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Abstract. With increasing demand of running Convolutional Neural Networks
(CNNs) on mobile devices, real-time object detection has made great progress in
recent years. However, modern approaches usually compromise detection accu-
racy to achieve real-time inference speed. Some light weight top-down CNN
detectors suffer from problems of spatial information loss and lack of multi-level
semantic information. In this paper, we introduce an efficient CNN architecture,
the Multi-level Semantic Pyramid Network (MSPNet), for real-time object detec-
tion on devices with limited resource and computational power. The proposed
MSPNet consists of two main modules to enhance spatial details and multi-level
semantic information. The multi-scale feature fusion module integrates different
level features to tackle the problem of spatial information loss. Meanwhile, a light
weight multi-level semantic enhancement module is developed which transforms
multiple layer features to strengthen semantic information. The proposed light
weight object detection framework has been evaluated on CIFAR-100, PASCAL
VOC and MS COCO datasets. Experimental results demonstrate that our method
achieves state-of-the-art results while maintains a compact structure for real-time
object detection.

Keywords: Real-time object detection · Multi-scale feature fusion · Multi-level
semantic information

1 Introduction

Real-time object detection is a fundamental computer vision task. With rapid develop-
ment of mobile devices, there are increasing interests in designing Convolutional Neural
Networkmodels (CNNs) for speed sensitive applications, such as robotics, video surveil-
lance, autonomous driving and augmented reality. Real-time object detection on mobile
devices is a challenging task due to state-of-the-art CNNs require high computational
resources beyond the capabilities of many mobile and embedded devices.

To tackle the problem, some light weight networks adopt small backbone and simple
structure that compromise detection accuracy to inference speed. For example, the Light-
head R-CNN [1] implemented real-time detection by using a small backbone. However,
small backbone makes the network prone to overfitting. Iandola et al. proposed the
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SqueezeNet [2] which uses a fire module to reduce parameters and computational cost.
Though the method is simple and effective, the lack of effective spatial details leads
to accuracy degradation. Meanwhile, it is difficult for light weight networks with small
backbone to provide featuremapswith large receptivefield.GlobalConvolutionNetwork
[3] utilizes “large kernel” to enlarge the receptive field, while it leads to a sharp increase
in computational cost. ICNet [4] adopts a multi-branch framework, in which coarse
prediction map obtained from deep feature maps are refined by medium- and high-
resolution features. This method enhances spatial details but the semantic information
is computed mainly from deep feature maps. In fact, feature maps in previous layers
not only contain spatial detail but have different level semantic information. With these
observations, we aim to implement a CNN to achieve accurate object detection while
maintain compact architecture. The proposed multi-level semantic pyramid network
consists of two modules to integrate multiple layer features. The overall framework is
shown in Fig. 1. The main contributions of this paper are summarized as follows:

1. We propose a light weight network architecture that consists of a multi-scale feature
fusion (MFF) module to preserve spatial information and a multi-level semantic
enhancement (MSE) module to extract different level semantic features. The new
model enhances network representation ability for both fine-level spatial details
and high-level semantic information. Meanwhile, the proposed model maintains a
compact structure for real-time object detection.

2. The multi-scale feature fusion module integrates different scale features to enrich
spatial information. In the light weight multi-level semantic enhancement module,
features of various layers are transformed to shallow, medium and deep features.
Shallow features and deep features are further combined to compute global semantic
clues. These features are aggregated to generate semantic segmentation maps which
are used as semantic guidance to improve detection performance.

3. With 304 × 304 input images, MSPNet achieves 78.2% mAP on the PASCAL VOC
07/12 and 30.1% AP on the MS COCO datasets, outperforming state-of-the-art
light weight object detectors. Furthermore, experiments demonstrate the efficiency
of MSPNet, e.g. our module operates at 126 frames per second (FPS) on PASCAL
VOC 2007 with a single GTX1080Ti GPU.

