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Abstract. This research introduces a novel multiple object tracking
algorithm called SMAT (Smart Multiple Affinity Metric Tracking) that
works as an online tracking-by-detection approach. The use of various
characteristics from observation is established as a critical factor for
improving tracking performance. By using the position, motion, appear-
ance, and a correction component, our approach achieves an accuracy
comparable to state of the art trackers. We use the optical flow to
track the motion of the objects, we show that tracking accuracy can
be improved by using a neural network to select key points to be tracked
by the optical flow. The proposed algorithm is evaluated by using the
KITTI Tracking Benchmark for the class CAR.

Keywords: Online multiple object tracking · Tracking by detection

1 Introduction

Multiple object tracking or MOT is an important problematic in computer
vision. This problematic has many potential applications, such as tracking and
analyzing the movement of vehicles and pedestrians on the road, helping self-
driving cars to make decisions, tracking and analyzing the movement of cells
or organisms in time-lapse microscopy images or helping robots to pick up and
place things in environments such as farms or industries. The broad area of
application reflects the importance of developing accurate objects trackers.

MOT can be explained as the task of locating and tracking multiple objects
of interest in video footage, identifying their position in every frame, and main-
taining the identity (ID) of each target through its trajectory. There are many
challenges in tracking multiple objects, such as the random motion of objects,
crowded scenes, partial or full occlusion of objects, objects and camera viewpoint
variations, illumination changes, background appearance changes, and non-ideal
weather conditions.

This paper introduces an online MOT based on the tracking-by-detection
paradigm. In an online approach, uniquely the previous tracked objects and the
current frame are available to the algorithm. Tracking-by-detection means that
in every frame, the objects are detected and considered as targets. The proposed
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pipeline is composed of two main modules: detection and tracking. For detection,
we test our system with two different detectors Faster-RCNN [24] and RRC [23].
The tracking algorithm is composed of three elements: Affinity metrics, data
association and past corrector. for multiple object tracking The affinity met-
ric outputs the probability of two observations from different frames being of
the same target. For this we rely on three factors estimated from an observation:
position, appearance, and motion. We use three affinity metrics inspired by state
of the art trackers such as [4,5,30]: Intersection over Union (IoU) score, appear-
ance distance, and optical flow affinity. The scores generated by the affinities
are analyzed by the data association component with the objective of linking
the current observations to the past observations, by giving the same ID in the
cases that the target is the same. These process results are then passed into
the corrector component, called tubulet interpolation which aims to fill empty
spaces in the trajectories produced by detection failures.

There are multiple challenges and benchmarks for Multiple object tracking
as MOT Challenge [7], KITTI Tracking Challenge [8], DETRAC [20] between
others. This work uses to train, test and experiment using the KITTI Track-
ing Challenge [8] dataset for the car category. This limitation is due that we
don’t want to concentrate our efforts training the detector. The main idea is to
concentrate on the tracking.

The main contributions of this paper are:

– The development of a novel tracking algorithm called Smart Multiple Affinity
Metrics Tracker (SMAT). This algorithm combines three affinity metrics that
evaluate the position, appearance, and motion of the targets.

– We tested the algorithm on the KITTI Tracking Benchmark and our approach
produces competitive results. It was ranked 12th in this challenge (01/2020).
Having the best multiple object tracking precision (MOTP). Also, in the
subset of the top 12 submissions: we have the least identity switches (IDs)
and the second best trajectory fragmentation (FRAG).

– Our experiments showed that the proposed affinity metrics complement each
other to reduce errors produced along the tracking-by-detection framework.

– In near online [5], an affinity metric is used which is based on optical flow. We
propose an improvement on the way the interest points are chosen for this
metric by using an neural network called “hourglass”[26], instead of popular
corner detectors as [27] and [25]. Better tracking accuracy results are obtained
with the use of this network.

– A tubulet interpolation method was used to fill the empty spaces in a trajec-
tory produced by detection failures. This technique allowed us to correct the
past observations relying on the information provided by the motion model.

2 Related Work

Due to the rapid advancement in object detection thanks to convolutional neu-
ral network (CNN), tracking-by-detection has become a popular framework for
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addressing the multiple target tracking problem. These methods depend on an
object detector to generate object candidates to track. Then, based on the infor-
mation extracted from detections (for example the position or appearance), the
tracking is done by associating the detections.

