
Chapter 18
Inventing Scales for a Multidimensional
Model of Mathematics Self-efficacy
to Analyse First-Year Students’
Mathematical Self-assessment,
Performance, and Beliefs Change

Boris Girnat

18.1 Introduction

Beliefs have become an important field of research in mathematics education
(Philipp 2007). They are research objects of their own, but they are also used
as background variables to explain psychological or behavioural aspects of the
teaching and learning of mathematics—especially with regard to mathematics
performance. One important question is the relationship between performance and
self-assessment. Nearly every international large-scale study is combined with some
scales to measure students’ mathematical self-assessment mostly to predict and to
explain their performance (OECD 2005; OECD 2013). Research has shown that
the relationship among self-concept, self-efficacy, and mathematics performance is
strong and that mathematics self-concept and self-efficacy are in general powerful
predictors to students’ mathematics performance (Multon et al. 1991). The aim of
the study presented here is to extend the application of scales related to mathematics
self-concept and self-efficacy from lower secondary schools to upper secondary
schools and universities. New scales have been developed to cover the mathematical
content and skills of the transition phase from school to university. This paper
presents the results of a first application of these scales in the context of a two-
week bridging course that was designed to repeat secondary school mathematics.
All participants of this course had to take part in a mathematics pre-test and a
post-test and both tests were combined with a context questionnaire including the
new scales. The research questions are as follows: (1) Do the new scales possess
satisfactory psychometric properties? (2) Can these scales reveal group differences
concerning relevant co-variates? (3) How are these scales related to each other
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and to other attributes of the students (e.g. performance, mathematics self-concept,
and mathematics anxiety)? (4) Are these scales good predictors for the students’
performance? (5) Can the scales be used to detect belief changes between the pre-
test and the post-test and—if so—how are these changes related to the change of the
students’ general mathematics self-concept and mathematics performance?

18.2 Theoretical Background

There are two different ways to conceptualise students’ mathematical self-
assessment. The first one is related to a person’s mathematics self-concept,
measured by general statements like “I have always believed that mathematics is
one of my best subjects” (Marsh 1990). The second approach is called mathematics
self-efficacy. It was introduced by Bandura’s idea of measuring a person’s self-
assessment by his level of confidence about feeling able to solve specific problems
that are relevant to the domain of interest (Bandura 1977, 1986). Bandura defined
self-efficacy beliefs as “people’s judgments of their capabilities to organise and
execute courses of action required to attain designated types of performances”
(Bandura 1986, p. 391). Related to this idea, Shavelson et al. (1976) invented a
hierarchical model starting with the “general self-concept” on the most abstract
level, going down on different steps like the “academic self-concept” and the
“mathematical academic self-concept”, and finally arriving at the “evaluation of
behaviour in specific situations” that is very close to Bandura’s concept of self-
efficacy. Two theoretical claims of this hierarchical model are most relevant to our
study: (1) the higher and more abstract the level, the more stable the associated
concept and (2) the lower and less abstract the level is, the more the associated
concept can be represented by several different dimensions (Shavelson et al. 1976,
pp. 412–414). The second claim was the reason to use a multidimensional model
consisting of five scales related to different aspects of mathematics instead of a
one-dimensional scale. The first claim culminated in the fifth research question
mentioned above, namely whether and how changes in mathematics self-efficacy
are related to changes in mathematics self-concept and performance—in particular,
whether a different degree of stability is recognisable concerning these three
aspects. An examination of the students’ mathematics anxiety was added to the
questionnaire as the “emotional counterpart” of the mathematics self-concept:
according to Hannula’s distinction between mathematics affects as states and traits,
mathematics anxiety as a trait is stable and typically highly negatively correlated to
mathematics performance and self-concept (Hannula et al. 2019).