2 Related Work

2.1 Light Weight Deep Neural Network

To construct a compact detector, some models either compress and prune typical CNNs
or adopt a light weight structure. As an example, the MobileNet [5, 6] utilizes depthwise
separable convolution to build a light weight deep neural network. Other light weight
networks, such as ShuffleNet [7, 8] reduces computational cost by using the pointwise
group convolution and adopt the channel shuffle operation to obtain feature maps from
different groups. The ThunderNet adopts a light weight backbone and a compressed
RPN network with discriminative feature representation to realize effective two-stage
detector [9]. In [10], Wang et al. proposed the PeleeNet which consists of a stem block
and a set of dense blocks. Different from other light weight networks, the PeleeNet
adopts conventional convolutions to achieve efficient architecture.
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Fig. 1. The multi-level semantic pyramid network. The main structure is composed of the feature
fusion module (left half part) and the semantic enhancement module (right half part). LAM: light
weight attention module.

2.2 Multi-layer Feature Fusion

Combination of multi-layer feature maps is a common method to make better use of
different level features. Lin et al. developed a top-down feature pyramid architecture
with lateral connections to construct the FPNmodel [11]. The feature pyramid enhances
semantic information by combing semantically strong deep feature maps with high-
resolution shallow feature maps. In the SSD network [12], additional layers are added
to the baseline model to enrich semantic clues. The network makes prediction from
multiple layer featuremapswith different resolutions.DSSDadds deconvolutional layers
to the top of SSD network to build a U-shape structure [13]. These feature maps are
then combined with different scale feature maps to enhance different level features.
The STDN [14] adopts multiple layer features with different resolutions and the scale-
transfer layers to generate a large size feature map. In [15], Kong et al. proposed a light
weight reconfiguration architecture to combine multiple level features. The architecture
employs global attention to extract global semantic features which followed by a local
reconfiguration to model low-level features.

2.3 Attention Mechanism

The attention mechanism has been successfully applied in many computer vision tasks
to boost the representational power of CNNs. The residual attention network [16] is built
by stacking multiple attention modules to generate attention-aware features. The trunk
branch performs feature processing and the soft mask branch learns weight for output
features. In [17], Hu et al. proposed a compact squeeze and excitation structure to adjust
output response by modeling the relationship between channel features. The channel-
wise attention learned by SENet is used to select important feature channels. In CBAM
[18] and BAM [19], attention modules are integrated with CNNs to compute attention
maps in both channel and spatial dimensions. These attention modules sequentially
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transmit input feature map to channel attention module and spatial attention module
for feature refinement. Li et al. propose the pyramid attention network which combines
attention mechanism with spatial pyramid to provide pixel-level attention for high-level
features extraction [20].

Table 1. Architecture of the multi-level semantic pyramid network

Stage Output size Operation

Input 224 × 224 × 3

PeleeNet_head

Multi-scale feature fusion module

MFF feature I 7 × 7 × 704 Broadcasting

Element-wise sum

MFF feature II 14 × 14 × 704 2× up sampling

Element-wise sum

MFF feature III 28 × 28 × 704 2× up sampling

Element-wise sum

Global semantic feature

Multi-level semantic enhancement module

MSE deep feature 28 × 28 × 704 2/4× up
sampling

Sum

Concatenate

MSE medium
feature

28 × 28 × 704 2x down
sampling

Concatenate

MSE shallow
feature

28 × 28 × 704 4× down
sampling

Classification

2.4 Light Weight Semantic Segmentation

Wu et al. introduced a light weight context guided network for semantic segmentation
[21]. The CGNet contains multiple context guided blocks which learns joint features
by using a local feature extractor, a surrounding context extractor, and a global context
extractor. The Light weight RefineNet implements real-time segmentation by using light
weight residual convolutional units and light weight chained residual pooling [22]. By
replacing 3× 3 convolutions with 1× 1 convolutions, the method reduces model param-
eters while achieving similar performance to the original RefineNet [23]. Zhang et al.
proposed the detector with enriched semantics network which consists of a detection
branch and a segmentation branch [24].
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Different to these works, we aim to improve the discriminative power of light weight
network by enriching spatial details and high-level semantic information. The proposed
network extracts multi-scale spatial details and different level semantic information in
two modules simultaneously. These enriched features are further integrated to generate
semantic segmentation map which is used to guide object detection.

3 Multi-level Semantic Pyramid Network

In the task of object detection, both spatial details and object-level semantic informa-
tion are crucial to achieve high accuracy. However, it is difficult to meet these demands
simultaneously in a light weight top-down CNN structure. In this work, we introduce
the multi-level semantic pyramid network to solve the problem. The proposed MSP-
Net applies a feature fusion module to strengthen multi-scale spatial features. A light
weight multi-level semantic enhancement module is developed, which aggregates global
semantic features with different features to enhancemultiple level semantic information.
The overall structure of the MSPNet is shown in Table 1.

