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Abstract. Flow maps are a common form of geographic information visualiza-
tion to show the movement of information from one location to another. Visual
variables are essential elements of information representation. Previous studies
have evaluated the perceived effectiveness of individual visual variables in a flow.
However, the composition of flows usually includes multiple visual variables,
and how to evaluate the usability of multiple visual variables has not been well
documented. In this study, we investigated the influence of four visual variables
(Thickness, Length, Brightness, and Hue) in flows on size perception. The results
showed that length and brightness had a significant influence on the accuracy of
size perception, while hue had no significance. Furthermore, multiple visual vari-
ables might involve a higher visual complexity and have a significant effect on
response efficiency. In addition, we found that different references significantly
affect the results of comparison judgments. The basic study could help improve
the usability of flow maps in geographic information visualization.

Keywords: Flow maps ·Multiple visual variables · Geographic information
visualization

1 Introduction

FlowMaps are a common form of geographic information visualization. Flowmaps geo-
graphically show the movement of information or objects from one location to another
and their amount, see Fig. 1. Typically, flow maps are used to display migration data of
vehicles, trade, and animals, etc. Qualitative and quantitative data information is con-
veyed with line symbols of different thicknesses. In practical use, complex geographic
information is usually presented to the user in visualization using a combination of visual
variables. For example, using shapes (straight lines and curves) to avoid overlap, color
(hue) to distinguish between different types. However, these visual variables do not rep-
resent amount information, and it may interfere with the user’s perceived performance.
What we are interested in is exploring the influence of multiple visual variables on size
perception in flow maps.

Shape (straight lines and curves), size (length and thickness), and color (brightness
andhue) are three critical visual variables for encodingflow information [1, 2].According
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to the previous research [3] on the perceptual discriminability of visual variables, we
know that size has the highest level of the number of perceptible steps. In flow maps,
size is also the most commonly used variable to encode magnitude information. Besides,
to visualize numbers across large magnitudes, visualization designers often redundantly
represent information with size and color. In this study, we conducted two user studies to
evaluate the effect of four common visual variables and reference in flow maps on size
perception. The results of this study will provide concrete guidelines for visualization
designers in the design of flow maps.

Fig. 1. The flow map

2 Background

2.1 Visual Variables in Flow Maps

The visual variable system was first established by Bertin [4]. He defined seven basic
visual variables: position, size, shape, color brightness, color hue, orientation, and grain.
On this basis, scholars have expanded the system, such as color saturation, arrangement
[5], fuzziness, resolution, and transparency [6, 7]. Recent researches [8] even have gone
beyond the traditional static 2D display, such as motion, depth, and occlusion.

There are five types of flowmaps, which are distributive, network, radial, continuous,
and telecommunications flow maps [9]. Size, color, and shape are three fundamental
visual variables in flow maps. Dong et al. [10] evaluated the usability of flow maps
through comparisons between (a) straight lines and curves and (b) line thickness and color
gradients. Holten et al. [11] made an evaluation for the effectiveness of six directed-edge
representations in path-finding tasks.

Though a lot of efforts to evaluate visual variables comprehensively, little attention
has been paid to the interaction of multiple visual variables. Bertin’s [12] notion of
“disassociativity” and Garner’s [13] concept of “dimensional integrality” pointed out
that different visual variables are either “associative” or “disassociative.” Bertin believed
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that brightness and size are disassociative: because these variables affect the visibility of
symbols, it would be tough to ignore their variations [12]. As we know, a flow consists of
many visual variables, but not all of them are used for numerical representation. We are
interested in whether the effect of multiple visual variables on magnitude perception is
promotion or interference. For example, the length of flows varies depending on origins
and destinations in practical use. When users compare the long and thick flow with the
short and thin flow, will they make greater estimation error because of stronger visual
contrast? Based on previous studies, we investigated the influence of four visual variables
(Thickness, Length, Brightness, and Hue) in flows and their combinations on estimation.
The study of multiple visual variables includes the following two aspects, redundant
variables, and interference variables. Redundant variables are all encoded to represent
values, while interference variables are independent of numerical representation.

