. To reduce the parameters, we
propose a simplified model called NAE-S. NAE-S simplifies the predictor by
restricting the number of filters to 1, i.e., |Ω| = 1, and replacing the projection
matrix W to the entity embedding matrix M (i.e., output embedding [22]).
Under this model, the probability distribution of the target entity is:

P = softmax (Mσ (αs + βr)) , (9)

where α and β are two parameters of the filter. Noted that NAE-S has only two
more parameters than some parameter efficient models such as the translational
model TransE and the bilinear model DistMult, which makes it possible for our
method to scale to large KGs.

We train our models by minimizing the following cross entropy loss function:

L = −
∑

o′∈E
1K (〈s, r, o′〉) log P (T = o′|s, r), (10)

where K is the set of valid triples and 1K(x) is an indicator function, i.e., if
x ∈ K then 1K(x) = 1, else 1K(x) = 0.

5 Experiments

5.1 Datasets

For evaluating our proposed method, we select four benchmark datasets, includ-
ing WN18 [2], FB15k [2], WN18RR [7], and FB15k-237 [27].

WN18. WN18 is a subset of WordNet [18]. WordNet is a lexical database of
English which groups English words into sets of synonyms (termed synsets).

196 C. Wang and Y. Sha

These synsets correspond to entities in KGs, and they are linked by conceptual-
semantic and lexical relations. A total of 151,442 triples that contain 40,943
entities and 18 relations are extracted to construct WN18.

FB15k. FB15k is a subset of Freebase [1]. Freebase is a large knowledge base
composed of multi-source structured data. There are a large number of general
facts stored in Freebase that cover more than 39 million topics such as peo-
ple, places, and things. FB15k is a collection of 59,2213 triples extracted from
Freebase. These triples consist of 14,951 entities and 1,345 relations.

WN18RR and FB15k-237. It has been noted by [27] that there are many
inverse triples of training triples in the validation and testing set of FB15k,
e.g., 〈a, hyponym, b〉 in the training set and 〈b, hypernym, a〉 in the testing set.
This makes it easy to predict such kind of triples once we know that the two
relations are reversible. To address this problem, FB15k-237, a subset of FB15k,
and WN18RR, a subset of WN18, are created by removing reversible relations
to form more challenging and realistic datasets.

All these datasets consist of three parts: training set, validation set, and
testing set. Table 1 presents the statistics of these four datasets.

Table 1. Statistics of the experimental datasets. #train, #valid, and #test represent
the number of triples in training set, validation set, and testing set, respectively.

Dataset |E| |R| #train #valid #test

WN18 40,943 18 141,442 5,000 5,000

FB15k 14,951 1,345 483,142 50,000 59,071

WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466

5.2 Evaluation Protocol

As mentioned in Sect. 3.1, we convert the two tasks (〈h, r, ?〉 and 〈?, r, t〉) of
link prediction into one task 〈S,R, ?〉 where S and R denote h and r or t and
r−1 respectively. After training, we use the trained model to test each triple
〈S,R, ?〉 in the validation set and the testing set, and we can get the probability
distribution of the target entity P (T |S,R). We rank the candidate entities of
each testing triple by descending order according to the probability values. Our
evaluation is performed on these rankings.

To compare the performance of our method and others on benchmark
datasets, we choose three common evaluation metrics, including Hits@N, MR,
and MRR. Hits@N denotes the proportion of the hit triples in the testing set.
A hit triple is a testing triple whose target entity ranks in top N in the ranking.
MR is the mean ranking of the target entities. MRR is the mean reciprocal rank-
ing of the target entities. Higher Hits@N, lower MR, and higher MRR indicate
better performance.

Neighborhood Aggregation Embedding Model for Link Prediction in KGs 197

Consider a situation that 〈e1, r1, e2〉 exists in the training set and 〈e1, r1, e3〉
exists in the testing set. When we predict 〈e1, r1, ?〉, there is a high probability
that e2 ranks higher than e3 since 〈e1, r1, e2〉 has been learned by the model.
However, this will degrade the performance of the model, although both are
correct. In order to avoid this misleading behavior, we use the filtered setting
proposed by [2], i.e., removing such type entities (e.g. e2) that exist in the train-
ing, validation, or testing set before ranking.

5.3 Experimental Setup

We train our models using Adam optimizer [13]. We use grid search to select the
hyperparameters of our models. Hyperparameter ranges are as follows: learning
rate lr in {0.01, 0.001}, embedding dimension d in {50, 100, 200}, maximum
order of neighborhood k in {1, 2, 3} , the number of filters f in {1, 3, 5},
dropout dp in {0, 0.1, 0.2, 0.5}. We use ReLU as the activation function σ.
For NAE model, we find the following hyperparameters work well on the four
datasets: lr = 0.001, d = 100, k = 1, f = 1, dp = 0.2 on WN18; lr = 0.001,
d = 100, k = 1, f = 5, dp = 0.1 on FB15k; lr = 0.01, d = 100, k = 1, f = 1,
dp = 0.5 on WN18RR; lr = 0.001, d = 100, k = 2, f = 5, dp = 0.5 on FB15k-
237. For NAE-S model, the following hyperparameters work well on WN18RR
and FB15k-237: lr = 0.001, d = 100, k = 1, dp = 0 on WN18RR; lr = 0.001,
d = 100, k = 3, dp = 0.5 on FB15k-237. Best models are selected by using early
stopping according to MRR on the validation sets.

Table 2. Link prediction results on WN18 and FB15k. The best score is in bold and
the second best score is in underline.

Method WN18 FB15k

Hits@N Hits@N

MR MRR 1 3 10 MR MRR 1 3 10

TransE [2] 251 — — — 0.892 125 — — — 0.471

ComplEx [28] — 0.941 0.936 0.945 0.947 — 0.692 0.599 0.759 0.840

ANALOGY [17] — 0.942 0.939 0.944 0.947 — 0.725 0.646 0.785 0.854

R-GCN [23] — 0.814 0.686 0.928 0.955 — 0.651 0.541 0.736 0.825

SimplE [12] — 0.942 0.939 0.944 0.947 — 0.727 0.660 0.773 0.838

ConvE [7] 504 0.942 0.935 0.947 0.955 64 0.745 0.670 0.801 0.873

NAE 261 0.938 0.927 0.945 0.955 53 0.765 0.705 0.805 0.867

5.4 Results

We first evaluate our NAE model on WN18 and FB15k. Table 2 shows the results.
Our NAE model obtains the best MR, MRR, Hits@1, and Hits@3 on FB15k. For
WN18, most methods perform very well and the results are similar. Our model
obtains the best Hits@10, the second best Hits@3 and MR. Compared with the

198 C. Wang and Y. Sha

second best result, the two metrics with the highest relative improvement are
MR (absolute/relative improvement is 11/17%) and Hits@1(absolute/relative
improvement is 0.035/5%) on FB15k.

As mentioned in Sect. 5.1, WN18RR and FB15k-237 are two more challeng-
ing and realistic datasets since they remove reversible relations which are easy
to learn. We evaluate our NAE and NAE-S on these two datasets. Table 3 shows
the results. On WN18RR, our NAE model obtains the best MR, Hits@1, Hits@3,
Hits@10 and the second best MRR. The two metrics with the highest relative
improvement are MR (absolute/relative improvement is 2437/48%) and Hits@10
(absolute/relative improvement is 0.05/10%). Our NAE model achieves the best
results in all metrics on FB15k-237, and MR (absolute/relative improvement is
70/28%) and MRR (absolute/relative improvement is 0.02/7%) have the highest
relative improvement. We note that our parameter efficient model NAE-S per-
forms well on these two datasets. NAE-S obtains the second best results in all
metrics on FB15k-237 and the second best MR, Hits@3, Hits@10 on WN18RR.

Table 3. Link prediction results on WN18RR and FB15k-237. Results marked * are
taken from [7].

Method WN18RR FB15k-237

Hits@N Hits@N

MR MRR 1 3 10 MR MRR 1 3 10

DistMult [33]∗ 5110 0.43 0.39 0.44 0.49 254 0.241 0.155 0.263 0.419

Node+LinkFeat [27] — — — — — — 0.226 — — 0.347

R-GCN [23] — — — — — — 0.248 0.153 0.258 0.414

ConvE [7] 5277 0.46 0.39 0.43 0.48 246 0.316 0.239 0.350 0.491

CrossE [34] — — — — — — 0.299 0.211 0.331 0.474

NAE 2673 0.45 0.41 0.46 0.54 176 0.337 0.246 0.372 0.522

NAE-S 2822 0.42 0.36 0.44 0.52 179 0.334 0.245 0.366 0.511

6 Analysis

6.1 Extendibility

In this part, we study the effect of our aggregator on the performance of other
existing methods. The aggregator of our method is easy to extend to other exist-
ing methods without introducing additional parameters that need to be learned.
Specifically, we replace our predictor by TransE and DistMult to construct two
new models. We evaluate these two new models on FB15k-237 and compare
them with the original models.

Neighborhood Aggregation Embedding Model for Link Prediction in KGs 199

Table 4. Experimental results on FB15k-237 of extending our aggregator to TransE
and DistMult.

Model TransE DistMult

Hits@N Hits@N

MR MRR 1 3 10 MR MRR 1 3 10

Original 255 0.271 0.179 0.304 0.452 254 0.241 0.155 0.263 0.419

With aggregator 236 0.284 0.193 0.319 0.467 273 0.265 0.177 0.294 0.445

Absolute improvement 19 0.013 0.014 0.015 0.015 −19 0.024 0.022 0.030 0.026

Relative improvement 7% 5% 8% 5% 3% –7% 10% 14% 12% 6%

Table 4 reports the results. For TransE with the aggregator, all metrics are
improved, and the highest relative improvement metric is Hits@1 (8%). For
DistMult with the aggregator, most metrics are improved except MR. Compared
with TransE, the overall improvement of DistMult is higher. The highest relative
improvement metric on DistMult is Hits@1 (14%). The experimental results
show that our aggregator can effectively improve the performance of existing
methods, which makes it possible for our aggregator to be a component of other
link prediction methods.

6.2 Ablation Study

We perform an ablation study on our NAE model. Section 6.1 has shown that the
aggregator improves the performance of existing methods, and in this part we
investigate the effect of removing the aggregator part of NAE on performance.

We carry out the experiment on FB15k-237 and the results are shown in
Table 5. Compared to the full model, the results of the model without the aggre-
gator decline in all metrics, up to 15% relative decrease in MR. The results
demonstrate that the aggregator is a critical part of our method.

Table 5. Ablation study on FB15k-237

Model MR MRR Hits@1 His@3 Hits@10

NAE 176 0.337 0.246 0.372 0.522

Without aggregator 203 0.310 0.223 0.338 0.485

Absolute decrease 27 0.027 0.023 0.034 0.037

Relative decrease 15% 8% 9% 9% 7%

6.3 Parameter Efficiency

We compare our NAE-S model with a bilinear model DistMult and a neural
network-based model ConvE on parameter efficiency.

200 C. Wang and Y. Sha

Table 6 shows the results on FB15k-237. NAE-S performs better than Dist-
Mult and ConvE with the same number of parameters. The performance of
NAE-S with 0.95M parameters is on par with ConvE with 1.89M parameters.
Similar results are also reported on NAE-S with 0.46M (0.23M) parameters and
ConvE with 0.95M (0.46M) parameters. NAE-S with 0.12M parameters still
performs better than DistMult with 1.89M parameters in most metrics. Overall,
NAE-S is 2x parameter efficient than ConvE, 16x than DistMult.

Table 6. Parameter comparison on FB15k-237. Results of DistMult and ConvE are
taken from [7]. P.C. and E.S. represent the parameter count and the embedding size
respectively.

Model P.C. E.S. MRR Hits@1 Hits@3 Hits@10

DistMult 1.89M 128 0.23 0.15 0.25 0.41

0.95M 64 0.22 0.14 0.25 0.39

ConvE 1.89M 96 0.32 0.23 0.35 0.49

0.95M 54 0.30 0.22 0.33 0.46

0.46M 28 0.28 0.20 0.30 0.43

NAE-S 1.89M 128 0.33 0.24 0.37 0.51

0.95M 64 0.32 0.24 0.35 0.49

0.46M 32 0.31 0.22 0.34 0.47

0.23M 16 0.28 0.21 0.31 0.44

0.12M 8 0.26 0.18 0.27 0.41

7 Conclusion and Future Work

This paper proposes a neighborhood aggregation embedding model NAE and
its simplified version NAE-S for link prediction in KGs. We consider the graph
structure information of KGs, not just triples, to improve the quality of entity
embeddings. NAE consists of an aggregator and a predictor. The aggregator
generates a new embedding for each entity by aggregating the embeddings of
its neighbors. The weights of neighbor entities are determined by the transition
probabilities in a Markov chain. Our aggregator can easily extend to existing
methods such as TransE and DistMult without introducing additional parame-
ters, and improve their performance. This makes it possible for our aggregator to
be a component of other link prediction methods. The predictor utilizes CNN to
capture more interactions between entity embeddings and relation embeddings
to predict the probability distributions of target entities. NAE-S simplifies the
predictor part of NAE by restricting the number of filters to 1 and replacing
the projection matrix with the entity embedding matrix to reduce the number
of parameters. Further analysis shows that NAE-S is highly parameter efficient,
achieving the same performance as ConvE and DistMult with 2x and 16x fewer
parameters. Experimental results on benchmark datasets show that our NAE

Neighborhood Aggregation Embedding Model for Link Prediction in KGs 201

outperforms several state-of-the-art models and our NAE-S obtains competitive
performance with fewer parameters.

In the future, we plan to explore the following directions: 1) we have imple-
mented our aggregator by sparse matrix multiplication to reduce the memory
usage, and we plan to reduce the computational cost by sampling neighbors. 2)
We also plan to add relation information to our aggregator to further improve
the quality of embeddings.

Acknowledgments. This work was supported in part by the National Key Research
and Development Program of China under Grant No.2016YFB0801003.

References

1. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, pp.
1247–1250. ACM (2008)

2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

3. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. In: 2nd International Conference on Learning Rep-
resentations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track
Proceedings (2014). http://arxiv.org/abs/1312.6203

4. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.:
Toward an architecture for never-ending language learning. In: Twenty-Fourth
AAAI Conference on Artificial Intelligence (2010)

5. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accu-
racy in multilingual entity extraction. In: Proceedings of the 9th International
Conference on Semantic Systems, pp. 121–124 (2013)

6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, pp. 3844–3852 (2016)

7. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: Thirty-Second AAAI Conference on Artificial Intelligence
(2018)

8. Ebisu, T., Ichise, R.: Toruse: Knowledge graph embedding on a lie group. In:
Thirty-Second AAAI Conference on Artificial Intelligence, pp. 1819–1826 (2018)

9. Fader, A., Zettlemoyer, L., Etzioni, O.: Open question answering over curated and
extracted knowledge bases. In: Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1156–1165 (2014)

10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034
(2017)

11. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 687–696 (2015)

http://arxiv.org/abs/1312.6203

202 C. Wang and Y. Sha

12. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge
graphs. In: Advances in Neural Information Processing Systems, pp. 4284–4295
(2018)

13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

15. Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted
from wikipedia. Seman. Web 6(2), 167–195 (2015)

16. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: Twenty-ninth AAAI Conference on Artificial
Intelligence (2015)

17. Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings.
In: Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 2168–2178. JMLR. org (2017)

18. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

19. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model
for knowledge base completion based on convolutional neural network. In: Proceed-
ings of the 16th Annual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies (NAACL-
HLT), pp. 327–333 (2018)

20. Nguyen, D.Q., Sirts, K., Qu, L., Johnson, M.: Neighborhood mixture model for
knowledge base completion. arXiv preprint arXiv:1606.06461 (2016)

21. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning
on multi-relational data. In: Proceedings of the 28th International Conference on
Machine Learning, vol. 11, pp. 809–816 (2011)

22. Press, O., Wolf, L.: Using the output embedding to improve language models.
arXiv preprint arXiv:1608.05859 (2016)

23. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

24. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-
aware convolutional networks for knowledge base completion. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3060–3067 (2019)

25. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor net-
works for knowledge base completion. In: Advances in Neural Information Process-
ing Systems, pp. 926–934 (2013)

26. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge.
In: Proceedings of the 16th International Conference on World Wide Web, pp.
697–706. ACM (2007)

27. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space
Models and their Compositionality, pp. 57–66 (2015)

28. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: International Conference on Machine Learning,
pp. 2071–2080 (2016)

29. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1606.06461
http://arxiv.org/abs/1608.05859
https://doi.org/10.1007/978-3-319-93417-4_38
http://arxiv.org/abs/1710.10903

Neighborhood Aggregation Embedding Model for Link Prediction in KGs 203

30. Wang, H., Zhang, F., Zhao, M., Li, W., Xie, X., Guo, M.: Multi-task feature
learning for knowledge graph enhanced recommendation. In: The World Wide Web
Conference, pp. 2000–2010 (2019)

31. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translat-
ing on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence
(2014)

32. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural net-
works? In: International Conference on Learning Representations (2019). https://
openreview.net/forum?id=ryGs6iA5Km

33. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

34. Zhang, W., Paudel, B., Zhang, W., Bernstein, A., Chen, H.: Interaction embeddings
for prediction and explanation in knowledge graphs. In: Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, pp. 96–104. ACM
(2019)

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
http://arxiv.org/abs/1412.6575

Testing of Web Applications

Automatic Model Completion
for Web Applications

Ruilian Zhao , Chen Chen , Weiwei Wang(B) , and Junxia Guo

Beijing University of Chemical Technology, Beijing 100029, China
{rlzhao,gjxia}@mail.buct.edu.cn, chenchen buct@outlook.com,

vivioe wang@163.com

Abstract. Model-based testing is one of the most effective methods for
testing web applications, where the integrity of models determines the
effectiveness and efficiency of testing. Static/dynamic analysis techniques
are widely used to construct models for web applications. However, it is
almost impossible to build a complete model for web applications by
static analysis techniques since web applications are driven by events,
and web pages are generated dynamically. Dynamic analysis techniques
construct models through monitoring the execution of web applications
and capturing the pivotal behavior information. But it is challenging to
explore all possible behaviors, resulting in incomplete models. So, the
combination of dynamic and static analysis techniques is a viable way to
construct a more complete model for web applications. Extended Finite
State Machine (EFSM) is considered more suitable to represent modern
web applications. So this paper defines an integrity criterion for EFSM
models of web applications and proposes a model completion method by
combining dynamic analysis and static analysis techniques. Static analy-
sis is used to collect all behaviors from the source code of web application,
identify the uncovered ones from the EFSM model built according to the
integrity criterion, and find feasible transition sequences for the uncov-
ered behaviors on the EFSM model. Furthermore, we design multiple
priority rules for transition sequence generation to improve its efficiency.
The dynamic analysis is employed to simulate the execution of feasible
transition sequences on the EFSM model such that the uncovered behav-
iors can be added into the model to improve its integrity. We implement
our method in a prototype tool called AutoMC and conduct a series of
experiments on five open-source web applications. The experiment results
show that our method can complete the model of web applications, and
the priority rules provide effective guidance in transition sequence gen-
eration. The model’s integrity improved by 22.68% on average.

Keywords: Model completion · Web applications · EFSM model ·
Lookahead search

Supported by the National Natural Science Foundation of China under Grant
No. 61672085, No. 61702029 and No. 61872026.

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 207–227, 2020.
https://doi.org/10.1007/978-3-030-50578-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_15&domain=pdf
http://orcid.org/0000-0002-6024-4010
http://orcid.org/0000-0002-2579-2011
http://orcid.org/0000-0003-4860-1553
http://orcid.org/0000-0003-4905-1290
https://doi.org/10.1007/978-3-030-50578-3_15

208 R. Zhao et al.

1 Introduction

With the popularity of web applications, ensuring the quality and security of
web applications has become a common concern both in industry and academia.
Model-based testing (MBT), as one of the most effective methods, is widely used
in web application testing. In the method, the model is the foundation, and the
integrity of the model has a significant impact on the test effectiveness.

Generally, the model is an abstract representation of software under test, and
it can be constructed with the help of dynamic/static analysis techniques. For
web applications, which are driven by events and whose web pages are generated
dynamically, it is almost impossible to build a complete model by static analysis
techniques. For example, research [4,16] builds the model of the web applica-
tion through static analysis. But the dynamic features of web pages changed by
Ajax events are less likely to be captured by static analysis techniques, causing
the model incomplete. Dynamic analysis techniques are widely used in model
construction, which captures the pivotal behavior information as traces by mon-
itoring the execution process of web application and then map traces to mod-
els. For example, some studies [13,14,19] use dynamic analysis to capture user
behavior to build the corresponding models of web applications. But it is hard
to explore all possible user behaviors, especially if events and related DOMs are
hidden in deep layers or require complex interactions. So, the models built by
dynamic analysis techniques are also mostly incomplete. Beyond the question,
the combination of dynamic and static analysis techniques is a viable way of
constructing a more complete model for web applications. However, few stud-
ies focus on the construction of complete models by using static and dynamic
analysis techniques.

In modern web applications, an event may result in different web pages due
to different execution conditions and cause various changes in the parameter(s)
or DOM elements. Thus, the dynamic behaviors involve not only web pages and
events, but also the trigger conditions and follow-up operations on the param-
eter(s) or DOM elements. In the previous work [19], EFSM (Extended Finite
State Machines) model is considered more suitable to abstract modern web appli-
cations, which is constructed based on user behavior traces. The EFSM model
consists of state nodes and transition edges, where the states represent web pages
and the transitions represent the trigger-events, trigger-conditions and follow-up
operations. Furthermore, the integrity of the EFSM model of web applications
can be evaluated from different perspectives, such as event coverage, web pages
coverage, and so on. But in modern web applications, the event and correspond-
ing execution conditions together determine the reached web page and follow-up
operations. So, we think that the event and its execution conditions can represent
the behavior of web applications.

Combining the above analysis, we define an integrity criterion based on the
events and execution conditions coverage for EFSM models of web applications
and propose a model completion method combines dynamic and static analysis
techniques. We use static analysis to collect all behaviors, containing events
and trigger-conditions, from the source code of web application, identify the

Automatic Model Completion for Web Applications 209

uncovered ones from the model built according to the integrity criterion, and
search feasible transition sequences on the model for the uncovered behaviors.
The dynamic analysis is employed to execute feasible transition sequences on
the model such that the uncovered events and conditions can be added into the
model to improve its integrity.

For the model completion, finding a feasible transition sequence from the
model and then supplementing the model based on the sequence are two crucial
problems. As we know, there are many approaches to generate a feasible sequence
to cover the uncovered objective, such as meta-heuristic search algorithms [10,
15,20]. Lookahead search is considered as an effective method to generate a
feasible sequence for covering the objective [7]. In general, there are more than
one candidate to be chosen in the current search location. So, some priority rules
need to be set up to rank candidates. Arlt used event dependence information to
narrow the search space when generating event sequences from the conventional
UI model [2,11]. Inspired by their work, we take the dependency, such as data
dependency between transitions of EFSM, to design the priority rules. That is,
the uncovered objective is treated as the initial transition for transition sequence
generation. Then, the transition with the highest priority is inserted at the front
of the transition sequence one by one until reaching the entrance of the model.
Once the new expanding transition makes the transition sequence infeasible, the
current transition sequence is backtracked to the previous one, and the transition
with the next highest priority is chosen. If all alternative transitions do not
expand the current transition sequence, then the transition sequence backtracks
to the previous one again. Besides, control dependency is taken into account
in sequence generation. After that, test inputs making the sequence executable
are generated by using a search-based algorithm, such as the Genetic algorithm
(GA). So far, a feasible transition sequence that can go through the uncovered
objective from the entrance of the EFSM model has been generated. Then, the
feasible transition sequence is dynamically executed through simulating users’
interaction with the web application. Finally, the uncovered objective (event and
conditions) is traversed, the follow-up web page and operations can be identified.
Afterward, the newly reached web page is abstracted into the state. The event,
conditions, and follow-up operations correspond to the transition. And the EFSM
model is supplemented with the state and transition. Consequently, the integrity
of the EFSM model of the web application is improved.

The contributions of our work are summarized below:

1. We define an integrity criterion to evaluate completeness of EFSM model of
web applications.

2. We propose an automatic model completion method based on static analysis
and dynamic execution for EFSM models of web applications.

3. We design priority rules to guide the selection of candidates, improving the
efficiency of the lookahead search.

4. We conduct a series of experiments on five open source web applications to
validate the effectiveness of our method, and further analyze the impact of
different priority rules on feasible sequences generation and model completion.

210 R. Zhao et al.

2 EFSM Model of Web Applications

In the modern web application, web pages and events are two primary compo-
nents that reflect the dynamic behavior of web applications. An event execution
may transfer to different web pages due to different execution conditions, and
cause changes in parameter(s) or DOM elements. Thus, besides web pages and
events, the trigger conditions and follow-up operations are also essential to depict
dynamic behaviors of web applications. EFSM is a widely used model that con-
sists of states and transitions, where the states represent web pages and the
transitions represent the trigger-events, trigger-conditions and follow-up oper-
ations. It is an enhanced model of FSM (Finite State Machines), which adds
preconditions of transitions and actions. In the previous work [19], EFSM is
adopted to describe dynamic behaviors of web applications, and its definition is
as below.

Definition 1 EFSMs of web applications. The EFSM model of web appli-
cations is defined as a 5-tuple (S0, S, I, O, T), where S is a finite set of states,
S0 ∈ S is the initial state of the model, I is a finite set of input declarations,
O is a finite set of output declarations, T is a finite set of transitions. Each
member of S is represented as a URL, and corresponding DOM. Each mem-
ber of I expresses an input parameter. Each member of O represents an output
parameter. Each member of T signifies a transition from one state to another,
remarking changes in the structure of the web page, such as URL or DOM.
Furthermore, a transition t is denoted by a 5-tuple <src, event, cond, act,
tgt>, where src(t) and tgt(t) represent the source and target state of transi-
tion t, respectively; event(t) signifies the event triggered on current source state
by users; cond(t) describes the triggered conditions in associated event handler
functions; and act(t) indicates the follow-up operations on the parameters or
DOM elements caused by user event callbacks or server responses. Specifically,
an event(t) can be further expressed as event(t,inputList), meaning event
occurs with a list of input parameters, and an act(t) can be further described
as act(t,paraList), implying action implements with a list of input or output
parameters.

For transition t, if its event(t) is triggered and cond(t) is met, then act(t)
is performed, and the state transfers from src(t) to tgt(t). The event, cond
and act parts of a transition t are optional. For a web application, the EFSM is
constructed based on user behavior traces. It is difficult for the dynamic analysis
technique to capture all possible behaviors, which makes traces insufficient. Thus,
the corresponding EFSM of web applications is also incomplete. Our automatic
model completion method aims to solve this problem.

3 Case Study of Model Completion for Web Application

In this section, we conduct a case study on a simple web application to illus-
trate our model completion method. The article management module of the web

Automatic Model Completion for Web Applications 211

application phpaaCMS, which is an open-source article management system, is
taken as an example. The corresponding EFSM model built based on user behav-
ior traces is shown in Fig. 1.

S_Target

S0_Index

S1_Category

T1

T16

S2_Rubbish

T2

S5_Article

T5 S4_addArticle

T6

S3_addCategory

T17

S7_rubbishSelect

T3 T4T15

inT2

T14

T9 T10_opp

S6_articleSelect

T11

T8

T7

inT1

T12_opp

T13

Fig. 1. The EFSM model of article management module

As Definition 1, the transition T1 can be expressed as <src:S0; event:
click,link=Admin; cond:null; act:null; tgt:S1 >, representing that on the
index page (S0), a user clicks Admin link (event), and enters into the
article category page (S1). Similarly, the transition T10 can be expressed
as <src:S5; event:click,Xpath:(//img[@alt=‘delete’])[2]; cond:a==‘delete’&&id;
act:null; tgt:S5 >, representing that on the article page (S5), users click the delete
button to delete an article, the delete condition is triggered and the request is sent
to web server. Then web server returns the response delete and enters the article
page (S5). The details of other transitions of the EFSM model are as below.
T5 is <src:S1; event:click,Xpath://input[@value=‘Add article’]; cond:null; act:
null; tgt:S5 >, T11 is <src:S5; event:click,name=checkbox (id); cond:null; act:
id=getCheckedIds(‘checkbox’); tgt:S6 >, T12 is <src:S6; event:click,id=Xpath:
(//img[@alt=‘deleteAll’])[2]; cond:a==‘deleteAll’&&id; act:null; tgt:S5 >, T13

is <src:S3; event:click,name=button (pid,name,seq); cond:null; act:null; tgt:
S1 >, and T17 is <src:S1; event:click,Xpath://input[@value=‘Add category’];
cond:null; act:null; tgt:S3 >.

The EFSM model is constructed by user behavior traces. Obviously, the less
frequently used behaviors are hard to be explored. Such as the batch transfer
event, which is an event that users select multiple articles and transfer them
to another group in batches. In general, the EFSM models constructed based
on traces are incomplete. More specifically, the batch transfer event is rarely
triggered because, usually, an article has been correctly classified when it is

212 R. Zhao et al.

1 <s c r i p t type=” text / j a v a s c r i p t ”>
2 f unc t i on doAction (a , id){
3 i f (a==’de l e t eA l l ’&&id){// oppos i t e cond i t i on
4 i f (conf i rm (’ De lete a l l ? ’)){ $. a jax ({
5 data : ’ act=de l e t eA l l&id=’+getCheckedIds (’ checkbox ’) ,
6 su c c e s s : f unc t i on (data) { } / / T10 }) ;}}
7 i f (a==’de l e t e ’&&id){// oppos i t e cond i t i on
8 i f (conf i rm (’ De lete ? ’)){ $. a jax ({
9 data : ’ act=de l e t e&id=’+id ,

10 su c c e s s : f unc t i on (data) { } / / T12 }) ;}}
11 i f (a==’moveAll ’&&id){// uncovered cond i t i on
12 i f (conf i rm (’ Al l t r a n s f e r r e d ? ’)){ $. a jax ({
13 data : ’ act=moveAll&id=’+getCheckedIds (’ checkbox ’) ,
14 su c c e s s : f unc t i on (data) { } / / T14 }) ;}}}
15 </ s c r i p t>

Listing 1.1. JavaScript code of the event handler doAction

created. Thus, the batch transfer event and its execution condition, which is at
line 11–14 of its corresponding event handler doAction shown in Listing 1.1, are
difficult to appear in user behavior traces. Without loss of generality, we assume
that the batch transfer event and its execution condition is not included in the
EFSM model built, which is called as the uncovered behavior. How to identify
uncovered behaviors and their priority rule is discussed in detail in Sect. 4.

Aiming at uncovered behaviors, we try to supplement them into the incom-
plete model. In general, different execution conditions in an event handler mean
that the same event or the same type of event is handled in different ways. Hence,
the uncovered conditions and its opposite conditions are likely to be activated
from the same web page. Correspondingly, in the incomplete EFSM model, tran-
sitions covering opposite conditions are likely to be derived from the same state.
For example, for the uncovered condition at line 11, its opposition conditions are
in lines 3 and 7 in the listing1.1, which are involved in the transitions T10 and
T12 with source states S5 and S6, respectively. The uncovered condition may also
be derived from S5 or S6, but with a transition different from T10 and T12, such
as inT1 and inT2 in Fig. 1. To complete the EFSM model in Fig. 1, transitions
inT1 and inT2 as well as their follow-up states should be supplemented into the
model.

To generate a feasible transition sequence that can go through the inT1 or
inT2 from S0, lookahead search is employed. But which transitions (inT1 or
inT2) should be considered first as the start for the sequence generation? The
dependency between these two transitions and their preceding transitions can
be analyzed. In phpaaCMS, to trigger batch transfer event, one or more articles
should be selected, which is reflected in transition T11 of the EFSM model. Thus,
we think it is more reasonable that T11 is treated as the preceding transition to
cover the batch transfer event and its condition. So, we give higher priority to
inT1 as the initial transition of transition sequence generation. The priority rule
for initial transitions is defined in Sect. 4.

During expanding transition sequences, we consider the dependency between
transitions. The priority rules for preceding transition are defined in Sect. 4. Con-
cretely, the less irrelevant variables are introduced by the preceding transitions,

Automatic Model Completion for Web Applications 213

the less negative impact on sequence feasibility. The more relevant variables
defined by the preceding transitions, the more significant the positive impact on
sequence feasibility. Therefore, the preceding transitions can be prioritized when
expanding the transition sequence. For example, for the EFSM model shown in
Fig. 1, inT1 is chosen as the start of the transition sequence generation, and its
source state is S6. The preceding transition of S6 only has T11. Thus, the partial
sequence, [T11, inT1] and the associated state S5 can be obtained. Moreover, the
state S5 has four preceding transitions, which are T5, T8, T9, and T10, respec-
tively. Since transition T5 introduces the least irrelevant variables, compared to
the other three transitions, T5 is chosen to expand the sequence. As a result, the
partial transition sequence [T5, T11, inT1] is generated, and state S1 is gotten.
Then, the preceding transitions of S1 include T1, T13, and T16. T13 defines the
most data-relevant variables. So T13 is selected to expand the sequence, forming
the sequence [T13, T5, T11, inT1] and obtaining the state S1. Subsequently, T1 is
added into the transition sequence, forming the final transition sequence [T1, T17,
T13, T5, T11, inT1]. Then, the test inputs making this sequence executable are
generated by using a search-based algorithm. Moreover, the sequence is further
dynamically executed to determine the state that inT1 can reach, namely the
state S Target in Fig. 1. And then, the transition inT1 and state S Target are
supplemented into the EFSM model to improve its integrity.

4 Approach of Model Automatic Completion for Web
Application

The integrity of the web applications’ model seriously affects test effectiveness.
But it is difficult to construct a complete EFSM model automatically based on
user behavior traces for web applications. In this section, we define an integrity
criterion for the model of web applications, and describe how to supplement the
incomplete model built according to the integrity criterion by combining static
lookahead analysis and dynamic simulation execution.

4.1 The Integrity Criterion for EFSM Model of Web Application

Web applications are one of the event-driven software, and their behaviors are
activated by events. An event execution with different conditions may transfer
to different web pages and cause changes in parameter(s) or DOM elements.
That is, the event and its execution conditions triggered together determine the
reached web page and follow-up operations. Thus, the behavior of web applica-
tions can be represented by the event and execution conditions in corresponding
event handlers. To differentiate from the conditions on the transition of EFSM,
the execution conditions triggered by events in the event handler are called JS
branches. Therefore, the integrity criterion for the EFSM model of web applica-
tions is designed based on the events and JS branches coverage.

214 R. Zhao et al.

Uncovered
branches

Priority
rule 1

Priority
rule 2

EFSM
model

Initial
transitions

Executable
path

Transition
sequence

Preceding
transitions

Feasibility
judgment

Lookahead
search

Integrity
criteria

Trigger
state

Dynamic
execution

Web
Application

Model
supplement

Data-irrelevant

Data-relevant

Priority
rule 3

Data
dependency

Data generation

Priority
rule 4

Fig. 2. The framework of automatic completion model for web applications

Definition 2 All events & JS branches coverage criterion. If all the
events and JS branches in the event handlers of a web application appear in
its corresponding model, we call the model satisfying All events & JS branches
coverage criterion.

Based on this integrity criterion, the uncovered events and JS branches can
be identified from the model built with the help of static analysis. Considering
that all events coverage is easily achieved, this paper focuses on how to complete
the model according to the uncovered JS branches.

4.2 Overview of Model Completion Method

To supplement the EFSM model built, we propose a model completion method
which combines static and dynamic analysis techniques. Static analysis is used
to collect all events and JS branches of a web application, identify the uncov-
ered ones from its model, and find feasible transition sequences to traverse the
uncovered one by lookahead search. Dynamic analysis is used to execute the
transition sequence such that the corresponding transition and follow-up state
can be added into the model to improve its integrity. Furthermore, to improve
the efficiency of the transition sequence generation by lookahead search, a series
of priority rules are designed to guide the selection of preceding transitions. The
framework of our model completion method is shown in Fig. 2.

In more detail, for an uncovered JS branch, we first determine the initial
transition for sequence generation. If there is more than one transition can be
selected, such as inT1 or inT2 in Fig. 1, the transition with the highest priority
is picked out as the initial transition. Then, the candidate transition with the
highest priority is inserted at the front of the transition sequence one by one
until reaching the entrance of the model. Besides, the feasibility of the generated

Automatic Model Completion for Web Applications 215

partial transition sequence is judged, once a new preceding transition is added.
After getting the feasible transition sequence, we generate data for the input
variables of the transition sequence to make it executable. Then this sequence
is dynamically executed, and a follow-up reached state is obtained. Finally, the
initial transition and reached state are further used to supplement the EFSM
model.

4.3 The Design of Priority Rules for Transition Sequence
Generation

In transition sequence generation by lookahead search, there are usually more
than one candidate transition to be chosen on the current search location. So,
we design a series of priority rules to improve its efficiency. In this section, we
will introduce these priority rules in detail.

The Priority Rule for the Selection of Uncovered Branches
In general, multiple uncovered branches are corresponding to the EFSM model
built for a web application. Assume that the uncovered JS branch set is
UB = {ub1, ub2, ..., ubn} (n > 0), and the selected branch from UB for sup-
plementing the EFSM model is called as target branch, denoted by tb, where
tb ∈ UB.

Different tb will result in different transition sequences, which may have dif-
ferent completion effects on the EFSM model. If there are more than one uncov-
ered branch, the dependencies between JS branches may exist. So, it is critical
to determine which branch should be prioritized as the target branch to sup-
plement the EFSM model. The more opposite branches of an uncovered branch
appear in the EFSM model built, the more transitions can be chosen as the ini-
tial transition, the more likely it is to generate transition sequence to cover the
uncovered branch. Therefore, the following priority rule is set for the uncovered
branches.

Rule 1 The priority rule for uncovered branches. The more opposite
branches that an uncovered branch has in the EFSM model, the higher the pri-
ority of the uncovered branch is.

The Priority Rule for the Selection of Initial Transitions
For a target branch tb ∈ UB, the corresponding transition is called as target
transition, denoted by tt. tt is an initial transition for transition sequence gener-
ation. There may be more than one transition covering the opposite branches of
tb. Thus, for tb, more than one initial transition exists. Without loss of general-
ity, assume that there are m initial transitions for the target branch tb, and the
initial transition set is INT={ inT1, inT2,· · · ,inTm} (m > 0), where tt ∈ INT .

216 R. Zhao et al.

As described in Sect. 3, the initial transition is selected as the starting point
for sequence generation. However, the feasibility of initial transitions is affected
by its preceding transition. Considering the data dependency between the ini-
tial transition and its preceding direct transition, the stronger the dependency
between them, the greater the impact on the sequence feasibility, the higher pri-
ority should be given. The data dependency between transitions of the EFSM
model are defined as below:

Definition 3 Data dependency between transition. For two transitions Ti

and Tj in the EFSM model, suppose that Tj is the preceding transition of Ti,
the variables defined in Tj are DVTj = {dvj1, dvj2, · · · , dvjk}, and the variables
used in Ti is UVTi = {uvi1, uvi2, · · · , uvil}. The def-use variables of Tj and Ti

are DU(Tj , Ti) = DVTj ∩UVTi. If DU �= φ, we think there is a data dependency
between transitions Ti and Tj. The more variables in DU , the stronger the data
dependency.

Based on this definition of data dependency between transitions, we give the
following priority rule to set the appropriate priority for the initial transitions.

Rule 2 The priority rule for initial transitions. Suppose the initial tran-
sition set is INT={inT1, inT2, ..., inTm} (m > 0) for the target branch tb.
The preceding transition sets of inTi and inTj are preTinT i and preTinTj, where
preTinT i = {ti1, · · · , tip} and preTinTj = {tj1, · · · , tjq}, respectively. The defined
variable set, with respect to the preceding transition tir in preTinT i, is DVtir.
The used variable set, with respect to the initial transition inTi in INT , is
UVinTr. Then, the degree of data dependency between preTinT i and inTi is
defined as the maximum of the def-use variables between preTinT i and inTi, that
is, maxp

r=1 |DU(tir, inTi)|. If the degree of data dependency between preTinT i

and inTi is stronger than that of preTinTj and inTj, the initial transition inTi

is given a higher priority than inTj.

The Priority Rules for the Selection of Preceding Transitions
For a target transition tt, we try to search a feasible transition sequence through
adding the preceding transition one by one until reaching the entrance of the
EFSM model built, such that the tt can be supplemented into the model.

There may be more than one preceding transitions concerning the current
transition sequence, which is named as partial sequence and denoted by pSeq.
Among these preceding transitions, the transition that is conducive to gener-
ating a feasible transition sequence should be prioritized to expand the partial
sequence. As mentioned above, the data dependency between the preceding tran-
sition and partial sequence has an influence on the feasibility of the sequence. If
a preceding transition Tj has a data dependency with any transition Ti in pSeq,
we call that Tj and pSeq have a data dependency. The preceding transitions can
be grouped into data-relevant transition and data-irrelevant transition for the
current sequence, which are defined as below:

Automatic Model Completion for Web Applications 217

Definition 4 Data-irrelevant transition. The preceding transitions that
have no data dependency with the transition sequence pSeq are called data-
irrelevant transitions of pSeq.

Definition 5 Data-relevant transition. The preceding transitions that have
a data dependency with the transition sequence pSeq are called data-relevant
transitions of pSeq.

For data-irrelevant transitions, they do not affect the feasibility of the cur-
rent sequence directly. However, if a data-irrelevant transition is added into the
current sequence, the variables used in the conditions of data-irrelevant transi-
tion can be expanded into the used variables set of the partial sequence. It is
observed that the more variables are used in the sequence, the more significant
negative impact on the feasibility of the sequence. Thus, the following priority
rule is given for the data-irrelevant transitions.

Rule 3 The priority rule for the data-irrelevant transitions. Suppose
that the partial sequence pSeq involves in n data-irrelevant preceding transitions
set, denoted by DIT={diT1, diT2, ..., diTn} (n > 0). The used variable sets of
preceding transitions diTi and diTj (0 < i, j < n) are UVdiTi

={vi1, · · · , vil} and
UVdiTj

={vj1, · · · , vjk}, respectively. If the number of variables in UVdiTi
is less

than that of UVdiTj
, then diTi is given a higher priority than diTj.

For data-relevant transitions, they directly affect the feasibility of the par-
tial sequence. It is observed that the more variables defined in the preceding
transition are used in the current sequence, the easier to find inputs to make
the sequence feasible. So, we give a higher priority to the preceding transition
that defines more variables used in the partial sequence. Specifically, for data-
relevant preceding transitions, the involving variables can be defined in events
or actions, expressed by evtDV={v1, · · · , vm} and actDV={v1, · · · , vn}. Among
them, the variables in evtDV can be assigned by the external input, while vari-
ables in actDV cannot. Thus, variables in evtDV are more likely to make the
partial sequence meet its conditions than that of actDV. Therefore, we believe
that variables in evtDV are more important than that of actDV.

In general, there may be more than one data-relevant preceding transitions
concerning a partial sequence. To evaluate the priority of data-relevant transi-
tions quantitatively, we set different weights for variables in evtDV and actDV
of a preceding transition. The priority of data-relevant transitions drT for the
partial sequence pSeq is computed as Eq. 1.

prio(drT) =
|evtDV (drT) ∩ UV (pSeq)| × α + |actDV (drT) ∩ UV (pSeq)| × β + 1

|UV (pSeq)| + 1
(1)

Where evtDV (drT) represents the set of variables defined in events of a data-
relevant preceding transition drT , actDV (drT) represents the set of variables

218 R. Zhao et al.

defined in action of drT , and UV (pSeq) represents the set of variables used in
the partial sequence pSeq. The values of different weights, i.e., α and β, are
determined in the experiment.

Rule 4 The priority rule for the data-relevant transitions. Assume that
the partial sequence pSeq has n data-relevant transition set, which is DRT{drT1,
drT2, ..., drTn} (n > 0). If the prio(drTi) > prio(drTj) (0 < i, j < n), the
transition drTi is set to a higher priority than drTj.

4.4 Feasible Transition Sequence Generation for Target Transition

For a target transition tt, we try to find a feasible transition sequence to traverse
it such that its follow-up state as well as operations can be identified, and tt
can be supplement into the EFSM model. To further improve the efficiency of
transition sequence generation by lookahead search, the preceding transitions are
selected one by one based on the above priority rules until reaching the entrance
of the EFSM model.

Concretely, for uncovered branches UB, a target branch tb is selected from
UB based on the priority rule for uncovered branches selection first. As men-
tioned in Sect. 3, for a target branch tb, more than one initial transitions may
exist. According to the priority rule for the initial transition, the initial transition
with the highest priority is selected as the target transition tt ∈ V T . Then, tt is
taken as the starting point of transition sequence generation, and the lookahead
search is employed to pick out the preceding transitions based on the priority
rules for the preceding transitions. In more detail, firstly, the candidate transi-
tion is selected from the data-relevant preceding transition set associated with
the current transition sequence, based on the priority rule for the data-relevant
transitions. If multiple data-relevant transitions have the same highest prior-
ity, we consider the control distance between the data-relevant transitions and
the transition using the defined variables of the partial sequence. The smaller
the distance is, the more significant the impact of data-relevant transitions on
the feasibility of the partial sequence. So we select the transition with smaller
control distance. If there is no transition in data-relevant preceding transitions
set, the candidate transition is selected from the corresponding data-irrelevant
preceding transition set based on the priority rule for the data-irrelevant tran-
sitions. If there are still multiple candidate transitions with the same priority,
they are selected randomly. Then, the chosen transition is inserted at the front
of the current transition sequence to extend the sequence. At the same time,
the feasibility of the extended sequence is verified based on study [6]. If the
chosen preceding transition makes the extended transition sequence infeasible,
the next candidate transition, that is, the transition with the next highest prior-
ity is selected from the corresponding preceding transition set. If all alternative
transitions do not expand the current transition sequence, then the transition
sequence backtracked to the previous one. Otherwise, the extended sequence is
treated as the current sequence, and the sequence is expanded continuously until
reaching the entrance of the EFSM model. Therefore, for a target branch, the
algorithm of feasible transition sequence generation is shown in Algorithm1.

Automatic Model Completion for Web Applications 219

Algorithm 1. Feasible transition sequence generation based on priority rules
Require: webapp, EFSM, targetJS

1: M = GetOppositeBranch(targetJS) // M is the opposite branch set of the target branch.

2: S = GetSourceState(M) // S is the source state set of the transitions mapped by the opposite branches.

3: INT = AddInitialTrans(targetJS, S) // INT is the initial transition set.

4: RankInitialTrans(INT) // Prioritize the initial transitions.

5: while INT is not empty do

6: P = InitSequence(Top(INT)) // Top() is a function that selects the highest priority transition.

7: INT.remove(Top(INT))

8: FailedTrans = [] // Records the transitions that fail to expand forward.

9: do

10: F = GetPrecedingTrans(P) − FailedTrans // Removes failed preceding transitions.

11: D = GetDataRelevantTrans(F) // D is the data-relevant transition set.

12: if D is not empty then F = RankDataRelevantTrans(D)

13: else F = RankDataIrrelevantTrans(F) // Prioritize the preceding transitions.

14: end if

15: while F is not empty do

16: if IsFeasible(Top(F), P) then P = ExpendSequence(Top(F))

17: break // Judge the feasibility to extend the partial sequence.

18: else F.remove(Top(F))

19: FailedTrans.add(Top(F))

20: end if

21: end while

22: if ExpandSequence is false then P = Bracktrack(1)

23: if P is empty then break // Try the next candidate initial transition.

24: end if

25: end if

26: while entrance is not reached

27: return P

28: end while

29: return false // Generation fails.

4.5 Model Completion Based on Feasible Transition Sequence

In order to supplement the target branch into the EFSM model built, its follow-
up state and operations need to be identified. Then, the feasible transition
sequence should be executed dynamically to traverse the target transition. For
each potential feasible transition sequence, we find the input parameter values
that trigger the sequence by applying the GA-based test data generation system
we developed earlier for EFSM models [22], making the sequence executable. The
transition sequence is dynamically executed through simulating users’ interac-
tion with web applications.

Finally, the state triggered and follow-up actions by target transition can be
identified from the execution results. If the triggered state is the same as one of
the existing states in the EFSM model built, which is decided by the comparison
of their DOM structures , then the existing state is taken as the target state of
the target transition. Otherwise, the triggered state is new, then we add this
state to the state set S of the model, and the target state of this transition is
set to the new state. If the transition sequence generation for a target branch
fails, this branch will be placed last, and another uncovered branch is taken into
account. If all uncovered branches own its corresponding executable transition
sequence, or the time budget is reached, the model completion is terminated.

220 R. Zhao et al.

5 Experiment

To verify the effectiveness of the proposed method, we have implemented our
automatic model completion method in a prototype tool called AutoMC, and
conduct a series of experiments on five different types of web applications as
well as their associated EFSM models built. The results are analyzed in detail
below. Moreover, the following research questions motivate our experiments:

RQ1: Can the transition sequence generation method generate feasible tran-
sition sequences to traverse the uncovered behavior?
RQ2: Is our model completion method based on the feasible transition
sequence effective in improving the model integrity?
RQ3: How effective are the priority rules in transition sequence generation
method?

To answer these research questions, the metrics used to measure the effec-
tiveness of our method are introduced firstly. Above all, we count the number
of JS branches that are not covered by the EFSM models built based on user
behavior traces (NUJB), the number of traversed branches by feasible transition
sequences generated (NTJB), and the number of branches that are successfully
supplemented to the model (NSJB). Then, for the model before and after com-
pletion, we observe the number of states (NS) and transitions (NT). Further, we
measure the JS branch coverage of the model according to the integrity criterion.
For the priority rules, we compare the total number of transition sequences gen-
erated (NTS), the average generation time of each feasible transition sequence
(AGT (ms)), the average length of the feasible transition sequences (ALS), and
the average time of model completion computed by four methods for five web
applications to measure their role in our method. The details of the four methods
are described below.

5.1 Experimental Subjects

We selected five open source web applications from https://sourceforge.net as
our experimental subjects, which are commonly used in theoretical research and
practical application. Table 1 shows the details of the web application, such as
the number of lines of code (LOC), the number of all JS branches (NJB), and
functional description. The source code of web applications is analyzed by the
Esprima tool [1] to get all the JS branches. The EFSM models are constructed
based on the user behavior traces, which are discussed in our early work [19].
The uncovered JS branch is identified by comparing it with its corresponding
EFSM model, whose number, i.e., NUJB, is listed in column 4 of Table 1, as our
target branches.

https://sourceforge.net

Automatic Model Completion for Web Applications 221

Table 1. Web applications used in the study

App Name LOC NJB NUJB Functional description

SchoolMate 8181 89 18 Student management system with admin role

Addressbook 47481 25 5 Addressbook management system

Webchess 4722 25 8 Online chess game

FAQForge 1712 8 3 FAQ management tool

phpaaCMS 15949 61 7 Article management system

5.2 Experimental Implementation and Results Analysis

Experimental Implementation
For uncovered branches, AutoMC is employed to generate the corresponding
feasible transition sequences based on a series of priority rules, dynamically exe-
cute the generated feasible transition sequence with the help of selenium tool to
verify its triggered states and follow-up operations, and insert the target tran-
sitions into the EFSM models to improve their integrity. When analyzing the
DOM structure of the triggered state, the BeautifulSoup library is used to parse
the HTML file and the elements, as well as attribute nodes of the DOM tree, are
compared to determine whether the triggered state is the new state. Besides, the
different weights for α and β in Eq. 1 are set as 10 and 1 through experiments,
which make the path generation most efficient.

Experimental Results Analysis
For RQ1. To validate whether our transition sequence generation method can
find feasible transition sequences to traverse the uncovered behavior, we analyze
the results of sequence generation for five web applications, and show the results
in Table 2. As can be seen from this table, our method can generate feasible
transition sequences for almost all uncovered branches except one in Webchess
to support model completion.

Table 2. The results of transition sequence generation

SchoolMate Addressbook Webchess FAQForge phpaaCMS

NUJB 18 5 8 3 7

NTJB 18 5 7 3 7

In Webchess web application, one uncovered branch is not traversed by the
transition sequence generated. Through manual inspection and analysis, the rea-
son was found to be due to the selection strategy of candidate preceding tran-
sitions. When there are data-relevant transitions and data-irrelevant transitions
in preceding transitions at the same time, to improve the efficiency, we only

222 R. Zhao et al.

consider the data-relevant transitions and select the candidate transition from
them based on the priority rule for data-relevant transitions. Experiments show
that this method can generate feasible transition sequences faster, but it may
miss the potential feasible transition sequences that are related to data-irrelevant
transitions.

For RQ2. To answer the effectiveness of our method in improving the model
integrity, we analyze the results of model completion according to feasible transi-
tion sequences generated, and details the results in Table 3. Further, Fig. 3 shows
the JS branch coverage of the model before and after model completion.

Table 3. The models before and after model completion

SchoolMate Addressbook Webchess FAQForge phpaaCMS

NTJB 18 5 7 3 7

NSJB 16 5 7 3 6

Model before completion NS 41 19 13 10 50

NT 118 33 30 17 83

Model after completion NS 45 20 14 11 54

NT 140 38 39 22 91

It can be seen from Table 3 that the NS and NT in the EFSM model
supplemented increase, and the JS branch coverage in Fig. 3 shows an upward
trend after model completion. Thus, it can be drawn that our model completion
method can improve the integrity of the original EFSM model.

However, two branches in SchoolMate and one in phpaaCMS are not added
to the EFSM model. Through manual analysis, we found this is because the
test data generation method is unable to generate complex data for the tran-
sition sequence generated, causing the sequence inexecutable. As a result, the
corresponding transition can not be supplemented into the EFSM model built.

For RQ3. To analyze the effectiveness of the priority rules in transition sequence
generation, we implement different transition sequence generation methods by
using different priority rules. In more detail, the priority rules for uncovered
branches and initial transitions directly determine whether the lookahead search
can be activated. So, in the process of generating the transition sequence, we
mainly distinguish different priority rules for preceding transitions, thus form-
ing four different methods as below: (1) lookahead search without priority rules
for preceding transitions called LS ; (2) lookahead search with all priority rules
except for that for data-relevant transitions, called AutoMC-DR; (3) looka-
head search with all priority rules except for data-irrelevant transitions, called
AutoMC-DI ; (4) lookahead search with all priority rules, namely our method,
called AutoMC. To eliminate the randomicity interference of the experiment,
these four methods of transition sequence generation are run 100 times for each

Automatic Model Completion for Web Applications 223

0.798 0.8

0.68
0.625

0.885
0.978 1 0.96 1 0.984

SchoolMate Addressbook Webchess FAQForge phpaaCMS

JS
 b

ra
nc

h
co

ve
ra

ge

Model before comple on Model a er comple on

Fig. 3. The JS branch coverage of the model before and after completion

Table 4. The results of transition sequence generation by different methods

Method SchoolMate Addressbook Webchess FAQForge phpaaCMS

LS NTJB 18 5 8 3 7

NTS 267 451 680 256 496

AGT 36.93 15.24 187.14 12.10 4.29

ALS 21.80 24.39 145.07 16.23 8.99

AutoMC-DR NTJB 18 5 8 3 7

NTS 275 455 689 258 518

AGT 18.89 13.90 183.30 11.17 4.39

ALS 16.78 23.02 135.78 14.89 8.98

AutoMC-DI NTJB 18 5 7 3 7

NTS 1744 478 606 294 521

AGT 7.88 7.51 28.12 2.59 2.72

ALS 12.09 19.82 30.47 12.87 8.99

AutoMC NTJB 18 5 7 3 7

NTS 1743 483 618 293 520

AGT 8.02 6.70 25.09 2.37 3.03

ALS 12.08 18.95 29.56 11.50 8.95

uncovered branch. The results of the transition sequences generated by different
are shown in Table 4.

From the NTJB, we can see that these four-generation methods can gener-
ate feasible transition sequences to traverse almost all uncovered branches. But
in terms of generation efficiency, these generation methods vary a lot. In more
detail, within the same number of iterations, the NTS of LS is less than that
of the other three lookahead search with priority rules (AutoMC-DR, AutoMC-
DI, and AutoMC). That is, lookahead search with priority rules can generate
more feasible transition sequences in the same iteration. Besides, the AGT of
LS is higher than that of AutoMC-DR, AutoMC-DI, and AutoMC. This shows

224 R. Zhao et al.

that lookahead search with priority rules uses less time to generate each feasi-
ble sequence. Thus, it can be seen that the priority rules make the lookahead
search more efficient in feasible transition sequences generation. Furthermore,
compared AutoMC-DR with AutoMC-DI in NTS and AGT , it can be inferred
that the priority rule for data-relevant transitions has a more positive impact on
transition sequence generation. From the ALS, we can see that the use of priority
rules can significantly shorten the length of the generated transition sequence,
especially on Webchess. Through manual analysis, we found that the reason is
that there are more data-relevant transitions in the model of Webchess. If the
appropriate transition is not selected in time, there will be many unnecessary
loops traversed, resulting in long transition sequences.

Therefore, lookahead search with priority rules produces better results and
efficiency then a simple lookahead search in the transition sequences generation.
The priority rule for data-relevant transitions have a more significant impact
than that of data-irrelevant transitions. So, it can be concluded that our method
with all priority rules performs best in transition sequence generation.

Based on the transition sequences generated by AutoMC, the model is com-
pleted by simulating users’ interaction of the transition sequence. The aver-
age time of model completion for five Web applications is 8.13 min, 0.84 min,
7.51 min, 0.88 min, and 1.45 min, respectively, which is acceptable.

6 Related Work

In recent years, model-based testing (MBT) methods are widely used in web
applications. Modeling for web applications is one of the most essential tasks
in MBT, which is usually time-consuming. Most of the modeling methods use
static/dynamic analysis to build the model. Because of the event-driven and
dynamic characteristics of the web application, it is difficult for static analy-
sis techniques to construct a complete model. Research [4,12] extracts models
through static analysis but lacks consideration of the dynamic characteristics,
resulting in the incomplete models. Ricca and Tonella construct a UML class dia-
gram [16] to model the static and dynamic feature of web application. During the
stage of processing the forms and the pages linked to them, the tester manually
selects test inputs, including the data used to fill out the forms, which is usu-
ally time-consuming and error-prone. Dynamic analysis techniques can capture
user behavior information as traces to build models. Mesbah et al. [13,14] use
dynamic analysis to build the behavior models of web applications. But because
it is difficult to explore all possible user behaviors, the models are usually incom-
plete. Ricca and Tonella present a diversity-based web test generation algorithm
[5]. A navigational model of the dynamic web pages is extracted and each web
page is modelled in form of page objects, which creates methods based on the
actions statically extracted from each test state. In most cases, the resulting
methods may miss complex interactions that are possible on the web GUI, caus-
ing the incomplete models. In Wang’s work [19], a minimum user behavior trace
set generation method based on dynamic analysis is proposed to build the EFSM

Automatic Model Completion for Web Applications 225

model. Due to the same reason, the integrity of the EFSM model also cannot
be guaranteed. To alleviate this problem, in Su’s work [18], the FSM model is
constructed by combining the dynamic and static analysis techniques. Dynamic
analysis infers events from the UI level of the page, but it may miss some com-
plex events. The static analysis can scan all the event listeners and connect the
missed events with the widget through the resource ID during the execution.
However, inaccurate positioning and failing to find the target UI element will
result in the infeasible event sequences. Thus, the model is still incomplete.

To supplement the incomplete model, this paper proposes a model completion
method combining dynamic analysis and static analysis. In our method, the
transition sequence generation is the core of the model completion. Some of the
approaches in automated test sequence generation can inspire, such as symbol
execution, random testing, and meta-heuristic search algorithms. For example,
research [8] proposes a model-based testing method for Android applications.
And symbol execution is used to explore the program paths of each event handler.
On this basis, targeted event sequences are generated by lookahead search in
the UI model. Inspired by this, we consider lookahead search is an effective
way to generate sequences for covering the objective. Kudzu [17] and crawljax
[13] explore the state space of web applications by randomly selecting events,
which uses heuristic search strategies to create event sequences. Crawljax relies
on the heuristics algorithm to detect event handlers, but it may not be able to
detect all event handlers. Research [3] developed a tool, named Artemis, based on
feedback oriented testing for JavaScript applications. Artemis instantiated event
sequences by using different priority ranking functions and generated inputs
with a simple feedback mechanism, thereby creating effective event sequences.
In research [9], the feasibility of the transition sequence on the EFSM model is
estimated by analyzing the data flow correlation between actions and conditions.
In research [21], an automatic unit test generation method combining static and
dynamic is proposed. First, dynamic analysis is used to infer the call sequence
model from the sample execution. Then, static analysis is used to identify the
dependencies between methods based on the fields they may read and write.
Finally, the inference model (tends to be accurate but incomplete) and the static
deterministic dependency information (tends to be conservative) are used to
create legitimate and diversified tests. Inspired by their work, the dependency
information between transitions is helpful to guide sequence generation.

7 Conclusion

In this paper, an automatic model completion method is proposed for the EFSM
model of the web application, including target-oriented transition sequence gen-
eration and model completion based on the transition sequences generated. The
core idea is to generate feasible transition sequences for uncovered branches, col-
lect the information of model completion by dynamically executing the transition
sequences, and insert the corresponding transition into the EFSM model. In the
transition sequence generation, we propose a series of priority rules as a guide to

226 R. Zhao et al.

reduce the search space in the lookahead search. The completed model is evalu-
ated by the proposed integrity criteria. We believed that the way the integrity
criterion is defined and used can be also viewed as a potential adequacy criteria
for generated test cases. Experimental results show that the proposed method
can generate feasible transition sequences for uncovered branches and complete
the EFSM model built based on user behavior traces. The integrity of the model
has been significantly improved. The average JS branch coverage of the model
increased from 75.76% to 98.44%.

References

1. http://esprima.org/
2. Arlt, S., Podelski, A., Bertolini, C., Schäf, M., Banerjee, I., Memon, A.M.:

Lightweight static analysis for GUI testing. In: 2012 IEEE 23rd International Sym-
posium on Software Reliability Engineering, pp. 301–310. IEEE (2012)

3. Artzi, S., Dolby, J., Jensen, S.H., Møller, A., Tip, F.: A framework for automated
testing of javascript web applications. In: Proceedings of the 33rd International
Conference on Software Engineering, pp. 571–580. ACM (2011)

4. Athaiya, S., Komondoor, R.: Testing and analysis of web applications using page
models. In: Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 181–191. ACM (2017)

5. Biagiola, M., Stocco, A., Ricca, F., Tonella, P.: Diversity-based web test generation.
In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
pp. 142–153 (2019)

6. Cheng, J., Zheng, L., Zhao, R.: Infeasible path detection for EFSM models. J.
Inner Mongolia Univ. (Nat. Sci. Ed.) 42(5), 498–504 (2011)

7. Dutt, S., Shi, O.: A fast and effective lookahead and fractional search based schedul-
ing algorithm for high-level synthesis. In: 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE) (2018)

8. Jensen, C.S., Prasad, M.R., Møller, A.: Automated testing with targeted event
sequence generation. In: Proceedings of the 2013 International Symposium on Soft-
ware Testing and Analysis, pp. 67–77. ACM (2013)

9. Kalaji, A.S., Hierons, R.M., Swift, S.: Generating feasible transition paths for test-
ing from an extended finite state machine (EFSM). In: 2009 International Confer-
ence on Software Testing Verification and Validation, pp. 230–239. IEEE (2009)

10. Kalaji, A.S., Hierons, R.M., Swift, S.: Generating feasible transition paths for test-
ing from an extended finite state machine (EFSM). In: International Conference
on Software Testing, Verification, and Validation Workshops, pp. 230–239 (2010)

11. Lam, W., Kask, K., Larrosa, J., Dechter, R.: Residual-guided look-ahead in and/or
search for graphical models. J. Artif. Intell. Res. 60, 287–346 (2017)

12. Marchetto, A., Tonella, P., Ricca, F.: State-based testing of Ajax web applica-
tions. In: 2008 1st International Conference on Software Testing, Verification, and
Validation, pp. 121–130. IEEE (2008)

13. Mesbah, A., Bozdag, E., Van Deursen, A.: Crawling Ajax by inferring user interface
state changes. In: 2008 Eighth International Conference on Web Engineering, pp.
122–134. IEEE (2008)

http://esprima.org/

Automatic Model Completion for Web Applications 227

14. Mesbah, A., Van Deursen, A., Lenselink, S.: Crawling Ajax-based web applica-
tions through dynamic analysis of user interface state changes. ACM Trans. Web
(TWEB) 6(1), 3 (2012)

15. Rao, S., Jahan, H., Liu, D.: A search-based approach for test suite generation
from extended finite state machines. In: International Conference on Progress in
Informatics and Computing, pp. 82–87 (2017)

16. Ricca, F., Tonella, P.: Analysis and testing of web applications. In: Proceedings
of the 23rd International Conference on Software Engineering, pp. 25–34. IEEE
Computer Society (2001)

17. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for javascript. In: 2010 IEEE Symposium on Security and
Privacy, pp. 513–528. IEEE (2010)

18. Su, T., et al.: Guided, stochastic model-based GUI testing of android apps. In: Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
pp. 245–256. ACM (2017)

19. Wang, W., Guo, J., Li, Z., Zhao, R.: EFSM-oriented minimal traces set generation
approach for web applications. In: 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), vol. 1, pp. 12–21. IEEE (2018)

20. Wu, T., Yan, J., Zhang, J.: A path-oriented approach to generating executable test
sequences for extended finite state machines. In: 2012 Sixth International Sympo-
sium on Theoretical Aspects of Software Engineering (TASE), pp. 267–270. IEEE
(2012)

21. Zhang, S., Saff, D., Bu, Y., Ernst, M.D.: Combined static and dynamic automated
test generation. In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis, pp. 353–363. ACM (2011)

22. Zhao, R., Harman, M., Li, Z.: Empirical study on the efficiency of search based
test generation for EFSM models. In: 2010 Third International Conference on
Software Testing, Verification, and Validation Workshops (ICSTW), pp. 222–231.
IEEE (2010)

Almost Rerere: An Approach
for Automating Conflict Resolution
from Similar Resolved Conflicts

Piero Fraternali, Sergio Luis Herrera Gonzalez(B),
and Mohammad Manan Tariq

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milan, Italy

{piero.fraternali,sergioluis.herrera}@polimi.it,
mohammad.tariq@mail.polimi.it

Abstract. Concurrent development requires the ability of reconciling
conflicting updates to the code made independently. A specific case
occurs when long living feature branches are integrated to a rapid chang-
ing code base. In this scenario, every integration test will require to
manually resolve the same conflicts at every iteration. In this paper we
propose a framework for automating the detection and resolution of con-
flicts in the code updated by distinct developers, one of which may be a
code generator. The tool learns how to solve conflicts from past experi-
ence and applies resolutions, encoded as replacement regular expressions,
to conflicts not seen before. Experiments show that the number of auto-
matically resolved conflicts and the quality of the solution increase as
the system acquires experience.

Keywords: Automatic conflict resolution · GIT · Code integration

1 Introduction

The development of large and complex software applications requires distributing
programming tasks among multiple developers. In Model Driven Development,
this scenario may also include code generators that produce implementation code
from high level models. When the same code base is updated concurrently by
different actors, whether human or automatic, the possibility arises that the same
portion of the code is affected, generating inconsistencies between the changes
made by the actors and/or the code base. This occurrence is called conflict [8].

Conflict management is particularly relevant in the engineering of Web and
multi-channel applications, because the implementation of the functional and of
the presentation requirements is often assigned to distinct developers working
on the same code base. Albeit the presentation aspects of Web-based interfaces
can be factored out in CSS rules, the separation of concern is in reality par-
tial, because it is a common practice to add presentation-oriented elements to
the page structure to support the selective application of presentation styles.
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 228–243, 2020.
https://doi.org/10.1007/978-3-030-50578-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_16

Almost Rerere 229

Therefore, the concurrent update of structure and of the presentation aspects
produces conflicts, which require the continuous alignment of the two facets of
development to preserve the change of either aspect.

To support distributed development, Version Control Systems (VCS) [29]
offer functions to share code, track changes, and identify conflicts. When con-
flicts are signalled by the VCS, the resolution is delegated to the developer,
which makes code integration a time-consuming task [17]. Conflict resolution is
also repetitive because similar or identical conflicts appear at every iteration.
A significant case occurs in Model Driven Development when the source model
and/or the model-to-text transformation templates are modified. In this case,
the code generator applies the same transformation rules to many spots in the
code overwriting the manually integrated code and producing multiple changes
with the same pattern. In our previous work [6], we have addressed the man-
agement of the conflicts between handwritten and generated code, albeit the
Virtual Developer approach helps reducing the conflicts between handwritten
and generated code, still the need persists of manually resolving many similar
conflicts.

In this paper we develop a method to let a VCS learn how to resolve similar
conflicts. A conflict and its resolution can be modelled as a pair (before-state,
after-state), where the before state contains the line(s) of the code affected by
concurrent inconsistent updates and the after state comprises the code pro-
vided by the developer to resolve the inconsistency. The key idea is to exploit
the conflict resolutions implemented by human developers in the past to create
rules applicable to future (similar) conflicts. Intuitively, this requires the follow-
ing process. When the first conflict is resolved manually, its resolution pair is
processed to derive a Conflict Resolution Rule (CRR). Then the first Conflict
Cluster (CC) is created and the rule is associated with it. When a new resolved
conflict arrives, its before state is compared with the existing CCs. If it is similar
to some existing CC, it is added to it and the CRR associated with the CC is
applied to resolve it; otherwise, the user is prompted to provide a resolution and
a new (CC, CRR) pair is created. A quality metrics on the resolution provided
by the CRR is monitored; as the system observes more and more manual conflict
resolutions, the quality of the resolution computed by the CRR increase and the
user may accept that the rule is applied without supervision.

The contribution of the paper can be summarized as follows: 1) We intro-
duce the problem of automating the resolution of similar conflicts in concurrent
application development and define the version control framework and work-
flow needed to handle it. 2) We apply the Hierarchical Agglomerative Cluster-
ing (HAC) algorithm with the Jaro-Winkler string similarity measure [30] to
group similar conflicts in Conflict Clusters. A CC includes conflicts that may be
resolved by the same rule. 3) We adapt the approach of [2] and [3] to automati-
cally synthesize Conflict Resolution Rules for the conflicts of a CC. A CRR is a
search and replace regular expression extracted from a set of conflict resolutions
specified as pairs (before-state, after-state). Specifically, the CRR is the best fit-
ted search and replace expression that maps the before states of all the conflicts

230 P. Fraternali et al.

in the CC into the respective after state. 4) We illustrate a reference implemen-
tation, called Almost Rerere, which extends the functionality of the popular Git
VCS1. Almost Rerere builds on top of the Git Rerere plug-in, which resolves
automatically conflicts identical to already seen instances and helps develop-
ers pre-check partial revisions before integrating a complete revision into the
master branch. Almost Rerere can resolve conflicts similar to those observed in
past iterations and can be used throughout the development process to support
the semi-automatic resolution of previously unseen conflicts. It learns more and
more precise CRRs as the application development progresses. 5) We evaluate
the approach in the development of a web application using a Model-Driven
Development tool that generates conflicts with the handwritten code and by
extracting conflicts and resolutions from the history of submissions of large Git
open source project repositories.

2 Related Work

The relevant related work refers to the identification of code similarities and to
the generation of string rewriting rules from input/output examples.

Code similarity has been studied for software analysis, evaluation of refac-
toring issues, clone and plagiarism detection, etc. Textual approaches use direct
string matching and comparison techniques for the detection of similarities, a
wide set of this type of algorithms is available e.g. Jaccard Coefficient [19], Lev-
enshtein Distance [18], Longest Common Subsequence (LCS) [26], Jaro [11] and
Jaro-Winkler [30] similarity, Needleman Wunsch algorithm [27], Smith Water-
man algorithm [28], etc. Ducasse et al. [9] used string-based Dynamic Pat-
tern Matching (DPM) to detect code clones. Marcus and Maletic [21] applied
latent semantic indexing (LSI) for finding similar code segments. Token-based
approaches use lexical analysis for transforming the code into sequences of lex-
ical tokens and the resulting sequences are then compared searching for dupli-
cated sub-sequences of tokens. Tools implementing this approach are CCFinder
[14], DUP [1] and CP-Miner [20]. Syntactic approaches use parsing to convert
the source code into an Abstract Syntax Tree (AST). ASTs can then be anal-
ysed using tree-matching [4,12,15] and metrics-based methods [22]. The above-
described approaches are combined with advanced clustering techniques, e.g., to
provide intelligent recommendations or to identify bugs automatically. Kreutzer
et al. created C3 (Clustering of Code Changes) a tool that scans code reposito-
ries to automatically detect code fixes by clustering code changes using diff-based
and AST-based metrics.

The problem of synthesizing string-to-string transformations from a set of
input/output examples is NP-Complete [10]. Nevertheless, some approaches have
been developed to solve specific instances of the problem, many of them related
to code editing. LAPIS [25] uses an assisted approach in which the user provides
an initial search & replace expression that the system can improve or a set of
positive and negative examples that are used to infer similar sections of the text.
1 https://git-scm.com/.

https://git-scm.com/

Almost Rerere 231

LASE [24] uses a syntactic approach to create a context-aware edit script from
examples and uses the script to automatically identify edit locations and apply
the transformation to the code. The approach was later extended with RASE
[23], an automatic refactoring tool for clone removal. A different approach was
proposed by Bartoli et al. in [2] and [3], in which they used Genetic Programming
(GP) and cooperative co-evolution to synthesize search & replacement patterns
based on examples of the desired behaviour. The search pattern is a regular
expression (regex) that defines the portions of the string to be replaced and the
portions to be reused by the replacement pattern.

In this work, we aim at developing a language-independent tool able to han-
dle conflicts in modern web and mobile projects mixing several languages. We
base our tool on textual approaches for the similarity computation and conflict
clustering tasks and adapt the algorithm of Bartoli et al. for conflict resolu-
tion. A text-based method presents advantages over syntactic techniques that
require the creation of AST and are language-dependent. It can be applied to
any semi-structured string, is independent of the text format, and can perform
context-dependent rule extraction.

3 Background

3.1 Conflict Resolution

The concurrent development of software applications requires the management
of possibly conflicting updates to the same code base by different developers. A
typical workflow, in which the same code base is updated inconsistently by two
developers (D1 and D2) producing a conflict, proceeds as follows.

Developers D1 and D2 initialize their local code base C1 and C2 from the
current content of the central code-base C, which comprises the status of the
project resulting from n preceding revisions. D1 and D2 start working indepen-
dently on their local revisions, R1

D1 and R1
D2, initially equal. D1 introduces a new

feature by applying changes to R1
D1, creating a new local revision R2

D1. Next, D2
independently updates R1

D2 to introduce another feature, creating a new local
revision R2

D2. D1 submits his local revision to the central code-base generating a
new shared revision R2

C . No conflicts arise because D1 applied his update to the
shared consolidated revision (R1

C = R1
D1). Now D2 submits his revision to the

central code-base. The operation creates a conflict because the submitted revi-
sion does not derive from the current shared revision (R2

C �= R1
D2). D2 performs

conflict resolution and generates a new local revision R3
D2, which integrates the

feature locally developed by D2 and the current state of the central code-base
(which comprises the feature developed and submitted by D1). He submits R3

D2

to the central code-base and produces a new shared revision R3
C .

The following example illustrates the content of a conflict. The markers
<<<<<<< and >>>>>>> delimit the conflict area, and inside the conflict
area the marker ======= separates the two colliding updates.

232 P. Fraternali et al.

The conflict illustrated above can be resolved by the following CRR:

{
"regex": "(?:([^2])[^_]eader(\"))++",
"replacement": "$1table_header$2"

}

The above CRR searches for the character sequence “eader” preceded by
a case insensitive character and between quotes, and replaces the characters
between the quotes with the string “table header”, leaving the rest unmodified.

3.2 Git Rerere

Git Rerere (REuse REcorded REsolution)2 is a component of Git conceived
to resolve conflicts that have already been handled in previous code integration
steps. When a new conflict occurs the tool automatically records it in a pre-image
file and once the conflict has been resolved manually by the developer it stores
the conflict resolution in a post-image file. When the same conflict occurs again,
Git Rerere reuses the recorded solution to manage the conflict automatically. Git
Rerere is typically used in the development a long-lived feature branch where
developers execute several testing cycles before the release of the feature. The
pre- and post-images of a conflict are stored in a sub-directory named by hashing
the content of the conflict area of the file. When a conflict occurs, Rerere extracts
the conflict area, generates the hash, searches for the directory with that name,
extracts the post-image and uses it to perform a merge with the current state of
the file, thus resolving the conflict and preserving the rest of the non-conflicting

2 https://git-scm.com/docs/git-rerere.

https://git-scm.com/docs/git-rerere

Almost Rerere 233

changes. Git Rerere is designed to automate the resolution of multiple identical
conflicts and cannot handle similar pre-images to apply a recorded solution to
a non-identical conflict. This aspect shows up also in the internal organization
of the tool. Due to the use of conflict hashes as access keys to the directory
organization, any change in the hash of a conflict prevents finding the recorded
solution. Moreover, when multiple conflicts in a source file occur, Rerere gener-
ates a single hash per source file using all conflict areas. If a new conflict occurs
in a file where a previously resolved conflict existed, a new hash is created and
the previously resolved conflict is no longer retrieved.

Almost Rerere aims at resolving automatically not only the conflicts that are
identical to previously seen instances, but also those that are similar to instances
solved in the past. It identifies conflicts with the same pattern, clusters them
based on a similarity criterion, and associates each cluster with a rule synthesized
from the conflict resolutions of the cluster. It does not depend on the stability
of the hash of the conflicts but rather exploits the changes in the conflict text
to learn a pattern that characterizes a family of related conflicts and to build a
replacement rule that can be applied to resolve future similar occurrences.

4 Proposed Approach

The proposed approach consists of three main steps: the identification of similar
conflicts using the Jaro-Winkler string similarity metrics; 2) the grouping of
similar conflicts using an agglomerative hierarchical clustering algorithm; 3) the
synthesis of conflict resolution rules by giving clusters in input to a genetic
algorithm that computes a search and replacement expression.

4.1 Almost Rerere Architecture

Figure 1 shows the architecture of Almost Rerere, which comprises four main
components: the Submission Manager, the Cluster Manager, the CRR Genera-
tor, and the Conflict Resolver.

Fig. 1. Almost Rerere architecture

234 P. Fraternali et al.

The Submission Manager extends Git Rerere and orchestrates the processing
of a merge or commit command issued by the developer. The Cluster Manager
implements the online hierarchical clustering algorithm that assigns an input
conflict to an existing or new cluster. The CRR Generator exploits the method
proposed in [3] and is triggered every time a conflict is added to a cluster. It
synthesizes a CRR in the form of a regex & replacement expression that can
be applied to the resolution of the conflicts of that cluster. Finally, the Conflict
Resolver is called when a new conflict occurs. It searches for the cluster with the
highest similarity index to the conflict, extracts the CRR, applies it, and returns
the result as the possible solution to the conflict.

4.2 Conflict Cluster Generator

The core contribution of Almost Rerere is the recognition that a new conflict is
similar to an occurrence already addressed in the past, so that a generalization
of the previously applied resolution can be reused to cope with the new conflict.
Generalizing a CRR requires identifying a pattern common to multiple conflicts,
which consists of a constant and of a variable part. The constant part is used
to match the conflicts that can be addressed by the CRR. The variable part
enables addressing the differences in the conflicts with the same pattern. This
approach requires two elements: a metrics for quantifying the distance between
conflicts and an algorithm to group conflicts based on such a distance.

Almost Rerere computes the distance between conflicts based on a string
similarity measure. Several string similarity algorithm were evaluated on a test
data set of about 200 code line pairs. The Jaro-Winkler similarity algorithm
showed the highest similarity scores of code lines in the same pair in 80% of
cases and was selected for the implementation of the clustering algorithm. A
similarity threshold was determine by calculating the precision, recall and F1 for
several thresholds, it was determine that 0.80 was the value maximizing F1. The
intuition behind the Jaro-Winkler algorithm performing better on the conflict
data set is that it gives more importance to differences near the start of the string
than to those near the end. It is common in many programming languages that
the beginning of a line of code comprises reserved words, e.g. type declarations
(int, double, String), access declarations (public, private, protected), flow control
specifications (if, while, switch), etc. that are likely to remain unchanged. The
end of a code line, on the other hand, is occupied by variables and operations
declared by the developer, which are more likely to be updated.

The conflicts are grouped using hierarchical agglomerative clustering (HAC)
[13]. When a conflict with its respective resolution is received from the Submis-
sion Manager, the cluster with the highest similarity score is searched. If the
similarity score of the retrieved cluster is below a threshold (0.80), a new cluster
is generated and the conflict is assigned to it; otherwise the conflict is added to
the cluster. In both cases, the CRR generator is called to create a new rule or
an improved version of an existing rule for the cluster. Each cluster has a unique
id and contains an array of objects composed by the conflict and its resolution.
Figure 2 shows an example.

Almost Rerere 235

Fig. 2. Example of Conflict Cluster

4.3 CRR Generator

The CRR Generator exploits the general-purpose string search & replacement
algorithm of [3], which takes as input a series of examples, consisting of pairs
describing the original string and the desired modified string and outputs a
search pattern and a replacement expression. The former is a regular expression
that describes both the portions of the string to be replaced and those to be
reused; the latter describes how to build the output string.

The method of [3] employs a Genetic Programming algorithm inspired by
concepts of biological evolution such as reproduction, mutation, recombination,
and selection. The best regular expression is chosen based on a fitness function.
The set of examples is divided in three subsets: training, validation and testing.
The training examples are used to generate an initial population of 16 candidate
expressions for each training sample. The validation set is used to measure the
fitness of the candidates in the initial population. The candidate expressions
are applied to the test samples and the precision and recall with respect to
the ground truth are computed, as well as the expression complexity. Next, the
best candidates are selected and recombined in the next iteration of the process.
Finally, the test set is used to evaluate the best candidate expression.

The method of [3] has been adapted to take as input a conflict cluster, to
dynamically partition the input samples into the training, validation and testing
sets, and to output a CRR for each cluster. As an example of the generated
CRR, Fig. 3 shows the rule generated from the cluster of Fig. 2.

236 P. Fraternali et al.

Fig. 3. The CRR generated from the CC of Fig. 2

The CRR searches for a character h followed by a closed parenthesis and the
replacement expression then inserts the expression <?,?> after the character h
to implement the desired transformation.

When the number of available samples is small, the algorithm is sensitive
to the way in which the samples are assigned to the training, testing, and val-
idation sets. To mitigate this problem, the samples are randomly divided into
the training, testing and validation sets and the algorithm is executed multiple
times. If the generated CRR is the same across the executions, which indicates
that the algorithm has converged, it is saved. Otherwise, all solutions are kept,
and the CRR is composed as the disjunction of the computed expressions. In the
experiments, two rounds of execution proved to afford the best trade-off between
performance and accuracy of the synthesised CRRs.

4.4 Conflict Resolver

This component has the responsibility to resolve the new conflicts when the
developer executes a git merge command. The component searches for the cluster
with the highest similarity measure with respect to the incoming conflict. The
CRR of the selected cluster is applied and the result is returned to the developer.

5 Evaluation

Almost Rerere was evaluated in two case studies: the development from scratch of
a web-based crowd sourcing platform using an Agile Model-Driven Development
tool and approach, and the resolution of conflicts extracted from the reproduc-
tion of commits in the Git repositories of long-run open-source projects.

5.1 Integration of Handwritten and Generated Code

The goal of the test was to make an evaluation of how Almost Rerere could
help in resolving conflicts during the life-cycle of a Model-Driven Development
project. The application was developed using IFMLEdit.org3 [5], an online tool
3 https://ifmledit.org/.

https://ifmledit.org/

Almost Rerere 237

for the rapid prototyping of web and mobile applications based on the Inter-
action Flow Modeling Language (IFML) [7]. The developed application was a
web-based crowd-sourcing platform for the selection and annotation of images.
The development process of the application was divided into seven sprints. At
each sprint, the developers applied changes to the IFML model, to the code gen-
eration templates, which combine HTML, JavaScript and CSS, and manually
modified the automatically generated code to add non-modelled features. Two
developers worked in parallel, the main repository of the code was the master
branch, each developer worked on his own branch and integrated the changes to
the master branch once completed. During the sprints, both developers updated
the code generation templates. When the code was generated from the modified
templates, the changes would propagate to all the relevant pages. In other cases,
the changes were made directly on the generated code. Both developers commit-
ted changes to their local branch. When the local branches were merged into the
main repository, conflicts arose because independent changes were applied to the
same lines of code. Whenever a conflict was detected, Almost Rerere intervened
to resolve the conflict or to record the manual resolution provided by the devel-
oper. During the seven sprints about 200 conflicts were resolved. Figure 4 shows
the total number of conflicts and the number of those resolved by Almost Rerere
at each sprint. In the first sprint, it can be observed that no conflict is resolved,
because no recorded conflicts existed at that point. In the second sprint, only 4
conflicts were resolved, because the number of samples available was small. As
the number of occurring conflicts increased, also the number of resolutions by
Almost Rerere grew.

Fig. 4. Total conflicts vs. conflicts resolved by Almost Rerere

Overall Almost Rerere proposed a resolution for 57% of conflicts occurred
during development. The quality of the resolution depends on the intra-cluster

238 P. Fraternali et al.

similarity. Almost Rerere created 21 clusters for 121 different conflicts. 7 of
those clusters have an intra-cluster similarity above 90%. By manual inspection,
it was observed that for those clusters the CRR provided a good result directly
applicable to solve the conflicts. In other 7 cases, clusters have intra-cluster
similarity below 90% and the proposed resolutions required manual inspection
to verify that they were syntactically and semantically correct. In the remaining
cases, the cluster contained only 1 or 2 samples and Almost Rerere could not
generate a CRR for such isolated cases. It was observed that when a cluster had
few samples, the generated CRR was very sensitive to small variations, such as
spaces. As the number of conflicts in a cluster increased, the tool was able to
generalize the CRR by taking into account the possible variations.

5.2 Large Project Repositories

To evaluate the quality of the automatic resolution provided by Almost Rerere,
it was necessary to know the actual resolutions committed by developers and
use them as ground-truth. In [16], nine data sets based on Git repositories from
active Java open-source projects were created by extracting all the differences
between the sequential commits to the master branch. From six such repositories,
we extracted all the single-line changes and used them as conflicts resolved by
developers. For each single-line change, the original state was considered as the
conflict and the after state as the resolution. Almost Rerere was fed with the
content of each conflict file, to execute the cycle of resolving the conflict, adding
it to the corresponding cluster and updating the generated CRR. The provided
resolution for each conflict was compared to the ground-truth and the similarity
index between them was saved.

Almost Rerere provided resolutions for a high number of conflicts in each
repository: Ant 54%, Cobertura 70%, Eclipse SWT 59%, FitLibrary 54%,
JGrapT 68%, JUnit 49%. Table 1 shows the statistics of the evaluated repos-
itories. Overall Almost Rerere resolved 55,7% of conflicts.

Table 1. Total conflicts, clusters and resolved conflicts

Repository N◦ conflicts N◦ cluster N. conflicts resolved % resolved

Ant 10500 1294 5667 53,97

Cobertura 1260 179 885 70,24

Eclipse SWT 1355 382 799 58,97

FitLibrary 4399 337 2371 53,90

JGraphT 3200 238 2135 66,72

JUnit 4424 388 2166 48,96

Total 25138 2818 14023

Almost Rerere 239

Table 2. N◦ conflicts by resolution similarity intervals

Repository 100–90% 89–80% <79%

Ant 3717 65,59% 791 13,95% 1159 20,45%

Cobertura 577 65,19% 100 11,29% 208 23,50%

Eclipse SWT 567 70,96% 128 16,02% 104 13,01%

FitLibrary 1690 71,27% 434 18,30% 247 10,41%

JGraphT 1748 81,87% 221 10,35% 166 7,77%

JUnit 1470 67,86% 370 17,08% 326 15,05%

Total 9229 2044 2210

Table 3. N◦ of cluster by intra-cluster similarity intervals

Repository 100–90% 89–80% 79–0%

Ant 127 485 682

Cobertura 27 33 119

Eclipse SWT 62 116 204

FitLibrary 48 132 157

JGraphT 26 86 126

JUnit 43 162 183

Total 333 1014 1471

To verify the quality of the generated resolutions, they were classified accord-
ing to the Jaro-Winker similarity with the original resolution. Three intervals
were considered: 100–90% for which synthesized resolution was equal or almost
identical to the original one; 89–80% for which the synthesized resolution was
close to the original one with only small variations; ≤79%, for which the syn-
thesized resolution was rather different from the original one and required the
developer’s intervention (see Table 2). Out of the 14.023 conflicts resolved, 65,8%
of the resolutions had a similarity score with the original resolution exceeding
90%. This shows that Almost Rerere was able to synthesize an accurate resolu-
tion in most cases based on previously resolved similar conflicts. Table 3 classifies
the clusters by their intra-cluster similarity. It can be observed that the clusters
with less than 79% intra-cluster similarity account for almost 50% of the total
clusters. They represent conflicts that are not common (occurred only once) or
not similar to other conflicts. It was also observed that in trivial cases Almost
Rerere could provide accurate resolutions even with very few examples, whereas
in more complex cases it required more samples to generalize. For example, in
the JGraphT repository, Almost Rerere created a cluster with 40 conflicts with
intra-cluster similarity of 84%. Some examples of conflicts are:

240 P. Fraternali et al.

1 [
2 {
3 ” c o n f l i c t ” : ” pub l i c Br ead thF i r s t I t e r a t o r (Graph g) {” ,
4 ” r e s o l u t i o n ” : ” pub l i c Br ead thF i r s t I t e r a t o r (Graph<V, E> g) {”
5 } ,
6 {
7 ” c o n f l i c t ” : ” pub l i c UnmodifiableGraph (Graph g) {” ,
8 ” r e s o l u t i o n ” : ” pub l i c UnmodifiableGraph (Graph<V, E> g) {”
9 } ,

10 {
11 ” c o n f l i c t ” : ” pub l i c CycleDetector (DirectedGraph graph) {” ,
12 ” r e s o l u t i o n ” : ” pub l i c CycleDetector (DirectedGraph<V, E> graph) {”
13 }
14]

The common pattern is the addition of the generic expression <V,E>. In this
case the learning process was simple and with only four samples Almost-Rerere
converged to a CRR that provides a correct resolution:

1 [
2 {
3 ” regex ” : ” (h) () ” ,
4 ” replacement ” : ”$1<V, $2E> ”
5 }
6]

A different case is exemplified in the Cobertura repository, where a cluster con-
tained the following conflicts:

1 [
2 {
3 ” c o n f l i c t ” : ” return numberOfCoveredBranches ; ” ,
4 ” r e s o l u t i o n ” : ” return getRawCoverageData () . getNumberOfCoveredBranches () ; ”
5 } ,
6 {
7 ” c o n f l i c t ” : ” return numberOfCoveredLines ; ” ,
8 ” r e s o l u t i o n ” : ” return getRawCoverageData () . getNumberOfCoveredLines () ; ”
9 } ,

10 {
11 ” c o n f l i c t ” : ” return numberOfLines ; ” ,
12 ” r e s o l u t i o n ” : ” return getRawCoverageData () . getNumberOfValidLines () ; ”
13 } ,
14 {
15 ” c o n f l i c t ” : ” return numberOfBranches ; ” ,
16 ” r e s o l u t i o n ” : ” return getRawCoverageData () . getNumberOfValidBranches () ; ”
17 }
18]

In this case Almost Rerere, based on the first conflict, generated a CRR
that transforms the name of the variable into a getter method respecting the
Java notation. When the second conflict occurred, the CRR continued to work
well. For the third conflict, the expression did not generated the expected result
because the resolution added the word Valid to the name of the method. Almost
Rerere integrated the ground truth of the third example into the cluster and
generated a composite CRR, with different patterns for the two cases:

1 [
2 {
3 ” regex ” : ” (m∗+)\w(umberOfCovered) (\w++) (;) ” ,
4 ” replacement ” : ”$1getRawCoverageData \(\) \ . getN$2$3 \(\) $4”
5 } ,
6 {
7 ” regex ” : ”\w(\w\w\w\w\w\w\w) (\w+)” ,
8 ” replacement ” : ”getRawCoverageData\(\) \ . getN$1Valid$2 \(\) ”
9 }

10]

Almost Rerere 241

The composite CRR also worked when the fourth conflict occurred and pro-
vided an accurate resolution. This examples shows that Almost Rerere can adapt
quickly when different unseen examples become available. Still it is sensitive to
small changes when the number of samples available is small.

6 Conclusions

The paper describes an approach for the automatic resolution of conflicts during
code integration on Git repositories. The approach is based on the synthesis of a
search regular expression and a replacement expressions from previously resolved
similar conflicts. A reference implementation, Almost Rerere, which extends the
functionality of Git Rerere, was introduced, and the components in charge of
executing the different steps of the approach, such as conflict clustering, regular
expression generation and conflict resolution, were described. The proposed app-
roach was evaluated in two use cases showing that it was able to resolve more
than 55% of the observed conflicts. It was also shown, in the second use case, that
more than 65% of the generated resolutions had a similarity score above 90%
with the ground truth. Future work will focus on improving the Cluster Man-
ager by adding a dynamic re-clustering capability to keep cluster intra-similarity
high, this would prevent the CRR and CC become outdated over time. It would
also extend the approach for the detection and resolution of multi-line conflicts.