Fig. 2. The multi-scale feature fusion module.

3.1 Multi-scale Feature Fusion Module

Most light weight networks make prediction mainly on deep feature maps. While deep
features provide rich semantic information, the top-down CNN structure suffers from
fine-level spatial information loss. Thus, lack of suitable strategy to preserve multi-scale
spatial details is one of the main issues of light weight CNNs.

We present a feature fusion module to tackle this problem. Specifically, a multi-level
feature pyramid is built in the feature fusion module. The proposed MFF module refines
features by aggregating multiple scale spatial features from different pyramid layers.
The structure of the MFF module is shown in Fig. 2. In the module, we build a four-
stage feature pyramid to fuse multiple level features. Firstly, the broadcasting is applied
to the global average pooling layer. Secondly, feature maps with smaller sizes are 2×
upsampled by the bilinear interpolation to match spatial dimensions of previous layer
feature maps. Then feature maps of two levels are merged by using element-wise add.
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The Light weight Attention Module. In the proposed multi-scale feature fusion mod-
ule, a light weight attention module (LAM) is applied to learn weight for multiple level
features. The LAM consists of a channel attention module (CAM) and a spatial attention
module (SAM) as shown in Fig. 2. The LAM sequentially transforms input features to
the channel attention module and the spatial attention module. The channel and spatial
attention are computed as:

Ac = Sigmoid(MaxPool(F)) (1)

Ac′ = F ⊗ Ac (2)

As = Sigmoid
{
Conv1

(
Concat

(
M 3,M 6

))}
(3)

M 3 = MaxPool
{
Convd3

(
Conv1

(
Ac′))}

(4)

M 6 = MaxPool
{
Convd6

(
Conv1

(
Ac′))}

(5)

As′ = Ac′ ⊗ As (6)

Where, Conv1 is 1 × 1 convolution, Convd3 and Convd6 are dilated convolution with
dilation rate of 3 and 6 respectively. For the given input feature F, the refined feature
map F ′ is computed as:

F ′ = F ⊗ As′ (7)

Fig. 3. The multi-level semantic enhancement module.

3.2 Multi-level Semantic Enhancement Module

We develop a light weight multi-level semantic enhancement module to further improve
detection accuracy. In the semantic module, multi-level features are combined to form
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shallow, medium and deep features. Figure 3 shows the architecture. Specifically, fea-
tures in different levels are resized to 28× 28 pixels by downsampling and upsampling.
The upsampled F7×7 and F14×14 are concatenated to get the deep features. Likewise,
the medium features are obtained by integrating F28×28 features and F56×56 features.
F112×112 is used as the shallow features. However, only deep features are not enough
as segmentation also require object boundaries information to facilitate different scale
objects localization. In addition, when feature maps propagate from top level to low
level, progressively upsampling might cause information dilution. we combine the F7×7
features and the F112×112 features to yield global semantic features. These global seman-
tic features not only contain high-level semantic cues, but also provide fine-level object
location information. The deep features and medium features are then combined with
global semantic features to form output features.

In the MSE module, we apply a two-path MSE block to reduce training time. For
each level feature maps, the input is transformed by a stack of three convolutional layers.
The two 1 × 1 convolutions reduces and then restores dimensions that makes the 3 × 3
DW_Conv [5] running on features with small dimensions. MSE Block has a shortcut
path which downsamples input features by using the max pooling. The shortcut path is
designed to enhance semantic information of different level features.

4 Experiments

In this section, we evaluate the effectiveness of MSPNet on CIFAR-100 [25], PASCAL
VOC [26] and MS COCO [27] benchmarks. The CIFAR-100 consists of 60,000 32 ×
32 color images in 100 classes where the training and testing sets contain 50,000 and
10,000 images respectively. We use VOC 2007 trainval and VOC 2012 trainval as the
training data, and use VOC 2007 testval as the test data. ForMSCOCO, we use a popular
split which takes trainval35k for training, minival for validation, and we report results
on test-dev 2017. Ablation experiments are also conducted to verify the effectiveness of
different components.