A MOT approach can treat the association of the detections either as an
online or offline problem. Global trackers [1,18,21] assume detections from all
frames are available to process. In recent global trackers, the association is done
by popular approaches as multiple hypotheses tracking (MHT) [13] and Bayesian
filtering based tracking [15]. These methods achieve higher data association accu-
racy than online trackers as they consider all the detections from all frames.
Contrary to global trackers, online trackers [12,30,31] do not use any data from
future frames. They use the data available up to the current instance to tackle
the association problem. Such trackers often solve this via the Hungarian algo-
rithm [14]. Their advantage is that online methods can be applied in real-time
applications such as autonomous cars. In these methods, a key factor for having
an excellent performance is to use a relevant affinity metric. The affinity metric
estimates how much similarity exists between 2 detections across time. Then,
based on this information the association between these detections is done or
not. For the affinity metric some trackers such as [3,4] rely in the information
provided by the Intersection over Union (IoU) score. Other trackers such as [30]
rely on the appearance information.

Recently, near online trackers proposed an Aggregated Local Flow Descriptor
(ALFD) [5] to be used as affinity metric. The ALFD applies the optical flow to
estimate the relative motion pattern between a pair of temporally distant detec-
tions. For doing that, the ALDF computes long term interest point trajectories
(IPTs). If two observations have many IPTs in common this means that they are
more likely to represent the same target. In [5] they use the algorithm FAST [25]
for computing the interest points to be tracked by the optical flow. In contrast
to these trackers, we propose a novel architecture that uses IoU score, optical
flow affinity and appearance distance to infer if two observations correspond to
the same target. The data association is done by the Hungarian algorithm.

3 Smart Multiple Affinity Tracker

The proposed algorithm (SMAT) is shown in Fig. 1. The inputs of the algorithm
are the current frame and the identified tracked objects from the previous frame.
In first place, the objects are detected in the current frame.

Then, three different algorithms compute the affinity or probability of being
the same object between the detections and the previous tracked objects. These
algorithms rely on three factors estimated from the detections and frames: posi-
tion, appearance and motion. We use three affinity metrics: IoU score, appear-
ance distance and optical flow affinity. The generated affinities are used by the
data association component to link the current observations with the past obser-
vations by assigning the same ID in the cases that the object is the same. At
each iteration, the corrector analyses if there is a re-identification of a lost target.
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Fig. 1. SMAT overview

In that case, the corrector component will fill the empty spaces in the trajectories
produced by detection failures using interpolation.

3.1 Object Detection

The proposed tracker is an online tracking-by-detection approach, where at each
frame the objects of interest are detected and then associated to the targets of
the past frames.

In this research we had two different stages:

– In the first experiment, we used the detector Faster R-CNN [24] with a
ResNET-101 [6] as a backbone. This was selected based on the work devel-
oped by [10]. They evaluate the speed/memory/accuracy balance of different
feature extractors and meta architectures. This configuration was chosen for
the good trade-off between computing time and accuracy. We use this detector
for the first experiment related to the affinity metrics.

– In the second experiment, aiming to improve our results, we used the detector
RRC [23] due to its strong accuracy in the detection task.

The results obtained for those detectors in the KITTI Object Detection
Benchmark [8] were:

Table 1. KITTI Object detection benchmark results

Method Easy Moderate Hard

TuSimple [32] (Best) 94.47 95.12 86.45

RRC [23] (Used) 93.40 95.68 87.37

Faster-RCNN [24] (Used) 79.11 87.90 70.19
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3.2 Affinity Metrics

In order to implement a MOT System, it is important to have an accurate
measure to compare two detections through time. That is the job of the affin-
ity metrics, which compare the detections from different frames and calculate
their similarities scores. This information helps the data association to decide if
the two detections represent the same target or not. The following paragraphs
describe the affinity metrics used.

Intersection over Union Score: IoU is computed by dividing the area of
overlap by the area of union between two bounding boxes that represent the
detections. To use it as an affinity metric, the detections from frame t are com-
pared with the tracked objects from frame t − 1. The results are registered in a
cost matrix named CIoU that will be used by the data association. This process
is summarized in Fig. 2. Where Dt and Dt−1 are the predicted bounding boxes
for the current frame and previous tracks.