References

1. Baker, B.S.: On finding duplication and near-duplication in large software systems.
In: Proceedings of 2nd Working Conference on Reverse Engineering, pp. 86–95.
IEEE (1995)

2. Bartoli, A., Lorenzo, A.D., Medvet, E., Tarlao, F.: Inference of regular expressions
for text extraction from examples. IEEE Trans. Knowl. Data Eng. 28(5), 1217–
1230 (2016)

3. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Automatic search-and-replace
from examples with coevolutionary genetic programming. IEEE Trans. Cybern.
(2019). https://doi.org/10.1109/TCYB.2019.2918337

4. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: Proceedings of International Conference on Software
Maintenance (Cat. No. 98CB36272), pp. 368–377. IEEE (1998)

5. Bernaschina, C., Comai, S., Fraternali, P.: Ifmledit.org: model driven rapid pro-
totyping of mobile apps. In: Proceedings of the 4th International Conference on
Mobile Software Engineering and Systems, pp. 207–208. IEEE Press (2017)

6. Bernaschina, C., Falzone, E., Fraternali, P., Herrera, S.: The virtual developer:
integrating code generation and manual development with conflict resolution. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 28(4), 20 (2019)

7. Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language: Model-Driven
UI Engineering of Web and Mobile Apps with IFML. Morgan Kaufmann (2014)

8. De Souza, C.R., Redmiles, D., Dourish, P.: Breaking the code, moving between
private and public work in collaborative software development. In: Proceedings of
the 2003 International ACM SIGGROUP Conference on Supporting Group Work,
pp. 105–114. ACM (2003)

https://doi.org/10.1109/TCYB.2019.2918337

242 P. Fraternali et al.

9. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detect-
ing duplicated code. In: Proceedings IEEE International Conference on Software
Maintenance-1999 (ICSM 1999). Software Maintenance for Business Change (Cat.
No. 99CB36360), pp. 109–118. IEEE (1999)

10. Hamza, J., Kunčak, V.: Minimal synthesis of string to string functions from exam-
ples. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 48–69.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11245-5 3

11. Jaro, M.A.: Advances in record-linkage methodology as applied to matching the
1985 census of Tampa, Florida. J. Am. Stat. Assoc. 84(406), 414–420 (1989)

12. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Deckard: scalable and accurate tree-
based detection of code clones. In: Proceedings of the 29th International Conference
on Software Engineering, pp. 96–105. IEEE Computer Society (2007)

13. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254
(1967)

14. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Trans. Softw. Eng.
28(7), 654–670 (2002)

15. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix
trees. In: 2006 13th Working Conference on Reverse Engineering, pp. 253–262.
IEEE (2006)

16. Kreutzer, P., Dotzler, G., Ring, M., Eskofier, B.M., Philippsen, M.: Automatic
clustering of code changes. In: Proceedings of the 13th International Conference
on Mining Software Repositories, MSR 2016, pp. 61–72. ACM, New York (2016)

17. Le Nguyen, H., Ignat, C.L.: An analysis of merge conflicts and resolutions in git-
based open source projects. Comput. Support. Coop. Work (CSCW) 27(3–6), 741–
765 (2018)

18. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Doklady 10, 707–710 (1966)

19. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate
string searches. In: 2008 IEEE 24th International Conference on Data Engineering,
pp. 257–266. IEEE (2008)

20. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-Miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Trans. Softw. Eng. 32(3), 176–192 (2006)

21. Marcus, A., Maletic, J.I.: Identification of high-level concept clones in source code.
In: Proceedings 16th Annual International Conference on Automated Software
Engineering (ASE 2001), pp. 107–114. IEEE (2001)

22. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of
function clones in a software system using metrics. In: ICSM, vol. 96, p. 244 (1996)

23. Meng, N., Hua, L., Kim, M., McKinley, K.S.: Does automated refactoring obvi-
ate systematic editing? In: Proceedings of the 37th International Conference on
Software Engineering, vol. 1, pp. 392–402. IEEE Press (2015)

24. Meng, N., Kim, M., McKinley, K.S.: Lase: locating and applying systematic edits
by learning from examples. In: Proceedings of the 2013 International Conference
on Software Engineering, pp. 502–511. IEEE Press (2013)

25. Miller, R.C., Myers, B.A.: Lapis: smart editing with text structure. In: CHI
Extended Abstracts, pp. 496–497 (2002)

26. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algo-
rithm suitable for similar text strings. Acta Inform. 18(2), 171–179 (1982)

27. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–
453 (1970)

https://doi.org/10.1007/978-3-030-11245-5_3

Almost Rerere 243

28. Smith, T.F., Waterman, M.S., et al.: Identification of common molecular subse-
quences. J. Mol. Biol. 147(1), 195–197 (1981)

29. Tichy, W.F.: RCS–a system for version control. Softw.: Pract. Exp. 15(7), 637–654
(1985)

30. Winkler, W.E.: String comparator metrics and enhanced decision rules in the
Fellegi-Sunter model of record linkage (1990)

Generation of Realistic Navigation Paths
for Web Site Testing Using Recurrent

Neural Networks and Generative
Adversarial Neural Networks

Silvio Pavanetto(B) and Marco Brambilla(B)

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, P.za L. da Vinci 32, Milano, Italy

{silvio.pavanetto,marco.brambilla}@polimi.it

Abstract. A robust technique for generating web navigation logs could
be fundamental for applications not yet released, since developers could
evaluate their applications as if they were used by real clients. This could
allow to test and improve the applications faster and with lower costs,
especially with respect to the usability and interaction aspects. In this
paper we propose the application of deep learning techniques, like recur-
rent neural networks (RNN) and generative adversarial neural networks
(GAN), aimed at generating high-quality weblogs, which can be used
for automated testing and improvement of Web sites even before their
release.

Keywords: Web engineering · Data mining · Deep learning ·
Recurrent neural networks · Generative adversarial networks · Testing

1 Introduction

Weblogs represent the navigation activity generated by a specific amount of
users on a given website. This type of data is fundamental, e.g. for a company,
because it contains information on the behaviour of users and how they inter-
face with the company’s product itself (website or application). The first useful
information that can be extracted from weblog is the quality of the website, as
described in the work of Berendt and Spiliopoulou [2], where they try to under-
stand navigation patterns that are present in the data. This is explained also in
the work of Singh et al. [15] in 2013, that shows an overview of the web usage
mining techniques by applying pattern recognition. In addition, one could ana-
lyze these patterns and the statistics about users activities with visualization
tools as explained in the work of Bernaschina et al. [3].

If a company could have a realistic weblog before the release of its product, it
would have a significant advantage because it can use the techniques explained
above to see the less navigated web pages or those to put in the foreground,
but users and time are needed to produce them, making it an expensive task.
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 244–258, 2020.
https://doi.org/10.1007/978-3-030-50578-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_17&domain=pdf
http://orcid.org/0000-0001-7301-2801
http://orcid.org/0000-0002-8753-2434
https://doi.org/10.1007/978-3-030-50578-3_17

Generation of Web Site Navigation Paths with RNN and GAN 245

Because of this limit, our focus is on the generation part, since this particular
task is little explored, but it is often a recurring theme also in the research world
due to the lack of publicly available data.

In fact, open source libraries like Flog Generator [9] and Fake Apache Gen-
erator [1], or the work by Lin et al. [10], generate logs in a random manner
and cannot be used as datasets that represent the users behaviour. Therefore,
being able to create an algorithm that generates high-quality weblogs would be
relevant from a scientific and commercial point of view.

What we did was apply deep learning methods for generating more real-
istic navigation activities, starting from a RNN (Hochreiter Sepp and Jürgen
Schmidhuber [8]), which has been seen that it can be used for generating com-
plex sequences with long-range structure (Alex Graves et al. [7]). Then trying
a GAN (Goodfellow et al. 2014 [5]): neural networks aimed at generating new
data, such as images or text, very similar to the original ones and sometimes
indistinguishable from them, that have become increasingly popular in recent
years.

The challenge is to evaluate which algorithm for the generation of log data
could be the best and to verify if the GAN is applicable to this problem. Our
work starts with the implementation of a generative algorithm based only on the
theories already presented in the literature concerning the analysis and genera-
tion of weblogs. Then we introduce the algorithms that falls into the category of
deep learning: an RNN and a GAN, verifying the effective generative capacity
of these neural networks.

This paper is structured as follows: first, we talk about the state of the art
for web mining and discrete data sequences generation topics. Then, there is a
section about the methods used in this work, followed by an implementation and
experiments part. Lastly, we close with the conclusions and future works.

2 Related Work

Berendt and Spiliopoulou [2] in 2000 have demonstrated the appropriateness
of the “Web Usage Miner” (WUM): a set of tools which discovers navigation
patterns subject to advanced statistical and structural constraints. This work
was intended to understand the quality, defined as the conformance of the web
site’s structure to the intuition of each group of visitors accessing the site, of
a specific website as a whole and not considering every page as a single. For
doing this, they used data mining techniques such as sequence pattern mining
and apriori algorithm.

The work of Singh et al. [15] in 2013 shows an overview of the web usage
mining technique by applying pattern recognition on weblog data, defined as
the act of taking in raw data and making an action based on the ‘category’
of the pattern. They divide their work into three parts: Preprocessing, Pattern
discovery and Pattern analysis.

Generally speaking, these works that analyse web log data for pattern dis-
covery, use almost the same approach based on data pre-processing and data

246 S. Pavanetto and M. Brambilla

mining techniques previously explained, in addition to a clusterization in some
cases (Vedaprakash et al. [16] and Mahoto et al. [11] are examples).

Regarding weblog data generation, the open source malicious log detection
library [10] tries to generate new access log data, by inserting in some malicious
activities with the purpose of identifying them. The problem with [10] and other
open source libraries such as Flog Generator [9] or Fake Apache Generator [1],
is that they create these logs in a random manner. Instead, in this work we
produce them in a completely different and more structured way. With respect
to deep learning techniques used to produce discrete data, we can start with
LSTM in recurrent neural networks (RNNs), presented for the first time by
Hochreiter Sepp and Jürgen Schmidhuber [8]. This type of RNNs was widely
used in the subsequent works, like the work by Alex Graves [7] that shows how
Long Short-term Memory recurrent neural networks can be used to generate
complex sequences with long-range structure, simply by predicting one data
point at a time. Their approach is demonstrated for text (where the data are
discrete) and online handwriting (where the data are real-valued). Due to the
success of this type of neural network applied to data sequences (real-valued and
discrete ones), this work proposes a Long Short-term Memory recurrent neural
networks approach as the first deep learning method.

In the past few years, new techniques have been presented for generating
high-quality data; the most famous and promising is the GAN (Goodfellow et
al. 2014 [5]) that uses a discriminative model to guide the training of the genera-
tive one. However, it has limitations when the goal is for generating sequences of
discrete tokens. A major reason lies in that the discrete outputs from the gener-
ator make it difficult to pass the gradient update from the discriminative model
to the generative model. In addition, the discriminative model can only assess a
complete sequence, while for a partially generated sequence, it is non-trivial to
balance its current score and the future one, once the entire sequence has been
generated. Yu et al. [17] try to solve this problem, proposing a sequence gener-
ation framework, called SeqGAN. Modeling the data generator as a stochastic
policy in reinforcement learning (RL), SeqGAN bypasses the generator differen-
tiation problem by directly performing gradient policy update. The RL reward
signal comes from the GAN discriminator judged on a complete sequence and is
passed back to the intermediate state-action steps using a Monte Carlo search.
However, in their work they use a ‘oracle’ model, that is a randomly initialized
LSTM as the right model, to generate the real data distribution p(xt|x1, ..., xt−1)
for their experiments and evaluations. In this way, they have a significant benefit:
it provides the training dataset and then evaluates the exact performance of the
generative models. In our approach we use real data as training data instead, and
at the end of the GAN training we evaluated the results with different metrics.

3 Deep Learning Based Log Generation

In this section we present our statistical and deep learning approaches for gen-
erating weblogs. The core idea is to develop a recurrent neural network and a

Generation of Web Site Navigation Paths with RNN and GAN 247

generative adversarial network (GAN) for generating new weblog data, and com-
pare the generation performance of these methods with the statistical algorithm.

3.1 Statistical Approach

To this day the only public libraries simply create logs in a completely random
manner. This approach is very coarse and therefore we decided not to consider it
even as a baseline. We propose instead a method composed by two main parts:
the first analyses a website and extracts statistical information, the second uses
those data for generating new weblogs. The input must contain some important
elements, such as the Entry Points1, the Confidences2, the Mean Times3 and
the Web Site Graph4.
The implementation uses the state of the art methods for the extraction of knowl-
edge from logs and applies this information on the creation process. Regarding
the actual implementation of this algorithm, first we need to set different vari-
ables to produce new logs, like the Maximum number of IPs at the same time,
a List of users IPs, the Number of navigation sessions and so on. Once all the
configuration parameters are set, the algorithm can start the generation part
where, if S is the total number of navigation sessions previously established, it
repeats S times the computation of the Navigation Path, that consists of:

– Selection of Entry Point: The first thing that the algorithm needs to compute
for every navigation session, is the entry point of the sequence. This page is
selected among all the home pages that has been received as input by the
algorithm, using the associated probability of being selected. It is not possible
to start the navigation with a page that is not present on the home pages list.

– Computation of Next URL: After the selection of the entry point, the algo-
rithm chooses the next URL until the sequence length is reached: this is the
exit condition of every loop iteration. This URL is selected by retrieving all
the possible subsequent pages for the previous computed URL and then by
picking one of them using the probability of moving from one page to another.

– Computation of Residence Time: After each couple of URLs is chosen, it is
necessary to calculate the number of seconds that the user will spend on page
A before moving to page B or terminating the navigation. This is done by
looking at the Mean Times that come as input to the algorithm and picking
the mean time that corresponds to that couple of pages.

1 A list of pages that represent the possible entry points for every navigation session.
A probability to start the navigation with that page is associated with each one.

2 The confidences are the probabilities for moving from a specific page to another,
or, the probabilities for moving to a new page at a particular moment T , knowing
the complete navigation path done from the beginning of the session (In this case,
session means a portion of continuous time in which the user is browsing without
leaving or interrupt the navigation.), until T .

3 A list of mean times expressed in seconds that correspond to the quantity of time
that users spend on that page on average.

4 The graph representing the entire web site, where each page is associated with a list
of possible subsequent pages.

248 S. Pavanetto and M. Brambilla

Once the loop cycle is completed and all the sequences have been generated, the
algorithm produces a log file that contains all the navigation activity of the users,
created previously. The requests are sorted by time, and then the file is created.
As we illustrated, this first statistical algorithm is guided with constraints such
as the probabilities of moving from one page to another during the navigation
of every user and the residence time on each page, that are already computed
when the algorithm starts its execution. Instead, Deep Learning techniques do
not need any hand-designed feature extraction phase, because they empower the
model with the capability of learning features optimized for the task at hand.

3.2 RNN-Based Approach

Among the deep learning algorithms, we chose the Recurrent Neural Networks
[14] (Rumelhart et al. 1986), that are neural networks dedicated to the processing
of sequential data. Simple RNNs are useful when the temporal dependencies to
be learned are not too long. When this happens, the gradients propagated over
many stages tend to vanish (most of the time) or explode (more rarely). Even
if we consider stable structures with a reasonable number of parameters, long-
term dependencies lead to exponentially smaller weight updates for long-range
interactions compared to the short-term ones. The best solution to this problem
found as of today are gated RNNs, which are based on creating paths through
time that have derivatives that neither vanish nor explode. One of the most
effective models employing gated units is Long Short-Term Memory (LSTM) [8].

Due to these features regarding Recurrent Neural Network and their memory
capacity, we implemented an RNN that receives a list of navigation sessions as
input and trains itself with them. After the training phase, the network is ready
to predict and produce new sequences.

Unlike the statistical algorithm, we do not need to specify the probability of
moving among pages. For this reason, the input for the recurrent neural network
consists of a list of sequences of URLs, together with the seconds of permanence
on that page (secInPage) and the index that represents the number of pages
already visited in the same session (indexSession). Every sequence corresponds
to a navigation session made by a specific user.

The main characteristic that we want our RNN to learn is the sequence of
pages that a specific user will visit and in which order he will make his naviga-
tion. For this reason, we started by feed the network with only the url feature,
then we added the secInPage and indexSession features. We come up with the
architecture shown in Fig. 1, where we can see that there are two principal lay-
ers, composed by the CuDNNLSTM previously discussed. Each of these layers
consists of 50 neurons and is followed by a dropout operation that avoids overfit-
ting. The output of the second layer, after the dropout, is flattened to obtain a
single 2D vector containing the inputs for the last layer: the Dense layer, which
produces the final output of the network.

Generation of Web Site Navigation Paths with RNN and GAN 249

Fig. 1. The structure of the RNN. Parameters are set as follows: length of every
sequence is 6, number of classes is 17, number of neurons is 50 and number of data
point after the flatten operation is 300.

3.3 GAN-Based Approach

As discussed in the previous section, in the task of generating sequential synthetic
data that mimics the real one, recurrent neural networks with long short-term
memory (LSTM) cells have shown excellent performance. The most common
approach to training an RNN is to maximize the log predictive likelihood of each
valid token in the sequence given the previously observed tokens. However, the
maximum likelihood approaches suffer from exposure bias in the inference stage:
the model generates a sequence iteratively and predicts next token conditioned
on its previously predicted ones that may never be observed in the training data.
Such a discrepancy between training and inference can incur accumulatively
along with the sequence and will become prominent as the length of sequence
increases.

Generative Adversarial Network (GAN) proposed by Goodfellow and others
[6] is a promising framework for alleviating the above problem. Specifically, in
GAN a discriminative net D learns to distinguish whether a given data instance
is real or not, and a generative net G learns to confuse D by generating high-
quality data. This approach has been successful but has been applied almost
only in computer vision tasks of generating samples of natural images (Denton
et al. 2015 [4] is an example).

For these reasons and because of his capability of learning the probability dis-
tribution of training data and his hidden features, we thought that trying to build
a GAN that generates synthetic discrete data would be an interesting challenge

250 S. Pavanetto and M. Brambilla

and a useful work for understanding if these type of Neural Networks are adapt-
able also to this task. Unfortunately, applying GAN to generating sequences has
two problems. Firstly, GAN is designed for generating real-valued, continuous
data but has difficulties in directly generating sequences of discrete tokens, such
as texts or URLs in our case.

As such, the gradient of the loss from D w.r.t. the outputs by G is used to
guide the generative model G (parameters) to slightly change the generated value
to make it more realistic. If the generated data is based on discrete tokens, the
“slight change” guidance from the discriminative net makes little sense because
there is probably no corresponding token for such slight change in the limited
dictionary space.

Secondly, GAN can only give the score/loss for an entire sequence when it has
been generated; for a partially generated sequence, it is non-trivial to balance
how well as it is now and the future score as the entire sequence.

GAN Parametrization. For the development of this net, the input data is a
list of sequences of URLs, encoded as integers. Every sequence in this dataset
corresponds to a navigation session like the RNN input case, and has a pre-fixed
length.

Looking deeper at the implementation of the GAN, the sequence generation
problem is denoted as follows: Given a dataset of real-world structured sequences,
train a θ− parameterized generative model Gθ to produce a sequence Y1:T =
(y1, ..., yt, ..., yT), yt ∈ Y , where Y is the vocabulary of candidate URLs. This is
interpreted as a reinforcement learning problem. In time-step t, the state s is
the current produced URLs (y1, ..., yt−1) and the action a is the next URL yt

to select. Thus the policy model Gθ(yt|Y1:t−1) is stochastic, whereas the state
transition is deterministic after an action has been chosen, i.e. δa

s,s′ = 1 for the
next state s′ = Y1:t if the current state s = Y1:t−1 and the action a = yt; for
other next states s′′, δa

s,s′′ = 0.
Additionally, we also train a φ-parameterized discriminative model Dφ to pro-

vide a guidance for improving generator Gδ. Dφ(Y1:T) is a probability indicating
how likely a sequence Y1:T is from real sequence data or not. The discriminative
model Dφ is trained by providing positive examples from the real sequence data
and negative examples from the synthetic sequences produced by the generative
model Gθ. At the same time, the generative model Gθ is updated by employing a
policy gradient and MC search based on the expected end reward received from
the discriminative model Dφ. The reward is estimated by the likelihood that it
would fool the discriminative model Dφ.

Also, while the generator improves, we need to re-train periodically the dis-
criminator to keep a good pace with the generator. Also, to reduce the variability
of the estimation, we use different sets of negative samples combined with posi-
tive ones.

GAN Structure. Lastly, we want to add some information about the two
neural networks structure that compose the GAN:

Generation of Web Site Navigation Paths with RNN and GAN 251

– Generator: We used a recurrent neural network as the generative model.
– Discriminator: In this case, we choose the CNN as our discriminator because

these types of networks has been shown off great effectiveness in text classifica-
tion, and our task is very similar to that one. A kernel applies a convolutional
operation to a window of words to produce a feature map. At the end of this
phase, a max-over-time pooling operation is applied over the feature maps.
To enhance the performance, we used a fully connected layer with sigmoid
activation that outputs the probability that the input sequence is real.

4 Evaluation

4.1 Context and Dataset

The evaluation methods and the algorithms employed in this work use the public
1995 NASA Apache web logs [12]. This public dataset is a standard Apache web
log file. A typical configuration for the access log, that also applies in this case,
is the Apache standard syntax for the HTTP requests. This standard format
can be produced by many different web servers and read by many log analysis
programs. The log file entries produced will look like the following (that is the
standard apache format5): 127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700]” GET

/apache pb.gif HTTP/1.0” 200 2326

This dataset was selected for its size, number of entries and because is one of the
few publicly available web log files: the lack of open web log data is in fact one
of the issues that this work tries to solve. In particular, the size is 205.2 MB that
corresponds to data recorded from Jul 01 to Jul 31(1995) and the total number
of rows is 1891697.

URL Depth Problem. One of the main critical aspects to manage concerns
the depth of every URL to be kept, present in each request. That is, if we have,
for example, a request with a URL like this:

/home/shuttles/1969/apollo 11.html

we can notice that there are 4 steps in the request link: home - shuttles - 1969
and apollo 11. Every step in this navigation path that leads to the apollo 11.html
page represents a folder or eventually a category of the website that goes from
the home page, that is the page with less specificity, to the page of the shuttle
“apollo11”, that is specific for that type of shuttle. This is a common conceptual
representation of pages in every website, but for the task of this work, represents
a problem whose complexity increases exponentially in certain situations.

For clearing this concept, is helpful looking at the Table 1, where we can see
how fast the number of different pages in the website grows with the URL depth
variable. In fact, we have only 19 unique pages when only a single part of the
URL is kept, while we have almost ten times this number with only one more
depth level.
5 http://httpd.apache.org/docs/1.3/logs.html.

http://httpd.apache.org/docs/1.3/logs.html

252 S. Pavanetto and M. Brambilla

Table 1. The numbers of different pages with respect to the URL depth variable

URL depth Number of pages

1 19

2 115

3 275

4 402

The problem with the algorithms that we tried to develop is that every URL
is seen as a category and the neural networks are asked to predict the next page
in a sequence among all. This means that if in the first case (depth = 1) the
networks have to learn 19 different categories, in the last one (depth = 4) the
network will have to learn 402 categories, and this is feasible only with a huge
amount of training data, that is not available for our work.

Metrics. For evaluating the quality and realism of log produced by the different
methods, we used a metric called the BLEU score [13]. BLEU, or the Bilingual
Evaluation Understudy, is a score for comparing a candidate translation of text
to one or more reference translations, or also, is an algorithm for evaluating the
quality of text which has been machine-translated from one natural language to
another. Quality is the correspondence between a machine’s output and that of
a human.

Every URL is treated as a unique “word” in the vocabulary, composed of
all the pages of a particular website. Using this metric, scores are calculated for
individual translated segments—generally sentences—by comparing them with
a set of good quality reference translations. Those scores are then averaged over
the whole corpus to reach an estimate of the translation’s overall quality. Trans-
ferring this to our case, the translated segments are the generated navigation
sequences, while the good quality reference translations correspond to our orig-
inal dataset: the NASA weblog.

4.2 Experiments with RNN

The framework used for the implementation of the network is Keras, a high-
level neural networks API, written in Python and capable of running on top of
TensorFlow, CNTK, or Theano, while the type of LSTM cell is CuDNNLSTM:
This type of LSTM cell must be run on GPU and is based on cuDNN, devel-
oped by Nvidia. cuDNN provides highly tuned implementations for standard
routines such as forward and backward convolution, pooling, normalization, and
activation layers.

For evaluating the performance of the network, we trained it on a training
set, and then we checked the prediction accuracy on a test set. The problem with
this type of evaluation, in this case, is that in the test data we could encounter
some URLs that were not seen in the training phase, and the results would not

Generation of Web Site Navigation Paths with RNN and GAN 253

Table 2. RNN experiments: hyper-parameters tuning, URL Depth = 1

#test 1 2 3 4 5

Length sequence 6 6 6 6 6

Neurons 50 50 20 50 40

Layers 2 3 2 4 3

Dropout 0.2 0.25 0.25 0.25 0.2

Shuffle True True True True True

Batch size 30 30 30 20 40

Activation Softmax Softmax Softmax Softmax Softmax

Optimizer Adam Adam Adam Adam Adam

Loss cat. cross-ent. cat. cross-ent. cat. cross-ent. cat. cross-ent. cat. cross-ent.

Metrics Accuracy Accuracy Accuracy Accuracy Accuracy

Epochs 50 50 65 70 100 (early stop)

Average accuracy 74,13% 74,17% 74,69% 74,76% 74,76%

Table 3. RNN experiments: BLEU performance and best accuracy with respect to the
URL Depth

URL Depth #classes BLEU Best accuracy

1 19 0.6482 74,76%

2 115 0.4739 58,23%

3 275 0.3655 31,05%

have been accurate because the network could not learn something that it has
never seen. For this reason, we split the data in training and test by checking that
all the URLs in the test set would be present also in the training set. In addition
to this, we adopted some techniques to avoid overfitting, such as dropout, early
stop training, and data shuffle.

In the Table 2 the results of the hyper-parameters tuning are visible for the
URL depth equal to one, while in Table 3 we can see the evaluation results in
terms of BLEU and best accuracy, with respect to the URL depth.

As mentioned before, the URL Depth problem is crucial because it increases
the complexity of learning the correct features and the network performs worse.

4.3 Experiments with GAN

In this algorithm, the training set for the discriminator is comprised by the
generated examples with the label 0 and the instances from the training set
with the label 1. Dropout and L2 regularization are used to avoid over-fitting.
Also in this case, we tried to generate new sequences using three different URL
depth level to understand how the GAN performs respect to this parameter.

In this algorithm, the most important parameters to tune are the number of
training epochs for the generator and the discriminator. In fact, we noticed that if
the RNN (generator) is not sufficiently pre-trained before starting the adversarial
training, the generator improves quite slowly and unstably. The reason is that

254 S. Pavanetto and M. Brambilla

in this GAN, the discriminative model provides reward guidance when training
the generator and if the generator acts almost randomly, the discriminator will
identify the generated sequence to be unreal with high confidence and almost
every action the generator takes receives a low (unified) reward, which does
not guide the generator towards a good improvement direction, resulting in an
ineffective training procedure.

This indicates that in order to apply adversarial training strategies to
sequence generative models, a sufficient pre-training is necessary. For the evalua-
tion of this algorithm, we started with the analysis of the generator loss, relating
it to the URL depth and to the number of pre-training epochs of the generator
before the adversarial training. We run the training with three different values of
pre-train generator epochs and three different values of URL Depth. The results
that emerge from these analyses are the following:

– Adding a discriminator to the RNN allows the GAN to lower the loss of the
generator and to improve its limits.

– Increasing the value of URL Depth variable, the loss value also increases
regardless of the generator pre-train epochs value. This is observable in the
Figs. 2 and is a further confirmation that increasing the number of URLs is
critical for the complexity of the computations that the network must do.

– The variance of the loss in all the cases decreases when the number of pre-train
epochs increases. In the Table 4, is notable that the minimum variance value
occurs when the generator is pre-trained with 100 epochs and this is valid for
the 3 different URL Depth values. This correspond to a better stability of the
generator with respect to the cases with lower pre-train epochs.

– The minimum value of the loss is reached with 15 pre-train epochs, when
the depth is equal to 1 and 2, while with a depth equal to 3, the minimum
value is obtained with 100 pre-train epochs. This means the generator can
get the lowest loss value with few epochs, but a good stability of the network
is reached only with a high number of pre-train epochs.

We generated 3 different sets of sequences with respect to the URL depth and
to the number of pre-train epochs for the generator and we computed the BLEU
score against the original set of sequences. The results are shown in Table 6.
We can see that adding a discriminator to the RNN (the generator) improves
the scores in each of the 3 cases only if the number of pre-train epochs for the
generator is enough to make the generator robust. If we train the generator only
for 40 epochs and then we start the adversarial training, the data generated by
the RNN will receive always a low score as a reward by the discriminator.

This is in contrast with the assessments previously made, where we showed
that the lowest loss values are reached with 15 or 40 pre-train epochs, but agrees
on what concerns the stability of the network that is improved with 100 pre-train
epochs. This demonstrates that in the case of generative models the analyses of
pure loss are not enough to understand if these models produce high-quality
data (Table 5).

Generation of Web Site Navigation Paths with RNN and GAN 255

Fig. 2. Generator loss with 15, 14, and 100 pre-training epochs respectively, in relation
to different URL Depth.

256 S. Pavanetto and M. Brambilla

Table 4. GAN experiments: variance of the generator loss, related to the URL Depth
and the pre-train epochs

URL Depth = 1 URL Depth = 2 URL Depth = 3

15 Epochs 0.0151 0.0324 0.0673

40 Epochs 0.0255 0.0239 0.0614

100 Epochs 0.00832 0.0179 0.0550

Table 5. GAN experiments: minimum value of the generator loss, related to the URL
Depth and the pre-train epochs

URL Depth = 1 URL Depth = 2 URL Depth = 3

15 Epochs 0.3916 0.9308 1.7240

40 Epochs 0.5451 1.0667 1.4720

100 Epochs 0.5922 1.0215 1.5121

Table 6. GAN experiments: BLEU performance with respect to the URL Depth

URL Depth BLEU, 40 pre-train epochs BLEU, 100 pre-train epochs

1 0.6071 0.7243

2 0.4328 0.5471

3 0.3321 0.4839

5 Comparison: Statistical Approach vs RNN vs GAN

For the final comparison between all the techniques explored in this work, we
opted to use another metric in addition to BLEU, that is a human judgment,
since a weblog is a composition of navigation sequence and every sequence is
something that is decided and created by a human. For this reason, we chose
5 of our colleagues with the same skills and knowledge: we showed him all the
pages of the website and the possible navigation paths. Specifically, we mix 50
real sequences and 50 generated from GAN and RNN.

Then the judges are invited to pronounce whether each of the 100 sequences
is created by human or machines. Once regarded to be real, it gets +1 score,
otherwise 0. Finally, the average score for each algorithm is calculated. The
experiment results are shown in Table 7, from which we can see the significant
advantage of GAN over the RNN and Statistical method in weblog generation.

Generation of Web Site Navigation Paths with RNN and GAN 257

Table 7. Weblog generation performance comparison

Algorithm Statistical RNN GAN

Human score 0.4335 0.5400 0.6450

BLEU 0.5811 0.6482 0.7243

6 Conclusions

In this paper, we proposed a step forward towards automatic production of high-
quality weblog using deep learning techniques, such as recurrent neural network
and generative adversarial neural networks. We provided an analysis of state of
the art, aimed to identify the techniques to be used in order to reproduce and
improve the best performances reached today with generative approaches for
discrete sequences of data. We first implemented the state of the art algorithm,
that improves the performances reached with random techniques, using data
mining and generating navigation sequences based on association rules. Then
we implemented a recurrent neural network that tries to learn the probability
distribution of the input data and is capable of predicting the right URLs to
complete a given incomplete sequence with good performances when the num-
ber of features is not very large, while it is not robust in the other case. Finally,
we developed the GAN by adding a convolutional neural network as the dis-
criminator, to allow the RNN to improve itself, applying the so-called min-max
game between the two networks. Our experiments support the hypothesis that
generative adversarial neural networks are the best families of models to handle
weblog generation and that they can outperform the recurrent models especially
when the number of feature variables increases substantially. We showed that
using both the BLEU and the Human metric, the GAN overcomes the RNN and
the statistical approach when the generator is well trained. Instead, when the
pre-train epochs for the generator are not enough or too much, the quality of
the generated sequences is lower than that of RNN, but is still higher than the
statistical one.

Future Work. In addition to the possibility of including more variables in the
training of the network that could improve the quality of the generated weblog,
we mentioned the work proposed by [3] for visualizing the statistics taken from
weblogs on a graphical representation of a particular website or app, using a
model-driven approach. With the GAN used, a future work could be to generate
new weblogs and fed the model of the website with them. Then, one could
compare two models where one of them is fed with human generated logs and
the other with the GAN logs.

258 S. Pavanetto and M. Brambilla

References

1. Basu, K.: Fake apache log generator (2015–2018). https://github.com/kiritbasu/
Fake-Apache-Log-Generator

2. Berendt, B., Spiliopoulou, M.: Analysis of navigation behaviour in web sites inte-
grating multiple information systems. VLDB J. Int. J. Very Large Data Bases 9(1),
56–75 (2000)

3. Bernaschina, C., Brambilla, M., Koka, T., Mauri, A., Umuhoza, E.: Integrating
modeling languages and web logs for enhanced user behavior analytics. In: Pro-
ceedings of the 26th International Conference on World Wide Web Companion, pp.
171–175. International World Wide Web Conferences Steering Committee (2017)

4. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using
a Laplacian pyramid of adversarial networks. In: Advances in Neural Information
Processing Systems, pp. 1486–1494 (2015)

5. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Informa-
tion Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014).
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

7. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–80 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

9. Kwon, M.: Flog, an apache log generator (2017–2018). https://github.com/
mingrammer/flog

10. Lin, C.H., Liu, J.C., Chen, C.R.: Access log generator for analyzing malicious
website browsing behaviors. In: 2009 Fifth International Conference on Information
Assurance and Security, pp. 126–129. IEEE (2009)

11. Mahoto, N., Memon, A., TEEVNO, M.: Extraction of web navigation patterns by
means of sequential pattern mining. Sindh Univ. Res. J.-SURJ (Sci. Ser.) 48(1),
201–208 (2016)

12. NASA: Nasa apache web log (1995). ftp://ita.ee.lbl.gov/html/contrib/NASA-
HTTP.html

13. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: A method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, ACL 2002, Stroudsburg, PA, USA,
pp. 311–318. Association for Computational Linguistics (2002). https://doi.org/
10.3115/1073083.1073135

14. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533 (1986)

15. Singh, N., Jain, A., Raw, R.S.: Comparison analysis of web usage mining using
pattern recognition techniques. Int. J. Data Min. Knowl. Manag. Process (IJDKP)
3, 137–147 (2013)

16. Vedaprakash, M.P., Prakash, M.P.O., Navaneethakrishnan, M.M.: Analyzing the
user navigation pattern from weblogs using data pre-processing technique. Int. J.
Comput. Sci. Mob. Comput. 5, 90–99 (2016)

17. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets
with policy gradient. In: Thirty-First AAAI Conference on Artificial Intelligence
(2017)

https://github.com/kiritbasu/Fake-Apache-Log-Generator
https://github.com/kiritbasu/Fake-Apache-Log-Generator
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1308.0850
https://doi.org/10.1162/neco.1997.9.8.1735
https://github.com/mingrammer/flog
https://github.com/mingrammer/flog
ftp://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

Emotion Detection

Scalable Real-Time Confusion Detection
for Personalized Onboarding Guides

Michal Hucko , Robert Moro(B) , and Maria Bielikova

Faculty of Informatics and Information Technologies, Slovak University
of Technology in Bratislava, Ilkovicova 2, 842 16 Bratislava, Slovakia

{michal.hucko,robert.moro,maria.bielikova}@stuba.sk

Abstract. Onboarding of new employees is a common process in all
companies. Many hours of qualified employees’ time need to be invested
to teach new employees how to use the company’s internal systems. This
process can be significantly eased by onboarding solutions leveraging
application guides. However, if not personalized, the guides can quickly
become annoying to users. This can be overcome by employing emotion
detection in real-time, but the solutions face several major challenges,
such as scalability, detection time, or model retraining. In this paper, we
describe how we tackled these challenges and implemented an emotion
detection-based personalization module in the onboarding solution Yes-
Elf. The module leverages the mouse interaction data of users to detect
their confusion. We show the scalability of our solution in the production
environment which has been deployed to three customers with more than
200 concurrent users.

Keywords: Affective computing · Confusion detection ·
Personalization · Scalability · Real-time detection · YesElf

1 Introduction

Affective computing as a research field emerged in 1995 with the publication of
Rosalind Picard [18] where she presented the idea of emotion-aware machines,
which could dramatically change the way we interact with the computers. Emo-
tions are an essential part of our everyday lives and we apply them in our commu-
nication and decision-making. Our decisions or preferences are based not only on
rational thinking and exact mathematical equations, but many times the mood,
the emotions or the feelings are the main decision makers. Therefore, to make
the machines understand the human behavior and thinking, is to make them
understand our emotions.

Affective computing deals with two main problems. The first one is how to
detect human emotions during human-computer interaction. The subfield aim-
ing to solve this problem researches various computer input sources (mouse,
keyboard, eye tracker and many others) as potential indicators of human emo-
tion. The second subfield of the affective computing deals with incorporating the
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 261–276, 2020.
https://doi.org/10.1007/978-3-030-50578-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_18&domain=pdf
http://orcid.org/0000-0002-7616-8737
http://orcid.org/0000-0002-3052-8290
http://orcid.org/0000-0003-4105-3494
https://doi.org/10.1007/978-3-030-50578-3_18

262 M. Hucko et al.

emotions into the computers. The pioneer researcher in this respect is Marwin
Minsky with his book The Emotion Machine [12]. In this paper, we address this
second problem. More specifically, we try to involve emotion thinking into the
Yeself to personalize guides during the onboarding of the users.

Project YesElf is an onboarding platform for web-based applications. The
onboarding of new users to a web application (or even more experienced users
to a new functionality within the application) is achieved by the means of per-
sonalized guides, which consist of a series of hints (guide steps) displayed as
pop-up bubbles near relevant user interface elements [9]. YesElf provides tools
for designing custom web guides and it can be integrated with any existing web-
based application by inserting a JavaScript snippet into its source code. In the
paper, we focus on the design and implementation of a production-ready emotion
detection module, which is responsible for personalization of YesElf ’s guides for
the confused users. The use of the emotion detection in this case is to ensure
that the guides are shown only to the users who might need them (because they
are confused) and not to interrupt or annoy others.

We understand confusion as “a situation in which people are uncertain about
what to do or are unable to understand something clearly”.1 Based on this def-
inition, a confusion in a web application is a moment when a user has no idea
how to continue to finish his or her task. We detect the moments of user confu-
sion based on the user mouse interaction data, with the accuracy comparable to
the state-of-the-art solutions as presented in our initial study in the confusion
detection on the web [9].

During the design and development of the production-ready confusion detec-
tion module we faced the following challenges, which are addressed in the paper:

1. As the detection is based on the mouse activity, we needed to develop a real-
time scalable mouse logger that would not put too much strain on the client
or the server.

2. Confusion detection is very context-dependent, which (at least for now) ham-
pers the use of one general model for multiple web applications. We needed
to develop a system able to detect confusion leveraging domain specific clas-
sifiers.

3. The feedback loop of a confusion detection system has to be fast, i.e., the delay
between the occurrence of a user’s confusion and the action taken by the
system has to be low. In other words, we needed the detection module to be
able to work in real-time.

4. Lastly, the model has to be able to learn and improve its accuracy over time.
Therefore, we needed to address the model retraining and create an environ-
ment for gathering the users’ feedback to the actions taken by the system
based on its assumption that a user is confused.

The rest of the paper is structured as follows. In Sect. 2 we discuss the
state-of-the-art in the onboarding and the emotion-aware systems. Next, Sect. 3

1 https://www.merriam-webster.com/dictionary/confusion.

https://www.merriam-webster.com/dictionary/confusion

Scalable Real-Time Confusion Detection for Personalized Onboarding Guides 263

describes the architecture and the implementation decisions applied in the devel-
opment of the emotion detection module. The method designed for improving
the detection model accuracy directly in the production environment is pre-
sented in Sect. 4. In Sect. 5 we describe the production integration of the module
and evaluate its scalability on the production data from three customers with
more than 200 concurrent users. We conclude the paper with Sect. 6, in which
we summarize the contributions and discuss our future work.

2 Related Work

The problem with the user onboarding is attracting attention of big companies
dealing with the new employees on a daily basis. A lot of senior employees’ time
needs to be invested to the onboarding process of new employees without any
immediate profit. The problem can be stated as follows: How can be the process of
onboarding automatised? There are various existing approaches to onboarding
applying techniques such as microlearning and gamification [7], blended and
flipped learning [8,13,22], or the use of virtual or augmented reality [6]. However,
currently there are no solutions incorporating emotions into the user onboarding.
For this reason, we cannot refer to any work done in this specific area. This opens
up the opportunity for the YesElf.

To find the systems applying emotions in the human-computer interaction, we
need to look at the domain of technology-enhanced learning (or e-learning). This
domain is similar to the user onboarding in its goal to provide users with some
new information or knowledge. According to the literature, e-learning systems
are the most popular applications of emotion detection (however, it has been suc-
cessfully used also in other domains, e.g. in usability testing [21]). A survey [20]
reviewed 26 different works of emotion and personality detection in the edu-
cational domain. Many approaches employ facial expression recognition [3,14],
other also utilize data from other sensors, e.g., EEG [11].

The work of Ashwin, Jose et al. [1] presented an e-learning system supported
by facial emotion detection system. They addressed the problem of processing
time of machine learning approaches applied in the production environment.
The facial detection methods need to process lots of image data. For this reason,
it is hard to provide fast results of predictions to the system. The authors noticed
a trade-off between the processing time and the accuracy of the method applied
in the system. They presented the implementation of their emotion detection
method on the graphical processing units (GPUs). This approach helped them
to increase the processing capability of the system up to two times.

Another application of emotion detection in e-learning is the paper of Kung-
Keat and Ng [10]. The proposed method detects the emotions of confusion, bore-
dom, and excitement based on the user inputs of keyboard and facial expressions
video. The learning materials of the system change based on the detected emo-
tion of the user. As the authors mention, it is very challenging to design a system
capable of processing the input data in multiple stages in the real time. In gen-
eral, the real-time processing problem is closely connected the long processing
time mentioned earlier.

264 M. Hucko et al.

The emotion detection-based systems are growing in popularity also in the
field of recommender systems. In a recent paper of Qian et al. [19], the authors
present the EARS emotion-aware recommender system based on a hybrid infor-
mation fusion. EARS leverages the user data from clicking activity and social
networks in order to incorporate the human emotion into the product recom-
mendations.

We can see application of mouse interaction data in various emotion-aware
approaches. For example, in [16,17] Pentel predicts the moments of user confu-
sion in a computer game based solely on the mouse movements with satisfying
accuracy. The approaches such as Pentel’s usually employ mouse features known
from the domain of biometric authentication [5].

As to the real-time mouse logging, it is (in case of web-based interfaces)
typically implemented by injecting a Java-Script snippet into the source code
of a web application. The injection can be done by the owner (developer) of the
web application or by the means of a web proxy [2] or a browser extension [23].
In addition, we can distinguish between two major mouse logging approaches:

– In case of time-based mouse logging, the mouse device needs to be constantly
checked for changes every n-milliseconds (refresh time). This approach can
reach very high precision in case of a very low refresh time. However, the
trade-off lies in the high processing time on the side of client. Sending constant
messages to the mouse results into process overload in the browser. Therefore,
it is not very suitable for us, since our goal is to provide as light-weighted
solution to the end user as possible.

– On the other hand, event-based mouse logging is more processing time
friendly. In this case, the mouse coordinates are logged only after an event.
When the mouse remains still, no event is logged. Although this app-
roach saves the processing time, it has its own limitations connected to the
JavaScript implementation of the mouse listeners. The listener only tracks
the event of a mouse move when the cursor travels distance greater than x
pixels (x varies across different browser implementations). For this reason, we
have to keep in mind the threat of a potential data loss.

To sum up, even though there are some works considering some of the aspects
of a production deployment of emotion detection systems (such as input data
processing time in [1] discussed above), most aspects (scalability, model retrain-
ing, deployment and adaptation to different contexts) rest unaddressed.

3 Infrastructure for Scalable Guide Personalization

The core functionality of YesElf is to create custom guides for any customer2

web application. It is a client-server application consisting of these main modules
(see Fig. 1):
2 Throughout the rest of the paper we use the word customer to denote the owner of

the web application who decided to integrate the YesElf. Under the term user we
understand the user of the customer’s application.

Scalable Real-Time Confusion Detection for Personalized Onboarding Guides 265

1. YesElf client. The part of the YesElf loaded to the user’s browser through
the JavaScript snippet. It is responsible for displaying the created guides.

2. YesElf guide server. The module which communicates with all running YesElf
clients. It is responsible for guide data delivery.

3. YesElf WebSocket server. It ensures the asynchronous communication from
YesElf guide server to YesElf client.

However, from the user perspective, the main interface for customers is the
YesElf editor, where the guides can be setup. Each guide consists of a series
of hints (pop-up like guide steps) attached to the HTML elements in the web
application. By default, each guide is displayed to every user, based only on
some trivial heuristics (display only first time, display after n seconds without
activity, etc.). However, this sort of guide behavior may annoy the users, as their
ability to control the user interface may vary. It is very hard to set up the rules
for guide appearance in advance and not to annoy the users over time.

To overcome this problem, we developed an emotion detection method able
to detect moments of user confusion in the real-time leveraging mouse inter-
action data [9] and integrated it into YesElf. The method processes the mouse
interaction data into mouse movements (sequences of consecutive mouse events)
and extracts a set of features, such as total distance of a mouse movement, its
duration, acceleration, etc. The features are used to train a classifier (confusion
detector) employing logistic regression.

The trained model is then used to personalize the guides. More specifically,
each time the method detects that the user is confused, the YesElf client is
notified and may take an action (e.g., prompts a user to display a list of avail-
able guides). To integrate the method into the YesElf and make it work in the
real-time (i.e., to be able to detect user’s confusion within milliseconds from
its occurrence), we implemented an emotion detection module consisting of sev-
eral components (mouse logger and confusion server being the main ones) and
extended the basic YesElf modules as follows (see Fig. 1):

1. YesElf client. It prompts the user to display the list of guides if confused
event is received. We also extended this module by mouse tracking and logging
functionality.

2. YesElf logger server. REST API responsible for storing the tracked data and
confusion detection initialization.

3. YesElf confusion server. Asynchronous process responsible for confusion
detection.

4. YesElf guide server. It receives the confused event and sends it to the client
using a WebSocket server.

3.1 YesElf Client

To run YesElf in a customer’s web application, a JavaScript snippet must be
inserted into the source code. After that each time a browser loads the web

266 M. Hucko et al.

Fig. 1. Architectural diagram of YesElf with the integrated guides personalisation
module.

application, the YesElf client is being loaded with it. The client itself its only
500 kilobytes big. This compact implementation helps us to overcome the long
processing time problem mentioned in the related works. The client has two
major responsibilities. The first one is to display the guides. The client monitors
which guides have been opened before, and which guide step needs to be dis-
played based on the implemented rules. The state information is persisted into
the local store of the browser thanks to the React implementation.

The most important part of the YesElf client from the emotion detection
perspective, is the user tracking. The YesElf client monitors the mouse move-
ments in the target web application. For this purpose, it leverages the JavaScript
mouse listeners. The whole solution closely resembles the Observer design pat-
tern. After mouse event is emitted, the mouse position is recorded into the mouse
log. The sample code used for getting the current position of the mouse within
the document is displayed in Fig. 2. The tracking frequency of the mouse logging
can be configured in the YesElf editor ranging from 0 up to 60 samples per sec-
ond (which follows from the modern browsers’ limitations). Each of the mouse
log fields is described in Table 1.

Besides the mouse position, we also track the element beneath the mouse
cursor. This kind of logging gives us the ability to leverage the sequence of
elements in the confusion detection. Moreover, this logging feature enriches the
analytical ability of YesElf, since we are able to create more in depth analysis of
user confusion based on the element activity.

Scalable Real-Time Confusion Detection for Personalized Onboarding Guides 267

Table 1. Fields and descriptions of mouse log used for recording.

Field Description

ApplicationId Field responsible for identification of target application

OrganisationId Field responsible for identification of client (organisation) the log
belongs to. Each client (organisation) can have multiple
applications which integrate YesElf

ConversationId Field responsible for session distinction

Event Type of the mouse event. One of mousemove, mouseup, mousedown,
scroll

Xpos The X coordinate of the mouse cursor within the rendered
document object model (DOM)

Ypos The Y coordinate of the mouse cursor within the rendered DOM

Timestamp The client timestamp when the log was recorded

Url The uniform resource locator where the log was recorded

UserId Identifier of the logged user in case of authenticated access

VisitorId Unique identifier of the current visitor. The field is being used in
case of anonymous application usage. Also one UserId may have
many VisitorIds. The id is being stored in the local storage of
the user’s browser

Relative The relative CSS selector for the HTML element beneath the
mouse cursor. The selector is logged for every mouse event

TagOnly The tag only CSS selector for the HTML element beneath the
mouse cursor. Logged in case of mouseup and mousedown events

Xpath The Xpath of the HTML element beneath the mouse cursor.
Logged in case of mouseup and mousedown events

ClassOnly The class only CSS selector for the HTML element beneath the
mouse cursor. Logged in case of mouseup and mousedown events

Fig. 2. Sample JavaScript code used for estimating cursor position (taking into account
also user’s scroll) in any of the modern web browsers.

268 M. Hucko et al.

One of the biggest tracking challenges we faced, was the transition of the
mouse logs to the Yeself logger server. Dispatching the log to the logger server,
each time it is captured, leads to the already mentioned processing overload on
the side of the YesElf client (in the worst case, there would be 60 post events
per each second). To minimize this processing time, we developed a batching
mechanism which samples mouse logs on the client side into the batches of
logs and dispatches them to the server once in n seconds. Also in this case,
the variable n can be configured per application in the YesElf editor. Although
this solution solves the issue with the processing time, it brings up the issue of
vanishing logs after hard navigation (i.e., changing the URL in the browser), or
closing the browser window. In these logging cases, the mouse records within
the batch in the browser memory are discarded. To overcome this problem, we
developed a mechanism sending the incomplete batch before the navigation or
window close leveraging the JavaScript ’s window beforeunload event3. This
approach sends the incomplete batch each time the browser is closed, or in case
of a hard navigation event.

Another issue connected with the user tracking of the mouse is the maximal
data bandwidth. As showed before, the mouse log incorporates the information
about the HTML element (TagOnly, ClassOnly, Relative, Xpath) and all the
other user data (VisitorId, ApplicationId, SessionId) and the application
information (ApplicationId, OrganisationId). As we send the logs in batches,
the same information repeats within logs many times. To keep the data band-
width as small as possible, we encode the fields within the batch. We leverage
the dictionary encoding method, where the target values are encoded as inte-
gers with the dictionary. To decode the batch on the server side, we incorporate
the dictionary within every batch. By employing this method, we reduced the
average batch size by 25% and minimized the impact of batch bandwidth.

3.2 YesElf Logger Server

The YesElf logger server component is responsible for mouse data storing. It
communicates with the YesElf client, by receiving the batches through the HTTP
POST request. It is a simple Django REST API 4. Before storing the data into
the ElasticSearch database cluster, the batches need to be decoded as mentioned
above. For each application, a separate month-based ElasticSearch index is being
held. We chose a non-relational highly scalable ElasticSearch database5, because
of the amount of data we need to store. For example, a customer’s application
with up to 200 active users per day can produce mouse activity of 2GB. Having
multiple customers in the same time leads up to hundreds gigabytes of data being
stored. Scalability of the ElasticSearch helps us to overcome this challenge.

Besides the data storage, the YesElf logger server is responsible for confu-
sion detection initiation. The whole confusion detection is based on user activity.

3 https://developer.mozilla.org/en-US/docs/Web/API/Window/beforeunload event.
4 https://www.django-rest-framework.org.
5 www.elastic.com.

https://developer.mozilla.org/en-US/docs/Web/API/Window/beforeunload_event
https://www.django-rest-framework.org
www.elastic.com

Scalable Real-Time Confusion Detection for Personalized Onboarding Guides 269

Every n user mouse events the logger server fires a confusion initiation message
to the YesElf confusion server. To count the active user mouse activity, YesElf
logger server counts user mouse logs in the Redis database6. After each n logs
the YesElf logger server fires a message (labeled as limitReached) to the con-
fusion server through the NATS message queue7. NATS provides asynchronous
messaging, which is the key means of communication between the components
during the detection because of the non-deterministic processing time.

3.3 YesElf Confusion Server

The confusion server is the heart of confusion detection in YesElf. It is an asyn-
chronous subscriber for the NATS message queue. Every time the limitReached
message is received, the YesElf confusion server tries to detect confusion based
on the ApplicationId, OrganisationId, VisitorId, UserId and Timestamp
extracted from the message. The online detection works as follows:

1. Data extraction. YesElf confusion server gets the user’s past activity (last
n seconds) from the ElasticSearch cluster, based on the user data from the
NATS message.

2. Model extraction. For each application, YesElf stores a unique model in the
ElasticSearch database, which is selected during the model extraction based
on the NATS message content. The models are being pre-trained and stored
in the database manually outside of the confusion server. We train the models
leveraging the Python’s scikit-learn library [15]. The trained models are
persisted to the byte files, which are stored in the ElasticSearch, using the
Python’s pickle library.

3. Feature calculation. We calculate mouse features from the last n seconds of
the user activity needed for the confusion model to be applied on.

4. Detection. We classify the computed feature vector from the previous step as
an occurrence of user confusion or no confusion.

Each result of confusion classification is stored in a dedicated ElasticSearch
index. This enables us to evaluate the performance of the model, and reevaluate
the predictions. We discuss the retraining part in a later section. In case of
a positive confusion prediction (i.e., a moment of user confusion is detected),
the confusion server sends a NATS message (labeled as confused) to the guide
server component. Each type of a NATS message has its own dedicated queue.

3.4 YesElf Guide Server

The Yeself guide server is a JavaScript API written in the express framework8.
Besides its other functionality, it is implemented as an asynchronous subscriber
for the confused NATS message sent from the YesElf confusion server. After it
6 www.redis.io.
7 www.nats.io.
8 www.expressjs.com.

www.redis.io
www.nats.io
www.expressjs.com

270 M. Hucko et al.

receives the message, the guide server finds the right YesElf client the prediction
is addressed to, leveraging the message data.

It communicates with all running YesElf clients through the WebSocket com-
munication protocol. We run a separate YesElf web socket server instance ded-
icated for this kind of communication. Moreover, the YesElf guide server is
responsible for supplying the right guides with the guide steps to the client.
The guide server is a highly scalable component. Because there are thousands
of concurrently running clients, we run multiple instances of the guide server.

4 Model Retraining

The main challenge in our confusion detection approach is the context depen-
dency. Having one confusion detection model for all kinds of applications is inef-
ficient as we reach much lower accuracy in prediction. To overcome this problem,
we must train separate confusion classifiers for each context (customer’s appli-
cation). To implement this solution in the production environment, we decided
to store the trained models in the ElasticSearch. Using the pickle library, we
can easily load the demanded model on the side of YesElf confusion server.
Moreover, we can store the historical models to compare the results.

To get more accurate results of user confusion detection, YesElf is capable
of retraining the existing confusion models. However, to retrain the models, we
need to gather labeled data from the users which will serve as new training data.
For this purpose, we proposed and implemented a feedback mechanism described
in this section.

4.1 YesElf Context Help

Before discussing the model retraining mechanism, we must present the way the
YeslElf guides are displayed to the confused users. When YelElf is integrated
into a target application, the application is enhanced with a small HTML element
called a YesElf context help. The design of the element is fully configurable and
it can be placed anywhere in the target web application (in most cases in one
of the corners). After clicking on the element, a small list with YesElf guides
(internally referred as tours) pops up. An opened context help with the guides
list for a given context9 is shown in Fig. 3.

The default state of the context help is closed, meaning that the whole guide
list stays hidden until the user clicks on the context help. As the YesElf client is
responsible for the guide visualization, each time it receives a message from the
guide server through the websocket server about a user being confused, it fires
up one of the following reactions:

1. Context help shake. In case a user is detected to be confused, the context
help shakes up n times (one shake per second). The number of shakes can be
configured in the YesElf editor.

9 Under the term context we understand the URL for which the context help is dis-
played, as each guide is situated at a specific URL.

Scalable Real-Time Confusion Detection for Personalized Onboarding Guides 271

Fig. 3. Demonstration of an opened YesElf context help with a list of guides (tours)
for a given context (URL).

2. Pop up question. In case a user is detected to be confused, a pop up question
emerges next to the context help with the text Do you need help? and two
buttons Yes and No. If the user clicks on No, nothing happens and the ques-
tion disappears. If the user clicks on Yes, the context help displays the guide
list.

To prevent too much user distraction the confusion reaction timestamp is
cashed in the browser local storage and the application owner can specify a min-
imal time distance between two consecutive positive confusion reactions. For the
moment, we did not analyse the impact of the proposed confusion reactions on
the end users and their behavior. However, the experiences from the web appli-
cations where the YesElf is deployed suggest that the users tend to click on the
context help even without any system prompt when they are not sure how to
continue with their task. The proposed confusion reactions should notify also
the users that would not otherwise click on the help (even when confused) and
prompt the others to click on the context help sooner and thus help them to
finish their task in less time.

4.2 Gathering User Feedback

Each time the YesElf logger server initiates the confusion prediction event, it
generates a so called predictionId. This identifier is sent through all the com-
ponents and refers to exactly one prediction on the side of YesElf confusion
server. If the detection ends up with a result that the target user is not being
confused, the predictionId is recorded to the confusion index with the rest of
the confusion log. However, if the user ends up being detected as confused, the
predictionId is propagated to the YesElf client and all the following user activ-
ity is labeled with it. In this case, the predictionId has a specified expiration
time, configurable in the YesElf editor.

272 M. Hucko et al.

The goal of the predictionId propagation is to monitor what the user does
after the confusion reaction is fired. One of the following reactions are possible:

1. Nothing. The user ignores any confusion reaction, or he or she closes the pop
up question.

2. Reaction accepted. The user reacts to the action, by either clicking on Yes in
the pop up question, clicking on the shaking context help, or clicking on the
context help n seconds after the shake.

3. Reaction with guide opening. This is the extension of the previous reaction
followed by opening one of the provided guides.

4. Reaction with guide opening and interaction. This is the extension of the
previous reaction followed by interacting with the opened guide (by entering
the n-th of its m guide steps).

5. Reaction with guide finishing. This is the extension of the previous reaction
followed by finishing the opened guide.

These reactions help us label the cases when the model detects users to be
confused either as true positive or false positive. If the user does Nothing, it is
clearly a false positive case. However, the Reaction accepted reaction from a user
can be easily mistaken with just the curiosity of a user after shaking is noticed
(or the question pops up). Also the opening of a guide can just be the result of
a curiosity. This can be partially filtered out based on the user history; if a user
opens an already seen guide, it is probably not just from the curiosity. The most
reliable are the last two reactions.

The false negative cases can be labeled based on the users’ clicks on the
context help when no prompt is presented to them. Alternately, a question can
pop up at random and ask them if they feel confused. However, this is not always
possible to do in a production scenario as it can lower the user experience.

After gathering enough data from the confusion model, the owner of the
application is able to run retraining of the model. The retraining part can be
initiated from the YesElf editor by starting a dedicated Python job on a confu-
sion server. The job trains the model and stores it into the ElasticSearch cluster.
After the retraining, the owner is able to choose the model in the YesElf editor.

It is important to point out that the retraining part of the YesElf is still
under the development and has not yet been evaluated.

5 Production Integration

As previously mentioned, the guide personalization module is a part of the YesElf
project developed by the Brainware company10. It is being developed with three
environments: development, acceptation, and production. The whole development
part takes place in the development environment. Each time a new feature is
implemented, the code is checked by someone else than its author (a researcher
and also a developer) during the code review. After the features are accepted, the

10 www.yeself.com.

www.yeself.com

Scalable Real-Time Confusion Detection for Personalized Onboarding Guides 273

development code base is deployed to acceptation environment. Here the integra-
tion, unit and acceptance tests are run. After the successful run of all the tests,
the code base is deployed to the production, ready for the clients. Each compo-
nent described in the previous sections is a separate dedicated Docker container.
For the container orchestration we use the Docker Swarm11. All the services are
easily scalable by running on multiple hosts. For monitoring the health of the
application, containers log the activity directly into the ElasticSearch cluster.

Currently, three customers use the guide personalization module of the YesElf
with more than 200 concurrent users. In Fig. 4, we can see the aggregated count
of mouse logs being stored to the ElasticSearch cluster every 30 s from a chosen
day (the figure shows a time window of approximately 15 min between 16:03 and
16:19). The graph was taken from the Kibana application12, an analytical tool
monitoring the state of the ElasticSearch cluster. In the figure, we can see up to
2500 concurrent logs being stored to the database every 30 s. This capability
supports the scaling potential of the logging solution.

Fig. 4. The aggregated count of mouse logs being stored to the ElasticSearch cluster
every 30 s (during a time window of approximately 15 min between 16:03 and 16:19).
The graph was taken from Kibana, an analytical tool for ElasticSearch.

Figure 5 demonstrates the confusion detection capability of the system. It
shows a daily count of predictions for one of the customers. We can see up to
10 000 predictions per day (more than 1000 predictions per working hour). The
distribution reflects the common behavioral pattern of the company as employees
work from Monday to Friday.

So far, the accuracy of the confusion detection has been evaluated in the con-
trolled conditions of a user study [9] employing also eye tracking [4] for compar-
ison. The achieved results are comparable to the state-of-the-art in this domain;
however, to maintain the accuracy in different web applications, the model needs
to be retrained for each specific context.

11 https://docs.docker.com/engine/swarm/.
12 www.elastic.co/products/kibana.

https://docs.docker.com/engine/swarm/
www.elastic.co/products/kibana

274 M. Hucko et al.

Fig. 5. Histogram of daily predictions for a specific YesElf customer. A standard work-
ing week is from Monday (e.g., 2019-10-21) to Friday (e.g., 2019-10-25). There was
a holiday on Friday, November 1, which explains the low number of predictions that
were made that day.

6 Conclusions and Future Work

In this paper, we introduced a guide personalization module based on emo-
tion detection, which we integrated and deployed into an existing system—the
onboarding platform YesElf. Our module leverages the mouse interaction data
to detect the moments of users’ confusion in the real time. The confused users
are provided with the YesElf guides to help them overcome their confusion.

The production deployment of emotion detection systems is accompanied
by many challenges, such as scalable user input logging, real-time prediction,
model retraining and adaptation to new contexts, which are poorly addressed
by the existing works. Our main contributions lie in tackling these problems.
In the paper, we described the architecture for scalable guides personalization
– the whole solution is scalable, orchestrated and containerised Docker imple-
mentation. The detection takes place on a dedicated server. To ensure prompt
confusion detection and consequent system reaction (in order of tens to hun-
dreds of milliseconds) the confusion detection module leverages asynchronous
message passing queues. We demonstrated the capability of our solution to scale
and provided analytical insights to the logging component of the module.

Currently, the biggest limitation of the system is the performance of the con-
fusion method itself. Even though our method achieves results comparable to
the state-of-the-art solutions [9], it is obvious that the method is very context
(application) dependent. It means that it reaches lower accuracy in applications
for which it was not specifically trained. As a consequence, to make the predic-

Scalable Real-Time Confusion Detection for Personalized Onboarding Guides 275

tions as accurate as possible, we need to gather labeled data for each application,
in which we wish to use the confusion detection method. Addressing this prob-
lem, we developed a model retraining mechanism based on the implicit feedback
of the users (followed after a positive confusion prediction). Currently, we are
working on evaluation of this approach.

Besides the evaluation of the model retraining, we plan to more closely exam-
ine the ways of prompting the confused users. At the moment, we are evaluating
the shake and the popup question options as described in Sect. 4.1.

Acknowledgements. This work was partially supported by the Slovak Research and
Development Agency under the contracts No. APVV-15-0508, APVV-17-0267 and by
the Scientific Grant Agency of the Slovak Republic, grants No. VG 1/0667/18 and VG
1/0725/19. The authors would also like to thank the company Brainware for supporting
their research.

References

1. Ashwin, T., Jose, J., Raghu, G., Reddy, G.R.M.: An e-learning system with mul-
tifacial emotion recognition using supervised machine learning. In: 2015 IEEE 7th
International Conference on Technology for Education (T4E), pp. 23–26. IEEE
(2015)

2. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the user’s every move: user activity
tracking for website usability evaluation and implicit interaction. In: Proceedings
of the 15th International Conference on World Wide Web, WWW 2006, New York,
NY, USA, pp. 203–212. Association for Computing Machinery (2006). https://doi.
org/10.1145/1135777.1135811

3. Bahreini, K., Nadolski, R., Westera, W.: Towards multimodal emotion recogni-
tion in e-learning environments. Interact. Learn. Environ. 24(3), 590–605 (2016).
https://doi.org/10.1080/10494820.2014.908927

4. Bielikova, M., et al.: Eye-tracking en masse: Group user studies, lab infrastructure,
and practices. J. Eye Mov. Res. 11(3) (2018). https://doi.org/10.16910/jemr.11.3.
6

5. Chudá, D., Krátky, P., Burda, K.: Biometric properties of mouse interaction fea-
tures on the Web. Interact. Comput. 30(5), 359–377 (2018). https://doi.org/10.
1093/iwc/iwy015

6. Funk, M., Bächler, A., Bächler, L., Kosch, T., Heidenreich, T., Schmidt, A.: Work-
ing with augmented reality?: A long-term analysis of in-situ instructions at the
assembly workplace. In: Proceedings of the 10th International Conference on PEr-
vasive Technologies Related to Assistive Environments, pp. 222–229, PETRA 2017.
ACM, New York (2017). https://doi.org/10.1145/3056540.3056548

7. Göschlberger, B., Bruck, P.A.: Gamification in mobile and workplace integrated
microlearning. In: Proceedings of the 19th International Conference on Information
Integration and Web-based Applications & Services, iiWAS 2017, pp. 545–552.
ACM, New York (2017). https://doi.org/10.1145/3151759.3151795

8. Hewett, S., Becker, K., Bish, A.: Blended workplace learning: the value of human
interaction. Educ.+ Train. 61(1), 2–16 (2019)

9. Hucko, M., et al.: YesELF: personalized onboarding for web applications. In:
Adjunct Publication of the 27th Conference on User Modeling, Adaptation and
Personalization, pp. 39–44. ACM (2019)

https://doi.org/10.1145/1135777.1135811
https://doi.org/10.1145/1135777.1135811
https://doi.org/10.1080/10494820.2014.908927
https://doi.org/10.16910/jemr.11.3.6
https://doi.org/10.16910/jemr.11.3.6
https://doi.org/10.1093/iwc/iwy015
https://doi.org/10.1093/iwc/iwy015
https://doi.org/10.1145/3056540.3056548
https://doi.org/10.1145/3151759.3151795

276 M. Hucko et al.

10. Kung-Keat, T., Ng, J.: Confused, bored, excited? An emotion based approach to
the design of online learning systems. In: Fook, C.Y., Sidhu, G.K., Narasuman, S.,
Fong, L.L., Abdul Rahman, S.B. (eds.) 7th International Conference on Univer-
sity Learning and Teaching (InCULT 2014) Proceedings, pp. 221–233. Springer,
Singapore (2016). https://doi.org/10.1007/978-981-287-664-5 19

11. Lin, F.R., Kao, C.M.: Mental effort detection using EEG data in e-learning con-
texts. Comput. Educ. 122, 63–79 (2018). https://doi.org/10.1016/j.compedu.2018.
03.020

12. Minsky, M.: The Emotion Machine: Commonsense Thinking, Artificial Intelligence,
and the Future of the Human Mind. Simon and Schuster (2007)

13. Nederveld, A., Berge, Z.L.: Flipped learning in the workplace. J. Workplace Learn.
27(2), 162–172 (2015)

14. Paxiuba, C.M., Calado, J., Lima, C.P., Sarraipa, J.: CADAP: a student’s emo-
tion monitoring solution for e-learning performance analysis. In: 2018 International
Conference on Intelligent Systems (IS), pp. 776–783, September 2018. https://doi.
org/10.1109/IS.2018.8710542

15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12(Oct), 2825–2830 (2011)

16. Pentel, A.: Employing think-aloud protocol to connect user emotions and mouse
movements. In: 2015 6th International Conference on Information, Intelligence,
Systems and Applications (IISA), pp. 1–5. IEEE (2015)

17. Pentel, A.: Patterns of confusion: using mouse logs to predict user’s emotional
state. In: UMAP Workshops (2015)

18. Picard, R.W.: Affective Computing. MIT Press (2000)
19. Qian, Y., Zhang, Y., Ma, X., Yu, H., Peng, L.: Ears: emotion-aware recommender

system based on hybrid information fusion. Inf. Fusion 46, 141–146 (2019)
20. Santos, O.C.: Emotions and personality in adaptive e-Learning systems: an affec-

tive computing perspective. In: Tkalčič, M., De De Carolis, B., de de Gemmis, M.,
Odić, A., Košir, A. (eds.) Emotions and Personality in Personalized Services. HIS,
pp. 263–285. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31413-
6 13

21. Stefancova, E., Moro, R., Bielikova, M.: Towards detection of usability issues by
measuring emotions. In: Benczúr, A., et al. (eds.) New Trends in Databases and
Information Systems, pp. 63–70. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00063-9 8

22. Thai, N.T.T., De Wever, B., Valcke, M.: The impact of a flipped classroom design
on learning performance in higher education: looking for the best “blend” of lec-
tures and guiding questions with feedback. Comput. Educ. 107, 113–126 (2017)

23. Vigo, M., Harper, S.: Real-time detection of navigation problems on the world
‘wild’ web. Int. J. Hum.-Comput. Stud. 101, 1–9 (2017). https://doi.org/10.1016/
j.ijhcs.2016.12.002

https://doi.org/10.1007/978-981-287-664-5_19
https://doi.org/10.1016/j.compedu.2018.03.020
https://doi.org/10.1016/j.compedu.2018.03.020
https://doi.org/10.1109/IS.2018.8710542
https://doi.org/10.1109/IS.2018.8710542
https://doi.org/10.1007/978-3-319-31413-6_13
https://doi.org/10.1007/978-3-319-31413-6_13
https://doi.org/10.1007/978-3-030-00063-9_8
https://doi.org/10.1007/978-3-030-00063-9_8
https://doi.org/10.1016/j.ijhcs.2016.12.002
https://doi.org/10.1016/j.ijhcs.2016.12.002

Creating and Capturing Artificial
Emotions in Autonomous Robots

and Software Agents

Claus Hoffmann1(B) and Maria-Esther Vidal2

1 Research Group Robots and Software Agents with Emotions,
Sankt Augustin, Germany
hoffmann.claus@web.de

2 TIB Leibniz Information Centre for Science and Technology,
Hannover, Germany
Maria.Vidal@tib.eu

Abstract. This paper presents ARTEMIS, a control system for
autonomous robots or software agents. ARTEMIS is able to create and
capture artificial emotions during interactions with its environment, and
we describe the underlying mechanisms for this. The control system also
realizes the capturing of knowledge about its past artificial emotions.
A specific interpretation of a knowledge graph, called an Agent Knowl-
edge Graph, represents these artificial emotions. For this, we devise a
formalism which enriches the traditional factual knowledge in knowl-
edge graphs with the representation of artificial emotions. As proof of
concept, we realize a concrete software agent based on the ARTEMIS
control system. This software agent acts as a user assistant and exe-
cutes the user’s orders. The environment of this user assistant consists of
autonomous service agents. The execution of user’s orders requires inter-
action with these autonomous service agents. These interactions lead to
artificial emotions within the assistant. The first experiments show that
it is possible to realize an autonomous agent with plausible artificial emo-
tions with ARTEMIS and to record these artificial emotions in its Agent
Knowledge Graph. In this way, autonomous agents based on ARTEMIS
can capture essential knowledge that supports successful planning and
decision making in complex dynamic environments and surpass emotion-
less agents.

Keywords: Autonomous agents · Artificial emotions · Agent
Knowledge Graphs

1 Introduction

Data-driven technologies in conjunction with smart infrastructures for manage-
ment and analytics, increasingly offer huge opportunities for improving qual-
ity of life and industrial competitiveness. Semantic data models like RDF and
OWL, have been proposed to represent knowledge in data-driven systems. Albeit
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 277–292, 2020.
https://doi.org/10.1007/978-3-030-50578-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_19&domain=pdf
http://orcid.org/0000-0002-9195-2917
http://orcid.org/0000-0003-1160-8727
https://doi.org/10.1007/978-3-030-50578-3_19

278 C. Hoffmann and M.-E. Vidal

expressive, the aim of these models is to represent entities, and the meaning of
their features and relations. The Problem and Proposed Solution. Our
research is guided by the following questions: i) how to create artificial emotions
and ii) how to capture these emotions in a knowledge graph of an agent. For
the creation of artificial emotions, we developed the ARTEMIS robot or software
agent control system. The Component Process Model (CPM) of the emotion psy-
chologist Scherer [22] and the Psi theory of the cognitive psychologist Dörner [7]
provide the theoretical basis for ARTEMIS. Thus, ARTEMIS relies on a solid
theoretical background, which we briefly introduce in Sect. 3. Knowledge bases
are essential components of autonomous robots or software agents. They are the
cornerstone for their planning and decision-making. There are several ways to
realize such knowledge bases. We suggest for this purpose a particular version
and interpretation of knowledge graphs or Agent Knowledge Graph. This par-
ticular version and interpretation of knowledge graphs are designed to capture
relevant knowledge for autonomous agents. It allows autonomous robots or soft-
ware agents to mimic human“problem solving” in complex environments to a
certain extent.

Knowledge graphs [9] are in general, becoming more and more important:
Large companies such as Google, Facebook, or Microsoft now all operate their
interpretations of knowledge graphs. The interpretation of Google’s knowledge
graph is optimized to enrich search results with semantic information. The inter-
pretation of Facebook is designed to map social relationships. Our interpretation
of knowledge graphs, we call Agent Knowledge Graph, is intended to support
autonomous robots and software agents in planning and decision making in com-
plex environments.

Our Contributions. We present the design of our robot or software agent
control system ARTEMIS. The control system is capable of creating and cap-
turing artificial emotions. In this paper, the basis for the creation of artificial
emotions is the appraisal of interactions of the agent with other autonomous
agents. Both cognitive processes and need processes are involved in realizing
these appraisals. We demonstrate how ARTEMIS implements both types of pro-
cesses. It is also vital that the ARTEMIS control system contains an Agent
Knowledge Graph which stores the emotions and makes them available for later
planning and decision-making processes. We further discuss the semantic and
the episodic part of the Agent Knowledge Graph and provide a formalism to
store artificial emotions. We have conducted a user study, and the observed
results suggest that human test subjects consider the artificial emotions gen-
erated by ARTEMIS plausible. Further experiments evidence that knowledge
about past artificial emotions contained in the Agent Knowledge Graph helps
autonomous agents to successfully plan and make decisions in complex dynamic
environments, outperforming, thus, emotion-free agents.

We have organized the paper as follows. In Sect. 2, we will give an overview of
possible application areas of ARTEMIS, using a motivating example. In Sect. 3,
we look at the foundations of how emotions are created and stored in an Agent
Knowledge Graph. In Sect. 4, we devise an Agent Knowledge Graph able to
model the problem presented in the motivating example. In Sect. 5, we discuss

Creating and Capturing Artificial Emotions in Autonomous Robots 279

Fig. 1. Motivating example. (a) An autonomous virtual assistant executes a user’s
order in a complex environment. For this purpose, the virtual assistant selects the most
suitable service agents, which in turn are also autonomous. Several interactions take
place between the user assistant and the service agents. (b) The autonomous virtual
assistant appraises these interactions. These appraisals create artificial emotions. For
reasons of comprehensibility, we present the created emotions in this figure as text. In
truth, they are encoded as points in a space that correspond to these text representa-
tions. We will discuss this later in this paper. (c) The resulting artificial emotions are
associated in the Agent Knowledge Graph with the corresponding interaction events
and with the causative service providers. The Assistant thus gains an attitude towards
the Service Agents over time, which provides useful information for its future selections
of cooperation partners.

related approaches and their relevance to the ARTEMIS control system. In
Sect. 6, we present our experimental prototype and describe our experimental
results. In Sect. 7, we discuss our conclusions and our future work.

2 Motivating Example

We motivate our approach using a typical situation that may be present in a
wide variety of data-driven scenarios. Examples of application scenarios include
the selection of a) machines in future ‘Smart Factories’, b) means of transport in
‘Supply Chains 4.0’, and c) information sources by an autonomous information
broker in a ‘decentral dataspace’ like an ‘Industrial Data Space’. The exem-
plary application scenario moves within the context of the so-called Service Web
(see [8]). With this exemplary scenario, we can study principal problems of ser-
vice selection without getting lost in the details of concrete application areas.
The process of the exemplary application scenario is as follows (see Fig. 1a). An
autonomous agent takes on the role of an autonomous virtual assistant for its
user. The autonomous virtual assistant accepts the orders of its human user.
To execute an order, the autonomous virtual assistant searches its knowledge
base for a suitable plan. A plan defines a list of steps. For each plan step, the
autonomous virtual assistant has to find a suitable service agent that performs
the step. Autonomous service agents offer their services at different prices and
are differently trustworthy. The autonomous virtual assistant has to decide which
service agent fits best with the current situation. The following conditions form
the basis for the exemplary application scenario:

280 C. Hoffmann and M.-E. Vidal

1. In complex dynamic environments (e.g., ‘Industry 4.0’ applications) con-
ditions for cooperation with autonomous service agents, can change from
time to time. Present cooperation partners may leave the environment of the
autonomous virtual assistant, and others may arrive. As a result, the search
for suitable cooperation partners becomes a permanent task.

2. The cooperation partners of the autonomous virtual assistant are autonomous
themselves and try to maximize their outcomes. Therefore, the results of
cooperation are often uncertain. The autonomous virtual assistant always
has to expect that cooperation partners do not meet the agreements and
provide results that do not fulfill expectations. This violation of expectations
can have numerous reasons. One reason could be that cooperation partners
are not capable of delivering their promised services. Another reason could
be that they did not understand their mandate correctly. It is also possible
that they deliberately do not execute the job correctly in order to gain an
advantage for themselves.

These conditions provide the basis for a complex interaction between the assis-
tant and the service agents. Appraisals of these interactions create corresponding
emotions in the virtual assistant. For example, ‘Excited’ when something goes
well in contrast to expectations (and the result was very important) and ‘Dis-
dainful’ when a cooperation partner performs poorly (and it is possible to balance
this out) (see Fig. 1b). Through numerous interactions with the service agent,
the assistant gains experience on the reliability of cooperation partners. Emo-
tions are created and stored in the Agent Knowledge Graph of the assistant (see
Fig. 1c). Over time, the assistant gains essential knowledge that helps for future
effective planning and decision-making. Conventional approaches without artifi-
cial emotions would only determine whether an interaction was successful or not.
The emotion-based approach, on the other hand, is much more differentiated.
Emotions summarize the agent’s assessment of the entire underlying situation.
An essential function of emotions is to adapt the planning and decision-making
of an autonomous actor to a particular situation. Scherer [22] describes this
as follows: “Emotions are mechanisms that enable the individual to adapt to
constantly and complexly changing environmental conditions” (from [22]). This
applies to both current and remembered emotions.

3 Creating and Capturing Artificial Emotions

We first discuss how artificial emotions are created and their meaning. Then, we
define the problem of capturing artificial emotions in Agent Knowledge Graphs.

3.1 Preliminaries

We present the ARTEMIS control system for creating artificial emotions. An
Agent Knowledge Graph stores these created emotions. ARTEMIS resorts to
the theoretical basis of the Scherer’s [22] Component Process Model (CPM)

Creating and Capturing Artificial Emotions in Autonomous Robots 281

Fig. 2. Fundamentals for the creation of emotions. (a) Scherer’s appraisal pat-
tern [22] defines steps that have to be taken in order for emotions to form. For this
purpose, the appraisal pattern defines appraisal objectives and appraisal criteria. The
appraisal criteria subdivide the appraisal objectives. Emotions are created by applying
the appraisal criteria to analyze events. However, Scherer’s model does not describe
any concrete mechanism on how appraisals should take place. (Eva Hudlicka inspired
this picture, see [14]). (b) In ARTEMIS Dörner’s Psi theory is the basis to realize
Scherer’s appraisal pattern. The Figure shows an overview of the structure of Psi (cut-
out and own translation from [4]). The Psi theory defines an architecture of autonomous
agents. This Figure primarily describes the interaction of need processes and cognitive
processes. As this Figure shows, Dörner uses the concepts of motive and intention. We
cannot discuss here in detail what exactly is meant by this. For the sake of simplicity,
these terms could be replaced for the moment by the term goal.

and the Dörner’s [7] Psi theory. In the Component Process Model, Scherer [22]
defines an appraisal pattern for events. The Scheer’s and Dörner’s approaches
are presented next.

Scherer’s Appraisal Pattern for Events. Scherer (e.g., [20–22]) describes
the objectives of the appraisal process of events: “There are four major appraisal
objectives that an organism needs to adaptively react to a salient event: (1) How
relevant is this event? Does it directly affect me or my social reference group?
(relevance); (2) What are the implications or consequences of this event and how
do they affect my well-being and my immediate or long-term goals? (implica-
tions); (3) How well can I cope with or adjust to these consequences? (coping
potential); (4) What is the significance of this event for my self-concept and for
social norms and values? (normative significance).” (Scherer [22, p. 50]) Scherer
subdivides the four appraisal objectives into more detailed appraisal criteria (see
Fig. 2a). The appraisal criteria include novelty, valence, goal relevance, urgency,
goal congruence, responsible agent, coping potential, and norms (see Scherer [22,
p. 51]). With his proposal, Scherer presents a theoretically sound appraisal pat-

282 C. Hoffmann and M.-E. Vidal

tern. However, he does not give any precise information on how to realize it.
Scherer, however, gives hints on the boundary conditions for implementation;
he also emphasizes the existence of needs and goals as essential prerequisites
for the appraisals of events. Further, Scherer’s criteria point out that computa-
tional agents who have no needs or goals cannot have real emotions (Scherer [22,
p. 52]).

3.2 An Outline of Dörner’s Psi theory

The Psi theory defines an architecture of autonomous systems (see, e.g., [5–
7]). For experimental purposes, Dörner and his research team have realized the
Psi theory as a computer simulation. The following scenario is the basis of this
computer simulation: a virtual robot must protect its life on an island and at
the same time, fulfill a task. The robot can alternatively be controlled by human
test subjects or by Dörner’s system. Dörner demonstrates that in a simulated
environment, the realization of the Psi theory exhibits a similar behavior as the
human test subjects.

Dörner’s Psi theory shows that it is advantageous whenever needs are the
basis of a control system of autonomous agents. For the realization of needs,
Dörner proposes a simple model. Dörner models the ‘need processes’ using tanks
that can have varying filling levels. If ‘needs’ are satisfied, the corresponding
tanks are full. Each tank possesses an inlet and an outlet. Successes, reported by
efficiency signals, raise the fill level of the tanks. Failures, reported by inefficiency
signals, lower the level. Figure 2b shows needs represented by tanks. The actual
fill level of these tanks (and thereby the actual strength of the needs) influences,
for example, the arousal level as well as different behavior tendencies of the
agent.

In the Psi theory, needs such as energy, integrity, or belonging activate goals
that an agent must achieve in order to meet the needs. Sometimes some of these
goals compete with each other and cannot be achieved at the same time. In
this case, the control system must select a goal. The basis for a selection is how
strongly the goals are activated and how difficult it is to achieve them. Further,
there is a selection threshold that regulates the change of goals; it prevents an
agent from switching between targets too quickly.

3.3 Creation of Artificial Emotions in ARTEMIS

We expand the knowledge of events that have taken place to include knowl-
edge about the artificial emotions associated with them. To create emotions, we
devise the ARTEMIS control system for autonomous agents (see Fig. 3). Artifi-
cial emotions are the result of the agent’s appraisals of events (see Fig. 4a). First,
we discuss the components of the ARTEMIS control system. As a starting point,
we present the need system which is the basis of the ARTEMIS approach. This
need system generates values for the parameters ‘Pleasure’, ‘Arousal’, and ‘Dom-
inance’. The parameter values generated by the need system are then mapped

Creating and Capturing Artificial Emotions in Autonomous Robots 283

Fig. 3. The ARTEMIS architecture. An overview of the structure of the ARTEMIS
control system. The Dörner‘s Psi theory represents the basis for many essential com-
ponents of this architecture (shown in the black parts of the Figure). In ARTEMIS, an
Agent Knowledge Graph realizes parts of the long term and protocol memory of the
Dörner’s Psi theory (see Fig. 2b). In contrast to the Dörner‘s approach, ARTEMIS has
a specific appraisal component which appraises events based on both cognitive pro-
cesses and need processes. Based on these appraisals, ARTEMIS creates artificial emo-
tions. The results of these appraisals influence the ‘decision-making/planning’, or ‘goal
selection’ components of the control system and modulate their effects (red arrows).
An Agent Knowledge Graph captures these artificial emotions. (the red parts of the
Figure are ARTEMIS specific realizations) (Color figure online)

to the PAD cube of emotions and define emotions there (Fig. 4b). Then, we dis-
cuss how the Dörner’s Psi theory can realize the appraisal pattern defined in the
Scherer’s theory.

The Need System of ARTEMIS. Here, we present seven needs captured in
the ARTEMIS control system. Why does our control system work with these
seven needs as opposed to the Psi architecture? The answer is: Dörner uses the
needs to be found in Fig. 2b in the context of psychological research questions.
We do not conduct psychological research but build autonomous agents within
the scope of artificial intelligence applications. So, we have adapted the needs
of the Dörner’s Psi theory to ARTEMIS. The chosen needs are better suited to
our research questions; they are as follows:

1. Preserve existence (e.g., execute orders, make sure that services can be paid),
2. Avoid pain (for robots it could mean to avoid structural damages, for software

agents it could mean not spending too much money),
3. Be agile (change methods and maybe partners from time to time, get neither

bored nor boring),
4. Affiliation (the need for robust social integration and a good relationship with

others),

284 C. Hoffmann and M.-E. Vidal

5. Certainty (being knowledgeable about the environment. Certainty results
from the ability to explain and predict events based on knowledge about
the environment),

6. Competence (effectiveness and the ability to deal with real-world problems),
7. Avoid damages (for robots, it means maintaining machines or buildings and

not overloading machines; for software agents, it represents the ability of not
making decisions that endanger the environment).

The ARTEMIS emotion model uses a dimensional theory of emotions [18].
Different emotions are characterized in terms of the three dimensions of a PAD
cube (see Fig. 4b). The three dimensions are described by the parameters: “Plea-
sure”, “Arousal”, and “Dominance”. The values for these parameters are pro-
vided by the need system in the following way.

– Pleasure - Rising and falling of the strength of needs determine the level of
pleasure.

– Arousal - A combination of the strengths of all needs determines the level of
arousal.

– Dominance - The levels in the tank of the need for certainty and the need for
competence determine the dominance of the agent.

Let Eff, Ineff, Cert, Comp be efficiency, inefficiency, certainty, and compe-
tence, respectively. Then, the former parameter values are defined as follows:

for (i= 1 to NumberNeeds)
L(Need [i]) := W(Ef f)∗ S igna l (E f f) − W(I n e f f)∗ S igna l (I n e f f)
L(Need [i]) := Max(0 ,Min (1 ,L(Need [i]))
Need [i] := ln (1+L(Need [i]))
Arousal := ln (1+(Need [i]) ∗ W[i])
P leasure := W(Ef f)∗ S igna l (E f f) − W(I n e f f)∗ S igna l (I n e f f)
Dominance := Need [Cert] ∗ (1 − Need [Comp])

The strength of the needs depends on the corresponding levels (represented
with the variable L) of the associated need tanks. The levels of the need tanks
are calculated continuously. The level can only take values between 0 and 1. The
efficiency and inefficiency signals have a weight W, which models the strength
of their impacts (see [5]).

Artificial Emotions Based on PAD Parameters. The combination of PAD
parameters forms a cube, as shown in Fig. 4b. The values of the parameters cor-
respond to points in this cube. In the literature there are different proposals for
mappings the points of the PAD cube to emotions. For our approach, we lean
on the emotion mapping from Mehrabian [17,18]. Mehrabian considers only
octants (subcubes) of the PAD cube. However, it makes perfect sense to name
the extreme points of the PAD cube after these octants. So-called dimensional
approaches make it possible to define vague boundaries of emotion categories.
In our approach, the intensity of emotions increases from the center to the edges

Creating and Capturing Artificial Emotions in Autonomous Robots 285

Fig. 4. Creation of artificial emotions in ARTEMIS. (a) Dörner’s Psi theory is
the basis for cognitive and need-based evaluations of events. In this way, ARTEMIS
realizes the Scherer’s appraisal pattern. The appraisal processes generate values for the
parameters (P)leasure, (A)rousal, and (D)ominance. (b) The values of these parameters
determine points on or in a cube. ARTEMIS maps these points to artificial emotions.
Mehrabian’s dimensional emotion theory [17,18] inspires this mapping.

of the cube. According to Peter Gaerdenfors [10, p. 48], the PAD cube equips
emotions with meaning. The PAD parameters receive their values through need
processes; as a consequence, the artificial emotions defined by ARTEMIS, finally,
receive their meaning through need processes. An essential aspect of our app-
roach is that the representations of the artificial emotions of ARTEMIS are not
meaningless strings, but are grounded in the corresponding need processes.

Scherer’s Appraisal Pattern in ARTEMIS. Some appraisal steps that
Scherer defined (see Fig. 2a) can be realized directly or indirectly by the needs
of ARTEMIS. Cognitive processes are the basis for these appraisal steps.

– ‘Certainty’ can be realized directly based on the ‘need for certainty’. The
filling level of the ‘certainty tank’ provides the necessary information for this
purpose.

– The feature ‘Coping potential’ follows from the filling levels of the tanks
‘certainty’ and ‘competence’.

– The filling level of the ‘Preserve Existence’ tank can be used to deduce the
parameter ‘Urgency’.

– Novelty is a comparison of the current event with the agent’s expectations.
Dörner’s Psi achieves this by pre-activating need-based information in long-
term memory.

– A determination of valence, goal congruence, goal relevance, agency, and
norms require cognitive evaluations. Due to a lack of space, this is not
explained in this paper.

286 C. Hoffmann and M.-E. Vidal

Fig. 5. Realizing the Agent Knowledge Graph. The Agent Knowledge Graph
contains both semantic and episodic information. The semantic part of a Knowledge
Graph contains general knowledge about the environment. The episodic part of the
Agent Knowledge Graph contains information about specific entities and events that
have occurred and the artificial emotions associated with it. (a) The semantic knowl-
edge of the virtual assistant for the example presented in the motivating example
(Sect. 2) looks like this. The template for this knowledge comes from Graupner [11].
It shows an Agent Knowledge Graph for the process scenario of supplier management.
We added the concepts ‘Event’ and ‘Emotion’. (b) Information about instances, actual
events that occurred, and associated artificial emotions are represented in this part of
the Agent Knowledge Graph.

4 The Agent Knowledge Graph

Previously, the process followed by ARTEMIS to create artificial emotions was
described. In this section, we describe how ARTEMIS captures artificial emotions
in an Agent Knowledge Graph. The Agent Knowledge Graph has a semantic and
an episodic part. The semantic part of the Agent Knowledge Graph serves to
classify information. A protocol of the events that take place represents the basis
for the episodic part, such as interactions between the virtual assistant and the
service agents are established (see the motivating example in Sect. 2). An Agent
Knowledge Graph is an essential part of the ARTEMIS architecture (see Fig. 3).
In Dörner’s theory, a self-defined type of neural network is defined to realize the
memory of Psi. However, for practical reasons, we have decided that ARTEMIS
uses established methods of knowledge graphs for this purpose.

4.1 Realizing Semantics in an Agent Knowledge Graph

Knowledge specified by Graupner [11] forms the basis for the assistant’s seman-
tic part of an Agent Knowledge Graph. This knowledge provides the necessary
conceptual information for the assistant about the problem area. We show an
example of the organization of the semantic part of the Knowledge Graph in
Fig. 5a. Since the Graupner’s example is a supplier management system, the
focus is on the supplier concept. Suppliers are related to many other concepts

Creating and Capturing Artificial Emotions in Autonomous Robots 287

such as ‘Risk Assessment’, ‘Evaluation’, ‘Supplier Management Process’, ‘Selec-
tion’, ‘Supplier Performance’, ‘Sub-Contracted Suppliers’, and ‘Contract’. The
‘Contract’ concept in turn is related to the ‘Negotiation’ and ‘Agreement’ con-
cepts (see Fig. 5a). In ARTEMIS, we extend this model with the concepts ‘Event’
and ‘Emotion’.

4.2 Episodic Knowledge in an Agent Knowledge Graph

While semantic knowledge specifies what the environment of an autonomous
agent consists of, episodic knowledge describes what is going on in its world.
In addition to the abstract semantic knowledge, a virtual assistant possesses
episodic knowledge, such as knowledge about specific service providers, events,
or artificial emotions (see Fig. 5b). The interactions of the assistant with the ser-
vice providers create episodic knowledge; this episodic knowledge is enriched with
emotional information. Over time this emotional information leads the assistant
to develop a subjective attitude towards the service providers in its environment.
This subjective attitude supports the assistant in future problem situations and
enables the selection of appropriate cooperation partners in this dynamically
complex environment. In our running example, the information stored in the
episodic part refers to the abstract concepts supplier, event, and emotion. Infor-
mation about a specific service provider (here, Service Agent x) is recorded.
Events assigned to the specific service agents are ‘Order accepted’, and ‘Result
delivered’. Mainly the Events ‘Service delivered’ are predestined to generate
artificial emotions, which are then also stored in the episodic part of an Agent
Knowledge Graph.

5 Related Work

Research in the field of computers and emotions currently focuses on the recog-
nition of user emotions. For example, one tries to recognize emotions in texts
(emotional analysis), human faces, or the language (see [12]). This research direc-
tion has already achieved significant results. Emotion analysis will be essential
for machines to be able to react appropriately to the emotions of their human
users. Such analyses are, therefore, crucial for the next step in human-computer
interaction (HCI). Here, however, the approach presented in this paper is not the
recognition of human emotions. Instead, the focus is on creating and memorizing
artificial emotions in autonomous agents. These artificial emotions help to adapt
the behavior of autonomous robots and software agents to the respective envi-
ronment. It is also crucial that the communication of these artificial emotions
(e.g., by face, voice or gestures) can help users to understand the decisions and
actions of the system. The basis of this understanding is the fact that human
users can often well imagine that they probably would have had similar emotions
in similar situations and that they would have acted or decided similarly on this
foundation. The approach presented in this paper, therefore, has two results. On
the one hand, it serves to improve the performance of autonomous agents. On
the other hand, it is also a contribution to the research area of HCI.

288 C. Hoffmann and M.-E. Vidal

There are diverse approaches to create artificial emotions. Marsella et al.
[16] give an overview of this. So far, most approaches for agents with artificial
emotions use the model from Ortony, Clore, and Collins (OCC) [19]. However,
the OCC approach relies on a purely cognitive assessment of events. We, on
the other hand, rely on the approach of the emotion psychologist Scherer and
the cognitive psychologist Dörner. Scherer’s research has shown that realistic
judgments must both consider cognitive processes and need processes. According
to Scherer, this is more promising for creating realistic artificial emotions for
autonomous actors. Dörner’s theory can be used to realize the appraisal pattern
required by Scherer. With ARTEMIS, we now present a model that realizes these
vital requirements from these two researchers.

The problem of capturing emotions has been tackled in the literature as a
data analytics problem, and different formalisms have been proposed for knowl-
edge representation to effectively solve this problem (e.g., [1,13]). Additionally,
Chekol and Stuckenschmidt [2] present a formalism to represent temporally in
probabilistic knowledge graphs. Albeit expressive for event representation or for
performing data analytics, the semantics encoded in the emotions cannot be
naturally represented in any of these approaches. In our approach, the artificial
emotions of an autonomous agent have a meaning.