Table 2. Experimental results on CIFAR-100 dataset.

Module Params Error (%)

ResNet 50 [28] 23.71M 21.49

ResNet 101 [28] 42.70M 20.00

WideResNet 28 [29] 23.40M 20.40

ResNeXt 29 [30] 34.52M 18.18

DenseNet-BC-250 (k = 24) [31] 15.30M 19.64

MobileNet [5] 3.30M 18.30

ShuffleNet [7] 2.50M 16.60

PreResNet 110 [32] 1.73M 22.2

Pelee [10] 1.60M 15.90

MSPNet 2.20M 10.3
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4.1 Experiments on CIFAR-100

The MSPNet is trained on the public platform TensorFlow with batch size of 128. We
set the initial learning rate to 10−3. The learning rate changes to 10−4 at 60k iterations
and 10−5 at 100k iterations. Experimental results on CIFAR-100 dataset are shown in
Table 2. The MSPNet has 10.3% error rate, about 5.6% lower than the baseline model
with slight network parameter increase of 0.6M. Our model outperforms other light
weight networks, e.g. compared to MobileNet and ShuffleNet, the MSPNet achieves
8.0% and 6.3% performance improvement with fewer model parameters.

Table 3. Experimental results on PASCAL VOC.

Module Backbone Input
dimension

MFLOPs Data mAP (%)

R-FCN [35] ResNet-101 600 × 1000 58900 12 77.4

HyperNet [34] VGG-16 600 × 1000 – 07 + 12 76.3

RON384 [36] VGG-16 384 × 384 – 12 73.0

SSD300 [12] VGG-16 300 × 300 31750 07 + 12 77.5

SSD321 [12] ResNet-101 321 × 321 15400 12 77.1

DSSD321 [13] ResNet-101 321 × 321 21200 07 + 12 78.6

DES300 [24] VGG16 300 × 300 – 12 77.1

RefineDet320 [37] VGG-16 320 × 320 – 12 78.1

DSOD300 [38] DenseNet 300 × 300 – 07 + 12 77.7

YOLOv2 [33] Darknet-19 416 × 416 17400 07 + 12 76.8

YOLOv2 [33] Darknet-19 288 × 288 8360 07 + 12 69.0

PFPNet-R320 [39] VGG-16 320 × 320 – 12 77.7

Tiny-YOLOv2 [33] DarkNet-19 416 × 416 3490 07 + 12 57.1

MobileNet-SSD [5] MobileNet 300 × 300 1150 07 + 12 68.0

MobileNet-SSD [5] MobileNet 300 × 300 1150 07 + 12 +
coco

72.7

Tiny-DSOD [40] – 300 × 300 1060 07 72.1

Pelee [10] DenseNet-41 304 × 304 1210 07 + 12 +
coco

76.4

Pelee [10] DenseNet-41 304 × 304 1210 07 + 12 70.9

ThunderNet [9] SNet146 320 × 320 – 07 + 12 75.1

MSPNet Pelee 304 × 304 1370 07 + 12 78.2

MSPNet Pelee 512 × 512 1370 07 + 12 79.4
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4.2 Experiments on PASCAL VOC

We train the model with an initial learning rate of 0.05 and batch size is 32. The learning
rate reduces to 0.005 at 80k iterations. Table 3 lists the experimental results on Pascal
VOCdataset.We use the standardmean average precision (mAP) scoreswith IoU thresh-
olds of 0.5 as evaluationmetric. Ourmodel achieves 78.2%mAP, higher than the baseline
model by 7.3%. Compared to other light weight models, the proposed MSPNet also has
competitive results. For example, we observe 3.1% performance improvement than the
ThunderNet [9] with SNet146. Furthermore, our model has better performance than
some state-of-the-art CNNs, such as SSD300 [12], YOLOv2 [33], HyperNet [34] and
R-FCN [35] with significant computational cost reduction.