Fig. 2. Computing IoU cost matrix

Optical Flow Affinity: The Aggregated Local Flow Descriptor (ALFD) was
introduced by [5] in 2015. The ALDF robustly measure the similarity between
two detections across time using optical flow. Inspired by them, we developed a
simplified version of the ALDF called optical flow affinity.

The optical flow affinity uses the Lucas-Kanade sparse optical motion algo-
rithm [11]. This algorithm starts by identifying interest points (IPs) in the detec-
tions. Now, the optical flow algorithm tracks this points regardless of the detec-
tions, this track is called interest point trajectory (IPTs). Also, an ID is given
to each trajectory.

To compute the affinity, the detection bounding box is divided in 4 sectors
(as proposed in [5]) and a description of the detection is made based on the
locations of the IPTs with respect to the sectors. Then, each tracked object
from t − 1 is compared with each detection from frame t. The number of IPTs
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that are common per sector (number of matches) are counted and divided by
the total number of matches and the number of IPTs of the target using Eq. 1.

scorei =
∑Nsector

i=0 matches(ti, di)
ti IDs

(1)

where di is the observation from current frame, ti is the target from past frame,
ti IDs is the total number of IPTs contained by the target and Nsector is the total
number of sectors per target (4 in this case). The results are stored in a cost
matrix Cof (see Fig. 3).

Fig. 3. Optical flow affinity

When working with sparse optical flow, the interest points (IPs) should be
easy to be re-identified in the subsequent frames. Approaches as Shi Tomasi
Corner Detector [27] or FAST [25] are used as a way of correctly choosing these
IPs. However, these approaches do not have any notion of the shape of the target
and therefore they find interest points in objects that are not of interest. These
interest points are called outliers. The outliers reduce the accuracy of the optical
flow affinity metric because it introduces wrong information to the evaluation.
For reducing these outliers, we propose the use of a method that computes key-
points for a given target.

In [26] they trained a stacked hourglass for the task of detecting key-points
in vehicles. They obtained 93.4 of percentage of Correct Key-points (PCK) in
the class car for the Pascal 3D dataset. The hourglass [22] can produce 36 points
as shown in Fig. 4. In this work we selected only 8 points: (1, 2, 14, 15, 17,
32, 33, 35). These points were strategically chosen due to their position (easily
identified in different views of a car), and the information that they provide
(they are well tracked, and provide useful information on many components of
the car to calculate the affinity metric).
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Fig. 4. Keypoints generated by hourglass

Appearance Distance: The appearance distance is a strong pairwise affinity
metric used in modern trackers such as [30,33]. The main idea is to compare the
car images, when the images contain the same objects the distance should be
small, and large if they contain cars of different identities. This task is known
as re-identification. For computing the appearance distance, a descriptor of an
object that allows to discriminate between it and other similar objects is needed.
To generate the descriptor or appearance vector we need to extract a set of
features such as the car colour, car model, wheels model, etc. But they can also
be more abstract, for example a combination of different curves and lines. In the
case of deep learning, these features are represented by a vector. The feature
vector or appearance vector has no meaning by itself but the distance of two
vectors represent the similarity between the cars as depicted in Fig. 5).

Fig. 5. Computing appearance distance (Color figure online)

For computing the appearance vector we use the Multiple Granularity Net-
work (MGN) [29]. MGN was chosen because of its great performance in person
re-identification datasets such as CUHK03 [16]. We trained the model similar
to [29], with the main difference being the input size: 384 × 384. The model is
trained in the VERI dataset [19]. For training, many mini-batch are created by
randomly selecting 20 identities and randomly sampled 4 images for each iden-
tity. In result we get 80% mean average precision (mAP) for the test set in the
VERI dataset.

We should note that, the result of this algorithm for similar cars the affinity
distance is small. However, for the data association the affinity for similar cars
should be large. Then, knowing that the maximum distance is one. For the data
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association, the value of the appearance affinity is corrected by computing one
minus the affinity distance.

3.3 Data Association

For the data association the Hungarian Algorithm [14] is used. The affinity
metrics described previously are used when comparing the current detection
with the previous tracked objects. Each affinity metric produces a cost matrix
by comparing every detection with every tracked object. Then, we sum each cost
matrix multiplied by a weight, as shown in Eq. 2.