2.2 Graphical Perception of Size

Graphical perception of size studied the psychophysical relation between perceived and
physical magnitudes. Spence [14] experimentally explored the apparent and effective
dimensionality of representations of objects. One of the most relevant studies on size
perception is the visual cue. The visual cue is an essential factor in part-to-whole com-
parison [15]. The visual cue may be reference objects or invisible perceptual anchors.
For reference objects in visualization perception, Steven’s law [16] indicated that when
an object is seen in the context of other larger objects, it appears larger itself. In contrast,
it seems smaller. Jordan and Schiano [17] found that changing spatial separation between
lines produced assimilation or contrast effect. Simkin and Hastie [18] ran studies that
appear to confirm that people use perceptual anchors as part of the estimation process.
Spence [19] held that the pie chart has four natural anchors at 0%, 25%, 50%, 75%, and
100%, while the stacked bar chart has two anchors at 0%, 50%, and 100%, respectively.
Stephen [15] explored the impacts of visual anchors on estimation in part-to-whole
comparisons employing Amazon’s Mechanical Turk service.

In our investigation, we found that users would use different visual cues uninten-
tionally to make an estimation. In the practical use of flow maps, users may estimate
the value of the target flow by referring to the values of adjacent flows, the maximum
or minimum values in the global, rather than comparing with the same reference every
time. Inconsistent references might be one of the main factors leading to instability in
user performance. We suspected that different reference objects might affect the user’s
estimated performance.

On the other hand, color mapping is a very important visualization technique. The
color size effect [20] indicated that the color appearance is affected by the physical size of
the color. A common explanation for this effect is that the cones and rods are not evenly
distributed throughout the human retina, resulting in a difference in color vision between
the fovea and the peripheral retina [20]. Changes in color size appearance are mainly
determined by two factors, hue, and brightness. K Xiao [21] revealed the relationship
of the changes of color appearance between different sizes through user experiments
and found that with the increase of stimulus size, the color appears lighter and brighter.
Tedford et al. [22] found that warm colors such as red, orange and yellow appear larger
than cool colors like green and blue. Warm and bright colors make objects appear larger



338 Y. Lin et al.

and have a sense of expansion, while cold and dark have a sense of contraction and make
objects appear smaller [23]. Visualization designers usually use the color size effect to
obtain a visual balance, but it also may bring some potential perception problems. In
this study, we studied the influence of length, brightness, and color on size perception
based on previous studies.

3 Study 1: Effect of Multiple Visual Variables on Size Perception
Processing

Based on the previous research, experiment 1 studied the characteristics of the individual
size perception on flow encoded with multiple visual variables. The experiment adopted
a within-subjects design. The independent variable was multivariate encoding type,
including interference-free, interference, and redundant variable encoding. See Fig. 2
for more details about the levels of each factor.

Fig. 2. Independent variables in experiment 1.
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3.1 Participates

Atotal of 19male and29 female graduate students aged23–27 (M=23.3, SD=2.6)were
enrolled. The participants experienced one ormore forms of information visualization on
an occasional basis from sources such as the Internet, books, news-papers, and academic
articles, etc. All participants had a normal or corrected vision, no color blindness or color
weakness. Participants who completed the entire experiment would receive a reward of
30 RMB.

3.2 Experimental Materials

To avoid the influence of irrelevant factors in practical flow maps, such as place names,
point size, and so on, we dealt with the experimental materials. In this basic research,
we simplified the flow into a straight line with a length of 200 pixels as the standard
stimulus. Thickness (2–20 px) of the standard stimulus represented corresponding values
from one to ten.

For stimulus encodings with interference variables, there were two types, that is,
Double encoding and Triple encoding. Double and Triple meant the number of visual
variables that encoded the flow. For example, double encoding referred to the flow
encoded with two visual variables (thickness and length), in which thickness represented
magnitude information, and the length was an interference variable. The interference
variables included length, brightness, and hue. There were two levels for each variable.
For length, the short level was half the length of a standard stimulus, and the long level
was twice the length of a standard stimulus. For brightness, the light and dark levels were
two gradients higher and lower than the brightness of the standard stimulus, respectively.
The brightness gradient picked from COLOR BREWER [24]. For hue, we selected only
two representative colors, and the cold (#3b7494) and warm (#fd7f0a) levels were taken
from the study of Tedford et al. [22].

For redundancy encoding, both thickness and brightness encode quantitative infor-
mation. The ten brightness gradient was defined according to the HSL color space, and
mapped values from one to ten.