18.3 Self-efficacy, Self-concepts, and Anxiety

The new scales are based on the PISA self-efficacy scale used in 2003 and 2012
(OECD 2005, pp. 291–294, OECD 2014, pp. 322–323). The PISA scale is short
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and closely related to tasks typically used at lower secondary schools. But there
were three obstacles to adopt this scale to university courses without changes: (1)
the PISA scale was designed to measure mathematics self-efficacy only on lower
secondary school level; (2) an exploratory factor analysis of this scale indicated
that it cannot be considered as one-dimensional, but as multidimensional with
respect to mathematical subdomains: algebra, elementary geometry, and applied
mathematics/word problems (Girnat 2018); (3) Shavelson et al.’s model mentioned
above is based on different subdomains on the more basic and less abstract levels.
Insofar, the idea was to invent a bundle of self-efficacy scales that are (a) as
short as possible, (b) related additionally to upper secondary school mathematics,
and (c) multidimensional with respect to its different subdomains. To match the
demands, it was necessary to define subdomains of upper secondary mathematics in
a similar manner the re-analysis of the PISA scale suggested (Girnat 2018). To do
so, some subdomains could remain, some had to be changed: algebra and applied
mathematics are also relevant to upper secondary schools. These subdomains could
remain and even some of the items of the PISA scale could be reused (indicated
by “PISA”). Elementary geometry was replaced by analytic geometry; and calculus
and probability theory were introduced as new subdomains. Since every subdomain
should be represented by a scale that could stand for its own, four items per
subdomain ought to be regarded as the minimum. Hence, the solution contains 20
items organised in five scales to represent a multidimensional model of mathematics
self-efficacy (Table 18.1). The items were introduced with the following question:
“How confident do you feel about having to do the following mathematics tasks
(using a simple, non-graphing calculator)?”

The items on mathematics anxiety were directly reused from the PISA study in
2012 (OECD 2014, p. 323). The mathematics self-concept has to be adapted from
the PISA scale (OECD 2014, p. 323), since some items with a direct reference to
school contexts had to be removed or reformulated to be applicable at university
level.

18.4 A Performance Test for a Bridging Course

The primary focus of this paper is the scales described above. Since they were used
in the context of a bridging course that was evaluated by a mathematics performance
test with a pre-/post-test design, it is also necessary to describe the bridging
course and the performance tests. The teaching and learning of mathematics at
university level have become a prominent part of mathematics education in recent
years—especially the discrepancy between the requests of university mathematics
and the skills students have achieved at school (Di Martino and Gregorio 2018).
There are several proposals how to deal with this challenge. One of them is a
bridging course to enable first-year students to university mathematics. In 2013,
the University of Hildesheim decided to establish a voluntary bridging course
for all courses of study including a substantial amount of mathematics (Hamann
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Table 18.1 The items of the five mathematics self-efficacy scales

Scale Items

(a) Self-efficacy applied
mathematics (self.app)

1. Calculating how much cheaper a TV would be after a 30%
discount. (PISA)
2. Calculating the petrol consumption rate of a car. (PISA)
3. Calculating how much interest is given on a savings plan
within 10 years.
4. Calculating how long it takes to completely fill a swimming
pool.

(b) Self-efficacy algebra
(self.alg)

1. Solving an equation like 3x+ 5= 17. (PISA)
2. Solving an equation like 2(x+ 3)= (x+ 3)(x− 3). (PISA)
3. Multiply and simplify an algebraic expression like 2a(5a −
3b)2

4. Solving an equation like 6x2 + 5= 29
(c) Self-efficacy calculus
(self.calc)

1. Determining the derivative of a function such as f (x)= x · ex.
2. Determining the maxima and minima of a function such as
f (x)= x3 − 2x2 + 1.
3. Specifying the primitive of a function such as
f (x) = 1

2 sin (x).

4. Calculating a definitive integral such as
∫ 2
1 (x2 − 2x)dx.

(d) Self-efficacy analytical
geometry (self.ageo)

1. Calculating the length of a vector such as v= (4, −2, 3).
2. Calculating the scalar product of two vectors such as v= (−2,
1, 3) and w= (2, −3, 2).
3. Calculating the intersection of a straight line such as g : x= (1,
−2, 0)+ t · (−1, 0, 1) with a plane.
4. Calculating the distance of a point such as P(3|− 1|4) from a
plane (for example, E : x− 3y+ 2z= 3).