Ctotal = wIoUCIoU + wofCof + wappCapp (2)

where Ctotal is the total cost matrix. wIoU, wof and wapp are the weights. This
multiplication is done to prioritize or balance the costs because of the nature of
the affinity, i.e. the values of the optical flow affinity have a mean value lower
than the other two affinities. Therefore, we choose to multiply the optical flow
cost matrix by 1.4. The other affinities are multiplied by 1.

Then using the total cost matrix Ctotal, the Hungarian Algorithm will assign
which detections represent the same target by maximizing the cost assignment.
Associations with a score lower than 0.3 are deleted. Then, new identities are cre-
ated with the unmatched detections. The information of the terminated tracked
objects or tracklets (identities that were not found in the present frame) is stored.
Then, in subsequent frames the algorithm will look for reappearances of these
terminated tracklets. This means that, in every frame we will first compare the
detections from the present frame with the detections from the past frame. The
detections not associated will be compared with the terminated tracklets. If
there are some matches, the old IDs will be assigned. Otherwise, new ids will be
generated. In practice, the system stores the information of terminated tracklets
for 13 frames. If during that period the ID does not reappear then this will be
definitely deleted.

3.4 Estimating Trajectories for Partially Lost Objects

When the object detection fails, as depicted in Fig. 6 at the time t−1, a fragmen-
tation in the estimation of a target’s trajectory is produced. The fragmentation

Fig. 6. Detection failure
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happens when it is unknown the position of the target over a period of time. To
reduce fragmentation we propose a technique called tubelet interpolation.

Although the object is not detected, the optical flow still follows the target.
Relying on this information an interpolation of the bounding box is done for
filling the empty spaces in the trajectories (see Fig. 7).

Fig. 7. Tubulet interpolation

Procedure: The correction of the fragmentation starts; the information of the
matched bounding boxes is known. The current bounding box in time t and the
last known bounding box t − n are assessed. Therefore, the object was lost for
n frames. The bounding boxes coordinates are defined as [x1, y1, x2, y2], where
(x1, y1) is the top left corner and (x2, y2) is the bottom right corner of the rect-
angle. It is assumed that velocity between frames is linear. Equation 3 computes
the velocities vx and vy of the targets between frame t and t − Δt. Also, the
width wr and height hr change ratio are calculated using the Eq. 4 (for vy and
hr replace x by y in Eqs. 3 and 4). Finally, to reproduce the bounding box coor-
dinates between the frames, Eq. 5 and 6 (for y1 and y2 replace x by y and wr by
hr) is used.

vx =
x1(t) − x1(t−n)

n
(3)

wr =
(x2(t) − x1(t)) − (x2(t−n) − x1(t−n))

n
(4)

x1(t−n+k) = x1(t−n) + vx ∗ k (5)

x2(t−n+k) = x1(t−n) + (x2(t−n) − x1(t−n)) + wr ∗ k (6)

where k is a number between 0 and n.

4 Experimentation

Our approach was evaluated in the KITTI Tracking Benchmark [8] on training
and testing dataset. Different configurations of SMAT were proposed. The best
performing configuration in the training set was used to report the result on the
benchmark on the Car class.
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4.1 Metrics

The metrics used to evaluate the multi-target tracking performance are defined
in [17], along with the widely used CLEAR MOT metrics [2]. Some of these
metrics are explained below, where (↑) means the higher the better and (↓) the
lower the better:

– MOTA(↑): Multi-object tracking accuracy
– MOTP(↑): Multi-object tracking precision
– MT(↑): Ratio of ground truth trajectories successfully tracked for at least 80

% of their life span.
– ML(↓): Mostly lost trajectories. Trajectories tracked for less than 20% of its

total length.
– PT(↓): The ratio of partially tracked trajectories, i.e., MT - ML
– FP(↓): Total number of wrong detections
– FN(↓): Total number of missed detections
– ID sw(↓): Number of times the ID of a tracker switches to a different previ-

ously tracked target
– Frag(↓): Number of times a trajectory is interrupted during tracking.