3.3 Procedure

We performed a laboratory control web experiment consisting of a simple human-
computer interaction process to collect behavioral data from participants. Web experi-
ment has been widely used to evaluate the effectiveness of the interface in recent years.
The experiment was carried out in the HCI lab of Southeast University under normal
lighting condition (about 500 lx). The stimuli were generated by a computer running the
Mac OS operating system with a 2.6 GHz Intel Core i7 processor. The monitor used was
a 27-in. IPS monitor with a 4K resolution (Dell U2718Q). The viewing distance used
was 50 cm.

The task for the participants was to estimate the value of the stimulus encoding
ac-cording to the reference object and submit the answer. The experimental interface
screenshot is shown in Fig. 3. Before the formal experiment, participants need to com-
plete two practice trials to familiarize themselves with the functions and interactions
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of the test interface. In the middle of the experiment, participants were allowed to rest
for two minutes to stay relaxed. To avoid the familiarity effect, the order of the trials
appeared random.

Participants needed to complete a total of 16× 4= 64 trails. The whole experiment
took about 15min. The following datawere collected: the physical size for each trail (�),
the perceived size submitted by the participants (P), and the response time (T). Finally,
we evaluated the effect of different combinations of visual variables on the usability of
the flow maps based on the results.

Fig. 3. Screenshot of the experimental interface.

4 Results

In this section, we described an overview of our analysis result. A total of 3072 groups
of data (64 trials × 48 participants) were collected from the experiment. We measured
both accuracy and response time for each trial. Accuracy percentage was measured by
subtracting the percentage of response error from 100, where the response error is:

Response Error =
∣
∣
∣
∣

P − Π

Π

∣
∣
∣
∣
× 100%

4.1 Task Performance: Results Overview

To detect the effects of multiple visual variables, we turned to an analysis of variance
(ANOVA). Before testing, we checked whether the data collected meets the assumptions
of an appropriate statistical test. Shapiro-Wilk test showed that the residuals were close
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to the normal distribution (P > 0.05), and the Levene test showed data of this study had
equal variance (P = 0.061). In this section, we describe the results of statistical tests by
independent variables and their interactions.

ANOVA detected significant main effects for both accuracy (F (15,3008) = 16.980, p
< .001) and response time (F (15,3008) = 14.234, p < .001), and we followed up with
Bonferroni-corrected post-hoc comparisons; see Fig. 4.

Figure 4 shows that the accuracy of STD (M = 91.1%) and RE (M = 93.1%) was
the highest (all p < 0.05). The pairwise comparison between STD and RE showed no
significant difference (p= 0.347). Compared with interference-free encoding (STD), the
addition of the interference variable, except for hue, made a worse magnitude perception
performance. Pairwise comparisons between encodingswith interfering variablesmostly
did not detect significant differences. Except for hue, pairwise comparison identified
no significant difference between triple encodings and double encodings; however, we
noticed that the number of errors distributed in triple encodings was the most, and triple
encodings had a more significant deviation.

For response time, the pairwise comparisons showed that encodingwith interference-
free variables (STD) had the shortest response time, and the addition of the interference
variablemade a longer response time. Redundancy affected the response time. Compared
with STD, the response time of RE was significantly longer, but the amount exceeded
was minimal. Triple encodings had a significantly longer response time than double
encodings (all p < .05). See Fig. 4 for more details about the response time ranking of
different encodings.

4.2 Estimation Bias Analysis

We ran chi-square tests to investigate whether users have a tendency of overestimation or
underestimation to different multivariate encoding (See Table 1). For double encoding,
the results indicated that the size perception of stimuli encoded by interference variables
(length and brightness) were significantly biased. At the same time, the hue had no
significant effect on the estimated bias. For triple encoding, the significances of the
estimation bias were detected for all stimulus encodings except L1+B1 and L2+B2. This
might be interpreted that there was a conflict when the length and brightness variables
encoded stimuli simultaneously. For the variable combination of length and hue (L+H),
the estimated biases are consistent with that of length in double encoding.