(e) Self-efficacy
probability theory
(self.prob)

1. Calculating the probability of throwing a 6 twice in a row.
2. Calculating the probability of winning the jackpot in the
lottery.
3. Calculating how likely it is to draw two sweets of the same
colour from a sweet jar.
4. Calculating how likely it is that two students in a class have
their birthday on the same day.

et al. 2014): computer science, business informatics, and elementary and secondary
education with mathematics as a major. Although there are different views on which
mathematical skills first-year students should possess, it is common sense that the
skills students should have learnt at secondary schools are regarded as crucial for
being successful at university (Nicholas et al. 2015). The department of mathematics
decided to restrict the content to the following topics, since the bridging course
had to be limited to 2 weeks and a preceding study had shown that the students
demanded a special need of algebra, arithmetic, functions, graphs, and calculus and
their applications in real-world situations (Kreuzkam 2013). These five topics have
become the core area of the bridging course and the items of the test had to match
these circumstances. The bridging course took place in October 2018. 312 students
attended the course; 271 of them took part in the pre-test, 224 in the post-test, and
194 in both tests. The participants were distributed as shown in Table 18.2.
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Table 18.2 Properties and sub-groups of the sample

Gender Study course Mathematics at school Course left before end

Female: 136 Primary education:
138

Basic level: 152 Not left earlier: 224

Male: 168 Secondary
education: 73

Advanced level: 125 Left earlier: 88

Computer science:
48
Business
informatics: 41

Others/no answer: 8 Others: 12 No answer: 35

Table 18.3 Reliability and fit indices of the scales in the pre-test

Scale Cronbach’s alpha RMSEA CFI SRMR

Self.app 0.75 0.029 0.998 0.031
Self.alg 0.76 0.000 1.000 0.024
Self.calc 0.78 0.043 0.997 0.034
Self.ageo 0.80 0.046 0.997 0.038
Self.prob 0.83 0.000 1.000 0.024
Matcon 0.74 0.000 1.000 0.007
Matanx 0.75 0.000 1.000 0.012

The labels “basic level” and “advanced level” refer to a characteristic of the
German school system: students have to choose in grade 10 if they want to be taught
in mathematics on a basic or on an advanced level during grade 11 and 12.

18.5 Psychometric Properties of the Scales and the Test

The psychometric properties of the scales and the performance test are reported
now. The reliabilities of the scales were estimated by Cronbach’s alpha (Cronbach
1951). Since we will later use confirmatory factor analyses (CFA) and structural
equation modelling (SEM), the typical fit indices used within this paradigm are
reported additionally (Beaujean 2014, pp. 153–166). All calculations were done
using R (R Core Team 2018) and the R package “lavaan” (Rosseel 2012) with a
DWLS estimator (Beaujean 2014, pp. 92–113).

Table 18.3 contains the values of the pre-test (the values of the post-test are quite
similar and are omitted to save space). According to the usual criteria, all scales
have good properties. For the performance test, a unidimensional Rasch model was
used to obtain a scale that expresses the “overall” mathematics performance of the
participants (Linden 2016). The analysis was done using the R package “TAM”
(Robitzsch et al. 2018). The Rasch model had an excellent EAP reliability (0.904).
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18.6 Results

The results are presented in four steps: (1) correlations between all scales; (2) group
differences with respect to background variables mentioned in Table 18.2; (3) Table
18.3 shows the changes between the pre-test and the post-test; (4) linear models to
explain students’ mathematics performance and beliefs. The asterisks stand for the
usual significance levels: * for p< 0.05, ** for p< 0.01, and *** for p< 0.001.

Correlations
Table 18.4 shows the latent correlations (Beaujean 2014, pp. 100–103) between
the performance test, the scales of the context questionnaire, and the final school
exam mark with respect to the data of the pre-test—estimated using a structural
equation model with good fit indices (RMSEA 0.013, CFI 1.000, SRMR 0.052).
The correlations are mostly as expected: there are substantial correlations between
the five scales of the multidimensional self-efficacy model, but they are not that
high that they could not be empirically differentiated. This is different in case of the
mathematics self-concept (matcon) and mathematics anxiety (matanx). This finding
supports the hypothesis that both scales are (positive and negative) indicators of the
same underlying concept (Hannula et al. 2019, mentioned above).