6 Experimental Study

We implemented a prototype of the virtual assistant to assess the performance
of ARTEMIS. We aim to answer the following research questions (RQ): RQ1)
Can a virtual assistant generate artificial emotions that are plausible for human
test subjects? RQ2) Can captured artificial emotions make the virtual assistant
more efficient? The experimental configuration is as follows:

A Synthetic Virtual Assistant: We implemented a synthetic scenario to
evaluate the feasibility and behavior of ARTEMIS. A virtual assistant is created,
which can call 100 service agents. In this scenario, 50 of these service agents
are somewhat reliable, and 50 are rather unreliable without the virtual agent
having any information about them. The virtual assistant selects its cooperative
partners from this pool. It initially selects its cooperation partners at random
following a uniform distribution. With a large number of interactions, it can use
the artificial emotions generated during individual interactions and captured in
its Knowledge Graph. The assistant executed 300 test runs.

Implementation: We realize the virtual assistant by a dynamic system based
on difference equations; the system is implemented in Python 3.5.3. An Agent
Knowledge Graph is modeled as an RDF graph using RDFLib [3]; in order to
realize the episodic part of the Agent Knowledge Graph, events are described
based on the ontology LODE [15].

Evaluation Metrics: We measure the performance of ARTEMIS in terms of
time; it represents to the elapsed time between the submission of an order to the

Creating and Capturing Artificial Emotions in Autonomous Robots 289

virtual assistant and the completion of the order; it corresponds to the absolute
wall-clock system time reported by the Python time.time() function.

User Evaluation: We conducted an evaluation where 30 human test subjects
evaluated the virtual assistant in the above described synthetic scenario. We
asked the participants to asses the plausibility of the artificial emotions that the
virtual assistant created when fulfilling an order of the user. We presented nine
scenarios to each test subjects. The basis for the scenarios is the motivational
example (compare Sect. 2). The test subjects were asked to assess the plausibility
of the created artificial emotions within the scenarios. The artificial emotions
were presented to the test subjects in both pictorial and textual form.

6.1 Results of the User Study

All the users answered the questionnaires independently and evaluated the pre-
sented artificial emotions; 270 evaluations were thus available. The test subjects
stated in seven evaluations that they could not understand the artificial emo-
tions presented ”very well” or ”well”. In a later optional interview, five of them
stated that in one of the scenarios, they would tend to the emotion ”indifferent”
rather than to the emotion ”disdainful”. In nine evaluations, the test persons
indicated that they could not decide. In 254 assessments, subjects indicated that
they could understand the artificial emotions presented well or very well and that
they could imagine having similar emotions in similar situations (Table 1). Addi-
tionally, the performance of the virtual assistant was evaluated in terms of time;
the behavior of the virtual assistant was observed without and with remem-
bered emotions. The virtual assistant was executed for 300 runs. As a result,
we observed that the effectiveness– in terms of average time– was enhanced by
up to 40% whenever the virtual assistant was able to fall back on remembered
emotions from earlier test runs for its decision-making process.

Table 1. Results of the user evaluation. Artificial emotions are evaluated in a user
study; they are represented both as text and as images. In 53.33 % of the cases, the
users understand very well the emotions while 40.74 % just understand them well.

User question Positive
answers

Percentage positive
answers %

I fail to understand at all 3 1.11 %

I fail to understand 4 1.48 %

I cannot decide 9 3.33 %

I can understand well 110 40.74 %

I can understand very well 144 53.33 %

Discussion: As far as we have been able to investigate this, the proposed app-
roach opens up productive and promising research and application fields. These

290 C. Hoffmann and M.-E. Vidal

initial results suggest that the approach implemented in ARTEMIS works and
enables autonomous agents to reach their goals faster. It turns out that remem-
bered artificial emotions are helpful for successful agent planning and decision
making in complex environments. Furthermore, the results of the experiments
show that the approach can help to make decisions of a computer system more
plausible for users. The system can thus make clear its internal situation on
which it grounds its decision making. However, further experiments considering
different scenarios and types of goals are required to thoroughly asses the pros
and cons of a model able to create and capture artificial emotions.

7 Conclusion and Future Work

We have tackled the problem of creating and capturing knowledge about arti-
ficial emotions. To generate artificial emotions, a suitable model, as well as a
system that implements this is required. For this purpose, we have developed
the ARTEMIS control system for autonomous agents with artificial emotions.
The Psi theory of the cognitive psychologist Dietrich Dörner is the basis of essen-
tial components of the ARTEMIS control system. We added a specific appraisal
and an emotional component. In ARTEMIS, event appraisals create artificial
emotions. The appraisal pattern described by the emotion psychologist Klaus
Scherer is the basis for this. However, Scherer does not provide any informa-
tion on how to realize this appraisal pattern. In ARTEMIS, we use Dörner’s Psi
theory to implement Scherer’s appraisal pattern.

For capturing knowledge about artificial emotions, we developed the con-
cept of an Agent Knowledge Graph as a formalism for empowering autonomous
robots and software agents with this knowledge. In addition to knowledge about
facts, Agent Knowledge Graphs also represent subjective knowledge of individual
autonomous agents. Captured artificial emotions form this subjective knowledge.
Artificial emotions are collected together with other information (e.g., point in
time) about events in Agent Knowledge Graphs. As time goes by, the captured
artificial emotions form a subjective world view of the agents. This subjective
world view helps agents to plan and decide successfully in complex dynamic envi-
ronments. Artificial emotions of autonomous robots or software agents based on
ARTEMIS have a meaning. This meaning can be derived as follows. According
to Peter Gaerdenfors [9, p. 48], the PAD cube equips emotions with meaning.
The PAD parameters receive their values through need processes; as a conse-
quence, the artificial emotions defined by ARTEMIS finally get their meaning
from the underlying need processes.

We empirically investigated the behavior of ARTEMIS in a synthetic scenario
in which a virtual assistant had to select suitable cooperation partners from a
pool of 100 service agents. In three hundred interactions, the virtual assistant
developed an emotional attitude to many of these service providers. We have
evaluated the feasibility of the artificial emotions the assistant created by a
group of thirty human test subjects. The test subjects confirmed that most of
the artificial emotions generated by the virtual assistant were comprehensible

Creating and Capturing Artificial Emotions in Autonomous Robots 291

to them. Furthermore, we measured the execution time of the virtual assistant
in a setting with and without remembered artificial emotions. The results of
the evaluation reveal that the virtual assistant could reach their objective on
average in 40% less time than the configuration without remembered artificial
emotions. The observed results reveal the potential of the proposed approach.
Nevertheless, we recognize that this formalism is still in an initial phase and that
further studies are required to provide a general approach that can represent
artificial emotions in any scenario. The development of general approaches able
to capture artificial emotions while manage conflicts that may arise in different
agent interactions are part of our future work.

Acknowledgments. We thank Christoph Lange from Fraunhofer Institute FIT for
his valuable comments regarding our work. This work has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 822404 (QualiChain).

References

1. Candrlic, S., Katic, M.A., Pavlic, M.: A system for transformation of sentences
from the enriched formalized Node of Knowledge record into relational database.
Expert Syst. Appl. 115, 442–464 (2019)

2. Chekol, M.W., Stuckenschmidt, H.: Towards probabilistic bitemporal knowledge
graphs. In: Companion of the The Web Conference 2018 (WWW 2018), Lyon,
France, 23–27 April 2018, pp. 1757–1762 (2018)

3. RDFLib Homepage. https://rdflib.readthedocs.io/en/stable/. Accessed 14 Jan
2020

4. Dörner, D., Schaub, H., Detje, F.: Das Leben von PSI. Über das Zusammenspiel
von Kognition, Emotion und Motivation - oder: Eine einfache Theorie komplexer
Verhaltensweisen. In: von Lüde, R., Moldt, D., Valk, R. (eds.) Sozionik aktuell,
vol. 2. Informatik Universität Hamburg, Hamburg (2001)

5. Dörner, D.: The mathematics of emotion. In the logic of cognitive systems. In:
Fifth International Conference on Cognitive Modelling, 10–12 April 2003. Univer-
sitätsverlag Bamberg, Bamberg (2003)

6. Dörner, D., Gerdes, J.: Motivation, emotion, intelligence. In: ICSAI, Yantai, China
(2012)

7. Dörner, D., Güss, C.D.: PSI: a computational architecture of cognition, motivation,
and emotion. Rev. Gen. Psychol. 17(3), 297–317 (2013)

8. Dominique, J., Fensel, D., Davies, J., González-Cabero, R., Pedrinaci, C.: The
service web: a web of billions of services. In: Tselentis, G., et al. (eds.) Towards
a Future Internet: A European Research Perspective, pp. 203–216. IOS Press,
Amsterdam (2009)

9. Ehrlinger, L., Woess, W.: Towards a definition of knowledge graphs. In: SEMAN-
TiCS 2016 (Posters and Demos Track), Proceedings, Leipzig, Vol. 1695 (2016)

10. Gaerdenfors, P.: The Geometry of Meaning: Semantics Based on Conceptual
Spaces. The MIT Press, Cambridge (2014)

11. Graupner, S., Netzad, H.R.M., Singhal, S.: Making processes from best practice
frameworks actionable. In: 2009 13th Enterprise Distributed Object Computing
Conference Workshops (2009)

https://rdflib.readthedocs.io/en/stable/

292 C. Hoffmann and M.-E. Vidal

12. Hakak, N.M., Mohd, M., Kirmani, M., Mohd, M.: Emotion analysis: a survey.
In: 2017 International Conference on Computer, Communications and Electronics
(Comptelix). Manipal University Jaipur, Malaviya (2017)

13. He, S., Liu, K., Ji, G., Zhao, J.: Learning to represent knowledge graphs with
gaussian embedding. In: Proceedings of the 24th ACM International Conference
on Information and Knowledge Management (CIKM 2015), Melbourne, VIC, Aus-
tralia, 19–23 October 2015, pp. 623–632 (2015)

14. Hudlicka. Alternative Theoretical Perspectives on Emotion Representation and
Modeling. https://www.slideshare.net/hudlicka. Accessed 14 Jan 2020

15. LODE: An ontology for Linking Open Descriptions of Events. http://linkedevents.
org/ontology/2010-10-07/. Accessed 14 Jan 2020

16. Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. In: Scherer,
K.R., Bänziger, T., Roesch, E. (eds.) A Blueprint for Affective Computing: A
Sourcebook and Manual. Oxford Univ Press, Oxford (2010)

17. Mehrabian, A.: Framework for a comprehensive description and measurement of
emotional states. Genet. Soc. Gen. Psychol. Monogr. 121, 339–361 (1995)

18. Mehrabian, A.: Pleasure-arousal-dominance: a general framework for describing
and measuring individual differences in temperament. Curr. Psychol. Dev. Learn.
Pers. Soc. Winter 14(4), 261–292 (1996). https://doi.org/10.1007/BF02686918

19. Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cam-
bridge University Press, Cambridge (1988)

20. Sander, D., Grandjean, D., Scherer, K.R.: A systems approach to appraisal mech-
anisms in emotion. Neural Netw. 18(4), 317–352 (2005)

21. Scherer, K. R.: Appraisal considered as a process of multilevel sequential checking.
In: Appraisal Processes in Emotion: Theory, Methods, Research, vol. 92(120), p.
57, New York (2001)

22. Scherer, K.R.: The component process model: architecture for a comprehensive
computational model of emergent emotion. In: Scherer, K.R., Bänziger, T., Roesch,
E.B. (eds.) Blueprint for Affective Computing: A Sourcebook, pp. 47–70. Oxford
University Press, Oxford (2010)

https://www.slideshare.net/hudlicka
http://linkedevents.org/ontology/2010-10-07/
http://linkedevents.org/ontology/2010-10-07/
https://doi.org/10.1007/BF02686918

On Emotions in Conflict Wikipedia Talk
Pages Discussions

Maksymilian Marcinowski1 and Agnieszka Ławrynowicz1,2(B)

1 Faculty of Computing and Telecommunications, Poznan University of Technology,
Poznań, Poland

{mmarcinowski,alawrynowicz}@cs.put.poznan.pl
2 Center for Artificial Intelligence and Machine Learning (CAMIL),

Poznan University of Technology, Poznań, Poland

Abstract. Unjustified anti-social behaviour in Internet discussions,
such as vulgarisms and insults, is tantamount to the outbreak of an
online conflict that destroys the merits of the discussion. Recognising
the characteristics of conflict discussions and modelling their dynamics
can help to predict and prevent derailing. We propose to use emotion
labels as characteristics and propose a new dataset, extending the non-
conflict and such conflict conversations from Wikipedia talk pages that
derailed due to a personal attack with an emotional context based on
the Plutchik’s model. We also present the results of the analysis of this
dataset aimed at identifying specific, emotion-based features of conflict
(derailed) discussions, which are potentially useful in predicting the out-
break of conflict in online conversations. Furthermore, we introduce the
phenomenon of escalation of emotions using both the Plutchik’s model
and EmoWordNet lexicon and show its dynamics in these approaches.
With this new dataset and analysis, we hope to open up new possibilities
for research in detecting the outbreak of an online conflict.

Keywords: Online discussion · Emotions · Conflictual interactions

1 Introduction

Recognising the characteristics of online conflict discussions can help to predict
and prevent their derailing. Recent works researched such various characteris-
tics, including: politeness [9], hostile comments [6], sentiment features such as
sentiment transition [8], mood and contextual features [2], or hate speech [3].

We hypothesize that emotions can be a good discriminating descriptor
between conflict and non-conflict discussions. Importantly, models that capture
the characteristics of the discussions need to take their sequential nature and
dynamics into account, rather than individual posts. To facilitate research in
this direction, we provide a new resource and its analysis according to two inter-
pretable characteristics: sequential patterns of emotions in sequences of posts
and emotion intensity in the course of a discussion. Our analysis aims to answer
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 293–301, 2020.
https://doi.org/10.1007/978-3-030-50578-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_20&domain=pdf
http://orcid.org/0000-0003-4171-1688
http://orcid.org/0000-0002-2442-345X
https://doi.org/10.1007/978-3-030-50578-3_20

294 M. Marcinowski and A. Ławrynowicz

Fig. 1. Excerpts from a conflict (left) and a non-conflict (right) conversation.

the following research questions: RQ1: Are there any recurring sequential pat-
terns of emotions occurring in conflict discussions? RQ2: Is it possible to notice
conflict escalation in the discussions by recognizing emotions?

Our contributions are as follows: i) a new dataset, an extension of a subset
of Wikipedia Talk Pages dataset [9] with emotion labels of posts (see Fig. 1
for a sample of annotated posts), we coined EmoWikipediaTalkPages, ii)
an analysis of how emotion labels are related to a trajectory of a conversation,
including detecting sequential patterns of emotions (i.e., of emotion labels) and
investigating emotion intensity over time to capture the conflict escalation.

2 Models of Emotions

We have selected two models for annotating discussion posts: Plutchik’s
model [7], since it allows to express emotion intensity and it provides various
ways the emotions relate to one another, which helps bring clarity and guide-
lines to human annotators, and the model of the EmoWordNet lexicon [1], which
helps us to link the emotion labels with the natural language.

Plutchik’s Model is a theory of emotions [7] distinguishing eight basic emo-
tions: anger, anticipation, disgust, fear, joy, sadness, surprise and trust, which
can be presented on the diagram (called “wheel of emotions”). We will denote an
individual emotion by e. The degree of adjacency of emotions represents their
degree of similarity, and the additional dimension represents levels of intensity.
Three levels of emotion together form a petal, which we will denote by p, labelled
with the name of the basic emotion. Emotions in empty spaces (between petals)
are called the dyads (denoted further by d), i.e. feelings composed of two basic
emotions. A primary dyad links common emotions that are one petal apart.

EmoWordNet [1] is a lexicon, containing 67 000 words and terms from
English WordNet, expanded with 8 scores for each one, which represent 8 emo-
tions: afraid, amused, angry, annoyed, don’t care, happy, inspired and sad. The

On Emotions in Conflict Wikipedia Talk Pages Discussions 295

scores take values from 0 to 1 that estimate expressiveness and intensity of the
emotion and they add up to 1 for each element of the lexicon.

3 Dataset

3.1 Original Dataset

The original dataset was a corpus provided by Zhang et al. [9] containing 1270
dialogues that consist of a total of 5839 comments/posts. Out of 1270 conversa-
tions, exactly half were annotated as conflict (derailed) discussions, i.e. that end
with a personal attack.

3.2 Extending Dataset

We extended the dataset with the help of 63 respondents-volunteers, students
aged 20–25 years. Their task was to annotate each of the comments/posts pre-
sented to them by clicking on a Plutchik’s wheel of emotion in a place that
represents the emotion that they think dominates the post. In order to make the
task more affordable and enjoyable for the respondents, they were given a sam-
ple made of 10 dialogues of 3 posts each (30 posts divided into ten triplets - ten
fragments of conversations), so that they could also judge the posts in certain
context. For this reason we had selected conversations in which the number of
comments is divided by 3 from the entire original dataset. The selection limited
the number of conversations to 586 of which 237 were the conflict ones. Each
post was annotated by 3 respondents, to check the reliability of annotation.

We further extended the dataset with values calculated on the basis of
EmoWordNet lexicon (described in more detail in Sect. 5.2).

The EmoWikipediaTalkPages dataset is publicly available at https://doi.
org/10.5281/zenodo.3631670.

4 Analysis

4.1 Basic Statistics

The respondents annotated a total of 624 posts in 151 whole conversations,
each of which was annotated by three different annotators. Of the annotated
conversations, 50 were conflict (containing a total of 249 posts) and 101 were
non-conflict (containing 375 posts).

Each post was annotated by 3 respondents to check the compliance of annota-
tors. The results point to a considerable variety of the annotations. Only approx-
imately 6% of the posts were annotated by 3 respondents unanimously (36 times)
and 54% posts were annotated with three different emotions (340 times). Out of
the emotions chosen unanimously, it was most often the none annotation - 15 of

https://doi.org/10.5281/zenodo.3631670
https://doi.org/10.5281/zenodo.3631670

296 M. Marcinowski and A. Ławrynowicz

Fig. 2. Compliance of respondents in annotating posts considering particular emotions
(left) and petals of emotions (right): “1” denotes 3 identical annotations of the post,
“2/3” denotes 2 identical annotations and one other, “1/3” denotes 3 different annota-
tions

Fig. 3. Number of annotations containing the 10 most frequently chosen emotions (left)
and petals of emotions (right) - in conflict and non-conflict conversations

36 times. Considering each level of the emotions’ petal as an equal annotation,
the compliance of annotators is slightly greater. A situation, in which one of
the emotions dominates the respondents’ choices, refers to 55% of the posts in
such case (342 times), so 45% were annotated with emotions belonging to three
different petals (282 times) (Fig. 2). Among the 66 unanimous decisions, most
annotations (25 times) had been made with emotions from the anger petal.

Considering each emotion separately, the most frequent individual annota-
tion was none (330 occurrences), which occurred far more often in non-conflict
discussions. In conflict discussions the most frequent annotation was annoyance,
the second most frequent generally (193 occurrences). Given the petals of emo-
tions, the petal representing anger was the most commonly chosen (335 times)
(Fig. 3).

On Emotions in Conflict Wikipedia Talk Pages Discussions 297

4.2 Closed Sequential Patterns of Emotions

Let us denote by <s1, s2, ..., si> a sequence of items, i.e. an ordered list of ele-
ments, such as posts in an online conversation or their labels, e.g. <surprise,
love, surprise>, where love is a primary dyad and surprise an individ-
ual emotion. Sequential pattern mining consists of finding the complete set of
frequently occurring subsequences, given a set of sequences and frequency (sup-
port) threshold. To answer research question RQ1, we performed mining of closed
sequential patterns, i.e. patterns not included in any other patterns with the same
support, with the ClaSP algorithm [5], using the implementation from SPMF
library. [4]. Thanks to the expressiveness of the Plutchik’s model, we could mine
patterns within the following experimental settings (the results are in Table 1):

1. for all of the annotations for single emotions, i.e., where each item si was an
individual emotion ei (subtables a, b)

2. for all of the annotations to the level of detail of a petal with a primary dyad
treated as a separate petal, i.e. where each item si was a petal pi or a dyad
di (subtables c, d)

3. for all of the annotations to the level of detail of a petal with a primary
dyad treated as one of the adjacent petals, i.e. for a sequence <surprise,
love, surprise>, the input to the pattern mining algorithm was
<surprise, {joy, trust}, surprise> and this sequence supports both pat-
terns: <surprise, joy, surprise> and <surprise, trust, surprise>
(subtables e, f)

4. for triplets of annotations and the use of wildcard - three annotations of each
post are aggregated and the output is the most common emotion among them
or a wildcard (*) when each of the annotations is different (subtables g, h).

Considering the settings which include all of the annotations made in the
conflict discussions, only one closed pattern consisting of more than one element
has a support greater than 50% - it is <anger, anger> (59% support, 88 occur-
rences), discovered in the configuration with a primary dyad treated as one of
the adjacent petals. Also for this pattern, the difference between support in con-
flict and non-conflict conversations is the most significant - in the non-conflict
ones the pattern appeared 36 times (it means only 12% support).

Taking all settings into account there are 21 multi-elemental closed patterns
with a support greater than 20%, all of which were discovered in conflict discus-
sions. The most common pattern for non-conflict dialogues in any configuration
is the same - <none, none>.

298 M. Marcinowski and A. Ławrynowicz

Table 1. The most common multi-elemental closed sequential patterns discovered
during the analysis of EmoWikipediaTalkPages in particular configurations

(a) conflict

pattern support (occ.)

<none, annoyance> 18% (27)

<annoyance, anger> 17% (26)

<none, anger> 16% (24)

(b) non-conflict

pattern support (occ.)

<none, none> 18% (56)

<disapproval, none> 9% (27)

<interest, none> 8% (25)

(c) conflict

pattern support (occ.)

<anger, anger> 40% (60)

<none, anger> 30% (45)

<disapproval, anger> 19% (28)

(d) non-conflict

pattern support (occ.)

<none, none> 18% (56)

<anticipation, none> 13% (39)

<joy, joy> 11% (33)

(e) conflict

pattern support (occ.)

<anger, anger> 59% (88)

<none, anger> 38% (57)

<anticipation, anger> 35% (52)

(f) non-conflict

pattern support (occ.)

<none, none> 18% (56)

<joy, joy> 17% (53)

<anticipation, none> 16% (49)

(g) conflict

pattern support (occ.)

<none, anger> 10% (5)

<none, rage> 8% (4)

<none,aggressiveness> 8% (4)

(h) non-conflict

pattern support (occ.)

<none, none> 10% (10)

<interest, none> 9% (9)

<acceptance, none> 5% (5)

5 Do the Emotions Escalate?

To answer research question RQ2, we analyse the emotion intensity level and
whether it grows in conflict discussions. Escalation of emotions is understood as
an increase in intensity of emotions over the course of conversation that leads to
conflict. We have verified the occurrence of this phenomenon in EmoWikipedi-
aTalkPages dataset by using two methods of evaluating the intensity of emotions:
the level of intensity of emotions occurring in posts according to the annotations
based on Plutchik’s model of emotions and the aggregated value of scores of par-
ticular words or terms occurring in posts according to the EmoWordNet lexicon
based on the model provided by Rappler Mood Meter.

5.1 Analysis of the Annotations

The Plutchik’s model has three levels of intensity, therefore the measurement
of the intensity of emotions in the course of conversations was done using the
levels from the model: emotions in the first level of the model were assigned a

On Emotions in Conflict Wikipedia Talk Pages Discussions 299

value of 1, emotions in the second level of the model and primary dyads were
assigned a value of 2 and the most intense emotions were assigned a value of 3.
The none annotation was assigned a value of 0. Conversations were divided into
groups according to their length and then, for each group separately, the average
intensity of emotions in consecutive posts was calculated.

Fig. 4. Mean levels of emotions in consecutive posts in conversations consisting of: 3
(a), 6 (b), 9 (c) and 12 (d) posts, according the experiment’s results.

The graphs in Fig. 4 illustrate a significant issue – the mean level of intensity
of emotions at the end of conflict discussions is clearly higher than at their
beginning, regardless of their length. It does not occur in non-conflict discussions.
Moreover, all conflict conversations end at an mean higher emotional intensity
level than non-conflict dialogues. Also noticeable can be an effect that may be
called “calm before the storm”, i.e. a temporary decrease in the mean level of
emotion intensity in about 2/3 of the length of conflict discussions.

5.2 EmoWordNet

In order to juxtapose EmoWordNet lexicon with the dataset of conversations,
each post from the dataset had been lemmatised and cleared of “stop words”,
then the scores of particular emotions in each term were summed up for each
post and divided by the number of terms in the post to provide 8 mean emotion
scores of each post. For the statistics, the maximum of these values for each post
was selected, so the statistics presented in the graphs in Fig. 5 include average
maximal mean emotion score of posts.

300 M. Marcinowski and A. Ławrynowicz

Fig. 5. Mean levels of emotions in consecutive posts in conversations consisting of: 3
(a), 6 (b), 9 (c) and 12 (d) posts, according to the EmoWordNet lexicon.

As in the case of annotations based on the Plutchik’s model, the average score
according to EmoWordNet lexicon is higher at the ends of conflict conversations
than at the beginnings, which at the same time does not occur in non-conflict
conversations. The average ending score of conflict conversations is also higher
than that of non-conflict ones for all lengths.

6 Conclusions

We proposed a dataset of online conversations extended with emotion labels and
presented the results of analysis of the dataset in the context of finding distinctive
emotion-based features of conflict discussions which contain a personal attack.

The statistics show the difference in the nature of conflict and non-conflict
discussions. Main emotions considered to be negative, such as aggression or espe-
cially anger, dominated conflict conversations, while emotions such as joy or
serenity appeared more often in non-conflict dialogues. Furthermore, there are
some specific features of the trajectory of conflict discussions, supported by both
the annotations analysis and EmoWordNet-based scores, as an upward trend in
the intensity of emotions throughout the entire length of the discussion, that dis-
tinguish them from non-conflict ones. The analysis provides some premises that
the identification of emotions occurring in online discussions may contribute to
the detection and prediction of conflicts in them. In the future work, we plan to
use the results of this paper, and the dataset within, to train a machine learning
model to detect emotions and conflict in text automatically.

On Emotions in Conflict Wikipedia Talk Pages Discussions 301

Acknowledgements. This research has been partially supported by the statutory
funds of Poznan University of Technology.

References

1. Badaro, G., Jundi, H., Hajj, H., El-Hajj, W.: EmoWordNet: automatic expansion
of emotion lexicon using English WordNet. In: Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics, pp. 86–93. Association for
Computational Linguistics, June 2018. https://doi.org/10.18653/v1/S18-2009

2. Cheng, J., Bernstein, M.S., Danescu-Niculescu-Mizil, C., Leskovec, J.: Anyone can
become a troll: causes of trolling behavior in online discussions. In: Proceedings of
the 2017 ACM Conference on Computer Supported Cooperative Work and Social
Computing (CSCW 2017), pp. 1217–1230 (2017)

3. Davidson, T., Warmsley, D., Macy, M.W., Weber, I.: Automated hate speech detec-
tion and the problem of offensive language. In: Proceedings of the Eleventh Inter-
national Conference on Web and Social Media (ICWSM 2017), pp. 512–515 (2017)

4. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu., C., Tseng, V.S.:
SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. (JMLR)
15, 3389–3393 (2014). http://www.philippe-fournier-viger.com/spmf/

5. Gomariz, A., Campos, M., Marin, R., Goethals, B.: ClaSP: an efficient algorithm for
mining frequent closed sequences. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu,
G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7818, pp. 50–61. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37453-1_5

6. Liu, P., Guberman, J., Hemphill, L., Culotta, A.: Forecasting the presence and inten-
sity of hostility on instagram using linguistic and social features. In: Proceedings
of the Twelfth International Conference on Web and Social Media (ICWSM 2018),
Stanford, California, USA, 25–28 June 2018, pp. 181–190 (2018)

7. Plutchik, R.: A psychoevolutionary theory of emotions. Soc. Sci. Inf. 21(4–5), 529–
553 (1982). https://doi.org/10.1177/053901882021004003

8. Wang, L., Cardie, C.: A piece of my mind: a sentiment analysis approach for online
dispute detection. In: Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (ACL 2014) Volume 2: Short Papers, pp. 693–699
(2014). https://doi.org/10.3115/v1/p14-2113

9. Zhang, J., et al.: Conversations gone awry: detecting warning signs of conversational
failure. In: Proceedings of ACL (2018)

https://doi.org/10.18653/v1/S18-2009
http://www.philippe-fournier-viger.com/spmf/
https://doi.org/10.1007/978-3-642-37453-1_5
https://doi.org/10.1177/053901882021004003
https://doi.org/10.3115/v1/p14-2113

Location-Aware Applications

Geospatial Partitioning
of Open Transit Data

Harm Delva(B), Julián Andrés Rojas, Pieter-Jan Vandenberghe,
Pieter Colpaert(B), and Ruben Verborgh

IDLab, Department of Electronics and Information Systems,
Ghent University – imec, Ghent, Belgium
{harm.delva,pieter.colpaert}@ugent.be

https://idlab.technology/

Abstract. Public transit operators often publish their open data as a
single data dump, but developers with limited computational resources
may not be able to process all this data. Existing work has already
focused on fragmenting the data by departure time, so that data con-
sumers can be more selective in the data they process. However, each
fragment still contains data from the entire operator’s service area. We
build upon this idea by fragmenting geospatially as well as by departure
time. Our method is robust to changes in the original data, such as the
deletion or the addition of stops, which is crucial in scenarios where data
publishers do not control the data itself. In this paper we explore popular
clustering methods such as k-means and METIS, alongside two simple
domain-specific methods of our own. We compare the effectiveness of
each for the use case of client-side route planning, focusing on the ease
of use of the data and the cacheability of the data fragments. Our results
show that simply clustering stops by their proximity to 8 transport hubs
yields the most promising results: queries are 2.4 times faster and down-
load 4 times less data. More than anything though, our results show that
the difference between clustering methods is small, and that engineers
can safely choose practical and simple solutions. We expect that this
insight also holds true for publishing other geospatial data such as road
networks, sensor data, or points of interest.

Keywords: Linked open data · Mobility · Maintainability · Web API
engineering

1 Introduction

People who rely on wheelchair-accessible public transportation have very specific
information needs when they are looking to buy a house. Real estate websites
can include this information in their item listings, but only if they can find and
access relevant datasets. Fortunately, many public transit operators publish their
offering as open data, often using de facto standards such as the General Transit

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 305–320, 2020.
https://doi.org/10.1007/978-3-030-50578-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_21

306 H. Delva et al.

Feed Specification1 (GTFS) or official standards such as Network Timetable
Exchange2 (NeTEx). However, these standards result in large data dumps: the
combined GTFS feed of the public transit companies that operate in the Brussels
area (SNCB, STIB, De Lijn, and Tec) is already over 1 GB of raw data. Searching
for “GTFS memory issues” on the Web shows that many people have learned
the hard way that this is more data than their personal laptops, Raspberry Pis,
or entry-level VPSs can handle.

A popular use case for open transit data is route planning. The ideal route
depends on many factors such as ticket prices, transfer times, walking distances,
reliability, and arrival times. The value ascribed to each of these factors is ulti-
mately subjective, and will likely change over time due to external factors such
as the weather. However, contemporary route planning services offer little in
terms of personalization because they sacrifice flexibility to provide better query
time performance [3,12,14]. For example, an algorithm that relies on precom-
puted shortest paths is ill-suited to generate scenic routes. Alternatively, the
route planning can be done directly on the client, and this has the benefit that
more flexible algorithms become viable because users can only saturate their own
CPUs. Client-side applications come with their challenges though, and ingesting
the data is particularly difficult in this case. The European Commission reported
that in 2019 the average price for 2 GB of mobile data within the EU28 was still
AC10 [9], which means that client-side route planners have to be conservative in
which data they download.

These examples show that the way data is published can restrict how the
data can be used. What may be feasible for a corporation may not be feasible
for a regular person, even though the Open Definition3 defines open data as data
that can be “freely used, modified, and shared by anyone for any purpose”. Our
goal is thus clear: we want to improve the way open transit data is published,
so that more applications become more viable for more people.

2 Related Work

We identify three domains of related work which we discuss in the following
subsections: (i) research in the field of Linked Data and the Semantic Web has
focused on making data reusable and interoperable, (ii) existing mobility data
specifications and what sets them apart, and (iii) how are public transit networks
currently being partitioned and for what purpose. To close off this section we
also briefly discuss Voronoi Diagrams, as our proposed method makes extensive
use of them.

Note that throughout this paper we use three similar, but different, terms:
cluster, partition, and fragment. In essence, clusters are partitions; clustering
merges similar items while partitioning starts from the set of all items – so that
clustering individual public transit stops partitions the network itself. A planar
1 https://developers.google.com/transit/gtfs.
2 http://netex-cen.eu/.
3 https://opendefinition.org/.

https://developers.google.com/transit/gtfs
http://netex-cen.eu/
https://opendefinition.org/

Geospatial Partitioning of Open Transit Data 307

space, such as the world, can also be partitioned, in which case each partition
can be called a region instead. Fragments on the other hand come from the field
of Linked Data and refer to Linked Data Fragments, i.e. resources on the Web.

2.1 Linked Data Fragments

To facilitate interoperability with other datasets, Open Data is often Linked Data
as well. Tim Berners-Lee outlined the four principles of Linked Data [7]: 1) use
URIs as names for things, 2) use HTTP URIs so that people can look up those
names, 3) when someone looks up a URI, provide useful information using stan-
dards such as RDF, and 4) include links to other URIs so that they can discover
more things. In the conceptual framework of Linked Data Fragments [17], this is
just one interface to access Linked Data. You could also publish the data as one
large data dump, or provide a querying API on top of the data. What all these
interfaces have in common is that they expose a fragment of the entire dataset,
so they can all be considered Linked Data Fragments. Data dumps and query
APIs are the two extremes on the Linked Data Fragments axis [17]. This axis
illustrates the trade-offs between different methods of publishing Linked Data
on the Web. Data dumps put the data processing burden on the client’s side,
but allow the most flexibility for clients. Query APIs on the other hand put the
processing burden on the server side but always restrict, in some way, the way
the data can be used.

2.2 Mobility Data

The General Transit Feed Specification (GTFS) is, at the time of writing, the
de facto standard for publishing public transit schedules. A single feed is a com-
bination of 6 to 13 CSV files, compressed into a single ZIP archive. Its core
data elements are stops, routes, trips, and stop times. Stops are places where
vehicles pick up or drop off riders, routes are two or more stops that form a
public transit line, trips correspond to a physical vehicle that follows a route
during a specific time period, and stop times indicate when a trip passes by a
stop. This data is not only useful for route planning applications, other appli-
cations include embedding timetables in mobile applications, data visualization;
accessibility analysis, and planning analysis [1].

The Linked Connections specification [8] defines a way to publish transit
data that falls somewhere in the middle of the Linked Data Fragments axis.
Connections are defined as vehicles going from one stop to another without
an intermediate halt. These connections are then ordered by departure time,
fragmented into documents, and are then published over HTTP. Clients can
use the semantics embedded in each fragment to solve their own queries. This,
combined with the fact that each fragment is easily cacheable, make Linked
Connections servers more scalable than full-fledged route planning services.

308 H. Delva et al.

2.3 Partitioning Public Transit Networks

Researchers in the field of route planning have noted that methods based on par-
titioning have been successful for accelerating queries on road networks, but that
adapting those methods to public transit networks is harder than expected [5,6].
One of the main differences is that road networks are, for the most part, topo-
logical networks. Public transit networks on the other hand are also inherently
time-dependent. On top of that, it is not even clear what exactly needs to be
partitioned as different algorithms can require wildly different data models [10].

The Scalable Transfer Patterns [4] algorithm aims to greatly reduce pre-
processing times of the original Transfer Patterns [3] algorithm. The authors
compared 4 different techniques to partition stops into clusters of roughly equal
size: 1) k-means using the stops’ geographical locations, 2) a merge-based clus-
tering with a utility function that punishes big partitions and rewards pairs of
partitions with high edge weights between them, 3) a general-purpose graph clus-
tering algorithm called METIS [16], and 4) a road partitioning method called
PUNCH [11]. They found that k-means, despite being completely oblivious to
the network structure outperformed both METIS and PUNCH while their own
merge-based approach performed the best of all. HypRAPTOR [10] is another
route planning algorithm that uses METIS to partition the network graph, but
which uses clusters of trips instead of stops.

2.4 Voronoi Diagrams

Voronoi diagrams are one of the fundamental data structures in computational
geometry [2]. Although they can be applied to any metric space, we only consider
Euclidean spaces in this paper for the sake of simplicity. Given a set of seed points
in a Euclidean space, a Voronoi diagram partitions that space into regions so
that each region contains exactly one seed point, and every point in a region is
closer to that region’s seed point than to any other region’s. Formally this means
that for a given Euclidean space X with distance function d, and a set of seed
points P ⊂ X, each point pi ∈ P yields a corresponding Voronoi region Ri ⊆ X
where

Ri = {x ∈ X | d(x, pi) ≤ d(x, pj) for all i �= j}

3 Method

The Linked Connections publishing scheme enables applications to access data
for a specific point in time, but each data fragment still contains data from the
entire transit operator’s service area. Figure 1 shows that some regions served
by the Flemish public transit operator, De Lijn, are more popular than others,
implying that it makes sense to partition by location as well. Existing work has
shown that partitioning public transit networks can improve query times of route
planning services, so we investigate if similar improvements can be obtained for
the publishing of raw data.

Geospatial Partitioning of Open Transit Data 309

Fig. 1. Visualized on the left are the departure and destination locations, based on one
week of query logs from the Flemish public transit operator De Lijn. Visualized on the
right are the locations of all connections in their network during the same time period.
Note that there are many places with a considerable amount of connections that are
in low demand.

However, first we should consider what is necessary to make publishing frag-
mented data viable in the real world. We make a distinction between data own-
ers and data publishers, with a clear distinction between their responsibilities.
A data owner focuses on maintaining the data quality, while a data publisher
focuses on making the data accessible. Both roles come with their own challenges,
and as such it is not uncommon for data owners to outsource the data publishing
to third parties. This means that data publishers may not have control over the
actual data – they have to adapt when the data changes. For example, public
transit operators routinely add and remove temporary stops due to maintenance
works, and these changes have to be reflected in the published data with as little
friction as possible.

3.1 Rationale

Existing work has focused on clustering stops, or trips, into discrete sets of
objects. If a data publisher were to follow this approach, they would have to
explicitly assign a label to every new stop the data owner adds. Failing to do so
would cause them to publish incomplete data, as unlabeled stops will not be in
any published cluster. This labeling of new stops is relatively easy for clustering
algorithms such as k-means, but for algorithms such as METIS [16] this involves
recomputing the entire clustering.

Rather than searching for an algorithm that supports updates, we propose to
publish the clusters in a robust way by partitioning the physical world instead of
creating discrete sets of stops. The resulting partitions are published as separate
resources, allowing any agent to infer to which cluster every stop belongs. In other
words, data publishers do not have to explicitly label every stop themselves –
the data speaks for itself. This benefits both the data publishers and consumers:
the maintenance effort required by the publisher is lower, and data consumers
have access to complete and factual data.

310 H. Delva et al.

3.2 Data

Guided by the insights provided by Fig. 1, we will focus on the Flemish public
transit network for the remainder of this paper. To provide some context: Flan-
ders is a small region within Europe, but with 487 inhabitants/km2 in 2019, it
is also one of the most densely populated [13]. The public transit network is also
dense; at the time of writing there are 35,791 stops spread out over 13,522 km2

for a density of 2.6 stops/km2. There are roughly 1 million connections on a reg-
ular weekday, and the corresponding Linked Connections data results in over 10
million RDF triples per day. We use data from the first whole week of December
2019 as the input data for the methods discussed in this section.

3.3 Clustering

We start by adapting two clustering methods that are often used to partition
transit networks: k-means and METIS. However, both methods disregard one
important feature of transit networks; k-means does not consider network con-
nectivity and METIS does not consider physical locations. This leads us to pro-
pose an additional method, called Hub, which clusters stops by their proximity to
important transportation hubs. As others have shown good results from hierar-
chical methods, we also consider a merge-based adaption of Hub, appropriately
named Merged. The remainder of this subsection discusses how each method is
used to generate a geospatial partitioning.

Fig. 2. The 8 partitions each evaluated method creates. Note that the two methods on
the top row create regions of roughly equal sizes, while the approaches at the bottom
create regions of varying sizes. The approaches in the left column create regions with
simple shapes, while the ones on the right create irregular shapes.

Geospatial Partitioning of Open Transit Data 311

K-Means. Despite its simplicity, existing work has found k-means to be com-
petitive with more complex methods [4], so we consider it among the state of the
art for this particular use-case. As the name implies, this algorithm distributes
a given set of points in exactly k clusters, where every point belongs to cluster
with the nearest cluster mean. Iterative heuristics exist to compute this cluster-
ing, and we used the implementation from scikit.learn4 with default parameters
and using the stops’ WGS84 coordinates as input.

To obtain a spatial partitioning from this, we create a Voronoi diagram using
the cluster means as seed points. Because the Voronoi cells of two adjacent points
on the convex hull share an infinitely long edge, we add some extra padding
points that represent the bounding box of the operator’s service area – and then
discard all infinite edges.

METIS. METIS is another algorithm that is used to partition public transit
networks [4,10], so we consider it to be among the state of the art as well.
Since it is a graph clustering algorithm, we must represent the public transit
network as a graph. We follow the conventional approach of creating a vertex
for every stop, and connecting them with an edge if they are connected through a
single connection. Every edge is assigned a weight that corresponds to how many
connections connect those stops. We used a Python wrapper5 of the reference
implementation to compute the clustering, using the contig option to force
contiguous partitions.

The METIS algorithm only sees the network as a connectivity graph though
– it does not know anything about the physical location of the stops. This means
that even though it creates contiguous partitions, those partitions are not con-
tiguous in the physical world. We obtain a clean spatial partitioning using an
additional post-processing step that 1) creates the Voronoi diagram of all stops,
2) merges all Voronoi cells that belong to the same cluster, and 3) merge isolated
areas into the surrounding cluster.

Hub. Hub is the first of our own methods that aims to incorporate both the
geospatial and the graph-like nature of public transit networks. It iteratively
selects the stops based on which trips pass through it. In the first iteration
it selects the stop with the most unique trips, in the subsequent iterations it
selects the stop with the most unique trips that the previous stop(s) do not
have. After k iterations it contains the k most important hubs, which lead us
to name this method Hub. These selected stops are then used as seed points to
create a Voronoi diagram. To illustrate the simplicity of this approach, Listing 1
contains all the necessary code to implement this, up until the creation of the
Voronoi diagram.

4 https://scikit-learn.org/0.20/modules/clustering.html#k-means.
5 https://metis.readthedocs.io/en/latest/.

https://scikit-learn.org/0.20/modules/clustering.html#k-means
https://metis.readthedocs.io/en/latest/

312 H. Delva et al.

1 def hub(k):

2 done_trips = set()

3 selected_stops = []

4 for _ in range(k):

5 best_stop = None

6 best_stop_score = 0

7 for stop , trips in stop_to_trips.items ():

8 stop_score = len(set(trips) - set(done_trips))

9 if stop_score > best_stop_score:

10 best_stop = stop

11 best_stop_score = stop_score

12 selected_stops.append(best_stop)

13 done_trips.update(stop_to_trips[best_stop])

14 return selected_stops

Listing 1. The Hub method can be implemented in just 14 lines of Python code.

Merged. Instead of stopping the Hub algorithm after k iterations we can also
let it terminate, and then use the Jaccard similarity coefficient to merge the two
most similar adjacent Voronoi regions until only k remain. As there is a finite
amount of trips, this algorithm has a clear termination condition: it stops when
all trips are covered by one of the selected stops. This makes the process more
complex, but existing work has shown good results using hierarchical clustering
techniques [4]. We have named this approach Merged, for obvious reasons.

3.4 Hypermedia Controls

As discussed at the beginning of Subsect. 3.1, we want our published data to be
easy to maintain. Our idea is to publish the partitioning itself, so that clients
have all the information they need to decide to which cluster every stop belongs.
We have already discussed how to obtain the partitionings, now we discuss how
to publish them.

The partitions are published on the Web as stand-alone resources using
the TREE6 and GeoSPARQL7 vocabularies. The TREE vocabulary is used to
describe a partitioning as a collection of regions, and the wktLiteral datatype
from the GeoSPARQL vocabulary is used to describe individual regions. GeoJ-
SON is another common way to define geometries, but since GeoJSON polygons
are incompatible with JSON-LD we chose to use the simpler string representa-
tion: WKT. Listing 2 contains a JSON-LD snippet of a single partition resource.

These partition resources are then used to fragment Linked Connections data.
This two-step approach allows for reusing existing partitions, such as adminis-
trative regions. A modified Linked Connections server can ingest a given par-
titioning, and fragment the data accordingly. The server creates one view per

6 https://github.com/TREEcg/specification.
7 http://www.opengis.net/doc/IS/geosparql/1.0.

https://github.com/TREEcg/specification
http://www.opengis.net/doc/IS/geosparql/1.0

Geospatial Partitioning of Open Transit Data 313

1 {

2 "@id": "https :// example.org/clusters/hub_4",

3 "tree:member ": [

4 {

5 "@id": "https :// example.org/clusters/hub_4 /1",

6 "geo:asWKT ": "POLYGON ((4.170761972221639 50.7079439...

7 }, ...

8], ...

9 }

Listing 2. JSON-LD representation of a partitioning. Note that both the partitioning
and the individual regions are separate resources, allowing other datasets to refer to
them.

region, and then creates an index of all generated views using the TREE vocab-
ulary, which links every view to the geospatial area it covers. Listing 3 contains
a JSON-LD snippet of such an index.

1 {

2 "@id": "https :// example.org/connections ",

3 "@type ": "tree:Node",

4 "tree:relation ": [

5 {

6 "@type ": "tree:GeospatiallyContainsRelation ",

7 "tree:node ": "https :// example.org/connections ?cluster=

↪→ https %3A// example.org/clusters/hub_4 /1",

8 "tree:path ":[

9 "lc:departureStop ",

10 "geo:asWKT"

11],

12 "tree:qualifiedValue ": {

13 "tree:value ": {

14 "@id": "https :// example.org/clusters/hub_4 /1"

15 },

16 "tree:path ":" geo:asWKT"

17 }

18 }, ...

19], ...

20 }

Listing 3. JSON-LD representation of a view index. The tree:node property
points to a data page from the original Linked Connections specification. The
tree:qualifiedProperty property defines which geospatial area that page covers by
referring to an existing published geospatial partition.

314 H. Delva et al.

4 Evaluation

In the introduction we declared our intent to make more applications viable by
improving the way we publish data. We gave client-side route planning as an
example of a use case that needs to be conservative in the amounts of data they
download, so we focus on this application to evaluate our data.

We have adapted an existing library for client-side route planning that uses
Linked Connection data, so that it can interpret our hypermedia controls. This
library uses the earliest arrival time variant of the Connection Scan Algorithm.
This algorithm, similar to Dijkstra’s algorithm, builds a list of which stops are
reachable and how long it takes to reach them. A client that knows the location
of each stop can also infer which clusters are reachable, so our adapted route
planner simply fetches data for all reachable clusters – slowly growing its list of
data sources. We focus on the use-case of client-side route planning because this
a relatively demanding application.

As mentioned in Sect. 3, we use 1 week of Linked Connection as input for the
clustering algorithms. We then use each method to create 4, 8, 16, and 32 clusters.
A redis-backed server creates an ordered list of all connections within every
generated region, and exposes these using the hypermedia controls defined in the
Subsect. 3.4. The same server also hosts a version of the data with one cluster
that contains all the data, i.e. without any geospatial partitioning. Altogether
we test 17 (4 partitionings for each of the 4 methods, and the baseline) different
partitionings, and each data fragment contains 20 min of data.

We make extensive use of letter-value plots [15] because our results have a
long tail, which causes visualizations such as box plots to label many results as
outliers. These plots show the median value as a black line, and then show the
75%, 87.5%, . . . quantiles as separate boxes, making it easy to compare these
statistics.

4.1 Efficiency

As a proxy for how easy the geospatially fragmented data is to use, we measure
how much work a client needs to do to solve a query. Specifically, the time it
takes for the same client to solve the query with a given partitioning, as well
as how much data was downloaded. We compare those values to those of the
baseline; the unpartitioned data.

5,000 queries were randomly selected from a query log that was given to us
by the transit operator itself. All these queries were received on the same day,
but throughout the day. We eliminate as many variables as possible to isolate the
impact of the partitioning; the client and server run on two separate machines
on the same local network, a constant 20 ms of latency is added per response,
and the client only processes one query at a time.

Figure 3 shows that having just a few clusters already significantly improves
the query performance, but that adding more clusters has diminishing returns,
because even without the overhead of ingesting unnecessary data the client still
has to compute the actual route. The METIS results are somewhat surprising;

Geospatial Partitioning of Open Transit Data 315

Fig. 3. The median query time with just 4 clusters is already 58% that of the original
query times, and using 8 clusters further improves this to 45%. Note the diminishing
returns as more clusters are added, using 16 or 32 clusters reduces the relative query
times to 41% and 42%, respectively. The Hub and k-means methods yield very similar
results, while METIS performs significantly worse.

Fig. 4. Using just 4 clusters is enough to reduce the amount of downloaded data to
45% of the original amount of downloaded data, and adding more clusters consistently
improves this metric. Although all methods seem competitive in this metric, the Hub
method has a consistently low median and 75% percentile.

they are slightly worse across the board, and even become worse when going from
16 to 32 clusters. As Fig. 2 shows, the clusters from METIS are more complex
than those from other methods, which makes them harder to interpret for a
client. Figure 4 shows that the amount of downloaded data does keep decreasing
by adding more clusters – theoretically we can avoid all unnecessary data by
creating a cluster per stop.

316 H. Delva et al.

4.2 Cacheability

Another important feature of Linked Connections is the cache effectiveness of
the fragments, which gives a Linked Connections server its scalability. As we are
making the data more fine-grained, we have to measure the impact this has on
the cache effectiveness. Unfortunately, the query logs we use do not contain any
form of user ID, which makes it hard to simulate a real-world scenario where
there are client-side and server-side caches. Instead, we measure how fast a cache
warms up in every configuration, and what the hit rate of a warm cache is. These
two metrics give an indication of how cacheable the partitioned data is, and how
this compares to the cacheability of the original data.

While running the benchmarks for the usability metrics, we also record which
resources are fetched. We then replay these requests, running them through a
simulated LRU cache to measure the hit rates. To measure the hit rates on a
warm cache we first run all requests through a cache, and then create 1,000
samples of 500 requests to measure the overall hit rate of each sample. The hit
rates on a cold cache are obtained by doing the same starting from a cold cache,
and by varying the amount of requests per sample. We set the cache size to
20 MB, and each partitioning results in roughly 70 MB of gzipped data, so we
expect to see many cache evictions.

Fig. 5. Less valuable cache space is wasted on irrelevant data by using a fine-grained
partitioning. The median hit rate on a warm cache using the unpartitioned data is
26%, the highest hit rate, 44%, is obtained using the Hub method with 32 clusters.
The k-means method scores noticeable worse than the other methods.

Figure 5 and Fig. 6 show that partitioned data can improve the cache hit rate,
but that caches take longer to warm up. The cache effectiveness when using 8
clusters surpasses that of the baseline at around 350 requests, regardless of the
clustering method. The average query downloads 9 resources at this granularity,
so that the cache effectiveness is better than the baseline’s if the data is used to
answer more than 39 queries per day.

Geospatial Partitioning of Open Transit Data 317

Fig. 6. Line plots of the median cache hit rates per configuration, showing that caches
take longer to warm up with a fine-grained partitioning. However, any method with 4
or 8 clusters matches the hit rate of the original data on a warm cache (26%) after 350
requests.

5 Discussion

In the introduction we stated that our goal is to improve the way public transit
data is published to make more applications viable. We found related work in
the field of route planning, where the data is fragmented to improve query-
time performance. However, our findings show that results from this field do not
easily translate to publishing data on the Web, because, as stated in Sect. 3, we
want the processed data to stay in sync with the raw data. We resolve this by
moving some of the clustering logic to the client, which in return can then avoid
downloading and parsing a lot of irrelevant data. Knowing which clusters to
publish is just as important as knowing how to publish them though, so we also
compare different clustering algorithms – and how they affect the performance
of a client-side route planner.

The number of clusters has a noticeable impact on all evaluated metrics.
Even a small amount of clusters can make a client-side route planner twice as

318 H. Delva et al.

fast. More clusters do not necessarily lead to better results though, as we quickly
see diminishing returns in terms of query times. The amount of downloaded data
does keep decreasing, but at the cost of cacheability. Interestingly, even when
starting from a cold cache the cacheability of a small amount of clusters is on
par with the cacheability of the original data.

METIS and k-means yield good results in the amount of downloaded data
metric, but both struggle in other tests. Clusters from METIS have a complex
shape because it does not consider the stops’ locations, making it harder for
clients to interpret them. As a result, the query times using METIS data are
consistently worse than those using other methods. A similar pattern presents
itself for the merge-based method, which is also noticeably worse in the query
time metric – more so than in the downloaded data metric. The k-means method
on the other hand shows great results in both the query time and downloaded
data metrics, but the resulting data fragments are harder to cache. Our own Hub
method is the only method that performs well across all metrics. This method
combines the geospatial and the graph-like features of public transit networks.
The merge-based approach does this all well, but is burdened by more complex
cluster shapes.

More than anything though, our results show that the difference between clus-
tering methods is small, and that engineers can safely choose practical and simple
solutions. Our own method domain-specific method yields the best results, but
it is so simple we do not consider this specific method to be our main contribu-
tion; it is the realization that simple methods can, and do, outperform complex
methods. And it is this insight that is useful for web engineers – one does not
have to be a domain expert to publish quality data.

6 Conclusion

In this paper we investigated what data publishers can do to make their open
transit data easier to use. Based on research from the field of route planning,
we explored the idea of geospatially partitioning public transit networks. We
evaluated 4 different clustering methods for the use-case of client-side route
planning: k-means, METIS, and two domain-specific methods of our own. The
partitions were obtained using Voronoi diagrams, and were then published with
the appropriate hypermedia controls that clients can use to discover clusters of
public transit stops.

Our goal was to make open transit data more useful, so that more people
can use it in more applications. We focused on the use case of client-side route
planning, which have to be conservative in which data they download as mobile
data is still expensive. And in that regard, we succeeded. A simple clustering
algorithm and 8 clusters is all it takes to download 4 times less data, and to
answer queries 2.4 times faster. Preliminary results show that the cacheability,
and thus the scalability, of this approach is on par with the existing Linked
Connections publishing scheme.

More than anything though, we have found that the difference between clus-
tering methods is small, and that engineers can safely go for simple solutions

Geospatial Partitioning of Open Transit Data 319

– any geospatial fragmentation is better than no fragmentation at all. Future
work can investigate if this translates to the publishing of other geospatial data
such as road networks, sensor data, or points of interest. We postulate that it
does, simply because the world is not uniformly populated – data from densely
populated regions will be in higher demand. Additionally, our approach should
be tested in the real world, comparing it to both route planning services and
existing Linked Connections servers.

References

1. Antrim, A., Barbeau, S.J., et al.: The many uses of GTFS data–opening the door
to transit and multimodal applications 4 (2013). Location-Aware Information Sys-
tems Laboratory at the University of South Florida

2. Aurenhammer, F.: Voronoi diagrams–a survey of a fundamental geometric data
structure. ACM Comput. Surv. (CSUR) 23(3), 345–405 (1991)

3. Bast, H., et al.: Fast routing in very large public transportation networks using
transfer patterns. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp.
290–301. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-
2 25

4. Bast, H., Hertel, M., Storandt, S.: Scalable transfer patterns. In: 2016 Proceed-
ings of the Eighteenth Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 15–29. SIAM (2016)

5. Bauer, R., Delling, D., Wagner, D.: Experimental study of speed up techniques for
timetable information systems. Networks 57(1), 38–52 (2011)

6. Berger, A., Delling, D., Gebhardt, A., Müller-Hannemann, M.: Accelerating time-
dependent multi-criteria timetable information is harder than expected. In: 9th
Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS 2009). Schloss Dagstuhl-Leibniz-Zentrum für Informatik
(2009)

7. Berners-Lee, T.: Linked data-design issues (2006). http://www.w3.org/
DesignIssues/LinkedData.html

8. Colpaert, P., Llaves, A., Verborgh, R., Corcho, O., Mannens, E., Van de Walle,
R.: Intermodal public transit routing using liked connections. In: International
Semantic Web Conference: Posters and Demos, pp. 1–5 (2015)

9. European Commission: mobile broadband prices in Europe 2019 (2019). http://
www.w3.org/DesignIssues/LinkedData.html

10. Delling, D., Dibbelt, J., Pajor, T., Zündorf, T.: Faster transit routing by hyper
partitioning. In: 17th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2017)

11. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning
with natural cuts. In: 2011 IEEE International Parallel & Distributed Processing
Symposium, pp. 1135–1146. IEEE (2011)

12. Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Connection scan algorithm (2017)
13. Flanders: population: size and growth (2019). https://www.statistiekvlaanderen.

be/en/population-size-and-growth-0
14. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster

and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA
2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-68552-4 24

https://doi.org/10.1007/978-3-642-15775-2_25
https://doi.org/10.1007/978-3-642-15775-2_25
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
https://www.statistiekvlaanderen.be/en/population-size-and-growth-0
https://www.statistiekvlaanderen.be/en/population-size-and-growth-0
https://doi.org/10.1007/978-3-540-68552-4_24
https://doi.org/10.1007/978-3-540-68552-4_24

320 H. Delva et al.

15. Hofmann, H., Kafadar, K., Wickham, H.: Letter-value plots: boxplots for large
data. Technical report, had.co.nz (2011)

16. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

17. Verborgh, R., et al.: Querying datasets on the web with high availability. In:
MikaMika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 180–196. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 12

https://doi.org/10.1007/978-3-319-11964-9_12

Efficient Live Public Transport Data
Sharing for Route Planning on the Web

Julián Andrés Rojas(B) , Dylan Van Assche , Harm Delva ,
Pieter Colpaert , and Ruben Verborgh

IDLab, Department of Electronics and Information Systems,
Ghent University – imec, Ghent, Belgium
julianandres.rojasmelendez@ugent.be

Abstract. Web-based information services transformed how we interact
with public transport. Discovering alternatives to reach destinations and
obtaining live updates about them is necessary to optimize journeys and
improve the quality of travellers’ experience. However, keeping travellers
updated with opportune information is demanding. Traditional Web
APIs for live public transport data follow a polling approach and allocate
all data processing on either data providers, lowering data accessibility,
or data consumers, increasing the costs of innovative solutions. More-
over, data processing load increases further because previously obtained
route plans are fully recalculated when live updates occur. In between
solutions sharing processing load between clients and servers, and alter-
native Web API architectures were not thoroughly investigated yet. We
study performance trade-offs of polling and push-based Web architec-
tures to efficiently publish and consume live public transport data. We
implement (i) alternative architectures that allow sharing data process-
ing load between clients and servers, and evaluate their performance
following polling- and push-based approaches; (ii) a rollback mechanism
that extends the Connection Scan Algorithm to avoid unnecessary full
route plan recalculations upon live updates. Evaluations show polling as
a more efficient alternative on CPU and RAM but hint towards push-
based alternatives when bandwidth is a concern. Clients update route
plan results 8–10 times faster with our rollback approach. Smarter API
design combining polling and push-based Web interfaces for live public
transport data reduces the intrinsic costs of data sharing by equitably
distributing the processing load between clients and servers. Future work
can investigate more complex multimodal transport scenarios.

Keywords: Public transport · Web interfaces · Live updates · Route
planning

Available online at https://julianrojas.org/papers/icwe2020-main-track/.

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 321–336, 2020.
https://doi.org/10.1007/978-3-030-50578-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_22&domain=pdf
http://orcid.org/0000-0002-6645-1264
http://orcid.org/0000-0002-7195-9935
http://orcid.org/0000-0001-8272-0754
http://orcid.org/0000-0001-6917-2167
http://orcid.org/0000-0002-8596-222X
https://julianrojas.org/papers/icwe2020-main-track/
https://doi.org/10.1007/978-3-030-50578-3_22

322 J. A. Rojas et al.

1 Introduction

Thanks to route planning applications, understanding printed time tables at a
bus or train station has turned to instantly retrieving route planning advice on
our smartphones. Access to such information may increase the usage of public
transport services [5] and has a positive impact on its quality of experience [21]:
travellers with access to live updates can reduce their waiting times, adjust
their travelling choices for more efficient journeys and achieve higher satisfaction
levels [14]. Today, many cities around the world recognize the value of providing
reliable access to live information and devote considerable effort on maintaining
and evolving their Web APIs, e.g., London, Helsinki, and San Francisco [1].

However, sharing live public transport data is a resource-demanding process
that may (i) limit data accessibility; (ii) increase the costs of new solutions;
and (iii) impose additional processing load for route plan recalculations upon
live updates. Traditional Web API architectures for live public transport data
usually follow a polling-based approach that allocates all data processing load on
either data providers (e.g., public transport operators) or data consumers (e.g.,
route planning applications) computational infrastructure. In terms of required
computational resources, two main strategies prevailed: (i) publishing a fully-
fledged live route planning API ; or (ii) providing a data dump or feed containing
live schedule updates.

With live route planning APIs, most data providers limit data accessibil-
ity due to high maintenance and scalability costs [1]. Despite offering reliable
information, live route planning APIs entail high costs because all processing
resides on data provider infrastructure. These costs increase proportionally with
the number of clients and motivates API request limitations, thus limiting data
accessibility. For data consumers, this approach requires minimal effort in terms
of processing resources, as clients only need one request per route planning
query. Dealing with live updates also means that consumers check for query
updates more frequently, further increasing the load on providers infrastructure
and potentially conflicting with API request limits.

In contrast, a data dump or feed increases the computational costs for data
consumers because they need to handle data integration. This approach repre-
sents a low cost solution for data providers, as they only require to maintain
online a resource with the latest updates. However, static and live data need
to be separated for client consumption. This separation increases infrastructure
costs for consumers that need to store and integrate static schedules and their
live updates for one or more public transport services.

In both cases, handling live data requires additional processing for route plan
recalculations on data updates. Changing transport schedules may quickly render
previously calculated route plans invalid. For example, a vehicle route could
have been cancelled or a suggested transfer is no longer possible due to delays.
Applications need to refresh query results as soon as new updates are available
to avoid providing incorrect information. This generally involves full algorithm
recalculations, which increase processing load. Thus, cost-efficient data sharing

Efficient Live Public Transport Data Sharing 323

solutions that allow full accessibility, to accurate and opportune information for
travellers are needed for both data providers and data consumers.

An in-between approach, namely the Linked Connections (LC) specifica-
tion [7], defines a data sharing approach that equitably distributes processing
load between data providers and consumers for route planning query processing
over public transport networks. To measure the impact of polling- and push-
based data sharing approaches on CPU, RAM, bandwidth and query response
time, we implemented LC-based server and client-side applications. We (i) mea-
sure processing costs and query execution performance using the Connection
Scan Algorithm (CSA) [12] for route planning calculation; (ii) simulate a Web-
scale environment with up to 1,500 concurrent clients, using real data from the
Belgian Railway operator; and (iii) extend CSA with a rollback mechanism that
allows efficient route plan refreshing upon live updates, while avoiding full query
recalculations.

The results show polling as a more efficient alternative on CPU and RAM
for data providers but hint towards push-based alternatives when bandwidth
is a concern. For data consumers there is no significant difference in CPU and
RAM usage for route planning query processing. However, there is a signifi-
cant improvement of 8–10 times with respect to query processing performance,
using our proposed CSA rollback mechanism. Smarter API design that com-
bines polling and push-based data sharing approaches can reduce the intrinsic
costs of data sharing on the Web, by equitably distributing processing loads
between providers and consumers. Moreover, by moving algorithm execution to
the client-side, clients have more granular control on application state (e.g., pre-
vious query executions), which for this case increases efficiency on handling live
data updates.

The remainder of this paper is organized as follows. We first present an
overview of related work regarding live public transport data sharing on the Web
and route planning over public transport networks. In Sect. 3 we describe the
reference architecture, data models and implementation details of the evaluated
approaches. Section 4 presents the experimental setup including data character-
ization, queries and Web interfaces used to achieve comprehensive results. In
Sect. 5 we present the obtained results. Finally, on Sect. 6 we discuss the results,
present our conclusions and our vision for future work.

2 Related Work

The Web became the preferred platform for sharing public transport data. Dif-
ferent technologies, approaches and standards were proposed to publish and
consume both static and live data. In this section we present an overview of
such related work.

2.1 Public Transport Standards

TriMet (Portland, Oregon) became the first public transport operator to inte-
grate its schedules into Google Maps in 2005. This collaboration fostered the cre-

324 J. A. Rojas et al.

ation of GTFS1, which at the time of writing, is regarded as the de-facto standard
for sharing public transport data. The European Committee for Standardization
(CEN) standards: Transmodel2 and the more recent NeTEx3, describe a con-
ceptual model to facilitate the exchanging of network topology and timetable
data. GTFS-realtime4 and SIRI5, are among the main reference standards for
live schedule updates and vehicle positions. Both define protocols to exchange
live updates for predefined timetables, modeled using GTFS and Transmodel
standards respectively.

2.2 Public Transport Data on the Web

Implementations of live route plannings APIs limit accessibility by imposing
request limitations to deal with the computational costs on their server infras-
tructure. CEN proposes the Open API for distributed Journey Planning (OJP)6

as a standard for interoperable route planning APIs, but to the best of our
knowledge there are no available implementations.

Public transport data dumps require expensive data integration tasks. Static
data dumps contain extensive planned schedules, which scale proportionally to
the size and complexity of the transport network [15]. Additionally, periodic live
updates depend on static schedule data and need to be integrated each time
before they can be used to answer route planning queries [6]. Most currently
available dumps7 on the Web follow GTFS and GTFS-RT standards [1].

An in between approach, namely the Linked Connections (LC) specifica-
tion8, was introduced by Colpaert et al. [7]. LC builds on the Linked Data Frag-
ments conceptual framework [29] to model and publish public transport data
on the Web. Data are organized in vehicle departure-arrival pairs called Con-
nections, and sorted by departure time in cache-able and hypermedia enabled
documents. Client applications can process route planning queries by download-
ing and performing a route planning algorithm over relevant documents. Live
data are handled by the server, updating and re-sorting the Connections when
updates occur [24]. LC allow clients and servers to share processing load of route
planning query processing, in contrast to traditional approaches where process-
ing tasks are assumed by one side or the other.

2.3 Route Planning Algorithms

Route planning has been extensively studied throughout the years. Bast et al. [3]
and Pajor [22] present a comparative analysis of multiple route planning algo-
rithms. Most algorithms are defined as extensions of Dijkstra’s algorithm [13]
1 https://developers.google.com/transit/gtfs.
2 http://www.transmodel-cen.eu/.
3 http://netex-cen.eu/.
4 https://developers.google.com/transit/gtfs-realtime.
5 http://www.transmodel-cen.eu/standards/siri/.
6 http://www.transmodel-cen.eu/standards/ojp/.
7 https://transitfeeds.com/.
8 https://linkedconnections.org/.

https://developers.google.com/transit/gtfs
http://www.transmodel-cen.eu/
http://netex-cen.eu/
https://developers.google.com/transit/gtfs-realtime
http://www.transmodel-cen.eu/standards/siri/
http://www.transmodel-cen.eu/standards/ojp/
https://transitfeeds.com/
https://linkedconnections.org/

Efficient Live Public Transport Data Sharing 325

using graph-based data models to represent transportation networks. Alterna-
tive approaches such as RAPTOR [10], CSA [12], Transfer Patterns [4] and
Trip-based routing [30] exploit the basic elements of public transport networks
to calculate routes directly on the timetables.

Regardless of the algorithm, in the presence of live schedule updates, sub-
jacent data structures need to be updated to properly reflect the new available
information. This means that previously obtained results for a certain query may
become invalid and also need to be updated. Related work address this issue for
road network route planning with live traffic updates [19]. However, there are
no solutions for route planning on public transport networks.

2.4 Live Streaming Data on the Web

Two different approaches exist to publish/consume data streams on the Web: (i)
polling-based approaches (e.g., REST APIs); (ii) pushing-based approaches (e.g.,
Server-Sent Events, WebSockets or MQTT). In the public transport domain,
most data publishers follow a polling approach to publish live updates [1]. Other
works advocate for pushing-based approaches, arguing faster communication
between clients and servers [9,23,26] and more bandwidth efficiency [20]. Deo-
lasee et al. explore an adaptive solution that allows clients and servers to use one
approach or the other, given data coherence requirements [11]. Shortcomings of
both approaches are highlighted on [2,18]. There are no studies that conclude
which approach is optimal for sharing live public transport data. On previous
preliminary work we evaluated HTTP and WebSockets APIs for publishing live
open datasets. Results showed that WebSockets perform better on response time,
but more exhaustive evaluations are still required [25].

Other related works study different aspects of general live data streams.
The SOSA ontology [16] defines a semantic model to describe interactions
between entities involved in acts of observation, actuation, and sampling, includ-
ing for example, current vehicle positions and estimated departure/arrival times.
VoCaLS [28] introduces a metadata description model of data streams on the
Web. Stream querying is also studied by Dell’Aglio et al. [8], Taelman et al. [27]
and Le-Phuoc et al. [17].

3 Reference Architecture

We designed and implemented a system architecture (Fig. 1) to evaluate the
performance of different strategies for live public transport data sharing on the
Web. In this section we present the design choices and implementation details
of its different modules.

3.1 Publishing Live Public Transport Updates

We follow the LC specification for public transport data publishing. LC achieves
higher cost efficiency, compared to equivalent full server-side route planning

326 J. A. Rojas et al.

Fig. 1. Reference architecture used to evaluate polling (HTTP) and push-based (SSE)
approaches for publishing and consuming live public transport data for route planning.

APIs [7]. The data publishing module in the reference architecture is called
LC Server. For its implementation we extended the Linked Connections Server9

(LCS), given its capabilities of integrating live updates out of the box [24]. The
server is implemented as a Node.js application and consists of the following sub-
modules:

– Data Manager. Transforms both static and live public transport data to the
LC data format. It takes as input GTFS and GTFS-RT data sources and uses
the gtfs2lc10 and gtfsrt2lc11 libraries to perform data transformations.

– Web Server. Exposes polling and push-based Web interfaces that clients
use to access static and live data. The polling interface is a HTTP API that
provides access to Connection documents and to the latest live updates using
a reference date as input. The pushing interface is based on SSE and provides
clients with updates in vehicle schedules.

– Storage. Represents data storage on disk. Documents containing sets of
ordered Connections and spanning a predefined time window, are created
by the Data Manager and persisted on disk as files. Data are serialized using
the JSON-LD12 format.

We study the cost and performance of polling and pushing Web interfaces.
The polling interface of the LCS defines this access URL:

{operator}/connections?departureTime={iso-date}

Where operator is the name of the public transit operator and iso-date is
the date and time for which a client requires information of vehicle depar-
9 https://github.com/linkedconnections/linked-connections-server.

10 https://github.com/linkedconnections/gtfs2lc.
11 https://github.com/linkedconnections/gtfsrt2lc.
12 https://www.w3.org/TR/json-ld11/.

https://github.com/linkedconnections/linked-connections-server
https://github.com/linkedconnections/gtfs2lc
https://github.com/linkedconnections/gtfsrt2lc
https://www.w3.org/TR/json-ld11/

Efficient Live Public Transport Data Sharing 327

tures. Upon request the LCS retrieves the document that contains Con-
nections departing closest to the given departure time. It also checks if
there are any available live updates that involve the requested document
and merges them. An example of a Connection is shown in Listing 1.
{

"@context": {

"lc": "http://semweb.mmlab.be/ns/linkedconnections#",

"gtfs": "http://vocab.gtfs.org/gtfs.ttl#"

},

"@id": "http://irail.be/connections/8885001/20200131/IC3231",

"@type": "lc:Connection",

"lc:departureStop": "http://irail.be/stations/NMBS/008885001",

"lc:arrivalStop": "http://irail.be/stations/NMBS/008885068",

"lc:departureTime": "2020-01-31T09:54:00.000Z",

"lc:arrivalTime": "2020-01-31T09:58:00.000Z",

"lc:departureDelay": 60,

"lc:arrivalDelay": 60,

"lc:direction": "Courtrai",

"gtfs:trip": "http://irail.be/vehicle/IC3231/20200131",

"gtfs:route": "http://irail.be/vehicle/IC3231",

"gtfs:pickupType": "gtfs:Regular",

"gtfs:dropOffType": "gtfs:Regular"

}

Listing 1: LC formatted as JSON-LD. The properties departureDelay and ar-
rivalDelay indicate that live data is available for this Connection.

Schedule documents can be cached by clients, which can reuse them to answer
more than one query. This reduces the amount of requests that need to be han-
dled by the server. However, live updates quickly invalidate caches and clients
need to request again updated LC documents for new queries. In the worst case,
all Connections of a document change due to a live update, but the majority
of the time only a handful of Connections are updated, causing that signifi-
cant parts of LC documents are sent over and over again. For this reason, we
extended the LCS implementation and added a new resource to its HTTP API
that allows to retrieve only Connections that have changed since a given time:
{operator}/events?lastSyncDate={iso-date}. This resource allows clients
to synchronize their local caches with the latest available data.

We also implemented a pushing Web interface using SSE. Clients can sub-
scribe to it on {operator}/events/sse and receive the latest schedule updates
as they occur. We use the W3C standardized SOSA ontology to identify and
semantically describe schedule updates for particular Connections. Our imple-
mentation is available online13.

13 https://github.com/DylanVanAssche/linked-connections-server.

https://github.com/DylanVanAssche/linked-connections-server

328 J. A. Rojas et al.

3.2 Consuming Live Public Transport Updates

A command line interface (CLI) client application14 was implemented for pro-
cessing route planning queries on top of LC-based data. It implements the CSA
algorithm on its Profile variant [12]. This allows calculating not only the Earliest
Arrival Time but also later route alternatives, providing a maximum amount of
desired vehicle transfers along the way. The selection of this algorithm is based
on the data model defined by the LC specification. LC defines a sorted by depar-
ture time array of Connections, which is the data structure that CSA requires
to process queries.

This client consist of a library called QRail Library15 that was built using the
Qt framework16. We selected this framework due to its cross-platform portability
including Android or iOS. The client’s modules are the following:

– Network Manager. Handles the communication capabilities of the client.
It was built by extending the Qt QNetworkAccessManager library to handle
SSE-based interactions. It keeps an in-memory local cache to store the latest
available schedule information.

– Connections Factory. Retrieves data (either from cache or from the server)
and builds Connection Qt objects to calculate route plans.

– Connection Scan Algorithm. Contains the implementation of the CSA
Profile variant.

3.3 Dynamic Rollbacks for CSA

We extended CSA to address the problem of needing to perform complete route
plan re-calculations, every time a new update is available on the client. Full route
plan re-calculations increase the amount of requests and processing that both
clients and servers need to handle, thus increasing computational costs.

Given a route plan query (e.g., from Bruges to Brussels departing today at
17:00), CSA starts its execution by scanning Connections departing no earlier
than 17:00 until it finds the earliest arrival route. From this point, the algorithm
performs predefined scan cycles, going back in time over the Connections array
and adding every time for example, 30 min to the earliest arrival time. This
allows finding later alternative route plans for the given query.

In our implementation, every time a new Connections document is requested
during algorithm execution, we create a snapshot CSA’s internal state containing
the Connections currently involved in the, so far discovered routes. Thanks to
these snapshots we can determine the exact index in the Connections array, from
which CSA needs to recalculate when there are updates in the route plans. Given
that CSA Profile goes back in time over the Connections array, the closer an
updated Connection is to the departure stop, the faster the recalculation process
will be. The set of snapshots is kept in memory and updated every time a new
query is processed.
14 https://github.com/DylanVanAssche/QRail/tree/develop/cli/qrail-cli.
15 https://github.com/DylanVanAssche/QRail.
16 https://www.qt.io/.

https://github.com/DylanVanAssche/QRail/tree/develop/cli/qrail-cli
https://github.com/DylanVanAssche/QRail
https://www.qt.io/

Efficient Live Public Transport Data Sharing 329

4 Evaluation

We study different approaches to efficiently publish and consume live public
transport data, in terms of computational resources (CPU, RAM and band-
width) and route planning query processing performance. For this we define the
following research questions:

– RQ1. What is the most cost-efficient approach, in terms of computational
resources, to publish live public transport data, considering polling and push-
based technologies in a LC-based architecture?

– RQ2. What is the impact of polling and push-based approaches on LC-based
clients, in terms of computational resources and route planning query pro-
cessing?

– RQ3. What is the impact of the CSA rollback mechanism on the performance
of a LC-based client for route planning query processing in terms of execution
time?

To address these research questions, we defined a hypothesis for each of them:

– H1. A pushing approach will lower resource consumption on average, due to
avoiding processing new client requests to obtain new schedule updates.

– H2. A pushing approach has lower computational cost on clients, since is
not necessary to send every time a new request to the server to get the
latest updates, thus reducing bandwidth and communication establishment
processes.

– H3. On average, a rollback mechanism results in lower processing times for
processing route planning queries.

We designed two different experiments to test our hypotheses. Next, we describe
the testing data and the setups for each of the experiments.

4.1 Real-World Test Data

We used real data from the Belgian railway operator NMBS17. NMBS pub-
lishes both GTFS and GTFS-RT data dumps as open data18. We collected the
timetable and all emitted live updates for November 2019 (we make the data
available online19). We analyzed these data to understand how live updates
happen, i.e., what the low and peak hours normally are, to run our experiments
considering representative data. Figure 2(a) shows the amount of Connections
updated during the entire month, having the 28th of November as the day with
the highest amount (over 13.63 million). Figure 2(b) zooms in into this day,
clearly showing peak hours around 07:00 and 17:00, and registering 17:00 as the
peak hour of the day with more than 900,000 updated Connections.
17 https://www.belgiantrain.be/.
18 https://www.belgiantrain.be/en/3rd-party-services/mobility-service-providers/

public-data.
19 https://github.com/julianrojas87/ICWE2020-results.

https://www.belgiantrain.be/
https://www.belgiantrain.be/en/3rd-party-services/mobility-service-providers/public-data
https://www.belgiantrain.be/en/3rd-party-services/mobility-service-providers/public-data
https://github.com/julianrojas87/ICWE2020-results

330 J. A. Rojas et al.

Fig. 2. The amount and distribution of Connection updates allow to visualize the
behavior of the transport network regarding its low and peak times. Week days and
especially their mornings and afternoons, consistently show higher number of updates.

We used the iRail query log dataset20 as a reference. This dataset contains a
registry of over one million real route planning queries per day, received by the
iRail API21. We analyzed the queries that were executed on the week days during
November 2019 and classified them by the amount of Connections used by their
Earliest Arrival Time route, since routes with higher amount of Connections
require a higher processing effort to be computed.

4.2 Experiment 1: Publishing Live Public Transport Updates

The first experiment was designed to test the computational resource (CPU,
RAM and bandwidth) consumption of LC-based live public transport data pub-
lishing, following polling (HTTP API) and push-based (SSE) approaches. We
setup a server with a Quad core Intel E5520 (2.2 GHz) CPU and 12 GB of RAM.
We progressively instantiate up to 1500 clients requesting/receiving live data
updates. Each client starts its operation 0.5 s after the previous to avoid overload
peaks on the measurements and simulate a more realistic environment, where
clients issue requests at any point in time and not necessarily synchronized with
the live updates frequency.

For the polling scenario every client requests a new data update every 30 s,
which corresponds to the update frequency of NMBS GTFS-RT feed. We also
disabled serve-side caching, to obtain a clearer image of the actual operational
costs of the server. In the pushing scenario, the clients subscribe once to the SSE
interface and the server pushes new data to them every 30 s. The experiment was
executed during 20 min for each scenario.

4.3 Experiment 2: Consuming Live Public Transport Updates

The second experiment was designed to measure the CPU, RAM and bandwidth
usage of a LC-based client, consuming live public transport updates following

20 https://gtfs.irail.be/logs/.
21 https://api.irail.be/.

https://gtfs.irail.be/logs/
https://api.irail.be/

Efficient Live Public Transport Data Sharing 331

polling (HTTP API) and push-based (SSE) approaches. The client application
was deployed on a machine with a Quad core Intel E5520 (2.2 GHz) CPU and
12 GB of RAM. We handpicked routes with different amount of updated Connec-
tions. This was intended to avoid evaluating routes without updates and thus,
with no significant impact on client resources.

We ran the experiment for each selected query using our client on a polling
and a pushing scenario, and a reference test client without the rollback mecha-
nism described in Sect. 3.3. The evaluation run for 15 min on each scenario, where
clients requested/received live updates every 30 s. Table 1 shows an overview of
the selected routes.

Table 1. Set of route planning queries extracted from the iRail API logs. This table
shows the number of Connections and the total travel time of the Earliest Arrival Time
route.

From To Connections Travel time (min)

Hasselt Sint-Truiden 2 15

Leuven Diest 2 32

Landen Diest 5 43

Eppegem Brussels-Shuman 6 23

Mechelen Brussels-Congress 6 30

Leuven Schaarbeek 11 29

Asse Antwerp-Berchem 18 87

Antwerp-Central Alken 23 94

5 Results

Here we present the results obtained for the experiments described in Sect. 4.
Figure 3 presents the measurements made for Experiment 1. Figure 3(a)

shows a mean CPU usage of 10.8% for the pushing approach. For the polling
approach we obtained a mean usage of 1.7%.

In terms of RAM, Fig. 3(b) shows a mean consumption of 563.8 MB for the
pushing approach. For the polling approach we measured a mean consumption of
423 MB. Bandwidth measurements for pushing showed a total data exchange of
6.5 GB serving up to 1,500 clients during the measured time (20 min). For pulling,
the server exchanged a total of 15.8 GB under the same conditions (figure not
included for the sake of space).

332 J. A. Rojas et al.

Fig. 3. Polling shows a lower resource consumption for both CPU and RAM.

Figure 4(a) shows the bandwidth usage for the three test scenarios, defined in
Experiment 2. After 800 s the reference client exchange a total of 45.7 MB. The
rollback clients exchanged 5.4 MB and 3.6 MB for polling and pushing respec-
tively. In terms of RAM (Fig. 4(b)), no significant difference was measured for
polling and pushing with a mean consumption of 70.6 MB and 71.1 MB respec-
tively. The reference client shows an increased average RAM usage of 102.1 MB.
CPU usage (figure not shown for the sake of space) maintained the same ten-
dency with average consumption of 12.15% (polling), 12.22% (pushing) and
19.2% (reference).

Fig. 4. The rollback clients give a significant reduction of bandwidth. There are no
major differences in terms of RAM consumption.

Figure 5 presents the results obtained for testing our rollback mechanism
and its impact on route planning query processing. The rollback mechanism is
between 8–10 times faster in every set of route planning queries.

Efficient Live Public Transport Data Sharing 333

Fig. 5. The rollback mechanism significantly improves the performance of query recal-
culation.

6 Conclusion and Future Work

Experiment 1 was designed to test H1, related to RQ1. In terms of CPU usage,
the polling approach uses on average 10 times less resources than the pushing
approach. RAM memory measurements are closer between the two approaches,
with pushing using around 140 MB more than polling. This can be explained by
the operational characteristics of pushing and also by the setup of the experi-
ment. In the pushing approach the server sends new data to all subscribed clients,
when a new live update is received. This explains the various CPU peaks and
the higher average usage. RAM memory consumption is also higher for pushing,
because the server needs to keep an in-memory registry of all subscribed clients.

The lower resource usage of polling can also be explained by the distribu-
tion of client requests. A new client was added every 0.5 s from the start of
the experiment and every client did a new request every 30 s, giving a maxi-
mum request load was of 50 requests/second with 1500 clients. This load was
easily handled by the server given its hardware capabilities. Further tests with
synchronized clients and different live update frequencies can provide a more
complete picture for polling. Nevertheless, the results provide an indication of
the required resources when using one approach or the other, giving polling as
a less demanding approach for CPU and RAM.

Pushing requires lower bandwidth because clients do not send requests for
new data updates. In conclusion, we reject H1 and consider polling as more cost-
efficient, especially considering that with server-side caching in place, resource
consumption could be improved.

334 J. A. Rojas et al.

Results of Experiment 2 relate to RQ2 and H2, and show no significant dif-
ference in CPU or RAM for pulling or pushing on the client. This is explained by
the usage of our rollback mechanism, and confirmed by the higher consumption
of resources measured for the reference client. Therefore, we reject H2. However,
pushing uses the least amount of bandwidth. This is of utmost importance if
we consider that route planning applications may be executed on mobile devices
using data connections subject to charges.

The second part of Experiment 2 relates to RQ3 and H3. Results show sig-
nificant improvements in route planning query recalculations using our rollback
mechanism. By keeping snapshots of CSA’s internal state, full recalculations are
avoided and faster times are achieved. Therefore we can accept H3. This is an
important result from the perspective of end-users, which need to be informed
of journey changes as soon as possible.

In general, results show us that there is no silver bullet approach. Different
aspects need to be considered to fulfill data provider, data consumer, and end-
user requirements. Further evaluations may be performed to complement these
results. However, this study already provides an informative base ground for
public transport data publishers and route planning application developers. It
also highlights the benefits of moving algorithm execution to the client-side, as is
having more granular control of application internal state, which make possible
to design smarter and more efficient clients.

Future work could study the impact of client-side route planning integrating
multiple modes of transportation, as well as explore alternative algorithms and
evaluate their performance, including end-user testing.

References

1. Ably: The maturity of public transport APIs 2019. Technical report (2019).
https://files.ably.io/research/whitepapers/the-maturity-of-public-transport-apis-
2019-ably-realtime.pdf

2. Agarwal, S.: Toward a push-scalable global internet. In: 2011 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), pp. 786–791,
April 2011. https://doi.org/10.1109/INFCOMW.2011.5928918

3. Bast, H., et al.: Route planning in transportation networks. CoRR abs/1504.05140
(2015). http://arxiv.org/abs/1504.05140

4. Bast, H., Hertel, M., Storandt, S.: Scalable transfer patterns. In: 2016 Proceed-
ings of the Eighteenth Workshop on Algorithm Engineering and Experiments
(ALENEX) (2016)

5. Brakewood, C., Macfarlane, G.S., Watkins, K.: The impact of real-time
information on bus ridership in new york city. Trans. Res. Part C:
Emerg. Technol. 53, 59–75 (2015). https://doi.org/10.1016/j.trc.2015.01.021.
http://www.sciencedirect.com/science/article/pii/S0968090X15000297

6. Cirillo, F., et al.: Atomic services: sustainable ecosystem of smart city services
through pan-European collaboration. In: 2019 Global IoT Summit (3GIoTS), pp.
1–7, June 2019. https://doi.org/10.1109/GIOTS.2019.8766431

https://files.ably.io/research/whitepapers/the-maturity-of-public-transport-apis-2019-ably-realtime.pdf
https://files.ably.io/research/whitepapers/the-maturity-of-public-transport-apis-2019-ably-realtime.pdf
https://doi.org/10.1109/INFCOMW.2011.5928918
http://arxiv.org/abs/1504.05140
https://doi.org/10.1016/j.trc.2015.01.021
http://www.sciencedirect.com/science/article/pii/S0968090X15000297
https://doi.org/10.1109/GIOTS.2019.8766431

Efficient Live Public Transport Data Sharing 335

7. Colpaert, P., Verborgh, R., Mannens, E.: Public transit route planning through
lightweight linked data interfaces. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.)
ICWE 2017. LNCS, vol. 10360, pp. 403–411. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60131-1 26

8. Dell’Aglio, D., Della Valle, E., Calbimonte, J.P., Corcho, O.: RSP-QL semantics: a
unifying query model to explain heterogeneity of RDF stream processing systems.
Int. J. Seman. Web Inf. Syst. (IJSWIS) 10(4), 17–44 (2014)

9. Dell’Aglio, D., Le Phuoc, D., Le-Tuan, A., Ali, M.I., Calbimonte, J.P.: On a Web
of data streams. In: ISWC 2017 - DeSemWeb (2017)

10. Delling, D., Dibbelt, J., Pajor, T.: Fast and exact public transit routing with
restricted pareto sets. In: Proceedings of the Twenty-First Workshop on Algorithm
Engineering and Experiments, ALENEX 2019, San Diego, CA, USA, January 7–8,
2019, pp. 54–65 (2019). https://doi.org/10.1137/1.9781611975499.5

11. Deolasee, P., Katkar, A., Panchbudhe, A., Ramamritham, K., Shenoy, P.: Adaptive
push-pull: disseminating dynamic web data. In: Proceedings of the 10th Interna-
tional Conference on World Wide Web, WWW 2001, pp. 265–274. Association for
Computing Machinery, Hong Kong, Hong Kong (2001). https://doi.org/10.1145/
371920.372066

12. Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Connection scan algorithm. J. Exp.
Algorithmics 23, 1.7:1–1.7:56 (2018). https://doi.org/10.1145/3274661, http://doi.
acm.org/10.1145/3274661

13. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959). https://doi.org/10.1007/BF01386390, https://
link.springer.com/10.1007/BF01386390

14. Dziekan, K., Kottenhoff, K.: Dynamic at-stop real-time information dis-
plays for public transport: effects on customers. Transp. Res. Part A: Pol-
icy Pract. 41(6), 489–501 (2007). https://doi.org/10.1016/j.tra.2006.11.006.
http://www.sciencedirect.com/science/article/pii/S0965856406001431

15. Fayyaz, S.K., Liu, X.C., Zhang, G.: An efficient general transit feed specification
(GTFS) enabled algorithm for dynamic transit accessibility analysis. PLoS ONE
12(10), 1–22 (2017). https://doi.org/10.1371/journal.pone.0185333d

16. Janowicz, K., Haller, A., Cox, S.J., Phuoc, D.L., Lefrançois, M.: SOSA:
a lightweight ontology for sensors, observations, samples, and actuators. J.
Web Semant. 56, 1–10 (2019). https://doi.org/10.1016/j.websem.2018.06.003.
http://www.sciencedirect.com/science/article/pii/S1570826818300295

17. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive
approach for unified processing of linked streams and Linked Data. In: International
Semantic Web Conference, pp. 370–388 (2011)

18. Loreto, S., Saint-Andre, P., Salsano, S., Wilkins, G.: Known issues and best prac-
tices for the use of long polling and streaming in bidirectional HTTP. RFC 6202,
April 2011. https://tools.ietf.org/html/rfc6202

19. Malviya, N., Madden, S., Bhattacharya, A.: A continuous query system for dynamic
route planning. In: 2011 IEEE 27th International Conference on Data Engineering,
pp. 792–803, April 2011. https://doi.org/10.1109/ICDE.2011.5767844

20. Martin-Flatin, J.P.: Push vs. pull in Web-based network management. In: Inte-
grated Network Management VI. Distributed Management for the Networked Mil-
lennium. Proceedings of the Sixth IFIP/IEEE International Symposium on Inte-
grated Network Management. (Cat. No.99EX302), pp. 3–18, May 1999. https://
doi.org/10.1109/INM.1999.770671

https://doi.org/10.1007/978-3-319-60131-1_26
https://doi.org/10.1007/978-3-319-60131-1_26
https://doi.org/10.1137/1.9781611975499.5
https://doi.org/10.1145/371920.372066
https://doi.org/10.1145/371920.372066
https://doi.org/10.1145/3274661
http://doi.acm.org/10.1145/3274661
http://doi.acm.org/10.1145/3274661
https://doi.org/10.1007/BF01386390
https://link.springer.com/10.1007/BF01386390
https://link.springer.com/10.1007/BF01386390
https://doi.org/10.1016/j.tra.2006.11.006
http://www.sciencedirect.com/science/article/pii/S0965856406001431
https://doi.org/10.1371/journal.pone.0185333
https://doi.org/10.1016/j.websem.2018.06.003
http://www.sciencedirect.com/science/article/pii/S1570826818300295
https://tools.ietf.org/html/rfc6202
https://doi.org/10.1109/ICDE.2011.5767844
https://doi.org/10.1109/INM.1999.770671
https://doi.org/10.1109/INM.1999.770671

336 J. A. Rojas et al.

21. Monzon, A., Hernandez, S., Cascajo, R.: Quality of bus services performance: ben-
efits of real time passenger information systems. Transp. Telecommun. J. 14(2),
155–166 (2013)

22. Pajor, T.: Algorithm Engineering for Realistic Journey Planning in Transportation
Networks. Ph.D. thesis (2013). https://d-nb.info/1058165240/34

23. Pimentel, V., Nickerson, B.G.: Communicating and displaying real-time data with
websocket. IEEE Internet Comput. 16(4), 45–53 (2012). https://doi.org/10.1109/
MIC.2012.64

24. Rojas, J.A., Chaves-Fraga, D., Colpaert, P., Verborgh, R., Mannens, E.: Providing
reliable access to real-time and historic public transport data using linked connec-
tions. In: Proceedings of the ISWC 2017 Posters & Demonstrations and Industry
Tracks (2017). http://ceur-ws.org/Vol-1963/paper637.pdf

25. Rojas, J.A., Van de Vyvere, B., Gevaert, A., Taelman, R., Colpaert, P., Verborgh,
R.: A preliminary open data publishing strategy for live data in flanders. In: Com-
panion Proceedings of the The Web Conference 2018. WWW ’18 (2018)

26. Stonebraker, M., Çetintemel, U., Zdonik, S.B.: The 8 requirements of real-time
stream processing. SIGMOD Record 34, 42–47 (2005)

27. Taelman, R., Verborgh, R., Colpaert, P., Mannens, E.: Continuous client-side
query evaluation over dynamic linked Data. In: Sack, H., Rizzo, G., Steinmetz,
N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp.
273–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47602-5 44

28. Tommasini, R., et al.: VoCaLS: vocabulary and catalog of linked streams. In:
Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 256–272. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00668-6 16

29. Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van
de Walle, R.: Web-scale querying through Linked Data Fragments. In: Bizer, C.,
Heath, T., Auer, S., Berners-Lee, T. (eds.) Proceedings of the 7th Workshop on
Linked Data on the Web. CEUR Workshop Proceedings, vol. 1184, April 2014

30. Witt, S.: Trip-based public transit routing using condensed search trees. In:
ATMOS (2016). https://arxiv.org/pdf/1607.01299.pdf

https://d-nb.info/1058165240/34
https://doi.org/10.1109/MIC.2012.64
https://doi.org/10.1109/MIC.2012.64
http://ceur-ws.org/Vol-1963/paper637.pdf
https://doi.org/10.1007/978-3-319-47602-5_44
https://doi.org/10.1007/978-3-030-00668-6_16
https://arxiv.org/pdf/1607.01299.pdf

Web-Based Development
and Visualization Dashboards
for Smart City Applications

Douglas Rolim, Jorge Silva, Thais Batista , and Everton Cavalcante(B)

DIMAp, Federal University of Rio Grande do Norte, Natal, Brazil
douglasrolim@gmail.com, jorgepereirasb@gmail.com, thaisbatista@gmail.com,

everton@dimap.ufrn.br

Abstract. Smart city applications are inherently characterized by the
integration of data from heterogeneous sources and the need of consider-
ing geographical information that represents the real-world urban space.
To address these concerns, some platforms have been proposed in recent
years offering common services and facilities to ease the development of
smart city applications. Nonetheless, the existing platforms do not offer
high-level interfaces to provide developers with proper tools that could
reduce the complexity of developing applications, neither an interface to
organize data visualization to end-users. Aiming at tackling such limita-
tions, this work presents Web-based dashboards to support development
and data visualization in smart city applications: the former is tailored to
application developers, whereas the latter is suited to visualize data. This
paper presents the use of these dashboards in association with a platform
that integrates heterogeneous urban data with geographical information
while supporting the development of smart city applications on top of
this data.