In general, encodings with significantly overestimated biases are L2, B1, L2+B1,
L2+H1, and L2+H2; encodings with significantly underestimated biases are L1, B2,
L1+B2, L1+H1, and L1+H2. Standard stimulus and redundant encoding had the smallest
estimation bias and the best accuracy. Although these results showed that multiple visual
variables affect biases for over- or underestimation of size perception, further researches
will be needed to analyze the causes of these biases.
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Test of Within-Subjects Effects
Multivariate Encoding Type(F (15,3008) = 16.980, p < .001)

Test of Within-Subjects Effects
Multivariate Encoding Type(F (15,3008) = 14.234, p < .001)

Pairwise Comparisons (ranked from most 
accurate to least)
p values are corrected using Bonferroni correction.
Encoding Type

Pairwise Comparisons (ranked from most 
fastest to least)
p values are corrected using Bonferroni correction.
Encoding Type
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Fig. 4. Accuracy and response time of different multivariate encodings along with statistical
results. Mean accuracy is shown in (a), and mean response time is shown in (b).
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Table 1. The percentage of over- or underestimation when estimating different encodings. Chi-
square tests compared the frequencies of overestimation and underestimation to detect estimation
bias for different encodings. Significant differences are indicated by asterisks (�).

Encoding Over Under Chi-squareed test

STD 8.9% 7.8% χ2 = 0.107, p = 0.74

L1� 11.5% 26.6% χ2 = 8.448, p < 0.005�

L2� 27.6% 12.5% χ2 = 7.887, p = 0.005�

B1� 25.5% 13.5% χ2 = 5.110, p < 0.05�

B2� 14.6% 26.0% χ2 = 4.442, p < 0.05�

H1 12.5% 8.3% χ2 = 1.326, p = 0.25

H2 14.6% 7.8% χ2 = 3.221, p = 0.073

L1+B1 15.1% 26.0% χ2 = 3.979, p = 0.05

L1+B2� 11.5% 27.1% χ2 = 8.892, p < 0.005�

L2+B1� 25.5% 11.0% χ2 = 8.302, p < 0.005�

L2+B2 24.0% 14.1% χ2 = 3.601, p = 0.06

L1+H1� 13.0% 24.5% χ2 = 4.923, p < 0.05�

L1+H2� 11.5% 22.4% χ2 = 4.172, p < 0.05�

L2+H1� 23.4% 12.0% χ2 = 5.294, p < 0.05�

L2+H2� 23.4% 11.5% χ2 = 5.900, p < 0.05�

RE 5.7% 6.8% χ2 = 0.148, p = 0.70

5 Discussion

Experiment 1 compared the user performance of flows encoded by multiple visual vari-
ables (length, brightness, and hue). First of all, in terms of accuracy, accompanied by the
addition of three visual variables, the results showed a decrease in effectiveness. When
visual variables were added in the form of a combination, the accuracy decreased even
lower. However, the accuracy of redundant encoding seemed improved. This result may
partly be explained that redundant encoding could be used to improve discriminabil-
ity between stimulus and reference while multiple visual variables increase graphic
complexity [3].

After that, the results showed growth in response time when visual variables were
encoded in the form of either interference or redundancy. Among them, triple encoding
had the lowest efficiency, followed by double and redundant encoding. This supported
Tufte’s hypothesis to maximize the “data-ink ratio [25].” Tufte considered that Non-
Data-Ink is to be deleted everywhere where possible to avoid drawing the attention of
viewers of the data presentation to irrelevant elements. An explanation for this might
be the information processing theory. Symbol excess and symbol redundancy increase
graphic complexity [3]. Flows encoded by more visual variables take up more cognitive
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resources (attention and understanding) of participants, further affect the efficiency of
their response.

Last but not least, the results of estimation bias analysis showed that except hue,
both length and brightness affected the estimation bias for size perception to varying
degrees. The effect of length can be explained as its influence on the apparent thickness
of flow. The increase in length changes the aspect ratio of flow lines, resulting in a thinner
apparent thickness, which further affects the size perception of users. It should be noted
that the present study was designed to determine the effect of multiple visual variables
on size perception. Thus this study is a qualitative study of flow graph, not a quantitative
study.

The results showed that the bright colorsmake the appearance of objects larger, while
the dark colors are the opposite. This result supports evidence fromprevious observations
[23].

The results showed not significant for the effect of hue on the estimation bias, which
differs from the findings presented by Tedford et al. [22]. It seems possible that this result
is due to our experimental materials are lines, not areas, and the stimulation intensity to
participants is not as sufficient as previous studies.