Table 2. Results in the KITTI tracking training set using different configurations

Config MOTA MOTP Recall Precision MT PT ML TP FP FN IDS FRAG

IoU 0.8776 0.9107 0.9164 0.9867 0.8422 0.1525 0.0053 24797 334 2261 350 926

IoU+Sh 0.8870 0.9107 0.9164 0.9867 0.8422 0.1525 0.0053 24797 334 2261 126 705

IoU+FS 0.8853 0.9107 0.9164 0.9867 0.8422 0.1525 0.0053 24797 334 2261 167 744

IoU+Hg 0.8878 0.9107 0.9164 0.9867 0.8422 0.1525 0.0053 24797 334 2261 105 687

IoU+Ap 0.8882 0.9107 0.9164 0.9867 0.8422 0.1525 0.0053 24797 334 2261 96 685

IoU+Sh+Ap 0.8895 0.9107 0.9164 0.9867 0.8422 0.1525 0.0053 24797 334 2261 64 650

IoU+Hg+Ap 0.8899 0.9107 0.9164 0.9867 0.8422 0.1525 0.0053 24797 334 2261 55 642

IoU+FS+Ap 0.8896 0.9107 0.9164 0.9867 0.8422 0.1525 0.0053 24797 334 2261 63 650

IoU+Sh+Ap+Tb 0.9151 0.9069 0.9509 0.9768 0.9238 0.0727 0.0035 25982 618 1342 84 306

IoU+Hg+Ap+Tb 0.9201 0.9062 0.9563 0.9762 0.9326 0.0638 0.0035 26158 639 1195 89 266

IoU+FS+Ap+Tb 0.9160 0.9066 0.9535 0.9753 0.9255 0.0709 0.0035 26050 659 1269 93 293

4.2 Experiments

Different configurations were tested with the training set of KITTI Tracking. In
the first experiment is evaluated the performance of using a tracker with IoU
as an affinity metric. Surprisingly, a MOTA of 87.76% was obtained. However,
there were many id-switches. For reducing the number of ID switches to improve
the accuracy we added the optical flow affinity to the tracker formulation. As the
optical flow affinity highly depends on the IPs, different interest points detectors
were used to see which could give better results. The configurations proposed
were:
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– IoU: Tracking using intersection over union as affinity
– IoU+Sh: IoU and optical flow with Shi Tomasi
– IoU+FS: IoU and optical flow with FAST
– IoU+Hg: IoU and optical flow with Hourglass

The results are shown in Table 2. In all cases, using optical flow improves the
MOTA by reducing the ID switches. This is because in some situations there
are large movements of vehicles from one frame to another generating low IoU
scores. However, in these situations the optical flows can still provides relevant
information to associated the ids. Also, in the situation were some objects are
moving very close to each other, the optical flow affinity helps to discriminate
well between these. The configuration with less ID switches was the one that
uses an hourglass as interest point detector. This is because the hourglass was
trained to find key-points on vehicles so it presents less outliers points than the
others. In the case of FAST and Shi Tomasi they are looking for finding corners
in the image. In many cases, bounding boxes contains not only the vehicle, also
other pieces of objects. That causes that these corner detectors produce points
in zones that are not interesting, generating wrong points to track.

The IoU score and the optical flow affinity fails in cases were the objects are
occluded. In order to make our tracker robust in these situations, the appearance
distance metric (+Ap) was added to the configurations aforementioned. By doing
this we managed to obtain a MOTA of 88.99% and reduce the id-switches from
350 to 55 in the best method (see IoU+Hg+Ap from Table 2).

Although the ID switches were greatly reduced and the MOTA was increased
from 87.76% to 88.99%, the model was not still good enough to be ranked in the
first 20 positions of the challenge. This was partly because there were many false
negatives (2261 in all methods shown). Due to the false negatives the models were
also presenting many fragmentations (642 in the best case). When evaluating
MOT system, each trajectory had a unique start and end and it was assumed
that there was no fragmentation in the trajectories [2]. However, the object
detectors present failures between frames. This increases the number of false
negatives and fragmentation. To deal with this we added a tubulet interpolation
(+Tb) to the tracking formulation as it was explained before. From Table 2
we concluded that the positive aspects of the interpolation are: the number
of fragmentation and false negatives are reduced by filling the empty spaces
of the trajectories, the recall is increased by generating more bounding boxes,
the mostly tracked (MT) metric is increased, and the ratio of partially tracked
trajectories is reduced along with the mostly lost (ML) metric. The negative
aspects are: the false positives and the id-switches increase because sometimes
the corrections of past frames are wrong and the precision decreases because in
some cases the created bounding box does not match completely well the objects.
Although the tubulet interpolation has negative aspects, the MOTA increased
more than 2% in all the configurations, proving that the effect of positive aspects
outweighted the negatives. The Table 3 shows the effect in percentage of adding
different components to a basic tracker that uses only IoU. Green values mean
the result is improved while red values means the result gets worse.
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Table 3. Components contributions in % training set