Keywords: Smart city applications · Application development ·
Development dashboard · Visualization dashboard

1 Introduction

Several challenges surround the smart cities ecosystem both at the stage of
developing applications, and the consumption of the huge amount of heteroge-
neous data that is often available in this scenario. Application development is
a time-consuming and error-prone task where developers have to deal with the
complexities of the geospatial nature of city development, the underlying mid-
dleware platform, as well as the programming environment. From the end-users
perspective, to have a coherent vision of the city, it is necessary to deal with the
massive number of geospatial data generated on daily basis, understand them
and how they are related.

In fact, although smart cities middleware platforms potentially support the
development and integration of smart city applications [2], several significant

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 337–344, 2020.
https://doi.org/10.1007/978-3-030-50578-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_23&domain=pdf
http://orcid.org/0000-0003-3558-1450
http://orcid.org/0000-0002-2475-5075
https://doi.org/10.1007/978-3-030-50578-3_23

338 D. Rolim et al.

challenges remain open, mainly related to the need of having a broad knowledge
of the specificities of the platform to create an application and organize data
visualization to end-users. The needs of smart cities application development go
further mashup facilities, requiring user-friendly support for managing geospatial
data, integrating heterogeneous city information with geographic location, and
querying, composing, and displaying smart cities data.

Aiming to tackle these issues, this paper presents a conceptual architecture for
two Web-based dashboards: (i) the development dashboard supports the applica-
tion development through a user-friendly interface that reduce the need of writing
complex and specific code of the underlying smart cities platform; (ii) the visual-
ization dashboard which provides an interface with geospatial dashboard, includ-
ing the city map and data plotted over it, and services for linking, querying, and
analyzing city information with geographic location. While the development dash-
board lowers developers technical barriers, the visualization dashboard enables
decision support and real-time monitoring of several city data.

This paper also presents the implementation of the proposed architecture
over a smart city platform, Smart Geo Layers (SGeoL) [3], a middleware plat-
form which integrates various types of government data sources and collabora-
tive data, provided by individuals and companies, bringing together a series of
georeferenced layers related to several domains. For example, the schools layer
groups information about the different schools of a city, such as: its geographical
location, number of students, number of teachers, students grade, etc. In SGeoL,
each layer offers a different view of the city and they can be overlapped, based
on its geographical properties. The implementation of the dashboards relies on
well-consolidated technologies used in Web environments.

This paper is structured as follows. Section 2 presents the conceptual archi-
tecture of both dashboards. Section 3 presents details about the implementation
of both dashboards. Section 4 discusses about related work. Section 5 contains
the final remarks.

2 Architecture

The conceptual architecture of both the development and visualization dash-
boards is composed of four main elements: security manager, authenticators,
resource providers, and resource consumers. This organization makes it possible
to flexibly create an infrastructure for middleware platforms that consider geo-
graphic data, which can also be adapted to possible singularities, such as the
specific data model used. Figure 1 defines the proposed architecture for the devel-
opment dashboard and for the visualization dashboard, including their interac-
tions with the underlying middleware platform.

The Resource provider represents the resources provided by the middleware
platform. In the case of the SGeoL middleware, examples of resources are lay-
ers and smart city entities, e.g., schools, green areas, squares, hospitals, etc. The
Resource consumers are components that use resources provided by the Resource
provider component. For example, in the case of the visualization and develop-
ment dashboard, consumers are: data integration and synchronizer component,
map manager component, query generator component, etc.

Development and Visualization Dashboards for Smart City Applications 339

Fig. 1. Development dashboard and Visualization dashboard conceptual architecture.

The Security Manager is a middleware element that can authenticate users
to verify if they are authorized to access an application or consume resources
from the Resource Provider component. Once a user is authorized by the Security
Manager component, the Authenticator component of both dashboards stores the
session information of the authenticated user. This session information is used
by all other components of the development dashboard to consume the resources
provided by the Resource Provider component, as well the components of the
visualization dashboard as to display visual UI elements that the user is allowed
to access. For example, a user of the visualization dashboard that has read-
only permission for a given layer can view the layer data using their credentials,
but the edit layer button is not enabled since he/she does not have update
permission.

The Development Dashboard is composed of three components: (i) Layer,
Entity, and User Manager, (ii) Dashboard Builder, and (iii) Data Integrator.
The Layer, Entity, and User Manager component uses the features provided
by the APIs responsible for listing, authoring, displaying, editing, and deleting
layers, entities, and users. In addition to managing elements, this component
also manages the access policy of applications, users, and layers.

The Dashboard Builder component offers the ability of creating dashboards
to each layer, individually. For example, in order to build a dashboard for the
school layer that displays students performance statistics over the course of a
successful term, a developer can select a board that shows a line chart for stu-
dent’s performance data (number of students approved, failed and evaded, etc.)
with respect to different school periods. The union of these and other tables
constitutes a dashboard of the school layer.

The Data Integrator and Synchonization component consumes the capabili-
ties provided by the Data Integration and Synchronization API. This component
facilitates the integration of data from companies, governments, organizations

340 D. Rolim et al.

or even devices, reducing issues related to the use of legacy systems, use of
proprietary software or other issues that hamper integration services.

The Visualization Dashboard is composed of three components: (i) Map Man-
ager, (ii) Query Generator, and (iii) Dashboard Viewer. The Map Manager com-
ponent allows an integrated, multidimensional data analysis, considering the
correlation of data from different layers, bringing out information that would be
obscured in a classic (one-dimensional) view. It also provides features that allow
editing geographic data such as points, polygons or line segments of the enti-
ties belonging to the layers. The Query Generator component simplifies the way
users perform queries about different entities available through a user-friendly
interface, eliminating the need of a database query language knowledge. The
result of these queries can be stored and reused later. The result of this query
can be named, saved, and used later, eliminating the need of having to rewrite
the query. The Dashboard Viewer component displays dashboards predefined by
developers of layers at the time of their creation or editing, allowing users to
view, monitor or correlate different data layers, intuitively and directly. In addi-
tion, it allows the user to compose a personal dashboard as a favorite dashboard
which are displayed on their personal dashboard.

3 Implementation

The Vue.Js JavaScript framework1 was used for implementing both development
and visualization dashboards. Vue.Js powers sophisticated single-page applica-
tions when used in combination with modern tools and libraries. A modular
structural architecture (see Fig. 1) was defined with the following modules: Core,
Maps, Dashboard, and Security. The Core module contains all files common to the
other modules, e.g., language selection, navigation bars and menus, login/logout
buttons, etc. The Maps module is responsible for presenting geographic data and
for providing basic operations that can act on the map elements, such as creat-
ing, reading, updating, and deleting layers and entities. The Dashboard module
includes components of boards (such as graphics, pictures, light indicator, and
historical data) for presenting data and composing dashboards. The Security
module is in charge of the communication between interfaces and the middle-
ware security component. This module has components, routes, and interfaces
for user input, password recovery, registration of new users, definition of roles,
etc. It also stores the state of the user’s token data and allows other modules to
make use of these for the consumption of the middleware APIs.

Each module is structured as follows: (i) components: includes all compo-
nents belonging to the specific module, which can be reused using the name of
the component or through events. For example, the dashboard module has com-
ponents (boards) used for composing the dashboard. (ii) services: includes all
configuration files, addresses and methods for consuming the APIs of the services
used by the module; (iii) stores: stores the unique state data, that is, a single
object that contains the state at the application level and shares it with the other
1 https://vuejs.org.

https://vuejs.org

Development and Visualization Dashboards for Smart City Applications 341

Fig. 2. Layers selection, layer overlay, and layer view control.

modules; and (iv) routes: responsible for configuring the internal routes of each
module. For example, the dashboard module has a main route that presents a set
of board and another route for presenting one board with a specific identifier.

3.1 Visualization Dashboard

The Visualization dashboard provides the simplest level of control. In order to
provide a feeling of familiarity to the user, the interface was developed inspired
by map applications, such as Google Maps and OpenStreetMaps. A user can
select the available layers (Fig. 2-I), such as, Green Areas, Neighbourhood, Cities,
Health, among others. By selecting the layers of hospitals and neighborhoods
(Fig. 2-II), for example, the location of the hospitals overlapping the polygons of
neighborhoods is displayed. An user can select to display in satellite mode or use
the layer control component (Fig. 2-III), where an user can hide/exhibit layers,
activate/deactivate heat maps with intensity control, or remove a layer from
the display. Furthermore, when clicking on an entity represented by a polygon
or marker on the map (Fig. 2-II), a navigation drawer opens (Fig. 3-I). On this
view, the names and values of the properties of the selected entity are presented.
It is also possible to edit a value by clicking on it (Fig. 3-II) or even to edit the
polygon geometry or marker location. To edit a polygon or a marker (Fig. 3-III),
an user can paste a GeoJSON code or load a DXF file for CAD models.

In addition to the layer selection features, it is possible to use the friendly
interface query tool to select specific layer entities, eliminating the need for
knowing the query language. The query tool allows: (i) to name the query, (ii)
to select the color of the returned entities (Fig. 4-I), (iii) to compare values using

342 D. Rolim et al.

Fig. 3. Entity editing, geographic data editing, and import from GeoJson.

the buttons of the logical operators or even use captions (Fig. 4-II). For example,
in the neighborhood layer, to query entities with a population greater than 40,000
inhabitants (Fig. 4-III). The results can be saved and reused, without the need
of repeating the query.

3.2 Development Dashboard

The development dashboard provides features for the developer to manage appli-
cations, users, layers and entities, as well as tools for importing and synchroniz-
ing data. The developer has access to all the main features of the development
dashboard, such as user management, layers, data import and synchronization.
Furthermore, the developer can add new layers or edit or remove an existing one
(if allowed). Once a developer owns a layer or have permission to edit it, he/she
can add (Fig. 5-I), edit or remove entities.

If the developer wants to import data from other applications or systems, it
is possible to use the import interface. This interface handles data importation
in different contexts and or common approaches (Fig. 5-II). The first one uses
the resources provided by NGSI-LD, which supports Linked Data. The second
is a simpler import to be used when data do not need standardization through
a context source. Then, it is possible to select whether the importation will use
either CSV, JSON or XLS files or through APIs (Fig. 5-III). Once the data source
type has been selected, the developer will have a wizard to instruct him/her with
the necessary configurations, either to submit files or select the desired APIs in
order to import data.

Development and Visualization Dashboards for Smart City Applications 343

Fig. 4. Query tool and visualization of query results.

Fig. 5. Add new entity, import configuration, and selection of data source type.

4 Related Work

Dashboards have proven to be very useful for viewing, analyzing and monitoring
information in smart city environments. Freeboard2 is a tool that allows setting

2 https://freeboard.io/.

https://freeboard.io/

344 D. Rolim et al.

up customized dashboards for monitoring device and smart cities data. Although
Freeboard allows easy creation of customized dashboards, it does not support
managing users and their access levels, neither tools for importing data, a useful
feature in smart city environments in which data often need to be combined.

ThingsBoard3 is an open-source platform for device data collection, data
processing, data visualization, and data management. Similarly to Freeboard,
ThingsBoard uses the concept of widgets, which can be connected to data sources
and used to compose dashboards according to users’ preferences. This platform
also facilitates the use and integration of different data sources, users, and access
permissions configurations.

Glue.things [1] allows managing access control to the data produced by the
devices in addition to offering a dashboard on which developers can develop
applications through mashups. Even though Glue.things supports application
development, it does not support data integration and importation of heteroge-
neous data sources. On the other hand, the dashboards presented in this paper
allow integrating data from several sources and types (e.g., APIs provided by
third-party systems, CSV files, XML files, etc.), an essential concern in a smart
city environment. Moreover, it lack support for geospatial information whereas
our proposal includes the integration of maps, data analytics, and geographic
visualization and querying.

5 Final Remarks

In this paper, we presented the architecture of Web-based development and
visualization dashboards for smart city applications that aim to provide friendly
interfaces for developers and users. The purpose of the proposal is twofold: (i)
to reduce the complexity of developing smart cities applications and (ii) to allow
better understanding the typical plethora of heterogeneous data in this scenario.
While visualization dashboards can gather, exhibit, and advise on smart cities
data, development dashboards support sustainable development of smart cities
applications. We have shown how the proposed architecture was grounded on a
smart city platform, providing a set of facilities to both developers and users.

References

1. Kleinfeld, R., Steglich, S., Radziwonowicz, L., Doukas, C.: glue.things: a mashup
platform for wiring the Internet of Things with the Internet of Services. In: Pro-
ceedings of the 5th International Workshop on Web of Things, pp. 16–21. ACM
(2014)

2. Santana, E.F.Z., Chaves, A.P., Gerosa, M.A., Kon, F., Milojicic, D.: Software plat-
forms for smart cities: concepts, requirements, challenges, and a unified reference
architecture. ACM Comput. Surv. 50(6), 1–37 (2017)

3. Souza, A., et al.: A geographic-layered data middleware for smart cities. In: Pro-
ceedings of the 24th Brazilian Symposium on Multimedia and the Web, pp. 411–414.
ACM (2018)

3 https://thingsboard.io/.

https://thingsboard.io/

Sentiment Analysis

Detecting Rumor on Microblogging
Platforms via a Hybrid Stance Attention

Mechanism

Zeng Lingyu, Wu Bin(B), and Wang Bai

Beijing University of Posts and Telecommunications, Beijing, China
wubin@bupt.edu.cn

Abstract. Microblogging platforms are important social media in the
Internet age. Considering the amount of users on microblogging plat-
forms, the rumor spreading on microblogging platform could have a neg-
ative effect on individuals, groups and the whole society. Hence, auto-
matic rumor detection is an important research issue. Stance information
contains crucial features for rumor detection, because users discussing
rumors tend to express more querying and denying stances. Moreover,
different user stances have different importance. Motivated by this inspi-
ration, in this paper, we propose a Rumor Detection Model with a Hybrid
Stance Attention Mechanism (RDM-HSAM). The RDM-HSAM consists
of four modules. The first module is a stance module, in which the
tweet-level stance representation is constructed. The second module is
the attention module in which a hybrid attention mechanism is used to
construct the event-level stance representation of a microblogging event.
The hybrid attention mechanism is consisted of two attention mecha-
nisms, i.e. content attention mechanism and user attention mechanism
which are applied at the stance information and user profile respectively.
The third module is a rumor module which captures the content features
and temporal features of a microblogging event. The fourth module is an
integrate module in which event-level stance representations and rumor
representations are concatenated together to detect rumors. Experiments
on a real-world dataset from Weibo platform demonstrate that our pro-
posed model RDM-HSAM improves the performance of rumor detection
in terms of both efficiency and accuracy compared to other methods, and
the accuracy of our model achieves 94.9%.

Keywords: Rumor detection · Stance mining · Attention · Neural
networks

This work is supported by the National Key Research and Development Program of
China (2018YFC0831500), the National Natural Science Foundation of China (NSFC)
under Grant No. 61972047 and the NSFC-General Technology Basic Research Joint
Funds under Grant U1936220.

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 347–364, 2020.
https://doi.org/10.1007/978-3-030-50578-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_24

348 Z. Lingyu et al.

1 Introduction

Microblogging platforms are crucial social media as well as research foci in the
Internet age [23,24]. A rumor is defined as a statement or a story whose truth-
value is unverifiable or deliberately false by social psychology literature [1]. Once
rumors on microblogging platforms were out of control, massive panic and social
unrest would be scattered in our community and the sphere of influence could
be extraordinarily large.

To address this problem, many automatic rumor detection methods are pro-
posed. Jing Ma et al. [3] propose a model based on recurrent neural network
to learn the hidden representations that capture the variation of contextual
information of relevant posts over time. Natali Ruchansky et al. [4] propose a
model that combined text, response and source characteristics. Feng Yu et al. [5]
propose a model based on convolutional neural network which can extract key
features scattered among the input sequence and shape high-level interactions
among significant features.

Stance is defined as a user’s attitude of a piece of information. Stances are
usually divided into three categories: supporting stance, querying stance and
denying stance. Sometimes, a neutral stance is added to these three categories.
Mendoza et al. [2] found that in hot events, most of the user stances related
to real information are supportive, while more than half of the user stances
related to rumor information are opposed and questioned. Similar to that, on
microblogging platforms, users discussing rumors tend to express more querying
and denying stances. Hence stance information is a crucial feature for rumor
detection. The profile of the whole microblogging event stance is also a profile of
group wisdom. There are some existing approaches that take stance information
into account. Zhe Zhao et al. [6] work on early rumor detection using cue terms
such as “not true”, “unconfirmed” or “debunk” to find querying and denying
tweets. Jing Ma et al. [7] detect rumor and stance jointly by neural multi-task
learning. The main drawback of these methods is that they treat all the stance
information equally but it is not proper on microblogging platforms.

The intuition underlying our model is that not all the stance information
is equally valuable for the group wisdom profile, consequently, it is unequally
important for rumor detection.

First, information of tweets with different stances is unequally valuable. In
a microblogging event, the number of supporting tweets is much larger than
that of querying and denying tweets in most cases. If we treat all the stance
information equally, the information of querying and denying tweets is easily
concealed. Moreover, even conveying the same stance, information with more
persuasive clues should be paid more attention to.

Figure 1 is an example of a microblogging event, in which R0 is the root tweet
and R1 to Rn are retweets. The text contents of the tweet and retweets are the
comment made by users. As shown in Fig. 1, R1 is a sequence of characters gen-
erated by default on the circumstance of a lack of comment when users publish
posts. This kind of meaningless text has no value for gathering group wisdom,
yet it accounts for a large proportion of all texts. To avoid a concealment of

Detecting Rumor on Microblogging Platforms via a HSAM 349

valuable information, the neglect of the valueless information is required. Fur-
thermore, R2 is a supporting tweets which is a repetition of root tweet and R3,
Rn−1 and Rn convey querying and denying stance respectively. All of them are
valuable for rumor detection, but among them, Rn−1 and Rn are more valuable
because they contain more persuasive clues.

Fig. 1. An example of microblogging event. A microblogging event is defined as a
collection of a root tweet and all its related retweets. R0 in Fig. 1 is the root tweet. R1

to Rn are retweets. An event can be divided into several subevents, which are notated
as SE1 to SEN .

Second, not all the users are equally reliable. Hence, the information released
by different users has different importance for rumor detection. There are three
types of account on the microblogging platform. The first type is the official
account which has the highest credibility mostly. The second type is the ordi-
nary personal account. Some of ordinary personal accounts are more susceptible
to rumors and others are more resistant. The stances of resistant users are more
reliable. The third type is the robot account. Some of robot accounts are manip-
ulated by somebody and the stances of them are fabricated to mislead public
opinion.

Motivated by this inspiration, we have a hypothesis that making full use of the
valuable and reliable stance information by paying different attention to different
tweet-level stances can gather group wisdom more effectively and consequently,
enhance the rumor detection model performance. To test the hypothesis, we
propose the Rumor Detection Model with a Hybrid Stance Attention Mechanism
(RDM-HSAM) in this paper.

RDM-HSAM consists of four modules: stance module, attention module,
rumor module and integrate module. The first module is a stance module, in
which the tweet-level stance representation containing stance information is con-
structed. The second module is the attention module in which a hybrid atten-
tion mechanism is used to construct the event-level stance representation of a

350 Z. Lingyu et al.

microblogging event. The hybrid attention mechanism is consisted of two atten-
tion mechanisms, i.e. content attention mechanism and user attention mecha-
nism which are applied at the stance information and user profile respectively.
The third module is a rumor module which captures the content features and
temporal features of a microblogging event. The fourth module is an integrate
module in which event-level stance representations and rumor representations
are concatenated together to detect rumors.

Overall, our main contributions can be summarized as follows:

– To the best of our knowledge, we are the first to use the attention mechanism
in an event-level stance representation learning process. The latent represen-
tation obtained in this way contains more valuable and reliable information
for rumor detection.

– The hybrid attention mechanism is consisted of content attention mechanism
and user attention mechanism, evaluating the importance of stance infor-
mation from the aspects of text contents and users’ credibility respectively.
The hybrid attention mechanism enable the model to contain more important
information in the latent representation of the event-level stance.

– Experiments on a real world data set from Weibo platform demonstrate that
our proposed model RDM-HSAM improves the performance of rumor detec-
tion in terms of both efficiency and accuracy compared with other methods,
and the accuracy of our model achieves 94.6%.

2 Related Work

2.1 Rumor Detection

Initially, the automatic rumor detection of social media is based on hand-craft
feature set. These methods construct the feature set manually at the begin-
ning. Then they extract the features of the data according to the feature set,
and finally all the extracted features are put into a machine learning classifier for
rumor detection. Sejeong Kwon et al. [8] construct a feature set including content
features and propagation features. Jing Ma et al. [9] extend the feature set with
user features. Although these methods have good performance in rumor detec-
tion, their disadvantages are also obvious. First, hand-made feature sets require
daunting manual labor. Second, the construction of feature sets depends on
researchers’ logical thinking and fail to extract more high-dimensional abstract
features.

To overcome the shortcomings of these hand-crafted feature based methods,
rumor detection methods based on deep learning are proposed. Jing Ma et al.
[3] propose a model based on recurrent neural network to learn the hidden rep-
resentation of microblogging events. The model converts the microblog event
into a sequence of subevents and capture the variation of contextual information
over time. Natali Ruchansky et al. [4] propose a model that can integrate text
information, response information and source information. Feng Yu et al. [5] pro-
pose a model based on convolutional neural network to extract the key features

Detecting Rumor on Microblogging Platforms via a HSAM 351

scattered in the input sequence and form the high-level interaction between the
important features. Jing Ma et al. [10] use tree structure recurrent neural net-
work to leverage non sequential propagation structure for rumor detection. The
disadvantage of these methods is that none of them use the information from
the stance perspective.

There are also some existing approaches that take the stance information into
account. Zhe Zhao et al. [6] use cue terms such as “not true”, “unconfirmed” or
“debunk” to find querying and denying tweets and then they use this clue to
detect rumor. Jing Ma et al. [7] detect rumor and stance jointly by multi-task
learning method. The main disadvantage of these methods is that they treat
all the stance information equally, ignoring the fact that the information has
different importance for rumor detection.

2.2 Stance Mining

Stance mining based on viewpoint mining can be divided into three different
granularities: document level, sentence level and aspect level [11–15]. Stances are
mined by identifying viewpoint sentences and extracting viewpoint in the form of
five or six tuples. Liu Bing et al. [11] propose a model to abstract viewpoints into
five tuples: Opinion = entity, aspect, opinion orientation, holder, time. Among
them, entity is the object of viewpoint, aspect is the element of entity, opinion
orientation is the tendency of viewpoint, holder is the holder of viewpoint, and
time is the publish time. These stance mining methods are not suitable for the
stance mining on microblogging platforms because the text on the microblogging
platform is too colloquial to extract tuples.

Deep learning based methods are more suitable for the stance mining
on microblogging platforms. IKM team [16] proposes a conventional-neural-
network-based voting scheme in SemEval stance mining contest. Jing Ma et al.
[3] detect rumor and stance jointly by neural multi-task learning. Xu Chang
et al. [17] use a self-attention mechanism for Cross-Target Stance Classification.

2.3 Attention Mechanism

Attention mechanism has been widely used in natural language processing [18–
21]. In the general definition of attention mechanism, key vectors and query
vectors are need for attention values calculation. Besides, value vectors v =
[v1, v2, . . . , vn] are also needed for attention mechanism. There is a one-to-one
correspondence between the n tokens of the value vector sequence v and the
key vector sequence k. In an attention mechanism execution process, given a
sequence of key values k = [k1, k2, . . . , kn] and the vector of a query q, attention
mechanism computes the alignment score between ki and q by a compatibility
function f (ki, q), which is a measure of the dependency between ki and q. Then
a softmax function is used to transform the scores [f (ki, q)]i=1 to a probability
distribution p = (z|k, q) where z represents the importance of vi to q on a specific

352 Z. Lingyu et al.

task. That is, the larger p = (z = i|k, q) is, the more important information
vi contributes to q. The above process can be summarized by the following
equations.

α = [f (ki, q)]
n
i=1 (1)

p (z|k, q) = softmax (α) (2)

Specifically,

p (z = i|k, q) =
exp (f (ki, q))∑n
i=1 exp (f (ki, q))

(3)

The output of the attention mechanism is a weighted sum calculated form
all the tokens of value vector sequence v. The weight of vi used in calculation is
given by p = (z = i|k, q) which measures the importance of vi to q. The above
process can be summarized by the following equation.

h =
n∑

i=1

(p(z = i|k, q)vi (4)

f (ki, q) is differently computed in different methods. Additive attention and
multiplicative attention are the two mostly commonly used attention mechanism.
In additive attention mechanism, f (ki, q) is calculated as following:

f (ki, q) = ωTσ (Wkki + Wqq) (5)

where σ (∗) is an activate function and ω is a weight vector. Multiplicative atten-
tion uses inner product or cosine similarity for f (xi, q) , i.e.,

f (ki, q) = 〈Wkki,Wqq〉 (6)

In practice, additive attention often outperforms multiplicative one in predic-
tion quality, but the latter is faster and more memory-efficient due to optimized
matrix multiplication.

3 Problem Definition

3.1 Preliminaries

A microblogging post is formulated as R = { u, text, t} in which u is user
information, text is the comment that user creates when he/she publishes tweet
and t is the publish time. Given a microblogging event, we align all the tweets
to a sequence according to the publish time and consequently a microblogging
event is formulated as E = {R0, R1, R2, . . . , Ri, . . . , Rn}, where R0 is the root
tweet and R1 to Rn are retweets.

On microblogging platforms, stance is the attitude of users towards the
authenticity of the root tweet. Stances are classified into three types in our

Detecting Rumor on Microblogging Platforms via a HSAM 353

research, i.e. supporting stance, querying stance and denying stance. All the
tweets that do not explicitly raise questions and objections are regarded as
potential supporting tweets.

3.2 Goal

The main purpose of our research is identifying whether a root tweet is a rumor.
The input of the rumor detection task is E = {R0, R1, R2, . . . , Ri, . . . , Rn}. To
construct a latent representation of event-level stance profile, we also raise a
stance mining task in our paper.

4 Model

In this section, we introduce the proposed model. We first present the over-
all structure of the stance attention rumor detection model, then we detail the
stance module, rumor module, attention module and integrate module respec-
tively.

Fig. 2. The overall structure of the hybrid stance attention rumor detection model.

354 Z. Lingyu et al.

As illustrated in Fig. 2, there are four mini modules as follows: stance module,
attention module, rumor module and integrate module. First, stance module is
a module where tweet-level stance representations are learned. Second, hybrid
attention mechanism is leveraged to construct event-level stance representation.
Third, the rumor module captures the content features and temporal features
of a microblogging event and constructs a latent representation containing the
information directly related to rumor detection. Finally, the integrate module
combines the rumor representation with the event-level stance representation as
the input of the ultimate rumor detection.

4.1 Stance Module

Given a microblogging event E = {R0, R1, R2, . . . , Ri, . . . , Rn}, the input of the
stance module, notated as Text = {text0, text1, text2, . . . , texti}, is the text of
the post in the microblogging event E except the meaningless text. The mean-
ingless text, as the R1 shown in Fig. 1, is the text generated by default on the
circumstance of a lack of comment when users publish posts.

To convert the text into a data format that the model can process, all the
texts are put into an embedding layer firstly. Then a recurrent neural network
and a convolutional neural network are used to extract event-related features
and grammatical features respectively. The reason that we use two different
network structures to extract features is that there are two different ways of
users to expression stances in microblogging platforms, and the information of
these two different expressions is suitable for two types of deep learning networks
to extract.

Grammatical Feature. Microblogging platform is a social media full of collo-
quial content. When users express querying stances, a colloquialism they com-
monly use is “really?”, and when it comes to denying stance, the colloquialism
could be “It is not true” or “That’s a totally crap”. In this case, grammatical
features are adequate for stance classification. As shown in Fig. 1, R3 is a typ-
ically expression of querying and without root tweet content, we can also tell
the stance of Rn−1 because he/she said “it is fake” at the beginning. To capture
these common expressions effectively, we construct a convolutional neural net-
work. The network structure is shown in Fig. 3(a). The input of the grammatical
feature extraction module is a matrix in which each row represents one character
in the sentence. After convolutional process, the vectors obtained by convolution
kernels with different window size are concatenated together to form the overall
grammatical feature vector, which is represented as tsgi .

Event-Related Feature. Unlike R3 and Rn−1, Rn says that the boy in the
picture is his/her neighbor and he has grown up, indicating the boy could not
be lost for two days. Although it is a post with denying stance, it is impossible
for the model to classify the stance unless taking the information of root tweet
into consideration. To deal with the problem above-mentioned, we construct

Detecting Rumor on Microblogging Platforms via a HSAM 355

(a) The convolutional neural network
used for grammatical feature extraction

(b) The recurrent neural network used for
event-related feature extraction

Fig. 3. The neural networks used in stance module

a recurrent neural network to capture the event-related feature. The network
structure is shown in Fig. 3(b). First, a recurrent neural network used GRU cell
is constructed to encode root tweet, and then the output of the root tweet layer
is used as the initial state of the retweet layer. In this way, the information of
root tweet is taken into consideration during the retweets’ feature extracting
process. The output of the event-related feature extraction module is annotated
as tsei .

4.2 Attention

Given a microblogging event E = {R0, R1, R2, . . . , Ri, . . . , Rn} and the corre-
sponding stance module input Text = {text0, text1, text2, . . . , texti} , the inputs
of the attention module is the user set notated as U = {u0, u1, u2, . . . , ui} and
the output of the stance module. Two different attention mechanisms are used
in attention module. Content attention mechanism use the output of the stance
module to evaluate that how much important information a text contains and
user attention mechanism use the user set U to evaluate that how reliable the
user’s stance is. For each attention mechanism, we calculate element-wise mul-
tiplication of the attention scores and x1 to xn. Then, we sum up all the vec-
tors along the column and get two vectors from the two attention mechanism.
Finally, we calculate the mean value of the two vectors and the representation
of the event-level stance is obtained.

Content Attention. In a microblogging event, the number of supporting tweets
is much larger than that of querying and denying tweets in most cases. More-
over, even with the same stance, we should pay more attention to that the stance
information that contains more persuasive clues. Therefore, an attention mech-
anism is leveraged in our model to identify the important information during

356 Z. Lingyu et al.

Fig. 4. The attention mechanism used for content attention.

the event-level stance representation learning process. The attention mechanism
used in the model is shown in Fig. 4.

As shown in Fig. 4, xi is a concatenation of tsei and tsgi , i.e. the stance vector
of the i-th tweet. ki is the key vector of xi. At the beginning, the stance vectors
of tweets are put into a full connection layer to get the key vectors of them.
Vector q is the querying vector which can be seen as a latent representation of a
query. In this task, the querying is “whose stance information is more important
for rumor detection?” The value of the querying vector is randomly generated
and optimized as a parameter during the training process. Additive attention is
used in our model, which means the alignment score is calculated as following:

f (ki, q) = ωTσ (Wkki + Wqq) (7)

The alignment scores are annotated as z1 to zn. To normalize the alignment
scores, z1 to zn are put into a softmax layer in which all the alignment scores
are mapped to the interval from 0 to 1.

User Attention. The credibility of different users is unequal. In general, offi-
cial accounts have the highest credibility while robot accounts with fabricated
stances have the lowest one. Meanwhile, in personal accounts, some of them

Detecting Rumor on Microblogging Platforms via a HSAM 357

are more susceptible to rumors and others are more resistant. The more resis-
tance an account has, the more reliable its stance is. Therefore, we construct a
user attention mechanism to evaluate the credibility of a user. The user atten-
tion mechanism used in the model has the same structure with the content
attention mechanism. The difference between them is that the inputs of user
attention mechanism are user profile vectors. In this paper, we construct the
initial user profile vector according to the user feature set shown in Table 1. The
initial user profile vector is put into an embedding layer for higher dimensional
representation.

Table 1. Features used in initial user profile vectors

Future name Description

Followers Number of followers

Friends Number of mutual follower

Gender Man, woman

Registration time Registration time of the account

Historical microblogs Number of status

Verification type Ordinary user, celebrity, government, enterprise, medium,
school, website, organization, pending enterprise,
application, junior expert, senior expert, deceased expert

4.3 Rumor Module

To extract content features and temporal features related to rumor detection
directly, we construct a recurrent neural network for rumor feature extraction.
Given a microblogging event E = {R0, R1, R2, . . . , Ri, . . . , Rn}, the input of the
rumor module is text of all the post in the microblogging event. Putting a post
into the recurrent neural network once a time is inappropriate because it requires
a recurrent neural network with thousands of layers. Hence, in rumor module, we
firstly split a microblogging event into N subevents. Given the subevent number
N and a microblogging event with n posts, first, we calculate the average number
of posts per interval as n/N. n/N is a non-integer in most cases. Since N is a large
number, if we put ceil(n/N) posts in each interval, the last few intervals may be
empty while if we put floor(n/N) posts in each interval, there may be a lot of
extra posts in the last interval. So we alternately set the number of posts in each
interval to ceil(n/N) and floor(n/N). ceil(n/N) is the nearest integer greater than
n/N and floor(n/N) is the nearest integer less than n/N. If the total number of
posts involved in the event is less than N, we put a post in each interval, and
the last intervals are empty.

After subevent construction process, we treat a subevent as a document
and use the TF*IDF value of the vocabulary terms as input. We prune the
vocabulary by keeping the top-K terms according to the word frequency, so

358 Z. Lingyu et al.

the input dimension is N*K. The matrix of event is sparse, so we implement a
embedding layer to convert the sparse input into dense representations.

GRU cell is suitable for long-distance dependency problem. The gate units
not only keep the text content of subevents but also inject the inter-dependent
evidence from its precious steps which lead to a good extraction of both content
information and temporal information. Hence we construct a two-layer recurrent
neural network using GRU cell in the rumor module.

4.4 Integrate Module

In the integrate module, the vector learning form stance module and rumor
module are concatenated together and put into two fully connection layers and
a softmax layer. The output of the softmax layer is annotated as pc. Let gc,
where c denotes the class label, be the ground-truth 2-dimensional multinomial
distribution on an event. Here, the distribution is of the form [1, 0] for rumors
and [0, 1] for non-rumors. For each training instance, our goal is to minimize the
sum of L2-regularization penalty and the cross entropy loss that between the
probability distributions of the prediction and ground truth.

5 Metrics and Datasets

5.1 Metrics

For an N-categorization task, accuracy, recall, precision, and F1 score are used
as metrics to measure the quality of the model.

5.2 Dataset

There are two datasets used in experiment, the first one is Weibo stance dataset
and the second one is Weibo rumor dataset. Both datasets are public datasets.
The Weibo rumor dataset is published by Jing Ma in 2016 [3] and the Weibo
stance dataset is published by Lingyu Zeng in 2019 [22]. The basic information
of datasets is shown in Table 2.

Table 2. Statics of datasets.

Rumor dataset Statics Stance dataset Statics

User 2,746,818 User 110,012

Posts 3,805,656 Posts 156,577

Events 4,664 Events 541

Rumors 2,313 Rumors 330

Non-rumors 2,351 Non-rumors 211

Avg. time length/event 2,460.7 h Supporting stance 189,390

Avg of posts/event 816 Denying stance 7,701

Max of posts/event 59,318 Querying stance 8,364

Detecting Rumor on Microblogging Platforms via a HSAM 359

6 Experiment

6.1 Model Training

We train all the CNN and RNN models by employing the derivation of the loss
through back-propagation with respect to all the parameters. We use the Ada-
Grad algorithm for parameter update. After fine tune, we set the vocabulary size
K as 10,000, the embedding size of rumor module, stance module and attention
module as 300, 128 and 128 respectively. Filter windows of CNN is 2, 3, 5 and
the feature maps of them is 100. The size of hidden units is 128 and the learning
rate is 0.0001. Subevent number N is empirically set as 50. We firstly trained
the stance module separately by putting the vector concatenating grammatical
vector and event-related vector into a classifier. In the stance module training
process, all the data of the Weibo stance dataset is used for training. The param-
eters of the stance module are fixed in the later rumor detection model training
process. For rumor detection experiments, we randomly choose 10% of the Weibo
rumor data for test and the rest for training.

6.2 Rumor Detection

To empirically evaluate the performance of our method on rumor classification,
we perform experiments on Weibo dataset. We compared our stance mining
assisting model with several baselines including:

– SVM-TS: a linear SVM classification model proposed by Jing Ma et al. in
2015 by using time-series structures to model the variation of social context
features [9].

– DT-Rank: a decision-tree-based ranking model proposed by Zhe Zhao et al.
in 2015 [11]. We implements their features and enquiry phrases.

– RFC: a random forest classifier proposed by Sejeong Kwon et al. in 2013 [8].
They utilize temporal volume curve to detect rumors.

– GRU-2: a deep learning model proposed by Jing Ma et al. in 2016 [3]. It is
configured with a two-layer conventional neural network.

– CMAI: a deep learning model proposed by Feng Yu et al. in 2017 [5]. It is
configured with two-layer of GRU hidden units.

– Multi-task: A multi-task method proposed by Jing Ma in 2018 [7]. It trains
stance mining task and rumor detection task jointly.

– SMAM: A stance mining assisting model proposed by Lingyu Zeng in 2019
[22]. It learns the stance representation without attention mechanism.

– Our models: (1) Simple-RNN is a model that only contains the rumor module.
The output of the rumor module is put into a full connection layer and a
softmax layer to detect rumor. (2) RDM-SN is a model with stance module,
rumor module and integrate module. The event-level stance representation
is an element-wise average value of all the tweet-level stance representations.
(3) RDM-HSAM is an overall model with stance module, attention module,
rumor module and integrate module.

360 Z. Lingyu et al.

We implement SVM with LibSVM, decision tree model with scikit-learn
and RNN model with TensorFlow. Table 3 shows the performance of different
methods.

Table 3. Performance of different methods in rumor detection

Method Class Accuracy Precision Recall F1

SVM-TS R 0.849 0.839 0.885 0.861

N 0.878 0.830 0.857

DT-Rank R 0.731 0.738 0.712 0.726

N 0.726 0.747 0.737

GRU-2 R 0.910 0.876 0.956 0.913

N 0.952 0.864 0.903

RFC R 0.849 0.786 0.959 0.864

N 0.947 0.739 0.830

SVN-CSD R 0.875 0.849 0.909 0.878

N 0.904 0.841 0.872

CAMI R 0.933 0.921 0.945 0.933

N 0.945 0.921 0.932

Multi-task R 0.917 0.920 0.921 0.915

N 0.932 0.920 0.919

SMAM R 0.939 0.929 0.950 0.940

N 0.951 0.928 0.939

Simple-RNN R 0.891 0.882 0.901 0.891

N 0.901 0.881 0.891

RDM-SN R 0.917 0.906 0.929 0.917

N 0.928 0.905 0.916

RDM-HSAM R 0.949 0.937 0.961 0.949

N 0.961 0.936 0.948

Table 3 shows the performance of different methods and our model outper-
forms all the baselines.

Specifically, SVM-TS, DT-Rank and RFC are models based on machine learn-
ing and the rest of models are based on deep learning. The greater performances
that deep learning models obtained indicate that using deep learning method to
detect rumor is the prospect of rumor detection task.

Detecting Rumor on Microblogging Platforms via a HSAM 361

DT-Rank is a decision-tree-based ranking model implementing enquiry
phrases. In their model, they use a keyword matching method to find enquiry
phrases features. DT-Rank achieves 0.731 accuracy, indicating that the key words
matching method is insufficient for stance mining and rumor detection. Multi-
task is a multi-task method training stance mining task and rumor detection
task jointly. Joint training is not conducive to the optimal convergence of rumor
detection model. Hence we trained stance module and the other modules sep-
arately and achieve a better performance in the rumor detection experiments.
Besides, the Multi-task model uses a recurrent neural network to learn tweet-
level stance latent representations but we propose a more efficient stance feature
extraction structure. SMAM is a model mining stance information on subevent
level. Compared with SMAM, RDM-HSAM mine stance in tweet-level at the
beginning, avoiding a distortion of data. Mining stance on subevent level requires
a processing of data which could distort data. Compared with these stance-aware
methods, our model has a better performance.

The simple-RNN model achieves 0.891 accuracy on the dataset, indicating
that the basic RNN can learn discriminative features effectively. RDM-SN with
a better performance than the simple-RNN model validates the enhancement
effect of the event-level stance information. Compared with RDM-SN which
do not use attention mechanism in event-level stance representation learning
process, the model with attention mechanism, i.e. RDM-HSAM achieves better
performance, indicating the effectiveness of attention mechanism. The experi-
ments demonstrate that more important stance information is contained in the
event-level stance latent representation owing to the attention mechanism.

6.3 Early Detection

In order to effectively control rumors, rumors need to be identified as early as
possible. Hence, early detection is extraordinarily valuable in rumor detection
task. Given a detection deadline, early detection is a detection only using the
tweets published before the time point.

Figure 5 shows the accuracy of the baselines and our models. Compared with
the manual feature set method, the deep learning methods have better perfor-
mances. It proves that the deep neural network can extract more explicit features
in rumor detection task. Our model has a better performance after 24 h. This is
explainable because it will take a while for users to browse rumors and express
their stances. Compared with the time lag caused by the authority’s rumor ver-
ification, 24 h is an acceptable time lag considering the high accuracy and large
quantity of data that can be processed once.

362 Z. Lingyu et al.

Fig. 5. Results of rumor early detection.

7 Conclusion

In this paper, we propose a rumor detection model with a hybrid stance atten-
tion mechanism. In the model, stance module extracts the stance feature and
construct tweet-level stance representation. Attention module leverages a hybrid
attention mechanism to construct the event-level stance representation. Rumor
module extracts content features and temporal features directly related to rumor
detection, and integrated module concatenates event-level stance representations
and rumor representations together to detect rumor. Experimental results show
that our method has a better performance compared with baselines, improving
rumor detection efficiency on microblogging platforms. In the future, we will
further develop unsupervised models due to the massive unlabeled stance data.

References

1. O’Reilly, T., Xuan, W.: What is Web2.0. Internet Wkly. (40), 38–40 (2005)
2. Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: can we trust what we

RT. In: Proceedings of the First Workshop on Social Media Analytics, pp. 71–79
(2010)

3. Ma, J., Gao, W., Mitra, P., et al.: Detecting rumors from microblogs with recurrent
neural networks. In: The International Joint Conference on Artificial Intelligence,
pp. 3818–3824 (2016)

4. Ruchansky, N., Seo, S., Liu, Y.: CSI: a hybrid deep model for fake news detection.
In: Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pp. 797–806 (2017)

Detecting Rumor on Microblogging Platforms via a HSAM 363

5. Yu, F., Liu, Q., Wu, S., et al.: A convolutional approach for misinformation identi-
fication. In: Twenty-Sixth International Joint Conference on Artificial Intelligence,
pp. 3901–3907 (2017)

6. Zhao, Z., Resnick, P., Mei, Q.: Enquiring minds: early detection of rumors in social
media from enquiry posts. In: The 24th International Conference on World Wide
Web, pp. 1395–1405 (2015)

7. Ma, J., Gao, W., Wong, K.F.: Detect rumor and stance jointly by neural multi-task
learning. In: Companion Proceedings of the The Web Conference 2018. Interna-
tional World Wide Web Conferences Steering Committee, pp. 585–593 (2018)

8. Kwon, S., Cha, M., Jung, K., et al.: Prominent features of rumor propagation in
online social media. In: International Conference on Data Mining, pp. 1103–1108.
IEEE (2013)

9. Ma, J., Gao, W., Wei, Z., et al.: Detect rumors using time series of social context
information on microblogging websites. In: ACM International on Conference on
Information and Knowledge Management, pp. 1751–1754 (2015)

10. Ma, J., Gao, W., Wong, K.F., et al.: Rumor detection on Twitter with tree-
structured recursive neural networks. In: Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, pp. 1980–1989 (2018)

11. Zhang, L., Liu, B.: Aspect and entity extraction for opinion mining. In: Chu, W.W.
(ed.) Data Mining and Knowledge Discovery for Big Data. SBD, vol. 1, pp. 1–40.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-40837-3 1

12. Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggar-
wal, C., Zhai, C. (eds.) Mining Text Data, pp. 415–463. Springer, Boston (2012).
https://doi.org/10.1007/978-1-4614-3223-4 13

13. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

14. Lv, P., Luo, Z., Cai, D., et al.: Effective mining product features from Chinese
review based on CRF. Comput. Eng. Sci. 2, 359–366 (2014)

15. Jin, W., Ho, H.H., Srihari, R.K.: OpinionMiner: a novel machine learning system
for web opinion mining and extraction. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1195–1204
(2009)

16. Chen, Y.C., Liu, Z.Y., Kao, H.Y.: IKM at SemEval-2017 task 8: convolutional
neural networks for stance detection and rumor verification. In: Proceedings of the
11th International Workshop on Semantic Evaluation, pp. 465–469 (2017)

17. Xu, C., Paris, C., Nepal, S., et al.: Cross-target stance classification with self-
attention networks. arXiv preprint (2018)

18. Veyseh, A.P.B., Ebrahimi, J., Dou, D., et al.: A temporal attentional model for
rumor stance classification. In: Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pp. 2335–2338 (2017)

19. Zhou, Y., Cristea, A.I., Shi, L.: Connecting targets to tweets: semantic attention-
based model for target-specific stance detection. In: Bouguettaya, A., et al. (eds.)
WISE 2017. LNCS, vol. 10569, pp. 18–32. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68783-4 2

20. Zhang, H., Goodfellow, I., Metaxas, D., et al.: Self-attention generative adversarial
networks. arXiv preprint (2018)

21. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive
sentence summarization. arXiv preprint (2015)

22. Lingyu, Z., Chenguang, S., Bin, W., et al.: SMAM: detecting rumors from
microblogs with stance mining assisting task. In: Proceedings of Fourth Interna-
tional Conference on Data Science in Cyberspace, pp. 242–249 (2019)

https://doi.org/10.1007/978-3-642-40837-3_1
https://doi.org/10.1007/978-1-4614-3223-4_13
https://doi.org/10.1007/978-3-319-68783-4_2
https://doi.org/10.1007/978-3-319-68783-4_2

364 Z. Lingyu et al.

23. Dabiri, S., Heaslip, K.: Developing a Twitter-based traffic event detection model
using deep learning architectures. Expert Syst. Appl. 118, 425–439 (2018)

24. Hogenboom, F., Frasincar, F., Kaymak, U., et al.: An overview of event extraction
from text. In: DeRiVE@ISWC, pp. 48–57 (2011)

A Hybrid Approach for Aspect-Based
Sentiment Analysis Using Deep
Contextual Word Embeddings
and Hierarchical Attention

Maria Mihaela Truşcǎ1(B), Daan Wassenberg2, Flavius Frasincar2 ,
and Rommert Dekker2

1 Bucharest University of Economic Studies, 010374 Bucharest, Romania
maria.trusca@csie.ase.ro

2 Erasmus University Rotterdam, Burgemeester Oudlaan 50,
3062 PA Rotterdam, The Netherlands

daan.wassenberg@hotmail.com, {frasincar,rdekker}@ese.eur.nl

Abstract. The Web has become the main platform where people
express their opinions about entities of interest and their associated
aspects. Aspect-Based Sentiment Analysis (ABSA) aims to automat-
ically compute the sentiment towards these aspects from opinionated
text. In this paper we extend the state-of-the-art Hybrid Approach for
Aspect-Based Sentiment Analysis (HAABSA) method in two directions.
First we replace the non-contextual word embeddings with deep contex-
tual word embeddings in order to better cope with the word semantics
in a given text. Second, we use hierarchical attention by adding an extra
attention layer to the HAABSA high-level representations in order to
increase the method flexibility in modeling the input data. Using two
standard datasets (SemEval 2015 and SemEval 2016) we show that the
proposed extensions improve the accuracy of the built model for ABSA.

Keywords: Multi-hop LCR-ROT · Hierarchical attention ·
Contextual word embeddings

1 Introduction

Since the evolution of the Social Web, people have benefited from the opportu-
nity to actively interact with others sharing content from both sides. As a result,
the amount of opinionated texts has risen and people had to face the problem
of filtering the extra data in order to get the desired information [21]. In this
context, sentiment analysis turns out to be an important tool that can find senti-
ments or opinions at the level of a document, sentence, or aspect [11]. Among all
levels of analysis, the most fine-grained analysis is the one orientated to aspects
[18]. The main tasks of ABSA are target extraction (TE), aspect detection (AD),
and target sentiment classification (SC). Whereas, the TE task is concerned with

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 365–380, 2020.
https://doi.org/10.1007/978-3-030-50578-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_25&domain=pdf
http://orcid.org/0000-0002-8031-758X
http://orcid.org/0000-0003-3823-1990
https://doi.org/10.1007/978-3-030-50578-3_25

366 M. M. Truşcǎ et al.

identification of targets, i.e., attributes of the entity of interest, the aim of the
AD task is to learn aspects that have a broader meaning and refer to the targets’
categories. However, in this paper, we focus only on the identification of targets’
sentiments (SC task) computed at the sentence level.

Deep Neural Networks (DNNs) have recently shown a great potential for sen-
timent classification tasks and gradually replaced rule-based approaches. While
the main advantage of DNNs architectures is flexibility, rule-based classifiers
imply more manual labour that confers a higher level of domain-control. The
two approaches can be easily combined in a two-step method that utilises a
backup classifier for all inconclusive predictions of the main classifier. One of
the first two-step sentiment classification methods utilises a dictionary-based
method and a Support Vector Machine (SVM) algorithm [5]. Given that this
method is a bit naive, we try to tackle the sentiment classification of targets
using the more refined Hybrid Approach for Aspect-Based Sentiment Analy-
sis (HAABSA) that obtains state-of-the-art results for the SC task [24]. The
first step of this hybrid method employs a domain ontology [19] to determine
the sentiments of the given targets. All the sentences for which the ontology is
inconclusive input a Left-Center-Right separated neural network with Rotatory
attention (LCR-Rot) [28], as the backup model.

In [24] two extensions of the neural network are proposed, namely Inversed
LCR-Rot and Multi-hop LCR-Rot, but since the second one was shown to be
the most effective, we choose it as the backup model. In this paper, we propose
two extensions for HAABSA to improve the quality of the sentiment predictions.
First, we replace the non-contextual GloVe word embeddings with deep contex-
tual word embeddings, i.e., ELMo [15] and BERT [6] in order to better consider
the semantics of words context. Second, we introduce a hierarchical attention,
by supplementing the current attention mechanism with a new attention layer
that is able to distinguish the importance of the high-level input sentence rep-
resentations. We call the new model HAABSA++. The Python source code of
our extensions can be found at https://github.com/mtrusca/HAABSA PLUS
PLUS.

The rest of the paper is organized as follows. Section 2 briefly introduces the
related works. Section 3 presents the details of the utilised datasets. Section 4 dis-
cusses the hybrid approach together with the extensions we propose and Sect. 5
presents the experimental settings and the evaluation of our methods. Section 6
gives our conclusions and suggestions for future work.

2 Related Works

Initially, ABSA’s main tasks were addressed using knowledge-based methods
based on part-of-speech tagging models and lexicons [10,23]. Recently, machine
learning including deep learning as a subset has turned out to be a more conve-
nient solution with good rates of performance in Natural Language Processing
(NLP). Whereas machine learning methods have proven to be more flexible,
knowledge-based methods imply more manual labor, which makes them effec-
tive especially for in-domains sentiment classification. In [26] it was shown that

https://github.com/mtrusca/HAABSA_PLUS_PLUS
https://github.com/mtrusca/HAABSA_PLUS_PLUS

A HAABSA Using Deep Contextual Word Embeddings 367

these two approaches are in fact complementary. The sentiment polarities of
aspects were learnt by applying an approach based on domain knowledge and a
bidirectional recurrent neural network with attention mechanism. The research
proves that there is not a winning option and while the neural network performs
better for the laptop reviews of the SemEval 2015 dataset [17], the approach
based on domain rules is more effective in the restaurant domain dataset of the
same SemEval workshop.

Recently, hybrid models that take advantage of both approaches in a mixed
solution have been investigated in various studies. For instance, in [20] an SVM
model was trained for target sentiment classification on an input created based
on the binary presence of features identified using a domain-specific ontology.
Another option to enrich the input of a neural network using domain knowledge
is presented in [7], where a self-defined sentiment lexicon is used to extend the
word embeddings. Similar to our work, the neural network described in [8] aims
to learn context-sensitive target embeddings. Next, the attention scores are com-
puted only for relevant words of the context indicated by a dependency parser.
While the previous methods focused on integrating rule-based approaches in
machine learning, in [4] it is presented a different method where machine learn-
ing is used for building domain knowledge. Namely, a Long Short-Term Memory
(LSTM) model with an attention mechanism is employed to create a sentiment
dictionary called SenticNet 5.

Instead of integrating the two approaches in a single model, another option is
to apply them sequentially [5]. This option has been demonstrated to be superior
to the individual approaches in [19]. Namely, in [19] an ontology developed for
restaurant domain reviews is used as the first method for sentiment classifica-
tion (positive and negative). The backup model, triggered when the ontology is
inconclusive, employs a bag-of-words approach trained with a multi-class SVM
associated with all three sentiment polarities (positive, neutral, and negative).
This work inspired [12] where the SVM model is replaced with a neural network
that assigns polarities to the aspects using multiple attention layers. The first
one captures the relation between aspects and their left and right contexts and
generates context-dependent word embeddings. The new word vectors together
with sentences and aspects embeddings created using the bag-of-words approach
feed the last layer of attention.

The previous line of research is kept in [24], where the same ontology is used
together with a Multi-Hop LCR-Rot model as backup. Knowing the effectiveness
of the two-step approach for the SC task, and considering that the method
proposed in [24] achieves the best results for the SemEval 2015 and the SemEval
2016 [16] datasets, we choose it as basis for our investigation on the benefits of
contextual word embeddings. In addition, inspired by the hierarchical attention
approach presented in [27] we add to the architecture of Multi-hop LCR-Rot a
new attention layer for high-level representations of the input sentence.

3 Datasets Specification

The data used in this paper was introduced in the SemEval 2015 and 2016
contests to evaluate the ABSA task and is organised as a collection of reviews in

368 M. M. Truşcǎ et al.

Table 1. Polarity frequencies of SemEval 2015 and SemEval 2016 datasets (ABSA).

SemEval 2015 SemEval 2016

Positive Neutral Negative Positive Neutral Negative

Train 72.4% 24.4% 3.2% 70.2% 3.8% 26.0%

Test 53.7% 41.0% 5.3% 74.3% 4.9% 20.8%

the restaurant domain. Each review has a variable number of sentences and each
sentence has one or more aspect categories. Each aspect is linked to one target
that has assigned a sentiment polarity (positive, neutral, and negative). Table 1
lists the distribution of sentiment classes in the SemEval 2015 and SemEval 2016
datasets.

4 Method

HAABSA is a hybrid approach for aspect-based sentiment classification with
two steps. First, target polarities are predicted using a domain sentiment ontol-
ogy. If this rule-based method is inconclusive, a neural network is utilised as
backup. Section 4.1 introduces the ontology-based rules for sentiment classifi-
cation. Section 4.2 gives an overview of HAABSA and presents our extensions
based on various word embeddings and hierarchical attention. The new method
is called HAABSA++, as a reminiscent of the base method name.

4.1 Ontology-Based Rules

The employed ontology is a manually designed domain specification for sen-
timent polarities of aspects that utilises a hierarchical structure of concepts
grouped in three classes [19]. The SentimentValue class groups concepts in the
Positive and Negative subclasses, and the AspectMention class identifies aspects
related to sentiment expressions. The SentimentMention class represents senti-
ment expressions. To compute the sentiment of an aspect, we utilise three rules,
described below.

The first rule always assigns to an aspect the generic sentiment of its con-
nected sentiment expression. The second rule identifies the aspect-specific senti-
ment expression and the sentiment is assigned only if the aspect and the linked
expression belong to the same aspect category. The third rule finds the expres-
sion with a varying sentiment with respect to the connected aspect and the
overall sentiment is inferred based on the pair aspect-sentiment expression. All
these rules are mutually exclusive.

The rule-based approach can identify only the positive and negative senti-
ments. By design, the neutral sentiment class is not modeled due to its ambiguous
semantics. The ontology is inconclusive in two cases: (1) conflicting sentiment
(predicting both positive and negative for a target) or (2) no hits (due to the
limited coverage). In these cases a neural network is used as backup.

A HAABSA Using Deep Contextual Word Embeddings 369

4.2 Multi-Hop LCR-Rot Neural Network Design

The LSTM-ATT [9,25] model enhances the performance of the LSTM model
with attention weighting and is a standard structure integrated by numerous
sentiment classifiers. The LCR-Rot model [28] utilises this structure to detect
interchangeable information between opinionated expressions and their contexts.
In [24], the LCR-Rot model is refined with repeated attention and the new
classifier is called Multi-Hop LCR-Rot. In this paper, we explore the effect of
different word embeddings on the Multi-Hop LCR-Rot model and propose a
hierarchical attention structure to increase the model’s flexibility.

The Multi-Hop LCR-Rot neural network splits each sentence into three parts:
left context, target, and right context. Each of these three parts feeds three bi-
directional LSTMs (bi-LSTMs). Then, a two-step rotatory attention mechanism
is applied over the three hidden states associated with the bi-LSTMs (left con-
text: [hl

1, ..., h
l
L], target: [ht

1, ..., h
t
T], and right context: [hr

1, ..., h
r
R], where L, T ,

and R represent the length of the three input parts). At the first step, the mech-
anism generates new context representations using target information. Initially,
an attention function f is computed taking as input a parameterized product
between the hidden states of the context and the target vector rtp extracted
using an average pooling operation. Considering for example the left context,
the function f is computed by:

f(hl
i

1×1
, rtp) = tanh(hl

′

i
1×2d

× W l
c

2d×2d

× rtp
2d×1

+ blc
1×1

), (1)

where W l
c is a weight matrix, blc is a bias term, and d represents the dimension

of the i-th hidden state hl
i for i = 1, ..., L.

Then, the attention normalised scores αl
i associated with f are defined using

the softmax function as follows:

αl
i =

exp(f(hl
i, r

rp))
∑L

j=1 exp(f(hl
j , r

rp))
. (2)

In the end, context representations are computed using hidden states
weighted by attention scores. For example, the left target2context vector is
defined as:

rl

2d×1

=
L∑

i=1

αl
i

1×1
× hl

i
2d×1

. (3)

At the second step of the rotatory attention, target representations are com-
puted similarly, following the previous three equations. The only difference is
that instead of the rtp vector that stands for target information, the left and
right contexts vectors (rl and rr) are employed to obtain a better target rep-
resentation. Taking again the left context as example, the left context2target
representation rtl is:

rtl
2d×1

=
T∑

i=1

αtl
i

1×1

× ht
i

2d×1

, (4)

370 M. M. Truşcǎ et al.

where αtl represents the target attention scores with respect to the left context
computed as above.

The right vectors, target2context and context2target (rr and rtr) are com-
puted in a similar way. In a multi-hop rotatory attention mechanism, the two
aforementioned steps are applied sequentially for n times. In [24] the optimal n
value is three (the trials were executed for four scenarios: n = 1, 4). One should
note that the rtp target vector computed using average pooling is used only for
the first iteration of the rotatory attention. At the next iterations the vector rtp

is replaced with one of the vectors rtl or rtr , depending on the considered con-
text. At the end of the rotatory attention, all the four vectors are concatenated
and feed an MLP layer for the final sentiment prediction.

The learning process is realised using a backpropagation algorithm by min-
imising the cross-entropy loss function with L2 regularization. All weight matri-
ces and biases are initialised by a uniform distribution and are updated using
stochastic gradient descent with a momentum term.

4.3 Word Embeddings

The first proposed extension examines the effect of deep context-dependent word
embeddings on the overall performance of the neural network. Since the Multi-
Hop LCR-Rot model already captures shallow context information for each tar-
get of a sentence, it is important to analyse how this architecture is possibly
improved when we use deep context-sensitive word representations. Hereinafter,
we give a short description of some of the most well-known contextual and non-
contextual word embeddings.

Non-contextual Word Embeddings. Non-contextual word embeddings are
unique for each word, regardless of its context. As a result, the polysemy of words
and the varying local information are ignored. GloVe, word2vec, and fastText
context-independent word embeddings are presented below.

GloVe. The GloVe model generates word embeddings using word occurrences
instead of language models (like word2vec), which means that the new word
embeddings take into account global count statistics, instead of only the local
information [14]. The idea behind the GloVe model is to determine two word
embeddings wi and wk for words i and k, respectively, whose dot product is
equal with the logarithmic value of their co-occurrence Xik. The relation is
adjusted using two biases (bi and bk) for both words i and k as follows:

wT
i wk + bi + bk = log(Xik). (5)

The optimal word embeddings are computed using a weighted least-squares
method using the cost function defined as:

J =
V∑

i=1

V∑

k=1

f(Xik)(wT
i wk + bi + bk − log(Xik))2, (6)

A HAABSA Using Deep Contextual Word Embeddings 371

where V is the vocabulary size and f(Xik) is a weighting function that has
to be continuous, non-decreasing, and to generate relatively small values for
large input values. The last two conditions for f are necessary to prevent over-
weighting of either rare or frequent co-occurrences. In this paper, we choose to
use 300-dimension GloVe word embeddings trained on the Common Crawl (42
billion words) [14].

Word2vec. The word2vec word embeddings were the first widely used word rep-
resentations and since their introduction they have shown a significant improve-
ment for many NLP tasks. The word2vec model works like a language model
that facilitates generation of the more close word representations in the embed-
ding space for words with similar context [13]. The word2vec model has two
variations: Continuous-Bag-Of-Words (CBOW) and Skip-Gram (SG). CBOW
word embeddings represent the weights of a neural network that maximize the
likelihood that words are predicted from a given context of words and SG does
it the other way around. Both variations exploit the bag-of-words approach and
the sequencing of words in the given or predicted context of words is irrelevant.
The CBOW and SG models are trained using the following loss functions:

CBOW : J =
1
V

V∑

t=1

log p(wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c), (7)

SG : J =
1
V

V∑

t=1

t+c∑

i=t−c,i�=t

log p(wi|wt). (8)

where [−c, c] is the word context of the word wt.
CBOW is considered to be faster to train than SG, but SG benefits of a

better accuracy for non-frequent words [1]. Therefore, in the present word, both
variations of word2vec are examined. The pre-trained word2vec word embeddings
we use are already trained on Google News dataset (100 billion words) and their
length is 300 features.

FastText. The fastText model computes non-contextual word embeddings using
a word2vec SG approach where the word context is represented by its n-grams [3].
As a result, out-of-vocabulary words are better handled as they can benefit from
representations closer to the ones of in-vocabulary words with similar meaning
in the embedding space. Given that our employed datasets are small, we utilise
already computed fastText word embeddings trained on statmt.org news, UMBC
webbase corpus, and Wikipedia dumps (16 billion words). The dimensionality of
word embeddings is 300.

Contextual Word Embeddings. Contextual word embeddings take into
account the context of words which means that they handle better the semantics
and the polysemy. Below we focus on ELMo and BERT deep contextual word
embeddings.

372 M. M. Truşcǎ et al.

ELMo. The ELMo word embeddings capture information about the entire input
sentence using multiple bidirectional LSTM (bi-LSTM) layers [15]. The main
difference between the ELMo model and other language models developed on
LSTM layers is that ELMo word embeddings integrate the hidden states of all
L bi-LSTMs layers in a linear combination instead of utilising only the hidden
states of the last layer. The ELMo model can be considered a task-specific lan-
guage model that can be adjusted to different computational linguistic tasks by
learning different weights for all LSTM layers. ELMo representation of word i
for a given task ELMotaski is computed as follows:

ELMotaski = γtask
L∑

j=0

staskj hi,j , (9)

where hi,j represents the concatenated hidden states of the j bi-LSTM layer

(hi,j = [
→
h i,j ,

←
h i,j]), staskj is its weight, and γtask scales the word embeddings

accordingly to the given task.
The model we use to generate ELMo word embeddings employs two bi-

LSTM layers with 512 dimension hidden state which means the size of the final
word embeddings is 1024. The model is pre-trained on the 1B Word Benchmark
dataset.

BERT. The BERT model unlike the ELMo language model that utilises LSTM
hidden states, creates contextual word representations by averaging token vec-
tors (unique for each vocabulary word), position embeddings (vectors for word
locations in the sentence), and segment embeddings (vectors of sentence indices
that contains the given word). The new sequence of word embeddings is given as
input to a Transformer encoder [22] based on the (bidirectional) self-attention.
The Transformer encoder has L blocks and each one contains a Multi-Head
Attention layer followed by a fully connected layer. The output of each block
feeds the input of the next one. Each Multi-Head Attention has A parallel atten-
tion layers that compute the attention scores for each word with respect to the
rest of the words in the sentence. The word representations associated with each
Transformer block are computed by concatenating all attention-based represen-
tations. Recently, Transformers have become more common than other widely
applied neural networks like Convolutional Neural Networks (CNNs) and Recur-
rent Neural Network (RNNs) due to their capacity to apply the parallelization
(as CNNs) and to control long-term dependencies (as RNNs).

The BERT model is pre-trained simultaneously on two tasks: Masked Lan-
guage Model (MLM) and Next Sentence Prediction (NSP) using BookCorpus
(800 million words) and Wikipedia dumps (2,500 million words). The first task
employs a bidirectional Transformer to predict some masked words and the sec-
ond task tries to learn sequence dependencies between sentences. The final loss
function is computed as a sum of the task losses. In this paper, BERT word
embeddings are generated using the pre-trained BERT Base model (L = 12,
A = 12, H= 768), where H stands for hidden states and represents the size of

A HAABSA Using Deep Contextual Word Embeddings 373

Fig. 1. Multi-Hop LCR-Rot with hierarchical attention

the word embeddings. The final representations of the word i is computed by
summing the word embeddings of the last four layers (as it was suggested in [6]):

BERTi =
12∑

j=9

Hi,j . (10)

4.4 Multi-Hop LCR-Rot with Hierarchical Attention

The main disadvantage of Multi-Hop LCR-Rot is that the four target2context
and context2target vectors are computed using only local information. Hierar-
chical attention alleviates this process by providing a high-level representation
of the input sentence that updates each target2context and context2target vec-
tor with a relevance score computed at the sentence level. The final sentiment
prediction considers the newly obtained vectors.

374 M. M. Truşcǎ et al.

First, we have to compute an attention function f defined as:

f(vi

1×1
) = tanh(vi

′

1×2d

× W
2d×1

+ b
1×1

), (11)

where vi is the representation i of the input sentence (vi ∈ {rr, rl, rtr , rtl},
i = 1, 4), W is a weight matrix, and b is a bias. The attention function f is used
to compute new attention scores αi for each input vi:

αi =
exp(f(vi)

∑4
j=1 exp(f(vj))

. (12)

The new scaled context2target or target2context vectors are:

vi

2d×1

= αi

1×1
× vi

2d×1

, (13)

We consider four methods to introduce hierarchical attention in the architec-
ture of the Multi-Hop LCR-Rot model:

– Method 1: attention weighting is applied on the final four vectors of the
rotatory attention (Fig. 1 (a)).

– Method 2: attention weighting is applied in each iteration of the rotatory
attention, on the intermediate four vectors (Fig. 1 (b)).

– Method 3: attention weighting is separately applied on the final two context
and target vectors pairs of the rotatory attention (Fig. 1 (c)).

– Method 4: attention weighting is separately applied in each iteration of
the rotatory attention, on the intermediate context and target vectors pairs
(Fig. 1 (d)).

To optimise the performance of the newly proposed methods based on hier-
archical attention, we have to tune again some of the model’s hyperparameters
like the learning rate, the momentum term, the L2 regularization term, and the
dropout rate (applied to all hidden layers). The algorithm we employ for tuning
is a tree-structured Parzen estimator (TPE) [2].

5 Evaluation

We compare our extensions with the baseline Multi-Hop LCR-Rot neural net-
work, a state-of-the-art model in the SC task for both SemEval 2015 and SemEval
2016 datasets. Like [24], our main classifier is a domain sentiment ontology. The
importance of the hybrid method is pointed out in [19] where all the inconclu-
sive cases of the domain sentiment ontology are assigned to the majority class of
the dataset. The accuracy reported for the reference approach on the SemEval
datasets is 63.3% and 76.1%, respectively, much lower than the accuracy of the
hybrid approach.

The evaluation is done in terms of training and testing accuracy. Since our
work is an extension of the baseline model, we re-run the Multi-Hop LCR-Rot to

A HAABSA Using Deep Contextual Word Embeddings 375

Table 2. Comparison of word embeddings for the Multi-Hop LCR-Rot model using
accuracy. The best results are given in bold font.

SemEval 2015 SemEval 2016

in-sample out-of-sample in-sample out-of-sample

Context-independent word embeddings

GloVe (HAABSA) 88.0% 80.3% 89.6% 86.4%

CBOW 84.8% 74.6% 82.7% 83.5%

SG 84.7% 76.0% 85.4% 84.1%

FastText 87.4% 79.0% 87.3% 86.5%

Context-dependent word embeddings

ELMo 85.1% 80.1% 91.1% 86.7%

BERT 87.9% 81.1% 89.2% 86.7%

assure a fair comparison. First, the embedding layer is optimised by trying dif-
ferent word embeddings; the results thereof are shown in Table 2. Given that our
base model [24] utilises the GloVe embeddings, we start presenting the results for
context-independent word representation models. CBOW and SG models lead to
the worst predictions and, as it is already expected, the SG model performs bet-
ter than CBOW by 1.4%–0.6%. The difference between the performance of the
fastText and SG models is equal to three percentage points in the SemEval 2015
test dataset, which means that the fastText model is clearly an improvement of
the SG model. Even if fastText outperforms the GloVe model by 0.1% for the
SemEval 2016 test dataset, given the overall performance of the GloVe model, we
can conclude that it is the best context-independent word representation option.

Table 3. Comparison between the four methods proposed for HAABSA++ using
accuracy. The best results are given in bold font.

SemEval 2015 SemEval 2016

in-sample out-of-sample in-sample out-of-sample

Method 1 87.9% 81.5% 88.0% 87.1%

Method 2 87.9% 81.7% 88.7% 86.7%

Method 3 87.8% 81.3% 88.7% 86.7%

Method 4 88.0% 81.7% 88.9% 87.0%

As regards deep contextual word embeddings, we notice that a context-
sensitive approach not always leads to better results (the ELMo model out-
performs the GloVe model only for the SemEval 2016 dataset). However, the
BERT model seems to have the best performance, recording the same testing
accuracy as the ELMo model for the SemEval 2016 datasets and exceeding the
GloVe model by more than one percentage point for SemEval 2015 datasets.

376 M. M. Truşcǎ et al.

Table 4. Comparison between HAABSA++ (Method 4) with state-of-the-art models
in SC task using accuracy. SW stands for the SemEval Winner (the most effective
result reported in the SemEval contest). The best results are given in bold font.

SemEval 2015 SemEval 2016

HAABSA++ (Method 4) 81.7% XRCE (SW) [16] 88.1%

LSTM+SynATT+TarRep [8] 81.7% HAABSA++ (Method 4) 87.0%

PRET+MULT [9] 81.3% BBLSTM-SL [7] 85.8%

BBLSTM-SL [7] 81.2% PRET+MULT [9] 85.6%

Sentiue (SW) [17] 78.7% LSTM+SynATT+TarRep [8] 84.6%

The second extension we present is an adjustment of the rotatory attention
to a hierarchical architecture using BERT word embeddings. Table 3 shows that
adding new attention layers leads to a more accurate sentiment prediction than
the baseline model with BERT word embeddings listed in Table 2. Overall it is
fair to consider that the best approach to tackle the hierarchical attention is the
Method 4, given the small difference between the first rank and the second rank
on the SemEval 2016 test dataset.

Further on, we compare the fourth method with other similar neural net-
works, state-of-the-art models in SC task. The results are listed in Table 4. We
do not replicate previous works and give the results as reported in papers. The
best results reported in the SemEval contests are mentioned as well. While for
the SemEval 2015 data, our method achieves the highest accuracy (together
with the LSTM+ SynATT+TarRep [8] model) for the SemEval 2016 data, it is
ranked on the second position.

Fig. 2. Target2Context vectors of the Multi-Hop LCR-Rot model computed using
GloVe, ELMo, and BERT word embeddings. (Color figure online)

A HAABSA Using Deep Contextual Word Embeddings 377

Fig. 3. Target2Context vectors of the Multi-Hop LCR-Rot model with or without
hierarchical attention computed using BERT word embeddings.

As we already mentioned, the Multi-Hop LCR-Rot model turns the input sen-
tence into four vectors. Knowing that the length of the target expression is small
and usually void of sentiment, we can infer that target2context vectors deter-
mine the neural network’s performance to a greater extent than context2target
vectors. Taking as example two sentences from the SemEval 2016 test dataset,
we explore how the embedding layer and the hierarchical attention affects the
predicted sentiment polarity via target2context vectors.

Figure 2 graphically presents attention scores associated with target2context
vectors for GloVe, ELMo, and BERT word embeddings. The intensity of the blue
colour shows the significance of words indicated by the attention scores. The
target of the first sentence is the word “place” and the opinionated expression
(the word “gem”) indicates a positive polarity, and is located in the right context.
The left context is too short and irrelevant for the target word. Only ELMo and
BERT word embeddings assign the highest attention score to the opinionated
word which leads to a good sentiment prediction. On the contrary, the GloVe
model finds the word “n’t” to be the most relevant for the given example, leading
to a negative sentiment prediction. One should note that the BERT model has
a slightly different approach to extract tokens of a sentence. This is due to the
internal vocabulary used by the BERT model to guarantee the high recall on
out-of-sample.

The second example explores the effect of hierarchical attention (Method 4)
using BERT word embeddings. The selected sentence given in Fig. 3 has two
target expressions with different sentiment polarities. Considering the target
“atmosphere”, the left context is again irrelevant while the right context con-
tains the sentiment expression together with the second target “service” and its
opinionated expression. Even if the simple Multi-Hop LCR-Rot model without
hierarchical attention assigns the highest attention scores to the words “cozy”
and “horrible”, it finds the word “service” as relevant. As a result the senti-
ment prediction of the target “atmosphere” is wrong. Differently, the neural
network with hierarchical attention achieves a good prediction, considering the
word “cozy” to be the most relevant to the given target.

378 M. M. Truşcǎ et al.

6 Conclusion

In this work we extended the backup neural network of the state-of-the-art
hybrid approach method for ABSA introduced in [24] using deep contextual
word embeddings. Further on, the architecture of the model is integrated with
a hierarchical structure that enforces the rotatory attention vectors to take into
account high-level representations at the sentence level. Both extensions boost
the testing accuracy from 80.3% to 81.7% for SemEval 2015 dataset and from
86.4% to 87.0% for SemEval 2016 dataset.

As deep learning architectures have the tendency to forget useful information
from the lower layers, in future work we would like to investigate the effect of
adding word embeddings to the upper layers of the architecture. Also we would
like to have a better understanding of the model’s inner working by applying
diagnostic classification to the various layer representations.

References

1. Ay Karakuş, B., Talo, M., Hallaç, İ.R., Aydin, G.: Evaluating deep learning models
for sentiment classification. Concurr. Comput.: Pract. Exp. 30(21), e4783 (2018)

2. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: 25th Annual Conference on Neural Information Processing Sys-
tems, NIPS 2011, pp. 2546–2554 (2011)

3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

4. Cambria, E., Poria, S., Hazarika, D., Kwok, K.: SenticNet 5: discovering conceptual
primitives for sentiment analysis by means of context embeddings. In: Thirty-
Second AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 1795–1802.
AAAI Press (2018)

5. Chikersal, P., Poria, S., Cambria, E.: SeNTU: sentiment analysis of tweets by
combining a rule-based classifier with supervised learning. In: Proceedings of the
9th International Workshop on Semantic Evaluation, SemEval 2015, pp. 647–651.
ACL (2015)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: 2019 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
NAACL-HLT 2019, pp. 4171–4186. ACL (2019)

7. Do, B.T.: Aspect-based sentiment analysis using bitmask bidirectional long short
term memory networks. In: 31st International Florida Artificial Intelligence
Research Society Conference, FLAIRS 2018, pp. 259–264. AAAI Press (2018)

8. He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: Effective attention modeling for aspect-
level sentiment classification. In: 27th International Conference on Computational
Linguistics, COLING 2018, pp. 1121–1131. ACL (2018)

9. He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: Exploiting document knowledge for
aspect-level sentiment classification. arXiv preprint arXiv:1806.04346 (2018)

10. Kiritchenko, S., Zhu, X., Cherry, C., Mohammad, S.: NRC-Canada-2014: detecting
aspects and sentiment in customer reviews. In: 8th International Workshop on
Semantic Evaluation, SemEval 2014, pp. 437–442. ACL (2014)

http://arxiv.org/abs/1806.04346

A HAABSA Using Deep Contextual Word Embeddings 379

11. Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cam-
bridge University Press, Cambridge (2015)

12. Meškelė, D., Frasincar, F.: ALDONA: a hybrid solution for sentence-level aspect-
based sentiment analysis using a lexicalized domain ontology and a neural attention
model. In: 34th ACM Symposium on Applied Computing, SAC 2019, pp. 2489–
2496. ACM (2019)

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: 27st Annual Conference
on Neural Information Processing Systems, NIPS 2013, pp. 3111–3119 (2013)

14. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1532–1543. ACL (2014)

15. Peters, M.E., et al.: Deep contextualized word representations. In: 2018 Conference
of the North American Chapter of the Association for Computational Linguistics-
Human Language Technologies, NAACL-HLT 2018, pp. 227–2237. ACL (2018)

16. Pontiki, M., et al.: SemEval-2016 task 5: aspect-based sentiment analysis. In: 10th
International Workshop on Semantic Evaluation, SemEval 2016, pp. 19–30. ACL
(2016)

17. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.:
SemEval-2015 task 12: aspect-based sentiment analysis. In: 9th International Work-
shop on Semantic Evaluation, SemEval 2015, pp. 486–495. ACL (2015)

18. Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans.
Knowl. Data Eng. 28(3), 813–830 (2015)

19. Schouten, K., Frasincar, F.: Ontology-driven sentiment analysis of product and
service aspects. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp.
608–623. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4 39

20. Schouten, K., Frasincar, F., de Jong, F.: Ontology-enhanced aspect-based sen-
timent analysis. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017.
LNCS, vol. 10360, pp. 302–320. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60131-1 17

21. Schwartz, B.: The Paradox of Choice: Why More is Less. HarperCollins, New York
(2004)

22. Vaswani, A., et al.: Attention is all you need. In: 31st Annual Conference on Neural
Information Processing Systems, NIPS 2017, pp. 5998–6008 (2017)

23. Wagner, J., et al.: DCU: aspect-based polarity classification for SemEval task 4.
In: International Workshop on Semantic Evaluation, SemEval 2014. ACL (2014)

24. Wallaart, O., Frasincar, F.: A hybrid approach for aspect-based sentiment analysis
using a lexicalized domain ontology and attentional neural models. In: Hitzler, P.,
et al. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 363–378. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21348-0 24

25. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level
sentiment classification. In: Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016. pp. 606–615. ACL (2016)

26. Yanase, T., Yanai, K., Sato, M., Miyoshi, T., Niwa, Y.: bunji at SemEval-2016
task 5: neural and syntactic models of entity-attribute relationship for aspect-
based sentiment analysis. In: 10th International Workshop on Semantic Evaluation,
SemEval 2016, pp. 289–295. ACL (2016)

https://doi.org/10.1007/978-3-319-93417-4_39
https://doi.org/10.1007/978-3-319-60131-1_17
https://doi.org/10.1007/978-3-319-60131-1_17
https://doi.org/10.1007/978-3-030-21348-0_24

380 M. M. Truşcǎ et al.

27. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: 2016 Conference of the North American
Chapter of the Association for Computational Linguistics-Human Language Tech-
nologies, NAACL-HLT 2018, pp. 1480–1489. ACL (2016)

28. Zheng, S., Xia, R.: Left-center-right separated neural network for aspect-based
sentiment analysis with rotatory attention. arXiv preprint arXiv:1802.00892 (2018)

http://arxiv.org/abs/1802.00892

Just the Right Mood for HIT!

Analyzing the Role of Worker Moods in Conversational
Microtask Crowdsourcing

Sihang Qiu(B), Ujwal Gadiraju, and Alessandro Bozzon

Web Information Systems Group, Delft University of Technology, Delft, Netherlands
{s.qiu-1,u.k.gadiraju-1,a.bozzon}@tudelft.nl

Abstract. Conversational agents are playing an increasingly impor-
tant role in providing users with natural communication environments,
improving outcomes in a variety of domains in human-computer inter-
action. Crowdsourcing marketplaces are simultaneously flourishing, and
it has never been easier to acquire large-scale human input from online
workers. Recent works have revealed the potential of conversational inter-
faces in improving worker engagement and satisfaction. At the same time,
worker moods have been shown to have significant effects on quality
related outcomes. Little is known about the role of worker moods in
shaping work in conversational microtask crowdsourcing. In this paper,
we conducted a crowdsourcing study addressing 600 unique online work-
ers, to investigate the role that worker moods play in conversational
microtask crowdsourcing. We also explore whether suitable conversa-
tional styles of the agent can affect the performance of workers in differ-
ent moods. Our results show that workers in a pleasant mood tend to
produce significantly higher quality results (over 20%), exhibit greater
engagement (an increase by around 19%) and report a lower cognitive
load (by over 12%), and a suitable conversational style can have a sig-
nificant impact on workers in different moods. Our findings advance the
current understanding of conversational microtask crowdsourcing and
have important implications on designing future conversational crowd-
sourcing systems.

Keywords: Crowdsourcing · Conversational agent · Conversational
style · Worker moods · Worker performance · Moods

1 Introduction

Microtask crowdsourcing is widely being used to gather human input in decom-
posed tasks called HITs (human intelligence tasks) [12]. Crowdsourcing HITs
have been used for a variety of purposes – to build ground truths, understand
human behavior, evaluate systems, among others [2,17,30]. Most of the popular
commercial microtasking platforms (such as Amazon Mechanical Turk and Fig-
ureEight) provide workers with traditional web interfaces for task consumption

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 381–396, 2020.
https://doi.org/10.1007/978-3-030-50578-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_26

382 S. Qiu et al.

and execution. However, engaging workers in large batches of HITs is challeng-
ing. Task abandonment and drop-out effects are commonly observed in microtask
marketplaces due to fatigue, boredom or other task-related factors [8].

Conversational interfaces have been argued to have advantages over tradi-
tional graphical user interfaces due to having a more human-like interaction [20].
Moreover, recent work has shown that conversational interfaces can be used to
improve worker engagement and satisfaction in microtask crowdsourcing [9,18].
Worker moods are known to influence the quality of work in the workplace [26],
including online microtasking platform where microtasks are executed using tra-
ditional web interfaces [28,31]. For example, workers in pleasant moods were
found to significantly outperform those in unpleasant moods in a series of infor-
mation finding HITs [6]. There is a limited understanding however, of how moods
of workers interact with conversational interfaces in shaping the quality of their
work. An unexplored opportunity to improve conversational microtasking fur-
ther, lies in analyzing the potential impact of conversational styles [25] of agents
on quality related outcomes of workers in different moods. Psychologists and
linguists have found that conversational styles play an important role in com-
munication [15,24,25]. Our recent study has investigated whether adapting and
personalizing the conversational style of an agent to that of a worker can improve
the quality of work [23]. We aim to fill this knowledge gap by addressing the fol-
lowing research questions:

RQ1: How do worker moods affect their performance, engagement and cog-
nitive load in conversational microtask crowdsourcing?
RQ2: How does the conversational style of a conversational agent affect the
performance of workers in different moods?

In this paper, we designed and implemented a conversational interface with
different conversational styles that supports workers in the execution of HITs.
We carried out a crowdsourcing study with 600 unique workers, across four
types of tasks and three different interfaces (3 × 4 = 12 experimental condi-
tions in total). To answer RQ1, we evaluate the performance of workers, their
engagement (using the User Engagement Scale-UES) and cognitive load (NASA-
TLX) across different tasks. Results reveal that workers in a pleasant mood tend
to produce significantly higher quality results (over 20% improvement), exhibit
greater engagement (over 18% improvement) and report a lower cognitive load
(a decrease by nearly 13%). To address RQ2, we considered three different
interfaces (traditional web interface, and conversational interfaces with two con-
versational styles). Results demonstrate that a suitable conversational style can
have a significant impact on workers in terms of their engagement and cognitive
task load.

2 Related Work

2.1 Conversational Agents and Crowdsourcing

Conversational agents have been widely used in crowdsourcing workflows. Most
studies have used conversational agents with an aim to train natural language

Analyzing the Role of Worker Moods in Conversational Microtasking 383

understanding and processing models [14]. Another popular application is the
usage of conversational agents to connect users with crowd-powered Q&A sys-
tems. Such conversational agents act like a representative of the crowd, working
for aggregating and conveying information from the crowd to the user. Lasecki et
al. designed a conversational agent named Chorus, to help users acquire general
knowledge from the crowd [16]. Huang et al. designed a series of conversational
systems that improve the effectiveness of collaborative work done by workers
[10,11]. In contrast, Curious Cat was designed for acquiring knowledge from
users [1]. In this paper, we design and implement a conversational agent that
is fully functional on an HTML-based webpage, and supports the execution of
HITs.

2.2 Worker Moods in Crowdsourcing

Prior studies have established that worker moods in real-life can affect their task
performance; workers in a happy mood were found to exhibit a better perfor-
mance than those who were less happy [27,29]. Others have shown that worker
moods can also impact task execution time [19]. Recent work in the context
of online crowdsourcing has revealed the relationship between worker moods
and crowdsourcing task performance [31], where moods were measured using
the Pick-A-Mood instrument [3]. Statistical tests indicated that worker moods
had significant effects on their engagement. Based on these findings, others ana-
lyzed the impact of worker moods in struggling web search tasks [6]. Due to
the evident impact of worker moods on quality related task outcomes on tradi-
tional web interfaces, in this paper we analyze how worker moods interact with
conversational interfaces to shape work quality.

3 Method

3.1 Workflow and Task Design

The entire task execution process across different conditions consists of four
main stages: self-reported mood (Pick-A-Mood), a short demographic survey,
the crowdsourcing HITs, and a post-task survey, as illustrated in Fig. 1.

1) Pick-A-Mood. Workers are first asked to self-report their moods using the
Pick-A-Mood instrument shown in Fig. 2. Nine moods are presented, and can
be grouped into three categories, which are pleasant moods (A: cheerful, B:
excited, H: relaxed and G: calm), unpleasant-moods (C: tense, D: irritated,
E: sad and F: bored) and a neutral mood (I).

2) Demographic Survey. Next, workers are asked to respond to simple back-
ground questions pertaining to their gender, age, ethnicity, educational back-
ground, and sources of income.

3) Crowdsourcing HIT Design. The actual crowdsourcing HITs are executed on
either the conversational interface or the traditional web interface as per the
experimental condition. The microtasks batch has 5 mandatory HITs and

384 S. Qiu et al.

45 optional HITs. Workers must complete the 5 mandatory HITs to proceed
to the next stage. On completing the mandatory HITs in the conversational
interface condition(s), the agent asks the workers if they want to continue on
and complete more HITs. In case of the traditional web interface condition(s),
workers can click a button named ‘I want to answer more questions’ to
complete more optional HITs.

4) Post-task Survey. The last stage of the workflow presents workers with a
survey, to gather the worker’s perception about the HITs completed. Workers
are first asked to complete the User Engagement Scale Short Form [21,22]
(UES-SF). Within this, 12 questions need to be answered by adjusting the
slider bar ranging from “1: Strongly Disagree” to “7: Strongly Agree”. O’Brien
designed the UES for systematically measuring user engagement through self-
assessment [21], and later developed the short form of UES (UES-SF) to be
suitable for time-sensitive contexts [22]. Next, workers are asked to complete
the NASA Task Load Index (NASA-TLX) questionnaire1, which includes six
questions corresponding to different kinds of cognitive task load (ranging from
“0: Very Low” to “100: Very High”).

task
instructions

Greetings Questions & Answers

mandatory
questions (5)

optional questions
(min. 0 - max. 45)

Answer
Review

Demographic
Survey

Post-Task
Survey

Crowdsourcing Microtask
Pick-A-Mood

Conversational InterfaceWeb WebWeb

edit/
submit

Fig. 1. Crowdsourcing microtask workflow in the conversational interface conditions.

Fig. 2. Pick-A-Mood scale to measure the self-reported mood of crowd workers in
different conditions.

1 https://humansystems.arc.nasa.gov/groups/TLX/.

https://humansystems.arc.nasa.gov/groups/TLX/

Analyzing the Role of Worker Moods in Conversational Microtasking 385

3.2 Conversational Interface

To support the execution of HITs on a conversational interface, we incorporate
the following aspects.

1) Greetings. Drawing from the essential structure of conversation, the conversa-
tional interaction begins with greetings. The goal here is to let workers famil-
iarize themselves with the conversational interface. Next, the conversational
interface then helps workers understand how to execute HITs by introducing
the task instructions using dialogues.

2) Questions & Answers. The conversational interface asks questions to workers,
and workers can answer these questions by either typing answers or using
provided UI (user interface) elements.

3) Answer Review. On the traditional web interface, a worker can easily go back
to a question and edit its answer. To realize this affordance in the conver-
sational interface, workers are provided with the opportunity to review and
edit their answers if needed, before submitting the HITs.

The user interfaces of most common crowdsourcing platforms mainly support
HTML/CSS and Javascript. To make sure the conversational interface can be
directly embedded into such platforms, the conversational interface is developed
based on a HTML/Javascript chatbot project chat-bubble2. This allows us to
avoid redirecting workers to an external chatting or messaging application.

The conversational interface supports two modes of input– free text and
multiple choices, since these two types of input can enable workers to effectively
provide judgments for most popular crowdsourcing task types [5]. As shown
in Fig. 3, bubble-like buttons and textarea (at the bottom of UI) are used
for supporting the input modes of multiple choice selection and free text entry
respectively. For HITs that need special functions (for example, drawing bound-
ing boxes), the input mode of the conversational interface can be ported from
traditional web interfaces with little effort, as the conversational agent that we
developed fully supports HTML elements.

3.3 Conversational Style

We also investigate whether a suitable conversational style of the conversational
agent can affect the performance of workers in different moods. According to
Deborah Tannen’s seminal theory, conversational styles can be classified into
two broad categories, namely High Involvement and High Considerateness [24].
A conversational style is actually the superimposition of multiple linguistic fea-
tures and devices [25]. To this end, we selected features and devices that can be
applied in our case to create conversation agents emulating High Involvement
and High Considerateness conversational styles according to the design criteria
from the previous work [23]. Selected features are shown in Table 1. Table 2 shows
examples of how the conversational agent opens a conversation while emulating
the two different conversational styles.
2 https://github.com/dmitrizzle/chat-bubble.

https://github.com/dmitrizzle/chat-bubble

386 S. Qiu et al.

(a) Button-based input (b) Text-based input

Fig. 3. Conversational interfaces for execution of HITs provide two input means: (a)
buttons and (b) free text.

Table 1. Features of conversation used to design the conversational agents emulating
different conversational styles [23].

Features High-involvement High-considerateness

Pace Fast Slow

Introduction of topics Without hesitation With hesitation

Use of syntax Simple Complex

Enthusiasm Enthusiastic Calm

Directness of content Direct Indirect

Use of questions Frequent Rare

4 Experiments and Setup

4.1 Experimental Design

In our experiments, we consider two data types (image and text) and two input
types (free text and multiple choices), resulting in 4 HIT types (2 data types× 2
input types) - Information Finding (text data + free text input), Sentiment
Analysis (text data + multiple choices), CAPTCHA Recognition (image data +
free text input) and Image Classification (image data + multiple choices). The
experiment is approved by the ethics committee of our university.

In Information Finding (IF) tasks, workers are asked to find and provide
the rating (stars) of a given store from Google Maps. In Sentiment Analysis
(SA) tasks, workers are asked to read given reviews of stores and determine
the overall sentiment of the review. In CAPTCHA Recognition (CR) tasks,
workers are asked to observe the image and determine which letters the image
contains, and then provide the letters in the same order as they appear in the
image. In Image Classification (IC) tasks, workers are asked to determine
which animal the image contains.

We consider three distinct interfaces: 1) Traditional web interface (web)
where all the HITs are displayed and answered using traditional HTML elements;

Analyzing the Role of Worker Moods in Conversational Microtasking 387

Table 2. Examples of greetings with High-Involvement and High-Considerateness
styles.

High involvement High considerateness

— Hey! Can you help me with a task
called Information Finding?

— Thank you in advance for helping
me with a task called Information
Finding

— You must complete this task within
30min, otherwise I won’t pay you

— I think 30min should be more than
enough for you to finish

— Here is the task instructions. Take
a look!

— I kindly ask you to have a look at
the task instructions

2) Conversational interface with High-Involvement style (Con+I),
where the HITs are presented through an agent with a High-Involvement style; 3)
Conversational interface with High-Considerateness style (Con+C),
which is similar to Con+I, except that the agent converses with workers using a
High-Considerateness style.

Thus, the four task types and three interfaces result in a cross-section of 12
experimental conditions. These 12 experimental conditions were published on
Amazon Mechanical Turk (MTurk) as HIT batches in our experiments.

4.2 Evaluation Metrics

The evaluation metrics in our experiments are output quality, worker engage-
ment, and cognitive task load.

Output quality is measured using the accuracy of workers. A worker’s accu-
racy is calculated as the fraction of correct responses over the total number
of responses provided by a worker. Here, we consider a HIT to be accurately
completed if and only if the response is identical to the ground truth (case
insensitive).

Worker engagement is measured using: 1) worker retention, quantified by the
number of optional HITs completed (ranging from 0 to 45); and 2) the UES-SF
scores ranging from 1 to 7. A higher UES-SF score indicates that the worker is
relatively more engaged.

Cognitive task load is evaluated by unweighted NASA-TLX form, consisting
of six questions. Workers are asked to give scores ranging from 0 to 100 to these
questions. The final TLX score is the mean value of scores given to the six
questions. The higher the TLX score is, the greater is the task load perceived
by a worker.

4.3 Workers and Rewards

In our setup, each experimental condition consists of 50 HITs and we recruited
50 unique workers to participate and complete the workflow in each case. As a
result, we acquired judgments from 12 × 50 = 600 unique workers.

388 S. Qiu et al.

After a worker provided a valid task token and successfully submitted the
HITs on MTurk, the worker was immediately paid 0.5 USD, a fixed payment
for successful submission. To reach an average hourly wage of 7.5 USD, we
provided bonuses to workers according to the number of optional HITs that
they completed. Workers working on image-based tasks (CAPTCHA Recogni-
tion and Image Classification) received 0.01 USD for each optional HIT, while
workers working on text-based tasks (Information Finding and Sentiment Anal-
ysis) received 0.02 USD for each optional HIT.