Besides, the results showed that length and brightness have a compound effect on size
perception. When they are coded together in different combinations, they can amplify or
offset the estimation bias to varying degrees, as different visual variables have different
capacities [4].

6 Study 2: Effect of Reference Objects on the Size Perception
Processing

To investigate whether reference objects influence on size perception processing, we
conducted a user study on the basis of experiment 1. The two factors of experiment 2
were reference objects and physical size. The former had two levels, and the latter had
ten size levels, as shown in Fig. 5.

6.1 Participates

A total of 15 male and 25 female graduate students aged between 23 and 27 years (M=
24.1, SD = 2.4) who used computer almost every day were recruited. All participants
had normal or corrected vision without color blindness or color weakness.

6.2 Experimental Materials

The experimental material was the same as experiment 1. Participants estimated the size
of the standard stimulus based on different levels of reference objects. The physical size
of reference objects in experiment 2 has two levels; the physical size of the large one
was 10, and the small one was 2. The physical size of the stimulus in experiment 2 has
ten levels, covering from 1 to 10.
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Fig. 5. Independent variables in experiment 2.

6.3 Procedure

The experimental procedure and the collected data were the same as experiment 1.
Participants needed to complete a total of 2 × 10 = 20 trails.

7 Results

A total of 800 groups of data (20 trials× 40 participants) were collected from experiment
2.

7.1 Task Performance: Results Overview

We conducted a two-way ANOVA to investigate the effect of reference objects and
physical size on size perception. The results showed as follow:

Reference Objects. There were significant differences between the two groups for both
accuracy (F (1,780) = 10.095, p < .01) and response time (F (1,780) = 20.677, p < .001).
The large reference group reported significantly more accuracy and shorter response
time than the small reference group.

Physical Size. The tests detected a significant effect of physical size on response time
(F (9,780) = 1.973, p = 0.044), but no significant effect on accuracy (F (9,780) = 1.217, p
= 0.281).

Reference Objects × Physical Size. There was a significant interaction between refer-
ence objects and physical size orientation for both accuracy (F (9,780) = 9.318, p< .001)
and response time (F (9,780) = 8.516, p < .001). The rankings of accuracy and response
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time obtained by pairwise comparison are shown in Fig. 4. In terms of accuracy, the
results indicated that the accuracy of the small reference group was significantly higher
than that of the large group when physical size was 1 and 2. When the physical size was
7, 8, 9, and 10, the results were the opposite. Although not all pairwise comparisons
between the large reference group were significant, it seemed the accuracy of the small
reference group was poor when the physical size increased. At the same time, the large
reference group was the opposite. Even so, the large reference group was more usable,
since its overall accuracy was significantly better than the small reference group.

On the other hand, concerning response time, we found that the small reference
group had significantly longer response time when physical size was 5, 7, 9, and 10.
And the large reference group had a significantly longer response time when physical
size was 1. In the small reference group, participants took longer to answer when the
physical size was 5, 6, 9, and 10. The small reference group had a longer response time
when the physical size was larger, while the large reference group seemed to have little
difference in each physical size. See Fig. 6 for more details.

7.2 Estimation Bias Analysis

We conducted chi-square tests to check estimation bias with different reference objects
(see Table 2). The results show that for the small reference object, participants signif-
icantly underestimated the size of the stimulus, starting from 5. For the large refer-
ence object, estimation bias only happened at 6, and the other comparisons were not
significant.

7.3 Psychophysical Relations Between Perceived Size (P) and Physical Size (�)
for Flow Lines

To explore the Psychophysical relations between perceived size (P) and physical size
(�) for flow lines, we performed a linear regression analysis on user performance data.
The linear relationship between P and � in the small reference group can be expressed
as:

P = KS × � + b

The Small Reference Group. By least-square fitting of perceived size, the slope KS =
0.739, intercept b = 0.668, and the fitting error = 0.840.

The Large Reference Group. By least-square fitting of perceived size, the slope KS =
0.989, intercept b = −0.072, and the fitting error = 0.948.

As shown in Fig. 7, the perceived size of the small reference group was lower than
the physical size, which may be evidence to support the results of previous studies by
Steven et al. [16].
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Fig. 6. Accuracy and response time of different reference objects groups along with statistical
results. Mean accuracy is shown in (a), and mean response time is shown in (b).
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Table 2. The percentage of over- or underestimation when referring to different references.
Significant differences detected by the Chi-square tests are indicated by asterisks (�).