Group Differences
The focus of the analysis is now set to mean differences related to different
sub-groups of the sample. Here, we omit the co-variate “choice of the study
course”, since there are no significant differences observable. This is very surprising,
since the most relevant study to this topic (Betz and Hackett 1983) indicates that
mathematics self-efficacy is a good predictor for the students’ choices of their study
courses. The reason may be the fact that the possibilities to choose a study course is
rather limited at the University of Hildesheim and, therefore, remarkable differences
cannot occur. To make the differences on different scales comparable, we report
the differences in terms of Cohen’s d (Cohen 1988), i.e. the mean of one group
(the “reference group”) is set to zero and the mean of the other group is given as
the difference to zero on a standardised metric. Cohen’s d is usually interpreted as
follows (Cohen 1988): d= 0.2 indicates a small effect, d= 0.5 a medium effect, and
d= 0.8 a strong effect (Table 18.5).

There is no significant gender difference concerning the performance test
(d= −0.120), but the situation is quite diverse with respect to the different self-
efficacy scales. There is a small to medium difference (d= 0.339*) in favour
to the female group in case of analytic geometry; and there is nearly a large
(d= −0.678***) difference to the detriment of the female group in case of applied
mathematics. Both cases are remarkable aberration in perception compared to the
measured (insignificant) performance difference.
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Table 18.5 Mean differences between sub-groups of the sample (pre-test)

Gender Level in mathematics Course left before end

Variable (ref. gr.: male) (ref. gr.: basic level) (ref. gr.: not left)

Pre-test d = −0.120 d = 1.041∗∗∗ d = −0.661∗∗∗

Seff.app d = −0.678∗∗∗ d = 0.087 d = 0.168
Seff.alg d = 0.106 d = 0.953∗∗∗ d = −0.319∗

Seff.calc d = 0.134 d = 1.020∗∗∗ d = −0.180
Seff.ageo d = 0.339∗ d = 0.763∗∗∗ d = −0.337∗

Seff.prob d = −0.209 d = 0.414∗∗ d = −0.090
Matcon d = 0.074 d = 0.501∗∗∗ d = −0.243
Matanx d = 0.340∗ d = −0.370∗ d = −0.043

Table 18.6 Mean differences
between pre-test and post-test

Variable Difference

Performance test d= 0.978∗∗∗

Seff.app d = 0.581∗∗∗

Seff.alg d = 0.848∗∗∗

Seff.calc d = 0.887∗∗∗

Seff.ageo d = 0.210∗

Seff.prob d = 0.026
Matcon d = 0.144
Matanx d = −0.105

Differences Between Pre-test and Post-test
Now, we compare the results of the pre-test and the post-test. The two tests were
connected using the linking method according to Stocking and Lord (1983). Again,
the differences are expressed in terms of Cohen’s d (Table 18.6).

The difference concerning the performance tests is huge (d= 0.978***). How-
ever, it is remarkable that this successful development is reflected very diversely
with respect to the beliefs and emotions measured by the scales of the context
questionnaires: both mathematics self-concept (d= 0.144) and mathematics anxiety
(d= −0.105) did not change significantly. That may be an evidence for the
conjecture that these beliefs (or emotions, respectively) belong to the set of central
beliefs within a beliefs system that do not change rapidly—especially not on the
basis of a relatively short experience of a two-week bridging course (Philipp 2007,
p. 260). Therefore, they seem to be no good indicators for detecting short-term
changes. It is exactly the opposite concerning the scales of mathematics self-
efficacy: these scales reflect the achievement change almost in the same size that
is observed in the performance tests.