4.4 Quality Control

Although MTurk allows task requesters to set a qualification type to prevent
workers from executing tasks in multiple HIT batches, workers are still able
to execute multiple HITs from a single batch. To ensure each worker at most
submits once, we recorded unique worker IDs on our server using Javascript,
to prevent repeated participation. To ensure reliability of results, validity of
responses, and control for potential malicious activity [4,7], we restricted partic-
ipation by using an MTurk qualification attribute, only allowing crowd workers
whose HIT approval rates were greater than 95% to access our tasks.

5 Results

5.1 Worker Demographics

Of the unique 600 workers, 36.6% were female and 63.4% were male. The major-
ity of workers were found to be Asian (46.37%), while 39.12% of workers were
Caucasian. Most workers (89.2%) were under 45 years old, and education levels of
most workers (74.5%) were higher than (or equal to) Bachelor’s degree. In terms
of source of income, 38.0% of the workers claimed MTurk was their primary
source of income, while 55.4% of the workers worked on MTurk part-time and
considered it as their secondary source of income. We publicly released all data
(HITs deployed and responses from workers across the different experimental
conditions) to facilitate further research for the benefit of the community3.

5.2 Distribution of Worker Moods

According to the results from the Pick-A-Mood instrument, 74.45% of workers
reported to be in a pleasant mood, and 22.67% of workers reported unpleasant
moods. Only 2.88% of workers reported to be in a neutral mood. As shown in
Fig. 4(a), most workers reported to be in a cheerful mood. Consistent with prior
findings in microtasking marketplaces [6,28,31], we found that a majority of
workers were in pleasant moods.

3 Companion page: https://sites.google.com/view/icwe2020mood.

https://sites.google.com/view/icwe2020mood

Analyzing the Role of Worker Moods in Conversational Microtasking 389

(a)

(b)

Fig. 4. (a) Overall distribution of worker moods; (b) Percentages of workers in pleasant,
neutral and unpleasant moods across different experimental conditions.

Figure 4(b) shows the distribution of worker moods across all experimen-
tal conditions, where IF, SA, CR and IC represent Information Finding, Senti-
ment Analysis, CAPTCHA Recognition, and Image Classification respectively.
Web, Con+I and Con+C refer to the web interface, conversational interface
with involvement-style and conversational interface with considerateness-style
in each case. The mood distribution of workers within each experimental condi-
tion is similar to the overall mood distribution. Moreover, there were no workers
who reported a neutral mood in web interface conditions of Information Find-
ing and Sentiment Analysis tasks, and the conversational interface with High-
Considerateness style of Information Finding (IF Web, IF Con+C and SA Web).
Since there were only a few workers with a neutral mood who executed HITs
across different experimental conditions, we excluded the workers in a neutral
mood in our analysis presented further.

5.3 Worker Performance

We analyzed the performance of workers across different experimental condi-
tions. Figure 5 shows the output accuracy of workers. Due to the relative ease
of tasks, in case of image-based HITs (CAPTCHA Recognition and Image Clas-
sification), the output accuracy of workers is generally higher and more stable

390 S. Qiu et al.

across different interfaces and worker moods, compared to that in text-based
HITs (Information Finding and Sentiment Analysis).

Fig. 5. Boxplots showing the output accuracy (unit: %) of workers in different moods,
across different experimental conditions. Red lines in boxplots indicate the median
value. (Color figure online)

To assess whether moods can affect worker performances in different inter-
faces, we conducted t-tests (two-tailed, α = 0.05) to test the significance of
pairwise differences between different interfaces within one conversational style.
Results show that the performance of workers in unpleasant moods, using the
conversational interface with High-Considerateness style (Con+C, μ = 43.1,
σ = 23.0) is significantly lower than those using the web interface (Web, μ = 76.1,
σ = 11.6) in Information Finding task (unpleasant, IF Con+C vs. IF Web,
p = 0.02). In general, we found that the output quality corresponding to workers
in unpleasant moods using conversational interfaces (both Con+I and Con+C)
is generally lower than those using the traditional web interface on text-based
tasks. This can intuitively be explained by the potential aversion of workers to
engage with a conversation when in an unpleasant mood [13].

To investigate how workers with different moods perform under the same con-
dition, we tested the statistical differences between the performance of workers
across the two conversational styles using t-tests (two-tailed, α = 0.05). Work-
ers in pleasant moods performed significantly better than those in unpleasant
moods, while using conversational interfaces with High-Involvement (pleasant
μ±σ = 68.2±28.0 vs. unpleasant μ±σ = 46.3±28.6) and High-Considerateness
styles (pleasant μ± σ = 63.3± 29.8 vs. unpleasant μ± σ = 43.1± 23.0) for exe-
cuting Information Finding HITs (pleasant vs. unpleasant on IF Con+I and IF
Con+C, p = 0.031 and p = 0.033 respectively). In general, our results suggest

Analyzing the Role of Worker Moods in Conversational Microtasking 391

that workers in pleasant moods exhibited a higher quality while using conversa-
tional interfaces, in comparison to workers in unpleasant moods.

5.4 Worker Engagement

Worker Retention. Fig. 6 shows the number of optional questions that workers
answered across different task types, interfaces and moods. Since the number of
optional HITs completed does not follow a normal distribution, we conducted
Wilcoxon rank-sum tests (two-tailed, α = 0.05) to test for statistical significace.

Fig. 6. Boxplots showing the number of optional HITs completed by workers in differ-
ent moods across different experimental conditions. Red lines in the boxplots represent
the median value. (Color figure online)

By comparing worker retention of different moods within each experimental
condition, we found that the retention of workers in pleasant moods (μ = 7.2,
σ = 10.7) is significantly lower than that of workers in unpleasant moods
(μ = 10.8, σ = 8.1) using conversational interfaces with the Considerateness
style for executing the Sentiment Analysis HITs (pleasant vs. unpleasant on SA
Con+C, p = 0.027). This suggests that conversation interfaces with a particular
conversational style can have the potential to improve worker retention based
on the task type.

We found that workers in pleasant moods using conversational inter-
faces (both High Involvement and High Considerateness, Con+I and Con+C)
answered significantly more optional HITs than workers in pleasant moods using
traditional web interfaces across all four types of tasks (pleasant, all task types,
p < 0.05). Workers in unpleasant moods also answered more optional HITs
using conversational interfaces (both Con+I and Con+C) than those using web

392 S. Qiu et al.

interfaces in Sentiment Analysis and CAPTCHA recognition with significant
differences (unpleasant, SA and CR, p < 0.05).

User Engagement Scale (UES-SF). We aggregated and analyzed the
responses of workers in the post-task survey. Figure 7 depicts the UES-SF scores
of workers across all types of tasks, interfaces and two different moods (pleasant
vs. unpleasant). To understand the effect of worker moods on user engagement,
t-tests (two tailed, α = 0.05) are used to test the significance of differences.

Fig. 7. UES-SF scores across different experimental conditions and worker moods. Red
lines in the boxplots indicate the median value. (Color figure online)

Workers in pleasant moods reported significantly higher UES-SF scores than
those in unpleasant moods on conversational interfaces with an involvement
style (Con+I) for executing Information Finding (pleasant: μ = 4.4, σ = 0.8
vs. unpleasant: μ = 3.7, σ = 0.7), CAPTCHA Recognition (pleasant: μ = 4.4,
σ = 1.1 vs. unpleasant: μ = 3.4, σ = 0.8), and Image Classification (pleasant:
μ = 5.1, σ = 1.1 vs. unpleasant: μ = 3.8, σ = 0.8) HITs (pleasant vs. unpleasant
on IF Con+I, CR Con+I and IC Con+I, p = 0.02, p = 0.014 and p = 0.0001
respectively).

UES-SF scores of workers in unpleasant moods using conversational inter-
faces with a considerateness style (Con+C) were significantly higher than those
using conversational interfaces with an involvement style (Con+I) in CAPTCHA
Recognition (Con+I μ± σ = 3.4± 0.8 vs. Con+C μ± σ = 4.6± 1.3) and Image
Classification (Con+I μ ± σ = 3.8 ± 0.8 vs. Con+C μ ± σ = 4.7 ± 1.0) HITs
(unpleasant, Con+I vs. Con+C in CR and IC, p = 0.036 and p = 0.0125 respec-
tively). The High-Involvement conversational interface (μ = 4.4, σ = 0.8) cor-
responds to significantly higher UES-SF scores than the High-Considerateness

Analyzing the Role of Worker Moods in Conversational Microtasking 393

conversational interface (μ = 3.9, σ = 0.7) for workers in pleasant moods working
on Information Finding HITs (pleasant, IF Con+I vs. IF Con+C, p = 0.013).

5.5 Cognitive Task Load

We also calculated the un-weighted NASA-TLX scores of all the workers partici-
pating in the crowdsourcing experiment. We use t-tests (two-tailed, α = 0.05) to
test the significance of differences between experimental conditions and worker
moods (Fig. 8).

Fig. 8. NASA-TLX scores different experimental conditions and worker moods. Red
lines in the boxplots indicate the median value. (Color figure online)

Workers in pleasant moods reported significantly lower NASA-TLX scores
than workers in unpleasant moods in conversational interfaces with a High-
Considerateness style (Con+C) for Information Finding (pleasant μ ± σ =
42.8±19.1 vs. unpleasant μ±σ = 55.4±18.1) and Sentiment Analysis (pleasant
μ ± σ = 43.3 ± 17.2 vs. unpleasant: μ ± σ = 54.9 ± 18.1) HITs (pleasant vs.
unpleasant on IF Con+C and SA Con+C, p = 0.046 and p = 0.041 respec-
tively). Thus, workers in pleasant moods perceived lesser cognitive task load in
these conditions. Moreover, workers in pleasant moods also perceived less cog-
nitive load while executing the Information Finding HITs on the conversational
interface with a High-Considerateness style (μ = 42.8, σ = 19.1), compared to
the traditional web interface (μ = 53.5, σ = 21.1) (pleasant, IF Con+C vs. IF
Web, p = 0.0200).

6 Discussion

Implications. Our results clearly indicate that conversational interfaces for
HIT execution can improve worker retention in general, irrespective of worker

394 S. Qiu et al.

moods. Statistical tests reveal the fact that pleasant workers were more engaged
than unpleasant workers in general. This calls for the development and adop-
tion of conversational interfaces for microtask crowdsourcing, and for methods to
induce pleasant moods prior to HIT execution. Our results also suggest that con-
versational interfaces with a High-Considerateness style exhibit the potential to
improve engagement of workers in unpleasant moods, while a High-Involvement
style exhibits a potential to further engage workers in pleasant moods. In terms
of cognitive task load, our findings show that workers in pleasant moods can per-
ceive less task load than those in unpleasant moods while executing text-based
HITs, especially when the conversational agent uses a High-Considerateness
style. These findings present opportunities for task routing based on worker
moods and by leveraging different conversational styles.

Caveats and Limitations. Despite the measures we took to ensure the relia-
bility of responses of workers, as with any research that involves human subjects
using self-reporting tools, a threat to the validity of our findings is the veracity
of the self-reported moods of workers. However, the overall distribution of crowd
worker moods are consistent with prior works that indicate a skew towards pleas-
ant moods [6,31]. The mood distribution of workers is naturally unbalanced. It is
however, not ethically sound to elicit unpleasant moods among workers to study
the interaction between their moods and conversational styles of an agent.

7 Conclusions and Future Work

Through an experimental study in this paper, we explored how worker moods
can affect their output quality, engagement and cognitive task load in conversa-
tional microtask crowdsourcing (RQ1). We also investigated how the conversa-
tional style of the conversational agent can affect the performance of workers in
different moods (RQ2). We addressed RQ1 by evaluating worker performance
across different tasks. We addressed RQ2 by comparing quality related outcomes
between different interfaces (and conversational styles).

We found that workers in a pleasant mood generally exhibited a higher output
quality (over 20% in the best case), higher user engagement (over 18%) and
around 13% lesser cognitive task load. We also found strong evidence to suggest
that a suitable conversational style can have a significant impact on worker
performance under some specific conditions (such as the type of HIT). In the
imminent future, we will explore the relationship between worker moods and
their preferred conversational style.

References

1. Bradeško, L., Witbrock, M., Starc, J., Herga, Z., Grobelnik, M., Mladenić, D.:
Curious cat-mobile, context-aware conversational crowdsourcing knowledge acqui-
sition. ACM Transactions on Information Systems (TOIS) 35(4) (2017). Article
no. 33

Analyzing the Role of Worker Moods in Conversational Microtasking 395

2. Demartini, G., Difallah, D.E., Gadiraju, U., Catasta, M., et al.: An introduction
to hybrid human-machine information systems. Found. Trends R© Web Sci. 7(1),
1–87 (2017)

3. Desmet, P.M., Vastenburg, M.H., Romero, N.: Mood measurement with Pick-A-
Mood: review of current methods and design of a pictorial self-report scale. J. Des.
Res. 14(3), 241–279 (2016)

4. Eickhoff, C., de Vries, A.P.: Increasing cheat robustness of crowdsourcing tasks.
Inf. Retrieval 16(2), 121–137 (2013). https://doi.org/10.1007/s10791-011-9181-9

5. Gadiraju, U., Checco, A., Gupta, N., Demartini, G.: Modus operandi of crowd
workers: the invisible role of microtask work environments. Proc. ACM Interact.
Mob. Wearable Ubiquit. Technol. 1(3) (2017). Article no. 49

6. Gadiraju, U., Demartini, G.: Understanding worker moods and reactions to rejec-
tion in crowdsourcing. In: Proceedings of the 30th ACM Conference on Hypertext
and Social Media, HT 2019, pp. 211–220. ACM, New York (2019)

7. Gadiraju, U., Siehndel, P., Fetahu, B., Kawase, R.: Breaking bad: understanding
behavior of crowd workers in categorization microtasks. In: Proceedings of the 26th
ACM Conference on Hypertext & Social Media, pp. 33–38 (2015)

8. Han, L., et al.: All those wasted hours: on task abandonment in crowdsourcing.
In: Proceedings of the Twelfth ACM International Conference on Web Search and
Data Mining, pp. 321–329. ACM (2019)

9. Harms, J., Kucherbaev, P., Bozzon, A., Houben, G.: Approaches for dialog man-
agement in conversational agents. IEEE Internet Comput. 23(2), 13–22 (2019)

10. Huang, T.H.K., Chang, J.C., Bigham, J.P.: Evorus: a crowd-powered conversa-
tional assistant built to automate itself over time. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, p. 295. ACM (2018)

11. Huang, T.H.K., Lasecki, W.S., Bigham, J.P.: Guardian: a crowd-powered spoken
dialog system for web APIs. In: Third AAAI Conference on Human Computation
and Crowdsourcing (2015)

12. Kittur, A., et al.: The future of crowd work. In: Proceedings of the 2013 Conference
on Computer Supported Cooperative Work, pp. 1301–1318. ACM (2013)

13. Koch, A.S., Forgas, J.P., Matovic, D.: Can negative mood improve your conversa-
tion? Affective influences on conforming to Grice’s communication norms. Eur. J.
Soc. Psychol. 43(5), 326–334 (2013)

14. Kucherbaev, P., Bozzon, A., Houben, G.J.: Human-aided bots. IEEE Internet Com-
put. 22(6), 36–43 (2018)

15. Lakoff, R.T.: Stylistic strategies within a grammar of style. Ann. N. Y. Acad. Sci.
327(1), 53–78 (1979)

16. Lasecki, W.S., Wesley, R., Nichols, J., Kulkarni, A., Allen, J.F., Bigham, J.P.: Cho-
rus: a crowd-powered conversational assistant. In: Proceedings of the 26th Annual
ACM Symposium on User Interface Software and Technology, pp. 151–162. ACM
(2013)

17. Loni, B., Cheung, L.Y., Riegler, M., Bozzon, A., Gottlieb, L., Larson, M.: Fashion
10000: an enriched social image dataset for fashion and clothing. In: Proceedings
of the 5th ACM Multimedia Systems Conference, pp. 41–46. ACM (2014)

18. Mavridis, P., Huang, O., Qiu, S., Gadiraju, U., Bozzon, A.: Chatterbox: conver-
sational interfaces for microtask crowdsourcing. In: Proceedings of the 27th ACM
Conference on User Modeling, Adaptation and Personalization, pp. 243–251. ACM
(2019)

19. Miner, A.G., Glomb, T.M.: State mood, task performance, and behavior at work:
a within-persons approach. Organ. Behav. Hum. Decis. Process. 112(1), 43–57
(2010)

https://doi.org/10.1007/s10791-011-9181-9

396 S. Qiu et al.

20. Moore, R.J., Arar, R., Ren, G.J., Szymanski, M.H.: Conversational UX design. In:
Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors
in Computing Systems, pp. 492–497. ACM (2017)

21. O’Brien, Heather: Theoretical perspectives on user engagement. In: O’Brien,
Heather, Cairns, Paul (eds.) Why Engagement Matters, pp. 1–26. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-27446-1 1

22. O’Brien, H.L., Cairns, P., Hall, M.: A practical approach to measuring user engage-
ment with the refined user engagement scale (UES) and new UES short form. Int.
J. Hum. Comput. Stud. 112, 28–39 (2018)

23. Qiu, S., Gadiraju, U., Bozzon, A.: Improving worker engagement through conver-
sational microtask crowdsourcing. In: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, pp. 1–12. ACM (2020)

24. Tannen, D.: Conversational style. In: Psycholinguistic Models of Production, pp.
251–267 (1987)

25. Tannen, D.: Conversational Style: Analyzing Talk Among Friends. Oxford Univer-
sity Press, Oxford (2005)

26. Totterdell, P., Niven, K.: Workplace Moods and Emotions: A Review of Research.
Createspace Independent Publishing, Charleston (2014)

27. Wright, T.A., Cropanzano, R.: The happy/productive worker thesis revisited. In:
Research in Personnel and Human Resources Management, pp. 269–307. Emerald
Group Publishing Limited (2007)

28. Xu, L., Zhou, X., Gadiraju, U.: Revealing the role of user moods in struggling
search tasks. In: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1249–1252. ACM (2019)

29. Zelenski, J.M., Murphy, S.A., Jenkins, D.A.: The happy-productive worker the-
sis revisited. J. Happiness Stud. 9(4), 521–537 (2008). https://doi.org/10.1007/
s10902-008-9087-4

30. Zhang, Z., Singh, J., Gadiraju, U., Anand, A.: Dissonance between human and
machine understanding. Proc. ACM Hum.-Comput. Interact. 3(CSCW) (2019).
Article no. 56

31. Zhuang, M., Gadiraju, U.: In what mood are you today?: An analysis of crowd
workers’ mood, performance and engagement. In: Proceedings of the 11th ACM
Conference on Web Science, WebSci 2019, Boston, MA, USA, 30 June–03 July
2019, pp. 373–382 (2019). https://doi.org/10.1145/3292522.3326010

https://doi.org/10.1007/978-3-319-27446-1_1
https://doi.org/10.1007/s10902-008-9087-4
https://doi.org/10.1007/s10902-008-9087-4
https://doi.org/10.1145/3292522.3326010

Open Data

SolidRDP: Applying Solid Data
Containers for Research Data Publishing

André Langer(B) , Dang Vu Nguyen Hai , and Martin Gaedke

Chemnitz University of Technology, Chemnitz, Germany
{andre.langer,dang.vu-nguyen-hai,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. In the context of Open Science, researchers are encouraged
to publish their research datasets in digital data repositories so that oth-
ers can find and reuse it.

However, this process is commonly conducted via centralized data
management platforms. Research data has to be uploaded to such a plat-
form and this imposes the risk to become dependent from the access
control and data exposure capabilities of the platform provider.

Semantic technologies are one approach to improve this situation and
manage research datasets in a decentralized way with an interdisciplinary
focus. We are particularly interested in Linked Data Platform - based
approaches and how good Solid in particular fits for research data pub-
lishing (RDP) activities.

In this paper, we therefore present a conceptual RDP model and we
assess a container-based approach to publish research data in a Solid envi-
ronment in a decentralized manner, both from a researcher and developer
perspective.

Keywords: Linked Data · Research data management · Data
publishing · Solid · Data container · Decentralization

1 Introduction

In existing research data life-cycle models (cf. [2,20]), publishing research data
following the FAIR guidelines [19] is an important step to share and reuse these
datasets as encouraged by the principles of Open Science1.

Directory projects such as OpenDOAR2 nowadays list more than 5,200
research data repositories where research data is uploaded and provided to other
interested actors worldwide. However, certain researchers hesitate to use central-
ized platforms and want to retain control of their research data, as shown in
recent surveys from Wiley [17] or the European Union [16] on the data shar-
ing behavior of researchers. The reasons for that are manifold [7] and especially
related to data privacy, data transfer and data access concerns.

1 https://www.nature.com/sdata/about/principles.
2 https://v2.sherpa.ac.uk/view/repository visualisations/1.html.

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 399–415, 2020.
https://doi.org/10.1007/978-3-030-50578-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_27&domain=pdf
http://orcid.org/0000-0001-7073-5377
http://orcid.org/0000-0002-5496-3633
http://orcid.org/0000-0002-6729-2912
https://www.nature.com/sdata/about/principles
https://v2.sherpa.ac.uk/view/repository_visualisations/1.html
https://doi.org/10.1007/978-3-030-50578-3_27

400 A. Langer et al.

Decentralized approaches gain increasing attention, where research data can
remain in the proximate environment and where the researcher instead of a (com-
mercial) service provider is in control of data access regulations and other admin-
istrative settings to expose particular research data. Additionally, the demand
for sharing research data for inter- and transdisciplinary purposes increases [15].

Semantic technologies already provide necessary means to annotate data with
distinct meta information for cross-domain processing and reuse [18], and they
allow distributed service architectures to access provided datasets in a decentral-
ized fashion3. Server implementations such as in DuraSpace Fedora4, Apache
Marmotta5 or the Social Linked Data (Solid, sometimes also SoLiD) environ-
ment6 already exist, which implement such a Linked Data Platform behavior.

Solid in particular “proposes a set of conventions and tools for building decen-
tralized social applications based on Linked Data principles”7 resulting in true
data ownership as well as improved data privacy. Personal Online Data Stores,
so called PODs, are a key concept providing hosting and data access autho-
rization capabilities in an application-independent proximate user environment.
Solid was already applied successfully in different scenarios such as personal data,
articles or images [10], but to the best of our knowledge, it has not been applied
to RDM so far.

We investigated, to which extend more general research data publishing pro-
cesses can also benefit from such an approach and present in the following three
main contributions as part of the PIROL research project on interdisciplinary
research data publishing [8]:

1. We present a reference model that can be used as an abstract framework
to describe the actual activities that have to be taken into consideration for
research data publishing.

2. We specify a component-based data container concept to publish research
datasets and corresponding meta descriptions in a decentralized fashion.

3. We apply the Solid platform to this approach and show in a SolidRDP PoC
that a technical implementation of this concept is possible together with
practical extensions to use it for decentralized research data publishing.

The rest of the paper is structured in the following way: Sect. 2 describes
the problem domain in detail, formalizes it in a dedicated model for research
data publishing and defines requirements on a decentralized realization. Section 3
discusses a data container-based approach for that. Section 4 presents our
SolidRDP implementation as a proof-of-concept, which is then evaluated in
Sect. 5. Section 6 contrasts our work to other existing approaches and Sect. 7
summarizes our results and gives an outlook to future work.

3 https://www.w3.org/TR/ldp/.
4 https://duraspace.org/fedora/.
5 https://marmotta.apache.org/.
6 https://solidproject.org/for-developers/pod-server.
7 https://solid.mit.edu/.

https://www.w3.org/TR/ldp/
https://duraspace.org/fedora/
https://marmotta.apache.org/
https://solidproject.org/for-developers/pod-server
https://solid.mit.edu/

SolidRDP: Applying Solid Data Containers for Research Data Publishing 401

2 Conceptual Problem Analysis

Research data management (RDM) is a term that describes the way how
researchers organize, publish, share, and reuse their research data during and
beyond the lifetime of a research project effectively.

In the following, we do not cover the full Research Data Management life-
cycle in all steps. Instead, we particularly focus on Research Data Publishing. In
common data life-cycle models, this process is normally located after the persis-
tent data preservation and before the discovery and reuse of datasets. Apparently,
this step is crucial for efficient research according to Open Science, especially in
an interdisciplinary usage context. However, it is often simplified to a single activ-
ity which is either described as data publishing, provisioning, sharing or giving
data access. In contrast, we emphasize that the publication of research datasets
involves multiple process steps. To the best of our knowledge, no well-accepted
theoretical foundation for that was presented so far. We therefore first discuss
a motivating scenario and then a reference model for research data publishing
with necessary process steps, independent if they are carried out all together on
a centralized platform or in a decoupled, decentralized environment.

Fig. 1. Research data publishing scenario with 7 identified steps

In a practical scenario as shown in Fig. 1, a scientist with the name Han-
nah is in possession of a digital research dataset, which was created in the
context of a research project activity. This dataset is saved on a local stor-
age such as Hannah's computer or a storage device in the research institution
and updated from time-to-time to a newer version. To make this data avail-
able to other researchers, it has to be transferred (i.e., uploaded) to a publicly
accessible research data repository (1), where it is stored (2), (often implicitly)
registered (3) in a particular persistent version (4), and described and associated
with meta-information (5). Finally, the research dataset is based on additional
meta-information such as access regulations and restrictions (6) exposed (7), so
that other users such as John can find it.

2.1 Conceptual View on Research Data Publishing

The described research data publishing process can therefore be split down into
seven relevant activities, as shown in Fig. 2:

402 A. Langer et al.

Fig. 2. Basic research data publishing reference model

1. Data Transfer: Moving the dataset to a publicly accessible repository plat-
form.

2. Data Storage: Saving the dataset in a persistent digital fashion.
3. Data Registration: Making the data repository aware of the transferred

dataset.
4. Data Versioning: Handling a dataset in multiple versions.
5. Data Annotation: Providing meta-information to describe characteristics

of the actual research dataset.
6. Data Access Control: Defining access rules and other constraints and

restrictions.
7. Data Exposure: Finalizing the publishing process so that other users and

services can find and access the dataset together with the provided meta-
information based on the data repository configuration and access rules.

2.2 Current Situation in Practice

On common research data repository platforms such as Zenodo, ResearchGate or
Mendeley Data, these publishing steps are normally carried out via a centralized
infrastructure [12], where a researcher uploads a dataset which is immediately
registered, provides basic meta-information online in a user input web interface
and exposes the dataset by saving the entered data. Storing this data in a cen-
tral fashion has the advantage that it improves the discoverability and service
providers commonly offer an appealing user interface and large storage capaci-
ties for free. However, the research data itself and all related publishing activities
rely on the capabilities and attitude of the trusted service provider.

Thus, certain researchers hesitate to use centralized platforms and want to
retain control of their research data. Their research data is stored on central-
ized, institutional and sometimes even commercial server infrastructures, which
means the researchers do not truly physically own and manage the data. Apart
from that, we face walled gardens and obstacles between domain-specific data
repositories that lead to difficulties in cross-domain data exchange and reuse.

We assessed the current situation by conducting an online user survey8

between May and June 2019 distributed to researchers from multiple research
disciplines (36% Applied Sciences, 25% Social Sciences, 21% Formal Sciences,
14% Natural Sciences, 4% Humanities) via direct message, email, and three
researcher collaboration groups in social networks with a response rate of 126
full responses. Only 46% of all respondents indicated that they have shared
data from their research in the past. We also asked where the participants store
their research datasets currently. The results showed that 41% of all participants
8 http://purl.net/net/vsr/solidrdp/presurvey.

http://purl.net/net/vsr/solidrdp/presurvey

SolidRDP: Applying Solid Data Containers for Research Data Publishing 403

“keep research data internally on laptop or personal computer or institutional
storage”, 43% share research data via Sync&Share services such as GoogleDrive,
Nextcloud or Dropbox and 9% of all participants “publish research data on their
private website”. These are apparently places where researchers think they could
have full control of data storage.

2.3 Derived Objectives

A decentralized approach on research data publishing might improve this situ-
ation. To develop a concept that enables researchers to publish and share their
data in a decentralized and interdisciplinary way, the following objectives are
considered:

OBJ1 Ownership of data storage: Research datasets shall be stored in an
environment related to the owning researcher.

OBJ2 Support for different formats, shapes and sizes of research
datasets: Publishing arbitrary kinds of research data shall be possible.

OBJ3 Metadata integration: Research datasets shall be published together
with a corresponding metadata description that makes use of established
vocabularies for interdisciplinary discoverability purposes [4].

OBJ4 User support tools: The setup of such a decentralized infrastructure as
well as the interaction has to be user-friendly for a researcher.

OBJ5 Data versioning control: Different versions of research datasets can be
published with persistent identifiers.

OBJ6 Data access control: Research dataset owners are in full control of data
access regulations.

OBJ7 Data exposure: Research datasets are provided in a decentralized fash-
ion, but are advertised to other services so that they can be discovered
on a global level according to the FAIR principles for research data [19].

3 A Container-Based Approach for Research Data
Publishing

In the following, we identify a decentralized approach enriched with semantic
technologies as an appropriate way to address these objectives.

Existing solutions for decentralized research data management encompass
peer-to-peer-based approaches such as the Dat Project9 or AcademicTorrent10,
blockchain-based approaches such as datum.org11 and git-based approaches such
as DataLad12. We assessed all of these approaches in each of the mentioned
categories and carefully compared them against our requirements13 as shown in
Table 1.
9 https://dat.foundation/.

10 http://academictorrents.com/.
11 https://datum.org/.
12 https://www.datalad.org/.
13 https://vsr.informatik.tu-chemnitz.de/projects/2019/solidrdp/.

https://dat.foundation/
http://academictorrents.com/
https://datum.org/
https://www.datalad.org/
https://vsr.informatik.tu-chemnitz.de/projects/2019/solidrdp/

404 A. Langer et al.

Table 1. Assessment of existing decentralized RDM solutions

P2P-based
approaches

Blockchain-
based appr.

Git-based
approaches

OBJ1: Ownership of data storage o o +

OBJ2: Support for different formats,
shapes and sizes of research datasets

+ + +

OBJ3: Metadata integration o o o

OBJ4: User support tools + + +

OBJ5: Data versioning control + - +

OBJ6: Data access control - o o

OBJ7: Data exposure - o o

+ Completely Fulfilled, o Partially Fulfilled, - Not Fulfilled

Git-based approaches already satisfy these objectives to a partial extent and
a researcher can set up an own local repository for managing datasets. However,
this data needs to be replicated to a searchable remote repository, e.g., GitHub,
GitLab or DataLad so that it is discoverable and reusable by other users which
raises data privacy concerns. Furthermore, there are no established Git-based
solutions that focus on improving data exchange and reuse in the context of
interdisciplinary research data provisioning. Hence, to overcome domain-specific
boundaries, it was already suggested to not only “store and distribute (relevant
data) systematically but also categorize and link (it) according to the semantic
interrelations of the involved disciplinary knowledge domains” [15]. Based on
this, Linked Data is considered to be a reasonable approach.

Based on that, we propose the usage of semantic data containers for research
data management. Data Containers are a concept already known from the Cloud
Computing community. They are practically applied e.g., in Docker environ-
ments. In this context, they are a bundled package which includes all depen-
dencies to store, organize and use its contained virtual objects independent of
the host infrastructure, operating system, communication protocols and storage.
They are mainly used for transporting and reliably accessing data in this case.
Additionally, these containers can be packed with additional information on data
access regulations and privacy control.

A researcher can possess an own (online-accessible) data store in a personal
environment (POD). If this personal online data store contains research datasets
from multiple research projects organized in virtual research data containers, we
will refer to this storage as a ResearchPOD. In this context, a data container
will not be primarily used for transporting data to different systems to access
them by multiple applications, but for giving a researcher an online location
where he/she can place and control actual research datasets independently of any
institution or application provider. This data can be directly accessed without
the need of replications or intransparent redundant copy and check-out processes
on different distributed server systems. Therefore, such a data container within

SolidRDP: Applying Solid Data Containers for Research Data Publishing 405

a ResearchPOD provides different layers for the actual dataset management,
semantic metadata information management, version management and access
management as depicted in Fig. 3.

Fig. 3. Layered conceptual structure of a DataContainer within a ResearchPOD

In order to realize a decentralized research dataset publishing infrastructure,
we identified a set of components that are needed as an extension to Linked
Data Platforms such as the original Solid environment, based on our research
data publishing reference model from Sect. 2. These components are depicted in
Fig. 4.

Fig. 4. Components extending the Solid base platform for RDP

In the base layer, a Solid server with its build-in tools and components “allows
users to have full control of their data, including access control and storage loca-
tion” [13]. A researcher can thereby own a personal storage space (ResearchPOD)
at any location in the web. For authentication, Solid uses WebID as a globally
unique decentralized identifier for the user with a mechanism to combine a tradi-
tional username-and-password authentication and WebID-TLS delegation. For

406 A. Langer et al.

authorization, Web Access Control (WAC) is used for cross-domain authoriza-
tion for all particular resources.

On top of that, we identified and added six necessary components to extend
a Solid base platform to make it practicably usable for research data publishing.
Section 4 provides a detailed description of each component and an implemen-
tation as a proof-of-concept in our SolidRDP application. This application can
connect to any ResearchPOD associated with a WebID of a researcher.

4 The SolidRDP Prototype

Solid Research Data Publishing (SolidRDP) is the conceptual application and
extension of a Solid base platform for publishing research data. In contains six
essential components in an architecture illustrated in Fig. 5. The components
interact with each other to handle two primary entities: the research dataset
itself and its corresponding metadata which encompasses descriptive and admin-
istrative metadata as well as technical metadata with version information and
access control rules. The dotted lines in the figure represent the usage of resource
references for the stored corresponding files.

Fig. 5. The SolidRDP architecture

SolidRDP: Applying Solid Data Containers for Research Data Publishing 407

4.1 Components

In the following, we describe each component in detail.

Data Transfer Component. A DataTransfer component assists the user to
place a research dataset into a data container in the online-accessible Research-
POD on a Solid server. An upload form in a WebUI is a simple realization of such
a component. Other options to pass a research dataset to the storage location use
alternative protocols such as SCP or FTP, which also allow a (semi-)automated
provisioning and update of research data and the transfer of multiple files at
once.

Data Registration Component. As a Solid server manages files as virtual
resources independently of the underlying file system, it makes sense to con-
ceptually define a dedicated Data Registration component, especially when files
are provided in a (semi-)automated fashion. It registers an existing physical
dataset for research data publishing and associates additional information such
as descriptive metadata with it.

Data Versioning Component. Research datasets are normally not static, and
they constantly evolve over time. When the researchers update their datasets on
the server, the system needs to preserve all versions of the data file so that other
researchers can revert or retrieve a specific version at any point in time. A Data
Versioning component ensures this persistency on a virtual and physical resource
management level and provides appropriate persistent resource identifiers for the
registered datasets. Additionally, it provides versioning information as additional
meta-information in established vocabularies such as PROV-O and PAV.

Data Annotation Component. Annotation components assist the user in the
description of the provided research dataset. This is important, as research data
is commonly not self-explanatory. This can either be done by simply providing a
static input form in a WebUI asking for relevant meta information such as author
data, license information etc., or by using a dedicated independent metadata
creation component, that exposes the meta description in an RDF serialization
format by using established ontologies.

Data Access Control Component. Solid servers already provide data access
definitions by using Web Access Control (WAC) and WebID. However, to manage
research datasets and its metadata description, further considerations come into
play. First of all, a user-friendly interface is needed, so that researchers can easily
influence data privacy settings wrt. OBJ4 of Sect. 2. Then, the access definition
shall allow different levels of granularity both for the targeted audience groups
as well as for the resource sets. Add it might be necessary to define individual
data access rights for the datasets and for the metadata resources according to

408 A. Langer et al.

the FAIR principles to make metadata always accessible to the outside, even if
the access to the actual dataset is restricted.

Data Exposure Component. With ResearchPODs containing scientific
datasets in data containers, the research data is stored in a decentralized way.
Therefore, to make data discoverable and reusable by other researchers, it needs
to be exposed and indexed in external research data registries, which can be insti-
tutionally driven, domain-specific or general-purpose directories. The research
data will not be disclosed to the public because of the issues of data privacy
and access control. Instead, the metadata, which contains all necessary meta
information and links directly to its data, will be used to expose it.

A Data Exposure component will provide a central user interface to present
all currently published research datasets to the user and allow the exposure of
recently registered datasets. For that, not only the meta-information for a partic-
ular dataset can be taken into consideration. A user can also manage additional
author-related information and research project specific metadata for describ-
ing the discipline and purpose of the data containers with semantic means. The
SolidRDP application can then actively report this meta-information to external
services, or support harvesting protocols such as semantic versions of OAI-PMH,
as shown in Fig. 6.

Fig. 6. Exposing metadata to external metadata registry

4.2 Prototypical Implementation

As a proof-of-concept, we implemented all components of SolidRDP in a proto-
typical realization based on node-solid-server14 (5.x is the latest version), React15

14 https://github.com/solid/node-solid-server.
15 https://reactjs.org/.

https://github.com/solid/node-solid-server
https://reactjs.org/

SolidRDP: Applying Solid Data Containers for Research Data Publishing 409

with rdflib16, solid-auth-client17 and solid-file-client18. A demo can be found at
http://purl.net/net/vsr/solidrdp. To the best of our knowledge, SolidRDP is the
first Solid application particularly concentrating on research data management
and publishing.

For the sake of simplicity, the Data transfer component is realized with a file
upload control within the web-based file manager client. After uploading a new
research dataset, it is currently automatically registered in the SolidRDP appli-
cation and semantic metadata can be added to it as shown in Fig. 7. At the
moment, we allow the explicit provision of a metadata description file by the
user. Alternatively, a separate Data annotation component could be opened and
displayed that collects relevant metadata in a semantic-aware user interface and
returns it in an RDF serialization format such as Turtle, which is then added to
the meta description file for the uploaded research dataset.

Fig. 7. SolidRDP user interface

Furthermore, the user can restrict the access to the research dataset to par-
ticular user groups or individuals by using an implemented Data access control
component. These access control lists can be individually defined for a particu-
lar research data resource, its metadata or for an entire research data container
within the ResearchPOD of the user. The entered information in this compo-
nent is then added to the corresponding acl file on the Solid server. A Data
versioning component keeps track of the current file version and adds this ver-
sion information also to the corresponding metadata file. Furthermore, a user has
the possibility in the web user interface to also explicitly upload a new version
of a research dataset.

Finally, a Data exposure component handles the actual publishing step in our
research data publishing scenario by providing a central access point to adver-
tise metadata for all released research datasets in the background. Therefore,
additional form input controls are provided to describe in a semantic fashion fur-
ther characteristics of the author and particular research data containers, such as
their knowledge domain and context, to improve interdisciplinary discoverability
and reuse.
16 https://github.com/linkeddata/rdflib.js/.
17 https://github.com/solid/solid-auth-client.
18 https://github.com/jeff-zucker/solid-file-client.

http://purl.net/net/vsr/solidrdp
https://github.com/linkeddata/rdflib.js/
https://github.com/solid/solid-auth-client
https://github.com/jeff-zucker/solid-file-client

410 A. Langer et al.

The SolidRDP application prototypically shows, that a researcher can publish
a new research dataset in a decentralized fashion by simply transferring it into
a pre-configured data container in an own ResearchPOD by using a web-based
upload functionality of the SolidRDP web application together with a metadata
description. Following the research data management life-cycle, this dataset can
then be referenced in other research management and authoring applications by
simply using the provided URI as a persistent identifier (PID) for the Linked
Data resource. Also the provided SolidRDP metadata description file can be
reused to publish derivations of a certain dataset while referencing provenance
information of the original dataset. All other steps provided by the described
RDP components are optional and give the researcher additional freedom and
possibilities to integrate other existing tools or to (semi-)automate the publishing
process.

5 Evaluation

To assess our SolidRDP approach, we first implemented the idea as a proof-of-
concept as described in Sect. 4. Based on this demonstrator, we ran a study lab
with 15 candidates. The number of participants is sufficient for usability testing
in accordance to Nielsen and Landauer [11]. All participants were researchers
and they were randomly invited to attend the study lab. In addition, all the
participants already had experience in using a research data management sys-
tems and/or Git for data provision. The participation was voluntary without
any incentives.

We conducted this study lab in a supervised fashion by sitting next to the par-
ticipants, observing the way they complete a list of predefined tasks based on an
instruction sheet. In order to avoid affecting their decision making, we provided
an online questionnaire to them and gave time to evaluate our SolidRDP applica-
tion. The standardized questions of interest were directly aligned to the criteria
used for the assessment of existing solutions from Sect. 3. Finally, we used the
observations and survey result19 to assess our proposed approach.

We therefore applied the objectives-based evaluation method [14] as the most
prevalent approach in program evaluation.

As the practical adoption of our approach has not yet reached a certain level
so that a credible field experiment could be conducted and profoundly reviewed,
an objectives-based study is a questions-oriented evaluation approach that can
be performed in the meantime internally by program developers by “specify-
ing operational objectives and collecting and analyzing pertinent information to
determine how well each objective was achieved”.

5.1 OBJ1: Ownership of Data Storage

To store research datasets in an environment related to the researcher, our Solid-
based approach provides the researchers with the freedom to choose where their
19 http://www.purl.net/net/vsr/solidrdp/postsurvey.

http://www.purl.net/net/vsr/solidrdp/postsurvey

SolidRDP: Applying Solid Data Containers for Research Data Publishing 411

data resides. They have an option to set up their own Solid server (a single-user
mode), which leads to the full ownership of data storage. Thus, research data
is stored in only one place, in a decentralized fashion, and therefore avoid the
issue of data replication or data cloning. In the survey result, 14/15 participants
agreed that they had full control (add/edit/remove) of their research data via
the SolidRDP application.

5.2 OBJ2: Support for Different Formats, Shapes and Sizes
of Research Datasets

To publish arbitrary kinds of research data, the SolidRDP application is built
on top of a Solid server, which can deal with two kinds of resources: (1) Linked
Data resources (2) Everything else (binary data and non-linked-data structured
text). In our usability test, all of the survey participants (15/15) confirmed that
they could upload multiple files with different shapes and file types into their
ResearchPOD.

5.3 OBJ3: Metadata Integration

To publish research datasets shall together with a corresponding metadata
description that makes use of established vocabularies for interdisciplinary dis-
coverability purposes, the SolidRDP application is designed to satisfy this
requirement by integrating the metadata seamlessly into the system. The meta-
data we use in this application is expressed in RDF instead of plain text, HTML,
or XML. It does not only contain some basic information (title, description,
authors, and creation date) but also information about discipline(s), the con-
text of research, connection to its data, and version. The metadata can also be
extendable with any relevant information that can support for interdisciplinary
research. In the usability test, all of the participants (15/15) confirmed that an
URL of research data is saved automatically to the content of metadata after it
is uploaded to the POD and the metadata can be accessed in public mode.

5.4 OBJ4: User Support Tools

To have a user-friendly setup of such a decentralized infrastructure as well as the
interaction with a researcher, the SolidRDP application provides context menu
and various web forms both for IT- and Non-IT-researchers, so that they can
interact easily with the system. Complexity is hidden by the application and the
user can accomplish all tasks via GUI. Besides, the application does not require
installation of any additional tools as well as new knowledge to interact with the
Solid POD. We asked the users about the ease of the User Interface and 11/15
participants agreed to the convenience when using the application.

412 A. Langer et al.

5.5 OBJ5: Data Versioning Control

To publish different versions of research datasets with persistent identifiers, the
SolidRDP application provides a Data Versioning component to control data ver-
sioning. For simplicity, this prototype supports a basic and straightforward way
to backup versions. As the result of the question “Do you think the SolidRDP
provides sufficient functionalities (add a new version, revert...) for Data Version-
ing Control?”, 13/15 participants considered it as Good or Excellent. Hence, the
Solid-based approach can adequately meet this requirement.

5.6 OBJ6: Data Access Control

To be in full control of data access regulations, Data access control is required to
be flexible, sophisticated, as well as cross-system. Based on our analysis result,
this requirement is one of the most unsatisfied requirements in other existing
approaches. By using Web Access Control with access control list (.acl), data
access control level downs to the granularity of files. For example, researchers can
apply access control for each research data file or each container, configure private
mode for sensitive data, and grant different permissions to different groups of
researchers for the same research data. Moreover, the Solid-based approach uses
WebID, thus, it does not restrict the researcher to have an account on a given
server to have access permission. In the assessment survey, the participants were
asked to run a usability test for the Data Access Control component. The test
contains two tasks: (1) access a file when it is in private mode and (2) access the
same file after it is set to public mode. All of the participants confirmed that the
Access Control function worked adequately.

5.7 OBJ7: Data Exposure

To advertise research datasets to other services so that they can be discovered on
a global level, our Solid-based approach exposes only the URL metadata instead
of research data itself. By doing this way, there is no data replication, and data
ownership can be guaranteed. To support interdisciplinary research projects, the
metadata URL is exposed with some extra meta-information, e.g., title, authors,
discipline, and relevant keywords.

6 Related Work

DataHubs are an established means to gather research datasets in a central
fashion. Established solutions are commonly based on data repository systems
such as CKAN, DSpace or Invenio and provide domain-specific, institutional or
general-purpose platforms where research datasets can be published [9]. However,
this may create user concerns wrt. data ownership, data privacy issues, and data
reuse by other users as already analyzed in surveys such as [7]. This applies also to

SolidRDP: Applying Solid Data Containers for Research Data Publishing 413

current projects such as OpenAIREs20] Zenodo or the EOSC (European Open
Science Cloud) with a replication network of data hubs among participating
countries.

A variety of alternative solutions [1] was already proposed in the past to
allow actual decentralized research data management and sharing scenarios,
cf. Sect. 3. Data replication among multiple instances and a lack of semantic,
interdisciplinary-oriented means for metadata annotation were also here crucial
issues.

The idea to use Linked Data for that purpose was already realized in LDP
applications21 such as Fedora22, however studies such as from Khan [5] state,
that “though Fedora provides the best repository framework as compared to
other digital repository software systems, (but) it appeals to high technical end
users and as a result there are not as many installations of the software”.

Linked Open Data as a Service by Kim et al. [6] is a proposed approach, that
also applied the idea to manage datasets together with metadata description
files in data containers. However, its practical application DaPaas also focuses on
Cloud-based publishing activities and the corresponding website was not acces-
sible at the time of this paper submission. The Dataverse Project [3] is another
alternative to build research data repositories with increasing market penetra-
tion, but focusing on the centralized concept of combining dataverses.

Instead, our suggested SolidRDP approach relies solely on standardized based
technologies and proposes interchangeable, component-based extensions for the
Solid environment [10,13], so that it can be directly applied for decentralized
research dataset publishing scenarios.

7 Conclusion

The research contribution of this paper is a conceptual model for research dataset
publishing and a container-based approach to realize this process in a decen-
tralized environment based on Linked Data Platforms. Therefore, six exchange-
able components for Research Data Transfer, Data Registration, Data Annota-
tion, Data Versioning, Data Annotation and Data Exposure were proposed and
described in an application layer on top of a Linked Data Platform and imple-
mented as an extension to the Solid base platform for decentralized research
data publishing purposes.

The SolidRDP application supports any existing Solid POD and aims to sup-
port the researcher to store their research dataset in project or knowledge disci-
pline related data containers. Therefore, it can (1) contribute to the issue of data
privacy, and (2) improve data exchange and reuse in an interdisciplinary-driven,
hyper-connected world through the usage and exposure of semantic research
20 https://www.openaire.eu/.
21 https://www.w3.org/wiki/LDP Implementations.
22 https://duraspace.org/fedora/.

https://www.openaire.eu/
https://www.w3.org/wiki/LDP_Implementations
https://duraspace.org/fedora/

414 A. Langer et al.

dataset meta descriptions. The assessment of a fully-functional prototype of the
SolidRDP application was done by conducting a lab study with end-users, where
73,3 % of all test candidates regarded the presented user interface as usable and
appropriate.

In future activities, it makes sense to investigate the presented SolidRDP com-
ponents separately in more detail. The Data transfer component is so far realized
in a very simple fashion as a WebUI upload control, which is not very efficient
for transferring a large number of files and still involves human interaction. Sim-
ilar, the integration of alternative metadata annotation components dedicated
for research dataset descriptions should be considered. For the Data versioning
component, currently the SolidRDP application keeps track on the version man-
agement internally itself. Last, the active and passive exposure of research data
meta-information to external registries has only been briefly discussed in this
paper.

Furthermore, the analysis of research dataset discovery aspects in decen-
tralized ResearchPOD environments is of high interest as this paper set a pri-
mary focus on the publishing process for research datasets. Also the integration
of these ResearchPODs in existing research environments is worth to further
investigate.

Acknowledgment. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project-ID 416228727 – SFB 1410.

References

1. Amorim, R.C., Castro, J.A., Rocha da Silva, J., Ribeiro, C.: A comparison of
research data management platforms: architecture, flexible metadata and interop-
erability. Univers. Access Inf. Soc. 16(4), 851–862 (2017)

2. Charalabidis, Y., Zuiderwijk, A., Alexopoulos, C., Janssen, M., Lampoltshammer,
T., Ferro, E.: The multiple life cycles of open data creation and use. In: Char-
alabidis, Y., Zuiderwijk, A., Alexopoulos, C., Janssen, M., Lampoltshammer, T.,
Ferro, E. (eds.) The World of Open Data. PAIT, vol. 28, pp. 11–31. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-90850-2 2

3. Crosas, M.: The dataverse network: an open-source application for sharing, discov-
ering and preserving data. D-Lib Mag. 17, 2 (2011)

4. Curdt, C., Hoffmeister, D., Waldhoff, G., Jekel, C., Bareth, G.: Development of
a metadata manegement system for an interdisciplinary research project. ISPRS
Ann. Photogramm. Remote Sens. Spat. Inf. Sci. I–4, 7–12 (2012)

5. Khan, S.: Dspace or Fedora: which is a better solution? SRELS J. Inf. Manag.
56(1), 45–50 (2019)

6. Kim, S.H., Berlocher, I., Lee, T.: RDF based linked open data management as
a DaaS platform LODaaS (linked open data as a service). In: ALLDATA 2015,
(2015)

7. Kim, Y., Stanton, J.M.: Institutional and individual factors affecting scientists’
data-sharing behaviors: a multilevel analysis. J. Assoc. Inf. Sci. Technol. 67(4),
776–799 (2016)

https://doi.org/10.1007/978-3-319-90850-2_2

SolidRDP: Applying Solid Data Containers for Research Data Publishing 415

8. Langer, A.: PIROL: cross-domain research data publishing with linked data tech-
nologies. In: La Rosa, M., Plebani, P., Reichert, M. (eds.) Proceedings of the Doc-
toral Consortium Papers Presented at the 31st CAiSE 2019, pp. 43–51. CEUR,
Rome (2019)

9. Langer, A., Bilz, E., Gaedke, M.: Analysis of current RDM applica-
tions for the interdisciplinary publication of research data. In: SEM4TRA-
AMAR@SEMANTICS (2019)

10. Mansour, E., Sambra, A.V., Hawke, S., et al.: A demonstration of the solid platform
for social web applications. In: Proceedings of the 25th International Conference
Companion on World Wide Web, WWW 2016 Companion, pp. 223–226. Interna-
tional World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, Switzerland (2016)

11. Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability prob-
lems. In: Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human
Factors in Computing Systems, CHI 1993, pp. 206–213. ACM, New York (1993)

12. Robinson, D.C., Hand, J.A., Madsen, M.B., McKelvey, K.R.: The Dat Project, an
open and decentralized research data tool. Sci. Data 5(1), 180221 (2018)

13. Sambra, A.V., Mansour, E., Hawke, S., et al.: Solid: a platform for decentralized
social applications based on linked data (2016)

14. Stufflebeam, D.: Evaluation model. New Dir. Eval. 2001(89), 7–98 (2001)
15. Wang, W., Göpfert, T., Stark, R.: Data management in collaborative interdisci-

plinary research projects—conclusions from the digitalization of research in sus-
tainable manufacturing. ISPRS Int. J. Geo-Inf. 5(4), 41 (2016)

16. Website of the European Commission: Open Science Monitor (2018). https://ec.
europa.eu/info/research-and-innovation/strategy/goals-research-and-innovation-
policy/open-science/open-science-monitor/facts-and-figures-open-research-data
en

17. Wiley: Global Data Sharing Trends (2016). https://authorservices.wiley.
com/asset/photos/licensing-and-open-access-photos/Wiley%20Global%20Data
%20Sharing%20Infographic%20June%202017.pdf

18. Wiljes, C., Jahn, N., Lier, F., et al.: Towards linked research data: an institutional
approach. In: 3rd Workshop on Semantic Publishing (SePublica), no. 994 pp. 27–38
(2013)

19. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., et al.: The FAIR guiding princi-
ples for scientific data management and stewardship. Sci. Data 3(1), 160018 (2016)

20. Wissik, T., Durčo, M.: Research data workflows: from research data lifecycle models
to institutional solutions. In: Selected Papers from the CLARIN Annual Confer-
ence 2015, Wroclaw, Poland, 14–16 October 2015, no. 123, pp. 94–107. Linköping
University Electronic Press (2016)

https://ec.europa.eu/info/research-and-innovation/strategy/goals-research-and-innovation-policy/open-science/open-science-monitor/facts-and-figures-open-research-data_en
https://ec.europa.eu/info/research-and-innovation/strategy/goals-research-and-innovation-policy/open-science/open-science-monitor/facts-and-figures-open-research-data_en
https://ec.europa.eu/info/research-and-innovation/strategy/goals-research-and-innovation-policy/open-science/open-science-monitor/facts-and-figures-open-research-data_en
https://ec.europa.eu/info/research-and-innovation/strategy/goals-research-and-innovation-policy/open-science/open-science-monitor/facts-and-figures-open-research-data_en
https://authorservices.wiley.com/asset/photos/licensing-and-open-access-photos/Wiley%20Global%20Data%20Sharing%20Infographic%20June%202017.pdf
https://authorservices.wiley.com/asset/photos/licensing-and-open-access-photos/Wiley%20Global%20Data%20Sharing%20Infographic%20June%202017.pdf
https://authorservices.wiley.com/asset/photos/licensing-and-open-access-photos/Wiley%20Global%20Data%20Sharing%20Infographic%20June%202017.pdf

Applying Natural Language Processing
Techniques to Generate Open Data Web

APIs Documentation

César González-Mora(B), Cristina Barros, Irene Garrigós, Jose Zubcoff,
Elena Lloret, and Jose-Norberto Mazón

Department of Software and Computing Systems,
University of Alicante, Alicante, Spain

{cgmora,cbarros,igarrigos,jose.zubcoff,elena.lloret,jnmazon}@ua.es

Abstract. Information access globalisation has resulted in the contin-
uous growing of online available data on the Web, especially open data
portals. However, in current open data portals, data is difficult to under-
stand and access. One of the reasons of such difficulty is the lack of suit-
able mechanisms to extract and learn valuable information from exist-
ing open data, such as Web Application Programming Interfaces (APIs)
with proper documentation. Actually, in most cases, open data Web
APIs documentation is very rudimentary, hard to follow, and sometimes
incomplete or even inaccurate. To solve these data management prob-
lems, this paper proposes an approach to automatically generate Web
API’s documentation which is both machine and user readable. Our
approach consists of applying natural language processing techniques
to create OpenAPI documentations. This manner, the access to data
is facilitated because of the improvement on the comprehension of the
APIs, thus promoting the reusability of data. The feasibility of our app-
roach is presented through a case study that shows and compares the
benefits of using our OpenAPI documentation process within an open
data web API.

Keywords: Open data Web API · Natural Language Processing ·
Natural Language Generation

1 Introduction

Nowadays, the Web has become an important information platform, and because
of this, there is an information overload [4]. Worldwide governments and organ-
isations are increasingly generating and publishing data online [22], producing
economic and social benefits, such as innovation and transparency. While the
existence of large amounts of data may be regarded as an advantage, it can
actually be a pitfall because this amount of sources are difficult to be properly
managed [8]. The most adopted approach to handle open data available are Web
APIs [11] since they are a key feature of open data platforms, allowing developers
to build their own applications and bring open data to citizens [8].
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 416–432, 2020.
https://doi.org/10.1007/978-3-030-50578-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_28

Applying NLP to Generate Open Data Web APIs Documentation 417

Unfortunately, the available APIs to access open data are generally incom-
plete because they lack adequate documentation [1]. The value of data is then
limited by our ability to interpret and comprehend it [23]; therefore, having com-
prehensive and accurate documentation is key to reuse large amounts of data [1].
Existing works on API documentation [34] have suggested that a relevant and
useful documentation, including explanations and examples of their use, is a key
factor for the wide use of APIs. A proper documentation is even more impor-
tant when exposing data through query-level Web APIs (i.e., Web APIs that
directly access sources to retrieve required data) in order to enable the creation
of third-party solutions that reuse the underlying data [12].

Furthermore, an important factor to attract users and increase the value of
APIs consists of facilitating its use by an accurate, complete and interactive
documentation [12]. However, this documentation is generally very rudimen-
tary, hard to follow, and sometimes incomplete or even inaccurate [1]. Poor
and incomplete documentation is one of the main obstacles faced by developers,
so they need to deeply evaluate new APIs in order to understand and use them
correctly [34], which entails an effort that hampers the reuse of open data. More-
over, in other cases the documentation of REST APIs is manually generated and
provided as plain text, preventing users to take advantage of having a machine-
readable specification automatically generated [9]. To the best of the authors’
knowledge, the APIs manually documented are generally focused on descrip-
tions understandable by humans but machine-processable descriptions are miss-
ing [24]. On the other hand, the APIs documented automatically are focus on the
specification and definition of the API rather than in user-readable descriptions,
such as in [15]. With the information gathered from existing research, such as
[1,12,28,38], some conclusions were drawn. There are currently different types
of Web APIs documentation: (i) presented as plain text without following any
kind of documentation standard, which promotes the readability for users but is
difficult to process by machines; (ii) documentation created manually following
the OpenAPI standard, which is machine-readable but because of the human
factor it is error prone and has a high cost; and finally, (iii) the documentation
generated automatically in OpenAPI, which is generalisable (can be applied for
any API documentation) and machine-readable, but it is difficult to read by
users.

Natural Language Processing (NLP) research area could contribute to over-
come the problem of lack of API documentation [15] by generating text readable
by both users and machines. This would facilitate the understanding and analysis
of information. Therefore, the difficulty of reading machine-readable documen-
tation by users can be solved by applying NLP techniques, which are able to
generate text readable by users. This area is a computational subfield of artifi-
cial intelligence whose main purpose relies on the analysis, processing, generation
and representation of natural language [10]. Within the areas enclosed in NLP,
when considering the automatic generation of documentation descriptions, the
area of Natural Language Generation (NLG) is essential. The main aim of this
area is to develop techniques capable of generating human utterances, whether

418 C. González-Mora et al.

the input to these techniques is text or non-linguistic data [6]. NLG has been used
in many applications, such as text summarisation [19], dialog systems [20] or the
generation of simplified texts [27]. Moreover, it has been also widely employed
and integrated in different research areas, such as in computer vision, for the
generation of textual descriptions for human activities in videos [2]; or in busi-
ness intelligence, for the generation of reports and real time notifications about
the state of a company’s IT services [33]. Due to the great functionality and
adaptability of NLG, the use of its techniques can be beneficial in the present
research work about generation of API documentation, providing documentation
with natural language descriptions.

For facilitating access to data by improving the comprehension of Web APIs,
the main goal of this research is to propose the generation of suitable documen-
tation for Web APIs in a process based on automatic, generic and standardised
generation mechanisms. Our proposal is novel for the state of the art, since the
main efforts of existing related work [9,12,13,18,26,29,32,36] are on the gen-
eration of documentation for many different purposes in particular scenarios,
but they do not generally focus on open data Web APIs and do not take into
account the positive impact that generating NL API descriptions may bring.
Therefore, new approaches about the automatic generation of API documenta-
tion are needed [1] to improve the comprehension of APIs and the reusability of
data. Our contributions to the field are as follows: (i) a novel freestanding app-
roach for tackling the challenge of understanding open data available through
Web APIs; (ii) a complete documentation which in addition to including easy to
process specifications for machines also adds easy to read descriptions for users,
facilitating the reuse of data; and (iii) the natural language descriptions included
are generated automatically using a NLG template-based approach in conjunc-
tion with semantic knowledge, rather than manually for each API. It reduces the
cost and effort of documenting APIs and thus enhances the data reuse process.

This article is structured as follows. In Sect. 2, the related work is described.
Then, Sect. 3 presents the overview of the documentation generation approach
with natural language descriptions, followed by its detailed explanation. Then,
in Sect. 4, the approach is validated with different examples. Finally, the paper
concludes in Sect. 5.

2 Related Work

In this section we are going to analyse and compare the existing related work
about documenting APIs with NLP with our research. In this sense, the main
efforts in API documentation will be discussed first and the generation of text
from the NLP perspective will be further analysed.

From the point of view of the API documentation generation, the main efforts
have been focused on the creation of basic documentation (i.e., a machine-
readable specification), leaving in a secondary plane the natural language
descriptions of the API methods. In general, the methods’ descriptions are often
set manually by the researchers. In other cases, these descriptions are generated

Applying NLP to Generate Open Data Web APIs Documentation 419

as a rough draft containing a few keywords related to the overall behaviour of
the method, or they are not generated at all. Some examples of this type of
approaches can be found in [36], where a set of techniques for generating struc-
tured documentation of web APIs from usage examples are detailed. The authors
propose a first step towards automatically learning complete service descrip-
tions. However, the generation of methods’ descriptions is not tackled. Also, the
authors of this paper proposed an automatic API generation process1 which
also generates API documentation, but it includes very simple descriptions with
keywords extracted from API methods, without using natural language. In [18]
the authors present a new framework for generating titles for web tables. This
is accomplished by extracting keywords that have potentially relevant informa-
tion to the table. The proposed technique is the first to consider text-generation
methods for table titles. However, NLG is not applied to generate documenta-
tion and it is based in existing table descriptions in plain text. Another paper
[29] presents a technique to automatically generate human readable summaries
for Java classes. The proposed tool determines the class and method stereotypes
and uses them to select the information to be included in the documentation.
However, this text generation approach is only valid for programming code doc-
umentation and it does not address the description of APIs in natural language.
Moreover, the documentation generated is only about a general vision of the
class, but the explanation of each method of the class is missing in contrast to
our proposal. There are also some research works [9,12,26,32] that deal with
automatically inferring API specifications from manually written documenta-
tion. In [32] it is used NLP techniques in order to infer an API specification
from existing natural language documentation of the API, and in [12] they use
HTTP requests to generate machine-readable documentation and combine it
with existing human-readable information in order to provide complete API
documentation. In [9], the authors present an approach for automatically trans-
form HTML documentations into OpenAPI specifications. Moreover, in [26] API
documents using semantics based on word embeddings for code migration pur-
poses is analysed. However, in these investigations the problem is handled in
another way contrary to ours because they assume handwritten API descrip-
tions and then they generate machine-readable documentation based on specific
keywords. But the important problem of generating complex descriptions of the
API in natural language is not addressed. The importance and usefulness of
API documentation, especially in OpenAPI format is emphasised in [16] and
[35]. They deal with generating models from API documentations, but the prob-
lem of API documentation descriptions’ quality is not addressed and they do not
help in the generation of these descriptions. Moreover, the research presented in
[1] is focused on improving existing data-intensive APIs and their maintenance
through the analysis of their usage by users. From this analysis, the documenta-
tion of the API can then be improved. Related to the readability of Web Services,
in [13] the authors propose a practical metric to quantify readability in WSDL
documents, and a set of best practices to improve WSDL readability.

1 https://github.com/cgmora12/AG.

https://github.com/cgmora12/AG

420 C. González-Mora et al.

From the point of view of NLP, as mentioned before, the NLG task is essen-
tial since it allows the automatic generation of text regardless of the type of
input (e.g., text or non-linguistic data). This task has been commonly addressed
through the use of knowledge-based approaches. This type of approaches com-
monly relies on the use of templates and rules for generating text [39]. For exam-
ple, [14] describes an application that generates a set of sentences detailing the
driving activity within a simulation environment. A set of data from the driving
simulator (e.g., vehicle speed, track width, percentage of brake usage, etc.) is
taken as input, and, with the use of granular linguistic model of a phenomenon
techniques and templates, a summary of the driving activity is generated. PASS
[25] is another example of system that describes non-linguistic data, which gener-
ates soccer reports. This system creates a summary of a specific match employing
a template-based approach. The input to this system is match statistics and het-
erogeneous data such as the league, the date, the match events, the players, the
total number of shots or the accuracy of the passes. The templates used by the
system PASS were manually derived from sentences in the MeMo FC corpus [7].
Another example is the work presented in [37], where a computational system
for generating linguistic descriptions from video camera images, in the context
of traffic in a roundabout, is described. In this sense, the authors first analyse
the image to obtain information about the vehicles in the roundabout entering
lanes and then generate a description of the overall roundabout status using
fuzzy logic and templates. Furthermore, within the NLG field there has been
increased interest in the generation of reasoning explanations. This type of sys-
tems generates the explanation about the decisions made in order to achieve a
goal, such as in the steps that a system followed in the execution of an algorithm
or the decisions made in the resolution of a mathematical problem. Although this
research line could not be exactly the same as our goal of generating descriptive
documentation in natural language, it is closely related since this type of expla-
nations often include the description of variables and terms, and the techniques
used could be also appropriate for the purpose of our research. Some examples
of reasoning explanation systems can be found in [3] where a system that gen-
erated explanation for a machine learning algorithm decision is presented; or in
[5] where a semi-automatic process to analyse business models and generate a
requirement documents that describes the models is proposed.

As seen in the existing related work, dealing with the automatic generation
of both machine and human documentation for Web APIs is barely addressed.
There are some research that deals with similar problems, but in some cases
the problem arises in other scenarios such as Web services rather than APIs.
Moreover, the solution proposed in this paper is novel and goes beyond the state
of the art in providing the suitable documentation for web APIs.

3 NLP for Generating Open Data Documentation

In this section a further step on the documentation of open data Web APIs is
proposed. In this manner, suitable descriptions in natural language are included

Applying NLP to Generate Open Data Web APIs Documentation 421

in existing OpenAPI documentations. This process is able to document with
natural language any existing open data Web API that already includes Ope-
nAPI documentation. With this incorporation of descriptions, the Web APIs will
be not only machine readable but also understandable by users. Therefore, the
improvement of the comprehension of APIs will promote as a result the reuse of
open data. The whole process is explained in detail in the following subsections.

3.1 Starting with an OpenAPI Documentation

The process starts with a basic machine-readable API documentation in the
OpenAPI standard (Fig. 1). Then, using the proposed natural language descrip-
tions generator approach, a set of descriptions in natural language is created and
later appended to the documentation of the API, facilitating the access to the
underlying data.

Fig. 1. Overview of the proposed approach for the automatic generation of API docu-
mentation process.

In order to apply the natural language descriptions generator, the first step
of the process (Step 1 in Fig. 1) is having an Web API with an existing OpenAPI
(only machine-readable) documentation. It is not easy to read by human users,
so generating natural language descriptions of the API and its underlying data
is essential to solve this problem.

Before being able to generate this kind of descriptions, some of the infor-
mation contained in the input OpenAPI need to be extracted. In this sense,
the automatic generator process first gathers the following information from the
API: (i) the title given to the API, the name of each method; (ii) all the param-
eters from each method, with name, type and example value; (iii) and all the
properties given as a result of the API, also with name, type and example data.
In order to extract this information the input documentation is analysed: from
the JSON object that contains all the components of the API documentation,
all the information required is extracted. In order to do so, the process iterates
through the JSON objects and arrays that the OpenAPI standard specifies, such
as API “title”, “paths”, “components”, “parameters” and “properties”.

422 C. González-Mora et al.

Once the aforementioned information is gathered, the process continues with
the next step in order to automatically generate the general description of the
API as well as a description for each of the API methods, its parameters and
its properties. This generation process will be further explained in the next
subsection.

3.2 Description Generation Employing NLP Techniques

Taking as input the information extracted in the first step of our approach’s
architecture, the second step (Step 2 in Fig. 1) is the generation of descriptions
using NLP techniques.

From this information, the generation of natural language descriptions is per-
formed using and integrating different NLP techniques. Specifically, tokenisation,
word sense disambiguation and a NLG template-based approach are employed
to generate the descriptions that will be added to the OpenAPI specification.
An overview of each step of our approach is shown in Fig. 2.

Fig. 2. Overview of our NLP approach for generating API documentation.

Template-based approaches have proven to generate relatively high quality
texts and faster than other NLG approaches [25], being suitable in the case of
the generation of descriptive API documentation since its integration with other
systems or approaches would not affect their performance. The type of templates
used in this approach is usually a text with gaps that must be filled with specific
information in order to complete its semantic meaning. The information for
generating the method’s descriptions within the API documentation is provided
by the input API specification. In this regard, the name of the methods or the
parameters/properties of these methods will be used for producing semantically
enriched descriptions.

Applying NLP to Generate Open Data Web APIs Documentation 423

The templates within the proposed approach were designed considering as
reference the generic CKAN API2 which is used by many open data platforms
such as Data.gov3 (the U.S. Government’s open data platform) and Data.gov.uk4

(the U.K. Government’s open data platform), and also the descriptions shown
in the datos.gob.es5 API from the Government of Spain open data platform.
Since the text needed in the general description of the API may not be the
same than the one for a method, a variety of 3 different generic templates were
hand-crafted. Therefore, depending on the case, we have separate templates for
the following types of descriptions: (i) general API description; (ii) API method
description; and (iii) parameter/property description.

In the first two cases (i.e., the general API and method descriptions) the infor-
mation provided by the API specification is solely used, while, in the third case
(i.e., the generation of parameter/property descriptions) the template is enriched
with the information coming from knowledge-bases and semantic resources, also
applying NLP techniques, such as word sense disambiguation. Without the use of
this type of techniques is difficult to discern the meaning of a parameter/property
that correctly fits the context of the API documentation. For example, in the
context of an API for obtaining employment data, the word “mean” would adopt
the meaning of average instead of other meanings such as a stingy person. Con-
cerning this type of resources, Babelfy [30] and BabelNet [31] are specifically
used. These resources provide semantic knowledge to the generated description,
thus enriching the API documentation and providing the user with definitions
and examples of the data queried by the API. The former performs word sense
disambiguation, using a semantic network. The latter is a multilingual ency-
clopedic dictionary and a semantic network that integrates information from
several sources such as WordNet [17] or Wikipedia6. Babelfy allows the disam-
biguation of a specific term (either by using only this specific term or employing
it together with an example), obtaining the sense of the term in the form of
an ID representing a set of synonyms. Then, searching this ID in BabelNet,
the semantic description of the term is obtained. In this preliminary version
of the approach, in case that a term has more than one sense, we choose the
one with the highest disambiguation score7 provided by Babelfy. Since in many
cases, the parameter/property are not a single token, an intermediate processing
step is needed before using BabelNet/Babelfy resources. This is due to the fact
that these resources need as input a sentence or a term with the words to dis-
ambiguate correctly spelled. Therefore, in the case that a parameter/property
contains more than one word in a single token (e.g., when several words are

2 https://docs.ckan.org/en/latest/api/index.html.
3 https://www.data.gov/.
4 https://data.gov.uk/.
5 https://datos.gob.es/es/apidata.
6 https://en.wikipedia.org/.
7 A value between 0 and 1 indicating the degree of confidence that the algorithm had

when it performed the disambiguation of the term [21].

https://docs.ckan.org/en/latest/api/index.html
https://www.data.gov/
https://data.gov.uk/
https://datos.gob.es/es/apidata
https://en.wikipedia.org/

424 C. González-Mora et al.

separated by a underscore: Country Code), tokenisation8, via regular expres-
sions, is employed in order to separate these words. In this sense, the following
cases are considered: (i) when the words are separated by non-alpha numeric
characters, such as “&”,“ ” or “$”; and, (ii) when the words are in camel case
format, such as “FlagsCode” or “CountryCode”. Ultimately, if Babelfy is not able
to disambiguate the parameter/property as a whole, or any of its components,
its description will not appear in the final API documentation.

3.3 Including Natural Language Descriptions into an OpenAPI
Documentation

Finally, the last step in the OpenAPI with NLG process is to create a machine
and user readable documentation (Step 3 in Fig. 1).

Once the descriptions in natural language of the API, its methods and its
parameters and properties are generated, they are integrated in the existing
(machine-readable) documentation of the API. Hence, the documentation of
the API will be now both machine and user readable, all in a single OpenAPI
specification file.

In order to perform this integration, the input OpenAPI is analysed to
locate where these generated descriptions in natural language have to be placed
within the OpenAPI specification: the general description of the API is placed
in the “info” component of the OpenAPI documentation; the description of
each method of the API is placed in the corresponding OpenAPI “path”; the
description of each parameter is placed in the corresponding “parameter” of each
“path”; and finally, the description of each property is placed in the correspond-
ing “property” of the “components” object.

When this process ends, the OpenAPI documentation including descriptions
in natural language is returned to the user. An example of this generated doc-
umentation is shown and explained in detail in Sect. 4.1. This descriptive docu-
mentation generated by the presented process can override the initial documen-
tation or it can be created in a separated file. At this stage, the API documen-
tation, as aforementioned, is machine readable and also user readable, achieving
a complete comprehension of the data provided by the API.

4 Validation

In this section the proposed approach is first validated with different examples
and then a specific case study is introduced.

In order to ensure the correct performance of the proposed approach, a set
of 5 datasets from Data.gov were randomly selected for testing the generation
of their documentation. When selecting these datasets the following constraints
were taken into account: (i) the format in which the dataset is available; and

8 The process of splitting a stream of text into more basic units such as words, phrases
or tokens (elements with an identified meaning).

Applying NLP to Generate Open Data Web APIs Documentation 425

(ii) the format of the column names of the dataset (i.e., words spelled correctly
and, in case of having several words, these words not being in uppercase and all
together in order to better generate the documentation).

Table 1. Validation results of applying our approach for OpenAPI documentation.

Title # of instances # of attributes Generation time

Voter History Data 7,517,744 20 43.02 s

Biodiversity by County 20,017 13 36.54 s

Occupational Employment Statistics 6,816 10 25.88 s

Leading Causes of Death 1,380 7 24.18 s

Demographic Statistics 237 46 214.89 s

Table 1 shows a brief summary of the time spent by the proposed approach
for generating the OpenAPI documentation with natural language descriptions.
Before applying our approach, a basic OpenAPI documentation is generated for
the datasets selected, and then, this documentation is taken as input of our app-
roach. The time required to generate the API documentation by our proposed
approach is affected by the number of attributes. In this sense, the disambigua-
tion process would introduce a delay in generation time for each attribute. Taking
into account that the datasets contain between 7 and 46 attributes, the time to
generate the related API documentation including natural language descriptions
is between 24 and 215 s, depending on the number of attributes of the dataset.

4.1 Case Study

A case study is introduced to illustrate the whole process and show the feasibility
and usefulness of our proposal. It consists of applying the proposed approach
explained in Sect. 3 to an existing open data Web API.

With this example we attempt to demonstrate that developers need to inter-
pret and understand the available third-party open data Web APIs, but the lack
of a suitable human-readable API documentation hampers the understanding
and the reusability of data.

Our scenario describes a quality office in a university, aiming at developing
quality assurance and enhancement strategy of different degrees. Among others,
this office is in charge of monitoring employment opportunities of their students
in order to support degree policy planning at the university. Therefore, this
office is interested in analysing existing internal data (about enrolment, perfor-
mance indicators, etc.) together with external data about employment statistics.
External open data comes from a Web API providing occupational employment
statistics.

https://catalog.data.gov/dataset/voter-history-data
https://catalog.data.gov/dataset/biodiversity-by-county-distribution-of-animals-plants-and-natural-communities
https://catalog.data.gov/dataset/occupational-employment-statistics
https://catalog.data.gov/dataset/new-york-city-leading-causes-of-death-ce97f
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9

426 C. González-Mora et al.

Generating Documentation for Occupational Employment Data
An API providing occupational employment statistics has been chosen to illus-
trate this process. Data accessing this API comes from the open data website of
Data.gov (the website of the U.S. Government’s open data). Data.gov contains a
lot of information of different topics, including statistics and employment data.
As example data, the dataset “Occupational Employment Statistics” is used
through a third-party Web API9. This dataset contains statistics about employ-
ment in a wide variety of professions in New York and includes information such
as the occupation, the area name or the wage.

The Data.gov web offers a CKAN API to facilitate the access to the datasets’
metadata. However, it is not a query-level API because it does not provide
the data itself. Therefore, we used an API to access this data9. This API does
not include natural language descriptions. Consequently, there is no means to
facilitate the access and reuse of their open data, which makes the application
of our approach to generate API documentation very valuable in this context.

Our process for generating open data Web API documentation where our
NLP techniques are applied, includes adding natural language descriptions to
an OpenAPI documentation.

The input OpenAPI specification9 is only machine readable, so it is difficult
to understand what data is offered by the API. This documentation includes a
set of methods: a general method to retrieve all the data from the source; and
one method to filter by the values contained in each column of the data source.

In order to include descriptive documentations to the existing specification,
the natural language descriptions generator is launched. It is worth noting that
this process is freestanding and it can be applied to any existing OpenAPI doc-
umentation. Taking as input the API specification in the OpenAPI standard,
the generation of natural language descriptions is performed to create an API
general description, an explanation of each API method and also a definition of
each parameter of the API. In the example of this case study, the documenta-
tion contains now the descriptions about how to use the API and its different
methods and parameters.

When the API includes the complete documentation with natural language
descriptions, it is launched and exposed online so that we can just test it. This
complete documentation is available online10. By accessing the API in a web
browser, the API will return the data contained in the source dataset and the
documentation with natural language descriptions, as shown in the following
section. The results given by this API and the documentation of the API are
both in JSON11 format. Not only it can be easily processed by machines, but also
users are able to quickly understand both the results and the documentation.

9 http://wake.dlsi.ua.es/EmploymentAPI/docs/.
10 https://wake.dlsi.ua.es/EmploymentAPI/docs/complete.html.
11 https://www.json.org/.

http://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/complete.html
https://www.json.org/

Applying NLP to Generate Open Data Web APIs Documentation 427

API Documentation Comparison
The objective of this comparison is to visually contrast how our descriptions have
benefited and increased the quality of the basic documentation we had before.

While the original documentation9 includes a little description about the
API, the documentation10 generated using NLP includes a complete description
about the data offered in the API, the different filters that can be applied, the
result format and an example about how to query the API. Moreover, docu-
mentation generated about the API main method is shown in Fig. 3. The input
API main method documentation (Fig. 3 above) only includes a short summary
and a general description which equal to the description of other methods of
the API. However, the documentation of the API main method generated by
our approach (Fig. 3 below) includes an example about how to query this API
method (in this case is https://wake.dlsi.ua.es/EmploymentAPI/), facilitating
the use of that method directly accessing to the URL; and a complete descrip-
tion about the data offered by this concrete method, which can be filtered by
different parameters and will bring the results with its objects and properties.
The description of these parameters are empty in the original documentation,
meanwhile the documentation of each parameter generated by the proposed app-
roach includes a complete description about the type, if it is required or not, how
to pass this parameter to the API, and finally, a semantic definition about the
parameter itself.

Fig. 3. Comparison of the API main method description in the OpenAPI documenta-
tion without applying our NLP-based approach (above) and integrating NLP (below).

Finally, an extract of the documentation about the API properties is shown in
Fig. 4. The documentation of the API properties (Fig. 4 above) only includes the
type and an example. However, the documentation of this API properties given
by our proposed approach (Fig. 4 below) include information about the type of
data, an example of use, and the most important part, a complete definition of
the meaning of each property.

https://wake.dlsi.ua.es/EmploymentAPI/

428 C. González-Mora et al.

Fig. 4. Comparison of the API properties description in the OpenAPI documentation
without applying our NLP-based approach (above) and integrating NLP (below).

Therefore, from the comparison of a basic open data Web API documentation
without integrating NLP approach presented previously12, we can conclude that
the documentation generated by our approach is more complete and is useful
for users in order to know the data offered by web APIs. With this help, data
reusers can easily promote the use of public information and contribute to the
open data environment, improving the actual reuse of data.

4.2 Discussion

From this validation we can state that the inclusion of NLP techniques improve
the generation of API documentation, which can be easily processed and under-
stood by users. Compared to not having any documentation, or having only
the specification that includes the names of the API methods, our approach
contributes to the existing related work by providing both human and machine
readable documentation, which simplifies the comprehension and reusability of
the data. Furthermore, the generated documentation provides examples of how
to query the different methods of the API, thus facilitating, as mentioned before,
the access to the data.

Therefore, we have validated that the proposal successfully achieves the
objective of generating the suitable Web API descriptive documentation in dif-
ferent situations. The importance of including natural language descriptions in
OpenAPI documentation is that it actually helps open data reusers to reuse
existing data and citizens to be able to access the data offered on the web.

5 Conclusions and Future Work

In this paper we have presented an approach that integrates NLP techniques to
generate suitable documentation of open data Web APIs. Our approach starts
12 https://github.com/cgmora12/AG.

https://github.com/cgmora12/AG

Applying NLP to Generate Open Data Web APIs Documentation 429

with a basic machine-readable API documentation in the OpenAPI standard,
which is easy to process by machines but difficult to understand by common
users, hindering the reuse of data. From this documentation, our proposed natu-
ral language descriptions generator is used to create a set of descriptions in nat-
ural language and append them to the existing machine-readable documentation
of the API. For validating the proposed approach, we tested the automatic gen-
eration of documentation process with several machine-readable documentations
of datasets from the Data.gov open data portal. After that, we have presented
a case study in which our approach is applied within a specific scenario. In this
sense, we illustrated and described a real-based situation where a developer must
obtain specific data from an open data platform.

The proposed approach (which is publicly available at GitHub13) is a key
element for improving data management and analysis. This is because enhanced
API documentation would lead to a better understanding of the API by devel-
opers, facilitating the access and handling of data available online.

As future work, the generation process will be extended by using seman-
tic web technologies to apply data integration mechanisms. With regard to the
generation of descriptions within the API documentation, the NLP area also pro-
vide of techniques that allow the adaptation or customisation of the generated
descriptions depending on the user needs. In this sense, the descriptions could be
simplified according to a specific linguistic level or could also include more tech-
nical terms if required. In addition to this, this approach could be easily extended
to other languages (i.e., multilingual) since the semantic resources employed (i.e.,
BabelNet and Babelfy) are linked to many languages, which would facilitate the
reuse of code.

Acknowledgments. This work has been partially funded by the following projects:
TIN2016-78103-C2-2-R, PROMETEU/2018/089, RTI2018-094653-B-C22, RTI2018-
094649-B-I00, TIN2017-90773-REDT and COST Action CA18231. Furthermore, the
author César González-Mora has a contract for predoctoral training with the General-
itat Valenciana and the European Social Fund by the grant ACIF/2019/044.

References

1. Abelló Gamazo, A., Ayala Mart́ınez, C.P., Farré Tost, C., Gómez Seoane, C., Oriol
Hilari, M., Romero Moral, Ó.: A data-driven approach to improve the process
of data-intensive API creation and evolution. In: Proceedings of the Forum and
Doctoral Consortium Papers Presented at the 29th International Conference on
Advanced Information Systems Engineering, CAiSE 2017, pp. 1–8 (2017)

2. Alharbi, N., Gotoh, Y.: Natural language descriptions for human activities in video
streams. In: Proceedings of the 10th International Conference on Natural Language
Generation, pp. 85–94 (2017)

3. Alonso, J.M., Ramos-Soto, A., Castiello, C., Mencar, C.: Explainable AI beer style
classifier. In: The SICSA Reasoning, Learning and Explainability Workshop 2018
(2018)

13 https://github.com/cgmora12/NL4OpenAPI.

https://github.com/cgmora12/NL4OpenAPI

430 C. González-Mora et al.

4. Atzeni, P., Merialdo, P., Mecca, G.: Data-intensive web sites: design and mainte-
nance. World Wide Web 4(1), 21–47 (2001)

5. Aysolmaz, B., Leopold, H., Reijers, H.A., Demirörs, O.: A semi-automated app-
roach for generating natural language requirements documents based on business
process models. Inf. Softw. Technol. 93, 14–29 (2018)

6. Bateman, J., Zoch, M.: Natural Language Generation. Oxford University Press,
Oxford (2003)

7. Braun, N., Goudbeek, M., Krahmer, E.: The Multilingual Affective Soccer Corpus
(MASC): compiling a biased parallel corpus on soccer reportage in English, Ger-
man, Dutch. In: Proceedings of the 9th International Natural Language Generation
conference, pp. 74–78 (2016)

8. Braunschweig, K., Eberius, J., Thiele, M., Lehner, W.: The state of open data -
limits of current open data platforms. In: Proceedings of the 21st World Wide Web
Conference 2012, Web Science Track at WWW 2012 (2012)

9. Cao, H., Falleri, J.-R., Blanc, X.: Automated generation of REST API specification
from plain HTML documentation. In: Maximilien, M., Vallecillo, A., Wang, J.,
Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 453–461. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69035-3 32

10. Cole, R. (ed.): Survey of the State of the Art in Human Language Technology.
Cambridge University Press, New York (1997)

11. Daga, E., Panziera, L., Pedrinaci, C.: A BASILar approach for building Web APIs
on top of SPARQL endpoints. In: Proceedings of the 3rd Workshop on Services
and Applications over Linked APIs and Data, vol. 1359, pp. 22–32 (2015)

12. Danielsen, P.J., Jeffrey, A.: Validation and interactivity of Web API documenta-
tion. In: IEEE 20th International Conference on Web Services, pp. 523–530 (2013)

13. De Renzis, A., Garriga, M., Flores, A., Cechich, A., Mateos, C., Zunino, A.: A
domain independent readability metric for web service descriptions. Comput. Stan.
Interfaces 50, 124–141 (2017)

14. Eciolaza, L., Pereira-Fariña, M., Trivino, G.: Automatic linguistic reporting in
driving simulation environments. Appl. Soft Comput. 13(9), 3956–3967 (2013)

15. Ed-douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: Example-driven web API spec-
ification discovery. In: Anjorin, A., Espinoza, H. (eds.) ECMFA 2017. LNCS, vol.
10376, pp. 267–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61482-3 16

16. Ed-douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: OpenAPItoUML: a tool to gen-
erate UML models from OpenAPI definitions. In: Mikkonen, T., Klamma, R.,
Hernández, J. (eds.) ICWE 2018. LNCS, vol. 10845, pp. 487–491. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91662-0 41

17. Fellbaum, C.: WordNet: An Electronic Lexical Database (Language, Speech, and
Communication). MIT Press, Cambridge (1998)

18. Hancock, B., Lee, H., Yu, C.: Generating titles for web tables. In: The World Wide
Web Conference, pp. 638–647 (2019)

19. Hardy, H., Vlachos, A.: Guided neural language generation for abstractive sum-
marization using abstract meaning representation. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 768–773
(2018)

20. Huang, C., Zaiane, O., Trabelsi, A., Dziri, N.: Automatic dialogue generation with
expressed emotions. In: Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, vol. 2, pp. 49–54 (2018)

https://doi.org/10.1007/978-3-319-69035-3_32
https://doi.org/10.1007/978-3-319-61482-3_16
https://doi.org/10.1007/978-3-319-61482-3_16
https://doi.org/10.1007/978-3-319-91662-0_41

Applying NLP to Generate Open Data Web APIs Documentation 431

21. Iacobacci, I.: Neural-grounded semantic representations and word sense disam-
biguation: a mutually beneficial relationship, Ph.D. thesis (2018)

22. Janssen, M., Charalabidis, Y., Zuiderwijk, A.: Benefits, adoption barriers and
myths of open data and open government. Inf. Syst. Manag. 29(4), 258–268 (2012)

23. Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Vis.
Comput. Graph. 8(1), 1–8 (2002)

24. Kopecký, J., Vitvar, T., Pedrinaci, C., Maleshkova, M.: RESTful services with
lightweight machine-readable descriptions and semantic annotations. In: Wilde,
E., Pautasso, C. (eds.) REST: From Research to Practice, chap. 22, pp. 473–506.
Springer, New York(2011). https://doi.org/10.1007/978-1-4419-8303-9 22

25. Van der Lee, C., Krahmer, E., Wubben, S.: PASS: a Dutch data-to-text system
for soccer, targeted towards specific audiences. In: Proceedings of the 10th Inter-
national Conference on Natural Language Generation, pp. 95–104 (2017)

26. Lu, Y., Li, G., Zhao, Z., Wen, L., Jin, Z.: Learning to infer API mappings from API
documents. In: Li, G., Ge, Y., Zhang, Z., Jin, Z., Blumenstein, M. (eds.) KSEM
2017. LNCS (LNAI), vol. 10412, pp. 237–248. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63558-3 20

27. Macdonald, I., Siddharthan, A.: Summarising news stories for children. In: Pro-
ceedings of the 9th International Natural Language Generation Conference, pp.
1–10 (2016)

28. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating web APIs on the World
Wide Web. In: 2010 8th IEEE European Conference on Web Services, pp. 107–114
(2010)

29. Moreno, L., Aponte, J., Sridhara, G., Marcus, A., Pollock, L., Vijay-Shanker, K.:
Automatic generation of natural language summaries for Java classes. In: 21st
International Conference on Program Comprehension, pp. 23–32 (2013)

30. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambigua-
tion: a unified approach. Trans. Assoc. Comput. Linguist. 2, 231–244 (2014)

31. Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artif. Intell. 193,
217–250 (2012)

32. Pandita, R., Xiao, X., Zhong, H., Xie, T., Oney, S., Paradkar, A.: Inferring method
specifications from natural language API descriptions. In: Proceedings of the 34th
International Conference on Software Engineering, pp. 815–825 (2012)

33. Ramos-Soto, A., Janeiro, J., Alonso, J.M., Bugarin, A., Berea-Cabaleiro, D.:
Using fuzzy sets in a data-to-text system for business service intelligence. In:
Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.)
IWIFSGN/EUSFLAT -2017. AISC, vol. 643, pp. 220–231. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-66827-7 20

34. Robillard, M.P., DeLine, R.: A field study of API learning obstacles. Empirical
Softw. Eng. 16(6), 703–732 (2011)

35. Rodŕıguez, R., Espinosa, R., Bianchini, D., Garrigós, I., Mazón, J.-N., Zubcoff, J.J.:
Extracting models from web API documentation. In: Grossniklaus, M., Wimmer,
M. (eds.) ICWE 2012. LNCS, vol. 7703, pp. 134–145. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35623-0 14

36. Suter, P., Wittern, E.: Inferring web API descriptions from usage data. In: 3rd
IEEE Workshop on Hot Topics in Web Systems and Technologies, pp. 7–12 (2015)

37. Trivino, G., Sanchez, A., Montemayor, A.S., Pantrigo, J.J., Cabido, R., Pardo,
E.G.: Linguistic description of traffic in a roundabout. In: International Conference
on Fuzzy Systems, pp. 1–8 (2010)

https://doi.org/10.1007/978-1-4419-8303-9_22
https://doi.org/10.1007/978-3-319-63558-3_20
https://doi.org/10.1007/978-3-319-63558-3_20
https://doi.org/10.1007/978-3-319-66827-7_20
https://doi.org/10.1007/978-3-642-35623-0_14

432 C. González-Mora et al.

38. Uddin, G., Robillard, M.P.: How API documentation fails. IEEE Softw. 32(4),
68–75 (2015)

39. Vicente, M.E., Barros, C., Agulló, F., Peregrino, F.S., Lloret, E.: La generacion
de lenguaje natural: análisis del estado actual. Computación y Sistemas 19(4),
721–756 (2015)

Liquid Web Applications

WebDelta: Lightweight Migration of Web
Applications with Modified Execution

State

Jin-woo Kwon(B) , Hyeon-Jae Lee, and Soo-Mook Moon(B)

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
{jwkwon,hyeonjae}@altair.snu.ac.kr, smoon@snu.ac.kr

Abstract. Web applications (apps) can play an important role for the
era of ubiquitous computing since they can run on any smart or IoT
devices equipped with a browser. This advantage of portability and sim-
plicity can be extended further to allow an interesting user experience
called app migration. That is, we can save the execution state of a run-
ning web app into a file named snapshot, transmit it to another device,
and continue the execution by loading the snapshot. One issue is that
saving the whole execution state of a running app including all objects in
the runtime heap will be inefficient, since most of the current states are
unchanged from the initial state. To reduce this inefficiency, we propose
WebDelta which selectively saves only those that are modified from the
initial state. This selective snapshot is saved as a patch file so that after
migration, once the original app is launched, the current state can be
restored by applying the patch file. We model the relationship between
the JavaScript objects as a directed graph to efficiently and completely
save the delta of the JavaScript state. We solve the challenging issues
related to modified closure variables or modified event handlers attached
to the DOM objects. Our framework could successfully migrate five real
web apps, and we could speed up the total migration time as much as
by 2.7x.

Keywords: Internet of Things · Serialization · Migration ·
Productivity

1 Introduction

Nowadays, we are literally living in the world of ubiquitous computing sur-
rounded by diverse smart devices that can run apps, including phones, TVs,
tablets, or even refrigerators, thanks to the IoT technology. Web platform is
particularly attractive for such ubiquitous computing. Once developed based on
web languages (HTML/CSS/JavaScript), an app can run on any device that
employs a web browser, so it can be easily distributed to diverse devices without
much effort. Google Android also employs web apps through the WebView com-
ponents, and many IoT platforms are under development based on web languages
(IoT.js [9], mongoose OS [6], and Cylon.js [20]).
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 435–450, 2020.
https://doi.org/10.1007/978-3-030-50578-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_29&domain=pdf
http://orcid.org/0000-0002-1924-3059
https://doi.org/10.1007/978-3-030-50578-3_29

436 J. Kwon et al.

We can extend the portability advantage of web apps to a new user experience
of ubiquitous computing called app migration [19], which is sending an app
running on a device to a different device and continue to run it seamlessly. For
example, we can migrate an execution state of a game app from a phone to
a TV and continue using it on a big screen. To do this, we need to save the
current execution state of an app on a source device (serialize) and restore the
execution state on a target device (deserialize). Web app’s portability makes
the process simpler. That is, we can save the execution state of a web app in
the form of another web app called the snapshot, transmit it to another device,
and resume the execution by simply running the snapshot on the browser. This
app migration approach is different from other similar approaches such as Apple
Handoff [2] or Liquid.js [7], which require the developers to use specific APIs,
while app migration does not.

Web app migration has been consistently studied for last few years [4,15,19].
The common idea of serialization is traversing all objects in the runtime heap
and saving them in the form of JavaScript code (e.g., if there is a global object
obj with two properties x and y whose current values are 1 and 2, respec-
tively, the snapshot will include var obj={x:1, y:2};). The DOM tree, pos-
sibly attached with the event handlers, is saved as well. Elaborate technique is
needed to serialize the closure objects due to shared scopes [14]. The serialization
is executed only in-between event handling when no function is in execution, so
saving the call stack is not needed. In this way, the snapshot file is created as
a text-formatted HTML/CSS/JavaScript code, which is directly executable on
any browser. Hence by running the code, we can restore all heap objects and the
DOM tree that were in the original state.