Physical size Reference objects Over Under Chi-squareed test

1 Small 65.0% 5.0% χ2 = 0.049, p = .826

Large 30.0% 47.5% χ2 = 0.899, p = .343

2 Small 62.5% 10.0% χ2 = 0.091, p = .763

Large 27.5% 42.5% χ2 = 0.762, p = .383

3 Small 67.5% 7.5% χ2 = 0.041, p = .839

Large 25.0% 45.0% χ2 = 1.363, p = .234

4 Small 60.0% 5.0% χ2 = 0.153, p = .695

Large 22.5% 30.0% χ2 = 0.282, p = .596

5 Small 57.5% 10.0% χ2 = 4.333, p < .05�

Large 15.0% 42.5% χ2 = 3.445, p = .063

6 Small 47.5% 15.0% χ2 = 8.680, p < .01�

Large 45.0% 12.5% χ2 = 8.873, p < .05�

7 Small 25.0% 20.0% χ2 = 12.692, p < .001�

Large 27.5% 12.5% χ2 = 1.626, p = .202

8 Small 20.0% 22.5% χ2 = 12.433, p < .001�

Large 22.5% 25.0% χ2 = 0.036, p = .850

9 Small 10.0% 12.5% χ2 = 9.716, p < .01�

Large 20.0% 22.5% χ2 = 0.041, p = .839

10 Small 20.0% 17.5% χ2 = 13.823, p < .001�

Large 12.5% 15.0% χ2 = 0.071, p = .789

Fig. 7. Psychophysical relations between perceived size (P) and physical size (�) for flow lines.
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8 Discussion

Experiment 2 compared user performance in size perception when referring to different
reference objects. Initially, the results showed that the performance in the large reference
group was better in terms of accuracy and response time. A possible explanation for this
might be that humans are better at estimating the proportion within 100%, because of
the assistance of natural anchors [19], such as 25%, 50%, and 75%. However, when
participants perform a proportion estimation in which the stimulus-to-reference ratio
exceeds 100%, there might be two sources of error. On the one hand, if participants
make a whole-to-part comparison, they need to make multiple estimations, and the error
superposition may magnify the error. On the other hand, if participants make a part-
to-whole comparison, more complex conversions and higher accuracy requirements
seem to be factors that cause more significant errors. Both situations may cause errors.
However, with a small sample size, caution must be applied, as the findings might not
be the evidence that large references perform best. There is a possibility that a reference
performs best when the ratio of it to the maximum value falls somewhere in the middle,
such as 50%. We will continue to study the effect of different proportions of reference
and maximum value on size perception in our future work.

Besides, we found that the small reference group had significant underestimation bias
in size perception compared with the large reference group. This finding is consistent
with that of Steven [16], who indicated that when an object is seen in the context of other
smaller objects, it appears smaller itself. This also accords with the earlier observations
of Jordan and Schiano [17], which showed that increasing spatial separation between
lines produced the opposite effect.

9 Conclusion

In this study, two experiments were conducted to investigate the effect of multiple visual
variables on size perception in flow maps, and the following conclusions were drawn:

1. Different lengths of flow involve the judgment of apparent thickness and then affect
size perception. However, what aspect ratio has the most significant effect on size
perception requires further quantitative research.

2. As a result, it was detected that brightness had an influence on the estimation bias,
while hue had no effect.

3. Redundant encoding of flows improves the accuracy to some extent without losing
much efficiency at the same time.

4. A comparison judgmentwith varied references in flowmapsmay cause higher errors.
However, further research is needed to find out the best proportion of reference for
comparison judgment.

Some suggestions for the geographic information visualization designer:
When the value represented by the flow across varyingmagnitudes, redundant coding

can be selected for its better discriminability. Since different referenceswill cause greater
errors, designers should guide the user’s estimation behavior and recommend a uniform



350 Y. Lin et al.

reference. Although the structure of the flowgraph determines that some visual variables,
such as length and lightness, cannot be omitted, their impact should be considered when
designing visualizations of crucial information.

Acknowledgments. This work was supported by the National Nature Science Foundation of
China (NSFC, Grant No. 71871056 & No. 71471037).