Table 4. Experimental results on MS COCO

Module Backbone Input dimension AP AP50 AP75

ResNet-50 [28] – 320 × 320 26.5 47.6 –

YOLOv2 [33] DarkNet-19 416 × 416 21.6 44.0 19.2

SSD300 [12] VGG-16 300 × 300 25.1 43.1 25.8

SSD512 [12] VGG-16 512 × 512 28.8 48.5 30.3

DSSD321 [13] ResNet-101 321 × 321 28.0 46.1 29.2

MDSSD300 [41] VGG-16 300 × 300 26.8 46.0 27.7

Light-head r-cnn [1] ShuffleNetv2 800 × 1200 23.7 – –

RefineDet320 [37] VGG-16 320 × 320 29.4 49.2 31.3

EFIPNet [42] VGG-16 300 × 300 30.0 48.8 31.7

DES300 [24] VGG-16 300 × 300 28.3 47.3 29.4

DSOD300 [38] DenseNet 300 × 300 29.3 47.3 30.6

RON384++ [36] VGG-16 384 × 384 27.4 40.5 27.1

PFPNet-S300 [39] VGG-16 300 × 300 29.6 49.6 31.1

MobileNet-SSD [5] MobileNet 300 × 300 19.3 – –

MobileNetv2-SSDLite [6] MobileNet 320 × 320 22.1 – –

MobileNetv2 [6] – 320 × 320 22.7 – –

Tiny-DSOD [40] – 300 × 300 23.2 40.4 22.8

Pelee [10] DenseNet-41 304 × 304 22.4 38.3 22.9

ThunderNet [9] SNet146 320 × 320 23.6 40.2 24.5

ShuffleNetv1 [7] – 320 × 320 20.8 – –

ShuffleNetv2 [8] – 320 × 320 22.7 – –

MSPNet Pelee 304 × 304 30.1 48.9 31.5

MSPNet Pelee 512 × 512 35.2 52.1 36.7
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4.3 Experiments on MS COCO

We train the MSPNet with an initial learning rate of 0.05 and the batch size is 32. The
learning rate changes to 0.01 at 40k iterations and 0.001 at 45k iterations. The evaluation
metric of MS COCO is the average precision (AP) scores, which includes AP50 and
AP75, with IoU thresholds of 0.5 and 0.75 respectively. As shown in Table 4, MSPNet
achieves 30.1% AP, surpasses most light weight networks, such as MobileNet-SSD [5]
and PeleeNet [10] with the mostly same computational cost.

4.4 Ablation Experiments

Table 5 shows the results of ablation experiments. Compared to Pelee (70.9% mAP),
utilizing feature fusion module alone obtains 3.4% accuracy improvement. Similarly,
the third and the fourth row show that using attention module and semantic enhance-
ment module separately increases performance by 1.2% and 3.7%, respectively. In the
attention experiment, the feature fusion module and semantic enhancement module are
removed and the attention module is applied to refine each stage backbone feature maps.
It can be seen from these experiments that multi-scale feature fusionmodule is necessary
to object detection as it enhances both spatial information and high-level semantic fea-
tures. Utilization of the multi-scale feature fusion module and the multi-level semantic
enhancement module separately yields 75.6% mAP (the sixth row) and 75.1% mAP
(the seventh row), respectively. The last two experiments show that our model achieves
77.7% mAP on the PASCAL VOC dataset by utilizing the feature fusion module, the
attention module, and the semantic enhancement module (without global semantic fea-
tures). Integrating the global semantic features further improve detection performance
to 78.2%.

Table 5. Ablation study of different modules on PASCAL VOC.

Multi-level semantic pyramid network

MFF MSE

Feature fusion
module

Attention module Semantic
enhancement
module

Global semantic
feature

mAP (%)

1 Pelee [10] 70.9

2
√

74.3

3
√

72.1

4
√

74.6

5
√

71.8

6
√ √

75.6

7
√ √

75.1

8
√ √ √

77.7

9
√ √ √ √

78.2
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5 Conclusion

In this paper, we propose a light weight network, the multi-level semantic pyramid
network, to implement real-time object detection. The MSPNet consists of a multi-
scale feature fusion module and a multi-level semantic enhancement module to improve
network representation ability for both spatial details and multi-level semantic infor-
mation. Specifically, the MFF integrates different level features to collect multi-scale
spatial information. The light weight MSE transforms different level features to shallow,
medium and deep features. These features are combined with global semantic features to
generate semantic segmentation maps which are used as semantic guidance to improve
detection performance. Experiments on different datasets demonstrate superior object
detection performance of the proposed method as compared with state-of-the-art works.
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