There is one serious issue with this approach. Saving all objects, regardless of
its relevancy to an app’s state, makes the snapshot size infeasibly large, leading
to a long migration time. In fact, serializing all the objects in a heap might be
unnecessary. In the heap of a running app, many objects are very unlikely to
be modified during the life cycle of an app’s execution. A typical example is a
function object. Once a function object is declared, it is simply invoked at other
call sites; the function body remains unchanged until the end of the execution.
The serialization technique proposed by the previous works saves every object
including the ones unchanged, so the file size is remarkably large, regardless of
how much modification had been done during an app’s execution. Therefore,
the previous approaches lose scalability for heavy apps that load a lot of initial
objects and functions but create only few modifications, which is common in
practice. Also, they would suffer from heavy migration time when we need to
migrate frequently between the source and the target (e.g., when we exploit
app migration for computation offloading between the client and the server by
exchanging the app state before and after executing heavy event handlers [11]).

In this paper, we propose a novel approach to selectively serialize modified
states of a running web app. The scenario of our approach is shown in Fig. 1. We
extract the modified states between the current state and the initial state when
the app is launched, and serialize only the differences into a snapshot. Then, this

WebDelta 437

Fig. 1. Migration of modified states between two devices

selective snapshot is migrated to the target device instead of the whole snapshot.
At the target device, the selected snapshot works as a patch file such that we
launch the app and apply the patch file to restore the exact, current state (we
assume that the same web app is pre-installed at every device where a person
want to allow app migration). The scenario is straightforward, but determining
which objects are changed from the initial state and creating the patch file is
not a trivial problem. This paper includes detailed list of challenges and the
corresponding solutions.1

2 Background

2.1 Execution States of a Web App

Fig. 2. Execution states of a web app (Initial state)

1 The basic idea of this paper was proposed and reviewed as a 2 paged work-in-progress
paper [13]. Some figures and phrases are reused, but for the most part, this paper is
original.

438 J. Kwon et al.

Fig. 3. Current execution state after running for some time from Fig. 2

To capture the execution states of a web app, we need to understand how web
apps are executed in a common web browser. HTML and JavaScript are the
two core web technologies constructing web apps. HTML constructs visual parts
of a web app, while JavaScript manages interactive parts. Figure 2 shows how
objects in a simple web app are created. When an app is launched, a built-in
object named window is created, which acts as a root of all the heap objects
throughout the execution time. HTML tags are converted to DOM (Document
Object Model) nodes, and they form a tree named DOM tree. The DOM tree is
attached under the window object. JavaScript global variables and functions are
attached under the window object as well.

A JavaScript function can be lexically scoped with its environment, forming
a closure. JA (lines 8–11 in Fig. 2) is a typical way of defining a closure in Java-
Script. JA is defined in an anonymous function (lines 6–13), so JA becomes a
closure, bounded with its surrounding scope. The scope can be accessed exclu-
sively by the closure. We draw the relationship as a dotted arrow in Fig. 2.

DOM nodes and JavaScript objects interact with each other during app exe-
cution. A JavaScript variable can have a reference to a DOM node (JC.c1), and
DOM nodes can have properties attached by JavaScript (d1 in DA node). Also
DOM nodes can have JavaScript functions as handlers for certain events (JA is
an event handler of DA node).

2.2 Previous Approach to Snapshot and Our Proposal

The previous approaches [4,10,14,15,19] on the web app migration simply seri-
alize all the objects in the heap memory. They are straightforward and clear,
but the performance is arguable. Even if an app is launched and only a few parts
are modified from the initial state, the previous approaches have to serialize all
the objects, resulting in burdensome file size. Assume Fig. 3 is the current state
transited from the initial state of Fig. 2. Figures painted in dark are modified
objects, and figures painted with diagonal lines are newly created objects. Even
though the painted objects are the only objects that are related to an app’s state,
the previous approaches need to save all the objects in the graph. The snapshot
code (pseudo, may not follow the actual language syntax) would be Fig. 4a. If we

WebDelta 439

Fig. 4. Previous approach compared to our approach

remove all the snapshot codes that are needed to restore the unmodified objects,
the result will be Fig. 4b. Since many lines are removed, the snapshot size will
be reduced. Thus, selectively serializing modified objects is a promising way to
efficiently migrate app states.

3 The WebDelta Approach

Fig. 5. Process of WebDelta

Figure 5 depicts the overall process of WebDelta, a serializer for modified web
states. At the source device, the serialization process can be divided into two
phases. The first phase is an initial phase, which starts right after the page

440 J. Kwon et al.

is completely loaded (when onload event is fired). At this moment, WebDelta
traverses and captures the initial DOM states (iDOM) and the initial JavaScript
states (iJS). We duplicate all the initial DOM nodes and JavaScript objects so
that we can preserve the initial values. Then, the app is ready for user interaction,
so the user will play the app, creating some state information. The second phase
is a serializing phase, which starts when the user wants to migrate the app’s state.
The user can actively fire a serialize event to initiate the serializing phase.
WebDelta traverses the current state and compares it with the captured initial
state (iDOM, iJS) to generate a patch file. The patch file is a text-formatted code
that can update the initial state to the current state when it is executed on top
of the initial state. The patch file can be divided into three parts: iDOM patch,
JS patch and cDOM patch. iDOM patch transits the initial DOM states into
the updated DOM states. JS patch updates all the JavaScript objects, including
the event handlers. The event handlers of the current DOM states (cDOM) are
restored by cDOM patch.

The restoration process in the target device is straightforward. Again, the app
is launched, but this time WebDelta registers an event that executes the patch
code when the app is completely loaded. When the app is completely loaded
and the app’s state becomes the initial state, WebDelta applies the patch. The
patch is applied in the order of iDOM patch, JS patch and cDOM patch. When
the update is done, the user can finally continue the execution of the app with
updated states.

4 Challenges to WebDelta

Dynamically Changing Object Shape. In JavaScript, object shapes can
be dynamically changed during runtime. Any property can be attached and
removed, which complicates finding the modified states. In Fig. 3, a property b2
is removed from the object JB, and a property c3 is attached to the object JC
during runtime. Therefore, to check modifications on an object, we must check
the names of properties first and then compare the values if they have the same
names, after identifying the object by comparing its path name (see Sect. 5.2).
If not, we must generate a patch code that can attach or remove the created or
deleted properties.

Function Closure. Function closure is another challenging issue when we seri-
alize the differences between two states. In Fig. 3, a scoped variable s a of the
closure JA is modified, so we need to generate a patch code. However, by def-
inition, the scoped variable can be accessed exclusively by the closure, which
means that we cannot retrieve the data in the scope from the application layer.
Moreover, we cannot generate a patch code that can directly update the scoped
variable. In the scenario, suppose the patch is delivered to the target device, and
the same app is launched to generate the closure JA. The scoped variable s a
will have the value 0, and we need to change this value to 3. However, there is
no JavaScript syntax that can change a closure’s scoped variable.

WebDelta 441

Re-registering Event Handlers. If a modification is done upon event handlers
that are attached to a DOM node, we need to generate a patch code reflecting
the change. However, finding the target DOM node to attach or remove event
handlers after the migration is a challenging issue. In Fig. 3, a new event handler
EH2 is registered to the button DA, so we need to serialize it. After migration, the
patch code needs to re-register the event handler (EH2) to the newly initialized
button DA. The challenge is how to locate the button DA after migration. The
problem is even more complicated if the target DOM node is created during the
execution. For example, the DOM node DB is a new DOM node that did not exist
in the initial state. Since the event handler EH1 attached to the DOM node DB
didn’t exist in the initial state as well, we need to serialize and re-register after
migration. However, since the DOM node DB is not in the initial state, there is no
existing DOM node to attach the event handler. We must wait until the patch
code restores the DOM node DB, then we can re-register the event handler.

5 Patch Generation

In this section, we explain details of the patch generation, focusing on how to
handle the challenges raised in the previous section.

5.1 DOM Patch Generation

To detect and capture differences of two DOM states, we need to capture both
the initial state and the current state of DOM tree and compare them. We
imported an open-source tool named Virtual-DOM [16,17] to achieve the goal.
Virtual-DOM is capable of taking a snapshot of a DOM tree at a certain moment.
Virtual-DOM traverses the DOM tree and creates VTree, a duplicated version of
a DOM tree. A limitation of VTree is that it does not copy JavaScript properties
and event handlers. It only copies DOM nodes and DOM properties, so we
extended VTree implementation to compare and serialize the JavaScript related
elements.

Figure 6 depicts the initial and the current states of DOM trees. We compare
the two VTrees and extract the difference to generate a patch code. To compare
DOM sides, we used an API function diff given from the Virtual-DOM library.
diff can traverse two VTrees and generate a patch code that can morph one
VTree to another. When diff is invoked, nodes in the initial DOM (iDOM)
are indexed in depth-first traversal way. Then, we compare the iDOM and the
current DOM (cDOM) to generate the DOM patch code. The patch is gener-
ated according to the index of iDOM because when we restore the state in the
target device, the DOM state will be same as the iDOM. If a node is created
(button(DB)), the patch code is generated to create a new node and attach to
the parent node (iDOM[3] in this case), as shown in the first row of Fig. 6c. If
an existing node is modified (iDOM[5]), the patch code is generated to update
the inner data, as shown in the second row of the table.

442 J. Kwon et al.

Fig. 6. DOM patch generation

Since VTree does not copy event handlers, we need to separately serial-
ize them. Event handlers are JavaScript functions, so we pass the handlers to
JSDelta to generate a proper patch code. JSDelta is a module for serializing mod-
ified JavaScript objects, which will be explained in the following section. Once
done, JSDelta returns index numbers that stand for location of event handlers
after restoration. With the numbers, we generate patch code that can re-attach
the event handlers to proper DOM nodes. The code is generated according to the
cDOM indexes, because the nodes we are targeting might not exist in the iDOM.
For example, in cDOM[4], a new event handler (o5) is found. We let JSDelta to
handle it, and in return the path obj[5] is obtained. Then, the patch code is
generated to attach the obj[5] to the cDOM[4], as in the third row of Fig. 6c.

5.2 JavaScript Patch Generation

We implemented JSDelta to compare two JavaScript states and serialize the
difference. We need a solid model of the objects to clearly abstract all the states
including JavaScript objects, scopes of closures, and event handlers to handle the
challenges introduced in the previous section. We found that directed graph is a
good solution to model the states of JavaScript objects. Figure 7a and Fig. 7b are
the initial and the current states represented as directed graphs. We define an
object as a node and a property as an outgoing edge that is pointing to another
node. There are two types of nodes: primitive data type and object data type.
Primitive data types are mere values, while object data types are JavaScript
objects that are allocated in the heap. We represented primitive data types as

WebDelta 443

Fig. 7. JS patch generation

rectangles and object data types as circles. Notice that only circle nodes can
have outgoing edges, because only the object data types can have properties.

To preserve the initial JavaScript states, we created a table named JS ref-
erence table. At the initial state, we traverse and search for every JavaScript
object, and copy their states to the JS reference table as in Fig. 7c (o1, o2, o3,
s1 entries). We also store the path that led us to reach the object.

At the current state, we traverse the directed graph to check if an object
exists in the JS reference table by comparing the object’s reference. If so, we
compare the object’s property names and values with the ones saved in the JS
reference table. If a property name is new, or if the value has been changed, we
generate a patch code. The patch code is generated according to the path we
stored in the JS reference table. On the other hand, the object may not be in
the JS reference table. This means the object did not exist in the initial state,
so we need to create a new one. All the created objects are pushed to an array
(obj[]) to prevent any duplicated restoration.

Figure 7 ‘Patch’ column shows the resulting patch code. o2 does not have
the property b2 anymore, so we generate a patch code that can remove the
property. o3 has a new property c3 now, so we need to re-attach it. However,
the object that c3 is pointing is in fact another object (o4) that was not in
the initial state. So, we create the object first (obj[4]), then we create a patch
code that can make c3 to point obj[4]. To update scope variables, we imple-
mented scope(level) function that can retrieve a scope of a function at a
certain level. By using the function, the scope variable s a can be updated (i.e.,

444 J. Kwon et al.

window.JA.scope(0)["s a"]=3 can update JA’s scope variable s a in the near-
most level). o5 and o6 are two objects that came from the Virtual-DOM in
the previous section. The two objects are not in the JS reference table, so we
generate a patch code that can create the objects.

6 Evaluation

In this section, we evaluate how much the size of the serialized file can be reduced.
Then, we evaluate the total migration time with our approach in various network
conditions. Lastly, we note the initial phase overhead, which is the weak point
of our approach.

6.1 Experimental Setup

We tested our work with an open source WebKit browser [1]. We tested our work
with two x86 desktops with same performance (i7-3770 CPU, 16 GB RAM),
one being as a source device and the other as a target device. We selected
JetStream benchmark suite [5] and five real apps listed in Table 1 to evaluate our
work. During each experiment, we launch the benchmark or the app, manually
execute it for some time to make some states changed, and fire the serialize event
to generate the full snapshot or the selective snapshot (patch file). The file is
transmitted to the target device and used to restore the states. We confirmed
that all the benchmarks and apps are properly resumed.

6.2 Modified Objects Analysis

Table 1. Number of modified objects during execution

JetStream

3d-cube 3d-raytrace base64 crypto-aes n-body regex-dna code-load crypto raytrace richards typescript

Initial(JS+DOM) 2,062 2,080 2,028 2,072 2,043 2,036 2,049 2,293 2,182 2,127 5,358
Modified JS 102 54 48 51 48 60 1,340 70 79 78 470

Modified DOM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

App

Sokoban Snake Tetris Emoticolor CentNotes

Initial(JS+DOM) 4,671 3,892 2,445 3,705 4,129
Modified JS 48 143 207 205 128

Modified DOM 12 20 8 6 49

Table 1 depicts the number of modified objects during the execution of the bench-
marks and apps. Initial(JS+DOM) is the number of total objects (DOM nodes
and JavaScript objects) at the initial state. Modified JS is the number of Java-
Script objects that are either modified or newly created during execution. Mod-
ified DOM is the number of DOM nodes that are modified during execution.

WebDelta 445

For benchmark tests, the initial objects are mostly JavaScript objects since they
are made for JavaScript testing. Among the initial objects, only a few objects
were modified during the execution throughout the benchmarks and apps except
code-load and typescript tests. These tests create a lot of new objects during
execution, so the modified object counts are relatively high. We can also see that
the real apps tend to have less modification than benchmarks. One reason for
this is that the real apps employ JavaScript libraries. JavaScript libraries create
a lot of objects while only a few of them are used. So, the unused objects will
remain unchanged, lowering the number of the Modified JS.

6.3 Serialized File Size

Fig. 8. Serialized file size comparison

The main purpose of our work is to reduce the serialized file size. The measure-
ments on the file size are illustrated in Fig. 8. All serializes all the objects and
WebDelta serializes the modified objects only. We depicted the relative ratio of
the result of WebDelta when the result of All is set to 100. The results show that
our approach can reduce 77% and 93% of the serialized file size for benchmarks
and web apps, respectively. The reason why WebDelta is more effective on web
apps is that the benchmark tests usually create few objects that are data inten-
sive, such as very long string values. Therefore, serializing such objects enlarged
the patch size. Another thing to notice in the graph is the ratio of the DOM to JS.
We can see that among the modified objects, JavaScript objects are dominant,
which seems to be one characteristic of modern web apps.

6.4 Total Migration Time

We measured the total time to migrate an app from one device to another, begin-
ning from the start of the serialization at the source device to the restoration
of the app’s state at the target device. Save time stands for time to create the
patch, Transmission time stands for time to transfer the patch file to the target
device, and Restore time stands for time to restore the app’s state at the target

446 J. Kwon et al.

Fig. 9. Total migration time (ms)

device. We prepared four different setups for network speed, emulating three dif-
ferent Wi-Fi and Ethernet conditions. Figure 9 depicts the overall results. The
results show that in the best case (11 Mbps), we get 63% reduced migration
time (2.7x speed up), and even in the worst case (Ethernet) we get 11% reduced
migration time (1.1x speed up).

Although not significant, the Save time was reduced in most cases except
Tetris. We analyzed the reason and found that while in the serializing phase
of WebDelta, the traversal could successfully find most of the current objects in
the JS reference table with their states unchanged. Therefore, we could skip the
entire serializing routine for those objects, which would be time-consuming. In
the All case, all the objects except the built-in objects were serialized, so the
Save time was higher.

6.5 Initial Phase Overhead

During the initial phase, we need to traverse and collect the initial states. We
measured the time to collect the data, which is depicted in Fig. 10. Source refers
to the time taken to load the original source code, and DOM and JS stand
for time taken to create the initial states of each elements. All requires little
overhead to traverse the initial states of the JavaScript objects, because we need
to make a reference table for built-in objects initially. WebDelta suffered from
larger initial phase overheads, taking 1.9x execution time compared to All. How-
ever, the initial phase overhead plus the migration overhead is still better for

WebDelta 447

Fig. 10. Initial phase overhead (ms) Fig. 11. Migration between two
devices (Emoticolor, ms)

WebDelta. Moreover, the initial phase overhead could be amortized if there are
additional migrations between the devices. Figure 11 depicts records of migra-
tion time targeting Emoticolor app consecutively held between two devices in
11Mbps network speed, including the initial phase overhead. At first migration,
WebDelta is 1.6x faster than All, because WebDelta needs to perform the ini-
tial phase at the source device and the target device. However, at second and
further migration, instead of performing the initial phase WebDelta updates the
initial information with the patch data given, which is done instantly. Therefore,
migration is done even more faster than All on average (3.1x).

7 Discussion

Nondeterminism. We assumed that the initial state captured from the source
device is identical to the initial state at the target device when we restore the
updated states. In most cases the assumption is true, but they may be different
if there is a non-deterministic characteristic during initialization of an app. A
random function (rand) is a typical example. If such statement exists, then
the initial state changes every time we launch the app, so our work can be
hardly applied. We may mitigate such limitation by analyzing non-deterministic
behavior of a web app. There are studies on checking non-determinism [3,18],
so we can import the studies to check if we can apply our work to an app.
Version Consistency. Our assumption is that every app installed in the devices
are identical. However, the version of the apps may be different. For example,
one may update an app in one device but not in another. In such case, we cannot
guarantee that the patch can safely update the execution states. One solution
is comparing checksums of files between two devices. If they are identical, we
can proceed the migration process. If not, the source device can send the source
code as well to use it as a code to create proper initial states, then apply patch
to restore the updated states.

448 J. Kwon et al.

8 Related Work

Web app migration has been consistently studied through recent years. Santoro
et al. [4,10] constructed the basic concept of the web app migration by serializing
a web app state into a text-formatted code file. Lo et al. [15] and Oh et al. [19]
advanced their work by supporting event handlers and early stage of closures.
Kwon et al. [14] completed the work by supporting the advanced closure rela-
tionship. The major difference is that our work selectively serializes the modified
objects while the previous approaches serialize all the objects.

There were former attempts to serializing web app states with lower file size.
Voutilainen et al. [21] proposed app state synchronization through migrating
DOM states. In their work, they used the Virtual-DOM to synchronize app
states, which is the same tool we used in this paper. However, the major differ-
ence is how to treat JavaScript states. The previous approach could only serialize
JavaScript event handlers, while our work can serialize every JavaScript state
including event handlers. Also, to serialize the JavaScript event handler, they
require the app developers to use a given API function, while our work is trans-
parent to the app developers. Kwon et al. [12] proposed minimizing the serialized
file size by excluding the JavaScript libraries. However, their work requires each
implementation for each library, so their work can be hardly expanded. Our work
can be applied to any web apps that employ any library (or not employing any
library at all), so ours is more general and can be widely used.

Gallidabino et al. [8] proposed Liquid Software, which is an architectural
design of web app migration. Their work is decent, but lacks details on how to
implement the core migration methodology. Our work can play a role in filling
that detail.

9 Conclusion

We proposed a novel approach to saving and restoring a web app’s state by
preserving the initial state and comparing it with the current state. We saw
some promising results that can dramatically speed up the app migration pro-
cess (2.7x best case). However, the results also exposed that there are large
execution overheads in collecting the data at the initial state. We think improv-
ing the serialization performance is the most urgent task to work for the recent
future. Rather than preserving every object in the initial state, we might need to
selectively save them to reduce the comparison time. Tightly integrating Virtual-
DOM and JSDelta can help as well, since there are some duplicated routines
that are inevitable to run the two systems separately. These works are left for
future research.

Acknowledgments. This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2020R1A2B5B02001845).

WebDelta 449

References

1. Apple: Webkit - open source web browser engine (2017). https://webkit.org/
2. Apple: Handoff for developers (2018). https://developer.apple.com/handoff/
3. Barr, E.T., Marron, M.: Tardis: affordable time-travel debugging in managed run-

times. In: Proceedings of the 2014 ACM International Conference on Object Ori-
ented Programming Systems Languages & Applications, OOPSLA 2014, pp. 67–82.
ACM, New York (2014). https://doi.org/10.1145/2660193.2660209

4. Bellucci, F., Ghiani, G., Paternò, F., Santoro, C.: Engineering Javascript state
persistence of web applications migrating across multiple devices. In: Proceedings
of the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing Sys-
tems, EICS 2011, pp. 105–110. ACM, New York (2011). https://doi.org/10.1145/
1996461.1996502

5. browserbench: Jetstream (2017). http://browserbench.org/JetStream/
6. Cesanta: Mongoose os (2017). https://mongoose-os.com/
7. Gallidabino, A., Pautasso, C.: The liquid.js framework for migrating and cloning

stateful web components across multiple devices. In: Proceedings of the 25th
International Conference Companion on World Wide Web, Republic and Can-
ton of Geneva, Switzerland, pp. 183–186 (2016). https://doi.org/10.1145/2872518.
2890538

8. Gallidabino, A., Pautasso, C., Mikkonen, T., Systa, K., Voutilainen, J.P.,
Taivalsaari, A.: Architecting liquid software. J. Web Eng. 16, 433–
470 (2017). https://doi.org/10.26421/JWE16.5-6, http://www.rintonpress.com/
journals/jweonline.html$#$v16n56

9. Gavrin, E., Lee, S.J., Ayrapetyan, R., Shitov, A.: Ultra lightweight Javascript
engine for internet of things. In: Companion Proceedings of the 2015 ACM SIG-
PLAN International Conference on Systems, Programming, Languages and Appli-
cations: Software for Humanity, SPLASH Companion 2015, pp. 19–20. ACM, New
York (2015). https://doi.org/10.1145/2814189.2816270

10. Ghiani, G., Paternò, F., Santoro, C.: Push and pull of web user interfaces in multi-
device environments. In: Proceedings of the International Working Conference on
Advanced Visual Interfaces, AVI 2012, pp. 10–17. ACM, New York (2012). https://
doi.org/10.1145/2254556.2254563

11. Jeong, H., Moon, S.: Offloading of web application computations: a snapshot-based
approach. In: 2015 IEEE 13th International Conference on Embedded and Ubiq-
uitous Computing, pp. 90–97, October 2015. https://doi.org/10.1109/EUC.2015.
10

12. Kwon, J., Oh, J., Jeong, I., Moon, S.: Framework separated migration for web
applications. In: 2015 13th IEEE Symposium on Embedded Systems For Real-
time Multimedia (ESTIMedia), pp. 1–10. IEEE, October 2015. https://doi.org/
10.1109/ESTIMedia.2015.7351767

13. Kwon, J., Moon, S.: JSDelta: serializing modified javascript states for state sharing:
work-in-progress. In: Proceedings of the Thirteenth ACM International Conference
on Embedded Software 2017 Companion, EMSOFT 2017, pp. 12:1–12:2. ACM,
New York (2017). https://doi.org/10.1145/3125503.3125627

14. Kwon, J., Moon, S.: Web application migration with closure reconstruction. In:
Proceedings of the 26th International Conference on World Wide Web, WWW
2017, pp. 133–142. International World Wide Web Conferences Steering Commit-
tee, Republic and Canton of Geneva, Switzerland (2017). https://doi.org/10.1145/
3038912.3052572

https://webkit.org/
https://developer.apple.com/handoff/
https://doi.org/10.1145/2660193.2660209
https://doi.org/10.1145/1996461.1996502
https://doi.org/10.1145/1996461.1996502
http://browserbench.org/JetStream/
https://mongoose-os.com/
https://doi.org/10.1145/2872518.2890538
https://doi.org/10.1145/2872518.2890538
https://doi.org/10.26421/JWE16.5-6
http://www.rintonpress.com/journals/jweonline.html$#$v16n56
http://www.rintonpress.com/journals/jweonline.html$#$v16n56
https://doi.org/10.1145/2814189.2816270
https://doi.org/10.1145/2254556.2254563
https://doi.org/10.1145/2254556.2254563
https://doi.org/10.1109/EUC.2015.10
https://doi.org/10.1109/EUC.2015.10
https://doi.org/10.1109/ESTIMedia.2015.7351767
https://doi.org/10.1109/ESTIMedia.2015.7351767
https://doi.org/10.1145/3125503.3125627
https://doi.org/10.1145/3038912.3052572
https://doi.org/10.1145/3038912.3052572

450 J. Kwon et al.

15. Lo, J.T.K., Wohlstadter, E., Mesbah, A.: Imagen: runtime migration of browser
sessions for javascript web applications. In: Proceedings of the 22nd International
Conference on World Wide Web, WWW 2013, pp. 815–826. ACM, New York
(2013). https://doi.org/10.1145/2488388.2488459

16. marcelklehr: Github - marcelklehr/vdom-virtualize: Virtualize a DOM node (2017).
https://github.com/marcelklehr/vdom-virtualize

17. Matt-Esch: Github - matt-esch/virtual-dom: A virtual DOM and diffing algorithm
(2017). https://github.com/Matt-Esch/virtual-dom

18. Mickens, J., Elson, J., Howell, J.: Mugshot: deterministic capture and replay for
javascript applications. In: Proceedings of the 7th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI 2010, p. 11. USENIX Associ-
ation, Berkeley (2010). http://dl.acm.org/citation.cfm?id=1855711.1855722

19. Oh, J., Kwon, J., Park, H., Moon, S.: Migration of web applications with seamless
execution. In: Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE 2015, pp. 173–185. ACM,
New York (2015). https://doi.org/10.1145/2731186.2731197

20. thehybridgroup: Cylon.js (2017). https://cylonjs.com/
21. Voutilainen, J.P., Mikkonen, T., Systä, K.: Synchronizing application state using

virtual DOM trees. In: Casteleyn, S., Dolog, P., Pautasso, C. (eds.) ICWE 2016.
LNCS, vol. 9881. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-
46963-8 12

https://doi.org/10.1145/2488388.2488459
https://github.com/marcelklehr/vdom-virtualize
https://github.com/Matt-Esch/virtual-dom
http://dl.acm.org/citation.cfm?id=1855711.1855722
https://doi.org/10.1145/2731186.2731197
https://cylonjs.com/
https://doi.org/10.1007/978-3-319-46963-8_12
https://doi.org/10.1007/978-3-319-46963-8_12

User-Side Service Synchronization
in Multiple Devices Environment

Clay Palmeira da Silva(B) , Nizar Messai, Yacine Sam, and Thomas Devogele

Université de Tours, 30 Avenue du Monge, Tours, France
{clay.palmeira,nizar.messai,yacine.sam,thomas.devogele}@univ-tours.fr

Abstract. Today, a single user owning multiple devices is a reality.
Moreover, with the advent of the concept of Everything-as-a-Service
(XaaS), a cloud-based term that allows for a wide variety of services
and applications deployed by the user, the multiple devices scenario gain
more relevance, mainly due to the lack of interoperability between oper-
ating systems and services of these devices. We focus on multiple device’s
environments for synchronizing web services at the client-side without
continuously depending on a cloud-based system. We discuss a model-
based architecture that allows us to fluently migrate services/data and
sessions from one device to another regardless of the operating system.
The architecture, called The CUBE [12], is based on user-centric prin-
ciples combined with REST and RESTful concepts. In this extension
paper, we present two main contributions. First, with a description of
technical and conceptual aspects of the CUBE, and its relation with the
devices/applications and web services. Then, a feasibility test for a tight-
coupling service such as YouTube streaming. Within a set of ten users, we
presented preliminary results that had measured the wasted time to play
a given video with and without the CUBE towards five different devices.
The results demonstrate that when the users used the CUBE, they spend
only 5.821 s to migrate the video, while without the CUBE, they spend
68.101 s to do the same procedure. That means the CUBE is up to ≈12
times faster than the traditional YouTube cloud-based synchronization
procedure.

Keywords: REST · RESTful · Web Services · Multiple-devices ·
Cloud-based system · Client-side synchronization

1 Introduction

The concept of Everything-as-a-Service (XaaS) provides us nowadays a broad
set of services that make our days more comfortable. Thus, naturally, we started
to rely on cloud-based systems the task to store our data and keep tracking of
all our state and behavior while using web services. In addition to the features of
the cloud-based systems, we have nowadays more powerful mobile devices than
ever before [14]. However, we do not explore these mobile capacities regarding

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 451–466, 2020.
https://doi.org/10.1007/978-3-030-50578-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_30&domain=pdf
http://orcid.org/0000-0003-0438-581X
https://doi.org/10.1007/978-3-030-50578-3_30

452 C. P. da Silva et al.

processing, storage, and security measures to using web services locally. More-
over, we have mobile devices basically split into two different worlds, those with
Android, and those with an iOS operating system.

With the popularity of mobile technology, we also had changed our behavior.
Today it is common to find a user using two or three mobile devices concurrently,
and often they have different operating systems. Thus, we are facing simultane-
ously a multiple-device environment with the same or different operating sys-
tems, where most of the technology and web services requiring a third-party
provider to synchronizing data and keeping the state.

Furthermore, since we have adopted this behavior of storing our data some-
where, we became each day more dependent on the cloud-based system. That
dependency leads us to an unconscious problem, the connectivity dependency.
That means, if we want to migrate a given service to a given device, the new
device must ensure the same conditions required by the cloud-based system that
holds the web service.

To give an example, suppose a user starts to watch a video on YouTube in
a given device, then she/he wants to change device for any particular reason.
The new device must ensure all required conditions: a YouTube user account,
internet connection, compatible operating system, etc. Otherwise, it will not be
possible to resume our YouTube video in the second device without starting from
scratch, and sometime installing additional modules.

Within the popularity of the Android and iOS platforms, the problem of mov-
ing applications and services between different devices without the cloud-based
system to synchronize state and store data is a challenge. However, there is a
technology mentioned at the end of the 90s, called Liquid Software [4], which
proposes fluently moving applications and services between devices. Unfortu-
nately, two decades later, all presented solutions to achieve the Liquid Software
purpose involves a third-party provider such as a cloud-based system.

An alternative to server-side/cloud-based system approaches can rely on
client-side management of multiple device service synchronization. In [12], the
authors proposed The CUBE, a system-model architecture that addresses the
challenge of web-services at user-side for a multiple-devices and operating sys-
tems environment. The CUBE is fully compliant with Liquid Software principles
described in 1996 by [4], and most recently described in 2016 by [1] to allow for
user-side services synchronization and migration over multiple-devices.

In this paper, we provide a study of formal aspects of the CUBE, describe its
technical improvements, detail additional feasibility scenario on tight-coupling
(high dependency) web service interaction, and provide an evaluation based on
user-experience feed-backs. We note that the previous work of the CUBE pre-
sented as a feasibility test a light-coupling service (less dependency) as a client
e-mail based on Gmail.

The remainder of this paper presents the following structure: Sect. 2 brings
our motivating scenario and contributions. Section 3 discusses the necessary
elements to build the CUBE within their descriptions and particularities.
Section 4 presents our implementation insights with some challenges regarding

User-Side Service Synchronization in Multiple Devices Environment 453

the enhancements. Section 5 presents the feasibility test with results and evalua-
tion. Section 6 discusses the related works from a server- and client-side perspec-
tive. Finally, Sect. 7 gives concluding remarks highlighting our future research
directions

2 Motivating Scenario and Contributions

Nowadays, web services are the central use of mobile devices. As well, we are
facing a real problem within a multiple-devices and operating system environ-
ment. Moreover, when we are thinking about services running over multiple
devices/platforms and how this challenge had inspired researchers and indus-
tries over the years. Besides, we also have noted that all proposed solutions rely
on the server or cloud-based systems to synchronize services data and state.

Today, with all available technology, and depending on the server/cloud-
based system to make synchronization, we can reproduce the scenario proposed
in Fig. 1, which is a migration of a YouTube video streaming across a multiple-
devices environment. However, to achieve this scenario, all devices need each
a YouTube account, and also they should have installed the native app from
YouTube. Otherwise, it is not possible to resume the video across devices. More-
over, sometimes even with the server-cloud support, continuing a service such as
YouTube streaming across devices is not assured.

Furthermore, from a resource perspective, some devices are too small or too
big for a given service, e.g., a keyboard on a smartphone is too short to write an
email for some users, requiring a device with an external keyboard or other with
a bigger screen. In this case, a more suitable “device candidate” should be chosen
by the user to reproduce such service, the CUBE deals with these challenges.
Nevertheless, in this paper, we focus on a particular service (YouTube stream-
ing), and one specific functionality, the migration of YouTube video streaming
towards multiple-devices.

Fig. 1. Data/State synchronization managed by the server- cloud-based system.

454 C. P. da Silva et al.

We aim to present the migration of a tight-coupling web-service, such as
YouTube, in a multiple-devices environment regardless of the operating system.
In our proposition, graphically represented in Fig. 2 the user makes a connection
with the web service such as the YouTube server only once. Then she/he can
switch between devices while moving. It is also allowed to the user take previous
equipment (Retake Device 2) until arriving at the final destination where she/he
will be able to finish the video in a device of her/his choice.

We note that the user-centric principle used is applied to give the user the
choice of which device to choose according to personal interest. In the CUBE
environment, all control of state/data/certificate goes locally. We note this trans-
fer is not a copy of the service or something like that. The CUBE operates within
different layers and system modules to work less dependent on the server- cloud-
based system. For this purpose, we enhanced our CUBE model [11–13], adding
new features, described hereafter.

Fig. 2. A use case model describing our contribution.

– Formal description of the CUBE and demonstration of the interaction
between its different elements and how they work combined;

– Enhancing our logical dock to allow migration of tight-coupling web services.

3 CUBE Model Formal Description

Our biggest challenge was to fulfill the CUBE technical principles regarding
REST and RESTfull constraints. For this reason, we aimed with the formal
description to make a better understanding of these constraints, and also analyze
the traceability of devices and services within the only-one user scope. Further-
more, we also aim with this description to present the elements that could help
developers to map their applications to work in a multiple- device/operating
system environments. Figure 3 introduces our perspective of the CUBE geomet-
rically represented.

User-Side Service Synchronization in Multiple Devices Environment 455

Fig. 3. In the center of the CUBE is located the user, surrounded by Devices D =
{1, 2, ..., 8} and Services S = {1, 2, ..., 8}

Our first steps towards the CUBE description required a review of traditional
definitions since we combined multiple environments in the same scope. That
means we can afford multiple devices and services running together in the same
space. In this context, the macro-formalization of the CUBE relies upon three
concepts that we recall here, such as Anti-Symmetric, once we have two objects
that are related to each other. Reflexive because a device can relate with itself
to manage a local web service. Transitive because we have a binary relation R,
over a set D if whenever an element di is related to an element dj , and dj is
related to an element dn, where {di, dj , dn} are devices. Therefore, we realized
that the CUBE description relies indeed in an abstraction of the Partial Orders
principle, means di � dj , where di and dj are devices and di �= dj .

3.1 Description

Hereafter, we will present a full description of the CUBE starting from the center
of the CUBE, the final-user. Thus, we need to introduce some elements that we
called as essential elements. These elements are (i) the adaptation of the user-
centric network for a single user, (ii) an individual user, (iii) a single device, (iv)
multiple devices, (v) one service, and (vi) multiple services.

To introduce the essential element (i), we based our description from the user-
centric definition proposed by Hartmann [5]. Then, we defined the user-centric
network of the CUBE (UCN-CUBE) as a 4-tuple (instead of 6-tuple in [5]) by
the Definition 1:

Definition 1. Nδt := {s, δs,Us,Dδs} where:

1. s = A service. Here s must not be confused with service implementation pro-
vided by the server (third-party). It preferably corresponds to local interaction
initiated by the user.

2. δs = data object from service s.
3. Us = The user owning service s.
4. Dδs = set of devices forming the device pool for data object δs.

456 C. P. da Silva et al.

Since we have defined our adaptation of the user-centric principle for a single
user (i), now we can describe other essential elements. Thus, we introduce the
definition of the essential elements (ii) and (iii), the individual user, and the
single device, respectively. Let U (ii) denotes the User in the CUBE, and this
user, in our more abstract perspective, owns one device called d1 (iii). Then the
essential elements (iv) multiple-devices, formally, let us denote by Du, the set of
devices owned by the user U , then at this step Du = {d1}.

The essential element (v) one service occurs when U starts to access a Service
s1 using d1. This relation is expressed by d1 ↔ s1. Then, the essential element
(vi) the multiple services, formally, let us denote by Su the set of services accessed
by U , then at this level Su = {s1}.

Now, assume U has more than one mobile device at disposal d1 and d2.
However, service migration is not already available. Let us represent the mobile
devices and service for U as: Du = {d1, d2}, Su = {s1}, and d1 ↔ s1, d2 ↔ s1
but, for now, there is no communication between d1 and d2. In this case service
migration process is not possible yet. Then, U starts another Service s2 in the
same device d1. Therefore, Du = {d1, d2}, Su = {s1, s2} and d1 ↔ s1, d1 ↔
s2, d2 ↔ s1.

In the general case, let us assume that U is surrounded by a set of devices
(multiple-devices) {d1, d2, ..., dn} ⊆ D. We note here that the devices in D are
not necessarily owned by the considered user U .

Let us also assume that U is surrounded by a set of services {s1, s2, ..., sn} ⊆
S. Then, we denoted by Su ⊆ S the subset of services accessed by U .

Within the set Du of devices owned by user U , we denote by dp the main
device being used by U . When switching to another device di in Du, di becomes
the new dp, and the old dp remains in Du as a device at user disposal.

Now, since we described the elements that surround the user, we can for-
mally define the elements that build the CUBE, such as the INNER CUBE, the
OUTER CUBE, the Pool Area. Thereby, we defined the INNER CUBE as a
3-tuple in Definition 2:

Definition 2. Ic := {dp,Du \ {dp},Rd} where:

– dp is the current device being used by user U .
– Du \ {dp} is the set of discovered devices owned by the user U ready to use.
– Rd is the research mechanism for devices.

Let us denote by “↔” a connection between any device and any service: that
is d ↔ s means device d has established a connection to service s.

Now we define the OUTER CUBE (Definition 3), denoted by Oc , as the set
of Services S for which a connection has been established with a device in the
INNER CUBE, Ic.

Definition 3. Oc := {si ∈ S such that ∃di ∈ Du and di ↔ si}. where:

– si is any current service being used by user U .
– di is any current device being used by user U .

User-Side Service Synchronization in Multiple Devices Environment 457

– Du is the set of discovered devices owned by the user U ready to use.

Another critical element previously mentioned in [12], but not entirely
described, is also defined here as Pool Area, Definition 4. The connection to
the Pool Area is defined as Pa, as the set of relationships established between
any device di in Ic and any Service si in Oc.

Definition 4. Pa = {di ↔ Si such that di ∈ Ic and si ∈ Oc}.
Now, based on the previous definitions, we can define the CUBE as a 4-tuple

in Definition 5.

Definition 5. C = {U , Ic,Oc,Pa}.
The CUBE C defines a whole platform formed by a User U , surrounded by a

set of communicating devices she/he owns, Ic, a set of Services she/he accessed,
Oc, and the set of established connections, Pa.

3.2 Model Scenario Representation

Following this formalization is given hereafter a use-case describing how the
elements of the CUBE can work combined to achieve the scenario proposed in
Fig. 2, introduced in our motivating scenario section.

The following use-case, shown in Fig. 4, makes use of both the Webmail
client implemented for the initial feasibility (light-coupling) test of the CUBE
and presented at [13] and the LiquidTUBE, our second feasibility test (tight-
coupling) and the focus of this paper. We note the necessary settings of the
CUBE is previously described in [11], and all devices are related to a single user,
that is why we used the user-centric principle. Thus, for now, it is not possible
to connect to another device outside the “user network”.

Fig. 4. Our second feasibility test scenario of the CUBE.

To start, we must assume three conditions:

1. The user chooses a connected mobile as her/his first device;

458 C. P. da Silva et al.

2. She/he decides to run an email service or watch a YouTube video;
3. The Car Operating System (COS) has an available compatibility interface,

e.g., AUDI MMI Connection.

First, the user has at her/his disposal a set D of known and DOUT of unknown
devices which are found by our search engine Rd. Then, the user manually selects
those to be added to the INNER CUBE (Ic) (Definition 2), which in turn starts
the synchronization process and creates the CUBE session. Thus, using device
dp, the user requests some services si ∈ S, e.g., start a video from YouTube.

We note that our description is linear. However, several procedures run in the
second plan as callback procedures. At the moment of step 1, there already run all
internal procedures required for the authentication process and connection avail-
ability. Thus, the Application and Request layers, both REST, with StormPath
and Node.js respectively, make the token creation and send the HTTP responses
for the required service. Also when the session starts, the Pool Area(Definition 4)
deals with the first connection between dp and si. Simultaneously created, the
OUTER CUBE (Oc) (Definition 3) deals with si as a set of services S.

Thus, we have updated the INNER CUBE (Ic), Pool Area (Pa), and OUTER
CUBE (Oc) with the appropriate sets of devices, connections, and services,
respectively, following the dynamic interactions within the environment. At this
moment, it possible to add any new device to the CUBE (Definition 5) with-
out compromising its structure. Also, the user does not need to be concerned
regarding authorizing to the newly added device any service already discovered.

Next, in step 2, the user continues to watch the video at the exact moment
previously stopped but using a different device (d2). Still, in d2, some callback
procedures run under semantic rules to deal with hypermedia requests for the
data changing status across the environment of multiple operating systems. That
is why the Pool Area Pa is built fully RESTful because only with RESTful we can
control hypermedia status. Therefore, for any request that arrives from the client
or server, we assure privacy by encrypting data using the token created in step 1.
Despite being shown as a linear model, the Conversation Layer is continuously
available, allowing for data-change between devices and operational systems.

In step 3, our user will move by car. Hosted by a COS, the CUBE displayed
as an icon, retrieves all data, session, and connections previously achieved. At
this time, the available multiple devices are synchronized, allowing a resume of
any task, at any time.

Finally, the user arrives at her/his destination, leaving step 3 with all syn-
chronized data in her/his mobile. Then, on her/his laptop, based on iOS, the
CUBE will retrieve all data produced so far, making it possible to resume the
video at step 4.

4 Implementation Insights

With the achievement of the first feasibility test presented in [13], it was nec-
essary to submit the CUBE to another real-world scenario in an environment

User-Side Service Synchronization in Multiple Devices Environment 459

that requires a third-party to work, but at this time, a tight-coupling service.
Thus, we chose the streaming service from YouTube as a scenario to apply the
CUBE, and aim to achieve the proposed outcome of fluently moving a YouTube
video streaming towards native apps. We note that we do not consider HTML5
solutions due to its limitations regarding plugins devices.

At the same time, we added to the CUBE new functionalities, such as
the enhancement of the device search engine, the authentication process with
database tracked by a token, and the management of the devices that belong
to the user. That means, now we can change the ID of the equipment inside
the CUBE and not only rely upon the ID present on the device description. We
present the CUBE architecture in Fig. 5 that shows where some functionalities
work. We noted that the external element 107 in our previous version interacted
with the 106 component. However, the behavior of the tight-coupling web-service
required a change of the architecture. Then, in the new version, element 107 now
interacts directly with the 105 component.

Fig. 5. The CUBE architecture and its internal modules.

In this uncontrolled scenario of YouTube streaming, the user experience is
the central feature to evaluate. Thus, at this point, the behavior presented in
the CUBE changed comparing with our previous test. Therefore, now, accessing
the CUBE requires a more secure authentication step to get access to what we
called the logical dock. This logical dock is the CUBE abstraction (a run-time
file) based on the formal description previously described. It is represented in
the form of a native application deployed from dp, where a user can start the
web services modeled to work from the CUBE.

It is essential to mention, at this moment, the CUBE works as a sort of a
new session without making any change on the user device. That means once
the user decides to leave the logical dock, all her/his previous activity is stored,
e.g., the last video, viewed events, historical, etc.

Regarding the user-experience, since YouTube can work from a browser and
also from native apps, we drive our efforts to make the Liquid experience as

460 C. P. da Silva et al.

simple as possible. Thus, to work in a desktop station with a web browser,
we preferred to create an extension of the CUBE for browsers. Therefore, we
assumed that the Liquid feature should be more intuitive to the user. Thus,
Fig. 6 shows the extension added on the browser (on the right top corner), where
the user can liquid the content, that means, the control, state and data are
transferred to another device, di in Du, di which becomes the new dp.

On the other hand, for the native apps, we added the Liquid feature inside
the button “share” that is native in all versions of the YouTube apps regardless
of the operating system.

Fig. 6. The CUBE extension allows to the User liquid the content without Server
synchronization.

5 Feasibility Test, Results, and Evaluation

For the test, we sent through the CUBE the elapsed time of the video, without a
third-party to synchronize it. In this feasibility test, we used five different devices.
Devices one (d1) and two (d2), a desktop HP Pentium Dual-Core 3GHz, and
8GB Ram, with a Windows 7 64 bits Professional. The device three (d3), a Tablet
Samsung A6 Chipset Exynos 7870 octa-core 1.6 GHz, Wi-Fi 802.11 a/b/g/n, and
Wi-Fi Direct, Bluetooth v4.2 LE-A2DP with Android 8.0 Oreo. The device four
(d4), an iPhone 5 S 16 GB, Chipset Cyclone Apple A7 - 1.3 GHz Dual-Core, Wi-
Fi 802.11 a/b/g/n, Bluetooth 4.0-A2DP with iOS 10.2. The device five (d5), an
iPad 32 GB, Chipset 1Ghz Single-Core ARM Cortex-A8, Wi-Fi 802.11 a/b/g/n
(2.4 Ghz), Bluetooth 2.1-A2DP with iOS 4.0.

With a set of ten persons with no prior training with the CUBE, the test
consists of starting a YouTube streaming video on the device one d1 (Desktop
Windows). Then, migrate by clicking on the extension icon in the browser on
d1, and then choose fluently move the video to d2 (Desktop Windows) with the
actual time elapsed. In the sequence d2 sends the content to d3 (Tablet Android).

User-Side Service Synchronization in Multiple Devices Environment 461

This sequence repeats towards d3 → d4 (Android to iOS) and d4 → d5 (iOS to
iOS) to finally going back to the first device d1 (Desktop Windows). We note
that the user must migrate the video towards the five different devices. Figure 7
shows the steps towards different devices.

Fig. 7. The YouTube content is fluently moved around different set of devices D owned
by a User.

In the context of multiple-devices within multiple operating systems, there
are different aspects to consider regarding the evaluation in the CUBE scenario,
for example, privacy, throughput, user-experience, interaction time. Since there
is no other proposition that synchronizes web-service at the user-side, the way
we found to evaluate the CUBE was comparing its execution with YouTube itself
synchronized at Server-side. For this test, we consider the wasted time to play a
given video with and without the CUBE.

5.1 Results

In this second feasibility test, we achieved the expected results regarding the
design of the CUBE within the modification of the user-centric perspective.
Moreover, the separation of the CUBE as an extension to adding in-browser
changed only a few things from the implementation perspective, without com-
promising the CUBE structure already defined.

We also could achieve the RESTful principles presented in the CUBE, such
as high interoperability, security in all devices, system performance, etc. Regard-
ing the constraints RESTful, we respected several, such as stateless interaction,
resource linking, uniform interface, identification or addressability of resources,
hypermedia for decentralized resources, etc.

Regarding the dependency and security of the third-party to retrieve data
from YouTube, the CUBE worked as expected. We note the formal description
of devices and services helped us from an implementation perspective to under-
standing and adequately mask the traceability of the devices. Therefore, the
server was not aware of the migration between devices. Since the continuity of
the video in the {d2, d3,... d5}, is independent on each device, the request to the
server was “resume” the task. That means, to the third-party server, the behavior
was just a “pause/resume” action rather than a new connection. Therefore, the
formal description helped us to assure that the CUBE works as the only respon-
sible for maintaining a state of a given service, even if a third-party is required.
Any further information regarding the functionalities or user-experience, a video
with another test of the LiquidTube is available on YouTube on the following
link: https://youtu.be/-TYPRXtC7Lw.

https://youtu.be/-TYPRXtC7Lw

462 C. P. da Silva et al.

5.2 Evaluation

We used a video1, with 2’31” long and followed the following protocol. We
requested to 10 different users to watch the video and reproduce the same behav-
ior with and without the CUBE. The user should fluently migrate the video at an
exact point (minute, second, and milli-second) from a device to another one. We
measure the interaction time wasted by each user when trying to move towards
the five types of equipment.

We report the results of the CUBE in Fig. 8. In (a) the interaction time when
users are trying to move from one device to another fluently. In (b), the total
time wasted to fluently moving across all five types of equipment. The results
show the interest of our approach as an alternative to the classical server-side
approach.

The analysis reveals that the users average with the CUBE spent 5.821 s to
migrate the video across five devices completely. On the other hand, without the
CUBE, the same users spent 68.101 s to reproduce the same procedure. Thereby,
the CUBE is up to ≈12 times faster than the traditional YouTube cloud-based
synchronization procedure.

Finally, since there is no particular procedure to follow, those already familiar
with browser navigation, such as buttons or extensions, or even in mobile since
the CUBE deploys natively on the share button. Therefore, users considered
intuitive and easy to follow and migrate the video using YouTube from the
CUBE.

To the best of our knowledge, our work is the only one that synchronizes web
services at the user-side.

6 Related Work

To better positioning this paper contribution regarding the existent works on the
state-of-art, we recall that the CUBE relies its principles upon the user-centric
approach for managing devices interaction and owning services. Our aim here is a
better understanding of how authors are dealing with web-services synchroniza-
tion at the user-side without continuously depending on a cloud/server-based
system. Moreover, we are trying to find a solution that addressed web-service
synchronization at the user-side without a server dependency and applied in a
multiple- devices/operating systems environment.

6.1 Server-Side Synchronization

Companies such as Apple have their outstanding Handoff’s, which keep track
of state and services on their Cloud and can migrate these features and func-
tions over multiple devices running iOS. On the other hand, the Nextbit’s Baton
or Google Docs is the Android solution for devices with their operating sys-
tem. While Nextbit concentrates on native apps, Google Docs does web service
synchronization through a web browser.
1 https://www.youtube.com/watch?v=nuPZUUED5uk.

https://www.youtube.com/watch?v=nuPZUUED5uk

User-Side Service Synchronization in Multiple Devices Environment 463

Fig. 8. The evaluation demonstrates difference regarding the user experience with and
without the CUBE.

On the path of multiple device approaches, the work presented by Hamilton
et al. [3] deals with the services synchronization in Android devices through a
framework called Conductor that make use of WebSockets, and a color system
for pairing devices.

The work of Wolters et al. [15], deals with Android cross-device synchro-
nization. They use a collaborative service over a single external device where a
different subscriber can change some data and send it back to the original user.
However, they do not present any screen capture, neither achieved results.

Iyer et al. [8] present an Android cross-device platform to provide seamless
integration with a simplified programming model. They work over a run-time
binding of the services with the application rather than at the compile time.
They also deal with the behavior of mobile devices. However, there are no further
information, os feasibility tests.

In a collaborative scenarios of multiple connected devices, the platform
Mobilis from [10] has a purpose of supporting developers to create collabora-
tive apps. Mobilis works as a third-party provider with some features to deploy
web services over multiple devices within same operating system.

464 C. P. da Silva et al.

The last contribution of Server-Side synchronization is the work of Gallid-
abino et al. [2], called Liquid.js. Several papers previously mentioned Liquid
Software principles, e.g., fluidity, seamless moving, etc. However, this work in
specific presents Liquid Software bases over Hartman’s work, as we also do.

They proposed a framework that implements multiple-device within different
operating systems and services, but all rely on an API or browser to run. In
this case, the sense of running on iOS or Android over a browser does not fit
multi-OS since there are no native apps deployed. However, it is inspiring to
see functionalities such as cloning and migration over a framework under Liquid
Software concepts.

6.2 User-Side Synchronization

The paradigm User-side versus Server-Side well described by Paulheim et al.
in [9]. Their work presents concepts of the real World problems regarding the
available technologies. They are also concerned about web services concepts, such
as modularity, seamlessly integration, and the service state. They also mentioned
an implemented prototype working as a middleware running over a single device,
but and there is no cross-device.

Baoping et al. present another work that proposed middleware [6]. Here
authors presented a request-based mediation framework that works for dynamic
invocation of web services for generating the corresponding mediator. However,
there is no demonstration or feasibility test, only mention of improvement with-
out further details.

Regarding shared data over multiple devices, the work of Nicolai et al. [7]
demonstrates data transfer (copy/paste) in Android devices by proximity using
a pattern. Regarding the devices and OS, no more details are given.

Regarding the User-side synchronization, there is a gap of approaches that
deals web service synchronization within multiple-devices and different operating
systems. Therefore, we present at Table 1 the current works regarding the main
axes from the CUBE, that means, server or client-side synchronization, same or
multiple-devices, and same or multiple-operating systems.

Table 1. Approaches and contributions from State-of-the-Art.

The Paulheim Baoping Nicolai Hamilton Wolters Iyer Mobilis Gallidabino

CUBE [9] [6] [7] [3] [15] [8] [10] [2]

Server-side synchronization NO NO NO NO YES YES YES YES YES

User-side synchronization YES YES YES YES NO NO NO NO NO

Multiple operating system YES NO NO NO NO NO NO NO NO

Same operating system YES YES YES YES YES YES YES YES NO

Multiple device YES NO NO YES YES YES YES YES YES

Same device YES YES YES NO NO NO NO NO NO

User-Side Service Synchronization in Multiple Devices Environment 465

7 Conclusions

In this paper, we described in further detail the CUBE. A system-model archi-
tecture that uses concepts of REST, RESTful, and user-centric to give a solution
that fluently migrates web services instances synchronized at user-side within a
multiple-devices/operating system environment. The CUBE, as modeled, con-
verges towards the ability required to dealing with the challenges of the user-side
synchronization.

Across the existent works of server- user-side synchronization, we could also
demonstrate the lack of approaches that deal with web services synchronization
at user-side in a multiple-devices environment, and regardless of the operating
system.

Thus, with a formal description of the necessary elements required to build
the CUBE, we were also able to better understanding traceability measures
within devices and services. Moreover, dealing with a tight-coupling service such
as YouTube, has required an adaptation of our architecture to deal with the
RESTful constraint of hypermedia controls to change data/status. Then, we were
able to propose an enhancement in our Pool Area to deal with this challenge.

We have also presented the feasibility test, called LiquidTube, in an uncon-
trolled scenario with a tight-coupling service such as YouTube, to move a video
through multiple-devices fluently. An individual analysis demonstrated that
users are more comfortable with the CUBE to migrate the video. For each user,
the wasted time to migrate the video per device was 1.1642 s with the CUBE,
while users spent 13.6202 s without the CUBE, which means users are up to
11.6991 faster while using the CUBE. This individual analysis converges with
the average founded and explained in the Evaluation subsection. The analysis of
this information demonstrates the feasibility of the CUBE, and also reflects the
interest of our approach.

Regarding our future steps, further tests will be done to take into account
other parameters like network throughput for Wi-Fi, 3G, 4G and cable con-
nections, and also privacy requirements to deploy multiple services. Moreover,
regarding the user experience, we will conduct other different tests based on
System Usability Scale formats (SUS) with different web services deployed from
the CUBE. We also note that we drive our efforts towards a patent procedure
for the CUBE.

We also intend to make the CUBE a shared resource environment. That
means we may be able to create a model-system, like a cluster, to enhance
processing and store capacities for a given web service without depending on
a cloud-based system. These functionalities drive us to follow the principle of
elastic systems but applied at the user-side. Furthermore, we intend to explore
mobile sensors to fluently moving web services according to user movement and
point of interest. Thus, the CUBE will also address the IoT device’s perspectives.

466 C. P. da Silva et al.

References

1. Gallidabino, A., et al.: On the architecture of liquid software: technology alterna-
tives and design space. In: Proceedings of 13th Working IEEE/IFIP Conference on
Software Architecture (WICSA). IEEE (2016)

2. Gallidabino, A., Pautasso, C.: The liquid.js framework for migrating and cloning
stateful web components across multiple devices. In: Proceedings of the 25th Inter-
national Conference on World Wide Web, WWW 2016, Montreal, Canada, 11–15
April 2016, Companion Volume, pp. 183–186 (2016)

3. Hamilton, P., Wigdor, D.J.: Conductor: enabling and understanding cross-device
interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI 2014, pp. 2773–2782. ACM, New York (2014)

4. Hartman, J., Manber, U., Peterson, L.L., Proebsting, T.: Liquid software: a new
paradigm for networked systems. University of Arizona, Tucson, AZ, USA, Tech-
nical report (1996)

5. Hartmann, F.: User-Centric Networking: Privacy- and Resource-Awareness in
User-to-User Communication. Ph.D. thesis, Karlsruhe Institute of Technology, Ger-
many (2017)

6. Lin, B., Gu, N., Li, Q.: A requester-based mediation framework for dynamic invo-
cation of web services. In: 2006 IEEE International Conference on Services Com-
puting, pp. 445–454 (2006)

7. Marquardt, N., Ballendat, T., Boring, S., Greenberg, S., Hinckley, K.: Gradual
engagement: facilitating information exchange between digital devices as a func-
tion of proximity. In: Proceedings of the 2012 ACM International Conference on
Interactive Tabletops and Surfaces, ITS 2012, pp. 31–40. ACM (2012)

8. Narayana, I.A., Roopa, T.: Extending android application programming framework
for seamless cloud integration. In: Proceedings of the 2012 IEEE First International
Conference on Mobile Services, MS 2012, pp. 96–104. IEEE Computer Society,
Washington (2012)

9. Paulheim, H.: Ontology-based System Integration. In: Ontology-based Application
Integration, pp. 27–59. Springer, New York (2011). https://doi.org/10.1007/978-
1-4614-1430-8 3

10. Schuster, D., Lübke, R., Bendel, S., Springer, T., Schill, A.: Mobilis - comprehensive
developer support for building pervasive social computing applications. In: PIK -
Praxis der Informationsverarbeitung und Kommunikation, vol. 36 (2013)

11. da Silva, C.P., Messai, N., Sam, Y., Devogele, T.: Diamond - a cube model pro-
posal based on a centric architecture approach to enhance liquid software model
approaches. In: Proceedings of the 13th International Conference on Web Informa-
tion Systems and Technologies-WEBIST, pp. 382–387. ScitePress (2017)

12. da Silva, C.P., Messai, N., Sam, Y., Devogele, T.: CUBE system: a REST and
RESTful based platform for liquid software approaches. In: Majchrzak, T.A.,
Traverso, P., Krempels, K.-H., Monfort, V. (eds.) WEBIST 2017. LNBIP, vol. 322,
pp. 115–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93527-0 6

13. da Silva, C.P., Messai, N., Sam, Y., Devogele, T.: Liquid mail - a client mail
based on CUBE model. In: 38th IEEE International Conference on Distributed
Computing Systems, ICDCS, Vienna, Austria, 2–6 July 2018, pp. 1539–1540 (2018)

14. Suckling, J., Lee, J.: Integrating environmental and social life cycle assessment:
asking the right question. J. Ind. Ecol. 21(6), 1454–1463 (2017)

15. Wolters, D., Kirchhoff, J., Gerth, C., Engels, G.: Cross-device integration of android
apps. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS,
vol. 9936, pp. 171–185. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46295-0 11

https://doi.org/10.1007/978-1-4614-1430-8_3
https://doi.org/10.1007/978-1-4614-1430-8_3
https://doi.org/10.1007/978-3-319-93527-0_6
https://doi.org/10.1007/978-3-319-46295-0_11
https://doi.org/10.1007/978-3-319-46295-0_11

An Approach to Build P2P Web Extensions

Rodolfo Gonzalez1, Sergio Firmenich1,2(B), Alejandro Fernandez1, Gustavo Rossi1,2,
and Darío Velez1

1 LIFIA, CIC, Facultad de Informática, Universidad Nacional de La Plata, Buenos Aires,
Argentina

{rgonzalez,sfirmenich,casco,gustavo}@lifia.info.unlp.edu.ar
2 CONICET, Buenos Aires, Argentina

Abstract. Web extensions are currently the most frequently used mechanism for
end-users to externally adapt and enrich the web.While most functionality offered
by extensions runs on the browser, extensions that offer collaboration, complex
computation, or massive storage rely on a centralized server. Relying on a server
increases the cost of building, deploying, and maintaining web extensions (even
small ones). This paper presents a novel P2P approach to build web extensions.
It removes the need for a centralized server while hiding behind a framework
the complexity of building P2P extensions. It uses a middleware to manage the
resources offered by the browser so multiple P2P extensions can coexist, without
degrading the browser’s performance. This paper discusses the main challenges
of building P2P web extensions, presents the approach, and shows its potential
with a proof of concept.

Keywords: Web extensions · Peer to peer

1 Introduction

From the perspective of the average web user, the web browser has not changed much
since it was first introduced. Most of the browser’s evolution over the years was aimed
at handling richer and more interactive content, offering better security, and dealing
with aspects of the web that most users are unaware of. Browser plug-ins (currently
well-known as web extensions) were introduced to enable customization of the browser
by third parties. Web extensions [1] are nowadays the de facto standard to customize
the web browser and consequently augment the user’s experience with the web. Web
extensions can change the browser behavior, introduce changes to visited websites and
also to provide new web pages delivered with the extension once installed in the Web
browser. A web extension is made of a combination of Javascript, HTML, CSS, and
configurations files. A well-defined API [1] governs the interaction of extensions with
the browser and with the visited web pages. Extensions can communicate with external
services (via HTTP requests), for example, to augment the visited web page with content
from other sources, to store information on the cloud, to perform complex computation,
and to support collaboration. In most cases, regardless of the complexity of the function-
ality they offer, such networked extensions are designed in a client-server architecture.

© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 467–474, 2020.
https://doi.org/10.1007/978-3-030-50578-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_31&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_31

468 R. Gonzalez et al.

This means that they depend on a server-side component/service, which increases the
technical skills required to create the web extension. In addition, depending on a server
component complicatesmaintenance and increases the costs associatedwith deployment
for production.

We argue that building web extensions in a P2P style opens new opportunities to
augment the web, especially when collaboration is involved, by removing the need for a
server component. Following the P2P philosophy, web extensions are designed in order
to allow users to collaborate by sharing the computation, storage and networking capa-
bilities of their browsers, and by explicitly solving tasks for one another. In this article,
we discuss the challenges that building P2P extensions present and outline our proposed
approach based on a middleware that manages the resources offered by the browser so
multiple P2P extensions can coexist, without degrading the browser’s performance.

This article is structured as follows. Section 2 motivates the approach through an
example. Section 3 outlines our approach, and Sect. 4 presents a proof of concept.
Related works are discussed in Sect. 5. Finally, in Sect. 6 we conclude and reflect on
future works.

2 Motivation: Augmenting News Portals with Visualizations

Consider that we want to improve navigation in news portals by augmenting them with
visualizations of its latest articles and related articles from other news portals. One
alternative to creating such augmentation implies:

1. Harvesting the articles in the portals, starting from those featured on the homepage
and recursively following the links to other articles in the portal, until a maximum
level N has been reached.

2. Extracting for each article its author, date, media type, title, text, and links to other
articles in the portal.

3. Characterizing each article by topic (for instance, using TF-IDF) and by sentiment
(using an opinion lexicon), and then computing article similarity.

4. Building and presenting alternative visualizations of the articles (topics cloud,
timeline, sentiment, etc.) that visitors can use to navigate.

The augmentation can be realized as a web extension. With the support of the exten-
sion, visitors annotate web sites’ DOM to define how to harvest articles and their prop-
erties (for example, using the approach defined in [2]). They annotate the portal’s home
page (to identify entry points), and one article (that serves as a prototype). Upon visiting
an annotated news portal, the extension automatically and transparently crawls those
news portals for which an annotation is available, harvests the content, and builds or
updates the visualization.

Simple as it sounds, building such an extension presents some challenges. For any
mainstream news portal, the number of articles to process can easily be in the order
of hundreds. On such scale, crawling and processing are both time-consuming and
computation-intensive, rendering the visualization (and possibly the news portal) unus-
able. Moreover, all this work would be performed by each visitor using the extension

An Approach to Build P2P Web Extensions 469

unless some collaboration mechanism to avoid unnecessary work duplication is used.
To respond to these challenges, and assuming that many users will install the extension,
we propose designing it in a P2P style. Doing so yields the following benefits:

• Extensions can collaborate to reduce time and workload. When an extension starts
the process, it can delegate part of the crawling, harvesting and processing tasks to
other available peers. In fact, performing these tasks would be unnecessary if a peer
has already performed them and the results are available.

• Navigable visualizations of news articles as well as the results of harvesting (i.e.,
article’s data), and processing (i.e., topic, sentiment, and similarity models) may be
replicated and shared without the need of a central server.

3 The Approach in a Nutshell

To simplify development, and reducing development and execution errors, we separate
different concerns into two supporting artifacts. First, a middleware that manages all
P2P extensions installed in the browser, handling message exchange, and monitoring
workload. Next, a framework that abstracts the key domain objects (such as message
and peer), provides a clear interface to send messages and hides interaction with the
middleware. Following this approach, developers do not require any other technical
skill than those required to write any other web extension: JavaScript, HTML, and CSS
and also the same kind of deployment process, i.e. just to install the extension in a Web
browser.

Figure 1 shows the overall approach. A web extension implements the P2P mid-
dleware and exposes the P2P API to any other web extension installed on the same
browser. Other web extensions can directly execute functions in the middleware API
via the message passing mechanisms [1]. However, the recommended way to interact
with the middleware is via the P2P framework. Developers include the framework as a
dependency of their extensions (it is JavaScript library). As it may be appreciated, all
the messages pass through the middleware and are later routed to the corresponding web
extension. For the concrete web extension, a message is a JSON object with the fea-
tures the developers desire. When the messages pass through the middleware (using the
behavior provided by our framework), it is encapsulated with the information required in
the middleware layer (the type of message, timestamp, the extension’s metadata among
others), as Fig. 1 shows at the right.

The P2P extension that delivers the middleware comes with a minimalist user
interface, which allows the user to have control of the messages.

Communication between peers is currently based on WebRTC1. WebRTC brings
real-time video and audio communication to the browser and can be used to transport
other forms of content. It robustly solves the technical challenges in P2P communication.
To establish a direct connection between peers in WebRTC, a discovery and negotiation
method called signaling is used. It involves both parties connecting to a commonly
agreed upon service to decide the mechanisms they will use to connect (as they may

1 WebRTC. https://webrtc.org/ - Last accessed on January 5th, 2020.
.

https://webrtc.org/

470 R. Gonzalez et al.

Fig. 1. The approach in a nutshell

be located behind firewalls, in NAT’d networks, etc.). The signaling process can be
implemented with any technology compatible withWebSocket/XHR.WebRTC depends
on a commonly known signaling server that introduces a unique point of failure and
turns the architecture into a hybrid P2P. However, it must be noted that our approach still
removes the need for writing and deploying a specific server for each web extension.
We consider this to be a good trade-off while we explore other alternatives.

3.1 Framework

The framework is packaged as a JavaScript library. Once included in the web exten-
sion project, the user must create a class that represents the application (for instance,
P2PNewsVisualization), and make this class inherit from the extension point offered
by the Framework, which is called AbstractP2PExtension. This extension point lets
developers specify the behavior of their web extensions considering two communica-
tion modes: (a) to send a message to another peer without expecting a response, (b) to
send a request message for which a response is expected and must be managed by the
peer that made the request when it arrives. The following list presents the main aspects
to be considered for using the AbstractP2PExtension extension point:

• The developer must instantiate the concrete class and send to the new instance the
connect() message (it is inherited from the extension point), whose purpose is:

– to send the initialize() message to the new instance, which is a method for which
developers must offer concrete behavior in their classes, among other things, to set
instance variables related to the extension’s metadata (name and id), in order to
uniquely identify the extension.

– to initialize the P2P communication mechanism for the web extension.
– to register the extension in the middleware.

• Developers may use other inherited behaviors to look for peers, and to send
messages/requests to other peers:

An Approach to Build P2P Web Extensions 471

– getPeers(callback): obtains the peers currently connected. Since this method is
asynchronous, a callback function must be passed as a parameter.

– sendMessage(msg, peer): sends a message (first parameter) to a specific peer
(second parameter).

– broadcasting(msg): send a message to all the peers.
– sendRequest(msg, peer): send a request message (first parameter) to a specific peer
(second parameter). It is expected to receive a response.

– sendResponse(msg, peer): send a response using a message (first parameter), and
to a specific peer (third parameter). In this case, themsg (a JSON object) should be
populated with further information about the original request.

• To handlemessages and requests according to its needs, the extensionmust implement
some of the following methods (or all of them):

– receiveMessage(msg, peer): this method will be executed when a new message is
sent to the extension. It is not expected to deliver a response. It receives the message
as a first parameter and the peers who sent it as the second parameter.

– processRequest(msg, peer): this method will be executed when the extension
receives a request. It is not expected to create and deliver a response during the
method execution. This method is suitable for human (interactive) collaboration.
Its response depends on the user’s interaction which occurs asynchrously.

– automaticProcessing(msg, peer): this method will be executed when the exten-
sion receives a request and this request was marked as automatic (it is just a
flag in the message). This method must return a JSON object intended to be used
as a response, and the framework automatically delivers it when the method fin-
ishes. This method is specially designed for computing collaboration, that can be
automated, i.e. without depending on user intervention.

• If the extension sends requests, it must implement the processResponse(msg, peer)
method to manage the responses to the requests previously done.

Figure 2 shows a simplified version of our framework plus another class showing how
to inherit from the extension point, named AbstractP2PExtension. The P2PConnector
class is the one that uses the middleware API. Two other classes provide simple
abstractions for the peer and the message. The Message class is managed by the
AbstractP2PExtension and the P2PConnector objects, meanwhile, the concrete class
representing the web extension (P2PNewsVisualization) always work with the JSON
Object defined by the developer.

4 Proof of Concept

As proof of concept, we have developed a variation of the P2P extension discussed in
Sect. 2. In this case, we have chosen to collaboratively perform the scraping and the
processing of news articles. Note that in the P2P extension, the collaboration among
peers could be organized with different granularity levels, which at the end depends on

472 R. Gonzalez et al.

Fig. 2. The framework and its extension point, the class AbstractP2PExtension

developers’ decisions. For the sake of space, in this example, we use a coarse granularity
to simplify the source code shown in Fig. 3. The main idea is that the peer that starts
the process (pA) requests another peer to handle an extraction template. The extraction
template includes a news portal home’s URL, the annotations to extract the news on this
home page, and the annotations to extract information for a particular news article. In
this way, each peer will be requested to start the scraping process from a particular news
portal, applying the same extraction template to each news article crawled. As a result,
each peer will follow a different crawling and scraping path. For each news article, the
peer must also extract the topics (basically, calculating the most relevant words) and
then compute the sentiment analysis. Then, the extracted and processed news articles
are sent to pA together with their metadata.

class P2PNewsVisualization extends AbstractP2PExtension{
startCollaborativeScraping(){

this.getPeers(this.collaborativeScraping);}
collaborativeScraping(peers){

templates = this.restoreExtractionTemplates();
for (peer in peers){

 ...
 msg = {'extractor':templates[j], 'automatic':true};

this.sendRequest(peer, msg);
 ...

}
}
processResponse(msg, peer){this.storeNews(msg.news);}
automaticProcessing(msg, peer){

let news = this.processWebSiteExtractor(msg.extractor);
return {'news':news};

}
processWebSiteExtractor(templateExtractor){

let news = this.extractNewsFrom(templateExtractor);
news = this.augmentNewsWithTopics(news);
news = this.applySentimentAnalysis(news);
return news;}

}

Fig. 3. Source code excerpt for the news visualization scenario.

Figure 3 shows an excerpt from the source code (focused on those aspects related
to our approach), whose main class is shown in Fig. 2, named P2PNewsVisualization.

An Approach to Build P2P Web Extensions 473

The source code example is illustrative, so we do not take into account in this excerpt
the number of peers in relation to the number of news portals.

For the proof of concept, we defined extraction templates for three news portals. We
execute scraping and processing of news considering two scenarios:

• Stand-alone: pA processes all the available extraction templates.
• P2P: pA processes one extraction template and delegates the rest of the available
extraction templates to other peers (one extraction template per peer).

A total of 228 web page’s DOMS were processed. For the stand-alone scenario, it
took 298 s. For the P2P scenario, which was based on three web browser (pA plus two
peers), it took 120 s. Although the difference is remarkable, we did not take the best
advantage of the P2P approach, given that using more peers and more fine granurality
in the tasks requested, probably would improve the total time.

5 Related Works

To the best of our knowledge, there are two well-known applications of P2P in web
browsers. First, there are approaches to support collaborative computing. For instance,
Pando offers a platform in which a user must install a server and run it in his own
machine. Then, other users may access this back-end application with their browsers to
offer it for computing [5]. On the other hand, it has been proposed to use the browser as a
distributed platform for content delivery [6, 9]. Over this idea, a work studies the use of a
communication protocol [7] that improves how to program overWebRTC. [10] proposes
a generic distributed application server which is also currently supported by existingweb
browsers such as Beaker Browser [11]. Other approaches use P2P communication for
specific aims, such as improving virtual environments [8].

Although these works show that decentralizing the Web is a current topic, these
are far to be applicable to web extensions with the final goal of improving the overall
user’s web experience. Server-side support for web extensions was already studied and
analyzed [4], in which authors propose a Model-Driven Web Augmentation approach to
model back-end requirements. Although the complexity for developing, deploying and
maintaining the back-end component is clearly better than using an ad-hoc approach,
we believe that a P2P approach based exactly on the same technology required for
programming web extensions is a more suitable and convenient way, at the same time
that it removes any need of a centralized server application.

6 Conclusions and Future Works

External Web structures (i.e. “defining hypermedia structures externally of the involved
documents” [3]) are software artifacts that improve the overall Web experience. Web
extensions are the most common and convenient way to develop and deploy this kind of
software. Without an intermediate server, a web extension cannot communicate to the
same web extension installed in another user’s browser. Even more, when some com-
munication between different web browsers is required, new technical barriers appear

474 R. Gonzalez et al.

(for instance, dealing with back-end technologies beyond HTML, CSS, and JavaScript).
Sever-side support has been very important for different reasons [4].

This paper presented an approach build P2Pweb extensions, which aims to eliminate
the need for a centralized server to communicate web browsers and users. A signaling
back-end service has been designed and implemented. It may connect peers for any
web extension or for a specific one without requiring changes on it, neither on the P2P
web extensions source code because it was conceived as a generic single-purpose (to
connect peers) platform. Although we believe that our approach improves the potential
of web extensions without requiring a centralized application, we still need to create
and evaluate more scenarios. For instance, pervasive and distributed storage should be
supported by the framework. However, we already could apply our approach in several
scenarios. Besides future evaluations and experiments in this regard, it is also mandatory
to studywhich is the power of a P2Pweb browser, aswell as how to continuouslymeasure
and limit this kind of collaboration in order to not spoil the overall Web experience.

References

1. Browser Extensions. Draft Community Group Report 23 July 2017. https://browserext.git
hub.io/browserext/. Accessed 20 Jan 2020

2. Bosetti, G., Firmenich, S., Rossi, G., Winckler, M., Barbieri, T.: Web objects ambient: an
integrated platform supporting new kinds of personal web experiences. In: Bozzon, A., Cudre-
Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 563–566. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-38791-8_49

3. Bouvin, N.O.: From notecards to notebooks: there and back again. In: Proceedings of the
30th ACM Conference on Hypertext and Social Media, pp. 19–28, September 2019

4. Urbieta,M., Firmenich, S., Bosetti, G.,Maglione, P., Rossi, G., Olivero,M.:MDWA: amodel-
driven web augmentation approach - coping with client- and server-side support. Softw. Syst.
Model. (2020, in press)

5. Lavoie, E., Hendren, L., Desprez, F., Correia, M.: Pando: personal volunteer computing in
browsers. In: Proceedings of the 20th International Middleware Conference, pp. 96–109
(2019)

6. Kobusińska, A., Wolski, A., Brzeziński, J., Ge, M.: P2P web browser middleware to enhance
service-oriented computing—analysis and evaluation. In: 2017 IEEE 10th Conference on
Service-Oriented Computing and Applications (SOCA), pp. 58–65 (2017)

7. Tindall, N., Harwood, A.: Peer-to-peer between browsers: cyclon protocol over WebRTC.
In: 2015 IEEE International Conference on Peer-to-Peer Computing (P2P), pp. 1–5. IEEE,
September 2015

8. Koskela, T., Vatjus-Anttila, J., Dahl, T.: Communication architecture for a P2P-enhanced
virtual environment client in a web browser. In: 2014 6th International Conference on New
Technologies, Mobility and Security (NTMS), pp. 1–5, IEEE, March 2014

9. Vogt, C., Werner, M.J., Schmidt, T.C.: Leveraging WebRTC for P2P content distribution in
web browsers. In: 2013 21st IEEE International Conference on Network Protocols (ICNP),
pp. 1–2. IEEE, October 2013

10. Jannes, K., Lagaisse, B., Joosen, W.: The web browser as a distributed application server:
towards decentralized web applications in the edge. In: Proceedings of the 2nd International
Workshop on Edge Systems, Analytics, and Networking, pp. 7–11, March 2019

11. Beaker Browser. https://beakerbrowser.com. Accessed 29 Jan 2020

https://browserext.github.io/browserext/
https://doi.org/10.1007/978-3-319-38791-8_49
https://beakerbrowser.com

Web-Based Learning

Blended or Distance Learning?
Comparing Student Performance Between University

and Open University

Erkki Kaila1(B) and Henri Kajasilta2

1 University of Helsinki, Helsinki, Finland
erkki.kaila@helsinki.fi

2 University of Turku, Turku, Finland

Abstract. Programming and computer science are nowadays taught in various
institutions to a very heterogeneous group of people.Open universities are a typical
example of non-traditional educational institutes. Online learning and blended
learning models are often utilized in open universities because the students rarely
study full time. In this paper, we present a study where four programming and
computer science courses were taught in the Open University and in the university
at the same time. A blended learningmethodologywas used to teach the courses in
the university. The students in the open university could decide freelywhether they
wanted to take the courses fully online or to participate into classroom sessions
as well. Moreover, no lectures were given in the open university. Instead, the
students could download lecture handouts and other material online. The results
from continuous assessment and the final exam of four shared IT/CS courses were
analyzed. We found out that although there are some statistical differences in the
results of individual sections, in general the course results are quite similar in both
universities. However, the incomplete data of chosen methodologies prevents us
from fully answering the research questions.

Keywords: Online learning · Open University · CS education · Learning
analytics · Blended learning

1 Introduction

Computer science, and especially programming, are gaining more and more interest
among all people. In addition to traditional universities and other official schools, it is
nowadays quite common to learn to program by using MOOCs (see for example [1]
or [2]) or in the open university courses. Because the number of students attending the
classes can get high (as the largest MOOCs can host tens of thousands of students), and
because the students may be located all around the world, online learning has become
the only reasonable method for teaching these courses. Although the usage of modern
technology opens a variety of possibilities, online education also means that some of
the traditional forms of teaching, such as lectures, may not be as feasible as they were
before.

© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 477–484, 2020.
https://doi.org/10.1007/978-3-030-50578-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_32&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_32

478 E. Kaila and H. Kajasilta

In this article, we compare learning by using somewhat traditional approach in the
University and more open and free approach in the Open University. The same four
courses were taught side by side in University of Turku, Finland during the academic
year of 2017 to 2018 in both universities. The students in the Open University had more
freedom of choice in their study methodology, but the course contents and the staff
responsible were the same for both universities. We are presenting the results from all
shared courses in both universities, including the final scores of the exams and the points
collected from assignments and exercises throughout the course. Based on the results,
we try to predict the significance of the differing features in the course methodologies.
Hence, this article tries to answer to the following research questions:

RQ1. Are there differences in learning results between students utilizing blended
learning and distance learning methodologies?
RQ2. Is there difference in learning between different types of courses in the shared
curriculum?

2 Related Work

Selecting the most efficient study methodology (or even defining what we mean by
efficiency in learning) might be a cumbersome task. According to a systematic study
of methods for teaching programming [3], the courses that utilize relatable content and
pair programming lead to the best learning results, alongside using a CS0 course before
the first programming course. The methodology used in all courses in this study is
utilizing these findings as closely as possible. For example, a mechanism similar to
pair programming (see [4]) is used in all courses, regardless of whether they are “pure”
programming courses or not.

Blended learning models (in other words, models that combine online learning and
“traditional” classroom learning) have proven to be quite beneficial in learning to pro-
gram. In [5] the authors presented a blended model to teach programming, with focus
on developing tools for online education. The model proved to be quite successful in
relation to pass rates. Several other experiments to incorporate blended learning into
computer science (and especially programming) education have been presented later,
see for example [6].

In some cases, there have been difficulties in the adaptation of blended models:
according to [7], the students in a blended machine learning course where students
“had concerns about the coupling of online and in-class components”. In [8] the authors
analyzed the student outcomes in a web-enabled blended learning course, and out of 29
variables (or actions), determined the ones that correlated most with the course grade.
According to the author, the actions that influenced the course success the most were
“reading andpostingmessages”, “wiki edit” and “content creation contribution”. [9] goes
one step deeper by presenting 21 “brain-compatible” learning principles that should be
utilized in blended learning courses.

Distance learning, e-learning or online learning typically refers to education where
learning scenarios take place entirely over internet. However, even the usage of termi-
nology itself can be inconsistent. According to [10] the terms distance learning, online

Blended or Distance Learning? 479

learning and e-learning are considered exactly the same thing by some researchers,
but some think they mean different things. For example, e-learning was considered as
“learning that happens with computers while distance learning is done by postal mail”
by some, or as a model that was blended with face-to-face learning by others.

3 University and Open University

For the study, a four-course combination fromUniversity of Turku, Finlandwas selected.
The same four courses were taught at the same time in the University and in the Open
University, mainly by the same staff. The Open University is open for anyone interested
with no prerequisite knowledge or degrees. In practice, the students in the Open Uni-
versity are usually either interested in applying to a university or just having a general
interest towards the topic with no deeper goals. The students taking the courses in the
University are typically computer science or engineering majors or other majors from
the Faculty of Science and Engineering.

3.1 Shared Curriculum

The curriculum in the Open University contains four courses. The same four courses are
taught in the University. The courses are listed in Table 1.

Table 1. The courses included in the study

Course name Period ECTS Abbreviation

Introduction to Computer Science 1 1st 5 CS1

Introduction to Algorithms and Programming 2nd 6 AP

Introduction to Object-Oriented Programming 3rd 7 OOP

Introduction to Computer Science 2 4th 5 CS2

The CS1 course is designed to be the first introduction to the topic in the curriculum.
The topics include algorithmic thinking, binary and hexadecimal systems and Boolean
algebra. The AP course is a typical introductory course to programming using Java as the
programming language. The OOP course focuses on object-oriented programming. The
topics covered include writing classes, inheritance, interfaces, abstract classes, polymor-
phism and advanced error handling. Finally, in the CS2 course, the functional principles
of computers are covered starting from logic circuits to machine language.

All courses are taught on the same schedule. In the Open University, one course
per eight-week study period is taught. In the University, additional courses are included
in the curriculum. Considering content, the courses are exactly similar in both univer-
sities. Moreover, the same staff members are involved in teaching the courses in both
universities.

480 E. Kaila and H. Kajasilta

3.2 Methodology Description and Comparison

The methodology utilized in both universities emphasizes active learning. Each course
is built upon the same basic principles of the tutorial-based learning methodology [11].
Some of the key features are shortly explained below.

The courses are divided into seven weekly modules. Each week the lecture material
is accompanied with automatically assessed exercises that are meant to be completed
before other material. Active learning is enabled with automatic assessment and made
meaningful with immediate feedback. Continuous assessment is emphasized by making
the exercises compulsory and by giving a reward for completing them: completing more
than the minimum required amount earns students bonus points for the final exam.
Gamification is utilized by elements such as virtual trophies and progress bars.

In tutorial-based learning, tutorials (combination of learning material and digital
exercises) are completed in collaboration with another student. The students use the
same computer and the controller is frequently changed. This kind of collaboration
has been proven quite beneficial for learning (see for example [12]). One tutorial was
provided each week with one-week time to complete it.

The main difference between methodologies were lectures. In the University, each
week consisted of a lecture (followed with weekly exercises) and a tutorial session. In
the Open University, the lecture handouts were shared with students, but no lectures
were organized. The only exception was a single summary lecture at the end of each
course. Participation into the session was optional, and by estimation, a little less than
half of the students did participate.

Another difference between universities were the required attendances: in the Uni-
versity, the students were required to participate in six out of all seven tutorial sessions.
In the Open University, the students could attend the sessions or answer the tutorials
at home, however they preferred. The attendances were not registered, but according
to course staff the number of students attending the sessions was the largest in the first
course and then slowly decreased towards the end of the year.

A summary of methodologies in both universities is displayed in Table 2.

Table 2. Methodologies summarized

Feature University Open University

Lectures Optional, bonus awarded for
attendance

Materials only, one summary lecture
at the end of each course

Tutorials Min. 50% of points and attendance
required

Min. 50% of points required

Weekly exercises Min. 50% of points required Min. 50% of points required

4 Research Setup

The study was conducted in the academic year of 2017 to 2018. The academic year is
divided into four study periods, with one course in each period. The data was collected

Blended or Distance Learning? 481

automatically by ViLLE [13], the online tool utilized for the exercises, tutorials and as a
learning management system (LMS). In the University courses, Moodle (see e.g. [14])
was used as an LMS, but all tasks involving active learning were still done in ViLLE.

4.1 Participants

The number of participants varies between courses. In the University, not all courses are
mandatory for all students in the faculty. In the Open University, dropping out after the
first course(s) is more common than in the University. To keep the results comparable,
we counted a student as a participant in a course if he/she collected at least some points
in the first week’s tasks. The total number of (active) participants in all four courses are
listed in Table 3.

Table 3. Number of active students in each course

Course University N Open University N

CS1 288 51

AP 264 54

OOP 216 39

CS2 150 25

As seen from the table, the number of students in the Open University is a lot smaller
than in the University courses. The number also is much smaller in the final course,
CS2. In the University, the number is likely smaller because the first three courses are
mandatory for many students in the faculty, but the final course is not. In the Open
University, the students can apply to University by completing the first three courses
with good enough grade, so the fourth course probably attracts less students.

4.2 Method

In this study, we were interested in measuring the differences in average scores between
theOpenUniversity and theUniversity courses. Usually,measuring the value of a param-
eter of a population is too difficult. However, bootstrapping gives us a simple and pow-
erful way to obtain valuable information from our sample parameters. Bootstrapping
is based on random sampling with replacement and allows us to estimate for example
variance, standard error or confidence intervals. In this case, we used bootstrapping to
calculate confidence intervals for our observed average differences.

Majority of the students completed most of the course assignments. On the other
hand, some of the students did not manage to get enough points to take part in the
exam. This score distribution led to high skewness in our data and we hence decided to
use a bootstrapping method called bias-corrected and acceleration bootstrapping [15].
It requires calculating bias and acceleration constants, which are adjusting non-stable
variance and taking into account the skewness in the data.

482 E. Kaila and H. Kajasilta

Three sections were isolated from all courses: (weekly) exercises, tutorials and exam
results. Only the shared assignments, i.e. assignments that were used in both universities,
were included in the analysis. For the results, averagedifferences and confidence intervals
were calculated and compared.Confidence intervalswere reported in the 95%confidence
level.

5 Results

In this Section,wefirst present the results of the individual courses and then a summary of
results combined. The average scores collected from tutorials and fromweekly exercises,
respectively, are displayed in Fig. 1.

Fig. 1. Average scores collected in all course in both universities.

A summary of differences between the two universities is displayed in Table 4.

6 Discussion

The differences between the two universities are mostly quite small. However, there are
some numbers worth taking a closer look. The differences in CS1 and OOP tutorials
were significant (CS1: difference 111.4 points with confidence interval [78. 36, 143.29]
and OOP: 73.2 points with confidence interval [55.89, 103.76]). Moreover, there was
as significant difference in AP tutorials (36.1 with [8.58, 62.45]) and CS1 exam 7.6
with [−1.67, 10.2]. Curiously, the Open University students seemed to outperform the

Blended or Distance Learning? 483

Table 4. Differences between average scores in all courses. Positive value indicates that the
University score was higher.

Course Exercise
diff.

Tutorial diff. Exam diff.

CS1 10.5% 13.2% 7.6%

AP 0.9% 5.6% 5.2%

OOP 6.5% 14.4% −2.7%

CS2 −1.3% 0.5% −13.6%

University students in the two latter courses, but as the number of students in these two
courses in the Open University was quite small (see Table 3), reliable conclusions could
not be made.

Some likely reasons for the differences, visible in Table 4 and Fig. 1 can be presented.
First, we can assume that the students in the Open University were more heterogeneous
in their skills and background. Second, the dropout rate in the Open University was quite
high. These two assumptions connected would somewhat explain the bigger difference
in favor of the University in the first courses, which then gradually disappeared in the
latter courses. Better performance of the Open University students in the final two exams
could be maybe explained by students with less skills (and perhaps not as clearly defined
goals in their studies) dropping out during the school year.

There were two major differences between methodologies in the two universities.
First, the students in the Open University could take the courses as blended or as distance
learning, since no attendances were required. Moreover, there were no lectures in the
Open University; instead, the lecture materials were shared online. Unfortunately, there
are no statistics about which methodology – blended or fully online – the students in the
Open University selected.

7 Conclusions and Future Work

The statistical differences in the results seem to point towards positive answers to both
research questions: there seems to be some differences between students following dif-
ferent methodologies, and the differences vary between different courses. Nevertheless,
the differences are quite small and the limitations with data too big to reliably answer
the questions. In the future, it would be beneficial to collect more data on the students.
Background information, motivation and the attendance data from the Open University
would be highly useful when analyzing the data.

References

1. Spyropoulou, N., Demopoulou, G., Pierrakeas, C., Koutsonikos, I., Kameas, A.: Developing
a computer programming MOOC. Procedia Comput. Sci. 65, 182–191 (2015)

484 E. Kaila and H. Kajasilta

2. Vihavainen, A., Luukkainen, M., Kurhila, J.: Multi-faceted support for MOOC in program-
ming. In: Proceedings of the 13th Annual Conference on Information Technology Education,
pp. 171–176. ACM. (2012)

3. Vihavainen, A., Airaksinen, J., Watson, C.: A systematic review of approaches for teaching
introductory programming and their influence on success. In: Proceedings of the TenthAnnual
Conference on International Computing Education Research, pp. 19–26. ACM (2014)

4. Salleh, N.,Mendes, E., Grundy, J.: Empirical studies of pair programming for CS/SE teaching
in higher education: a systematic literature review. IEEE Trans. Softw. Eng. 37(4), 509–525
(2010)

5. Boyle, T., Bradley, C., Chalk, P., Jones, R., Pickard, P.: Using blended learning to improve
student success rates in learning to program. J. Educ. Media 28(2–3), 165–178 (2003)

6. Deperlioglu, O., Kose, U.: The effectiveness and experiences of blended learning approaches
to computer programming education. Comput. Appl. Eng. Educ. 21(2), 328–342 (2013)

7. Bruff, D.O., Fisher, D.H., McEwen, K.E., Smith, B.E.: Wrapping a MOOC: student
perceptions of an experiment in blended learning. J. Online Learn. Teach. 9(2), 187 (2013)

8. Zacharis, N.Z.: A multivariate approach to predicting student outcomes in web-enabled
blended learning courses. Internet High. Educ. 27, 44–53 (2015)

9. Van Niekerk, J., Webb, P.: The effectiveness of brain-compatible blended learning material
in the teaching of programming logic. Comput. Educ. 103, 16–27 (2016)

10. Moore, J.L., Dickson-Deane, C., Galyen, K.: e-Learning, online learning, and distance
learning environments: are they the same? Internet High. Educ. 14(2), 129–135 (2011)

11. Kaila, E.: Utilizing Educational Technology in Computer Science and Programming Courses.
TUCS Dissertations 230 (2018)

12. Rajala, T., Lokkila E., Lindén R., LaaksoM.-J., Salakoski T.: Students’ perceptions on collab-
orative work in introductory programming course. In: ICEE 2015 - International Conference
on Engineering Education (2015)

13. Laakso, M.-J., Kaila, E., Rajala, T.: ViLLE - collaborative education tool: designing and
utilizing an exercise-based learning environment. Educ. Inf. Technol. (2018). https://doi.org/
10.1007/s10639-017-9659-1

14. Cole, J., Foster, H.: Using Moodle: Teaching with the Popular Open Source Course
Management System. O’Reilly Media, Inc., Newton (2007)

15. Efron, B.: Better bootstrap confidence intervals. J. Am. Stat. Assoc. 82(397), 171–185 (1987)

https://doi.org/10.1007/s10639-017-9659-1

On Teaching Web Stream Processing

Lessons Learned

Riccardo Tommasini2(B), Emanuele Della Valle1, Marco Balduini1,
and Sherif Sakr2

1 DEIB, Politecnico di Milano, Milan, Italy
{emanuele.dellavalle,marco.balduini}@polimi.it

2 DataSystem Group, University of Tartu, Tartu, Estonia
{riccardo.tommasini,sherif.sakr}@ut.ee

Abstract. Web Stream Processing (WSP) is a field that studies how
to identify, access, represent and process flows of data using Web tech-
nologies. One of the barriers that currently limits the adoption of WSP
is the paradigm shift from Web data at-rest to Web data in-motion.
This barrier is especially high when teaching undergraduate students.
To quantify the effort required to learn Web Stream Processing, we run
an Action Research audit with master students at Politecnico di Milano.
In this paper, we present the results of this inquiry, and we discuss the
lesson learned.

Keywords: Web Stream Processing · Stream Reasoning · RDF
Stream Processing · Action Research

1 Introduction

Information is no longer only stored, cleaned and queried to answer precise
questions. Instead, data is collected from all the available sources and analyzed in
real-time, as noisy as it is, exploring all the possible correlations that may occur.
This paradigm shift towards data-in-motion requires not only new approaches
but also some fundamental changes in the underlying assumptions [3].

As members of the Stream Reasoning [4] research community1, we focus on
developing Web Stream Processing solutions that can tame data variety and
velocity simultaneously and, to this extent, we repeatedly question the existing
paradigms. We accept these changes because we observe the problems from a
research perspective. Instead, as practitioners, we notice that stakeholders are
naturally reluctant to fundamental changes since they strive to describe their
needs when they lose reference points, e.g., when we try to explain a problem
that involved both data variety and velocity. Moreover, as educators, we are
concerned about the effort that it takes to build the competencies necessary to
conceive, design, implement, test, validate and deploy continuous applications.

1 http://streamreasoning.org.