Linear Models
Finally, we come back to the pre-test. We suspected that the scales of the context
questionnaire may be good predictors for the students’ performance. We analyse this
hypothesis using linear models (Searle and Gruber 2016) that include scales of the
questionnaire as predictors (independent variables) and the results of the pre-test as
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Table 18.7 Linear models
explaining students’
mathematics performance
(pre-test)

Predictors bi SE(bi) β i Total R2

Seff.app −0.117 0.232 −0.031 R2 = 0.357
Seff.alg 1.532*** 0.267 0.417***
Seff.calc 0.188 0.172 0.103
Seff.ageo 0.508 0.270 0.159
Seff.prob 0.069 0.112 0.033
Matcon 0.076 0.121 0.022
Matanx −0.035 0.080 −0.014
Seff.alg 2.087*** 0.307 0.579*** R2 = 0.335

Table 18.8 Linear models
explaining students’
mathematics self-concept
(pre-test)

Predictors bi SE(bi) β i Total R2

Seff.app 0.248∗ 0.112 0.215∗ R2 = 0.369
Seff.alg 0.159 0.098 0.137
Seff.calc 0.178∗ 0.072 0.307∗

Seff.ageo 0.012 0.094 0.013
Seff.prob 0.092 0.054 0.140
Seff.app 0.261∗∗ 0.054 0.422∗∗∗ R2 = 0.353
Seff.calc 0.397∗∗ 0.119 0.311∗∗

the dependent variable to explain. The model was defined in two steps (Table 18.7):
firstly, all variables were used as predictors (model above the line, RMSEA 0.36,
CFI 0.963, SRMR 0.53); then, all insignificant predictors were removed leading
to the result that only one predictor has a significant and substantial explorative
value: the self-efficacy concerning algebra (model below the line, RMSEA 0.32, CFI
0.976, SRMR 0.43). We used bi to denote the unstandardised regression coefficients,
SE(bi) for their standard errors, and β i for the standardised regression coefficients.

Since we already observed that the mathematics self-concept scale has different
properties than the self-efficacy scales, we analyse the relationship between these
concepts, defining linear models in the same way as above, but now using the
mathematics self-concept as depending variable (Table 18.8).

The result is remarkable. The self-concept is explained by only two significant
predictors: the self-efficacy concerning applied mathematics and calculus. That may
be an explanation why the mathematics self-concept acts in different way than
the self-efficacy scales: it is mostly determined by two self-efficacy scales that are
irrelevant for explaining the students’ performance (Table 18.7).

18.7 Conclusion

The first application of the new scales on mathematics self-efficacy in the context
of a bridging course shows the following results: firstly, the five scales of this
model (related to algebra, applied mathematics, calculus, analytic geometry, and
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probability) are short and easy to apply, have good statistical properties, and are
substantially, but not too highly correlated, so that they describe different facets of
interrelated concepts. Secondly, they allow analysing group differences in details.
For example, the self-concept did not allow detecting gender differences; the self-
efficacy scales, on the contrary, showed a large difference specifically related to
applied mathematics and—not having a similar large counterpart in mathematics
performance—suggesting that this difference is “exaggerated”. Thirdly, the scales
are useful tools to describe and to explain changes related to beliefs and to
mathematics performance. Whereas the mathematics self-concept is more stable and
obviously a part of a student’s central beliefs system, the scales of self-efficacy are
more peripheral, so that they are appropriate to detect short-term changes as shown
by the analyse of the two-week bridging course. Lastly, the self-efficacy scales
can explain a considerable amount of both students’ mathematics performance
and self-concept, revealing that the self-concept is mostly determined by the
students’ self-efficacy related to applied mathematics and to calculus, whereas their
performance could be explained best by their algebraic self-efficacy. Insofar, the
scales of self-efficacy can clarify relationships between different mathematically
relevant beliefs and concepts.

All results have to be understood against to the background that the two-week
bridging course was the first and very limited opportunity to apply and to test the
scales. This fact induces some limitations: until now, there is no information about
the marks and the drop out of the participants during their upcoming academic
courses; there are also no data about the long-term effects on the participants’
performance, beliefs, and emotions; and there was no possibility to control the tasks
given during the bridging course. Especially the latter would be desirable to check
if the predominant role of the algebraic self-efficacy as a predictor of the students’
performance is a general fact or if this role is limited to the specific content of the
bridging course at Hildesheim.
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