Config MOTA MOTP Recall Precision MT PT ML TP FP FN IDS FRAG

+OF +
0.99±0.21 = = = = = = = = = -

61±9
-

23±3

+Ap +
1.6 = = = = = = = = = -

73
-
30

+OF+Ap +
2±0.2 = = = = = = = = = -

83±1
-
30

+OF+Ap+Tb +
4±0.2

-
0.42±0.3

+
3.7±0.3

-
1

+
8.9±0.6

-
8

-
0.2

+
5.2±0.3

+
91±6

-
43.5±3.5

-
75±1

-
70.5±0.5

During the writing of this paper, we saw the opportunity of using a better
detector called RRC in the place of the Faster R-CNN. Therefore, using the best
performing model in the previous experiment (IoU + Hg + Ap + Tb), the model
is tested with the RRC detector. The results are shown in the next section.

4.3 Results

Two submission were done for the KITTI Tracking Benchmark. One using a
Faster R-CNN as object detector and other employing and Accurate Single Stage
Detector Using Recurrent Rolling Convolution RRC. Both of them using the
best performing model (IoU + Hg + Ap + Tb)]. In the Table 4 our approach
(SMAT) with the best models of the challenge is compared. Due to the fact
that the RRC presents better object detection accuracy than the Faster-RCNN,
the architecture that use RRC is the best performing. SMAT+RRC is ranked
12th while SMAT+F-RCNN is ranked 20th in the challenge. Models that used
other sensors different to the camera were not included in the Table 4. As shown,
SMAT has competitive results in comparison with state of the art trackers.

Table 4. Results in the KITTI Tracking Benchmark

Config MOTA% MOTP% MT% ML% IDS FRAG

MASS [12] 85.04 85.53 74.31 2.77 301 744

SMAT+RRC (ours) 84.27 86.09 63.08 5.38 28 341

MOTBeyPix [26] 84.24 85.73 73.23 2.77 468 944

IMMDP [31] 83.04 82.74 60.62 11.38 172 365

JCSTD [28] 80.57 81.81 56.77 7.38 61 643

extraCK [9] 79.99 82.46 62.15 5.54 343 938

SMAT+F-RCNN (ours) 78.93 84.29 63.85 4.77 160 679
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5 Conclusion

In this paper we propose a novel tracker architecture that uses the position,
motion and appearance as characteristics for associating the targets to the obser-
vations. Based on these characteristics three affinity metrics were implemented:
IoU score, optical flow affinity and appearance distance. Our experiments showed
that for tracking the motion using optical flow the results are highly dependent
on the selection of the interest points. A neural network called “hourglass” is used
in order to compute interest points to follow. By using this instead of classical
interest point detectors the tracking accuracy is improved. Through experiments
we showed that the affinity metric complement each other to reduce mistakes
committed in the tracking-by-detection framework. An analysis of the contribu-
tions generated for adding each affinity to the tracking formulation is done. A
method called tubelet interpolation was proposed in order to reduce the fragmen-
tation generated by detections failures. This method relies on the information
provided by the optical flow. Finally, the proposed algorithm presents compet-
itive results as it was ranked 12th in the KITTI Tracking Benchmark for the
class Car.

In future work, we will see the performance difference between using a seg-
mentation network plus a classic interest point detector, instead of the detection
network plus the hourglass network in order to compute key points. The seg-
mentation will avoid the points outside of the object. Therefore, the difference
in time and performance could be studied. In the other hand, we will experiment
different position models as a Kalman filter and how we can joint the information
of the optical flow. Also, we will study other data association algorithms.
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