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 485–493, 2020.
https://doi.org/10.1007/978-3-030-50578-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_33&domain=pdf
http://streamreasoning.org
https://doi.org/10.1007/978-3-030-50578-3_33

486 R. Tommasini et al.

To foster the adoption of innovative solutions like web stream processing, we
advocate the need for educational resources that can (1) reduce the teaching
effort solving technical challenges, and (2) prepare better professional figures.

In this paper, we present the results of an Action Research (AR) [8] audit
that we run at Politecnico di Milano, in the context of a course on Interoperability
and Semantic Technologies. The contribution of this paper is evidence from the
trenches that i) formulating a continuous information need is difficult, ii) design-
ing a Web stream processing solutions is doable, and iii) implementing it is hard
due to the excessive effort required to set up an experimental environment.

Outline. Section 2 presents the course structure, briefly introducing the con-
tent of the syllabus with tools used in the project works assigned to the stu-
dents. Section 3 explains the Action Research methodology. Section 4 and Sect. 5
present the result of the audit and conclude the paper.

2 The Course

This section introduces the course content, the structure of lectures and the dif-
ferent phases of the project work. The course involved 44 students from the first
and the second year of the master degree in Computer Science and Engineering.
For the project work students were divided in groups of 2 or 3. The 29% of the
students were Italian, while the remaining 71% were from different nationalities.
All the classes were taught in English.

The Course Content. The course of Interoperability and Semantic Technolo-
gies (IST) aims at teaching (i) technologies and methodologies to tame data vari-
ety, i.e., RDF, OWL, SPARQL and Ontology Based Data Access (OBDA) [6];
(ii) solutions for efficient data integration, e.g., Ontop2 [2]; (iii) the essence of
stream processing, i.e., solutions like Esper3, Spark Streaming4, and Flink5 that
tackle data velocity; (iv) the fundamentals of Stream Reasoning [4], i.e., RDF
Stream Processing (RSP) [3] to address variety and velocity simultaneously.

Semantic Technologies are the pillars of data integration on the web. RDF
is the core graph data model that simplifies data integration proposing triples
(subject-predicate-object) as basic building blocks of any data model. OWL 2,
i.e., the Web Ontology Language, is the W3C recommendation for knowledge
representation on the Web. SPARQL is both the query language for RDF data
on the Web and the Web-based protocol for clients to access SPARQL services.
Additionally, the course dives into Ontology-Based Data Access(OBDA), i.e., a
data integration methodology that combines semantic technologies and RDBMS.
OBDA systems keep data in RDBMS and rewrite SPARQL queries in SQL by
the means of mapping. Ontop is a prominent tool for OBDA that supports
conjunctive queries expressed in SPARQL 1.0 and most of the RDBMSs.
2 http://ontop.inf.unibz.it/.
3 http://esper.espertech.com.
4 https://spark.apache.org/streaming/.
5 https://flink.apache.org/.

http://ontop.inf.unibz.it/
http://esper.espertech.com
https://spark.apache.org/streaming/
https://flink.apache.org/

Teaching Web Stream Processing: Lessons Learned 487

Stream Processing (SP) is a programming paradigm that allows to process
data streams, i.e., unbounded sequence of timestamped data. Stream Process-
ing Engines (SPEs) are systems able to satisfy continuous information needs.
SPEs typically require to write continuous queries using SQL-like languages.
The course covers the foundational aspects of SP and three prominent SPEs
(Esper, Spark streaming, and Flink).

Web Stream Processing (WSP) is a research field that aims at taming variety
and velocity at the same time. The course covers C-SPARQL [1] – a SPARQL
1.1 extensions with the continuous semantics –, the C-SPARQL engine – an
RSP engine that can answer continuous queries written with C-SPARQL –, and
TripleWave [7] – an engine for publishing streams on the Web.

The Course Structure. During the course, we alternate lectures and prac-
tical classes to engage the students into a collaborative working environment.
The practical sessions consists of three main phases, i.e., Concept Generation
Phase, Design Phase, and Implementation Phase. Each phase was followed by
an evaluation where the educators assessed the quality of the work.

In the Concept Generation Phase the students had to formulate an infor-
mation need on data streams and static collections from the Telecom Italia Big
Data Challenge 20156. The success criteria for this phase was the identification
of a continuous information need that addresses data velocity and variety.

In the Design Phase, the students had to elaborate a solution that solves the
information need they previously formulated. The solution design is a task that
requires technical competencies. During the course lectures, we went through
all the necessary knowledge to produce a good design. Our success criteria for
this phase required that the designed solution was adequately justified and able
to tackle both variety and velocity. In practice, the student had to (i) design a
conceptual model for data integration, e.g., an ontology and some mappings from
the data streams to the ontology; (ii) write a SPARQL query that could solve the
continuous information need if submitted with a given frequency; and (iii) write a
C-SPARQL query that satisfies the continuous information need. Moreover, the
students were asked to provide a detailed description of the solution explaining
whether a particular design decision addresses data variety, data velocity or both.

In the Implementation Phase, the students were asked to develop a solution
based on the design they produced using two architectures: (i) an OBDA one
based on R2RML and Ontop and; (ii) an RSP one that includes TripleWave and
the C-SPARQL engine.

3 Investigation Methodology

To collect and analyze the course data we used Action Research (AR) that
is a systematic inquiry method, usually conducted by educators, designed to
understand how the learning environment performs [5].

6 http://www.telecomitalia.com/tit/en/bigdatachallenge/contest.html.

http://www.telecomitalia.com/tit/en/bigdatachallenge/contest.html

488 R. Tommasini et al.

Table 1. Action Research for Web Stream Processing.

What? Action Research IST Teaching

Who? Conducted by educators on students Authors

Where? In schools and Classrooms During IST Course

How? Explore the reality and effects of
interventions on it using qualitative and
quantitative methods

Establishing an
educators/students feedback
loop by Using Web-forms.

Why? To take action and possibly induce
changes in the studied environment

To estimate the effort
required to learn WSP

Since we could not control who enrolled in the course, we opted for AR as
methodology to structure the audit. Indeed, in AR studies, the educators are
considered the authorities. They (1) choose the area of focus; (2) they formulate
the research questions; (3) they select the Key Performance Indicators (KPI);
(4) they determine data collection techniques (5) they analyze data to derive
data-driven conclusions, and (6) they define action plans based on them. We
summarized our choices concerning AR methodologies in Table 1.

Our investigation focuses on the students who did the project of the IST
course. Indeed, AR privileges a combination of theory and practice in the audit.
For each phase we formulate a research questions: (Q1) Can the participants for-
mulate a Continuous Information Need (CIN)? (Q2) Can the participants design
a Web stream processing solution to answer a CIN? (Q3) Can the participants
implement a Web stream processing solution to answer a CIN?

Moreover, we were interested in exploring the issues concerning the teaching,
and we did not aim at (dis)proving any hypotheses. AR fits well this scenarios as
it exploits both quantitative or qualitative methods for gathering and analyzing
data. To explore the reality of how students absorb the subjects we opted for a
qualitative analysis of one KPI, i.e., the relative difficulties of the task to solve.

We collected data during each phase independently, using Web-forms, inter-
views and written exams. As prescribed by AR methodology, the students were
asked to provide feed-backs. In particular, we asked them to evaluate the diffi-
culty of each phase using Likert Scale questions, to indicate technical difficulties
with the topics, and to report technological issues with the tools using open
questions.

4 Results

In this section, we present the results of the investigation. Each phases includes
one or more round of feed-backs. Thus, we additionally report the results of the
feedback survey we run at the end of the course. Notably, we are not trying to
generalize our conclusions but we focus on presenting the lessons we learned.

Teaching Web Stream Processing: Lessons Learned 489

Concept Generation Phase aimed at assessing the students’ ability to for-
mulate a continuous information need starting from the data of the Telecom
Italia Open Big Data challenge. Notably, the students were not domain experts,
thus they were also required to understand the meaning of the data consulting
the available documentation.

We collected the information needs using a web-form. And, as prescribed by
AR, we graded the quality of the information needs. Notably, the data velocity
and variety dimensions were critical points of the evaluation. Moreover, we con-
sidered the complexity of the information needs in the grading, but we ensured
that all the formulations had a comparable complexity.

We established a feedback loop with the students interviewing the groups
whose information needs did not meet a satisfactory score. Since we want to
ensure that all the students reached the next steps of the project, we allowed
any number of resubmissions, iterating the process until we were satisfied.

Eight groups out of 21 were requested to resubmit at least once. Two of these
groups had to follow up the second round of feedback. Among the remaining
groups, about the half received only minor corrections.

Table 2. Information needs formulated and refined.

I How many calls were made to “Milan’s Dom” from
anywhere in Milan during rainy weekends?

II Report the calls number made to “Milan’s Dom”
from anywhere in Milan, every weekend if it rained
for 24 h.

III Report every hour the number of calls that were
made to “Milan’s Dom” from in Milan, if was
raining within 24 h

Table 2 presents an
example of information
need that went through
two rounds of refinement.
The initial version does
not consider data veloc-
ity, but it treats data as
a time-series. After the
first round of feedback,
the students were able to
reformulate the informa-
tion need as continuous. Finally, the last attempt improved the clarity high-
lighting the requirement of a sliding window.

During this phase it emerged a common difficulty in distinguishing between
processing time-series and data streams, i.e., the difference between temporal
information needs and continuous information needs. Our observation is that
dealing with historical stream (such as those in the Telecom Italia Big Data
Challenge) was a source of confusion.

We tested this critical point later on during the written exam. Indeed, we
asked the students to identify between three information needs, written in natu-
ral language, whether any of them presented a problem of data velocity. We did
not indicate that only one answer was correct.

With 42 respondents, 10% did not indicate the correct answer; 50% indicated
the correct one and the remaining 40% indicated the correct answer but also a
second one that, instead, was considering an information need over a time-series.
These numbers indicate that students tended to misunderstand the two ways to
interpret the temporal dimension.

490 R. Tommasini et al.

Fig. 1. Dataset Comprehension vs Infor-
mation Need Formulation. On the y-axis:
complexity 1 (easiest) to 5 (hardest).

Fig. 2. Dataset Comprehension vs For-
mulation of information needs. On the
y-axis: avg complexity of the task

Figure 1 shows that the students ranked the Conceptual Phase with a
medium-high level of complexity in the course survey. Moreover insights can
be derived from Fig. 2. It shows how hard was to understand the datasets in
contrast with the formulation of the continuous information need. It emerges
that the tasks have similar complexities. On the other hand, we learned that the
choice of the data is crucial and impacts the overall complexity of the phase.

The Design Phase aimed at assessing the students’ ability to design a solu-
tion that solves the continuous information need. In particular, a stream pro-
cessing solutions. As in the previous phase, we collected design proposals using a
Web-forms. However, we did not allow resubmitting because our final evaluation
focused on the students’ explanations, i.e., we asked them to defend their design
choice both in a written from and in an oral presentation.

Fig. 3. Design hardness: C-SPARQL vs
SPARQL.

As explained in Sect. 2, we accepted
two alternative approaches: a SPARQL
query to evaluate periodically, and a
C-SPARQL query. Figure 3 presents
a comparative view of the designs
using the two query languages. Sur-
prisingly, it emerged that the two tasks
had similar complexities. Our lesson
learned is that once students under-
stand SPARQL, learning the continu-
ous extension of C-SPARQL requires a
small effort.

Figures 5 and 4 show that both the ontology design and the mappings of the
data streams do not require substantially more effort than understanding the
data streams (i.e., in average they differ for less than 10%). This is because we
asked the students to design a simple conceptual model instead of using existing
vocabularies. Moreover, the students designed mostly direct mappings from the
data to the ontology.

Teaching Web Stream Processing: Lessons Learned 491

Fig. 4. Dataset comprehension vs map-
ping design.

Fig. 5. Dataset comprehension vs ontol-
ogy design.

Fig. 6. Implementation hardness: RSP vs
OBDA.

The Implementation Phase aimed
at assessing the students’ ability to
implement the designed solution. As
explained in Sect. 2, the task required
to realize two alternative architectures
of increasing complexity: one based on
OBDA and one based on RSP. Due to
the complexity of the task, we reserved
5 h of class-work where the student
worked under our supervision.

We collected the projects with web
form. Moreover, we asked the student
to self-evaluate their project as complete or incomplete. We interviewed those
who evaluated the project as complete, while we asked the other to write down
a retrospective during the final exam.

Figure 6 presents how hard the OBDA solution was perceived compared to
the RSP solution. What emerges is that the RSP solution causes more problem
than the OBDA one. Indeed, from the retrospectives and the responses to the
open questions in the final feedback survey, it emerged that most of the groups
struggled with the implementation because of technical issued caused by the
immaturity of the RSP prototypes.

492 R. Tommasini et al.

5 Conclusion

Fig. 7. Total project complexity. The x-axis: the IST
project groups; the y-axis: the avg complexities of the
project phases.

In this paper, we presented
an Action Research audit
that we conducted in the
context of the Interoper-
ability and Semantic Tech-
nologies course at Politec-
nico di Milano.

Our investigation aimed
at estimating the hardness
of teaching and learning
Web Stream Processing.
Thus, we analyzed how
the student interacted and
perform during the course,
structuring a three-phase evaluation pipeline. From the collected material, i.e.,
feedback during the course, the exams, and a post-hoc survey, it emerges that
the overall complexity of the project was quite high. Figure 7 shows the sum of
the effort each group spent on the aforementioned phases.

This finding highlights the urgency of further investigations on the Web
Stream Processing teaching methods. Moreover, from the analysis we presented
in Sect. 4, we understood that: (i) Given continuous data, the task of formulat-
ing an information need is more intricate than in situations that involve only
static data. (ii) Designing a simple Web Stream Processing solutions is doable
and it requires an analogous effort to a data integration task. (iii) Implementing
a simple Web Stream Processing solutions is strenuous because it requires to set
up an entire experimental environment made with immature prototypes.

As research future work, we aim at investigating more the challenges of for-
mulating continuous information needs. We are considering to extend the scale
of the investigation and test different educational environments, e.g., tutorials,
or intense courses. From the educational point of view, our action plan prior-
itizes the adoption of a standard experimental environment that reduces the
complexity of the implementation tasks, e.g., RSPLab [9].

Acknowledgements. The work of Sherif Sakr is funded by the European Regional
Development Funds via the Mobilitas Plus programme (grant MOBTT75). The work of
Riccardo Tommasini is funded by the European Regional Funds through IT Academy
programme.

References

1. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:
a continuous query language for RDF data streams. Int. J. Semant. Comput. 4(1),
3–25 (2010)

Teaching Web Stream Processing: Lessons Learned 493

2. Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases.
Semant. Web 8(3), 471–487 (2017)

3. Della Valle, E., Dell’Aglio, D., Margara, A.: Taming velocity and variety simultane-
ously in big data with stream reasoning: tutorial. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-Based Systems, DEBS 2016,
Irvine, CA, USA, 20–24 June 2016, pp. 394–401 (2016)

4. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning:
a survey and outlook. Data Sci. 1(1–2), 59–83 (2017)

5. Gay, L.R., Mills, G.E., Airasian, P.W.: Educational Research: Competencies for
Analysis and Applications 10th Edition. Pearson Higher Ed (2011)

6. Lenzerini, M.: Ontology-based data management. In: Proceedings of the 6th Alberto
Mendelzon International Workshop on Foundations of Data Management, Ouro
Preto, Brazil, 27–30 June 2012, pp. 12–15 (2012)

7. Mauri, A., et al.: TripleWave: spreading RDF streams on the web. In: Groth, P.,
et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 140–149. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46547-0 15

8. Stringer, E.T.: Action Research. Sage Publications (2013)
9. Tommasini, R., Della Valle, E., Mauri, A., Brambilla, M.: RSPLab: RDF stream

processing benchmarking made easy. In: d’Amato, C., et al. (eds.) ISWC 2017.
LNCS, vol. 10588, pp. 202–209. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68204-4 21

https://doi.org/10.1007/978-3-319-46547-0_15
https://doi.org/10.1007/978-3-319-68204-4_21
https://doi.org/10.1007/978-3-319-68204-4_21

Teaching Container-Based DevOps
Practices

Jami Kousa1(B) , Petri Ihantola1 , Arto Hellas2 , and Matti Luukkainen1

1 University of Helsinki, Helsinki, Finland
jami.kousa@helsinki.fi

2 Aalto University, Espoo, Finland

Abstract. We present the design of a online course that focuses on
container-based virtualization as part of the DevOps toolchain. In addi-
tion, we outline the professional background of participants taking the
course, and describe how this affects perceived previous knowledge of
DevOps. We found out that the self-evaluated conceptual understanding
of DevOps topics is nearly equal regardless of the participants profes-
sional identity (e.g., student or developer). However, there are significant
differences in how much participants have used tools like Docker before.
We conclude that there is a clear need for lifelong learning among soft-
ware engineering professionals as (future) developers often struggle in
operations related skills such as command line or networking.

Keywords: DevOps · Education · Lifelong learning

1 Introduction

Traditionally the development and operation of software have been separated.
However, bringing these functions together to provide an optimal flow of soft-
ware from ideas to production is getting mainstream in software engineering [3].
The joint operation of developers and operations people is referred to with the
term DevOps. DevOps has numerous definitions, which show different views of
the term and the field. A systematic mapping study by Jabbari et al. combines
them by stating [6]:“DevOps is a development methodology aimed at bridging
the gap between Development and Operations, emphasizing communication and
collaboration, continuous integration, quality assurance, and delivery with auto-
mated deployment utilizing a set of development practices.”

Based on our observations, the operations (and consequently DevOps) have
at most a lightweight role in many CS or even Software Engineering programs.
Deployment, operation, and maintenance are part of in ACM Curricula recom-
mendation for CS but are not apparent in the course examples [1]. DevOps-
related skills were poorly trained also at our university a few years ago [9].

We argue that integrating DevOps into the university curricula can be used to
introduce the operations to students as well as rehearse and strengthen existing
knowledge in software development in general. However, teaching DevOps can
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 494–502, 2020.
https://doi.org/10.1007/978-3-030-50578-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_34&domain=pdf
http://orcid.org/0000-0002-4862-8062
http://orcid.org/0000-0003-1197-7266
http://orcid.org/0000-0001-6502-209X
http://orcid.org/0000-0003-4779-4998
https://doi.org/10.1007/978-3-030-50578-3_34

Teaching Container-Based DevOps Practices 495

be challenging as it crosses boundaries of traditional computer science courses
[4]. The work presented in this article emerges from our personal experiences of
teaching DevOps practices at the University of Helsinki.

2 Background

A major effort for DevOps to succeed is to make the overall software delivery
flow continuous and using a meaningful set of tools [11]. Containers are a con-
crete example of this. They are operating-system-level virtualization designed to
be a standard unit of software that packages up code and all its dependencies,
so the application runs reliably from one computing environment to another.
Containers facilitate DevOps by allowing the use of code to perform infrastruc-
ture management tasks automatically (i.e, Infrastructure-as-Code) [13] and by
removing the need to manually install software when setting up servers [12].
Moreover, containers enable fast deployment and recovery, supporting contin-
uous deployment [7]. Docker is an open software for containerization that has
been adopted as the de-facto method for virtualization in the industry [14].

One of the most comprehensive reports on teaching DevOps was published
in 2016 by Christensen [4], who describes the challenges and proposes teaching
methods for DevOps. Discussion in the paper is done in relation to a course
in which students developed web software that scales to tens of thousands of
concurrent users. In conclusion, they recommend emphasizing the programming
process and realistic context for teaching DevOps skills.

In a similar vein, Pengxiang and Leong [10] published a study on teaching
DevOps related hybrid-skills in the cloud computing environment. They analyzed
the skill-set wanted by the industry, and identified a gap in a current polytech-
nic cloud computing curriculum. Their proposed an approach where students
deployed web software for other students to submit their learning diaries.

A recent publication by Kuusinen and Albertsen [8] explores university-
company collaboration in teaching Continuous Delivery and DevOps in a two
weeks intensive course. The first week was theoretical, while the second was prac-
tical. Authors found the approach where industry partners up-to-date technical
knowledge was integrated into university education successful.

Finally, Christensen et al. acknowledge the scarcity of research done on teach-
ing DevOps, especially in teaching methodology and culture of DevOps. Some
DevOps practices are introduced in other courses to provide some experience
of their usage. Version control management systems, which may be classified
as DevOps tools, such as git, can be introduced in many courses as Haara-
nen and Lehtinen describe [5]. Other tools, such as continuous integration using
CircleCI1, are integrated into software engineering projects. These kinds of inte-
grations make it possible for students to learn DevOps tools and practices during
courses that do not focus on DevOps as a methodology.

1 https://circleci.com/.

https://circleci.com/

496 J. Kousa et al.

3 Research Questions and Methodology

Based on the previous research, we have developed course that introduces
DevOps via relevant tools. In this study, we investigate how our approach works.
In addition, we are interested in what kinds of students come to the course, and
how the background is linked to the participants previous knowledge. The con-
crete research questions we will answer are:

RQ1 What is the professional background of participants taking the course?
RQ2 How does the professional background affect participants’ perceived pre-

vious understanding of DevOps?
RQ3 What are the core challenges for students when learning DevOps?

3.1 DevOps with Docker Course

Our DevOps with Docker course is based on study material first used in the inter-
nal training of an industry partner. The material was then tailored to create an
introductory course to containerization for students at the university level. So far
the DevOps with Docker course have been held three times. The latest instance of
the course was held in Autumn 2019 as a MOOC for anyone. In the following, we
will briefly introduce the course design. (see https://devopswithdocker.com/).

The course consists of four parts. The first part focus on setting up the
environment by installing docker and testing it works. The next two parts are
an introduction to containerization with Docker and container orchestration with
docker-compose. More precisely, this is about containerization of an existing web
application (Fig. 1, items 1 & 2) that was created for the purposes of this course.
In the third part, the application is integrated with other services; cache (3),
database (4) and a reverse proxy (5). In the fourth part, students still work
with the same web application but the tasks are related to improving the build
process and security. The course size is 1–3 ECTS points (depending on how
many sections students will complete).

The main application containerized and configured throughout the course is
a simple web service implementing the automated assessment and thus providing
immediate feedback for students. The service returns a web page with a single
button. Pressing the button returns either an ok message (if tasks are correctly
solved) or an error message relates to one of the services. After students have

Fig. 1. Multiple services were required in the configuration to complete the exercises.
The order of the exercises are numbered from 1 to 5.

https://devopswithdocker.com/

Teaching Container-Based DevOps Practices 497

completed a session, they were requested to push their progress to GitHub and
submit a link to their GitHub repository.

3.2 Participants and Measures

We will answer our research questions based on the data collected from the last
iteration of the course. At the beginning of the first section of the course, stu-
dents were asked about their background, previous experiences in DevOps and
Containers, and personal learning objectives. The detailed items related to the
background were BG1: I have a general understanding of containers (1 = strongly
disagree, ... 5 = strongly agree), BG2: I have understanding of problems contain-
ers solve (1 = strongly disagree, ... 5 = strongly agree), BG3: I have used Docker
before (1 = none, ... 5 = daily), BG4: I’m familiar with DevOps or have general
understanding what it is (1 = strongly disagree, ... 5 = strongly agree), and BG5:
My background is (student, developer, data scientist, DevOps engineer, other).

At the end of the course (i.e., at the end of Sect. 2, 3, or 4), there was a
feedback questionnaire where we asked, e.g., Which exercise did you consider to
be the hardest and why?. In addition, as the pre-course survey was anonymous,
the question about student professional background (BG5) was repeated at the
end of the course. The initial survey was answered by 651 participants. Phases
1, 2, 3, and 4 of the course were submitted by 219, 175, 142 and 98 participants,
respectively. Post-course feedback was provided by 140 participants.

Table 1. (Spearman) correlations between items related to previous knowledge, their
count (N), means (M) and standard deviation (SD). *p< .05, **p< .01, and ***p< .001

2 3 4 N M SD

1. BG1 0.49*** 0.13** 0.17*** 632 2.67 1.24

2. BG2 0.19*** 0.16*** 632 2.60 1.16

3. BG3 0.03 630 1.91 1.05

4. BG4 627 2.78 1.10

Related to RQ1, participants of the pre-survey were grouped based on pro-
fessional identity (BG5). Moreover, while answering RQ2, non-parametric anal-
yses of variance (Kruskal-Wallis) were used to investigate group differences in
the previous knowledge and skills (BG1–BG4). In the case of significant differ-
ences were observed, pairwise Man-Whitney tests were conducted with p-values
adjusted by using the Benjamini-Hochberg method. The effect sized were esti-
mated with Cliff’s delta. Although all the items were related to the previous
understanding of DevOps, they were not combined into a single factor because
of relatively small correlations (Table 1). RQ3 was answered based on the open-
ended answers in the post questionnaire that were coded manually by one of the
authors. Coding was verified by an another person. Course staff was interviewed
to triangulated the observations.

498 J. Kousa et al.

4 Results

4.1 Background and Previous Knowledge

629 participants answered something to the question about their professional
status. The biggest groups were students (43%) and Developers/Software Engi-
neers (35%). Sizes of other groups are provided in Table 2. Professions in the
category other included answers such as system administrator, consultant, net-
work engineer, manager, and software tester. Group-wise medians and median
absolute deviations of previous knowledge are also provided in Table 2.

Table 2. Sized of professional identity groups together with medians and median
absolute deviations of background variables per groups

BG1 BG2 BG3 BG4

n med mad med mad med mad med mad

Student 270 2.00 1.48 2.00 1.48 1.00 0.00 3.00 1.48

Developer 218 2.00 0.74 2.00 0.00 2.00 1.48 2.00 0.74

DevOps engineer 34 3.00 1.48 2.00 0.00 3.00 1.48 2.50 1.48

Data scientist 24 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.0

Other 83 2.00 1.48 2.00 1.48 2.00 1.48 2.00 1.48

Table 3. Dunn’s post-hoc (pairwise Mann-Whitney) analysis and possible effect sizes.

Comparison BG1 BG2 BG3

Z P.adj d Z P.adj d Z P.adj d

Data scientist - DevOps eng −2.756 .015 −0.38 −1.340 .360 − −2.131 .041 −0.41

Data scientist - Other −0.695 .696 − −0.071 .943 − 1.549 .135 −
DevOps eng - Other 2.818 .024 0.31 1.673 .314 − 4.553 .000 0.52

Data scientist - Software eng −1.026 .610 − −0.434 .738 − −0.288 .774 −
DevOps eng - Software eng 2.789 .018 0.28 1.431 .381 − 2.744 .010 0.29

Other - Software eng −0.461 .716 − −0.596 .788 − −3.259 .003 −0.23

Data scientist - Student −0.634 .658 − 0.549 .729 − 2.998 .005 0.38

DevOps eng - Student 3.297 .010 0.33 2.606 .092 − 6.632 .000 0.62

Other - Student 0.208 .835 − 1.063 .480 − 2.228 .037 0.16

Software eng - Student 0.941 .578 − 2.309 0.105 − 7.674 .000 0.38

Professional background affects general understand of containers - BG1
(H(4) = 12.03, p = .017), understanding of problems that containers solve - BG2
(H(4) = 9.94, p = .041), and whether authors have used the docker or not - BG3
(H(4) = 86.78, p< .000). However, a professional background does not affect how
familiar participants are with DevOps or whether they have a general under-
standing of what DevOps is - BG4 (H(4) = 6.00, p = .20). The results of the
post-hoc analysis, together with the effect sizes (d), are illustrated in Table 3.

Teaching Container-Based DevOps Practices 499

4.2 Completers and Challenges

The most difficult topics mentioned in the feedback were networking (37 times),
volumes (23), application frameworks (14), Nginx (16), Postgres (8), and CORS
(8). Based on the feedback collected from the course staff, the usage of operating
systems, namely Linux, was challenging at the beginning of the course as many
students were not familiar with the usage of the command-line interface and,
for example, creating small script files using bash. In addition, the students
were requesting more realistic, production-like, environments, and tool sets to
practice. There was a demand for an additional part about cloud services such
as AWS or Google Cloud and advanced tools such as Kubernetes. Distribution
of the professional profiles at the end of the course is similar to the beginning of
the course, and illustrated in Table 4.

Table 4. Professional identity of those who started vs. those completed the course

Data scientist DevOps eng Other Software eng Student

Pre-course 3.8% 5.4% 13.2% 34.7% 43.0%

Post-course 1.4% 5.0% 8.6% 33.6% 51.4%

5 Discussion

One of the contributions of this paper is to introduce the DevOps with Docker
course design. While DevOps imposes cultural changes to software development
and organizational structure, we decided to approach the topic from the tools
perspective. The decision is supported by the fact that main effort for DevOps to
succeed is to make the overall process continuous [11]. We recognize that contain-
ers themselves do not offer a complete picture of DevOps, lacking key subjects
such as monitoring. However, containers offer the means against a subset of the
presented problems, such as “works on my machine”. This divide between the
development and production environments is a significant hurdle as the clas-
sic “works on my machine” divide opposes DevOps principles [2]. Moreover, the
teaching of methods to solve this problem offers students the possibility to design
development pipelines when confronted with such a task.

There were practically no differences between professional identity groups in
self evaluated conceptual understanding of DevOps (BG4) or container (BG1
and BG2). Even those who identified themselves as DevOps engineers stood
out from the crowds only in one questions (BG1) where the effect sizes were
small. Surprisingly, students and software developers reported similar amounts
of knowledge on containers. This similarity between the two groups indicates
that there is a need for life long learning courses for software industry. It is
unclear if software engineers attending the course are representative sample of
developers in general. It is possible to argue that only developers lacking DevOps

500 J. Kousa et al.

skills would take the course in the first place. However, even those who identified
themselves as DevOps engineers (and were more skilled) came in the course.

One possible explanation for only small differences is that more you know,
the better you understand what you don’t know. This is supported by the fact
that the differences in the more concretely framed question about how often
participants have used Docker were pretty clear. As assumed, DevOps engineers
had most experience in using the Docker, while students were the least experi-
enced. The effect size between DevOps engineers and both software developers
and data scientists is medium, no differences were observed between developers
and data scientists.

Networking was the most commonly reported challenge by the participants.
In contrast to the networking course where students learn, e.g., how the internet
works and the layers in the OSI model, the course we offered focused mostly on
the transport layer with port configuration between applications and containers.
This was challenging despite the theoretical understanding of the transport layer
most university student attendees had from a mandatory networking course.

The perceived challenge in volume usage, the mapping of data in the con-
tainer to the host, may also be partially explained by lack of experience with
filesystems - linking it into the challenge of operating systems and CLI men-
tioned in other feedback. The third challenge was adapting to changing tools,
services and application frameworks used as part of the exercises. To proceed in
the challenging exercises attendees did not have to program in a new language
but had to read the documentation, often a readme file, on what the exercise
specific services required, such as open port or environmental values designat-
ing an API endpoint. For some attendees, this was a challenge as the errors
encountered during these exercises were often unfamiliar at first but contained
the necessary information to continue.

In the end, students requested advanced tools and more realistic context.
Deployment in real cloud environments is different from simulating the same
with containers in a local environment. The limited amount of realistic context
in the course was identified as an area of improvement, and recommended earlier
by Christensen as well [4]. Moreover, we believe that in advanced topics such as
DevOps, authentic environments may be easier to master.

The threats to validity are the selection, maturation and attrition of the
group. The course material was open to anyone regardless of signing up for the
course and the surveys were an optional exercise during the course and as such
the answers include attendees that did not sign up for the course as well as
miss students that did take the course. Selecting only attendees who wanted to
complete the optional survey may have an effect on the results. As attendees
were able to progress the course at any pace, it was possible for them develop
their skills independently of the course, for up to 9 months between the start of
the course and the end. This may limit the amount of feedback on challenges of
the earlier sections of the course. The attrition influences the number of answers
between the beginning and ending surveys, but the distribution of professional
identity remained closely the same between the surveys.

Teaching Container-Based DevOps Practices 501

6 Conclusions

When answering our first research question (what is the professional background
of participants taking the course), we found out that the DevOps course attracted
especially those who identified themselves as Students or Software Engineers.
While looking at the second question (how does the professional background
affect participants’ perceived previous understanding of DevOps?), we observer
that self reported previous skills of these two groups were surprisingly similar.

Based on this, we conclude that there is a demand for lifelong learning around
DevOps practices for software engineers as the relatively new methodology inter-
ests and challenges professionals working in the industry. For the last research
question (the core challenges for students when learning DevOps) multiple topics
related to administration were identified. The multidisciplinary skills emphasis
of DevOps requires an introduction in a more practical approach for otherwise
familiar concepts. We believe that such skills are best learned in as authentic
environments as possible.

References

1. ACM Computing Curricula Task Force: Computer Science Curricula 2013: Curricu-
lum Guidelines for Undergraduate Degree Programs in Computer Science. https://
doi.org/10.1145/2534860

2. Anderson, C.: Docker [software engineering]. IEEE Softw. 32(3), 102–c3 (2015).
https://doi.org/10.1109/MS.2015.62

3. Bolscher, R., Daneva, M.: Designing software architecture to support contin-
uous delivery and DevOps: a systematic literature review. In: 14th Interna-
tional Conference on Software Technologies, May 2019. https://doi.org/10.5220/
0007837000270039

4. Christensen, H.B.: Teaching DevOps and cloud computing using a cognitive
apprenticeship and story-telling approach. In: ACM Conference on Innovation and
Technology in CS Education, pp. 17–179 (2016). https://doi.org/10.1145/2899415.
2899426

5. Haaranen, L., Lehtinen, T.: Teaching git on the side: version control system as a
course platform. In: Proceedings of ACM Conference on Innovation and Technol-
ogy in Computer Science Education, pp. 87–92 (2015). https://doi.org/10.1145/
2729094.2742608

6. Jabbari, R., Bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps? a systematic
mapping study on definitions and practices. In: Proceedings of Scientific Workshop
Proceedings of XP2016. ACM (2016). https://doi.org/10.1145/2962695.2962707

7. Kang, H., Le, M., Tao, S.: Container and microservice driven design for cloud
infrastructure DevOps. In: IEEE International Conference on Cloud Engineering
(IC2E), pp. 202–211 (2016). https://doi.org/10.1109/IC2E.2016.26

8. Kuusinen, K., Albertsen, S.: Industry-academy collaboration in teaching DevOps
and continuous delivery to software engineering students: towards improved indus-
trial relevance in higher education. In: 41st International Conference on Software
Engineering: Software Engineering Education and Training (2019). https://doi.
org/10.1109/ICSE-SEET.2019.00011

https://doi.org/10.1145/2534860
https://doi.org/10.1145/2534860
https://doi.org/10.1109/MS.2015.62
https://doi.org/10.5220/0007837000270039
https://doi.org/10.5220/0007837000270039
https://doi.org/10.1145/2899415.2899426
https://doi.org/10.1145/2899415.2899426
https://doi.org/10.1145/2729094.2742608
https://doi.org/10.1145/2729094.2742608
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1109/IC2E.2016.26
https://doi.org/10.1109/ICSE-SEET.2019.00011
https://doi.org/10.1109/ICSE-SEET.2019.00011

502 J. Kousa et al.

9. Luukkainen, M., Vihavainen, A., Vikberg, T.: Three years of design-based research
to reform a software engineering curriculum. In: Proceedings of 13th Conference on
Information Technology Education, pp. 209–214 (2012). https://doi.org/10.1145/
2380552.2380613

10. Pengxiang, J., Leong, P.: Teaching work-ready cloud computing using the DevOps
approach. In: International Symposium on Advances in Technology Education
(2014)

11. Rajkumar, M., Pole, A.K., Adige, V.S., Mahanta, P.: DevOps culture and its
impact on cloud delivery and software development. In: International Conference
on Advances in Computing, Communication, Automation, pp. 1–6 (2016). https://
doi.org/10.1109/ICACCA.2016.7578902

12. Spinellis, D.: Don’t install software by hand. IEEE Softw. 29(4), 86–87 (2012).
https://doi.org/10.1109/MS.2012.85

13. Syed, M.H., Fernandez, E.B.: A reference architecture for the container ecosystem.
In: Proceedings of the 13th International Conference on Availability, Reliability
and Security, pp. 1–6. ACM (2018). https://doi.org/10.1145/3230833.3232854

14. Zhang, Y., Vasilescu, B., Wang, H., Filkov, V.: One size does not fit all: an empirical
study of containerized continuous deployment workflows. In: 26th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (2018). https://doi.org/10.1145/3236024.3236033

https://doi.org/10.1145/2380552.2380613
https://doi.org/10.1145/2380552.2380613
https://doi.org/10.1109/ICACCA.2016.7578902
https://doi.org/10.1109/ICACCA.2016.7578902
https://doi.org/10.1109/MS.2012.85
https://doi.org/10.1145/3230833.3232854
https://doi.org/10.1145/3236024.3236033

PhD Symposium

Predicting the Outbreak of Conflict
in Online Discussions Using
Emotion-Based Features

Maksymilian Marcinowski1(B) and Agnieszka �Lawrynowicz1,2

1 Faculty of Computing and Telecommunications, Poznan University of Technology,
Poznań, Poland

{mmarcinowski,alawrynowicz}@cs.put.poznan.pl
2 Center for Artificial Intelligence and Machine Learning (CAMIL),

Poznan University of Technology, Poznań, Poland

Abstract. Anti-social online behaviour, such as harassment or vulgar-
ity, leading to conflicts aimed at destroying any merit of the discussions,
is a serious problem for the Internet community. Recognising the charac-
teristics of conflict discussions and modelling their trajectory might help
to predict and prevent derailing. My PhD thesis focuses on using emo-
tion labels as such characteristics and building an explainable prediction
model based on them. As a part of the thesis we have proposed a new
dataset of discussions containing knowledge about their emotion-based
features. It is a set of dialogues from Wikipedia Talk Pages annotated
during a crowdsourcing experiment with labels from Plutchik’s model of
emotions and described with EmoWordNet lexicon scores.

With this explainable model we hope to introduce a new way of mod-
erating Internet discussions and provide useful educational tool.

Keywords: Online discussions · Emotions · Conflict prediction

1 Problem Context and Definition

One of the most common problems faced by the Internet community is the
frequent pointless, offensive disputes in Internet discussions between users taking
part in the conversation. They occur in discussions in forums, in social networks
as well as in comments on content posted on news portals. These conflicts consist
of numerous cases of anti-social behaviour in subsequent posts. Nowadays, this
problem is often solved with post-hoc moderation. An offensive message (or
comment or post) is reported by users and after some time removed by the
moderator. Usually removing such a message does not stop the conflict, because
it has already spread - on some forums there can be seen long sequences of
messages removed “due to violation of the rules”.

In my PhD thesis the aim of the research is to build a mechanism that could
predict the occurrence of a conflict by estimating the risk/probability of an
offensive message before it appears. Such a mechanism would have a cautionary
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 505–511, 2020.
https://doi.org/10.1007/978-3-030-50578-3_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_35&domain=pdf
http://orcid.org/0000-0003-4171-1688
http://orcid.org/0000-0002-2442-345X
https://doi.org/10.1007/978-3-030-50578-3_35

506 M. Marcinowski and A. �Lawrynowicz

application, analogous to a person observing a dispute between two people and
trying to soften their emotions a little, as well as educational - especially for
young users who may not be aware of the effects of their expressions on the
Internet. The first research question that the goal requires to be addressed is:

RQ1. Are there any patterns or linguistic features of conflict discussions?
Zhang et al. assumed that there are such patterns and they are related to

the rhetorical functions of comments (such as e.g. moderation, opinion, factual
check) [14]. We hypothesize that the emotions occurring in discussions may be a
good descriptor differentiating conflict and non-conflict conversations. Therefore,
further research questions arose:
RQ2. How to effectively represent emotions for machine analysis?
RQ3. Are there any recurring sequential patterns of emotions occurring in con-
flict discussions?
RQ4. Is it possible to notice the escalation of conflict in dialogue by recognizing
emotions?

2 Related Work

Prior works most related to the issues raised in my PhD thesis concerns: i)
descriptors of derailed online conversations, and ii) other datasets containing
online conversations with emotion labels.

Descriptors of Derailed Online Conversations. One of the syndromes of
discussion’s derailment is the occurrence of hate speech, which can be recognized
automatically. The state of this field was presented by Fortuna and Nunes [6].
Recent studies [1,5] have also computationally operationalized prior formulations
of politeness by extracting linguistic cues that reflect politeness strategies. There
has also been research carried out to assess the relationship between politeness
strategies and the trajectory of the discussions in which they are deployed [14].
Sociological and linguistic descriptors of discussions’ dynamics are also consid-
ered. Wang and Cardie [12] classified disputes using lexical, topic, discussion,
and sentiment features. One of their features, sentiment transition, estimates
the probability of sentiment changing from one sentence to the next. Cheng et
al. [4] found that an individual’s mood and contextual features of a given dis-
cussion (e.g., how recently others had posted flag-worthy comments, how much
time had passed since their own last comment) are related to an individual’s
likelihood of writing a flagged comment.

Datasets of Online Conversations Tagged with Emotion Models. A
simple model of emotions was used in SemEval-2019 Task 3: EmoContext Con-
textual Emotion Detection in Text. Chatterjee et al. gathered a dataset of three-
turn tweets, where the labels include: happy, sad, angry and “other” [3]. Li et
al. developed a multi-turn dialog dataset DailyDialog [9], which includes human
written daily communications. Six basic emotion labels from the Ekman’s model
(happiness, surprise, sadness, anger, disgust and fear) and the “neutral” label are
used in this case. Another dataset that uses Ekman’s and the “neutral” label

Predicting the Outbreak of Conflict in Online Discussions 507

is MELD by Poria et al. [11], which contains utterances from dialogues from
the TV series Friends. Zahiri and Choi developed yet another collection [13]
of scripts from Friends. This dataset uses different emotion labels than MELD:
neutral, sad, mad, scared, powerful, peaceful, and joyful.

3 Proposed Approach

The approach we propose is a sequence of steps that aim at answering con-
secutive aforementioned research questions. Exploring patterns and features of
discussions needs creation or adaptation of a dataset of online discussions, that
would contain information about the conflict or non-conflict nature of these dis-
cussions (preferably a binary attribute).

To represent the emotions occurring in the posts an existing and acclaimed
model of emotions must be used which should allow to obtain the fullest knowl-
edge needed to analyse the posts. The dataset of conflict and non-conflict dia-
logues would be annotated by human annotators with emotions from this model.

Results of the annotation would thereafter be analysed (e.g. with techniques
of sequential pattern mining) and on the basis of these analyses (allowing ulti-
mately to map phrases and words into emotions used in the posts) an explainable
model could be build and learned using deep neural networks. The last step is
to build a black-box model, train it on raw data and finally compare predictive
power of both models: black-box and the explainable one.

4 Methodology

4.1 Models of Emotions

We have selected two models for describing discussions’ posts: Plutchik’s
model [10], which provides emotion intensity as well as similarity between them
that helps to prepare guidelines for human annotators, and the model of the
EmoWordNet lexicon [2], which helps us to link the emotion labels with the
natural language.

Plutchik’s model is a theory of emotions [10] distinguishing eight basic
emotions: anger, anticipation, disgust, fear, joy, sadness, surprise and trust. Usu-
ally the model is presented on the diagram called “wheel of emotions”. The adja-
cency of emotions on the wheel represents their similarity, and the additional
dimension represents levels of intensity. Three levels of emotion together form
a petal, labelled with the name of the basic emotion. Emotions in empty spaces
(between petals) are called the dyads i.e. feelings that are compositions of two
basic emotions. A primary dyad links common emotions that are one petal apart.

EmoWordNet [2] is a lexicon, containing 67 000 words and terms from
English WordNet, expanded with 8 scores for each one, which represent 8 emo-
tions: afraid, amused, angry, annoyed, don’t care, happy, inspired and sad. The
scores take values from 0 to 1 that estimate expressiveness and intensity of the
emotion and they add up to 1 for each element of the lexicon.

508 M. Marcinowski and A. �Lawrynowicz

4.2 Datasets

In order to perform experiments facilitating our research we expect to use or
prepare by ourselves at least two datasets. The first one is a corpus provided by
Zhang et al. [14]. We decided to extend the dataset by means of an experiment
with help of students whose task was to annotate each of the comments/posts
presented to them by clicking on a Plutchik’s wheel of emotion in a place that
represents the emotion which in their opinion dominates the post (or choose
“none”). Each respondent annotated 10 posts and each post was annotated by
3 different respondents to verify compliance. Furthermore, the dataset has been
expanded with values from EmoWordNet lexicon. After lemmatising all posts
and removing “stop words”, the scores of particular emotions in each term were
summed up for each post and divided by the number of terms in the post to
provide 8 mean emotion scores of each post. Therefore the new dataset contains
fields with following content: (i) basic information about the posts and their
belonging to the conversations, (ii) emotions from Plutchik’s model the posts
were annotated with and (iii) eight scores for each post based on EmoWordNet.

4.3 Analyses

Closed Sequential Patterns Mining. In order to answer research question
RQ3 we performed closed sequential patterns mining. A sequence of items is
an ordered list of elements (in our case - posts in a conversation and emotions
they were annotated with) that can be denoted as <s1, s2, ..., si>. Sequential
pattern mining consists of finding subsequences that occur in a given set of
sequences with given frequency (support). Closed sequential patterns are pat-
terns not included in any other patterns with the same support. The analysis
was performed with the ClaSP algorithm [8], using the implementation from
SPMF library [7].

Analysis of Escalation. To answer research question RQ4, we analyse the
emotion intensity level and whether it grows in conflicting discussions. We under-
stand this growth of emotions over the course of conversation as an escalation.
We have verified the occurrence of this phenomenon in EmoWikipediaTalkPages
dataset by using two methods of evaluating the intensity of emotions: (i) the level
of intensity of emotions occurring in posts according to the annotations based on
Plutchik’s model of emotions and (ii) the aggregated value of scores of particular
words or terms occurring in posts according to the EmoWordNet lexicon - the
scores of particular emotions in each term were summed up for each post and
divided by the number of terms in the post to provide 8 mean emotion scores
of each post and, for the statistics, the maximum of these values (denoted by v)
for each post was selected.

4.4 Future Analyses and Black-Box Model Generation

The objective of future analyses will be to potentially find alternative answers
for the research questions (including RQ1 and RQ2 with the issue of linguistic

Predicting the Outbreak of Conflict in Online Discussions 509

feature representation for machine learning purposes) and to finally build a pos-
sibly optimal model. We will consider performing an identical experiment on
another dataset to see whether a higher compliance between annotators is achiev-
able. To link the emotions with natural language we’re going to map phrases from
posts with emotions the posts were annotated with, using NLP methods. The
model will also be enriched with other features of the conversations, such as e.g.
specific occurrence of emoticons or punctuation. On thus constructed explainable
model a deep neural network would be learned and optimised. As an alternative
a black-box model will be prepared, using a ready-made deep neural network
learned on raw representation of dialogues, such as e.g. sequences of posts given
in HTML format. We expect that the final results of the work will be a machine
learning model (models). However, we will also share the results of experiments
with analyses allowing for further research on these issues.

5 Results

Variety of the annotations was significant. Only approximately 6% of the posts
were annotated by 3 respondents unanimously (mostly with none annotation)
and 54% posts were annotated with three different emotions. Slightly greater
amount of posts (55%) were annotated with domination of emotions from the
same petal, so 45% were annotated with emotions belonging to three different
petals. Among the 66 unanimous decisions, most annotations had been made
with emotions from the anger petal.

5.1 Closed Sequential Patterns Mining

We mined patterns within four experimental settings: (i) for all of the anno-
tations for single emotions, (ii) for all of the annotations to the level of detail
of a petal with a primary dyad treated as a separate petal, (iii) for all of the
annotations to the level of detail of a petal with a primary dyad treated as
one of the adjacent petals and (iv) for triplets of annotations. Only one closed
pattern consisting of more than one element has a support greater than 50% -
it is <anger, anger> (59% support, 88 occurrences), discovered in the setting
with a primary dyad treated as one of the adjacent petals. Taking all settings
into account there are 21 multi-elemental closed patterns with a support greater
than 20%, all of which were discovered in conflict discussions. The most common
pattern for non-conflict dialogues in any setting is the same - <none, none>.

5.2 Analysis of Escalation

We measured escalation with the following values: (i) in the annotations based on
Plutchik’s model with mean level of intensity of emotions, (ii) in the EmoWord-
Net lexicon with average v value. In both cases the value for the post at the
end of conflict discussions is clearly higher than at their beginning, regardless
of their length, whilst it does not occur in non-conflict discussions in any case.
Moreover, all conflict conversations end with mean higher emotional intensity
score than non-conflict dialogues.

510 M. Marcinowski and A. �Lawrynowicz

6 Conclusions and Future Work

The experiment of annotating online conversations showed that it is a difficult
challenge to clearly define what emotions dominate in a posts, and thus to model
the trajectory of discussion using them. However, differences between conflict
and non-conflict conversations are noticeable. We expect that repetition of the
experiment on another dataset and enrichment of the analysis results with non-
linguistic features of conversations could allow to prepare a reliable prototype
model. Creating this mechanism would provide a useful tool with positive social
impact for moderators of Internet discussions or an educational tool for young
users to aware them of the consequences of their online behaviour.

Acknowledgements. This research has been partially supported by the statutory
funds of Poznan University of Technology.

References

1. Aubakirova, M., Bansal, M.: Interpreting neural networks to improve politeness
comprehension. In: Proceedings of the 2016 EMNLP, pp. 2035–2041. ACL, Austin,
November 2016. https://doi.org/10.18653/v1/D16-1216

2. Badaro, G., Jundi, H., Hajj, H., El-Hajj, W.: EmoWordNet: automatic expansion
of emotion lexicon using English WordNet. In: Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics, pp. 86–93. ACL, June 2018.
https://doi.org/10.18653/v1/S18-2009

3. Chatterjee, A., Narahari, K.N., Joshi, M., Agrawal, P.: Semeval-2019 task 3: emo-
context contextual emotion detection in text. In: Proceedings of the 13th Inter-
national Workshop on Semantic Evaluation, pp. 39–48. ACL, Minneapolis, June
2019. https://doi.org/10.18653/v1/S19-2005

4. Cheng, J., Bernstein, M., Danescu-Niculescu-Mizil, C., Leskovec, J.: Anyone can
become a troll: causes of trolling behavior in online discussions. In: Proceedings of
the Conference on Computer-Supported Cooperative Work 2017, CSCW, February
2017. https://doi.org/10.1145/2998181.2998213

5. Danescu-Niculescu-Mizil, C., Sudhof, M., Jurafsky, D., Leskovec, J., Potts, C.: A
computational approach to politeness with application to social factors. In: ACL,
vol. 1, pp. 250–259. ACL (2013). http://dblp.uni-trier.de/db/conf/acl/acl2013-1.
html#Danescu-Niculescu-MizilSJLP13

6. Fortuna, P., Nunes, S.: A survey on automatic detection of hate speech in text.
ACM Comput. Surv. 51(4), 1–30 (2018). https://doi.org/10.1145/3232676

7. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.:
SPMF: a Java open-source pattern mining library. JMLR 15, 3389–3393 (2014).
http://www.philippe-fournier-viger.com/spmf/

8. Gomariz, A., Campos, M., Marin, R., Goethals, B.: ClaSP: an efficient algorithm
for mining frequent closed sequences. In: Pei, J., Tseng, V.S., Cao, L., Motoda,
H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7818, pp. 50–61. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37453-1 5

9. Li, Y., Su, H., Shen, X., Li, W., Cao, Z., Niu, S.: DailyDialog: a manually labelled
multi-turn dialogue dataset. In: Proceedings of the Eighth IJCNLP, IJCNLP 2017,
Taipei, 27 November–1 December 2017, vol. 1, pp. 986–995 (2017), https://www.
aclweb.org/anthology/I17-1099/

https://doi.org/10.18653/v1/D16-1216
https://doi.org/10.18653/v1/S18-2009
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.1145/2998181.2998213
http://dblp.uni-trier.de/db/conf/acl/acl2013-1.html#Danescu-Niculescu-MizilSJLP13
http://dblp.uni-trier.de/db/conf/acl/acl2013-1.html#Danescu-Niculescu-MizilSJLP13
https://doi.org/10.1145/3232676
http://www.philippe-fournier-viger.com/spmf/
https://doi.org/10.1007/978-3-642-37453-1_5
https://www.aclweb.org/anthology/I17-1099/
https://www.aclweb.org/anthology/I17-1099/

Predicting the Outbreak of Conflict in Online Discussions 511

10. Plutchik, R.: A psychoevolutionary theory of emotions. Soc. Sci. Inf. 21(4–5), 529–
553 (1982). https://doi.org/10.1177/053901882021004003

11. Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E., Mihalcea, R.: MELD:
a multimodal multi-party dataset for emotion recognition in conversations (2018)

12. Wang, L., Cardie, C.: A piece of my mind: a sentiment analysis approach for online
dispute detection. In: Proceedings of the 52nd Annual Meeting of the ACL, vol. 2,
pp. 693–699. ACL, Baltimore, June 2014. https://doi.org/10.3115/v1/P14-2113

13. Zahiri, S.M., Choi, J.D.: Emotion detection on TV show transcripts with sequence-
based convolutional neural networks. In: Workshops at the Thirty-Second AAAI
Conference on Artificial Intelligence (2018)

14. Zhang, J., et al.: Conversations gone awry: detecting warning signs of conversa-
tional failure. In: Proceedings of ACL (2018)

https://doi.org/10.1177/053901882021004003
https://doi.org/10.3115/v1/P14-2113

An APIfication Approach to Facilitate
the Access and Reuse of Open Data

César González-Mora(B), Irene Garrigós, and Jose Zubcoff

Department of Software and Computing Systems,
University of Alicante, Alicante, Spain

{cgmora,igarrigos,jose.zubcoff}@ua.es

Abstract. Nowadays, accessing open data is a difficult task since cur-
rent Open Data platforms do not generally provide suitable strategies
to access their data. Moreover, Linked Open Data requires knowledge in
different technologies, which is a challenging task especially for novice
developers. In order to manage this open data, Web APIs with accurate
documentation are highly recommended features that not all platforms
include. Providing these APIs would help developers to easily access
data, but this access is still limited for end-users, particularly those with
disabilities. Therefore, there is a gap between open data and users in
which our APIfication approach can help by creating APIs for available
datasets. It consists of a model-based generation of suitable APIs with
natural language documentation to access open data, a universal API to
access linked open data easily and a Web augmentation framework to
improve data accessibility, helping users with disabilities. Accordingly,
the aim of this PhD is to provide suitable mechanisms to easily access
and reuse open data.

Keywords: Data access · Web accessibility · Open data · Linked
data · API

1 Introduction and Motivation

Nowadays, a great effort is being made to publish open data [2]. In addition,
there is a great deal of awareness on a global scale about open data, but a large
gap has opened up between the data available on open data portals and the
actual access to them. Some of the companies with the biggest presence on the
Internet, such as Google with its dataset search [5], have made efforts to help
find hundreds of millions of open datasets, yet they have only been able to index
their source portal, and in some cases, include a download link. In order to take
advantage of the full value of open data, as many people as possible should be
able to explore and analyse this data.

Among the most adopted approaches to access open data are the Web APIs
[7], as they are an important feature of open data platforms, allowing developers
to make open data accessible to citizens [4]. Although organisations and other
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 512–518, 2020.
https://doi.org/10.1007/978-3-030-50578-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_36&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_36

An APIfication Approach to Facilitate the Access and Reuse of Open Data 513

organisms under the umbrella of smart cities started creating public data cat-
alogues recently [15], there is still a lack of suitable APIs to access online data
in open data platforms around the world. Several studies [6,15] suggest the cre-
ation of Web APIs to fill the gap between data and users. However, only about
the 6.6%, on average, of datasets from open data platforms include a query-level
API to ease the access to data, which means a Web API to consult directly
that data. In many cases, these platforms include an API following the DCAT1

standard, such as a CKAN API2, which is oriented to access only metadata that
provides, at most, a download link for entire datasets.

In order to promote the use of these APIs to access open data, relevant and
useful documentation, including natural language explanations and examples of
use, is a key factor [8,16]. There are studies [10,17] about the generation of API
documentation but in particular scenarios. Therefore, the documentation avail-
able online remains generally very rudimentary, hard to follow, and sometimes
incomplete or even inaccurate [1], hampering the reuse of open data.

There also exist interfaces to query data on the Web with powerful query
capabilities such as SPARQL endpoints or direct download of data in RDF
format such as data dumps. However, exploring Linked Open Data (LOD) by
structured query languages is tedious and error-prone, because queries must
conform to the SPARQL syntax, which is a challenging task especially for novice
developers and end-users [9]. Therefore, there is a larger set of developers who
are more familiar with REST-like APIs than SPARQL [7]. Consequently, the
current best practice solution to this problem seems to be the deployment of
custom Web APIs on top of Linked Data sources [12], such as an interface to
easy access data from SPARQL endpoints. Research [13,18] that address the
exploration of Linked Open Data facilitates its access through interfaces such as
APIs, but they generally require knowledge in RDF or SPARQL technologies or
they only provide access to specific endpoints.

Although providing Web APIs with documentation will help the majority of
developers and end-users to access easily open data, this access is still limited to
certain type of users. Specifically, users with disabilities find serious barriers when
accessing data on the Web [14]. According to the World Health Organisation3,
over 1 billion people - about 15% of the worldwide population - globally live
with disability. Providing easy and comfortable access to the Web for everyone
should therefore be a mandatory requirement for every website [11]. However,
nowadays not everyone is able to access the Web equally [14]. Thus, the concept
of Web accessibility consists of making data from the Web approachable and
available to everyone, particularly for impaired people [3].

In order to reduce the gap between open data and all kind of users, the
main contribution of our approach is to provide these users with the suitable
mechanisms to easily access, understand and reuse open data. These mechanisms
follow an APIfication approach, which means the creation of APIs for available
open data.

1 https://www.w3.org/TR/vocab-dcat/.
2 https://docs.ckan.org/en/2.6/api/.
3 https://www.who.int/disabilities/world report/2011/report/en/.

https://www.w3.org/TR/vocab-dcat/
https://docs.ckan.org/en/2.6/api/
https://www.who.int/disabilities/world_report/2011/report/en/

514 C. González-Mora et al.

2 Research Proposal

The main objective addressed along the PhD is to facilitate and improve the
access to open data for every user: developers and other users, considering also
users with disabilities. To easily and better access data, we propose the genera-
tion of suitable mechanisms shown in Fig. 1:

Fig. 1. Facilitating the access to open data through suitable mechanisms.

1. Model-based generation of Web APIs to access open data. First of
all, we propose the automatic generation of Web APIs that help develop-
ers to reuse open data and thus end-users to easily access that data. This
approach4 addresses problems related to accessing and reusing open data
available online, such as the shortage of query-level Web APIs to directly
access data with suitable documentation. It is based on automatic, model-
driven, generic and standardised mechanisms to generate APIs with machine-
readable documentation following the OpenAPI 3.0 standard. Therefore, we
provide an automatic generation process to better access open data through
Web APIs with models and documentation to simplify the open data reuse
process.

2. Generation of natural language documentation for open data Web
APIs. Related to accessing data through Web APIs, the generation of suit-
able documentation through NL processing techniques is proposed. The input
is a basic machine-readable API documentation following the OpenAPI stan-
dard, which is easy to process by machines but difficult to understand by
common users, hindering the reuse of data. From this documentation, the
generator of NL documentation is used to create a set of descriptions in

4 https://github.com/cgmora12/AG.

https://github.com/cgmora12/AG

An APIfication Approach to Facilitate the Access and Reuse of Open Data 515

natural language and append them to the existing machine-readable docu-
mentation of the API. Therefore, with this approach5 we complement existing
Web APIs with easy to read documentation so that the use of these existing
APIs is improved.

3. A Universal API (UAPI) to access and reuse Linked Open Data.
Furthermore, we also propose a step forward on the access and reuse of Linked
Open Data by providing a mechanism which allows users to access data from
the semantic web in a common way. It consists in a Universal API that
includes a Web interface6 and the suitable documentation to better access
and reuse the data, even for experts in the semantic web who do not have
any previous knowledge about the dataset to analyse. On the one hand, when
using the UAPI by the web interface: the developer can be helped in the
search of relevant information by useful OpenAPI documentation; then, the
requests of the users are transformed into auto-generated SPARQL queries;
and finally, the query is launched to the endpoint and the results obtained
are restructured into easily reusable structures and formats. On the other
hand, using the UAPI by web or mobile applications allow to directly and
programmatically reuse linked data from SPARQL endpoints.

4. Web Augmentation Framework to access open data for users with
accessibility needs. Finally, we present a Web Augmentation Framework
for Accessibility (WAFRA7) in order to facilitate impaired users to access
open data. The WAFRA framework provides end users with accessible web-
sites to more easily obtain open data by voice. First of all, an intermediary
user annotates the important parts of a website using the WAFRA frame-
work, and then, end users with disabilities can perform different accessibility
operations to get the desired data. This acquisition of data is made by using
APIs that easily access the data directly. Among the set of operations offered
are: reading aloud the data, facilitating the navigation through the Web and
increasing the font size; but more operations can be easily incorporated in
the framework by the users with programming knowledge. The accessibility
improvement process based on Web Augmentation can be applied to any web-
site, although the accessibility operations are tailored to open data platforms’
websites. With our proposal, the accessibility of such websites can be widely
improved, addressing readability problems and structural issues through voice
and manual interaction.

3 Research Methodology and Planning

In order to achieve the main purpose of this research, which consists in providing
users with easy access to open data, we have identified different research goals,
corresponding to 1–4 from previous section.

5 https://github.com/cgmora12/NL4OpenAPI.
6 https://wake.dlsi.ua.es/UniversalAPI.
7 https://github.com/cgmora12/Web-Augmentation-Framework-for-Accessibility.

https://github.com/cgmora12/NL4OpenAPI
https://wake.dlsi.ua.es/UniversalAPI
https://github.com/cgmora12/Web-Augmentation-Framework-for-Accessibility

516 C. González-Mora et al.

Fig. 2. Gantt chart with tasks during the whole PhD.

The main tasks performed during the PhD and also the remaining ones are
detailed in Fig. 2 (including their duration and sequencing). Firstly, during the
first year of the PhD, before addressing the different research goals, we analysed
the availability of data in open data platforms. From this analysis, we concluded
that it is generally difficult for data reusers to access these data because of the
lack of suitable APIs. Therefore, developers find it difficult to create applications
with interesting information for the citizenship. In order to solve these problems
about accessing open data, an approach for generating Web APIs from data
sources was defined during the first year of the PhD. This approach was presented
in ICWE 2018 and its extension has been submitted to a journal, which is now
under review. Moreover, we have also analysed the documentation of these APIs,
which is mostly not easy to read by users or it is not easy to process by computers.
To provide documentation which is at the same time easy to read by humans
and computers, we propose an automatic NL documentation generator during
the second and third year of the PhD. Furthermore, for facilitating developers to
access linked data we are working on a universal API from the third year of the
PhD. Finally, we also propose to help users with disabilities to access data from
the Web through a Web Augmentation framework during the last year of the
PhD. The proposals for generating NL documentation, facilitating the access to
semantic Web and making online data accessible have been submitted to ICWE
2020. At this point of the PhD there is still work to be done: the documentation
generated is going to be evaluated through user studies in order to enhance its
usability and understanding, the access to open data is going to be improved
using data integration techniques, and the WAFRA framework is going to be
further evaluated. These improvements will be submitted to different journals.

An APIfication Approach to Facilitate the Access and Reuse of Open Data 517

Acknowledgments. This research work has been partially funded by the follow-
ing projects: PROMETEU/2018/089 and TIN2016-78103-C2-2-R. Furthermore, the
author César González-Mora has a contract for predoctoral training with the General-
itat Valenciana and the European Social Fund by the grant ACIF/2019/044.

References

1. Abelló Gamazo, A., Ayala Mart́ınez, C.P., Farré Tost, C., Gómez Seoane, C., Oriol
Hilari, M., Romero Moral, Ó.: A Data-driven approach to improve the process
of data-intensive API creation and evolution. In: Proceedings of the Forum and
Doctoral Consortium Papers Presented at the 29th CAiSE, pp. 1–8 (2017)

2. Attard, J., Orlandi, F., Scerri, S., Auer, S.: A systematic review of open government
data initiatives. Gov. Inf. Q. 32(4), 399–418 (2015)

3. Bradbard, D., Peters, C.: Web accessibility theory and practice: an introduction
for university faculty. J. Educ. Online 7, 1–14 (2010)

4. Braunschweig, K., Eberius, J., Thiele, M., Lehner, W.: The state of open data -
limits of current open data platforms. In: Proceedings of the 21st World Wide Web
Conference (2012)

5. Brickley, D., Burgess, M., Noy, N.: Google dataset search: building a search engine
for datasets in an open web ecosystem. In: The World Wide Web Conference, pp.
1365–1375 (2019)

6. Cabot, J.: Open data for all: an API-based approach (2016). https://modeling-
languages.com/open-data-for-all-api/. Accessed 31 July 2019

7. Daga, E., Panziera, L., Pedrinaci, C.: A BASILar approach for building web APIs
on top of SPARQL endpoints. In: CEUR Workshop Proceedings, vol. 1359, pp.
22–32 (2015)

8. Danielsen, P.J., Jeffrey, A.: Validation and interactivity of web API documentation.
In: IEEE 20th International Conference on Web Services, pp. 523–530 (2013)

9. Grafkin, P., Mironov, M., Fellmann, M., Lantow, B., Sandkuhl, K., Smirnov, A.V.:
SPARQL query builders: overview and comparison. In: BIR Workshops (2016)

10. Hancock, B., Lee, H., Yu, C.: Generating titles for web tables. In: The World Wide
Web Conference, pp. 638–647 (2019)

11. Hanson, V.L., Richards, J.T.: Progress on website accessibility? ACM Trans. Web
7(1), 2:1–2:30 (2013)

12. Meroño-Peñuela, A., Hoekstra, R.: grlc makes GitHub taste like linked data APIs.
In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.)
ESWC 2016. LNCS, vol. 9989, pp. 342–353. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47602-5 48

13. Meroño-Peñuela, A., Hoekstra, R.: Automatic query-centric API for routine access
to linked data. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp.
334–349. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4 30

14. Power, C., Freire, A., Petrie, H., Swallow, D.: Guidelines are only half of the story:
accessibility problems encountered by blind users on the web. In: Proceedings of
the CHI Conference on Human Factors in Computing Systems, pp. 433–442 (2012)

15. Rittenbruch, M., Foth, M., Robinson, R., Filonik, D.: Program your city: designing
an urban integrated open data API. In: Proceedings of Cumulus Helsinki 2012
Conference: Open Helsinki-Embedding Design in Life, pp. 24–28 (2012)

16. Robillard, M.P., DeLine, R.: A field study of API learning obstacles. Empir. Softw.
Eng. 16(6), 703–732 (2011). https://doi.org/10.1007/s10664-010-9150-8

https://modeling-languages.com/open-data-for-all-api/
https://modeling-languages.com/open-data-for-all-api/
https://doi.org/10.1007/978-3-319-47602-5_48
https://doi.org/10.1007/978-3-319-47602-5_48
https://doi.org/10.1007/978-3-319-68204-4_30
https://doi.org/10.1007/s10664-010-9150-8

518 C. González-Mora et al.

17. Suter, P., Wittern, E.: Inferring web API descriptions from usage data. In: 3rd
IEEE Workshop on Hot Topics in Web Systems and Technologies, pp. 7–12 (2015)

18. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface
for the Web. J. Web Semant. 37, 184–206 (2016)

A Personal Health Trajectory API:
Addressing Problems in Health
Institution-Oriented Systems

Javier Rojo(B) , Juan Hernandez , and Juan M. Murillo

University of Extremadura, Cáceres, Spain
{javirojo,juanher,juanmamu}@unex.es

Abstract. Each person interacts with multiple health institution’s sys-
tems along their life. These systems are usually developed to fulfill the
specific needs of sanitary organizations or Web of Medical Things man-
ufacturers. However, most of the times these information systems aren’t
interconnected, making it very difficult to put in common the information
of a patient scattered in various systems. Thus, it’s necessary to develop
solutions that allow health information systems developers to consult
all the information of an user across the multiple health’s information
systems it is scattered and to offer this information organized as the
Personal Health Trajectory of the user (a succession of Personal Health
Records ordered by time). This paper proposes a solution for the inte-
gration of heterogeneous health information systems, the processing of
their data and its provisioning in a health trajectory perspective through
an API. Thus, software developers of healthcare solutions can leverage
this API to develop a new generation of person-oriented solutions.

Keywords: Personal Health Record · eHealth · Personal Health
Trajectory · APIs

1 Introduction

Technological advances in the field of health information systems are making
it possible to improve the services provided to patients. Specifically, the use
of smart connected devices from the Web of Medical Things (WoMT) [10] in
combination with traditional medical data is used to provide advanced solutions.

Nevertheless, most of these solutions work on data from a single information
system. In a globalized society, like the present one, a person will surely interact
with several health systems along their life. Not to mention the pervasive pres-
ence of WoMT devices, which generate data outside these institutions. Each of
these systems keeps its data separate, which could mean that crucial information
for the person’s health could be not available when needed [13]. All these data
are useful, but they take on added value when put together.

To better exemplify the problems this entails we present Paula’s case. Paula
is a Spanish women who suffers from diabetes. On one of her trips to China,
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 519–524, 2020.
https://doi.org/10.1007/978-3-030-50578-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_37&domain=pdf
http://orcid.org/0000-0001-9189-1133
http://orcid.org/0000-0002-6343-7395
http://orcid.org/0000-0003-4961-4030
https://doi.org/10.1007/978-3-030-50578-3_37

520 J. Rojo et al.

Paula suffers a fainting spell due to hypoglycemia. She is treated in a health
center in China, where she is measured for blood glucose. However, when Paula
returns to Spain, she cannot give the data of those measurements to her usual
doctor, because they have been registered in the Chinese health system. Something
similar happens with her smart glucometer. Only a few of the measurements she
takes at home are transcribed to her health record. If Paula has another fainting
spell, her doctor cannot access Paula’s latest blood glucose measurements.

Providing a way to combine a person’s health data and offering it in a way
that can track the health of a person over time could be a solution to the previous
problem and an advance in what is known as Precision medicine, moving from
Electronic Health Records (EHR) to Personal Health Records (PHR) [11]. EHRs
are computer records created and managed in healthcare systems by physicians,
while PHRs are records that can be generated by physicians, patients, hospitals,
pharmacies, and other sources and are managed by the patient.

The creation of health systems that are aware of a patient’s health trajectory
has been demanded by the fields of medicine and nursing for years [5]. Works
like [7] [12] start to address this problem. However, as far as the authors know,
there are no technical proposals that combines all the data from the different
health related systems and processes it to provide it to software developers in
an unified API.

In this paper, we propose a Personal Health Trajectory API (PHT API).
With this API, healthcare application developers will be able to access a patient’s
health trajectory data and create applications with more complete and higher
quality data, following the data-driven medicine approach. This approach argues
that the use of the latest analytical techniques can lead to better health outcomes
and help many more people.

To detail this proposal, the rest of the paper is structured as follows. In
Sect. 2, the related works are described. In Sect. 3, the aims, objectives and
research methodology of this work are detailed. Section 4 presents the current
state of the work. And finally, Sect. 5 discusses the future work plan, alongside
the conclusions.

2 Related Works

Looking at a patient complete health trajectory is not a new idea. For years,
solutions to the above-mentioned problems have been demanded [5].

Due to this demand, some proposals have attempted to address this situation.
In [7], H. La propose a framework for the collection of data from the user’s
own WoMT wearable devices and the use of that information to predict the
probability of suffering certain diseases. A specific device is also proposed to
integrate the different sensors needed to collect all the necessary data from the
user. Simillarly, in [8], Moguel et al. propose to collect information about the
adherence to pharmacological treatments by using their own WoMT device.

However, these works are focused on the incorporation of WoMT devices in
diagnostics and forget the problem of information dismissal between different

PHT API: Addressing Problems in Health Institution-Oriented Systems 521

health systems. For this reason, in [12] Shameer et al. study the components
and information that should be included in a system that tries to offer solutions
oriented to people and not solutions oriented to health institutions.

Finally, the authors of this paper have been working in making systems
aware of their users needs and preferences. Starting from the People as a Service
paradigm [4], different frameworks and solutions have been proposed to simplify
the interoperability between smart things and humans (like Situational-Context
[2]). The authors have already taken advantage of these concepts in the devel-
opment of health related solutions [9], and the work presented here is the next
step in developing a virtual representation of the personal health trajectory of a
user.

3 Research Aims, Objetives and Methodology

To implement our proposal, a number of issues will have to be addressed. The
main objective will be to develop an API that provides access to the health
trajectory of users. In order to achieve this, concerns like the interoperability
of WoMT devices or the integration of data from different sources should be
addressed. There are works in the literature that can help us address these con-
cerns. In the area of data integration, works like [6] propose the use of blockchain
technology to integrate the electronic health records of the user among differ-
ent healthcare systems and WoMT devices; and [11] implements a PHR model
that integrates distributed health records using blockchain technology and the
openEHR 1 interoperability standard. To integrate the data from WoMT devices,
Flores et al. propose a semantic web-based solution [3].

Starting from these works, the main scientific contributions of this proposal
are focused on:

– Distributed data integration. This problem is not new in the field of
information technology and there are different approaches to solving it [1].
In recent years the use of blockchain to store EHR [6] is expanding, so our
solution should allow the integration of data from different blockchains and
the interaction between them, creating a “blockchain federation”.

– WoMT device data flows. The devices provide a continuous flow of data
that can sometimes be interesting, but in other cases provide too much infor-
mation. Process mining techniques will be used to filter and interpret this
information collected from user devices.

– Data enrichment. Once integrated, patient data can be used to infer addi-
tional information that separately they did not give before. Data mining
processes will be used to give greater expressiveness to the integrated “raw”
data from different sources.

– Personal Health Trajectory. Orient the approach of the medical data to
follow the health of a person along their life and offer this data through an
API.

1 https://www.openehr.org/.

https://www.openehr.org/

522 J. Rojo et al.

To achieve the proposed objective, we are following the Design Science
methodology, where researchers see an artifact as something that should sup-
port people in practice. The development of this work passes through different
stages: (1) reviewing the state of the art of proposals for health systems oriented
to the trajectory of people; (2) developing an architecture that allows us to offer
an API to access a person’s health data along their life; and (3) developing the
API, which will allow to offer the advantages of the Personal Health Trajectory.

4 Preliminary Key Results or Contributions

Figure 1 shows the proposed architecture that would allow software developers
to consult the integrated data through a single access point.

Fig. 1. Proposed architecture

This architecture is composed by software layers added over the current medi-
cal and WoMT devices information systems. An alternative solution, storing the
information from the different system in a centralized repository, following a
common ontology for data representation, could be explored. However, it would
imply a greater compromise by healthcare institutions and manufacturers of
WoMT devices, which can be difficult to achieve.

In general terms, the mission of each of the four main layers of the architecture
is as follows:

– Layer I: Information Systems. Maintainer of patient data. It is composed
by the current information systems.

– Layer II: IS Standarization & Integration. Responsible, firstly, for stan-
dardizing the information stored in the previous layer, including the use of
different technologies and different data models; and secondly, for unifying
the data of each information system. In the case of WoMT devices, it will
also be responsible for their interoperability and the processing of the stored
data streams.

PHT API: Addressing Problems in Health Institution-Oriented Systems 523

– Layer III: Personal Health Trajectory . Responsible for providing health
trajectory data for a person. This data may be provided “raw” (unprocessed)
or with greater expressiveness, after applying Data Mining techniques on
them.

– Layer IV: Personal Health Trajectory API . Responsible for providing
a point of access to a person’s health trajectory data to all those who want
to develop software on Personal Health Trajectory.

5 Conclusions and Work Plan

Current health systems maintain patient records separately between their differ-
ent information systems. The same applies to the user’s WoMT devices. If a user
or healthcare system wants to access all medical information along the patient’s
life, they do not have a way to find all this information together in a contrasted
and organised manner.

To solve this problem, this paper proposes a Personal Health Trajectory API,
which integrates the EHRs of the healthcare systems that the patient has visited
and the data from their WoMT devices and offers them through a single access
point.

The future work associated with this doctoral work is shown in Fig. 2 where
some of the most important tasks are detailed. The initial version of the archi-
tecture has been done for the development of this paper.

Fig. 2. Gantt chart

Acknowledgment. This work was supported by the project 0499 4IE PLUS 4 E
funded by the Interreg V-A España-Portugal 2014-2020 program, by the project
RTI2018-094591-B-I00 (MCIU/AEI/FEDER, UE), by the Department of Economy
and Infrastructure of the Government of Extremadura (GR18112, IB18030), and by
the European Regional Development Fund.

References

1. Open data for all: an API-based approach (interested?). https://modeling-
languages.com/open-data-for-all-api/

https://modeling-languages.com/open-data-for-all-api/
https://modeling-languages.com/open-data-for-all-api/

524 J. Rojo et al.

2. Berrocal, J., Garcia-Alonso, J., Canal, C., Murillo, J.M.: Situational-context: a
unified view of everything involved at a particular situation. In: Bozzon, A.,
Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 476–483.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38791-8 34

3. Flores-Martin, D., Berrocal, J., Garćı-a-Alonso, J., Canal, C., Murillo, J.M.:
Enabling the interconnection of smart devices through semantic web techniques.
In: Bakaev, M., Frasincar, F., Ko, I.-Y. (eds.) ICWE 2019. LNCS, vol. 11496, pp.
534–537. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19274-7 41

4. Guillén, J., Miranda, J., Berrocal, J., Garćıa-Alonso, J., Murillo, J.M., Canal, C.:
People as a service: A mobile-centric model for providing collective sociological
profiles. IEEE Softw. 31(2), 48–53 (2014). https://doi.org/10.1109/MS.2013.140

5. Henly, S.J., Wyman, J.F., Gaugler, J.E.: Health trajectory research: a call to action
for nursing science. Nurs. Res. 60(3 SUPPL.), S79 (2011). https://doi.org/10.1097/
NNR.0b013e31821cc240

6. Kassab, M., Defranco, J., Malas, T., Graciano Neto, V.V., Destefanis, G.:
Blockchain: a panacea for electronic health records? In: Proceedings - 2019
IEEE/ACM 1st International Workshop on Software Engineering for Healthcare,
SEH 2019, pp. 21–24. Institute of Electrical and Electronics Engineers Inc., May
2019. https://doi.org/10.1109/SEH.2019.00011

7. La, H.J.: A conceptual framework for trajectory-based medical analytics with IoT
contexts. J. Comput. Syst. Sci. 82(4), 610–626 (2016). https://doi.org/10.1016/j.
jcss.2015.10.007

8. Moguel, E., Azabal, M.J., Flores-Martin, D., Berrocal, J., Garcıa-Alonso, J.,
Murillo, J.M.: Asistente de voz para el recordatorio de tratamiento farmacológico.
Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD) (2019)

9. Moguel, E., Berrocal, J., Garćıa-Alonso, J.: Systematic literature review of food-
intake monitoring in an aging population. Sensors 19(15), 3265 (2019). https://
doi.org/10.3390/s19153265

10. Philip, N., et al.: Design of a restful middleware to enable a web of medical things.
In: 2014 MOBIHEALTH, pp. 361–364, November 2014. https://doi.org/10.1109/
MOBIHEALTH.2014.7015986

11. Roehrs, A., da Costa, C.A., da Rosa Righi, R., da Silva, V.F., Goldim, J.R.,
Schmidt, D.C.: Analyzing the performance of a blockchain-based personal health
record implementation. J. Biomed. Inform. 92, 103140 (2019). https://doi.org/10.
1016/j.jbi.2019.103140

12. Shameer, K., Badgeley, M.A., Miotto, R., Glicksberg, B.S., Morgan, J.W., Dudley,
J.T.: Translational bioinformatics in the era of real-time biomedical, health care
and wellness data streams. Brief. Bioinform. 18(1), 105–124 (2017). https://doi.
org/10.1093/bib/bbv118

13. Stiell, A., Forster, A., Stiell, I., Van Walraven, C.: Prevalence of information
gaps in the emergency department and the effect on patient outcomes. CMAJ
169(10), 1023–1028 (2003). https://www.scopus.com/inward/record.uri?eid=2-s2.
0-0344515549&partnerID=40&md5=a93a898d90f493d07542cf5aa9dd6542. Cited
By 151

https://doi.org/10.1007/978-3-319-38791-8_34
https://doi.org/10.1007/978-3-030-19274-7_41
https://doi.org/10.1109/MS.2013.140
https://doi.org/10.1097/NNR.0b013e31821cc240
https://doi.org/10.1097/NNR.0b013e31821cc240
https://doi.org/10.1109/SEH.2019.00011
https://doi.org/10.1016/j.jcss.2015.10.007
https://doi.org/10.1016/j.jcss.2015.10.007
https://doi.org/10.3390/s19153265
https://doi.org/10.3390/s19153265
https://doi.org/10.1109/MOBIHEALTH.2014.7015986
https://doi.org/10.1109/MOBIHEALTH.2014.7015986
https://doi.org/10.1016/j.jbi.2019.103140
https://doi.org/10.1016/j.jbi.2019.103140
https://doi.org/10.1093/bib/bbv118
https://doi.org/10.1093/bib/bbv118
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0344515549&partnerID=40&md5=a93a898d90f493d07542cf5aa9dd6542
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0344515549&partnerID=40&md5=a93a898d90f493d07542cf5aa9dd6542

Context-Aware Encoding and Delivery
in the Web

Benjamin Wollmer1(B) , Wolfram Wingerath2 , and Norbert Ritter1

1 University of Hamburg, Hamburg, Germany
{wollmer,ritter}@informatik.uni-hamburg.de

2 Baqend GmbH, Hamburg, Germany
wolle@baqend.com

Abstract. While standard HTTP caching has been designed for static
resources such as files, different conceptual extensions have made it appli-
cable to frequently changing data like database query results or server-
generated HTML content. But even though caching is an indispensable
means to accelerate content delivery on the web, whether or not cached
resources can be used for acceleration has always been a binary decision:
a cached response is either valid and can be used or has been inval-
idated and must be avoided. In this paper, we present an early-stage
PhD project on a novel scheme for content encoding and delivery. Our
primary goal is minimizing the payload for client requests in the web by
enabling partial usage of cached resources. We discuss related work on
the topic and analyze why existing approaches have not been established
in practice so far, despite significant gains such as reduced bandwidth
usage and loading times for end users. We then present open challenges,
derive our research question, and present our research goals and agenda.

Keywords: Web caching · Efficiency · Compression algorithms · Delta
encoding · Benchmarking · Runtime optimization · User experience

1 Introduction

In the web, performance is crucial for user satisfaction and business-critical met-
rics such as conversion rate or revenue per session [17]. But even though new
devices and browsers are being developed year after year, the principles of data
transfer in the web seem stuck. To illustrate this phenomenon, consider how
traditional web caching is used in practice. For decades, the browser’s decision
whether to use a cache or to load a resource via network has been determined by
(1) whether the resource’s identifier is present in the cache, (2) whether it has
been invalidated already, and (3) whether its cache lifetime (time to live, TTL)
is still valid. However, this procedure is inefficient in certain scenarios. For exam-
ple, state-of-the-art caching approaches do not make use of cache entries that are
similar (but not exact matches) to a requested resource. Invalidated resources
are discarded entirely, even if only a minor update occurred and major portions

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 525–530, 2020.
https://doi.org/10.1007/978-3-030-50578-3_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_38&domain=pdf
http://orcid.org/0000-0002-0545-8040
http://orcid.org/0000-0003-3512-5789
https://doi.org/10.1007/978-3-030-50578-3_38

526 B. Wollmer et al.

of the invalidated resource could be reused in theory. As another example, com-
pression algorithms are typically not chosen based on runtime parameters, even
though information such as available bandwidth or processing power may well be
performance-critical factors for choosing the right method in a given situation.
Intuitively, though, performance and efficiency could be improved, if parameters
such as image resolution or compression codec were chosen based on whether the
user is on a high-bandwidth fiber cable or an unstable mobile connection with
limited data allowance. We think these inefficiencies in the web content delivery
chain are mere implementation artifacts that can be removed in practice. We
intend to prove it.

This paper describes our research and development agenda to achieve this
goal. In Sects. 2 and 3, we briefly survey the state of the art in content encoding
and delivery, list the most critical open challenges, and formulate our research
question. In Sect. 4, we then present the main research goals of this PhD project
and a brief outline of our research agenda. Section 5 concludes the paper.

2 Content Encoding: State of the Art

Even though introduced in the early 1990s, the purely text-based Gzip is still
the most widely used compression method in the web: As of 2019, it is used for
more than 30% of all mobile requests and for over 40% of requests for text-based
web resources overall [4]. While more efficient approaches have been developed
in the last decades, none of them has become as widespread in practice as Gzip
which is natively supported by all relevant browsers and web servers today.

Classic compression algorithms like Gzip remove redundancy within individ-
ual transmissions, thus increasing efficiency compared with transmitting uncom-
pressed raw data. However, redundancy between different transmissions is not
addressed, so that requesting two very similar versions of the same resource will
essentially double the transmitted amount of data, compared with requesting
only one. Delta encoding addresses this weakness by transferring only changes
whenever a prior version of the requested resource is already known to the client.
Since changes in websites (HTML) and web assets (e.g. stylesheets or JavaScript
files) are often small, delta encoding can have a significant impact on page load
times: A study from the late 1990s [11] showed potential savings of more than
80% of transferred bytes for text-based web content.

There were plans to standardize delta encoding [10] and even full-fledged
user-facing implementations (e.g. [9]). All these efforts failed in practice, though,
because calculating deltas fast enough to be used by requesting clients turned out
prohibitive. To the best of our knowledge, the only commercial implementation of
delta encoding is Cloudflare’s RailgunTM which merely optimizes data transfer
between web servers and the Cloudflare CDN. Since end users still request their
web content through standard HTTP requests in this scheme, however, they do
not profit from delta encoding directly [5]. As another limitation, RailgunTM is
reportedly difficult to deploy and operate: According to architectural lead Nick
Craver [6], RailgunTM had been evaluated at Stack Exchange for over a year,
but was eventually canceled as the deployment never became stable.

Context-Aware Encoding and Delivery in the Web 527

Another way to exploit similarities between data entities is shared dictio-
nary compression [15]. As the basic idea, client and server share a common
dictionary, so that portions of the payload can be encoded as references to dic-
tionary entries instead of the actual content. As the only implementation we
are aware of, Google’s SDCH (pronunciation: “sandwich”) [3] was supported
by Chrome-based browsers and tested at LinkedIn where it outperformed Gzip
compression by up to 81% [13]. Unfortunately, though, support was never added
to other browsers and was eventually removed from Chrome [14], because vir-
tually no website provider apart from LinkedIn overcame the high technical
complexity of computing and maintaining shared dictionaries. To address this
challenge, Google developed Brotli [1] compression as a derivative of SDCH
where the dictionary is shipped with the library itself and does not have to
be tailored to individual websites. Brotli’s dictionary is still tuned for web
content1, but generic enough to be used across different websites. While this
makes it more widely applicable than SDCH, it also bars Brotli from exploiting
frequently occurring page-specific strings that would be efficiently encoded in
SDCH.

Choosing a compression method or compression level always is a trade-off
between minimizing computation time and minimizing transmitted bytes [8]. But
even though the sweet spot depends on dynamic parameters such as the available
computing power of both parties and the bandwidth between them, modern web
servers typically use static heuristics like “always use default compression levels”
or “use Brotli when available and Gzip otherwise” [4].

There are many other evolutionary optimizations to content encoding
and delivery mechanisms such as HTTP/2 (incl. server push, header compres-
sion, pipelining, multiplexing) [2] or eTags [12, Sec. 14.19], and even advanced
approaches for caching dynamic data [7]. However, new technologies are often
adopted slowly, because they are complex (and thus expensive) to integrate with
legacy architectures or because they are only supported by a relatively small
share of the end users’ devices and browsers.

3 Open Challenges and Research Question

Today’s web infrastructure relies on technology that is several decades old. While
more advanced compression algorithms than Gzip do exist, none of them has
gained broad adoption. Delta encoding and other advanced approaches have
failed, because they are hard to deploy or not noticeably useful for end users.
Summing up, we see several critical challenges for content delivery in the web:

C1 Lack of Client Support. While delta encoding with RailgunTM optimizes
communication between backend servers and the CDN, it does not provide
an actual (noticeable) benefit for users of an enhanced website. Approaches
that do improve performance for users significantly, in contrast, typically
also rely on browser support for broad adoption and cannot succeed without
it. The history of SDCH illustrates this dilemma.

1 Brotli’s dictionary contains frequent terms from natural and programming languages.

528 B. Wollmer et al.

C2 Lack of Backend Support. Disregarding support for end users, just imple-
menting the backend for advanced technologies already is a major challenge:
The technical complexity alone can be prohibitive (cf. RailgunTM at Stack
Exchange), but even with that resolved lack of third-party support can still
cause a project to fail (cf. SDCH at LinkedIn).

C3 Inefficient Cache Usage. State-of-the-art caching discards a data item
entirely as soon as it expires or is invalidated by an ever so slight change.
Delta encoding exploits similarities between the current and expired/invali-
dated versions of the same entity, but no current approach exploits similar-
ities between different entities: Requesting two similar resources (e.g. two
different product pages in a web shop) always means transmitting highly
redundant data.

C4 Inflexible Protocol Negotiation. Compression protocols and their
parameterization are typically selected according to static rules, although
performance ultimately depends on runtime parameters. For example, CPU-
intensive Brotli compression is preferable for a user while on a flaky mobile
connection, but using Gzip may be faster as soon as the user comes home
and connects to the local Wi-Fi. We consider neglecting the runtime context
for performance optimization a major flaw in current technology.

We are convinced that the above challenges can be resolved with a careful
end-to-end system design. We therefore set out to address the following research
question: How can partial caching and encoding methods be used to accelerate
data access in a distributed architecture with heterogeneous clients and servers?

4 Research Goals and Agenda

In order to address these challenges and our research question, we aim to devise a
unified system design that enables efficient and context-aware encoding methods,
exploits partial cache hits, and builds on widely supported browser and web
server features to facilitate widespread adoption. Our research goals are:

R1 Efficiency Gold Standard. To evaluate the potential gains of different
encoding methods, we will collect real-world Internet traffic over a period of
time and compute the optimal compression savings using hindsight knowl-
edge: Our gold standard encoding will thus work under the unrealistic
assumption of perfect knowledge of all relevant factors. We think this will
help us assess the maximal possible benefit of our approach in concept and
the efficiency of our implementation in practice.

R2 Pluggable Server-to-Client Content Encoding. Two major roadblocks
for earlier approaches have been poor support for end users (C1) and high
complexity of deployments (C2). To address both these challenges, we will
design an extensible architecture for content encoding that only relies on
widely available browser features on the user side (cf. C1) and that does
not require tight integration with web servers in the backend (cf. C2). We
will build our prototype on the JavaScript-based technology Speed Kit [16],

Context-Aware Encoding and Delivery in the Web 529

because it allows hooking into the client-server communication in a trans-
parent way and because it is supported by more than 90% of all browsers.

R3 Cross-Entity Delta Encoding. Current approaches for delta encoding
only exploit similarities between different versions of the same entity, but
disregard similarities between different entities (cf. C3). We will develop
a storage engine with the ability to exploit the similarity between stored
entities: When a certain product page htmlA is queried, for example, our
intended cross-entity storage engine may not respond with htmlA directly,
but rather with the information required to construct htmlA from informa-
tion that is already known to the client (e.g. from an old version of htmlA
or from an entirely different product page htmlB).

R4 Context-Aware Runtime Optimization. Our approach will let the stor-
age engine choose a content encoding based on client-provided context infor-
mation at runtime (cf. C4). From the context information provided in Query
1.1, for example, the storage engine could derive that (1) it may encode
htmlA as a diff to either htmlB or htmlC (if that is more efficient than send-
ing the full document) and that (2) Gzip may be preferable over Brotli,
because the client has broadband Internet access but only limited CPU
power.

GET htmlA WITHCONTEXT (
inCl ientCache : [htmlB , htmlC]

, bandwidth : high
, processingPower : low

)
Query 1.1. Clients will provide context information with every request, so that our
storage engine can choose the most efficient encoding on a per-request basis.

As the first step in our research agenda, we plan to evaluate the potential
gains of different encoding algorithms (R1). We are going to start with delta and
cross-entity encoding as they are pivotal in our research plan. We expect to find
that both approaches yield a significant performance uplift, given the unrealistic
premise of perfect knowledge. Next, we will devise a client-to-server architecture
for web content delivery (R2). One of the critical challenges in our architecture
will be the context-aware storage backend (R3). We envision an implementation
in different modules for different types of content (e.g. uncompressed text-based
content, compressed/bundled scripts, images). To guide and evaluate our efforts,
we will benchmark our implementation (R4) against the gold standard (R1) for
the theoretically most efficient way of cross-entity encoding.

5 Wrapup

Choosing the right encoding for content delivery has a crucial impact on perfor-
mance in any globally distributed architecture. But while many attempts have
been made to establish more efficient content encoding and delivery methods

530 B. Wollmer et al.

in the web, only few have found widespread adoption. This paper presents an
ambitious research plan for addressing this issue. Our basic idea revolves around
(1) the client attaching runtime context information to every server request and
(2) the server dynamically optimizing every response based on the given context.
To make this practically feasible, we strive for a system design that builds on
widely available browser technologies and is easy to integrate for website admin-
istrators. While we plan to publish our follow-up research results in the future,
we hope to spark interesting discussions on the topic right away.