References

1. Bertin, J.: Graphics and Graphic Information Processing. Walter de Gruyter, Berlin (1981)
2. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and

how do they do it? Nat. Rev. Neuros 5, 495–501 (2004)
3. Moody, D.: The “physics” of notations: toward a scientific basis for constructing visual

notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)
4. Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. Univ. Wisconsin Press,

Madison (1983)
5. Morrison, J.L.: A theoretical framework for cartographic generalization with the emphasis

on the process of symbolization. Int. Yearb. Cartogr. 14(1974), 115–127 (1974)
6. MacEachren, A.M.: Visualizing uncertain information. Cartograph. Perspect. 13(13), 10–19

(1992)
7. MacEachren, A.M.: How Maps Work: Representation, Visualization, and Design. Guilford

Press, New York (2004)
8. Carpendale, M., Sheelagh T.: Considering visual variables as a basis for information

visualisation (2003)
9. Jenny, B., et al.: Design principles for origin-destination flow maps. Cartogr. Geogr. Inf. Sci.

45(1), 62–75 (2018)
10. Dong, W., et al.: Using eye tracking to evaluate the usability of flow maps. ISPRS Int. J.

Geo-Inf. 7(7), 281 (2018)
11. Holten, D., et al.: An extended evaluation of the readability of tapered, animated, and tex-

tured directed-edge representations in node-link graphs. In: 2011 IEEE Pacific Visualization
Symposium (2011)

12. Reimer, A.: Squaring the circle? Bivariate colour maps and Jacques Bertins concept of dis-
association. In: Proceedings of the International Cartographic Conference 2011, pp. 3–8
(2011)

13. Garner, W.R.: The Processing of Information and Structure. Psychology Press, New York
(2014)

14. Spence, I.: The apparent and effective dimensionality of representations of objects. Hum.
Factors 46(4), 738–747 (2004)

15. Redmond, S.: Visual cues in estimation of part-to-whole comparisons. In: 2019 IEEE
Visualization Conference (VIS). IEEE (2019)

16. Stevens, S.S.: On the psychophysical law. Psychol. Rev. 64(3), 153 (1957)
17. Jordan, K., Schiano, D.J.: Serial processing and the parallel-lines illusion: length contrast

through relative spatial separation of contours. Percept. Psychophys. 40(6), 384–390 (1986).
https://doi.org/10.3758/BF03208197

18. Simkin, D., Hastie, R.: An information-processing analysis of graph perception. J. Am. Stat.
Assoc. 82, 454–465 (1987)

19. Spense, I.: No humble pie: the origins and usage of a statistical chart. J. Educ. Behav. Stat.
30, 353–368 (2005)

https://doi.org/10.3758/BF03208197


The Effect of Multiple Visual Variables on Size Perception 351

20. Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and
Formulae, 2nd edn. Wiley, New York (2000)

21. Xiao, K., et al.: Investigation of colour size effect for colour appearance assessment. Color
Res. Appl. 36(3), 201–209 (2011)

22. Tedford, W.H., Berquist, S.L., Flynn, W.E.: The size-color illusion. J. Gen. Psychol. 97,
145–150 (1977)

23. Marks, L.E.: The Unity of the Senses: Interrelations Among the Modalities. Academic Press,
Cambridge (2014)

24. COLOR BREWER Homepage. http://colorbrewer2.org. Accessed 21 Nov 2019
25. Tufte, E.R.: The Visual Display of Quantitative Information Graphics Press. Connecticut,

Cheshire (1983)

http://colorbrewer2.org

	The Effect of Multiple Visual Variables on Size Perception in Geographic Information Visualization
	1 Introduction
	2 Background
	2.1 Visual Variables in Flow Maps
	2.2 Graphical Perception of Size

	3 Study 1: Effect of Multiple Visual Variables on Size Perception Processing
	3.1 Participates
	3.2 Experimental Materials
	3.3 Procedure

	4 Results
	4.1 Task Performance: Results Overview
	4.2 Estimation Bias Analysis

	5 Discussion
	6 Study 2: Effect of Reference Objects on the Size Perception Processing
	6.1 Participates
	6.2 Experimental Materials
	6.3 Procedure

	7 Results
	7.1 Task Performance: Results Overview
	7.2 Estimation Bias Analysis
	7.3 Psychophysical Relations Between Perceived Size (P) and Physical Size (Π) for Flow Lines

	8 Discussion
	9 Conclusion
	References