References

1. Alakuijala, J., Szabadka, Z.: Brotli Compressed Data Format. RFC 7932 (2016)
2. Belshe, M., Peon, R., Thomson, M.E.: RFC 7540. Hypertext Transfer Protocol

Version 2 (HTTP/2) (2015)
3. Butler, J., Lee, W.H., McQuade, B., Mixter, K.: A proposal for shared dic-

tionary compression over http (2008). https://pdfs.semanticscholar.org/c53e/
e3d44f1314c2c4d14dca7d25d1858cf55246.pdf. Accessed 20 Feb 2020

4. Calvano, P.: Web Almanac: Compression (2019). https://almanac.httparchive.org/
en/2019/compression. Accessed 20 Feb 2020

5. Cloudflare: Optimierung des Ursprungsnetzwerks mit RailgunTM (2018). https://
www.cloudflare.com/website-optimization/railgun/. Accessed 20 Feb 2020

6. Craver, N.: HTTPS on Stack Overflow: The End of a Long Road (2017). https://
nickcraver.com/blog/2017/05/22/https-on-stack-overflow. Accessed 20 Feb 2020

7. Gessert, F., Schaarschmidt, M., Wingerath, W., et al.: Quaestor: query web caching
for database-as-a-service providers. PVLDB 10, 1670–1681 (2017)

8. Jarrod: Gzip vs Bzip2 vs XZ Performance Comparison (2015). https://www.
rootusers.com/gzip-vs-bzip2-vs-xz-performance-comparison/. Accessed 20 Feb
2020

9. Korn, D., MacDonald, J., Mogul, J., Vo, K.: The VCDIFF Generic Differencing
and Compression Data Format. RFC 3284, June 2002

10. Mogul, J., et al.: Delta Encoding in HTTP. RFC 3229, January 2002
11. Mogul, J.C., Douglis, F., Feldmann, A., Krishnamurthy, B.: Potential benefits of

delta encoding and data compression for HTTP. SIGCOMM Comput. Commun.
Rev. 27(4), 181–194 (1997). https://doi.org/10.1145/263109.263162

12. Nielsen, H.F., Mogul, J., Masinter, L.M., Fielding, R.T., et al.: Hypertext Transfer
Protocol - HTTP/1.1. RFC 2616, June 1999. https://doi.org/10.17487/RFC2616

13. Shapira, O.: Shared Dictionary Compression for HTTP at LinkedIn (2015).
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin.
Accessed 20 Feb 2020

14. Sleevi, R.: Shared Dictionary Compression for HTTP at LinkedIn (2016).
https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/
HNpR96sqAgAJ. Accessed 20 Feb 2020

15. White, H.E.: Printed English compression by dictionary encoding. Proc. IEEE
55(3), 390–396 (1967). https://doi.org/10.1109/PROC.1967.5496

16. Wingerath, W., et al.: Speed kit: a polyglot GDPR-compliant approach for caching
personalized content. In: 36th ICDE 2020, Dallas, Texas, 20–24 April 2020 (2020)

17. Young, J., Barth, T.: Akamai Online Retail Performance Report: Milliseconds
Are Critical (2017). https://www.akamai.com/en/us/about/news/press/2017-
press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp.
Accessed 20 Feb 2020

https://pdfs.semanticscholar.org/c53e/e3d44f1314c2c4d14dca7d25d1858cf55246.pdf
https://pdfs.semanticscholar.org/c53e/e3d44f1314c2c4d14dca7d25d1858cf55246.pdf
https://almanac.httparchive.org/en/2019/compression
https://almanac.httparchive.org/en/2019/compression
https://www.cloudflare.com/website-optimization/railgun/
https://www.cloudflare.com/website-optimization/railgun/
https://nickcraver.com/blog/2017/05/22/https-on-stack-overflow
https://nickcraver.com/blog/2017/05/22/https-on-stack-overflow
https://www.rootusers.com/gzip-vs-bzip2-vs-xz-performance-comparison/
https://www.rootusers.com/gzip-vs-bzip2-vs-xz-performance-comparison/
https://doi.org/10.1145/263109.263162
https://doi.org/10.17487/RFC2616
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin
https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ
https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ
https://doi.org/10.1109/PROC.1967.5496
https://www.akamai.com/en/us/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/en/us/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp

Demos and Posters

An OpenAPI-Based Testing Framework
to Monitor Non-functional Properties

of REST APIs

Steven Bucaille1 , Javier Luis Cánovas Izquierdo2(B) , Hamza Ed-Douibi2 ,
and Jordi Cabot2,3

1 Katholieke Universiteit Leuven, Leuven, Belgium
steven.bucaille@student.kuleuven.be

2 UOC, Barcelona, Spain
{jcanovasi,hed-douibi}@uoc.edu

3 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. REST APIs have become key assets for any company will-
ing to have online presence and provide access to its services. Several
approaches have been proposed to describe this kind of APIs, being
OpenAPI the dominant proposal in the last years. OpenAPI allows any
consumer to understand the operations and data elements of a REST
API. However, it does not cover any kind of non-functional properties,
such as performance and availability. In this paper we present Gadolin-
ium, a framework that leverages the OpenAPI specification to test non-
functional properties of REST APIs. Gadolinium automatically tests
performance and availability in different geographical locations by means
of a master/slave architecture. The results of the test can eventually be
injected in the original OpenAPI definition of the REST API.
Demo: http://hdl.handle.net/20.500.12004/1/C/ICWE/2020/001

1 Introduction

The Web has become the main source of information and services for both devel-
opers and big companies. Nowadays the most popular way to access this informa-
tion is via REST APIs. REST APIs have been usually documented in natural
language only, which hampers its understanding and use. In the last years a
number of specifications have appeared to formalize the definition of APIs and
solve this problem. OpenAPI is now the de facto standard for this.

OpenAPI provides a specification language to describe the operations and
data structures of REST APIs. OpenAPI covers the functional and actionable
elements of a REST API, however, it does not support Non-Functional Properties
(NFPs) like performance or availability, which are crucial to help developers
choose and integrate the most suitable API for their applications.

Work supported by the Spanish government (TIN2016-75944-R project).
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 533–537, 2020.
https://doi.org/10.1007/978-3-030-50578-3_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_39&domain=pdf
http://orcid.org/0000-0003-1997-3753
http://orcid.org/0000-0002-2326-1700
http://orcid.org/0000-0003-4342-4818
http://orcid.org/0000-0003-2418-2489
http://hdl.handle.net/20.500.12004/1/C/ICWE/2020/001
https://doi.org/10.1007/978-3-030-50578-3_39

534 S. Bucaille et al.

In this demo paper we present Gadolinium, a framework that relies on
OpenAPI to automatically test NFPs of REST APIs. The framework provides
data schemas to describe NFPs and the required testing process, which relies
on a master/slave architecture. The results of the test can eventually be stored
in the OpenAPI description to enrich API information and make sure it is even
more helpful for future developers evaluating its adoption. Our current imple-
mentation covers the test of performance and availability NFPs, and supports
the deployment of clients in the Google Cloud platform.

To the best of our knowledge, ours is the first general approach to automat-
ically test NFPs in OpenAPI. While some works have explored the definition of
NFPs in Web development (e.g., [2–4]) and others have studied how to bench-
mark quality aspects in Web APIs (e.g., [1]), none of them mix the study and
testing of NFPs in OpenAPI. Only some commercial tools (e.g., SOAP UI1)
propose NFP testing for REST APIs but mostly focusing on load testing.

2 Our Proposal

We propose a framework called Gadolinium that relies on the OpenAPI descrip-
tion of REST APIs to test NFPs of their operations.

Our proposal currently supports two NFPs: performance and availability.
Others can be added following a similar approach to the one explained herein.
Performance is measured by calculating the latency or time interval between
a request and the response. Availability is measured via the API uptime (i.e.,
percentage of time the API is ready to receive requests). We use random values
for mandatory parameters of the requests and omits values for optional ones.

Both properties should be evaluated considering that APIs can be transpar-
ently replicated in different locations and therefore users can access them from
diverse geographical places. As such, NFPs values can change on a per geograph-
ical basis. To deal with this, Gadolinum follows a master/slave architecture
where slaves are geographically distributed and deployed in different locations
to ensure a good coverage of the test.

Figure 1 illustrates our proposal. As can be seen, Gadolinium takes as
input the OpenAPI description to be tested and monitored. Once the Open-
API description is loaded, the user configures the testing process. At that point,
the testing process launches several slaves to test the NFPs and report back the
results. The master element of this architecture controls the slaves, monitors the
sequence of events and displays a dashboard to the user summarizing the sta-
tus of the testing process and its results. The user can then review and analyze
the results, which can also be exported into the OpenAPI description provided
initially using the standard extension mechanism of the OpenAPI specification.

Figure 2 shows an example of using Gadolinium. Figure 2a shows the impor-
tation dialog, where the user provides the OpenAPI description and configure the
process. The configuration involves (1) setting the number of times the API will

1 https://www.soapui.org/.

https://www.soapui.org/

An OpenAPI-Based Testing Framework 535

Fig. 1. General overview of Gadolinium.

be tested, (2) the time between tests and (3) the geographical zones to deploy
the slaves for each NFP. Figure 2b shows an example of the results page. On
top, it shows the importation and slaves execution data, including the progress
until reaching the final stage. At the bottom, it shows the results of the uptime
(on the left) as a pie chart and latency (on the right) as a bar chart that can be
filtered according to either operations or geographical zones.

3 Architecture

This section provides some more details on the architecture and implementation
of Gadolinium. As we described above, the two key components are the master
and the slaves. While the master can be deployed anywhere, slaves must be
physically distributed and deployed in different locations of the world to ensure
a good coverage for the NFPs tested. Next we describe the implementation of
both master and slaves.

Master. The Master is the central piece of Gadolinium and provides a dash-
board to import OpenAPI files, monitor the APIs being tested and download
results. The backend has been developed in NodeJS, providing an HTTP server
for the frontend and a communication channel via SocketIO for slaves. The
frontend has been developed in Angular, allowing the user to provide an Open-
API description and configure the testing process.

Slaves. A slave is created to test a specific non-functional property of a REST
API from a location. The lifecycle of a slave includes its deployment, configu-
ration, connection to the Master to get the instructions (i.e., NFP and API to
test), test execution and send back the results. Slaves have been developed as
independent NodeJS applications running on Google’s data centers.

536 S. Bucaille et al.

Fig. 2. Example of dashboard in Gadolinium. (a) Adding an API and configuring the
NFP metrics. (b) Results of the testing process.

4 Conclusion

We have presented Gadolinium, a framework to test and monitor NFPs of
REST APIs by leveraging the OpenAPI specification. The approach currently
supports testing and monitoring latency and uptime NFPs and provides a dash-
board view to control the complete lifecycle of the testing process. Gadolinium
has been made available on GitHub2, where additional information about its
inner workings can be found.

As further work, we plan to support additional NFPs (e.g., throughput and
reliability) as well as other cloud platforms to improve the geographical coverage.
We are also interested in exploring new visualization techniques to help devel-
opers study how structural properties (e.g., the size or structure of the payload
of the operations) may affect the NFPs.

References

1. Bermbach, D., Wittern, E.: Benchmarking web API quality. In: Bozzon, A., Cudre-
Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 188–206. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-38791-8_11

2 http://hdl.handle.net/20.500.12004/1/A/GADOLINIUM/001.

https://doi.org/10.1007/978-3-319-38791-8_11
http://hdl.handle.net/20.500.12004/1/A/GADOLINIUM/001

An OpenAPI-Based Testing Framework 537

2. Galster, M., Bucherer, E.: A taxonomy for identifying and non-functional require-
ments in service-oriented development. In: IEEE Congress on Services, pp. 345–352
(2008)

3. Junghans, M., Agarwal, S.: Web service discovery based on unified view on func-
tional and non-functional properties. In: International Conference on Semantic Com-
puting, pp. 224–227 (2010)

4. Ortiz, G., Hernández, J., Clemente, P.J.: How to deal with non-functional prop-
erties in web service development. In: Lowe, D., Gaedke, M. (eds.) ICWE 2005.
LNCS, vol. 3579, pp. 98–103. Springer, Heidelberg (2005). https://doi.org/10.1007/
11531371_15

https://doi.org/10.1007/11531371_15
https://doi.org/10.1007/11531371_15

OpenAPI Bot: A Chatbot to Help
You Understand REST APIs

Hamza Ed-Douibi1(B) , Gwendal Daniel1 , and Jordi Cabot1,2

1 UOC, Barcelona, Spain
{hed-douibi,gdaniel}@uoc.edu

2 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. REST APIs are an essential building block in many Web
applications. The lack of a standard machine-readable format to describe
these REST APIs triggered the creation of several specification languages
to formally define REST APIs, with the OpenAPI specification currently
taking the lead. OpenAPI definitions are consumed by a growing ecosys-
tem of tools aimed at automating tasks such as generating server/client
SDKs and API documentations. However, current OpenAPI documen-
tation tools mostly provide simple descriptive Web pages enumerating
all the API operations and corresponding parameters, but do not offer
interactive capabilities to help navigate the API and ask relevant infor-
mation. Therefore, learning how to use an API and how its different
parts are interrelated still requires a considerable time investment. To
overcome this situation we present our OpenAPI Bot, a chatbot able
to read an OpenAPI definition for you and answer the questions you may
have about it.

1 Introduction

REST APIs are a key component of many modern Web applications. In recent
years, the OpenAPI specification has positioned itself as de facto choice to
describe these APIs. The OpenAPI specification is “a standard, programming
language-agnostic interface description for REST APIs”1.

Several tools leverage OpenAPI definitions to automate API development
tasks such as generating Software Development Kits (SDKs) for a number of
frameworks and languages (e.g., APIMatic and Swagger Codegen) or gen-
erating documentation (e.g., Swagger UI and RedDoc). We are specially inter-
ested in this latter group as, in our opinion, understanding how to properly use a
new API is a very error-prone and time-consuming task. Unfortunately, current
doc tools do not help much here as they focus on generating simple descriptions of
individual API components. Developers cannot ask more advanced questions or
have any kind of more interactive exploration to find the info they are looking for.
1 https://github.com/OAI/OpenAPI-Specification.

Work supported by the Spanish government (TIN2016-75944-R project).

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 538–542, 2020.
https://doi.org/10.1007/978-3-030-50578-3_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_40&domain=pdf
http://orcid.org/0000-0003-4342-4818
http://orcid.org/0000-0003-0692-0628
http://orcid.org/0000-0003-2418-2489
https://github.com/OAI/OpenAPI-Specification
https://doi.org/10.1007/978-3-030-50578-3_40

OpenAPI Bot: A Chatbot to Help You Understand REST APIs 539

Meanwhile, chatbots applications are increasingly adopted in various domains
such as e-commerce or customer services as a direct communication channel
between companies and end-users. We believe chatbots could also help in the
API domain by assisting developers in their API discovery process. Initial exper-
iments in this field have targeted so far Java APIs [4] and Stack Overflow
answers [1]. [5] is more similar to our initiative as it derives a bot from an
OpenAPI specification but its focus is to facilitate the execution of the API, not
to help developers understand the potential of the API itself.

In this paper we present OpenAPI Bot, a chatbot that leverages the Open-
API specification to help developers understand REST APIs. OpenAPI Bot
provides a quick way to get information about the metadata, operations, and
data structures of an API, as well as advanced insights which are not directly
grasped from the API specification.

2 Overview

OpenAPI Bot is built with Xatkit [2], a flexible multi-platform (chat)bot
development framework. Xatkit comprises three Domain-Specific Languages
(DSLs) allowing the definition of different components of a chatbot, namely:
Intent DSL, which defines the user inputs through training sentences, and con-
text parameter extraction rules; Execution DSL, which defines how the bot
should respond to the matched intents; and Platform DSL, that details the
available operations and actions available to the bot (e.g., sending a message,
querying a database, etc.) depending on the platforms the bot interacts with.
Platforms are provided by Xatkit itself. These languages are complemented by
an execution engine that takes care of the deployment of the bots by register-
ing the defined intents to a given NLP engine (DialogFlow in our case), and
manages their execution.

Figure 1 shows a snippet of the OpenAPI Bot definition2. The bot defines
a set of intents representing typical questions and navigation queries related
to an OpenAPI definition. Figure 1.a shows the intent GetOperationByName,
which includes training sentences to get an API operation using its name. The
intent creates the Operation context containing the operationName param-
eter which is extracted from the user input. Our bot uses two Xatkit plat-
forms: the ReactPlatform, a platform that receives user inputs and sends
messages through a web-based component, and the OpenAPIPlatform, a cus-
tom platform we created to manipulate OpenAPI definitions. The OpenAPI
Bot’s execution model binds the specified intents to the platform’s actions.
Figure 1.b shows a snippet of the execution model containing the rule to exe-
cute when the intent GetOperationByName is matched. This rule first invokes
the GetOperationByName action from the OpenAPIPlatform, then checks the
returned value to display either the requested operation or an error message if
it does not exist.
2 Complete sources for the example available at https://github.com/opendata-for-all/

openapi-bot/.

https://github.com/opendata-for-all/openapi-bot/
https://github.com/opendata-for-all/openapi-bot/

540 H. Ed-Douibi et al.

b. Execution exampleintent GetOperationByName {
inputs {
"Explain all what you know about the operation XXX"
"Show me the details of the operation XXX"
"Print the information of the operation XXX"
"Tell me more about the operation XXX"
"Show me the operation with the name XXX"
"Tell me about the operation which has the ID XXX"
"Show me the details of the operation which has the ID XXX"}

creates context Operation {
sets parameter operationName from fragment "XXX" (entity any)
}

}

import platform "OpenAPIPlatform"
import platform "ReactPlatform"

on intent GetOperationByName do

val operation = OpenAPIPlatform.GetOperationByName(context.get("Operation").
 get("operationName") as String)
if(operation != null){//Display the details of the operation
 ReactPlatform.Reply("Here is what I found about the operation "
 +context.get("Operation").get("operationName"))

 ...
 }
else {//Display an error message

 ...
}

a. Intent example

Fig. 1. A snippet of the definition of GetOperationByName intent.

OpenAPI Bot Runtime

Xatkit Runtime

Instant
Messaging
Platforms

OpenAPI Runtime

OpenAPI Modeling SDK

OpenAPI Bot Definition

Intent Definition

Execution Definition

Platform definition

WWW

Web Browser

Slack

uses

usesuses

uses

Chat
Users

Fig. 2. OpenAPI Bot architecture overview.

Figure 2 shows an overview of the key components of the OpenAPI Bot. The
OpenAPI Bot Definition presented earlier is given as input to the OpenAPI
Bot Runtime which is composed of the core Xatkit Runtime (that manages the
deployment and execution of the bot), as well as the OpenAPI Runtime that
contains the concrete implementation of the OpenAPI Platform’s actions. To do
so, it relies on the OpenAPI Modeling SDK [3], our model-based framework to
manipulate OpenAPI definitions.

3 Example

OpenAPI Bot is up and running at https://som-research.uoc.edu/tools/
openapi-bot/. The bot is initially minimized. Clicking on the button (bottom-
right side) opens a chat widget. To begin with, the bot asks the user to provide
the URL of the OpenAPI definition she wants to learn about. After this, the user
can start asking questions about the imported API. Figure 3 shows three inter-
action examples related to the Petstore API3. The first screenshot illustrates a
simple question to know the details of the operation getPetById. Similar ques-
tions could be asked for the other parts of the API (e.g., the schema definitions,
the metadata information, etc.). The second and third screenshots illustrate two
advanced questions to find which operations return instances of Pet, and which
3 https://petstore.swagger.io/v2/swagger.json.

https://som-research.uoc.edu/tools/openapi-bot/
https://som-research.uoc.edu/tools/openapi-bot/
https://petstore.swagger.io/v2/swagger.json

OpenAPI Bot: A Chatbot to Help You Understand REST APIs 541

Fig. 3. Interaction examples of OpenAPI Bot using the Petstore API.

ones use the properties of the schema Pet, respectively. Getting this information
by directly reading the OpenAPI definition is not trivial. Indeed, the OpenAPI
Bot relies on a set of heuristics we implemented in the OpenAPI SDK to dis-
cover some advanced insights about OpenAPI definitions which are not obvious
at first glance. See additional examples in the website.

4 Conclusion

In this paper, we presented OpenAPI Bot, a chatbot that leverages the Open-
API specification (currently, the bot understands OpenAPIv2) to help developers
understand REST APIs by asking questions on the API using Natural Language.
Besides simple questions, OpenAPI Bot is able to provide some useful infor-
mation which is not easy to infer from a more lengthy read at the specification.
We are working on improving OpenAPI Bot by continuously monitoring how
developers use it (e.g. to see what questions they are interested in that the bot
is so far unable to answer). Also, we plan to support OpenAPI version 3 and
explore how to use the bot as a new end-user interface to also execute calls on
the API itself.

References

1. Cai, L., et al.: AnswerBot: an answer summary generation tool based on stack
overflow. In: Proceedings of the ESEC/FSE, pp. 1134–1138 (2019)

2. Daniel, G., Cabot, J., Deruelle, L., Derras, M.: Xatkit: a multimodal low-code chat-
bot development framework. IEEE Access 8, 15332–15346 (2020)

3. Ed-douibi, H., Cánovas Izquierdo, J., Bordeleau, F., Cabot, J.: WAPIml: towards
a modeling infrastructure for Web APIs. In: International Conference on Model
Driven Engineering Languages and Systems Companion, pp. 748–752 (2019)

542 H. Ed-Douibi et al.

4. Tian, Y., Thung, F., Sharma, A., Lo, D.: APIBot: question answering bot for API
documentation. In: International Conference on Automated Software Engineering,
pp. 153–158 (2017)

5. Vaziri, M., Mandel, L., Shinnar, A., Siméon, J., Hirzel, M.: Generating Chat Bots
from Web API specifications. In: Proceedings of the Onward!, pp. 44–57 (2017)

A Different Web Analytics Perspective
Through Copy to Clipboard Heatmaps

Ilan Kirsh1(B) and Mike Joy2

1 The Academic College of Tel Aviv-Yaffo, Tel Aviv, Israel
kirsh@mta.ac.il

2 University of Warwick, Coventry, UK
M.S.Joy@warwick.ac.uk

Abstract. Heatmaps are widely used in web analytics to visualize cer-
tain user activities within web pages, including mouse clicks, mouse
moves and page scrolling. We propose Copy to Clipboard Heatmaps
(CTCHs), to visualize what users copy from web pages. We present an
implementation of CTCHs, demonstrate various types of useful informa-
tion that CTCHs expose in technical-educational web pages, and discuss
several possible uses.

Keywords: Web analytics · Web visualization · Clipboard · Copy ·
Text analysis · Heatmap · Educational technology · E-Learning

1 Introduction

Heatmaps can be very effective in visualizing accumulated data graphically. In
the context of web analytics, heatmaps are widely used to visualize the frequency
of visitor actions in areas of web pages. A web page can be presented to web ana-
lyzers with a varying background color. Areas of high user activity are displayed
with “warm” background colors (e.g. red and orange shades), and areas with
low user activity with “cold” background colors (e.g. blue and green shades).
Different shades of warm and cold colors represent different levels of frequency.
Website maintainers can use the visualized information to improve and optimize
web page structure, navigation and content.

Špakov and Miniotas [5] proposed using heatmaps to visualize accumulated
data of user eye gaze. Eye gaze data of website visitors is normally unavailable,
but heatmaps can be used to visualize in-page user activity that can be tracked
by modern browsers, such as mouse and scroll actions [2,3].

Three main types of heatmaps are currently available in commercial web
analytics. The most common are click heatmaps, showing the distribution of
mouse clicks on page elements (mainly links). The second type is cursor move
heatmaps, showing frequency of mouse cursor moves in areas of the page. Cursor
moves are considered to be correlated with eye gaze and user attention [1]. The
third type is scroll or viewport heatmaps, visualizing the time or the number of
visits in which page parts are visible to users.
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 543–546, 2020.
https://doi.org/10.1007/978-3-030-50578-3_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_41&domain=pdf
http://orcid.org/0000-0003-0130-8691
http://orcid.org/0000-0001-9826-5928
https://doi.org/10.1007/978-3-030-50578-3_41

544 I. Kirsh and M. Joy

Table 1. Heatmaps in 15 commercial web analytics tools

Service Click Move Scroll Service Click Move Scroll

clicktale.com � � � mouseflow.com � � �
crazyegg.com � � plerdy.com � � �
cux.io � sessioncam.com � � �
freshworks.com � � smartlook.com � � �
heatmap.com � � � uxcam.com �
hotjar.com � � � vwo.com � �
inspectlet.com � � � zoho.com � �
luckyorange.com � � �

Table 1 summarizes support of heatmaps in 15 popular commercial web ana-
lytics tools. We found only these three main types of heatmaps in an extensive
review of commercial web analytics, with no other types of heatmaps.

Mouse clicks, mouse cursor moves and viewport scroll positions are certainly
important, but modern browsers expose additional in-page user actions infor-
mation [4], which may also be useful in web analytics, including copying to the
clipboard. To the best of our knowledge, this paper is the first to propose and
demonstrate heatmaps that visualize what users copy from web pages to their
clipboards.

2 Implementation

Figure 1 shows the architecture of a CTCHs implementation. For simplicity we
describe a standalone implementation, although in practice it would probably
be integrated with other functions in a complete web analytics service.

Visitor

Analyst

+ Copy Script Ref

Website Web Server

Copy Script

Collector

Reporter

CTCHs Server

HTTP

HTTP

HTTP

HTTP

Fig. 1. High-level architecture of a CTCHs implementation

Copy to Clipboard Heatmaps 545

To enable CTCHs support for a website, a reference to a Copy Script is
embedded in all the website pages. This is a common technique in web analytics
and usually requires only a minor amendment to the website templates. As a
result, every request for a page from the website returns a revised page that trig-
gers an additional request to load the Copy Script from the CTCHs Server. The
script tracks JavaScript Clipboard Copy events and reports back to the Collector
component in the CTCHs Server, which stores the data in a dedicated database.
Web analysts visit the website through the Reporter component of the CTCHs
Server, which integrates aggregated copy statistical data from the database, with
original web pages to form pages with heatmap background. HTTP is used for
communication between the clients (the visitor and the analyst) and the servers,
and between the two servers.

3 Results

We examined the CTCHs implementation on technical-educational web pages,
at www.objectdb.com. The pages contain learning materials on Java Persistence
API (JPA). JPA users often use the website as a reference. They copy sam-
ple code from the website and paste it later in their IDEs. Figures 2, 3, 4 and
5 demonstrate several meaningful sections of CTCHs from the website (from
February 2020).

Figure 2 shows sample code from instructions on how to enable cascading
detach (A JPA term). The line that starts with the @OneToOne annotation is
the key, and in that line the core is the cascade parameter, and particularly the
DETACH value. The background colors show very well the levels of importance
based on user’s copy frequency. This is positive visual feedback, indicating that
users understand and use the sample code correctly.

Figure 3 demonstrates user preferences. The sample code lists different call-
back methods, and the heatmap shows which callback the users find more useful
(green is considered to be warmer than blue), so we can learn about user pref-
erences from this heatmap section.

Fig. 2. Importance and centrality (Color
figure online)

Fig. 3. User preferences (Color figure
online)

Figure 4 shows instructions on how to create a new project in a tutorial. We
can see that the suggested project name is often copied by users, probably to be

https://www.objectdb.com/

546 I. Kirsh and M. Joy

pasted in the IDE. Such indications throughout a tutorial can provide valuable
feedback on user progress, and may help in identifying breaking points in which
users tend to abandon the tutorial (indicating that improvement of the tutorial
content might be needed at these breaking points).

Fig. 4. Progressing in a tutorial Fig. 5. Unclear terminology

Figure 5 shows text with a JPA term, Hollow, which is painted as warm in
the heatmap. It probably indicates that many readers are unfamiliar with the
term (which is explained in earlier pages of the website manual), and they copy
it into the clipboard in order to search for it (on the page, website, or externally
in a search engine). A content editor may want to clarify the content in such
cases, by adding a reminder, a link or a tooltip, to explain the term.

4 Conclusions

CTCHs can highlight various valuable information about web usage, particularly
in technical-educational websites. This may include, user code preferences, how
users understand and use sample code, how users follow tutorials, and which
terms and concepts in the text users find unclear. We focused on visualization
using heatmaps. Future work may explore quantitative methods that can utilize
copy to clipboard data to improve websites and online learning materials.

References

1. Chen, M.C., Anderson, J.R., Sohn, M.H.: What can a mouse cursor tell us more?
Correlation of eye/mouse movements on web browsing. In: CHI 2001 Extended
Abstracts on Human Factors in Computing Systems, CHI EA 2001, pp. 281–282.
Association for Computing Machinery, New York (2001)

2. Lamberti, F., Paravati, G., Gatteschi, V., Cannavó, A.: Supporting web analytics
by aggregating user interaction data from heterogeneous devices using viewport-
DOM-based heat maps. IEEE Trans. Ind. Inform. 13, 1989–1999 (2017)

3. Lamberti, F., Paravati, G.: VDHM: viewport-DOM based heat maps as a tool for
visually aggregating web users’ interaction data from mobile and heterogeneous
devices. In: Proceedings of the 2015 IEEE International Conference on Mobile Ser-
vices, MS 2015, pp. 33–40. IEEE Computer Society, USA (2015)

4. Zahoor, S., Bedekar, M., Kosamkar, P.K.: User implicit interest indicators learned
from the browser on the client side. In: Proceedings of the 2014 International Con-
ference on Information and Communication Technology for Competitive Strategies,
ICTCS 2014, Association for Computing Machinery, New York (2014)

5. Špakov, O., Miniotas, D.: Visualization of eye gaze data using heat maps. Elektron-
ika ir Elektrotechnika - Med. Technol. 115, 55–58 (2007)

A Web Augmentation Framework for
Accessibility Based on Voice Interaction

César González-Mora1(B), Irene Garrigós1, Sven Casteleyn2,
and Sergio Firmenich3

1 Department of Software and Computing Systems, University of Alicante,
Alicante, Spain

{cgmora,igarrigos}@ua.es
2 Geospatial Technologies Lab (GEOTEC), Institute of New Imaging Technologies

(INIT), University of Jaime I, Castellón de la Plana, Spain
sven.casteleyn@uji.es

3 LIFIA, Facultad de Informatica, UNLP and CONICET, La Plata, Argentina
sergio.firmenich@lifia.info.unlp.edu.ar

Abstract. Even nowadays, users with disabilities still experience barri-
ers while accessing information on the Web. In order to facilitate visually-
impaired users to access this information, we propose a Web Augmen-
tation Framework for Accessibility (WAFRA). The main focus of our
framework are information-rich websites, such as Wikipedia, but it is
also applicable to any website. This approach uses client-side Web aug-
mentation techniques, extending the website with new functionality at
runtime. With this Web augmentation technique, WAFRA allows users
to access Web contents through a voice interface, offering a set of prede-
fined operations to improve Web accessibility: select and read aloud frag-
ments, increase font size, facilitate navigation and show related videos.
However, new accessibility operations can be added to the framework
by users, considering their own needs. Therefore, by using WAFRA the
accessibility of websites is improved: users are able to interact with web-
sites using voice commands or manually through an augmented menu to
access easily specific information from the Web.

Keywords: Web accessibility · Web augmentation · Voice
interaction · Client-side adaptation

1 Introduction

Today, the access to information on the Web is still impeded by serious barriers
for users with disabilities [3,6]. According to the World Health Organisation1,
1 https://www.who.int/disabilities/world report/2011/report/en/.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-50578-3 42) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 547–550, 2020.
https://doi.org/10.1007/978-3-030-50578-3_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_42&domain=pdf
https://www.who.int/disabilities/world_report/2011/report/en/
https://doi.org/10.1007/978-3-030-50578-3_42
https://doi.org/10.1007/978-3-030-50578-3_42
https://doi.org/10.1007/978-3-030-50578-3_42

548 C. González-Mora et al.

more than the 15% of the worldwide population lives with disability, so that they
are not generally able to access the Web [6]. In order to improve the accessibil-
ity of the Web for visually-impaired users there are several approaches. Screen
readers have been proposed many years ago and they have been improved with
annotation and/or transcoding of Web contents [1,5] to facilitate users with dis-
abilities to browse the Web. However, even with these modifications, website
interaction is still complex for disabled users because their needs are not (suf-
ficiently) taken into consideration. Moreover, there are approaches that suggest
voice interfaces [2,8] to improve Web accessibility. While they propose predefined
operations focused on voice interaction, these are not easily applicable to every
information website, and they do not offer operations to modify the presentation
of contents to improve the accessibility of websites in the client. Other existing
approaches [4,7] try to improve the accessibility through Web augmentation
operations, but they do not offer voice interaction and do not allow the user to
focus on the information they require. In summary, so far, existing approaches
that deal with Web accessibility problems provide predefined voice or manual
solutions, but there is still a gap between the Web and users with disabilities,
especially visually-impaired users, and we believe that our approach may help
to reduce this gap.

2 Web Augmentation Framework for Accessibility

In this section we present a Web Augmentation Framework for Accessibility
(WAFRA) which aims to enhance accessibility specifically designed for those
websites that contain a large amount of information. The main idea is to aug-
ment websites with voice-based interaction, but also with traditional manual
commands, which are woven in the original website UI (Fig. 1). WAFRA oper-
ates at the client side, which allows to easily personalise its use. It is based on the
existence of an intermediary user (also called volunteers in some works), such as
an assistant of impaired people, who configures the augmentation for a specific
website.

Fig. 1. Main menus of WAFRA: accessibility operations (left-hand side) and website
annotations (right-hand side).

A Web Augmentation Framework for Accessibility 549

First of all, the intermediary user is required to install WAFRA by using the
browser extension Tampermonkey2, and then add our WAFRA script which is
available online in Greasy Fork3 to facilitate its installation. Once installed, the
framework is ready to be used by intermediary users. They are able to identify,
select and annotate particular sections or text fragments in a specific website that
are important for end users. Behind the scenes, WAFRA enriches the website’s
DOM to include corresponding semantic information in these elements.

After the annotation of the website is done, end users are ready to use
WAFRA’s voice commands or main menu (see Fig. 1) to make the content more
accessible. The operations, which internally manipulate the website’s DOM,
offered by WAFRA are: show available sections and operations; read text aloud;
focus on important information hiding unnecessary data and options; increase
and decrease the text size; show videos to improve the content and lower the
navigation effort; and guide users with a navigation menu to jump to different
sections. Since WAFRA is a framework, new operations may be developed and
used in WAFRA.

Finally, end users are able to access the website augmented with these acces-
sibility operations. When accessing a website annotated using WAFRA, it auto-
matically reads aloud the available operations and the shortcuts to sections.
At any moment, the overview of available operations can be re-heard using
the voice command “welcome” or “list operations”, while the available sections
can be re-heard with the voice command “list sections”. Then, end users are
able to use voice commands in order to get specific content: “read aloud <x>”
so that WAFRA will read the contents of the section specified by the user,
“increase/decrease font size” to change the text size, and “go to <x>” to nav-
igate to different sections. Other voice commands available are: “change com-
mand” to change the voice command, “stop listenning” to disable the speech
recognition and “cancel” to abort any operation. An example of Wikipedia after
improving its accessibility is shown in Fig. 2 and in a demo video4.

Fig. 2. Example of a Wikipedia article with improved accessibility using WAFRA.

2 https://www.tampermonkey.net/.
3 https://greasyfork.org/es/scripts/395494-wafra.
4 https://youtu.be/LWXYeAG0lig.

https://www.tampermonkey.net/
https://greasyfork.org/es/scripts/395494-wafra
https://youtu.be/LWXYeAG0lig

550 C. González-Mora et al.

3 Conclusions

In this paper, we have presented a Web Augmentation Framework for Accessi-
bility (WAFRA) that aims to help visually-impaired users in accessing online
information. Even though WAFRA is targeted to information-rich websites, it
is applicable to any website. Using WAFRA, intermediary users first add anno-
tations to a website, indicating important sections, relevant text fragments and
unnecessary parts to hide. End users can subsequently rely on WAFRA’s acces-
sibility operations, using voice commands and manual interaction, to more easily
get an overview of the website, adapt it to their needs or obtain specific content.

As future work, we plan to consider the reusability of annotations, so that
every user can easily access websites with less intervention of intermediary users,
reducing the effort to improve Web accessibility. Finally, an experiment with real
users is also going to be performed in near future in order to evaluate the actual
impact of our approach.

Acknowledgements. This research work has been partially funded by the fol-
lowing projects: PROMETEU/2018/089 and TIN2016-78103-C2-2-R. Furthermore,
the author César González-Mora is funded by Generalitat Valenciana with grant
ACIF/2019/044 and Sven Casteleyn is funded by the Ramón y Cajal Programme of
the Spanish government with grant RYC-2014-16606.

References

1. Ashok, V., Billah, S.M., Borodin, Y., Ramakrishnan, I.: Auto-suggesting brows-
ing actions for personalized web screen reading. In: Proceedings of the 27th ACM
Conference on User Modeling, Adaptation and Personalization, pp. 252–260 (2019)

2. Baez, M., Daniel, F., Casati, F.: Conversational web interaction: proposal of a dialog-
based natural language interaction paradigm for the web. In: Følstad, A., et al. (eds.)
CONVERSATIONS 2019. LNCS, vol. 11970, pp. 94–110. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-39540-7 7

3. Kimmons, R.: Open to all?: Nationwide evaluation of high-priority web accessibility
considerations among higher education websites. J. Comput. High. Educ. 29(3),
434–450 (2017). https://doi.org/10.1007/s12528-017-9151-3

4. Mangiatordi, A., Sareen, H.S.: Farfalla project: browser-based accessibility solu-
tions. In: Proceedings of the International Cross-Disciplinary Conference on Web
Accessibility, p. 21 (2011)

5. Plessers, P., et al.: Accessibility: a web engineering approach. In: Proceedings of the
14th international conference on World Wide Web, pp. 353–362 (2005)

6. Power, C., Freire, A., Petrie, H., Swallow, D.: Guidelines are only half of the story:
accessibility problems encountered by blind users on the web. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 433–442 (2012)

7. Prasad, G.V.R.J.S., Soumya, M.S., Choppella, V.: Renarrating web pages for
improving information accessibility. In: 2017 12th International Conference on Intel-
ligent Systems and Knowledge Engineering (ISKE), pp. 1–8 (2017)

8. Ripa, G., Torre, M., Firmenich, S., Rossi, G.: End-user development of voice user
interfaces based on web content. In: Malizia, A., Valtolina, S., Morch, A., Serrano,
A., Stratton, A. (eds.) IS-EUD 2019. LNCS, vol. 11553, pp. 34–50. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-24781-2 3

https://doi.org/10.1007/978-3-030-39540-7_7
https://doi.org/10.1007/s12528-017-9151-3
https://doi.org/10.1007/978-3-030-24781-2_3

Annotated Knowledge Graphs for
Teaching in Higher Education
Supporting Mentors and Mentees

by Digital Systems

Roy Meissner(B) and Laura Köbis(B)

Faculty of Education, Leipzig University, Leipzig, Germany
{roy.meissner,laura.koebis}@uni-leipzig.de

Abstract. Digital systems that enable so-called intelligent, adaptive or
personalized learning are thought to bear great potential for the future of
education. Research and development towards such innovative learning
systems has therefore evolved into an expanding field. Two of the key
challenges are (1) to automate the extraction of expert knowledge and
(2) the development of an advanced domain model, on which the system
can draw. To tackle these challenges, our interdisciplinary contribution is
to suggest adopting a novel approach to creating educational knowledge
graphs of texts (1), which can then be further annotated and supple-
mented by instructors and students (2). In particular, we will outline
practical use cases for blended learning scenarios in Higher Education.

Keywords: Educational software · T-Mitocar · Semantic data ·
Knowledge graphs

1 Introduction

University teachers spend a lot of time preparing classes, thinking about teach-
ing methods, selecting appropriate teaching material, and much more. Reading
assignments are an important part of the students’ self-study, for the purposes
of preparation for class and recapitulation of discussed contents. While course
instructors have an interest in encouraging students to read the provided mate-
rial, often they will not have time to discuss all passages in detail. Students,
in turn, might shy away from asking questions about contents of the reading
they failed to understand or have special interests in. These are just some of
the scenarios where individual students would benefit from personal mentoring,
which in this context we define as taking individual advantage of the instruc-
tor’s expert knowledge. Unfortunately, in most cases proper 1:1 mentoring, which
would enable effective and personal learning, is often impossible in the univer-
sity context, due to the student teacher ratio necessitated by limited time and
resources.

This work was supported by the German Federal Ministry of Education and Research
for the tech4comp project under grant No. 16DHB2102.

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 551–555, 2020.
https://doi.org/10.1007/978-3-030-50578-3_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_43&domain=pdf
http://orcid.org/0000-0003-4193-8209
http://orcid.org/0000-0002-0039-325X
https://doi.org/10.1007/978-3-030-50578-3_43

552 R. Meissner and L. Köbis

To tackle these challenges, and because expert knowledge is a key component
of mentoring, our contribution suggests to adopt a novel approach to create
educational knowledge graphs (KG). Combining the insights of educational and
computer sciences, we aim to support instructors with software, enabling them
to focus on the cases in which personal contact is essential. Creating KGs, as
defined by [6], fully manually is a highly time-consuming process. Therefore, in
Sect. 3, we present a semi-automated, technical workflow to generate KGs by
analysing available course material supplemented by the instructor’s knowledge.
Sections 4 and 5 describe the pedagogical implementation in an exemplary case,
and discuss challenges as well as potentials for future applications.

2 Related Work

Holmes et al. demonstrated in [3] the use of digital tools to enhance education,
scale mentoring processes and support students in their development of compe-
tency and self-organised learning. This is also the interdisciplinary approach of
the tech4comp1 research project, which provides the framework for our work.

Rizun [6] has provided a literature review of prior research on and application
of knowledge graphs (KG) and discussed their possible use in the realm of educa-
tion. Furthermore, a manually created knowledge scheme for university courses
is theoretically described, whereas the input of instance data is postponed to
future work. In contrast, we capture practical use cases and require data first,
only then to derive a knowledge scheme from this data.

Chen et al. have discussed in [1] a novel system capable of automated KG
generation for educational purposes. While they use fully automated AI based
data extraction, probabilistic relation inference based on assessment data, and
tutoring scenarios, their work differs from our work as we focus on mentoring
scenarios, pedagogical backed modeling and separation of KGs by their domain.

3 Generating Annotated Educational Knowledge Graphs

Pirnay-Dummer et al. have created the software T-Mitocar (TM), capable of
generating association nets from domain-specific texts. They elaborate their pro-
cess, association nets, and their interpretation in [5]. The association nets in their
work map important concepts (words) of texts to nodes and relate these nodes
insofar as the concepts are related to the text itself, as shown in Fig. 2 of [5].

We use these nets as a basis for our KGs. TM allows to generate such nets in
a table-based format, listing three columns: concept 1, concept 2, and association
weight. We convert this data into the RDF format by using the software Tarql2

and custom mappings3, preserving all the information, as depicted in the left
half of Fig. 1.

1 https://tech4comp.de.
2 Tarql: https://tarql.github.io/.
3 RDF mappings: https://gitlab.com/Tech4Comp/t-mitocar-rdf-transformation.

https://tech4comp.de
https://tarql.github.io/
https://gitlab.com/Tech4Comp/t-mitocar-rdf-transformation

Annotated Knowledge Graphs for Teaching in Higher Education 553

As a second step, these basic KGs are supplemented by additional informa-
tion. For this purpose, domain experts, who contributed concrete mentoring use
cases, were asked which specific data is needed by a software to automate their
use cases. The described information and relations were collected in an itera-
tive, manual process, until a sufficient level of detail was reached. We refer to
Sect. 5 for further automation of this process in the future. Parts of the result-
ing KG are inferred automatically by following OWL “same as”-statements to
other data sources on the web, such as DBpedia. In addition to this process, we
created a knowledge scheme that reuses as much existing vocabulary as possible,
as recommended by [6], and use a domain-specific vocabulary for the TM data.
The latter allows to dismantle the KG with simple SPARQL queries, enabling
the operation of existing TM-based analysis on the KG. The described steps are
depicted in the right half of Fig. 1.

As recommended by Hofmann in [2], we decomposed the added information
into a domain graph (the educational KG), individual student graphs, and a
pedagogical graph. By combining parts of these graphs for specific use cases, a
software system is able to e.g. automatically and continuously recommend suit-
able material to students according to their personal preferences, their current
progress within the curriculum and based on pedagogical predictions. See Sect. 4
for the detailed use case.

Domain
specific Text

T-Mitocar RDF
transformation

Association
Net Table

Basic Know-
ledge Graph

Annotation &
Extension

Annotated Know-
ledge Graph

Fig. 1. Creation process of the annotated educational knowledge graph

4 Supporting Mentoring by Digital Systems

To showcase and apply our approach, we use an annotated knowledge graph
(KG) constructed for a concrete reading assignment in an educational science
class at the University of Leipzig. The applied text is a chapter of a text book
[7, pp. 17–22] that introduces different definitions of the notion of education.
TM automatically generated a KG from this text. The course instructor was
then asked to develop a blended learning concept of how to best use this text for
learning in the seminar context and to create an expert mind map on the basis of
the TM output. Subsequently, the instructor worked together with a computer
scientist to annotate and supplement TMs KG. Within the following paragraphs
we describe three applications of the KG, all of which guide and support students
in their reading assignment, even though many more are imaginable:

554 R. Meissner and L. Köbis

Firstly, the instructor wanted to activate the students’ prior knowledge before
reading, which is essential for connected learning, also in the multimedia context
[4]. One example of doing so would be to ask the students: “What are the first
five words that come to your mind when you hear the word education?” To check
the students’ answers against the key concepts of the text, we needed to define
and highlight the key concepts in the KG. One possible output the system is
now able to provide is: “X out of the 5 words that you associated are in fact
key concepts of the text you will read in a second. Please try to find more key
concepts and reflect on how to combine these with the knowledge you already
have of this topic.”. Naturally, adaptive responses by the system are possible.

Secondly, the instructor’s aim was to test the student’s reading comprehen-
sion. We therefore linked different multiple-choice questions and further expla-
nations and definitions to specific concepts within the KG. The system is now
able to present each student with personalized questions, e.g. if he or she wants
to focus on a specific topic or did not understand a specific concept of the text.

Thirdly, the instructor intended to recommend further material, depending
on the students’ individual interests. We therefore linked videos, MOOCs, further
readings, links and podcasts to key concepts within the KG.

5 Conclusion

We presented a process to support domain experts in creating knowledge graphs
(KG) by automating parts of its generation. For this, we applied a text analysis
tool to create basic KGs, which were supplemented with additional information
to create an annotated educational KG. Our approach is also applicable to sub-
jects other than the educational sciences, as the process itself is domain-agnostic.

In the future, we will focus on further reducing the manual workload by
automating the basic KG extension processes. This includes analysing domain-
specific texts for specific information, such as literature references. We also found
data extraction from course planning software promising, as it provides access
to fine-grained information about the course and its material. A challenge that
remains is to provide user interfaces for the KGs, e.g. by integrating them into
existing learning management systems.

References

1. Chen, P., Lu, Y., Zheng, V.W., Chen, X., Yang, B.: KnowEdu: a system to construct
knowledge graph for education. IEEE Access 6, 31553–31563 (2018)

2. Hofmann, S.: E-Learning und ontologisch strukturierte Planung webbasierter Lehr-
Lern-Szenarien. Logos Verlag Berlin GmbH (2015)

3. Holmes, W., Bialik, M., Fadel, C.: Artificial Intelligence Education. Center for Cur-
riculum Redesign, Boston (2019)

4. Kalyuga, S.: Prior knowledge principle in multimedia learning. In: The Cambridge
Handbook of Multimedia Learning, pp. 325–337 (2005)

5. Pirnay-Dummer, P., Ifenthaler, D.: Reading guided by automated graphical repre-
sentations. Instr. Sci. 39(6), 901–919 (2011)

Annotated Knowledge Graphs for Teaching in Higher Education 555

6. Rizun, M., et al.: Knowledge graph application in education: a literature review.
Acta Universitatis Lodziensis. Folia Oeconomica 3(342), 7–19 (2019)

7. Seel, N.M., Hanke, U.: Erziehungswissenschaft. Springer, Berlin, Heidelberg (2015).
https://doi.org/10.1007/978-3-642-55206-9

https://doi.org/10.1007/978-3-642-55206-9

A Universal Application Programming
Interface to Access and Reuse Linked

Open Data

César González-Mora(B), Irene Garrigós, and Jose Zubcoff

Web and Knowledge Group, University of Alicante, Alicante 03690, Spain
{cgmora,igarrigos,jose.zubcoff}@ua.es

Abstract. In this paper we present a Universal API in order to facilitate
the access and reuse of Linked Open Data (LOD). Nowadays, it is difficult
to explore heterogeneous data by structured query languages, especially
for end users and developers unfamiliar with SPARQL and RDF. Our
solution proposes a universal access to the LOD scenario through a com-
mon interface, which automatically generates SPARQL queries to access
data from any dataset available online. Moreover, the results given by
this Universal API are restructured and parsed to well-known formats
easily understandable by the majority of developers, such as JSON or
CSV. In order to easily use the Web API proposed, there is a Web inter-
face which guides users to get the desired data, providing appropriate
documentation to facilitate the search of relevant information. The main
innovation of this approach is offering programmatic access to Linked
Open Data through the automatic building of SPARQL queries with-
out requiring any prior knowledge of the data and the Semantic Web
environment.

Keywords: Linked Open Data · Data reuse · Universal API · Query
builder · SPARQL

1 Introduction

Nowadays, we have entered into an era of information overload: a great amount
of data is being published in the Semantic Web as Linked Open Data (LOD),
but only few applications really exploit its potential power [2]. For querying this
data there exist interfaces with powerful query capabilities such as SPARQL end-
points. However, exploring this data by structured query languages is tedious
and error-prone, because queries must conform to the SPARQL syntax, which
is a challenging task especially for novice developers [4]. RDF and SPARQL

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-50578-3 44) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 556–560, 2020.
https://doi.org/10.1007/978-3-030-50578-3_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_44&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_44
https://doi.org/10.1007/978-3-030-50578-3_44
https://doi.org/10.1007/978-3-030-50578-3_44

A Universal Application Programming Interface to Access 557

remain relatively unknown to the wider Web community, but they are com-
monly required to access Linked Data [8]. Both have steep learning curves that
many data consumers may refuse to face [1,8], and thus there is a larger set
of developers who are more familiar with REST-like APIs than SPARQL [1].
The majority of Web developers typically need extensive training in order to use
Semantic Web technologies [10].

Accordingly, the current best practice solution to reuse data from the Seman-
tic Web for inexperienced users is the deployment of custom Web APIs on top of
Linked Data sources [8,9], such as an interface to a SPARQL endpoint. There-
fore, some research [9,10] address the exploration of LOD by facilitating its access
through interfaces as APIs. However, they do not completely solve the problem
of facilitating the access to the LOD cloud because the APIs they propose require
previous knowledge in RDF and SPARQL or they only allow to access specific and
predefined endpoints. Other research [3,5–7] deal with facilitating developers inex-
perienced in the Semantic Web environment to query SPARQL endpoints through
the automatic generation of SPARQL queries. But, in most cases, they force users
to access to data through an interface which requires user interaction. Program-
matic access to data is not provided by these approaches, hampering the reuse
of data because of the manual query building, which is time-consuming. More-
over, these existing solutions generally require previous knowledge about the infor-
mation contained in the endpoints. Therefore, to the best of our knowledge, the
problem of facilitating the access to LOD through easy-to-use interfaces remains
unsolved. Thus, there is a gap between this data and its usage in applications.

In order to reduce this gap, we propose an approach that grants universal
and simple access to semantic data via a Universal API (UAPI), especially for
developers unfamiliar with RDF and SPARQL technologies but also for end
users. This proposal aims to directly improve and facilitate the LOD reuse pro-
cess by automatic building SPARQL queries and parsing the results to more
understandable formats for users.

2 Universal API to Access and Reuse LOD

In this section the Universal API (UAPI) proposed is explained. This UAPI is
universal because it can be applied to any SPARQL endpoint of the Semantic
Web, by offering a common interface to manually access and programmatically
reuse LOD. It consists of a REST-like API based on a NodeJS server with
Express as a middleware of the Web interface, which is developed using HTML,
Bootstrap, JavaScript and Ajax technologies. The implementation is publicly
available online in a Github repository1.

For using the UAPI there are two different options (Fig. 1): (1) by a Web
interface2, which facilitates users to query the underlying API with a step-by-
step process, including helpful documentation3 ; and (2) by querying the UAPI
1 https://github.com/cgmora12/UniversalAPI.
2 https://wake.dlsi.ua.es/UniversalAPI.
3 https://wake.dlsi.ua.es/UniversalAPI/docs.

https://github.com/cgmora12/UniversalAPI
https://wake.dlsi.ua.es/UniversalAPI
https://wake.dlsi.ua.es/UniversalAPI/docs

558 C. González-Mora et al.

Fig. 1. Universal API to access and reuse LOD.

programmatically4 from Web and mobile applications, allowing developers to
easily reuse LOD. The step-by-step process of using the UAPI from its Web
interface is:

– First, the user is required to provide the URL of one endpoint. A sample list
of endpoints from the LOD cloud is offered in order to facilitate users the
search of relevant data.

– In case the user wants to analyse the data presented in the endpoint, the
UAPI offers the possibility of obtaining a completely detailed documentation
following the OpenAPI standard. This documentation is automatically gen-
erated by the UAPI through the analysis of the endpoint with exploratory
SPARQL queries. These queries obtain all the resources with their related
properties and example values, helping users to learn how to programmati-
cally query the underlying API to get the desired data from the endpoint.

– All available resources, properties and other parameters are conveniently pre-
sented to the user in the UAPI Web interface after selecting one endpoint.
Users are then able to choose from these lists of resources and related prop-
erties in order that the UAPI builds the suitable SPARQL query, filling a
SPARQL template depending on users specifications.

– From this query, the endpoint returns the asked data in triple format5, which
is a set of three entities (subject–predicate–object) containing information
about a resource. This triple format can be a barrier not only for end users but
also for some expert users [7]. Therefore, the UAPI transforms these results
into easy to understand formats. This transformation of the results includes
skipping irrelevant metadata such as headers of the results, merging result
triples with same identifier, and finally, parsing the results into the desired
format for the different users. Developers can select among JSON, JSON-LD,
CSV and triple formats, which allow better processing of the data, while end

4 https://wake.dlsi.ua.es/UniversalAPIQuery.
5 https://jena.apache.org/documentation/io/rdf-json.html.

https://wake.dlsi.ua.es/UniversalAPIQuery
https://jena.apache.org/documentation/io/rdf-json.html

A Universal Application Programming Interface to Access 559

users can choose to obtain the results in table format, which is easier to read
by common users.

– Finally, the generated SPARQL query is shown to users to allow them to
check whether the query meets their expectations. The URL that can be
used to query the underlying API directly is also shown to users, which is
useful to programmatically access the data.

3 Conclusions and Future Work

In this paper we have presented a Universal API for accessing and reusing LOD.
Our proposal addresses problems related to exploring LOD, searching for rele-
vant information, reusing data and facilitating the access to that data, especially
for users and developers unfamiliar with RDF and SPARQL technologies. We
contribute to reduce the gap between data and its usage in applications by facil-
itating and unifying the access in top of the LOD scenario. A demo video is
available online6 to show an example of using the UAPI through its Web inter-
face. As future work, the Universal API is going to be evaluated with user stud-
ies, providing the approach to end users and developers with different expertise
within the Semantic Web environment. Moreover, the UAPI will also consider
the data from RDF dumps in addition to endpoints.

Acknowledgments. This work has been funded by the Spanish Ministry of Economy,
Industry and Competitiveness with grant TIN2016-78103-C2-2-R. Furthermore, César
González-Mora has a contract for predoctoral training with the Generalitat Valenciana
and the European Social Fund by the grant ACIF/2019/044.

References

1. Daga, E., Panziera, L., Pedrinaci, C.: A BASILar approach for building web APIs
on top of SPARQL endpoints. CEUR Workshop Proc. 1359, 22–32 (2015)

2. Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data
to support content-based recommender systems. In: Proceedings of the 8th Inter-
national Conference on Semantic Systems, pp. 1–8. ACM (2012)

3. Ferré, S.: Sparklis: an expressive query builder for SPARQL endpoints with guid-
ance in natural language. Semantic Web 8(3), 405–418 (2017)

4. Grafkin, P., Mironov, M., Fellmann, M., Lantow, B., Sandkuhl, K., Smirnov, A.V.:
SPARQL Query Builders: overview and Comparison. In: BIR Workshops (2016)

5. Heibi, I., Peroni, S., Shotton, D.: OSCAR: a customisable tool for free-text search
over SPARQL endpoints. In: SAVE-SD, pp. 121–137 (2017)

6. Hoefler, P., Granitzer, M., Veas, E., Seifert, C.: Linked Data Query Wizard: A
Novel Interface for Accessing SPARQL Endpoints, vol. 1184, January 2014

7. Lisena, P., Meroño-Peñuela, A., Kuhn, T., Troncy, R.: Easy web API development
with SPARQL transformer. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol.
11779, pp. 454–470. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30796-7 28

6 https://youtu.be/cXtmas QQ-w.

https://doi.org/10.1007/978-3-030-30796-7_28
https://doi.org/10.1007/978-3-030-30796-7_28
https://youtu.be/cXtmas_QQ-w

560 C. González-Mora et al.

8. Merono-Penuela, A., Hoekstra, R.: grlc makes GitHub taste like linked data APIs.
In: Sack, H., Rizzo, G., Steinmetz, N., Mladenic, D., Auer, S., Lange, C. (eds.) The
Semantic Web, vol. 9989. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-47602-5 48

9. Nolle, A., Nemirovski, G., Sicilia, A., Pleguezuelos, J.: An approach for access-
ing linked open data for data mining purposes. In: Proceedings of RapidMiner
Community Meeting and Conference (2013)

10. Schröder, M., Hees, J., Bernardi, A., Ewert, D., Klotz, P., Stadtmüller, S.: Simpli-
fied SPARQL REST API-CRUD on JSON Object Graphs via URI Paths. arXiv
preprint arXiv:1805.01825 (2018)

https://doi.org/10.1007/978-3-319-47602-5_48
https://doi.org/10.1007/978-3-319-47602-5_48
http://arxiv.org/abs/1805.01825

OntoSemStats: An Ontology to Express
the Use of Semantics in RDF-Based

Knowledge Graphs

Pierre-Henri Paris(B), Fayçal Hamdi, and Samira Si-Said Cherfi

Conservatoire National des Arts et Métiers, Paris, France
pierre-henri.paris@upmc.fr, {faycal.hamdi,samira.cherfi}@cnam.fr

Abstract. For many users or automated agents, working with knowl-
edge graphs may be a complicated task. Indeed, multiple tools using
knowledge graphs rely on semantics to perform at their best. For exam-
ple, in the context of data integration, some instance matching tools use
semantic features such as functional and inverse functional properties or
disjoint classes to discover instances that are the same (or not). Hence,
in many cases, conducting an exploratory study is required to discover
which semantic features are used or defined in a knowledge graph. In this
paper, we propose an ontology and a large-scale ontology-based Web ser-
vice that provides statistics about the use of OWL 2 and RDFS semantic
features (e.g. functional properties or subclasses) in knowledge graphs.
This will allow a human or automatic agent to choose the most appro-
priate tool or data for a given task. It also gives the data publishers a
clear picture about the semantics they provide to data consumers. These
statistics are represented in the form of an RDF graph (with different
serialization possibilities), making them easy to use and share.

Keywords: Knowledge graph · Ontology · Semantics · Statistics ·
OWL · RDFS

1 Introduction

For a given task, several types of approaches can be considered when it comes to
using RDF-based knowledge graphs (KGs). Some approaches rely mainly on the
semantics available in the graphs, others, on the contrary, make little or no use
of it. Of course, in between these two extremes, approaches can take advantage
of semantics, without relying entirely on it. For example, if the task is to inter-
connect several KGs, approaches may use a combination of techniques such as
statistics, semantics, or data partitioning algorithms. Besides, approaches rely-
ing mainly on semantics can outperform other types of approaches if semantics
is very present in the KG. However, if semantics is absent, the results may not
be what the user expects. Therefore, it is often necessary to conduct a first
exploratory study of KG to know which tool will be best suited for a given task
or to choose between topic-related graphs. Such a study helps to understand
what the data may have to offer. Unfortunately, this exploratory step is time-
consuming, especially if the documentation accompanying KG is missing or not
c© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 561–565, 2020.
https://doi.org/10.1007/978-3-030-50578-3_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50578-3_45&domain=pdf
https://doi.org/10.1007/978-3-030-50578-3_45

562 P.-H. Paris et al.

very informative. Several vocabularies or ontologies have been proposed to pro-
vide the user with an overview of the data contained in the KG. For example,
Dublin Core1 [3], Creative Commons Rights Expression Language2, Data Cata-
log Vocabulary3, or VoID4 [1] allow KGs to be described. However, they do not
give the possibility to express which elements of OWL 2 or RDFS are used.

In this paper, we propose an ontology to express which OWL 2 and RDFS
features (e.g. functional properties or subclasses) a KG uses and in what pro-
portions. This ontology allows the necessary information to be brought directly
to the data consumer to select, in full knowledge of the facts, the appropriate
tool for the realization of her task. Besides, we provide a Web application to
instantiate the ontology for a given KG thanks to its SPARQL endpoint. The
objective is to enable data consumers to know precisely how and to what extent
a KG uses OWL 2 and RDFS. The aggregation of statistics on all KG vocabular-
ies or ontologies described with OWL 2 and RDFS makes it possible to achieve
this goal. We also conducted a large-scale study of the current state of the Web
of data regarding the usage of OWL 2. As the paper must remain succinct, a
GitHub repository5 presents the results of the study.

2 Ontology

The ontology we propose (available online6) aims to explain the use of classes
and properties defined with OWL 2 and RDFS features in a KG. For instance, an
objective for a user could be to know the number of properties that are transitive
and their number of uses in the graph.

VoID [1] is a vocabulary that can be used to describe a KG. This descrip-
tion facilitates KG discovery and use. Besides, VoID offers elementary statistics
such as the number of classes or triples. Our ontology extends this vocabu-
lary by providing more detailed statistics on the use of OWL 2 and RDFS
features. We represent a KG as an instance of the class void:Dataset that
can have as many :Stat7 instances as it uses OWL 2 and RDFS proper-
ties or classes. Each instance of :Stat has one and only one :SemanticFeature
instance. The :hasSemanticFeature property (see Listing 1.1) allows an instance
of :Stat to be linked to its :SemanticFeature. The different types of range of
:hasSemanticFeature are disjointed two by two, thus making it possible to detect
any error in the instantiation of this ontology.

: hasSemanticFeature rd f : type owl : ObjectProperty ,
owl : Funct iona lProperty , owl : AsymmetricProperty ,
owl : I r r e f l e x i v eP r op e r t y ; r d f s : domain : Stat ;

1 http://www.dublincore.org/specifications/dublin-core/.
2 https://creativecommons.org/ns.
3 https://www.w3.org/TR/vocab-dcat/.
4 https://www.w3.org/TR/void/.
5 https://github.com/PHParis/sem web stats.
6 http://cedric.cnam.fr/isid/ontologies/OntoSemStats.owl.
7 Classes and properties represented without a prefix belong to our ontology.

http://www.dublincore.org/specifications/dublin-core/
https://creativecommons.org/ns
https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/void/
https://github.com/PHParis/sem_web_stats
http://cedric.cnam.fr/isid/ontologies/OntoSemStats.owl

OntoSemStats: An Ontology to Express the Use of Semantics 563

r d f s : range : SemanticFeature ;
r d f s : comment ” Spec i f y which OWL 2 or RDFS semantic
f e a t u r e i s the t a r g e t o f the g iven s t a t . ”@en ;
r d f s : l a b e l ”has semantic f e a t u r e ”@en .

Listing 1.1. Definition of the hasSemanticFeature property.

For each feature of OWL 2 and RDFS, we created its own interpretation
for two reasons. First, if one has an OWL 1 KG and wants to integrate the
stats, then to keep the OWL profile unchanged, we must represent the semantic
features with our own IRI. For example, the triple 〈:stat :hasSemanticFeature
owl:FunctionalProperty〉 would lead to OWL 1 Full and undecidability prob-
lems8,9 since owl:FunctionalProperty is a class. Therefore, for every OWL 2 and
RDFS feature, we created a subclass of :SemanticFeature. For example, :Owl-
FunctionalProperty represents the statistics of the functional properties. Second
and more important, the different axioms of OWL 2 and RDFS can impact prop-
erties, classes, or instances. For this, we have chosen to ensure that the design
of our ontology reflects these possibilities to keep a clean ontology. Depend-
ing on its purpose, an axiom will be “put” in a particular class. For example,
Listing 1.2 shows the definition of :PropertyType (subclass of :SemanticFeature)
used to represent the different types that a property can have (symmetrical,
reflexive, etc.). Another example is the “PropertyRelation” class, which gathers,
among others, statistics concerning owl:propertyChainAxiom or owl:inverseOf,
which are axioms allowing the description of the nature of the relation between
properties.

: PropertyType rd f : type owl : Class ; r d f s : subClassOf
: PropertyAxiom ;
owl : d i s jo intUnionOf (: OwlAsymmetricProperty
: OwlFunctionalProperty : OwlInverseFunct ionalProperty
: Owl I r r e f l e x i v ePrope r ty : OwlRef lex iveProperty
: OwlSymmetricProperty : OwlTrans it iveProperty) .

Listing 1.2. Definition of the Properties class which represents the different types used
to define a property.

To provide statistics for each feature of OWL 2, we have created two prop-
erties: :definitionCount and :usageCount. The first one is to state how many
times the axiom is used in a definition (e.g. the number of functional properties)
and the second one how many times the definitions using the axiom are used
(e.g. how many triples use a functional property). Listing 1.3 shows the defini-
tion of the :usageCount property which allows us to declare, for example, that
3000 triples use a functional property.

: usageCount rd f : type owl : DatatypeProperty ,
owl : Funct ionalProperty ; r d f s : domain : Stat ;
r d f s : range xsd : i n t e g e r ;
r d f s : comment ”Number o f usage o f a semantic

8 https://www.w3.org/2007/OWL/wiki/Profile Explanations.
9 https://www.w3.org/TR/owl2-profiles/.

https://www.w3.org/2007/OWL/wiki/Profile_Explanations
https://www.w3.org/TR/owl2-profiles/

564 P.-H. Paris et al.

f e a t u r e . ”@en ; r d f s : l a b e l ” usage count”@en .

Listing 1.3. Definition of the property allowing to specify how many times a feature
is used.

3 Web Application

Our application, OntoSemStatsWeb10, is an open-source software (under the
GPL open-source license) written in C# (using dotnetRDF11) and JavaScript
(using Comunica12 [2]). The application has three different forms: (i) a Web
page that is our live demonstrator13, (ii) a Web API to operate seamlessly with
an automated agent, and (iii) a command-line application. All the tools that we
developed are available as Docker images (one for the command-line application
and one for the Web application and the Web API), to promote ease of use and
adoption.

Depending on the used tool (i.e. Web page, API, or command-line), the graph
is presented in various fashions. The Web page summarizes the results through
a user-friendly table and a visual representation and provides a link to download
the graph. On the other side, the Web API and the command-line applications
allow the graph serialization in RDF/XML, Turtle, N-Triples, Notation3, and
JSON-LD.

4 Conclusion

In this paper, we proposed an ontology that described the OWL 2 and RDFS
features defined and used in a given KG. Moreover, we provided tools that auto-
matically instantiate this ontology for a given SPARQL endpoint. A human
agent can use these tools through a web page and command-line or an auto-
mated agent through Web API. By offering easy access to the statistics about
semantic usages, we help data consumers in choosing the right tool or KG that
best suited his or her objectives. Easy access may increase KG consumption
and improve user experience. Finally, to show the usefulness of our application,
we conducted a large-scale study that provides an up-to-date overview of the
semantic usages in the LOD. In the future, we plan to add native support for
HDT files.

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets.
In: Linked Data on the Web. CEUR Workshop Proceedings, vol. 538. CEUR-WS.org
(2009)

10 https://github.com/PHParis/OntoSemStatsWeb.
11 https://github.com/dotnetrdf/dotnetrdf.
12 https://comunica.linkeddatafragments.org/.
13 https://ontosemstats.herokuapp.com/.

https://github.com/PHParis/OntoSemStatsWeb
https://github.com/dotnetrdf/dotnetrdf
https://comunica.linkeddatafragments.org/
https://ontosemstats.herokuapp.com/

OntoSemStats: An Ontology to Express the Use of Semantics 565

2. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
modular SPARQL query engine for the web. In: Vrandečić, D., et al. (eds.) ISWC
2018. LNCS, vol. 11137, pp. 239–255. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00668-6 15

3. Weibel, S., Kunze, J.A., Lagoze, C., Wolf, M.: Dublin core metadata for resource
discovery. RFC 2413, pp. 1–8 (1998). https://doi.org/10.17487/RFC2413

https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.17487/RFC2413

Tutorial

From Linked Data to Knowledge Graphs
Storing, Querying, and Reasoning

Riccardo Tommasini1, Raghava Mutharaju2, and Sherif Sakr1(&)

1 Data Systems Group, University of Tartu, Tartu Estonia
{riccardo.tommasini,sherif.sakr}@ut.ee

2 IIIT Delhi, New Delhi India
raghava.mutharaju@iiitd.ac.in

1. Extended Abstract

Knowledge Graphs (KG) are now extensively used by several enterprises across many
Web domains such as e-commerce, finance, healthcare, geo-science, manufacturing,
aviation, power, oil and gas. Semantic Web Technologies and Graph Management
techniques play a crucial role in the construction of Knowledge Graphs. They include
data models and languages for representing and processing information. Indeed, an
essential characteristic of Knowledge Graphs is that resources are linked in a complex
network. In the literature, the term Linked Data refers to Knowledge Graphs built on
the Web using Semantic Technologies. However, graph databases recently gained
momentum as they provide efficient data storage and rapid analytics of graph data.

In practice, KGs usually contain heterogeneous data coming from multiple sources,
various contributors, produced using different methods, degrees of authoritativeness,
and gathered automatically from independent sources. The size of KGs quickly reaches
the Web-scale and heterogeneity. Thus, scalability issues raise storing, querying,
reasoning, and data management in general. Along with these issues, benchmarking
tools are essential to foster technological progress by guaranteeing a fair assessment.
This tutorial aims to provide a comprehensive discussion of all these aspects and cover
state-of-the-art solutions for constructing Knowledge Graphs, focusing on Linked Data.
With the ever-growing relevance of Knowledge Graphs, we believe that this is a
relevant and timely topic to discuss. The tutorial structure is organized as follows.

1. Brief History of Knowledge Graphs (40m): This part provides introduction for
the basic concepts required for the tutorial such as Semantic Web, RDF, Knowledge
Graphs, Property Graphs, and streaming data. Then, we will give a brief history of
Linked Data and Knowledge Graphs and how multiple disciplines such as
databases, machine learning, natural language processing, and information retrieval
have played part in making the current Knowledge Graphs.

2. Graph Query Processing (40m): A number of centralized graph query processing
systems have been designed to handle RDF data and generic graphs [4]. Such

© Springer Nature Switzerland AG 2020
M. Bielikova et al. (Eds.): ICWE 2020, LNCS 12128, pp. 569–571, 2020.
https://doi.org/10.1007/978-3-030-50578-3

https://doi.org/10.1007/978-3-030-50578-3

systems do not incur any communication overhead (i.e., they process all data
locally). On the other hand, they remain limited by the computational power and
memory capacities of a single machine. The aim of this part of the tutorial is to
provide an overview of various techniques and systems for querying graph
databases and triple stores.

3. Graph Stream Processing (30m): Stream Graph Processing has the goal of
facilitate data integration when information arrives in the forms of unbounded
streams. In this part of the tutorial, we provide an overview on how such
requirements are addressed in the current state of the art of RDF Stream Data
processing [1, 2].

4. Scalable Reasoning(40m): The aim of this part of the tutorial is to provide an
overview of distributed RDF reasoning systems that fall into five main categories,
i.e., Peer-to-Peer, NoSQL-based, Hadoop-based, Spark-based, and shared memory
RDF reasoning systems [3].

5. Wrap-up (15m): In this final section, we well present open challenges and future
research directions related to Knowledge Graphs.

Presenters

Riccardo Tommasini is an Assistant Professor at University of Tartu, Estonia and a
member of the Data System Group. He has got his PhD Cum Laude from Politecnico di
Milano, Italy. Riccardo’s has experience in presenting tutorial at international venues
such as ESWC, ISWC, The Web Conf, and DEBS.
Raghava Mutharaju is an Assistant Professor at the Indraprastha Institute of
Information Technology, Delhi (IIIT-D), India. He got his PhD in Computer Science
and Engineering from Wright State University, Dayton, OH, USA, in 2016 His
research interests are in various aspects of Semantic Web such as knowledge graph
construction, ontology modeling, reasoning, and querying. He co-organized workshops
at WWW 2019, WebSci 2017, ISWC 2015 and tutorials at IJCAI 2016, AAAI 2015
and ISWC 2014.
Sherif Sakr is the Head of Data Systems Group at the Institute of Computer Science,
University of Tartu (http://bigdata.cs.ut.ee/). He received his PhD degree in Computer
and Information Science from Konstanz University, Germany in 2007. Sherif is an
ACM Senior Member and an IEEE Senior Member. In 2017, he has been appointed to
serve as an ACM Distinguished Speaker and as an IEEE Distinguished Speaker. He is
currently serving as the Editor-in-Chief of the Springer Encyclopedia of Big Data
Technologies.

570 R. Tommasini et al.

http://bigdata.cs.ut.ee/

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for
event processing and stream reasoning. In: WWW (2011)

2. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF streams
with C-SPARQL. SIGMOD Rec. 39(1), 20–26 (2010)

3. Sakr, S., Wylot, M., Mutharaju, R., Le Phuoc, D., Fundulaki, I.: Querying, and Reasoning.
Springer, Linked Data - Storing (2018)

4. Wylot, M., Hauswirth, M., Cudré-Mauroux, P., Sakr, S.: RDF data storage and query
processing schemes: a survey. ACM Comput. Surv. 51(4), 84:1–84:36 (2018)

From Linked Data to Knowledge Graphs 571

Author Index

Bai, Wang 347
Bakaev, Maxim 146
Balduini, Marco 485
Barros, Cristina 416
Bartscherer, Frederic 130
Batista, Thais 337
Beroual, Oussama 3
Bielikova, Maria 261
Bin, Wu 347
Bozzon, Alessandro 113, 381
Brambilla, Marco 244
Bucaille, Steven 533

Cabot, Jordi 533, 538
Cánovas Izquierdo, Javier Luis 533
Cao, Qiyun 163
Casteleyn, Sven 547
Cavalcante, Everton 337
Chamberland-Thibeault, Xavier 27
Chathurangani, Jayathma 53
Chen, Chen 207
Chen, HongYue 102
Cherfi, Samira Si-Said 561
Colpaert, Pieter 87, 305, 321

da Silva, Clay Palmeira 451
Daniel, Gwendal 538
Dayama, Niraj 19
Dekker, Rommert 365
Delva, Harm 305, 321
Devogele, Thomas 451
Ed-Douibi, Hamza 533, 538

Fang, Wei 102
Färber, Michael 130
Fernandez, Alejandro 467
Firmenich, Sergio 467, 547
Frasincar, Flavius 365
Fraternali, Piero 228

Gadiraju, Ujwal 381
Gaedke, Martin 146, 171, 399
Garrigós, Irene 416, 512, 547, 556
Gonzalez, Rodolfo 467

González-Mora, César 416, 512, 547, 556
Guérin, Francis 3
Guo, Junxia 163, 207

Hallé, Sylvain 3, 27
Hamdi, Fayçal 561
Heil, Sebastian 146, 171
Hellas, Arto 494
Hernandez, Juan 519
Herrera Gonzalez, Sergio Luis 228
Hoffmann, Claus 277
Hucko, Michal 261

Ihantola, Petri 494

Jayasinghe, Malith 53
Joshi, Bikash 113
Joy, Mike 543

Kaebisch, Sebastian 70
Kaila, Erkki 477
Kajasilta, Henri 477
Kirsh, Ilan 543
Köbis, Laura 551
Korkan, Ege 70
Kousa, Jami 494
Kuruppu, Gayal 53
Kwon, Jin-woo 435

Laine, Markku 19
Langer, André 399
Ławrynowicz, Agnieszka 293, 505
Lee, Hyeon-Jae 435
Li, Zheng 163
Lingyu, Zeng 347
Liu, Lubin 102
Liu, Tong 102
Lloret, Elena 416
Luukkainen, Matti 494

Marcinowski, Maksymilian 293, 505
Mazón, Jose-Norberto 416
Meissner, Roy 551

Messai, Nizar 451
Moon, Soo-Mook 37, 435
Moro, Robert 261
Murillo, Juan M. 519
Mutharaju, Raghava 569

Nakajima, Ai 19
Noura, Mahda 171

Oulasvirta, Antti 19

Paris, Pierre-Henri 561
Pavanetto, Silvio 244
Perera, Srinath 53
Putra, Septian Gilang Permana 113

Qiu, Sihang 381

Redi, Judith 113
Rim, Jae-Hyeon 37
Ritter, Norbert 525
Rojas, Julián Andrés 305, 321
Rojo, Javier 519
Rolim, Douglas 337
Rossi, Gustavo 467

Sakr, Sherif 485, 569
Sam, Yacine 451
Scheer, Benjamin 130
Schlott, Verena Eileen 70
Sha, Ying 188
Shin, ChangHyun 37

Silva, Jorge 337
Speicher, Maximilian 146
Steinhorst, Sebastian 70

Tariq, Mohammad Manan 228
Tennage, Pasindu 53
Tommasini, Riccardo 485, 569
Truşcǎ, Maria Mihaela 365

Valle, Emanuele Della 485
Van Assche, Dylan 321
Van de Vyvere, Brecht 87
Vandenberghe, Pieter-Jan 305
Velez, Darío 467
Verborgh, Ruben 87, 305, 321
Vidal, Maria-Esther 277
Vu Nguyen Hai, Dang 399

Wang, Changjian 188
Wang, Weiwei 207
Wang, Xinglang 102
Wassenberg, Daan 365
Wingerath, Wolfram 525
Wollmer, Benjamin 525

Xiao, Tao 102

Yeo, JiHwan 37

Zhao, Rilian 163
Zhao, Ruilian 207
Zubcoff, Jose 416, 512, 556

574 Author Index

	Preface
	Organization
	Contents
	User Interface Technologies
	Detecting Responsive Web Design Bugs with Declarative Specifications
	1 Introduction
	2 Responsive Web Design Bugs
	2.1 Adapting the Layout
	2.2 RWD Bugs

	3 Existing Solutions
	4 Proposed Solution
	4.1 A Stateful Oracle
	4.2 Browser Interaction with Crawljax

	5 Experiments and Results
	5.1 Defining a Common Language
	5.2 RWD Declarative Properties
	5.3 Scalability Considerations

	6 Conclusion
	References

	Layout as a Service (LaaS): A Service Platform for Self-Optimizing Web Layouts
	1 Introduction
	2 Related Work
	3 LaaS: Architecture and Computations
	3.1 Layout Parser
	3.2 Event Logger
	3.3 Design Task Generator
	3.4 Layout Generator
	3.5 Layout Adapter
	3.6 Deployment

	4 Results
	4.1 Discussion

	5 Conclusion
	References

	Structural Profiling of Web Sites in the Wild
	1 Introduction
	2 Methodology
	2.1 Website Collection
	2.2 DOM Harvesting
	2.3 Data Processing

	3 Results and Discussion
	3.1 Website Profiles
	3.2 Threats to Validity

	4 Conclusion
	References

	Performance of Web Technologies
	Accelerating Web Start-up with Resource Preloading
	1 Introduction
	2 Background on Resource Loading and Preloading
	3 Dependence-Based, Client-Only Preloading
	4 Preloading Order for Better User Experience
	5 Implementation
	6 Evaluation
	6.1 Resource Preloading vs. Regular Loading
	6.2 Preloading Order Based on UX vs. Depth/Height
	6.3 Update of Dependence Graph with Resource Change

	7 Summary and Future Work
	References

	An Analysis of Throughput and Latency Behaviours Under Microservice Decomposition
	1 Introduction
	2 Methodology
	2.1 Microservice Benchmarks
	2.2 Decomposition Strategy
	2.3 Implementation Details

	3 Performance Evaluation
	3.1 Performance Behaviours for I/O Bound Service
	3.2 The Performance Behaviours of Prime-Service with Different Processing Levels (Service Demands)
	3.3 Microservices with DB Back-Ends
	3.4 Analytical Performance Evaluation

	4 Related Work
	5 Conclusion
	References

	W-ADE: Timing Performance Benchmarking in Web of Things
	1 Introduction
	1.1 Problem Statement
	1.2 Contribution

	2 W3C Web of Things
	2.1 Thing Description
	2.2 Thing Description Based Mashups
	2.3 Importance of Timing Performance Benchmarking for Mashups

	3 W-ADE: API Development Environment for WoT
	3.1 Application Features and Implementation
	3.2 Workflow

	4 Automated Timing Performance Benchmarking
	4.1 Timing Performance Possibilities in W-ADE
	4.2 Benchmarking Technique
	4.3 Implementation

	5 Timing Performance Annotation
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Comparing a Polling and Push-Based Approach for Live Open Data Interfaces
	1 Introduction
	2 Related Work
	2.1 Web Publication Protocols
	2.2 RDF Streams

	3 Field Report on Live Open Datasets
	4 Problem Statement
	5 Benchmark HTTP Polling Versus Server-Sent Events
	5.1 Evaluation Design
	5.2 Results

	6 Discussion
	7 Conclusion
	References

	NuMessage: Providing Scalable and Reliable Messaging Service in Distributed Systems
	1 Introduction
	2 Basic Concepts
	3 Related Work
	4 NuMessage Design
	4.1 Overview
	4.2 Retry Mechanism
	4.3 Improved Implementation
	4.4 Usage in Ebay

	5 Experimental Results
	6 Conclusions
	References

	Machine Learning
	A Credit Scoring Model for SMEs Based on Social Media Data
	1 Introduction
	2 Related Work
	2.1 Credit Scoring Models for SMEs
	2.2 Use of Social Media Data in Credit Scoring

	3 Data Collection
	3.1 Public Data
	3.2 Social Media Data

	4 Credit Scoring Framework
	4.1 Feature Engineering
	4.2 Model Development and Evaluation

	5 Results and Discussion
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Feature Analysis

	6 Conclusion
	References

	Who's Behind That Website? Classifying Websites by the Degree of Commercial Intent
	1 Introduction
	2 Related Works
	3 Website Categories
	4 Data Sets and Feature Extraction
	5 Evaluation
	5.1 Approach
	5.2 Website Classification Using Unsupervised Algorithms
	5.3 Evaluation Setup
	5.4 Evaluation Results
	5.5 Comparisons
	5.6 Classification of Private Websites
	5.7 Main Findings

	6 Conclusion and Outlook
	References

	I Don’t Have That Much Data! Reusing User Behavior Models for Websites from Different Domains
	1 Introduction
	2 Related Work
	2.1 AI in UI Evaluation and Design
	2.2 The UI Visual Analysis Tools
	2.3 ANNs in User Behavior Modeling

	3 Research Hypotheses and Method
	4 Results
	4.1 Descriptive Statistics
	4.2 The ANN Models
	4.3 Effects of the Domains’ Distances

	5 Discussion
	6 Conclusions
	References

	Improving Detection Accuracy for Malicious JavaScript Using GAN
	1 Introduction
	2 Related Work
	3 Training Process
	4 Empirical Study
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Detecting Tool

	5 Conclusion
	References

	VISH: Does Your Smart Home Dialogue System Also Need Training Data?
	1 Introduction
	2 User Goals in Smart Homes
	3 End-to-End Method
	4 Voice Interaction Smart Home (VISH) Dataset
	5 Evaluation
	5.1 Procedure
	5.2 Evaluation Results

	6 Related Work
	7 Conclusion and Future Work
	References

	Neighborhood Aggregation Embedding Model for Link Prediction in Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Background
	3.1 Problem Definition
	3.2 Graph Neural Networks

	4 Methodology
	4.1 Aggregator
	4.2 Predictor

	5 Experiments
	5.1 Datasets
	5.2 Evaluation Protocol
	5.3 Experimental Setup
	5.4 Results

	6 Analysis
	6.1 Extendibility
	6.2 Ablation Study
	6.3 Parameter Efficiency

	7 Conclusion and Future Work
	References

	Testing of Web Applications
	Automatic Model Completion for Web Applications
	1 Introduction
	2 EFSM Model of Web Applications
	3 Case Study of Model Completion for Web Application
	4 Approach of Model Automatic Completion for Web Application
	4.1 The Integrity Criterion for EFSM Model of Web Application
	4.2 Overview of Model Completion Method
	4.3 The Design of Priority Rules for Transition Sequence Generation
	4.4 Feasible Transition Sequence Generation for Target Transition
	4.5 Model Completion Based on Feasible Transition Sequence

	5 Experiment
	5.1 Experimental Subjects
	5.2 Experimental Implementation and Results Analysis

	6 Related Work
	7 Conclusion
	References

	Almost Rerere: An Approach for Automating Conflict Resolution from Similar Resolved Conflicts
	1 Introduction
	2 Related Work
	3 Background
	3.1 Conflict Resolution
	3.2 Git Rerere

	4 Proposed Approach
	4.1 Almost Rerere Architecture
	4.2 Conflict Cluster Generator
	4.3 CRR Generator
	4.4 Conflict Resolver

	5 Evaluation
	5.1 Integration of Handwritten and Generated Code
	5.2 Large Project Repositories

	6 Conclusions
	References

	Generation of Realistic Navigation Paths for Web Site Testing Using Recurrent Neural Networks and Generative Adversarial Neural Networks
	1 Introduction
	2 Related Work
	3 Deep Learning Based Log Generation
	3.1 Statistical Approach
	3.2 RNN-Based Approach
	3.3 GAN-Based Approach

	4 Evaluation
	4.1 Context and Dataset
	4.2 Experiments with RNN
	4.3 Experiments with GAN

	5 Comparison: Statistical Approach vs RNN vs GAN
	6 Conclusions
	References

	Emotion Detection
	Scalable Real-Time Confusion Detection for Personalized Onboarding Guides
	1 Introduction
	2 Related Work
	3 Infrastructure for Scalable Guide Personalization
	3.1 YesElf Client
	3.2 YesElf Logger Server
	3.3 YesElf Confusion Server
	3.4 YesElf Guide Server

	4 Model Retraining
	4.1 YesElf Context Help
	4.2 Gathering User Feedback

	5 Production Integration
	6 Conclusions and Future Work
	References

	Creating and Capturing Artificial Emotions in Autonomous Robots and Software Agents
	1 Introduction
	2 Motivating Example
	3 Creating and Capturing Artificial Emotions
	3.1 Preliminaries
	3.2 An Outline of Dörner's Psi theory
	3.3 Creation of Artificial Emotions in ARTEMIS

	4 The Agent Knowledge Graph
	4.1 Realizing Semantics in an Agent Knowledge Graph
	4.2 Episodic Knowledge in an Agent Knowledge Graph

	5 Related Work
	6 Experimental Study
	6.1 Results of the User Study

	7 Conclusion and Future Work
	References

	On Emotions in Conflict Wikipedia Talk Pages Discussions
	1 Introduction
	2 Models of Emotions
	3 Dataset
	3.1 Original Dataset
	3.2 Extending Dataset

	4 Analysis
	4.1 Basic Statistics
	4.2 Closed Sequential Patterns of Emotions

	5 Do the Emotions Escalate?
	5.1 Analysis of the Annotations
	5.2 EmoWordNet

	6 Conclusions
	References

	Location-Aware Applications
	Geospatial Partitioning of Open Transit Data
	1 Introduction
	2 Related Work
	2.1 Linked Data Fragments
	2.2 Mobility Data
	2.3 Partitioning Public Transit Networks
	2.4 Voronoi Diagrams

	3 Method
	3.1 Rationale
	3.2 Data
	3.3 Clustering
	3.4 Hypermedia Controls

	4 Evaluation
	4.1 Efficiency
	4.2 Cacheability

	5 Discussion
	6 Conclusion
	References

	Efficient Live Public Transport Data Sharing for Route Planning on the Web
	1 Introduction
	2 Related Work
	2.1 Public Transport Standards
	2.2 Public Transport Data on the Web
	2.3 Route Planning Algorithms
	2.4 Live Streaming Data on the Web

	3 Reference Architecture
	3.1 Publishing Live Public Transport Updates
	3.2 Consuming Live Public Transport Updates
	3.3 Dynamic Rollbacks for CSA

	4 Evaluation
	4.1 Real-World Test Data
	4.2 Experiment 1: Publishing Live Public Transport Updates
	4.3 Experiment 2: Consuming Live Public Transport Updates

	5 Results
	6 Conclusion and Future Work
	References

	Web-Based Development and Visualization Dashboards for Smart City Applications
	1 Introduction
	2 Architecture
	3 Implementation
	3.1 Visualization Dashboard
	3.2 Development Dashboard

	4 Related Work
	5 Final Remarks
	References

	Sentiment Analysis
	Detecting Rumor on Microblogging Platforms via a Hybrid Stance Attention Mechanism
	1 Introduction
	2 Related Work
	2.1 Rumor Detection
	2.2 Stance Mining
	2.3 Attention Mechanism

	3 Problem Definition
	3.1 Preliminaries
	3.2 Goal

	4 Model
	4.1 Stance Module
	4.2 Attention
	4.3 Rumor Module
	4.4 Integrate Module

	5 Metrics and Datasets
	5.1 Metrics
	5.2 Dataset

	6 Experiment
	6.1 Model Training
	6.2 Rumor Detection
	6.3 Early Detection

	7 Conclusion
	References

	A Hybrid Approach for Aspect-Based Sentiment Analysis Using Deep Contextual Word Embeddings and Hierarchical Attention
	1 Introduction
	2 Related Works
	3 Datasets Specification
	4 Method
	4.1 Ontology-Based Rules
	4.2 Multi-Hop LCR-Rot Neural Network Design
	4.3 Word Embeddings
	4.4 Multi-Hop LCR-Rot with Hierarchical Attention

	5 Evaluation
	6 Conclusion
	References

	Just the Right Mood for HIT!
	1 Introduction
	2 Related Work
	2.1 Conversational Agents and Crowdsourcing
	2.2 Worker Moods in Crowdsourcing

	3 Method
	3.1 Workflow and Task Design
	3.2 Conversational Interface
	3.3 Conversational Style

	4 Experiments and Setup
	4.1 Experimental Design
	4.2 Evaluation Metrics
	4.3 Workers and Rewards
	4.4 Quality Control

	5 Results
	5.1 Worker Demographics
	5.2 Distribution of Worker Moods
	5.3 Worker Performance
	5.4 Worker Engagement
	5.5 Cognitive Task Load

	6 Discussion
	7 Conclusions and Future Work
	References

	Open Data
	SolidRDP: Applying Solid Data Containers for Research Data Publishing
	1 Introduction
	2 Conceptual Problem Analysis
	2.1 Conceptual View on Research Data Publishing
	2.2 Current Situation in Practice
	2.3 Derived Objectives

	3 A Container-Based Approach for Research Data Publishing
	4 The SolidRDP Prototype
	4.1 Components
	4.2 Prototypical Implementation

	5 Evaluation
	5.1 OBJ1: Ownership of Data Storage
	5.2 OBJ2: Support for Different Formats, Shapes and Sizes of Research Datasets
	5.3 OBJ3: Metadata Integration
	5.4 OBJ4: User Support Tools
	5.5 OBJ5: Data Versioning Control
	5.6 OBJ6: Data Access Control
	5.7 OBJ7: Data Exposure

	6 Related Work
	7 Conclusion
	References

	Applying Natural Language Processing Techniques to Generate Open Data Web APIs Documentation
	1 Introduction
	2 Related Work
	3 NLP for Generating Open Data Documentation
	3.1 Starting with an OpenAPI Documentation
	3.2 Description Generation Employing NLP Techniques
	3.3 Including Natural Language Descriptions into an OpenAPI Documentation

	4 Validation
	4.1 Case Study
	4.2 Discussion

	5 Conclusions and Future Work
	References

	Liquid Web Applications
	WebDelta: Lightweight Migration of Web Applications with Modified Execution State
	1 Introduction
	2 Background
	2.1 Execution States of a Web App
	2.2 Previous Approach to Snapshot and Our Proposal

	3 The WebDelta Approach
	4 Challenges to WebDelta
	5 Patch Generation
	5.1 DOM Patch Generation
	5.2 JavaScript Patch Generation

	6 Evaluation
	6.1 Experimental Setup
	6.2 Modified Objects Analysis
	6.3 Serialized File Size
	6.4 Total Migration Time
	6.5 Initial Phase Overhead

	7 Discussion
	8 Related Work
	9 Conclusion
	References

	User-Side Service Synchronization in Multiple Devices Environment
	1 Introduction
	2 Motivating Scenario and Contributions
	3 CUBE Model Formal Description
	3.1 Description
	3.2 Model Scenario Representation

	4 Implementation Insights
	5 Feasibility Test, Results, and Evaluation
	5.1 Results
	5.2 Evaluation

	6 Related Work
	6.1 Server-Side Synchronization
	6.2 User-Side Synchronization

	7 Conclusions
	References

	An Approach to Build P2P Web Extensions
	1 Introduction
	2 Motivation: Augmenting News Portals with Visualizations
	3 The Approach in a Nutshell
	3.1 Framework

	4 Proof of Concept
	5 Related Works
	6 Conclusions and Future Works
	References

	Web-Based Learning
	Blended or Distance Learning?
	1 Introduction
	2 Related Work
	3 University and Open University
	3.1 Shared Curriculum
	3.2 Methodology Description and Comparison

	4 Research Setup
	4.1 Participants
	4.2 Method

	5 Results
	6 Discussion
	7 Conclusions and Future Work
	References

	On Teaching Web Stream Processing
	1 Introduction
	2 The Course
	3 Investigation Methodology
	4 Results
	5 Conclusion
	References

	Teaching Container-Based DevOps Practices
	1 Introduction
	2 Background
	3 Research Questions and Methodology
	3.1 DevOps with Docker Course
	3.2 Participants and Measures

	4 Results
	4.1 Background and Previous Knowledge
	4.2 Completers and Challenges

	5 Discussion
	6 Conclusions
	References

	PhD Symposium
	Predicting the Outbreak of Conflict in Online Discussions Using Emotion-Based Features
	1 Problem Context and Definition
	2 Related Work
	3 Proposed Approach
	4 Methodology
	4.1 Models of Emotions
	4.2 Datasets
	4.3 Analyses
	4.4 Future Analyses and Black-Box Model Generation

	5 Results
	5.1 Closed Sequential Patterns Mining
	5.2 Analysis of Escalation

	6 Conclusions and Future Work
	References

	An APIfication Approach to Facilitate the Access and Reuse of Open Data
	1 Introduction and Motivation
	2 Research Proposal
	3 Research Methodology and Planning
	References

	A Personal Health Trajectory API: Addressing Problems in Health Institution-Oriented Systems
	1 Introduction
	2 Related Works
	3 Research Aims, Objetives and Methodology
	4 Preliminary Key Results or Contributions
	5 Conclusions and Work Plan
	References

	Context-Aware Encoding and Delivery in the Web
	1 Introduction
	2 Content Encoding: State of the Art
	3 Open Challenges and Research Question
	4 Research Goals and Agenda
	5 Wrapup
	References

	Demos and Posters
	An OpenAPI-Based Testing Framework to Monitor Non-functional Properties of REST APIs
	1 Introduction
	2 Our Proposal
	3 Architecture
	4 Conclusion
	References

	OpenAPI Bot: A Chatbot to Help You Understand REST APIs
	1 Introduction
	2 Overview
	3 Example
	4 Conclusion
	References

	A Different Web Analytics Perspective Through Copy to Clipboard Heatmaps
	1 Introduction
	2 Implementation
	3 Results
	4 Conclusions
	References

	A Web Augmentation Framework for Accessibility Based on Voice Interaction
	1 Introduction
	2 Web Augmentation Framework for Accessibility
	3 Conclusions
	References

	Annotated Knowledge Graphs for Teaching in Higher Education
	1 Introduction
	2 Related Work
	3 Generating Annotated Educational Knowledge Graphs
	4 Supporting Mentoring by Digital Systems
	5 Conclusion
	References

	A Universal Application Programming Interface to Access and Reuse Linked Open Data
	1 Introduction
	2 Universal API to Access and Reuse LOD
	3 Conclusions and Future Work
	References

	OntoSemStats: An Ontology to Express the Use of Semantics in RDF-Based Knowledge Graphs
	1 Introduction
	2 Ontology
	3 Web Application
	4 Conclusion
	References

	Tutorial
	From Linked Data to Knowledge Graphs Storing, Querying, and Reasoning
	1. Extended Abstract
	Presenters
	References
	Author Index

